Spaces:
Running
on
Zero
Running
on
Zero
add caching to sensevoice
Browse files
app.py
CHANGED
@@ -240,13 +240,14 @@ def _transcribe_sense_cpu_stream(model_id: str, language: str, audio_path: str,
|
|
240 |
with ProgressHook() as hook:
|
241 |
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
|
242 |
snippets = []
|
|
|
243 |
for turn, _, speaker in diary.itertracks(yield_label=True):
|
244 |
start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
|
245 |
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
|
246 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
247 |
segment.export(tmp.name, format="wav")
|
248 |
try:
|
249 |
-
segs = model.generate(input=tmp.name, cache=
|
250 |
use_itn=enable_punct, batch_size_s=300)
|
251 |
except Exception as e:
|
252 |
cprint(f'Error: {e}','red')
|
@@ -273,13 +274,14 @@ def _transcribe_sense_gpu_stream(model_id: str, language: str, audio_path: str,
|
|
273 |
with ProgressHook() as hook:
|
274 |
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
|
275 |
snippets = []
|
|
|
276 |
for turn, _, speaker in diary.itertracks(yield_label=True):
|
277 |
start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
|
278 |
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
|
279 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
280 |
segment.export(tmp.name, format="wav")
|
281 |
try:
|
282 |
-
segs = model.generate(input=tmp.name, cache=
|
283 |
use_itn=enable_punct, batch_size_s=300)
|
284 |
except Exception as e:
|
285 |
cprint(f'Error: {e}','red')
|
|
|
240 |
with ProgressHook() as hook:
|
241 |
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
|
242 |
snippets = []
|
243 |
+
cache={}
|
244 |
for turn, _, speaker in diary.itertracks(yield_label=True):
|
245 |
start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
|
246 |
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
|
247 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
248 |
segment.export(tmp.name, format="wav")
|
249 |
try:
|
250 |
+
segs = model.generate(input=tmp.name, cache=cache, language=language,
|
251 |
use_itn=enable_punct, batch_size_s=300)
|
252 |
except Exception as e:
|
253 |
cprint(f'Error: {e}','red')
|
|
|
274 |
with ProgressHook() as hook:
|
275 |
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
|
276 |
snippets = []
|
277 |
+
cache = {}
|
278 |
for turn, _, speaker in diary.itertracks(yield_label=True):
|
279 |
start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
|
280 |
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
|
281 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
282 |
segment.export(tmp.name, format="wav")
|
283 |
try:
|
284 |
+
segs = model.generate(input=tmp.name, cache=cache, language=language,
|
285 |
use_itn=enable_punct, batch_size_s=300)
|
286 |
except Exception as e:
|
287 |
cprint(f'Error: {e}','red')
|