Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,28 @@
|
|
1 |
"""
|
2 |
app.py
|
3 |
|
4 |
-
This script provides the Gradio web interface to run the evaluation
|
5 |
-
|
6 |
-
|
7 |
"""
|
8 |
|
9 |
import os
|
10 |
-
import re
|
11 |
import gradio as gr
|
12 |
import requests
|
13 |
import pandas as pd
|
14 |
|
15 |
-
|
16 |
-
from agent import create_agent_executor # <-- 2. ADDED IMPORT for your agent
|
17 |
|
18 |
# --- Constants ---
|
19 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
20 |
|
21 |
-
# ---
|
22 |
-
|
23 |
-
# --- 3. ADDED HELPER FUNCTION TO PARSE THE AGENT'S OUTPUT ---
|
24 |
def parse_final_answer(agent_response: str) -> str:
|
25 |
-
"""
|
26 |
-
Extracts the final answer from the agent's full response string.
|
27 |
-
The agent is prompted to return 'FINAL ANSWER: [answer]'.
|
28 |
-
This function isolates and returns '[answer]'.
|
29 |
-
"""
|
30 |
-
# Use a regular expression to find the text after "FINAL ANSWER:"
|
31 |
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
|
32 |
-
if match:
|
33 |
-
# If a match is found, return the captured group, stripped of whitespace
|
34 |
-
return match.group(1).strip()
|
35 |
-
|
36 |
-
# As a fallback, if the specific format is not found, return the last non-empty line
|
37 |
lines = [line for line in agent_response.split('\n') if line.strip()]
|
38 |
-
if lines:
|
39 |
-
return lines[-1].strip()
|
40 |
-
|
41 |
-
# If all else fails, return a default message
|
42 |
return "Could not parse a final answer."
|
43 |
|
44 |
|
@@ -48,7 +32,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
48 |
and displays the results.
|
49 |
"""
|
50 |
if not profile:
|
51 |
-
print("User not logged in.")
|
52 |
return "Please log in to Hugging Face with the button above to submit.", None
|
53 |
|
54 |
username = profile.username
|
@@ -58,18 +41,15 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
58 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
59 |
questions_url = f"{DEFAULT_API_URL}/questions"
|
60 |
submit_url = f"{DEFAULT_API_URL}/submit"
|
61 |
-
|
62 |
-
# --- 4. MODIFIED AGENT INSTANTIATION AND EXECUTION ---
|
63 |
|
64 |
-
# 1. Instantiate Agent
|
65 |
print("Initializing your custom agent...")
|
66 |
try:
|
67 |
-
agent_executor = create_agent_executor(provider="
|
68 |
except Exception as e:
|
69 |
-
print(f"Error instantiating agent: {e}")
|
70 |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
|
71 |
|
72 |
-
# 2. Fetch Questions
|
73 |
print(f"Fetching questions from: {questions_url}")
|
74 |
try:
|
75 |
response = requests.get(questions_url, timeout=20)
|
@@ -77,32 +57,37 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
77 |
questions_data = response.json()
|
78 |
print(f"Fetched {len(questions_data)} questions.")
|
79 |
except Exception as e:
|
80 |
-
return f"Error fetching questions: {e}",
|
81 |
|
82 |
-
# 3. Run your Agent
|
83 |
-
results_log = []
|
84 |
-
answers_payload = []
|
85 |
print(f"Running agent on {len(questions_data)} questions...")
|
86 |
for i, item in enumerate(questions_data):
|
87 |
task_id = item.get("task_id")
|
88 |
question_text = item.get("question")
|
89 |
-
|
90 |
-
if not task_id or question_text is None:
|
91 |
-
print(f"Skipping item with missing data: {item}")
|
92 |
-
continue
|
93 |
|
94 |
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
|
95 |
-
print(f"Question: {question_text}")
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
try:
|
98 |
-
#
|
99 |
-
|
100 |
-
result = agent_executor.invoke({"messages": [("user", question_text)]})
|
101 |
|
102 |
-
# The agent's final response is in the 'messages' list of the output
|
103 |
raw_answer = result['messages'][-1].content
|
104 |
-
|
105 |
-
# Use our helper function to extract the clean answer
|
106 |
submitted_answer = parse_final_answer(raw_answer)
|
107 |
|
108 |
print(f"Raw LLM Response: '{raw_answer}'")
|
@@ -112,37 +97,29 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
112 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
113 |
except Exception as e:
|
114 |
print(f"!! AGENT ERROR on task {task_id}: {e}")
|
115 |
-
# It's important to log errors so you can see them in the UI
|
116 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"})
|
117 |
|
118 |
if not answers_payload:
|
119 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
120 |
|
121 |
-
# 4. Prepare and 5. Submit
|
122 |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
|
123 |
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
|
124 |
try:
|
125 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
126 |
response.raise_for_status()
|
127 |
result_data = response.json()
|
128 |
-
final_status = (
|
129 |
-
f"Submission Successful!\n"
|
130 |
-
f"User: {result_data.get('username')}\n"
|
131 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
132 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)"
|
133 |
-
)
|
134 |
-
print("Submission successful.")
|
135 |
return final_status, pd.DataFrame(results_log)
|
136 |
except Exception as e:
|
137 |
status_message = f"Submission Failed: {e}"
|
138 |
print(status_message)
|
139 |
return status_message, pd.DataFrame(results_log)
|
140 |
|
141 |
-
|
142 |
-
# --- Build Gradio Interface using Blocks (This part is correct) ---
|
143 |
with gr.Blocks() as demo:
|
144 |
gr.Markdown("# Agent Evaluation Runner")
|
145 |
-
|
146 |
gr.LoginButton()
|
147 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
148 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
|
@@ -151,13 +128,4 @@ with gr.Blocks() as demo:
|
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
154 |
-
# The startup info logs are helpful, so we keep them.
|
155 |
-
space_id_startup = os.getenv("SPACE_ID")
|
156 |
-
if space_id_startup:
|
157 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
158 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
159 |
-
else:
|
160 |
-
print("ℹ️ SPACE_ID environment variable not found (likely running locally).")
