seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
# print(activation.get_shape().as_list())
return activation
def batch_norm_conv(x, b_train, scope):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
n_out = x.get_shape().as_list()[-1]
beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out]))
gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out]))
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(b_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
| tensorflow.nn.moments | 3,600 |
import tensorflow as tf
averages_op = averages.apply(ops)
for op in ops:
tf.scalar_summary(scope_pfix + op.name + raw_pfix, op)
tf.scalar_summary(scope_pfix + op.name + avg_pfix,
averages.average(op))
with tf.control_dependencies([averages_op]):
for i, dep_op in enumerate(dep_ops):
dep_ops[i] = tf.identity(dep_op, name=dep_op.name.split(':')[0])
return dep_ops
def exp_average(vec, curr_avg, decay=0.9):
| tensorflow.control_dependencies | 3,601 |
import tensorflow as tf
if self._scale != 1.0:
grad = tf.scalar_mul(1. / self._scale, grad)
final_gradvar.append((grad, orig_var))
return final_gradvar
def apply_gradients(self, *args, **kwargs):
return self._optimizer.apply_gradients(*args, **kwargs)
def main(argv=None):
start1 = time.time()
import os
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
if not tf.gfile.Exists(FLAGS.checkpoint_path):
tf.gfile.MkDir(FLAGS.checkpoint_path)
else:
if not FLAGS.restore:
tf.gfile.DeleteRecursively(FLAGS.checkpoint_path)
tf.gfile.MkDir(FLAGS.checkpoint_path)
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_score_maps')
if FLAGS.geometry == 'RBOX':
input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 5], name='input_geo_maps')
else:
input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 8], name='input_geo_maps')
| tensorflow.gfile.Exists | 3,602 |
import tensorflow as tf
# Note: tf.nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = tf.clip_by_value(output, epsilon, 1 - epsilon)
output = tf.log(output)
output_shape = output.get_shape()
targets = cast(flatten(target), 'int64')
logits = tf.reshape(output, [-1, int(output_shape[-1])])
try:
res = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=targets, logits=logits)
except TypeError:
res = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=targets)
if len(output_shape) == 3:
# if our output includes timesteps we need to reshape
return tf.reshape(res, tf.shape(output)[:-1])
else:
return res
def binary_crossentropy(output, target, from_logits=False):
"""Binary crossentropy between an output tensor and a target tensor.
# Arguments
output: A tensor.
| tensorflow.nn.sparse_softmax_cross_entropy_with_logits | 3,603 |
import tensorflow as tf
Of shape (n_test, n_support)
"""
rnorm_test = tf.rsqrt(
tf.reduce_sum(tf.square(test), 1, keep_dims=True)) + 1e-7
rnorm_support = tf.rsqrt(
tf.reduce_sum(tf.square(support), 1, keep_dims=True)) + 1e-7
test_normalized = test * rnorm_test
support_normalized = support * rnorm_support
# Transpose for mul
support_normalized_t = tf.transpose(support_normalized, perm=[1, 0])
g = tf.matmul(test_normalized, support_normalized_t) # Gram matrix
return g
def elu(x, alpha=1.):
"""Exponential linear unit.
Parameters
----------
| tensorflow.transpose | 3,604 |
import tensorflow as tf
return p.eval(), new_value
def _initAssignSubFetch(self, x, y, use_gpu=False):
"""Initialize a param to init, and compute param -= y."""
with self.test_session(use_gpu=use_gpu):
p = tf.Variable(x)
sub = tf.assign_sub(p, y)
p.initializer.run()
new_value = sub.eval()
return p.eval(), new_value
def _testTypes(self, vals):
| tensorflow.assign_sub | 3,605 |
import tensorflow as tf
# Create tensors
# Create data to feed in
x_vals = np.array([1., 3., 5., 7., 9.])
x_data = tf.placeholder(tf.float32)
m = tf.constant(3.)
# Multiplication
prod = tf.mul(x_data, m)
for x_val in x_vals:
| tensorflow.constant | 3,606 |
import tensorflow as tf
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_cpu_threads, len(input_files))
| tensorflow.FixedLenFeature | 3,607 |
import tensorflow as tf
optimizer_vars = set([var.name for var in optimizer.variables()])
prefix = 'resnet%s/' % params['resnet_depth']
resnet_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, prefix)
vars_to_load = {}
| tensorflow.get_collection | 3,608 |
import tensorflow.contrib.eager as tfe
def device():
return "/device:GPU:0" if tfe.num_gpus() else "/device:CPU:0"
def data_format():
return "channels_first" if tfe.num_gpus() else "channels_last"
def random_dataset():
batch_size = 64
images = tf.random_normal([batch_size, 784])
| tensorflow.contrib.eager.num_gpus | 3,609 |
import tensorflow as tf
edge_types: A 1-D `Tensor` of int32. Specify edge types to filter outgoing
edges.
Return:
A tuple of `SparseTensor` (neibors, weights).
neighbors: A `SparseTensor` of `int64`.
weights: A `SparseTensor` of `float`.
types: A `SparseTensor` of `int32`
"""
sp_returns = base._LIB_OP.get_sorted_full_neighbor(nodes, edge_types)
return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \
tf.SparseTensor(*sp_returns[6:])
def sample_fanout(nodes, edge_types, counts, default_node=-1):
"""
Sample multi-hop neighbors of nodes according to weight in graph.
Args:
nodes: A 1-D `Tensor` of `int64`.
| tensorflow.SparseTensor | 3,610 |
import tensorflow as tf
# optimizer & gradients
optimizer_base = tf.train.MomentumOptimizer(lrn_rate, FLAGS.momentum)
if not FLAGS.enbl_multi_gpu:
optimizer = optimizer_base
else:
optimizer = mgw.DistributedOptimizer(optimizer_base)
grads_origin = optimizer.compute_gradients(loss, self.trainable_vars)
grads_pruned = self.__calc_grads_pruned(grads_origin)
# TF operations & model saver
self.sess_train = sess
with tf.control_dependencies(self.update_ops):
self.train_op = optimizer.apply_gradients(grads_pruned, global_step=self.global_step)
self.summary_op = tf.summary.merge_all()
self.log_op = [lrn_rate, loss, pr_trainable, pr_maskable] + list(metrics.values())
self.log_op_names = ['lr', 'loss', 'pr_trn', 'pr_msk'] + list(metrics.keys())
self.init_op = tf.variables_initializer(self.vars)
self.init_opt_op = tf.variables_initializer(optimizer_base.variables())
if FLAGS.enbl_multi_gpu:
self.bcast_op = mgw.broadcast_global_variables(0)
self.saver_train = tf.train.Saver(self.vars)
def __build_eval(self):
"""Build the evaluation graph."""
with tf.Graph().as_default():
# create a TF session for the current graph
| tensorflow.summary.merge_all | 3,611 |
import tensorflow as tf
# Loss value
reg_item = tf.contrib.layers.l1_l2_regularizer(L1_reg,
L2_reg)
reg_term = tf.contrib.layers.apply_regularization(reg_item, self.nnweights)
loss_fun = self._negative_log_likelihood(y_, y)
loss = loss_fun + reg_term
# SGD Optimizer
if optimizer == 'sgd':
lr = tf.train.exponential_decay(
learning_rate,
global_step,
1,
learning_rate_decay
)
train_step = tf.train.GradientDescentOptimizer(lr).minimize(loss, global_step=global_step)
elif optimizer == 'adam':
| tensorflow.train.exponential_decay | 3,612 |
import tensorflow as tf
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
| tensorflow.contrib.tpu.TPUEstimatorSpec | 3,613 |
import tensorflow as tf
# Assign to yet another shape
data2 = tf.fill([10, 10], 1)
a2 = tf.assign(p, data2, validate_shape=False)
a2.op.run()
| tensorflow.assign | 3,614 |
import tensorflow as tf
is returned.
