seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
weighted_average = tf.reduce_sum(tf.expand_dims(weights, 2) * hidden_states, axis=1)
return weighted_average, weights
def no_attention(state, hidden_states, *args, **kwargs):
batch_size = tf.shape(state)[0]
weighted_average = tf.zeros(shape=tf.stack([batch_size, 0]))
weights = tf.zeros(shape=[batch_size, tf.shape(hidden_states)[1]])
return weighted_average, weights
def average_attention(hidden_states, encoder_input_length, *args, **kwargs):
| tensorflow.shape | 7,300 |
import tensorflow as tf
kernel_initializer=self._kernel_initializer)
c = self._activation(self._candidate_linear([inputs, r_state]))
u = (1.0 - att_score) * u
new_h = u * state + (1 - u) * c
return new_h, new_h
def prelu(_x, scope=''):
"""parametric ReLU activation"""
with tf.variable_scope(name_or_scope=scope, default_name="prelu"):
_alpha = tf.get_variable("prelu_"+scope, shape=_x.get_shape()[-1],
dtype=_x.dtype, initializer=tf.constant_initializer(0.1))
_zero = tf.constant(0,dtype=_x.dtype)
# return tf.maximum(0.0, _x) + _alpha * tf.minimum(0.0, _x)
return tf.maximum(_zero, _x) + _alpha * tf.minimum(_zero, _x)
def calc_auc(raw_arr):
"""Summary
Args:
raw_arr (TYPE): Description
Returns:
| tensorflow.constant | 7,301 |
from tensorflow.contrib.opt import ScipyOptimizerInterface
if type(method) is str:
success_msg = "SciPy optimizer completed successfully."
options = {'maxiter': maxiter, 'disp': True}
options.update(kw)
optimizer = ScipyOptimizerInterface(
loss, var_list=variables, method=method,
options=options
)
| tensorflow.contrib.opt.ScipyOptimizerInterface | 7,302 |
import tensorflow as tf
from atari_wrappers import *
def atari_model(img_in, num_actions, scope, reuse=False):
# as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
def atari_learn(env,
session,
num_timesteps):
# This is just a rough estimate
num_iterations = float(num_timesteps) / 4.0
lr_multiplier = 1.0
| tensorflow.variable_scope | 7,303 |
import tensorflow as tf
# crop for patch training
crop_h = h//self.crop_factor
crop_w = w//self.crop_factor
rgb = tf.image.random_crop(rgb,size=[crop_h,crop_w,c])
# random left-right flops
rgb = tf.image.random_flip_left_right(rgb)
| tensorflow.image.random_crop | 7,304 |
import tensorflow as tf
self.mat_cores.append(
self.add_weight(name='mat_core_%d' % (i + 1), shape=[self.out_modes[i] * self.mat_ranks[i + 1], self.mat_ranks[i] * self.inp_modes[i]], initializer=self.kernel_initializer, trainable=True))
if self.use_bias:
self.bias = self.add_weight(name="bias", shape=(np.prod(self.out_modes),), initializer=self.bias_initializer, trainable=True)
super(TTLayerDense, self).build(input_shape)
def call(self, input_):
dim = self.order
out = tf.reshape(input_, [-1, np.prod(self.inp_modes)])
self.image_max_size = max(self.image_max_size, np.prod(self.inp_modes))
out = tf.transpose(out, [1, 0])
for i in range(dim):
out = tf.reshape(out, [self.mat_ranks[i] * self.inp_modes[i], -1])
out = tf.matmul(self.mat_cores[i], out)
out = tf.reshape(out, [self.out_modes[i], -1])
out = tf.transpose(out, [1, 0])
out = tf.reshape(out, [-1, np.prod(self.out_modes)])
# self.image_max_size = max(self.image_max_size, np.prod([val.value for val in out.get_shape()[1:]]))
if self.use_bias:
out = tf.add(out, self.bias, name='out')
if self.activation is not None:
| tensorflow.transpose | 7,305 |
import tensorflow as tf
def __init__(self, params):
super(TestInputGenerator, self).__init__(params)
self._input_batch_size = tf.constant(1)
| tensorflow.constant | 7,306 |
import tensorflow as tf
:return:
"""
def f1():
input_shape = input_tensor.get_shape().as_list()
noise_shape = tf.constant(value=[input_shape[0], 1, 1, input_shape[3]])
return tf.nn.dropout(input_tensor, keep_prob, noise_shape, seed=seed, name="spatial_dropout")
def f2():
return input_tensor
with tf.variable_scope(name_or_scope=name):
output = tf.cond(is_training, f1, f2)
return output
@staticmethod
def lrelu(inputdata, name, alpha=0.2):
"""
:param inputdata:
:param alpha:
:param name:
:return:
"""
| tensorflow.cond | 7,307 |
import tensorflow as tf
inputs = [tf.constant(0), tf.constant(0.0)]
cond = lambda i, x: tf.less(i, 100)
def body(i, x):
return tf.add(i, 1), gan_train_ops.discriminator_train_op
dis_train_op = while_loop(cond, body, inputs)
| tensorflow.add | 7,308 |
import tensorflow as tf
gamma = tf.Variable(tf.constant(1.0, shape=[c]), dtype=tf.float32, name='gamma')
beta = tf.Variable(tf.constant(0.0, shape=[c]), dtype=tf.float32, name='beta')
gamma = tf.reshape(gamma, [1, c, 1, 1])
beta = tf.reshape(beta, [1, c, 1, 1])
| tensorflow.reshape | 7,309 |
import tensorflow as tf
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, 278], name="W_t1")
b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
conv_t1 = utils.conv2d_transpose_strided(concat1, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], 3])
W_t3 = utils.weight_variable([16, 16, 3, deconv_shape2[3].value], name="W_t3")
b_t3 = utils.bias_variable([3], name="b_t3")
conv_t3 = tf.nn.relu(utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8))
annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")
| tensorflow.shape | 7,310 |
import tensorflow as tf
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=True,
batch_size=FLAGS.train_batch_size,
use_hvd=FLAGS.use_hvd)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_input_fn = input_fn_builder(
input_files=validation_input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False,
| tensorflow.logging.info | 7,311 |
import tensorflow as tf
var = tf.Variable(tf.constant(0, dtype=tf.int64))
count_up_to = var.count_up_to(3)
input_queue = tf.FIFOQueue(30, tf.float32, shared_name="collection_queue")
qr = tf.train.QueueRunner(input_queue, [count_up_to])
tf.initialize_all_variables()
# Creates a saver.
save = tf.train.Saver({"v0": v0})
# Adds a set of collections.
tf.add_to_collection("int_collection", 3)
tf.add_to_collection("float_collection", 3.5)
tf.add_to_collection("string_collection", "hello")
tf.add_to_collection("variable_collection", v0)
# Add QueueRunners.
tf.train.add_queue_runner(qr)
