application_number
int64 10.3M
15.9M
| decision
stringclasses 3
values | title
stringlengths 3
468
| abstract
stringlengths 43
4.3k
| claims
stringlengths 44
338k
| description
stringlengths 1.93k
2.86M
| background
stringlengths 0
194k
| summary
stringlengths 0
391k
| cpc_label
stringlengths 0
12
| filing_date
stringlengths 8
8
| patent_issue_date
stringclasses 691
values | date_published
stringclasses 720
values | examiner_id
stringlengths 0
7
| ipc_label
stringlengths 0
10
| npe_litigated_count
int64 0
410
| examiner_full_name
stringlengths 6
34
| invention_title
stringlengths 3
410
| small_entity_indicator
stringclasses 3
values | continuation
int64 0
1
| decision_as_of_2020
stringclasses 6
values | main_ipcr_label_subclass
stringclasses 451
values | filing_year
int64 2k
2.02k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11,018,430 | ACCEPTED | Layered composite material | This invention relates to a layered composite material, which comprises a foam skin, a plastic plate and a plastic film. The foam skin has a density in a range of 1.5 to 12 PCF and a thickness in a range of 1 to 6 mm. The plastic plate is laminated to a top surface of the foam skin without adhesives and the plastic plate has a thickness in a range of 0.1 to 2 mm. The plastic film has a surface laminated to a bottom surface of the foam skin without adhesives and the plastic film has a thickness in a range of 0.01 to 0.15 mm. In addition, layered composite material further comprises a fabric layer laminated to other surface of said plastic film without adhesives. | 1. A layered composite material comprising: a foam skin, having a density in a range of 1.5 to 12 PCF and a thickness in a range of 1 to 6 mm; a plastic plate, laminated to a top surface of said foam skin without adhesives, said plastic plate having a thickness in a range of 0.1 to 2 mm; and a plastic film, having a surface laminated to a bottom surface of said foam skin without adhesives, wherein said foam skin, said plastic plate and said plastic film are laminated by thermal fusing processes. 2. The layered composite material of claim 1, wherein said plastic film further comprises: a first film, having a surface formed patterns thereon; and a second film, laminated to said surface of said first film without adhesives, thereby said patterns are covered, wherein said plastic film having a thickness in a range of 0.01 to 0.15 mm and said patterns are visible from outside of said plastic film. 3. The layered composite material of claim 1, wherein said plastic plate further comprises: a patterned layer, laminated to said top surface of said foam skin without adhesives, said patterned layer having patterns therein; and a plastic layer, laminated to said patterned layer without adhesives, wherein said patterns are visible from outside of said plastic plate. 4. The layered composite material of claim 1, wherein said plastic plate is made of Surlyn. 5. The layered composite material of claim 1, further comprising a fabric layer laminated to other surface of said plastic film without adhesives, wherein said plastic film is as a bonding film provided for a thermal fusing bonding to said foam skin and a mechanical bonding to said fabric layer, said plastic film having a thickness in a range of 0.03 to 0.3 mm. 6. The layered composite material of claim 2, wherein said plastic plate further comprises: a patterned layer, laminated to said top surface of said foam skin without adhesives, said patterned layer having patterns therein; and a plastic layer, laminated to said patterned layer without adhesives, wherein said patterns are visible from outside of said plastic plate. 7. The layered composite material of claim 3, further comprising a fabric layer laminated to other surface of said plastic film without adhesives, wherein said plastic film is as a bonding film provided for a thermal fusing bonding to said foam skin and a mechanical bonding to said fabric layer, said plastic film having a thickness in a range of 0.03 to 0.3 mm. 8. The layered composite material of claim 3, wherein said patterned layer further comprises: a first layer, having a surface formed said patterns thereon; and a second layer, laminated to said surface of said first layer without adhesives, thereby said patterns are covered. 9. The layered composite material of claim 6, wherein said patterned layer further comprises: a first layer, having a surface formed said patterns thereon; and a second layer, laminated to said surface of said first layer without adhesives, thereby said patterns are covered. 10. The layered composite material of claim 7, wherein said patterned layer further comprises: a first layer, having a surface formed said patterns thereon; and a second layer, laminated to said surface of said first layer without adhesives, thereby said patterns are covered. 11. A layered composite material comprising: a foam skin, having a density in a range of 1.5 to 12 PCF and a thickness in a range of 1 to 6 mm; a first bonding film, having a surface laminated to a top surface of said foam skin without adhesives; a plastic plate, laminated to other surface of said first bonding film without adhesives, said plastic plate having a thickness in a rang of 0.1 to 2 mm; a second bonding film, having a surface laminated to a bottom surface of said foam skin without adhesives; and a plastic film, having a surface laminated to other surface of said second bonding film without adhesives, said plastic film having a thickness in a rang of 0.01 to 0.15 mm, wherein said first bonding film provides for a thermal fusing bonding between said foam skin and said plastic plate, and said seconding film provides for a thermal fusing bonding between said foam skin said plastic film. 12. The layered composite material of claim 11, wherein said plastic film further comprises: a first film, having a surface formed patterns thereon; and a second film, laminated to said surface of said first film without adhesives, thereby said patterns are covered, wherein said patterns are visible from outside of said plastic film. 13. The layered composite material of claim 11, wherein said plastic plate further comprises: a patterned layer, laminated to said other surface of said first bonding film without adhesives, said patterned layer having patterns therein; and a plastic layer, laminated to said patterned layer without adhesives, wherein said patterns are visible from outside of said plastic plate. 14. The layered composite material of claim 11, wherein said plastic plate is made of Surlyn. 15. The layered composite material of claim 12, wherein said plastic plate further comprises: a patterned layer, laminated to said other surface of said first bonding film without adhesives, said patterned layer having patterns therein; and a plastic layer, laminated to said patterned layer without adhesives, wherein said patterns are visible from outside of said plastic plate. 16. The layered composite material of claim 13, wherein said patterned layer further comprises: a first layer, having a surface formed said patterns thereon; and a second layer, laminated to said surface of said first layer without adhesives, thereby said patterns are covered. 17. The layered composite material of claim 15, wherein said patterned layer further comprises: a first layer, having a surface formed said patterns thereon; and a second layer, laminated to said surface of said first layer without adhesives, thereby said patterns are covered. 18. A layered composite material comprising: a foam skin, having a density in a range of 1.5 to 12 PCF and a thickness in a range of 1 to 6 mm; a first bonding film, having a surface laminated to a top surface of said foam skin without adhesives; a plastic plate, laminated to other surface of said first bonding film without adhesives, said plastic plate having a thickness in a rang of 0.1 to 2 mm; a second bonding film, having a surface laminated to a bottom surface of said foam skin without adhesives; and a fabric layer, having a surface laminated to other surface of said second bonding film without adhesives, wherein said first bonding film provides for a thermal fusing bonding between said foam skin and said plastic plate, and said second bonding film provides for a thermal fusing bonding to said foam skin and a mechanical bonding to said fabric layer. 19. The layered composite material of claim 18, wherein said plastic plate is made of Surlyn and said fabric layer is made of a flexible fabric material. 20. The layered composite material of claim 18, wherein said plastic plate further comprises: a patterned layer, laminated to said other surface of said first bonding film without adhesives, said patterned layer having patterns therein; and a plastic layer, laminated to said patterned layer without adhesives, wherein said patterns are visible from outside of said plastic plate. 21. The layered composite material of claim 20, wherein said patterned layer further comprises: a first layer, having a surface formed said patterns thereon; and a second layer, laminated to said surface of said first layer without adhesives, thereby said patterns are covered. | CROSS REFERENCE TO RELATED APPLICATION This application is a continuation-in-part application of co-pending U.S. application Ser. No. 10/386,634 filed Mar. 13, 2003, which is a continuation-in-part application of the U.S. application Ser. No. 10/040,404 application filed Jan. 9, 2002, now abandoned. TECHNICAL FIELD This invention relates generally to a layered composite material, which is not only provided for manufacturing cases, such as suitcases, luggage, tool cases, musical instrument cases, but also for manufacturing pads, mats, toys, bags and sporting goods etc. BACKGROUND OF THE INVENTION For the manufacturers of suitcases, luggage and cases, casing materials with lightweight, strong structure and low cost are in substantial demand. Generally speaking, one conventional casing material for suitcases or luggage is a composite metal, which is strong in structure but heavy in weight, also expensive in cost. Another conventional casing material is a composite plastic material, which is lighter in weight and cheaper in cost but poorer in structure compared with the composite metal. For example, an acrylonitrile butadiene styrene (ABS) material is a popular material for manufacturing suitcases, luggage and so on. The ABS material has a nature of wear-resistance but limited. In addition, the suitcases made of the ABS material are easily deformed and the edges of the suitcases are also easily broken, after the impact between the suitcases during transportation. SUMMARY OF INVENTION The primary objective of the present invention is to provide a layered composite material with lightweight, strong structure and low cost. The layered composite material not only is provided for manufacturing various cases, such as suitcases, luggage, tool boxes etc., but also for manufacturing pads, mats, toys, bags, sporting goods and so on. More specifically, in one embodiment of the present invention, the layered composite material comprises a foam skin, a plastic plate and a plastic film. The foam skin has a density in a range of 1.5 to 12 PCF and a thickness in a range of 1 to 6 mm. The plastic plate is laminated to a top surface of the foam skin without adhesives and the plastic plate has a thickness in a range of 0.1 to 2 mm. The plastic film has a surface laminated to a bottom surface of the foam skin without adhesives and the plastic film has a thickness in a range of 0.01 to 0.15 mm. Moreover, the foam skin, the plastic plate and the plastic film are laminated by thermal fusing processes. In addition, the layered composite material further comprises a fabric layer laminated to other surface of the plastic film without adhesives and the plastic film is as a bonding film between the foam skin and the fabric layer. Furthermore, the foam skin in the present invention is made of a foamed plastic material, such as polyethylene foam or polypropylene foam. The plastic plate and the plastic film can be a single film or a composite film with patterns or colors. Therefore, the layered composite material of the present invention has features of strong structure, lightweight, low cost and also variety. BRIEF DESCRIPTION OF DRAWINGS The invention will be more clearly understood after referring to the following detailed description read in conjunction with the drawings wherein: FIG. 1 is a cross sectional view of the first embodiment of the present invention; FIG. 2 is a cross sectional view of the first embodiment of the present invention which, showing the plastic film being a composite film with patterns; FIG. 3 is a cross sectional view of the first embodiment of the present invention, showing the plastic film and the plastic plate being composite films with patterns; FIG. 4 is a cross sectional view of the first embodiment of the present invention, showing the layered composite material further comprising a fabric layer; FIG. 5 is a cross sectional view of the second embodiment of the present invention; and FIG. 6 is a cross sectional view of the third embodiment of the present invention. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS A layered composite material 1 according to a first embodiment of the present invention is shown in FIGS. 1 to 4. In FIG. 1, the layered composite material 1 comprises a foam skin 10, a plastic plate 11 and a plastic film 12. The foam skin 10 is preferred made of polyethylene foam skin, which has a preferred density in a range of 1.5 to 12 PCF and a preferred thickness in a range of 1 to 6 mm. The plastic plate 11 is laminated to a top surface 100 of the foam skin 10 without adhesives and the plastic plate 11 is preferred made of polyethylene plate, which has a thickness in a preferred range of 0.1 to 2 mm. Furthermore, the plastic plate 11 in the present invention is preferred made of scratch/wear resistant materials, such as Surlyn® as manufactured by Dupont Corporation and the plastic plate 11 can be a single or a composite plate, according to the varied applications of the present invention. The plastic film 12 has a surface laminated to a bottom surface 101 of the foam skin 10 without adhesives and the plastic film 12 is preferred made of polyethylene film, which has a thickness in a preferred range of 0.01 to 0.15 mm. In addition, the plastic film 12 can be a single or a composite film. As shown in FIG. 2, the plastic film 12 is a composite film with patterns and comprises a first film 120 and a second film 122. The first film 120 has a surface formed a pattern 121 thereon and the second film 122 is laminated to the surface of the first film 120 without adhesives, thereby the pattern 121 is covered. Furthermore, the pattern 121 is visible from outside of the plastic film 12. The composite film with patterns, namely the first film 120 and the second film 122 of the plastic film 12 is applicable to the plastic plate 11 as well. FIG. 3 shows the plastic film 12 and the plastic plate 11 are composite films with patterns. The plastic plate 11 further comprises a patterned layer 110 and a plastic layer 111. The patterned layer 110 is laminated to the top surface 100 of the foam skin 10 without adhesives and the patterned layer 110 has patterns therein. The plastic layer 111 is laminated to the patterned layer 110 without adhesives and the patterns are visible from outside of the plastic plate 11. Moreover, the patterned layer 110 is a composite layer, which applies the same structure of the plastic film 12 and comprises a first layer (not shown) and a second layer (not shown). The first layer has the same structure as the first film 120 of the plastic film 12 and the second layer has the same structure as the second film 122 of the plastic film 12, as shown in FIG. 2. Because the structures of the patterned layer 110 applies to the structures of the plastic film 12, a further detailed description of the patterned layer 110 is omitted. The foam skin 10, the plastic plate 11 and the plastic film 12 of the first embodiment are made of polyethylene materials, so they can be easily and directly to be heat laminated to each other without adhesives. FIG. 4 shows the layered composite material 1 further comprises a fabric layer 13, which is laminated to other surface of the plastic film 12 without adhesives. Furthermore, the plastic film 12 of the first embodiment is also used as a bonding film between the foam skin 10 and the fabric layer 13 that provides for a thermal fusing bonding to the foam skin 10 and a mechanical bonding to the fabric layer 13. The bonding film has a preferred thickness in a range of 0.03 to 0.3 mm. Moreover, the fabric layer 13 of the present invention is made of flexible fabric materials, such as woven, jersey, velour and nylon fabrics. In addition, a preferable laminating method of the foam skin 10, the plastic plate 11, the plastic film 12, namely the bonding film, and the fabric layer 13 is described as followings. First, the material of the plastic film 12/the bonding film is melted, extruded and directly coated onto the surface of the fabric layer 13. In the meantime, the foam skin 10 is transported to a bonding device for bonding one surface of the foam skin 10 to the fabric layer 13 through the plastic film 12. Second, have the melting plastic plate 11 coated and bonded to the other surface of the foam skin 10 without adhesives. In practice, the lamination and the bonding of foam skin 10, the plastic plat 11 and the plastic film 12 would be various, according to the selected thickness of the plastic plate 11 and the plastic film 12 and/or the single/composite film/layer of the plastic plate 11 and the plastic film 12. A second embodiment of the present invention is shown in FIG. 5. A layered composite material 2 of the second embodiment comprises a foam skin 20, a first bonding film 21, a plastic plate 22, a second bonding film 23 and a plastic film 24. The foam skin 20 is preferred made of polypropylene foam skin, which has a preferred density in a range of 1.5 to 12 PCF and a preferred thickness in a range of 1 to 6 mm. The first bonding film 21 has a surface laminated to a top surface of the foam skin 20 without adhesives and the plastic plate 22 is laminated to other surface of said first bonding film 21 without adhesives. The first bonding film 21 provides for a thermal fusing bonding between the foam skin 20 and the plastic plate 22. Furthermore, the structure and the material of the plastic plate 11 of the first embodiment are also applicable to the plastic plate 22, which is preferred made of scratch/wear resistant materials, such as Surlyn® as manufactured by Dupont Corporation and the plastic plate 22 can be a single or a composite plate with patterns. In addition, the second bonding film 23 has a surface laminated to a bottom surface of the foam skin 20 without adhesives and the plastic film 24 has a surface laminated to other surface of the second bonding film 23 without adhesives. The second bonding film 23 also provides for a thermal fusing bonding between the foam skin 20 and the plastic film 24. Also, the structure and the material of the plastic film 12 of the first embodiment are applicable to the plastic film 24 of the second embodiment. Furthermore, it is known that polypropylene materials are incompatible with polyethylene materials whiling bonding. Therefore, the foam skin 20 made of polypropylene is difficult to bond to the polyethylene film/plate 22, 24 without adhesives. In the second embodiment of the present invention, the first and second bonding films 21, 23 have the characteristics for bonding the polyethylene plastic plate/film 22, 24 to the polypropylene foam skin 20 so the plastic plate 22 and the plastic film 24 can be bonded to the foam skin 20 without adhesives, after thermal fusing processes. FIG. 6 shows a third embodiment of the present invention. A layered composite material 3 of the third embodiment comprises a foam skin 30, a first bonding film 31, a plastic plate 32, a second bonding film 33 and a fabric layer 34. The foam skin 30 is preferred made of polypropylene foam skin, which has a preferred density in a range of 1.5 to 12 PCF and a preferred thickness in a range of 1 to 6 mm. The first bonding film 31 has a surface laminated to a top surface of the foam skin 30 without adhesives and the plastic plate 32 is laminated to other surface of said first bonding film 31 without adhesives. The first bonding film 31 provides for a thermal fusing bonding between the foam skin 30 and the plastic plate 32. Furthermore, the second bonding film 33 has a surface laminated to a bottom surface of the foam skin 30 without adhesives and the fabric layer 34 has a surface laminated to other surface of the second bonding film 33 without adhesives. The second bonding film 33 provides for a thermal fusing bonding to the foam skin 30 and a mechanical bonding to the fabric layer 34. The structures and the materials of the plastic plate 11 and the fabric layer 13 of the first embodiment are also applicable to the plastic plate 32 and the fabric layer 34 of the third embodiment. The first and second bonding films 31, 33 of the third embodiment also have the characteristics for respectively bonding the polyethylene plastic plate 32 and the fabric layer 34 to the polypropylene foam skin 30 without adhesives, after thermal fusing processes. In addition, the first bonding films 21, 31 of the second and third embodiments are preferred to be extruded and coated to the plastic plate 22, 32 and the second bonding films 23, 33 of the second and third embodiments are preferred to be extruded and coated to the plastic film 24 and fabric layer 34 as well during laminating processes. According to the above-mentioned embodiments, the layered composite material of the present invention is comprised by a smooth and flexible foam skin, a tough and wear/impact resistant plastic plate and a patterned and colorful plastic film/fabric layer. In addition, the compositions of the layered composite material are flexible, tough, moldable, lightweight and low cost, so that the layered composite material of the present invention can be applied to various fields. In the applications to the cases and bags, such as suitcases, luggage, tool boxes, musical instrument cases, sporting bags and so on, the layered composite material of the present invention provides a smooth, flexible, lightweight, cushion-like foam skin as a base or a structure, a tough, wear/impact resistant plastic plate as an outer casing, and a patterned, colorful plastic film/fabric layer as a liner. Compared with the conventional cases, the present invention improves their weights, costs, structures, appearances, also values as well. Furthermore, according to the advantages of the present invention as described above, the layered composite material can further be applied to other fields. For examples, pads such as mouse pads and cup pads, mats such as table mats and sporting mats, sporting goods such as surfing boards, sliders for snow, grass, sand and the like. Numerous characteristics and advantages of the invention have been set forth in the foregoing description, together with details of the structure and function of the invention, and the novel features thereof are pointed out in appended claims. The disclosure, however, is illustrated only, and changes may be made in detail, especially, in matters of shape, size and arrangement of parts, materials and the combination thereof within the principle of the invention, to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. | <SOH> BACKGROUND OF THE INVENTION <EOH>For the manufacturers of suitcases, luggage and cases, casing materials with lightweight, strong structure and low cost are in substantial demand. Generally speaking, one conventional casing material for suitcases or luggage is a composite metal, which is strong in structure but heavy in weight, also expensive in cost. Another conventional casing material is a composite plastic material, which is lighter in weight and cheaper in cost but poorer in structure compared with the composite metal. For example, an acrylonitrile butadiene styrene (ABS) material is a popular material for manufacturing suitcases, luggage and so on. The ABS material has a nature of wear-resistance but limited. In addition, the suitcases made of the ABS material are easily deformed and the edges of the suitcases are also easily broken, after the impact between the suitcases during transportation. | <SOH> SUMMARY OF INVENTION <EOH>The primary objective of the present invention is to provide a layered composite material with lightweight, strong structure and low cost. The layered composite material not only is provided for manufacturing various cases, such as suitcases, luggage, tool boxes etc., but also for manufacturing pads, mats, toys, bags, sporting goods and so on. More specifically, in one embodiment of the present invention, the layered composite material comprises a foam skin, a plastic plate and a plastic film. The foam skin has a density in a range of 1.5 to 12 PCF and a thickness in a range of 1 to 6 mm. The plastic plate is laminated to a top surface of the foam skin without adhesives and the plastic plate has a thickness in a range of 0.1 to 2 mm. The plastic film has a surface laminated to a bottom surface of the foam skin without adhesives and the plastic film has a thickness in a range of 0.01 to 0.15 mm. Moreover, the foam skin, the plastic plate and the plastic film are laminated by thermal fusing processes. In addition, the layered composite material further comprises a fabric layer laminated to other surface of the plastic film without adhesives and the plastic film is as a bonding film between the foam skin and the fabric layer. Furthermore, the foam skin in the present invention is made of a foamed plastic material, such as polyethylene foam or polypropylene foam. The plastic plate and the plastic film can be a single film or a composite film with patterns or colors. Therefore, the layered composite material of the present invention has features of strong structure, lightweight, low cost and also variety. | 20041220 | 20060801 | 20050512 | 64292.0 | 3 | OLSON, LARS A | LAYERED COMPOSITE MATERIAL | SMALL | 1 | CONT-ACCEPTED | 2,004 |
|||
11,018,516 | ACCEPTED | Textured all-terrain vehicle fenders | The present disclosure describes an all terrain straddle-type vehicle for carrying a load including a rider. The vehicle includes a frame, a plurality of wheels, a rear fender, a front fender, and a body panel. The wheels, including front and rear wheels coupled to the frame. The fenders are secured to the frame for covering the wheels. The fenders are formed from a plastic material having a smooth portion and a textured portion thereon. The smooth and textured portions are disposed adjacent to one another and formed integrally on the fender. The textured portion is positioned on the fender in a location of frequent rider or other load contact. The body panel is secured to the frame forward of the rear fender. The body panel includes a textured portion situated in a location of frequent rider contact. A method of manufacturing a fender is also disclosed. | 1. A body panel for a straddle-ridden type vehicle, the panel comprising: a. a smooth exterior portion; and b. a textured exterior portion adjacent said smooth portion, said textured portion being in a frequent rider contact zone of the vehicle, wherein said smooth exterior portion and said textured exterior portion are integrally part of the same body panel. 2. The body panel of claim 1, wherein said smooth exterior portion and said textured exterior portion both comprise a portion of a fender. 3. The body panel of claim 2, wherein said textured exterior portion is situated on said fender in a location of frequent rider contact. 4. The body panel of claim 3, wherein the vehicle is an all-terrain vehicle, said fender being a rear fender. 5. The body panel of claim 3, wherein the vehicle is an all-terrain vehicle, said fender being a front fender. 6. The body panel of claim 3, wherein said fender is formed of a plastic material. 7. The body panel of claim 1, wherein said textured exterior portion is situated on said body panel in a location of frequent rider leg contact. 8. The body panel of claim 7, wherein said textured exterior portion is situated generally beneath and forward of a seating location of the vehicle. 9. The body panel of claim 7, wherein the vehicle is an all-terrain vehicle. 10. The body panel of claim 1, wherein the vehicle is configured for carrying a load, said textured exterior portion being situated on said body panel in a location of frequent vehicle load contact. 11. The body panel of claim 10, wherein the vehicle is an ATV and wherein said smooth exterior portion and said textured exterior portion both comprise a portion of a fender. 12. The body panel of claim 11, wherein said fender is formed of a plastic material. 13. A plastic fender for an all-terrain vehicle comprising: a. a smooth exterior portion; b. a textured exterior portion adjacent said smooth exterior portion, said textured portion being in disposed in at least one of a rider and load wear area of the fender, wherein said smooth exterior portion and said textured exterior portion are integrally formed. 14. The plastic fender of claim 13, wherein said textured exterior portion is situated on a region of the fender subject to frequent contact with the vehicle rider. 15. The plastic fender of claim 14, wherein said textured exterior portion is situated on a forward portion of a rear fender subject to frequent contact with the leg of the rider. 16. The plastic fender of claim 13, wherein the vehicle is configured for carrying a load, said textured exterior portion being situated on a region of the fender subject to frequent load contact. 17. The plastic fender of claim 13, wherein said textured portion is situated on a top and forward portion of the fender. 18. An all-terrain straddle-type vehicle for carrying a load including a rider, the vehicle comprising: a. a frame; b. a plurality of wheels coupled to said frame, including at least one rear wheel; c. a rear fender secured to said frame for said at least one rear wheel, said rear fender being formed from a plastic material and having a smooth portion and a textured portion thereon, said smooth and textured portions being disposed adjacent one another and formed integrally on said fender, said textured portion being positioned on said fender in a location of frequent load contact; and d. a body panel secured to said frame forward of said rear fender, said body panel having a textured portion thereon situated in a location of frequent load contact. 19. The vehicle of claim 18, wherein said body panel further includes a smooth portion adjacent said textured portion. 20. The vehicle of claim 18, further comprising a front fender secured to said frame, said front fender being formed from a plastic material and having a smooth portion and a textured portion thereon, said smooth and textured portions being disposed adjacent one another and formed integrally on said front fender, said textured portion being situated in an area of frequent load contact. 21. A method of manufacturing a fender for a straddle-ridden vehicle configured for hauling a load including at least a rider, the method comprising molding a plastic panel with a smooth portion adjacent a textured portion, the textured and smooth portions being integrally formed in the same mold, said textured portion being situated on said fender in a load-contact location. 22. The method of claim 19, wherein said fender is a rear fender and wherein said textured portion is situated in a position for frequent contact with the leg of the rider on the forward portion of the rear fender. | FIELD OF THE INVENTION This invention relates generally to body fenders for all-terrain vehicles and, more specifically, to fender having textured regions in high scuff areas to protect against scratches. BACKGROUND OF THE INVENTION All-terrain vehicles (ATVs) commonly have plastic body fenders surrounding the wheels and adjacent the seating area. These areas are subject to scratches due to being rubbed by a user. For example, as the user mounts or dismounts the ATV, his or her leg and/or boot will typically rub against the forward portion of one of the rear-wheel fenders. Rubbing also commonly occurs during riding. Such rubbing often causes slight scratching on the shiny, smooth, polyethylene surface. The surfaces are attractive in their smooth state when untouched. However, before the vehicles even have a chance to leave the showroom floor, they may receive many marring scratches. These make the vehicle look somewhat used and less appealing to a buyer. The value of the ATV is reduced whether at the dealer or consumer. Manufacturing reject rates on such molded parts are also high. The manufactured parts must be handled with increased care, also increasing manufacturing costs. ATV body panels, such as fenders are constructed of thermoplastic materials, such as polyethylene, polypropylene, and TPR. Such polymers may be molded to a desired body shape and they are extremely durable: they do not easily break or tear. They also can be formed with smooth, high-gloss surfaces. However, due to the relative softness of these materials they also scratch easily such that the surface finish may be ruined. Current methods of dealing with scratches on ATV body panels are directed to use of lighter colors for the molded plastic panel. Lighter colors tend to hide the scratches somewhat. However, a lighter color is not always desirable. Furthermore, the scratches can still be seen upon close inspection. SUMMARY OF THE INVENTION The present invention provides a body panel, such as a fender or side panel, for a straddle-ridden type vehicle, such as an ATV. The panel includes a smooth exterior portion and a textured exterior portion. The textured exterior portion is adjacent the smooth portion. The textured portion is located in areas of frequent rider contact on the vehicle. The smooth exterior portion and the textured portion are integrally part of the same body panel. In one aspect of the invention, the smooth exterior portion and the textured exterior portion both are a part of the ATV fender. The textured portion is situated on the fender in a location of frequent rider contact. Preferably, the vehicle also includes a textured exterior portion situated generally forward of a seating location of the vehicle. In a further aspect of the invention, the fender is a rear fender formed of thermoplastic material. In still a further aspect of the invention, the vehicle is configured for carrying the load. The textured exterior portion is situated on the body panel in a location of frequent vehicle load contact. The invention may also be described as a plastic fender for an all-terrain vehicle. The fender includes a smooth exterior portion and a textured portion adjacent the smooth portion. The textured portion is disposed in a wear area of the fender. The smooth portion and the textured portion are integrally formed. Preferably, the textured portion is situated on a top and forward portion of the fender. In one preferred embodiment, a front fender also includes textured and smooth portions. A method of manufacturing a fender for a straddle-ridden type vehicle is also disclosed. The vehicle is configured for hauling a load including at least a rider. The method includes molding a plastic panel with a smooth portion adjacent a textured portion. The textured and smooth portions are integrally formed in the same mold. The textured portion is situated on the fender in a load contact location. In one preferred aspect of the method, the fender is a rear fender. The textured portion is situated in a position for frequent contact with the leg and/or footwear of the rider on the forward portion of the rear fender. Also in a preferred embodiment, a side panel of the vehicle includes a textured portion in an area of frequent rider contact. BRIEF DESCRIPTION OF THE DRAWINGS Preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings. FIG. 1 is a perspective view of an ATV of the present invention shown with a rider thereon; FIG. 2 is an isometric view of an ATV of the present invention, showing the left side thereof; and FIG. 3 is a perspective view showing the right side of an ATV of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention provides textured body panels for all-terrain vehicles (ATVs) where smooth portions and textured portions are molded into the panels integrally. Thus, the smooth glossy appearance of the ATV is maintained while providing selected textured areas that resist marring, scratches, and other damage due to contact with the rider or load, or even contact with other objects such as brush or sticks. The textured areas, being molded jointly with the smooth areas, present a pleasing appearance to the consumer. The retailer is able to show the all-terrain vehicles, without applying an external protective plastic layer and without excessively limiting the close examination of the vehicle by perspective buyers. The showroom appearance of the vehicle is also lengthened after purchase. The figures illustrate the portions that may preferably be textured and smooth on an ATV. An ATV 10 includes a frame 12, an engine 14, wheels 16, and a body 18. The frame is the main structure of the ATV and supports the various components. Engine 14 is secured in a mid portion of the frame. Wheels 16 are secured with suspensions leading to frame 12. Body 18 is also secured to frame 12. Body 18 includes side panels 30, 32, and 33 to enhance the user's protection and comfort as well as fenders 34, 36 to protect rider R from debris thrown up by wheels 16. As seen in FIG. 1, the rider interface with ATV 10 is primarily through handlebars 20, seat 22, and footwell 24. Handlebars 20 extend upwardly from within frame 12 and are interlinked with steering spindles to steer the front wheels of ATV 10. Seat 22 is secured above engine 14 on frame 12. Seat 22 may be positioned slightly aft of center, although a portion of seat 22 may extend forward of center. Footwell 24 is formed below seat 22 on the right and left sides of engine 14 providing a natural and ergonomic location for rider R to position his or her legs and feet. Handlebars 20, seat 22, and footwell 24 are all designed to resist scratches or marring due to contact with rider R. A load may also be secured to ATV 10. Front and rear racks 26 and 28 respectively, are provided for this purpose. These racks are secured to frame 12 through body 18. The racks generally are adaptable to secure various different types of loads. However, some loads may contact different portions of body 18 depending on how they are secured and the type of load secured. Alternatively, ATV 10 may not include any racks or may include a box or second seat for an additional passenger. The “load” discussed herein refers to items carried on the ATV. Broadly, the “load” also includes the rider. Body 18 is subject to scratches and other marring and visual damage from rider R or the various other loads secured to ATV 10. Body 18 includes upper side panel 30, lower side panel 32, rear side panel 33, front fenders 34, and rear fenders 36. The panels and fenders on the right and left sides of ATV 10 are substantially the same, although openings for various components such as the fuel tank or the transmission control lever may necessitate slight variations. Upper side panel 30 is situated below handlebars 20 and in front of seat 22. This panel is typically positioned out of major contact with either the rider or other loads. However, lower side panel 32 and rear side panel 33 receive frequent repeated contact with the rider's leg L. This is a region adjacent the knee of the rider. The rider may be comfortable having his or her knees rest against lower side panels 32 during regular riding. Alternatively, during active riding, the knee and leg may frequently rub against this portion and against rear side panel 33, which extend between seat 22, front fender 34, and rear fender 36. This portion is typically slightly above the crank case of engine 14. Lower side panel 32, in one alternate embodiment, is formed integrally with upper side panel 30, rear side panel 33, or front fender 34 or all three. Preferably, but not necessarily, it is formed separately as a separate panel. Rear side panel 33 is preferably formed integrally with rear fender 36. Both the right and left sides of front fender 34 and upper side panel 30 are preferably formed integrally. Alternatively, these panels and fenders are formed separately or in any combination. Front fender 34 extends upwardly from footwell 24 then forwardly to surround a headlight. Frame 12 supports front fender 34 and also front rack 26 above front fender 34. Thus, front fender 34 includes a steep rearward section, with a transition section leading to an upper, more horizontal portion. Front fender 34 also includes an outer downwardly extending flange such that somewhat of an inverted cup shape is formed well over the top of the front wheel. Rear fender 36 is similar in form. It is formed behind footwell 24 and extends upwardly to a transition portion, it then curves to a more horizontal portion, then downwardly at a rear portion. It also includes a downwardly extending side flange to create an overall cupping effect over the top of the rear wheels. Rear fender 36 is preferably formed integrally with its right and left sides or it may be separately formed. Rear rack 28 is secured to frame 12 through rear fender 36. In the preferred embodiment, lower side panel 32 and rear fender 36 are provided with smooth portions 38 and textured portions 40. In one alternate embodiment, front fender 34 is also provided with integrally formed smooth and textured portions, 38 and 40. FIG. 2 illustrates the preferred placement of textured portions 40 and smooth portions 38 on rear fenders 36. Textured portions 40 are placed in an area that may encounter a large amount of leg and/or footwear contact from rider R or of load contact from the load being held on rear rack 28. This portion is inboard of an outer section of rear fender 36 that includes a smooth portion 38. The smooth and textured portions are both integrally formed in the same mold. The mold includes textured surface portions in the regions that are to be textured on the final fender product. The textured portion, preferably, extends downwardly to its inner connection with footwell 24. It extends upwardly and rearwardly under rear rack 28 to a rear portion of rear fender 36. The textured and smooth portions 38 and 40 on lower side panel 32 and rear panel 33 are best illustrated in FIG. 3. Lower side panel 32 forms in somewhat of a trapezoidal shape from seat 22 to front fender 34. The textured portion 40 forms somewhat of a “C”-shape with smooth portion 38 being nested and recessed within the “C”. Thus, textured portion 40 on lower side panel 32 receives most of the contact with the leg of rider R. Smooth portion 38 is provided to create a pleasing visual contrast and for a clean smooth appearance of ATV 10. FIG. 3 also best illustrates a preferred placement of textured portion 40 on front fender 34. Texturing is placed in a region above footwell 24 between upper and lower side panels 30 and 32 and an outer raised portion of front fender 34. While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. For example, textured portions may be created in other regions of body 18, such as the outer sides of the fenders. