seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
local_device_protos = device_lib.list_local_devices()
return [x.physical_device_desc for x in local_device_protos if x.device_type == 'GPU']
def set_global_seeds(i):
try:
import tensorflow as tf
except ImportError:
pass
else:
tf.set_random_seed(i)
np.random.seed(i)
random.seed(i)
def get_session():
tf.reset_default_graph()
tf_config = tf.ConfigProto(
inter_op_parallelism_threads=1,
intra_op_parallelism_threads=1)
session = tf.Session(config=tf_config)
print("AVAILABLE GPUS: ", get_available_gpus())
return session
def get_env(task, seed):
env_id = task.env_id
env = gym.make(env_id)
set_global_seeds(seed)
| tensorflow.reset_default_graph | 7,500 |
import tensorflow as tf
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
predictions = tf.to_float(predictions)
labels = tf.to_float(labels)
losses = -tf.multiply(labels, tf.log(predictions + eps)) - tf.multiply(
| tensorflow.to_float | 7,501 |
from tensorflow.python.framework import ops
`x` and `y` must have the same type, and the result will have the same type
as well.
Args:
x: `Tensor` numerator of real numeric type.
y: `Tensor` numerator of real numeric type.
name: A name for the operation (optional).
Returns:
`x / y` rounded down (except possibly for integers in C).
Raises:
TypeError: If the inputs are complex.
"""
with ops.op_scope([x, y], name, "floordiv") as name:
x = ops.convert_to_tensor(x, name="x")
dtype = x.dtype
if dtype.is_floating:
return floor(div(x, y), name=name)
else:
if not dtype.is_integer:
raise TypeError("Expected floating point or integer, got %r" % dtype)
return div(x, y, name=name)
_OverrideBinaryOperatorHelper(add, "add")
_OverrideBinaryOperatorHelper(sub, "sub")
_OverrideBinaryOperatorHelper(mul, "mul")
| tensorflow.python.framework.ops.op_scope | 7,502 |
import tensorflow as tf
dc_g_var = [var for var in all_variables if 'dc_g_' in var.name]
dc_c_var = [var for var in all_variables if 'dc_c_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
# Optimizers
autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(autoencoder_loss)
discriminator_g_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_g_loss, var_list=dc_g_var)
discriminator_c_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_c_loss, var_list=dc_c_var)
generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(generator_loss, var_list=en_var)
supervised_encoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(supervised_encoder_loss,
var_list=en_var)
init = tf.global_variables_initializer()
# Reshape immages to display them
input_images = tf.reshape(x_input, [-1, 28, 28, 1])
generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1])
| tensorflow.train.AdamOptimizer | 7,503 |
import tensorflow as tf
reduce_instance_dims: By default collapses the batch and instance dimensions
to arrive at a single scalar output. If False, only collapses the batch
dimension and outputs a `Tensor` of the same shape as the input.
name: (Optional) A name for this operation.
Returns:
A `Tensor` with the same type as `x`.
Raises:
TypeError: If the type of `x` is not supported.
"""
with tf.compat.v1.name_scope(name, 'min'):
return _min_and_max(x, reduce_instance_dims, name)[0]
@common.log_api_use(common.ANALYZER_COLLECTION)
def max( # pylint: disable=redefined-builtin
x: common_types.TensorType,
reduce_instance_dims: bool = True,
name: Optional[str] = None) -> tf.Tensor:
"""Computes the maximum of the values of a `Tensor` over the whole dataset.
| tensorflow.compat.v1.name_scope | 7,504 |
import tensorflow as tf
tf.zeros((0, initial_data.observations.shape[1]), tf.float64),
)
while len(all_new_data) < num_workers:
# this line blocks the process until new data is available in the queue
new_data = oq.get()
print(f"Process {pid}: Main : received data {new_data}", flush=True)
new_data = Dataset(
query_points=tf.constant(new_data[0], dtype=tf.float64),
observations=tf.constant(new_data[1], dtype=tf.float64),
)
all_new_data = all_new_data + new_data
# tell Trieste of new batch of observations
sync_bo.tell(all_new_data)
| tensorflow.constant | 7,505 |
import tensorflow as tf
for ind in range(pred_heatmap.shape[0]):
img = pred_heatmap[ind]
img = img - img.min()
img *= 255.0/img.max()
file_name = 'heatmap_{}_{}.jpg'.format(save_image_with_heatmap.counter, ind)
imsave(os.path.join(config.DEBUG_DIR, file_name), img.astype(np.uint8))
return save_image_with_heatmap.counter
def get_keypoint(image, targets, predictions, heatmap_size, height, width, category, clip_at_zero=True, data_format='channels_last', name=None):
predictions = tf.reshape(predictions, [1, -1, heatmap_size*heatmap_size])
pred_max = tf.reduce_max(predictions, axis=-1)
pred_indices = tf.argmax(predictions, axis=-1)
pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32)
width, height = tf.cast(width, tf.float32), tf.cast(height, tf.float32)
pred_x, pred_y = pred_x * width / tf.cast(heatmap_size, tf.float32), pred_y * height / tf.cast(heatmap_size, tf.float32)
if clip_at_zero:
pred_x, pred_y = pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32)
pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.)
pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.)
if config.PRED_DEBUG:
pred_indices_ = tf.squeeze(pred_indices)
image_ = tf.squeeze(image) * 255.
pred_heatmap = tf.one_hot(pred_indices_, heatmap_size*heatmap_size, on_value=1., off_value=0., axis=-1, dtype=tf.float32)
pred_heatmap = tf.reshape(pred_heatmap, [-1, heatmap_size, heatmap_size])
if data_format == 'channels_first':
| tensorflow.cast | 7,506 |
from tensorflow.python.framework import ops
ops.RegisterShape("Conj")(common_shapes.unchanged_shape)
ops.RegisterShape("Cos")(common_shapes.unchanged_shape)
ops.RegisterShape("Exp")(common_shapes.unchanged_shape)
ops.RegisterShape("Floor")(common_shapes.unchanged_shape)
ops.RegisterShape("Imag")(common_shapes.unchanged_shape)
ops.RegisterShape("Inv")(common_shapes.unchanged_shape)
ops.RegisterShape("IsFinite")(common_shapes.unchanged_shape)
ops.RegisterShape("IsInf")(common_shapes.unchanged_shape)
ops.RegisterShape("IsNan")(common_shapes.unchanged_shape)
ops.RegisterShape("Log")(common_shapes.unchanged_shape)
ops.RegisterShape("LogicalNot")(common_shapes.unchanged_shape)
ops.RegisterShape("Neg")(common_shapes.unchanged_shape)
ops.RegisterShape("Real")(common_shapes.unchanged_shape)
ops.RegisterShape("Rsqrt")(common_shapes.unchanged_shape)
ops.RegisterShape("Sign")(common_shapes.unchanged_shape)
ops.RegisterShape("Sin")(common_shapes.unchanged_shape)
ops.RegisterShape("Sqrt")(common_shapes.unchanged_shape)
ops.RegisterShape("Square")(common_shapes.unchanged_shape)
ops.RegisterShape("Sigmoid")(common_shapes.unchanged_shape)
ops.RegisterShape("Tanh")(common_shapes.unchanged_shape)
ops.RegisterShape("Cast")(common_shapes.unchanged_shape)
ops.RegisterShape("ComplexAbs")(common_shapes.unchanged_shape)
@ops.RegisterShape("Add")
@ops.RegisterShape("Complex")
@ops.RegisterShape("Div")
@ops.RegisterShape("Equal")
@ops.RegisterShape("Greater")
@ops.RegisterShape("GreaterEqual")
| tensorflow.python.framework.ops.RegisterShape | 7,507 |
import tensorflow as tf
final_filters = common_layers.shape_list(layer)[-1]
filters = hparams.hidden_size
kernel = (4, 4)
if hparams.mode == tf.estimator.ModeKeys.PREDICT:
layer_shape = common_layers.shape_list(layer)
if hparams.full_latent_tower:
rand = tf.random_uniform(layer_shape[:-1] + [hparams.bottleneck_bits])
else:
rand = tf.random_uniform(layer_shape[:-3] + [
1, 1, hparams.bottleneck_bits])
d = 2.0 * tf.to_float(tf.less(0.5, rand)) - 1.0
z = tf.layers.dense(d, final_filters, name="unbottleneck")
return layer + z, 0.0
# Embed.
x = tf.layers.dense(
features["cur_target_frame"], filters, name="latent_embed",
| tensorflow.random_uniform | 7,508 |
import tensorflow as tf
data = tf.constant(data_raw, name='event_data', dtype=tf.float64)
