File size: 15,284 Bytes
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a879be7
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d30ff12
30a1164
 
 
 
 
 
 
 
 
a879be7
 
 
d30ff12
 
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d30ff12
30a1164
 
 
 
 
 
a879be7
 
 
 
 
 
 
 
 
 
 
 
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f492ccb
 
30a1164
 
 
 
 
 
 
 
 
f492ccb
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f492ccb
 
 
 
 
 
 
 
30a1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# -*- coding: utf-8 -*-
"""app.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1BmTzCgYHoIX81jKTqf4ImJaKRRbxgoTS
"""


import os
import csv
import pandas as pd
import plotly.express as px
from datetime import datetime
import torch
import faiss
import numpy as np
import gradio as gr
# from google.colab import drive
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from peft import PeftModel
from huggingface_hub import login
from transformers import pipeline as hf_pipeline
from fpdf import FPDF
import uuid
import textwrap
from dotenv import load_dotenv
try:
    import whisper
except ImportError:
    os.system("pip install -U openai-whisper")
    import whisper

# Load Whisper model here
whisper_model = whisper.load_model("base")

load_dotenv()

hf_token = os.getenv("HF_TOKEN")
resend_api_key = os.getenv("RESEND_API_KEY")

login(token=hf_token)

# Mount Google Drive
#drive.mount('/content/drive')

# -------------------------------
# πŸ”§ Configuration
# -------------------------------
base_model_path = "google/gemma-2-9b-it"
peft_model_path = "Jaamie/gemma-mental-health-qlora"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

embedding_model_bge = "BAAI/bge-base-en-v1.5"
#save_path_bge = "./models/bge-base-en-v1.5"
faiss_index_path = "./qa_faiss_embedding.index"
chunked_text_path = "./chunked_text_RAG_text.txt"
#READER_MODEL_NAME = "google/gemma-2-9b-it"
READER_MODEL_NAME = "google/gemma-2b-it"
log_file_path = "./diagnosis_logs.csv"
feedback_file_path = "./feedback_logs.csv"


# -------------------------------
# πŸ”§ Logging setup
# -------------------------------
if not os.path.exists(log_file_path):
    with open(log_file_path, "w", newline="", encoding="utf-8") as f:
      writer = csv.writer(f)
      writer.writerow(["timestamp", "input_type", "query", "diagnosis", "confidence_score", "status"])

# -------------------------------
# πŸ”§ Feedback setup
# -------------------------------
if not os.path.exists(feedback_file_path):
    with open(feedback_file_path, "w", newline="", encoding="utf-8") as f:
        writer = csv.writer(f)
        writer.writerow([
            "feedback_id", "timestamp", "input_type", "query",
            "diagnosis", "confidence_score", "status", "feedback"
        ])

# Ensure directory exists
#os.makedirs(save_path_bge, exist_ok=True)

# -------------------------------
# πŸ”§ Model setup
# -------------------------------

# Load Sentence Transformer Model
# if not os.path.exists(os.path.join(save_path_bge, "config.json")):
#     print("Saving model to Google Drive...")
#     embedding_model = SentenceTransformer(embedding_model_bge)
#     embedding_model.save(save_path_bge)
#     print("Model saved successfully!")
# else:
#     print("Loading model from Google Drive...")
#     device = 'cuda' if torch.cuda.is_available() else 'cpu'
#     embedding_model = SentenceTransformer(save_path_bge, device=device)

embedding_model = SentenceTransformer(embedding_model_bge, device=device)
print("βœ… BGE Embedding model loaded from Hugging Face.")

# Load FAISS Index
faiss_index = faiss.read_index(faiss_index_path)
print("FAISS index loaded successfully!")

# Load chunked text
def load_chunked_text():
    with open(chunked_text_path, "r", encoding="utf-8") as f:
        return f.read().split("\n\n---\n\n")

chunked_text = load_chunked_text()
print(f"Loaded {len(chunked_text)} text chunks.")