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow. | <SOH> BACKGROUND OF THE INVENTION <EOH>All-terrain vehicles (ATVs) commonly have plastic body fenders surrounding the wheels and adjacent the seating area. These areas are subject to scratches due to being rubbed by a user. For example, as the user mounts or dismounts the ATV, his or her leg and/or boot will typically rub against the forward portion of one of the rear-wheel fenders. Rubbing also commonly occurs during riding. Such rubbing often causes slight scratching on the shiny, smooth, polyethylene surface. The surfaces are attractive in their smooth state when untouched. However, before the vehicles even have a chance to leave the showroom floor, they may receive many marring scratches. These make the vehicle look somewhat used and less appealing to a buyer. The value of the ATV is reduced whether at the dealer or consumer. Manufacturing reject rates on such molded parts are also high. The manufactured parts must be handled with increased care, also increasing manufacturing costs. ATV body panels, such as fenders are constructed of thermoplastic materials, such as polyethylene, polypropylene, and TPR. Such polymers may be molded to a desired body shape and they are extremely durable: they do not easily break or tear. They also can be formed with smooth, high-gloss surfaces. However, due to the relative softness of these materials they also scratch easily such that the surface finish may be ruined. Current methods of dealing with scratches on ATV body panels are directed to use of lighter colors for the molded plastic panel. Lighter colors tend to hide the scratches somewhat. However, a lighter color is not always desirable. Furthermore, the scratches can still be seen upon close inspection. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a body panel, such as a fender or side panel, for a straddle-ridden type vehicle, such as an ATV. The panel includes a smooth exterior portion and a textured exterior portion. The textured exterior portion is adjacent the smooth portion. The textured portion is located in areas of frequent rider contact on the vehicle. The smooth exterior portion and the textured portion are integrally part of the same body panel. In one aspect of the invention, the smooth exterior portion and the textured exterior portion both are a part of the ATV fender. The textured portion is situated on the fender in a location of frequent rider contact. Preferably, the vehicle also includes a textured exterior portion situated generally forward of a seating location of the vehicle. In a further aspect of the invention, the fender is a rear fender formed of thermoplastic material. In still a further aspect of the invention, the vehicle is configured for carrying the load. The textured exterior portion is situated on the body panel in a location of frequent vehicle load contact. The invention may also be described as a plastic fender for an all-terrain vehicle. The fender includes a smooth exterior portion and a textured portion adjacent the smooth portion. The textured portion is disposed in a wear area of the fender. The smooth portion and the textured portion are integrally formed. Preferably, the textured portion is situated on a top and forward portion of the fender. In one preferred embodiment, a front fender also includes textured and smooth portions. A method of manufacturing a fender for a straddle-ridden type vehicle is also disclosed. The vehicle is configured for hauling a load including at least a rider. The method includes molding a plastic panel with a smooth portion adjacent a textured portion. The textured and smooth portions are integrally formed in the same mold. The textured portion is situated on the fender in a load contact location. In one preferred aspect of the method, the fender is a rear fender. The textured portion is situated in a position for frequent contact with the leg and/or footwear of the rider on the forward portion of the rear fender. Also in a preferred embodiment, a side panel of the vehicle includes a textured portion in an area of frequent rider contact. | 20041220 | 20100302 | 20060622 | 92830.0 | B62D722 | 1 | ILAN, RUTH | TEXTURED ALL-TERRAIN VEHICLE FENDERS | UNDISCOUNTED | 0 | ACCEPTED | B62D | 2,004 |
|
11,018,628 | ACCEPTED | Game ball lacing | A game ball including a casing and a lacing. The casing has a laced region. The lacing is coupled to the laced region of the casing. The lacing has an exposed surface comprised of an outer material that is compressible, resilient, and tactile. The outer material has a modulus of elasticity of between 14 and 170 kg/cm2 and a tensile strength between 100 and 650 kg/cm2. At least a portion of the lacing can have an exposed pebbled surface. | 1-50 (canceled). 51. A game ball comprising: a casing having a laced region; and a lacing coupled to the laced region of the casing, the lacing having an exposed surface and a plurality of spaced-apart projections extending over at least a portion of the exposed surface, the spaced-apart projections defining a plurality of valleys, the projections having a height of between 0.002 and 0.250 inches. 52. The game ball of claim 51, wherein the projections are pebble-like projections. 53. The game ball of claim 52, wherein the height of the pebble-like projections range between 0.003 and 0.100 inches. 54. The game ball of claim 52, wherein the pebble-like projections have a height of at least 0.004 inches. 55. The game ball of claim 52, wherein the pebble-like projections have a height of at least 0.005 inches. 56. The game ball of claim 52, wherein the pebble-like projections have a height of at least 0.010 inches. 57. The game ball of claim 52, wherein the entire exposed surface of the lacing includes the pebble-like projections. 58. The game ball of claim 52, wherein the plurality of pebble-like projections are selected from the group consisting of irregularly shaped pebble-like projections, hemi-spherically shaped pebble-like projections, generally oval shaped pebble-like projections, generally triangular shaped pebble-like projections, generally square shaped pebble-like projections, generally rectangular shaped pebble-like projections, generally diamond shaped pebble-like projections, generally pentagon-shaped pebble-like projections, other polygonal shaped pebble-like projections, generally conical pebble-like projections, generally frustoconical pebble-like projections, generally cylindrical pebble-like projections, generally pyramid-shaped pebble-like projections, generally cubic pebble-like projections, and combinations thereof. 59. The game ball of claim 52, wherein the plurality of pebble-like projections are arranged in a generally evenly spaced pattern across at least a portion of the exposed surface. 60. The game ball of claim 52, wherein the plurality of pebble-like projections are randomly arranged across at least a portion of the exposed surface. 61. The game ball of claim 52, wherein each of the pebble-like projections has a maximum length and a maximum width, and wherein the maximum length and the maximum width define an aspect ratio of within 0.2 and 5.0. 62. The game ball of claim 61, wherein the aspect ratio is within 0.33 and 3.0. 63. The game ball of claim 51, wherein the plurality of projections are spaced apart by a plurality of valleys, and wherein each valley has a width of between 0.005 and 0.250 inches. 64. The game ball of claim 51, wherein each valley has a width of between 0.008 and 0.100 inches. 65. The game ball of claim 51, wherein the valleys have a transverse cross-sectional shape selected from the group consisting of generally U-shaped, generally V-shaped, generally hemi-spherically shaped, irregularly shaped and combinations thereof. 66. A game ball comprising: a casing having a laced region; and a lacing coupled to the laced region of the casing, the lacing having an exposed surface, at least a portion of the exposed surface of the lacing having a set of markings generally configured to be a generally two-dimensional simulation of a pebbled texture. 67. The game ball of claim 66, wherein the entire exposed surface of the lacing includes the markings. 68. The game ball of claim 66, wherein the markings are selected from the group consisting of irregularly shaped markings, generally circular markings, generally oval markings, generally triangular markings, generally square markings, generally rectangular markings, generally diamond shaped markings, generally pentagon-shaped markings, other polygonal shaped markings, and combinations thereof. 69. The game ball of claim 66, wherein markings are arranged in a generally evenly spaced pattern across at least a portion of the exposed surface. 70. The game ball of claim 66, wherein the markings are randomly arranged across at least a portion of the exposed surface. 71. The game ball of claim 66, wherein the markings are generally of equal size. 72. The game ball of claim 66, wherein the markings include projections of two or more different sizes. 73. A game ball comprising: a casing having a laced region; and a lacing coupled to the laced region of the casing, the lacing including an outer material and an inner substrate coupled to the outer material, the outer material having an exposed surface that is compressible, resilient, and tactile, the outer material having a density of between 0.2 and 1.3 gr/cm3 and a durometer of between 10 and 75 on a Shore A hardness scale, 74. The game ball of claim 73, wherein the inner substrate includes an intermediate material and at least one strand of high tensile strength material. 75. The game ball of claim 74, wherein at least one of the intermediate material and the strand of high tensile strength material has a density that is greater than the density of the outer material. 76. The game ball of claim 74, wherein the intermediate material has a durometer value on the Shore A hardness scale that is greater than the durometer value of the outer material. 77. The game ball of claim 73, wherein the outer material has a durometer value on the Shore A hardness scale of within the range of 20 to 70. 78. The game ball of claim 73, wherein the outer material has a density of between 0.35 to 0.65 gr/cm3. 79. The game ball of claim 73, wherein the outer material has a density of between 0.2 to 0.4 gr/cm3. 80. The game ball of claim 73, wherein the outer material has a density of between 0.55 to 0.90 gr/cm3. 81. The game ball of claim 73, wherein the intermediate material is selected from the group consisting of a vinyl, a plastic, other polymers, a leather, a cloth, a rubber, an elastomer, and combinations thereof. 82. The game ball of claim 74, wherein the at least one strand of high tensile strength material is selected from the group consisting of a nylon strand, a polyester strand, a fiber, a wire, a polymer, and combinations thereof. 83. The game ball of claim 73 wherein the outer material has a modulus of elasticity of between 30 and 110 kg/cm2 and a tensile strength between 450 and 600 kg/cm2. 84. The game ball of claim 73 wherein the outer material is selected from the group consisting of a wet process polyurethane, a dry process polyurethane, a coagulated polyurethane, a polyvinylchloride foam, a rubber, a polymeric material, an elastomeric material, and a combination thereof. 85. The game ball of claim 73 wherein at least a portion of the exposed surface includes a pebbled texture. 86. The game ball of claim 85, wherein the pebbled texture comprises a plurality of pebble-like projections selected from the group consisting of irregularly shaped pebble-like projections, hemi-spherically shaped pebble-like projections, generally oval shaped pebble-like projections, generally triangular shaped pebble-like projections, generally square shaped pebble-like projections, generally rectangular shaped pebble-like projections, generally diamond shaped pebble-like projections, generally pentagon-shaped pebble-like projections, other polygonal shaped pebble-like projections, generally conical pebble-like projections, generally frustoconical pebble-like projections, generally cylindrical pebble-like projections, generally pyramid-shaped pebble-like projections, generally cubic pebble-like projections, and combinations thereof. | RELATED U.S. APPLICATION DATA The present invention is a continuation-in-part of U.S. patent application Ser. No. 09/746,037, entitled “Game Ball Lacing,” filed on Sep. 4, 2001 by Murphy et al. FIELD OF THE INVENTION The present invention relates generally to a laced game ball. In particular, the present invention relates to an improved lacing for a laced game ball. BACKGROUND OF THE INVENTION Laced game balls, such as footballs, are well known and are included among the most popular game balls in the United States. Footballs typically include an inner inflatable air bladder and an outer casing having a longitudinally extending, elongate slot. The air bladder is inserted into the casing through the slot and secured within the outer casing by a lacing. The lacing resembles a shoelace and typically is made of one or more leather strips, braided fibers, or braided fibers having an outer latex coating. When assembled, the lacing generally outwardly extends from the casing forming a number of raised ridges that facilitate grasping and passing of the football. The lacing further facilitates a player's ability to impart a spin onto the football during passing thereby producing a spiral trajectory of the ball. The spiral trajectory generally improves the distance of a thrown football. In football, as in many other sports, the gripping and tactile characteristics of the ball can considerably affect the performance of the participating players. In particular, the lacing of a football significantly contributes to the football's gripping and tactile characteristics, and, not surprisingly, to the player's ability to pass the ball accurately and for distance. The lacing also typically plays a role in the player's ability to catch or to hold on to the football. Further, because football games are typically played outdoors, in unpredictable and inclement weather conditions including rain, sleet and snow, the player's ability to adequately grip the ball is particularly dependent upon the gripping and tactile characteristics of the ball and the lacing. Lacings on earlier football designs typically included leather strips or braided fibers, such as cotton fibers. These lacing materials sufficiently enclosed the slot and retained the bladder within the outer casing, but they generally did not wear well, could become slippery when wet, and portions of the lacings could be shifted or dislodged during use. Existing lacings in more recent football designs are typically formed of braided fibers or extruded strands and include an outer layer of latex or plastic. The extruded lacings may have a knurled outer surface having indentations of less than 0.0015 inches, and typically less than 0.001 inches. Such existing lacings wear, and retain their position, well, but can be quite hard, and are relatively smooth and slippery, particularly in wet play conditions. These hard lacings often have durometer values on a Shore A hardness scale of greater than 75. Even when such lacings have a roughened exterior surface, such as the knurled lacings, they often remain quite slippery and difficult to grasp, particularly in wet conditions. Hard, relatively smooth or slippery lacings can contribute to poorly thrown passes, incompletions and fumbles. Others have attempted to solve these problems by significantly changing the shape of the football or by applying multiple sets of lacings to a football. These types of proposed solutions are radical departures from the design and look of a traditional American football. Not surprisingly, these types of radical design changes are not widely accepted, particularly in organized play. Thus, there is a need for a lacing for a sports ball, such as a football, that improves the gripping and tactile characteristics of the sports ball without radically departing from the ball's traditional design. What is needed is a lacing that improves a player's ability to pass, catch or grip a ball. Further, it would be advantageous to provide a football and lacing that can be more readily thrown in a spiral trajectory. What is also needed is a football that can contribute to reducing the number of fumbles, incompletions and poorly thrown balls during the course of a game or a season, particularly during inclement weather. SUMMARY OF THE INVENTION The present invention provides a game ball including a casing and a lacing. The casing has a laced region. The lacing is coupled to the laced region of the casing. The lacing has an exposed surface comprised of an outer material that is compressible, resilient, and tactile. The outer material has a modulus of elasticity of between 14 and 170 kg/cm2 and a tensile strength between 100 and 650 kg/cm2. According to a principal aspect of a preferred form of the invention, a game ball includes a casing and a lacing. The casing has a laced region. The lacing is coupled to the laced region of the casing. The lacing has an exposed surface. At least a portion of the exposed surface of the lacing has a pebbled texture. According to another preferred aspect of the invention provides a game ball includes a casing and a lacing. The casing has a laced region. The lacing is coupled to, and generally surrounds the laced region of the casing. The lacing includes an inner substrate attached to an outer layer. The outer layer of the lacing has an exposed surface made of an outer material that is compressible, resilient, and tactile. According to another preferred aspect of the invention provides a lacing for a sporting goods product. The lacing includes an inner substrate and an outer layer. The inner substrate is made of a high tensile strength material. The outer layer is coupled to the inner substrate. The outer layer is made of a material that is soft, compressible, resilient, and tactile. The material of the outer layer has a modulus of elasticity of between 14 and 170 kg/cm2 and a tensile strength between 100 and 650 kg/cm2. This invention will become more fully understood from the following detailed description, taken in conjunction with the accompanying drawings described herein below, and wherein like reference numerals refer to like parts. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top plan view of an American football in accordance with a preferred embodiment of the present invention. FIG. 2 is a side elevational view of the football of FIG. 1. FIG. 3 is a sectional, front perspective view of a lacing of the football of FIG. 1. FIG. 4 is a top plan view of an American football according to an alternative preferred embodiment of the present invention. FIG. 5 is a sectional, front perspective view of a lacing of the football of FIG. 4. FIG. 6 is a cross-sectional view of a lacing in accordance with another alternative preferred embodiment of the present invention. FIG. 7 is a cross-sectional view of a lacing in accordance with another alternative preferred embodiment of the present invention. FIG. 8 is a cross-sectional view of a lacing in accordance with another alternative preferred embodiment of the present invention. FIG. 9 is a cross-sectional view of a lacing in accordance with another alternative preferred embodiment of the present invention. FIG. 10 is a cross-sectional view of a lacing in accordance with another alternative preferred embodiment of the present invention. FIG. 11 is a front perspective view of a lacing in accordance with another alternative preferred embodiment of the present invention. FIGS. 12 through 21 each include a top view of a portion of lacing with pebbled texture having pebble-like projections in accordance with additional alternative preferred embodiments of the present invention, wherein a separate embodiment of the pebble-like projections are illustrated in each of FIGS. 12 through 21. FIG. 22 is a sectional view of a portion of a lacing in accordance with another alternative preferred embodiment of the present invention. FIG. 23 is a top view of a portion of a lacing in accordance with another alternative preferred embodiment of the present invention. FIG. 24 is a top view of a portion of a lacing in accordance with another alternative preferred embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2, an American football is indicated generally at 10. The football 10 is one example of a laced sports ball. The present application is directly applicable to all laced sports balls and other sporting goods products including, for example, footballs, rugby balls, soccer balls, basketballs, baseball mitts and volleyballs. The football 10 is a generally prolate spheroidal shaped inflatable object having a major longitudinal dimension and a minor transverse dimension. The football 10 includes a casing 12, a bladder 14 and a lacing 16. The casing 12 is a prolate spheroidal shaped outer body preferably formed from four quarter sections (first and second quarter sections 18 and 20 are shown in FIG. 1) that are joined to one another along longitudinal seams (a first longitudinal seam 22 is also shown in FIG. 1). The casing 12, when assembled, has first and second end portions 24 and 26 separated by a central portion 28. The central portion 28 of the casing 12 includes a valve aperture 30 and a longitudinally extending slot 32 positioned in line with the first longitudinal seam 22 and between two parallel longitudinally extending rows of spaced apart lace holes 34. The casing 12 is typically made of leather, rubber or a synthetic polymeric plastic material. An outer surface of the casing 12 preferably includes a pebbled texture for enhancing the grip and improving the aesthetics of the football 10. The bladder 14 is an inflatable air tube preferably having a prolate spheroidal shape. The bladder 14 is inserted into the casing 12 through the slot 32. The bladder 14 enables the football 10 to retain a predetermined amount of air thereby achieving the desired firmness to the football 10. The bladder 14 is typically made of latex, butyl rubber or other suitable material. The bladder 14 includes a valve 38 that extends through the valve aperture 30 of the casing 12 for access by a user. In an alternative embodiment, the casing 12 and the bladder 14 can be integrally formed together. In another alternative embodiment, the football can be formed without a bladder. The lacing 16 is preferably a single elongate cord. Alternatively, the lacing 16 can include a plurality of cords. The lacing 16 is threaded through the lace holes 34 of the casing 12. The lacing 16 enables the two parallel longitudinally extending rows of spaced apart lace holes 34 to be drawn together thereby closing the slot 32 retaining the bladder 14 within the casing 12. When installed onto the football 10, the lacing 16 preferably includes two substantially exposed longitudinally extending segments 40 and eight substantially exposed transversely extending segments 42. In alternative preferred embodiments, other numbers of substantially exposed longitudinal and transverse segments 40 and 42 can be used. The longitudinal and transverse segments 40 and 42 of the lacing outwardly extend from the casing 12 to provide raised surfaces for a player to contact when passing, catching or holding onto the football 10. Players when passing the football 10 will typically place one or more of their fingertips onto the raised surfaces of the lacing 16 in order to throw a more accurate pass and to impart a spiral trajectory onto the thrown ball. In one preferred embodiment, an installed lacing 16 has a length of approximately 4.5 inches. FIG. 3 illustrates a preferred embodiment of the lacing 16. The lacing 16 includes at least one elongate strand 44, an inner layer 46, and an outer layer 48. The strand 44 is formed of a high tensile strength material, preferably nylon. In alternative preferred embodiments, the strand or strands 44 can be formed of polyester, metal, braided fibers, a high tensile strength polymer or combinations thereof. In a particularly preferred embodiment, three strands 14 are included in a spaced apart configuration within the lacing 16. The strand 44 increases the tensile strength of the lacing 16 enabling the lacing 16 to withstand significant stresses during use without failing. The inner layer 46 surrounds the strands 44 within the lacing 16. The inner layer 46 is formed of a pliable material, preferably vinyl or plastic. Alternatively, other materials can be used, such as, for example, a cloth, leather, a rubber, an elastomer or other polymers. The inner layer 46 is preferably formed with a generally uniform cross-sectional area resembling a flattened oval. Alternatively, the inner layer 46 can have a circular cross-section or other shapes. The strands 44 and the inner layer 46 are preferably produced as a co-extrusion. Alternatively, the strands 44 alone can be extruded and the inner layer 46 can be attached to, and substantially surround, the strands 44. The outer layer 48 is a sheet of material that is preferably soft, compressible, resilient, tactile, porous and spongy. The outer layer 48 has an inner surface 50 and an outer surface 52. The inner surface 50 of the outer layer 48 is attached to, and preferably substantially surrounds, the inner layer 46. The outer layer 48 is preferably affixed to the inner layer 46. In other alternative embodiments, the outer layer 48 can be attached to the inner layer 46 through stitching, stapling, mechanical bonding, heat bonding or other conventional fastening means. The outer layer 48 provides the lacing 16, and in particular the exposed portions of the lacing 16, with a soft, tactile and resilient feel that enhances the player's ability to easily grip, throw, or retain the football 10 when contacting the lacing 16. The outer layer 48 of the lacing 16 is preferably made of a wet process polyurethane material. Alternatively, the outer layer 48 can be formed of other materials, such as, for example, a dry process polyurethane, a coagulated polyurethane, a rubber, a polyvinylchloride foam, other polymers, other elastomers, other foams or combinations thereof. The material of the outer layer preferably has a durometer of between 10 and 75 on a Shore A hardness scale. Shore A durometer values provided in this specification are in accordance with ASTM Standard D 2240 entitled, “Standard Test Method for Rubber Property—Durometer Hardness.” In a particularly preferred embodiment, the material of the outer layer 48 has a durometer of between 20 and 70 on a Shore A hardness scale. Preferably, the material of the outer layer has a durometer value that is less than the durometer value of the material forming at least one of the inner layer 46 and the strand(s) 44, indicating that the material of the outer layer is softer than the material of at least one of the inner layer 46 and the stand(s) 44. The material of the outer layer also preferably has a modulus of elasticity of between 14 and 170 kg/cm2 and a tensile strength of between 100 and 650 kg/cm2. In a particularly preferred embodiment, the material of the outer layer has a modulus of elasticity of between 30 and 110 kg/cm2 and a tensile strength between 450 and 600 kg/cm2. The material of the outer layer also has a density of between 0.2 and 1.3 gr/cm3. In one particularly preferred embodiment, the outer layer 48 is formed of a wet process polyurethane having a density within the range of 0.35 to 0.65 gr/cm3. In another particularly preferred embodiment, the outer layer is formed of a coagulated polyurethane having a density within the range of 0.2 and 0.4 gr/cm3. In another alternative preferred embodiment, the outer layer is formed of a dry process polyurethane having a density within the range of 0.55 to 0.90 gr/cm3. Preferably, the material of the outer layer has a density that is less than the density of the material forming at least one of the inner layer 46 and the strand(s) 44. In yet another alternative preferred embodiment, the inherent properties of the material of the outer layer 48 can fall outside of one or more of the above-listed ranges including the durometer range, the modulus of elasticity range, the tensile strength range, and the density range. Further, the outer layer 48 of the lacing 16 preferably has a white or a brown color. Alternative colors or combination of colors are also contemplated. Unlike existing lacings that typically include a relatively hard, and often slippery, outer surface, the soft tactile outer layer 48 significantly improves the grip-ability of the lacing 16 thereby facilitating the player's ability to firmly grasp, throw or catch the football 10. The outer layer 48 of the lacing 16 provides an increased frictional interaction between the lacing 16 and the fingertips of the player. The soft tactile outer layer 48 also enhances the player's ability to impart a spin onto the football 10. The tactile, compressible and resilient outer layer 48 of the improved lacing 16 can also assist in reducing turnovers and incompletions and is well suited for inclement weather. Moreover, the lacing 16 provides the strength and durability of a traditional lacing with a soft, tactile outer surface that improves the overall feel, grip-ability and performance of the lacing 16. The lacing 16 is strong enough to withstand the stresses encountered during normal use without significantly wearing, fraying or elongating, while improving the overall feel of the lacing 16 to the user. FIGS. 4 and 5 illustrate another preferred embodiment of the present invention in which the roughened texture or grain of the outer surface 52 of the lacing 16 includes a pebbled texture comprised of a plurality of pebble-like projections 54. The lacing 16 of FIGS. 4 and 5 is substantially similar to the lacing 16 of FIGS. 1 through 3. The pebble-like projections 54 provide the outer surface 52 of the lacing 16 with a pebbled texture that is substantially similar to the grip enhancing pebbled outer surface present on the casing of conventional footballs. The pebble-like projections 54 are preferably convex, rounded and spaced apart from one another. The pebble-like projections 54 further improve the player's ability to grip the football 10 and they also provide the lacing 16 with a unique appealing aesthetic. In an alternative preferred embodiment, the outer surface 52 of the lacing 16 can have a pebbled texture comprised of a plurality of concave pebble-like indentations. In other embodiments, the outer surface 52 can be cross-hatched, grainy, grooved or otherwise irregular to roughen the texture of the lacing 16. Referring to FIGS. 12 through 21, additional preferred embodiments of the pebbled texture on the outer surface 52 of a portion of the ball lacing 16 are illustrated. Within the context of the present invention, the term “pebbled texture” refers to a surface having a plurality of prominences or projections separated by valleys or indentations. The term “pebbled texture” is a broad category, or genus, of surface contours that includes pebble-like projections in a large variety of different shapes. FIGS. 12 through 21 represent several specific species, or examples, of pebble-like projections. In FIG. 12, one preferred embodiment of the pebbled texture includes a plurality of irregularly shaped pebble-like projections 54. In alternative preferred embodiments, the pebbled texture includes a plurality of pebble-like projections formed in alternative shapes including generally partially spherically shaped pebble-like projections 60 (FIG. 13), generally oval-shaped pebble-like projections 62 (FIG. 14), generally triangular-shaped pebble-like projections 64 (FIG. 15), generally square-shaped pebble-like projections 66 (FIG. 16), generally rectangular shaped pebble-like projections 68 (FIG. 17), generally diamond-shaped pebble-like projections 70 (FIG. 18), generally pentagon-shaped pebble-like projections 72 (FIG. 19), generally octagon-shaped pebble-like projections 74 (FIG. 20), and generally decagon-shaped pebble-like projections 76 (FIG. 21). In other alternative preferred embodiments, the pebbled texture can include a plurality of pebble-like projections having additional alternative shapes, such as, for example, circular, heptagonal, hexagonal, other polygonal shapes, other irregular shapes, other curved shapes, and combinations thereof. Still further, in other alternative preferred embodiments, the pebbled texture can include a plurality of other types of three-dimensional pebble-like shapes, such as, for example, frustoconical