# Adds user_defined proto in three formats: string, bytes and Any.
queue_runner = queue_runner_pb2.QueueRunnerDef(queue_name="test_queue")
| tensorflow.add_to_collection | 7,312 |
import tensorflow as tf
def _compute_loss(self):
def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2):
logits = tf.nn.sigmoid(logits)
zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros)
neg_p_sub = array_ops.where(labels > zeros, zeros, logits)
cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(logits, 1e-8, 1.0)) \
- (1 - alpha) * (neg_p_sub ** gamma) * tf.log(tf.clip_by_value(1.0 - logits, 1e-8, 1.0))
return tf.reduce_sum(cross_ent, 1)
start_label = tf.one_hot(self.start_label, tf.shape(self.logits1)[1], axis=1)
end_label = tf.one_hot(self.end_label, tf.shape(self.logits2)[1], axis=1)
if self.config.loss_type == 'cross_entropy':
start_loss = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits1, labels=start_label)
end_loss = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits2, labels=end_label)
self.loss = tf.reduce_mean(start_loss + end_loss)
else:
start_loss = focal_loss(tf.nn.softmax(self.logits1, -1), start_label)
end_loss = focal_loss(tf.nn.softmax(self.logits2, -1), end_label)
self.loss = tf.reduce_mean(start_loss + end_loss)
self.logger.info("loss type %s" % self.config.loss_type)
self.all_params = tf.trainable_variables()
if self.config.l2_norm is not None:
| tensorflow.nn.softmax_cross_entropy_with_logits | 7,313 |
import tensorflow as tf
qdist = distributions.QuantizedDistribution(
base_dist_cls=distributions.Normal,
lower_cutoff=1.0,
upper_cutoff=10.0,
mu=tf.zeros(batch_shape),
sigma=tf.ones(batch_shape))
self.assertEqual(batch_shape, qdist.get_batch_shape())
self.assertAllEqual(batch_shape, qdist.batch_shape().eval())
self.assertEqual((), qdist.get_event_shape())
| tensorflow.ones | 7,314 |
import tensorflow as tf
loss_dict = {
'localization_loss': tf.reduce_sum(location_losses),
'classification_loss': tf.reduce_sum(cls_losses),
| tensorflow.reduce_sum | 7,315 |
import tensorflow as tf
self.value_target_n = value_target_n
with tf.variable_scope("loss", reuse=False):
# Take the min of the two Q-Values (Double-Q Learning)
min_qf_pi = tf.minimum(qf1_pi, qf2_pi)
# Target for Q value regression
q_backup = tf.stop_gradient(
self.rewards_ph +
(1 - self.terminals_ph) * self.gamma * self.value_target
)
# Compute Q-Function loss
# TODO: test with huber loss (it would avoid too high values)
qf1_loss = 0.5 * tf.reduce_mean(((q_backup - qf1) ** 2)*self.weight_ph)
qf1_loss_col = tf.reduce_mean(((q_backup - qf1) ** 2),1)
qf2_loss = 0.5 * tf.reduce_mean(((q_backup - qf2) ** 2)*self.weight_ph)
if self.n_step:
q_backup_n = tf.stop_gradient(
self.rewards_ph_n +
(1 - self.terminals_ph_n) *( self.gamma**self.n_step_length ) * self.value_target_n)
qf1_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf1) ** 2)*self.weight_ph)
qf1_loss_n_col = tf.reduce_mean(((q_backup_n - qf1) ** 2),1)
qf2_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf2) ** 2)*self.weight_ph)
if self.n_step:
value_for_priority = qf1_loss_col + qf1_loss_n_col
else:
value_for_priority = qf1_loss_col
| tensorflow.reduce_mean | 7,316 |
import tensorflow as tf
random.seed(111)
np.random.seed(111)
enc_inp = [tf.constant(i + 1, tf.int32, shape=[batch_size])
for i in range(num_enc_timesteps)]
dec_inp_fp_true = [tf.constant(i, tf.int32, shape=[batch_size])
for i in range(num_dec_timesteps)]
dec_inp_holder_fp_false = [tf.placeholder(tf.int32, shape=[batch_size])
for _ in range(num_dec_timesteps)]
targets = [tf.constant(i + 1, tf.int32, shape=[batch_size])
for i in range(num_dec_timesteps)]
weights = [tf.constant(1.0, shape=[batch_size])
for i in range(num_dec_timesteps)]
| tensorflow.placeholder | 7,317 |
import tensorflow as tf
# add mask for glabels and cls_pred here
glabels = tf.boolean_mask(tf.clip_by_value(glabels, 0, FLAGS.num_classes), tf.stop_gradient(final_mask))
cls_pred = tf.boolean_mask(cls_pred, tf.stop_gradient(final_mask))
location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask))
gtargets = tf.boolean_mask(gtargets, tf.stop_gradient(positive_mask))
predictions = {
'classes': tf.argmax(cls_pred, axis=-1),
'probabilities': tf.reduce_max(tf.nn.softmax(cls_pred, name='softmax_tensor'), axis=-1),
'bboxes_predict': tf.reshape(bboxes_pred, [-1, 4]) }
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
| tensorflow.argmax | 7,318 |
import tensorflow as tf
output_ = dense(output_, deep_layer_size, use_bias=False, name='deep_output')
output_ = tf.contrib.layers.layer_norm(output_, activation_fn=tf.nn.tanh, scope='output_layer_norm')
else:
output_ = dense(output_, deep_layer_size, activation=tf.tanh, use_bias=True, name='deep_output')
if decoder.use_dropout:
size = tf.shape(output_)[1]
noise_shape = [1, size] if decoder.pervasive_dropout else None
output_ = tf.nn.dropout(output_, keep_prob=decoder.deep_layer_keep_prob, noise_shape=noise_shape)
else:
if decoder.pred_maxout_layer:
maxout_size = decoder.maxout_size or cell_output_size
output_ = dense(output_, maxout_size, use_bias=True, name='maxout')
if decoder.old_maxout: # for back-compatibility with old models
output_ = tf.nn.pool(tf.expand_dims(output_, axis=2), window_shape=[2], pooling_type='MAX',
padding='SAME', strides=[2])
output_ = tf.squeeze(output_, axis=2)
else:
output_ = tf.maximum(*tf.split(output_, num_or_size_splits=2, axis=1))
if decoder.pred_embed_proj:
# intermediate projection to embedding size (before projecting to vocabulary size)
# this is useful to reduce the number of parameters, and
# to use the output embeddings for output projection (tie_embeddings parameter)
output_ = dense(output_, decoder.embedding_size, use_bias=False, name='softmax0')
if decoder.tie_embeddings and (decoder.pred_embed_proj or decoder.pred_deep_layer):
bias = get_variable('softmax1/bias', shape=[decoder.vocab_size])
| tensorflow.expand_dims | 7,319 |
import tensorflow as tf
ans_feature = tf.layers.dense(
ans_feature,
xlnet_config.d_model,
activation=tf.tanh,
kernel_initializer=initializer, name="dense_0")
ans_feature = tf.layers.dropout(ans_feature, FLAGS.dropout,
training=is_training)
cls_logits = tf.layers.dense(
ans_feature,
1,
kernel_initializer=initializer,
name="dense_1",
use_bias=False)
cls_logits = tf.squeeze(cls_logits, -1)
| tensorflow.layers.dense | 7,320 |
import tensorflow as tf
def restore_param(self):
Saver = tf.train.Saver()
self.sess.run(tf.global_variables_initializer())
checkpoint = tf.train.get_checkpoint_state("saved_networks")
| tensorflow.train.Saver | 7,321 |
import tensorflow as tf
index (int): index of this tower, only used in training.
vs_name (str): Open a new variable scope with this name.
"""
self._name = tower_name
self._is_training = bool(is_training)
if not self._is_training:
assert index == 0, \
"TowerContext(index) is only valid in training!"
self._index = int(index)
self._vs_name = vs_name
if len(vs_name):
assert len(tower_name), "TowerContext(vs_name) cannot be used with an empty tower_name!"
