seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
base_dir = osp.expanduser(root_dir)
if not tf.io.gfile.exists(base_dir):
tf.io.gfile.makedirs(base_dir)
tag = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
tb_logdir = osp.join(base_dir, tag, 'tb')
save_dir = osp.join(base_dir, tag, 'train')
tf.io.gfile.makedirs(tb_logdir)
tf.io.gfile.makedirs(save_dir)
writer = tf.contrib.summary.create_file_writer(tb_logdir)
writer.set_as_default()
return writer, save_dir
| tensorflow.io.gfile.makedirs | 3,700 |
import tensorflow as tf
# Also, we can limit the size of GPU memory used, with the following option
config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess_limited = tf.Session(config=config)
# How to set placements on multiple devices.
# Here, assume we have three devies CPU:0, GPU:0, and GPU:1
if tf.test.is_built_with_cuda():
with tf.device('/cpu:0'):
a = tf.constant([1.0, 3.0, 5.0], shape=[1, 3])
b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])
with tf.device('/gpu:1'):
c = tf.matmul(a,b)
c = tf.reshape(c, [-1])
| tensorflow.test.is_built_with_cuda | 3,701 |
import tensorflow as tf
scales_to_logits[MERGED_LOGITS_SCOPE].dtype)
predictions[output] = tf.argmax(logits, 3, output_type=tf.dtypes.int32)
#predictions[output + PROB_SUFFIX] = tf.nn.softmax(logits)
else:
argmax_results = tf.argmax(logits, 3, output_type=tf.dtypes.int32)
argmax_results = tf.image.resize_nearest_neighbor(
tf.expand_dims(argmax_results, 3),
tf.shape(images)[1:3],
| tensorflow.argmax | 3,702 |
import tensorflow as tf
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
| tensorflow.nn.softmax | 3,703 |
import tensorflow as tf
if pool_first:
if in_channel == filters:
if strides == 1:
shortcut = tf.identity(x)
else:
shortcut= tf.pad(x, tf.constant([[0,0],[1,1],[1,1],[0,0]]), "CONSTANT")
shortcut = tf.nn.max_pool(shortcut, [1, strides, strides, 1], [1, strides, strides, 1], 'VALID')
else:
shortcut = self._conv('shortcut_conv', x, padding='VALID',
num_filters=filters, kernel_size=(1, 1), stride=(strides, strides),
bias=self.bias)
else:
if dilation != 1:
| tensorflow.nn.max_pool | 3,704 |
from tensorflow.python.framework import tensor_util
if self.validate_args:
x = control_flow_ops.with_dependencies([
check_ops.assert_rank(x, 0),
check_ops.assert_non_negative(x)], x)
return x
def _introspect_ndims(self, ndims):
"""Helper to establish some properties of input ndims args."""
if self._is_all_constant_helper(ndims):
return (tensor_util.constant_value(ndims),
tensor_util.constant_value(ndims) == 0)
return None, math_ops.equal(ndims, 0)
| tensorflow.python.framework.tensor_util.constant_value | 3,705 |
import tensorflow as tf
parallelism. If set to 0, the system will pick
an appropriate number.""")
tf.flags.DEFINE_string('trace_file', None,
"""Enable TensorFlow tracing and write trace to
| tensorflow.flags.DEFINE_string | 3,706 |
from tensorflow.python.ops import math_ops
return None
else:
return array_ops.reshape(
math_ops.to_float(features[self._weight_column_name]), shape=(-1,))
@property
| tensorflow.python.ops.math_ops.to_float | 3,707 |
import tensorflow as tf
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
| tensorflow.reshape | 3,708 |
from tensorflow.python.framework import ops
ops.RegisterShape("Abs")(common_shapes.unchanged_shape)
ops.RegisterShape("Ceil")(common_shapes.unchanged_shape)
ops.RegisterShape("Conj")(common_shapes.unchanged_shape)
ops.RegisterShape("Cos")(common_shapes.unchanged_shape)
ops.RegisterShape("Exp")(common_shapes.unchanged_shape)
ops.RegisterShape("Floor")(common_shapes.unchanged_shape)
ops.RegisterShape("Imag")(common_shapes.unchanged_shape)
ops.RegisterShape("Inv")(common_shapes.unchanged_shape)
ops.RegisterShape("IsFinite")(common_shapes.unchanged_shape)
ops.RegisterShape("IsInf")(common_shapes.unchanged_shape)
ops.RegisterShape("IsNan")(common_shapes.unchanged_shape)
ops.RegisterShape("Log")(common_shapes.unchanged_shape)
ops.RegisterShape("LogicalNot")(common_shapes.unchanged_shape)
ops.RegisterShape("Neg")(common_shapes.unchanged_shape)
| tensorflow.python.framework.ops.RegisterShape | 3,709 |
import tensorflow as tf
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
self.assertTrue(logits.op.name.startswith(
'MobilenetV1/Logits/SpatialSqueeze'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('Predictions' in end_points)
self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
[batch_size, num_classes])
def testBuildPreLogitsNetwork(self):
batch_size = 5
height, width = 224, 224
num_classes = None
inputs = tf.random_uniform((batch_size, height, width, 3))
net, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
self.assertTrue(net.op.name.startswith('MobilenetV1/Logits/AvgPool'))
self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024])
self.assertFalse('Logits' in end_points)
self.assertFalse('Predictions' in end_points)
def testBuildBaseNetwork(self):
batch_size = 5
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
net, end_points = mobilenet_v1.mobilenet_v1_base(inputs)
self.assertTrue(net.op.name.startswith('MobilenetV1/Conv2d_13'))
self.assertListEqual(net.get_shape().as_list(),
| tensorflow.random_uniform | 3,710 |
import tensorflow as tf
Based on: https://github.com/gitlimlab/CycleGAN-Tensorflow/blob/master/ops.py
For tf padding, refer to: https://www.tensorflow.org/api_docs/python/tf/pad
"""
reg_l2 = tf.keras.regularizers.l2(5e-7)
if padding == 'SYMMETRIC' or padding == 'REFLECT':
p = (kernel_size - 1) // 2
| tensorflow.keras.regularizers.l2 | 3,711 |
from tensorflow.python.ops import array_ops
if n_classes < 2:
raise ValueError("n_classes must be >= 2")
super(_MultiClassTargetColumn, self).__init__(
loss_fn=loss_fn,
num_label_columns=1 if n_classes == 2 else n_classes,
label_name=label_name,
weight_column_name=weight_column_name)
def logits_to_predictions(self, logits, proba=False):
if self.num_label_columns == 1:
logits = array_ops.concat(1, [array_ops.zeros_like(logits), logits])
if proba:
return nn.softmax(logits)
else:
return math_ops.argmax(logits, 1)
def _default_eval_metrics(self):
if self._num_label_columns == 1:
return _get_default_binary_metrics_for_eval(thresholds=[.5])
| tensorflow.python.ops.array_ops.zeros_like | 3,712 |
import tensorflow as tf
# Note: tf.nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = tf.clip_by_value(output, epsilon, 1 - epsilon)
output = tf.log(output / (1 - output))
try:
return tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
except TypeError:
return tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=target)
def sum(x, axis=None, keepdims=False):
"""Sum of the values in a tensor, alongside the specified axis.