shapes, conical shapes, pyramid-shapes, truncated pyramid-shapes, cylindrical shapes, cubic shapes, and combinations thereof. The plurality of pebble-like projections, such as, for example, pebble-like projections 6074, forming the pebbled texture can be generally evenly spaced in a consistent pattern across the outer surface 52, or a portion thereof. Alternatively, the plurality of pebble-like projections, such as, for example, pebble-like projections 60-74 forming the pebbled texture can be randomly or inconsistently spaced apart, or arranged, about the outer surface 52 of the lacing 16, or a portion thereof. In other alternative embodiments, a first portion of the outer surface can have a pebbled texture comprised of a consistent pattern of generally evenly spaced pebble-like projections, and a second portion can have a pebbled texture comprised of randomly or inconsistently spaced apart pebble-like projections. Moreover, the size and type of the pebble-like projections forming the pebbled texture can vary across the outer surface 52, or from one lacing, or lace segment, to another. For instance, the longitudinal segments 40 of the lacing 16 can have one type, or species, of pebble-like projections forming the pebbled texture, while one or more of the transverse segments can include a different type, or species, of pebble-like projections forming the pebbled texture. The size of each of the pebble-like projections is preferably less than the width of the lacing. In some embodiments of the pebble-like projections, the maximum length and the maximum width of the pebble-like projections define an aspect ratio that is between 0.2 and 5.0. In other particularly preferred embodiments, the length and width of the pebble-like projections define an aspect ratio of between 0.33 and 3.0. Referring to FIG. 22, the height and spacing of the pebble-like projections 54 or indentations (or valleys) can also vary. As indicated on FIG. 22, the height of the pebble-like projection 54 refers to the distance between the top of the pebble-like projection and the bottom of the valley 55 (or the space separating adjacent pebble-like projections). The height is measured along a line or plane extending perpendicular to the exposed outer surface of the lacing. The height of each pebble-like projection 54 is within the range of 0.002 to 0.250 inches. In a particularly preferred embodiment, the height of the pebble-like projections 54 fall within the range of 0.003 to 0.100 inches. In another particularly preferred embodiment, the minimum height of the pebble-like projections is at least 0.004 inches. In yet other preferred embodiments, the minimum height of the pebble-like projections can be at least 0.005 inches, at least 0.006 inches, and at least 0.010 inches. Similarly, as also indicated in FIG. 22, the width of the valley (such as a valley 55) or spacing between adjacent pebble-like projections can also vary, falling within the range of 0.005 to 0.250 inches. In a particularly preferred embodiment, the width of the valleys 55 can be within the range of 0.008 to 0.100 inches. Further, the general shape of the valleys 55 can also vary. FIG. 22 illustrates a generally U-shaped valley 57, a generally V-shaped 59, and a generally hemi-spherically-shaped valley 61. Other shapes and shape combinations can also be used. The pebble-like projections 54 are preferably embossed, using a suitable stamping or rolling device under pressure and/or temperature, onto the outer surface 52 of the outer layer 48. Alternatively, the pebble-like projections 54 can be applied to the outer surface 52 via injection or compression molding. This results in the pebbled texture created by the formation of the plurality of pebble-like projections on the surface. In another alternative preferred embodiment, the pebbled texture can be applied to the outer surface of virtually any type of lacing, such as, for example, a urethane or latex impregnated cloth lacing, a braided fiber lacing, a plastic lacing, a rubber lacing, a leather lacing, a one-piece lacing, or a multi-piece lacing. In another alternative preferred embodiment, the pebble-like projections 54 are included on one of either the transverse segments 42 and the longitudinal segments 40. In another alternative preferred embodiment, the pebble-like projections are formed onto a portion of the outer surface 52 of the lacing 16. Referring to FIG. 6, in an alternative preferred embodiment of the present invention, the outer layer 48 is attached to, and substantially covers, an outer (otherwise exposed) side 56 of the inner layer 46 of the lacing 16. In this embodiment, the soft, compressible, resilient and tactile outer layer 48 can be positioned on the outer side 56 of the lacing 16 while the remaining surfaces of the inner layer 46 of the lacing 16 are substantially uncovered by the outer layer 48. Placement of the outer layer 48 onto the outer side 56 of the inner layer 46 reduces the amount of material used to form the lacing 16. Moreover, placement of the outer layer 48 onto only the outer side 56 of the inner layer 46 reduces the overall thickness and weight of the lacing 16. In a particularly preferred embodiment, the outer surface 52 of the outer layer 48 includes a pebbled texture. Referring to FIG. 7, another alternative preferred embodiment of the present invention is illustrated. The outer layer 48 is placed onto an outer surface 56 of the inner layer 46 and onto an inner surface 58 of the inner layer 46 leaving the remaining surfaces of the lacing substantially uncovered. In this preferred embodiment, the thickness of the lacing 16 is substantially unchanged from the preferred embodiment of the lacing 16 of FIGS. 1 through 3. In a particularly preferred embodiment, the outer surface 42 of the outer layer 48 includes a pebbled texture. Referring to FIG. 8, another alternative embodiment of the present invention is illustrated. A lacing 116 includes a substrate 146 and an outer layer 148. The outer layer 148 is substantially similar to the outer layer 48. The substrate 146 is a conventional lacing formed from a known lacing material, such as, for example, woven cloth, unwoven cloth, urethane or latex impregnated carrier cloth, nylon, plastic, braided fibers, rope, metal wire, leather, or a combination thereof. The lacing 116 has a circular cross-sectional shape. Other cross-sectional shapes are also contemplated. In a particularly preferred embodiment, the outer layer 148 includes a pebbled outer surface or a pebbled texture. Referring to FIGS. 9 and 10, additional preferred embodiments of the present invention are illustrated. The lacing 216 is formed of a single continuous material that is soft, compressible, resilient and tactile. The material of the lacing 216 is substantially similar to the material of the outer layer 48. The lacing 216 can be formed in a circular or oval cross-sectional area. Other cross-sectional shapes are also contemplated. In a particularly preferred embodiment, an outer surface 252 of the lacing 216 includes a pebbled texture. Referring to FIG. 11, another preferred embodiment of the present invention is illustrated. A lacing 316 is shown in a shape resembling an assembled lacing. The lacing 316 preferably includes two longitudinal lace segments 318 and eight transverse lace segments 320. In other preferred embodiments, other numbers and combinations of longitudinal and transverse lace segments 318 and 320 can be used. Each lace segment 320 can be formed to outwardly extend from the longitudinal lace segments 318 curve downward and then back toward the longitudinal lace segments. The lacing 316 can be molded as a single piece resembling an assembled lace. Alternatively, the longitudinal and transverse segments 318 and 320 can be formed separately and subsequently connected to each other to form the lacing 316. The lace segments 320 are configured to attach to the football 10 at the lace holes 34 (see FIG. 1). The lacing 316 is substantially similar to the lacing 16 of FIGS. 1 through 3. In a particularly preferred embodiment, the lacing 316 includes an outer layer 348 with a pebbled texture. Referring to FIGS. 23 and 24, in other alternative preferred embodiments, the outer surface 52 of the lacing 16 can include a plurality, or pattern of, substantially two dimensional markings 80 imprinted, or otherwise placed, on the lacing 16 to approximate a pebbled texture. Referring to FIG. 23, the markings 80 can include a plurality of irregularly shaped closed loops applied to the outer surface 52 of the lacing 16. Referring to FIG. 24, a plurality of polygonal shaped (octogonal shaped) markings 80 can be applied to outer surface of the lacing. The markings 80 are not considered to be a pebbled texture, but rather, simulate or approximate, a pebbled texture. Unlike the pebbled texture, the markings 80 leave the outer surface 52 of the lacing 16 with a generally smooth surface, which is generally free of indentations or projections. The markings 80 either add no indentations or raised surfaces to the outer surface, or add only indentations or raised surfaces of substantially negligible depth or height. In other alternative preferred embodiments, the markings 80 can be formed into other shapes or pattern, such as generally two-dimensional versions of the shapes described above for the pebble-like projections. While the preferred embodiments of the present invention have been described and illustrated, numerous departures therefrom can be contemplated by persons skilled in the art, for example, the lacing can be a generally longitudinally ridge outwardly extending from the casing of the football. An outer layer of the ridge can be formed of a soft, compressible, tactile and resilient material, and an outer surface of the ridge can include a pebbled texture. Therefore, the present invention is not limited to the foregoing description but only by the scope and spirit of the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>Laced game balls, such as footballs, are well known and are included among the most popular game balls in the United States. Footballs typically include an inner inflatable air bladder and an outer casing having a longitudinally extending, elongate slot. The air bladder is inserted into the casing through the slot and secured within the outer casing by a lacing. The lacing resembles a shoelace and typically is made of one or more leather strips, braided fibers, or braided fibers having an outer latex coating. When assembled, the lacing generally outwardly extends from the casing forming a number of raised ridges that facilitate grasping and passing of the football. The lacing further facilitates a player's ability to impart a spin onto the football during passing thereby producing a spiral trajectory of the ball. The spiral trajectory generally improves the distance of a thrown football. In football, as in many other sports, the gripping and tactile characteristics of the ball can considerably affect the performance of the participating players. In particular, the lacing of a football significantly contributes to the football's gripping and tactile characteristics, and, not surprisingly, to the player's ability to pass the ball accurately and for distance. The lacing also typically plays a role in the player's ability to catch or to hold on to the football. Further, because football games are typically played outdoors, in unpredictable and inclement weather conditions including rain, sleet and snow, the player's ability to adequately grip the ball is particularly dependent upon the gripping and tactile characteristics of the ball and the lacing. Lacings on earlier football designs typically included leather strips or braided fibers, such as cotton fibers. These lacing materials sufficiently enclosed the slot and retained the bladder within the outer casing, but they generally did not wear well, could become slippery when wet, and portions of the lacings could be shifted or dislodged during use. Existing lacings in more recent football designs are typically formed of braided fibers or extruded strands and include an outer layer of latex or plastic. The extruded lacings may have a knurled outer surface having indentations of less than 0.0015 inches, and typically less than 0.001 inches. Such existing lacings wear, and retain their position, well, but can be quite hard, and are relatively smooth and slippery, particularly in wet play conditions. These hard lacings often have durometer values on a Shore A hardness scale of greater than 75. Even when such lacings have a roughened exterior surface, such as the knurled lacings, they often remain quite slippery and difficult to grasp, particularly in wet conditions. Hard, relatively smooth or slippery lacings can contribute to poorly thrown passes, incompletions and fumbles. Others have attempted to solve these problems by significantly changing the shape of the football or by applying multiple sets of lacings to a football. These types of proposed solutions are radical departures from the design and look of a traditional American football. Not surprisingly, these types of radical design changes are not widely accepted, particularly in organized play. Thus, there is a need for a lacing for a sports ball, such as a football, that improves the gripping and tactile characteristics of the sports ball without radically departing from the ball's traditional design. What is needed is a lacing that improves a player's ability to pass, catch or grip a ball. Further, it would be advantageous to provide a football and lacing that can be more readily thrown in a spiral trajectory. What is also needed is a football that can contribute to reducing the number of fumbles, incompletions and poorly thrown balls during the course of a game or a season, particularly during inclement weather. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a game ball including a casing and a lacing. The casing has a laced region. The lacing is coupled to the laced region of the casing. The lacing has an exposed surface comprised of an outer material that is compressible, resilient, and tactile. The outer material has a modulus of elasticity of between 14 and 170 kg/cm 2 and a tensile strength between 100 and 650 kg/cm 2 . According to a principal aspect of a preferred form of the invention, a game ball includes a casing and a lacing. The casing has a laced region. The lacing is coupled to the laced region of the casing. The lacing has an exposed surface. At least a portion of the exposed surface of the lacing has a pebbled texture. According to another preferred aspect of the invention provides a game ball includes a casing and a lacing. The casing has a laced region. The lacing is coupled to, and generally surrounds the laced region of the casing. The lacing includes an inner substrate attached to an outer layer. The outer layer of the lacing has an exposed surface made of an outer material that is compressible, resilient, and tactile. According to another preferred aspect of the invention provides a lacing for a sporting goods product. The lacing includes an inner substrate and an outer layer. The inner substrate is made of a high tensile strength material. The outer layer is coupled to the inner substrate. The outer layer is made of a material that is soft, compressible, resilient, and tactile. The material of the outer layer has a modulus of elasticity of between 14 and 170 kg/cm 2 and a tensile strength between 100 and 650 kg/cm 2 . This invention will become more fully understood from the following detailed description, taken in conjunction with the accompanying drawings described herein below, and wherein like reference numerals refer to like parts. | 20041221 | 20110111 | 20050512 | 66092.0 | 1 | WONG, STEVEN B | GAME BALL LACING | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,018,732 | ACCEPTED | COOLING WATER SCALE AND CORROSION INHIBITION | A methods for inhibiting silica scale formation and corrosion in aqueous systems where soluble silica (SiO2) can be maintained at residuals below 200 mg/L, but more preferably maintained at greater than 200 mg/L as SiO2, without silica scale and with control of deposition of source water silica accumulations as high as 4000 mg/L (cycled accumulation) from evaporation and concentration of source water. The methods of the present invention also provide highly effective inhibition of corrosion for carbon steel, copper, copper alloy, and stainless steel alloys. The methods of the present invention comprise pretreatment removal of hardness ions from the makeup source water, maintenance of electrical conductivity, and elevating the pH level of the aqueous environment. Thereafter, specified water chemistry residual ranges are maintained in the aqueous system to achieve inhibition of scale and corrosion. | 1. A method for controlling silica or silicate scale formation in an aqueous water system with silica contributed by source water, the methods of the present invention comprising the steps: a) removing hardness ions from said source water, b) controlling the conductivity of said aqueous system water such that said aqueous system water possesses a measurable conductivity of at least 1 μmhos; and c) elevating and maintaining the pH of said aqueous system water such that said aqueous system water possesses a pH of approximately 9.0 or greater. 2. The method of claim 1 wherein in step a), said hardness ions comprise ions of calcium and magnesium. 3. The method of claim 1 wherein said aqueous system water contains soluble SiO2 residual that is at least 125 mg/L. 4. The method of claim 3 wherein said aqueous system water contains soluble SiO2 in excess of 200 mg/L. 5. The methods of the present invention of claim 3 wherein in step a), said hardness ions are removed in amounts equal to or less than approximately 20% of the SiO2 present within said source water. 6. The methods of the present invention of claim 3 wherein in step a), said hardness ions are removed in amounts equal to or less than approximately 5% of the SiO2 present within said source water. 7. The method of claim 1 wherein in step c), said pH is maintained at 9.6 or higher. 8. The method of claim 1 wherein in step a), said hardness ions are removed via a method selected from the group consisting of ion exchange, selective ion removal with reverse osmosis, reverse osmosis, electro chemical removal, chemical precipitation, evaporation and distillation. 9. The method of claim 1 wherein in step c), said pH is increased by adding an alkali agent. 10. The method of claim 9 wherein said alkali agent comprises sodium hydroxide. 11. The method of claim 1 wherein in step c), said pH is elevated by evaporating a portion of said aqueous system water. 12. The method of claim 1 wherein in step c), said pH is elevated by distilling a portion of said aqueous system water. 13. The method of claim 1 wherein in step c), said aqueous system water comprises water utilized for cooling processes, water utilized for cooling tower systems, water utilized for evaporative cooling, water utilized for cooling lakes or ponds, water utilized for enclosed or secondary cooling and heating loops. 14. A method for inhibiting corrosion of a metallic substance in an aqueous system containing soluble SiO1 of greater than 10 mg/L wherein said aqueous system derives water from make-up source water, comprising the steps: a) removing hardness ions from said source water; b) controlling the ionic strength of the aqueous system water such that said aqueous system water possesses a measurable conductivity of at least 1 μmhos; c) elevating and maintaining the pH of said aqueous system water such that said aqueous system water possesses a pH of approximately 9.0 or greater; and d) cyclically contacting said aqueous system water with said metallic substance, wherein said pH and ionic strength increases the amount of soluble silica in the multimeric form present in said aqueous system water and inhibits corrosion of said metallic substance. 15. The method of claim 14 wherein in step a), said hardness ions comprise ions of calcium and magnesium. 16. The method of claim 14 wherein said aqueous system water contains soluble SiO2 of greater than 10 mg/L. 17. The method of claim 14 wherein said aqueous system water contains soluble SiO2 residual that is between 10 mg/L to 200 mg/L. 18. The method of claim 15 wherein in step a), said hardness ions are removed in amounts equal to or less than approximately 20% of the SiO2 present within said source water. 19. The method of claim 15 wherein in step a), said hardness ions are removed in amounts equal to or less than approximately 5% of the SiO2 present within said source water. 20. The method of claim 14 wherein in step c), said pH is maintained at 9.6 or higher. 21. The method of claim 14 wherein in step a), said hardness ions are removed via a method selected from the group consisting of ion exchange, selective ion removal with reverse osmosis, reverse osmosis, electro chemical removal, chemical precipitation, evaporation and distillation. 22. The method of claim 14 wherein in step c), said pH is increased by adding an alkali agent. 23. The method of claim 20 wherein said alkali agent comprises sodium hydroxide. 24. The method of claim 14 wherein in step c), said pH is elevated by evaporating a portion of said aqueous system water. 25. The method of claim 14 wherein in step c), said pH is elevated by distilling a portion of said aqueous system water. 26. The method of claim 14 wherein said metallic substance is selected from the group consisting of carbon steel, copper, copper alloy and stainless steel alloy. 27. The method of claim 1 wherein prior to step a), said methods of the present invention comprises the step: a) analyzing said source water to determine the concentration of SiO2 present therein. 28. The method of claim 14 wherein prior to step a), said methods of the present invention comprises the step: a) analyzing said source water to determine the concentration of SiO2 present therein. 29. The method of claim 1 wherein in step b), said conductivity of said aqueous system water is controlled such that said aqueous system water possesses a conductivity of at least 500 μmhos. 30. The method of claim 14 wherein in step b), said ionic strength of said aqueous system water is controlled such that said aqueous system water possesses a conductivity of at least 500 μmhos. 31. The method of claim 1, wherein said source water contains silica in an amount of 4000 mg/L or less. 32. The method of claim 17 wherein said aqueous system water contains soluble SiO2 of at least 200 mg/L. | CROSS-REFERENCE TO RELATED APPLICATIONS The present application is a continuation-in-part of U.S. patent application (Serial Number not yet assigned) filed on Jan. 9, 2004, entitled Cooling Water Scale and Corrosion Inhibition. STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT Not Applicable BACKGROUND OF THE INVENTION Silica is one of the major scale and fouling problems in many processes using water. Silica is difficult to deal with because it can assume many low solubility chemical forms depending on the water chemistry and metal surface temperature conditions. Below about pH 9.0, monomeric silica has limited solubility (125-180 mg/L as SiO2) and tends to polymerize as these concentrations are exceeded to form insoluble (amorphous) oligomeric or colloidal silica. At higher pH, particularly above about pH 9.0, silica is soluble at increased concentrations of the monomeric silicate ion or in the multimeric forms of silica. Since conversion can be slow, all of these forms may exist at any one time. The silicate ion can react with polyvalent cations like magnesium and calcium commonly present in process waters to produce salts with very limited solubility. Thus it is common for a mixture of many forms to be present: monomeric, oligomeric and colloidal silica; magnesium silicate, calcium silicate and other silicate salts. In describing this complex system, it is common practice to refer to the mixture merely as silica or as silica and silicate. Herein these terms are used interchangeably. To address such problem, methods for controlling deposition and fouling of silica or silicate salts on surfaces in a aqueous process have been derived and include: 1) inhibiting precipitation of the material from the process water; 2) dispersing precipitated material after it has formed in the bulk water; 3) maintaining an aqueous chemical environment that supports formation of increased residuals of soluble silica species; and 4) producing a non-adherent form of silica precipitants in the bulk water. The exact mechanism by which specific scale inhibition methods of the present inventions function is not well understood. In industrial application, most scale and corrosion control methods used in aqueous systems typically rely on the addition of a scale and corrosion inhibitor in combination with controlled wastage of system water to prevent scale and corrosion problems. In this regard, the major scale formation potentials are contributed by the quantity of hardness (calcium and magnesium) and silica ions contributed by the source water, while the major corrosive potential results from the ionic or electrolytic strength in the system water. Treatment methods to minimize corrosion have further generally relied on the addition of chemical additives that inhibit corrosion through suppression of corrosive reactions occurring at either the anode or the cathode present on the metal surface, or combinations of chemical additives that inhibit reactions at both the anode and cathode. The most commonly applied anodic inhibitors include chromate, molybdate, orthophosphate, nitrite and silicate whereas the most commonly applied cathodic inhibitors include polyphosphate, zinc, organic phosphates and calcium carbonate. In view of toxicity and environmental concerns, the use of highly effective heavy metal corrosion inhibitors, such as chromate, have been strictly prohibited and most methods now rely on a balance of the scale formation and corrosive tendencies of the system water and are referred to in the art as alkaline treatment approaches. This balance, as applied in such treatment approaches, is defined by control of system water chemistry with indices such as LSI or Ryznar, and is used in conjunction with combinations of scale and corrosion inhibitor additives to inhibit scale formation and optimize corrosion protection at maximum concentration of dissolved solids in the source water. These methods, however, are still limited by the maximum concentration of silica and potential for silicate scale formation. Moreover, corrosion rates are also significantly higher than those available with use of heavy metals such as chromate. Along these lines, since the use of chromate and other toxic heavy metals has been restricted, as discussed above, corrosion protection has generally been limited to optimum ranges of 2 to 5 mils per year (mpy) for carbon steel when treating typical source water qualities with current corrosion control methods. Source waters that are high in dissolved solids or are naturally soft are even more difficult to treat, and typically have even higher corrosion rates. In an alternative approach, a significant number of methods of the present inventions for controlling scale rely on addition of acid to treated systems to control pH and reduce scaling potentials at higher concentrations of source water chemistry. Such method allows for conservation of water through modification of the concentrated source water, while maintaining balance of the scale formation and corrosive tendencies of the water. Despite such advantages, these methods have the drawback of being prone to greater risk of scale and/or corrosion consequences with excursions with the acid/pH control system. Moreover, there is an overall increase in corrosion potential due to the higher ionic or electrolytic strength of the water that results from addition of acid ions that are concentrated along with ions in the source water. Lower pH corrosion control methods further rely on significantly higher chemical additive residuals to offset corrosive tendencies, but are limited in effectiveness without the use of heavy metals. Silica concentration must still be controlled at maximum residuals by system water wastage to avoid potential silica scaling. In a further approach, source water is pretreated to remove hardness ions in a small proportion of systems to control calcium and magnesium scale potentials. These applications, however, have still relied on control of silica residuals at previous maximum guideline levels through water wastage to prevent silica scale deposits. Corrosion protection is also less effective with softened water due to elimination of the balance of scale and corrosion tendency provided by the natural hardness in the source water. Accordingly, there is a substantial need in the art for methods that are efficiently operative to inhibit corrosion and scale formation that do not rely upon the use of heavy metals, extensive acidification and/or water wastage that are known and practiced in the prior art. There is additionally a need in the art for such processes that, in addition to being efficient, are extremely cost-effective and environmentally safe. Exemplary of those processes that would likely benefit from such methods would include cooling water processes, cooling tower systems, evaporative coolers, cooling lakes or ponds, and closed or secondary cooling and heating loops. In each of these processes, heat is transferred to or from the water. In evaporative cooling water processes, heat is added to the water and evaporation of some of the water takes place. As the water is evaporated, the silica (or silicates) will concentrate and if the silica concentration exceeds its solubility, it can deposit to form either a vitreous coating or an adherent scale that can normally be removed only by laborious mechanical or chemical cleaning. Along these lines, at some point in the above processes, heat is extracted from the water, making any dissolved silicate less soluble and thus further likely to deposit on surfaces, thus requiring removal. Accordingly, a method for preventing fouling of surfaces with silica or silicates, that further allows the use of higher levels of silica/silicates for corrosion control would be exceptionally advantageous. In this respect for cooling water, an inhibition method has long been sought after that would enable silica to be used as a non-toxic and environmentally friendly corrosion inhibitor. To address these specific concerns, the current practice in these particular processes is to limit the silica or silicate concentration in the water so that deposition from these compounds does not occur. For example in cooling water, the accepted practice is to limit the amount of silica or silicates to about 150 mg/L, expressed as SiO2. Reportedly, the best technology currently available for control of silica or silicates in cooling water is either various low molecular weight polymers, various organic phosphate chemistries, and combinations thereof. Even with use of these chemical additives, however, silica is still limited to 180 mg/L in most system applications. Because in many arid areas of the U.S. and other parts of the world make-up water may contain from 50-90 mg/L silica, cooling water can only be concentrated 2 to 3 times such levels before the risk of silica or silicate deposition becomes too great. A method that would enable greater re-use or cycling of this silica-limited cooling water would be a great benefit to these areas. SUMMARY OF THE INVENTION The present invention specifically addresses and alleviates the above-identified deficiencies in the art. In this regard, the invention relates to methods for controlling silica and silicate fouling problems, as well as corrosion of system metallurgy (i.e. metal substrates) in aqueous systems with high concentrations of dissolved solids. More particularly, the invention is directed to the removal of hardness ions from the source water and control of specified chemistry residuals in the aqueous system to inhibit deposition of magnesium silicate and other silicate and silica scales on system surfaces, and to inhibit corrosion of system metallurgy. To that end, we have unexpectedly discovered that the difficult silica and silicate scaling problems that occur in aqueous systems when silica residuals exceed 125 mg/L, and more preferably are approaching or greater than 200 mg/L as SiO2, to as high as 4000 mg/L of silica accumulation (cycled accumulation from source water), can be controlled by initially removing hardness ions (calcium and magnesium) from the makeup source water (i.e., water fed to the aqueous system) using pretreatment methods of the present inventions known in the art, such as through the use of ion exchange resins, selective ion removal with reverse osmosis, reverse osmosis, electrochemical removal, chemical precipitation, or evaporation/distillation. Preferably, the pretreatment methods of the present invention will maintain the total hardness in the makeup water at less than 20% of the makeup silica residual (mg/L SiO2), as determined from an initial assessment of the source water. In some embodiments, the total hardness ions will be maintained at less than 5% of the makeup silica residual. When source makeup water is naturally soft, with less than 10 mg/L hardness as CaCO3, pretreatment removal of hardness ions may be bypassed in some systems. Thereafter, the conductivity (non-neutralized) in the aqueous system is controlled such that the same is maintained at some measurable level (i.e., at least 1 μmhos and the pH of the source water elevated to a pH of approximately 9.0, and preferably 9.6, or higher. With respect to the latter, the pH may be adjusted by the addition of an alkaline agent, such as sodium hydroxide, or by simply removing a portion of the aqueous system water through such well known techniques or processes as evaporation and/or distillation. In a related application, we have unexpectedly discovered that the excessive corrosion of carbon steel, copper, copper alloys, and stainless steel alloys in aqueous systems due to high ionic strength (electrolytic potential) contributed by dissolved solids source water or highly cycled systems can likewise be controlled by the methods of the present inventions of the present invention. In such context, the methods of the present invention comprises removing hardness ions (calcium and magnesium) from the makeup source water using known pretreatment methods of the present inventions, such as ion exchange resins, selective ion removal with reverse osmosis, reverse osmosis, electrochemical removal, chemical precipitation, or evaporation/distillation. The pretreatment methods of the present invention will preferably maintain the total hardness ratio in the makeup water at less than 20%, and preferably at least less than 5%, of the makeup silica residual (mg/L SiO2), as determined from an initial analysis of the source water. When source makeup water is naturally soft, with less than 10 mg/L hardness as CaCO3, pretreatment removal of hardness ions may be bypassed in some systems. Thereafter, the conductivity (non-neutralized) in the aqueous system is controlled such that the same is maintained at some measurable level (i.e., at least 1 μmhos). Alkalinity is then controlled as quantified by pH at 9.0 or higher, with a pH of 9.6 being more highly desired in some applications along with control of soluble silica at residual concentrations approaching or exceeding 200 mg/L, but not less than 10 mg/L, with control at more highly desired residuals in some applications approaching or exceeding 300 mg/L as SiO2. With respect to the latter, the SiO2 may be adjusted by the addition of a silica/silicate agent, such as sodium silicate, or by simply removing a portion of the aqueous system water through such well known techniques or processes as evaporation and/or distillation. DETAILED DESCRIPTION OF THE INVENTION The detailed description set forth below is intended as a description of the presently preferred embodiment of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the functions and sequences of steps for constructing and operating the invention. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments and that they are also intended to be encompassed within the scope of the invention. According to the present invention, there is disclosed methods for inhibiting silica and silicate scale in aqueous systems and providing exceptional metal corrosion protection that comprise the removal of hardness from the makeup source water prior to being fed into the aqueous system and thereafter controlling the aqueous system within specified water chemistry control ranges. Specifically, hardness ions (calcium and magnesium) are removed from the makeup source water using pretreatment methods known in the art, which include methods such as ion exchange resins, selective ion removal with reverse osmosis, reverse osmosis, electrochemical removal, chemical precipitation, or evaporation/distillation. Multivalent metal ions such as those from iron, copper, zinc, barium, and aluminum are usually at low concentrations in treated municipal and well source waters used for make up to cooling systems. These low level concentrations will not typically require removal if the total concentration of these metals in addition to hardness ions (calcium and magnesium) following pretreatment are below the maximum ratio specified based on source water silica residual. However, some water sources such as well, reclaimed or untreated surface waters may have higher residuals of these metals as well as other objectionable materials. Such waters may require pretreatment with alternative methods for reduction of these multivalent metal ions in addition to the pretreatment methods specified by the method for removal of calcium and magnesium multivalent metal ions. The pretreatment methods will preferably maintain the total hardness ratio in the makeup water at less than 20% of the makeup silica residual (mg/L SiO2). In a more highly preferred embodiment, the pretreatment methods will maintain the total hardness ions present in the makeup water at less than 5% of the makeup silica residual. As will be appreciated by those skilled in the art, the silica residual can be readily determined by utilizing known techniques, and will preferably be determined prior to the application of the methods of the present invention. Along these lines, when source makeup water is naturally soft, with less than 10 mg/L hardness as CaCO3, pretreatment removal of hardness ions may be bypassed in some systems. Conductivity (non-neutralized) is established in the aqueous system such that at least some measurable conductivity is present, which is defined as at least 1 μmhos and preferably at least 500 μmhos. Control of conductivity may be conducted through control or elimination of blowdown wastage from the system. In a more highly preferred embodiment, conductivity will be maintained between 10,000 and 150,000 μmhos. Conductivity levels attained in method treated systems will depend upon system capability to concentrate source water, level of dissolved solids (conductivity) in the pre-treated or natural source water, and potential addition of adjunct alkalinity or chemical to attain required control residuals. The higher level of ionic strength in the more highly preferred embodiment control range of 10,000 to 150,000 μmhos will increase the solubility of multivalent metal salts that are less soluble at lower ionic strengths of other methods of the present inventions. This residual control parameter also provides indirect control of silica and alkalinity (pH) residuals contributed by concentration of available silica and alkalinity in the pre-treated or natural source water or by addition of adjunct forms of these chemicals. Aqueous system pH is maintained at 9.0 or greater as contributed by the cycled accumulation of alkalinity from the source water or through supplemental addition of an alkalinity adjunct, such as sodium hydroxide, to the system when required. The minimum pH will provide increased solubility of silica and control of silicate scale and support corrosion protection for metals. Along these lines, in certain preferred embodiments of the present invention, the pH may be raised and maintained to a level of 9.6 of higher. To support corrosion inhibition, soluble silica residuals will preferably be maintained in the aqueous system at levels approaching or exceeding 200 mg/L, but not less than 10 mg/L, as contributed by the cycled accumulation of silica from the source water or through supplemental addition of adjunct forms of silica to the system when required. In certain applications, such levels may be maintained at levels of greater than 300 mg/L. A 200 mg/L minimum residual of soluble silica will support corrosion inhibition for metals, and more particularly, inhibit corrosion of carbon steel to less than 0.3 mpy and less than 0.1 mpy for copper, copper alloys and stainless steel alloys present in the aqueous system. The method will control carbon steel corrosion at less than 5 mpy (less than 0.3 mpy for copper) in treated systems controlled at silica residuals less than 200 mg/l (as SiO2), with reduction of source water multivalent metal ions (hardness) to specified residuals and pH control at 9.0 or greater. With respect to the mechanisms by which the methods of the present inventions effectively achieve their results, excess source water silica (beyond the soluble residuals attained with specified pH control) is probably adsorbed as non-adherent precipitates that form following reaction with small amounts of metals (Ca, Mg, Fe, Al, Zn) or solids introduced by source water or scrubbed from the air by the tower system. This is the probable result of the expanded solubility of the monomeric and multimeric species of silica with the methods of the present invention that impede polymerization of excess silica until it reacts with these incrementally introduced adsorption materials to form small quantities of non-adherent precipitants. The adsorption and precipitation of high ratios of silica on small amounts of solids such as magnesium hydroxide has been demonstrated by the Freundlich isotherms, and is common experience in water treatment chemical precipitation processes. The small quantity of precipitate is removed from the circulating water through settling in the tower basin or drift losses. Control of the lower solubility hardness scale formations and resultant nucleation sites on cooling system surfaces are controlled with the methods disclosed herein, through pretreatment removal of the majority of the scale forming (hardness) metal ions and control of system water at the specified higher ionic strength control ranges. The higher level of ionic strength in the preferred control range increases the solubility of scale forming metal salts. Such approach is well suited to address a further complication in controlling silica and silicate fouling brought about from the phenomena that colloidal silica tends to be more soluble as temperature is raised, while the polyvalent metal salts of the silicate ion tend to be less soluble with increasing temperature. As a result, control or minimization of polyvalent metals in the aqueous solution will prohibit formation of the insoluble salts on heat transfer surfaces, and promote increased solubility of other forms of silica at the elevated temperatures of heat transfer surfaces. The present methods thereby eliminate potential reaction of insoluble silica forms with hardness scale or metal salt deposits on system surfaces and their nucleation sites that initiate silica or silicate scale formations. The method will control silica scale formation in treated systems with silica residuals exceeding those permitted by prior art (maximum solubility 125 to 180 mg/l monomeric silica), with reduction of source water multivalent metal ions (hardness) to specified residuals and pH control at 9.0 or higher. The higher residuals of soluble silica and higher pH levels maintained via the present methods of the present inventions provide highly effective polarization (corrosion barrier formation) and exceptional corrosion protection for carbon steel, copper, copper alloy and stainless steel metals (less than 0.3 mpy for mild steel, and less than 0.1 mpy copper, copper alloy, and stainless steel). Moderately higher corrosion rates may be acceptable to end users when low silica source waters do not permit attainment of residuals approaching or exceeding 200 mg/l SiO2 in the method treated water at the system's maximum attainable source water concentrations. Such moderately elevated corrosion levels are superior or equivalent to current art. Comparable corrosion rates for carbon steel in aqueous systems with existing methods of the present inventions are optimally in the range of 2 to 5 mpy. When pH is increased to levels higher than 9.0, and residuals of silica are increased, approaching 200 mg/l SiO2, corrosion levels will be reduced to those levels disclosed in Applicants' co-pending patent application (Serial Number not yet assigned), the teachings of which are incorporated herein by reference. Maximum attainable source water concentrations may be limited by low evaporative load and/or uncontrollable system water losses (such as tower drift). If the end user does require lower corrosion rates, such results are attainable by supplemental addition of adjunct silica to the cooling water to provide residuals approaching or greater than 200 mg/L SiO2. Though not fully understood, several corrosion inhibition mechanisms are believed to be contributing to the metals corrosion protection provided by the methods of the present invention, and the synergy of both anodic and cathodic inhibition functions may contribute to the corrosion inhibition process. Control at lower silica residuals probably reduces the effectiveness of corrosion inhibition due to reduction of available monomeric silica and converted multimeric forms of silica that provide anodic corrosion inhibition to metals with the method. Higher concentrations of silica and higher pH levels will provide increased multimeric silica residual concentrations for optimum anodic protection afforded by the method. Operating at lower soluble silica concentrations will also reduce the corrosion inhibition effectiveness of method treated systems if pretreatment upsets lead to elevated hardness levels in the source water exceeding those specified in the method, since high source water residuals of hardness salts can then more easily absorb and deplete the reduced multimeric silica residuals formed by the method at low silica residual conditions. In this regard, an anodic corrosion inhibitor mechanism results from increased residuals of soluble silica provided by the present methods, particularly in the multimeric form. Silicates inhibit aqueous corrosion by hydrolyzing to form negatively charged colloidal particles. These particles migrate to anodic sites and precipitate on the metal surfaces where they react with metallic ion corrosion products. The result is the formation of a self-repairing gel whose growth is self-limited through inhibition of further corrosion at the metal surface. Unlike the monomeric silica form normally found in source water that fails to provide effective corrosion inhibition, the methods of the present invention provide such beneficial effect by relying upon the presence and on control of total soluble silica residuals, with conversion of natural monomeric silica to the multimeric forms of silica at much higher levels, through application of the combined control ranges as set forth above. In this respect, the removal of most source water calcium and magnesium ions is operative to prevent reaction and adsorption of the multimeric silica forms on the metal oxide or metal salt precipitates from source water, which is believed to be an important contribution to the effectiveness of this corrosion inhibition mechanism afforded by the present invention. The resultant effective formation and control of the multimeric silica residuals with such methods of the present invention has not heretofore been available. In addition to an anodic corrosion inhibition mechanism, a cathodic inhibition mechanism is also believed to be present. Such inhibition is caused by an increased hydroxyl ion concentration provided with the higher pH control range utilized in the practice of the present invention. In this regard, iron and steel are generally considered passive to corrosion in the pH range of 10 to 12. The elevated residual of hydroxyl ions supports equilibrium with hydroxyl ion produced during oxygen reduction at the cathode, and increases hydroxyl ion availability to react with iron to form ferrous hydroxide. As a consequence, ferrous hydroxide precipitates form at the metal surface due to very low solubility. The ferrous hydroxide will further oxidize to ferric oxide, but these iron reaction products remain insoluble at the higher pH levels attained by implementing the methods described herein to polarize or form a barrier that limits further corrosion. At the 9 to 10 pH range (as utilized in the practice of the present invention), effective hydroxyl ion passivation of metal surfaces may be aided by the pretreatment reduction of hardness ions (calcium and magnesium) in the source water that may compete with this reaction and interfere with metal surface barrier formation. Galvanized steel and aluminum may be protected in general by the silicate corrosion inhibitor mechanism discussed herein, but protective films may be destabilized at water-air-metal interfaces. Steel, copper, copper alloy, stainless steel, fiberglass, and plastic are thus ideal aqueous system materials for application of the methods of the present inventions of the present invention. The extensive improvement in corrosion protection provided by the methods of the present invention is not normally attainable with prior art methods when they utilize significantly higher residuals of aggressive ions (e.g., chloride and sulfate) and the accompanying greater ionic or electrolytic strength present in the aqueous system water. This may result from either use of acid for scale control and/or concentration of source water ions in the aqueous system. As is known, corrosion rates generally increase proportionately with increasing ionic strength. Accordingly, through the ability to protect system metals exposed to this increased electrolytic corrosion potential, opportunity for water conservation and environmental benefits that result with elimination of system discharge used with previous methods to reduce corrosion or scaling problems in aqueous systems can be readily realized through the practice of the methods disclosed herein. Indeed, significant water conservation can still be obtained with the method, even operating with silica residuals less than 200 mg/L, through elimination of blowdown wastage and subsequent concentration of source water dissolved solids (conductivity) to higher levels, without silicate scale formation or excessive corrosion. Still further, the methods of the present inventions of the present invention can advantageously provide gradual removal of hardness scale deposits from metal surfaces. This benefit is accomplished through both pretreatment removal of the majority of the scale forming (hardness) metal ions and control of system water at the specified higher ionic strength control ranges. Solubility of hardness salts is increased by the higher ionic strength (conductivity) provided by the present methods of the present invention, which has been determined with high solids water such as seawater, and may contribute to the increased solubility of deposits present within the aqueous environment so treated. Studies conducted with hardness scale coated metal coupons in treated systems demonstrated a significant deposit removal rate for CaCO3 scale films in ten days. Control of source water hardness at lower specified residuals will probably be required to achieve optimum rate of hardness scale removal. Furthermore, the present methods advantageously prohibits microorganism propagation due to the higher pH and dissolved solids levels that are attained. Biological fouling potentials are thus significantly reduced. In this regard, the methods of the present inventions disclosed herein create a chemical environment that inhibits many microbiological species that propagate at the pH and dissolved solids chemistry ranges used with previous treatment approaches. The reduction in aqueous system discharge as further provided as a by product of the present invention also permits use of residual biocides at more effective and economical dosages that impede development of problem concentrations of any microbiological species that are resilient in the aqueous environment generated through the practice of the methods of the present inventions disclosed herein. A still further advantage of the methods of the present invention include the ability of the same to provide a lower freeze temperature in the aqueous system, comparable to ocean water, and avert potential mechanical damage from freezing and/or operational restrictions for systems located in freeze temperature climates. Additional modifications and improvements of the present invention may also be apparent to those of ordinary skill in the art. Thus, the particular combination of parts and steps described and illustrated herein is intended to represent only certain embodiments of the present invention, and is not intended to serve as limitations of alternative devices and methods of the present inventions within the spirit and scope of the invention. For example, since the methods of the present invention provides both effective silicate scale control and corrosion inhibition when using high silica or high dissolved solids source waters, extensive variation in source water quality can be tolerated. These source waters might otherwise be unacceptable and uneconomical for use in such aqueous systems. In addition, such modifications may include, for example, using other conventional water treatment chemicals along with the methods of the present invention, and could include other scale inhibitors, such as for example phosphonates, to control scales other than silica, corrosion inhibitors, biocides, dispersants, defoamers and the like. As will be appreciated, however, control at lower conductivity levels may reduce the effectiveness of the method in removing existing hardness deposits, lowering of system water freeze temperature, and prohibition of microorganism propagation. Accordingly, the present invention should be construed as broadly as possible. As an illustration, below there are provided non-restrictive examples of an aqueous water system that has been treated with methods conforming to the present invention. EXAMPLES OF SILICATE SCALE INHIBITOR METHOD The following analytical tests were performed on a cooling tower system treated with the methods of the present invention to demonstrate the efficacy of the present invention for controlling the solubility of silica and silicate species, and preventing scale deposition of these species. Two samples of each of the following: 1) varying source water; 2) the resultant treated system water; and 3) tower sump insoluble accumulations, for a total of six samples were analyzed from different operating time frames. Although the exact mechanism of action of the process is not completely understood, the methods of the present invention minimize the turbidity of the treated water, which is considered a demonstration of an effective silica and silicate scale inhibitor. Methods that produce treated water of less than eight nephelometric turbidity units (NTU) are considered improvements over the current available technology. Turbidity measurements (Table 1) performed on samples taken from the cooling systems, before and after filtration through a 0.45-micron filter, illustrate effective silicate inhibition in the treated water. The turbidity levels are well below typical cooling tower systems, in particular at such high concentrations (80 COC), and indicate the methods of the present invention provide controlled non-adherent precipitation of excess silica and other insoluble materials entering the system. Clean heat exchanger surfaces have confirmed that the method silica precipitation is non-adherent. The precipitated silica forms are contained in the cooling tower sump. However, the volume of precipitant and scrubbed accumulations in the tower sump were not appreciably greater than previous treatment methods due to reduction of insoluble multivalent metal salt precipitates by pretreatment removal. TABLE 1 Tower Water Turbidity Analyses Sample No. 1: (Turbidity, NTU) Neat, 4 NTU; Filtered, 2 NTU Sample No. 2: (Turbidity, NTU) Neat, 3 NTU The cooling tower and makeup water analytical tests performed in Table 2 and Table 3 illustrate the effectiveness of the methods of the present invention in maintaining higher levels of soluble silica in the cooling tower system when parameters are controlled within the specified pH and low makeup hardness ranges. Soluble silica residuals are present at 306 and 382 mg/L in these tower samples at the respective 9.6 and 10.0 pH levels. The lower cycles of concentration (COC) for silica in these tower samples, as compared to the higher cycled residuals for soluble chemistries (chloride, alkalinity, conductivity), indicate that excess silica is precipitating as non-adherent material, and accumulating in the tower basin. This is confirmed by the increased ratio of silica forms found in tower basin deposit analyses. System metal and heat exchange surfaces were free of silica or other scale deposits. TABLE 2 Cooling Tower Sample No. 1/Makeup/Residual Ratios (COC) SAMPLE/TESTS Tower Makeup (soft) COC Conductivity, 33,950 412 82.4 μmhos (Un-neutralized) pH 10.01 8.23 NA Turbidity, NTUs Neat 3 0.08 NA Filtered (0.45μ) — — — Copper, mg/L Cu ND ND NA Zinc, mg/L ND ND NA Silica, mg/L SiO2 382 9.5 40.2 Calcium, mg/L 16.0 0.20 NA CaCO3 Magnesium, mg/L 3.33 0.05 NA CaCO3 Iron, mg/L Fe ND ND NA Aluminum, mg/L Al ND ND NA Phosphate, mg/L ND ND NA PO4 Chloride, mg/L 6040 80 75.5 Tot. Alkalinity, 13200 156 84.6 mg/L ND = Not Detectable; NA = Not Applicable; COC = Cycles of Concentration TABLE 3 Cooling Tower Sample No. 2/Makeup/Residual Ratios (COC) SAMPLE/TESTS Tower Makeup (soft) COC Conductivity, 66,700 829 80 μmhos (Un-neutralized) pH 9.61 7.5 NA Turbidity, NTUs Neat 4 0.08 NA Filtered (0.45μ) 2 — — Zinc, mg/L ND ND NA Silica, mg/L SiO2 306.4 11 28 Calcium, mg/L 21.5 0.20 NA CaCO3 Magnesium, mg/L 0.65 0.05 NA CaCO3 Iron, mg/L Fe ND ND NA Aluminum, mg/L Al ND ND NA Phosphate, mg/L ND ND NA PO4 ND = Not Detectable; NA = Not Applicable; COC = Cycles of Concentration Microscopic and chemical analysis of deposit samples from accumulated residue in the tower basin of a system treated by present methodology are shown in Exhibit 1 and Exhibit 2. Both analyses illustrate the significant ratio of silica materials in the deposit. The major proportion of this silica is the probable result of silica adsorption or reaction with insoluble precipitates of multivalent metals as they concentrated in the tower water. Visual inspections of heat transfer equipment in the system treated by this method have confirmed that it has remained free of silica and other scale deposits. System heat transfer efficiencies were also maintained at minimum fouling factor levels. Exhibit 1 MICROSCOPICAL ANALYSIS - POLARIZED LIGHT MICROSCOPY DEPOSIT DESIGNATION: Cooling Tower Basin Deposit % ESTIMATED CONSTITUENTS >30 Amorphous silica, including assorted diatoms, probably including amorphous magnesium silicate; calcium carbonate (calcite) 1-2 Assorted clay material including feldspar; hydrated iron oxide; carbonaceous material <1 Silicon dioxide (quartz); assorted plant fibers; unidentified material including possibly aluminum oxide (corundum) Exhibit 2 CHEMICAL ANALYSIS - DRIED SAMPLE DEPOSIT DESIGNATION: Cooling Tower Basin Deposit % ESTIMATED CONSTITUENTS 12.1 CaO 8.5 MgO 5.2 Fe3O4 3.7 Fe2O3 <0.5 Al2O3 13.2 Carbonate, CO2 51.1 SiO2 5.7 Loss on Ignition Most probable combinations: Silica ˜54%, Calcium Carbonate ˜32%, Oxides of Iron ˜9%, Mg and Al Oxides ˜5%. EXAMPLES OF CORROSION INHIBITION METHODS OF THE PRESENT INVENTION The data in Table 4 illustrate the effectiveness of the methods of the present invention in inhibiting corrosion for carbon steel and copper metals evaluated by weight loss coupons in the system. No pitting was observed on coupon surfaces. Equipment inspections and exchanger tube surface testing have confirmed excellent corrosion protection. Comparable corrosion rates for carbon steel in this water quality with existing methods of the present inventions are optimally in the range of 2 to 5 mpy. TABLE 4 CORROSION TEST DATA Specimen Type Carbon Steel Copper Test location Tower Loop Tower loop Exposure period 62 Days 62 Days Corrosion Rate (mpy) 0.3 <0.1 EXAMPLES OF SCALE DEPOSIT REMOVAL The data in Table 5 illustrate harness (CaCO3) scale removal from metal surfaces in a tower system treated with the methods of the present invention through coupon weight loss reduction. Standard metal coupons that were scaled with CaCO3 film were weighed before and after ten days of exposure and the visible removal of most of the scale thickness. The demonstrated CaCO3 weight loss rate will provide gradual removal of hardness scale deposits that have occurred in a system prior to method treatment. TABLE 5 SCALE DEPOSIT REMOVAL TEST DATA Specimen Type Carbon Steel Copper Test location Tower Loop Tower loop Exposure period 10 Days 10 Days Scale Removal (mpy) 8.3 8.1 | <SOH> BACKGROUND OF THE INVENTION <EOH>Silica is one of the major scale and fouling problems in many processes using water. Silica is difficult to deal with because it can assume many low solubility chemical forms depending on the water chemistry and metal surface temperature conditions. Below about pH 9.0, monomeric silica has limited solubility (125-180 mg/L as SiO 2 ) and tends to polymerize as these concentrations are exceeded to form insoluble (amorphous) oligomeric or colloidal silica. At higher pH, particularly above about pH 9.0, silica is soluble at increased concentrations of the monomeric silicate ion or in the multimeric forms of silica. Since conversion can be slow, all of these forms may exist at any one time. The silicate ion can react with polyvalent cations like magnesium and calcium commonly present in process waters to produce salts with very limited solubility. Thus it is common for a mixture of many forms to be present: monomeric, oligomeric and colloidal silica; magnesium silicate, calcium silicate and other silicate salts. In describing this complex system, it is common practice to refer to the mixture merely as silica or as silica and silicate. Herein these terms are used interchangeably. To address such problem, methods for controlling deposition and fouling of silica or silicate salts on surfaces in a aqueous process have been derived and include: 1) inhibiting precipitation of the material from the process water; 2) dispersing precipitated material after it has formed in the bulk water; 3) maintaining an aqueous chemical environment that supports formation of increased residuals of soluble silica species; and 4) producing a non-adherent form of silica precipitants in the bulk water. The exact mechanism by which specific scale inhibition methods of the present inventions function is not well understood. In industrial application, most scale and corrosion control methods used in aqueous systems typically rely on the addition of a scale and corrosion inhibitor in combination with controlled wastage of system water to prevent scale and corrosion problems. In this regard, the major scale formation potentials are contributed by the quantity of hardness (calcium and magnesium) and silica ions contributed by the source water, while the major corrosive potential results from the ionic or electrolytic strength in the system water. Treatment methods to minimize corrosion have further generally relied on the addition of chemical additives that inhibit corrosion through suppression of corrosive reactions occurring at either the anode or the cathode present on the metal surface, or combinations of chemical additives that inhibit reactions at both the anode and cathode. The most commonly applied anodic inhibitors include chromate, molybdate, orthophosphate, nitrite and silicate whereas the most commonly applied cathodic inhibitors include polyphosphate, zinc, organic phosphates and calcium carbonate. In view of toxicity and environmental concerns, the use of highly effective heavy metal corrosion inhibitors, such as chromate, have been strictly prohibited and most methods now rely on a balance of the scale formation and corrosive tendencies of the system water and are referred to in the art as alkaline treatment approaches. This balance, as applied in such treatment approaches, is defined by control of system water chemistry with indices such as LSI or Ryznar, and is used in conjunction with combinations of scale and corrosion inhibitor additives to inhibit scale formation and optimize corrosion protection at maximum concentration of dissolved solids in the source water. These methods, however, are still limited by the maximum concentration of silica and potential for silicate scale formation. Moreover, corrosion rates are also significantly higher than those available with use of heavy metals such as chromate. Along these lines, since the use of chromate and other toxic heavy metals has been restricted, as discussed above, corrosion protection has generally been limited to optimum ranges of 2 to 5 mils per year (mpy) for carbon steel when treating typical source water qualities with current corrosion control methods. Source waters that are high in dissolved solids or are naturally soft are even more difficult to treat, and typically have even higher corrosion rates. In an alternative approach, a significant number of methods of the present inventions for controlling scale rely on addition of acid to treated systems to control pH and reduce scaling potentials at higher concentrations of source water chemistry. Such method allows for conservation of water through modification of the concentrated source water, while maintaining balance of the scale formation and corrosive tendencies of the water. Despite such advantages, these methods have the drawback of being prone to greater risk of scale and/or corrosion consequences with excursions with the acid/pH control system. Moreover, there is an overall increase in corrosion potential due to the higher ionic or electrolytic strength of the water that results from addition of acid ions that are concentrated along with ions in the source water. Lower pH corrosion control methods further rely on significantly higher chemical additive residuals to offset corrosive tendencies, but are limited in effectiveness without the use of heavy metals. Silica concentration must still be controlled at maximum residuals by system water wastage to avoid potential silica scaling. In a further approach, source water is pretreated to remove hardness ions in a small proportion of systems to control calcium and magnesium scale potentials. These applications, however, have still relied on control of silica residuals at previous maximum guideline levels through water wastage to prevent silica scale deposits. Corrosion protection is also less effective with softened water due to elimination of the balance of scale and corrosion tendency provided by the natural hardness in the source water. Accordingly, there is a substantial need in the art for methods that are efficiently operative to inhibit corrosion and scale formation that do not rely upon the use of heavy metals, extensive acidification and/or water wastage that are known and practiced in the prior art. There is additionally a need in the art for such processes that, in addition to being efficient, are extremely cost-effective and environmentally safe. Exemplary of those processes that would likely benefit from such methods would include cooling water processes, cooling tower systems, evaporative coolers, cooling lakes or ponds, and closed or secondary cooling and heating loops. In each of these processes, heat is transferred to or from the water. In evaporative cooling water processes, heat is added to the water and evaporation of some of the water takes place. As the water is evaporated, the silica (or silicates) will concentrate and if the silica concentration exceeds its solubility, it can deposit to form either a vitreous coating or an adherent scale that can normally be removed only by laborious mechanical or chemical cleaning. Along these lines, at some point in the above processes, heat is extracted from the water, making any dissolved silicate less soluble and thus further likely to deposit on surfaces, thus requiring removal. Accordingly, a method for preventing fouling of surfaces with silica or silicates, that further allows the use of higher levels of silica/silicates for corrosion control would be exceptionally advantageous. In this respect for cooling water, an inhibition method has long been sought after that would enable silica to be used as a non-toxic and environmentally friendly corrosion inhibitor. To address these specific concerns, the current practice in these particular processes is to limit the silica or silicate concentration in the water so that deposition from these compounds does not occur. For example in cooling water, the accepted practice is to limit the amount of silica or silicates to about 150 mg/L, expressed as SiO 2 . Reportedly, the best technology currently available for control of silica or silicates in cooling water is either various low molecular weight polymers, various organic phosphate chemistries, and combinations thereof. Even with use of these chemical additives, however, silica is still limited to 180 mg/L in most system applications. Because in many arid areas of the U.S. and other parts of the world make-up water may contain from 50-90 mg/L silica, cooling water can only be concentrated 2 to 3 times such levels before the risk of silica or silicate deposition becomes too great. A method that would enable greater re-use or cycling of this silica-limited cooling water would be a great benefit to these areas. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention specifically addresses and alleviates the above-identified deficiencies in the art. In this regard, the invention relates to methods for controlling silica and silicate fouling problems, as well as corrosion of system metallurgy (i.e. metal substrates) in aqueous systems with high concentrations of dissolved solids. More particularly, the invention is directed to the removal of hardness ions from the source water and control of specified chemistry residuals in the aqueous system to inhibit deposition of magnesium silicate and other silicate and silica scales on system surfaces, and to inhibit corrosion of system metallurgy. To that end, we have unexpectedly discovered that the difficult silica and silicate scaling problems that occur in aqueous systems when silica residuals exceed 125 mg/L, and more preferably are approaching or greater than 200 mg/L as SiO 2 , to as high as 4000 mg/L of silica accumulation (cycled accumulation from source water), can be controlled by initially removing hardness ions (calcium and magnesium) from the makeup source water (i.e., water fed to the aqueous system) using pretreatment methods of the present inventions known in the art, such as through the use of ion exchange resins, selective ion removal with reverse osmosis, reverse osmosis, electrochemical removal, chemical precipitation, or evaporation/distillation. Preferably, the pretreatment methods of the present invention will maintain the total hardness in the makeup water at less than 20% of the makeup silica residual (mg/L SiO 2 ), as determined from an initial assessment of the source water. In some embodiments, the total hardness ions will be maintained at less than 5% of the makeup silica residual. When source makeup water is naturally soft, with less than 10 mg/L hardness as CaCO 3 , pretreatment removal of hardness ions may be bypassed in some systems. Thereafter, the conductivity (non-neutralized) in the aqueous system is controlled such that the same is maintained at some measurable level (i.e., at least 1 μmhos and the pH of the source water elevated to a pH of approximately 9.0, and preferably 9.6, or higher. With respect to the latter, the pH may be adjusted by the addition of an alkaline agent, such as sodium hydroxide, or by simply removing a portion of the aqueous system water through such well known techniques or processes as evaporation and/or distillation. In a related application, we have unexpectedly discovered that the excessive corrosion of carbon steel, copper, copper alloys, and stainless steel alloys in aqueous systems due to high ionic strength (electrolytic potential) contributed by dissolved solids source water or highly cycled systems can likewise be controlled by the methods of the present inventions of the present invention. In such context, the methods of the present invention comprises removing hardness ions (calcium and magnesium) from the makeup source water using known pretreatment methods of the present inventions, such as ion exchange resins, selective ion removal with reverse osmosis, reverse osmosis, electrochemical removal, chemical precipitation, or evaporation/distillation. The pretreatment methods of the present invention will preferably maintain the total hardness ratio in the makeup water at less than 20%, and preferably at least less than 5%, of the makeup silica residual (mg/L SiO 2 ), as determined from an initial analysis of the source water. When source makeup water is naturally soft, with less than 10 mg/L hardness as CaCO 3 , pretreatment removal of hardness ions may be bypassed in some systems. Thereafter, the conductivity (non-neutralized) in the aqueous system is controlled such that the same is maintained at some measurable level (i.e., at least 1 μmhos). Alkalinity is then controlled as quantified by pH at 9.0 or higher, with a pH of 9.6 being more highly desired in some applications along with control of soluble silica at residual concentrations approaching or exceeding 200 mg/L, but not less than 10 mg/L, with control at more highly desired residuals in some applications approaching or exceeding 300 mg/L as SiO 2 . With respect to the latter, the SiO 2 may be adjusted by the addition of a silica/silicate agent, such as sodium silicate, or by simply removing a portion of the aqueous system water through such well known techniques or processes as evaporation and/or distillation. detailed-description description="Detailed Description" end="lead"? | 20041221 | 20060214 | 20051006 | 63101.0 | 1 | HRUSKOCI, PETER A | COOLING WATER SCALE AND CORROSION INHIBITION | SMALL | 1 | CONT-ACCEPTED | 2,004 |
|||