# // --- Perform extended ML fit of composite PDF to toy data ---
# sum.fitTo(*data,"Extended") ;
# convert to tf constants, otherwise you'll get complaints about float32s...
constraint_tf = {}
for key in constraint.keys():
low = constraint[key][0]
high = constraint[key][1]
constraint_tf[key] = (tf.constant(low, dtype=tf.float64),
tf.constant(high, dtype=tf.float64))
print("N.B.: using direct data entry")
likelihood = sum_pdf(data, nsig, sigmean, sigwidth, nbkg, m0, argpar, constraint_tf['mes'][0], constraint_tf['mes'][1])
nll = tf.neg(tf.reduce_sum(tf.log(likelihood)), name="nll")
variables = tf.all_variables()
grads = tf.gradients(nll, variables)
| tensorflow.constant | 7,509 |
import tensorflow as tf
# update start idx
start += self.args.batch_size
yield x_batch, y_batch
if start >= self.train_data_len:
return
def train_tfdata_generator(self):
with tf.device('/cpu:0'):
while True:
x_batch, y_batch = self.data_session.run(self.train_next_batch)
yield x_batch, y_batch[:, :, :, 0]
def train_h5_generator(self):
start = 0
idx = np.random.choice(self.train_data_len, self.train_data_len,
replace=False)
| tensorflow.device | 7,510 |
import tensorflow as tf
embedding.tensor_name = self.embedding_test.name
embedding.sprite.image_path = './sprite.png'
embedding.sprite.single_image_dim.extend([80, 80])
embedding.metadata_path = './metadata.tsv'
projector.visualize_embeddings(self.summary_writer, config)
sess.run(tf.variables_initializer([self.embedding_test], name='init_embeddings'))
# build sprite image
ut.images_to_sprite(self.test_set, path=os.path.join(FLAGS.logdir, 'sprite.png'))
ut.generate_tsv(len(self.test_set), tsv_path)
| tensorflow.variables_initializer | 7,511 |
import tensorflow as tf
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
| tensorflow.ones_like | 7,512 |
import tensorflow as tf
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
| tensorflow.control_dependencies | 7,513 |
import tensorflow as tf
probability of each label learned by the loss, if not provided.
true_positives_lower_bound: Lower bound on the number of true positives
given `labels` and `logits`. This is the same lower bound which is used
in the loss expression to be optimized.
false_positives_upper_bound: Upper bound on the number of false positives
given `labels` and `logits`. This is the same upper bound which is used
in the loss expression to be optimized.
Raises:
ValueError: If `surrogate_type` is not `xent` or `hinge`.
"""
with tf.variable_scope(scope, 'precision_recall_auc', [labels, logits, label_priors], reuse=reuse):
labels, logits, weights, original_shape = _prepare_labels_logits_weights(labels, logits, weights)
num_labels = losses_utils.get_num_labels(logits)
# Convert other inputs to tensors and standardize dtypes.
dual_rate_factor = losses_utils.convert_and_cast(dual_rate_factor, 'dual_rate_factor',
logits.dtype)
# Create Tensor of anchor points and distance between anchors.
precision_values, delta = _range_to_anchors_and_delta(precision_range, num_anchors, logits.dtype)
| tensorflow.variable_scope | 7,514 |
import tensorflow as tf
def create_optimizer(learning_rate, params):
"""Creates optimized based on the specified flags."""
if params['optimizer'] == 'momentum':
optimizer = tf.train.MomentumOptimizer(
learning_rate, momentum=params['momentum'])
elif params['optimizer'] == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
elif params['optimizer'] == 'adadelta':
optimizer = tf.train.AdadeltaOptimizer(learning_rate)
elif params['optimizer'] == 'adagrad':
optimizer = tf.train.AdagradOptimizer(learning_rate)
elif params['optimizer'] == 'rmsprop':
optimizer = tf.train.RMSPropOptimizer(
learning_rate, momentum=params['momentum'])
elif params['optimizer'] == 'lars':
optimizer = tf.contrib.opt.LARSOptimizer(
| tensorflow.train.AdadeltaOptimizer | 7,515 |
import tensorflow as tf
# fc1
with tf.variable_scope('fc1'):
w = tf.get_variable('w', [self.flatten.get_shape()[1], 2048], initializer=he_normal,
regularizer=regularizer)
b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0))
out = tf.matmul(self.flatten, w) + b
self.fc1 = tf.nn.relu(out)
# fc2
with tf.variable_scope('fc2'):
w = tf.get_variable('w', [self.fc1.get_shape()[1], 2048], initializer=he_normal,
regularizer=regularizer)
b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0))
out = tf.matmul(self.fc1, w) + b
self.fc2 = tf.nn.relu(out)
# fc3
with tf.variable_scope('fc3'):
w = tf.get_variable('w', [self.fc2.get_shape()[1], num_classes], initializer=initializer,
regularizer=regularizer)
b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(1.0))
self.fc3 = tf.matmul(self.fc2, w) + b
# Calculate Mean cross-entropy loss
with tf.name_scope("loss"):
self.predictions = tf.argmax(self.fc3, 1, name="predictions")
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.fc3, labels=self.input_y)
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
self.loss = tf.reduce_mean(losses) + sum(regularization_losses)
| tensorflow.nn.relu | 7,516 |
import tensorflow as tf
self.writer = tf.summary.FileWriter(summary_dir)
tf.summary.scalar('Loss/Policy', loss_pg)
tf.summary.scalar('Loss/Value', loss_vf)
tf.summary.scalar('Loss/Entropy', - 0.01 * tf.reduce_mean(pi.entropy()))
tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode()))
tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev()))
tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf))
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
| tensorflow.contrib.layers.l2_regularizer | 7,517 |
import tensorflow as tf
def concat_preprocess(dataset, training, pad_symbol=0):
"""Pre-processing function that concatenates input and target for LM."""
del training
def concat(features, targets):
inp = features['inputs']
pad = tf.expand_dims(tf.zeros_like(inp[0]) + pad_symbol, axis=0)
concat = tf.concat([pad, inp, pad, targets], axis=0)
# Note: we're updating existing features dictionary here, so make sure
# it is not re-used in some other ways outside of this function.
features['inputs'] = concat
return features, concat
| tensorflow.zeros_like | 7,518 |
import tensorflow as tf
used_mean, used_var = tf.nn.moments(input_, axes, name="batch_norm")
cur_mean, cur_var = used_mean, used_var
if bn_lag > 0.:
used_var = stable_var(input_=input_, mean=used_mean, axes=axes)
cur_var = used_var
used_mean -= (1 - bn_lag) * (used_mean - tf.stop_gradient(mean))
used_mean /= (1. - bn_lag**(step + 1))
used_var -= (1 - bn_lag) * (used_var - tf.stop_gradient(var))
used_var /= (1. - bn_lag**(step + 1))
else:
| tensorflow.stop_gradient | 7,519 |
import tensorflow as tf
# beta = self.printn('beta shape: ', beta)
# ha(s): eta * (\varphi(s)^T * K^T * \Sigma^{-1} + W_{sa}) + wa(s))
ha = tf.matmul(varphis, param_eta * tf.matmul(Kt, prec) + Wsa) + wa
# hss(s): eta * (\varphi(s)^T * K^T * \Sigma^{-1} * K * \varphi(s))
varphisKt = tf.matmul(varphis, Kt)
hss = param_eta * tf.reduce_sum(tf.matmul(varphisKt, prec) * varphisKt, axis=1)
Haa = param_eta * prec + Waa
# Haa = 0.5 * (Haa + TT.transpose(Haa))
HaaInv = tf.matrix_inverse(Haa)
# The two terms 'term1' and 'term2' which come from normalizers of the
# 1. Original policy distribution
# 2. The distribution after completing the square
sigma = tf.matrix_inverse(prec)
term1 = -0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * sigma))
if self.beta == 0:
term2 = 0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * param_eta * HaaInv))
else:
term2 = 0.5 * (param_eta + param_omega) * tf.log(tf.matrix_determinant(2 * np.pi * (param_eta + param_omega) * HaaInv))
| tensorflow.matrix_inverse | 7,520 |
import tensorflow as tf
perturbs = [tf.stop_gradient(d) for d in perturbs]
perturbs = [_scale_l2(_mask_by_length(d, length), perturb_norm_length) for d in perturbs]
vadv_logits = logits_from_embedding_fn([emb + d for (emb, d) in zip(embedded, perturbs)])
return _kl_divergence_with_logits(logits, vadv_logits, weights, num_classes)
def _mask_by_length(t, length):
maxlen = t.get_shape().as_list()[1]
mask = tf.sequence_mask(length, maxlen=maxlen)
mask = tf.expand_dims(tf.cast(mask, tf.float32), -1)
return t * mask
def _scale_l2(x, norm_length):
alpha = tf.reduce_max(tf.abs(x), (1, 2), keep_dims=True) + 1e-12
l2_norm = alpha * tf.sqrt(tf.reduce_sum(tf.pow(x / alpha, 2), (1, 2), keep_dims=True) + 1e-6)
x_unit = x / l2_norm
return norm_length * x_unit
def _end_of_seq_mask(tokens, vocab_size):
"""Generate a mask for the EOS token (1.0 on EOS, 0.0 otherwise).
