seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
from tensorflow.python.ops import math_ops
return math_ops.square(logits - math_ops.to_float(target))
def _log_loss_with_two_classes(logits, target):
# sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
if len(target.get_shape()) == 1:
target = array_ops.expand_dims(target, dim=[1])
loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
math_ops.to_float(target))
return loss_vec
def _softmax_cross_entropy_loss(logits, target):
# sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
# Check that we got int32/int64 for classification.
if (not target.dtype.is_compatible_with(dtypes.int64) and
| tensorflow.python.ops.math_ops.to_float | 7,400 |
import tensorflow as tf
pred1, pred2 = tf.split(horizon_pred, 2, axis=0)
tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, ((tgt_larg - tgt_small) - (pred_larg - pred_small)))
loss = tf.reduce_mean(loss)
return loss
# randrom horizon
def contra_traj_lossV3(pred, tgt, horizon=12):
# Step-wise contrastive loss
horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
| tensorflow.maximum | 7,401 |
import tensorflow as tf
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
| tensorflow.layers.dense | 7,402 |
import tensorflow as tf
size = tf.random.uniform(shape=[],minval=3,maxval=7,dtype=tf.int32) # size [7-15]
self.kernel = self.gaussian_kernel(size,mean,std)
self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1])
self.paddings = tf.convert_to_tensor([[size,size],[size,size],[0,0]])
x_aug = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID')
x_aug = tf.squeeze(x_aug)
return tf.concat([x, x_aug],axis=2)
def high_low_pass(self,x):
x_low = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID')
x_low = tf.squeeze(x_low)
x_high = x - x_low
| tensorflow.concat | 7,403 |
import tensorflow as tf
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
| tensorflow.logging.info | 7,404 |
from tensorflow.python.ops import variables
def _setupDense(self, is_distributed, dtype):
with self._maybeWithDevice("/job:ps" if is_distributed else None):
var0 = variables.Variable([[0.0, 1.0], [2.0, 3.0]], dtype=dtype)
var1 = variables.Variable([4.0, 5.0], dtype=dtype)
with self._maybeWithDevice("/job:worker" if is_distributed else None):
grads0 = constant_op.constant([[0.1, 0.1], [0.1, 0.1]], dtype=dtype)
| tensorflow.python.ops.variables.Variable | 7,405 |
import tensorflow as tf
This method computes the mean and (co)variance of
q(g1) = \int q(g2) p(g1|g2)
:param Kmn: M x N
:param Kmm: M x M
:param Knn: N x N or N
:param f: M x R
:param full_cov: bool
:param q_sqrt: None or R x M x M (lower triangular)
:param white: bool
:return: N x R or R x N x N
"""
logger.debug("base conditional")
# compute kernel stuff
num_func = tf.shape(f)[1] # R
Lm = tf.cholesky(Kmm)
# Compute the projection matrix A
A = tf.matrix_triangular_solve(Lm, Kmn, lower=True)
# compute the covariance due to the conditioning
if full_cov:
fvar = Knn - tf.matmul(A, A, transpose_a=True)
fvar = tf.tile(fvar[None, :, :], [num_func, 1, 1]) # R x N x N
else:
fvar = Knn - tf.reduce_sum(tf.square(A), 0)
fvar = tf.tile(fvar[None, :], [num_func, 1]) # R x N
# another backsubstitution in the unwhitened case
| tensorflow.cholesky | 7,406 |
import tensorflow as tf
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
| tensorflow.Variable | 7,407 |
import tensorflow as tf
dec_inp_dict = {}
dec_inp_dict["0"] = [
tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
dec_inp_dict["1"] = [
| tensorflow.constant | 7,408 |
import tensorflow as tf
sqrt_diag[:, n][:, None] if diag else sqrt[n, :, :][None, :, :], # 1 x M x M or M x 1
K if shared_k else K_batch[n, :, :][None,:,:])) # 1 x M x M or M x M
kl_sum =tf.reduce_sum(kl_sum)
assert_almost_equal(kl_sum.eval(), kl_batch.eval())
| tensorflow.reduce_sum | 7,409 |
import tensorflow as tf
grid = tf.expand_dims(grid, 0)
grid = tf.reshape(grid, [-1])
grid = tf.tile(grid, tf.stack([num_batch]))
grid = tf.reshape(grid, tf.stack([num_batch, 4, -1]))
# Transform A x (x_t', y_t', 1, d_t)^T -> (x_s, y_s, z_s, 1).
t_g = tf.matmul(theta, grid)
z_s = tf.slice(t_g, [0, 0, 0], [-1, 1, -1])
y_s = tf.slice(t_g, [0, 1, 0], [-1, 1, -1])
x_s = tf.slice(t_g, [0, 2, 0], [-1, 1, -1])
z_s_flat = tf.reshape(z_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
x_s_flat = tf.reshape(x_s, [-1])
input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, z_s_flat,
| tensorflow.slice | 7,410 |
import tensorflow as tf
:param x: [Tensor] Convolution feature map, 4D, dtype float32.
:param w: [Tensor] Convolution kernel, 4D, dtype float32.
:param mask: [Tensor] Binary mask, 3D or 4D, [N, H, W] or [N, H, W, 1], dtype float32.
:param strides: [list] List of 4 int. Convolution strides.
:param padding: [string] Convolution padding method, `VALID` or `SAME`.
"""
assert len(mask.get_shape()) in [3, 4], 'Mask shape must be 3D or 4D.'
if len(mask.get_shape()) == 3:
mask_ = tf.expand_dims(mask, 3)
elif len(mask.get_shape()) == 4:
mask_ = mask
assert mask.get_shape()[-1] == 1, '4D mask last dimension must be 1.'
ksize = [int(ss) for ss in w.get_shape()]
psize = [1, ksize[0], ksize[1], 1]
mask_ = tf.nn.max_pool(mask_, psize, strides, padding)
return tf.nn.conv2d(x, w, strides, padding) * mask_
| tensorflow.expand_dims | 7,411 |
import tensorflow as tf
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
lr_values = [params['warmup_learning_rate']] + [base_learning_rate * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[params['warmup_steps']] + [int(float(ep)*params['steps_per_epoch']) for ep in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate')
tf.summary.scalar('lr', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics,
scaffold=tf.train.Scaffold(init_fn=train_helper.get_init_fn_for_scaffold_(params['checkpoint_path'], params['model_dir'], params['checkpoint_exclude_scopes'], params['model_scope'], params['checkpoint_model_scope'], params['ignore_missing_vars'])))
| tensorflow.get_collection | 7,412 |
import tensorflow as tf
with self.assertRaisesOpError("not in the support"):
x = tf.placeholder_with_default(input=[2., 2., 5.], shape=[3])
log_prob = pareto.log_prob(x)
self.evaluate(log_prob)
with self.assertRaisesOpError("not in the support"):
x = tf.placeholder_with_default(input=[1., 3., 5.], shape=[3])
log_prob = pareto.log_prob(x)
self.evaluate(log_prob)
def testParetoLogPdfMultidimensional(self):
batch_size = 6
| tensorflow.placeholder_with_default | 7,413 |
import tensorflow as tf
test_pre = tf.argmax(test_pre, 1)
test_true = tf.argmax(test_labels, 1)
valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum)
valid_inf=work.valid_inference(valid_image_batch)
valid_labels=tf.one_hot(valid_label_batch,classnum)
#train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
valid_pre = tf.reshape(valid_inf, [validnum, classnum])
valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1))
valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32))
valid_pre = tf.argmax(valid_pre, 1)
valid_true = tf.argmax(valid_labels, 1)
target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj',
'class no', 'class yh', 'class fb']
init = tf.initialize_all_variables()
config=tf.ConfigProto()
| tensorflow.cast | 7,414 |
import tensorflow as tf
def fc_layer(self, bottom, name):
with tf.variable_scope(name):
| tensorflow.variable_scope | 7,415 |
import tensorflow as tf
q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout)
c_emb = tf.concat([c_emb, ch_emb], axis=2)
q_emb = tf.concat([q_emb, qh_emb], axis=2)
| tensorflow.concat | 7,416 |
import tensorflow as tf
# Load IRK weights
tmp = np.float32(np.loadtxt('../../Utilities/IRK_weights/Butcher_IRK%d.txt' % (q), ndmin = 2))
weights = np.reshape(tmp[0:q**2+q], (q+1,q))
self.IRK_alpha = weights[0:-1,:]
self.IRK_beta = weights[-1:,:]
self.IRK_times = tmp[q**2+q:]
# tf placeholders and graph
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=True))
self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1]))
self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1]))
self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1]))
self.u1_tf = tf.placeholder(tf.float32, shape=(None, self.u1.shape[1]))
self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.U0_pred = self.net_U0(self.x0_tf) # N0 x q
self.U1_pred = self.net_U1(self.x1_tf) # N1 x q
self.loss = tf.reduce_sum(tf.square(self.u0_tf - self.U0_pred)) + \
tf.reduce_sum(tf.square(self.u1_tf - self.U1_pred))
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss,
method = 'L-BFGS-B',
options = {'maxiter': 50000,
'maxfun': 50000,
'maxcor': 50,
'maxls': 50,
| tensorflow.placeholder | 7,417 |
import tensorflow as tf
def cat_entropy_softmax(p0):
return - tf.reduce_sum(p0 * tf.log(p0 + 1e-6), axis = 1)
| tensorflow.log | 7,418 |
import tensorflow as tf
import losses
import mask_rcnn_architecture
_WEIGHT_DECAY = 1e-4
def create_optimizer(learning_rate, params):
"""Creates optimized based on the specified flags."""
