Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,21 @@
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
import json
|
4 |
-
from fastapi import FastAPI
|
5 |
from fastapi.responses import JSONResponse
|
6 |
-
|
7 |
from retriever import get_relevant_passages
|
8 |
from reranker import rerank
|
9 |
|
10 |
-
#
|
11 |
-
app = FastAPI()
|
12 |
-
|
13 |
-
# --- Load and clean CSV ---
|
14 |
def clean_df(df):
|
15 |
df = df.copy()
|
16 |
second_col = df.iloc[:, 2].astype(str)
|
17 |
-
|
18 |
if second_col.str.contains('http').any() or second_col.str.contains('www').any():
|
19 |
df["url"] = second_col
|
20 |
else:
|
21 |
df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
|
22 |
-
|
23 |
df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
|
24 |
df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
|
25 |
df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
|
@@ -28,6 +24,7 @@ def clean_df(df):
|
|
28 |
|
29 |
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
|
30 |
|
|
|
31 |
try:
|
32 |
df = pd.read_csv("assesments.csv", encoding='utf-8')
|
33 |
df_clean = clean_df(df)
|
@@ -35,7 +32,7 @@ except Exception as e:
|
|
35 |
print(f"Error loading data: {e}")
|
36 |
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"])
|
37 |
|
38 |
-
#
|
39 |
def validate_and_fix_urls(candidates):
|
40 |
for candidate in candidates:
|
41 |
if not isinstance(candidate, dict):
|
@@ -51,7 +48,7 @@ def validate_and_fix_urls(candidates):
|
|
51 |
candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
|
52 |
return candidates
|
53 |
|
54 |
-
#
|
55 |
def recommend(query):
|
56 |
if not query.strip():
|
57 |
return {"error": "Please enter a job description"}
|
@@ -76,12 +73,24 @@ def recommend(query):
|
|
76 |
print(traceback.format_exc())
|
77 |
return {"error": f"Error processing request: {str(e)}"}
|
78 |
|
79 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
@app.get("/health")
|
81 |
async def health():
|
82 |
return JSONResponse(content={"status": "healthy"}, status_code=200)
|
83 |
|
84 |
-
#
|
85 |
@app.post("/recommend")
|
86 |
async def recommend_api(request: Request):
|
87 |
try:
|
@@ -94,19 +103,11 @@ async def recommend_api(request: Request):
|
|
94 |
except Exception as e:
|
95 |
return JSONResponse(content={"error": str(e)}, status_code=500)
|
96 |
|
97 |
-
#
|
98 |
-
|
99 |
-
return recommend(query)
|
100 |
-
|
101 |
-
iface = gr.Interface(
|
102 |
-
fn=gradio_interface,
|
103 |
-
inputs=gr.Textbox(label="Enter Job Description", lines=4),
|
104 |
-
outputs="json",
|
105 |
-
title="SHL Assessment Recommender",
|
106 |
-
description="Paste a job description to get the most relevant SHL assessments."
|
107 |
-
)
|
108 |
|
109 |
-
# Make sure to launch Gradio on the root path for HuggingFace Spaces
|
110 |
@app.on_event("startup")
|
111 |
async def startup():
|
|
|
112 |
iface.launch(inline=True, server_name="0.0.0.0", server_port=7860)
|
|
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
import json
|
4 |
+
from fastapi import FastAPI
|
5 |
from fastapi.responses import JSONResponse
|
|
|
6 |
from retriever import get_relevant_passages
|
7 |
from reranker import rerank
|
8 |
|
9 |
+
# Load and clean CSV
|
|
|
|
|
|
|
10 |
def clean_df(df):
|
11 |
df = df.copy()
|
12 |
second_col = df.iloc[:, 2].astype(str)
|
13 |
+
|
14 |
if second_col.str.contains('http').any() or second_col.str.contains('www').any():
|
15 |
df["url"] = second_col
|
16 |
else:
|
17 |
df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
|
18 |
+
|
19 |
df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
|
20 |
df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
|
21 |
df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
|
|
|
24 |
|
25 |
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
|
26 |
|
27 |
+
# Load data and clean
|
28 |
try:
|
29 |
df = pd.read_csv("assesments.csv", encoding='utf-8')
|
30 |
df_clean = clean_df(df)
|
|
|
32 |
print(f"Error loading data: {e}")
|
33 |
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"])
|
34 |
|
35 |
+
# Fix URLs
|
36 |
def validate_and_fix_urls(candidates):
|
37 |
for candidate in candidates:
|
38 |
if not isinstance(candidate, dict):
|
|
|
48 |
candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
|
49 |
return candidates
|
50 |
|
51 |
+
# Recommendation Logic
|
52 |
def recommend(query):
|
53 |
if not query.strip():
|
54 |
return {"error": "Please enter a job description"}
|
|
|
73 |
print(traceback.format_exc())
|
74 |
return {"error": f"Error processing request: {str(e)}"}
|
75 |
|
76 |
+
# Initialize Gradio App
|
77 |
+
def gradio_interface(query):
|
78 |
+
return recommend(query)
|
79 |
+
|
80 |
+
iface = gr.Interface(
|
81 |
+
fn=gradio_interface,
|
82 |
+
inputs=gr.Textbox(label="Enter Job Description", lines=4),
|
83 |
+
outputs="json",
|
84 |
+
title="SHL Assessment Recommender",
|
85 |
+
description="Paste a job description to get the most relevant SHL assessments."
|
86 |
+
)
|
87 |
+
|
88 |
+
# FastAPI-like Health Endpoint in Gradio
|
89 |
@app.get("/health")
|
90 |
async def health():
|
91 |
return JSONResponse(content={"status": "healthy"}, status_code=200)
|
92 |
|
93 |
+
# FastAPI-like Recommendation Endpoint in Gradio
|
94 |
@app.post("/recommend")
|
95 |
async def recommend_api(request: Request):
|
96 |
try:
|
|
|
103 |
except Exception as e:
|
104 |
return JSONResponse(content={"error": str(e)}, status_code=500)
|
105 |
|
106 |
+
# Use Gradio app with the FastAPI app
|
107 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
109 |
@app.on_event("startup")
|
110 |
async def startup():
|
111 |
+
# Launch Gradio app when FastAPI app starts
|
112 |
iface.launch(inline=True, server_name="0.0.0.0", server_port=7860)
|
113 |
+
|