seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
if not flat:
assert(len(shape) > 1)
nh = h[0].get_shape()[-1].value
return tf.reshape(tf.concat(axis=1, values=h), [-1, nh])
else:
return tf.reshape(tf.stack(values=h, axis=1), [-1])
| tensorflow.concat | 3,500 |
import tensorflow as tf
ignored_matches = tf.logical_and(
ignored_matches,
tf.less(
matched_iou, self._config_dict['foreground_iou_threshold']))
background_indicator = tf.logical_or(negative_matches, ignored_matches)
# re-assign negatively matched boxes to the background class.
matched_gt_boxes = tf.where(
tf.tile(tf.expand_dims(background_indicator, -1), [1, 1, 4]),
tf.zeros_like(matched_gt_boxes),
matched_gt_boxes)
matched_gt_classes = tf.where(
background_indicator,
tf.zeros_like(matched_gt_classes),
matched_gt_classes)
matched_gt_indices = tf.where(
background_indicator,
| tensorflow.expand_dims | 3,501 |
import tensorflow as tf
y_ (tf.placeholder): Input result vector.
cross_entropy (tf.Operation): Final layer of network.
cross_entropy_grads (tf.Operation): Gradient computation.
sess (tf.Session): Session used for training.
variables (TensorFlowVariables): Extracted variables and methods to
manipulate them.
"""
def __init__(self, shape):
"""Creates a LinearModel object."""
x = tf.placeholder(tf.float32, [None, shape[0]])
w = tf.Variable(tf.zeros(shape))
b = tf.Variable(tf.zeros(shape[1]))
self.x = x
self.w = w
self.b = b
y = tf.nn.softmax(tf.matmul(x, w) + b)
y_ = tf.placeholder(tf.float32, [None, shape[1]])
self.y_ = y_
cross_entropy = tf.reduce_mean(
-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])
)
self.cross_entropy = cross_entropy
self.cross_entropy_grads = tf.gradients(cross_entropy, [w, b])
| tensorflow.zeros | 3,502 |
import tensorflow as tf
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.PREDICT:
| tensorflow.logging.info | 3,503 |
import tensorflow as tf
self.R = tf.placeholder(tf.float32, [None, ], name='R') # input Reward
self.a = tf.placeholder(tf.float32, [None, self.num_a], name='a') # input Action onehot for agent1
self.done = tf.placeholder(tf.float32, [None, ], name='done') # input Done info ???
self.q_m_ = tf.placeholder(tf.float32, [None, ], name='q_value_next_max')
self.q_target = tf.placeholder(tf.float32, [None,], name='q_tot_target')
w_initializer, b_initializer = tf.random_normal_initializer(0., 0.1), tf.constant_initializer(0.0)
# ------------------ build evaluate_net ------------------
with tf.variable_scope('eval_net'):
a_fc1 = tf.layers.dense(self.s, 128, tf.nn.relu, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='agent_fc1_e')
# a_fc2 = tf.layers.dense(a_fc1, 128, tf.nn.relu, kernel_initializer=w_initializer,
| tensorflow.constant_initializer | 3,504 |
import tensorflow as tf
def get_box_indices(proposals):
proposals_shape = proposals.get_shape().as_list()
if any(dim is None for dim in proposals_shape):
proposals_shape = tf.shape(proposals)
ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
multiplier = tf.expand_dims(
tf.range(start=0, limit=proposals_shape[0]), 1)
return tf.reshape(ones_mat * multiplier, [-1])
net = image_features
with slim.arg_scope(self._conv_hyperparams):
net = slim.conv2d(net, self._depth, [1, 1], scope='reduce_depth')
| tensorflow.range | 3,505 |
import tensorflow as tf
initializer=tf.constant_initializer(self.vocab.char_embeddings),
trainable=True
)
self.ch_len = tf.reshape(tf.reduce_sum(
tf.cast(tf.cast(self.ch, tf.bool), tf.int32), axis=2), [-1])
self.qh_len = tf.reshape(tf.reduce_sum(
tf.cast(tf.cast(self.qh, tf.bool), tf.int32), axis=2), [-1])
N, PL, QL, CL, d, dc, nh = self._params()
if self.config.fix_pretrained_vector:
dc = self.char_mat.get_shape()[-1]
with tf.variable_scope("Input_Embedding_Layer"):
| tensorflow.cast | 3,506 |
import tensorflow as tf
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
"is_real_example": tf.FixedLenFeature([1], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
| tensorflow.FixedLenFeature | 3,507 |
import tensorflow as tf
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
| tensorflow.logging.info | 3,508 |
import tensorflow as tf
name: string, name of the Op.
Returns:
TensorTrain containing an identity TT-matrix of size
np.prod(shape) x np.prod(shape)
"""
shape = np.array(shape)
# In this special case shape is in the same format as in the TT-tensor case
_validate_input_parameters(is_tensor=True, shape=shape)
num_dims = shape.size
tt_ranks = np.ones(num_dims + 1)
with tf.name_scope(name):
tt_cores = num_dims * [None]
for i in range(num_dims):
curr_core_shape = (1, shape[i], shape[i], 1)
tt_cores[i] = tf.reshape(tf.eye(shape[i], dtype=dtype), curr_core_shape)
true_shape = np.vstack([shape, shape])
return TensorTrain(tt_cores, true_shape, tt_ranks)
def matrix_ones(shape, dtype=tf.float32, name='t3f_matrix_ones'):
"""Generate a TT-matrix of the given shape with each entry equal to 1.
| tensorflow.name_scope | 3,509 |
import tensorflow as tf
input_shape = tf.shape(decoder_inputs)
batch_size = input_shape[0]
time_steps = input_shape[1]
scope_name = 'decoder_{}'.format(decoder.name)
scope_name += '/' + '_'.join(encoder.name for encoder in encoders)
def embed(input_):
embedded_input = tf.nn.embedding_lookup(embedding, input_)
if decoder.use_dropout and decoder.word_keep_prob is not None:
noise_shape = [1, 1] if decoder.pervasive_dropout else [tf.shape(input_)[0], 1]
embedded_input = tf.nn.dropout(embedded_input, keep_prob=decoder.word_keep_prob, noise_shape=noise_shape)
if decoder.use_dropout and decoder.embedding_keep_prob is not None:
size = tf.shape(embedded_input)[1]
noise_shape = [1, size] if decoder.pervasive_dropout else [tf.shape(input_)[0], size]
embedded_input = tf.nn.dropout(embedded_input, keep_prob=decoder.embedding_keep_prob,
noise_shape=noise_shape)
return embedded_input
def get_cell(input_size=None, reuse=False):
cells = []
for j in range(decoder.layers):
input_size_ = input_size if j == 0 else cell_output_size
if decoder.cell_type.lower() == 'lstm':
cell = CellWrapper(BasicLSTMCell(decoder.cell_size, reuse=reuse))
| tensorflow.shape | 3,510 |
import tensorflow as tf
tf.summary.scalar('loss', self.loss)
# Create optimizer ops
self.global_step = tf.Variable(0, trainable=False, name='global_step')
opt = tf.train.RMSPropOptimizer(self.config['learning_rate'])
with tf.control_dependencies(update_ops):
self.trainer = opt.apply_gradients(
gradvars, global_step=self.global_step)
def _eval_graph(self, data):
tower_metrics = self._gpu_tower(data, Mode.EVAL)
with tf.device('/cpu:0'):
self.metrics = {m: tf.reduce_mean(tf.stack([t[m] for t in tower_metrics]))
for m in tower_metrics[0]}
def _pred_graph(self, data):
with tf.name_scope('pred'):
with tf.device('/gpu:0'):
pred_out = self._model(data, Mode.PRED, **self.config)
self.pred_out = {n: tf.identity(p, name=n) for n, p in pred_out.items()}
def _build_graph(self):
# Training and evaluation network, if tf datasets provided
if self.datasets:
| tensorflow.stack | 3,511 |
import tensorflow as tf
0.