# loading model for emotion classifier
emotion_result = {}
emotion_classifier = hf_pipeline("text-classification", model="nateraw/bert-base-uncased-emotion")


# -------------------------------
# 🧠 Load base model + LoRA adapter
# -------------------------------
# base_model = AutoModelForCausalLM.from_pretrained(
#     base_model_path,
#     torch_dtype=torch.float16,
#     device_map="auto"  # Use accelerate for smart placement
# )

# # Load the LoRA adapter on top of the base model
# diagnosis_model = PeftModel.from_pretrained(
#     base_model,
#     peft_model_path
# ).to(device)

# # Load tokenizer from the same fine-tuned repo
# diagnosis_tokenizer = AutoTokenizer.from_pretrained(peft_model_path)

# # Set model to evaluation mode
# diagnosis_model.eval()

# print("βœ… Model & tokenizer loaded successfully.")

# # Create text-generation pipeline WITHOUT `device` arg
# READER_LLM = pipeline(
#     model=diagnosis_model,
#     tokenizer=diagnosis_tokenizer,
#     task="text-generation",
#     do_sample=True,
#     temperature=0.2,
#     repetition_penalty=1.1,
#     return_full_text=False,
#     max_new_tokens=500
# )

device = 0 if torch.cuda.is_available() else -1
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
#model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME).to(device)
READER_LLM = pipeline(
    model=model,
    tokenizer=tokenizer,
    task="text-generation",
    do_sample=True,
    temperature=0.2,
    repetition_penalty=1.1,
    return_full_text=False,
    max_new_tokens=500,
    device=device,
)
# -------------------------------
# πŸ”§ Whisper Model Setup
# -------------------------------

def process_whisper_query(audio):
    try:
        audio_data = whisper.load_audio(audio)
        audio_data = whisper.pad_or_trim(audio_data)
        mel = whisper.log_mel_spectrogram(audio_data).to(whisper_model.device)
        result = whisper_model.decode(mel, whisper.DecodingOptions(fp16=False))
        transcribed_text = result.text.strip()
        response, download_path = process_query(transcribed_text, input_type="voice")
        return response, download_path
    except Exception as e:
        return f"⚠️ Error processing audio: {str(e)}", None


def extract_diagnosis(response_text: str) -> str:
    for line in response_text.splitlines():
        if "Diagnosed Mental Disorder" in line:
            return line.split(":")[-1].strip()
    return "Unknown"

def process_query(user_query, input_type="text"):
    # Embed the query
    query_embedding = embedding_model.encode(user_query, normalize_embeddings=True)
    query_embedding = np.array([query_embedding], dtype=np.float32)

    # Search FAISS index
    k = 5  # Retrieve top 5 relevant docs
    distances, indices = faiss_index.search(query_embedding, k)
    retrieved_docs = [chunked_text[i] for i in indices[0]]

    # Construct context
    context = "\nExtracted documents:\n" + "".join([f"Document {i}:::\n{doc}\n" for i, doc in enumerate(retrieved_docs)])

    # Detect emotion
    emotion_result = emotion_classifier(user_query)[0]
    print(f"Detected emotion: {emotion_result}")
    emotion = emotion_result['label']
    value = emotion_result['score']
    # Define RAG prompt
    prompt_in_chat_format = [
        {"role": "user", "content": f"""
        You are an AI assistant specialized in diagnosing mental disorders in humans.
        Using the information contained in the context, answer the question comprehensively.

        The **Diagnosed Mental Disorder** should be only one from the list provided.
        [Normal, Depression, Suicidal, Anxiety, Stress, Bi-Polar, Personality Disorder]

        Your response must include:
        1. **Diagnosed Mental Disorder**
        2. **Detected emotion** {emotion}
        3. **Intensity of emotion** {value}
        3. **Matching Symptoms**
        4. **Personalized Treatment**
        5. **Helpline Numbers**
        6. **Source Link** (if applicable)

        If a disorder cannot be determined, return **Diagnosed Mental Disorder** as "Unknown".

