Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
"""
|
2 |
app.py
|
3 |
-
|
4 |
This script provides the Gradio web interface to run the evaluation.
|
5 |
-
This version
|
6 |
-
in the task data and appending it to the agent's prompt.
|
7 |
"""
|
8 |
|
9 |
import os
|
@@ -11,13 +9,14 @@ import re
|
|
11 |
import gradio as gr
|
12 |
import requests
|
13 |
import pandas as pd
|
|
|
14 |
|
15 |
from agent import create_agent_executor
|
16 |
|
17 |
# --- Constants ---
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
20 |
-
# --- Helper function to parse the agent's output
|
21 |
def parse_final_answer(agent_response: str) -> str:
|
22 |
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
|
23 |
if match: return match.group(1).strip()
|
@@ -25,6 +24,74 @@ def parse_final_answer(agent_response: str) -> str:
|
|
25 |
if lines: return lines[-1].strip()
|
26 |
return "Could not parse a final answer."
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
30 |
"""
|
@@ -45,7 +112,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
45 |
# 1. Instantiate Agent
|
46 |
print("Initializing your custom agent...")
|
47 |
try:
|
48 |
-
agent_executor = create_agent_executor(provider="
|
49 |
except Exception as e:
|
50 |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
|
51 |
|
@@ -62,29 +129,29 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
62 |
# 3. Run your Agent
|
63 |
results_log, answers_payload = [], []
|
64 |
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
65 |
for i, item in enumerate(questions_data):
|
66 |
task_id = item.get("task_id")
|
67 |
question_text = item.get("question")
|
68 |
-
if not task_id or question_text is None:
|
|
|
69 |
|
70 |
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
|
71 |
|
72 |
-
#
|
73 |
-
# 1. Check if a 'file_url' key exists in the task data.
|
74 |
file_url = item.get("file_url")
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
78 |
if file_url:
|
79 |
-
|
80 |
-
|
81 |
-
full_question_text = f"{question_text}\n\n[Attachment URL: {file_url}]"
|
82 |
|
83 |
-
print(f"
|
84 |
-
# --- END CRITICAL FIX ---
|
85 |
|
86 |
try:
|
87 |
-
#
|
88 |
result = agent_executor.invoke({"messages": [("user", full_question_text)]})
|
89 |
|
90 |
raw_answer = result['messages'][-1].content
|
@@ -94,10 +161,25 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
94 |
print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
|
95 |
|
96 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
97 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
except Exception as e:
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if not answers_payload:
|
103 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
@@ -109,23 +191,32 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
109 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
110 |
response.raise_for_status()
|
111 |
result_data = response.json()
|
112 |
-
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\
|
|
|
|
|
113 |
return final_status, pd.DataFrame(results_log)
|
114 |
except Exception as e:
|
115 |
status_message = f"Submission Failed: {e}"
|
116 |
print(status_message)
|
117 |
return status_message, pd.DataFrame(results_log)
|
118 |
|
119 |
-
# --- Gradio UI
|
120 |
-
with gr.Blocks() as demo:
|
121 |
-
gr.Markdown("# Agent Evaluation Runner")
|
122 |
-
|
|
|
123 |
gr.LoginButton()
|
124 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
125 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=
|
126 |
-
results_table = gr.DataFrame(
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
131 |
demo.launch()
|
|
|
1 |
"""
|
2 |
app.py
|
|
|
3 |
This script provides the Gradio web interface to run the evaluation.
|
4 |
+
This version properly handles multimodal inputs including images, videos, and audio.
|
|
|
5 |
"""
|
6 |
|
7 |
import os
|
|
|
9 |
import gradio as gr
|
10 |
import requests
|
11 |
import pandas as pd
|
12 |
+
from urllib.parse import urlparse
|
13 |
|
14 |
from agent import create_agent_executor
|
15 |
|
16 |
# --- Constants ---
|
17 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
18 |
|
19 |
+
# --- Helper function to parse the agent's output ---
|
20 |
def parse_final_answer(agent_response: str) -> str:
|
21 |
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
|
22 |
if match: return match.group(1).strip()
|
|
|
24 |
if lines: return lines[-1].strip()
|
25 |
return "Could not parse a final answer."