"""
if not isinstance(tt, TensorTrainBase):
raise ValueError("`tt` has to be a Tensor Train object")
else:
shape = shapes.lazy_raw_shape(tt)
# I guess variables=tt.tt_cores is not needed here since the output of
# the function doesn't depend on the values of the TT-cores, only on their
# shapes etc. But I'm not 100% sure.
with tf.name_scope(name):
if tt.is_tt_matrix():
return matrix_zeros(shape, dtype=tt.dtype)
else:
return tensor_zeros(shape[0, :], dtype=tt.dtype)
def random_tensor(shape, tt_rank=2, mean=0., stddev=1., dtype=tf.float32,
name='t3f_random_tensor'):
"""Generate a random TT-tensor of the given shape with given mean and stddev.
| tensorflow.name_scope | 3,512 |
import tensorflow as tf
wshape = [rf, rf, nin, nf]
with tf.variable_scope(scope):
w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale))
b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0))
if not one_dim_bias and data_format == 'NHWC':
b = tf.reshape(b, bshape)
return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b
def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0):
with tf.variable_scope(scope):
nin = x.get_shape()[1].value
w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias))
return tf.matmul(x, w)+b
def batch_to_seq(h, nbatch, nsteps, flat=False):
if flat:
h = tf.reshape(h, [nbatch, nsteps])
else:
h = tf.reshape(h, [nbatch, nsteps, -1])
return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)]
def seq_to_batch(h, flat = False):
shape = h[0].get_shape().as_list()
| tensorflow.constant_initializer | 3,513 |
import tensorflow as tf
# Unnecessary, if you have already sorted when making tfrecord and no data augmentation.
gtboxes_and_label_q = tf.py_func(func=re_order,
inp=[tf.reshape(gtboxes_and_label_q, [-1, 9]), True],
Tout=[tf.float32])
gtboxes_and_label_q = tf.reshape(gtboxes_and_label_q, [cfgs.BATCH_SIZE, -1, 9])
img = inputs_list[i][0]
img_shape = inputs_list[i][-2:]
h_crop = tf.reduce_max(img_shape[0])
w_crop = tf.reduce_max(img_shape[1])
img = tf.image.crop_to_bounding_box(image=img,
offset_height=0,
offset_width=0,
target_height=tf.cast(h_crop, tf.int32),
target_width=tf.cast(w_crop, tf.int32))
outputs = fcos.build_whole_detection_network(input_img_batch=img,
| tensorflow.reduce_max | 3,514 |
import tensorflow as tf
def apply_optimizers(objectives, trainer, config):
# Make sure all losses are computed and apply loss scales.
processed = []
values = [ob.value for ob in objectives]
for ob in objectives:
loss = {min: ob.value, max: -ob.value}[ob.goal]
loss *= config.loss_scales[ob.name]
with tf.control_dependencies(values):
loss = tf.identity(loss)
processed.append(ob._replace(value=loss, goal=min))
# Merge objectives that operate on the whole model to compute only one
# backward pass and to share optimizer statistics.
objectives = []
losses = []
| tensorflow.control_dependencies | 3,515 |
import tensorflow as tf
# Optionally prepend a special token
if self.prepend_token is not None:
tokens = tf.concat([[self.prepend_token], tokens], 0)
# Optionally append a special token
| tensorflow.concat | 3,516 |
import tensorflow as tf
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
d = tf.contrib.layers.conv2d(layer_input,filters,kernel_size=f_size,stride=2, padding='SAME')
if norm:
d = tf.contrib.layers.batch_norm(d)
d = lrelu(d,alpha=0.2)
| tensorflow.contrib.layers.conv2d | 3,517 |
import tensorflow as tf
encode = tf.placeholder(tf.int32, shape=[None], name="encode")
decode = tf.placeholder(tf.int32, shape=[decode_max_length + 2], name="decode")
weight = tf.placeholder(tf.float32, shape=[decode_max_length + 1], name="weight")
queue = tf.PaddingFIFOQueue(capacity = capacity,
| tensorflow.placeholder | 3,518 |
import tensorflow as tf
ent_coef_loss, entropy_optimizer = None, None
if not isinstance(self.ent_coef, float):
ent_coef_loss = -tf.reduce_mean(
self.log_ent_coef * tf.stop_gradient(logp_pi + self.target_entropy)*self.weight_ph)
entropy_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
# Compute the policy loss
# Alternative: policy_kl_loss = tf.reduce_mean(logp_pi - min_qf_pi)
| tensorflow.train.AdamOptimizer | 3,519 |
import tensorflow as tf
original_image_shape = image.shape
simulated_image = tf.transpose(tf.matmul(product2, tf.reshape(tf.transpose(image, perm=[2, 0, 1]), (image.shape[2], image.shape[0] * image.shape[1]))), perm=[1, 0])
return tf.reshape(simulated_image, original_image_shape) | tensorflow.transpose | 3,520 |
import tensorflow as tf
num_items=self.train_set.num_items, emb_size=self.num_factors,
reg_user=self.regs[0], reg_item=self.regs[1], seed=self.seed)
logits = tf.layers.dense(self.interaction, units=1, name='logits',
kernel_initializer=tf.initializers.lecun_uniform(self.seed))
self.prediction = tf.nn.sigmoid(logits)
self.loss = loss_fn(labels=self.labels, logits=logits)
| tensorflow.initializers.lecun_uniform | 3,521 |
import tensorflow as tf
self.logits1, self.logits2 = [l for l in self.logits]
outer = tf.matmul(tf.expand_dims(tf.nn.softmax(self.logits1), axis=2),
tf.expand_dims(tf.nn.softmax(self.logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, self.max_a_len)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
def _compute_loss(self):
def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2):
logits = tf.nn.sigmoid(logits)
zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros)
neg_p_sub = array_ops.where(labels > zeros, zeros, logits)
| tensorflow.reduce_max | 3,522 |
import tensorflow as tf
tf.summary.scalar('learning_rate', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
cls_accuracy = tf.metrics.accuracy(glabels, predictions['classes'])
metrics = {'cls_accuracy': cls_accuracy}
| tensorflow.control_dependencies | 3,523 |
import tensorflow as tf
mask4 = tf.constant([[0, 0],
[0, 0]], dtype=tf.float32)
mask5 = tf.constant([[1, 0],
[1, 0]], dtype=tf.float32)
| tensorflow.constant | 3,524 |
import tensorflow as tf
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
# sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
class PPO_LSTM(Base):
| tensorflow.clip_by_value | 3,525 |
import tensorflow as tf
hparams = {
"type": tf.train.MomentumOptimizer(0.001, 0.9)
| tensorflow.train.MomentumOptimizer | 3,526 |
import tensorflow as tf
dtype=self.dtype,
initializer=initialization.xavier_initializer(
shape=bias_shape,
dtype=self.dtype,
uniform=self.normal_initializer,
mask=None)))
else:
setattr(
self,
'gamma_%s' % layer,
tf.constant(1.))
if self.multiplicative_excitation:
if self.lesion_kappa:
setattr(
self,
'kappa_%s' % layer,
tf.constant(0.))
