Spaces:
Sleeping
Sleeping
File size: 8,592 Bytes
d6fbb7e 08f3bff f9b5dc1 d6fbb7e 10e9b7d 08f3bff 10e9b7d eccf8e4 3c4371f f9b5dc1 10e9b7d 08f3bff d6fbb7e e80aab9 3db6293 e80aab9 f9b5dc1 d6fbb7e 08f3bff d6fbb7e 08f3bff d6fbb7e f9b5dc1 d6fbb7e 31243f4 d6fbb7e 08f3bff d6fbb7e 31243f4 f9b5dc1 31243f4 d6fbb7e 3c4371f 08f3bff 31243f4 eccf8e4 d6fbb7e 7d65c66 31243f4 7d65c66 08f3bff e80aab9 08f3bff 3c4371f f9b5dc1 d6fbb7e 31243f4 f9b5dc1 d6fbb7e f9b5dc1 08f3bff f9b5dc1 08f3bff f9b5dc1 08f3bff f9b5dc1 08f3bff 31243f4 f9b5dc1 08f3bff d6fbb7e 7d65c66 f9b5dc1 31243f4 f9b5dc1 31243f4 08f3bff d6fbb7e e80aab9 7d65c66 e80aab9 f9b5dc1 d6fbb7e 7d65c66 d6fbb7e 31243f4 d6fbb7e e80aab9 f9b5dc1 7e4a06b d6fbb7e f9b5dc1 d6fbb7e e80aab9 f9b5dc1 d6fbb7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
"""
app.py
This script provides the Gradio web interface to run the evaluation.
This version properly handles multimodal inputs including images, videos, and audio.
"""
import os
import re
import gradio as gr
import requests
import pandas as pd
from urllib.parse import urlparse
from agent import create_agent_executor
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Helper function to parse the agent's output ---
def parse_final_answer(agent_response: str) -> str:
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
if match: return match.group(1).strip()
lines = [line for line in agent_response.split('\n') if line.strip()]
if lines: return lines[-1].strip()
return "Could not parse a final answer."
def detect_file_type(url: str) -> str:
"""Detect the type of file from URL."""
if not url:
return "unknown"
url_lower = url.lower()
# Image extensions
if any(ext in url_lower for ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.svg']):
return "image"
# Video extensions and YouTube
if any(domain in url_lower for domain in ['youtube.com', 'youtu.be', 'vimeo.com']):
return "youtube"
if any(ext in url_lower for ext in ['.mp4', '.avi', '.mov', '.wmv', '.flv', '.webm']):
return "video"
# Audio extensions
if any(ext in url_lower for ext in ['.mp3', '.wav', '.flac', '.aac', '.ogg', '.m4a']):
return "audio"
# Try to detect from headers if possible
try:
response = requests.head(url, timeout=5)
content_type = response.headers.get('content-type', '').lower()
if 'image' in content_type:
return "image"
elif 'audio' in content_type:
return "audio"
elif 'video' in content_type:
return "video"
except:
pass
return "unknown"
def create_enhanced_prompt(question_text: str, file_url: str = None) -> str:
"""Create an enhanced prompt that guides the agent to use appropriate tools."""
if not file_url:
return question_text
file_type = detect_file_type(file_url)
if file_type == "image":
return f"""{question_text}
[IMAGE ATTACHMENT]: {file_url}
INSTRUCTION: There is an image attached to this question. You MUST use the 'describe_image' tool to analyze this image before answering the question."""
elif file_type == "youtube":
return f"""{question_text}
[YOUTUBE VIDEO]: {file_url}
INSTRUCTION: There is a YouTube video attached to this question. You MUST use the 'process_youtube_video' tool to analyze this video before answering the question."""
elif file_type == "audio":
return f"""{question_text}
[AUDIO FILE]: {file_url}
INSTRUCTION: There is an audio file attached to this question. You MUST use the 'process_audio_file' tool to analyze this audio before answering the question."""
else:
return f"""{question_text}
[ATTACHMENT]: {file_url}
INSTRUCTION: There is a file attachment. Analyze the URL and use the appropriate tool to process this content before answering the question."""
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results.
"""
if not profile:
return "Please log in to Hugging Face with the button above to submit.", None
username = profile.username
print(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
# 1. Instantiate Agent
print("Initializing your custom agent...")
try:
agent_executor = create_agent_executor(provider="google") # Using Google for better multimodal support
except Exception as e:
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", pd.DataFrame()
# 3. Run your Agent
results_log, answers_payload = [], []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
# Get file URL if it exists
file_url = item.get("file_url")
# Create enhanced prompt that instructs the agent to use appropriate tools
full_question_text = create_enhanced_prompt(question_text, file_url)
if file_url:
file_type = detect_file_type(file_url)
print(f"File detected: {file_url} (Type: {file_type})")
print(f"Enhanced Prompt for Agent:\n{full_question_text}")
try:
# Pass the enhanced question to the agent
result = agent_executor.invoke({"messages": [("user", full_question_text)]})
raw_answer = result['messages'][-1].content
submitted_answer = parse_final_answer(raw_answer)
print(f"Raw LLM Response: '{raw_answer}'")
print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"File URL": file_url or "None",
"File Type": detect_file_type(file_url) if file_url else "None",
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"!! AGENT ERROR on task {task_id}: {e}")
error_msg = f"AGENT RUNTIME ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"File URL": file_url or "None",
"File Type": detect_file_type(file_url) if file_url else "None",
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare and 5. Submit
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}%\n"
f"Processed {len([r for r in results_log if 'ERROR' not in r['Submitted Answer']])} successful tasks")
return final_status, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
gr.Markdown("# Multimodal Agent Evaluation Runner")
gr.Markdown("This agent can process images, YouTube videos, audio files, and perform web searches.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=6, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
row_count=10,
column_widths=[80, 200, 150, 80, 200]
)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " Multimodal App Starting " + "-"*30)
demo.launch() |