Luigi commited on
Commit
fe1810a
·
1 Parent(s): 7f3b65a

fix on way to apply batched fater-whiper

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -4,7 +4,7 @@ import tempfile
4
 
5
  import torch
6
  import gradio as gr
7
- from faster_whisper import WhisperModel
8
  from pydub import AudioSegment
9
  from pyannote.audio import Pipeline as DiarizationPipeline
10
  import opencc
@@ -101,11 +101,12 @@ def get_fwhisper_model(model_id: str, device: str) -> WhisperModel:
101
  key = (model_id, device)
102
  if key not in _fwhisper_models:
103
  compute_type = "float16" if device.startswith("cuda") else "int8"
104
- _fwhisper_models[key] = WhisperModel(
105
  model_id,
106
  device=device,
107
  compute_type=compute_type,
108
  )
 
109
  return _fwhisper_models[key]
110
 
111
  def get_sense_model(model_id: str, device_str: str):
 
4
 
5
  import torch
6
  import gradio as gr
7
+ from faster_whisper import BatchedInferencePipeline, WhisperModel
8
  from pydub import AudioSegment
9
  from pyannote.audio import Pipeline as DiarizationPipeline
10
  import opencc
 
101
  key = (model_id, device)
102
  if key not in _fwhisper_models:
103
  compute_type = "float16" if device.startswith("cuda") else "int8"
104
+ model = WhisperModel(
105
  model_id,
106
  device=device,
107
  compute_type=compute_type,
108
  )
109
+ _fwhisper_models[key] = BatchedInferencePipeline(model=model)
110
  return _fwhisper_models[key]
111
 
112
  def get_sense_model(model_id: str, device_str: str):