if params['optimizer'] == 'momentum':
optimizer = tf.train.MomentumOptimizer(
learning_rate, momentum=params['momentum'])
elif params['optimizer'] == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
elif params['optimizer'] == 'adadelta':
optimizer = tf.train.AdadeltaOptimizer(learning_rate)
elif params['optimizer'] == 'adagrad':
optimizer = tf.train.AdagradOptimizer(learning_rate)
elif params['optimizer'] == 'rmsprop':
optimizer = tf.train.RMSPropOptimizer(
| tensorflow.train.MomentumOptimizer | 7,419 |
import tensorflow as tf
print(mtype, fig_obj_count, 2)
fig_obj_count += 1
intersection = tf.reduce_sum(tf.math.sign(tf.nn.relu(sdf_values - 1)))
union = tf.reduce_sum(tf.math.sign(sdf_values))
iou = intersection / union
if not tf.math.is_nan(iou):
ious.append(iou)
| tensorflow.math.sign | 7,420 |
import tensorflow as tf
target_emb = tf.expand_dims(top_span_emb, 1) # [k, 1, emb]
similarity_emb = top_antecedent_emb * target_emb # [k, c, emb]
target_emb = tf.tile(target_emb, [1, c, 1]) # [k, c, emb]
| tensorflow.tile | 7,421 |
import tensorflow as tf
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.use_hvd:
hvd.init()
if FLAGS.reduce_log and (hvd.rank() != 0):
tf.logging.set_verbosity(tf.logging.ERROR)
FLAGS.output_dir = FLAGS.output_dir if hvd.rank() == 0 else os.path.join(FLAGS.output_dir, str(hvd.rank()))
if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_train_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
| tensorflow.logging.set_verbosity | 7,422 |
import tensorflow as tf
num_classes = FLAGS.src_num_classes
finetune_one_hot_labels = tf.one_hot(
tf.cast(labels['finetune'], tf.int64), target_num_classes)
target_one_hot_labels = tf.one_hot(
tf.cast(labels['target'], tf.int64), target_num_classes)
with tf.variable_scope('rl_controller') as rl_scope:
# It creates a `rl_scope` which will be used for ops.
pass
rl_entropy, label_weights, log_prob = rl_label_weights(rl_scope)
loss_entropy, loss_weights, loss_log_prob = get_loss_weights(rl_scope)
def gather_init_weights():
| tensorflow.variable_scope | 7,423 |
import tensorflow as tf
self.dt = dt
self.q = max(q,1)
# Initialize NN
self.weights, self.biases = self.initialize_NN(layers)
# Initialize parameters
self.lambda_1 = tf.Variable([0.0], dtype=tf.float32)
self.lambda_2 = tf.Variable([-6.0], dtype=tf.float32)
# Load IRK weights
tmp = np.float32(np.loadtxt('../../Utilities/IRK_weights/Butcher_IRK%d.txt' % (q), ndmin = 2))
weights = np.reshape(tmp[0:q**2+q], (q+1,q))
self.IRK_alpha = weights[0:-1,:]
self.IRK_beta = weights[-1:,:]
self.IRK_times = tmp[q**2+q:]
| tensorflow.Variable | 7,424 |
import tensorflow as tf
Args:
x: an input tensor with the dimensions (N_examples, 3072), where 3072 is the
number of pixels in a standard CIFAR10 image.
Returns:
y: is a tensor of shape (N_examples, 10), with values
equal to the logits of classifying the object images into one of 10 classes
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck)
img_summary: a string tensor containing sampled input images.
"""
# Reshape to use within a convolutional neural net. Last dimension is for
# 'features' - it would be 1 one for a grayscale image, 3 for an RGB image,
# 4 for RGBA, etc.
x_image = tf.reshape(x, [-1, FLAGS.img_width, FLAGS.img_height, FLAGS.img_channels])
x_image = tf.cond(train, lambda: tf.map_fn(tf.image.random_flip_left_right, x_image), lambda: x_image)
x_image = tf.cond(train, lambda: tf.map_fn(lambda x: tf.image.random_brightness(x, 0.5), x_image), lambda: x_image)
img_summary = tf.summary.image('Input_images', x_image)
# First convolutional layer - maps one image to 32 feature maps.
with tf.variable_scope('Conv_1'):
conv1 = tf.layers.conv2d(
inputs=x_image,
filters=32,
kernel_size=[5,5],
padding='same',
| tensorflow.reshape | 7,425 |
import tensorflow as tf
self.n_data = n_data
def data_map(self, img_path):
n_bits = config.model.data.n_bits
n_bins = 2**n_bits
rgb = tf.image.decode_png(tf.read_file(img_path), channels=3, dtype=tf.uint8)
h = config.model.data.dimensions.h
w = config.model.data.dimensions.w
c = config.model.data.dimensions.c
# rgb.set_shape([h,w,c]) # variable size per example
# crop for lsun 96
rgb = tf.image.random_crop(rgb,size=[h,w,c])
# crop for patch training
crop_h = h//self.crop_factor
crop_w = w//self.crop_factor
rgb = tf.image.random_crop(rgb,size=[crop_h,crop_w,c])
# cast, bit conversion, compress domain, center
rgb = tf.cast(rgb, tf.float32)
if n_bits < 8:
rgb = tf.floor(rgb/(2**(8-n_bits)))
rgb = rgb/(n_bins) - 0.5
| tensorflow.image.random_crop | 7,426 |
import tensorflow as tf
# print(final_loss, avg_loss)
# p = tf.print('debug loss ', [final_loss, avg_loss])
# with tf.control_dependencies([p]):
# avg_loss = 1. * avg_loss
# print(avg_loss)
# exit()
return avg_loss
def compute_contra_loss(pred1, pred2, tgt1, tgt2, hard_ratio=1.0):
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small))
if hard_ratio < 1.0:
hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32)
loss = tf.reshape(loss, [-1])
hard_loss, _ = tf.math.top_k(loss, k=hard_num)
return hard_loss
return loss
| tensorflow.where | 7,427 |
import tensorflow as tf
:param tol: [float] Lower bound of occupancy for creating a rectangle.