self._initial_vs_reuse = tf.get_variable_scope().reuse
if self.has_own_variables:
assert not self._initial_vs_reuse, \
"Cannot create tower {} with reuse=True!".format(tower_name)
self._collection_guard = CollectionGuard(
self._name,
check_diff=not self.is_main_training_tower,
freeze_keys=self._keys_to_freeze())
@property
def is_main_training_tower(self):
return self.is_training and self._index == 0
@property
| tensorflow.get_variable_scope | 7,322 |
from tensorflow.contrib import layers
raise ValueError("n_classes should be greater than 1. Given: {}".format(
n_classes))
target_column = layers.multi_class_target(
n_classes=n_classes,
| tensorflow.contrib.layers.multi_class_target | 7,323 |
import tensorflow as tf
x = self.input_tensor
x = tf.pad(x, [[0, 0], [3, 3], [3, 3], [0, 0]], 'CONSTANT')
x = self.__conv2d("conv_1", x, filter_depth=64,
kernel_size=7, stride=2, padding='valid')
x = self.__batch_norm("bn_1", x)
x = tf.nn.relu(x)
x = tf.keras.layers.MaxPool2D(pool_size = 3, strides = 2, padding = 'same')(x)
x = self.__conv_block(stage=0, block=0, inputs=x,
filter_depths=[32, 32, 128],
kernel_size=3, stride=1)
| tensorflow.nn.relu | 7,324 |
import tensorflow as tf
val = val[permutation]
shape = np.array([5, 6]).astype(np.int64)
return tf.SparseTensorValue(ind, val, shape)
def _SparseTensorValue_3x4(self, permutation):
| tensorflow.SparseTensorValue | 7,325 |
from tensorflow.python.client import session
height = 300
width = 280
with self.cached_session():
test_dataset = _create_tfrecord_dataset(dataset_dir)
provider = dataset_data_provider.DatasetDataProvider(test_dataset)
key, image, label = provider.get(['record_key', 'image', 'label'])
image = _resize_image(image, height, width)
with session.Session('') as sess:
with queues.QueueRunners(sess):
key, image, label = sess.run([key, image, label])
split_key = key.decode('utf-8').split(':')
self.assertEqual(2, len(split_key))
self.assertEqual(test_dataset.data_sources[0], split_key[0])
self.assertTrue(split_key[1].isdigit())
self.assertListEqual([height, width, 3], list(image.shape))
self.assertListEqual([1], list(label.shape))
| tensorflow.python.client.session.Session | 7,326 |
import tensorflow as tf
self.g_variables = [var for var in trainable_variables if 'generator' in var.name]
print ('Variable printing start :' )
for var in self.d_variables:
print(var.name)
self.test_image_A = tf.placeholder(tf.float32,[None, self.image_size,self.image_size,self.input_dim], name='test_A')
self.test_image_B = tf.placeholder(tf.float32,[None, self.image_size, self.image_size,self.output_c_dim], name='test_B')
self.saver = tf.train.Saver()
def train_network(self):
| tensorflow.placeholder | 7,327 |
import tensorflow as tf
cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2,
state_is_tuple=True)
return tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=classes,
num_decoder_symbols=classes, embedding_size=24,
output_projection=(w, b))
targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0]
def SampledLoss(labels, inputs):
labels = tf.reshape(labels, [-1, 1])
return tf.nn.sampled_softmax_loss(w_t, b, inputs, labels, 8, classes)
return tf.nn.seq2seq.model_with_buckets(
enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq,
softmax_loss_function=SampledLoss)
# Now we construct the copy model.
batch_size = 8
inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
| tensorflow.nn.sampled_softmax_loss | 7,328 |
import tensorflow as tf
# Implement an exponential learning rate decay every 1000 epochs
#Implement a dynamical learning rate
global_step = tf.Variable(0., trainable=False)
rate = tf.train.exponential_decay(starter_learning, global_step, 500, 0.9) #exponential learning rate decay
#rate = starter_learning
tvars = tf.trainable_variables() #list of trainable variables
| tensorflow.train.exponential_decay | 7,329 |
import tensorflow as tf
print('attention f flat dims: ' + str(f.get_shape().as_list()))
s = tf.matmul(g, f, transpose_b=True) # # [bs, N, N]
beta = tf.nn.softmax(s) # attention map
print('attention beta dims: ' + str(s.get_shape().as_list()))
h = tf.reshape(h, shape=[-1, h.shape[1]*h.shape[2], h.shape[-1]])
print('attention h flat dims: ' + str(h.get_shape().as_list()))
o = tf.matmul(beta, h) # [bs, N, C]
print('attention o dims: ' + str(o.get_shape().as_list()))
gamma = tf.get_variable("gamma", [1], initializer=tf.constant_initializer(0.0))
o = tf.reshape(o, shape=[-1, height, width, num_channels // 2]) # [bs, h, w, C]
o = conv(o, scope='attn_conv', filter_dims=[1, 1, channels], stride_dims=[1, 1], non_linear_fn=act_func)
x = gamma * o + x
return x
| tensorflow.matmul | 7,330 |
import tensorflow as tf
return tf.sqrt(tf.clip_by_value(x, clip_low, x))
def argus_integral_phalf(m_low, m_high, m0, c):
"""
Only valid for argus_pdf with p=0.5! Otherwise need to do numerical
integral.
"""
def F(m_bound, name=None):
with tf.name_scope(name, "argus_integral_phalf_primitive"):
a = tf.minimum(m_bound, m0)
x = 1 - tf.pow(a / m0, 2)
primitive = -0.5 * m0 * m0 * (tf.exp(c * x) * tf.sqrt(x) / c + 0.5 / tf.pow(-c, 1.5) * tf.sqrt(pi) * tf.erf(gradsafe_sqrt(-c * x)))
# We have to safeguard the sqrt, because otherwise the analytic
# derivative blows up for x = 0
return primitive
area = tf.sub(F(m_high, name="F2"), F(m_low, name="F1"), name="argus_integral_phalf")
return area
def argus_pdf_phalf_WN(m, m0, c, m_low, m_high):
"""
WN: with normalization
| tensorflow.sqrt | 7,331 |
import tensorflow as tf
d3, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
d2, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
| tensorflow.nn.seq2seq.embedding_rnn_seq2seq | 7,332 |
import tensorflow as tf
name="{}2b".format(conv_name_base),
inputs=x, filter_depth=filter_depth2, kernel_size=kernel_size,
padding="same", stride=1
)
x = self.__batch_norm("{}2b".format(bn_name_base), x)
x = tf.nn.relu(x)
x = self.__conv2d(
name="{}2c".format(conv_name_base),
inputs=x, filter_depth=filter_depth3, kernel_size=1,
| tensorflow.nn.relu | 7,333 |
import tensorflow as tf
param_noise_filter_func=param_noise_filter_func)
else:
act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse)
with tf.variable_scope(scope, reuse=reuse):
# set up placeholders
obs_t_input = make_obs_ph("obs_t")
act_t_ph = tf.placeholder(tf.int32, [None], name="action")
rew_t_ph = tf.placeholder(tf.float32, [None], name="reward")
obs_tp1_input = make_obs_ph("obs_tp1")
done_mask_ph = tf.placeholder(tf.float32, [None], name="done")
importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight")
# q network evaluation
| tensorflow.placeholder | 7,334 |
import tensorflow as tf
pos = tf.nn.sigmoid(tf.matmul(tf.nn.tanh(tf.matmul(state, wp)), vp))
pos = tf.floor(encoder_input_length * pos)
| tensorflow.floor | 7,335 |
import tensorflow as tf
tf.summary.scalar('Loss/Value', loss_vf)
tf.summary.scalar('Loss/Entropy', loss_entropy)
tf.summary.scalar('Loss/Total', loss)
tf.summary.scalar('Var/Epsilon', epsilon_decay)
tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode()))
tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev()))
tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf))
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
| tensorflow.get_collection | 7,336 |
import tensorflow as tf
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range),
)
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer()
)
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
