Spaces:
Running
on
Zero
Running
on
Zero
Add speaker diarization
Browse files- app.py +47 -24
- requirements.txt +20 -12
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import os
|
2 |
import re
|
|
|
3 |
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
from transformers import pipeline
|
|
|
|
|
7 |
|
8 |
import spaces # zeroGPU support
|
9 |
from funasr import AutoModel
|
@@ -67,10 +70,10 @@ SENSEVOICE_LANGUAGES = ["auto", "zh", "yue", "en", "ja", "ko", "nospeech"]
|
|
67 |
# —————— Caches ——————
|
68 |
whisper_pipes = {}
|
69 |
sense_models = {}
|
|
|
70 |
|
71 |
# —————— Helpers ——————
|
72 |
def get_whisper_pipe(model_id: str, device: int):
|
73 |
-
# HuggingFace pipeline caching by model and device (-1=cpu, 0=gpu)
|
74 |
key = (model_id, device)
|
75 |
if key not in whisper_pipes:
|
76 |
whisper_pipes[key] = pipeline(
|
@@ -96,32 +99,50 @@ def get_sense_model(model_id: str):
|
|
96 |
)
|
97 |
return sense_models[model_id]
|
98 |
|
99 |
-
# —————— Whisper Transcribers ——————
|
100 |
-
@spaces.GPU
|
101 |
-
def _transcribe_whisper_gpu(model_id: str, language: str, audio_path: str):
|
102 |
-
pipe = get_whisper_pipe(model_id, device=0)
|
103 |
-
if language == "auto":
|
104 |
-
result = pipe(audio_path)
|
105 |
-
else:
|
106 |
-
result = pipe(audio_path, generate_kwargs={"language": language})
|
107 |
-
return result.get("text", "").strip()
|
108 |
|
109 |
-
def
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
if language == "auto":
|
112 |
result = pipe(audio_path)
|
113 |
else:
|
114 |
result = pipe(audio_path, generate_kwargs={"language": language})
|
115 |
-
|
116 |
-
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
# —————— SenseVoice Transcriber ——————
|
125 |
@spaces.GPU
|
126 |
def transcribe_sense(model_id: str, language: str, audio_path: str, enable_punct: bool):
|
127 |
model = get_sense_model(model_id)
|
@@ -142,7 +163,7 @@ def transcribe_sense(model_id: str, language: str, audio_path: str, enable_punct
|
|
142 |
# —————— Gradio UI ——————
|
143 |
demo = gr.Blocks()
|
144 |
with demo:
|
145 |
-
gr.Markdown("## Whisper vs. SenseVoice Transcription (Language &
|
146 |
|
147 |
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
|
148 |
|
@@ -153,12 +174,14 @@ with demo:
|
|
153 |
whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
|
154 |
whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
|
155 |
device_radio = gr.Radio(choices=["GPU", "CPU"], value="GPU", label="Device")
|
|
|
156 |
whisper_btn = gr.Button("Transcribe with Whisper")
|
157 |
out_whisper = gr.Textbox(label="Whisper Transcript")
|
|
|
158 |
whisper_btn.click(
|
159 |
fn=transcribe_whisper,
|
160 |
-
inputs=[whisper_dd, whisper_lang, audio_input, device_radio],
|
161 |
-
outputs=[out_whisper]
|
162 |
)
|
163 |
|
164 |
# SenseVoice column
|
|
|
1 |
import os
|
2 |
import re
|
3 |
+
import tempfile
|
4 |
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
from transformers import pipeline
|
8 |
+
from pydub import AudioSegment
|
9 |
+
from pyannote.audio import Pipeline as DiarizationPipeline
|
10 |
|
11 |
import spaces # zeroGPU support
|
12 |
from funasr import AutoModel
|
|
|
70 |
# —————— Caches ——————
|
71 |
whisper_pipes = {}
|
72 |
sense_models = {}
|
73 |
+
dar_pipe = None
|
74 |
|
75 |
# —————— Helpers ——————
|
76 |
def get_whisper_pipe(model_id: str, device: int):
|
|
|
77 |
key = (model_id, device)
|
78 |
if key not in whisper_pipes:
|
79 |
whisper_pipes[key] = pipeline(
|
|
|
99 |
)
|
100 |
return sense_models[model_id]
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
def get_diarization_pipe():
|
104 |
+
global dar_pipe