:return [tuple]
bin_counts: [Tensor]. Number of active locations for each bin.
active_block_indices: [Tensor]. [M]. Center locations of M rectangles. Dtype int64.
"""
def to_tensor(a, dtype):
if type(a) == tf.Tensor:
if a.dtype != dtype:
return tf.cast(a, dtype)
else:
return a
elif type(a) == list:
if type(a[0]) == tf.Tensor:
return tf.stack(a, 0)
else:
return tf.constant(a, dtype)
else:
print(type(a))
| tensorflow.cast | 7,428 |
import tensorflow as tf
adjcents: A list of N `tf.SparseTensor` of `int64`. Specify adjacent
matrix between hops.
"""
nodes = tf.reshape(nodes, [-1])
nodes_list = [nodes]
adj_list = []
for hop_edge_types in edge_types:
neighbor, weight, _ = get_full_neighbor(nodes, hop_edge_types)
next_nodes, next_idx = tf.unique(neighbor.values, out_idx=tf.int64)
next_indices = tf.stack([neighbor.indices[:, 0], next_idx], 1)
next_values = weight.values
next_shape = [tf.size(nodes), tf.size(next_nodes)]
next_adj = tf.sparse.SparseTensor(next_indices, next_values, next_shape)
next_adj = tf.sparse.reorder(next_adj)
nodes_list.append(next_nodes)
adj_list.append(next_adj)
nodes = next_nodes
return nodes_list, adj_list
| tensorflow.sparse.SparseTensor | 7,429 |
import tensorflow as tf
def cross_entropy_layer(tensor, target, **opts):
if _rank(tensor) > 1:
target = tf.reshape(target, shape=(-1, ))
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=tensor, labels=target)
mask = tf.cast(tf.not_equal(target, tf.zeros_like(target)), dtype=tf.float32)
out = cross_entropy * mask
return out
| tensorflow.nn.sparse_softmax_cross_entropy_with_logits | 7,430 |
import tensorflow as tf
self.weight_norms = [tf.norm(v) + NUMTOL for (g, v) in clipped_grads_and_vars]
# check that gradients are finite
grads = [tf.check_numerics(g, "grads is not finite") for (g, v) in clipped_grads_and_vars]
variables = [tf.check_numerics(v, "grads is not finite") for (g, v) in clipped_grads_and_vars]
| tensorflow.check_numerics | 7,431 |
import tensorflow as tf
pairwise_improvement = tf.nn.relu(dists[1:] - pred_error)
| tensorflow.nn.relu | 7,432 |
import tensorflow as tf
passed to the Loss or Postprocess functions.
"""
flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs)
class_prediction = tf.contrib.layers.fully_connected(
flattened_inputs, self._num_classes)
box_prediction = tf.contrib.layers.fully_connected(flattened_inputs, 4)
| tensorflow.contrib.layers.fully_connected | 7,433 |
import tensorflow as tf
Returns:
A boolean tensor with the same shape as input (indicator) tensor
"""
indices = tf.where(indicator)
indices = tf.random.shuffle(indices)
indices = tf.reshape(indices, [-1])
num_samples = tf.minimum(tf.size(indices), num_samples)
selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))
selected_indicator = ops.indices_to_dense_vector(selected_indices, tf.shape(indicator)[0])
return tf.equal(selected_indicator, 1)
def sample_balanced_positive_negative(indicator, sample_size, labels, positive_fraction=0.5):
"""Subsamples minibatches to a desired balance of positives and negatives.
| tensorflow.reshape | 7,434 |
import tensorflow as tf
def testLarge(self):
with self.test_session() as sess:
x = tf.zeros([1000000], dtype=np.float32)
y = tf.py_func(lambda x: x + 1, [x], [tf.float32])
| tensorflow.zeros | 7,435 |
import tensorflow as tf
import tensorflow as tf
import warnings
def conv2d(x, dim=(32, [3, 3], [1, 1]), pad='SAME', scope="conv2d", training=True, ema=None, init=False, bias_initializer=tf.constant_initializer(0.)):
num_filters, filter_size, stride = dim
with tf.variable_scope(scope):
V = tf.get_variable('V', shape=list(filter_size) + [int(x.get_shape()[-1]), num_filters], dtype=tf.float32,
| tensorflow.constant_initializer | 7,436 |
import tensorflow as tf
print(fc1)
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, 278], name="W_t1")
b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
conv_t1 = utils.conv2d_transpose_strided(concat1, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], 3])
W_t3 = utils.weight_variable([16, 16, 3, deconv_shape2[3].value], name="W_t3")
b_t3 = utils.bias_variable([3], name="b_t3")
conv_t3 = tf.nn.relu(utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8))
annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")
return tf.expand_dims(annotation_pred, dim=3), conv_t3
| tensorflow.add | 7,437 |
from tensorflow.python.framework import ops
ops.RegisterShape("Relu")(common_shapes.unchanged_shape)
ops.RegisterShape("Relu6")(common_shapes.unchanged_shape)
ops.RegisterShape("Elu")(common_shapes.unchanged_shape)
| tensorflow.python.framework.ops.RegisterShape | 7,438 |
import tensorflow as tf
def call(self, sp_matrices, dense_matrices, adjoint_a=False, adjoint_b=False):
sp_indices = [sp_m.indices for sp_m in sp_matrices]
sp_values = [sp_m.values for sp_m in sp_matrices]
sp_shape = [sp_m.dense_shape for sp_m in sp_matrices]
return self.b_module.bspmdt(sp_ids = sp_indices, sp_values = sp_values, sp_shape = sp_shape, rhs = dense_matrices, adjoint_a = adjoint_a, adjoint_b = adjoint_b)
b_module = tf.load_op_library('./batched.so')
@ops.RegisterGradient("Bspmdt")
def _bspmdt_grad(op, *grad):
"""Gradients for the dense tensors in the SparseTensorDenseMatMul ops.
Args:
| tensorflow.load_op_library | 7,439 |
import tensorflow as tf
# Step-wise contrastive loss
even = [2 * i for i in range(25)]
odd = [2 * i + 1 for i in range(25)]
pred1 = tf.gather(pred, even)
pred2 = tf.gather(pred, odd)
tgt1 = tf.gather(tgt, even)
tgt2 = tf.gather(tgt, odd)
| tensorflow.gather | 7,440 |
import tensorflow as tf
def test_maximum_batch_size(self):
with self.test_session() as session:
@dynamic_batching.batch_fn_with_options(maximum_batch_size=2)
def f(a, b):
batch_size = tf.shape(a)[0]
return a + b, tf.tile([batch_size], [batch_size])
outputs = [
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
]
tf.train.start_queue_runners()
results = session.run(outputs)
for value, batch_size in results:
| tensorflow.constant | 7,441 |
import tensorflow as tf
res = tf.square(input_ - mean)
max_sqr = tf.reduce_max(res, axes)
res /= max_sqr
res = tf.reduce_mean(res, axes)
res *= max_sqr
| tensorflow.reduce_mean | 7,442 |
import tensorflow as tf
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
| tensorflow.parse_single_example | 7,443 |
import tensorflow as tf
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, probabilities, logits, predictions) = \
create_model(config, is_training, input_ids, input_mask,
segment_ids, label_ids, num_labels,
use_one_hot_embeddings, task_name)
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
| tensorflow.trainable_variables | 7,444 |
import tensorflow as tf
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
| tensorflow.constant | 7,445 |
import tensorflow as tf
'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).')