| tensorflow.nn.log_softmax | 7,337 |
import tensorflow as tf
image_placeholder = tf.placeholder(dtype=tf.uint8)
encoded_image = tf.image.encode_png(image_placeholder)
with tf.Session('') as sess:
for j in range(num_images):
sys.stdout.write('\r>> Reading file [%s] image %d' % (
filename, offset + 1))
sys.stdout.flush()
if ('train' == name) and ( math.floor(offset / images_per_shard) > shard) :
tfrecord_writer.close()
shard = shard + 1
record_filename = _get_output_filename(dataset_dir, name, shard, FLAGS.train_shards)
tfrecord_writer = tf.python_io.TFRecordWriter(record_filename)
image = np.squeeze(images[j]).transpose((1, 2, 0))
label = labels[j]
png_string = sess.run(encoded_image,
feed_dict={image_placeholder: image})
example = dataset_utils.image_to_tfexample(
png_string, 'png', _IMAGE_SIZE, _IMAGE_SIZE, label, _CLASS_NAMES[label])
tfrecord_writer.write(example.SerializeToString())
offset = offset + 1
tfrecord_writer.close()
| tensorflow.python_io.TFRecordWriter | 7,338 |
import tensorflow as tf
num_channels_in = input_dims[-1]
height = input_dims[1]
width = input_dims[2]
with tf.variable_scope(scope):
if output_length == 1:
pool = tf.nn.avg_pool(input_data, [1, height, width, 1], strides=[1, 1, 1, 1], padding=padding)
pool = tf.reduce_mean(pool, axis=[1, 2])
pool = tf.squeeze(pool, axis=[1, 2])
return pool
else:
if num_channels_in != output_length:
conv_weight = tf.Variable(tf.truncated_normal([1, 1, num_channels_in, output_length], stddev=0.1, dtype=tf.float32))
conv = tf.nn.conv2d(input_data, conv_weight, strides=[1, 1, 1, 1], padding='SAME')
pool = tf.nn.avg_pool(conv, ksize=[1, height, width, 1], strides=[1, 1, 1, 1], padding=padding)
| tensorflow.squeeze | 7,339 |
from tensorflow.python.ops import math_ops
bg_row=tf.shape(b_grads[0])[0]
bg_col=tf.shape(b_grads[0])[1]
b_grads = tf.reshape(b_grads, (numTensors * bg_row, bg_col))
if adj_b:
b_grads = [array_ops.transpose(b_g) for b_g in b_grads]
for t in range(numTensors):
rows = a_indices[t][:, 0]
cols = a_indices[t][:, 1]
parts_a = array_ops.gather(grad[t], rows if not adj_a else cols)
parts_b = array_ops.gather(b_list[t] if not adj_b else array_ops.transpose(b_list[t]), cols if not adj_a else rows)
a_values_grads.append(math_ops.reduce_sum(parts_a * parts_b, reduction_indices=1))
return_val = [None for _ in range(numTensors)] + a_values_grads + [None for _ in range(numTensors)] + [b_grads]
return tuple(return_val)
| tensorflow.python.ops.math_ops.reduce_sum | 7,340 |
import tensorflow as tf
for i in range(num_dims):
curr_core_shape = (1, shape[i], shape[i], 1)
tt_cores[i] = tf.reshape(tf.eye(shape[i], dtype=dtype), curr_core_shape)
| tensorflow.eye | 7,341 |
import tensorflow as tf
highway_input = highwaynet(highway_input, 'highway_%d' % (i + 1), half_depth)
rnn_input = highway_input
# Bidirectional RNN
outputs, states = tf.nn.bidirectional_dynamic_rnn(
GRUCell(half_depth),
GRUCell(half_depth),
rnn_input,
sequence_length=input_lengths,
dtype=tf.float32)
return tf.concat(outputs, axis=2) # Concat forward and backward
def highwaynet(inputs, scope, depth):
with tf.variable_scope(scope):
H = tf.layers.dense(
inputs,
units=depth,
activation=tf.nn.relu,
name='H')
T = tf.layers.dense(
inputs,
units=depth,
activation=tf.nn.sigmoid,
name='T',
bias_initializer=tf.constant_initializer(-1.0))
return H * T + inputs * (1.0 - T)
| tensorflow.variable_scope | 7,342 |
import tensorflow as tf
return logits, prediction
def general_conv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm=True, relu_factor = 0, name="conv2d"):
with tf.variable_scope(name):
conv = tf.layers.conv2d(input_data, filters, kernel_size, stride, padding, activation=None)
| tensorflow.variable_scope | 7,343 |
import tensorflow as tf
dim,
name,
train=True,
epsilon=1e-8,
decay=.1,
axes=[0],
reuse=None,
bn_lag=DEFAULT_BN_LAG):
"""Batch normalization with corresponding log determinant Jacobian."""
if reuse is None:
reuse = not train
# create variables
with tf.variable_scope(name) as scope:
if reuse:
scope.reuse_variables()
var = variable_on_cpu(
"var", [dim], tf.constant_initializer(1.), trainable=False)
mean = variable_on_cpu(
"mean", [dim], tf.constant_initializer(0.), trainable=False)
step = variable_on_cpu("step", [], tf.constant_initializer(0.), trainable=False)
# choose the appropriate moments
if train:
used_mean, used_var = tf.nn.moments(input_, axes, name="batch_norm")
cur_mean, cur_var = used_mean, used_var
| tensorflow.variable_scope | 7,344 |
import tensorflow as tf
manager_loss = -tf.reduce_sum((self.r - cutoff_vf_manager) * dcos)
cutoff_vf_worker = tf.reshape(tf.stop_gradient(self.worker_vf), [-1])
log_p = tf.reduce_sum(self.log_pi * self.ac, [1])
worker_loss = (self.r + self.alpha * self.ri - cutoff_vf_worker) * log_p
worker_loss = -tf.reduce_sum(worker_loss, axis=0)
| tensorflow.reduce_sum | 7,345 |
import tensorflow as tf
example: An example dict containing an image and a label.
random_crop_pad: By how many pixels should the image be padded on each side
before cropping.
Returns:
An example with the same label and an augmented version of the image.
"""
image, label = example['image'], example['label']
image = tf.image.random_flip_left_right(image)
image_shape = tf.shape(image)
image = tf.pad(
image, [[random_crop_pad, random_crop_pad],
[random_crop_pad, random_crop_pad], [0, 0]],
mode='REFLECT')
image = tf.image.random_crop(image, image_shape)
return {'image': image, 'label': label}
| tensorflow.shape | 7,346 |
import tensorflow as tf
end_logits,
1,
kernel_initializer=initializer,
name="dense_1")
end_logits = tf.reshape(end_logits, [seq_len, -1, FLAGS.start_n_top])
end_logits = tf.transpose(end_logits, [1, 2, 0])
end_logits_masked = end_logits * (
1 - p_mask[:, None]) - 1e30 * p_mask[:, None]
end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
end_top_log_probs, end_top_index = tf.nn.top_k(
end_log_probs, k=FLAGS.end_n_top)
end_top_log_probs = tf.reshape(
end_top_log_probs,
[-1, FLAGS.start_n_top * FLAGS.end_n_top])
end_top_index = tf.reshape(
end_top_index,
[-1, FLAGS.start_n_top * FLAGS.end_n_top])
| tensorflow.nn.top_k | 7,347 |
import tensorflow as tf
target_samples -= tf.reduce_mean(target_samples, 0)
source_samples = tf.nn.l2_normalize(source_samples, 1)
target_samples = tf.nn.l2_normalize(target_samples, 1)
source_cov = tf.matmul(tf.transpose(source_samples), source_samples)
target_cov = tf.matmul(tf.transpose(target_samples), target_samples)
corr_loss = tf.reduce_mean(tf.square(source_cov - target_cov)) * weight
assert_op = tf.Assert(tf.is_finite(corr_loss), [corr_loss])
| tensorflow.transpose | 7,348 |
from tensorflow.contrib.eager.python.examples.revnet import blocks_test
self.assertEqual(len(g2_all.shape), 1)
degree = blocks_test.compute_degree(g1_all, g2_all)
self.assertLessEqual(degree, 1e0)
| tensorflow.contrib.eager.python.examples.revnet.blocks_test.compute_degree | 7,349 |
import tensorflow as tf
strides=[1, 1, 1, 1],
padding="SAME",
nonlinearity=None,
bias=False,
weight_norm=False,
scale=False):
"""Convolutional layer."""
with tf.variable_scope(name) as scope:
weights = variable_on_cpu(
"weights",
filter_size + [dim_in, dim_out],
tf.random_uniform_initializer(
minval=-stddev, maxval=stddev))
# weight normalization
if weight_norm:
weights /= tf.sqrt(tf.reduce_sum(tf.square(weights), [0, 1, 2]))
if scale:
magnitude = variable_on_cpu(
"magnitude", [dim_out],
tf.constant_initializer(
stddev * numpy.sqrt(dim_in * numpy.prod(filter_size) / 12.)))
