File size: 6,368 Bytes
d6fbb7e
 
08f3bff
d983d17
 
d6fbb7e
 
10e9b7d
08f3bff
10e9b7d
eccf8e4
3c4371f
f9b5dc1
10e9b7d
08f3bff
d6fbb7e
e80aab9
3db6293
e80aab9
d983d17
d6fbb7e
 
08f3bff
d6fbb7e
08f3bff
d6fbb7e
 
 
 
 
31243f4
 
d6fbb7e
 
 
 
 
 
 
 
 
 
 
08f3bff
d6fbb7e
31243f4
d80eabc
31243f4
d6fbb7e
3c4371f
08f3bff
31243f4
eccf8e4
d6fbb7e
7d65c66
31243f4
 
7d65c66
08f3bff
e80aab9
08f3bff
 
3c4371f
f9b5dc1
d6fbb7e
31243f4
 
f9b5dc1
 
d6fbb7e
 
 
08f3bff
f9b5dc1
d983d17
f97d9bf
08f3bff
f97d9bf
 
 
 
08f3bff
f97d9bf
08f3bff
31243f4
08f3bff
d6fbb7e
 
 
 
 
 
7d65c66
d983d17
f9b5dc1
 
 
 
 
 
 
31243f4
f9b5dc1
 
 
 
 
 
 
 
 
31243f4
 
 
 
d983d17
d6fbb7e
 
e80aab9
7d65c66
e80aab9
 
f9b5dc1
 
 
d6fbb7e
7d65c66
d6fbb7e
31243f4
d6fbb7e
e80aab9
d983d17
f9b5dc1
 
 
 
d983d17
 
 
d6fbb7e
f9b5dc1
 
 
 
 
d983d17
f9b5dc1
 
d983d17
 
 
 
 
 
 
e80aab9
 
f9b5dc1
d6fbb7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
app.py
This script provides the Gradio web interface to run the evaluation.
This version is simplified to work with the new agent architecture and has
the correct Gradio wiring for the Hugging Face login functionality.
"""

import os
import re
import gradio as gr
import requests
import pandas as pd
from urllib.parse import urlparse

from agent import create_agent_executor

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Helper function to parse the agent's output ---
def parse_final_answer(agent_response: str) -> str:
    match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
    if match: return match.group(1).strip()
    lines = [line for line in agent_response.split('\n') if line.strip()]
    if lines: return lines[-1].strip()
    return "Could not parse a final answer."

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the agent on them, submits all answers,
    and displays the results.
    """
    if not profile:
        return "Please log in to Hugging Face with the button above to submit.", None
    
    username = profile.username
    print(f"User logged in: {username}")
    
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"
    
    # 1. Instantiate Agent
    print("Initializing your custom agent...")
    try:
        agent_executor = create_agent_executor(provider="groq")  
    except Exception as e:
        return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=20)
        response.raise_for_status()
        questions_data = response.json()
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", pd.DataFrame()

    # 3. Run your Agent
    results_log, answers_payload = [], []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None: 
            continue
        
        print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
        
        file_url = item.get("file_url")
        
        # We simply combine the question and the URL into one string.
        # The agent's multimodal_router will handle the rest.
        if file_url:
            full_question_text = f"{question_text}\n\nHere is the relevant file: {file_url}"
            print(f"File provided: {file_url}")
        else:
            full_question_text = question_text
        
        print(f"Raw Prompt for Agent:\n{full_question_text}")

        try:
            result = agent_executor.invoke({"messages": [("user", full_question_text)]})
            raw_answer = result['messages'][-1].content
            submitted_answer = parse_final_answer(raw_answer)
            
            print(f"Raw LLM Response: '{raw_answer}'")
            print(f"PARSED FINAL ANSWER: '{submitted_answer}'")

            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            # The log for the DataFrame no longer includes a 'File Type' column
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "File URL": file_url or "None",
                "Submitted Answer": submitted_answer
            })
            
        except Exception as e:
            print(f"!! AGENT ERROR on task {task_id}: {e}")
            error_msg = f"AGENT RUNTIME ERROR: {e}"
            answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "File URL": file_url or "None",
                "Submitted Answer": error_msg
            })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare and 5. Submit
    submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
    print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
                       f"Overall Score: {result_data.get('score', 'N/A')}%\n"
                       f"Processed {len([r for r in results_log if 'ERROR' not in r['Submitted Answer']])} successful tasks")
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)

# --- Gradio UI ---
with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
    gr.Markdown("# Multimodal Agent Evaluation Runner")
    gr.Markdown("This agent can process images, YouTube videos, audio files, and perform web searches.")
    
    ## MODIFICATION: Assign the LoginButton to a variable so we can use it as an input.
    login_button = gr.LoginButton()
    
    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=6, interactive=False)
    results_table = gr.DataFrame(
        label="Questions and Agent Answers", 
        wrap=True, 
        row_count=10,
        column_widths=[80, 250, 200, 250]
    )
    
    ## MODIFICATION: Wire the login_button as an input to the click event.
    # This correctly passes the OAuth profile to the run_and_submit_all function.
    run_button.click(
        fn=run_and_submit_all, 
        inputs=login_button, 
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " Multimodal App Starting " + "-"*30)
    demo.launch()