Arguments:
- *indicator*: a 1-dimensional boolean tensor indicating which elements
are allowed to be sampled and which are not.
- *num_samples*: int32 scalar tensor
Returns:
A boolean tensor with the same shape as input (indicator) tensor
"""
indices = tf.where(indicator)
indices = tf.random.shuffle(indices)
indices = tf.reshape(indices, [-1])
num_samples = tf.minimum(tf.size(indices), num_samples)
selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))
selected_indicator = ops.indices_to_dense_vector(selected_indices, tf.shape(indicator)[0])
return tf.equal(selected_indicator, 1)
def sample_balanced_positive_negative(indicator, sample_size, labels, positive_fraction=0.5):
"""Subsamples minibatches to a desired balance of positives and negatives.
| tensorflow.random.shuffle | 3,615 |
import tensorflow as tf
# pylint: enable=g-import-not-at-top
with tf.compat.v1.Graph().as_default() as graph:
outputs = {
'foo': tf.convert_to_tensor([0, 1, 2, 3], dtype=tf.int64),
'bar': tf.convert_to_tensor([0, 2, 0, 2], dtype=tf.int64),
}
| tensorflow.convert_to_tensor | 3,616 |
from tensorflow.python.ops import math_ops
# TODO(zakaria): support weights.
def _targets_streaming_mean(unused_predictions, targets):
return metrics_lib.streaming_mean(targets)
def _predictions_streaming_mean(predictions, unused_targets):
return metrics_lib.streaming_mean(predictions)
def _streaming_with_threshold(streaming_metrics_fn, threshold):
def _streaming_metrics(predictions, targets):
return streaming_metrics_fn(predictions=math_ops.to_float(
math_ops.greater_equal(predictions, threshold)),
labels=targets)
return _streaming_metrics
class _MetricKeys(object):
AUC = "auc"
PREDICTION_MEAN = "labels/prediction_mean"
TARGET_MEAN = "labels/actual_target_mean"
ACCURACY_BASELINE = "accuracy/baseline_target_mean"
ACCURACY_MEAN = "accuracy/threshold_%f_mean"
PRECISION_MEAN = "precision/positive_threshold_%f_mean"
| tensorflow.python.ops.math_ops.greater_equal | 3,617 |
import tensorflow as tf
print("Hyper Decoder")
ys = conditional_entropy_model.decompress(y_strings, locs, scales, y_min_v, y_max_v, y_shape)
print("Entropy Decoder")
def loop_synthesis(element):
y = tf.expand_dims(element[0], 0)
x_coori = tf.expand_dims(element[1], 0)
x_coori= tf.cast(x_coori,tf.float32)
x = synthesis_transform(x_coori,y)
return tf.squeeze(x, [0])
| tensorflow.expand_dims | 3,618 |
from tensorflow.python.ops import math_ops
# "accuracy/threshold_0.500000_mean" metric for binary classification.
metrics = {("accuracy", "classes"): metrics_lib.streaming_accuracy}
predictions = math_ops.sigmoid(logits)
targets_float = math_ops.to_float(targets)
| tensorflow.python.ops.math_ops.sigmoid | 3,619 |
import tensorflow as tf
with tf.device(FLAGS.device):
lr = tf.placeholder(tf.float32, shape=[], name="learning_rate")
mom = tf.placeholder(tf.float32, shape=[], name="momentum")
with tf.variable_scope("CNN") as scope:
# Build training graph
loss, train_op, global_step, ul_u_updated = build_training_graph(
images, labels, ul_images, ul_u, lr, mom)
| tensorflow.variable_scope | 3,620 |
import tensorflow as tf
label_id = [0]*max_seq_length
label_id[start:end]=[1]*(end-start)
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
| tensorflow.logging.info | 3,621 |
import tensorflow as tf
#output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1)
output = facts * tf.expand_dims(alphas, -1)
output = tf.reshape(output, tf.shape(facts))
# output = output / (facts.get_shape().as_list()[-1] ** 0.5)
if not return_alphas:
return output
else:
return output, alphas
def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
| tensorflow.expand_dims | 3,622 |
import tensorflow as tf
annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")
return tf.expand_dims(annotation_pred, dim=3), conv_t3
def train(loss_val, var_list):
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grads = optimizer.compute_gradients(loss_val, var_list=var_list)
if FLAGS.debug:
# print(len(var_list))
for grad, var in grads:
utils.add_gradient_summary(grad, var)
| tensorflow.train.AdamOptimizer | 3,623 |
import tensorflow as tf
[[0, 1, 2, 3], [1, 0, 2, 3], [2, 3, 1, 0], [2, 1, 0, 3], [0, 1, 2, 3]],
num_partitions=4) # after permute becomes 5,4,11, return all partitions 5,11
node_a = tf.div(list_of_parts[0], list_of_parts[1])
node_b = tf.divide(list_of_parts[2], list_of_parts[3])
trace_node = tf.trace(node_a) + node_b # there is a broadcast here
out_node = tf.cast(tf.count_nonzero(trace_node), dtype=tf.float32) + tf.Variable(tf.random_normal(shape=(2, 3)))
placeholders = [in_node_a, in_node_b, in_node_c]
predictions = [out_node]
| tensorflow.random_normal | 3,624 |
import tensorflow as tf
# Reshape input tensors to remove nunroll dim; will briefly restore later during RNN if necessary
if cnn_rnn_zack:
feats_audio = tf.reshape(feats_audio_nunroll, shape=[batch_size, rnn_nunroll + zack_hack, audio_nbands, audio_nchannels])
else:
feats_audio = tf.reshape(feats_audio_nunroll, shape=[batch_size * rnn_nunroll, audio_context_len, audio_nbands, audio_nchannels])
feats_other = tf.reshape(feats_other_nunroll, shape=[batch_size * rnn_nunroll, nfeats])
if mode != 'gen':
targets = tf.reshape(targets_nunroll, shape=[batch_size * rnn_nunroll])
target_weights = tf.reshape(target_weights_nunroll, shape=[batch_size * rnn_nunroll])
# CNN
| tensorflow.reshape | 3,625 |
from tensorflow.python.ops import math_ops
is_false_positive *= weights_tiled
is_true_negative *= weights_tiled
true_positives_update_op = state_ops.assign_add(
true_positives, math_ops.reduce_sum(is_true_positive, 1))
false_negatives_update_op = state_ops.assign_add(
false_negatives, math_ops.reduce_sum(is_false_negative, 1))
true_negatives_update_op = state_ops.assign_add(
true_negatives, math_ops.reduce_sum(is_true_negative, 1))
false_positives_update_op = state_ops.assign_add(
false_positives, math_ops.reduce_sum(is_false_positive, 1))
| tensorflow.python.ops.math_ops.reduce_sum | 3,626 |
import tensorflow as tf
domain_selection_mask = tf.concat(
values=[tf.zeros((batch_size, 1)), tf.ones((batch_size, 1))], axis=0)
| tensorflow.ones | 3,627 |
import tensorflow as tf
tf.app.flags.DEFINE_integer('resnet_size', 20, '# of layers in the ResNet model')
tf.app.flags.DEFINE_float('nb_epochs_rat', 1.0, '# of training epochs\'s ratio')
tf.app.flags.DEFINE_float('lrn_rate_init', 1e-1, 'initial learning rate')
tf.app.flags.DEFINE_float('batch_size_norm', 128, 'normalization factor of batch size')
tf.app.flags.DEFINE_float('momentum', 0.9, 'momentum coefficient')
tf.app.flags.DEFINE_float('loss_w_dcy', 2e-4, 'weight decaying loss\'s coefficient')
def forward_fn(inputs, is_train, data_format):
"""Forward pass function.
