Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,139 +2,100 @@ import pandas as pd
|
|
2 |
import gradio as gr
|
3 |
from retriever import get_relevant_passages
|
4 |
from reranker import rerank
|
5 |
-
import
|
6 |
-
import json
|
7 |
-
from fastapi import FastAPI
|
8 |
from fastapi.responses import JSONResponse
|
9 |
-
from
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load and clean CSV
|
13 |
def clean_df(df):
|
14 |
df = df.copy()
|
15 |
-
|
16 |
-
# Get column names for reference
|
17 |
-
print(f"Original columns: {df.columns}")
|
18 |
-
|
19 |
-
# Ensure clean URLs from the second column
|
20 |
-
second_col = df.iloc[:, 2].astype(str) # Pre-packaged Job Solutions column
|
21 |
-
|
22 |
if second_col.str.contains('http').any() or second_col.str.contains('www').any():
|
23 |
-
df["url"] = second_col
|
24 |
else:
|
25 |
-
# Create full URLs from IDs
|
26 |
df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
|
27 |
-
|
28 |
-
# Map T/F to Yes/No for remote testing and adaptive support
|
29 |
df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
|
30 |
df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
|
31 |
-
|
32 |
-
# Handle test_type properly - convert string representation of list to actual list
|
33 |
df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
|
34 |
-
|
35 |
-
# Get description from column 7
|
36 |
df["description"] = df.iloc[:, 6]
|
37 |
-
|
38 |
-
# Extract duration with error handling from column 10
|
39 |
-
df["duration"] = pd.to_numeric(
|
40 |
-
df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0],
|
41 |
-
errors='coerce'
|
42 |
-
)
|
43 |
-
|
44 |
-
# Print sample of cleaned data for debugging
|
45 |
-
print(f"Sample of cleaned data: {df[['url', 'adaptive_support', 'remote_support', 'description', 'duration', 'test_type']].head(2)}")
|
46 |
-
|
47 |
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
|
48 |
|
49 |
try:
|
50 |
-
# Load CSV with explicit encoding
|
51 |
df = pd.read_csv("assesments.csv", encoding='utf-8')
|
52 |
-
print(f"CSV loaded successfully with {len(df)} rows")
|
53 |
df_clean = clean_df(df)
|
54 |
except Exception as e:
|
55 |
-
print(f"Error loading
|
56 |
-
|
57 |
-
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support",
|
58 |
-
"description", "duration", "test_type"])
|
59 |
|
60 |
def validate_and_fix_urls(candidates):
|
61 |
-
"""Validates and fixes URLs in candidate assessments."""
|
62 |
for candidate in candidates:
|
63 |
-
# Skip if candidate is not a dictionary
|
64 |
if not isinstance(candidate, dict):
|
65 |
continue
|
66 |
-
|
67 |
-
# Ensure URL exists
|
68 |
if 'url' not in candidate or not candidate['url']:
|
69 |
candidate['url'] = 'https://www.shl.com/missing-url'
|
70 |
continue
|
71 |
-
|
72 |
url = str(candidate['url'])
|
73 |
-
|
74 |
-
# Fix URLs that are just numbers
|
75 |
if url.isdigit():
|
76 |
candidate['url'] = f"https://www.shl.com/{url}"
|
77 |
continue
|
78 |
-
|
79 |
-
# Add protocol if missing
|
80 |
if not url.startswith(('http://', 'https://')):
|
81 |
candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
|
82 |
-
|
83 |
return candidates
|
84 |
|
85 |
def recommend(query):
|
86 |
if not query.strip():
|
87 |
return {"error": "Please enter a job description"}
|
88 |
-
|
89 |
try:
|
90 |
-
# Print some debug info
|
91 |
-
print(f"Processing query: {query[:50]}...")
|
92 |
-
|
93 |
-
# Get relevant passages
|
94 |
top_k_df = get_relevant_passages(query, df_clean, top_k=20)
|
95 |
-
|
96 |
-
# Debug: Check if we got any results
|
97 |
-
print(f"Retrieved {len(top_k_df)} assessments")
|
98 |
-
|
99 |
if top_k_df.empty:
|
100 |
return {"error": "No matching assessments found"}
|
101 |
-
|
102 |
-
# Convert test_type to list if it's not already
|
103 |
top_k_df['test_type'] = top_k_df['test_type'].apply(
|
104 |
lambda x: x if isinstance(x, list) else
|
105 |
(eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)])
|
106 |
)
|
107 |
-
|
108 |
-
# Handle nan values for duration
|
109 |
top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int)
|
110 |
top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None
|
111 |
-
|
112 |
-
# Convert DataFrame to list of dictionaries
|
113 |
candidates = top_k_df.to_dict(orient="records")
|
114 |
-
|
115 |
-
# Additional URL validation
|
116 |
candidates = validate_and_fix_urls(candidates)
|
117 |
-
|
118 |
-
# Print sample of data being sent to reranker
|
119 |
-
if candidates:
|
120 |
-
print(f"Sample candidate being sent to reranker: {candidates[0]}")
|
121 |
-
|
122 |
-
# Get recommendations
|
123 |
result = rerank(query, candidates)
|
124 |
-
|
125 |
-
# Post-process result
|
126 |
if 'recommended_assessments' in result:
|
127 |
result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
|
128 |
-
print(f"Returning {len(result['recommended_assessments'])} recommended assessments")
|
129 |
-
|
130 |
return result
|
131 |
except Exception as e:
|
132 |
import traceback
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
fn=recommend,
|
139 |
inputs=gr.Textbox(label="Enter Job Description", lines=4),
|
140 |
outputs="json",
|
@@ -142,8 +103,7 @@ iface = gr.Interface(
|
|
142 |
description="Paste a job description to get the most relevant SHL assessments."
