AnshulS commited on
Commit
3ed9ca7
·
verified ·
1 Parent(s): 85c1934

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -12,7 +12,7 @@ def clean_df(df):
12
  print(f"Original columns: {df.columns}")
13
 
14
  # Ensure clean URLs from the second column
15
- second_col = df.iloc[:, 3].astype(str) # Pre-packaged Job Solutions column
16
 
17
  if second_col.str.contains('http').any() or second_col.str.contains('www').any():
18
  df["url"] = second_col # Already has full URLs
@@ -21,18 +21,18 @@ def clean_df(df):
21
  df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
22
 
23
  # Map T/F to Yes/No for remote testing and adaptive support
24
- df["remote_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
25
- df["adaptive_support"] = df.iloc[:, 5].map(lambda x: "Yes" if x == "T" else "No")
26
 
27
  # Handle test_type properly - convert string representation of list to actual list
28
- df["test_type"] = df.iloc[:, 6].apply(lambda x: eval(x) if isinstance(x, str) else x)
29
 
30
  # Get description from column 7
31
- df["description"] = df.iloc[:, 7]
32
 
33
  # Extract duration with error handling from column 10
34
  df["duration"] = pd.to_numeric(
35
- df.iloc[:, 10].astype(str).str.extract(r'(\d+)')[0],
36
  errors='coerce'
37
  )
38
 
 
12
  print(f"Original columns: {df.columns}")
13
 
14
  # Ensure clean URLs from the second column
15
+ second_col = df.iloc[:, 2].astype(str) # Pre-packaged Job Solutions column
16
 
17
  if second_col.str.contains('http').any() or second_col.str.contains('www').any():
18
  df["url"] = second_col # Already has full URLs
 
21
  df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
22
 
23
  # Map T/F to Yes/No for remote testing and adaptive support
24
+ df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
25
+ df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
26
 
27
  # Handle test_type properly - convert string representation of list to actual list
28
+ df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
29
 
30
  # Get description from column 7
31
+ df["description"] = df.iloc[:, 6]
32
 
33
  # Extract duration with error handling from column 10
34
  df["duration"] = pd.to_numeric(
35
+ df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0],
36
  errors='coerce'
37
  )
38