| tensorflow.app.flags.DEFINE_float | 3,628 |
import tensorflow as tf
current_image_id_ph,
stable_stage_num_images,
transition_stage_num_images,
num_blocks=3)
x = tf.random_normal([2, 16, 16, 3])
logits, _ = networks.discriminator(
x, progress, _num_filters_stub,
networks.ResolutionSchedule(
start_resolutions=(4, 4), scale_base=2, num_resolutions=3))
fake_loss = tf.reduce_sum(tf.square(logits))
grad_norms = [
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_1/.*')),
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_2/.*')),
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_3/.*'))
]
grad_norms_output = None
with self.test_session(use_gpu=True) as sess:
sess.run(tf.global_variables_initializer())
grad_norms_output = np.array([
sess.run(grad_norms, feed_dict={current_image_id_ph: i})
| tensorflow.trainable_variables | 3,629 |
import tensorflow as tf
del filters
hparams = self.hparams
final_filters = common_layers.shape_list(layer)[-1]
filters = hparams.hidden_size
kernel = (4, 4)
if hparams.mode == tf.estimator.ModeKeys.PREDICT:
layer_shape = common_layers.shape_list(layer)
if hparams.full_latent_tower:
rand = tf.random_uniform(layer_shape[:-1] + [hparams.bottleneck_bits])
else:
rand = tf.random_uniform(layer_shape[:-3] + [
1, 1, hparams.bottleneck_bits])
d = 2.0 * tf.to_float(tf.less(0.5, rand)) - 1.0
z = tf.layers.dense(d, final_filters, name="unbottleneck")
return layer + z, 0.0
# Embed.
x = tf.layers.dense(
features["cur_target_frame"], filters, name="latent_embed",
bias_initializer=tf.random_normal_initializer(stddev=0.01))
x = common_attention.add_timing_signal_nd(x)
if hparams.full_latent_tower:
for i in range(hparams.num_compress_steps):
with tf.variable_scope("latent_downstride%d" % i):
| tensorflow.less | 3,630 |
import tensorflow as tf
def _smooth_l1(y_true, y_pred):
# y_true [batch_size, num_anchor, 4+1]
# y_pred [batch_size, num_anchor, 4]
regression = y_pred
regression_target = y_true[:, :, :-1]
anchor_state = y_true[:, :, -1]
# 找到正样本
indices = tf.where(keras.backend.equal(anchor_state, 1))
regression = tf.gather_nd(regression, indices)
regression_target = tf.gather_nd(regression_target, indices)
# 计算 smooth L1 loss
# f(x) = 0.5 * (sigma * x)^2 if |x| < 1 / sigma / sigma
# |x| - 0.5 / sigma / sigma otherwise
regression_diff = regression - regression_target
regression_diff = keras.backend.abs(regression_diff)
regression_loss = tf.where(
| tensorflow.gather_nd | 3,631 |
import tensorflow as tf
"""Preprocessing for WMT: filter exceeding maximum length and concatenate."""
dataset = wmt_preprocess(dataset, training, max_length, max_eval_length)
def concat_and_add_mask(features, targets):
inp = features['inputs']
pad = tf.expand_dims(tf.zeros_like(inp[0]), axis=0)
concat = tf.concat([inp, pad, targets], axis=0)
mask = tf.concat([tf.zeros_like(inp), pad, tf.ones_like(targets)], axis=0)
features['inputs'] = concat
features['mask'] = mask
| tensorflow.zeros_like | 3,632 |
import tensorflow as tf
#init=tf.initialize_all_variables()
def train(train_num=64,test_num=32,lr=1e-4,loop_count=10000,report_step=100,save_step=1000,restore=False):
with tf.Session(config=config) as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
if restore:
tf.train.Saver().restore(sess,path)
feed_dict={
testnum: test_num,
trainnum: train_num,
| tensorflow.train.start_queue_runners | 3,633 |
import tensorflow as tf
from __future__ import print_function
import numpy as np
import tensorflow as tf
import TensorFI as ti
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing
# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))),
reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
| tensorflow.placeholder | 3,634 |
import tensorflow as tf
rotation_z_2 = tf.reshape(box2[-1], [1])
length_1 = tf.reshape(box1[3 + 0], [1])
height_1 = tf.reshape(box1[3 + 2], [1])
width_1 = tf.reshape(box1[3 + 1], [1])
length_2 = tf.reshape(box2[3 + 0], [1])
height_2 = tf.reshape(box2[3 + 2], [1])
width_2 = tf.reshape(box2[3 + 1], [1])
iou = np.squeeze(np_box_ops.iou3d_7dof_box(
length_1, height_1, width_1, center_1, rotation_z_1,
length_2, height_2, width_2, center_2, rotation_z_2))
| tensorflow.reshape | 3,635 |
import tensorflow as tf
x=x,
h2=l1_h2,
layer='h1',
layer_idx=0)
# Intermediate FF
if self.batch_norm:
with tf.variable_scope(
'l1_h2_bn',
reuse=self.scope_reuse) as scope:
l1_h2 = tf.contrib.layers.batch_norm(
inputs=l1_h2,
scale=True,
center=True,
fused=True,
renorm=False,
param_initializers=self.param_initializer,
updates_collections=None,
scope=scope,
reuse=self.reuse,
| tensorflow.contrib.layers.batch_norm | 3,636 |
import tensorflow as tf
self._TokenToString(tokens[0]) + self._TokenToString(tokens[1]))
def _EncodeToIds(self, word):
# Below:
# * a token is a wordpiece ID.
# * the tokens array will be merged in-place.
# * the candidates array is an array of size len(tokens) - 1.
# It contains the token for the merged wordpiece, if it exists,
# -1 otherwise. For instance, candidate[3] = id(token[3] + token[4]).
# First, split into basic UTF-8 characters (letters).
chars = tf.strings.unicode_split(word, 'UTF-8')
tokens = self._StringToToken(chars)
tokens = tf.where(
tf.equal(tokens, NO_TOKEN),
# Unseen character.
tf.broadcast_to(self.unk_id, tf.shape(tokens)),
tokens)
# Create initial candidate list.
candidates = tf.map_fn(
self._MergeTokens, (tokens[:-1], tokens[1:]), dtype=tokens.dtype)
def _ShouldMerge(unused_tokens, candidates):
"""Merge until not possible, or we abort early according to merge_prob."""