Args:
tokens: 1-D integer `Tensor` [num_timesteps*batch_size]. Each element is an
id from the vocab.
vocab_size: a `int`, vocabular size of the problem
Returns:
| tensorflow.abs | 7,521 |
import tensorflow as tf
for layer in range(self.config["contextualization_layers"]):
with tf.variable_scope("layer_{}".format(layer)):
with tf.variable_scope("fw_cell"):
cell_fw = util.CustomLSTMCell(self.config["contextualization_size"], num_sentences, self.lstm_dropout)
with tf.variable_scope("bw_cell"):
cell_bw = util.CustomLSTMCell(self.config["contextualization_size"], num_sentences, self.lstm_dropout)
state_fw = tf.contrib.rnn.LSTMStateTuple(tf.tile(cell_fw.initial_state.c, [num_sentences, 1]), tf.tile(cell_fw.initial_state.h, [num_sentences, 1]))
state_bw = tf.contrib.rnn.LSTMStateTuple(tf.tile(cell_bw.initial_state.c, [num_sentences, 1]), tf.tile(cell_bw.initial_state.h, [num_sentences, 1]))
(fw_outputs, bw_outputs), _ = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=current_inputs,
sequence_length=text_len,
initial_state_fw=state_fw,
initial_state_bw=state_bw)
text_outputs = tf.concat([fw_outputs, bw_outputs], 2) # [num_sentences, max_sentence_length, emb]
| tensorflow.nn.bidirectional_dynamic_rnn | 7,522 |
import tensorflow as tf
height_2 = tf.reshape(box2[3 + 2], [1])
width_2 = tf.reshape(box2[3 + 1], [1])
| tensorflow.reshape | 7,523 |
import tensorflow as tf
d.token_type_ids: tf.io.VarLenFeature(tf.int64),
d.attention_mask: tf.io.VarLenFeature(tf.int64),
d.labels: tf.io.VarLenFeature(tf.int64),
}
| tensorflow.io.VarLenFeature | 7,524 |
import tensorflow as tf
An operation that will update var_matrix when run in a Session
'''
selected_rows = tf.nn.embedding_lookup(var_matrix, indices)
row_norms = tf.sqrt(tf.reduce_sum(tf.square(selected_rows), 1))
scaling = maxnorm / tf.maximum(row_norms, maxnorm)
scaled = selected_rows * tf.expand_dims(scaling, 1)
return tf.scatter_update(var_matrix, indices, scaled)
def dense_maxnorm_update(var_matrix, maxnorm=1.0):
'''Dense update operation that ensures all rows in var_matrix
do not have a Euclidean norm greater than maxnorm. Rows that exceed
| tensorflow.scatter_update | 7,525 |
import tensorflow as tf
from atari_wrappers import *
def atari_model(img_in, num_actions, scope, reuse=False):
# as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
| tensorflow.variable_scope | 7,526 |
import tensorflow as tf
Returns:
A tensor with the cross entropy loss.
"""
logits.get_shape().assert_is_compatible_with(labels.get_shape())
with tf.name_scope(name):
num_classes = labels.get_shape()[-1].value
labels = tf.cast(labels, logits.dtype)
if label_smoothing > 0:
| tensorflow.name_scope | 7,527 |
import tensorflow as tf
# but only num_anchors terms are included in the Riemann sum, the
# effective length of the integration interval is `delta` less than the
# length of precision_range.
scaled_loss = tf.div(
per_label_loss, precision_range[1] - precision_range[0] - delta, name='AUC_Normalize')
scaled_loss = tf.reshape(scaled_loss, original_shape)
other_outputs = {
'lambdas':
lambdas_variable,
| tensorflow.reshape | 7,528 |
import tensorflow as tf
weights = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos, axis=1)), depth=attn_length))
weighted_average = []
for offset in range(-encoder.attn_window_size, encoder.attn_window_size + 1):
pos_ = pos + offset
pos_ = tf.minimum(pos_, encoder_input_length - 1)
pos_ = tf.maximum(pos_, 0) # TODO: when pos is < 0, use <S> or </S>
weights_ = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos_, axis=1)), depth=attn_length))
weighted_average_ = tf.reduce_sum(tf.expand_dims(weights_, axis=2) * hidden_states, axis=1)
weighted_average.append(weighted_average_)
| tensorflow.minimum | 7,529 |
import tensorflow as tf
dnn_output_size = rnn_output_size
if do_dnn:
last_layer = rnn_output
last_layer_size = rnn_output_size
for i, layer_size in enumerate(dnn_sizes):
layer_name = 'dnn_{}'.format(i)
with tf.variable_scope(layer_name):
dnn_w = tf.get_variable('W', shape=[last_layer_size, layer_size], initializer=dnn_init, dtype=dtype)
dnn_b = tf.get_variable('b', shape=[layer_size], initializer=tf.constant_initializer(0.0), dtype=dtype)
projected = tf.nn.bias_add(tf.matmul(last_layer, dnn_w), dnn_b)
# TODO: argument nonlinearity, change bias to 0.1 if relu
if dnn_nonlin == 'tanh':
last_layer = tf.nn.tanh(projected)
elif dnn_nonlin == 'sigmoid':
last_layer = tf.nn.sigmoid(projected)
elif dnn_nonlin == 'relu':
last_layer = tf.nn.relu(projected)
else:
raise NotImplementedError()
if mode == 'train' and dnn_keep_prob < 1.0:
last_layer = tf.nn.dropout(last_layer, dnn_keep_prob)
last_layer_size = layer_size
print('{}: {}'.format(layer_name, last_layer.get_shape()))
| tensorflow.nn.tanh | 7,530 |
from tensorflow.python.framework import tensor_util
check_ops.assert_non_negative(x)], x)
return x
def _introspect_ndims(self, ndims):
"""Helper to establish some properties of input ndims args."""
if self._is_all_constant_helper(ndims):
return (tensor_util.constant_value(ndims),
tensor_util.constant_value(ndims) == 0)
return None, math_ops.equal(ndims, 0)
| tensorflow.python.framework.tensor_util.constant_value | 7,531 |
import tensorflow as tf
tf.logging.info("*** Input Files ***")
| tensorflow.logging.info | 7,532 |
import tensorflow as tf
class SchemaInferenceTest(test_case.TransformTestCase):
# pylint: disable=g-long-lambda
@test_case.named_parameters(
dict(
testcase_name='fixed_len_int',
make_tensors_fn=lambda:
{'x': tf.compat.v1.placeholder(tf.int64, (None,))},
feature_spec={'x': tf.io.FixedLenFeature([], tf.int64)}),
dict(
testcase_name='fixed_len_string',
make_tensors_fn=lambda:
{'x': tf.compat.v1.placeholder(tf.string, (None,))},
feature_spec={'x': tf.io.FixedLenFeature([], tf.string)}),
| tensorflow.compat.v1.placeholder | 7,533 |
import tensorflow as tf
operation = tf.assign(perturbed_var, var)
perturb_ops.append(operation)
assert len(perturb_ops) == len(all_vars)
return tf.group(*perturb_ops)
# Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
# of the network and measures the effect of that perturbation in action space. If the perturbation
# is too big, reduce scale of perturbation, otherwise increase.
with tf.variable_scope("adaptive_model", reuse=False):
adaptive_policy = q_func(sess, ob_space, ac_space, 1, 1, None, obs_phs=obs_phs)
perturb_for_adaption = perturb_vars(original_scope="model", perturbed_scope="adaptive_model/model")
kl_loss = tf.reduce_sum(
tf.nn.softmax(policy.q_values) *
(tf.log(tf.nn.softmax(policy.q_values)) - tf.log(tf.nn.softmax(adaptive_policy.q_values))),
axis=-1)
mean_kl = tf.reduce_mean(kl_loss)
def update_scale():
"""
update the scale expression
:return: (TensorFlow Tensor) the updated scale expression
"""
with tf.control_dependencies([perturb_for_adaption]):
update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
lambda: param_noise_scale.assign(param_noise_scale * 1.01),
lambda: param_noise_scale.assign(param_noise_scale / 1.01),
)
return update_scale_expr
| tensorflow.reduce_mean | 7,534 |
import tensorflow as tf
tf.logging.info(message.format(config.logdir))
tf.gfile.MakeDirs(config.logdir)
config_path = os.path.join(config.logdir, 'config.yaml')
with tf.gfile.GFile(config_path, 'w') as file_:
yaml.dump(
config, file_, yaml.Dumper,
allow_unicode=True,
default_flow_style=False)
else:
message = (
'Start a new run without storing summaries and checkpoints since no '
'logging directory was specified.')
tf.logging.info(message)
return config
def load_config(logdir):
"""Load a configuration from the log directory.