weights *= magnitude
res = input_
# handling filter size bigger than image size
if hasattr(input_, "shape"):
if input_.get_shape().as_list()[1] < filter_size[0]:
pad_1 = tf.zeros([
input_.get_shape().as_list()[0],
filter_size[0] - input_.get_shape().as_list()[1],
input_.get_shape().as_list()[2],
| tensorflow.square | 7,350 |
from tensorflow.python.framework import ops
new_size = size + batch_size
array_size = array_ops.shape_internal(array, optimize=False)[0]
maybe_reallocate_op = control_flow_ops.cond(
new_size > array_size, reallocate, control_flow_ops.no_op)
with ops.control_dependencies([maybe_reallocate_op]):
append_values_op = array[size:new_size].assign(batch_values)
with ops.control_dependencies([append_values_op]):
update_op = size.assign(new_size)
if metrics_collections:
ops.add_to_collections(metrics_collections, value)
| tensorflow.python.framework.ops.control_dependencies | 7,351 |
import tensorflow as tf
v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,3])
t = tf.nn.conv2d_transpose(input_var,v_norm,
output_shape=shapes,
strides=self.strides,
padding='SAME',
data_format='NHWC')
mu,var = tf.nn.moments(t,axes=[0,1,2])
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
require_init = tf.reduce_any(tf.is_nan(self.g))
init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])
with tf.control_dependencies(init_ops):
w = tf.reshape(self.g,[1,1,tf.shape(self.v)[2],1]) * tf.nn.l2_normalize(self.v,axis=[0,1,3])
return tf.nn.bias_add(
tf.nn.conv2d_transpose(input_var,w,
output_shape=shapes,
strides=self.strides,
padding='SAME',
data_format='NHWC'),
self.b,data_format='NHWC',name=name)
def get_variables(self):
#TODO: self.v should be l2-normalized or not? / currently not.
return {'v':self.v,'b':self.b,'g':self.g}
class LayerNorm():
def __init__(self,name,axis,out_dim=None,epsilon=1e-7,data_format='NHWC') :
| tensorflow.shape | 7,352 |
import tensorflow as tf
saver0.save(sess, saver0_ckpt)
saver1.save(sess, saver1_ckpt)
# Generates MetaGraphDef.
meta_graph_def = tf.train.export_meta_graph(filename)
meta_graph_def0 = saver0.export_meta_graph()
meta_graph_def1 = saver1.export_meta_graph()
| tensorflow.train.export_meta_graph | 7,353 |
import tensorflow as tf
input_shape = tf.shape(encoder_states)
batch_size = input_shape[0]
passage_len = input_shape[1]
# map decoder inputs to word embeddings
decoder_inputs = tf.unstack(decoder_inputs, axis=1) # max_enc_steps * [batch_size]
answer_batch_unstack = tf.unstack(answer_batch, axis=1)
# initialize all the variables
state_t_1 = init_state
| tensorflow.unstack | 7,354 |
import tensorflow as tf
if self.ms_task:
with tf.variable_scope('mixed'):
#add fake pc as a rotation class
num_to_add = int(max(self.batch_size/self.num_angles, 1))
idx = tf.range(0, self.batch_size, 1)
idx = tf.random_shuffle(idx)[0:num_to_add]
self.fake_to_add = tf.gather(self.generator_out, idx)
self.mixed_pc = tf.concat([self.real_pc_rotated, self.fake_to_add], 0)
self.mixed_label = tf.concat([self.rot_label_pl, tf.constant(self.num_angles, shape = (num_to_add,))], axis = 0)
mixed_idx = tf.range(0, self.mixed_label.get_shape().as_list()[0], 1)
mixed_idx = tf.random_shuffle(mixed_idx)[0:self.batch_size]
self.mixed_pc = tf.gather(self.mixed_pc, mixed_idx)
| tensorflow.gather | 7,355 |
import tensorflow as tf
def contra_step_lossV1(pred, tgt, temp=10.0):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
soft_sign = tf.tanh((tgt1 - tgt2) * temp)
loss = tf.maximum(0.0, soft_sign * ((tgt1 - tgt2) - (pred1 - pred2)))
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV2(pred, tgt):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small))
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV3(pred, tgt, margin=1.0):
# Step-wise contrastive loss
| tensorflow.split | 7,356 |
import tensorflow as tf
flags.DEFINE_integer("max_eval_steps", None, "Maximum number of eval steps.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
| tensorflow.flags.DEFINE_string | 7,357 |
import tensorflow as tf
temp_val_data['X'][i * 2, :, :, :] = self.val_data['X'][i, :, :sh[2] // 2, :]
temp_val_data['X'][i * 2 + 1, :, :, :] = self.val_data['X'][i, :, sh[2] // 2:, :]
temp_val_data['Y'][i * 2, :, :] = self.val_data['Y'][i, :, :sh[2] // 2]
temp_val_data['Y'][i * 2 + 1, :, :] = self.val_data['Y'][i, :, sh[2] // 2:]
self.val_data = temp_val_data
def init_tfdata(self, batch_size, main_dir, resize_shape, mode='train'):
self.data_session = tf.Session()
print("Creating the iterator for training data")
with tf.device('/cpu:0'):
segdl = SegDataLoader(main_dir, batch_size, (resize_shape[0], resize_shape[1]), resize_shape,
# * 2), resize_shape,
'data/cityscapes_tfdata/train.txt')
iterator = Iterator.from_structure(segdl.data_tr.output_types, segdl.data_tr.output_shapes)
next_batch = iterator.get_next()
self.init_op = iterator.make_initializer(segdl.data_tr)
self.data_session.run(self.init_op)
| tensorflow.device | 7,358 |
import tensorflow as tf
return tf.contrib.summary.all_summary_ops()
# To log the loss, current learning rate, and epoch for Tensorboard, the
# summary op needs to be run on the host CPU via host_call. host_call
# expects [batch_size, ...] Tensors, thus reshape to introduce a batch
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
global_step_t = tf.reshape(global_step, [1])
total_loss_t = tf.reshape(total_loss, [1])
total_rpn_loss_t = tf.reshape(total_rpn_loss, [1])
rpn_score_loss_t = tf.reshape(rpn_score_loss, [1])
rpn_box_loss_t = tf.reshape(rpn_box_loss, [1])
total_fast_rcnn_loss_t = tf.reshape(total_fast_rcnn_loss, [1])
fast_rcnn_class_loss_t = tf.reshape(fast_rcnn_class_loss, [1])
fast_rcnn_box_loss_t = tf.reshape(fast_rcnn_box_loss, [1])
mask_loss_t = tf.reshape(mask_loss, [1])
learning_rate_t = tf.reshape(learning_rate, [1])
host_call = (host_call_fn,
[global_step_t, total_loss_t, total_rpn_loss_t,
rpn_score_loss_t, rpn_box_loss_t, total_fast_rcnn_loss_t,
| tensorflow.reshape | 7,359 |
import tensorflow as tf
decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
global_step,
decay_steps,
cifar10.LEARNING_RATE_DECAY_FACTOR,
staircase=True)
# Create an optimizer that performs gradient descent.
opt = tf.train.GradientDescentOptimizer(lr)
# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
# Retain the summaries from the final tower.
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
| tensorflow.get_variable_scope | 7,360 |
import tensorflow as tf
anchor_negative_distances, anchor_negative_mining_distances = (
compute_hard_negative_distances(
anchor_match_distance_matrix,
anchor_match_negative_indicator_matrix,
use_semi_hard=use_semi_hard,
anchor_positive_mining_distances=anchor_positive_mining_distances,
anchor_match_mining_distance_matrix=(
anchor_match_mining_distance_matrix)))
def compute_triplet_loss(positive_distances, negative_distances):
losses = tf.nn.relu(positive_distances + margin - negative_distances)
losses = tf.where(
tf.stop_gradient(losses < losses.dtype.max), losses,
tf.zeros_like(losses))
num_nonzero_losses = tf.math.count_nonzero(losses)
loss = tf.math.reduce_mean(losses)
return loss, num_nonzero_losses
loss, num_active_triplets = compute_triplet_loss(anchor_positive_distances,
anchor_negative_distances)
mining_loss, num_active_mining_triplets = compute_triplet_loss(
anchor_positive_mining_distances, anchor_negative_mining_distances)
return (loss, num_active_triplets, anchor_negative_distances, mining_loss,
num_active_mining_triplets, anchor_negative_mining_distances)
| tensorflow.stop_gradient | 7,361 |
import tensorflow as tf
std = std[::-1]
image_mean = tf.constant(mean, dtype=tf.float32) * 255.
