File size: 8,592 Bytes
d6fbb7e
 
08f3bff
f9b5dc1
d6fbb7e
 
10e9b7d
08f3bff
10e9b7d
eccf8e4
3c4371f
f9b5dc1
10e9b7d
08f3bff
d6fbb7e
e80aab9
3db6293
e80aab9
f9b5dc1
d6fbb7e
 
08f3bff
d6fbb7e
08f3bff
d6fbb7e
 
f9b5dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6fbb7e
 
 
 
31243f4
 
d6fbb7e
 
 
 
 
 
 
 
 
 
 
08f3bff
d6fbb7e
31243f4
f9b5dc1
31243f4
d6fbb7e
3c4371f
08f3bff
31243f4
eccf8e4
d6fbb7e
7d65c66
31243f4
 
7d65c66
08f3bff
e80aab9
08f3bff
 
3c4371f
f9b5dc1
d6fbb7e
31243f4
 
f9b5dc1
 
d6fbb7e
 
 
f9b5dc1
08f3bff
f9b5dc1
 
 
 
08f3bff
f9b5dc1
 
08f3bff
f9b5dc1
08f3bff
31243f4
f9b5dc1
08f3bff
d6fbb7e
 
 
 
 
 
 
7d65c66
f9b5dc1
 
 
 
 
 
 
 
31243f4
f9b5dc1
 
 
 
 
 
 
 
 
 
31243f4
 
 
 
08f3bff
d6fbb7e
 
e80aab9
7d65c66
e80aab9
 
f9b5dc1
 
 
d6fbb7e
7d65c66
d6fbb7e
31243f4
d6fbb7e
e80aab9
f9b5dc1
 
 
 
 
7e4a06b
d6fbb7e
f9b5dc1
 
 
 
 
 
 
 
d6fbb7e
e80aab9
 
f9b5dc1
d6fbb7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""
app.py
This script provides the Gradio web interface to run the evaluation.
This version properly handles multimodal inputs including images, videos, and audio.
"""

import os
import re
import gradio as gr
import requests
import pandas as pd
from urllib.parse import urlparse

from agent import create_agent_executor

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Helper function to parse the agent's output ---
def parse_final_answer(agent_response: str) -> str:
    match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
    if match: return match.group(1).strip()
    lines = [line for line in agent_response.split('\n') if line.strip()]
    if lines: return lines[-1].strip()
    return "Could not parse a final answer."

def detect_file_type(url: str) -> str:
    """Detect the type of file from URL."""
    if not url:
        return "unknown"
    
    url_lower = url.lower()
    
    # Image extensions
    if any(ext in url_lower for ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.svg']):
        return "image"
    
    # Video extensions and YouTube
    if any(domain in url_lower for domain in ['youtube.com', 'youtu.be', 'vimeo.com']):
        return "youtube"
    if any(ext in url_lower for ext in ['.mp4', '.avi', '.mov', '.wmv', '.flv', '.webm']):
        return "video"
    
    # Audio extensions
    if any(ext in url_lower for ext in ['.mp3', '.wav', '.flac', '.aac', '.ogg', '.m4a']):
        return "audio"
    
    # Try to detect from headers if possible
    try:
        response = requests.head(url, timeout=5)
        content_type = response.headers.get('content-type', '').lower()
        
        if 'image' in content_type:
            return "image"
        elif 'audio' in content_type:
            return "audio"
        elif 'video' in content_type:
            return "video"
    except:
        pass
    
    return "unknown"

def create_enhanced_prompt(question_text: str, file_url: str = None) -> str:
    """Create an enhanced prompt that guides the agent to use appropriate tools."""
    
    if not file_url:
        return question_text
    
    file_type = detect_file_type(file_url)
    
    if file_type == "image":
        return f"""{question_text}

[IMAGE ATTACHMENT]: {file_url}
INSTRUCTION: There is an image attached to this question. You MUST use the 'describe_image' tool to analyze this image before answering the question."""

    elif file_type == "youtube":
        return f"""{question_text}

[YOUTUBE VIDEO]: {file_url}
INSTRUCTION: There is a YouTube video attached to this question. You MUST use the 'process_youtube_video' tool to analyze this video before answering the question."""

    elif file_type == "audio":
        return f"""{question_text}

[AUDIO FILE]: {file_url}
INSTRUCTION: There is an audio file attached to this question. You MUST use the 'process_audio_file' tool to analyze this audio before answering the question."""

    else:
        return f"""{question_text}

[ATTACHMENT]: {file_url}
INSTRUCTION: There is a file attachment. Analyze the URL and use the appropriate tool to process this content before answering the question."""

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the agent on them, submits all answers,
    and displays the results.
    """
    if not profile:
        return "Please log in to Hugging Face with the button above to submit.", None
    
    username = profile.username
    print(f"User logged in: {username}")
    
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"
    
    # 1. Instantiate Agent
    print("Initializing your custom agent...")
    try:
        agent_executor = create_agent_executor(provider="google")  # Using Google for better multimodal support
    except Exception as e:
        return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=20)
        response.raise_for_status()
        questions_data = response.json()
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", pd.DataFrame()

    # 3. Run your Agent
    results_log, answers_payload = [], []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None: 
            continue
        
        print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
        
        # Get file URL if it exists
        file_url = item.get("file_url")
        
        # Create enhanced prompt that instructs the agent to use appropriate tools
        full_question_text = create_enhanced_prompt(question_text, file_url)
        
        if file_url:
            file_type = detect_file_type(file_url)
            print(f"File detected: {file_url} (Type: {file_type})")
        
        print(f"Enhanced Prompt for Agent:\n{full_question_text}")

        try:
            # Pass the enhanced question to the agent
            result = agent_executor.invoke({"messages": [("user", full_question_text)]})
            
            raw_answer = result['messages'][-1].content
            submitted_answer = parse_final_answer(raw_answer)
            
            print(f"Raw LLM Response: '{raw_answer}'")
            print(f"PARSED FINAL ANSWER: '{submitted_answer}'")

            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "File URL": file_url or "None",
                "File Type": detect_file_type(file_url) if file_url else "None",
                "Submitted Answer": submitted_answer
            })
            
        except Exception as e:
            print(f"!! AGENT ERROR on task {task_id}: {e}")
            error_msg = f"AGENT RUNTIME ERROR: {e}"
            answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "File URL": file_url or "None",
                "File Type": detect_file_type(file_url) if file_url else "None",
                "Submitted Answer": error_msg
            })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare and 5. Submit
    submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
    print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
                       f"Overall Score: {result_data.get('score', 'N/A')}%\n"
                       f"Processed {len([r for r in results_log if 'ERROR' not in r['Submitted Answer']])} successful tasks")
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)

# --- Gradio UI ---
with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
    gr.Markdown("# Multimodal Agent Evaluation Runner")
    gr.Markdown("This agent can process images, YouTube videos, audio files, and perform web searches.")
    
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=6, interactive=False)
    results_table = gr.DataFrame(
        label="Questions and Agent Answers", 
        wrap=True, 
        row_count=10,
        column_widths=[80, 200, 150, 80, 200]
    )
    
    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " Multimodal App Starting " + "-"*30)
    demo.launch()