|
26 |
|
27 |
+
def detect_file_type(url: str) -> str:
|
28 |
+
"""Detect the type of file from URL."""
|
29 |
+
if not url:
|
30 |
+
return "unknown"
|
31 |
+
|
32 |
+
url_lower = url.lower()
|
33 |
+
|
34 |
+
# Image extensions
|
35 |
+
if any(ext in url_lower for ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.svg']):
|
36 |
+
return "image"
|
37 |
+
|
38 |
+
# Video extensions and YouTube
|
39 |
+
if any(domain in url_lower for domain in ['youtube.com', 'youtu.be', 'vimeo.com']):
|
40 |
+
return "youtube"
|
41 |
+
if any(ext in url_lower for ext in ['.mp4', '.avi', '.mov', '.wmv', '.flv', '.webm']):
|
42 |
+
return "video"
|
43 |
+
|
44 |
+
# Audio extensions
|
45 |
+
if any(ext in url_lower for ext in ['.mp3', '.wav', '.flac', '.aac', '.ogg', '.m4a']):
|
46 |
+
return "audio"
|
47 |
+
|
48 |
+
# Try to detect from headers if possible
|
49 |
+
try:
|
50 |
+
response = requests.head(url, timeout=5)
|
51 |
+
content_type = response.headers.get('content-type', '').lower()
|
52 |
+
|
53 |
+
if 'image' in content_type:
|
54 |
+
return "image"
|
55 |
+
elif 'audio' in content_type:
|
56 |
+
return "audio"
|
57 |
+
elif 'video' in content_type:
|
58 |
+
return "video"
|
59 |
+
except:
|
60 |
+
pass
|
61 |
+
|
62 |
+
return "unknown"
|
63 |
+
|
64 |
+
def create_enhanced_prompt(question_text: str, file_url: str = None) -> str:
|
65 |
+
"""Create an enhanced prompt that guides the agent to use appropriate tools."""
|
66 |
+
|
67 |
+
if not file_url:
|
68 |
+
return question_text
|
69 |
+
|
70 |
+
file_type = detect_file_type(file_url)
|
71 |
+
|
72 |
+
if file_type == "image":
|
73 |
+
return f"""{question_text}
|
74 |
+
|
75 |
+
[IMAGE ATTACHMENT]: {file_url}
|
76 |
+
INSTRUCTION: There is an image attached to this question. You MUST use the 'describe_image' tool to analyze this image before answering the question."""
|
77 |
+
|
78 |
+
elif file_type == "youtube":
|
79 |
+
return f"""{question_text}
|
80 |
+
|
81 |
+
[YOUTUBE VIDEO]: {file_url}
|
82 |
+
INSTRUCTION: There is a YouTube video attached to this question. You MUST use the 'process_youtube_video' tool to analyze this video before answering the question."""
|
83 |
+
|
84 |
+
elif file_type == "audio":
|
85 |
+
return f"""{question_text}
|
86 |
+
|
87 |
+
[AUDIO FILE]: {file_url}
|
88 |
+
INSTRUCTION: There is an audio file attached to this question. You MUST use the 'process_audio_file' tool to analyze this audio before answering the question."""
|
89 |
+
|
90 |
+
else:
|
91 |
+
return f"""{question_text}
|
92 |
+
|
93 |
+
[ATTACHMENT]: {file_url}
|
94 |
+
INSTRUCTION: There is a file attachment. Analyze the URL and use the appropriate tool to process this content before answering the question."""
|
95 |
|
96 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
97 |
"""
|
|
|
112 |
# 1. Instantiate Agent
|
113 |
print("Initializing your custom agent...")