| tensorflow.constant | 7,362 |
import tensorflow as tf
if add_flipped_images:
scales_to_logits_reversed = (
outputs_to_scales_to_logits_reversed[output])
logits_reversed = tf.image.resize_bilinear(
tf.reverse_v2(scales_to_logits_reversed[_MERGED_LOGITS_SCOPE], [2]),
tf.shape(images)[1:3],
align_corners=True)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits_reversed), 4))
for output in sorted(outputs_to_predictions):
| tensorflow.shape | 7,363 |
import tensorflow as tf
layers.append((X, w, h, comb_ch))
def _combine_cell_blocks(self, cell_inputs, blocks, cell_arch, w, h, block_ch, is_train=False):
# Count usage of inputs
input_use_counts = [0] * len(cell_inputs + blocks)
for (idx1, _, idx2, _) in cell_arch:
input_use_counts[idx1] += 1
input_use_counts[idx2] += 1
# Concat only unused blocks
with tf.variable_scope('combine'):
block_use_counts = input_use_counts[len(cell_inputs):]
out_blocks = [block for (block, use_count) in zip(blocks, block_use_counts) if use_count == 0]
comb_ch = len(out_blocks) * block_ch
X = tf.concat(out_blocks, axis=3)
return (X, comb_ch)
def _combine_cell_blocks_dynamic(self, cell_inputs, blocks, cell_arch, w, h, block_ch, is_train=False):
ni = len(cell_inputs + blocks)
b = len(blocks)
# Count usage of inputs
block_uses = []
for bi in range(b):
idx1 = cell_arch[bi][0]
idx2 = cell_arch[bi][2]
block_use = tf.one_hot(idx1, ni, dtype=tf.int32) + tf.one_hot(idx2, ni, dtype=tf.int32)
block_uses.append(block_use)
| tensorflow.concat | 7,364 |
from tensorflow.python.framework import ops
sequence_var = tf.Variable(tf.range(start=6, limit=15, delta=3)) # Generates [6, 9, 12] doesn't include the end
sess.run(linear_var.initializer)
sess.run(sequence_var.initializer)
print(sess.run(linear_var))
print(sess.run(sequence_var))
rnorm_var = tf.random_normal([row_dim, col_dim], mean=0.0, stddev=1.0)
runif_var = tf.random_uniform([row_dim, col_dim], minval=0, maxval=4)
print(sess.run(rnorm_var))
print(sess.run(runif_var))
ops.reset_default_graph()
sess = tf.Session()
my_var = tf.Variable(tf.zeros([1,20]))
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("./logs", graph=sess.graph)
initialize_op = tf.global_variables_initializer()
sess.run(initialize_op)
| tensorflow.python.framework.ops.reset_default_graph | 7,365 |
import tensorflow as tf
"""Add prediction layer"""
with tf.variable_scope('softmax'):
W = tf.get_variable('W', [state_size, input_size_y])
b = tf.get_variable('b', [input_size_y], initializer=tf.constant_initializer(0.0))
rnn_outputs = tf.reshape(rnn_outputs, [-1, state_size])
predictions = tf.matmul(rnn_outputs, W) + b
yy = tf.reshape(y, [-1, input_size_y]) #batch_size*num_steps when yo udefine a placeholder in Tensorflow, the shape of the input during the session should be the same as the shape of the plcae holder
"Mean squared error loss"
loss=tf.reduce_mean(tf.square(tf.reshape(predictions,[-1])-tf.reshape(yy,[-1])))
"Adding regularization"
if lambda_l2_reg > 0 :
cell_l2 = tf.reduce_sum([tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not ("noreg" in tf_var.name or "Bias" in tf_var.name)])
Predict_l2 = tf.nn.l2_loss(W) #+ tf.nn.l2_loss(b)
total_loss = tf.reduce_sum(loss + lambda_l2_reg* tf.reduce_sum(cell_l2+Predict_l2) )
else:
total_loss = loss
"Define the train_step"
train_step = tf.train.AdamOptimizer(learning_rate).minimize(total_loss)
return dict(x=x,
y=y,
batch_size=batch_size,
| tensorflow.trainable_variables | 7,366 |
from tensorflow.python.ops import clip_ops
summary.scalar("loss", loss)
# Add histograms for variables, gradients and gradient norms.
for gradient, variable in gradients:
if isinstance(gradient, ops.IndexedSlices):
grad_values = gradient.values
else:
grad_values = gradient
if grad_values is not None:
var_name = variable.name.replace(":", "_")
if "gradients" in summaries:
summary.histogram("gradients/%s" % var_name, grad_values)
if "gradient_norm" in summaries:
summary.scalar("gradient_norm/%s" % var_name,
clip_ops.global_norm([grad_values]))
if clip_gradients is not None and ("global_gradient_norm" in summaries or
"gradient_norm" in summaries):
summary.scalar("global_norm/clipped_gradient_norm",
clip_ops.global_norm(list(zip(*gradients))[0]))
# Create gradient updates.
grad_updates = opt.apply_gradients(
gradients,
global_step=global_step if increment_global_step else None,
name="train")
# Ensure the train_tensor computes grad_updates.
train_tensor = control_flow_ops.with_dependencies([grad_updates], loss)
| tensorflow.python.ops.clip_ops.global_norm | 7,367 |
import tensorflow as tf
self.top_size = depth
return output
def inception_module(self, name, cols, input_layer=None, in_size=None):
if input_layer is None:
input_layer = self.top_layer
if in_size is None:
in_size = self.top_size
name += str(self.counts[name])
self.counts[name] += 1
with tf.variable_scope(name):
col_layers = []
col_layer_sizes = []
for c, col in enumerate(cols):
col_layers.append([])
col_layer_sizes.append([])
for l, layer in enumerate(col):
ltype, args = layer[0], layer[1:]
kwargs = {
'input_layer': input_layer,
| tensorflow.variable_scope | 7,368 |
import tensorflow as tf
print(sess.run(tf.transpose(C)))
print('\ntranspose(D)=')
print(sess.run(tf.transpose(D)))
print('\ninverse(D)=')
print(sess.run(tf.matrix_inverse(D)))
print('\ndeterminant(D)={:.1f}'.format(sess.run(tf.matrix_determinant(D))))
print('\ncholesky(D):')
print(sess.run(tf.cholesky(identity_matrix)))
print('\nselfAdjointEig(D):')
print(sess.run(tf.self_adjoint_eig(D)))
| tensorflow.matrix_determinant | 7,369 |
import tensorflow as tf
# This index is specified exactly and we want to collapse this axis.
if remainder is None:
remainder = sliced_core
else:
remainder = tf.matmul(remainder, sliced_core)
else:
if remainder is not None:
# Add reminder from the previous collapsed cores to the current
| tensorflow.matmul | 7,370 |
from tensorflow.python.framework import tensor_shape
else:
for i, dim in enumerate(input_shape.dims):
if i not in reduction_indices:
returned_dims.append(dim)
return [tensor_shape.TensorShape(returned_dims)]
@ops.RegisterShape("SegmentMax")
| tensorflow.python.framework.tensor_shape.TensorShape | 7,371 |
import tensorflow as tf
assert num_written_lines == num_actual_predict_examples
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
| tensorflow.app.run | 7,372 |
import tensorflow as tf
# Merge the logits from all the multi-scale inputs.
for output in sorted(model_options.outputs_to_num_classes):