Parameters
----------
x: A tensor or variable.
axis: An integer, the axis to sum over.
| tensorflow.nn.sigmoid_cross_entropy_with_logits | 3,713 |
import tensorflow as tf
[None, num_classes])
images = tf.random_uniform((batch_size, height, width, 3))
| tensorflow.random_uniform | 3,714 |
import tensorflow as tf
dec, mem = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].c.shape)
self.assertEqual((2, 2), res[0].h.shape)
# Test when num_decoder_symbols is provided, the size of decoder output
# is num_decoder_symbols.
with tf.variable_scope("decoder_symbols_seq2seq"):
dec, mem = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, num_decoder_symbols=3,
embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 3), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
| tensorflow.variable_scope | 3,715 |
import tensorflow as tf
with tf.variable_scope("no_tuple"):
cell1 = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
dec, mem = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell1, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 4), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
dec, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
| tensorflow.get_variable | 3,716 |
import tensorflow as tf
tf.saved_model.load(
| tensorflow.saved_model.load | 3,717 |
import tensorflow as tf
# Select optimizer
self.optimizer_func = tf.train.AdagradOptimizer
if self.hparams.grad_strategy == 'sgd':
self.optimizer_func = tf.train.GradientDescentOptimizer
self.separate_gradient_update()
tf.summary.scalar('Gradient Norm', self.norm, collections=['train'])
tf.summary.scalar('Learning Rate', self.ranker_learning_rate, collections=['train'])
tf.summary.scalar('Final Loss', tf.reduce_mean(self.loss), collections=['train'])
clipped_labels = tf.clip_by_value(reshaped_train_labels, clip_value_min=0, clip_value_max=1)
pad_removed_train_output = self.remove_padding_for_metric_eval(self.docid_inputs, train_output)
for metric in self.exp_settings['metrics']:
for topn in self.exp_settings['metrics_topn']:
list_weights = tf.reduce_mean(self.propensity_weights * clipped_labels, axis=1, keep_dims=True)
metric_value = utils.make_ranking_metric_fn(metric, topn)(reshaped_train_labels, pad_removed_train_output, None)
tf.summary.scalar('%s_%d' % (metric, topn), metric_value, collections=['train'])
weighted_metric_value = utils.make_ranking_metric_fn(metric, topn)(reshaped_train_labels, pad_removed_train_output, list_weights)
| tensorflow.reduce_mean | 3,718 |
import tensorflow as tf
box_encodings = ops.position_sensitive_crop_regions(
location_feature_map,
boxes=tf.reshape(proposal_boxes, [-1, self._box_code_size]),
box_ind=get_box_indices(proposal_boxes),
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True)
box_encodings = tf.squeeze(box_encodings, squeeze_dims=[1, 2])
box_encodings = tf.reshape(box_encodings,
[batch_size * num_boxes, 1, self.num_classes,
self._box_code_size])
# Class predictions.
total_classes = self.num_classes + 1 # Account for background class.
class_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
| tensorflow.reshape | 3,719 |
from tensorflow.contrib.slim.python.slim.data import dataset_data_provider
def testTFRecordDataset(self):
dataset_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(),
'tfrecord_dataset'))
height = 300
width = 280
with self.cached_session():
test_dataset = _create_tfrecord_dataset(dataset_dir)
provider = dataset_data_provider.DatasetDataProvider(test_dataset)
key, image, label = provider.get(['record_key', 'image', 'label'])
image = _resize_image(image, height, width)
with session.Session('') as sess:
with queues.QueueRunners(sess):
key, image, label = sess.run([key, image, label])
split_key = key.decode('utf-8').split(':')
self.assertEqual(2, len(split_key))
| tensorflow.contrib.slim.python.slim.data.dataset_data_provider.DatasetDataProvider | 3,720 |
import tensorflow as tf
parallel_iterations=decoder.parallel_iterations,
swap_memory=decoder.swap_memory)
outputs = outputs.stack()
weights = weights.stack() # batch_size, encoders, output time, input time
states = states.stack()
attns = attns.stack()
samples = samples.stack()
# put batch_size as first dimension
outputs = tf.transpose(outputs, perm=(1, 0, 2))
weights = tf.transpose(weights, perm=(1, 0, 2))
states = tf.transpose(states, perm=(1, 0, 2))
attns = tf.transpose(attns, perm=(1, 0, 2))
samples = tf.transpose(samples)
return outputs, weights, states, attns, samples, get_logits, initial_data
def encoder_decoder(encoders, decoders, encoder_inputs, targets, feed_previous, align_encoder_id=0,
encoder_input_length=None, feed_argmax=True, rewards=None, use_baseline=True,
training=True, global_step=None,
| tensorflow.transpose | 3,721 |
import tensorflow as tf
"""
gh_x, gh_w = hermgauss(num_gauss_hermite_points)
gh_x = gh_x.reshape(1, -1)
gh_w = gh_w.reshape(-1, 1) / np.sqrt(np.pi)
shape = tf.shape(Fmu)
Fmu, Fvar = [tf.reshape(e, (-1, 1)) for e in (Fmu, Fvar)]
X = gh_x * tf.sqrt(2.0 * Fvar) + Fmu
logp = phi(X)
| tensorflow.shape | 3,722 |
import tensorflow as tf
predictions, label_ids, weights=is_real_example)
# Compute Matthew's correlation
mcc = tf.div_no_nan(
tp * tn - fp * fn,
tf.pow((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn), 0.5))
# Compute accuracy
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions,
| tensorflow.pow | 3,723 |
import tensorflow as tf
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
mobilenet_v1.mobilenet_v1(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes,
reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEqual(output.shape, (eval_batch_size,))
def testLogitsNotSqueezed(self):
num_classes = 25
images = tf.random_uniform([1, 224, 224, 3])
logits, _ = mobilenet_v1.mobilenet_v1(images,
num_classes=num_classes,
spatial_squeeze=False)
with self.test_session() as sess:
tf.global_variables_initializer().run()
logits_out = sess.run(logits)
self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self):
sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)
self.assertNotIn('is_training', sc[slim.arg_scope_func_key(
slim.batch_norm)])
| tensorflow.random_uniform | 3,724 |
import tensorflow as tf
"""Center loss based on the paper "A Discriminative Feature Learning Approach for Deep Face Recognition"
(http://ydwen.github.io/papers/WenECCV16.pdf)
"""
nrof_features = features.get_shape()[1]
centers = tf.get_variable('centers', [nrof_classes, nrof_features], dtype=tf.float32,
initializer=tf.constant_initializer(0), trainable=False)
label = tf.reshape(label, [-1])
centers_batch = tf.gather(centers, label)
diff = (1 - alfa) * (centers_batch - features)
centers = tf.scatter_sub(centers, label, diff)
# centers = tf.nn.l2_normalize(centers, 1, 1e-10, name='centers_norm')
loss = tf.reduce_mean(tf.square(features - centers_batch))
return loss, centers
| tensorflow.gather | 3,725 |
from tensorflow.python.ops import gen_nn_ops
features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
`int16`, or `int8`.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `features`.
"""
with ops.op_scope([features], name, "Relu6") as name:
features = ops.convert_to_tensor(features, name="features")
return gen_nn_ops._relu6(features, name=name)
def softmax_cross_entropy_with_logits(logits, labels, name=None):
"""Computes softmax cross entropy between `logits` and `labels`.
Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For
example, each CIFAR-10 image is labeled with one and only one label: an image
| tensorflow.python.ops.gen_nn_ops._relu6 | 3,726 |
import tensorflow as tf
# [n_envs * n_steps, n_act] # Directly computed gradient of KL divergence wrt f
kl_grad = - f_polyak_i / (f_i_ + eps)
k_dot_g = tf.reduce_sum(kl_grad * grad, axis=-1)
adj = tf.maximum(0.0, (tf.reduce_sum(kl_grad * grad, axis=-1) - self.delta) / (
tf.reduce_sum(tf.square(kl_grad), axis=-1) + eps)) # [n_envs * n_steps]
# Calculate stats (before doing adjustment) for logging.
avg_norm_k = avg_norm(kl_grad)
avg_norm_g = avg_norm(grad)
avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g))
avg_norm_adj = tf.reduce_mean(tf.abs(adj))
grad = grad - tf.reshape(adj, [self.n_envs * self.n_steps, 1]) * kl_grad
# These are turst region adjusted gradients wrt f ie statistics of policy pi
grads_f = -grad / (self.n_envs * self.n_steps)
grads_policy = tf.gradients(f_i_, self.params, grads_f)
grads_q = tf.gradients(loss_q * self.q_coef, self.params)
grads = [gradient_add(g1, g2, param, verbose=self.verbose)
| tensorflow.abs | 3,727 |
import tensorflow as tf
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
if not forCnn:
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
if return_alphas:
| tensorflow.nn.softmax | 3,728 |
import tensorflow as tf
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
| tensorflow.where | 3,729 |
import tensorflow as tf
outputs = [
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
| tensorflow.constant | 3,730 |
import tensorflow as tf
def metric_fn(per_example_loss, label_ids, logits):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(label_ids, predictions)
loss = tf.metrics.mean(per_example_loss)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, predictions=probabilities, scaffold_fn=scaffold_fn)
return output_spec
return model_fn
| tensorflow.contrib.tpu.TPUEstimatorSpec | 3,731 |
import tensorflow as tf
import traceback
import time
import os
log = infolog.log
def add_embedding_stats(summary_writer, embedding_names, paths_to_meta, checkpoint_path):
# Create tensorboard projector
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
config.model_checkpoint_path = checkpoint_path
for embedding_name, path_to_meta in zip(embedding_names, paths_to_meta):
# Initialize config
embedding = config.embeddings.add()
# Specifiy the embedding variable and the metadata
embedding.tensor_name = embedding_name
embedding.metadata_path = path_to_meta
| tensorflow.contrib.tensorboard.plugins.projector.ProjectorConfig | 3,732 |
import tensorflow as tf
if self.tanh_constant is not None:
op_tanh = self.tanh_constant / self.op_tanh_reduce
logits = op_tanh * tf.tanh(logits)
if use_bias:
logits += self.b_soft_no_learn
op_id = tf.multinomial(logits, 1)
op_id = tf.to_int32(op_id)
op_id = tf.reshape(op_id, [1])
arc_seq = arc_seq.write(start_id + 2 * i + 1, op_id)
curr_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=op_id)
log_prob += curr_log_prob
curr_ent = tf.stop_gradient(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=tf.nn.softmax(logits)))
entropy += curr_ent
inputs = tf.nn.embedding_lookup(self.w_emb, op_id)
next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm)
anchors = anchors.write(layer_id, next_h[-1])
anchors_w_1 = anchors_w_1.write(layer_id, tf.matmul(next_h[-1], self.w_attn_1))
inputs = self.g_emb
return (layer_id + 1, inputs, next_c, next_h, anchors, anchors_w_1,
arc_seq, entropy, log_prob)
loop_vars = [
| tensorflow.nn.softmax | 3,733 |
from tensorflow.python.ops import data_flow_ops
labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
nrof_preprocess_threads = 4
image_size = (args.image_size, args.image_size)
eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
dtypes=[tf.string, tf.int32, tf.int32],
shapes=[(1,), (1,), (1,)],
shared_name=None, name=None)
eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='eval_enqueue_op')
image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder)
| tensorflow.python.ops.data_flow_ops.FIFOQueue | 3,734 |
import tensorflow as tf
x = tf.nn.bias_add(x, bias)
return x
def t_conv(self, id, input, channels, size=3, stride=1, use_bias=True, padding="SAME", init_stddev=-1.0):
# good old t-conv. I love it!
assert padding in ["SAME", "VALID"], 'valid paddings are "SAME", "VALID"'
if type(size) == int:
size = [size, size]
if init_stddev <= 0.0:
init = tf.contrib.layers.variance_scaling_initializer(dtype=tf.float32)
else:
init = tf.truncated_normal_initializer(stddev=init_stddev)
return tf.layers.conv2d_transpose(input, channels, kernel_size=size, strides=[stride, stride],
padding=padding, kernel_initializer=init, name='tr_conv' + id, use_bias=use_bias)
# Traditional U-Net
def build_Unet_Arch(self, input_data, name="Unet_Arch"):
self.base_number_of_features = 32
| tensorflow.contrib.layers.variance_scaling_initializer | 3,735 |
from tensorflow.python.training import saver
log_every_steps=log_every_steps,
supervisor_is_chief=(self._config.task == 0),
supervisor_master=self._config.master,
feed_fn=feed_fn,
max_steps=steps,
fail_on_nan_loss=fail_on_nan_loss)
def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None):
if self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset'):
return
checkpoint_path = saver.latest_checkpoint(self._model_dir)
eval_dir = os.path.join(self._model_dir, 'eval')
with ops.Graph().as_default() as g:
random_seed.set_random_seed(self._config.tf_random_seed)
global_step = contrib_framework.create_global_step(g)
features, targets = input_fn()
self._check_inputs(features, targets)
eval_dict = self._get_eval_ops(features, targets, metrics or
self._get_default_metric_functions())
eval_results, _ = evaluate(
graph=g,
| tensorflow.python.training.saver.latest_checkpoint | 3,736 |
import tensorflow as tf
def model_fn_builder(bert_config, init_checkpoint, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
model = modeling.BertModel(
| tensorflow.logging.info | 3,737 |
import tensorflow as tf
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5])
# Unnecessary, if you have already sorted when making tfrecord and no data augmentation.
gtboxes_and_label_q = tf.py_func(func=re_order,
inp=[tf.reshape(gtboxes_and_label_q, [-1, 9]), True],
Tout=[tf.float32])
gtboxes_and_label_q = tf.reshape(gtboxes_and_label_q, [cfgs.BATCH_SIZE, -1, 9])
img = inputs_list[i][0]
img_shape = inputs_list[i][-2:]
h_crop = tf.reduce_max(img_shape[0])
w_crop = tf.reduce_max(img_shape[1])
img = tf.image.crop_to_bounding_box(image=img,
offset_height=0,
offset_width=0,
target_height=tf.cast(h_crop, tf.int32),
target_width=tf.cast(w_crop, tf.int32))
outputs = fcos.build_whole_detection_network(input_img_batch=img,
gtboxes_batch_h=gtboxes_and_label_h,
gtboxes_batch_r=gtboxes_and_label_q,
gpu_id=i)
| tensorflow.reduce_max | 3,738 |
import tensorflow as tf
"""
with tf.variable_scope(name):
| tensorflow.variable_scope | 3,739 |
import tensorflow as tf
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
| tensorflow.constant | 3,740 |
import tensorflow as tf
w = x_shape[2] + pad_w0 + pad_w1
pad_h1 += tf.mod(-h + bsize[1], bstrides[1])
pad_w1 += tf.mod(-w + bsize[2], bstrides[2])
return tf.pad(x, [[0, 0], [pad_h0, pad_h1], [pad_w0, pad_w1], [0, 0]])
else:
if bstrides is not None:
assert bsize is not None, 'Must pass in bsize and bstrides together.'