11,018,905 | ACCEPTED | Arrangement for integration of a double thermostat in an engine | A cover is used to integrate two thermostat valves in a compact set, wherein the cover has a hollowed body (1) projected from a flange (2) converging to a center part in which a vertical tubular element (5) is fitted to interconnect with a radiator via a hose. In the interior of the hollowed body (1), there are two adjacent galleries (7) shaped with independent end entrances (8 and 9) that are open in the base of the flange (2), and which share a single exit (10) defined by the tubular element (5). The mouthpieces of the two independent entrances are surrounded by grooves (11) that receive sealing rings (12). On two diametrically opposing sides of each independent entrance (8 and 9) of adjacent galleries (7), two orthogonal legs (13) are projected, the legs having facing grooves (14) for receiving the thermostat ends therein, the thermostats being in alignment with the center of each independent entrance (8 and 9), a protuberance (15) provided with a hole (16) is used to centralize the assembly of the two thermostats. The molding of the internal part is possible by an aluminum injection process or a polymer injection process, using a double male core to form the lower section of the part for forming two adjacent galleries (7) with independent openings (8) and (9), as well as using a male core by the upper section for defining the single reciprocal central exit that is in intercommunication with the two adjacent galleries (7). | 1. A cover or housing for housing two thermostat valves as a single compact set for mounting on an engine comprising: a hollowed body projecting from a flange having holes for fixing the cover to an engine, the hollowed body having a surface inclined to a center part thereof containing a vertical tubular element for interconnecting to a radiator, the hollowed body having two adjacent galleries, each gallery having an independent entrance in a base of the flange, and each gallery having an exit leading into the tubular element, providing a single common exit from the cover or housing, each gallery having downwardly projecting legs having grooves at their ends disposed in a facing relationship for receiving the ends of a thermostat therein, for mounting the thermostat in the gallery, an upper end of each gallery containing a centering hole for receiving a center point of a thermostat therein. 2. The cover or housing of claim 1 wherein the cover or housing is made of a material selected from the group consisting of metallic, nonmetallic and polymer materials. 3. The cover of claim 1 wherein the cover or housing is made of aluminum. 4. The cover or housing of claim 1 wherein the flange has mouthpieces around the entrances to the galleries, a peripheral groove surrounding the mouthpieces for receiving sealing means therein. 5. The cover or housing of claim 1 further comprising two thermostats mounted therein, each thermostat having supporting arches and central pins received in the corresponding leg grooves and openings in the two galleries. 6. The cover or housing of claim 1 wherein the tubular element has a conical projecting ring located about an upper end thereof for engaging a hose placed thereover. 7. The cover or housing of claim 1 wherein each gallery has two downwardly projecting diametrically opposing sides forming each independent entrance (8 and 9) of adjacent galleries (7), two orthogonal legs (13) provided with a transversal groove (14) near to their extremities and in the confronting faces for receiving ends of a supporting arch of each thermostat, each gallery (7) in coaxial alignment with the center of each independent entrance (8 and 9), and with the hole for receiving the central pin of each thermostat received therein. 8. The cover or housing of claim 1 produced by a process selected from the group consisting of molding, injection molding, machining or a combination thereof. 9. The cover or housing of claim 1 produced by a process comprising placing a double male core in a mold corresponding in shape to the two galleries, placing a single male core in the mold corresponding to the tubular element, the cores defining the hollowed portions of the cover or housing, injecting a material into the mold which surrounds the cores, and then removing the cores to form the cover or housing. | TECHNICAL FIELD The present invention refers to a new constructive arrangement for coupling an assembly housing to an engine for integrating a double thermostat to an engine for use in the automobile industry. BACKGROUND The invention provides a series of technical, practical, functional and economic advantages, and fulfills its functions in an efficient and satisfactory way. The invention also offers the possibility of an economic industrialization with significant reduction of costs, labor and material, as well as increasing the accuracy of assembly, providing optimum results with good reliability. A thermostat is a component that is located between an engine and a cooling system normally including a radiator. The function of a thermostat is to control the passage of the cooling liquid to the radiator and to the engine, keeping the engine working temperature within the ideal limits, preventing the engine from working too hot or too cold, in order not to suffer more wear. Thermostat functioning consists in heating an element constituted of an expander mass, which provides the opening of the thermostatic element after the absorption of definitive amount of heat and through thermal expansion, regulating the valve opening and therefore the flow of coolant through automotive engines. The integrated thermostat is constituted of a joint element with an arch and a spring, assembled on a cover or on a housing that can be made of polymeric, metallic or nonmetallic material, which can be obtained by molding, injection or machining processes. The thermostat can also provide more functions to the system in accordance with the configurations, by using: a double valve containing two thermostat elements, which can be calibrated with the same or with different initial opening settings, allowing a greater and more controlled flow rate of cooling liquid from/to the radiator. a cover made of aluminum or plastic, obtained by a machining or casting process, and especially in this case, by a process of casting under pressure, which provides a part with less material (less weight) and requiring less time for machining. If necessary to the particular cooling system, the valve can comprise the following as well: components, such as nipples, tubes, temperature sensor, hoses (heating system and radiator compartments), sealing and attaching rings/joints for attaching the thermostat set to the engine block; Tube to connect to the heating system (passenger compartment); Tube to fix to the radiator hose; De-airing system; Sealing system, and; Temperature sensor. Configurations: The thermostat has an outlet configuration. In this case, the thermostat receives liquid from the engine and, through the working element, regulates the amount of flow that will be directed to the radiator for cooling, as well as the amount of fluid that will continue circulating internally of the engine, without cooling. For this thermostat, it is possible to have an inlet configuration. In this case, the thermostat receives liquid from the engine and from the radiator, consequently, through the working element, the amount of cooled flow that will be directed from the radiator to the engine (mixture of hot and cold liquid) is regulated, as well as the amount of fluid that will continue circulating internally of the engine, without cooling. Functional Characteristics: Initial Opening: The initial opening setting is a characteristic that, at the initial temperature, the thermostatic valve allows the beginning of the passage of the cooling liquid from/to the radiator. In this invention, the initial opening can be varied for several different engine applications. The initial opening can be calibrated with the same or with a different initial opening settings, since two working elements are present. Course: The course or degree of opening is a characteristic that provides an opening amount relative to an increment in temperature, wherein the flow rate range from the thermostatic valve will vary for the passage of the cooling liquid to the radiator. In this invention, the course can be varied for some applications, and can be calibrated with the same or with a different course, since two working elements are present. Leakage: leakage is a characteristic that provides the maximum amount of bypass flow of cooling liquid allowed to the radiator when the system is pressurized and the thermostatic valve is closed. In this invention, the leakage can be varied for some applications, and can be calibrated with the same or with a different bypass amounts, since two working elements are present. Functions that are or can be Aggregated: In accordance with the present invention, the integrated thermostat has its constructive arrangement of the cover or housing modified in order to provide other functions, by incorporating other components, such as: a tube for heating system; a tube to fix the radiator hose; a temperature sensor; a de-airing system; a nipple, and; a sealing system. Configurations: The tube for heating system allows the passage of the heated cooling liquid to the heating system in the interior of the vehicle. The following versions can be obtained: Tube injected together with the cover: this tube can be obtained with or without a complementary machining process, and can be differently configured with different fixation angles, internal/external diameter and lengths. Tube manufactured separately, made of plastic, metallic or non-metallic material, and assembled on the cover by threading or assembled by interference or clearance, using glues as the fixation and sealing element. The tube to attach the radiator hose allows the passage of the cooling liquid to the radiator. This tube, as well as the tube for the heating system, can be made of aluminum, plastic, metallic or non-metallic material, and it can be obtained by special and/or conventional manufacture processes, and can be differently configured with different fixation angles, internal/external diameter and lengths. The temperature sensor is a component that indicates the temperature variation in the valve region. This temperature sensor has the function of sending a data signal to the electric injection central processing and management unit of the engine, in accordance with the temperature of the cooling liquid, and/or the sensor indicates the temperature of the coolant on the vehicle instrument panel. The temperature sensor can be differently configured with different fixation angles, and lengths. It can be assembled by threading, stapling or by interference on the cover. Its assembly can be sealed by back edge or by ring sealing systems. The de-airing system or air bleed devices (air bleeder) can be configured through ball systems, or a jingle pin or notches located on the cover of the working element or even on the thermostat housing, functioning as a valve which allows air to escape from the region of the thermostat element that is at the highest point of the engine (generally, the expansion reservoir) during the filling with cooling liquid. A system without a de-airing valve or jingle pin can also be de-aired. In this case, the air is eliminated from the element region by means of nipples and hoses located strategically on the thermostat. The nipple also has the function of de-airing the cooling system, and it can be made of plastic, brass, metal and non-metal material, as well as it can be differently configured with different fixation angles, internal/external diameter and lengths. The nipple can be assembled on the housing by threading, interference fit or with a clearance, using glues as the attachment and sealing element. The interface of this nipple with the hose of the cooling liquid reservoir can be made by quick coupling or straight profiles and/or by interference with neck/hose, which guarantees the fixation of conduction hoses by means of tighteners and/or clamps. The sealing system is responsible for guaranteeing that the cooling liquid will not leak out of the thermostat, mainly in the assembly region between the valve flange and the head and/or engine. This system can be constituted by a joint made of metal or paper, as well as it can comprise a sealing ring that can allow several configurations of profiles (square, rectangular, circular or special profiles). The sealing ring can be confined within a lodging generally situated in the housing, the sealing ring forced to mold into and fill the irregularities of the parts surfaces, as well as any existing clearance, providing the effect of blocking fluid flow. In some areas around the perimeter of the sealing ring, locks having several formats can be added. Such locks have the function of fixing the sealing ring to the internal confinement channel and defining the assembly indicator. The integration of two thermostats is possible to a cover or a single housing, substantially differentiated from the conventional and known covers available in the market, which consists in a part with more appropriate robustness and consequent reduction in material, wherein the integration of two thermostats is made by means of two pairs of legs, which are projected in the lower section of the part. In conventional systems, thermostat valves constitute an independent set that is assembled directly on the engine housing and, after that, it receives the attachment of the respective cover, which is provided with two lodgings, wherein one of them is for each valve thermostat, and with an independent exit for each one of them. The set requires more complex assembly operations, taking not only more time and labor, but also a cost increase, besides requiring special attention to obtain the necessary precision referring to the assembly. One of the advantages of the integration of double thermostat disclosed in the present invention is that its assembly is much quicker and easier to perform, since it uses a single part (cover or housing) incorporating two thermostat valves. Another advantage is the ability to, when necessary, substitute one or even the two thermostat valves. Due to the simplicity of removal and replacement, such substitution is made without needing to disassemble the entire set. In accordance with the present invention, the single housing in which the two thermostats are integrated is provided with two adjacent galleries, having openings that are independent of each other and a single central exit. The constructive arrangement of the present invention utilizes an aluminum injection process or a polymer injection process, which will solve the problem of obtaining those two adjacent galleries with a single and reciprocal central exit and independent openings (mouthpieces), which is impossible to be carried out by using the current methods. In the injection process, this solution consists in promoting the entrance of a male core by the lower section for conforming the two galleries with independent openings, as well as the entrance of a male core by the upper section for defining the single central exit that is in intercommunication with the two galleries, which results in two galleries with independent entrances and one exit for the cooling liquid to the radiator and to the engine. The technique determined by the presence of two thermostats in a single part with two chambers and a single central exit allows the accomplishment of two main functions: Obtaining a minimal passage area to the cooling fluid (minimum passage) in order not to have differentiation of pressure and consequent loss of load in the hydraulic circuit of cooling, and; Controlling the engine temperature. The invention does not have restrictions to control the engine temperature due to the fluid exit gallery of the cooling system. The invention still allows placing two working elements (thermostats) with the same opening calibration temperature and/or different temperature calibrations, wherein the calibration of the working elements with different temperatures is related to the capacity of the springs that can speed or advance the system. The invention presents versatility as a result of the calibration of the thermostatic valve. An aeration system can also be present in the housing or in the cover. The invention provides a flexible passage, since it has two galleries with a single exit. It can have none, single or double by pass, which provides flexibility and diversity of engine applications. It can have re-circulation by one, two or none. The two working elements can work with the same opening calibration temperature and/or different temperature calibrations. The calibration of the work elements is related to the spring capacity that can speed or advance the system. It can have different types of flanges and nipples. Other advantages and characteristics of the present invention will become clear from the following detailed description and the appended claims, taken in conjunction with the accompanying illustrative drawings, which are referred to better elucidate the description. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 represents an elevation and sectional view of a type of cover or housing for integrating a double thermostat obtained by the process that is the object of the present invention (in this figure, thermostats are absent). FIG. 2 represents an elevation and sectional view of the type of cover or housing showed in the FIG. 1, with two integrated thermostats. FIG. 3 represents a top view of the type of cover or housing showed in FIGS. 1 and 2. FIG. 4 represents a bottom view of the type of cover or housing represented in FIG. 1 (without thermostats). FIG. 5 represents a bottom view of the type of cover or housing represented in FIG. 2 (with two integrated thermostats). FIG. 6 represents a bottom view of a second type of cover or housing of integration of double thermostat obtained by the process that is the object of the present invention (without thermostats). FIG. 7 represents elevation and sectional view of the type of cover or housing showed in FIG. 6. DETAILED DESCRIPTION OF THE INVENTION It is necessary to clarify that thermostat valves themselves are known, and any thermostat valves can be used with the present invention, and they are cited herein as an example of use and assembly. The thermostat is composed of a working element or a temperature sensor (17), an arch to support the entire set (18) and a helical spring (19) that is located between the supporting arch and an upper peripheral border (20) linked to the working element or temperature sensor, which defines the obstruction element, controlling the cooling liquid passage, which can be rubberized, though other materials are possible. In the upper extremity of the working element or temperature sensor there is a projected central pin (21). The thermostat is integrated to the cover or to the housing (1) by inserting ends of the supporting arch in a pair of downwardly projecting legs (13) of the cover and by lodging the central pin (21) in a hole (16) located internally to the body of the cover. In accordance with the accompanying illustrative drawings and their details, the cover or the housing used to integrate simultaneously the two thermostat valves comprises a part that can be made of aluminum, polymeric, metallic or nonmetallic material and obtained by molding, injection or machining process, which presents a hollowed body (1) projected from a flange (2) provided with appropriated holes (3) for receiving fixing screws for fixing the cover/thermostats set to the engine. The hollowed body (1) has a surface with a slight inclination (4) (see FIG. 7) or a significant inclination (4a) that is convergent to a center of the part, and in which a vertical tubular element (5) is located for interconnection with the radiator via a flow hose for the cooling liquid. This element (5) has a salient conical ring (6) at its forward end to guarantee a good coupling with the related hose. In the interior of the hollowed body (1), there are defined two adjacent galleries (7) with independent end entrances (8 and 9) that are open in the base of the flange (2) and a single exit (10) defined by the tubular element (5) on the top of the part. The mouthpieces of the two independent entrances are surrounded by grooves (11) that are designed to house sealing rings (12). In two diametrically opposing sides of each independent entrance (8 and 9) of adjacent galleries (7), two legs (13) are orthogonally projected, and the legs are provided with a transversal groove (14) near to their lower ends and in the confronting faces, where the thermostats are incorporated by inserting the ends of the supporting arch in the legs, as seen in FIG. 2. At the back of the galleries (7) and in alignment with the center of each independent entrance (8 and 9), there is a protuberance (15) provided with a non-threaded hole (16) to centralize the assembly of thermostats, by inserting the central pin (21), which will be lodged therein. One of the main characteristics of the present invention consists in obtaining two adjacent galleries with independent entrances and a single reciprocal central exit, which is a solution impracticable for conventional processes, as it never existed until now. The proposed solution is based on an aluminum injection process or a polymer injection process, where is foreseen the introduction of a double male core for forming the lower section of the cover or housing for forming two adjacent galleries (7) with independent openings (8) and (9), as well as the entrance of a male core by the upper section for defining the single reciprocal central exit that is in intercommunication with the two adjacent galleries (7). Therefore, the invention is of great importance to the proposed object that consists of obtaining an integrated set provided with two adjacent galleries having independent entrances and a single reciprocal central exit, which allows the integration of two thermostat valves in a single housing, providing a series of technical, practical, functional and economic advantages, encompassing proper and innovative characteristics. While preferred embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various modifications can be made without varying from the spirit and scope of the invention. | <SOH> BACKGROUND <EOH>The invention provides a series of technical, practical, functional and economic advantages, and fulfills its functions in an efficient and satisfactory way. The invention also offers the possibility of an economic industrialization with significant reduction of costs, labor and material, as well as increasing the accuracy of assembly, providing optimum results with good reliability. A thermostat is a component that is located between an engine and a cooling system normally including a radiator. The function of a thermostat is to control the passage of the cooling liquid to the radiator and to the engine, keeping the engine working temperature within the ideal limits, preventing the engine from working too hot or too cold, in order not to suffer more wear. Thermostat functioning consists in heating an element constituted of an expander mass, which provides the opening of the thermostatic element after the absorption of definitive amount of heat and through thermal expansion, regulating the valve opening and therefore the flow of coolant through automotive engines. The integrated thermostat is constituted of a joint element with an arch and a spring, assembled on a cover or on a housing that can be made of polymeric, metallic or nonmetallic material, which can be obtained by molding, injection or machining processes. The thermostat can also provide more functions to the system in accordance with the configurations, by using: a double valve containing two thermostat elements, which can be calibrated with the same or with different initial opening settings, allowing a greater and more controlled flow rate of cooling liquid from/to the radiator. a cover made of aluminum or plastic, obtained by a machining or casting process, and especially in this case, by a process of casting under pressure, which provides a part with less material (less weight) and requiring less time for machining. If necessary to the particular cooling system, the valve can comprise the following as well: components, such as nipples, tubes, temperature sensor, hoses (heating system and radiator compartments), sealing and attaching rings/joints for attaching the thermostat set to the engine block; Tube to connect to the heating system (passenger compartment); Tube to fix to the radiator hose; De-airing system; Sealing system, and; Temperature sensor. Configurations: The thermostat has an outlet configuration. In this case, the thermostat receives liquid from the engine and, through the working element, regulates the amount of flow that will be directed to the radiator for cooling, as well as the amount of fluid that will continue circulating internally of the engine, without cooling. For this thermostat, it is possible to have an inlet configuration. In this case, the thermostat receives liquid from the engine and from the radiator, consequently, through the working element, the amount of cooled flow that will be directed from the radiator to the engine (mixture of hot and cold liquid) is regulated, as well as the amount of fluid that will continue circulating internally of the engine, without cooling. Functional Characteristics: Initial Opening: The initial opening setting is a characteristic that, at the initial temperature, the thermostatic valve allows the beginning of the passage of the cooling liquid from/to the radiator. In this invention, the initial opening can be varied for several different engine applications. The initial opening can be calibrated with the same or with a different initial opening settings, since two working elements are present. Course: The course or degree of opening is a characteristic that provides an opening amount relative to an increment in temperature, wherein the flow rate range from the thermostatic valve will vary for the passage of the cooling liquid to the radiator. In this invention, the course can be varied for some applications, and can be calibrated with the same or with a different course, since two working elements are present. Leakage: leakage is a characteristic that provides the maximum amount of bypass flow of cooling liquid allowed to the radiator when the system is pressurized and the thermostatic valve is closed. In this invention, the leakage can be varied for some applications, and can be calibrated with the same or with a different bypass amounts, since two working elements are present. Functions that are or can be Aggregated: In accordance with the present invention, the integrated thermostat has its constructive arrangement of the cover or housing modified in order to provide other functions, by incorporating other components, such as: a tube for heating system; a tube to fix the radiator hose; a temperature sensor; a de-airing system; a nipple, and; a sealing system. Configurations: The tube for heating system allows the passage of the heated cooling liquid to the heating system in the interior of the vehicle. The following versions can be obtained: Tube injected together with the cover: this tube can be obtained with or without a complementary machining process, and can be differently configured with different fixation angles, internal/external diameter and lengths. Tube manufactured separately, made of plastic, metallic or non-metallic material, and assembled on the cover by threading or assembled by interference or clearance, using glues as the fixation and sealing element. The tube to attach the radiator hose allows the passage of the cooling liquid to the radiator. This tube, as well as the tube for the heating system, can be made of aluminum, plastic, metallic or non-metallic material, and it can be obtained by special and/or conventional manufacture processes, and can be differently configured with different fixation angles, internal/external diameter and lengths. The temperature sensor is a component that indicates the temperature variation in the valve region. This temperature sensor has the function of sending a data signal to the electric injection central processing and management unit of the engine, in accordance with the temperature of the cooling liquid, and/or the sensor indicates the temperature of the coolant on the vehicle instrument panel. The temperature sensor can be differently configured with different fixation angles, and lengths. It can be assembled by threading, stapling or by interference on the cover. Its assembly can be sealed by back edge or by ring sealing systems. The de-airing system or air bleed devices (air bleeder) can be configured through ball systems, or a jingle pin or notches located on the cover of the working element or even on the thermostat housing, functioning as a valve which allows air to escape from the region of the thermostat element that is at the highest point of the engine (generally, the expansion reservoir) during the filling with cooling liquid. A system without a de-airing valve or jingle pin can also be de-aired. In this case, the air is eliminated from the element region by means of nipples and hoses located strategically on the thermostat. The nipple also has the function of de-airing the cooling system, and it can be made of plastic, brass, metal and non-metal material, as well as it can be differently configured with different fixation angles, internal/external diameter and lengths. The nipple can be assembled on the housing by threading, interference fit or with a clearance, using glues as the attachment and sealing element. The interface of this nipple with the hose of the cooling liquid reservoir can be made by quick coupling or straight profiles and/or by interference with neck/hose, which guarantees the fixation of conduction hoses by means of tighteners and/or clamps. The sealing system is responsible for guaranteeing that the cooling liquid will not leak out of the thermostat, mainly in the assembly region between the valve flange and the head and/or engine. This system can be constituted by a joint made of metal or paper, as well as it can comprise a sealing ring that can allow several configurations of profiles (square, rectangular, circular or special profiles). The sealing ring can be confined within a lodging generally situated in the housing, the sealing ring forced to mold into and fill the irregularities of the parts surfaces, as well as any existing clearance, providing the effect of blocking fluid flow. In some areas around the perimeter of the sealing ring, locks having several formats can be added. Such locks have the function of fixing the sealing ring to the internal confinement channel and defining the assembly indicator. The integration of two thermostats is possible to a cover or a single housing, substantially differentiated from the conventional and known covers available in the market, which consists in a part with more appropriate robustness and consequent reduction in material, wherein the integration of two thermostats is made by means of two pairs of legs, which are projected in the lower section of the part. In conventional systems, thermostat valves constitute an independent set that is assembled directly on the engine housing and, after that, it receives the attachment of the respective cover, which is provided with two lodgings, wherein one of them is for each valve thermostat, and with an independent exit for each one of them. The set requires more complex assembly operations, taking not only more time and labor, but also a cost increase, besides requiring special attention to obtain the necessary precision referring to the assembly. One of the advantages of the integration of double thermostat disclosed in the present invention is that its assembly is much quicker and easier to perform, since it uses a single part (cover or housing) incorporating two thermostat valves. Another advantage is the ability to, when necessary, substitute one or even the two thermostat valves. Due to the simplicity of removal and replacement, such substitution is made without needing to disassemble the entire set. In accordance with the present invention, the single housing in which the two thermostats are integrated is provided with two adjacent galleries, having openings that are independent of each other and a single central exit. The constructive arrangement of the present invention utilizes an aluminum injection process or a polymer injection process, which will solve the problem of obtaining those two adjacent galleries with a single and reciprocal central exit and independent openings (mouthpieces), which is impossible to be carried out by using the current methods. In the injection process, this solution consists in promoting the entrance of a male core by the lower section for conforming the two galleries with independent openings, as well as the entrance of a male core by the upper section for defining the single central exit that is in intercommunication with the two galleries, which results in two galleries with independent entrances and one exit for the cooling liquid to the radiator and to the engine. The technique determined by the presence of two thermostats in a single part with two chambers and a single central exit allows the accomplishment of two main functions: Obtaining a minimal passage area to the cooling fluid (minimum passage) in order not to have differentiation of pressure and consequent loss of load in the hydraulic circuit of cooling, and; Controlling the engine temperature. The invention does not have restrictions to control the engine temperature due to the fluid exit gallery of the cooling system. The invention still allows placing two working elements (thermostats) with the same opening calibration temperature and/or different temperature calibrations, wherein the calibration of the working elements with different temperatures is related to the capacity of the springs that can speed or advance the system. The invention presents versatility as a result of the calibration of the thermostatic valve. An aeration system can also be present in the housing or in the cover. The invention provides a flexible passage, since it has two galleries with a single exit. It can have none, single or double by pass, which provides flexibility and diversity of engine applications. It can have re-circulation by one, two or none. The two working elements can work with the same opening calibration temperature and/or different temperature calibrations. The calibration of the work elements is related to the spring capacity that can speed or advance the system. It can have different types of flanges and nipples. Other advantages and characteristics of the present invention will become clear from the following detailed description and the appended claims, taken in conjunction with the accompanying illustrative drawings, which are referred to better elucidate the description. | <SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>FIG. 1 represents an elevation and sectional view of a type of cover or housing for integrating a double thermostat obtained by the process that is the object of the present invention (in this figure, thermostats are absent). FIG. 2 represents an elevation and sectional view of the type of cover or housing showed in the FIG. 1 , with two integrated thermostats. FIG. 3 represents a top view of the type of cover or housing showed in FIGS. 1 and 2 . FIG. 4 represents a bottom view of the type of cover or housing represented in FIG. 1 (without thermostats). FIG. 5 represents a bottom view of the type of cover or housing represented in FIG. 2 (with two integrated thermostats). FIG. 6 represents a bottom view of a second type of cover or housing of integration of double thermostat obtained by the process that is the object of the present invention (without thermostats). FIG. 7 represents elevation and sectional view of the type of cover or housing showed in FIG. 6 . detailed-description description="Detailed Description" end="lead"? | 20041221 | 20060620 | 20060420 | 67195.0 | F01P714 | 1 | HARRIS, KATRINA B | ARRANGEMENT FOR INTEGRATION OF A DOUBLE THERMOSTAT IN AN ENGINE | SMALL | 0 | ACCEPTED | F01P | 2,004 |
|