else:
setattr(
| tensorflow.constant | 3,527 |
import tensorflow as tf
lr_values = [params['warmup_learning_rate']] + [base_learning_rate * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[params['warmup_steps']] + [int(float(ep)*params['steps_per_epoch']) for ep in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate')
tf.summary.scalar('lr', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
| tensorflow.summary.scalar | 3,528 |
import tensorflow as tf
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate')
tf.summary.scalar('lr', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
| tensorflow.train.MomentumOptimizer | 3,529 |
import tensorflow as tf
centers_batch = tf.gather(centers, label)
diff = (1 - alfa) * (centers_batch - features)
centers = tf.scatter_sub(centers, label, diff)
# centers = tf.nn.l2_normalize(centers, 1, 1e-10, name='centers_norm')
loss = tf.reduce_mean(tf.square(features - centers_batch))
return loss, centers
def focal_loss(onehot_labels, cls_preds,
| tensorflow.square | 3,530 |
import tensorflow as tf
beta = tf.Variable(tf.constant(0.0, shape=[num_channels]),
name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[num_channels]),
name='gamma', trainable=True)
batch_mean, batch_var = tf.nn.moments(inputs, moments_dims, name='moments')
decay = bn_decay if bn_decay is not None else 0.9
ema = tf.train.ExponentialMovingAverage(decay=decay)
# Operator that maintains moving averages of variables.
ema_apply_op = tf.cond(is_training,
lambda: ema.apply([batch_mean, batch_var]),
lambda: tf.no_op())
# Update moving average and return current batch's avg and var.
def mean_var_with_update():
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
# ema.average returns the Variable holding the average of var.
mean, var = tf.cond(is_training,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(inputs, mean, var, beta, gamma, 1e-3)
return normed
def batch_norm_for_fc(inputs, is_training, bn_decay, scope):
""" Batch normalization on FC data.
Args:
inputs: Tensor, 2D BxC input
| tensorflow.identity | 3,531 |
import tensorflow as tf
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn,
[per_example_loss, label_ids, logits, is_real_example])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
| tensorflow.contrib.tpu.TPUEstimatorSpec | 3,532 |
import tensorflow as tf
Learning rate starting from `learning_rate` then increasing.
It is computed as::
decayed_learning_rate = (max_lr - learning_rate) *
(floor(global_step / step_size) - global_step / step_size) +
learning_rate
"""
with tf.name_scope(name):
learning_rate = tf.cast(learning_rate, dtype=tf.float32)
global_step = tf.cast(global_step, dtype=tf.float32)
step_size = tf.cast(step_size, dtype=tf.float32)
max_lr = tf.cast(max_lr, dtype=tf.float32)
if mode == 'tri':
periodic_comp = tf.mod((global_step + step_size / 4) / step_size, 1)
| tensorflow.name_scope | 3,533 |
from tensorflow.python.framework import ops
Returns:
A `Tensor` with type `tf.float32`. The max pooled output tensor.
"""
with ops.op_scope([value], name, "MaxPool") as name:
value = ops.convert_to_tensor(value, name="input")
return gen_nn_ops._max_pool(value, ksize=ksize, strides=strides,
padding=padding,
data_format=data_format,
name=name)
ops.RegisterShape("Relu")(common_shapes.unchanged_shape)
ops.RegisterShape("Relu6")(common_shapes.unchanged_shape)
ops.RegisterShape("Elu")(common_shapes.unchanged_shape)
ops.RegisterShape("Softplus")(common_shapes.unchanged_shape)
ops.RegisterShape("Softsign")(common_shapes.unchanged_shape)
@ops.RegisterShape("ReluGrad")
@ops.RegisterShape("Relu6Grad")
@ops.RegisterShape("EluGrad")
@ops.RegisterShape("SoftplusGrad")
@ops.RegisterShape("SoftsignGrad")
def _BinaryElementwiseShape(op):
"""Returns same shape as both inputs to op.
Args:
| tensorflow.python.framework.ops.RegisterShape | 3,534 |
from tensorflow.python.ops import math_ops
appropriately and whose value matches `mean_value`.
Raises:
ValueError: If `weights` is not `None` and its shape doesn't match `values`,
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(name, 'mean', [values, weights]):
total = _create_local('total_tensor', shape=values.get_shape())
count = _create_local('count_tensor', shape=values.get_shape())
num_values = array_ops.ones_like(values)
if weights is not None:
weights = math_ops.to_float(weights)
values = math_ops.mul(values, weights)
num_values = math_ops.mul(num_values, weights)
total_compute_op = state_ops.assign_add(total, values)
count_compute_op = state_ops.assign_add(count, num_values)
def compute_mean(total, count, name):
non_zero_count = math_ops.maximum(count,
array_ops.ones_like(count),
name=name)
return math_ops.truediv(total, non_zero_count, name=name)
mean = compute_mean(total, count, 'value')
with ops.control_dependencies([total_compute_op, count_compute_op]):
| tensorflow.python.ops.math_ops.mul | 3,535 |
from tensorflow.python.framework import ops
`false_negatives` variables appropriately, and whose value matches
`recall`.
Raises:
ValueError: If `ignore_mask` is not `None` and its shape doesn't match
`predictions`, or if `weights` is not `None` and its shape doesn't match
`predictions`, or if either `metrics_collections` or `updates_collections`
are not a list or tuple.
"""
default_name = _at_k_name('recall', k, class_id=class_id)
with ops.name_scope(name, default_name, (predictions, labels)) as scope:
_, top_k_idx = nn.top_k(predictions, k)
top_k_idx = math_ops.to_int64(top_k_idx)
weights = _mask_weights(ignore_mask, weights)
tp, tp_update = _streaming_sparse_true_positive_at_k(
predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id,
weights=weights)
fn, fn_update = _streaming_sparse_false_negative_at_k(
predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id,
weights=weights)
| tensorflow.python.framework.ops.name_scope | 3,536 |
import tensorflow as tf
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS])
W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSESS, deconv_shape2[3].value], name="W_t3")
b_t3 = utils.bias_variable([NUM_OF_CLASSESS], name="b_t3")
conv_t3 = utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8)
annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")
return tf.expand_dims(annotation_pred, dim=3), conv_t3
def train(loss_val, var_list):
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grads = optimizer.compute_gradients(loss_val, var_list=var_list)
if FLAGS.debug:
# print(len(var_list))
for grad, var in grads:
utils.add_gradient_summary(grad, var)
| tensorflow.argmax | 3,537 |
import tensorflow as tf
loss=loss, train_op=train_op,
training_hooks=training_hooks)
if output_type == "sess":
try:
pred_label = tf.argmax(distillation_loss["st_logits"], axis=-1, output_type=tf.int32)
correct = tf.equal(
tf.cast(tf.ones_like(label_ids, dtype=tf.int32), tf.int32),
tf.cast(pred_label, tf.int32)
)
st_accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
pred_label = tf.argmax(distillation_loss["te_logits"], axis=-1, output_type=tf.int32)
correct = tf.equal(
tf.cast(tf.zeros_like(label_ids, dtype=tf.int32), tf.int32),
tf.cast(pred_label, tf.int32)
)
te_accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
except:
te_accuracy = tf.constant(0.0)
| tensorflow.cast | 3,538 |
import tensorflow as tf
ob_space: observation space (should be one of gym.spaces)
batch_size: batch size for input (default is None, so that resulting input placeholder can take tensors with any batch size)
name: tensorflow variable name for input placeholder
returns: tuple (input_placeholder, processed_input_tensor)
'''
if isinstance(ob_space, Discrete):
input_x = tf.placeholder(shape=(batch_size,), dtype=tf.int32, name=name)
processed_x = tf.to_float(tf.one_hot(input_x, ob_space.n))
return input_x, processed_x
elif isinstance(ob_space, Box):
input_shape = (batch_size,) + ob_space.shape
input_x = tf.placeholder(shape=input_shape, dtype=ob_space.dtype, name=name)
| tensorflow.placeholder | 3,539 |
import tensorflow as tf
self.datasets[n] = d
# Perform compatibility checks with the inputs of the child model
for i, spec in self.input_spec.items():
assert i in output_shapes
tf.TensorShape(output_shapes[i]).assert_is_compatible_with(
tf.TensorShape(spec['shape']))
# Used for input shapes of the prediction network
if self.data_shape is None:
self.data_shape = output_shapes
# Handle for the feedable iterator
self.handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
self.handle, output_types, output_shapes)
data = iterator.get_next()
# Build the actual training and evaluation models
self._train_graph(data)
self._eval_graph(data)
self.summaries = tf.summary.merge_all()
# Prediction network with feed_dict
self.pred_in = {i: tf.placeholder(self.input_spec[i]['type'], shape=s, name=i)
for i, s in self.data_shape.items()}
| tensorflow.placeholder | 3,540 |
import tensorflow as tf
start_label = tf.one_hot(self.start_label, tf.shape(self.logits1)[1], axis=1)
| tensorflow.shape | 3,541 |
import tensorflow as tf
with tf.Session():
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord)
time.sleep(_SLEEP_TIME)
coord.request_stop() # Calls close operation.