return tf.logical_and(
tf.reduce_any(tf.not_equal(candidates, NO_TOKEN)),
tf.random.uniform([]) < self._merge_prob)
| tensorflow.equal | 3,637 |
from tensorflow.python.ops import array_ops
# Accumulate the prediction to current confusion matrix.
current_cm = confusion_matrix_ops.confusion_matrix(
predictions, labels, num_classes, weights=weights, dtype=cm_dtype)
update_op = state_ops.assign_add(total_cm, current_cm)
def compute_mean_iou(name):
"""Compute the mean intersection-over-union via the confusion matrix."""
sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0))
sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1))
cm_diag = math_ops.to_float(array_ops.diag_part(total_cm))
denominator = sum_over_row + sum_over_col - cm_diag
# If the value of the denominator is 0, set it to 1 to avoid
# zero division.
denominator = math_ops.select(
math_ops.greater(denominator, 0),
denominator,
array_ops.ones_like(denominator))
| tensorflow.python.ops.array_ops.diag_part | 3,638 |
import tensorflow as tf
def batch_norm_conv(x, b_train, scope):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
n_out = x.get_shape().as_list()[-1]
beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out]))
gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out]))
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(b_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def add_dense_layer(layer, filter_dims, act_func=tf.nn.relu, scope='dense_layer',
use_bn=True, bn_phaze=False, use_bias=False, dilation=[1, 1, 1, 1]):
with tf.variable_scope(scope):
l = layer
| tensorflow.identity | 3,639 |
import tensorflow as tf
backward_cell,
logits,
dtype=tf.float32
)
encoder_outputs = tf.concat(encoder_outputs, axis=2)
logits = tf.reshape(tf.layers.dense(encoder_outputs, units=num_classes), [-1, bil_lstm_win_size, num_classes])
return logits
def cnn_model(x, amp_factor=1):
with tf.variable_scope('model'):
conv1 = tf.layers.conv2d(x, filters=32*amp_factor, kernel_size=[5, 3],
data_format='channels_last', padding= "same",
strides=(2, 1),
activation=tf.nn.relu)
pool1 = conv1
conv2 = tf.layers.conv2d(pool1, filters=64*amp_factor, kernel_size=[5, 1],
data_format='channels_last', padding= "same",
strides=(2, 1),
| tensorflow.variable_scope | 3,640 |
import tensorflow as tf
run_config = tf.estimator.RunConfig(
save_summary_steps=1,
train_distribute=strategy,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_ckpt_steps,
log_step_count_steps=1,
)
else:
distribution = tf.contrib.distribute.MirroredStrategy(
num_gpus=FLAGS.num_gpus
)
run_config = tf.estimator.RunConfig(train_distribute=distribution)
model_fn = model_fn_builder(
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
| tensorflow.contrib.distribute.MirroredStrategy | 3,641 |
import tensorflow as tf
# If you want to use the token-level output, use model.get_sequence_output()
# instead.
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
| tensorflow.variable_scope | 3,642 |
import tensorflow as tf
indices = tf.transpose(
tf.stack([orig_indices, tf.squeeze(relabel_indices)], axis=0))
relabel_q_vals = tf.gather_nd(logits_vec, indices)
tf.compat.v2.summary.scalar(
name="relabel_q_vals",
data=tf.reduce_mean(relabel_q_vals),
step=global_step,
)
max_q = tf.reduce_max(logits_vec, axis=1)
| tensorflow.reduce_mean | 3,643 |
from tensorflow.contrib.distributions.python.ops import distribution_util
Args:
x: `Tensor` of shape `B_+E_+S_`.
sample_shape: `Tensor` (1D, `int32`).
name: `String`. The name to give this op.
Returns:
x: `Tensor`. Input transposed/reshaped to `S+B+E`.
"""
with self._name_scope(name, values=[x, sample_shape]):
x = ops.convert_to_tensor(x, name="x")
sample_shape = ops.convert_to_tensor(sample_shape, name="sample_shape")
x = distribution_util.rotate_transpose(x, shift=1)
if self._is_all_constant_helper(self.batch_ndims, self.event_ndims):
if self._batch_ndims_is_0 or self._event_ndims_is_0:
b = ((min(-2, -1 - self._event_ndims_static),)
if self._batch_ndims_is_0 else ())
e = (-1,) if self._event_ndims_is_0 else ()
x = array_ops.squeeze(x, squeeze_dims=b + e)
_, batch_shape, event_shape = self.get_shape(x)
else:
s = (x.get_shape().as_list() if x.get_shape().is_fully_defined()
else array_ops.shape(x))
batch_shape = array_ops.slice(s, (1,), (self.batch_ndims,))
| tensorflow.contrib.distributions.python.ops.distribution_util.rotate_transpose | 3,644 |
from tensorflow.python.framework import ops
default_name = _at_k_name('false_negative', k, class_id=class_id)
with ops.name_scope(name, default_name, (predictions_idx, labels)) as scope:
| tensorflow.python.framework.ops.name_scope | 3,645 |
import tensorflow.contrib as contrib
stitch3_1, stitch3_2 = fc3_1, fc3_2
dropout3_1 = contrib.layers.dropout(stitch3_1, keep_prob=keep_prob, is_training=is_training,
scope="dropout3_1")
| tensorflow.contrib.layers.dropout | 3,646 |
import tensorflow as tf
decoder_depth: Integer, the filters used in the convolution.
decoder_use_separable_conv: Boolean, use separable conv or not.
weight_decay: Weight decay for the model variables.
scope_suffix: String, used in the scope suffix.
Returns:
decoder features merged with concatenation.
"""
if decoder_use_separable_conv:
decoder_features = split_separable_conv2d(
tf.concat(decoder_features_list, 3),
filters=decoder_depth,
rate=1,
weight_decay=weight_decay,
scope='decoder_conv0'+scope_suffix)
decoder_features = split_separable_conv2d(
decoder_features,
filters=decoder_depth,
rate=1,
weight_decay=weight_decay,
| tensorflow.concat | 3,647 |
import tensorflow as tf
None,
] + tu.shape_to_tf_shape(input_shape), "INPUT0")
in1 = tf.placeholder(tf_input_dtype, [
None,
] + tu.shape_to_tf_shape(input_shape), "INPUT1")
# If the input is a string, then convert each string to the
# equivalent int32 value.
if tf_input_dtype == tf.string:
in0 = tf.strings.to_number(in0, tf.int32)
in1 = tf.strings.to_number(in1, tf.int32)
add = tf.add(in0, in1, "ADD")
sub = tf.subtract(in0, in1, "SUB")