# Concatenate the multi-scale logits for each output type.
all_logits = [
tf.expand_dims(logits, axis=4)
for logits in outputs_to_scales_to_logits[output].values()
]
all_logits = tf.concat(all_logits, 4)
merge_fn = (
tf.reduce_max
if model_options.merge_method == 'max' else tf.reduce_mean)
outputs_to_scales_to_logits[output][_MERGED_LOGITS_SCOPE] = merge_fn(
all_logits, axis=4)
| tensorflow.concat | 7,373 |
import tensorflow as tf
return losses, [outputs], encoder_state, attention_states, attention_weights, samples, beam_fun, initial_data
def softmax(logits, dim=-1, mask=None):
e = tf.exp(logits)
if mask is not None:
e *= mask
return e / tf.clip_by_value(tf.reduce_sum(e, axis=dim, keep_dims=True), 10e-37, 10e+37)
def sequence_loss(logits, targets, weights, average_across_timesteps=False, average_across_batch=True, rewards=None):
batch_size = tf.shape(targets)[0]
time_steps = tf.shape(targets)[1]
logits_ = tf.reshape(logits, tf.stack([time_steps * batch_size, logits.get_shape()[2].value]))
targets_ = tf.reshape(targets, tf.stack([time_steps * batch_size]))
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_, labels=targets_)
crossent = tf.reshape(crossent, tf.stack([batch_size, time_steps]))
if rewards is not None:
crossent *= tf.stop_gradient(rewards)
log_perp = tf.reduce_sum(crossent * weights, axis=1)
| tensorflow.shape | 7,374 |
import tensorflow as tf
self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0)
self.eval_action = pi_eval.mode()
self.global_step = tf.train.get_or_create_global_step()
self.saver = tf.train.Saver()
# Loss functions and training
loss_pg = - tf.reduce_mean(pi.log_prob(batch['actions']) * batch['advantage']) - 0.01 * tf.reduce_mean(pi.entropy())
loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf))
self.a_grads = tf.gradients(loss_pg, self.pi_params)
self.c_grads = tf.gradients(loss_vf, self.vf_params)
self.a_grads, _ = tf.clip_by_global_norm(self.a_grads, 20.0)
self.c_grads, _ = tf.clip_by_global_norm(self.c_grads, 20.0)
opt = tf.train.AdamOptimizer(self.LR)
self.update_a_op = opt.apply_gradients(zip(self.a_grads, self.pi_params))
self.update_c_op = opt.apply_gradients(zip(self.c_grads, self.vf_params))
self.sess.run(tf.global_variables_initializer())
| tensorflow.gradients | 7,375 |
import tensorflow as tf
NUMBER_OF_CLASSES = 2
def get_input_function():
"""A function to get test inputs. Returns an image with one box."""
image = tf.random_uniform([32, 32, 3], dtype=tf.float32)
key = tf.constant('image_000000')
class_label = tf.random_uniform(
[1], minval=0, maxval=NUMBER_OF_CLASSES, dtype=tf.int32)
box_label = tf.random_uniform(
[1, 4], minval=0.4, maxval=0.6, dtype=tf.float32)
return {
fields.InputDataFields.image: image,
fields.InputDataFields.key: key,
fields.InputDataFields.groundtruth_classes: class_label,
fields.InputDataFields.groundtruth_boxes: box_label
}
| tensorflow.random_uniform | 7,376 |
import tensorflow as tf
step=global_step,
)
max_q = tf.reduce_max(logits_vec, axis=1)
tf.compat.v2.summary.scalar(
name="max_q", data=tf.reduce_mean(max_q), step=global_step)
### End metrics
# For both state-centric and goal-centric relabelling, the implementation of
# mixing is the same: we randomly replace some of the indices with the
# diagonal.
relabelled_tasks = tf.gather(candidate_tasks, tf.squeeze(relabel_indices))
if self._relabel_prob == 0:
relabelled_tasks = orig_tasks
elif 0 < self._relabel_prob < 1:
logits = tf.log([1.0 - self._relabel_prob, self._relabel_prob])
mask = tf.squeeze(
tf.random.categorical(
logits[None], num_samples=self._sample_batch_size))
mask = tf.cast(mask, tf.float32)[:, None]
relabelled_tasks = mask * orig_tasks + (1 - mask) * relabelled_tasks
| tensorflow.squeeze | 7,377 |
import tensorflow as tf
y += dense(hidden, encoder.attn_size, use_bias=False, name='U_a')
if encoder.position_bias and input_length is not None and time is not None:
src_pos = tf.tile(tf.expand_dims(tf.range(time_steps), axis=0), [batch_size, 1])
trg_pos = tf.tile(tf.reshape(time, [1, 1]), [batch_size, time_steps])
src_len = tf.tile(tf.expand_dims(input_length, axis=1), [1, time_steps]) # - 1
pos_feats = tf.to_float(tf.stack([src_pos, trg_pos, src_len], axis=2))
| tensorflow.range | 7,378 |
import tensorflow as tf
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# Group all updates to into a single train op.
train_op = tf.group(apply_gradient_op, variables_averages_op)
# Create a saver.
saver = tf.train.Saver(tf.global_variables())
# Build the summary operation from the last tower summaries.
summary_op = tf.summary.merge(summaries)
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
sess.run(init)
# Start the queue runners.
tf.train.start_queue_runners(sess=sess)
| tensorflow.global_variables_initializer | 7,379 |
import tensorflow as tf
embedded_text_expand = tf.expand_dims(self.embedded_characters, -1)
with tf.device('/cpu:0'), tf.name_scope("embedding_tags"):
W_tags = tf.get_variable("embed_W_tags", [tags_vocab_size, embedding_size], initializer=initializer)
embedded_tags = tf.nn.embedding_lookup(W_tags, self.input_tags)
embedded_tags_expanded = tf.expand_dims(embedded_tags, -1)
with tf.device('/cpu:0'), tf.name_scope("embedding_deps"):
| tensorflow.nn.embedding_lookup | 7,380 |
import tensorflow as tf
# Test with state_is_tuple=False.
with tf.variable_scope("no_tuple"):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
dec, mem = tf.nn.seq2seq.embedding_attention_seq2seq(
| tensorflow.nn.rnn_cell.BasicLSTMCell | 7,381 |
import tensorflow as tf
def cnn_model(x, amp_factor=1):
with tf.variable_scope('model'):
conv1 = tf.layers.conv2d(x, filters=32*amp_factor, kernel_size=[5, 3],
data_format='channels_last', padding= "same",
strides=(2, 1),
| tensorflow.layers.conv2d | 7,382 |
import tensorflow as tf
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold=scaffold_fn
)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
# predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
# ones=tf.get_variable('ones',shape=logits.shape,initializer=tf.ones_initializer)
# zeros=tf.get_variable('zeros',shape=logits.shape,initializer=tf.zeros_initializer)
predictions=tf.where(logits>=0,tf.ones(tf.shape(logits)),tf.zeros(tf.shape(logits)))
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn,
[per_example_loss, label_ids, logits, is_real_example])
| tensorflow.shape | 7,383 |
import tensorflow as tf
bstrides = _calc_block_strides(bsize, ksize, strides)
# Pad mask.
mask_ = tf.expand_dims(mask, 3)
mask_ = _pad_input(mask_, ksize, strides, padding, bsize=bsize, bstrides=bstrides)
mask_ = tf.nn.max_pool(mask_, bsize, bstrides, 'VALID') # Blocks are always valid conv.
mask_ = tf.squeeze(mask_, [3])
indices = tf.where(tf.greater(mask_, tol))
indices = tf.cast(indices, tf.int32)
return indices
def convert_mask_to_block_indices(mask, bsize, ksize, strides, padding, tol):
"""
Converts a binary mask to block sparse indices.
| tensorflow.greater | 7,384 |
import tensorflow as tf
# Add a prefix to the node names in the current graph and Restore using
# remapped names.
with self.test_session() as sess:
v0 = tf.Variable(-1.0, name="restore_prefix/v0")
v1 = tf.Variable(-1.0, name="restore_prefix/v1")
with self.assertRaisesOpError("uninitialized value restore_prefix/v0"):
sess.run(v0)
| tensorflow.Variable | 7,385 |
from tensorflow.python.framework import ops
@ops.RegisterShape("Div")
@ops.RegisterShape("Equal")
@ops.RegisterShape("Greater")
@ops.RegisterShape("GreaterEqual")
@ops.RegisterShape("Less")
@ops.RegisterShape("LessEqual")
@ops.RegisterShape("LogicalAnd")
@ops.RegisterShape("LogicalOr")
@ops.RegisterShape("Maximum")
@ops.RegisterShape("Minimum")
@ops.RegisterShape("Mod")
@ops.RegisterShape("Mul")
@ops.RegisterShape("NotEqual")
@ops.RegisterShape("Pow")
| tensorflow.python.framework.ops.RegisterShape | 7,386 |
import tensorflow as tf
>>> samples.dtype
dtype('float64')
>>> m.dtype = tf.float32
>>> samples = m.compute_prior_samples(test_points, 1, 2)
>>> samples.dtype
dtype('float32')
"""
mu, var = self.build_prior_mean_var(test_points, num_latent, True)
jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06
L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter)
V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples]
V = tf.random_normal(V_shape, dtype=L.dtype)
samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V)
return tf.transpose(samples)
@autoflow((tf.float64, [None, None]), (tf.float64, [None, None]),
(tf.float64, [None, None]))
def compute_posterior_mean_var(self, X, Y, test_points):
"""Computes the means and variances of the posterior(s).