coord.join()
# Session closed.
def test_minimum_batch_size(self):
with self.test_session() as session:
@dynamic_batching.batch_fn_with_options(
minimum_batch_size=2, timeout_ms=1000)
def f(a, b):
batch_size = tf.shape(a)[0]
return a + b, tf.tile([batch_size], [batch_size])
output = f(tf.constant([[1, 3]]), tf.constant([2]))
tf.train.start_queue_runners()
start = datetime.datetime.now()
session.run(output)
duration = datetime.datetime.now() - start
# There should have been a timeout here because only one sample was added
# and the minimum batch size is 2.
| tensorflow.shape | 3,542 |
import tensorflow as tf
images,
model_options=model_options,
image_pyramid=image_pyramid,
is_training=False,
fine_tune_batch_norm=False)
predictions = {}
for output in sorted(outputs_to_scales_to_logits):
scales_to_logits = outputs_to_scales_to_logits[output]
logits = tf.image.resize_bilinear(
scales_to_logits[_MERGED_LOGITS_SCOPE],
tf.shape(images)[1:3],
align_corners=True)
predictions[output] = tf.argmax(logits, 3)
return predictions
def scale_dimension(dim, scale):
"""Scales the input dimension.
Args:
| tensorflow.shape | 3,543 |
import tensorflow as tf
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
tf.logging.info("***** Running training *****")
| tensorflow.logging.info | 3,544 |
import tensorflow as tf
# Here comes a sample Seq2Seq model using GRU cells.
def SampleGRUSeq2Seq(enc_inp, dec_inp, weights):
"""Example sequence-to-sequence model that uses GRU cells."""
def GRUSeq2Seq(enc_inp, dec_inp):
cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2,
state_is_tuple=True)
return tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=classes,
num_decoder_symbols=classes, embedding_size=24,
output_projection=(w, b))
targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0]
def SampledLoss(labels, inputs):
| tensorflow.nn.seq2seq.embedding_attention_seq2seq | 3,545 |
import tensorflow as tf
+ self.alpha * (
tf.matmul(
tf.nn.relu(state),
self.W_rec * self.rec_Connectivity,
| tensorflow.nn.relu | 3,546 |
import tensorflow as tf
model = registry.model(hparams.policy_network)(
hparams, tf.estimator.ModeKeys.TRAIN
)
try:
num_target_frames = hparams.video_num_target_frames
except AttributeError:
num_target_frames = 1
target_value_shape_suffix = [num_target_frames]
if distributional_size > 1:
target_value_shape_suffix = [num_target_frames, distributional_size]
features = {
"inputs": observations,
"epoch": tf.constant(epoch + 1),
"input_action": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32),
"input_reward": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32),
"targets": tf.zeros(obs_shape[:1] + [num_target_frames] + obs_shape[2:]),
"target_action": tf.zeros(
obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32),
"target_reward": tf.zeros(
obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32),
"target_policy": tf.zeros(
obs_shape[:1] + [num_target_frames] + [action_space.n]),
"target_value": tf.zeros(
obs_shape[:1] + target_value_shape_suffix)
}
model.distributional_value_size = max(distributional_size, 1)
model.use_epochs = hparams.use_epochs
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
| tensorflow.zeros | 3,547 |
from tensorflow.contrib.learn.python.learn.summary_writer_cache import SummaryWriterCache
def __init__(self, every_n_steps=100, output_dir=None,
summary_writer=None):
super(StepCounter, self).__init__(every_n_steps=every_n_steps)
self._summary_tag = "global_step/sec"
self._last_reported_step = None
self._last_reported_time = None
self._summary_writer = summary_writer
if summary_writer is None and output_dir:
self._summary_writer = SummaryWriterCache.get(output_dir)
def set_estimator(self, estimator):
super(StepCounter, self).set_estimator(estimator)
if self._summary_writer is None:
self._summary_writer = SummaryWriterCache.get(estimator.model_dir)
def every_n_step_end(self, current_step, outputs):
current_time = time.time()
| tensorflow.contrib.learn.python.learn.summary_writer_cache.SummaryWriterCache.get | 3,548 |
import tensorflow as tf
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
| tensorflow.expand_dims | 3,549 |
import tensorflow as tf
"""Preprocessing for LM1B: filter out targets exceeding maximum length."""
def train_right_length(example, target):
l = tf.maximum(tf.shape(example['inputs'])[0], tf.shape(target)[0])
return tf.less(l, max_length + 1)
def eval_right_length(example, target):
l = tf.maximum(tf.shape(example['inputs'])[0], tf.shape(target)[0])
return tf.less(l, max_eval_length + 1)
if max_length > 0 and training:
dataset = dataset.filter(train_right_length)
if max_eval_length > 0 and not training:
| tensorflow.shape | 3,550 |
import tensorflow as tf
def bias_varibale(shape):
initial = tf.constant(0.1, shape=shape, name='Bias')
return tf.Variable(initial)
| tensorflow.constant | 3,551 |
import tensorflow as tf
if is_training:
# during training, compute the end logits based on the
# ground truth of the start position
start_positions = tf.reshape(features["start_positions"], [-1])
start_index = tf.one_hot(start_positions, depth=seq_len, axis=-1,
dtype=tf.float32)
start_features = tf.einsum("lbh,bl->bh", output, start_index)
start_features = tf.tile(start_features[None], [seq_len, 1, 1])
end_logits = tf.layers.dense(
tf.concat([output, start_features], axis=-1), xlnet_config.d_model,
kernel_initializer=initializer, activation=tf.tanh, name="dense_0")
end_logits = tf.contrib.layers.layer_norm(
end_logits, begin_norm_axis=-1)
end_logits = tf.layers.dense(
end_logits, 1,
kernel_initializer=initializer,
name="dense_1")
end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0])
end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask
end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
else:
# during inference, compute the end logits based on beam search
| tensorflow.contrib.layers.layer_norm | 3,552 |
from tensorflow.python.framework import ops
false_positives_compute_op]):
update_op = compute_precision('update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, precision)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return precision, update_op
def streaming_recall_at_thresholds(predictions, labels, thresholds,
weights=None, metrics_collections=None,
| tensorflow.python.framework.ops.add_to_collections | 3,553 |
import tensorflow as tf
input_=res,
filter_size=filter_sizes[-1],
dim_in=dims_out[-1],
dim_out=dim_out,
name="out",
stddev=1e-2,
nonlinearity=None)
return res
# distributions
# log-likelihood estimation
def standard_normal_ll(input_):
"""Log-likelihood of standard Gaussian distribution."""