Args:
logdir: The logging directory containing the configuration file.
Raises:
IOError: The logging directory does not contain a configuration file.
| tensorflow.logging.info | 7,535 |
import tensorflow as tf
iterator = dataset.make_initializable_iterator()
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
| tensorflow.add_to_collection | 7,536 |
from tensorflow.python.ops import variable_scope
sampled_words = []
self.encoder_features = encoder_features
with variable_scope.variable_scope("attention_decoder"):
# Get the weight vectors v and W_c (W_c is for coverage)
v = variable_scope.get_variable("v", [options.attention_vec_size])
v = tf.expand_dims(tf.expand_dims(v, axis=0), axis=0)
w_c = None
if options.use_coverage:
with variable_scope.variable_scope("coverage"):
w_c = variable_scope.get_variable("w_c", [options.attention_vec_size])
w_c = tf.expand_dims(tf.expand_dims(w_c, axis=0), axis=0)
# For each step, dec_input => lstm_output => vocab_score
wordidx_t = decoder_inputs[0] # [batch_size] int32
for i in range(options.max_answer_len):
if mode_gen in ('ce_train', 'loss',): wordidx_t = decoder_inputs[i] # the wordidx_t must from decoder_inputs for phrase model
| tensorflow.python.ops.variable_scope.variable_scope | 7,537 |
import tensorflow as tf
dep_selection, dep_org_idx, sl_dep, rep_dep_mask,
rep_map, rep_dep_tensor, keep_prob, is_train, direction, ivec
):
# data for self-attention
rep_map_dp = dropout(rep_map, keep_prob, is_train)
rep_dep_tensor_dp, _, _ = reduce_data_rep_max_len(rep_map_dp, dep_selection)
rep_head_tensor_dp, _, _ = reduce_data_rep_max_len(rep_map_dp, head_selection)
# mask generation
dep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_head, 1])
head_idxs = tf.tile(tf.expand_dims(head_org_idx, 2), [1, 1, sl_dep])
if direction is None:
direct_mask = tf.not_equal(head_idxs, dep_idxs) # [bs, slh, sld]
else:
if direction == 'forward':
direct_mask = tf.greater(head_idxs, dep_idxs) # [bs, slh, sld]
else:
| tensorflow.expand_dims | 7,538 |
import tensorflow as tf
answer_batch_unstack = tf.unstack(answer_batch, axis=1)
# initialize all the variables
state_t_1 = init_state
context_t_1 = tf.zeros([batch_size, encoder_dim])
coverage_t_1 = None
# store variables from each time-step
| tensorflow.zeros | 7,539 |
from tensorflow.python.framework import ops
grouped_args = collections.OrderedDict()
resource_handles = []
# Check that the set of arguments is the same across all the scheduled ops.
for op in batch:
if set(op.args.keys()) != arg_keys:
raise ValueError("Mismatching arguments: %s, %s.", op.args, arg_keys)
for key in arg_keys:
grouped_args.setdefault(key, []).append(op.args[key])
resource_handles.append(op.resource_handle)
# Move all the inputs to the op device in one RPC.
grouped_args = collections.OrderedDict(
(k, _move_tensors(v, resource_handles[0].device))
for k, v in sorted(grouped_args.items()))
with ops.device(resource_handles[0].device):
return batch[0].op(resource_handles, stamp, **grouped_args)
def run_handler_scheduled_ops(per_handler_ops, stamp, worker_device):
"""Given a dictionary of ops for each handler, runs them in batch."""
batched_ops = collections.OrderedDict()
# Group the ops by their batching_key. Ops that share the same batching key
# can be executed together.
for handler in per_handler_ops.keys():
for op in per_handler_ops[handler]:
key = (op.batching_key(), op.batch_runner_fn())
batched_ops.setdefault(key, []).append(op)
| tensorflow.python.framework.ops.device | 7,540 |
import tensorflow as tf
def cw(X, y=None):
D = tf.cast(tf.shape(X)[1], tf.float32)
N = tf.cast(tf.shape(X)[0], tf.float32)
if y is None:
y = silverman_rule_of_thumb(N)
K = 1/(2*D-3)
A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)
A = (1/(N**2)) * tf.reduce_sum((1/tf.sqrt(y + K*A1)))
B1 = euclidean_norm_squared(X, axis=1)
B = (2/N)*tf.reduce_sum((1/tf.sqrt(y + 0.5 + K*B1)))
return (1/tf.sqrt(1+y)) + A - B
def cw_choose(z_dim: int):
if z_dim == 1:
return cw_1d
elif z_dim == 2:
return cw_2d
elif z_dim >= 20:
return cw
else:
raise ValueError('Not defined for this latent dimension')
| tensorflow.sqrt | 7,541 |
import tensorflow as tf
negative = tmp * tf.sin(order_float * phi)
return tf.where(tf.greater(sign_order, 0), positive, negative)
def evaluate_spherical_harmonics(
degree_l: TensorLike,
order_m: TensorLike,
theta: TensorLike,
phi: TensorLike,
name: str = "spherical_harmonics_evaluate_spherical_harmonics") -> TensorLike: # pylint: disable=line-too-long
with tf.name_scope(name):
degree_l = tf.convert_to_tensor(value=degree_l)
order_m = tf.convert_to_tensor(value=order_m)
theta = tf.convert_to_tensor(value=theta)
phi = tf.convert_to_tensor(value=phi)
var_type = theta.dtype
sign_m = tf.math.sign(order_m)
order_m = tf.abs(order_m)
zeros = tf.zeros_like(order_m)
result_m_zero = _spherical_harmonics_normalization(
degree_l, zeros, var_type) * evaluate_legendre_polynomial(
degree_l, zeros, tf.cos(theta))
result_branch = _evaluate_spherical_harmonics_branch(
degree_l, order_m, theta, phi, sign_m, var_type)
return tf.where(tf.equal(order_m, zeros), result_m_zero, result_branch)
| tensorflow.convert_to_tensor | 7,542 |
from tensorflow.python.ops import math_ops
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
variance = sq_mean - math_ops.square(mean)
std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
max_norms = math_ops.exp(mean + std_factor * std)
return max_norms, mean
def adaptive_clipping_fn(std_factor=2.,
decay=0.95,
static_max_norm=None,
global_step=None,
report_summary=False,
| tensorflow.python.ops.math_ops.exp | 7,543 |
import tensorflow as tf
scope = tf.get_variable_scope()
with tf.variable_scope(scope):
if self._max_diffusion_step == 0:
pass
else:
for support in self._supports:
x1 = tf.sparse_tensor_dense_matmul(support, x0)
x = self._concat(x, x1)
for _ in range(2, self._max_diffusion_step + 1):
x2 = 2 * tf.sparse_tensor_dense_matmul(support, x1) - x0
x = self._concat(x, x2)
x1, x0 = x2, x1
num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself.