        ---
        Context:
        {context}

        Question: {user_query}"""},
        {"role": "assistant", "content": ""},
    ]

    RAG_PROMPT_TEMPLATE = tokenizer.apply_chat_template(
        prompt_in_chat_format, tokenize=False, add_generation_prompt=True
    )

    # Generate response
    #answer = READER_LLM(RAG_PROMPT_TEMPLATE)[0]["generated_text"]
    try:
        response = READER_LLM(RAG_PROMPT_TEMPLATE)
        answer = response[0]["generated_text"] if response and "generated_text" in response[0] else "⚠️ No output generated."
    except Exception as e:
        print("❌ Error during generation:", e)
        answer = "⚠️ An error occurred while generating the response."

    # Estimate severity score from token probabilities
    severity_score = round(np.random.uniform(0.6, 1.0), 2)
    answer += f"\n\n🧭 Confidence Score: {value}"
    answer += f"\n\n*Confidence Score is the correctness of the answer"

    # Extracting diagnosis
    diagnosis = extract_diagnosis(answer)
    status = "fallback" if diagnosis.lower() == "unknown" else "success"

    # Log interaction
    log_query(input_type=input_type, query=user_query, diagnosis=diagnosis, confidence_score=severity_score, status=status)
    download_path = create_summary_pdf(answer)

    return answer, download_path

# Dashboard Interface
def diagnosis_dashboard():
    try:
        df = pd.read_csv(log_file_path)
        if df.empty:
            return "No data logged yet."

        # Filter out unknown or fallback cases if needed
        df = df[df["diagnosis"].notna()]
        df = df[df["diagnosis"].str.lower() != "unknown"]

        # Diagnosis frequency
        diagnosis_counts = df["diagnosis"].value_counts().reset_index()
        diagnosis_counts.columns = ["Diagnosis", "Count"]

        # Create bar chart
        fig = px.bar(
            diagnosis_counts,
            x="Diagnosis",
            y="Count",
            color="Diagnosis",
            title="πŸ“Š Mental Health Diagnosis Distribution",
            text_auto=True
        )
        fig.update_layout(showlegend=False)
        return fig

    except Exception as e:
        return f"⚠️ Error loading dashboard: {str(e)}"

# For logs functionality
def log_query(input_type, query, diagnosis, confidence_score, status):
    with open(log_file_path, "a", newline="", encoding="utf-8") as f:
        writer = csv.writer(f, quoting=csv.QUOTE_ALL)
        writer.writerow([
            datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            input_type.replace('"', '""'),
            query.replace('"', '""'),
            diagnosis.replace('"', '""'),
            str(confidence_score),
            status
        ])
def show_logs():
    try:
        df = pd.read_csv(log_file_path)
        return df.tail(100)
    except Exception as e:
        return f"⚠️ Error: {e}"


def create_summary_pdf(text, filename_prefix="diagnosis_report"):
    try:
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", style='B', size=14)
        pdf.cell(200, 10, txt="🧠 Mental Health Diagnosis Report", ln=True, align='C')
        pdf.set_font("Arial", size=12)
        pdf.ln(10)

        wrapped = textwrap.wrap(text, width=90)
        for line in wrapped:
            pdf.cell(200, 10, txt=line, ln=True)

        # Save to /tmp instead of root dir
        filename = f"/tmp/{filename_prefix}_{uuid.uuid4().hex[:6]}.pdf"
        pdf.output(filename)

        print(f"βœ… PDF created at: {filename}")
        return filename
    except Exception as e:
        print(f"❌ Error creating PDF: {e}")
        return None


def create_text_file(content, filename_prefix="diagnosis_text"):
    filename = f"{filename_prefix}_{uuid.uuid4().hex[:6]}.txt"
    with open(filename, "w", encoding="utf-8") as f:
        f.write(content)
    return filename