res = -.5 * (tf.square(input_) + numpy.log(2. * numpy.pi))
return res
def standard_normal_sample(shape):
"""Samples from standard Gaussian distribution."""
return tf.random_normal(shape)
SQUEEZE_MATRIX = numpy.array([[[[1., 0., 0., 0.]], [[0., 0., 1., 0.]]],
[[[0., 0., 0., 1.]], [[0., 1., 0., 0.]]]])
def squeeze_2x2_ordered(input_, reverse=False):
| tensorflow.square | 3,554 |
import tensorflow as tf
# Also, we can limit the size of GPU memory used, with the following option
config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess_limited = tf.Session(config=config)
# How to set placements on multiple devices.
# Here, assume we have three devies CPU:0, GPU:0, and GPU:1
if tf.test.is_built_with_cuda():
with tf.device('/cpu:0'):
a = tf.constant([1.0, 3.0, 5.0], shape=[1, 3])
b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])
with tf.device('/gpu:1'):
c = tf.matmul(a,b)
c = tf.reshape(c, [-1])
with tf.device('/gpu:2'):
d = tf.matmul(b,a)
flat_d = tf.reshape(d, [-1])
combined = tf.mul(c, flat_d)
print(sess.run(combined)) | tensorflow.reshape | 3,555 |
import tensorflow as tf
chaining_loss_ratio=1.0, chaining_stop_gradient=False, training=True, **kwargs):
decoder = decoders[0]
targets = targets[0] # single decoder
assert len(encoders) == 2
encoder_input_length = []
input_weights = []
for encoder_inputs_ in encoder_inputs:
weights = get_weights(encoder_inputs_, utils.EOS_ID, include_first_eos=True)
input_weights.append(weights)
encoder_input_length.append(tf.to_int32(tf.reduce_sum(weights, axis=1)))
target_weights = get_weights(targets[:, 1:], utils.EOS_ID, include_first_eos=True)
parameters = dict(encoders=encoders[1:], decoder=encoders[0], training=training)
attention_states, encoder_state, encoder_input_length[1:] = multi_encoder(
encoder_inputs[1:], encoder_input_length=encoder_input_length[1:], **parameters)
decoder_inputs = encoder_inputs[0][:, :-1]
batch_size = tf.shape(decoder_inputs)[0]
| tensorflow.reduce_sum | 3,556 |
import tensorflow as tf
# tft.apply_buckets will annotate the feature in the output schema to
# indicate the bucket boundaries that were applied.
outputs['Bucketized_foo'] = mappers.apply_buckets(inputs['foo'],
boundaries_foo)
outputs['Bucketized_bar'] = mappers.apply_buckets(inputs['bar'],
boundaries_bar)
# Create a session to actually evaluate the annotations and extract the
# the output schema with annotations applied.
with tf.compat.v1.Session(graph=graph) as session:
schema = schema_inference.infer_feature_schema(outputs, graph, session)
self.assertLen(schema.feature, 2)
for feature in schema.feature:
self.assertLen(feature.annotation.extra_metadata, 1)
for annotation in feature.annotation.extra_metadata:
# Extract the annotated message and validate its contents
message = annotations_pb2.BucketBoundaries()
| tensorflow.compat.v1.Session | 3,557 |
import tensorflow as tf
"""Device to use for computation: cpu or gpu""")
#tf.flags.DEFINE_string('data_format', 'NCHW',
tf.flags.DEFINE_string('data_format', 'NHWC',
"""Data layout to use: NHWC (TF native)
or NCHW (cuDNN native).""")
tf.flags.DEFINE_integer('num_intra_threads', 1,
"""Number of threads to use for intra-op
parallelism. If set to 0, the system will pick
an appropriate number.""")
tf.flags.DEFINE_integer('num_inter_threads', 0,
"""Number of threads to use for inter-op
parallelism. If set to 0, the system will pick
an appropriate number.""")
tf.flags.DEFINE_string('trace_file', None,
"""Enable TensorFlow tracing and write trace to
this file.""")
tf.flags.DEFINE_string('graph_file', None,
"""Write the model's graph definition to this
| tensorflow.flags.DEFINE_integer | 3,558 |
import tensorflow as tf
self._obs = tf.expand_dims(self._obs, -1) # !
conv1 = tf.layers.conv2d(inputs=self._obs,
filters=16,
kernel_size=[2, 1], # ! kernel_size = [8,8]
activation=tf.nn.elu,
strides=1) # ! strides = 4
conv2 = tf.layers.conv2d(inputs=conv1,
filters=32,
kernel_size=[2, 1], # ! kernel_size = [4,4]
activation=tf.nn.elu,
strides=1) # ! strides = 2
flattened_filters = policy_utils.flatten(conv2)
self.z = tf.layers.dense(inputs=flattened_filters,
units=256,
activation=tf.nn.elu)
def build_manager(self):
with tf.variable_scope('manager'):
# Calculate manager internal state
self.s = tf.layers.dense(inputs=self.z,
units=self.g_dim,
activation=tf.nn.elu)
# Calculate manager output g
x = tf.expand_dims(self.s, [0])
| tensorflow.layers.dense | 3,559 |
import tensorflow as tf
pwr = tf.square(inpOp)
else:
pwr = tf.pow(inpOp, pnorm)
subsamp = tf.nn.avg_pool(pwr,
ksize=[1, kH, kW, 1],
strides=[1, dH, dW, 1],
padding=padding)
subsamp_sum = tf.multiply(subsamp, kH*kW)
if pnorm == 2:
out = tf.sqrt(subsamp_sum)
else:
out = tf.pow(subsamp_sum, 1/pnorm)
return out
| tensorflow.multiply | 3,560 |
import tensorflow as tf
step_nums = tf.range(0, limit=passage_length) # [passage_length]
step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length)
step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length)
indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3)
indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
indices = tf.cast(indices, tf.int64)
shape = [batch_size, passage_length, extended_vsize]
shape = tf.cast(shape, tf.int64)
attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
if passage_mask is not None:
passage_mask = tf.expand_dims(passage_mask, axis=-1)
one_hot_spare_rep = one_hot_spare_rep * passage_mask
one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, extended_vsize]
vocab_dist = tf.add(vocab_dist, one_hot_spare_rep)
if self.options.add_first_word_prob_for_phrase:
vocab_dist = tf.nn.softmax(vocab_dist) # normalize
return vocab_dist # [batch_size, extended_vsize]
def linear(args, output_size, bias=True, bias_start=0.0, scope=None):
if args is None or (isinstance(args, (list, tuple)) and not args):
raise ValueError("`args` must be specified")
| tensorflow.expand_dims | 3,561 |
import tensorflow as tf
gamma: The hyperparameter for penalizing the easy labeled samples
name: A name for the operation (optional)
Returns:
A 1-D tensor of length batch_size of same type as logits with softmax focal loss
"""
with tf.name_scope(scope, 'focal_loss', [cls_preds, onehot_labels]) as sc:
logits = tf.convert_to_tensor(cls_preds)
onehot_labels = tf.convert_to_tensor(onehot_labels)
precise_logits = tf.cast(logits, tf.float32) if (
logits.dtype == tf.float16) else logits
onehot_labels = tf.cast(onehot_labels, precise_logits.dtype)
predictions = tf.nn.sigmoid(logits)
predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1.-predictions)
| tensorflow.convert_to_tensor | 3,562 |
import tensorflow as tf
grad = tf.reduce_mean(grad, 0)
var = grad_and_vars[0][1]
grad_and_var = (grad, var)
average_grads.append(grad_and_var)
return average_grads
def binary_mask(shape, p=0.7):
samples = tf.random_uniform(shape, minval=0.0, maxval=1.0)
mask = tf.less_equal(samples, p)
return tf.cast(mask, tf.float32)
def weighted_arithmetic_mean(w, x):
numer = tf.reduce_sum(w*x)
denom = tf.reduce_sum(w)
return tf.div(numer, denom)
| tensorflow.div | 3,563 |
import tensorflow as tf
# Basic model parameters.
tf.app.flags.DEFINE_float('learning_rate', 0.1, 'Initial learning rate.')