11,019,051 | ACCEPTED | Use of neonicotinoids in pest control | There is now described a method of controlling pests with nitroimino- or nitroguanidino-compounds; more specifically a method of controlling pests in and on transgenic crops of useful plants, such as, for example, in crops of maize, cereals, soya beans, tomatoes, cotton, potatoes, rice and mustard, with a nitroimino- or nitroguanidino-compound, especially with thiamethoxam, characterized in that a pesticidal composition comprising a nitroimino- or nitroguanidino-compound in free form or in agrochemically useful salt form and at least one auxiliary is applied to the pests or their environment, in particular to the crop plant itself; | 1-7. (canceled) 8. A method of controlling pests in crops of transgenic useful plants comprising the application of clothioanidin or imidacloprid, in free form or in agrochemically useful salt form as active ingredient and at least one auxiliary to the pests or their environment. 9. The method of claim 8 where the transgenic useful plant contains one or more genes which encode insectidical resistance and express one or more active toxins. 10. The method of claim 9 wherein the active toxin expressed by the transgenic plant is selected from Bacillus cereus proteins, Bacillus poplia proteins, Bacillus thuringiensis endotoxins (B.t.), insecticidal proteins of bateria colonising nematodes, proteinase inhibitors, ribosome inactivating proteins, plant lectins, animal toxins, and steroid metabolism enzymes. 11. The method of claim 9 wherein the active toxin expressed by the transgenic plant is selected from CryIA(a), CryIA(b), CryIA(c), Cry IIA, CryIIIA, CryIIIB2, CytA, VIP3, GL, PL, XN, Plnh., Plec., Aggl., CO, CH, SS, and HO. 12. The method of claim 8 where the crops of transgenic useful plants is selected from rice, potatoes, brassica, tomatoes, cucurbits, soybeans, maize, wheat, bananas, citrus trees, pome fruit trees and peppers. 13. The method of claim 8 wherein clothioanidin is applied to the transgenic useful plant. 14. The method of claim 8 wherein clothioanidin is applied to the propagation material of the transgenic useful plant. 15. The method of claim 14 wherein the propagation material is seed. 16. The method of claim 8 wherein imidacloprid is applied to the transgenic useful plant. 17. The method of claim 8 wherein imidacloprid is applied to the propagation material of the transgenic useful plant. 18. The method of claim 17 wherein the propagation material is seed. | The present invention relates to a method of controlling pests with a nitroimino- or nitroguanidino-compound, especially thiamethoxam; more specifically to a novel method of controlling pests in and on transgenic crops of useful plants with a nitroimino- or nitroguanidino-compound. Certain pest control methods are proposed in the literature. However, these methods are not fully satisfactory in the field of pest control, which is why there is a demand for providing further methods for controlling and combating pests, in particular insects and representatives of the order Acarina, or for protecting plants, especially crop plants. This object is achieved according to the invention by providing the present method. The present invention therefore relates to a method of controlling pests in crops of transgenic useful plants, such as, for example, in crops of maize, cereals, soya beans, tomatoes, cotton, potatoes, rice and mustard, characterized in that a pesticidal composition comprising a nitroimino- or nitroguanidino-compound, especially thiamethoxam, imidacloprid, Ti-435 or thiacloprid in free form or in agrochemically useful salt form and at least one auxiliary is applied to the pests or their environment, in particular to the crop plant itself; to the use of the composition in question and to propagation material of transgenic plants which has been treated with it. Surprisingly, it has now emerged that the use of a nitroimino- or nitroguanidino-compound compound for controlling pests on transgenic useful plants which contain—for instance—one or more genes expressing a pesticidally, particularly insecticidally, acaricidally, nematocidally or fugicidally active ingredient, or which are tolerant against herbicides or resistent against the attack of fungi, has a synergistic effect. It is highly surprising that the use of a nitroimino- or nitroguanidino-compound in combination with a transgenic plant exceeds the additive effect, to be expected in principle, on the pests to be controlled and thus extends the range of action of the nitroimino- or nitroguanidino-compound and of the active principle expressed by the transgenic plant in particular in two respects: In particular, it has been found, surprisingly, that within the scope of invention the pesticidal activity of a nitroimino- or nitroguanidino-compound in combination with the effect expressed by the transgenic useful plant, is not only additive in comparison with the pesticidal activities of the nitroimino- or nitroguanidino-compound alone and of the transgenic crop plant alone, as can generally be expected, but that a synergistic effect is present. The term “synergistic”, however, is in no way to be understood in this connection as being restricted to the pesticidal activity, but the term also refers to other advantageous properties of the method according to the invention compared with the nitroimino- or nitroguanidino-compound and the transgenic useful plant alone. Examples of such advantageous properties which may be mentioned are: extension of the pesticidal spectrum of action to other pests, for example to resistant strains; reduction in the application rate of the nitroimino- or nitroguanidino-compound, or sufficient control of the pests with the aid of the compositions according to the invention even at an application rate of the nitroimino- or nitroguanidino-compound alone and the transgenic useful plant alone are entirely ineffective; enhanced crop safety; improved quality of produce such as higher content of nutrient or oil, better fiber quality, enhanced shelf life, reduced content of toxic products such as mycotoxins, reduced content of residues or unfavorable constituents of any kind or better digestability; improved tolerance to unfavorable temperatures, draughts or salt content of water; enhanced assimilation rates such as nutrient uptake, water uptake and photosynthesis; favorable crop properties such as altered leaf aerea, reduced vegetative growth, increased yields, favorable seed shape/seed thickness or germination properties, altered colonialisation by saprophytes or epiphytes, reduction of senescense, improved phytoalexin production, improved of accelerated ripening, flower set increase, reduced boll fall and shattering, better attraction to beneficials and predators, increased pollination, reduced attraction to birds; or other advantages known to those skilled in the art. Nitroimino- and nitroguanidino-cpmpounds, such as thiamethoxam (5-(2-Chlorthiazol-5-ylmethyl)-3-methyl-4-nitroimino-perhydro-1,3,5-oxadiazin), are known from EP-A-0′580′553. Within the scope of invention thiamethoxam is preferred. Also preferred within the scope of invention is imidacloprid of the formula known from The Pesticide Manual, 10th Ed. (1991), The British Crop Protection Council, London, page 591; also preferred is Thiacloprid of the formula known from EP-A-235'725; also preferred is the compound of the formula known as Ti-435 (Clothiamidin) from EP-A-376'279 The agrochemically compatible salts of the nitroimino- or nitroguanidino-compounds are, for example, acid addition salts of inorganic and organic acids, in particular of hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, malonic acid, toluenesulfonic acid or benzoic acid. Preferred within the scope of the present invention is a composition known per se which comprises, as active ingredient, thiamethoxam and imidacloprid, each in the free form, especially thiamethoxam. The transgenic plants used according to the invention are plants, or propagation material thereof, which are transformed by means of recombinant DNA technology in such a way that they are—for instance—capable of synthesizing selectively acting toxins as are known, for example, from toxin-producing in vertebrates, especially of the phylum Arthropoda, as can be obtained from Bacillus thuringiensis strains; or as are known from plants, such as lectins; or in the alternative capable of expressing a herbicidal or fungicidal resistance. Examples of such toxins, or transgenic plants which are capable of synthesizing such toxins, have been disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529 and EP-A-451 878 and are incorporated by reference in the present application. The methods for generating such transgenic plants are widely known to those skilled in the art and described, for example, in the publications mentioned above. The toxins which can be expressed by such transgenic plants include, for example, toxins, such as proteins which have insecticidal properties and which are expressed by transgenic plants, for example Bacillus cereus proteins or Bacillus popliae proteins; or Bacillus thuringiensis endotoxins (B.t.), such as CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2 or CytA; VIP1; VIP2; VIP3; or insecticidal proteins of bacteria colonising nematodes like Photorhabdus spp or Xenorhabdus spp such as Photorhabdus luminescens, Xenorhabdus nematophilus etc.; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize RIP, abrin, luffin, saporin or bryodin; plant lectins such as pea lectins, barley lectins or snowdrop lectins; or agglutinins; toxins produced by animals, such as scorpion toxins, spider venoms, wasp venoms and other insect-specific neurotoxins; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdysteroid UDP-glycosyl transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COAreductase, ion channel blockers such as sodium and calcium, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases. Examples of known transgenic plants which comprise one or more genes which encode insecticidal resistance and express one or more toxins are the following: KnockOut® (maize), YieldGard® (maize); NuCOTN 33B® (cotton), Boligard® (cotton), NewLeaf® (potatoes), NatureGard® and Protecta®. The following tables comprise further examples of targets and principles and crop phenotypes of transgenic crops which show tolerance against pests mainly insects, mites, nematodes, virus, bacteria and diseases or are tolerant to specific herbicides or classes of herbicides. TABLE A1 Crop: Maize Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides such as Sulfonylureas Dimboa biosynthesis (Bx1 gene) Helminthosporium turcicum, Rhopalosiphum maydis, Diplodia maydis, Ostrinia nubilalis, lepidoptera sp. CMIII (small basic maize seed peptide plant pathogenes eg. fusarium, alternaria, sclerotina Corn-SAFP (zeamatin) plant pathogenes eg. fusarium, alternaria, sclerotina, rhizoctonia, chaetomium, phycomyces Hm1 gene Cochliobulus Chitinases plant pathogenes Glucanases plant pathogenes Coat proteins viruses such as maize dwarf mosaic virus, maize chlorotic dwarf virus Bacillus thuringiensis toxins, VIP 3, lepidoptera, coleoptera, diptera, Bacillus cereus toxins, Photorabdus and nematodes, eg. ostrinia nubilalis, Xenorhabdus toxins heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils 3-Hydroxysteroid oxidase lepidoptera, coleoptera, diptera, nematodes, eg. ostrinia nubilalis, heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils Peroxidase lepidoptera, coleoptera, diptera, nematodes, eg. ostrinia nubilalis, heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils Aminopeptidase inhibitors eg. Leucine lepidoptera, coleoptera, diptera, aminopeptidase inhibitor (LAPI) nematodes, eg. ostrinia nubilalis, heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils Limonene synthase corn rootworms Lectines lepidoptera, coleoptera, diptera, nematodes, eg. ostrinia nubilalis, heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils Protease Inhibitors eg. cystatin, patatin, weevils, corn rootworm virgiferin, CPTI ribosome inactivating protein lepidoptera, coleoptera, diptera, nematodes, eg. ostrinia nubilalis, heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils maize 5C9 polypeptide lepidoptera, coleoptera, diptera, nematodes, eg. ostrinia nubilalis, heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils HMG-CoA reductase lepidoptera, coleoptera, diptera, nematodes, eg. ostrinia nubilalis, heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils TABLE A2 Crop Wheat Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides such as Sulfonylureas Antifungal polypeptide AlyAFP plant pathogenes eg septoria and fusarioum glucose oxidase plant pathogenes eg. fusarium, septoria pyrrolnitrin synthesis genes plant pathogenes eg. fusarium, septoria serine/threonine kinases plant pathogenes eg. fusarium, septoria and other diseases Hypersensitive response eliciting plant pathogenes eg. fusarium, septoria polypeptide and other diseases Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases plant pathogenes Glucanases plant pathogenes double stranded ribonuclease viruses such as BYDV and MSMV Coat proteins viruses such as BYDV and MSMV Bacillus thuringiensis toxins, VIP 3, lepidoptera, coleoptera, diptera, Bacillus cereus toxins, Photorabdus and nematodes, Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, coleoptera, diptera, nematodes, Peroxidase lepidoptera, coleoptera, diptera, nematodes, Aminopeptidase inhibitors eg. Leucine lepidoptera, coleoptera, diptera, aminopeptidase inhibitor nematodes, Lectines lepidoptera, coleoptera, diptera, nematodes, aphids Protease Inhibitors eg. cystatin, patatin, lepidoptera, coleoptera, diptera, virgiferin, CPTI nematodes, aphids ribosome inactivating protein lepidoptera, coleoptera, diptera, nematodes, aphids HMG-CoA reductase lepidoptera, coleoptera, diptera, nematodes, eg. ostrinia nubilalis, heliothis zea, armyworms eg. spodoptera frugiperda, corn rootworms, sesamia sp., black cutworm, asian corn borer, weevils TABLE A3 Crop Barley Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides such as Sulfonylureas Antifungal polypeptide AlyAFP plant pathogenes eg septoria and fusarioum glucose oxidase plant pathogenes eg. fusarium, septoria pyrrolnitrin synthesis genes plant pathogenes eg. fusarium, septoria serine/threonine kinases plant pathogenes eg. fusarium, septoria and other diseases Hypersensitive response eliciting plant pathogenes eg. fusarium, septoria polypeptide and other diseases Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases plant pathogenes Glucanases plant pathogenes double stranded ribonuclease viruses such as BYDV and MSMV Coat proteins viruses such as BYDV and MSMV Bacillus thuringiensis toxins, VIP 3, lepidoptera, coleoptera, diptera, Bacillus cereus toxins, Photorabdus and nematodes, Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, coleoptera, diptera, nematodes, Peroxidase lepidoptera, coleoptera, diptera, nematodes, Aminopeptidase inhibitors eg. Leucine lepidoptera, coleoptera, diptera, aminopeptidase inhibitor nematodes, Lectines lepidoptera, coleoptera, diptera, nematodes, aphids Protease Inhibitors eg. cystatin, patatin, lepidoptera, coleoptera, diptera, virgiferin, CPTI nematodes, aphids ribosome inactivating protein lepidoptera, coleoptera, diptera, nematodes, aphids HMG-CoA reductase lepidoptera, coleoptera, diptera, nematodes, aphids TABLE A4 Crop Rice Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides such as Sulfonylureas Antifungal polypeptide AlyAFP plant pathogenes glucose oxidase plant pathogenes pyrrolnitrin synthesis genes plant pathogenes serine/threonine kinases plant pathogenes Phenylalanine ammonia lyase (PAL) plant pathogenes eg bacterial leaf blight and rice blast, inducible phytoalexins plant pathogenes eg bacterial leaf blight and rice blast B-1,3-glucanase antisense plant pathogenes eg bacterial leaf blight and rice blast receptor kinase plant pathogenes eg bacterial leaf blight and rice blast Hypersensitive response eliciting plant pathogenes polypeptide Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases plant pathogenes eg bacterial leaf blight and rice blast Glucanases plant pathogenes double stranded ribonuclease viruses such as BYDV and MSMV Coat proteins viruses such as BYDV and MSMV Bacillus thuringiensis toxins, VIP 3, lepidoptera eg. stemborer, coleoptera eg Bacillus cereus toxins, Photorabdus and rice water weevil, diptera, rice hoppers Xenorhabdus toxins eg brown rice hopper 3-Hydroxysteroid oxidase lepidoptera eg. stemborer, coleoptera eg rice water weevil, diptera, rice hoppers eg brown rice hopper Peroxidase lepidoptera eg. stemborer, coleoptera eg rice water weevil, diptera, rice hoppers eg brown rice hopper Aminopeptidase inhibitors eg. Leucine lepidoptera eg. stemborer, coleoptera eg aminopeptidase inhibitor rice water weevil, diptera, rice hoppers eg brown rice hopper Lectines lepidoptera eg. stemborer, coleoptera eg rice water weevil, diptera, rice hoppers eg brown rice hopper Protease Inhibitors, lepidoptera eg. stemborer, coleoptera eg rice water weevil, diptera, rice hoppers eg brown rice hopper ribosome inactivating protein lepidoptera eg. stemborer, coleoptera eg rice water weevil, diptera, rice hoppers eg brown rice hopper HMG-CoA reductase lepidoptera eg. stemborer, coleoptera eg rice water weevil, diptera, rice hoppers eg brown rice hopper TABLE A5 Crop Soya Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 or Xenobiotics and herbicides such as selection Sulfonylureas Antifungal polypeptide AlyAFP bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot oxalate oxidase bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot glucose oxidase bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot pyrrolnitrin synthesis genes bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot serine/threonine kinases bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot Phenylalanine ammonia lyase (PAL) bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot phytoalexins plant pathogenes eg bacterial leaf blight and rice blast B-1,3-glucanase antisense plant pathogenes eg bacterial leaf blight and rice blast receptor kinase bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot Hypersensitive response eliciting plant pathogenes polypeptide Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot Glucanases bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot double stranded ribonuclease viruses such as BPMV and SbMV Coat proteins viruses such as BYDV and MSMV Bacillus thuringiensis toxins, VIP 3, lepidoptera, coleoptera, aphids Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, coleoptera, aphids Peroxidase lepidoptera, coleoptera, aphids Aminopeptidase inhibitors eg. Leucine lepidoptera, coleoptera, aphids aminopeptidase inhibitor Lectines lepidoptera, coleoptera, aphids Protease Inhibitors eg virgiferin lepidoptera, coleoptera, aphids ribosome inactivating protein lepidoptera, coleoptera, aphids HMG-CoA reductase lepidoptera, coleoptera, aphids Barnase nematodes eg root knot nematodes and cyst nematodes Cyst nematode hatching stimulus cyst nematodes Antifeeding principles nematodes eg root knot nematodes and cyst nematodes TABLE A6 Crop Potatoes Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 or selection Xenobiotics and herbicides such as Sulfonylureas Polyphenol oxidase or Polyphenol blackspot bruise oxidase antisense Metallothionein bacterial and fungal pathogens such as phytophtora Ribonuclease Phytophtora, Verticillium, Rhizoctonia Antifungal polypeptide AlyAFP bacterial and fungal pathogens such as phytophtora oxalate oxidase bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia glucose oxidase bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia pyrrolnitrin synthesis genes bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia serine/threonine kinases bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia Cecropin B bacteria such as corynebacterium sepedonicum, Erwinia carotovora Phenylalanine ammonia lyase (PAL) bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia phytoalexins bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia B-1,3-glucanase antisense bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia receptor kinase bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia Hypersensitive response eliciting bacterial and fungal pathogens such as polypeptide Phytophtora, Verticillium, Rhizoctonia Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia Barnase bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia Disease resistance response gene 49 bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia trans aldolase antisense blackspots Glucanases bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia double stranded ribonuclease viruses such as PLRV, PVY and TRV Coat proteins viruses such as PLRV, PVY and TRV 17 kDa or 60 kDa protein viruses such as PLRV, PVY and TRV Nuclear inclusion proteins eg. a or b viruses such as PLRV, PVY and TRV Pseudoubiquitin viruses such as PLRV, PVY and TRV Replicase viruses such as PLRV, PVY and TRV Bacillus thuringiensis toxins, VIP 3, coleoptera eg Colorado potato beetle, Bacillus cereus toxins, Photorabdus and aphids Xenorhabdus toxins 3-Hydroxysteroid oxidase coleoptera eg Colorado potato beetle, aphids Peroxidase coleoptera eg Colorado potato beetle, aphids Aminopeptidase inhibitors eg. Leucine coleoptera eg Colorado potato beetle, aminopeptidase inhibitor aphids stilbene synthase coleoptera eg Colorado potato beetle, aphids Lectines coleoptera eg Colorado potato beetle, aphids Protease Inhibitors eg cystatin, patatin coleoptera eg Colorado potato beetle, aphids ribosome inactivating protein coleoptera eg Colorado potato beetle, aphids HMG-CoA reductase coleoptera eg Colorado potato beetle, aphids Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes Antifeeding principles nematodes eg root knot nematodes and cyst nematodes TABLE A7 Crop Tomatoes Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 or Xenobiotics and herbicides such as selection Sulfonylureas Polyphenol oxidase or Polyphenol blackspot bruise oxidase antisense Metallothionein bacterial and fungal pathogens such as phytophtora Ribonuclease Phytophtora, Verticillium, Rhizoctonia Antifungal polypeptide AlyAFP bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. oxalate oxidase bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. glucose oxidase bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. pyrrolnitrin synthesis genes bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. serine/threonine kinases bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Cecropin B bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Phenylalanine ammonia lyase (PAL) bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Cf genes eg. Cf 9 Cf5 Cf4 Cf2 leaf mould Osmotin alternaria solani Alpha Hordothionin bacteria Systemin bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Polygalacturonase inhibitors bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Prf regulatory gene bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. 12 Fusarium resistance locus fusarium phytoalexins bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. B-1,3-glucanase antisense bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. receptor kinase bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Hypersensitive response eliciting bacterial and fungal pathogens such as polypeptide bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Barnase bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. Glucanases bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould etc. double stranded ribonuclease viruses such as PLRV, PVY and ToMoV Coat proteins viruses such as PLRV, PVY and ToMoV 17 kDa or 60 kDa protein viruses such as PLRV, PVY and ToMoV Nuclear inclusion proteins eg. a or b or viruses such as PLRV, PVY and ToMoV Nucleoprotein TRV Pseudoubiquitin viruses such as PLRV, PVY and ToMoV Replicase viruses such as PLRV, PVY and ToMoV Bacillus thuringiensis toxins, VIP 3, lepidoptera eg heliothis, whiteflies aphids Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera eg heliothis, whiteflies aphids Peroxidase lepidoptera eg heliothis, whiteflies aphids Aminopeptidase inhibitors eg. Leucine lepidoptera eg heliothis, whiteflies aphids aminopeptidase inhibitor Lectines lepidoptera eg heliothis, whiteflies aphids Protease Inhibitors eg cystatin, patatin lepidoptera eg heliothis, whiteflies aphids ribosome inactivating protein lepidoptera eg heliothis, whiteflies aphids stilbene synthase lepidoptera eg heliothis, whiteflies aphids HMG-CoA reductase lepidoptera eg heliothis, whiteflies aphids Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes Antifeeding principles nematodes eg root knot nematodes and cyst nematodes TABLE A8 Crop Peppers Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 or Xenobiotics and herbicides such as selection Sulfonylureas Polyphenol oxidase or Polyphenol bacterial and fungal pathogens oxidase antisense Metallothionein bacterial and fungal pathogens Ribonuclease bacterial and fungal pathogens Antifungal polypeptide AlyAFP bacterial and fungal pathogens oxalate oxidase bacterial and fungal pathogens glucose oxidase bacterial and fungal pathogens pyrrolnitrin synthesis genes bacterial and fungal pathogens serine/threonine kinases bacterial and fungal pathogens Cecropin B bacterial and fungal pathogens rot, leaf mould etc. Phenylalanine ammonia lyase (PAL) bacterial and fungal pathogens Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial and fungal pathogens Osmotin bacterial and fungal pathogens Alpha Hordothionin bacterial and fungal pathogens Systemin bacterial and fungal pathogens Polygalacturonase inhibitors bacterial and fungal pathogens Prf regulatory gene bacterial and fungal pathogens 12 Fusarium resistance locus fusarium phytoalexins bacterial and fungal pathogens B-1,3-glucanase antisense bacterial and fungal pathogens receptor kinase bacterial and fungal pathogens Hypersensitive response eliciting bacterial and fungal pathogens polypeptide Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases bacterial and fungal pathogens Barnase bacterial and fungal pathogens Glucanases bacterial and fungal pathogens double stranded ribonuclease viruses such as CMV, TEV Coat proteins viruses such as CMV, TEV 17 kDa or 60 kDa protein viruses such as CMV, TEV Nuclear inclusion proteins eg. a or b or viruses such as CMV, TEV Nucleoprotein Pseudoubiquitin viruses such as CMV, TEV Replicase viruses such as CMV, TEV Bacillus thuringiensis toxins, VIP 3, lepidoptera, whiteflies aphids Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, whiteflies aphids Peroxidase lepidoptera, whiteflies aphids Aminopeptidase inhibitors eg. Leucine lepidoptera, whiteflies aphids aminopeptidase inhibitor Lectines lepidoptera, whiteflies aphids Protease Inhibitors eg cystatin, patatin lepidoptera, whiteflies aphids ribosome inactivating protein lepidoptera, whiteflies aphids stilbene synthase lepidoptera, whiteflies aphids HMG-CoA reductase lepidoptera, whiteflies aphids Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes Antifeeding principles nematodes eg root knot nematodes and cyst nematodes TABLE A9 Crop Grapes Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 or Xenobiotics and herbicides such as selection Sulfonylureas Polyphenol oxidase or Polyphenol bacterial and fungal pathogens like oxidase antisense Botrytis and powdery mildew Metallothionein bacterial and fungal pathogens like Botrytis and powdery mildew Ribonuclease bacterial and fungal pathogens like Botrytis and powdery mildew Antifungal polypeptide AlyAFP bacterial and fungal pathogens like Botrytis and powdery mildew oxalate oxidase bacterial and fungal pathogens like Botrytis and powdery mildew glucose oxidase bacterial and fungal pathogens like Botrytis and powdery mildew pyrrolnitrin synthesis genes bacterial and fungal pathogens like Botrytis and powdery mildew serine/threonine kinases bacterial and fungal pathogens like Botrytis and powdery mildew Cecropin B bacterial and fungal pathogens like Botrytis and powdery mildew Phenylalanine ammonia lyase (PAL) bacterial and fungal pathogens like Botrytis and powdery mildew Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial and fungal pathogens like Botrytis and powdery mildew Osmotin bacterial and fungal pathogens like Botrytis and powdery mildew Alpha Hordothionin bacterial and fungal pathogens like Botrytis and powdery mildew Systemin bacterial and fungal pathogens like Botrytis and powdery mildew Polygalacturonase inhibitors bacterial and fungal pathogens like Botrytis and powdery mildew Prf regulatory gene bacterial and fungal pathogens like Botrytis and powdery mildew phytoalexins bacterial and fungal pathogens like Botrytis and powdery mildew B-1,3-glucanase antisense bacterial and fungal pathogens like Botrytis and powdery mildew receptor kinase bacterial and fungal pathogens like Botrytis and powdery mildew Hypersensitive response eliciting bacterial and fungal pathogens like polypeptide Botrytis and powdery mildew Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases bacterial and fungal pathogens like Botrytis and powdery mildew Barnase bacterial and fungal pathogens like Botrytis and powdery mildew Glucanases bacterial and fungal pathogens like Botrytis and powdery mildew double stranded ribonuclease viruses Coat proteins viruses 17 kDa or 60 kDa protein viruses Nuclear inclusion proteins eg. a or b or viruses Nucleoprotein Pseudoubiquitin viruses Replicase viruses Bacillus thuringiensis toxins, VIP 3, lepidoptera, aphids Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids Peroxidase lepidoptera, aphids Aminopeptidase inhibitors eg. Leucine lepidoptera, aphids aminopeptidase inhibitor Lectines lepidoptera, aphids Protease Inhibitors eg cystatin, patatin lepidoptera, aphids ribosome inactivating protein lepidoptera, aphids stilbene synthase lepidoptera, aphids, diseases HMG-CoA reductase lepidoptera, aphids Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes or general diseases CBI root knot nematodes Antifeeding principles nematodes eg root knot nematodes or root cyst nematodes TABLE A10 crop Oil Seed rape Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase (ALS) Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase (ACCase) Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Hydroxyphenylpyruvate dioxygenase Isoxazoles such as Isoxaflutol or (HPPD) Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl transferase Phosphinothricin O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase (ADSL) Inhibitors of IMP and AMP synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase (PROTOX) Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 or Xenobiotics and herbicides such as selection Sulfonylureas Polyphenol oxidase or Polyphenol bacterial and fungal pathogens like oxidase antisense Cylindrosporium, Phoma, Sclerotinia Metallothionein bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Ribonuclease bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Antifungal polypeptide AlyAFP bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia oxalate oxidase bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia glucose oxidase bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia pyrrolnitrin synthesis genes bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia serine/threonine kinases bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Cecropin B bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Phenylalanine ammonia lyase (PAL) bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Osmotin bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Alpha Hordothionin bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Systemin bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Polygalacturonase inhibitors bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Prf regulatory gene bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia phytoalexins bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia B-1,3-glucanase antisense bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia receptor kinase bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Hypersensitive response eliciting bacterial and fungal pathogens like polypeptide Cylindrosporium, Phoma, Sclerotinia Systemic acquires resistance (SAR) viral, bacterial, fungal, nematodal genes pathogens Chitinases bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia Barnase bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia, nematodes Glucanases bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia double stranded ribonuclease viruses Coat proteins viruses 17 kDa or 60 kDa protein viruses Nuclear inclusion proteins eg. a or b or viruses Nucleoprotein Pseudoubiquitin viruses Replicase viruses Bacillus thuringiensis toxins, VIP 3, lepidoptera, aphids Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids Peroxidase lepidoptera, aphids Aminopeptidase inhibitors eg. Leucine lepidoptera, aphids aminopeptidase inhibitor Lectines lepidoptera, aphids Protease Inhibitors eg cystatin, patatin, lepidoptera, aphids CPTI ribosome inactivating protein lepidoptera, aphids stilbene synthase lepidoptera, aphids, diseases HMG-CoA reductase lepidoptera, aphids Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes CBI root knot nematodes Antifeeding principles induced at a nematodes eg root knot nematodes, root nematode feeding site cyst nematodes TABLE A11 Crop Brassica vegetable (cabbage, brussel sprouts, broccoli etc.) Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase Sulfonylureas, Imidazolinones, (ALS) Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase Aryloxyphenoxyalkanecarboxylic (ACCase) acids, cyclohexanediones Hydroxyphenylpyruvate Isoxazoles such as Isoxaflutol dioxygenase (HPPD) or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl Phosphinothricin transferase O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase Inhibitors of IMP and AMP (ADSL) synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan syn- thesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl- Glyphosate or sulfosate 3phosphoshikimate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides, (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 Xenobiotics and herbicides such as SU1 or selection Sulfonylureas Polyphenol oxidase or bacterial and fungal pathogens Polyphenol oxidase antisense Metallothionein bacterial and fungal pathogens Ribonuclease bacterial and fungal pathogens Antifungal polypeptide bacterial and fungal pathogens AlyAFP oxalate oxidase bacterial and fungal pathogens glucose oxidase bacterial and fungal pathogens pyrrolnitrin synthesis bacterial and fungal pathogens genes serine/threonine kinases bacterial and fungal pathogens Cecropin B bacterial and fungal pathogens Phenylalanine ammonia bacterial and fungal pathogens lyase (PAL) Cf genes eg. Cf 9 Cf5 bacterial and fungal pathogens Cf4 Cf2 Osmotin bacterial and fungal pathogens Alpha Hordothionin bacterial and fungal pathogens Systemin bacterial and fungal pathogens Polygalacturonase inhibitors bacterial and fungal pathogens Prf regulatory gene bacterial and fungal pathogens phytoalexins bacterial and fungal pathogens B-1,3-glucanase antisense bacterial and fungal pathogens receptor kinase bacterial and fungal pathogens Hypersensitive response bacterial and fungal pathogens eliciting polypeptide Systemic acquires resistance viral, bacterial, fungal, (SAR) genes nematodal pathogens Chitinases bacterial and fungal pathogens Barnase bacterial and fungal pathogens Glucanases bacterial and fungal pathogens double stranded ribonuclease viruses Coat proteins viruses 17 kDa or 60 kDa protein viruses Nuclear inclusion proteins viruses eg. a or b or Nucleoprotein Pseudoubiquitin viruses Replicase viruses Bacillus thuringiensis lepidoptera, aphids toxins, VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids Peroxidase lepidoptera, aphids Aminopeptidase inhibitors lepidoptera, aphids eg. Leucine aminopeptidase inhibitor Lectines lepidoptera, aphids Protease Inhibitors eg lepidoptera, aphids cystatin, patatin, CPTI ribosome inactivating lepidoptera, aphids protein stilbene synthase lepidoptera, aphids, diseases HMG-CoA reductase lepidoptera, aphids Cyst nematode hatching cyst nematodes stimulus Barnase nematodes eg root knot nematodes and cyst nematodes CBI root knot nematodes Antifeeding principles nematodes eg root knot nematodes, induced at a nematode root cyst nematodes feeding site TABLE A12 Crop Pome fruits eg apples, pears Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase Sulfonylureas, Imidazolinones, (ALS) Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase Aryloxyphenoxyalkanecarboxylic (ACCase) acids, cyclohexanediones Hydroxyphenylpyruvate Isoxazoles such as Isoxaflutol dioxygenase (HPPD) or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl Phosphinothricin transferase O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase Inhibitors of IMP and AMP (ADSL) synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan syn- thesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides, (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides or selection such as Sulfonylureas Polyphenol oxidase or Polyphenol bacterial and fungal pathogens oxidase antisense like apple scab or fireblight Metallothionein bacterial and fungal pathogens like apple scab or fireblight Ribonuclease bacterial and fungal pathogens like apple scab or fireblight Antifungal polypeptide AlyAFP bacterial and fungal pathogens like apple scab or fireblight oxalate oxidase bacterial and fungal pathogens like apple scab or fireblight glucose oxidase bacterial and fungal pathogens like apple scab or fireblight pyrrolnitrin synthesis genes bacterial and fungal pathogens like apple scab or fireblight serine/threonine kinases bacterial and fungal pathogens like apple scab or fireblight Cecropin B bacterial and fungal pathogens like apple scab or fireblight Phenylalanine ammonia lyase bacterial and fungal pathogens (PAL) like apple scab or fireblight Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial and fungal pathogens like apple scab or fireblight Osmotin bacterial and fungal pathogens like apple scab or fireblight Alpha Hordothionin bacterial and fungal pathogens like apple scab or fireblight Systemin bacterial and fungal pathogens like apple scab or fireblight Polygalacturonase inhibitors bacterial and fungal pathogens like apple scab or fireblight Prf regulatory gene bacterial and fungal pathogens like apple scab or fireblight phytoalexins bacterial and fungal pathogens like apple scab or fireblight B-1,3-glucanase antisense bacterial and fungal pathogens like apple scab or fireblight receptor kinase bacterial and fungal pathogens like apple scab or fireblight Hypersensitive response bacterial and fungal pathogens eliciting polypeptide like apple scab or fireblight Systemic acquires resistance viral, bacterial, fungal, (SAR) genes nematodal pathogens Lytic protein bacterial and fungal pathogens like apple scab or fireblight Lysozym bacterial and fungal pathogens like apple scab or fireblight Chitinases bacterial and fungal pathogens like apple scab or fireblight Barnase bacterial and fungal pathogens like apple scab or fireblight Glucanases bacterial and fungal pathogens like apple scab or fireblight double stranded ribonuclease viruses Coat proteins viruses 17 kDa or 60 kDa protein viruses Nuclear inclusion proteins viruses eg. a or b or Nucleoprotein Pseudoubiquitin viruses Replicase viruses Bacillus thuringiensis toxins, lepidoptera, aphids, mites VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids, mites Peroxidase lepidoptera, aphids, mites Aminopeptidase inhibitors eg. lepidoptera, aphids, mites Leucine aminopeptidase inhibitor Lectines lepidoptera, aphids, mites Protease Inhibitors eg cystatin, lepidoptera, aphids, mites patatin, CPTI ribosome inactivating protein lepidoptera, aphids, mites stilbene synthase lepidoptera, aphids, diseases, mites HMG-CoA reductase lepidoptera, aphids, mites Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes CBI root knot nematodes Antifeeding principles induced nematodes eg root knot nematodes, at a nematode feeding site root cyst nematodes TABLE A13 Crop Melons Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase Sulfonylureas, Imidazolinones, (ALS) Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase Aryloxyphenoxyalkanecarboxylic (ACCase) acids, cyclohexanediones Hydroxyphenylpyruvate Isoxazoles such as Isoxaflutol dioxygenase (HPPD) or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl Phosphinothricin transferase