# checkpoint related configuration
tf.app.flags.DEFINE_string(
'checkpoint_path', './model',
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_string(
'checkpoint_model_scope', '',
'Model scope in the checkpoint. None if the same as the trained model.')
tf.app.flags.DEFINE_string(
#'blouse', 'dress', 'outwear', 'skirt', 'trousers', 'all'
'model_scope', None,
'Model scope name used to replace the name_scope in checkpoint.')
tf.app.flags.DEFINE_string(
'checkpoint_exclude_scopes', None,
'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.')
tf.app.flags.DEFINE_boolean(
| tensorflow.app.flags.DEFINE_string | 7,446 |
import tensorflow as tf
dtype=self.dtype,
trainable=True,
initializer=initialization.xavier_initializer(
shape=m_shape,
dtype=self.dtype,
uniform=self.normal_initializer,
mask=None)))
# Gain bias
bias_shape = [1, 1, 1, 1, self.hgru_k[idx]]
if self.gate_bias_init == 'chronos':
bias_init = -tf.log(
tf.random_uniform(
bias_shape,
minval=1,
maxval=self.timesteps - 1,
dtype=self.dtype))
else:
bias_init = tf.ones(bias_shape, dtype=self.dtype)
setattr(
self,
'gain_bias_%s' % layer,
tf.get_variable(
name='%s_gain_bias' % self.layer_name,
| tensorflow.random_uniform | 7,447 |
import tensorflow as tf
type_list = []
for hop_edge_types, count in zip(edge_types, counts):
neighbors, weights, types = sample_neighbor(
neighbors_list[-1], hop_edge_types, count, default_node=default_node)
neighbors_list.append(tf.reshape(neighbors, [-1]))
weights_list.append(tf.reshape(weights, [-1]))
type_list.append(tf.reshape(weights, [-1]))
return neighbors_list, weights_list, type_list
| tensorflow.reshape | 7,448 |
import tensorflow as tf
def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
| tensorflow.expand_dims | 7,449 |
import tensorflow as tf
def random_batch(batch_size, config):
shape = (batch_size,) + config.input_shape
images = tf.random_uniform(shape)
labels = tf.random_uniform(
[batch_size], minval=0, maxval=config.n_classes, dtype=tf.int32)
return images, labels
| tensorflow.random_uniform | 7,450 |
import tensorflow as tf
self.assertAllClose(1.60944, res)
average_loss_per_sequence = tf.nn.seq2seq.sequence_loss(
logits, targets, weights,
| tensorflow.nn.seq2seq.sequence_loss | 7,451 |
import tensorflow as tf
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV2(pred, tgt):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small))
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV3(pred, tgt, margin=1.0):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
| tensorflow.maximum | 7,452 |
import tensorflow as tf
(nms_masks1,
nms_scores1,
nms_classes1,
_) = isu.instance_non_maximum_suppression_1d_scores(
masks,
scores,
classes,
min_score_thresh=0.65,
min_iou_thresh=0.5,
is_class_agnostic=True)
nms_masks_expected1 = tf.stack([mask0, mask4])
nms_scores_expected1 = tf.constant([1.0, 0.85], dtype=tf.float32)
nms_classes_expected1 = tf.constant([1, 2], dtype=tf.int32)
(nms_masks2,
nms_scores2,
nms_classes2,
_) = isu.instance_non_maximum_suppression_1d_scores(
masks,
scores,
classes,
min_score_thresh=0.65,
min_iou_thresh=0.5,
| tensorflow.constant | 7,453 |
from tensorflow.python.ops import state_ops
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(name, 'mean', [values, weights]):
total = _create_local('total_tensor', shape=values.get_shape())
count = _create_local('count_tensor', shape=values.get_shape())
num_values = array_ops.ones_like(values)
if weights is not None:
weights = math_ops.to_float(weights)
values = math_ops.mul(values, weights)
num_values = math_ops.mul(num_values, weights)
total_compute_op = state_ops.assign_add(total, values)
count_compute_op = state_ops.assign_add(count, num_values)
def compute_mean(total, count, name):
non_zero_count = math_ops.maximum(count,
array_ops.ones_like(count),
name=name)
return math_ops.truediv(total, non_zero_count, name=name)
mean = compute_mean(total, count, 'value')
with ops.control_dependencies([total_compute_op, count_compute_op]):
update_op = compute_mean(total, count, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, mean)
| tensorflow.python.ops.state_ops.assign_add | 7,454 |
from tensorflow.python.framework import ops
self._config.task *
self._config.training_worker_session_startup_stagger_secs)
if sleep_secs:
logging.info('Waiting %d secs before starting task %d.', sleep_secs,
self._config.task)
time.sleep(sleep_secs)
# Device allocation
device_fn = device_fn or self._device_fn
with ops.Graph().as_default() as g, g.device(device_fn):
random_seed.set_random_seed(self._config.tf_random_seed)
global_step = contrib_framework.create_global_step(g)
features, targets = input_fn()
self._check_inputs(features, targets)
train_op, loss_op = self._get_train_ops(features, targets)
return train(
graph=g,
output_dir=self._model_dir,
train_op=train_op,
| tensorflow.python.framework.ops.Graph | 7,455 |
import tensorflow as tf
tf.reset_default_graph()
| tensorflow.reset_default_graph | 7,456 |
import tensorflow as tf
tf.logging.info(eval_results)
tf.logging.info('Finished model {}.'.format(model_scope))
def main(_):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction)
sess_config = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False, intra_op_parallelism_threads = FLAGS.num_cpu_threads, inter_op_parallelism_threads = FLAGS.num_cpu_threads, gpu_options = gpu_options)
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(
save_checkpoints_secs=FLAGS.save_checkpoints_secs).replace(
save_checkpoints_steps=None).replace(
| tensorflow.GPUOptions | 7,457 |
import tensorflow as tf
all_layer_outputs = []
if input_width != hidden_size:
prev_output = dense_layer_2d(
input_tensor, hidden_size, create_initializer(initializer_range),
None, name="embedding_hidden_mapping_in")
else:
prev_output = input_tensor
with tf.variable_scope("transformer", reuse=tf.AUTO_REUSE):
for layer_idx in range(num_hidden_layers):
group_idx = int(layer_idx / num_hidden_layers * num_hidden_groups)
with tf.variable_scope("group_%d" % group_idx):
with tf.name_scope("layer_%d" % layer_idx):
layer_output = prev_output
for inner_group_idx in range(inner_group_num):
| tensorflow.variable_scope | 7,458 |
import tensorflow as tf
o_d1 = self.general_deconv2d(o_c5, self.base_number_of_features * 8, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_1')
o_me1 = tf.concat([o_d1, o_c4], 3) # Skip connection
o_d2 = self.general_deconv2d(o_me1, self.base_number_of_features * 4, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_2')
o_me2 = tf.concat([o_d2, o_c3], 3) # Skip connection
o_d3 = self.general_deconv2d(o_me2, self.base_number_of_features * 2, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_3')
o_me3 = tf.concat([o_d3, o_c2], 3) # Skip connection
| tensorflow.concat | 7,459 |
import tensorflow as tf
"""
if stride is None:
stride = kernel_size
kernel = [1, kernel_size, kernel_size, 1] if data_format == 'NHWC' \
else [1, 1, kernel_size, kernel_size]
strides = [1, stride, stride, 1] if data_format == 'NHWC' else [1, 1, stride, stride]
return tf.nn.avg_pool(value=inputdata, ksize=kernel, strides=strides, padding=padding,
data_format=data_format, name=name)
@staticmethod
def globalavgpooling(inputdata, data_format='NHWC', name=None):
"""
:param name:
:param inputdata:
| tensorflow.nn.avg_pool | 7,460 |
import tensorflow as tf
else:
self.c, self.q, self.ch, self.qh, self.y1, self.y2, self.qa_id = batch.get_next()
# self.word_unk = tf.get_variable("word_unk", shape = [config.glove_dim], initializer=initializer())
self.word_mat = tf.get_variable("word_mat", initializer=tf.constant(
word_mat, dtype=tf.float32), trainable=False)
self.char_mat = tf.get_variable(
"char_mat", initializer=tf.constant(char_mat, dtype=tf.float32))
| tensorflow.constant | 7,461 |
import tensorflow as tf
[0.95, 0.92, 0.1],
[0.1, 0.05, 0.0],
[0.2, 0.3, 0.7],
[0.1, 0.2, 0.8]],
dtype=tf.float32)
(nms_masks1,
nms_scores1,
nms_classes1) = isu.instance_non_maximum_suppression_2d_scores(
masks,
scores,
3,
min_score_thresh=0.65,
min_iou_thresh=0.5,