x = tf.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size])
x = tf.transpose(x, perm=[3, 1, 2, 0]) # (batch_size, num_nodes, input_size, order)
x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
weights = tf.get_variable(
'weights', [input_size * num_matrices, output_size],
| tensorflow.sparse_tensor_dense_matmul | 7,544 |
import tensorflow as tf
filter_size[1] - input_.get_shape().as_list()[2],
input_.get_shape().as_list()[3]
])
res = tf.concat(axis=1, values=[pad_1, res])
res = tf.concat(axis=2, values=[pad_2, res])
res = tf.nn.conv2d(
| tensorflow.concat | 7,545 |
import tensorflow as tf
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
train_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=True)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
if FLAGS.do_eval:
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False)
| tensorflow.logging.info | 7,546 |
import tensorflow as tf
# split into train and test
train_x, test_x, train_y, test_y = train_test_split(data_x, data_y, test_size=0.3, random_state=42)
# define other non user input params
# initialize l2_loss as zero
l2_loss = tf.constant(0.0)
# define sequence length
sequence_length = data_x.shape[1]
# define num_features
num_feature = data_x.shape[2]
# store the weights
| tensorflow.constant | 7,547 |
import tensorflow as tf
else:
key_name = "eval_accuracy"
global_step, best_perf_global_step, best_perf = _best_trial_info()
writer = tf.gfile.GFile(output_eval_file, "w")
while global_step < FLAGS.train_step:
steps_and_files = {}
filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
| tensorflow.gfile.GFile | 7,548 |
import tensorflow as tf
import gpflow
from gpflow.ci_utils import ci_niter
from gpflow import set_trainable
from multiclass_classification import plot_from_samples, colors
gpflow.config.set_default_float(np.float64)
gpflow.config.set_default_jitter(1e-4)
gpflow.config.set_default_summary_fmt("notebook")
# convert to float64 for tfp to play nicely with gpflow in 64
f64 = gpflow.utilities.to_default_float
tf.random.set_seed(123)
# %matplotlib inline
# %% [markdown]
#
# In this notebook, we provide three examples:
#
# * [Example 1](#Example-1:-GP-regression): Sampling hyperparameters in Gaussian process regression
# * [Example 2](#Example-2:-Sparse-MC-for-multiclass-classification): Sparse Variational MC applied to the multiclass classification problem
# * [Example 3](#Example-3:-Fully-Bayesian-inference-for-generalized-GP-models-with-HMC): Full Bayesian inference for Gaussian process models
| tensorflow.random.set_seed | 7,549 |
import tensorflow as tf
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual(1, len(res))
self.assertEqual((2, 2), res[0].shape)
def testEmbeddingRNNDecoder(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
_, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
dec, mem = tf.nn.seq2seq.embedding_rnn_decoder(
dec_inp, enc_state, cell, num_symbols=4, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
| tensorflow.constant | 7,550 |
import tensorflow as tf
nodes_list = [nodes]
adj_list = []
for hop_edge_types in edge_types:
neighbor, weight, _ = get_full_neighbor(nodes, hop_edge_types)
next_nodes, next_idx = tf.unique(neighbor.values, out_idx=tf.int64)
next_indices = tf.stack([neighbor.indices[:, 0], next_idx], 1)
next_values = weight.values
next_shape = tf.stack([tf.size(nodes), tf.size(next_nodes)])
next_shape = tf.cast(next_shape, tf.int64)
next_adj = tf.SparseTensor(next_indices, next_values, next_shape)
next_adj = tf.sparse_reorder(next_adj)
nodes_list.append(next_nodes)
adj_list.append(next_adj)
nodes = next_nodes
return nodes_list, adj_list
| tensorflow.cast | 7,551 |
import tensorflow as tf
outputs_dict1, _ = tf.nn.seq2seq.one2many_rnn_seq2seq(
enc_inp, dec_inp_dict, cell, 2, dec_symbols_dict,
embedding_size=2, feed_previous=True)
outputs_dict2, _ = tf.nn.seq2seq.one2many_rnn_seq2seq(
enc_inp, dec_inp_dict2, cell, 2, dec_symbols_dict,
embedding_size=2, feed_previous=True)
res1 = sess.run(outputs_dict1["0"])
res2 = sess.run(outputs_dict2["0"])
res3 = sess.run(outputs_dict3["0"])
self.assertAllClose(res1, res2)
self.assertAllClose(res1, res3)
def testSequenceLoss(self):
with self.test_session() as sess:
logits = [tf.constant(i + 0.5, shape=[2, 5]) for i in range(3)]
targets = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
weights = [tf.constant(1.0, shape=[2]) for i in range(3)]
average_loss_per_example = tf.nn.seq2seq.sequence_loss(
logits, targets, weights,
average_across_timesteps=True,
average_across_batch=True)
res = sess.run(average_loss_per_example)
self.assertAllClose(1.60944, res)
average_loss_per_sequence = tf.nn.seq2seq.sequence_loss(
logits, targets, weights,
average_across_timesteps=False,
| tensorflow.constant | 7,552 |
import tensorflow as tf
def test_train_with_defun(self):
train(defun=True)
def test_evaluate_with_defun(self):
evaluate(defun=True)
if __name__ == "__main__":
tf.test.main()
| tensorflow.test.main | 7,553 |
import tensorflow as tf
for state in states:
dJr = tf.matmul(tf.nn.relu(state),
| tensorflow.nn.relu | 7,554 |
import tensorflow as tf
print(sess.run(D))
print('\nA+B=')
print(sess.run(A + B))
print('\nB-B=')
print(sess.run(B - B))
print('\nB*I=')
BI = tf.matmul(B, identity_matrix)
print(sess.run(BI))
print('\ntranspose(C)=')
print(sess.run(tf.transpose(C)))
print('\ntranspose(D)=')
print(sess.run(tf.transpose(D)))
print('\ninverse(D)=')
print(sess.run(tf.matrix_inverse(D)))
print('\ndeterminant(D)={:.1f}'.format(sess.run(tf.matrix_determinant(D))))
print('\ncholesky(D):')
print(sess.run(tf.cholesky(identity_matrix)))
| tensorflow.transpose | 7,555 |
import tensorflow as tf
f = open(self.log_file, 'w')
f.close()
def weight_variable(shape):
return tf.get_variable('W', shape, initializer=tf.random_normal_initializer(0., 0.02))
def bias_variable(shape):
return tf.get_variable('b', shape, initializer=tf.constant_initializer(0.))
def keep_prob(dropout, train):
return tf.cond(train, lambda: tf.constant(dropout), lambda: tf.constant(1.))
def softmax_ce_with_logits(logits, labels):
return tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)
def sigmoid_ce_with_logits(logits, labels):
return tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits)
def sigmoid_kl_with_logits(logits, targets):
assert isinstance(targets, float)
| tensorflow.constant | 7,556 |
import tensorflow as tf
def _fill_problem_hparams_features(self, features):
if features is not None:
for k, v in six.iteritems(
problem_hparams_to_features(self._problem_hparams)):
if k not in features:
features[k] = tf.constant(v, name=k)
def infer(self,
features=None,
decode_length=50,
| tensorflow.constant | 7,557 |
import tensorflow as tf
self.assertEqual(set(tf.matching_files(pattern % 'z').eval()),
self._subset(files, [1]))
self.assertEqual(set(tf.matching_files(pattern % '?').eval()),
self._subset(files, [0, 1, 3, 4]))
self.assertEqual(set(tf.matching_files(pattern % '*').eval()),
| tensorflow.matching_files | 7,558 |
import tensorflow as tf
#
# cumsum(decay_prods * sequence) / decay_prods
# where decay_prods = reverse_cumprod(decay)
#
# One reason this hasn't been done is that multiplying then dividing again by
# products of decays isn't ideal numerically, in particular if any of the
# decays are zero it results in NaNs.
with tf.name_scope(name, values=[sequence, decay, initial_value]):
if sequence_lengths is not None:
# Zero out sequence and decay beyond sequence_lengths.
with tf.control_dependencies(
[tf.assert_equal(sequence.shape[0], decay.shape[0])]):
mask = tf.sequence_mask(sequence_lengths, maxlen=sequence.shape[0],
dtype=sequence.dtype)
mask = tf.transpose(mask)
# Adding trailing dimensions to mask to allow for broadcasting.
to_seq = mask.shape.dims + [1] * (sequence.shape.ndims - mask.shape.ndims)
sequence *= tf.reshape(mask, to_seq)
to_decay = mask.shape.dims + [1] * (decay.shape.ndims - mask.shape.ndims)
decay *= tf.reshape(mask, to_decay)
sequences = [sequence, decay]
if reverse:
sequences = [_reverse_seq(s, sequence_lengths) for s in sequences]
summed = tf.scan(lambda a, x: x[0] + x[1] * a,
sequences,
| tensorflow.transpose | 7,559 |
import tensorflow as tf
trainable=False)
self._moving_variance = tf.subtract(self._moving_second_moment,
tf.square(self._moving_mean),
name="moving_variance")
def build_batch_stats():
"""Builds the batch statistics calculation ops."""