tf.app.flags.DEFINE_string('pm', '66661', 'pooling scheme across scales. Each number specifies the number of scales remaining at each layer. The first number has to be the same as used in --num_scales.')
tf.app.flags.DEFINE_integer('conv_kernel', 5, 'Size of convolutional kernel')
tf.app.flags.DEFINE_integer('pool_kernel', 3, 'Size of spatial pooling kernel')
| tensorflow.app.flags.DEFINE_string | 3,564 |
import tensorflow as tf
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2])] * 3
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2,
feed_previous=True)
d2, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_symbols=5, embedding_size=2,
feed_previous=True)
res1 = sess.run(d1)
| tensorflow.get_variable_scope | 3,565 |
import tensorflow as tf
tmp1 = tf.tensordot(facts, w1, axes=1)
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
| tensorflow.shape | 3,566 |
import tensorflow as tf
integral.
"""
def F(m_bound, name=None):
with tf.name_scope(name, "argus_integral_phalf_primitive"):
a = tf.minimum(m_bound, m0)
x = 1 - tf.pow(a / m0, 2)
primitive = -0.5 * m0 * m0 * (tf.exp(c * x) * tf.sqrt(x) / c + 0.5 / tf.pow(-c, 1.5) * tf.sqrt(pi) * tf.erf(gradsafe_sqrt(-c * x)))
# We have to safeguard the sqrt, because otherwise the analytic
# derivative blows up for x = 0
return primitive
area = tf.sub(F(m_high, name="F2"), F(m_low, name="F1"), name="argus_integral_phalf")
| tensorflow.sqrt | 3,567 |
import tensorflow as tf
if (change_dimension):
block_conv_input = self.conv_layer(bottom = bottom, kernal_size = 1, in_channels = bottom.get_shape().as_list()[-1],
out_channels = channel_list[2], stride = 1, name = name + "_branch1")
else:
block_conv_input = bottom
input_filter = bottom.get_shape().as_list()[-1]
block_conv_1 = self.conv_layer(bottom, 1, input_filter, channel_list[0], 1, name + "_branch2a")
block_norm_1 = tf.layers.batch_normalization(inputs=block_conv_1, axis = 3, momentum=configs['_BATCH_NORM_DECAY'], epsilon=configs['_BATCH_NORM_EPSILON'], center=True, scale=True, training=self.is_training, fused=True)
block_relu_1 = tf.nn.relu(block_norm_1)
block_conv_2 = self.conv_layer(block_relu_1, 3, channel_list[0], channel_list[1], 1, name + "_branch2b")
block_norm_2 = tf.layers.batch_normalization(inputs=block_conv_2, axis = 3, momentum=configs['_BATCH_NORM_DECAY'], epsilon=configs['_BATCH_NORM_EPSILON'], center=True, scale=True, training=self.is_training, fused=True)
block_relu_2 = tf.nn.relu(block_norm_2)
block_conv_3 = self.conv_layer(block_relu_2, 1, channel_list[1], channel_list[2], 1, name + "_branch2c")
block_res = tf.add(block_conv_input, block_conv_3)
relu = tf.nn.relu(block_res)
return relu
def avg_pool(self, bottom, kernal_size = 2, stride = 2, name = "avg"):
return tf.nn.avg_pool(bottom, ksize=[1, kernal_size, kernal_size, 1], strides=[1, stride, stride, 1], padding='VALID', name=name)
def max_pool(self, bottom, kernal_size = 2, stride = 2, name = "max"):
return tf.nn.max_pool(bottom, ksize=[1, kernal_size, kernal_size, 1], strides=[1, stride, stride, 1], padding='SAME', name=name)
def conv_layer(self, bottom, kernal_size, in_channels, out_channels, stride, name):
with tf.variable_scope(name):
filt, conv_biases = self.get_conv_var(kernal_size, in_channels, out_channels, name)
| tensorflow.add | 3,568 |
import tensorflow as tf
conv_block = Convolutional_Block(inputs=self.layers[-1], shortcut=shortcut, num_filters=512, is_training=self.is_training, name=str(i+1))
self.layers.append(conv_block)
# Extract 8 most features as mentioned in paper
self.k_pooled = tf.nn.top_k(tf.transpose(self.layers[-1], [0,2,1]), k=8, name='k_pool', sorted=False)[0]
print("8-maxpooling:", self.k_pooled.get_shape())
self.flatten = tf.reshape(self.k_pooled, (-1, 512*8))
| tensorflow.transpose | 3,569 |
import tensorflow as tf
l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) * sel, 4)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5)
x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u))
x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.)
x1 = tf.minimum(tf.maximum(
x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.)
x2 = tf.minimum(tf.maximum(
x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.)
return tf.concat([tf.reshape(x0, xs[:-1] + [1]), tf.reshape(x1, xs[:-1] + [1]), tf.reshape(x2, xs[:-1] + [1])], 3)
| tensorflow.reshape | 3,570 |
import tensorflow as tf
input_size = inputs.get_shape()[2].value
dtype = inputs.dtype
x = inputs
x0 = tf.transpose(x, perm=[1, 2,0]) # (num_nodes, total_arg_size, batch_size)
x0 = tf.reshape(x0, shape=[self._num_nodes, input_size * batch_size])
x = tf.expand_dims(x0, axis=0)
scope = tf.get_variable_scope()
with tf.variable_scope(scope):
if self._max_diffusion_step == 0:
pass
else:
for support in self._supports:
x1 = tf.sparse_tensor_dense_matmul(support, x0)
x = self._concat(x, x1)
for _ in range(2, self._max_diffusion_step + 1):
x2 = 2 * tf.sparse_tensor_dense_matmul(support, x1) - x0
x = self._concat(x, x2)
x1, x0 = x2, x1
num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself.
x = tf.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size])
x = tf.transpose(x, perm=[3, 1, 2, 0]) # (batch_size, num_nodes, input_size, order)
x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
weights = tf.get_variable(
'weights', [input_size * num_matrices, output_size],
| tensorflow.sparse_tensor_dense_matmul | 3,571 |
from tensorflow.python.ops import random_ops
def validateKolmogorovSmirnov(self,
shape,
mean,
stddev,
minval,
maxval,
seed=1618):
try:
import scipy.stats # pylint: disable=g-import-not-at-top
tf.set_random_seed(seed)
with self.test_session(use_gpu=self._use_gpu):
samples = random_ops.parameterized_truncated_normal(shape, mean, stddev,
minval,
maxval).eval()
assert (~np.isnan(samples)).all()
minval = max(mean - stddev * 10, minval)
maxval = min(mean + stddev * 10, maxval)
dist = scipy.stats.norm(loc=mean, scale=stddev)
cdf_min = dist.cdf(minval)
cdf_max = dist.cdf(maxval)
def truncated_cdf(x):
return np.clip((dist.cdf(x) - cdf_min) / (cdf_max - cdf_min), 0.0, 1.0)
| tensorflow.python.ops.random_ops.parameterized_truncated_normal | 3,572 |
from tensorflow.python.ops import variable_scope
`weights` is not `None` and its shape doesn't match `predictions`, or if
either `metrics_collections` or `updates_collections` are not a list or
tuple.