# Cast or convert result to the output dtype.
if tf_output0_dtype == tf.string:
cast0 = tf.dtypes.as_string(add if not swap else sub, name="TOSTR0")
else:
cast0 = tf.cast(add if not swap else sub, tf_output0_dtype, "CAST0")
if tf_output1_dtype == tf.string:
cast1 = tf.dtypes.as_string(sub if not swap else add, name="TOSTR1")
else:
| tensorflow.add | 3,648 |
import tensorflow as tf
tf.less(
matched_iou, self._config_dict['foreground_iou_threshold']))
background_indicator = tf.logical_or(negative_matches, ignored_matches)
# re-assign negatively matched boxes to the background class.
matched_gt_boxes = tf.where(
tf.tile(tf.expand_dims(background_indicator, -1), [1, 1, 4]),
tf.zeros_like(matched_gt_boxes),
matched_gt_boxes)
matched_gt_classes = tf.where(
background_indicator,
tf.zeros_like(matched_gt_classes),
matched_gt_classes)
matched_gt_indices = tf.where(
background_indicator,
| tensorflow.zeros_like | 3,649 |
from tensorflow.python.platform import gfile
from tensorflow.python.ops import io_ops
from tensorflow.python.ops import parsing_ops
from tensorflow.python.platform import gfile
from tensorflow.python.platform import test
def _resize_image(image, height, width):
image = array_ops.expand_dims(image, 0)
image = image_ops.resize_bilinear(image, [height, width])
return array_ops.squeeze(image, [0])
def _create_tfrecord_dataset(tmpdir):
if not gfile.Exists(tmpdir):
gfile.MakeDirs(tmpdir)
data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)
keys_to_features = {
'image/encoded':
parsing_ops.FixedLenFeature(
shape=(), dtype=dtypes.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature(
shape=(), dtype=dtypes.string, default_value='jpeg'),
'image/class/label':
| tensorflow.python.platform.gfile.Exists | 3,650 |
import tensorflow as tf
actor = Actor(sess, ACTION_DIM, ACTION_BOUND, LR_A, REPLACE_ITER_A)
critic = Critic(sess, STATE_DIM, ACTION_DIM, LR_C, GAMMA, REPLACE_ITER_C, actor.a, actor.a_)
actor.add_grad_to_graph(critic.a_grads)
M = Memory(MEMORY_CAPACITY)
saver = tf.train.Saver(max_to_keep=100)
if LOAD_MODEL:
all_ckpt = tf.train.get_checkpoint_state('./data', 'checkpoint').all_model_checkpoint_paths
saver.restore(sess, all_ckpt[-1])
else:
if os.path.isdir(DATA_PATH): shutil.rmtree(DATA_PATH)
os.mkdir(DATA_PATH)
sess.run(tf.global_variables_initializer())
if OUTPUT_GRAPH:
tf.summary.FileWriter('logs', graph=sess.graph)
| tensorflow.train.get_checkpoint_state | 3,651 |
import tensorflow as tf
gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0))
bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0))
| tensorflow.constant_initializer | 3,652 |
import tensorflow as tf
decoder_width = scale_dimension(model_options.crop_size[1],
1.0 / model_options.decoder_output_stride)
else:
decoder_height = scale_dimension(tf.shape(images)[1],
1.0 / model_options.decoder_output_stride)
decoder_width = scale_dimension(tf.shape(images)[2],
| tensorflow.shape | 3,653 |
import tensorflow as tf
host_images.get_shape(),
dtype=input_data_type,
stddev=1e-1,
name='synthetic_images')
images = tf.contrib.framework.local_variable(
images, name='gpu_cached_images')
labels = host_labels
| tensorflow.contrib.framework.local_variable | 3,654 |
import tensorflow as tf
normalizer_fn=tf.contrib.layers.batch_norm,
normalizer_params={"is_training": self.train}):
self.fc1 = tf.contrib.layers.fully_connected(self.flatten, self.config.cifar10_cnn["fc1_nb_units"])
self.fc2 = tf.contrib.layers.fully_connected(self.fc1, self.config.data["num_categories"], activation_fn=None)
# Compute loss
| tensorflow.contrib.layers.fully_connected | 3,655 |
import tensorflow as tf
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
num_examples = len(features)
# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
| tensorflow.constant | 3,656 |
import tensorflow as tf
update_op = tf.group(*[
param.assign(param - grad * self.LEARNING_RATE)
for param, grad in zip(params, grads)
])
# return update_op
with tf.name_scope('validate'):
x, y = self._build_data_pipeline()
y_hat, loss = self._build_validation_model(x, y)
with tf.control_dependencies([update_op]):
return tf.print('expect', loss, y, y_hat, summarize=50)
class DataOwner:
BATCH_SIZE = 30
def __init__(self, player_name, build_training_model):
self.player_name = player_name
| tensorflow.control_dependencies | 3,657 |
import tensorflow as tf
return optimizer.apply_gradients(grads)
def main(argv=None):
keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
#debug
| tensorflow.placeholder | 3,658 |
import tensorflow as tf
total_loss = tf.add_n([model_loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
# add summary
if reuse_variables is None:
tf.summary.image('input', images)
tf.summary.image('score_map', score_maps)
tf.summary.image('score_map_pred', f_score * 255)
tf.summary.image('geo_map_0', geo_maps[:, :, :, 0:1])
| tensorflow.summary.image | 3,659 |
import tensorflow as tf
"""Build dynamic graph"""
rnn_outputs, final_state = tf.nn.dynamic_rnn(cell=cell, inputs=rnn_inputs,initial_state=init_state)
"""Add prediction layer"""
with tf.variable_scope('softmax'):
W = tf.get_variable('W', [state_size, input_size_y])
b = tf.get_variable('b', [input_size_y], initializer=tf.constant_initializer(0.0))
rnn_outputs = tf.reshape(rnn_outputs, [-1, state_size])
predictions = tf.matmul(rnn_outputs, W) + b
yy = tf.reshape(y, [-1, input_size_y]) #batch_size*num_steps when yo udefine a placeholder in Tensorflow, the shape of the input during the session should be the same as the shape of the plcae holder
"Mean squared error loss"
loss=tf.reduce_mean(tf.square(tf.reshape(predictions,[-1])-tf.reshape(yy,[-1])))
| tensorflow.constant_initializer | 3,660 |
import tensorflow as tf
with tf.variable_scope('rnn_unroll'):
state = initial_state
outputs = []
for i in xrange(rnn_nunroll):
if i > 0:
tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(rnn_inputs[i], state)
outputs.append(cell_output)
final_state = state
| tensorflow.get_variable_scope | 3,661 |
import tensorflow as tf
regularizer=regularizer)
b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0))
out = tf.matmul(self.flatten, w) + b
self.fc1 = tf.nn.relu(out)
# fc2
| tensorflow.nn.relu | 3,662 |
import tensorflow as tf
from metric import tf_metrics
from optimizer import distributed_optimizer as optimizer
from model_io import model_io
from distillation import knowledge_distillation as distill
def correlation(x, y):
x = x - tf.reduce_mean(x, axis=-1, keepdims=True)
y = y - tf.reduce_mean(y, axis=-1, keepdims=True)
x = tf.nn.l2_normalize(x, -1)
y = tf.nn.l2_normalize(y, -1)
return -tf.reduce_sum(x*y, axis=-1) # higher the better
def kd(x, y):
x_prob = tf.nn.softmax(x)
print(x_prob.get_shape(), y.get_shape(), tf.reduce_sum(x_prob * y, axis=-1).get_shape())
return -tf.reduce_sum(x_prob * y, axis=-1) # higher the better
def mse(x, y):
x = x - tf.reduce_mean(x, axis=-1, keepdims=True)
y = y - tf.reduce_mean(y, axis=-1, keepdims=True)
| tensorflow.nn.l2_normalize | 3,663 |
from tensorflow.python.ops import math_ops
return math_ops.square(logits - math_ops.to_float(target))
def _log_loss_with_two_classes(logits, target):
# sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
if len(target.get_shape()) == 1:
target = array_ops.expand_dims(target, dim=[1])
loss_vec = nn.sigmoid_cross_entropy_with_logits(
labels=math_ops.to_float(target), logits=logits)
return loss_vec
def _softmax_cross_entropy_loss(logits, target):