is_class_agnostic=True)
nms_masks_expected1 = tf.stack([mask0, mask5, mask4])
nms_scores_expected1 = tf.constant([1.0, 0.8, 0.7], dtype=tf.float32)
nms_classes_expected1 = tf.constant([1, 2, 2], dtype=tf.int32)
(nms_masks2,
nms_scores2,
nms_classes2) = isu.instance_non_maximum_suppression_2d_scores(
masks,
scores,
3,
min_score_thresh=0.65,
min_iou_thresh=0.5,
is_class_agnostic=False)
nms_masks_expected2 = tf.stack([mask2, mask0, mask5, mask4])
nms_scores_expected2 = tf.constant([0.95, 1.0, 0.8, 0.7], dtype=tf.float32)
nms_classes_expected2 = tf.constant([0, 1, 2, 2], dtype=tf.int32)
self.assertAllEqual(nms_masks1.numpy(), nms_masks_expected1.numpy())
| tensorflow.constant | 7,462 |
import tensorflow as tf
false_fn=lambda: (tf.concat([vx_keys, tf.reshape(u, (-1, 1))], axis=0),
tf.constant(1, dtype=tf.int64, name='constant'))
)
vx.insert(u, r)
for i in tf.range(start=0, limit=z_t_len - self._p + 1, delta=1, dtype=None, name='range'):
u = tf.string_join(z_t[i:i + self._p], '')
vz_keys, r = tf.cond(
tf.greater(vz.lookup(u), -1),
true_fn=lambda: (vz_keys, tf.add(vz.lookup(u), 1)),
false_fn=lambda: (
tf.concat([vz_keys, tf.reshape(u, (-1, 1))], axis=0), tf.constant(1, dtype=tf.int64))
)
vz.insert(u, r)
kk = tf.Variable(0, dtype=tf.int64)
for i in tf.range(start=0, limit=tf.size(vx_keys), delta=1, dtype=None, name='range'):
for j in tf.range(start=0, limit=tf.size(vz_keys), delta=1, dtype=None, name='range'):
to_add = tf.cond(
tf.greater(vz.lookup(vx_keys[i]), -1),
true_fn=lambda: tf.math.multiply(vx.lookup(vx_keys[i]), vz.lookup(vz_keys[j])),
false_fn=lambda: tf.constant(0, dtype=tf.int64)
| tensorflow.constant | 7,463 |
import tensorflow as tf
coord.join()
# Session closed.
def test_minimum_batch_size(self):
with self.test_session() as session:
@dynamic_batching.batch_fn_with_options(
minimum_batch_size=2, timeout_ms=1000)
def f(a, b):
batch_size = tf.shape(a)[0]
return a + b, tf.tile([batch_size], [batch_size])
output = f(tf.constant([[1, 3]]), tf.constant([2]))
tf.train.start_queue_runners()
start = datetime.datetime.now()
session.run(output)
duration = datetime.datetime.now() - start
# There should have been a timeout here because only one sample was added
# and the minimum batch size is 2.
self.assertLessEqual(.9, duration.total_seconds())
| tensorflow.constant | 7,464 |
import tensorflow as tf
train_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=True,
)
eval_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False,
)
tf.estimator.train_and_evaluate(
estimator,
train_spec=tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=100),
eval_spec=tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=10),
)
# if FLAGS.do_train:
# tf.logging.info("***** Running training *****")
# tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
# train_input_fn = input_fn_builder(
# input_files=input_files,
# max_seq_length=FLAGS.max_seq_length,
# max_predictions_per_seq=FLAGS.max_predictions_per_seq,
# is_training=True)
# estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
# if FLAGS.do_eval:
# tf.logging.info("***** Running evaluation *****")
# tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
| tensorflow.estimator.EvalSpec | 7,465 |
import tensorflow as tf
next_indices = tf.stack([neighbor.indices[:, 0], next_idx], 1)
next_values = weight.values
next_shape = [tf.size(nodes), tf.size(next_nodes)]
next_adj = tf.sparse.SparseTensor(next_indices, next_values, next_shape)
| tensorflow.size | 7,466 |
from tensorflow.python.framework import ops
return [input_shape] + ([tensor_shape.vector(vector_dim)] * 4)
ops.RegisterShape("Conv2D")(common_shapes.conv2d_shape)
ops.RegisterShape("DepthwiseConv2dNative")(
common_shapes.depthwise_conv2d_native_shape)
ops.RegisterShape("AvgPool")(common_shapes.avg_pool_shape)
ops.RegisterShape("MaxPool")(common_shapes.max_pool_shape)
@ops.RegisterShape("MaxPoolWithArgmax")
def _MaxPoolWithArgMaxShape(op):
"""Shape function for MaxPoolWithArgmax op."""
return common_shapes.max_pool_shape(op) * 2
| tensorflow.python.framework.ops.RegisterShape | 7,467 |
import tensorflow as tf
tf.app.flags.DEFINE_bool('RCE_train', False,
'Whether use RCE to train the model.')
tf.app.flags.DEFINE_string('attack_method', 'fgsm',
'The attacking method used')
tf.app.flags.DEFINE_float('eps', 0.01,
'The eps in attacking methods.')
tf.app.flags.DEFINE_string('save_pwd', None,
'')
| tensorflow.app.flags.DEFINE_float | 7,468 |
import tensorflow as tf
if __name__ == "__main__":
# flags.mark_flag_as_required("input_file")
# flags.mark_flag_as_required("bert_config_file")
# flags.mark_flag_as_required("output_dir")
tf.app.run()
| tensorflow.app.run | 7,469 |
import tensorflow as tf
tf.nn.softmax(policy.q_values) *
(tf.log(tf.nn.softmax(policy.q_values)) - tf.log(tf.nn.softmax(adaptive_policy.q_values))),
| tensorflow.nn.softmax | 7,470 |
import tensorflow as tf
self.conv1 = self._conv('conv1', self.x_preprocessed, padding= [[0,0],[3,3],[3,3],[0,0]],
num_filters=64, kernel_size=(7, 7), stride=(2, 2), l2_strength=self.wd,
bias=self.bias)
self.conv1 = self._bn('bn1', self.conv1)
self.conv1 = self._relu('relu1', self.conv1)
_debug(self.conv1)
self.conv1= tf.pad(self.conv1, tf.constant([[0,0],[1,1],[1,1],[0,0]]), "CONSTANT")
self.conv1 = tf.nn.max_pool(self.conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID',
name='max_pool1')
_debug(self.conv1)
print('conv1-shape: ' + str(self.conv1.shape.as_list()))
with tf.variable_scope('conv2_x'):
self.conv2 = self._residual_block('conv2_1', self.conv1, 64)
_debug(self.conv2)
self.conv2 = self._residual_block('conv2_2', self.conv2, 64)
_debug(self.conv2)
with tf.variable_scope('conv3_x'):
self.conv3 = self._residual_block('conv3_1', self.conv2, 128, pool_first=True, strides=2)
_debug(self.conv3)
self.conv3 = self._residual_block('conv3_2', self.conv3, 128)
_debug(self.conv3)
with tf.variable_scope('conv4_x'):
self.conv4 = self._residual_block('conv4_1', self.conv3, 256, pool_first=True, strides=2)
| tensorflow.variable_scope | 7,471 |
import tensorflow as tf
entropy, log_prob):
indices = tf.range(0, layer_id, dtype=tf.int32)
start_id = 4 * (layer_id - 2)
prev_layers = []
for i in range(2): # index_1, index_2
next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm)
prev_c, prev_h = next_c, next_h
query = anchors_w_1.gather(indices)
query = tf.reshape(query, [layer_id, self.lstm_size])
query = tf.tanh(query + tf.matmul(next_h[-1], self.w_attn_2))
query = tf.matmul(query, self.v_attn)
logits = tf.reshape(query, [1, layer_id])
if self.temperature is not None:
logits /= self.temperature
if self.tanh_constant is not None:
logits = self.tanh_constant * tf.tanh(logits)
index = tf.multinomial(logits, 1)
index = tf.to_int32(index)
| tensorflow.matmul | 7,472 |
import tensorflow as tf
image_height, image_width = tf.shape(images)[1], tf.shape(images)[2]
cutout_center_height = tf.random.uniform(
shape=[], minval=0, maxval=image_height,
dtype=tf.int32)
cutout_center_width = tf.random.uniform(
shape=[], minval=0, maxval=image_width,
dtype=tf.int32)
lower_pad = tf.maximum(0, cutout_center_height - length // 2)
upper_pad = tf.maximum(0, image_height - cutout_center_height - length // 2)
left_pad = tf.maximum(0, cutout_center_width - length // 2)
right_pad = tf.maximum(0, image_width - cutout_center_width - length // 2)
cutout_shape = [image_height - (lower_pad + upper_pad),
image_width - (left_pad + right_pad)]
padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
| tensorflow.maximum | 7,473 |
import tensorflow as tf
return 1.0
@property
def is_training(self):
return self.hparams.mode == tf.estimator.ModeKeys.TRAIN
def infer(self, features, *args, **kwargs): # pylint: disable=arguments-differ
del args, kwargs
x = features["inputs"]
batch_size = common_layers.shape_list(x)[0]
features["targets"] = tf.zeros(shape=(batch_size, 1, 1, 1))
_, _ = self(features) # pylint: disable=not-callable
ops = [glow_ops.get_variable_ddi, glow_ops.actnorm, glow_ops.get_dropout]
var_scope = tf.variable_scope("glow/body", reuse=True)