h = x_shape[1]
w = x_shape[2]
pad_h1 = tf.mod(-h + bsize[1], bstrides[1])
pad_w1 = tf.mod(-w + bsize[2], bstrides[2])
return tf.cond(
tf.logical_or(tf.greater(pad_h1, 0), tf.greater(pad_w1, 0)),
lambda: tf.pad(x, [[0, 0], [0, pad_h1], [0, pad_w1], [0, 0]]), lambda: x)
else:
return x
def _get_offset_array_tf(shape):
"""
| tensorflow.mod | 3,741 |
import tensorflow as tf
raise ValueError('depth=%g is a not a valid setting!' % depth)
# input tensors
self.input_x = tf.placeholder(tf.int32, [None, sequence_max_length], name="input_x")
self.input_tags = tf.placeholder(tf.int32, [None, sequence_max_length], name="input_tags")
self.input_deps = tf.placeholder(tf.int32, [None, sequence_max_length], name="input_dependency")
self.input_head = tf.placeholder(tf.int32, [None, sequence_max_length], name="input_head")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.is_training = tf.placeholder(tf.bool)
initializer = tf.contrib.layers.variance_scaling_initializer()
# Embedding Lookup 16
with tf.device('/cpu:0'), tf.name_scope("embedding"):
if use_he_uniform:
self.embedding_W = tf.get_variable(name='lookup_W', shape=[num_quantized_chars, embedding_size],
| tensorflow.placeholder | 3,742 |
import tensorflow as tf
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
| tensorflow.logging.info | 3,743 |
import tensorflow as tf
D = tf.cast(tf.shape(X)[1], tf.float32)
N = tf.cast(tf.shape(X)[0], tf.float32)
D_int = tf.cast(D, tf.int32)
N_int = tf.cast(N, tf.int32)
if y is None:
y = silverman_rule_of_thumb(N)
YDistr = tf.contrib.distributions.MultivariateNormalDiag(loc=tf.zeros(D_int, tf.float32),
scale_diag=tf.ones(D_int, tf.float32))
Y = YDistr.sample(N_int)
T = 1.0/(2.0*N*tf.sqrt(m.pi*y))
A0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)
A = tf.reduce_sum(phi_sampling(A0/(4*y), D))
| tensorflow.zeros | 3,744 |
import tensorflow as tf
order_m: TensorLike,
x: TensorLike) -> TensorLike:
degree_l = tf.convert_to_tensor(value=degree_l)
order_m = tf.convert_to_tensor(value=order_m)
x = tf.convert_to_tensor(value=x)
pmm = _evaluate_legendre_polynomial_pmm_eval(order_m, x)
return tf.where(
tf.equal(degree_l, order_m), pmm,
_evaluate_legendre_polynomial_branch(degree_l, order_m, x, pmm))
def _spherical_harmonics_normalization(l, m, var_type=tf.float64):
l = tf.cast(l, dtype=var_type)
m = tf.cast(m, dtype=var_type)
numerator = (2.0 * l + 1.0) * factorial(l - tf.abs(m))
denominator = 4.0 * np.pi * factorial(l + tf.abs(m))
return tf.sqrt(numerator / denominator)
def _evaluate_spherical_harmonics_branch(degree,
order,
theta,
phi,
sign_order,
var_type=tf.float64):
| tensorflow.cast | 3,745 |
import tensorflow as tf
# check_shape([adv_bc, log_f_bc], [[self.n_envs * self.n_steps, self.n_act]] * 2)
if continuous:
gain_bc = tf.stop_gradient(adv_bc *
tf.nn.relu(1.0 - (self.correction_term / (rho_i_ + eps))) *
f_i_)
else:
| tensorflow.nn.relu | 3,746 |
from tensorflow.python.framework import ops
Raises:
ValueError: if `multiple` is less than 1, or `dim` is not in
`[-rank(tensor), rank(tensor)]`.
"""
if multiple < 1:
raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
with ops.name_scope(
name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
# Sparse.
if isinstance(tensor, ops.SparseTensorValue):
tensor = ops.SparseTensor.from_value(tensor)
if isinstance(tensor, ops.SparseTensor):
if dim < 0:
| tensorflow.python.framework.ops.name_scope | 3,747 |
import tensorflow as tf
| tensorflow.variable_scope | 3,748 |
import tensorflow as tf
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
# tensor has a value of 1.0 for every real prediction and 0.0 for the
# padding predictions.
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
numerator = tf.reduce_sum(label_weights * per_example_loss)
denominator = tf.reduce_sum(label_weights) + 1e-5
loss = numerator / denominator
return (loss, per_example_loss, log_probs)
| tensorflow.reduce_sum | 3,749 |
import tensorflow as tf
return tf.keras.utils.register_keras_serializable(package=package)
else:
return lambda cls: cls
def _check_tensorflow_version():
"""Check that we're using a compatible TF version.
Raises a warning if either Tensorflow version is less that 2.0 or TF 2.x is
not enabled.
If TF 2.x is enabled, but version is < TF 2.3, raises a warning to indicate
that resources may not be initialized.
"""
major, minor, _ = tf.version.VERSION.split('.')
if not (int(major) >= 2 and tf2.enabled()):
tf.compat.v1.logging.warning(
'Tensorflow version (%s) found. TransformFeaturesLayer is supported '
'only for TF 2.x with TF 2.x behaviors enabled and may not work as '
'intended.', tf.version.VERSION)
elif int(major) == 2 and int(minor) < 3:
# TODO(varshaan): Log a more specific warning.
tf.compat.v1.logging.warning(
'Tensorflow version (%s) found. TransformFeaturesLayer may not work '
'as intended if the SavedModel contains an initialization op.',
tf.version.VERSION)
| tensorflow.version.VERSION.split | 3,750 |
import tensorflow as tf
# scaffold related configuration
tf.app.flags.DEFINE_string(
'data_dir', '../Datasets/tfrecords',#'/media/rs/0E06CD1706CD0127/Kapok/Chi/Datasets/tfrecords',
'The directory where the dataset input data is stored.')
tf.app.flags.DEFINE_string(
'dataset_name', '{}_????', 'The pattern of the dataset name to load.')
tf.app.flags.DEFINE_string(
'model_dir', './logs_sext_cpn/',
| tensorflow.app.flags.DEFINE_string | 3,751 |
import tensorflow as tf
:param param_noise_filter_func: (function (TensorFlow Tensor): bool) function that decides whether or not a
variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter
is used by default.
:return: (function (TensorFlow Tensor, bool, float): TensorFlow Tensor, (TensorFlow Tensor, TensorFlow Tensor)
act function to select and action given observation (See the top of the file for details),
A tuple containing the observation placeholder and the processed observation placeholder respectively.