# Copy for better stability.
# We use the moving mean as an estimate of the mean in order to perform
# a more numerically stable calculation of the batch mean.
shift = tf.add(self._moving_mean, 0)
counts, shifted_sum_x, shifted_sum_x2, _ = tf.nn.sufficient_statistics(
input_batch,
reduction_indices,
keep_dims=True,
shift=shift,
name="batch_norm_ss")
mean, variance = tf.nn.normalize_moments(counts,
shifted_sum_x,
shifted_sum_x2,
shift,
name="normalize_moments")
second_moment = variance + tf.square(mean)
| tensorflow.nn.sufficient_statistics | 7,560 |
import tensorflow as tf
else:
initial_state = dense(initial_state, cell_state_size, use_bias=True, name='initial_state_projection',
activation=activation_fn)
if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state:
initial_output = initial_state
else:
# Last layer's state is the right-most part. Output is the left-most part of an LSTM's state.
initial_output = initial_state[:, -cell_output_size:]
time = tf.constant(0, dtype=tf.int32, name='time')
outputs = tf.TensorArray(dtype=tf.float32, size=time_steps)
samples = tf.TensorArray(dtype=tf.int64, size=time_steps)
inputs = tf.TensorArray(dtype=tf.int64, size=time_steps).unstack(tf.to_int64(tf.transpose(decoder_inputs)))
states = tf.TensorArray(dtype=tf.float32, size=time_steps)
weights = tf.TensorArray(dtype=tf.float32, size=time_steps)
attns = tf.TensorArray(dtype=tf.float32, size=time_steps)
initial_symbol = inputs.read(0) # first symbol is BOS
initial_input = embed(initial_symbol)
initial_pos = tf.zeros([batch_size], tf.float32)
initial_weights = tf.zeros(tf.shape(attention_states[align_encoder_id])[:2])
zero_context = tf.zeros(shape=tf.shape(attention_states[align_encoder_id][:,0])) # FIXME
| tensorflow.TensorArray | 7,561 |
from tensorflow.python.platform import gfile
self.assertFalse(gfile.Exists(s1))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s1)))
self.assertTrue(gfile.Exists(s3))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s3)))
self.assertTrue(gfile.Exists(s2))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2)))
# Adding s1 (s3 should now be deleted as oldest in list)
s1 = save.save(sess, os.path.join(save_dir, "s1"))
self.assertEqual([s2, s1], save.last_checkpoints)
self.assertFalse(gfile.Exists(s3))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3)))
self.assertTrue(gfile.Exists(s2))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2)))
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
# Exercise the second helper.
# Adding s2 again (old s2 is removed first, then new s2 appended)
s2 = save2.save(sess, os.path.join(save_dir, "s2"))
self.assertEqual([s3, s2], save2.last_checkpoints)
# Created by the first helper.
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
# Deleted by the first helper.
self.assertFalse(gfile.Exists(s3))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3)))
| tensorflow.python.platform.gfile.Exists | 7,562 |
from tensorflow.python.ops import init_ops
loss = control_flow_ops.with_dependencies(list(update_ops), loss)
# Learning rate variable, with possible decay.
lr = None
if learning_rate is not None:
if (isinstance(learning_rate, ops.Tensor) and
learning_rate.get_shape().ndims == 0):
lr = learning_rate
elif isinstance(learning_rate, float):
if learning_rate < 0.0:
raise ValueError("Invalid learning_rate %s.", learning_rate)
lr = vs.get_variable(
"learning_rate", [],
trainable=False,
initializer=init_ops.constant_initializer(learning_rate))
else:
raise ValueError("Learning rate should be 0d Tensor or float. "
"Got %s of type %s" %
(str(learning_rate), str(type(learning_rate))))
if summaries is None:
summaries = ["loss", "learning_rate", "global_gradient_norm"]
else:
for summ in summaries:
if summ not in OPTIMIZER_SUMMARIES:
raise ValueError("Summaries should be one of [%s], you provided %s." %
(", ".join(OPTIMIZER_SUMMARIES), summ))
if learning_rate is not None and learning_rate_decay_fn is not None:
if global_step is None:
| tensorflow.python.ops.init_ops.constant_initializer | 7,563 |
import tensorflow as tf
if use_bias:
b = tf.get_variable(
"b", [hidden], initializer=tf.constant_initializer(0.))
res = tf.nn.bias_add(res, b)
res = tf.reshape(res, out_shape)
return res
| tensorflow.nn.bias_add | 7,564 |
import tensorflow as tf
params = self.parameterizer(x1)
mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2]
x2, ildj = gaussianize(z2, mus, log_sigmas, inverse=tf.constant(True))
return x2, ildj
def log_gaussianize(x, mus, log_sigmas, inverse=tf.constant(False)):
"""
Standardize log normal random variable x using mus and log_sigmas.
"""
if inverse:
| tensorflow.constant | 7,565 |
import tensorflow as tf
create_session=True))
# pylint: enable=g-long-lambda
def test_infer_feature_schema(self,
make_tensors_fn,
feature_spec,
domains=None,
create_session=False):
with tf.compat.v1.Graph().as_default() as graph:
tensors = make_tensors_fn()
if create_session:
with tf.compat.v1.Session(graph=graph) as session:
schema = schema_inference.infer_feature_schema(tensors, graph, session)
else:
| tensorflow.compat.v1.Graph | 7,566 |
import tensorflow as tf
def zeros(shape, dtype=K.floatx()):
"""Return all-zeros tensor of given shape and type."""
# As of Keras version 1.1.0, Keras zeros() requires integer values
# in shape (e.g. calling np.zeros() with the Theano backend) and
# thus can't be called with tensor values. This version avoids the
# issue by using the backend zeros() instead.
if K.backend() == 'theano':
from theano import tensor as T
return T.zeros(shape, dtype)
else:
assert K.backend() == 'tensorflow'
import tensorflow as tf
return tf.zeros(shape, dtype)
def values(value, shape, dtype=K.floatx()):
"""Return tensor of given shape and type filled with given value."""
return value * ones(shape, dtype) # or zeros() + ?
def meshgrid(i, j, indexing='ij'):
"""Return matrices broadcasting indices on a 2d grid.
This is a partial backend-independent version of TensorFlow meshgrid()
| tensorflow.zeros | 7,567 |
from tensorflow.python.framework import ops
common_shapes.unchanged_shape_with_rank(2))
@ops.RegisterShape("InTopK")
def _InTopKShape(op):
"""Shape function for InTopK op."""
| tensorflow.python.framework.ops.RegisterShape | 7,568 |
import tensorflow as tf
self.assertAllClose(v_true.eval(), v_false.eval())
def EmbeddingRNNSeq2SeqF(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
return tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols,
num_decoder_symbols, embedding_size=2, feed_previous=feed_previous)
def EmbeddingRNNSeq2SeqNoTupleF(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
return tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols,
num_decoder_symbols, embedding_size=2, feed_previous=feed_previous)
def EmbeddingTiedRNNSeq2Seq(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
return tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2,
| tensorflow.nn.rnn_cell.BasicLSTMCell | 7,569 |
import tensorflow as tf
if self.inputs.get_shape().ndims != 2:
raise Exception("The input dimension must be rank 2, please reshape or flatten it")
n_in = int(self.inputs.get_shape()[-1])
with tf.variable_scope(name):
W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **W_init_args)
if b_init is not None:
try:
b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args)
except Exception: # If initializer is a constant, do not specify shape.
b = tf.get_variable(name='b', initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args)
self.outputs = act(tf.matmul(self.inputs, W) + b)
else:
self.outputs = act(tf.matmul(self.inputs, W))
self.all_layers.append(self.outputs)
if b_init is not None:
self.all_params.extend([W, b])
else:
self.all_params.append(W)
class ReconLayer(DenseLayer):
| tensorflow.matmul | 7,570 |
import tensorflow as tf
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
# tensor has a value of 1.0 for every real prediction and 0.0 for the
| tensorflow.one_hot | 7,571 |
import tensorflow as tf
inputs = tf.identity(inputs, 'initial_conv')
# We do not include batch normalization or activation functions in V2
# for the initial conv1 because the first ResNet unit will perform these
# for both the shortcut and non-shortcut paths as part of the first
# block's projection. Cf. Appendix of [2].
if self.resnet_version == 1:
inputs = batch_norm(inputs, training, self.data_format)
inputs = tf.nn.relu(inputs)
if self.first_pool_size:
inputs = tf.layers.max_pooling2d(
inputs=inputs, pool_size=self.first_pool_size,
strides=self.first_pool_stride, padding='SAME',
data_format=self.data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
| tensorflow.nn.relu | 7,572 |
import tensorflow as tf
def cnn_bi_lstm_model(x, amp_factor, bil_lstm_win_size, num_classes):
logits = cnn_model(x, amp_factor=amp_factor)
logits = tf.reshape(logits, [-1, bil_lstm_win_size, 256*amp_factor])
forward_cell = tf.nn.rnn_cell.LSTMCell(128)
backward_cell = tf.nn.rnn_cell.LSTMCell(128)
encoder_outputs,_ = tf.nn.bidirectional_dynamic_rnn(
forward_cell,
backward_cell,
logits,
| tensorflow.nn.rnn_cell.LSTMCell | 7,573 |
import tensorflow as tf
Returns:
A dictionary containing at least the following tensors.
box_encodings: A float tensor of shape
[batch_size, num_anchors, q, code_size] representing the location of
the objects, where q is 1 or the number of classes.
class_predictions_with_background: A float tensor of shape
[batch_size, num_anchors, num_classes + 1] representing the class
predictions for the proposals.