"""
with variable_scope.variable_scope(
name, 'false_positives', [predictions, labels]):
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
| tensorflow.python.ops.variable_scope.variable_scope | 3,573 |
import tensorflow as tf
noise_shape=None):
""" Dropout layer.
Args:
inputs: tensor
is_training: boolean tf.Variable
scope: string
keep_prob: float in [0,1]
noise_shape: list of ints
Returns:
tensor variable
"""
with tf.variable_scope(scope) as sc:
outputs = tf.cond(is_training,
lambda: tf.nn.dropout(inputs, keep_prob, noise_shape),
lambda: inputs)
return outputs
| tensorflow.nn.dropout | 3,574 |
import tensorflow as tf
not_eos = tf.cond(
# We only check for early stoping if there is at least 1 element (
# otherwise not_eos will crash)
tf.not_equal(length, 0),
fn_not_eos,
lambda: True,
)
| tensorflow.not_equal | 3,575 |
import tensorflow as tf
u = (1.0 - att_score) * u
new_h = u * state + (1 - u) * c
return new_h, new_h
def prelu(_x, scope=''):
"""parametric ReLU activation"""
with tf.variable_scope(name_or_scope=scope, default_name="prelu"):
_alpha = tf.get_variable("prelu_"+scope, shape=_x.get_shape()[-1],
dtype=_x.dtype, initializer=tf.constant_initializer(0.1))
_zero = tf.constant(0,dtype=_x.dtype)
# return tf.maximum(0.0, _x) + _alpha * tf.minimum(0.0, _x)
return tf.maximum(_zero, _x) + _alpha * tf.minimum(_zero, _x)
def calc_auc(raw_arr):
"""Summary
| tensorflow.constant_initializer | 3,576 |
import tensorflow as tf
IMAGE_SIZE = 28
def get_conv_dimension(filter_list):
with tf.Graph().as_default():
with tf.Session() as sess:
"""Model function for CNN."""
features = tf.placeholder(
tf.float32, shape=[None, IMAGE_SIZE * IMAGE_SIZE], name='features')
labels = tf.placeholder(tf.int64, shape=[None], name='labels')
input_layer = tf.reshape(features, [-1, IMAGE_SIZE, IMAGE_SIZE, 1])
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=filter_list[0],
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
conv2 = tf.layers.conv2d(
| tensorflow.reshape | 3,577 |
from tensorflow.python.ops import random_ops
# Benchmarking code
def parameterized_vs_naive(shape, num_iters, use_gpu=False):
np.random.seed(1618) # Make it reproducible.
# No CSE/CF.
optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0)
config = tf.ConfigProto(
graph_options=tf.GraphOptions(optimizer_options=optimizer_options))
with tf.Session(config=config) as sess:
with tf.device("/cpu:0" if not use_gpu else None):
param_op = tf.group(random_ops.parameterized_truncated_normal(shape))
naive_op = tf.group(random_ops.truncated_normal(shape))
# Burn-in to avoid session setup costs in the timing.
sess.run(param_op)
sess.run(param_op)
param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters)
sess.run(naive_op)
sess.run(naive_op)
naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters)
return param_dt, naive_dt
class TruncatedNormalBenchmark(tf.test.Benchmark):
| tensorflow.python.ops.random_ops.truncated_normal | 3,578 |
import tensorflow as tf
use_synthetic_gpu_images = (self.dataset is None)
with tf.device(self.global_step_device):
global_step = tf.contrib.framework.get_or_create_global_step()
| tensorflow.device | 3,579 |
import tensorflow as tf
saver = tf.train.import_meta_graph(filename)
# Exports the graph as text format.
saver.export_meta_graph(filename, as_text=True)
with self.test_session(graph=tf.Graph()):
# Imports the text format graph.
tf.train.import_meta_graph(filename)
| tensorflow.Graph | 3,580 |
import tensorflow as tf
name='logits_rl_w',
initializer=tf.initializers.zeros(),
| tensorflow.initializers.zeros | 3,581 |
import tensorflow as tf
src_path, dst_path = sess.run(dequeue_op)
except tf.errors.OutOfRangeError:
coord.request_stop()
break
process(src_path, dst_path)
complete()
# init epoch counter for the queue
local_init_op = tf.local_variables_initializer()
with tf.Session() as sess:
sess.run(local_init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(a.workers):
t = threading.Thread(target=worker, args=(coord,))
t.start()
threads.append(t)
| tensorflow.Session | 3,582 |
import tensorflow as tf
summary = self.image_summaries['orig'].eval(feed_dict={self.input: blurred_batch})
self.summary_writer.add_summary(summary, global_step=self.get_past_epochs())
self._eval_image_summary('midd', average)
# self._eval_image_summary('reco', actual)
self._eval_image_summary('pred', expected)
self._eval_image_summary('nois', noisy)
def _eval_image_summary(self, name, encdoding_batch):
summary = self.image_summaries[name].eval(feed_dict={self.encoding: encdoding_batch})
self.summary_writer.add_summary(summary, global_step=self.get_past_epochs())
def _add_decoding_summary(self, name, var, collection='train'):
var = var[:FLAGS.visualiza_max]
var = tf.concat(tf.unstack(var), axis=0)
var = tf.expand_dims(var, dim=0)
color_s = tf.summary.image(name, var[..., :3], max_outputs=FLAGS.visualiza_max)
var = tf.expand_dims(var[..., 3], dim=3)
bw_s = tf.summary.image('depth_' + name, var, max_outputs=FLAGS.visualiza_max)
return tf.summary.merge([color_s, bw_s])
# TRAINING PROGRESS EVENTS
def _on_training_start(self, sess):
# Writers and savers
self.summary_writer = tf.summary.FileWriter(FLAGS.logdir, sess.graph)
self.saver = tf.train.Saver()
| tensorflow.unstack | 3,583 |
import tensorflow as tf
candidate_start_sentence_indices = tf.gather(flattened_sentence_indices, candidate_starts) # [num_words, max_span_width]
candidate_end_sentence_indices = tf.gather(flattened_sentence_indices, tf.minimum(candidate_ends, num_words - 1)) # [num_words, max_span_width]
| tensorflow.minimum | 3,584 |
import tensorflow as tf
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
}
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
| tensorflow.parse_single_example | 3,585 |
import tensorflow as tf
return new_h, new_h
def prelu(_x, scope=''):
"""parametric ReLU activation"""
with tf.variable_scope(name_or_scope=scope, default_name="prelu"):
_alpha = tf.get_variable("prelu_"+scope, shape=_x.get_shape()[-1],
dtype=_x.dtype, initializer=tf.constant_initializer(0.1))
return tf.maximum(0.0, _x) + _alpha * tf.minimum(0.0, _x)
def calc_auc(raw_arr):
"""Summary
| tensorflow.constant_initializer | 3,586 |
import tensorflow as tf
return list_from_batch[-1], {'targets': list_from_batch[:-1],
'decode_fn': lambda pred : anchor_encoder_decoder.decode_all_anchors([pred])[0],
'num_anchors_list': num_anchors_list}
return input_fn
def modified_smooth_l1(bbox_pred, bbox_targets, bbox_inside_weights = 1., bbox_outside_weights = 1., sigma = 1.):
"""
ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets))
SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2
|x| - 0.5 / sigma^2, otherwise
"""
sigma2 = sigma * sigma
inside_mul = tf.multiply(bbox_inside_weights, tf.subtract(bbox_pred, bbox_targets))
smooth_l1_sign = tf.cast(tf.less(tf.abs(inside_mul), 1.0 / sigma2), tf.float32)
smooth_l1_option1 = tf.multiply(tf.multiply(inside_mul, inside_mul), 0.5 * sigma2)
smooth_l1_option2 = tf.subtract(tf.abs(inside_mul), 0.5 / sigma2)
smooth_l1_result = tf.add(tf.multiply(smooth_l1_option1, smooth_l1_sign),
tf.multiply(smooth_l1_option2, tf.abs(tf.subtract(smooth_l1_sign, 1.0))))
outside_mul = tf.multiply(bbox_outside_weights, smooth_l1_result)
return outside_mul
def xdet_model_fn(features, labels, mode, params):
"""Our model_fn for ResNet to be used with our Estimator."""