"""
if param_noise_filter_func is None:
param_noise_filter_func = default_param_noise_filter
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01),
trainable=False)
param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05),
trainable=False)
# Unmodified Q.
policy = q_func(sess, ob_space, ac_space, 1, 1, None)
obs_phs = (policy.obs_ph, policy.processed_obs)
# Perturbable Q used for the actual rollout.
with tf.variable_scope("perturbed_model", reuse=False):
perturbable_policy = q_func(sess, ob_space, ac_space, 1, 1, None, obs_phs=obs_phs)
| tensorflow.constant_initializer | 3,752 |
import tensorflow as tf
else:
if not FLAGS.restore:
tf.gfile.DeleteRecursively(FLAGS.checkpoint_path)
tf.gfile.MkDir(FLAGS.checkpoint_path)
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_score_maps')
if FLAGS.geometry == 'RBOX':
input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 5], name='input_geo_maps')
else:
input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 8], name='input_geo_maps')
input_training_masks = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_training_masks')
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, global_step, decay_steps=10000, decay_rate=0.94, staircase=True)
# add summary
tf.summary.scalar('learning_rate', learning_rate)
opt = tf.train.AdamOptimizer(learning_rate)
opt = MixedPrecisionOptimizer(opt, scale=FLAGS.loss_scale)
from npu_bridge.estimator.npu.npu_optimizer import NPUDistributedOptimizer
opt = NPUDistributedOptimizer(opt)
# split
| tensorflow.placeholder | 3,753 |
import tensorflow as tf
Returns:
Batch tensor of the new observations.
"""
if indices is None:
indices = tf.range(len(self._batch_env))
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ = tf.py_func(
self._batch_env.reset, [indices], observ_dtype, name='reset')
observ = tf.check_numerics(observ, 'observ')
reward = tf.zeros_like(indices, tf.float32)
done = tf.zeros_like(indices, tf.bool)
with tf.control_dependencies([
tf.scatter_update(self._observ, indices, observ),
tf.scatter_update(self._reward, indices, reward),
tf.scatter_update(self._done, indices, done)]):
return tf.identity(observ)
@property
def observ(self):
"""Access the variable holding the current observation."""
return self._observ
@property
def action(self):
"""Access the variable holding the last received action."""
return self._action
| tensorflow.scatter_update | 3,754 |
import tensorflow as tf
return l2_out
def __forward_pass(self, x, reuse):
fc_size1 = 384
fc_size2 = 192
# convolutional layers
with tf.variable_scope('conv1'):
layer1, weights1 = new_conv_layer(x, name="conv1", num_input_channels=3, num_filters=64, filter_size=5, ac_fun=tf.nn.relu,
pool_ksize=[1, 3, 3, 1])
with tf.variable_scope('conv2'):
layer2, weights2 = new_conv_layer(input=layer1, name="conv2", num_input_channels=64, num_filters=64, filter_size=5,
ac_fun=tf.nn.relu, pool_ksize=[1, 3, 3, 1])
with tf.name_scope('flatten'):
layer3, num_features = flatten_layer(layer2)
# fully connected layers
| tensorflow.variable_scope | 3,755 |
import tensorflow as tf
cross_entropy = tf.reduce_mean(
-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])
)
self.cross_entropy = cross_entropy
self.cross_entropy_grads = tf.gradients(cross_entropy, [w, b])
self.sess = tf.Session()
# In order to get and set the weights, we pass in the loss function to
# Ray's TensorFlowVariables to automatically create methods to modify
# the weights.
self.variables = ray.experimental.tf_utils.TensorFlowVariables(
| tensorflow.Session | 3,756 |
from tensorflow.python.framework import tensor_util
# gradients and the attrs, but if we do not know filter_shape
# statically, then we are unlikely to know the shape of the
# gradients either.
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("Conv2DBackpropInput")
def _Conv2DBackpropInputShape(op):
"""Shape function for the Conv2DBackpropInput op."""
input_shape = tensor_util.constant_value(op.inputs[0])
if input_shape is not None:
return [tensor_shape.TensorShape(input_shape.tolist())]
else:
# NOTE(mrry): We could in principle work out the shape from the
# gradients and the attrs, but if we do not know input_shape
# statically, then we are unlikely to know the shape of the
# gradients either.
return [tensor_shape.unknown_shape(ndims=4)]
| tensorflow.python.framework.tensor_util.constant_value | 3,757 |
import tensorflow as tf
message = annotations_pb2.BucketBoundaries()
annotation.Unpack(message)
self.assertAllClose(list(message.boundaries), [1])
def test_infer_feature_schema_with_ragged_tensor(self):
with tf.compat.v1.Graph().as_default() as graph:
outputs = {
'foo': tf.RaggedTensor.from_row_splits(
values=tf.constant([3, 1, 4, 1, 5, 9, 2, 6], tf.int64),
row_splits=[0, 4, 4, 7, 8, 8]),
| tensorflow.compat.v1.Graph | 3,758 |
from tensorflow.python.framework import ops
class RegularizeGradientDescentOptimizer(optimizer.Optimizer):
def __init__(self, learning_rate=0.001, lambd=0.5, use_locking=False, name="RGD"):
super(RegularizeGradientDescentOptimizer, self).__init__(use_locking,
name)
self._lr = learning_rate
self._lambda = lambd
# Tensor versions of the constructor arguments, created in _prepare().
self._lr_t = None
self._lambda_t = None
def _prepare(self):
self._lr_t = ops.convert_to_tensor(self._lr, name="learning_rate")
self._lambda_t = ops.convert_to_tensor(self._lambda, name="lambda")
def _apply_dense(self, grad, var):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
lambda_t = math_ops.cast(self._lambda_t, var.dtype.base_dtype)
g_t = grad
var_update = state_ops.assign_sub(var,
lr_t * (g_t - lambda_t * var) )
return control_flow_ops.group(*[var_update])
def _apply_sparse(self, grad, var):
raise NotImplementedError("Sparse gradient updates are not supported.")
| tensorflow.python.framework.ops.convert_to_tensor | 3,759 |
import tensorflow as tf
# Trainable parameters
w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
| tensorflow.random_normal | 3,760 |
import tensorflow as tf
def _mask_and_accuracy(values, answers, loss_weights):
values = tf.argmax(values,axis=2)
x = tf.cast(values, dtype=tf.int32)
y = tf.cast(answers, dtype=tf.int32)
res = tf.equal(x, y)
res = tf.cast(res, dtype=tf.float32)
res = tf.multiply(res, loss_weights)
return tf.reduce_sum(res)
| tensorflow.cast | 3,761 |
import tensorflow as tf
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(
config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
models = {"Train": m, "Valid": mvalid, "Test": mtest}
for name, model in models.iteritems():
model.export_ops(name)
| tensorflow.variable_scope | 3,762 |
import tensorflow as tf
strides=strides,
padding=pad,
data_format=data_format) + b
def fc(self, x, scope, nh, *, init_scale=1.0, init_bias=0.0):
with tf.variable_scope(scope):
nin = x.get_shape()[1].value
w = tf.get_variable(
"w", [nin, nh], initializer=self.ortho_init(init_scale))
b = tf.get_variable(
| tensorflow.variable_scope | 3,763 |
import tensorflow as tf
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1,
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs += shortcut
inputs = tf.nn.relu(inputs)
return inputs
def _building_block_v2(inputs, filters, training, projection_shortcut, strides,
data_format):
"""A single block for ResNet v2, without a bottleneck.