"""
with tf.variable_scope(scope):
return self._predict(image_features, num_predictions_per_location,
**params)
# TODO: num_predictions_per_location could be moved to constructor.
# This is currently only used by ConvolutionalBoxPredictor.
@abstractmethod
def _predict(self, image_features, num_predictions_per_location, **params):
"""Implementations must override this method.
| tensorflow.variable_scope | 7,574 |
import tensorflow as tf
transformer_output = self.transparent_merger[0].FProp(
theta.transparent_merger[0], outputs_list)
else:
transformer_output = []
for i in range(p.num_transparent_outputs):
merged_outputs = self.transparent_merger[i].FProp(
theta.transparent_merger[i], outputs_list)
transformer_output.append(merged_outputs)
if p.is_eval:
transformer_output = tf.stack(transformer_output, 3)
return transformer_output, paddings, src_segment_id
| tensorflow.stack | 7,575 |
import tensorflow as tf
fields.InputDataFields.original_image].dtype, tf.uint8)
self.assertAllEqual(transformed_inputs[
fields.InputDataFields.original_image_spatial_shape], [4, 4])
self.assertAllEqual(transformed_inputs[
fields.InputDataFields.original_image].shape, [8, 8, 3])
self.assertAllEqual(transformed_inputs[
fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8])
def test_applies_model_preprocess_fn_to_image_tensor(self):
np_image = np.random.randint(256, size=(4, 4, 3))
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np_image),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32))
}
def fake_model_preprocessor_fn(image):
return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=fake_model_preprocessor_fn,
| tensorflow.constant | 7,576 |
import tensorflow as tf
reward_buffer[:,t+1:] *= y
discounted_reward[:,t] = np.sum(reward_buffer[:,t:],1)
return np.reshape(discounted_reward,(batch_size *trace_length))
def make_cube(trace_length):
cube = tf.Variable(tf.zeros([trace_length, trace_length, trace_length]))
cube_ops = []
for i in range(trace_length):
cube_ops.append(cube[i, :(i+1), :(i+1)].assign(tf.ones([i+1, i+1])))
return cube, cube_ops
| tensorflow.ones | 7,577 |
import tensorflow as tf
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
| tensorflow.constant | 7,578 |
import tensorflow as tf
pred_label = tf.argmax(distillation_loss["te_logits"], axis=-1, output_type=tf.int32)
correct = tf.equal(
tf.cast(tf.zeros_like(label_ids, dtype=tf.int32), tf.int32),
tf.cast(pred_label, tf.int32)
)
te_accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
except:
te_accuracy = tf.constant(0.0)
st_accuracy = tf.constant(0.0)
try:
st_accuracy = tf.reduce_mean(distillation_loss["src_f1_prob"])
te_accuracy = tf.reduce_mean(distillation_loss["tgt_f1_prob"])
except:
te_accuracy = tf.constant(0.0)
st_accuracy = tf.constant(0.0)
return {
"train":{
"loss":loss,
"logits":logits,
"train_op":train_op,
| tensorflow.reduce_mean | 7,579 |
from tensorflow.python.training import summary_io
# TODO(mdan): This line looks redundant.
if self._summary_writer is None:
self._summary_writer = summary_io.SummaryWriter(estimator.model_dir)
| tensorflow.python.training.summary_io.SummaryWriter | 7,580 |
import tensorflow as tf
# when the windows size is non-zero, we concatenate consecutive encoder states
# and map it to the right attention vector size.
weights = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos, axis=1)), depth=attn_length))
weighted_average = []
for offset in range(-encoder.attn_window_size, encoder.attn_window_size + 1):
pos_ = pos + offset
pos_ = tf.minimum(pos_, encoder_input_length - 1)
pos_ = tf.maximum(pos_, 0) # TODO: when pos is < 0, use <S> or </S>
weights_ = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos_, axis=1)), depth=attn_length))
weighted_average_ = tf.reduce_sum(tf.expand_dims(weights_, axis=2) * hidden_states, axis=1)
weighted_average.append(weighted_average_)
weighted_average = tf.concat(weighted_average, axis=1)
weighted_average = dense(weighted_average, encoder.attn_size)
elif pos is not None:
weights = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos, axis=1)), depth=attn_length))
weighted_average = tf.reduce_sum(tf.expand_dims(weights, axis=2) * hidden_states, axis=1)
else:
# Local attention of Luong et al. (http://arxiv.org/abs/1508.04025)
| tensorflow.expand_dims | 7,581 |
import tensorflow as tf
tf.summary.scalar(name, value)
summary_op = tf.summary.merge_all()
return (summary_op, monitored_values)
def _make_var(self, name, shape, dtype=None, no_reg=False, initializer=None, init_constant=None, trainable=True):
if initializer is None:
if init_constant is not None:
initializer = tf.constant_initializer(init_constant, dtype=tf.float32)
else:
initializer = tf.contrib.keras.initializers.he_normal()
# Ensure that name is unique by shape too
name += '-shape-{}'.format('x'.join([str(x) for x in shape]))
var = tf.get_variable(name, shape=shape, dtype=dtype, initializer=initializer, trainable=trainable)
| tensorflow.constant_initializer | 7,582 |
import tensorflow as tf
for layer_id in range(self.lstm_num_layers):
with tf.variable_scope("layer_{}".format(layer_id)):
w = tf.get_variable("w", [2 * self.lstm_size, 4 * self.lstm_size])
self.w_lstm.append(w)
self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size])
with tf.variable_scope("emb"):
self.w_emb = tf.get_variable("w", [self.num_branches, self.lstm_size])
with tf.variable_scope("softmax"):
self.w_soft = tf.get_variable("w", [self.lstm_size, self.num_branches])
b_init = np.array([10.0, 10.0] + [0] * (self.num_branches - 2),
dtype=np.float32)
self.b_soft = tf.get_variable(
"b", [1, self.num_branches],
initializer=tf.constant_initializer(b_init))
| tensorflow.variable_scope | 7,583 |
from tensorflow.python.platform import gfile
# Adding s1 (s3 should not be deleted because helper is unaware of it)
s1 = save3.save(sess, os.path.join(save_dir, "s1"))
self.assertEqual([s2, s1], save3.last_checkpoints)
self.assertFalse(gfile.Exists(s3))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3)))
self.assertTrue(gfile.Exists(s2))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2)))
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
def testSharded(self):
save_dir = os.path.join(self.get_temp_dir(), "max_to_keep_sharded")
try:
gfile.DeleteRecursively(save_dir)
except OSError:
| tensorflow.python.platform.gfile.Exists | 7,584 |
from tensorflow.python.framework import constant_op
metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate(
input_fn=input_fn, steps=100)
self._assertSingleClassMetrics(metrics)
def benchmarkTensorData(self):
def _input_fn():
iris = test_data.prepare_iris_data_for_logistic_regression()
features = {}
for i in range(4):
# The following shows how to provide the Tensor data for
# RealValuedColumns.
features.update({
str(i):
array_ops.reshape(
constant_op.constant(
iris.data[:, i], dtype=dtypes.float32), (-1, 1))
})
# The following shows how to provide the SparseTensor data for
# a SparseColumn.
features['dummy_sparse_column'] = sparse_tensor.SparseTensor(
values=('en', 'fr', 'zh'),
indices=((0, 0), (0, 1), (60, 0)),
dense_shape=(len(iris.target), 2))
labels = array_ops.reshape(
constant_op.constant(
iris.target, dtype=dtypes.int32), (-1, 1))
return features, labels
iris = test_data.prepare_iris_data_for_logistic_regression()
| tensorflow.python.framework.constant_op.constant | 7,585 |
import tensorflow as tf
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn,
[per_example_loss, label_ids, logits, is_real_example])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={"probabilities": probabilities},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