O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase Inhibitors of IMP and AMP (ADSL) synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan syn- thesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides, (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides such or selection as Sulfonylureas Polyphenol oxidase or Polyphenol bacterial or fungal pathogens oxidase antisense like phytophtora Metallothionein bacterial or fungal pathogens like phytophtora Ribonuclease bacterial or fungal pathogens like phytophtora Antifungal polypeptide AlyAFP bacterial or fungal pathogens like phytophtora oxalate oxidase bacterial or fungal pathogens like phytophtora glucose oxidase bacterial or fungal pathogens like phytophtora pyrrolnitrin synthesis genes bacterial or fungal pathogens like phytophtora serine/threonine kinases bacterial or fungal pathogens like phytophtora Cecropin B bacterial or fungal pathogens like phytophtora Phenylalanine ammonia lyase bacterial or fungal pathogens (PAL) like phytophtora Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial or fungal pathogens like phytophtora Osmotin bacterial or fungal pathogens like phytophtora Alpha Hordothionin bacterial or fungal pathogens like phytophtora Systemin bacterial or fungal pathogens like phytophtora Polygalacturonase inhibitors bacterial or fungal pathogens like phytophtora Prf regulatory gene bacterial or fungal pathogens like phytophtora phytoalexins bacterial or fungal pathogens like phytophtora B-1,3-glucanase antisense bacterial or fungal pathogens like phytophtora receptor kinase bacterial or fungal pathogens like phytophtora Hypersensitive response bacterial or fungal pathogens eliciting polypeptide like phytophtora Systemic acquires resistance viral, bacterial, fungal, (SAR) genes nematodal pathogens Lytic protein bacterial or fungal pathogens like phytophtora Lysozym bacterial or fungal pathogens like phytophtora Chitinases bacterial or fungal pathogens like phytophtora Barnase bacterial or fungal pathogens like phytophtora Glucanases bacterial or fungal pathogens like phytophtora double stranded ribonuclease viruses as CMV,, PRSV, WMV2, SMV, ZYMV Coat proteins viruses as CMV,, PRSV, WMV2, SMV, ZYMV 17 kDa or 60 kDa protein viruses as CMV,, PRSV, WMV2, SMV, ZYMV Nuclear inclusion proteins eg. viruses as CMV,, PRSV, WMV2, a or b or Nucleoprotein SMV, ZYMV Pseudoubiquitin viruses as CMV,, PRSV, WMV2, SMV, ZYMV Replicase viruses as CMV,, PRSV, WMV2, SMV, ZYMV Bacillus thuringiensis toxins, lepidoptera, aphids, mites VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, whitefly Peroxidase lepidoptera, aphids, mites, whitefly Aminopeptidase inhibitors eg. lepidoptera, aphids, mites, Leucine aminopeptidase inhibitor whitefly Lectines lepidoptera, aphids, mites, whitefly Protease Inhibitors eg cystatin, lepidoptera, aphids, mites, patatin, CPTI, virgiferin whitefly ribosome inactivating protein lepidoptera, aphids, mites, whitefly stilbene synthase lepidoptera, aphids, mites, whitefly HMG-CoA reductase lepidoptera, aphids, mites, whitefly Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes CBI root knot nematodes Antifeeding principles induced nematodes eg root knot nematodes, at a nematode feeding site root cyst nematodes TABLE A14 Crop Banana Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase Sulfonylureas, Imidazolinones, (ALS) Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase Aryloxyphenoxyalkanecarboxylic (ACCase) acids, cyclohexanediones Hydroxyphenylpyruvate Isoxazoles such as Isoxaflutol dioxygenase (HPPD) or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl Phosphinothricin transferase O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase Inhibitors of IMP and AMP (ADSL) synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan syn- thesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides, (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides or selection such as Sulfonylureas Polyphenol oxidase or Polyphenol bacterial or fungal pathogens oxidase antisense Metallothionein bacterial or fungal pathogens Ribonuclease bacterial or fungal pathogens Antifungal polypeptide AlyAFP bacterial or fungal pathogens oxalate oxidase bacterial or fungal pathogens glucose oxidase bacterial or fungal pathogens pyrrolnitrin synthesis genes bacterial or fungal pathogens serine/threonine kinases bacterial or fungal pathogens Cecropin B bacterial or fungal pathogens Phenylalanine ammonia lyase bacterial or fungal pathogens (PAL) Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial or fungal pathogens Osmotin bacterial or fungal pathogens Alpha Hordothionin bacterial or fungal pathogens Systemin bacterial or fungal pathogens Polygalacturonase inhibitors bacterial or fungal pathogens Prf regulatory gene bacterial or fungal pathogens phytoalexins bacterial or fungal pathogens B-1,3-glucanase antisense bacterial or fungal pathogens receptor kinase bacterial or fungal pathogens Hypersensitive response bacterial or fungal pathogens eliciting polypeptide Systemic acquires resistance viral, bacterial, fungal, (SAR) genes nematodal pathogens Lytic protein bacterial or fungal pathogens Lysozym bacterial or fungal pathogens Chitinases bacterial or fungal pathogens Barnase bacterial or fungal pathogens Glucanases bacterial or fungal pathogens double stranded ribonuclease viruses as Banana bunchy top virus (BBTV) Coat proteins viruses as Banana bunchy top virus (BBTV) 17 kDa or 60 kDa protein viruses as Banana bunchy top virus (BBTV) Nuclear inclusion proteins eg. viruses as Banana bunchy top a or b or Nucleoprotein virus (BBTV) Pseudoubiquitin viruses as Banana bunchy top virus (BBTV) Replicase viruses as Banana bunchy top virus (BBTV) Bacillus thuringiensis toxins, lepidoptera, aphids, mites, VIP 3, Bacillus cereus toxins, nematodes Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, nematodes Peroxidase lepidoptera, aphids, mites, nematodes Aminopeptidase inhibitors eg. lepidoptera, aphids, mites, Leucine aminopeptidase inhibitor nematodes Lectines lepidoptera, aphids, mites, nematodes Protease Inhibitors eg cystatin, lepidoptera, aphids, mites, patatin, CPTI, virgiferin nematodes ribosome inactivating protein lepidoptera, aphids, mites, nematodes stilbene synthase lepidoptera, aphids, mites, nematodes HMG-CoA reductase lepidoptera, aphids, mites, nematodes Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes CBI root knot nematodes Antifeeding principles induced nematodes eg root knot nematodes, at a nematode feeding site root cyst nematodes TABLE A15 Crop Cotton Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase Sulfonylureas, Imidazolinones, (ALS) Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase Aryloxyphenoxyalkanecarboxylic (ACCase) acids, cyclohexanediones Hydroxyphenylpyruvate Isoxazoles such as Isoxaflutol dioxygenase (HPPD) or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl Phosphinothricin transferase O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase Inhibitors of IMP and AMP (ADSL) synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan syn- thesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides, (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides or selection such as Sulfonylureas Polyphenol oxidase or Polyphenol bacterial or fungal pathogens oxidase antisense Metallothionein bacterial or fungal pathogens Ribonuclease bacterial or fungal pathogens Antifungal polypeptide AlyAFP bacterial or fungal pathogens oxalate oxidase bacterial or fungal pathogens glucose oxidase bacterial or fungal pathogens pyrrolnitrin synthesis genes bacterial or fungal pathogens serine/threonine kinases bacterial or fungal pathogens Cecropin B bacterial or fungal pathogens Phenylalanine ammonia lyase bacterial or fungal pathogens (PAL) Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial or fungal pathogens Osmotin bacterial or fungal pathogens Alpha Hordothionin bacterial or fungal pathogens Systemin bacterial or fungal pathogens Polygalacturonase inhibitors bacterial or fungal pathogens Prf regulatory gene bacterial or fungal pathogens phytoalexins bacterial or fungal pathogens B-1,3-glucanase antisense bacterial or fungal pathogens receptor kinase bacterial or fungal pathogens Hypersensitive response bacterial or fungal pathogens eliciting polypeptide Systemic acquires resistance viral, bacterial, fungal, (SAR) genes nematodal pathogens Lytic protein bacterial or fungal pathogens Lysozym bacterial or fungal pathogens Chitinases bacterial or fungal pathogens Barnase bacterial or fungal pathogens Glucanases bacterial or fungal pathogens double stranded ribonuclease viruses as wound tumor virus (WTV) Coat proteins viruses as wound tumor virus (WTV) 17 kDa or 60 kDa protein viruses as wound tumor virus (WTV) Nuclear inclusion proteins eg. viruses as wound tumor virus a or b or Nucleoprotein (WTV) Pseudoubiquitin viruses as wound tumor virus (WTV) Replicase viruses as wound tumor virus (WTV) Bacillus thuringiensis toxins, lepidoptera, aphids, mites, VIP 3, Bacillus cereus toxins, nematodes, whitefly Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, nematodes, whitefly Peroxidase lepidoptera, aphids, mites, nematodes, whitefly Aminopeptidase inhibitors eg. lepidoptera, aphids, mites, Leucine aminopeptidase inhibitor nematodes, whitefly Lectines lepidoptera, aphids, mites, nematodes, whitefly Protease Inhibitors eg cystatin, lepidoptera, aphids, mites, patatin, CPTI, virgiferin nematodes, whitefly ribosome inactivating protein lepidoptera, aphids, mites, nematodes, whitefly stilbene synthase lepidoptera, aphids, mites, nematodes, whitefly HMG-CoA reductase lepidoptera, aphids, mites, nematodes, whitefly Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes CBI root knot nematodes Antifeeding principles induced nematodes eg root knot nematodes, at a nematode feeding site root cyst nematodes TABLE A16 Crop Sugarcane Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase Sulfonylureas, Imidazolinones, (ALS) Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase Aryloxyphenoxyalkanecarboxylic (ACCase) acids, cyclohexanediones Hydroxyphenylpyruvate Isoxazoles such as Isoxaflutol dioxygenase (HPPD) or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl Phosphinothricin transferase O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase Inhibitors of IMP and AMP (ADSL) synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan synthesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides, (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides or selection such as Sulfonylureas Polyphenol oxidase or Polyphenol bacterial or fungal pathogens oxidase antisense Metallothionein bacterial or fungal pathogens Ribonuclease bacterial or fungal pathogens Antifungal polypeptide AlyAFP bacterial or fungal pathogens oxalate oxidase bacterial or fungal pathogens glucose oxidase bacterial or fungal pathogens pyrrolnitrin synthesis genes bacterial or fungal pathogens serine/threonine kinases bacterial or fungal pathogens Cecropin B bacterial or fungal pathogens Phenylalanine ammonia lyase bacterial or fungal pathogens (PAL) Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial or fungal pathogens Osmotin bacterial or fungal pathogens Alpha Hordothionin bacterial or fungal pathogens Systemin bacterial or fungal pathogens Polygalacturonase inhibitors bacterial or fungal pathogens Prf regulatory gene bacterial or fungal pathogens phytoalexins bacterial or fungal pathogens B-1,3-glucanase antisense bacterial or fungal pathogens receptor kinase bacterial or fungal pathogens Hypersensitive response bacterial or fungal pathogens eliciting polypeptide Systemic acquires resistance viral, bacterial, fungal, (SAR) genes nematodal pathogens Lytic protein bacterial or fungal pathogens Lysozym bacterial or fungal pathogens eg clavibacter Chitinases bacterial or fungal pathogens Barnase bacterial or fungal pathogens Glucanases bacterial or fungal pathogens double stranded ribonuclease viruses as SCMV, SrMV Coat proteins viruses as SCMV, SrMV 17 kDa or 60 kDa protein viruses as SCMV, SrMV Nuclear inclusion proteins eg. viruses as SCMV, SrMV a or b or Nucleoprotein Pseudoubiquitin viruses as SCMV, SrMV Replicase viruses as SCMV, SrMV Bacillus thuringiensis toxins, lepidoptera, aphids, mites, VIP 3, Bacillus cereus toxins, nematodes, whitefly, beetles Photorabdus and Xenorhabdus toxins eg mexican rice borer 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer Peroxidase lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer Aminopeptidase inhibitors eg. lepidoptera, aphids, mites, Leucine aminopeptidase inhibitor nematodes, whitefly, beetles eg mexican rice borer Lectines lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer Protease Inhibitors eg cystatin, lepidoptera, aphids, mites, patatin, CPTI, virgiferin nematodes, whitefly, beetles eg mexican rice borer ribosome inactivating protein lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer stilbene synthase lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer HMG-CoA reductase lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes CBI root knot nematodes Antifeeding principles induced nematodes eg root knot nematodes, at a nematode feeding site root cyst nematodes TABLE A17 Crop Sunflower Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase Sulfonylureas, Imidazolinones, (ALS) Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase Aryloxyphenoxyalkanecarboxylic (ACCase) acids, cyclohexanediones Hydroxyphenylpyruvate Isoxazoles such as Isoxaflutol dioxygenase (HPPD) or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl Phosphinothricin transferase O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase Inhibitors of IMP and AMP (ADSL) synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan syn- thesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides, (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides or selection such as Sulfonylureas Polyphenol oxidase or Polyphenol bacterial or fungal pathogens oxidase antisense Metallothionein bacterial or fungal pathogens Ribonuclease bacterial or fungal pathogens Antifungal polypeptide AlyAFP bacterial or fungal pathogens oxalate oxidase bacterial or fungal pathogens eg sclerotinia glucose oxidase bacterial or fungal pathogens pyrrolnitrin synthesis genes bacterial or fungal pathogens serine/threonine kinases bacterial or fungal pathogens Cecropin B bacterial or fungal pathogens Phenylalanine ammonia lyase bacterial or fungal pathogens (PAL) Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial or fungal pathogens Osmotin bacterial or fungal pathogens Alpha Hordothionin bacterial or fungal pathogens Systemin bacterial or fungal pathogens Polygalacturonase inhibitors bacterial or fungal pathogens Prf regulatory gene bacterial or fungal pathogens phytoalexins bacterial or fungal pathogens B-1,3-glucanase antisense bacterial or fungal pathogens receptor kinase bacterial or fungal pathogens Hypersensitive response bacterial or fungal pathogens eliciting polypeptide Systemic acquires resistance viral, bacterial, fungal, (SAR) genes nematodal pathogens Lytic protein bacterial or fungal pathogens Lysozym bacterial or fungal pathogens Chitinases bacterial or fungal pathogens Barnase bacterial or fungal pathogens Glucanases bacterial or fungal pathogens double stranded ribonuclease viruses as CMV, TMV Coat proteins viruses as CMV, TMV 17 kDa or 60 kDa protein viruses as CMV, TMV Nuclear inclusion proteins eg. viruses as CMV, TMV a or b or Nucleoprotein Pseudoubiquitin viruses as CMV, TMV Replicase viruses as CMV, TMV Bacillus thuringiensis toxins, lepidoptera, aphids, mites, VIP 3, Bacillus cereus toxins, nematodes, whitefly, beetles Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, nematodes, whitefly, beetles Peroxidase lepidoptera, aphids, mites, nematodes, whitefly, beetles Aminopeptidase inhibitors eg. lepidoptera, aphids, mites, Leucine aminopeptidase inhibitor nematodes, whitefly, beetles Lectines lepidoptera, aphids, mites, nematodes, whitefly, beetles Protease Inhibitors eg cystatin, lepidoptera, aphids, mites, patatin, CPTI, virgiferin nematodes, whitefly, beetles ribosome inactivating protein lepidoptera, aphids, mites, nematodes, whitefly, beetles stilbene synthase lepidoptera, aphids, mites, nematodes, whitefly, beetles HMG-CoA reductase lepidoptera, aphids, mites, nematodes, whitefly, beetles Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes CBI root knot nematodes Antifeeding principles induced nematodes eg root knot nematodes, at a nematode feeding site root cyst nematodes TABLE A18 Crop Sugarbeet, Beet root Effected target or expressed principle(s) Crop phenotype/Tolerance to Acetolactate synthase Sulfonylureas, Imidazolinones, (ALS) Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides AcetylCoA Carboxylase Aryloxyphenoxyalkanecarboxylic (ACCase) acids, cyclohexanediones Hydroxyphenylpyruvate Isoxazoles such as Isoxaflutol dioxygenase (HPPD) or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin acetyl Phosphinothricin transferase O-Methyl transferase altered lignin levels Glutamine synthetase Glufosinate, Bialaphos Adenylosuccinate Lyase Inhibitors of IMP and AMP (ADSL) synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Anthranilate Synthase Inhibitors of tryptophan syn- thesis and catabolism Nitrilase 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Glyphosate or sulfosate Synthase (EPSPS) Glyphosate oxidoreductase Glyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides, (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides or selection such as Sulfonylureas Polyphenol oxidase or Polyphenol bacterial or fungal pathogens oxidase antisense Metallothionein bacterial or fungal pathogens Ribonuclease bacterial or fungal pathogens Antifungal polypeptide AlyAFP bacterial or fungal pathogens oxalate oxidase bacterial or fungal pathogens eg sclerotinia glucose oxidase bacterial or fungal pathogens pyrrolnitrin synthesis genes bacterial or fungal pathogens serine/threonine kinases bacterial or fungal pathogens Cecropin B bacterial or fungal pathogens Phenylalanine ammonia lyase bacterial or fungal pathogens (PAL) Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial or fungal pathogens Osmotin bacterial or fungal pathogens Alpha Hordothionin bacterial or fungal pathogens Systemin bacterial or fungal pathogens Polygalacturonase inhibitors bacterial or fungal pathogens Prf regulatory gene bacterial or fungal pathogens phytoalexins bacterial or fungal pathogens B-1,3-glucanase antisense bacterial or fungal pathogens AX + WIN proteins bacterial or fungal pathogens like Cercospora beticola receptor kinase bacterial or fungal pathogens Hypersensitive response bacterial or fungal pathogens eliciting polypeptide Systemic acquires resistance viral, bacterial, fungal, (SAR) genes nematodal pathogens Lytic protein bacterial or fungal pathogens Lysozym bacterial or fungal pathogens Chitinases bacterial or fungal pathogens Barnase bacterial or fungal pathogens Glucanases bacterial or fungal pathogens double stranded ribonuclease viruses as BNYVV Coat proteins viruses as BNYVV 17 kDa or 60 kDa protein viruses as BNYVV Nuclear inclusion proteins eg. viruses as BNYVV a or b or Nucleoprotein Pseudoubiquitin viruses as BNYVV Replicase viruses as BNYVV Bacillus thuringiensis toxins, lepidoptera, aphids, mites, VIP 3, Bacillus cereus toxins, nematodes, whitefly, beetles, Photorabdus and Xenorhabdus toxins rootflies 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies Peroxidase lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies Aminopeptidase inhibitors eg. lepidoptera, aphids, mites, Leucine aminopeptidase inhibitor nematodes, whitefly, beetles, rootflies Lectines lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies Protease Inhibitors eg cystatin, lepidoptera, aphids, mites, patatin, CPTI, virgiferin nematodes, whitefly, beetles, rootflies ribosome inactivating protein lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies stilbene synthase lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies HMG-CoA reductase lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies Cyst nematode hatching stimulus cyst nematodes Barnase nematodes eg root knot nematodes and cyst nematodes Beet cyst nematode resistance cyst nematodes locus CBI root knot nematodes Antifeeding principles induced nematodes eg root knot nematodes, at a nematode feeding site root cyst nematodes The abovementioned animal pests which can be controlled by the method according to the invention include, for example, insects, representatives of the order acarina and representatives of the class nematoda; especially from the order Lepidoptera Acleris spp., Adoxophyes spp., especially Adoxophyes reticulana; Aegeria spp., Agrotis spp., especially Agrotis spinifera; Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyrotaenia spp., Autographa spp., Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., especially Cydia pomonella; Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., especially E. Khüniella; Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., especially H. Virescens und H. zea; Hellula undalis, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesiaspp., Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Operophtera spp., Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Pectinophora spp., Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostelia, Prays spp., Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodopteralittoralis, Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni and Yponomeuta spp.; from the order Coleoptera, for example Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp., Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Oryzaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. and Trogoderma spp.; from the order Orthoptera, for example Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. and Schistocerca spp.; from the order Isoptera, for example Reticulitermes spp.; from the order Psocoptera, for example Liposcelis spp.; from the order Anoplura, for example Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.; from the order Mallophaga, for example Damalinea spp. and Trichodectes spp.; from the order Thysanoptera, for example Frankliniella spp., Hercinothrips spp., Taeniothrips spp., Thrips palmi, Thrips tabaci and Scirtothrips aurantii; from the order Heteroptera, for example Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp. Eurygaster spp. Leptocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotinophara spp. and Triatoma spp.; from the order Homoptera, for example Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella aurantii, Aphididae, Aphis craccivora, A. fabae, A. gosypii; Aspidiotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma lanigerum, Erythroneura spp., Gascardia spp., Laodelphax spp., Lecanium corni, Lepidosaphes spp., Macrosiphus spp., Myzus spp., especially M. persicae; Nephotettix spp., especially N. cincticeps; Nilaparvata spp., especially N. lugens; Paratoria spp., Pemphigus spp., Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., especially P. Fragilis, P. citriculus and P. comstocki; Psylla spp., especially P. pyri; Pulvinaria aethiopica, Quadraspidiotus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Trialeurodes vaporariorum, Trioza erytreae and Unaspis citri; from the order Hymenoptera, for example Acromyrmex, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Solenopsis spp. and Vespa spp.; from the order Diptera, for example Aedes spp., Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Drosophila melanogaster, Fannia spp., Gastrophilus spp., Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. and Tipula spp.; from the order Siphonaptera, for example Ceratophyllus spp. and Xenopsylla cheopis; from the order Thysanura, for example Lepisma saccharina and from the order Acarina, for example Acarus siro, Aceria sheldoni; Aculus spp., especially A. schlechtendali; Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., especially B. californicus and B. phoenicis; Bryobia praetiosa, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Eotetranychus spp., especially E. carpini and E. orientalis; Eriophyes spp., especially E. vitis; Hyalomma spp., Ixodes spp., Olygonychus pratensis, Ornithodoros spp., Panonychus spp., especially P. ulmi and P. citri; Phyllocoptruta spp., especially P. oleivora; Polyphagotarsonemus spp., especially P. latus; Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Tarsonemus spp. and Tetranychus spp., in particular T. urticae, T. cinnabarinus and T. Kanzawai; representatives of the class Nematoda; (1) nematodes selected from the group consisting of root knot nematodes, cyst-forming nematodes, stem eelworms and foliar nematodes; (2) nematodes selected from the group consisting of Anguina spp.; Aphelenchoides spp.; Ditylenchus spp.; Globodera spp., for example Globodera rostochiensis; Heterodera spp., for example Heterodera avenae, Heterodera glycines, Heterodera schachtii or Heterodera trifolii; Longidorus spp.; Meloidogyne spp., for example Meloidogyne incognita or Meloidogyne javanica; Pratylenchus, for example Pratylenchus neglectans or Pratylenchus penetrans; Radopholus spp., for example Radopholus similis; Trichodorus spp.; Tylenchulus, for example Tylenchulus semipenetrans; and Xiphinema spp.; or (3) nematodes selected from the group consisting of Heterodera spp., for example Heterodera glycines; and Meloidogyne spp., for example Meloidogyne incognita. The method according to the invention allows pests of the abovementioned type to be controlled, i.e. contained or destroyed, which occur, in particular, on transgenic plants, mainly useful plants and ornamentals in agriculture, in horticulture and in forests, or on parts, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, the protection against these pests in some cases even extending to plant parts which form at a later point in time. The method according to the invention can be employed advantageously for controlling pests in rice, cereals such as maize or sorghum; in fruit, for example stone fruit, pome fruit and soft fruit such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries and blackberries; in legumes such as beans, lentils, peas or soya beans; in oil crops such as oilseed rape, mustard, poppies, olives, sunflowers, coconuts, castor-oil plants, cacao or peanuts; in the marrow family such as pumpkins, cucumbers or melons; in fibre plants such as cotton, flax, hemp or jute; in citrus fruit such as oranges, lemons, grapefruit or tangerines; in vegetables such as spinach, lettuce, asparagus, cabbage species, carrots, onions, tomatoes, potatoes, beet or capsicum; in the laurel family such as avocado, Cinnamonium or camphor; or in tobacco, nuts, coffee, egg plants, sugar cane, tea, pepper, grapevines, hops, the banana family, latex plants or ornamentals, mainly in maize, rice, cereals, soya beans, tomatoes, cotton, potatoes, sugar beet, rice and mustard; in particular in cotton, rice, soya beans, potatoes and maize. It has emerged that the method according to the invention is valuable preventatively and/or curatively in the field of pest control even at low use concentrations of the pesticidal composition and that a very favourable biocidal spectrum is achieved thereby. Combined with a favourable compatibility of the composition employed with warm-blooded species, fish and plants, the method according to the invention can be employed against all or individual developmental stages of normally-sensitive, but also of normally-resistant, animal pests such as insects and representatives of the order Acarina, depending on the species of the transgenic crop plant to be protected from attack by pests. The insecticidal and/or acaricidal effect of the method according to the invention may become apparent directly, i.e. in a destruction of the pests which occurs immediately or only after some time has elapsed, for example, during ecdysis, or indirectly, for example as a reduced oviposition and/or hatching rate, the good action corresponding to a destruction rate (mortality) of at least 40 to 50%. Depending on the intended aims and the prevailing circumstances, the pesticides within the scope of invention, which are known per se, are emulsifiable concentrates, suspension concentrates, directly sprayable or dilutable solutions, spreadable pastes, dilute emulsions, wettable powders, soluble powders, dispersible powders, wettable powders, dusts, granules or encapsulations in polymeric substances which comprise a nitroimino- or nitroguanidino-compound. The active ingredients are employed in these compositions together with at least one of the auxiliaries conventionally used in art of formulation, such as extenders, for example solvents or solid carriers, or such as surface-active compounds (surfactants). Formulation auxiliaries which are used are, for example, solid carriers, solvents, stabilizers, “slow release” auxiliaries, colourants and, if appropriate, surface-active substances (surfactants). Suitable carriers and auxiliaries are all those substances which are conventionally used for crop protection products. Suitable auxiliaries such as solvents, solid carriers, surface-active compounds, non-ionic surfactants, cationic surfactants, anionic surfactants and other auxiliaries in the compositions employed according to the invention are, for example, those which have been described in EP-A-736 252. These compositions for controlling pests can be formulated, for example, as wettable powders, dusts, granules, solutions, emulsifiable concentrates, emulsions, suspension concentrates or aerosols. For example, the compositions are of the type described in EP-A-736 252. The action of the compositions within the scope of invention which comprise a nitroimino- or nitroguanidino-compound can be extended substantially and adapted to prevailing circumstances by adding other insecticidally, acaricidally and/or fungicidally active ingredients. Suitable examples of added active ingredients are representatives of the following classes of active ingredients: organophosphorous compounds, nitrophenols and derivatives, formamidines, ureas, carbamates, pyrethroids, chlorinated hydrocarbons; especially preferred components in mixtures are, for example, abamectin, emamectin, spinosad, pymetrozine, fenoxycarb, Ti-435, fipronil, pyriproxyfen, diazinon or diafenthiuron. As a rule, the compositions within the scope of invention comprise 0.1 to 99%, in particular 0.1 to 95%, of a nitroimino- or nitroguanidino-compound and 1 to 99.9%, in particular 5 to 99.9%, of—at least—one solid or liquid auxiliary, it being possible, as a rule, for 0 to 25%, in particular 0.1 to 20%, of the compositions to be surfactants (% in each case meaning percent by weight). While concentrated compositions are more preferred as commercial products, the end user will, as a rule, use dilute compositions which have considerably lower concentrations of active ingredient. The compositions according to the invention may also comprise other solid or liquid auxiliaries, such as stabilisers, for example epoxidized or unepoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya bean oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, and also fertilizers or other active ingredients for achieving specific effects, for example, bactericides, fungicides, nematicides, molluscicides or herbicides. The compositions according to the invention are produced in a known manner, for example prior to mixing with the auxiliary/auxiliaries by grinding, screening and/or compressing the active ingredient, for example to give a particular particle size, and by intimately mixing and/or grinding the active ingredient with the auxiliary/auxiliaries. The method according to the invention for controlling pests of the abovementioned type is carried out in a manner known per se to those skilled in the art, depending on the intended aims and prevailing circumstances, that is to say by spraying, wetting, atomizing, dusting, brushing on, seed dressing, scattering or pouring of the composition. Typical use concentrations are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm of active ingredient. The application rate may vary within wide ranges and depends on the soil constitution, the type of application (foliar application; seed dressing; application in the seed furrow), the transgenic crop plant, the pest to be controlled, the climatic circumstances prevailing in each case, and other factors determined by the type of application, timing of application and target crop. The application rates per hectare are generally 1 to 2000 g of nitroimino- or nitroguanidino-compound per hectare, in particular 10 to 1000 g/ha, preferably 10 to 500 g/ha, especially preferably 10 to 200 g/ha. A preferred type of application in the field of crop protection within the scope of invention is application to the foliage of the plants (foliar application), it being possible to adapt frequency and rate of application to the risk of infestation with the pest in question. However, the active ingredient may also enter into the plants via the root system (systemic action), by drenching the site of the plants with a liquid composition or by incorporating the active ingredient in solid form into the site of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules may be metered into the flooded paddy field. The compositions according to invention are also suitable for protecting propagation material of transgenic plants, for example seed, such as fruits, tubers or kernels, or plant cuttings, from animal pests, in particular insects and representatives of the order Acarina. The propagation material can be treated with the composition prior to application, for example, seed being dressed prior to sowing. The active ingredient may also be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by coating them with a solid composition. The composition may also be applied to the site of application when applying the propagation material, for example into the seed furrow during sowing. These treatment methods for plant propagation material and the plant propagation material treated thus are a further subject of the invention. Examples of formulations of nitroimino- or nitroguanidino-compounds which can be used in the method according to the invention, for instance solutions, granules, dusts, sprayable powders, emulsion concentrates, coated granules and suspension concentrates, are of the type as has been described in, for example, EP-A-580 553, Examples F1 to F10. BIOLOGICAL EXAMPLES TABLE B AP Control of B.1 CryIA(a) Adoxophyes spp. B.2 CryIA(a) Agrotis spp. B.3 CryIA(a) Alabama argillaceae B.4 CryIA(a) Anticarsia gemmatalis B.5 CryIA(a) Chilo spp. B.6 CryIA(a) Clysia ambiguella B.7 CryIA(a) Crocidolomia binotalis B.8 CryIA(a) Cydia spp. B.9 CryIA(a) Diparopsis castanea B.10 CryIA(a) Earias spp. B.11 CryIA(a) Ephestia spp. B.12 CryIA(a) Heliothis spp. B.13 CryIA(a) Hellula undalis B.14 CryIA(a) Keiferia lycopersicella B.15 CryIA(a) Leucoptera scitella B.16 CryIA(a) Lithocollethis spp. B.17 CryIA(a) Lobesia botrana B.18 CryIA(a) Ostrinia nubilalis B.19 CryIA(a) Pandemis spp. B.20 CryIA(a) Pectinophora gossyp. B.21 CryIA(a) Phyllocnistis citrella B.22 CryIA(a) Pieris spp. B.23 CryIA(a) Plutella xylostella B.24 CryIA(a) Scirpophaga spp. B.25 CryIA(a) Sesamia spp. B.26 CryIA(a) Sparganothis spp. B.27 CryIA(a) Spodoptera spp. B.28 CryIA(a) Tortrix spp. B.29 CryIA(a) Trichoplusia ni B.30 CryIA(a) Agriotes spp. B.31 CryIA(a) Anthonomus grandis B.32 CryIA(a) Curculio spp. B.33 CryIA(a) Diabrotica balteata B.34 CryIA(a) Leptinotarsa spp. B.35 CryIA(a) Lissorhoptrus spp. B.36 CryIA(a) Otiorhynchus spp. B.37 CryIA(a) Aleurothrixus spp. B.38 CryIA(a) Aleyrodes spp. B.39 CryIA(a) Aonidiella spp. B.40 CryIA(a) Aphididae spp. B.41 CryIA(a) Aphis spp. B.42 CryIA(a) Bemisia tabaci B.43 CryIA(a) Empoasca spp. B.44 CryIA(a) Mycus spp. B.45 CryIA(a) Nephotettix spp. B.46 CryIA(a) Nilaparvata spp. B.47 CryIA(a) Pseudococcus spp. B.48 CryIA(a) Psylla spp. B.49 CryIA(a) Quadraspidiotus spp. B.50 CryIA(a) Schizaphis spp. B.51 CryIA(a) Trialeurodes spp. B.52 CryIA(a) Lyriomyza spp. B.53 CryIA(a) Oscinella spp. B.54 CryIA(a) Phorbia spp. B.55 CryIA(a) Frankliniella spp. B.56 CryIA(a) Thrips spp. B.57 CryIA(a) Scirtothrips aurantii B.58 CryIA(a) Aceria spp. B.59 CryIA(a) Aculus spp. B.60 CryIA(a) Brevipalpus spp. B.61 CryIA(a) Panonychus spp. B.62 CryIA(a) Phyllocoptruta spp. B.63 CryIA(a) Tetranychus spp. B.64 CryIA(a) Heterodera spp. B.65 CryIA(a) Meloidogyne spp. B.66 CryIA(b) Adoxophyes spp. B.67 CryIA(b) Agrotis spp. B.68 CryIA(b) Alabama argillaceae B.69 CryIA(b) Anticarsia gemmatalis B.70 CryIA(b) Chilo spp. B.71 CryIA(b) Clysia ambiguella B.72 CryIA(b) Crocidolomia binotalis B.73 CryIA(b) Cydia spp. B.74 CryIA(b) Diparopsis castanea B.75 CryIA(b) Earias spp. B.76 CryIA(b) Ephestia spp. B.77 CryIA(b) Heliothis spp. B.78 CryIA(b) Hellula undalis B.79 CryIA(b) Keiferia lycopersicella B.80 CryIA(b) Leucoptera scitella B.81 CryIA(b) Lithocollethis spp. B.82 CryIA(b) Lobesia botrana B.83 CryIA(b) Ostrinia nubilalis B.84 CryIA(b) Pandemis spp. B.85 CryIA(b) Pectinophora gossyp. B.86 CryIA(b) Phyllocnistis citrella B.87 CryIA(b) Pieris spp. B.88 CryIA(b) Plutella xylostella B.89 CryIA(b) Scirpophaga spp. B.90 CryIA(b) Sesamia spp. B.91 CryIA(b) Sparganothis spp. B.92 CryIA(b) Spodoptera spp. B.93 CryIA(b) Tortrix spp. B.94 CryIA(b) Trichoplusia ni B.95 CryIA(b) Agriotes spp. B.96 CryIA(b) Anthonomus grandis B.97 CryIA(b) Curculio spp. B.98 CryIA(b) Diabrotica balteata B.99 CryIA(b) Leptinotarsa spp. B.100 CryIA(b) Lissorhoptrus spp. B.101 CryIA(b) Otiorhynchus spp. B.102 CryIA(b) Aleurothrixus spp. B.103 CryIA(b) Aleyrodes spp. B.104 CryIA(b) Aonidiella spp. B.105 CryIA(b) Aphididae spp. B.106 CryIA(b) Aphis spp. B.107 CryIA(b) Bemisia tabaci B.108 CryIA(b) Empoasca spp. B.109 CryIA(b) Mycus spp. B.110 CryIA(b) Nephotettix spp. B.111 CryIA(b) Nilaparvata spp. B.112 CryIA(b) Pseudococcus spp. B.113 CryIA(b) Psylla spp. B.114 CryIA(b) Quadraspidiotus spp. B.115 CryIA(b) Schizaphis spp. B.116 CryIA(b) Trialeurodes spp. B.117 CryIA(b) Lyriomyza spp. B.118 CryIA(b) Oscinella spp. B.119 CryIA(b) Phorbia spp. B.120 CryIA(b) Frankliniella