| tensorflow.nn.relu | 3,764 |
import tensorflow as tf
new_context_act = tf.nn.relu(new_context)
elif activation == "elu":
new_context_act = tf.nn.elu(new_context)
elif activation == "linear":
new_context_act = tf.identity(new_context)
else:
raise RuntimeError
gate_sig = tf.nn.sigmoid(gate)
combination_res = gate_sig * new_context_act + (1 - gate_sig) * rep_map # bs,bn,bl,vec
with tf.variable_scope('restore_original_length'):
combination_res_reshape = tf.reshape(combination_res, [bs, bn * bl, ivec]) # bs,bn*bl,vec
output = combination_res_reshape[:, :sl, :]
return output | tensorflow.variable_scope | 3,765 |
import tensorflow as tf
tf.less_equal(z0, max_z) & tf.greater_equal(z0, 0))
z1_valid = tf.to_float(
tf.less_equal(z1, max_z) & tf.greater_equal(z1, 0))
| tensorflow.greater_equal | 3,766 |
import tensorflow as tf
self.end_points_D_val['logits'], targets, 1)))
self.error_rate = 1. - \
tf.reduce_mean(tf.to_float(tf.nn.in_top_k(
self.end_points_D['class_logits'], targets, 1)))
if gpu_idx == 0:
update = tf.assign(num_error_rate, num_error_rate + 1.)
with tf.control_dependencies([update]):
tc = tf.maximum(.01, 1. / num_error_rate)
update = tf.assign(avg_error_rate, (1. - tc) * avg_error_rate + tc * self.error_rate)
with tf.control_dependencies([update]):
self.d_loss_class = tf.identity(self.d_loss_class)
self.d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.end_points_D['D_on_G_logits'],
labels=tf.zeros_like(self.end_points_D['D_on_G_logits']))
self.d_loss_class = tf.reduce_mean(self.d_loss_class)
self.d_loss_real = tf.reduce_mean(self.d_loss_real)
self.d_loss_fake = tf.reduce_mean(self.d_loss_fake)
| tensorflow.control_dependencies | 3,767 |
import tensorflow as tf
List of tensors from growth block `Conv2D` layers.
"""
with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE):
# Get conv block layer properties.
conv_block = params["discriminator_growth_conv_blocks"][block_idx]
# Create new inner convolutional layers.
conv_tensors = [
self.conv_layer_blocks[1 + block_idx][i](
inputs=tf.zeros(
shape=[1] + conv_block[i][0:3], dtype=tf.float32
)
)
for i in range(len(conv_block))
]
print_obj(
"\nbuild_discriminator_growth_layer_block",
"conv_tensors",
| tensorflow.zeros | 3,768 |
import tensorflow as tf
def seq_length(data):
used = tf.sign(tf.reduce_max(tf.abs(data), axis=2))
length = tf.reduce_sum(used, axis=1)
length = tf.cast(length, tf.int64)
return length
| tensorflow.cast | 3,769 |
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('device', '/gpu:0', "device")
tf.app.flags.DEFINE_string('dataset', 'cifar10', "{cifar10, svhn}")
tf.app.flags.DEFINE_string('log_dir', "", "log_dir")
tf.app.flags.DEFINE_integer('seed', 1, "initial random seed")
tf.app.flags.DEFINE_bool('validation', False, "")
tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch")
tf.app.flags.DEFINE_integer('ul_batch_size', 128, "the number of unlabeled examples in a batch")
tf.app.flags.DEFINE_integer('eval_batch_size', 100, "the number of eval examples in a batch")
tf.app.flags.DEFINE_integer('eval_freq', 5, "")
tf.app.flags.DEFINE_integer('num_epochs', 120, "the number of epochs for training")
tf.app.flags.DEFINE_integer('epoch_decay_start', 80, "epoch of starting learning rate decay")
tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch")
tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate")
tf.app.flags.DEFINE_float('mom1', 0.9, "initial momentum rate")
tf.app.flags.DEFINE_float('mom2', 0.5, "momentum rate after epoch_decay_start")
tf.app.flags.DEFINE_string('method', 'vat', "{vat, vatent, baseline}")
| tensorflow.app.flags.DEFINE_integer | 3,770 |
import tensorflow as tf
:param input_tensor:
:param k_size:
:param out_dims:
:param rate:
:param padding:
:param w_init:
:param b_init:
:param use_bias:
:param name:
:return:
"""
with tf.variable_scope(name):
in_shape = input_tensor.get_shape().as_list()
in_channel = in_shape[3]
assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!"
padding = padding.upper()
if isinstance(k_size, list):
filter_shape = [k_size[0], k_size[1]] + [in_channel, out_dims]
else:
filter_shape = [k_size, k_size] + [in_channel, out_dims]
| tensorflow.variable_scope | 3,771 |
import tensorflow as tf
'match_threshold', 0.56, 'Matching threshold in the loss function.')
tf.app.flags.DEFINE_float(
'neg_threshold', 0.4, 'Matching threshold for the negtive examples in the loss function.')
# optimizer related configuration
tf.app.flags.DEFINE_float(
'weight_decay', 0.0005, 'The weight decay on the model weights.')
tf.app.flags.DEFINE_float(
'momentum', 0.9,
'The momentum for the MomentumOptimizer and RMSPropOptimizer.')
tf.app.flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
tf.app.flags.DEFINE_float(
'end_learning_rate', 0.00005,
| tensorflow.app.flags.DEFINE_float | 3,772 |
import tensorflow as tf
outer = tf.matrix_band_part(outer, 0, config.ans_limit)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits1, labels=self.y1)
losses2 = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits2, labels=self.y2)
self.loss = tf.reduce_mean(losses + losses2)
if config.l2_norm is not None:
variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables)
self.loss += l2_loss
| tensorflow.reduce_mean | 3,773 |
import tensorflow as tf
def sigmoid_ce_with_logits(logits, labels):
return tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits)
def sigmoid_kl_with_logits(logits, targets):
assert isinstance(targets, float)
if targets in [0., 1.]:
entropy = 0.
else:
entropy = - targets*tf.log(targets) - (1. - targets)*tf.log(1. - targets)
return sigmoid_ce_with_logits(logits, tf.ones_like(logits)*targets) - entropy
def gradient_difference_loss(x, y):
x_h_diff = x[:, 1:] - x[:, :-1]
x_w_diff = x[:, :, 1:] - x[:, :, :-1]
y_h_diff = y[:, 1:] - y[:, :-1]
y_w_diff = y[:, :, 1:] - y[:, :, :-1]
h_diff = tf.abs(tf.abs(x_h_diff) - tf.abs(y_h_diff))
| tensorflow.log | 3,774 |
import tensorflow as tf
Returns:
(tf.Tensor) A single value tensor containing the loss.
(tf.Tensor) A tensor containing the propensity weights.
