Spaces:
Sleeping
Sleeping
File size: 8,139 Bytes
d59e1c2 d6fbb7e 08f3bff d59e1c2 d6fbb7e 10e9b7d 08f3bff 10e9b7d eccf8e4 3c4371f d59e1c2 10e9b7d 08f3bff d6fbb7e e80aab9 d59e1c2 3db6293 e80aab9 d59e1c2 d6fbb7e 08f3bff d6fbb7e 08f3bff d6fbb7e d59e1c2 d6fbb7e 31243f4 d6fbb7e d59e1c2 d6fbb7e d59e1c2 d6fbb7e 08f3bff d6fbb7e 31243f4 d80eabc 31243f4 d6fbb7e 3c4371f 08f3bff 31243f4 eccf8e4 d6fbb7e 7d65c66 31243f4 7d65c66 08f3bff e80aab9 08f3bff 3c4371f f9b5dc1 d6fbb7e 31243f4 f9b5dc1 d6fbb7e 08f3bff f9b5dc1 d59e1c2 f97d9bf 08f3bff f97d9bf 08f3bff f97d9bf 08f3bff 31243f4 d59e1c2 d6fbb7e 7d65c66 f9b5dc1 31243f4 f9b5dc1 31243f4 d59e1c2 d6fbb7e e80aab9 7d65c66 e80aab9 f9b5dc1 d6fbb7e 7d65c66 d6fbb7e 31243f4 d6fbb7e e80aab9 d59e1c2 f9b5dc1 d59e1c2 d6fbb7e f9b5dc1 d59e1c2 f9b5dc1 d59e1c2 e80aab9 f9b5dc1 d59e1c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# app.py
"""
This script provides the Gradio web interface to run the evaluation.
## MODIFICATION: This version is simplified to work with the new agent architecture.
It no longer performs file-type detection or prompt enhancement, as that responsibility
has been moved into the agent's 'multimodal_router'.
"""
import os
import re
import gradio as gr
import requests
import pandas as pd
# --- Import HumanMessage ---
from langchain_core.messages import HumanMessage
from agent import create_agent_executor
# --- Constants ---
# Ensure the URL is correctly formatted (remove trailing spaces)
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Helper function to parse the agent's output (remains the same) ---
def parse_final_answer(agent_response: str) -> str:
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
if match: return match.group(1).strip()
lines = [line for line in agent_response.split('\n') if line.strip()]
if lines: return lines[-1].strip()
return "Could not parse a final answer."
## MODIFICATION: The `detect_file_type` function has been removed.
## It is now redundant as this logic is handled inside the agent.
## MODIFICATION: The `create_enhanced_prompt` function has been removed.
## It was causing errors by trying to instruct the agent to use tools that no longer exist.
## The agent is now responsible for handling the raw input itself.
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results.
"""
if not profile:
return "Please log in to Hugging Face with the button above to submit.", None
username = profile.username
print(f"User logged in: {username}")
# --- Fix SPACE_ID retrieval and URL construction ---
# Ensure SPACE_ID environment variable is set correctly in your Hugging Face Space.
space_id = os.getenv("SPACE_ID")
if not space_id:
# Fallback or error handling if SPACE_ID is not set
# You might need to adjust this based on how your space is configured
# For example, if running locally, you might not have SPACE_ID.
# This is a placeholder; adjust as needed.
# Consider using a default or making it configurable.
space_id = "your-username/your-space-name" # Example placeholder
print(f"Warning: SPACE_ID environment variable not found. Using placeholder: {space_id}")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
# 1. Instantiate Agent
print("Initializing your custom agent...")
try:
agent_executor = create_agent_executor(provider="groq")
except Exception as e:
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", pd.DataFrame()
# 3. Run your Agent
results_log, answers_payload = [], []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
file_url = item.get("file_url")
## MODIFICATION: Prompt creation is now much simpler.
# We just combine the question and the URL into one string.
# The agent's multimodal_router will handle the rest.
if file_url:
full_question_text = f"{question_text}\n\nHere is the relevant file: {file_url}"
print(f"File provided: {file_url}")
else:
full_question_text = question_text
print(f"Raw Prompt for Agent:\n{full_question_text}")
try:
# --- FIX: Pass a list of HumanMessage objects ---
# The agent expects MessagesState["messages"] to be a list of BaseMessage objects.
input_state = {"messages": [HumanMessage(content=full_question_text)]}
result = agent_executor.invoke(input_state)
raw_answer = result['messages'][-1].content
submitted_answer = parse_final_answer(raw_answer)
print(f"Raw LLM Response: '{raw_answer}'")
print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"File URL": file_url or "None",
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"!! AGENT ERROR on task {task_id}: {e}")
error_msg = f"AGENT RUNTIME ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"File URL": file_url or "None",
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare and 5. Submit (remains the same)
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}%\n"
f"Processed {len([r for r in results_log if 'ERROR' not in r['Submitted Answer']])} successful tasks")
return final_status, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
# --- Gradio UI (remains largely the same) ---
with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
gr.Markdown("# Multimodal Agent Evaluation Runner")
gr.Markdown("This agent can process images, YouTube videos, audio files, and perform web searches.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=6, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
row_count=10,
# MODIFICATION: Removed the 'File Type' column as it's no longer detected here.
# Adjust column widths if necessary based on actual content/columns
# column_widths=[80, 250, 200, 250]
)
# We also remove "File Type" from the results_log being displayed
# (Though it's not in the log anymore, this is a safe check)
def display_wrapper(profile):
status, df = run_and_submit_all(profile)
# Ensure df is a DataFrame before attempting operations
if isinstance(df, pd.DataFrame) and "File Type" in df.columns:
df = df.drop(columns=["File Type"])
return status, df
run_button.click(fn=display_wrapper, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " Multimodal App Starting " + "-"*30)
demo.launch()
|