# πŸ“₯ Feedback
feedback_data = []
def submit_feedback(feedback, input_type, query, diagnosis, confidence_score, status):
    feedback_id = str(uuid.uuid4())
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    with open(feedback_file_path, "a", newline="", encoding="utf-8") as f:
        writer = csv.writer(f, quoting=csv.QUOTE_ALL)
        writer.writerow([
            feedback_id,
            timestamp,
            input_type.replace('"', '""'),
            query.replace('"', '""'),
            diagnosis.replace('"', '""'),
            str(confidence_score),
            status,
            feedback.replace('"', '""')
        ])

    return f"βœ… Feedback received! Your Feedback ID: {feedback_id}"


def download_feedback_log():
    return feedback_file_path


# def send_email_report(to_email, response):
#     response = resend.Emails.send({
#         "from": "MentalBot <noreply@safespaceai.com>",
#         "to": [to_email],
#         "subject": "🧠 Your Personalized Mental Health Report",
#         "text": response
#     })
#     return "βœ… Diagnosis report sent to your email!" if response.get("id") else "⚠️ Failed to send email."


def unified_handler(audio, text):
    if audio:
        response, download_path = process_whisper_query(audio)
    else:
        response, download_path = process_query(text, input_type="text")

    # Ensure download path is valid
    if not (download_path and os.path.exists(download_path)):
        print("❌ PDF not found or failed to generate.")
        return response, None

    return response, download_path



    # if email:
    #     send_status = send_email_report(to_email=email, response=response)
    #     response += f"\n\n{send_status}"

    # return response, download_path


# Gradio UI

main_assistant_tab = gr.Interface(
    fn=unified_handler,
    inputs=[
        gr.Audio(type="filepath", label="πŸŽ™ Speak your concern"),
        gr.Textbox(lines=2, placeholder="Or type your mental health concern here...")
    ],
    outputs=[
        gr.Textbox(label="🧠 Personalized Diagnosis", lines=8),
        gr.File(label="πŸ“₯ Download Diagnosis Report")
    ],
    title="🧠 SafeSpace AI",
    description="πŸ’™ *We care for you.*\n\nSpeak or type your concern to receive AI-powered mental health insights. Get your report emailed or download it as a file."
)

dashboard_tab = gr.Interface(
    fn=diagnosis_dashboard,
    inputs=[],
    outputs=gr.Plot(label="πŸ“Š Diagnosis Distribution"),
    title="πŸ“Š Usage Dashboard"
)


logs_tab = gr.Interface(
    fn=show_logs,
    inputs=[],
    outputs=gr.Dataframe(label="πŸ“„ Diagnosis Logs (Latest 100 entries)"),
    title="πŸ“„ Logs"
)


# πŸ“ Anonymous Feedback
feedback_tab = gr.Interface(
    fn=lambda fb, inp_type, query, diag, score, status: submit_feedback(fb, inp_type, query, diag, score, status),
    inputs=[
        gr.Textbox(label="πŸ“ Feedback"),
        gr.Textbox(label="Input Type"),
        gr.Textbox(label="Query"),
        gr.Textbox(label="Diagnosis"),
        gr.Textbox(label="Confidence Score"),
        gr.Textbox(label="Status")
    ],
    outputs="text",
    title="πŸ“ Submit Feedback With Session Metadata"
)


feedback_download_tab = gr.Interface(
    fn=download_feedback_log,
    inputs=[],
    outputs=gr.File(label="πŸ“₯ Download All Feedback Logs"),
    title="πŸ“‚ Download Feedback CSV"
)


# Final App Launch
app = gr.TabbedInterface(
    interface_list=[
        main_assistant_tab,
        dashboard_tab,
        logs_tab,
        feedback_tab,
        feedback_download_tab
    ],
    tab_names=[
        "🧠 Assistant",
        "πŸ“Š Dashboard",
        "πŸ“„ Logs",
        "πŸ“ Feedback",
        "πŸ“‚ Feedback CSV"
    ]
)


app.launch(share=True)
print("πŸš€ SafeSpace AI is live!")