# If eps=None, images are sampled from the prior.
with arg_scope(ops, init=False), var_scope:
predictions, _, _, _ = glow_ops.encoder_decoder(
"codec", self.z_sample, self.hparams, eps=None, reverse=True,
temperature=self.temperature)
| tensorflow.zeros | 7,474 |
import tensorflow as tf
self.real_pc_pred, real_pc_end_points = self.get_pred(self.real_pc_rotated)
self.real_pc_rot_loss = self.get_loss(self.real_pc_pred, self.rot_label_pl, real_pc_end_points)
with tf.variable_scope('generator'):
self.generator_out = self.generator(self.noise, self.n_output, **gen_kwargs)
self.gen_out_rotated = self.rotate_n_angles(self.generator_out, self.rot_label_pl)
self.gen_out_pred, gen_out_end_points = self.get_pred(self.gen_out_rotated)
self.gen_out_rot_loss = self.get_loss(self.gen_out_pred, self.rot_label_pl, gen_out_end_points) #classification loss
#need to fix
if self.ms_task:
with tf.variable_scope('mixed'):
#add fake pc as a rotation class
num_to_add = int(max(self.batch_size/self.num_angles, 1))
idx = tf.range(0, self.batch_size, 1)
idx = tf.random_shuffle(idx)[0:num_to_add]
self.fake_to_add = tf.gather(self.generator_out, idx)
self.mixed_pc = tf.concat([self.real_pc_rotated, self.fake_to_add], 0)
self.mixed_label = tf.concat([self.rot_label_pl, tf.constant(self.num_angles, shape = (num_to_add,))], axis = 0)
mixed_idx = tf.range(0, self.mixed_label.get_shape().as_list()[0], 1)
mixed_idx = tf.random_shuffle(mixed_idx)[0:self.batch_size]
| tensorflow.variable_scope | 7,475 |
import tensorflow as tf
y_true: tensor, observations.
y_pred: tensor, output of network.
Returns:
loss value, means negative log-likelihood.
"""
logL = 0
# pre-calculate cumsum
cumsum_y_pred = tf.cumsum(y_pred)
hazard_ratio = tf.exp(y_pred)
cumsum_hazard_ratio = tf.cumsum(hazard_ratio)
if self.train_data['ties'] == 'noties':
log_risk = tf.log(cumsum_hazard_ratio)
likelihood = y_pred - log_risk
# dimension for E: np.array -> [None, 1]
uncensored_likelihood = likelihood * y_true
logL = -tf.reduce_sum(uncensored_likelihood)
else:
# Loop for death times
for t in self.train_data['failures']:
tfail = self.train_data['failures'][t]
trisk = self.train_data['atrisk'][t]
d = len(tfail)
dr = len(trisk)
| tensorflow.log | 7,476 |
import tensorflow as tf
weights_dir='weights'):
"""Train the model on the specified dataset.
Args:
data_set: dataset instance to use to access data for training/validation
weights_from: str, if not None, initializes model from exisiting weights
start_epoch: int, epoch number to start training from
e.g. for retarining set the epoch number you want to resume training from
summary_every: int, epoch interval to write summary; higher value means lower frequency
of summary writing
"""
with tf.Graph().as_default(), tf.device('/gpu:0'):
self._setup_model_loss(num_classes=num_classes)
if self.is_summary:
self._setup_summaries(self.capped_d_grads, self.capped_g_grads)
self._setup_misc()
self._print_info(data_set)
self._train_semi_supervised(data_set, start_epoch, weights_from, summary_every, model_name,
weights_dir)
def _train_semi_supervised(self, dataset, start_epoch, weights_from, summary_every, model_name,
weights_dir):
| tensorflow.Graph | 7,477 |
import tensorflow as tf
s = sqrt_diag if diag else sqrt
kl_batch = gauss_kl(mu,s,K if shared_k else K_batch)
kl_sum = []
for n in range(Datum.N):
kl_sum.append(gauss_kl(mu[:, n][:,None], # M x 1
sqrt_diag[:, n][:, None] if diag else sqrt[n, :, :][None, :, :], # 1 x M x M or M x 1
K if shared_k else K_batch[n, :, :][None,:,:])) # 1 x M x M or M x M
kl_sum =tf.reduce_sum(kl_sum)
assert_almost_equal(kl_sum.eval(), kl_batch.eval())
def tf_kl_1d(q_mu, q_sigma, p_var=1.0):
p_var = tf.ones_like(q_sigma) if p_var is None else p_var
q_var = tf.square(q_sigma)
kl = 0.5 * (q_var / p_var + tf.square(q_mu) / p_var - 1 + tf.log(p_var / q_var))
return tf.reduce_sum(kl)
@pytest.mark.parametrize('white', [True, False])
def test_oned(session_tf, white, mu, sqrt, K_batch):
"""
Check that the KL divergence matches a 1D by-hand calculation.