"""
loss = None
with tf.name_scope(name, "click_weighted_pairwise_loss",[output]):
sliced_output = tf.unstack(output, axis=1)
sliced_label = tf.unstack(labels, axis=1)
sliced_propensity = tf.unstack(propensity_weights, axis=1)
for i in range(len(sliced_output)):
for j in range(i+1, len(sliced_output)):
| tensorflow.name_scope | 3,775 |
import tensorflow as tf
server_test_data = [
d._replace(updated_state=updated_state) for d in server_test_data
]
return server_test_data, decode_params
def _non_adaptive_many_to_one_encode_decode():
"""Implementation of the method for `EncodingStageInterface`."""
server_graph = tf.Graph()
with server_graph.as_default():
shape = input_values[0].shape
encode_params, decode_params = stage.get_params()
with self.session(server_graph) as sess:
encode_params, decode_params = self.evaluate_tf_py_list(
[encode_params, decode_params], sess)
| tensorflow.Graph | 3,776 |
import tensorflow as tf
W_init_args = {}
if b_init_args is None:
b_init_args = {}
self.inputs = prev_layer.outputs
if self.inputs.get_shape().ndims != 2:
raise Exception("The input dimension must be rank 2")
n_in = int(self.inputs.get_shape()[-1])
self.n_units = n_units
with tf.variable_scope(name):
W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **W_init_args)
b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args)
# self.outputs = act(tf.matmul(self.inputs, W) + b)
LayersConfig.set_keep[name] = tf.placeholder(tf.float32)
W_dropcon = tf.nn.dropout(W, LayersConfig.set_keep[name])
self.outputs = act(tf.matmul(self.inputs, W_dropcon) + b)
# self.all_layers = list(layer.all_layers)
# self.all_params = list(layer.all_params)
# self.all_drop = dict(layer.all_drop)
self.all_drop.update({LayersConfig.set_keep[name]: keep})
self.all_layers.append(self.outputs)
self.all_params.extend([W, b])
| tensorflow.get_variable | 3,777 |
import tensorflow as tf
mean = variable_on_cpu(
"mean", [dim], tf.constant_initializer(0.), trainable=False)
step = variable_on_cpu("step", [], tf.constant_initializer(0.), trainable=False)
if scale:
gamma = variable_on_cpu("gamma", [dim], tf.constant_initializer(1.))
beta = variable_on_cpu("beta", [dim], tf.constant_initializer(0.))
# choose the appropriate moments
if train:
used_mean, used_var = tf.nn.moments(input_, axes, name="batch_norm")
cur_mean, cur_var = used_mean, used_var
if bn_lag > 0.:
used_mean -= (1. - bn_lag) * (used_mean - tf.stop_gradient(mean))
used_var -= (1 - bn_lag) * (used_var - tf.stop_gradient(var))
used_mean /= (1. - bn_lag**(step + 1))
used_var /= (1. - bn_lag**(step + 1))
else:
used_mean, used_var = mean, var
cur_mean, cur_var = used_mean, used_var
# normalize
res = (input_ - used_mean) / tf.sqrt(used_var + epsilon)
# de-normalize
if scale:
res *= gamma
| tensorflow.stop_gradient | 3,778 |
import tensorflow as tf
def test_randomly_select_one_point_per_segment(self):
instance_labels = tf.constant([[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 2, 2, 2, 2, 2, 2],
[1, 2, 2, 2, 2, 2, 2, 2],
[0, 0, 0, 0, 2, 2, 2, 2],
[0, 0, 0, 0, 2, 2, 2, 2]],
dtype=tf.int32)
instance_labels = tf.reshape(instance_labels, [-1])
(indices,
masks_t) = isu.randomly_select_one_point_per_segment(instance_labels)
masks = tf.transpose(masks_t)
masks = tf.reshape(masks, [3, 5, 8])
expected_masks = self.get_instance_masks()
selected_instances = tf.gather(instance_labels, indices)
expected_selected_instances = tf.constant([0, 1, 2], dtype=tf.int32)
| tensorflow.reshape | 3,779 |
import tensorflow as tf
correct_prediction_action = tf.equal(
tf.argmax(one_hot_labels_action, 1),
tf.argmax(self.predictions_action, 1)
)
self.accuracy_action = tf.reduce_mean(tf.cast(correct_prediction_action, 'float'))
tf.scalar_summary('accuracy_action', self.accuracy_action)
correct_prediction_arguments = tf.equal(tf.argmax(one_hot_labels_arguments, 2),
tf.argmax(self.predictions_arguments, 2))
self.accuracy_arguments = tf.reduce_mean(tf.cast(correct_prediction_arguments, 'float'))
| tensorflow.scalar_summary | 3,780 |
from tensorflow.python.ops import gen_nn_ops
"""
return gen_nn_ops._top_kv2(input, k=k, sorted=sorted, name=name)
| tensorflow.python.ops.gen_nn_ops._top_kv2 | 3,781 |
import tensorflow as tf
# [n_envs * n_steps, n_act] # Directly computed gradient of KL divergence wrt f
kl_grad = - f_polyak_i / (f_i_ + eps)
k_dot_g = tf.reduce_sum(kl_grad * grad, axis=-1)
adj = tf.maximum(0.0, (tf.reduce_sum(kl_grad * grad, axis=-1) - self.delta) / (
tf.reduce_sum(tf.square(kl_grad), axis=-1) + eps)) # [n_envs * n_steps]
| tensorflow.reduce_sum | 3,782 |
import tensorflow.contrib.slim as slim
if cfgs.GRADIENT_CLIPPING_BY_NORM is not None:
grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM)
| tensorflow.contrib.slim.learning.clip_gradient_norms | 3,783 |
import tensorflow.contrib.graph_editor as ge
if d_xs_new[j] is not None:
if d_xs[j] is None:
d_xs[j] = _unsparsify(d_xs_new[j])
else:
d_xs[j] += _unsparsify(d_xs_new[j])
return d_xs
def tf_toposort(ts, within_ops=None):
all_ops = ge.get_forward_walk_ops([x.op for x in ts], within_ops=within_ops)
deps = {}
for op in all_ops:
for o in op.outputs:
deps[o] = set(op.inputs)
sorted_ts = toposort(deps)
# only keep the tensors from our original list
ts_sorted_lists = []
| tensorflow.contrib.graph_editor.get_forward_walk_ops | 3,784 |
import tensorflow as tf
dec, mem = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell1, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 4), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
dec, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
| tensorflow.variable_scope | 3,785 |
from tensorflow.python.ops import math_ops
else:
return self._linear_logits(features)
def _get_weight_tensor(self, features):
if not self._weight_column_name:
return None
else:
return array_ops.reshape(
math_ops.to_float(features[self._weight_column_name]),
shape=(-1,))
def _loss(self, logits, target, weight_tensor):
if self._n_classes < 2:
loss_vec = math_ops.square(logits - math_ops.to_float(target))
elif self._n_classes == 2:
loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
math_ops.to_float(target))
else:
loss_vec = nn.sparse_softmax_cross_entropy_with_logits(
logits, array_ops.reshape(target, [-1]))
if weight_tensor is None:
return math_ops.reduce_mean(loss_vec, name="loss")
else:
loss_vec = array_ops.reshape(loss_vec, shape=(-1,))
loss_vec = math_ops.mul(
| tensorflow.python.ops.math_ops.to_float | 3,786 |
import tensorflow as tf
self.batch_size = imgshape[1]
featsize = 1024
srcimg = image[0]
tgtimg = image[2]
tgtctx = image[1]
with tf.variable_scope("conv_context") as scope:
tgtctx_h0 = lrelu(conv2d(tgtctx, self.df_dim, name='h0_conv'))