|
143 |
)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
iface.launch()
|
|
|
2 |
import gradio as gr
|
3 |
from retriever import get_relevant_passages
|
4 |
from reranker import rerank
|
5 |
+
from fastapi import FastAPI, Request
|
|
|
|
|
6 |
from fastapi.responses import JSONResponse
|
7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
8 |
+
from gradio.routes import mount_gradio_app
|
9 |
+
import json
|
10 |
+
|
11 |
+
# Define FastAPI app
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
# Enable CORS for Spaces
|
15 |
+
app.add_middleware(
|
16 |
+
CORSMiddleware,
|
17 |
+
allow_origins=["*"],
|
18 |
+
allow_credentials=True,
|
19 |
+
allow_methods=["*"],
|
20 |
+
allow_headers=["*"],
|
21 |
+
)
|
22 |
|
23 |
# Load and clean CSV
|
24 |
def clean_df(df):
|
25 |
df = df.copy()
|
26 |
+
second_col = df.iloc[:, 2].astype(str)
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
if second_col.str.contains('http').any() or second_col.str.contains('www').any():
|
28 |
+
df["url"] = second_col
|
29 |
else:
|
|
|
30 |
df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
|
|
|
|
|
31 |
df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
|
32 |
df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
|
|
|
|
|
33 |
df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
|
|
|
|
|
34 |
df["description"] = df.iloc[:, 6]
|
35 |
+
df["duration"] = pd.to_numeric(df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0], errors='coerce')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
|
37 |
|
38 |
try:
|
|
|
39 |
df = pd.read_csv("assesments.csv", encoding='utf-8')
|
|
|
40 |
df_clean = clean_df(df)
|
41 |
except Exception as e:
|
42 |
+
print(f"Error loading CSV: {e}")
|
43 |
+
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"])
|
|
|
|
|
44 |
|
45 |
def validate_and_fix_urls(candidates):
|
|
|
46 |
for candidate in candidates:
|
|
|
47 |
if not isinstance(candidate, dict):
|
48 |
continue
|
|
|
|
|
49 |
if 'url' not in candidate or not candidate['url']:
|
50 |
candidate['url'] = 'https://www.shl.com/missing-url'
|
51 |
continue
|
|
|
52 |
url = str(candidate['url'])
|
|
|
|
|
53 |
if url.isdigit():
|
54 |
candidate['url'] = f"https://www.shl.com/{url}"
|
55 |
continue
|
|
|
|
|
56 |
if not url.startswith(('http://', 'https://')):
|
57 |
candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
|
|
|
58 |
return candidates
|
59 |
|
60 |
def recommend(query):
|
61 |
if not query.strip():
|
62 |
return {"error": "Please enter a job description"}
|
|
|
63 |
try:
|
|
|
|
|
|
|
|
|
64 |
top_k_df = get_relevant_passages(query, df_clean, top_k=20)
|
|
|
|
|
|
|
|
|
65 |
if top_k_df.empty:
|
66 |
return {"error": "No matching assessments found"}
|
|
|
|
|
67 |
top_k_df['test_type'] = top_k_df['test_type'].apply(
|
68 |
lambda x: x if isinstance(x, list) else
|
69 |
(eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)])
|
70 |
)
|
|
|
|
|
71 |
top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int)
|
72 |
top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None
|
|
|
|
|
73 |
candidates = top_k_df.to_dict(orient="records")
|
|
|
|
|
74 |
candidates = validate_and_fix_urls(candidates)
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
result = rerank(query, candidates)
|
|
|
|
|
76 |
if 'recommended_assessments' in result:
|
77 |
result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
|
|
|
|
|
78 |
return result
|
79 |
except Exception as e:
|
80 |
import traceback
|
81 |
+
return {"error": f"Error: {str(e)}", "trace": traceback.format_exc()}
|
82 |
+
|
83 |
+
# --- API Endpoints ---
|
84 |
+
@app.get("/health")
|
85 |
+
async def health_check():
|
86 |
+
return JSONResponse(status_code=200, content={"status": "healthy"})
|
87 |
|
88 |
+
@app.post("/recommend")
|
89 |
+
async def recommend_api(request: Request):
|
90 |
+
body = await request.json()
|
91 |
+
query = body.get("query", "").strip()
|
92 |
+
if not query:
|
93 |
+
return JSONResponse(status_code=400, content={"error": "Missing 'query' in request body"})
|
94 |
+
result = recommend(query)
|
95 |
+
return JSONResponse(status_code=200, content=result)
|
96 |
+
|
97 |
+
# --- Gradio UI ---
|
98 |
+
gradio_iface = gr.Interface(
|
99 |
fn=recommend,
|
100 |
inputs=gr.Textbox(label="Enter Job Description", lines=4),
|
101 |
outputs="json",
|
|
|
103 |
description="Paste a job description to get the most relevant SHL assessments."
|
104 |
)
|
105 |
|
106 |
+
# Mount Gradio app at root
|
107 |
+
app = mount_gradio_app(app, gradio_iface, path="/")
|
108 |
+
|
109 |
+
# Hugging Face Spaces runs `app` object, so no need for __main__
|
|