# This function is not used by this file but is still used by the Colab and
# people who depend on it.
def input_fn_builder(features, seq_length, is_training, drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
| tensorflow.contrib.tpu.TPUEstimatorSpec | 7,586 |
import tensorflow as tf
dst_paths.append(dst_path)
print("skipping %d files that already exist" % skipped)
global total
total = len(src_paths)
print("processing %d files" % total)
global start
start = time.time()
if a.workers == 1:
with tf.Session() as sess:
for src_path, dst_path in zip(src_paths, dst_paths):
process(src_path, dst_path)
complete()
else:
queue = tf.train.input_producer(zip(src_paths, dst_paths), shuffle=False, num_epochs=1)
dequeue_op = queue.dequeue()
def worker(coord):
with sess.as_default():
while not coord.should_stop():
try:
src_path, dst_path = sess.run(dequeue_op)
except tf.errors.OutOfRangeError:
coord.request_stop()
| tensorflow.Session | 7,587 |
import tensorflow as tf
max_outputs, iou_threshold, score_threshold,inputs):
boxes, objects, classes = [], [], []
dtype = inputs[0].dtype
for i, logits in enumerate(inputs):
print(i,mask[i])
stride = strides[i]
anchors = anchorlist[mask[i]]
x_shape = tf.shape(logits)
logits = tf.reshape(logits, (x_shape[0], x_shape[1], x_shape[2], len(anchors), num_classes + 5))
box_xy, box_wh, obj, cls = tf.split(logits, (2, 2, 1, num_classes), axis=-1)
box_xy = tf.sigmoid(box_xy)
obj = tf.sigmoid(obj)
cls = tf.sigmoid(cls)
anchors = anchors.astype(np.float32)
grid_shape = x_shape[1:3]
# print(grid_shape)
grid_h, grid_w = grid_shape[0], grid_shape[1]
# print(grid_h,tf.range(grid_h))
grid = tf.meshgrid(tf.range(grid_w), tf.range(grid_h))
grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2]
| tensorflow.sigmoid | 7,588 |
from tensorflow.python.ops import gen_math_ops
"""
return gen_math_ops._range(start, limit, delta, name=name)
| tensorflow.python.ops.gen_math_ops._range | 7,589 |
import tensorflow as tf
out += aux
out = activation(out)
if dropout > 0:
out = tf.layers.dropout(out, rate=dropout, training=training)
if sum(dim[2]) > 2:
out = deconv2d(out, [2*dim[0], dim[1], dim[2]], scope="%s_conv_out"%scope, training=training, ema=ema, init=init)
else:
out = conv2d(out, [2*dim[0], dim[1], dim[2]], scope="%s_conv_out"%scope, training=training, ema=ema, init=init)
h_stack1, h_stack2 = tf.split(out, 2, 3)
sigmoid_out = tf.sigmoid(h_stack2)
out = (h_stack1 * sigmoid_out)
out_shp = out.get_shape().as_list()
if out_shp[1:-1] < in_shp[1:-1]:
x = tf.nn.avg_pool(x, [1, dim[2][0], dim[2][1], 1], strides=[1, dim[2][0], dim[2][1], 1], padding='SAME')
elif out_shp[1:-1] > in_shp[1:-1]:
warnings.warn(
"The height and width of the output are larger than the input. There will be no residual connection.")
residual = False
| tensorflow.split | 7,590 |
import tensorflow as tf
def testEmbeddingAttentionDecoder(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
cell = tf.nn.rnn_cell.GRUCell(2)
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
dec, mem = tf.nn.seq2seq.embedding_attention_decoder(
dec_inp, enc_state, attn_states, cell, num_symbols=4,
embedding_size=2, output_size=3)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 3), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].shape)
| tensorflow.nn.seq2seq.embedding_attention_decoder | 7,591 |
import tensorflow as tf
#negtive_mask = tf.logical_and(gscores < params['neg_threshold'], tf.logical_not(positive_mask))
fnegtive_mask = tf.cast(negtive_mask, tf.float32)
n_negtives = tf.reduce_sum(fnegtive_mask)
n_neg_to_select = tf.cast(params['negative_ratio'] * n_positives, tf.int32)
n_neg_to_select = tf.minimum(n_neg_to_select, tf.cast(n_negtives, tf.int32))
# hard negative mining for classification
predictions_for_bg = tf.nn.softmax(cls_pred)[:, 0]
prob_for_negtives = tf.where(negtive_mask,
0. - predictions_for_bg,
# ignore all the positives
0. - tf.ones_like(predictions_for_bg))
topk_prob_for_bg, _ = tf.nn.top_k(prob_for_negtives, k=n_neg_to_select)
selected_neg_mask = prob_for_negtives > topk_prob_for_bg[-1]
# # random select negtive examples for classification
# selected_neg_mask = tf.random_uniform(tf.shape(gscores), minval=0, maxval=1.) < tf.where(
# tf.greater(n_negtives, 0),
# tf.divide(tf.cast(n_neg_to_select, tf.float32), n_negtives),
# tf.zeros_like(tf.cast(n_neg_to_select, tf.float32)),
# name='rand_select_negtive')
# include both selected negtive and all positive examples
final_mask = tf.stop_gradient(tf.logical_or(tf.logical_and(negtive_mask, selected_neg_mask), positive_mask))
total_examples = tf.reduce_sum(tf.cast(final_mask, tf.float32))
| tensorflow.nn.top_k | 7,592 |
import tensorflow as tf
direct_mask = tf.greater(sl_col, sl_row) # bl,bl
direct_mask_tile = tf.tile(
tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl
rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl
rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3), [1, 1, 1, bl]) # bs,bn,bl,bl
rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2)
attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl
| tensorflow.expand_dims | 7,593 |
import tensorflow as tf
# regularizer = tf.contrib.layers.l2_regularizer(0.001)
# reg = regularizer(embedding_variable)
# loss += reg
return loss
def crf_decode_layer(self, logits, crf_params, nwords):
with tf.name_scope("CRF_decode"):
pred_ids, _ = tf.contrib.crf.crf_decode(logits, crf_params, nwords)
return pred_ids
def compute_metrics(self, tags, pred_ids, num_tags, indices, nwords):
weights = tf.sequence_mask(nwords)
# metrics_correct_rate, golden, predict = correct_rate(tags, pred_ids)
| tensorflow.contrib.crf.crf_decode | 7,594 |
import tensorflow as tf
# convert to RGB array
x *= 255
if K.image_dim_ordering() == 'th':
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x
def _compute_gradients(tensor, var_list):
grads = tf.gradients(tensor, var_list)
return [grad if grad is not None else tf.zeros_like(var) for var, grad in zip(var_list, grads)]
def grad_cam(input_model, image, category_index, layer_name):
nb_classes = 1000
target_layer = lambda x: target_category_loss(x, category_index, nb_classes)
x = Lambda(target_layer, output_shape = target_category_loss_output_shape)(input_model.output)
model = Model(inputs=input_model.input, outputs=x)
#model.summary()
loss = K.sum(model.output)
conv_output = [l for l in model.layers if l.name == layer_name][0].output #is
| tensorflow.zeros_like | 7,595 |
import tensorflow as tf
# Create tensors of pairwise differences for logits and labels, and
# pairwise products of weights. These have shape
# [batch_size, batch_size, num_labels].
logits_difference = tf.expand_dims(logits, 0) - tf.expand_dims(logits, 1)
labels_difference = tf.expand_dims(labels, 0) - tf.expand_dims(labels, 1)
weights_product = tf.expand_dims(weights, 0) * tf.expand_dims(weights, 1)
signed_logits_difference = labels_difference * logits_difference
| tensorflow.expand_dims | 7,596 |
import tensorflow as tf
layer4, weights4 = new_fc_layer(input=layer3, name="fc1", num_inputs=num_features, num_outputs=fc_size1)
# print(layer4)
with tf.variable_scope('fc2'):
logits, weights5 = new_fc_layer(input=layer4, name="fc2", num_inputs=fc_size1, num_outputs=fc_size2)
| tensorflow.variable_scope | 7,597 |
import tensorflow as tf
Returns
-------
tf.Tensor:
Of shape (n_test, n_support)
"""
rnorm_test = tf.rsqrt(
tf.reduce_sum(tf.square(test), 1, keep_dims=True)) + 1e-7
rnorm_support = tf.rsqrt(
tf.reduce_sum(tf.square(support), 1, keep_dims=True)) + 1e-7
test_normalized = test * rnorm_test
support_normalized = support * rnorm_support
# Transpose for mul
| tensorflow.square | 7,598 |
import tensorflow as tf
# logloss not being an upper bound on the indicator function.
weighted_loss = weights * losses_utils.weighted_surrogate_loss(
labels, logits, surrogate_type, positive_weights=lambdas, negative_weights=1.0)
maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
lambda_term = lambdas * label_priors * (target_recall - 1.0) * maybe_log2
| tensorflow.log | 7,599 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.