"""
m = 0
| tensorflow.ones_like | 7,478 |
import tensorflow as tf
"""
JPEG_OPT = {'fancy_upscaling': True, 'dct_method': 'INTEGER_ACCURATE'}
def uint8_resize_bicubic(image, shape):
ret = tf.image.resize_bicubic([image], shape)
return tf.cast(tf.clip_by_value(ret, 0, 255), tf.uint8)[0]
def resize_shortest_edge(image, image_shape, size):
| tensorflow.image.resize_bicubic | 7,479 |
import tensorflow as tf
alpha=AGENT_ALPHA,
dtype=tf.float32)
agent_epsgreedy = neural_epsilon_greedy_agent.NeuralEpsilonGreedyAgent(
time_step_spec=environment.time_step_spec(),
action_spec=environment.action_spec(),
reward_network=network,
optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=LR),
emit_policy_info=emit_policy_info,
epsilon=EPSILON)
agent = exp3_mixture_agent.Exp3MixtureAgent(
(agent_linucb, agent_lints, agent_epsgreedy))
| tensorflow.compat.v1.train.AdamOptimizer | 7,480 |
import tensorflow as tf
for idx, (x, m) in enumerate(zip(xs, ms)):
c = c*(1-m)
h = h*(1-m)
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
xs[idx] = h
| tensorflow.nn.sigmoid | 7,481 |
import tensorflow as tf
x,
indices.bin_counts,
indices.active_block_indices,
dynamic_bsize=block_params.bsize,
dynamic_bstride=block_params.bstrides,
dynamic_boffset=block_params.boffset,
transpose=transpose)
# Convolution on patches.
if transpose:
q = tf.nn.conv2d(p, w, strides, 'VALID', data_format='NCHW', use_cudnn_on_gpu=True)
else:
q = tf.nn.conv2d(p, w, strides, 'VALID', use_cudnn_on_gpu=True)
# Allocate output tensor.
if use_var:
y = sbnet_module.sparse_scatter_var(
q,
indices.bin_counts,
indices.active_block_indices,
| tensorflow.nn.conv2d | 7,482 |
import tensorflow as tf
candidate_mention_scores = self.get_mention_scores(candidate_span_emb) # [k, 1]
candidate_mention_scores = tf.squeeze(candidate_mention_scores, 1) # [k]
k = tf.to_int32(tf.floor(tf.to_float(tf.shape(context_outputs)[0]) * self.config["top_span_ratio"]))
top_span_indices = coref_ops.extract_spans(tf.expand_dims(candidate_mention_scores, 0),
tf.expand_dims(candidate_starts, 0),
| tensorflow.shape | 7,483 |
import tensorflow as tf
self.D_B_loss = (self.D_B_loss_real + self.D_B_loss_fake) / 2.0
self.D_A_loss_real = binary_cross_entropy_loss(tf.ones_like(self.D_A_real),self.D_A_real)
self.D_A_loss_fake = binary_cross_entropy_loss(tf.zeros_like(self.D_A_fake),self.D_A_fake)
self.D_A_loss = (self.D_A_loss_real + self.D_A_loss_fake) / 2.0
self.discriminator_loss = self.D_B_loss + self.D_A_loss
self.loss_GABA_sum = tf.summary.scalar("g_loss_a2b", self.loss_GABA)
self.loss_GBAB_sum = tf.summary.scalar("g_loss_b2a", self.loss_GBAB)
self.g_total_loss_sum = tf.summary.scalar("g_loss", self.generator_loss)
self.g_sum = tf.summary.merge([self.loss_GABA_sum,self.loss_GBAB_sum,self.g_total_loss_sum])
self.loss_db_sum = tf.summary.scalar("db_loss", self.D_B_loss)
self.loss_da_sum = tf.summary.scalar("da_loss", self.D_A_loss)
self.loss_d_sum = tf.summary.scalar("d_loss",self.discriminator_loss)
| tensorflow.summary.scalar | 7,484 |
import tensorflow as tf
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
| tensorflow.logging.info | 7,485 |
import tensorflow as tf
import numpy as np
import tensorflow as tf
import layers as L
import vat
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('device', '/gpu:0', "device")
tf.app.flags.DEFINE_string('dataset', 'cifar10', "{cifar10, svhn}")
tf.app.flags.DEFINE_string('log_dir', "", "log_dir")
tf.app.flags.DEFINE_integer('seed', 1, "initial random seed")
tf.app.flags.DEFINE_bool('validation', False, "")
tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch")
tf.app.flags.DEFINE_integer('ul_batch_size', 128, "the number of unlabeled examples in a batch")
tf.app.flags.DEFINE_integer('eval_batch_size', 100, "the number of eval examples in a batch")
tf.app.flags.DEFINE_integer('eval_freq', 5, "")
tf.app.flags.DEFINE_integer('num_epochs', 120, "the number of epochs for training")
tf.app.flags.DEFINE_integer('epoch_decay_start', 80, "epoch of starting learning rate decay")
tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch")
tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate")
tf.app.flags.DEFINE_float('mom1', 0.9, "initial momentum rate")
tf.app.flags.DEFINE_float('mom2', 0.5, "momentum rate after epoch_decay_start")
| tensorflow.app.flags.DEFINE_integer | 7,486 |
import tensorflow as tf
Returns:
A 1-D tensor of length batch_size of same type as logits with softmax focal loss
"""
with tf.name_scope(scope, 'focal_loss', [cls_preds, onehot_labels]) as sc:
logits = tf.convert_to_tensor(cls_preds)
onehot_labels = tf.convert_to_tensor(onehot_labels)
precise_logits = tf.cast(logits, tf.float32) if (
logits.dtype == tf.float16) else logits
onehot_labels = tf.cast(onehot_labels, precise_logits.dtype)
predictions = tf.nn.sigmoid(logits)
predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1.-predictions)
# add small value to avoid 0
epsilon = 1e-8
alpha_t = tf.scalar_mul(alpha, tf.ones_like(onehot_labels, dtype=tf.float32))
alpha_t = tf.where(tf.equal(onehot_labels, 1.0), alpha_t, 1-alpha_t)
losses = tf.reduce_sum(-alpha_t * tf.pow(1. - predictions_pt, gamma) * tf.log(predictions_pt+epsilon),
name=name, axis=1)
return losses
def Evaluate(sess):
test_acc = 0.0
test_loss = 0.0
for it in range(test_iteration):
batch_data = next(scene_data_val)
test_batch_x = batch_data['data']
test_batch_y = batch_data['label']
| tensorflow.ones_like | 7,487 |
import tensorflow as tf
def random_crop_and_resize(images, ratio=0.8):
b, h, w, c = images.get_shape().as_list()
ch, cw = map(lambda x: int(x * ratio), (h, w))
crop = tf.random_crop(images, size=[b, ch, cw, 3])
crop = tf.image.resize(crop, [h, w])
return crop
def random_apply(fn, image, prob=1.):
b, *_ = image.get_shape().as_list()
chance = tf.less(tf.random_uniform([b], 0, 1.0), prob)
return tf.where(chance, fn(image), tf.identity(image))
def color_distortion(image, s=1.0):
lower, upper, x = (1 - 0.8 * s), (1 + 0.8 * s), image
x = tf.image.random_brightness(x, max_delta=0.8*s)
x = tf.image.random_contrast(x, lower=lower, upper=upper)
x = tf.image.random_saturation(x, lower=lower, upper=upper)
x = tf.image.random_hue(x, max_delta=0.2*s)
x = tf.clip_by_value(x, 0, 1)
return x
def color_drop(image):
image = tf.image.rgb_to_grayscale(image)
image = tf.tile(image, [1, 1, 1, 3])
return image
# pylint: disable=not-callable
@gin.configurable(blacklist=["kwargs"])
class CLGAN(modular_gan.ModularGAN):
"""Self-Supervised GAN with Contrastive Loss"""
| tensorflow.image.random_contrast | 7,488 |
import tensorflow as tf
tf.random_normal(shape=util.shape(variable)) * learning_rate
for variable in variables
]
perturbation_deltas = [
pert - prev_pert
for pert, prev_pert in zip(perturbations, previous_perturbations)
]
applied = self.apply_step(variables=variables, deltas=perturbation_deltas)
with tf.control_dependencies(control_inputs=(applied,)):
perturbed_loss = fn_loss(**arguments)
direction = tf.sign(x=(unperturbed_loss - perturbed_loss))
deltas = [
delta + direction * perturbation
for delta, perturbation in zip(deltas, perturbations)
]
return deltas, perturbations
num_samples = self.num_samples.value()
deltas, perturbations = self.while_loop(
cond=util.tf_always_true, body=body, loop_vars=(deltas, previous_perturbations),
| tensorflow.sign | 7,489 |
import tensorflow as tf
res = sess.run([mem])
self.assertEqual((2, 4), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