|
161 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
162 |
-
print("Launching Gradio Interface...")
|
163 |
demo.launch()
|
|
|
1 |
"""
|
2 |
app.py
|
3 |
|
4 |
+
This script provides the Gradio web interface to run the evaluation.
|
5 |
+
This version has been corrected to be "file-aware" by checking for a 'file_url'
|
6 |
+
in the task data and appending it to the agent's prompt.
|
7 |
"""
|
8 |
|
9 |
import os
|
10 |
+
import re
|
11 |
import gradio as gr
|
12 |
import requests
|
13 |
import pandas as pd
|
14 |
|
15 |
+
from agent import create_agent_executor
|
|
|
16 |
|
17 |
# --- Constants ---
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
20 |
+
# --- Helper function to parse the agent's output (This is correct) ---
|
|
|
|
|
21 |
def parse_final_answer(agent_response: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
|
23 |
+
if match: return match.group(1).strip()
|
|
|
|
|
|
|
|
|
24 |
lines = [line for line in agent_response.split('\n') if line.strip()]
|
25 |
+
if lines: return lines[-1].strip()
|
|
|
|
|
|
|
26 |
return "Could not parse a final answer."
|
27 |
|
28 |
|
|
|
32 |
and displays the results.
|
33 |
"""
|
34 |
if not profile:
|
|
|
35 |
return "Please log in to Hugging Face with the button above to submit.", None
|
36 |
|
37 |
username = profile.username
|
|
|
41 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
42 |
questions_url = f"{DEFAULT_API_URL}/questions"
|
43 |
submit_url = f"{DEFAULT_API_URL}/submit"
|
|
|
|
|
44 |
|
45 |
+
# 1. Instantiate Agent
|
46 |
print("Initializing your custom agent...")
|
47 |
try:
|
48 |
+
agent_executor = create_agent_executor(provider="google") # Using Google for better tool use
|
49 |
except Exception as e:
|
|
|
50 |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
|
51 |
|
52 |
+
# 2. Fetch Questions
|
53 |
print(f"Fetching questions from: {questions_url}")
|
54 |
try:
|
55 |
response = requests.get(questions_url, timeout=20)
|
|
|
57 |
questions_data = response.json()
|
58 |
print(f"Fetched {len(questions_data)} questions.")
|
59 |
except Exception as e:
|
60 |
+
return f"Error fetching questions: {e}", pd.DataFrame()
|
61 |
|
62 |
+
# 3. Run your Agent
|
63 |
+
results_log, answers_payload = [], []
|
|
|
64 |
print(f"Running agent on {len(questions_data)} questions...")
|
65 |
for i, item in enumerate(questions_data):
|
66 |
task_id = item.get("task_id")
|
67 |
question_text = item.get("question")
|
68 |
+
if not task_id or question_text is None: continue
|
|
|
|
|
|
|
69 |
|
70 |
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
|
|
|
71 |
|
72 |
+
# --- THIS IS THE CRITICAL FIX ---
|
73 |
+
# 1. Check if a 'file_url' key exists in the task data.
|
74 |
+
file_url = item.get("file_url")
|
75 |
+
full_question_text = question_text
|
76 |
+
|
77 |
+
# 2. If a URL exists, append it to the question text.
|
78 |
+
if file_url:
|
79 |
+
print(f"File found for this task: {file_url}")
|
80 |
+
# This gives the agent the context it needs to call the right tool.
|
81 |
+
full_question_text = f"{question_text}\n\n[Attachment URL: {file_url}]"
|
82 |
+
|
83 |
+
print(f"Full Prompt for Agent:\n{full_question_text}")
|
84 |
+
# --- END CRITICAL FIX ---
|
85 |
+
|
86 |
try:
|
87 |
+
# 3. Pass the full, potentially enriched, question text to the agent.
|
88 |
+
result = agent_executor.invoke({"messages": [("user", full_question_text)]})
|
|
|
89 |
|
|
|
90 |
raw_answer = result['messages'][-1].content
|
|
|
|
|
91 |
submitted_answer = parse_final_answer(raw_answer)
|
92 |
|
93 |
print(f"Raw LLM Response: '{raw_answer}'")
|
|
|
97 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
98 |
except Exception as e:
|
99 |
print(f"!! AGENT ERROR on task {task_id}: {e}")
|
|
|
100 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"})
|
101 |
|
102 |
if not answers_payload:
|
103 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
104 |
|
105 |
+
# 4. Prepare and 5. Submit
|
106 |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
|
107 |
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
|
108 |
try:
|
109 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
110 |
response.raise_for_status()
|
111 |
result_data = response.json()
|
112 |
+
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}%")
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
return final_status, pd.DataFrame(results_log)
|
114 |
except Exception as e:
|
115 |
status_message = f"Submission Failed: {e}"
|
116 |
print(status_message)
|
117 |
return status_message, pd.DataFrame(results_log)
|
118 |
|
119 |
+
# --- Gradio UI (This part is correct) ---
|
|
|
120 |
with gr.Blocks() as demo:
|
121 |
gr.Markdown("# Agent Evaluation Runner")
|
122 |
+
# ... (rest of the Gradio code is fine)
|
123 |
gr.LoginButton()
|
124 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
125 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
|
|
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
demo.launch()
|