File size: 4,145 Bytes
d93bcf7
 
e84dd7a
 
c8d23f0
 
306d267
e84dd7a
 
 
b1ba5f4
d93bcf7
 
306d267
e84dd7a
d93bcf7
306d267
d93bcf7
 
e84dd7a
3ed9ca7
 
 
 
fdb3da7
d93bcf7
 
 
 
 
 
c8d23f0
306d267
d93bcf7
e84dd7a
d93bcf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84dd7a
d93bcf7
 
 
 
08dabce
d93bcf7
 
 
c8d23f0
 
d93bcf7
 
 
 
 
 
 
08dabce
d93bcf7
 
 
c8d23f0
 
306d267
b1ba5f4
e84dd7a
b1ba5f4
bb65b65
 
 
 
e84dd7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f571c2
e84dd7a
8f571c2
e020aa3
8f571c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import pandas as pd
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from retriever import get_relevant_passages
from reranker import rerank

# === FastAPI App ===
app = FastAPI()

# === Load and Clean CSV ===
def clean_df(df):
    df = df.copy()
    second_col = df.iloc[:, 2].astype(str)
    
    if second_col.str.contains('http').any() or second_col.str.contains('www').any():
        df["url"] = second_col
    else:
        df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
    
    df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
    df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
    df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
    df["description"] = df.iloc[:, 6]
    df["duration"] = pd.to_numeric(df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0], errors='coerce')
    return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]

try:
    df = pd.read_csv("assesments.csv", encoding='utf-8')
    df_clean = clean_df(df)
except Exception as e:
    print(f"Error loading data: {e}")
    df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"])

# === Utility ===
def validate_and_fix_urls(candidates):
    for candidate in candidates:
        if not isinstance(candidate, dict):
            continue
        if 'url' not in candidate or not candidate['url']:
            candidate['url'] = 'https://www.shl.com/missing-url'
            continue
        url = str(candidate['url'])
        if url.isdigit():
            candidate['url'] = f"https://www.shl.com/{url}"
            continue
        if not url.startswith(('http://', 'https://')):
            candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
    return candidates

# === Recommendation Logic ===
def recommend(query):
    if not query.strip():
        return {"error": "Please enter a job description"}
    try:
        top_k_df = get_relevant_passages(query, df_clean, top_k=20)
        if top_k_df.empty:
            return {"error": "No matching assessments found"}
        top_k_df['test_type'] = top_k_df['test_type'].apply(
            lambda x: x if isinstance(x, list) else
            (eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)])
        )
        top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int)
        top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None
        candidates = top_k_df.to_dict(orient="records")
        candidates = validate_and_fix_urls(candidates)
        result = rerank(query, candidates)
        if 'recommended_assessments' in result:
            result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
        return result
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        return {"error": f"Error processing request: {str(e)}"}

# === Gradio UI ===
gr_interface = gr.Interface(
    fn=recommend,
    inputs=gr.Textbox(label="Enter Job Description", lines=4),
    outputs="json",
    title="SHL Assessment Recommender",
    description="Paste a job description to get the most relevant SHL assessments."
)

# === FastAPI Endpoints ===
@app.get("/health")
async def health():
    return JSONResponse(content={"status": "healthy"}, status_code=200)

@app.post("/recommend")
async def recommend_api(request: Request):
    try:
        data = await request.json()
        query = data.get("query", "").strip()
        if not query:
            return JSONResponse(content={"error": "Missing query"}, status_code=400)
        result = recommend(query)
        return JSONResponse(content=result, status_code=200)
    except Exception as e:
        return JSONResponse(content={"error": str(e)}, status_code=500)

# === Mount Gradio to FastAPI ===
from gradio.routes import mount_gradio_app
app=FastAPI()
app = mount_gradio_app(app, gr_interface, path="/")