# Check that we got integer for classification.
if not target.dtype.is_integer:
raise ValueError("Target's dtype should be integer "
| tensorflow.python.ops.math_ops.to_float | 3,664 |
import tensorflow as tf
pmm = _evaluate_legendre_polynomial_pmm_eval(order_m, x)
return tf.where(
tf.equal(degree_l, order_m), pmm,
_evaluate_legendre_polynomial_branch(degree_l, order_m, x, pmm))
def _spherical_harmonics_normalization(l, m, var_type=tf.float64):
l = tf.cast(l, dtype=var_type)
m = tf.cast(m, dtype=var_type)
numerator = (2.0 * l + 1.0) * factorial(l - tf.abs(m))
denominator = 4.0 * np.pi * factorial(l + tf.abs(m))
return tf.sqrt(numerator / denominator)
def _evaluate_spherical_harmonics_branch(degree,
order,
| tensorflow.cast | 3,665 |
import tensorflow as tf
out_vocab_size, c2v)
in_size = self._inputs[0].get_shape()[1].value
# Also, output confidence scores at every word.
confidence_mat = tf.get_variable('confidence_mat', [in_size, 1])
confidence_scores = tf.concat(1, [tf.matmul(o_, confidence_mat)
for o_ in self._inputs])
# dropout on confidence_scores
random_tensor = (1.0 - self._dropout_keep_prob +
| tensorflow.matmul | 3,666 |
import tensorflow as tf
# TensorFlow while loop
def body(deltas, previous_perturbations):
with tf.control_dependencies(control_inputs=deltas):
perturbations = [
| tensorflow.control_dependencies | 3,667 |
import tensorflow as tf
INF = 1e30
class cudnn_gru:
def __init__(self, num_layers, num_units, batch_size, input_size, keep_prob=1.0, is_train=None, scope=None):
self.num_layers = num_layers
self.grus = []
self.inits = []
self.dropout_mask = []
for layer in range(num_layers):
input_size_ = input_size if layer == 0 else 2 * num_units
gru_fw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
gru_bw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
init_fw = tf.tile(tf.Variable(
tf.zeros([1, 1, num_units])), [1, batch_size, 1])
init_bw = tf.tile(tf.Variable(
tf.zeros([1, 1, num_units])), [1, batch_size, 1])
mask_fw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
mask_bw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
self.grus.append((gru_fw, gru_bw, ))
self.inits.append((init_fw, init_bw, ))
| tensorflow.contrib.cudnn_rnn.CudnnGRU | 3,668 |
import tensorflow as tf
def body(self, features):
exp_coupling = ["affine", "additive"]
if self.hparams.coupling not in exp_coupling:
raise ValueError("Expected hparams.coupling to be in %s, got %s" %
(exp_coupling, self.hparams.coupling))
if self.is_training:
init_features = self.create_init_batch(features)
init_op = self.objective_tower(init_features, init=True)
init_op = tf.Print(
init_op, [init_op], message="Triggering data-dependent init.",
first_n=20)
tf.add_to_collection("glow_init_op", init_op)
train_op = self.objective_tower(features, init=False)
return tf.zeros_like(features["targets"]), {"training": train_op}
def objective_tower(self, features, init=True):
"""Objective in terms of bits-per-pixel.
Args:
features: dict of tensors with "features" and "targets" keys.
init: Whether or not to run data-dependent init.
Returns:
objective: float, bits-per-pixel.
"""
x = features["inputs"]
# Scale x such that the pixels lie in-between -0.5 and.0.5
| tensorflow.zeros_like | 3,669 |
import tensorflow as tf
# load pretrained model
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(MODEL_DIR, from_name)
assign_ops.append(tf.assign(var, var_value))
sess.run(assign_ops)
print('Model loaded.')
result = sess.run(output)
cv2.imwrite("output.png", result[0])
tf.reset_default_graph()
#return FileResponse("output.png", media_type="image/png")
with open("output.png", "rb") as image_file:
image_string = "data:image/png;base64,{}".format(base64.b64encode(image_file.read()).decode())
return {
"image": image_string
}
if __name__ == '__main__':
uvicorn.run(app, host="0.0.0.0", port=8080)
| tensorflow.reset_default_graph | 3,670 |
import tensorflow as tf
# execute at test time
return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, gamma, epsilon)
return tf.cond(train, func1, func2)
def average_gradients(tower_grads):
| tensorflow.cond | 3,671 |
import tensorflow as tf
# // --- Build Argus background PDF ---
# RooRealVar argpar("argpar","argus shape parameter",-20.0,-100.,-1.) ;
# RooConstVar m0("m0", "resonant mass", 5.291);
argpar = tf.Variable(argpar_num, name="argpar", dtype=tf.float64)
m0 = tf.constant(m0_num, name="m0", dtype=tf.float64)
vdict['argpar'] = argpar
# RooArgusBG argus("argus","Argus PDF",mes,m0,argpar) ;
| tensorflow.Variable | 3,672 |
import tensorflow as tf
"""
Check that the KL divergence matches a 1D by-hand calculation.
"""
m = 0
mu1d = mu[m,:][None,:] # 1 x N
s1d = sqrt[:,m,m][:,None,None] # N x 1 x 1
K1d = K_batch[:,m,m][:,None,None] # N x 1 x 1
kl = gauss_kl(mu1d,s1d,K1d if not white else None)
kl_tf = tf_kl_1d(tf.reshape(mu1d,(-1,)), # N
tf.reshape(s1d,(-1,)), # N
None if white else tf.reshape(K1d,(-1,))) # N
np.testing.assert_allclose(kl.eval(), kl_tf.eval())
if __name__ == "__main__":
tf.test.main()