| tensorflow.subtract | 3,587 |
import tensorflow as tf
os.makedirs(eval_plot_dir, exist_ok=True)
os.makedirs(eval_wav_dir, exist_ok=True)
os.makedirs(tensorboard_dir, exist_ok=True)
os.makedirs(meta_folder, exist_ok=True)
checkpoint_fpath = os.path.join(save_dir, "tacotron_model.ckpt")
metadat_fpath = os.path.join(args.synthesizer_root, "train.txt")
log("Checkpoint path: {}".format(checkpoint_fpath))
log("Loading training data from: {}".format(metadat_fpath))
log("Using model: Tacotron")
log(hparams_debug_string())
# Start by setting a seed for repeatability
tf.set_random_seed(hparams.tacotron_random_seed)
# Set up data feeder
coord = tf.train.Coordinator()
with tf.variable_scope("datafeeder") as scope:
feeder = Feeder(coord, metadat_fpath, hparams)
# Set up model:
global_step = tf.Variable(0, name="global_step", trainable=False)
model, stats = model_train_mode(args, feeder, hparams, global_step)
eval_model = model_test_mode(args, feeder, hparams, global_step)
# Embeddings metadata
char_embedding_meta = os.path.join(meta_folder, "CharacterEmbeddings.tsv")
if not os.path.isfile(char_embedding_meta):
| tensorflow.set_random_seed | 3,588 |
import tensorflow as tf
tflite_model = converter.convert()
with open(f"{target_dir}/tflite_model.tflite", "wb") as f:
f.write(tflite_model)
def validation():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
images = tf.convert_to_tensor(np.expand_dims(x_test/255.0, -1),dtype=tf.float32)
# Load the TFLite model in TFLite Interpreter
interpreter = tf.lite.Interpreter(f"{target_dir}/tflite_model.tflite")
# Model has single input.
in_node = interpreter.get_input_details()[0]
in_shape = in_node['shape']
# Model has single output.
out_node = interpreter.get_output_details()[0]
out_shape = out_node['shape']
# Resize Tensor (batch size)
interpreter.resize_tensor_input(in_node['index'],[len(images), in_shape[1], in_shape[2], in_shape[3]])
| tensorflow.lite.Interpreter | 3,589 |
import tensorflow as tf
if tf_output1_dtype == tf.string:
cast1 = tf.dtypes.as_string(sub if not swap else add, name="TOSTR1")
else:
cast1 = tf.cast(sub if not swap else add, tf_output1_dtype, "CAST1")
out0 = tf.identity(cast0, "OUTPUT0")
out1 = tf.identity(cast1, "OUTPUT1")
# Use a different model name for the non-batching variant
model_name = tu.get_model_name(
"graphdef_nobatch" if max_batch == 0 else "graphdef", input_dtype,
output0_dtype, output1_dtype)
| tensorflow.identity | 3,590 |
import tensorflow as tf
def get_regression_loss(
FLAGS, features, is_training):
"""Loss for downstream regression tasks."""
bsz_per_core = tf.shape(features["input_ids"])[0]
inp = tf.transpose(features["input_ids"], [1, 0])
seg_id = tf.transpose(features["segment_ids"], [1, 0])
inp_mask = tf.transpose(features["input_mask"], [1, 0])
label = tf.reshape(features["label_ids"], [bsz_per_core])
xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
run_config = xlnet.create_run_config(is_training, True, FLAGS)
| tensorflow.transpose | 3,591 |
import tensorflow as tf
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
| tensorflow.logging.info | 3,592 |
from tensorflow.contrib.learn.python.learn.graph_actions import train
self._check_inputs(features, targets)
train_op, loss_op = self._get_train_ops(features, targets)
return train(
graph=g,
| tensorflow.contrib.learn.python.learn.graph_actions.train | 3,593 |
import tensorflow as tf
# -1 otherwise. For instance, candidate[3] = id(token[3] + token[4]).
# First, split into basic UTF-8 characters (letters).
chars = tf.strings.unicode_split(word, 'UTF-8')
tokens = self._StringToToken(chars)
| tensorflow.strings.unicode_split | 3,594 |
import tensorflow as tf
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def train():
| tensorflow.reduce_mean | 3,595 |
import tensorflow as tf
last_c = loop_outputs[-7]
last_h = loop_outputs[-6]
return arc_seq, entropy, log_prob, last_c, last_h
def build_trainer(self, child_model):
child_model.build_valid_rl()
self.valid_acc = (tf.to_float(child_model.valid_shuffle_acc) /
tf.to_float(child_model.batch_size))
self.reward = self.valid_acc
if self.entropy_weight is not None:
self.reward += self.entropy_weight * self.sample_entropy
self.sample_log_prob = tf.reduce_sum(self.sample_log_prob)
self.baseline = tf.Variable(0.0, dtype=tf.float32, trainable=False)
baseline_update = tf.assign_sub(
self.baseline, (1 - self.bl_dec) * (self.baseline - self.reward))
with tf.control_dependencies([baseline_update]):
self.reward = tf.identity(self.reward)
self.loss = self.sample_log_prob * (self.reward - self.baseline)
self.train_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="train_step")
tf_variables = [var for var in tf.trainable_variables() if var.name.startswith(self.name)]
print("-" * 80)
for var in tf_variables:
print(var)
| tensorflow.Variable | 3,596 |
from tensorflow import keras
dataset = dataset.repeat(num_epochs).batch(batch_size)
iterator = dataset.make_one_shot_iterator()
batch_features, batch_labels = iterator.get_next()
return batch_features, batch_labels
return _input_fn
# Create inference model using Keras
# The model here is a dnn regressor
def make_keras_estimator(output_dir):
from tensorflow import keras
model = keras.models.Sequential()
model.add(keras.layers.Dense(32, input_shape=(N_INPUTS,), name=TIMESERIES_INPUT_LAYER))
model.add(keras.layers.Activation('relu'))
model.add(keras.layers.Dense(1))
model.compile(loss = 'mean_squared_error',
optimizer = 'adam',
metrics = ['mae', 'mape']) # mean absolute [percentage] error
return keras.estimator.model_to_estimator(model, model_dir=output_dir)
# Create the inference model
def simple_rnn(features, labels, mode):
# 0. Reformat input shape to become a sequence
x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1)
# 1. Configure the RNN
| tensorflow.keras.layers.Activation | 3,597 |
from tensorflow.core.framework import op_def_pb2 as _op_def_pb2
def _InitOpDefLibrary():
op_list = _op_def_pb2.OpList()
_text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list)
_op_def_registry.register_op_list(op_list)
| tensorflow.core.framework.op_def_pb2.OpList | 3,598 |
from tensorflow.python.framework import ops
@ops.RegisterShape("Max")
@ops.RegisterShape("Mean")
| tensorflow.python.framework.ops.RegisterShape | 3,599 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.