|
105 |
+
if dar_pipe is None:
|
106 |
+
dar_pipe = DiarizationPipeline.from_pretrained(
|
107 |
+
"pyannote/speaker-diarization@2.1",
|
108 |
+
use_auth_token=True
|
109 |
+
)
|
110 |
+
return dar_pipe
|
111 |
+
|
112 |
+
# —————— Transcription Functions ——————
|
113 |
+
def transcribe_whisper(model_id: str, language: str, audio_path: str, device_sel: str, enable_diar: bool):
|
114 |
+
# select device
|
115 |
+
use_gpu = (device_sel == "GPU" and torch.cuda.is_available())
|
116 |
+
device = 0 if use_gpu else -1
|
117 |
+
pipe = get_whisper_pipe(model_id, device)
|
118 |
+
# full transcription
|
119 |
if language == "auto":
|
120 |
result = pipe(audio_path)
|
121 |
else:
|
122 |
result = pipe(audio_path, generate_kwargs={"language": language})
|
123 |
+
transcript = result.get("text", "").strip()
|
124 |
+
diar_text = ""
|
125 |
+
# optional diarization
|
126 |
+
if enable_diar:
|
127 |
+
diarizer = get_diarization_pipe()
|
128 |
+
diarization = diarizer(audio_path)
|
129 |
+
snippets = []
|
130 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
131 |
+
start_ms = int(turn.start * 1000)
|
132 |
+
end_ms = int(turn.end * 1000)
|
133 |
+
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
|
134 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
135 |
+
segment.export(tmp.name, format="wav")
|
136 |
+
if language == "auto":
|
137 |
+
seg_out = pipe(tmp.name)
|
138 |
+
else:
|
139 |
+
seg_out = pipe(tmp.name, generate_kwargs={"language": language})
|
140 |
+
os.unlink(tmp.name)
|
141 |
+
txt = seg_out.get("text", "").strip()
|
142 |
+
snippets.append(f"[{speaker}] {txt}")
|
143 |
+
diar_text = "\n".join(snippets)
|
144 |
+
return transcript, diar_text
|
145 |
|
|
|
146 |
@spaces.GPU
|
147 |
def transcribe_sense(model_id: str, language: str, audio_path: str, enable_punct: bool):
|
148 |
model = get_sense_model(model_id)
|
|
|
163 |
# —————— Gradio UI ——————
|
164 |
demo = gr.Blocks()
|
165 |
with demo:
|
166 |
+
gr.Markdown("## Whisper vs. SenseVoice Transcription (with Language, Device & Diarization)")
|
167 |
|
168 |
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
|
169 |
|
|
|
174 |
whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
|
175 |
whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
|
176 |
device_radio = gr.Radio(choices=["GPU", "CPU"], value="GPU", label="Device")
|
177 |
+
diar_check = gr.Checkbox(label="Enable Speaker Diarization", value=False)
|
178 |
whisper_btn = gr.Button("Transcribe with Whisper")
|
179 |
out_whisper = gr.Textbox(label="Whisper Transcript")
|
180 |
+
out_diar = gr.Textbox(label="Diarized Transcript (Whisper)")
|
181 |
whisper_btn.click(
|
182 |
fn=transcribe_whisper,
|
183 |
+
inputs=[whisper_dd, whisper_lang, audio_input, device_radio, diar_check],
|
184 |
+
outputs=[out_whisper, out_diar]
|
185 |
)
|
186 |
|
187 |
# SenseVoice column
|
requirements.txt
CHANGED
@@ -1,12 +1,20 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
# FunASR
|
9 |
-
funasr>=0.
|
10 |
-
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio UI
|
2 |
+
gradio>=3.39.0
|
3 |
+
|
4 |
+
# Core ASR
|
5 |
+
torch>=2.0.0
|
6 |
+
transformers>=4.35.0
|
7 |
+
|
8 |
+
# FunASR SenseVoice
|
9 |
+
funasr>=0.6.4
|
10 |
+
|
11 |
+
# Audio handling
|
12 |
+
pydub>=0.25.1
|
13 |
+
ffmpeg-python>=0.2.0 # wrapper for ffmpeg; you’ll still need system ffmpeg installed
|
14 |
+
|
15 |
+
# Speaker Diarization
|
16 |
+
pyannote.audio>=2.1.1
|
17 |
+
huggingface-hub>=0.18.0 # for pyannote model download/auth
|
18 |
+
|
19 |
+
# (Optional) if you want GPU‐accelerated pipelines outside of HF Spaces
|
20 |
+
# accelerate>=0.20.0
|