| tensorflow.reshape | 3,673 |
import tensorflow as tf
# for both the shortcut and non-shortcut paths as part of the first
# block's projection. Cf. Appendix of [2].
if self.resnet_version == 1:
inputs = batch_norm(inputs, training, self.data_format)
inputs = tf.nn.relu(inputs)
if self.first_pool_size:
inputs = tf.layers.max_pooling2d(
inputs=inputs, pool_size=self.first_pool_size,
strides=self.first_pool_stride, padding='SAME',
data_format=self.data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
for i, num_blocks in enumerate(self.block_sizes):
| tensorflow.layers.max_pooling2d | 3,674 |
import tensorflow as tf
.FullyConnected('fc2', out_dim=128, nl=tf.nn.relu)
.FullyConnected('fct', out_dim=19, nl=tf.identity)())
tf.nn.softmax(logits, name='prob')
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
wrong = tf.to_float(tf.logical_not(tf.nn.in_top_k(logits, label, 1)), name='incorrect_vector')
| tensorflow.nn.sparse_softmax_cross_entropy_with_logits | 3,675 |
import tensorflow as tf
self.variable_mgr.append_apply_gradients_ops(
gradient_state, opt, clipped_grads, training_ops)
train_op = tf.group(*(training_ops + update_ops + extra_nccl_ops))
with tf.device(self.cpu_device):
if self.task_index == 0 and FLAGS.summary_verbosity > 0:
tf.summary.scalar('learning_rate', learning_rate)
tf.summary.scalar('total_loss', total_loss)
for grad, var in avg_grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
fetches = [train_op, total_loss] + enqueue_ops
return (enqueue_ops, fetches)
| tensorflow.summary.scalar | 3,676 |
import tensorflow as tf
if isinstance(tensors, np.ndarray):
tensors = (tensors,)
if isinstance(tensors, list):
for i in range(len(tensors)):
if tensors[i].dtype == np.dtype("float64"):
tensors[i] = np.float32(tensors[i])
data_list = _splits(tensors)
rdd = sc.parallelize(data_list, splits)
tensor_structure = [TensorMeta(tf.as_dtype(t.dtype),
shape=t.shape[1:],
name="input_%s" % i)
for i, t in enumerate(tensors)]
else:
flattened = nest.flatten(tensors)
for i in range(len(flattened)):
if flattened[i].dtype == np.dtype("float64"):
flattened[i] = np.float32(flattened[i])
data_list = _splits(flattened)
| tensorflow.as_dtype | 3,677 |
import tensorflow as tf
self.color_matrix = tf.convert_to_tensor([[1, 0, 0], [0, 1, 0], [-0.395913, 0.801109, 0]])
else:
raise("ERROR: invalid type passed into Simulator class (only accepts 'D', 'P', or 'T')")
self.rgb2lms = tf.convert_to_tensor([[17.8824, 43.5161, 4.11935], [3.45565, 27.1554, 3.86714], [0.0299566, 0.184309, 1.46709]])
def simulate_image(self, image):
# passes an image through the color-blindness simulator
inverted_rgb2lms = tf.linalg.inv(self.rgb2lms)
product1 = tf.matmul(inverted_rgb2lms, self.color_matrix)
product2 = tf.matmul(product1, self.rgb2lms)
original_image_shape = image.shape
simulated_image = tf.transpose(tf.matmul(product2, tf.reshape(tf.transpose(image, perm=[2, 0, 1]), (image.shape[2], image.shape[0] * image.shape[1]))), perm=[1, 0])
return tf.reshape(simulated_image, original_image_shape) | tensorflow.matmul | 3,678 |
import tensorflow as tf
def testTiedRNNSeq2Seq(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
| tensorflow.constant_initializer | 3,679 |
import tensorflow as tf
if self.maxnorm is not None:
# Post-processing to limit embedding vars to L2 ball
rel_maxnorm = self.maxnorm * self.rel_maxnorm_mult
unique_ent_indices = tf.unique(tf.concat(0, [self.head_input, self.tail_input]))[0]
unique_rel_indices = tf.unique(self.rel_input)[0]
entity_constraint = self._norm_constraint_op(self.entity_embedding_vars,
| tensorflow.concat | 3,680 |
import tensorflow as tf
# Add histograms for gradients.
for grad, var in grads:
if grad is not None:
summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))
# Apply the gradients to adjust the shared variables.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
for var in tf.trainable_variables():
summaries.append(tf.summary.histogram(var.op.name, var))
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# Group all updates to into a single train op.
train_op = tf.group(apply_gradient_op, variables_averages_op)
# Create a saver.
saver = tf.train.Saver(tf.global_variables())
# Build the summary operation from the last tower summaries.
summary_op = tf.summary.merge(summaries)
# Build an initialization operation to run below.
| tensorflow.train.ExponentialMovingAverage | 3,681 |
import tensorflow as tf
# create a TF session for the current graph
config = tf.ConfigProto()
if FLAGS.enbl_multi_gpu:
config.gpu_options.visible_device_list = str(mgw.local_rank()) # pylint: disable=no-member
else:
config.gpu_options.visible_device_list = '0' # pylint: disable=no-member
sess = tf.Session(config=config)
# data input pipeline
with tf.variable_scope(self.data_scope):
iterator = self.build_dataset_train()
images, labels = iterator.get_next()
# model definition - distilled model
if FLAGS.enbl_dst:
logits_dst = self.helper_dst.calc_logits(sess, images)
# model definition - weight-sparsified model
| tensorflow.variable_scope | 3,682 |
import tensorflow as tf
for m in tf.range(start=0, limit=tf.size(y), delta=1, dtype=None, name='m_range'):
vx = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string,
value_dtype=tf.int64,
default_value=-1)
vz = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string,
value_dtype=tf.int64,
default_value=-1)
vx_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
vz_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
x_t = tf.gather(x, l)
x_t_len = tf.strings.length(x_t)
x_t = tf.string_split([x_t], delimiter='').values
z_t = tf.gather(y, m)
z_t_len = tf.strings.length(z_t)
z_t = tf.string_split([z_t], delimiter='').values
for i in tf.range(start=0, limit=x_t_len - self._p + 1, delta=1, dtype=None, name='range'):
| tensorflow.Variable | 3,683 |
import tensorflow as tf
# Define your AdamOptimiser, using FLAGS.learning_rate to minimixe the loss function
decayed_learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, tf.Variable(0, trainable=False), 1000, 0.8)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimiser = tf.train.AdamOptimizer(decayed_learning_rate, name="Adam").minimize(cross_entropy)
# calculate the prediction and the accuracy
accuracy, acc_op = tf.metrics.accuracy(labels=tf.argmax(y_, axis=1), predictions=tf.argmax(y_conv, axis=1))
| tensorflow.train.AdamOptimizer | 3,684 |
import tensorflow as tf
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
| tensorflow.logging.info | 3,685 |
import tensorflow as tf
crop_h = h//self.crop_factor
crop_w = w//self.crop_factor
rgb = tf.image.random_crop(rgb,size=[crop_h,crop_w,c])
# cast, bit conversion, compress domain, center
rgb = tf.cast(rgb, tf.float32)
if n_bits < 8:
rgb = tf.floor(rgb/(2**(8-n_bits)))
rgb = rgb/(n_bins) - 0.5
| tensorflow.cast | 3,686 |
import tensorflow as tf
with slim.arg_scope(
[slim.model_variable, slim.variable],
device='/device:CPU:0'):
with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane,
slim.conv2d_transpose, slim.separable_conv2d,
slim.fully_connected],
weights_regularizer=weights_regularizer,
biases_regularizer=biases_regularizer,
biases_initializer=tf.constant_initializer(0.0)):
gtboxes_and_label_h, gtboxes_and_label_r = tf.py_func(self.get_gtboxes_and_label,
inp=[inputs_list[i][1],
inputs_list[i][2],
inputs_list[i][3]],
Tout=[tf.float32, tf.float32])
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5])
gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6])
img = inputs_list[i][0]
img_shape = inputs_list[i][-2:]
| tensorflow.py_func | 3,687 |
import tensorflow as tf
trainable_var = tf.trainable_variables()
if FLAGS.debug:
for var in trainable_var:
utils.add_to_regularization_and_summary(var)
train_op = train(loss, trainable_var)
print("Setting up summary op...")