tgtctx_h1 = lrelu(conv2d(tgtctx_h0, self.df_dim*2, name='h1_conv'))
tgtctx_h2 = lrelu(conv2d(tgtctx_h1, self.df_dim*4, name='h2_conv'))
tgtctx_h3 = lrelu(conv2d(tgtctx_h2, self.df_dim*8, name='h3_conv'))
tgtctx_h4 = lrelu(linear(tf.reshape(tgtctx_h3, [self.batch_size, -1]), featsize, 'h4_lin'))
| tensorflow.variable_scope | 3,787 |
from tensorflow.python.ops import array_ops
def loss_fn(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
| tensorflow.python.ops.array_ops.rank | 3,788 |
import tensorflow as tf
features = {TIMESERIES_COL: inputs}
return features, labels
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
dataset = tf.data.TextLineDataset(file_list).map(decode_csv)
| tensorflow.gfile.Glob | 3,789 |
import tensorflow as tf
def custom_getter(getter, name, *args, **kwargs):
name = name.replace("polyak_model/", "")
val = ema.average(getter(name, *args, **kwargs))
return val
with tf.variable_scope("polyak_model", reuse=True, custom_getter=custom_getter):
self.polyak_model = polyak_model = self.policy(self.sess, self.observation_space, self.action_space,
self.n_envs, self.n_steps + 1,
self.n_envs * (self.n_steps + 1), reuse=True,
**self.policy_kwargs)
| tensorflow.variable_scope | 3,790 |
import tensorflow as tf
beta = tf.get_variable('beta', [ch], initializer=tf.constant_initializer())
beta = tf.reshape(beta, new_shape)
gamma = tf.get_variable('gamma', [ch], initializer=tf.constant_initializer(1.0))
gamma = tf.reshape(gamma, new_shape)
return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name)
@staticmethod
def dropout(inputdata, keep_prob, noise_shape=None, name=None):
| tensorflow.nn.batch_normalization | 3,791 |
import tensorflow as tf
create_session=True))
# pylint: enable=g-long-lambda
def test_infer_feature_schema(self,
make_tensors_fn,
feature_spec,
domains=None,
create_session=False):
with tf.compat.v1.Graph().as_default() as graph:
tensors = make_tensors_fn()
if create_session:
with tf.compat.v1.Session(graph=graph) as session:
schema = schema_inference.infer_feature_schema(tensors, graph, session)
else:
schema = schema_inference.infer_feature_schema(tensors, graph)
expected_schema = schema_utils.schema_from_feature_spec(
feature_spec, domains)
self.assertEqual(schema, expected_schema)
def test_infer_feature_schema_bad_rank(self):
with tf.compat.v1.Graph().as_default() as graph:
| tensorflow.compat.v1.Session | 3,792 |
import tensorflow as tf
d_checkpoints[r] += dr
def _unsparsify(x):
if not isinstance(x, tf.IndexedSlices):
return x
assert x.dense_shape is not None, "memory_saving_gradients encountered sparse gradients of unknown shape"
indices = x.indices
while indices.shape.ndims < x.values.shape.ndims:
indices = tf.expand_dims(indices, -1)
return tf.scatter_nd(indices, x.values, x.dense_shape)
# partial derivatives to xs (usually the params of the neural net)
d_xs_new = dv[len(checkpoints_other):]
for j in range(len(xs)):
if d_xs_new[j] is not None:
if d_xs[j] is None:
d_xs[j] = _unsparsify(d_xs_new[j])
| tensorflow.scatter_nd | 3,793 |
import tensorflow as tf
# p=tf.Print(p,[p],message="show the weights")
self.exam_loss += self.hparams.l1_loss * tf.reduce_sum(tf.abs(p))
for p in ranking_model_params:
self.rank_loss += self.hparams.l2_loss * tf.nn.l2_loss(p)
self.loss = self.exam_loss + self.hparams.ranker_loss_weight * self.rank_loss
denoise_gradients = tf.gradients(self.exam_loss, denoise_params)
ranking_model_gradients = tf.gradients(self.rank_loss, ranking_model_params)
if self.hparams.max_gradient_norm > 0:
denoise_gradients, denoise_norm = tf.clip_by_global_norm(denoise_gradients,
self.hparams.max_gradient_norm)
ranking_model_gradients, ranking_model_norm = tf.clip_by_global_norm(ranking_model_gradients,
self.hparams.max_gradient_norm * self.hparams.ranker_loss_weight)
self.norm = tf.global_norm(denoise_gradients + ranking_model_gradients)
opt_denoise = self.optimizer_func(self.hparams.learning_rate)
opt_ranker = self.optimizer_func(self.ranker_learning_rate)
denoise_updates = opt_denoise.apply_gradients(zip(denoise_gradients, denoise_params),
global_step=self.global_step)
ranker_updates = opt_ranker.apply_gradients(zip(ranking_model_gradients, ranking_model_params))
| tensorflow.clip_by_global_norm | 3,794 |
import tensorflow as tf
create_model_fn=FakeDetectionModel,
train_config=train_config,
master='',
task=0,
num_clones=1,
worker_replicas=1,
clone_on_cpu=True,
ps_tasks=0,
worker_job_name='worker',
is_chief=True,
train_dir=train_dir)
if __name__ == '__main__':
tf.test.main()
| tensorflow.test.main | 3,795 |
import tensorflow as tf
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
print ("querry_size mismatch")
query = tf.concat(values = [
query,
query,
], axis=1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
| tensorflow.shape | 3,796 |
import tensorflow as tf
_validate_input_parameters(is_tensor=False, shape=shape, tt_rank=tt_rank,
batch_size=batch_size)
num_dims = shape[0].size
if tt_rank.size == 1:
tt_rank = tt_rank * np.ones(num_dims - 1)
tt_rank = np.concatenate([[1], tt_rank, [1]])
shape = shape.astype(int)
tt_rank = tt_rank.astype(int)
tt_cores = [None] * num_dims
with tf.name_scope(name):
for i in range(num_dims):
curr_core_shape = (batch_size, tt_rank[i], shape[0][i], shape[1][i],
tt_rank[i + 1])
tt_cores[i] = tf.random_normal(curr_core_shape, mean=mean, stddev=stddev,
dtype=dtype)
return TensorTrainBatch(tt_cores, shape, tt_rank, batch_size)
def ones_like(tt, name='t3f_ones_like'):
"""Constructs t3f.ones with the shape of `tt`.
In the case when `tt` is TensorTrainBatch constructs t3f.ones with the shape
of a TensorTrain in `tt`.
Args:
| tensorflow.random_normal | 3,797 |
import tensorflow as tf
tf.constant([0.0], dtype=tf.float32, name="log_prob"),
]
loop_outputs = tf.while_loop(_condition, _body, loop_vars,
parallel_iterations=1)
arc_seq = loop_outputs[-3].stack()
arc_seq = tf.reshape(arc_seq, [-1])
entropy = tf.reduce_sum(loop_outputs[-2])
log_prob = tf.reduce_sum(loop_outputs[-1])
last_c = loop_outputs[-7]
last_h = loop_outputs[-6]
return arc_seq, entropy, log_prob, last_c, last_h
| tensorflow.reduce_sum | 3,798 |
from tensorflow.python.ops import state_ops
broadcast_weights = math_ops.mul(
weights, array_ops.ones_like(average_precision),
name='broadcast_weights')
batch_max = math_ops.reduce_sum(broadcast_weights, name='batch_max')
max_update = state_ops.assign_add(max_var, batch_max, name='update')
with ops.name_scope(None, 'total', (average_precision,)) as total_scope:
total_var = contrib_variables.local_variable(
array_ops.zeros([], dtype=dtypes.float64), name=total_scope)
| tensorflow.python.ops.state_ops.assign_add | 3,799 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.