This is just an autoflowed version of
| tensorflow.shape | 7,387 |
import tensorflow as tf
new_factor = (
weight * state[self.FACTOR_STATE_KEY] + (1 - weight) / norm_mean)
return {self.FACTOR_STATE_KEY: new_factor}
def get_params(self, state):
"""See base class."""
params = {self.FACTOR_PARAM_KEY: state[self.FACTOR_STATE_KEY]}
return params, params
def encode(self, x, encode_params):
"""See base class."""
return (self._stage.encode(x, encode_params), {
self.NORM_STATE_UPDATE_KEY: tf.norm(x)
})
def decode(self,
encoded_tensors,
decode_params,
num_summands=None,
shape=None):
"""See base class."""
return self._stage.decode(encoded_tensors, decode_params, num_summands,
shape)
| tensorflow.norm | 7,388 |
import tensorflow as tf
for g, v in grads_and_vars:
tf.summary.histogram(v.name[:-2] + '_hist', v)
tf.summary.histogram(v.name[:-2] + '_grad_hist', g)
| tensorflow.summary.histogram | 7,389 |
import tensorflow as tf
num_decoder_symbols = 5
batch_size = 2
num_enc_timesteps = 2
num_dec_timesteps = 3
def TestModel(seq2seq):
with self.test_session(graph=tf.Graph()) as sess:
tf.set_random_seed(111)
random.seed(111)
np.random.seed(111)
enc_inp = [tf.constant(i + 1, tf.int32, shape=[batch_size])
for i in range(num_enc_timesteps)]
dec_inp_fp_true = [tf.constant(i, tf.int32, shape=[batch_size])
for i in range(num_dec_timesteps)]
dec_inp_holder_fp_false = [tf.placeholder(tf.int32, shape=[batch_size])
for _ in range(num_dec_timesteps)]
targets = [tf.constant(i + 1, tf.int32, shape=[batch_size])
for i in range(num_dec_timesteps)]
weights = [tf.constant(1.0, shape=[batch_size])
for i in range(num_dec_timesteps)]
def ForwardBackward(enc_inp, dec_inp, feed_previous):
scope_name = "fp_{}".format(feed_previous)
with tf.variable_scope(scope_name):
dec_op, _ = seq2seq(enc_inp, dec_inp, feed_previous=feed_previous)
| tensorflow.constant | 7,390 |
import tensorflow as tf
if tf.DeviceSpec.from_string(device.name).device_type == "GPU":
if "K20" in device.physical_device_desc:
return (16,)
if "P100" in device.physical_device_desc:
return (16, 32, 64)
if tf.DeviceSpec.from_string(device.name).device_type == "TPU":
return (32,)
return (16, 32)
def _force_device_sync(self):
"""Shamelessly copied from `resnet50_test.py`."""
tf.constant(1.).cpu()
def _report(self, label, start, num_iters, device, batch_size, data_format):
avg_time = (time.time() - start) / num_iters
dev = tf.DeviceSpec.from_string(device).device_type.lower()
name = "%s_%s_batch_%d_%s" % (label, dev, batch_size, data_format)
extras = {"examples_per_sec": batch_size / avg_time}
self.report_benchmark(
iters=num_iters, wall_time=avg_time, name=name, extras=extras)
def _benchmark_eager_apply(self,
| tensorflow.constant | 7,391 |
import tensorflow as tf
assert (bsize[2] - ksize[1]) % strides[2] == 0, ERR_MSG_DIV.format(
strides[2], bsize[2], ksize[1])
assert strides[0] == strides[3] == 1, ERR_MSG_DIM.format(strides)
bstrides = _calc_block_strides(bsize, ksize, strides)
# Pad mask.
mask_ = tf.expand_dims(mask, 3)
mask_ = _pad_input(mask_, ksize, strides, padding, bsize=bsize, bstrides=bstrides)
mask_ = tf.nn.max_pool(mask_, bsize, bstrides, 'VALID') # Blocks are always valid conv.
mask_ = tf.squeeze(mask_, [3])
indices = tf.where(tf.greater(mask_, tol))
indices = tf.cast(indices, tf.int32)
return indices
def convert_mask_to_block_indices(mask, bsize, ksize, strides, padding, tol):
"""
| tensorflow.nn.max_pool | 7,392 |
import tensorflow as tf
global_step=tf.train.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def _build_rnn_graph(self, inputs, config, is_training):
if config.rnn_mode == CUDNN:
| tensorflow.assign | 7,393 |
import tensorflow as tf
def get_next_sentence_output(bert_config, input_tensor, labels):
"""Get loss and log probs for the next sentence prediction."""
# Simple binary classification. Note that 0 is "next sentence" and 1 is
# "random sentence". This weight matrix is not used after pre-training.
with tf.variable_scope("cls/seq_relationship"):
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range),
)
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer()
)
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
| tensorflow.zeros_initializer | 7,394 |
import tensorflow as tf
else:
grads = tf.gradients(loss, self.params)
norm_grads = None
if self.max_grad_norm is not None:
grads, norm_grads = tf.clip_by_global_norm(grads, self.max_grad_norm)
grads = list(zip(grads, self.params))
with tf.variable_scope("input_info", reuse=False):
tf.summary.scalar('rewards', tf.reduce_mean(self.reward_ph))
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate))
tf.summary.scalar('advantage', tf.reduce_mean(adv))
tf.summary.scalar('action_probability', tf.reduce_mean(self.mu_ph))
if self.full_tensorboard_log:
tf.summary.histogram('rewards', self.reward_ph)
tf.summary.histogram('learning_rate', self.learning_rate)
tf.summary.histogram('advantage', adv)
tf.summary.histogram('action_probability', self.mu_ph)
if tf_util.is_image(self.observation_space):
| tensorflow.reduce_mean | 7,395 |
from tensorflow.python.framework import tensor_util
@ops.RegisterShape("Range")
def _RangeShape(op):
start_value = tensor_util.ConstantValue(op.inputs[0])
limit_value = tensor_util.ConstantValue(op.inputs[1])
delta_value = tensor_util.ConstantValue(op.inputs[2])
if start_value is None or limit_value is None or delta_value is None:
return [tensor_shape.vector(None)]
else:
| tensorflow.python.framework.tensor_util.ConstantValue | 7,396 |
import tensorflow as tf
if len(input_dims) == 4:
_, input_h, input_w, num_channels = input_dims
in_dim = input_h * input_w * num_channels
flat_input = tf.reshape(input_data, [-1, in_dim])
else:
in_dim = input_dims[-1]
flat_input = input_data
if initial_value is None:
fc_weight = tf.get_variable("weights", shape=[in_dim, out_dim], initializer=tf.random_normal_initializer(mean=0., stddev=0.01))
fc_bias = tf.get_variable("bias", shape=[out_dim], initializer=tf.constant_initializer(0.0))
else:
fc_weight = tf.get_variable("weights", initializer=initial_value[0])
fc_bias = tf.get_variable("bias", shape=[out_dim], initializer=initial_value[1])
if use_bias:
output = tf.add(tf.matmul(flat_input, fc_weight), fc_bias)
else:
output = tf.matmul(flat_input, fc_weight)
if non_linear_fn is None:
return output
else:
activation = non_linear_fn(output)
return activation
| tensorflow.get_variable | 7,397 |
import tensorflow as tf
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
| tensorflow.flags.DEFINE_string | 7,398 |
from tensorflow.python.ops import math_ops
fn = _sparse_false_negative_at_k(
predictions_idx=predictions_idx, labels=labels, class_id=class_id,
weights=weights)
batch_total_fn = math_ops.to_double(math_ops.reduce_sum(fn))
var = contrib_variables.local_variable(
| tensorflow.python.ops.math_ops.reduce_sum | 7,399 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.