dec, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
| tensorflow.global_variables_initializer | 7,490 |
import tensorflow as tf
# visualization
fig = vis.get_figure()
fig.canvas.draw()
self.vis_placeholder = tf.placeholder(tf.uint8, ut.fig2rgb_array(fig).shape)
self.vis_summary = tf.summary.image('visualization', self.vis_placeholder)
# embedding
dists = l2(self.embedding_test[:-1] - self.embedding_test[1:])
self.dist = dists
metrics = []
metrics.append(tf.summary.histogram('point_distance', dists))
metrics.append(tf.summary.scalar('training/trajectory_length', tf.reduce_sum(dists)))
self.blur_ph = tf.placeholder(dtype=tf.float32)
metrics.append(tf.summary.scalar('training/blur_sigma', self.blur_ph))
pred = self.embedding_test[1:-1]*2 - self.embedding_test[0:-2]
pred_error = l2(pred - self.embedding_test[2:])
mean_dist, mean_pred_error = tf.reduce_mean(dists), tf.reduce_mean(pred_error)
improvement = (mean_dist-mean_pred_error)/mean_dist
| tensorflow.summary.histogram | 7,491 |
import tensorflow as tf
"""
with tf.name_scope(name):
private_samples -= tf.reduce_mean(private_samples, 0)
shared_samples -= tf.reduce_mean(shared_samples, 0)
private_samples = tf.nn.l2_normalize(private_samples, 1)
shared_samples = tf.nn.l2_normalize(shared_samples, 1)
correlation_matrix = tf.matmul(private_samples, shared_samples, transpose_a=True)
cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight
cost = tf.where(cost > 0, cost, 0, name='value')
| tensorflow.nn.l2_normalize | 7,492 |
import tensorflow as tf
zip(grads, model.trainable_variables), global_step=global_step)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(1):
sess.run(train_op)
# Benchmark related
def device_and_data_format():
return ("/gpu:0",
"channels_first") if tf.test.is_gpu_available() else ("/cpu:0",
"channels_last")
def random_batch(batch_size, config):
shape = (batch_size,) + config.input_shape
images = tf.random_uniform(shape)
labels = tf.random_uniform(
[batch_size], minval=0, maxval=config.n_classes, dtype=tf.int32)
return images, labels
| tensorflow.test.is_gpu_available | 7,493 |
from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc
hparams = get_default_hparams()
tf.enable_resource_variables()
for sample_size in [10, 25, 50, 100, 200]:
hparams.n_samples = sample_size
tf.reset_default_graph()
with tf.Graph().as_default():
energy_fn, _, _ = l2hmc.get_scg_energy_fn()
x = tf.random_normal([hparams.n_samples, hparams.x_dim],
dtype=tf.float32)
dynamics = l2hmc.Dynamics(
x_dim=hparams.x_dim,
minus_loglikelihood_fn=energy_fn,
n_steps=hparams.n_steps,
eps=hparams.eps)
loss, _, _ = l2hmc.compute_loss(dynamics, x)
optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate)
train_op, loss, _ = graph_step(dynamics, optimizer, x)
# Single thread; fairer comparison against eager
session_conf = tf.ConfigProto(inter_op_parallelism_threads=1)
with tf.Session(config=session_conf) as sess:
sess.run(tf.global_variables_initializer())
# Warmup to reduce initialization effect when timing
for _ in range(hparams.n_warmup_iters):
_, _ = sess.run([train_op, loss])
| tensorflow.contrib.eager.python.examples.l2hmc.l2hmc.compute_loss | 7,494 |
import tensorflow as tf
'weights', [num_channels_in, num_out_channels],
self.data_type,
tf.random_normal_initializer(stddev=np.sqrt(init_factor /
(num_channels_in))))
biases = tf.get_variable('biases', [num_out_channels],
self.data_type,
tf.constant_initializer(0.0))
logits = tf.matmul(input_layer, kernel) + biases
if activation == 'relu':
affine1 = tf.nn.relu(logits, name=name)
elif activation == 'linear' or activation is None:
affine1 = logits
| tensorflow.constant_initializer | 7,495 |
import tensorflow as tf
if pos is not None:
pos = tf.reshape(pos, [-1, 1])
pos = tf.minimum(pos, encoder_input_length - 1)
if pos is not None and encoder.attn_window_size > 0:
# `pred_edits` scenario, where we know the aligned pos
# when the windows size is non-zero, we concatenate consecutive encoder states
# and map it to the right attention vector size.
weights = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos, axis=1)), depth=attn_length))
weighted_average = []
for offset in range(-encoder.attn_window_size, encoder.attn_window_size + 1):
pos_ = pos + offset
pos_ = tf.minimum(pos_, encoder_input_length - 1)
pos_ = tf.maximum(pos_, 0) # TODO: when pos is < 0, use <S> or </S>
weights_ = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos_, axis=1)), depth=attn_length))
| tensorflow.squeeze | 7,496 |
from tensorflow.python.ops import variable_scope
if mode_gen == 'ce_train':
accuracy = _mask_and_accuracy(vocab_scores, answer_batch, loss_weights)
return accuracy, self._loss, sampled_words
else:
return None, self._loss, sampled_words
def calculate_encoder_features(self, encoder_states, encoder_dim):
options = self.options
input_shape = tf.shape(encoder_states)
batch_size = input_shape[0]
passage_len = input_shape[1]
with variable_scope.variable_scope("attention_decoder"):
encoder_features = tf.expand_dims(encoder_states, axis=2) # now is shape [batch_size, passage_len, 1, encoder_dim]
W_h = variable_scope.get_variable("W_h", [1, 1, encoder_dim, options.attention_vec_size])
self.W_h = W_h
encoder_features = nn_ops.conv2d(encoder_features, W_h, [1, 1, 1, 1], "SAME") # [batch_size, passage_len, 1, attention_vec_size]
encoder_features = tf.reshape(encoder_features, [batch_size, passage_len, options.attention_vec_size])
return encoder_features
def decode_mode(self, word_vocab, beam_size, state_t_1, context_t_1, coverage_t_1, word_t,
encoder_states, encoder_features, passage_word_idx, passage_mask):
options = self.options
| tensorflow.python.ops.variable_scope.variable_scope | 7,497 |
import tensorflow as tf
:param x: [Tensor] [N, H, W, C]. input tensor, dtype float32.
:param ksize: [list] List of 4 int. Sparse convolution kernel size.
:param strides: [list] List of 4 int. Sparse convolution stride size.
:param padding: [string] `VALID` or `SAME`, padding method for sparse convolution.
:param bsize [list] List of 4 int. Block size. Optional.
:param bstrides: [list] List of 4 int. Block strides. Optional.
:return [Tensor] [N, H+Ph, W+Pw, C]. Padded input tensor.
"""
x_shape = tf.shape(x)
if padding == 'SAME':
pad_h0, pad_h1, pad_w0, pad_w1 = calc_padding_4d(x_shape, ksize, strides, padding)
if bstrides is not None:
# Here we do not use the standard padding on the right hand side.
# If the convolution results is larger than expected, the scatter function will not use
# out-of-boundary points.
assert bsize is not None, 'Must pass in bsize and bstrides together.'
| tensorflow.shape | 7,498 |
import tensorflow.contrib.graph_editor as ge
def capture_ops():
"""Decorator to capture ops created in the block.
with capture_ops() as ops:
# create some ops
print(ops) # => prints ops created.
"""
micros = int(time.time()*10**6)
scope_name = str(micros)
op_list = []
with tf.name_scope(scope_name):
yield op_list
g = tf.get_default_graph()
op_list.extend(ge.select_ops(scope_name+"/.*", graph=g))
def _to_op(tensor_or_op):
if hasattr(tensor_or_op, "op"):
return tensor_or_op.op
return tensor_or_op
def _to_ops(iterable):
if not _is_iterable(iterable):
return iterable
return [_to_op(i) for i in iterable]
def _is_iterable(o):
try:
| tensorflow.contrib.graph_editor.select_ops | 7,499 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.