Abbasid commited on
Commit
d6fbb7e
·
verified ·
1 Parent(s): da30486

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -133
app.py CHANGED
@@ -1,103 +1,126 @@
 
 
 
 
 
 
 
 
1
  import os
 
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- # class BasicAgent:
14
- # def __init__(self):
15
- # print("BasicAgent initialized.")
16
- # def __call__(self, question: str) -> str:
17
- # print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- # fixed_answer = "This is a default answer."
19
- # print(f"Agent returning fixed answer: {fixed_answer}")
20
- # return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  and displays the results.
26
  """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
  print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
 
 
 
 
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
 
 
 
42
  try:
43
  agent_executor = create_agent_executor(provider="google") # or "groq"
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
53
  try:
54
- response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
 
79
  if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
 
 
 
 
82
  try:
83
- submitted_answer = agent(question_text)
 
 
 
 
 
 
 
 
 
 
 
 
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
@@ -106,91 +129,35 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
106
  f"Submission Successful!\n"
107
  f"User: {result_data.get('username')}\n"
108
  f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
  print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
  print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
  gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
+ """
2
+ app.py
3
+
4
+ This script provides the Gradio web interface to run the evaluation for the
5
+ Hugging Face Agents course. It fetches questions from a server, runs the
6
+ agent defined in agent.py on them, and submits the answers for scoring.
7
+ """
8
+
9
  import os
10
+ import re # <-- 1. ADDED IMPORT for Regular Expressions
11
  import gradio as gr
12
  import requests
 
13
  import pandas as pd
14
 
15
+ # --- Import your agent's factory function ---
16
+ from agent import create_agent_executor # <-- 2. ADDED IMPORT for your agent
17
+
18
  # --- Constants ---
19
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
20
 
21
+ # --- DELETED BasicAgent class as it's no longer needed ---
22
+
23
+ # --- 3. ADDED HELPER FUNCTION TO PARSE THE AGENT'S OUTPUT ---
24
+ def parse_final_answer(agent_response: str) -> str:
 
 
 
 
 
 
 
 
25
  """
26
+ Extracts the final answer from the agent's full response string.
27
+ The agent is prompted to return 'FINAL ANSWER: [answer]'.
28
+ This function isolates and returns '[answer]'.
29
+ """
30
+ # Use a regular expression to find the text after "FINAL ANSWER:"
31
+ match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
32
+ if match:
33
+ # If a match is found, return the captured group, stripped of whitespace
34
+ return match.group(1).strip()
35
+
36
+ # As a fallback, if the specific format is not found, return the last non-empty line
37
+ lines = [line for line in agent_response.split('\n') if line.strip()]
38
+ if lines:
39
+ return lines[-1].strip()
40
+
41
+ # If all else fails, return a default message
42
+ return "Could not parse a final answer."
43
+
44
+
45
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
46
+ """
47
+ Fetches all questions, runs the agent on them, submits all answers,
48
  and displays the results.
49
  """
50
+ if not profile:
 
 
 
 
 
 
51
  print("User not logged in.")
52
+ return "Please log in to Hugging Face with the button above to submit.", None
53
+
54
+ username = profile.username
55
+ print(f"User logged in: {username}")
56
+
57
+ space_id = os.getenv("SPACE_ID")
58
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
59
+ questions_url = f"{DEFAULT_API_URL}/questions"
60
+ submit_url = f"{DEFAULT_API_URL}/submit"
61
 
62
+ # --- 4. MODIFIED AGENT INSTANTIATION AND EXECUTION ---
63
+
64
+ # 1. Instantiate Agent (using your factory function from agent.py)
65
+ print("Initializing your custom agent...")
66
  try:
67
  agent_executor = create_agent_executor(provider="google") # or "groq"
68
  except Exception as e:
69
  print(f"Error instantiating agent: {e}")
70
+ return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
 
 
 
71
 
72
+ # 2. Fetch Questions (this part is correct)
73
  print(f"Fetching questions from: {questions_url}")
74
  try:
75
+ response = requests.get(questions_url, timeout=20)
76
  response.raise_for_status()
77
  questions_data = response.json()
 
 
 
78
  print(f"Fetched {len(questions_data)} questions.")
 
 
 
 
 
 
 
79
  except Exception as e:
80
+ return f"Error fetching questions: {e}", None
 
81
 
82
+ # 3. Run your Agent (THIS IS THE MOST IMPORTANTLY CORRECTED SECTION)
83
  results_log = []
84
  answers_payload = []
85
  print(f"Running agent on {len(questions_data)} questions...")
86
+ for i, item in enumerate(questions_data):
87
  task_id = item.get("task_id")
88
  question_text = item.get("question")
89
+
90
  if not task_id or question_text is None:
91
+ print(f"Skipping item with missing data: {item}")
92
  continue
93
+
94
+ print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
95
+ print(f"Question: {question_text}")
96
+
97
  try:
98
+ # CORRECT INVOCATION: Use the agent_executor with the .invoke() method
99
+ # The input must be a dictionary with a "messages" key
100
+ result = agent_executor.invoke({"messages": [("user", question_text)]})
101
+
102
+ # The agent's final response is in the 'messages' list of the output
103
+ raw_answer = result['messages'][-1].content
104
+
105
+ # Use our helper function to extract the clean answer
106
+ submitted_answer = parse_final_answer(raw_answer)
107
+
108
+ print(f"Raw LLM Response: '{raw_answer}'")
109
+ print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
110
+
111
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
112
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
113
  except Exception as e:
114
+ print(f"!! AGENT ERROR on task {task_id}: {e}")
115
+ # It's important to log errors so you can see them in the UI
116
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"})
117
 
118
  if not answers_payload:
 
119
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
120
 
121
+ # 4. Prepare and 5. Submit (these parts are correct)
122
+ submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
123
+ print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
 
 
 
 
124
  try:
125
  response = requests.post(submit_url, json=submission_data, timeout=60)
126
  response.raise_for_status()
 
129
  f"Submission Successful!\n"
130
  f"User: {result_data.get('username')}\n"
131
  f"Overall Score: {result_data.get('score', 'N/A')}% "
132
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)"
 
133
  )
134
  print("Submission successful.")
135
+ return final_status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  except Exception as e:
137
+ status_message = f"Submission Failed: {e}"
138
  print(status_message)
139
+ return status_message, pd.DataFrame(results_log)
 
140
 
141
 
142
+ # --- Build Gradio Interface using Blocks (This part is correct) ---
143
  with gr.Blocks() as demo:
144
+ gr.Markdown("# Agent Evaluation Runner")
145
+ gr.Markdown("Run your custom agent against the evaluation questions and submit for a score.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  gr.LoginButton()
147
+ run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
148
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
149
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, max_rows=10)
150
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
 
 
 
 
151
 
152
  if __name__ == "__main__":
153
  print("\n" + "-"*30 + " App Starting " + "-"*30)
154
+ # The startup info logs are helpful, so we keep them.
155
+ space_id_startup = os.getenv("SPACE_ID")
156
+ if space_id_startup:
 
 
 
 
 
 
 
 
157
  print(f"✅ SPACE_ID found: {space_id_startup}")
158
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
 
159
  else:
160
+ print("ℹ️ SPACE_ID environment variable not found (likely running locally).")
 
161
  print("-"*(60 + len(" App Starting ")) + "\n")
162
+ print("Launching Gradio Interface...")
163
+ demo.launch()