summary_op = tf.summary.merge_all()
print("Setting up image reader...")
train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
print(len(train_records))
print(len(valid_records))
print("Setting up dataset reader")
| tensorflow.summary.merge_all | 3,688 |
from tensorflow.python.framework import ops
# avoid division by zero
epsilon = 1e-7
def compute_precision(name):
precision = math_ops.div(true_positives,
epsilon + true_positives + false_positives,
name='precision_' + name)
return precision
precision = compute_precision('value')
with ops.control_dependencies([true_positives_compute_op,
false_positives_compute_op]):
update_op = compute_precision('update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, precision)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return precision, update_op
def streaming_recall_at_thresholds(predictions, labels, thresholds,
weights=None, metrics_collections=None,
updates_collections=None, name=None):
"""Computes various recall values for different `thresholds` on `predictions`.
The `streaming_recall_at_thresholds` function creates four local variables,
| tensorflow.python.framework.ops.add_to_collections | 3,689 |
from tensorflow.python.ops import array_ops
super(VitisAveragePooling2D, self).build(input_shape)
# Compute rescale factor in build() since the pool_size is determined.
self.rescale_factor = _get_avgpool_scale(self.pool_size[0],
self.pool_size[1])
def call(self, inputs):
outputs = super(VitisAveragePooling2D, self).call(inputs)
# Simulate DPU hahavior of AvgPooling
input_shape = array_ops.shape(inputs)
if self.rescale_factor != 1.0:
outputs *= self.rescale_factor
return outputs
def _types_dict():
return {
| tensorflow.python.ops.array_ops.shape | 3,690 |
import tensorflow as tf
sess = tf.Session()
# 上面的wtih或者是name都是可选的,可以选择添加,也可以选择不添加,but下面的这一行是一定要写的。
# 这个表明了 在当前的目录下面创建以恶搞logs的文件家,然后把图的信息保存进去
# 这样运行完这段代码之后,就会有一个logs的文件夹被创建
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: # tensorflow version < 0.12
writer = tf.train.SummaryWriter('logs/', sess.graph)
else: # tensorflow version >= 0.12
writer = tf.summary.FileWriter("logs/", sess.graph)
| tensorflow.__version__.split | 3,691 |
import tensorflow as tf
):
values = [values]
if spec.is_int_feature:
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
else:
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
features[spec.name] = feature
return tf.train.Example(features=tf.train.Features(feature=features))
def _input_fn_builder(self, input_file, is_training):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
| tensorflow.train.Features | 3,692 |
import tensorflow as tf
# TODO: good distribution to init training.
# TODO: support shape and tt_ranks as TensorShape?.
# TODO: support None as a dimension.
shape = np.array(shape)
tt_rank = np.array(tt_rank)
_validate_input_parameters(is_tensor=True, shape=shape, tt_rank=tt_rank)
num_dims = shape.size
if tt_rank.size == 1:
tt_rank = tt_rank * np.ones(num_dims - 1)
tt_rank = np.insert(tt_rank, 0, 1)
tt_rank = np.append(tt_rank, 1)
tt_rank = tt_rank.astype(int)
tt_cores = [None] * num_dims
with tf.name_scope(name):
for i in range(num_dims):
curr_core_shape = (tt_rank[i], shape[i], tt_rank[i + 1])
tt_cores[i] = tf.random_normal(curr_core_shape, mean=mean, stddev=stddev,
dtype=dtype)
return TensorTrain(tt_cores, shape, tt_rank)
def tensor_batch_with_random_cores(shape, tt_rank=2, batch_size=1,
mean=0., stddev=1., dtype=tf.float32,
name='t3f_tensor_batch_with_random_cores'):
"""Generate a batch of TT-tensors of given shape with N(mean, stddev^2) cores.
| tensorflow.name_scope | 3,693 |
import tensorflow as tf
tf.reduce_mean(tf.to_float(tf.nn.in_top_k(
self.end_points_D_val['logits'], targets, 1)))
self.error_rate = 1. - \
tf.reduce_mean(tf.to_float(tf.nn.in_top_k(
self.end_points_D['class_logits'], targets, 1)))
if gpu_idx == 0:
| tensorflow.nn.in_top_k | 3,694 |
import tensorflow as tf
class ValueEstimator_MountainCarContinuous():
def __init__(self, learning_rate=0.1, par_idx=0,scope="value_estimator"):
w_init = tf.random_normal_initializer(0.,.1);
with tf.variable_scope(scope+"_"+str(par_idx)):
# state and target
self.state = tf.placeholder(tf.float32, [None,400], "state")
self.target = tf.placeholder(tf.float32, [None,1], name="target")
# layers
self.value_estimate = tf.layers.dense(self.state, 1, kernel_initializer=w_init, name='v') # estimated value for state
| tensorflow.placeholder | 3,695 |
import tensorflow as tf
max_len - x_len,
]
zeros = tf.zeros(pad_shape, dtype=x[key].dtype)
x[key] = tf.concat([x[key], zeros], 0)
return x
| tensorflow.concat | 3,696 |
import tensorflow as tf
if encoder.conv_filters:
encoder_inputs_ = tf.expand_dims(encoder_inputs_, axis=3)
| tensorflow.expand_dims | 3,697 |
import tensorflow as tf
name='linear_projection_1_bn')
activation = tf.nn.relu(projection)
activation = dropout(activation, self.dropout_keep_prob)
projection = linear(
input=activation,
input_size=dialogue_state_size,
output_size=dialogue_state_size,
name='linear_projection_2'
)
projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train,
name='linear_projection_2_bn')
activation = tf.nn.relu(projection)
activation = dropout(activation, self.dropout_keep_prob)
projection = linear(
input=activation,
input_size=dialogue_state_size,
output_size=action_templates_vocabulary_length,
name='linear_projection_3_predictions_action'
)
self.predictions_action = tf.nn.softmax(projection, name="softmax_output_prediction_action")
# argument prediction
| tensorflow.nn.relu | 3,698 |
import tensorflow as tf
self.pi_new_params = [oldp.assign(p) for p, oldp in zip(pi_params, pi_old_params)]
self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)]
self.sess.run(tf.global_variables_initializer())
# Tensorboard
if summary_dir is not None:
self.writer = tf.summary.FileWriter(summary_dir)
tf.summary.scalar('Loss/Policy', loss_pg)
tf.summary.scalar('Loss/Value', loss_vf)
tf.summary.scalar('Loss/Entropy', loss_entropy)
tf.summary.scalar('Loss/Total', loss)
tf.summary.scalar('Var/Epsilon', epsilon_decay)
tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode()))
tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev()))
tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf))
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
| tensorflow.reduce_mean | 3,699 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.