|
114 |
try:
|
115 |
+
agent_executor = create_agent_executor(provider="google") # Using Google for better multimodal support
|
116 |
except Exception as e:
|
117 |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
|
118 |
|
|
|
129 |
# 3. Run your Agent
|
130 |
results_log, answers_payload = [], []
|
131 |
print(f"Running agent on {len(questions_data)} questions...")
|
132 |
+
|
133 |
for i, item in enumerate(questions_data):
|
134 |
task_id = item.get("task_id")
|
135 |
question_text = item.get("question")
|
136 |
+
if not task_id or question_text is None:
|
137 |
+
continue
|
138 |
|
139 |
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
|
140 |
|
141 |
+
# Get file URL if it exists
|
|
|
142 |
file_url = item.get("file_url")
|
143 |
+
|
144 |
+
# Create enhanced prompt that instructs the agent to use appropriate tools
|
145 |
+
full_question_text = create_enhanced_prompt(question_text, file_url)
|
146 |
+
|
147 |
if file_url:
|
148 |
+
file_type = detect_file_type(file_url)
|
149 |
+
print(f"File detected: {file_url} (Type: {file_type})")
|
|
|
150 |
|
151 |
+
print(f"Enhanced Prompt for Agent:\n{full_question_text}")
|
|
|
152 |
|
153 |
try:
|
154 |
+
# Pass the enhanced question to the agent
|
155 |
result = agent_executor.invoke({"messages": [("user", full_question_text)]})
|
156 |
|
157 |
raw_answer = result['messages'][-1].content
|
|
|
161 |
print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
|
162 |
|
163 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
164 |
+
results_log.append({
|
165 |
+
"Task ID": task_id,
|
166 |
+
"Question": question_text,
|
167 |
+
"File URL": file_url or "None",
|
168 |
+
"File Type": detect_file_type(file_url) if file_url else "None",
|
169 |
+
"Submitted Answer": submitted_answer
|
170 |
+
})
|
171 |
+
|
172 |
except Exception as e:
|
173 |
+
print(f"!! AGENT ERROR on task {task_id}: {e}")
|
174 |
+
error_msg = f"AGENT RUNTIME ERROR: {e}"
|
175 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
|
176 |
+
results_log.append({
|
177 |
+
"Task ID": task_id,
|
178 |
+
"Question": question_text,
|
179 |
+
"File URL": file_url or "None",
|
180 |
+
"File Type": detect_file_type(file_url) if file_url else "None",
|
181 |
+
"Submitted Answer": error_msg
|
182 |
+
})
|
183 |
|
184 |
if not answers_payload:
|
185 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
|
|
191 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
192 |
response.raise_for_status()
|
193 |
result_data = response.json()
|
194 |
+
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
|
195 |
+
f"Overall Score: {result_data.get('score', 'N/A')}%\n"
|
196 |
+
f"Processed {len([r for r in results_log if 'ERROR' not in r['Submitted Answer']])} successful tasks")
|
197 |
return final_status, pd.DataFrame(results_log)
|
198 |
except Exception as e:
|
199 |
status_message = f"Submission Failed: {e}"
|
200 |
print(status_message)
|
201 |
return status_message, pd.DataFrame(results_log)
|
202 |
|
203 |
+
# --- Gradio UI ---
|
204 |
+
with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
|
205 |
+
gr.Markdown("# Multimodal Agent Evaluation Runner")
|
206 |
+
gr.Markdown("This agent can process images, YouTube videos, audio files, and perform web searches.")
|
207 |
+
|
208 |
gr.LoginButton()
|
209 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
210 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=6, interactive=False)
|
211 |
+
results_table = gr.DataFrame(
|
212 |
+
label="Questions and Agent Answers",
|
213 |
+
wrap=True,
|
214 |
+
row_count=10,
|
215 |
+
column_widths=[80, 200, 150, 80, 200]
|
216 |
+
)
|
217 |
+
|
218 |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
219 |
|
220 |
if __name__ == "__main__":
|
221 |
+
print("\n" + "-"*30 + " Multimodal App Starting " + "-"*30)
|
222 |
demo.launch()
|