spp. B.121 CryIA(b) Thrips spp. B.122 CryIA(b) Scirtothrips aurantii B.123 CryIA(b) Aceria spp. B.124 CryIA(b) Aculus spp. B.125 CryIA(b) Brevipalpus spp. B.126 CryIA(b) Panonychus spp. B.127 CryIA(b) Phyllocoptruta spp. B.128 CryIA(b) Tetranychus spp. B.129 CryIA(b) Heterodera spp. B.130 CryIA(b) Meloidogyne spp. B.131 CryIA(c) Adoxophyes spp. B.132 CryIA(c) Agrotis spp. B.133 CryIA(c) Alabama argillaceae B.134 CryIA(c) Anticarsia gemmatalis B.135 CryIA(c) Chilo spp. B.136 CryIA(c) Clysia ambiguella B.137 CryIA(c) Crocidolomia binotalis B.138 CryIA(c) Cydia spp. B.139 CryIA(c) Diparopsis castanea B.140 CryIA(c) Earias spp. B.141 CryIA(c) Ephestia spp. B.142 CryIA(c) Heliothis spp. B.143 CryIA(c) Hellula undalis B.144 CryIA(c) Keiferia lycopersicella B.145 CryIA(c) Leucoptera scitella B.146 CryIA(c) Lithocollethis spp. B.147 CryIA(c) Lobesia botrana B.148 CryIA(c) Ostrinia nubilalis B.149 CryIA(c) Pandemis spp. B.150 CryIA(c) Pectinophora gossypiella. B.151 CryIA(c) Phyllocnistis citrella B.152 CryIA(c) Pieris spp. B.153 CryIA(c) Plutella xylostella B.154 CryIA(c) Scirpophaga spp. B.155 CryIA(c) Sesamia spp. B.156 CryIA(c) Sparganothis spp. B.157 CryIA(c) Spodoptera spp. B.158 CryIA(c) Tortrix spp. B.159 CryIA(c) Trichoplusia ni B.160 CryIA(c) Agriotes spp. B.161 CryIA(c) Anthonomus grandis B.162 CryIA(c) Curculio spp. B.163 CryIA(c) Diabrotica balteata B.164 CryIA(c) Leptinotarsa spp. B.165 CryIA(c) Lissorhoptrus spp. B.166 CryIA(c) Otiorhynchus spp. B.167 CryIA(c) Aleurothrixus spp. B.168 CryIA(c) Aleyrodes spp. B.169 CryIA(c) Aonidiella spp. B.170 CryIA(c) Aphididae spp. B.171 CryIA(c) Aphis spp. B.172 CryIA(c) Bemisia tabaci B.173 CryIA(c) Empoasca spp. B.174 CryIA(c) Mycus spp. B.175 CryIA(c) Nephotettix spp. B.176 CryIA(c) Nilaparvata spp. B.177 CryIA(c) Pseudococcus spp. B.178 CryIA(c) Psylla spp. B.179 CryIA(c) Quadraspidiotus spp. B.180 CryIA(c) Schizaphis spp. B.181 CryIA(c) Trialeurodes spp. B.182 CryIA(c) Lyriomyza spp. B.183 CryIA(c) Oscinella spp. B.184 CryIA(c) Phorbia spp. B.185 CryIA(c) Frankliniella spp. B.186 CryIA(c) Thrips spp. B.187 CryIA(c) Scirtothrips aurantii B.188 CryIA(c) Aceria spp. B.189 CryIA(c) Aculus spp. B.190 CryIA(c) Brevipalpus spp. B.191 CryIA(c) Panonychus spp. B.192 CryIA(c) Phyllocoptruta spp. B.193 CryIA(c) Tetranychus spp. B.194 CryIA(c) Heterodera spp. B.195 CryIA(c) Meloidogyne spp. B.196 CryIIA Adoxophyes spp. B.197 CryIIA Agrotis spp. B.198 CryIIA Alabama argillaceae B.199 CryIIA Anticarsia gemmatalis B.200 CryIIA Chilo spp. B.201 CryIIA Clysia ambiguella B.202 CryIIA Crocidolomia binotalis B.203 CryIIA Cydia spp. B.204 CryIIA Diparopsis castanea B.205 CryIIA Earias spp. B.206 CryIIA Ephestia spp. B.207 CryIIA Heliothis spp. B.208 CryIIA Hellula undalis B.209 CryIIA Keiferia lycopersicella B.210 CryIIA Leucoptera scitella B.211 CryIIA Lithocollethis spp. B.212 CryIIA Lobesia botrana B.213 CryIIA Ostrinia nubilalis B.214 CryIIA Pandemis spp. B.215 CryIIA Pectinophora gossyp. B.216 CryIIA Phyllocnistis citrella B.217 CryIIA Pieris spp. B.218 CryIIA Plutella xylostella B.219 CryIIA Scirpophaga spp. B.220 CryIIA Sesamia spp. B.221 CryIIA Sparganothis spp. B.222 CryIIA Spodoptera spp. B.223 CryIIA Tortrix spp. B.224 CryIIA Trichoplusia ni B.225 CryIIA Agriotes spp. B.226 CryIIA Anthonomus grandis B.227 CryIIA Curculio spp. B.228 CryIIA Diabrotica balteata B.229 CryIIA Leptinotarsa spp. B.230 CryIIA Lissorhoptrus spp. B.231 CryIIA Otiorhynchus spp. B.232 CryIIA Aleurothrixus spp. B.233 CryIIA Aleyrodes spp. B.234 CryIIA Aonidiella spp. B.235 CryIIA Aphididae spp. B.236 CryIIA Aphis spp. B.237 CryIIA Bemisia tabaci B.238 CryIIA Empoasca spp. B.239 CryIIA Mycus spp. B.240 CryIIA Nephotettix spp. B.241 CryIIA Nilaparvata spp. B.242 CryIIA Pseudococcus spp. B.243 CryIIA Psylla spp. B.244 CryIIA Quadraspidiotus spp. B.245 CryIIA Schizaphis spp. B.246 CryIIA Trialeurodes spp. B.247 CryIIA Lyriomyza spp. B.248 CryIIA Oscinella spp. B.249 CryIIA Phorbia spp. B.250 CryIIA Frankliniella spp. B.251 CryIIA Thrips spp. B.252 CryIIA Scirtothrips aurantii B.253 CryIIA Aceria spp. B.254 CryIIA Aculus spp. B.255 CryIIA Brevipalpus spp. B.256 CryIIA Panonychus spp. B.257 CryIIA Phyllocoptruta spp. B.258 CryIIA Tetranychus spp. B.259 CryIIA Heterodera spp. B.260 CryIIA Meloidogyne spp. B.261 CryIIIA Adoxophyes spp. B.262 CryIIIA Agrotis spp. B.263 CryIIIA Alabama argillaceae B.264 CryIIIA Anticarsia gemmatalis B.265 CryIIIA Chilo spp. B.266 CryIIIA Clysia ambiguella B.267 CryIIIA Crocidolomia binotalis B.268 CryIIIA Cydia spp. B.269 CryIIIA Diparopsis castanea B.270 CryIIIA Earias spp. B.271 CryIIIA Ephestia spp. B.272 CryIIIA Heliothis spp. B.273 CryIIIA Hellula undalis B.274 CryIIIA Keiferia lycopersicella B.275 CryIIIA Leucoptera scitella B.276 CryIIIA Lithocollethis spp. B.277 CryIIIA Lobesia botrana B.278 CryIIIA Ostrinia nubilalis B.279 CryIIIA Pandemis spp. B.280 CryIIIA Pectinophora gossyp. B.281 CryIIIA Phyllocnistis citrella B.282 CryIIIA Pieris spp. B.283 CryIIIA Plutella xylostella B.284 CryIIIA Scirpophaga spp. B.285 CryIIIA Sesamia spp. B.286 CryIIIA Sparganothis spp. B.287 CryIIIA Spodoptera spp. B.288 CryIIIA Tortrix spp. B.289 CryIIIA Trichoplusia ni B.290 CryIIIA Agriotes spp. B.291 CryIIIA Anthonomus grandis B.292 CryIIIA Curculio spp. B.293 CryIIIA Diabrotica balteata B.294 CryIIIA Leptinotarsa spp. B.295 CryIIIA Lissorhoptrus spp. B.296 CryIIIA Otiorhynchus spp. B.297 CryIIIA Aleurothrixus spp. B.298 CryIIIA Aleyrodes spp. B.299 CryIIIA Aonidiella spp. B.300 CryIIIA Aphididae spp. B.301 CryIIIA Aphis spp. B.302 CryIIIA Bemisia tabaci B.303 CryIIIA Empoasca spp. B.304 CryIIIA Mycus spp. B.305 CryIIIA Nephotettix spp. B.306 CryIIIA Nilaparvata spp. B.307 CryIIIA Pseudococcus spp. B.308 CryIIIA Psylla spp. B.309 CryIIIA Quadraspidiotus spp. B.310 CryIIIA Schizaphis spp. B.311 CryIIIA Trialeurodes spp. B.312 CryIIIA Lyriomyza spp. B.313 CryIIIA Oscinella spp. B.314 CryIIIA Phorbia spp. B.315 CryIIIA Frankliniella spp. B.316 CryIIIA Thrips spp. B.317 CryIIIA Scirtothrips aurantii B.318 CryIIIA Aceria spp. B.319 CryIIIA Aculus spp. B.320 CryIIIA Brevipalpus spp. B.321 CryIIIA Panonychus spp. B.322 CryIIIA Phyllocoptruta spp. B.323 CryIIIA Tetranychus spp. B.324 CryIIIA Heterodera spp. B.325 CryIIIA Meloidogyne spp. B.326 CryIIIB2 Adoxophyes spp. B.327 CryIIIB2 Agrotis spp. B.328 CryIIIB2 Alabama argillaceae B.329 CryIIIB2 Anticarsia gemmatalis B.330 CryIIIB2 Chilo spp. B.331 CryIIIB2 Clysia ambiguella B.332 CryIIIB2 Crocidolomia binotalis B.333 CryIIIB2 Cydia spp. B.334 CryIIIB2 Diparopsis castanea B.335 CryIIIB2 Earias spp. B.336 CryIIIB2 Ephestia spp. B.337 CryIIIB2 Heliothis spp. B.338 CryIIIB2 Hellula undalis B.339 CryIIIB2 Keiferia lycopersicella B.340 CryIIIB2 Leucoptera scitella B.341 CryIIIB2 Lithocollethis spp. B.342 CryIIIB2 Lobesia botrana B.343 CryIIIB2 Ostrinia nubilalis B.344 CryIIIB2 Pandemis spp. B.345 CryIIIB2 Pectinophora gossyp. B.346 CryIIIB2 Phyllocnistis citrella B.347 CryIIIB2 Pieris spp. B.348 CryIIIB2 Plutella xylostella B.349 CryIIIB2 Scirpophaga spp. B.350 CryIIIB2 Sesamia spp. B.351 CryIIIB2 Sparganothis spp. B.352 CryIIIB2 Spodoptera spp. B.353 CryIIIB2 Tortrix spp. B.354 CryIIIB2 Trichoplusia ni B.355 CryIIIB2 Agriotes spp. B.356 CryIIIB2 Anthonomus grandis B.357 CryIIIB2 Curculio spp. B.358 CryIIIB2 Diabrotica balteata B.359 CryIIIB2 Leptinotarsa spp. B.360 CryIIIB2 Lissorhoptrus spp. B.361 CryIIIB2 Otiorhynchus spp. B.362 CryIIIB2 Aleurothrixus spp. B.363 CryIIIB2 Aleyrodes spp. B.364 CryIIIB2 Aonidiella spp. B.365 CryIIIB2 Aphididae spp. B.366 CryIIIB2 Aphis spp. B.367 CryIIIB2 Bemisia tabaci B.368 CryIIIB2 Empoasca spp. B.369 CryIIIB2 Mycus spp. B.370 CryIIIB2 Nephotettix spp. B.371 CryIIIB2 Nilaparvata spp. B.372 CryIIIB2 Pseudococcus spp. B.373 CryIIIB2 Psylla spp. B.374 CryIIIB2 Quadraspidiotus spp. B.375 CryIIIB2 Schizaphis spp. B.376 CryIIIB2 Trialeurodes spp. B.377 CryIIIB2 Lyriomyza spp. B.378 CryIIIB2 Oscinella spp. B.379 CryIIIB2 Phorbia spp. B.380 CryIIIB2 Frankliniella spp. B.381 CryIIIB2 Thrips spp. B.382 CryIIIB2 Scirtothrips aurantii B.383 CryIIIB2 Aceria spp. B.384 CryIIIB2 Aculus spp. B.385 CryIIIB2 Brevipalpus spp. B.386 CryIIIB2 Panonychus spp. B.387 CryIIIB2 Phyllocoptruta spp. B.388 CryIIIB2 Tetranychus spp. B.389 CryIIIB2 Heterodera spp. B.390 CryIIIB2 Meloidogyne spp. B.391 CytA Adoxophyes spp. B.392 CytA Agrotis spp. B.393 CytA Alabama argillaceae B.394 CytA Anticarsia gemmatalis B.395 CytA Chilo spp. B.396 CytA Clysia ambiguella B.397 CytA Crocidolomia binotalis B.398 CytA Cydia spp. B.399 CytA Diparopsis castanea B.400 CytA Earias spp. B.401 CytA Ephestia spp. B.402 CytA Heliothis spp. B.403 CytA Hellula undalis B.404 CytA Keiferia lycopersicella B.405 CytA Leucoptera scitella B.406 CytA Lithocollethis spp. B.407 CytA Lobesia botrana B.408 CytA Ostrinia nubilalis B.409 CytA Pandemis spp. B.410 CytA Pectinophora gossyp. B.411 CytA Phyllocnistis citrella B.412 CytA Pieris spp. B.413 CytA Plutella xylostella B.414 CytA Scirpophaga spp. B.415 CytA Sesamia spp. B.416 CytA Sparganothis spp. B.417 CytA Spodoptera spp. B.418 CytA Tortrix spp. B.419 CytA Trichoplusia ni B.420 CytA Agriotes spp. B.421 CytA Anthonomus grandis B.422 CytA Curculio spp. B.423 CytA Diabrotica balteata B.424 CytA Leptinotarsa spp. B.425 CytA Lissorhoptrus spp. B.426 CytA Otiorhynchus spp. B.427 CytA Aleurothrixus spp. B.428 CytA Aleyrodes spp. B.429 CytA Aonidiella spp. B.430 CytA Aphididae spp. B.431 CytA Aphis spp. B.432 CytA Bemisia tabaci B.433 CytA Empoasca spp. B.434 CytA Mycus spp. B.435 CytA Nephotettix spp. B.436 CytA Nilaparvata spp. B.437 CytA Pseudococcus spp. B.438 CytA Psylla spp. B.439 CytA Quadraspidiotus spp. B.440 CytA Schizaphis spp. B.441 CytA Trialeurodes spp. B.442 CytA Lyriomyza spp. B.443 CytA Oscinella spp. B.444 CytA Phorbia spp. B.445 CytA Frankliniella spp. B.446 CytA Thrips spp. B.447 CytA Scirtothrips aurantii B.448 CytA Aceria spp. B.449 CytA Aculus spp. B.450 CytA Brevipalpus spp. B.451 CytA Panonychus spp. B.452 CytA Phyllocoptruta spp. B.453 CytA Tetranychus spp. B.454 CytA Heterodera spp. B.455 CytA Meloidogyne spp. B.456 VIP3 Adoxophyes spp. B.457 VIP3 Agrotis spp. B.458 VIP3 Alabama argillaceae B.459 VIP3 Anticarsia gemmatalis B.460 VIP3 Chilo spp. B.461 VIP3 Clysia ambiguella B.462 VIP3 Crocidolomia binotalis B.463 VIP3 Cydia spp. B.464 VIP3 Diparopsis castanea B.465 VIP3 Earias spp. B.466 VIP3 Ephestia spp. B.467 VIP3 Heliothis spp. B.468 VIP3 Hellula undalis B.469 VIP3 Keiferia lycopersicella B.470 VIP3 Leucoptera scitella B.471 VIP3 Lithocollethis spp. B.472 VIP3 Lobesia botrana B.473 VIP3 Ostrinia nubilalis B.474 VIP3 Pandemis spp. B.475 VIP3 Pectinophora gossyp. B.476 VIP3 Phyllocnistis citrella B.477 VIP3 Pieris spp. B.478 VIP3 Plutella xylostella B.479 VIP3 Scirpophaga spp. B.480 VIP3 Sesamia spp. B.481 VIP3 Sparganothis spp. B.482 VIP3 Spodoptera spp. B.483 VIP3 Tortrix spp. B.484 VIP3 Trichoplusia ni B.485 VIP3 Agriotes spp. B.486 VIP3 Anthonomus grandis B.487 VIP3 Curculio spp. B.488 VIP3 Diabrotica balteata B.489 VIP3 Leptinotarsa spp. B.490 VIP3 Lissorhoptrus spp. B.491 VIP3 Otiorhynchus spp. B.492 VIP3 Aleurothrixus spp. B.493 VIP3 Aleyrodes spp. B.494 VIP3 Aonidiella spp. B.495 VIP3 Aphididae spp. B.496 VIP3 Aphis spp. B.497 VIP3 Bemisia tabaci B.498 VIP3 Empoasca spp. B.499 VIP3 Mycus spp. B.500 VIP3 Nephotettix spp. B.501 VIP3 Nilaparvata spp. B.502 VIP3 Pseudococcus spp. B.503 VIP3 Psylla spp. B.504 VIP3 Quadraspidiotus spp. B.505 VIP3 Schizaphis spp. B.506 VIP3 Trialeurodes spp. B.507 VIP3 Lyriomyza spp. B.508 VIP3 Oscinella spp. B.509 VIP3 Phorbia spp. B.510 VIP3 Frankliniella spp. B.511 VIP3 Thrips spp. B.512 VIP3 Scirtothrips aurantii B.513 VIP3 Aceria spp. B.514 VIP3 Aculus spp. B.515 VIP3 Brevipalpus spp. B.516 VIP3 Panonychus spp. B.517 VIP3 Phyllocoptruta spp. B.518 VIP3 Tetranychus spp. B.519 VIP3 Heterodera spp. B.520 VIP3 Meloidogyne spp. B.521 GL Adoxophyes spp. B.522 GL Agrotis spp. B.523 GL Alabama argillaceae B.524 GL Anticarsia gemmatalis B.525 GL Chilo spp. B.526 GL Clysia ambiguella B.527 GL Crocidolomia binotalis B.528 GL Cydia spp. B.529 GL Diparopsis castanea B.530 GL Earias spp. B.531 GL Ephestia spp. B.532 GL Heliothis spp. B.533 GL Hellula undalis B.534 GL Keiferia lycopersicella B.535 GL Leucoptera scitella B.536 GL Lithocollethis spp. B.537 GL Lobesia botrana B.538 GL Ostrinia nubilalis B.539 GL Pandemis spp. B.540 GL Pectinophora gossyp. B.541 GL Phyllocnistis citrella B.542 GL Pieris spp. B.543 GL Plutella xylostella B.544 GL Scirpophaga spp. B.545 GL Sesamia spp. B.546 GL Sparganothis spp. B.547 GL Spodoptera spp. B.548 GL Tortrix spp. B.549 GL Trichoplusia ni B.550 GL Agriotes spp. B.551 GL Anthonomus grandis B.552 GL Curculio spp. B.553 GL Diabrotica balteata B.554 GL Leptinotarsa spp. B.555 GL Lissorhoptrus spp. B.556 GL Otiorhynchus spp. B.557 GL Aleurothrixus spp. B.558 GL Aleyrodes spp. B.559 GL Aonidiella spp. B.560 GL Aphididae spp. B.561 GL Aphis spp. B.562 GL Bemisia tabaci B.563 GL Empoasca spp. B.564 GL Mycus spp. B.565 GL Nephotettix spp. B.566 GL Nilaparvata spp. B.567 GL Pseudococcus spp. B.568 GL Psylla spp. B.569 GL Quadraspidiotus spp. B.570 GL Schizaphis spp. B.571 GL Trialeurodes spp. B.572 GL Lyriomyza spp. B.573 GL Oscinella spp. B.574 GL Phorbia spp. B.575 GL Frankliniella spp. B.576 GL Thrips spp. B.577 GL Scirtothrips aurantii B.578 GL Aceria spp. B.579 GL Aculus spp. B.580 GL Brevipalpus spp. B.581 GL Panonychus spp. B.582 GL Phyllocoptruta spp. B.583 GL Tetranychus spp. B.584 GL Heterodera spp. B.585 GL Meloidogyne spp. B.586 PL Adoxophyes spp. B.587 PL Agrotis spp. B.588 PL Alabama argillaceae B.589 PL Anticarsia gemmatalis B.590 PL Chilo spp. B.591 PL Clysia ambiguella B.592 PL Crocidolomia binotalis B.593 PL Cydia spp. B.594 PL Diparopsis castanea B.595 PL Earias spp. B.596 PL Ephestia spp. B.597 PL Heliothis spp. B.598 PL Hellula undalis B.599 PL Keiferia lycopersicella B.600 PL Leucoptera scitella B.601 PL Lithocollethis spp. B.602 PL Lobesia botrana B.603 PL Ostrinia nubilalis B.604 PL Pandemis spp. B.605 PL Pectinophora gossyp. B.606 PL Phyllocnistis citrella B.607 PL Pieris spp. B.608 PL Plutella xylostella B.609 PL Scirpophaga spp. B.610 PL Sesamia spp. B.611 PL Sparganothis spp. B.612 PL Spodoptera spp. B.613 PL Tortrix spp. B.614 PL Trichoplusia ni B.615 PL Agriotes spp. B.616 PL Anthonomus grandis B.617 PL Curculio spp. B.618 PL Diabrotica balteata B.619 PL Leptinotarsa spp. B.620 PL Lissorhoptrus spp. B.621 PL Otiorhynchus spp. B.622 PL Aleurothrixus spp. B.623 PL Aleyrodes spp. B.624 PL Aonidiella spp. B.625 PL Aphididae spp. B.626 PL Aphis spp. B.627 PL Bemisia tabaci B.628 PL Empoasca spp. B.629 PL Mycus spp. B.630 PL Nephotettix spp. B.631 PL Nilaparvata spp. B.632 PL Pseudococcus spp. B.633 PL Psylla spp. B.634 PL Quadraspidiotus spp. B.635 PL Schizaphis spp. B.636 PL Trialeurodes spp. B.637 PL Lyriomyza spp. B.638 PL Oscinella spp. B.639 PL Phorbia spp. B.640 PL Frankliniella spp. B.641 PL Thrips spp. B.642 PL Scirtothrips aurantii B.643 PL Aceria spp. B.644 PL Aculus spp. B.645 PL Brevipalpus spp. B.646 PL Panonychus spp. B.647 PL Phyllocoptruta spp. B.648 PL Tetranychus spp. B.649 PL Heterodera spp. B.650 PL Meloidogyne spp. B.651 XN Adoxophyes spp. B.652 XN Agrotis spp. B.653 XN Alabama argillaceae B.654 XN Anticarsia gemmatalis B.655 XN Chilo spp. B.656 XN Clysia ambiguella B.657 XN Crocidolomia binotalis B.658 XN Cydia spp. B.659 XN Diparopsis castanea B.660 XN Earias spp. B.661 XN Ephestia spp. B.662 XN Heliothis spp. B.663 XN Hellula undalis B.664 XN Keiferia lycopersicella B.665 XN Leucoptera scitella B.666 XN Lithocollethis spp. B.667 XN Lobesia botrana B.668 XN Ostrinia nubilalis B.669 XN Pandemis spp. B.670 XN Pectinophora gossyp. B.671 XN Phyllocnistis citrella B.672 XN Pieris spp. B.673 XN Plutella xylostella B.674 XN Scirpophaga spp. B.675 XN Sesamia spp. B.676 XN Sparganothis spp. B.677 XN Spodoptera spp. B.678 XN Tortrix spp. B.679 XN Trichoplusia ni B.680 XN Agriotes spp. B.681 XN Anthonomus grandis B.682 XN Curculio spp. B.683 XN Diabrotica balteata B.684 XN Leptinotarsa spp. B.685 XN Lissorhoptrus spp. B.686 XN Otiorhynchus spp. B.687 XN Aleurothrixus spp. B.688 XN Aleyrodes spp. B.689 XN Aonidiella spp. B.690 XN Aphididae spp. B.691 XN Aphis spp. B.692 XN Bemisia tabaci B.693 XN Empoasca spp. B.694 XN Mycus spp. B.695 XN Nephotettix spp. B.696 XN Nilaparvata spp. B.697 XN Pseudococcus spp. B.698 XN Psylla spp. B.699 XN Quadraspidiotus spp. B.700 XN Schizaphis spp. B.701 XN Trialeurodes spp. B.702 XN Lyriomyza spp. B.703 XN Oscinella spp. B.704 XN Phorbia spp. B.705 XN Frankliniella spp. B.706 XN Thrips spp. B.707 XN Scirtothrips aurantii B.708 XN Aceria spp. B.709 XN Aculus spp. B.710 XN Brevipalpus spp. B.711 XN Panonychus spp. B.712 XN Phyllocoptruta spp. B.713 XN Tetranychus spp. B.714 XN Heterodera spp. B.715 XN Meloidogyne spp. B.716 PInh. Adoxophyes spp. B.717 PInh. Agrotis spp. B.718 PInh. Alabama argillaceae B.719 PInh. Anticarsia gemmatalis B.720 PInh. Chilo spp. B.721 PInh. Clysia ambiguella B.722 PInh. Crocidolomia binotalis B.723 PInh. Cydia spp. B.724 PInh. Diparopsis castanea B.725 PInh. Earias spp. B.726 PInh. Ephestia spp. B.727 PInh. Heliothis spp. B.728 PInh. Hellula undalis B.729 PInh. Keiferia lycopersicella B.730 PInh. Leucoptera scitella B.731 PInh. Lithocollethis spp. B.732 PInh. Lobesia botrana B.733 PInh. Ostrinia nubilalis B.734 PInh. Pandemis spp. B.735 PInh. Pectinophora gossyp. B.736 PInh. Phyllocnistis citrella B.737 PInh. Pieris spp. B.738 PInh. Plutella xylostella B.739 PInh. Scirpophaga spp. B.740 PInh. Sesamia spp. B.741 PInh. Sparganothis spp. B.742 PInh. Spodoptera spp. B.743 PInh. Tortrix spp. B.744 PInh. Trichoplusia ni B.745 PInh. Agriotes spp. B.746 PInh. Anthonomus grandis B.747 PInh. Curculio spp. B.748 PInh. Diabrotica balteata B.749 PInh. Leptinotarsa spp. B.750 PInh. Lissorhoptrus spp. B.751 PInh. Otiorhynchus spp. B.752 PInh. Aleurothrixus spp. B.753 PInh. Aleyrodes spp. B.754 PInh. Aonidiella spp. B.755 PInh. Aphididae spp. B.756 PInh. Aphis spp. B.757 PInh. Bemisia tabaci B.758 PInh. Empoasca spp. B.759 PInh. Mycus spp. B.760 PInh. Nephotettix spp. B.761 PInh. Nilaparvata spp. B.762 PInh. Pseudococcus spp. B.763 PInh. Psylla spp. B.764 PInh. Quadraspidiotus spp. B.765 PInh. Schizaphis spp. B.766 PInh. Trialeurodes spp. B.767 PInh. Lyriomyza spp. B.768 PInh. Oscinella spp. B.769 PInh. Phorbia spp. B.770 PInh. Frankliniella spp. B.771 PInh. Thrips spp. B.772 PInh. Scirtothrips aurantii B.773 PInh. Aceria spp. B.774 PInh. Aculus spp. B.775 PInh. Brevipalpus spp. B.776 PInh. Panonychus spp. B.777 PInh. Phyllocoptruta spp. B.778 PInh. Tetranychus spp. B.779 PInh. Heterodera spp. B.780 PInh. Meloidogyne spp. B.781 PLec. Adoxophyes spp. B.782 PLec. Agrotis spp. B.783 PLec. Alabama argillaceae B.784 PLec. Anticarsia gemmatalis B.785 PLec. Chilo spp. B.786 PLec. Clysia ambiguella B.787 PLec. Crocidolomia binotalis B.788 PLec. Cydia spp. B.789 PLec. Diparopsis castanea B.790 PLec. Earias spp. B.791 PLec. Ephestia spp. B.792 PLec. Heliothis spp. B.793 PLec. Hellula undalis B.794 PLec. Keiferia lycopersicella B.795 PLec. Leucoptera scitella B.796 PLec. Lithocollethis spp. B.797 PLec. Lobesia botrana B.798 PLec. Ostrinia nubilalis B.799 PLec. Pandemis spp. B.800 PLec. Pectinophora gossyp. B.801 PLec. Phyllocnistis citrella B.802 PLec. Pieris spp. B.803 PLec. Plutella xylostella B.804 PLec. Scirpophaga spp. B.805 PLec. Sesamia spp. B.806 PLec. Sparganothis spp. B.807 PLec. Spodoptera spp. B.808 PLec. Tortrix spp. B.809 PLec. Trichoplusia ni B.810 PLec. Agriotes spp. B.811 PLec. Anthonomus grandis B.812 PLec. Curculio spp. B.813 PLec. Diabrotica balteata B.814 PLec. Leptinotarsa spp. B.815 PLec. Lissorhoptrus spp. B.816 PLec. Otiorhynchus spp. B.817 PLec. Aleurothrixus spp. B.818 PLec. Aleyrodes spp. B.819 PLec. Aonidiella spp. B.820 PLec. Aphididae spp. B.821 PLec. Aphis spp. B.822 PLec. Bemisia tabaci B.823 PLec. Empoasca spp. B.824 PLec. Mycus spp. B.825 PLec. Nephotettix spp. B.826 PLec. Nilaparvata spp. B.827 PLec. Pseudococcus spp. B.828 PLec. Psylla spp. B.829 PLec. Quadraspidiotus spp. B.830 PLec. Schizaphis spp. B.831 PLec. Trialeurodes spp. B.832 PLec. Lyriomyza spp. B.833 PLec. Oscinella spp. B.834 PLec. Phorbia spp. B.835 PLec. Frankliniella spp. B.836 PLec. Thrips spp. B.837 PLec. Scirtothrips aurantii B.838 PLec. Aceria spp. B.839 PLec. Aculus spp. B.840 PLec. Brevipalpus spp. B.841 PLec. Panonychus spp. B.842 PLec. Phyllocoptruta spp. B.843 PLec. Tetranychus spp. B.844 PLec. Heterodera spp. B.845 PLec. Meloidogyne spp. B.846 Aggl. Adoxophyes spp. B.847 Aggl. Agrotis spp. B.848 Aggl. Alabama argillaceae B.849 Aggl. Anticarsia gemmatalis B.850 Aggl. Chilo spp. B.851 Aggl. Clysia ambiguella B.852 Aggl. Crocidolomia binotalis B.853 Aggl. Cydia spp. B.854 Aggl. Diparopsis castanea B.855 Aggl. Earias spp. B.856 Aggl. Ephestia spp. B.857 Aggl. Heliothis spp. B.858 Aggl. Hellula undalis B.859 Aggl. Keiferia lycopersicella B.860 Aggl. Leucoptera scitella B.861 Aggl. Lithocollethis spp. B.862 Aggl. Lobesia botrana B.863 Aggl. Ostrinia nubilalis B.864 Aggl. Pandemis spp. B.865 Aggl. Pectinophora gossyp. B.866 Aggl. Phyllocnistis citrella B.867 Aggl. Pieris spp. B.868 Aggl. Plutella xylostella B.869 Aggl. Scirpophaga spp. B.870 Aggl. Sesamia spp. B.871 Aggl. Sparganothis spp. B.872 Aggl. Spodoptera spp. B.873 Aggl. Tortrix spp. B.874 Aggl. Trichoplusia ni B.875 Aggl. Agriotes spp. B.876 Aggl. Anthonomus grandis B.877 Aggl. Curculio spp. B.878 Aggl. Diabrotica balteata B.879 Aggl. Leptinotarsa spp. B.880 Aggl. Lissorhoptrus spp. B.881 Aggl. Otiorhynchus spp. B.882 Aggl. Aleurothrixus spp. B.883 Aggl. Aleyrodes spp. B.884 Aggl. Aonidiella spp. B.885 Aggl. Aphididae spp. B.886 Aggl. Aphis spp. B.887 Aggl. Bemisia tabaci B.888 Aggl. Empoasca spp. B.889 Aggl. Mycus spp. B.890 Aggl. Nephotettix spp. B.891 Aggl. Nilaparvata spp. B.892 Aggl. Pseudococcus spp. B.893 Aggl. Psylla spp. B.894 Aggl. Quadraspidiotus spp. B.895 Aggl. Schizaphis spp. B.896 Aggl. Trialeurodes spp. B.897 Aggl. Lyriomyza spp. B.898 Aggl. Oscinella spp. B.899 Aggl. Phorbia spp. B.900 Aggl. Frankliniella spp. B.901 Aggl. Thrips spp. B.902 Aggl. Scirtothrips aurantii B.903 Aggl. Aceria spp. B.904 Aggl. Aculus spp. B.905 Aggl. Brevipalpus spp. B.906 Aggl. Panonychus spp. B.907 Aggl. Phyllocoptruta spp. B.908 Aggl. Tetranychus spp. B.909 Aggl. Heterodera spp. B.910 Aggl. Meloidogyne spp. B.911 CO Adoxophyes spp. B.912 CO Agrotis spp. B.913 CO Alabama argillaceae B.914 CO Anticarsia gemmatalis B.915 CO Chilo spp. B.916 CO Clysia ambiguella B.917 CO Crocidolomia binotalis B.918 CO Cydia spp. B.919 CO Diparopsis castanea B.920 CO Earias spp. B.921 CO Ephestia spp. B.922 CO Heliothis spp. B.923 CO Hellula undalis B.924 CO Keiferia lycopersicella B.925 CO Leucoptera scitella B.926 CO Lithocollethis spp. B.927 CO Lobesia botrana B.928 CO Ostrinia nubilalis B.929 CO Pandemis spp. B.930 CO Pectinophora gossyp. B.931 CO Phyllocnistis citrella B.932 CO Pieris spp. B.933 CO Plutella xylostella B.934 CO Scirpophaga spp. B.935 CO Sesamia spp. B.936 CO Sparganothis spp. B.937 CO Spodoptera spp. B.938 CO Tortrix spp. B.939 CO Trichoplusia ni B.940 CO Agriotes spp. B.941 CO Anthonomus grandis B.942 CO Curculio spp. B.943 CO Diabrotica balteata B.944 CO Leptinotarsa spp. B.945 CO Lissorhoptrus spp. B.946 CO Otiorhynchus spp. B.947 CO Aleurothrixus spp. B.948 CO Aleyrodes spp. B.949 CO Aonidiella spp. B.950 CO Aphididae spp. B.951 CO Aphis spp. B.952 CO Bemisia tabaci B.953 CO Empoasca spp. B.954 CO Mycus spp. B.955 CO Nephotettix spp. B.956 CO Nilaparvata spp. B.957 CO Pseudococcus spp. B.958 CO Psylla spp. B.959 CO Quadraspidiotus spp. B.960 CO Schizaphis spp. B.961 CO Trialeurodes spp. B.962 CO Lyriomyza spp. B.963 CO Oscinella spp. B.964 CO Phorbia spp. B.965 CO Frankliniella spp. B.966 CO Thrips spp. B.967 CO Scirtothrips aurantii B.968 CO Aceria spp. B.969 CO Aculus spp. B.970 CO Brevipalpus spp. B.971 CO Panonychus spp. B.972 CO Phyllocoptruta spp. B.973 CO Tetranychus spp. B.974 CO Heterodera spp. B.975 CO Meloidogyne spp. B.976 CH Adoxophyes spp. B.977 CH Agrotis spp. B.978 CH Alabama argillaceae B.979 CH Anticarsia gemmatalis B.980 CH Chilo spp. B.981 CH Clysia ambiguella B.982 CH Crocidolomia binotalis B.983 CH Cydia spp. B.984 CH Diparopsis castanea B.985 CH Earias spp. B.986 CH Ephestia spp. B.987 CH Heliothis spp. B.988 CH Hellula undalis B.989 CH Keiferia lycopersicella B.990 CH Leucoptera scitella B.991 CH Lithocollethis spp. B.992 CH Lobesia botrana B.993 CH Ostrinia nubilalis B.994 CH Pandemis spp. B.995 CH Pectinophora gossyp. B.996 CH Phyllocnistis citrella B.997 CH Pieris spp. B.998 CH Plutella xylostella B.999 CH Scirpophaga spp. B.1000 CH Sesamia spp. B.1001 CH Sparganothis spp. B.1002 CH Spodoptera spp. B.1003 CH Tortrix spp. B.1004 CH Trichoplusia ni B.1005 CH Agriotes spp. B.1006 CH Anthonomus grandis B.1007 CH Curculio spp. B.1008 CH Diabrotica balteata B.1009 CH Leptinotarsa spp. B.1010 CH Lissorhoptrus spp. B.1011 CH Otiorhynchus spp. B.1012 CH Aleurothrixus spp. B.1013 CH Aleyrodes spp. B.1014 CH Aonidiella spp. B.1015 CH Aphididae spp. B.1016 CH Aphis spp. B.1017 CH Bemisia tabaci B.1018 CH Empoasca spp. B.1019 CH Mycus spp. B.1020 CH Nephotettix spp. B.1021 CH Nilaparvata spp. B.1022 CH Pseudococcus spp. B.1023 CH Psylla spp. B.1024 CH Quadraspidiotus spp. B.1025 CH Schizaphis spp. B.1026 CH Trialeurodes spp. B.1027 CH Lyriomyza spp. B.1028 CH Oscinella spp. B.1029 CH Phorbia spp. B.1030 CH Frankliniella spp. B.1031 CH Thrips spp. B.1032 CH Scirtothrips aurantii B.1033 CH Aceria spp. B.1034 CH Aculus spp. B.1035 CH Brevipalpus spp. B.1036 CH Panonychus spp. B.1037 CH Phyllocoptruta spp. B.1038 CH Tetranychus spp. B.1039 CH Heterodera spp. B.1040 CH Meloidogyne spp. B.1041 SS Adoxophyes spp. B.1042 SS Agrotis spp. B.1043 SS Alabama argillaceae B.1044 SS Anticarsia gemmatalis B.1045 SS Chilo spp. B.1046 SS Clysia ambiguella B.1047 SS Crocidolomia binotalis B.1048 SS Cydia spp. B.1049 SS Diparopsis castanea B.1050 SS Earias spp. B.1051 SS Ephestia spp. B.1052 SS Heliothis spp. B.1053 SS Hellula undalis B.1054 SS Keiferia lycopersicella B.1055 SS Leucoptera scitella B.1056 SS Lithocollethis spp. B.1057 SS Lobesia botrana B.1058 SS Ostrinia nubilalis B.1059 SS Pandemis spp. B.1060 SS Pectinophora gossyp. B.1061 SS Phyllocnistis citrella B.1062 SS Pieris spp. B.1063 SS Plutella xylostella B.1064 SS Scirpophaga spp. B.1065 SS Sesamia spp. B.1066 SS Sparganothis spp. B.1067 SS Spodoptera spp. B.1068 SS Tortrix spp. B.1069 SS Trichoplusia ni B.1070 SS Agriotes spp. B.1071 SS Anthonomus grandis B.1072 SS Curculio spp. B.1073 SS Diabrotica balteata B.1074 SS Leptinotarsa spp. B.1075 SS Lissorhoptrus spp. B.1076 SS Otiorhynchus spp. B.1077 SS Aleurothrixus spp. B.1078 SS Aleyrodes spp. B.1079 SS Aonidiella spp. B.1080 SS Aphididae spp. B.1081 SS Aphis spp. B.1082 SS Bemisia tabaci B.1083 SS Empoasca spp. B.1084 SS Mycus spp. B.1085 SS Nephotettix spp. B.1086 SS Nilaparvata spp. B.1087 SS Pseudococcus spp. B.1088 SS Psylla spp. B.1089 SS Quadraspidiotus spp. B.1090 SS Schizaphis spp. B.1091 SS Trialeurodes spp. B.1092 SS Lyriomyza spp. B.1093 SS Oscinella spp. B.1094 SS Phorbia spp. B.1095 SS Frankliniella spp. B.1096 SS Thrips spp. B.1097 SS Scirtothrips aurantii B.1098 SS Aceria spp. B.1099 SS Aculus spp. B.1100 SS Brevipalpus spp. B.1101 SS Panonychus spp. B.1102 SS Phyllocoptruta spp. B.1103 SS Tetranychus spp. B.1104 SS Heterodera spp. B.1105 SS Meloidogyne spp. B.1106 HO Adoxophyes spp. B.1107 HO Agrotis spp. B.1108 HO Alabama argillaceae B.1109 HO Anticarsia gemmatalis B.1110 HO Chilo spp. B.1111 HO Clysia ambiguella B.1112 HO Crocidolomia binotalis B.1113 HO Cydia spp. B.1114 HO Diparopsis castanea B.1115 HO Earias spp. B.1116 HO Ephestia spp. B.1117 HO Heliothis spp. B.1118 HO Hellula undalis B.1119 HO Keiferia lycopersicella B.1120 HO Leucoptera scitella B.1121 HO Lithocollethis spp. B.1122 HO Lobesia botrana B.1123 HO Ostrinia nubilalis B.1124 HO Pandemis spp. B.1125 HO Pectinophora gossypiella B.1126 HO Phyllocnistis citrella B.1127 HO Pieris spp. B.1128 HO Plutella xylostella B.1129 HO Scirpophaga spp. B.1130 HO Sesamia spp. B.1131 HO Sparganothis spp. B.1132 HO Spodoptera spp. B.1133 HO Tortrix spp. B.1134 HO Trichoplusia ni B.1135 HO Agriotes spp. B.1136 HO Anthonomus grandis B.1137 HO Curculio spp. B.1138 HO Diabrotica balteata B.1139 HO Leptinotarsa spp. B.1140 HO Lissorhoptrus spp. B.1141 HO Otiorhynchus spp. B.1142 HO Aleurothrixus spp. B.1143 HO Aleyrodes spp. B.1144 HO Aonidiella spp. B.1145 HO Aphididae spp. B.1146 HO Aphis spp. B.1147 HO Bemisia tabaci B.1148 HO Empoasca spp. B.1149 HO Mycus spp. B.1150 HO Nephotettix spp. B.1151 HO Nilaparvata spp. B.1152 HO Pseudococcus spp. B.1153 HO Psylla spp. B.1154 HO Quadraspidiotus spp. B.1155 HO Schizaphis spp. B.1156 HO Trialeurodes spp. B.1157 HO Lyriomyza spp. B.1158 HO Oscinella spp. B.1159 HO Phorbia spp. B.1160 HO Franklinella spp. B.1161 HO Thrips spp. B.1162 HO Scirtothrips aurantii B.1163 HO Aceria spp. B.1164 HO Aculus spp. B.1165 HO Brevipalpus spp. B.1166 HO Panonychus spp. B.1167 HO Phyllocoptruta spp. B.1168 HO Tetranychus spp. B.1169 HO Heterodera spp. B.1170 HO Meloidogyne spp. The following abreviations are used in the table: Active Principle of transgenic plant: AP Photorhabdus luminescens: PL Xenorhabdus nematophilus: XN Proteinase Inhibitors: PInh. Plant lectins PLec. Agglutinins: Aggl. 3-Hydroxysteroid oxidase: HO Cholesteroloxidase: CO Chitinase: CH Glucanase: GL Stilbensynthase SS Biological Examples Table 1: A method of controlling pests comprising the application of thiamethoxam to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 2: A method of controlling pests comprising the application of thiamethoxam to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 3: A method of controlling pests comprising the application of thiamethoxam to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 4: A method of controlling pests comprising the application of thiamethoxam to transgenic brassica, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 5: A method of controlling pests comprising the application of thiamethoxam to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 6: A method of controlling pests comprising the application of thiamethoxam to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 7: A method of controlling pests comprising the application of thiamethoxam to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 8: A method of controlling pests comprising the application of thiamethoxam to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 9: A method of controlling pests comprising the application of thiamethoxam to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 10: A method of controlling pests comprising the application of thiamethoxam to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 11: A method of controlling pests comprising the application of thiamethoxam to transgenic citrus trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 12: A method of controlling pests comprising the application of thiamethoxam to transgenic pome fruit trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 13: A method of controlling pests comprising the application of thiamethoxam to transgenic peppers, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 14: A method of controlling pests comprising the application of imidacloprid to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 15: A method of controlling pests comprising the application of imidacloprid to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 16: A method of controlling pests comprising the application of imidacloprid to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 17: A method of controlling pests comprising the application of imidacloprid to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 18: A method of controlling pests comprising the application of imidacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B. 1 to B. 1170 of table B. Table 19: A method of controlling pests comprising the application of imidacloprid to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 20: A method of controlling pests comprising the application of imidacloprid to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 21: A method of controlling pests comprising the application of imidacloprid to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 22: A method of controlling pests comprising the application of imidacloprid to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 23: A method of controlling pests comprising the application of imidacloprid to transgenic orange trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 24: A method of controlling pests comprising the application of imidacloprid to transgenic pome fruit, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 25: A method of controlling pests comprising the application of imidacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 26: A method of controlling pests comprising the application of imidacloprid to transgenic peppers, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 27: A method of controlling pests comprising the application of Ti-435 to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 28: A method of controlling pests comprising the application of Ti-435 to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 29: A method of controlling pests comprising the application of Ti-435 to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 30: A method of controlling pests comprising the application of Ti-435 to transgenic brassica, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 31: A method of controlling pests comprising the application of Ti-435 to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 32: A method of controlling pests comprising the application of Ti-435 to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B. 1170 of table B. Table 33: A method of controlling pests comprising the application of Ti-435 to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 34: A method of controlling pests comprising the application of Ti-435 to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 35: A method of controlling pests comprising the application of Ti-435 to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 36: A method of controlling pests comprising the application of Ti-435 to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 37: A method of controlling pests comprising the application of Ti-435 to transgenic citrus trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 38: A method of controlling pests comprising the application of Ti-435 to transgenic pome fruit trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 39: A method of controlling pests comprising the application of thiacloprid to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 40: A method of controlling pests comprising the application of thiacloprid to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 41: A method of controlling pests comprising the application of thiacloprid to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 42: A method of controlling pests comprising the application of thiacloprid to transgenic brassica, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 43: A method of controlling pests comprising the application of thiacloprid to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 44: A method of controlling pests comprising the application of thiacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 45: A method of controlling pests comprising the application of thiacloprid to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 46: A method of controlling pests comprising the application of thiacloprid to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 47: A method of controlling pests comprising the application of thiacloprid to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. Table 48: A method of controlling pests comprising the application of thiacloprid to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B. TABLE C Principle Tolerant to Crop C.1 ALS Sulfonylureas etc. *** Cotton C.2 ALS Sulfonylureas etc. *** Rice C.3 ALS Sulfonylureas etc. *** Brassica C.4 ALS Sulfonylureas etc. *** Potatoes C.5 ALS Sulfonylureas etc. *** Tomatoes C.6 ALS Sulfonylureas etc. *** Cucurbits C.7 ALS Sulfonylureas etc. *** Soybeans C.8 ALS Sulfonylureas etc. *** Maize C.9 ALS Sulfonylureas etc. *** Wheat C.10 ALS Sulfonylureas etc. *** pome fruit C.11 ALS Sulfonylureas etc. *** stone fruit C.12 ALS Sulfonylureas etc. *** citrus C.13 ACCase +++ Cotton C.14 ACCase +++ Rice C.15 ACCase +++ Brassica C.16 ACCase +++ Potatoes C.17 ACCase +++ Tomatoes C.18 ACCase +++ Cucurbits C.19 ACCase +++ Soybeans C.20 ACCase +++ Maize C.21 ACCase +++ Wheat C.22 ACCase +++ pome fruit C.23 ACCase +++ stone fruit C.24 ACCase +++ citrus C.25 HPPD Isoxaflutol, Isoxachlotol, Cotton Sulcotrion, Mesotrion C.26 HPPD Isoxaflutol, Isoxachlotol, Rice Sulcotrion, Mesotrion C.27 HPPD Isoxaflutol, Isoxachlotol, Brassica Sulcotrion, Mesotrion C.28 HPPD Isoxaflutol, Isoxachlotol, Potatoes Sulcotrion, Mesotrion C.29 HPPD Isoxaflutol, Isoxachlotol, Tomatoes Sulcotrion, Mesotrion C.30 HPPD Isoxaflutol, Isoxachlotol, Cucurbits Sulcotrion, Mesotrion C.31 HPPD Isoxaflutol, Isoxachlotol, Soybeans Sulcotrion, Mesotrion C.32 HPPD Isoxaflutol, Isoxachlotol, Maize Sulcotrion, Mesotrion C.33 HPPD Isoxaflutol, Isoxachlotol, Wheat Sulcotrion, Mesotrion C.34 HPPD Isoxaflutol, Isoxachlotol, pome fruit Sulcotrion, Mesotrion C.35 HPPD Isoxaflutol, Isoxachlotol, stone fruit Sulcotrion, Mesotrion C.36 HPPD Isoxaflutol, Isoxachlotol, citrus Sulcotrion, Mesotrion C.37 Nitrilase Bromoxynil, Ioxynil Cotton C.38 Nitrilase Bromoxynil, Ioxynil Rice C.39 Nitrilase Bromoxynil, Ioxynil Brassica C.40 Nitrilase Bromoxynil, Ioxynil Potatoes C.41 Nitrilase Bromoxynil, Ioxynil Tomatoes C.42 Nitrilase Bromoxynil, Ioxynil Cucurbits C.43 Nitrilase Bromoxynil, Ioxynil Soybeans C.44 Nitrilase Bromoxynil, Ioxynil Maize C.45 Nitrilase Bromoxynil, Ioxynil Wheat C.46 Nitrilase Bromoxynil, Ioxynil pome fruit C.47 Nitrilase Bromoxynil, Ioxynil stone fruit C.48 Nitrilase Bromoxynil, Ioxynil citrus C.49 IPS Chloroactanilides &&& Cotton C.50 IPS Chloroactanilides &&& Rice C.51 IPS Chloroactanilide &&&s Brassica C.52 IPS Chloroactanilides &&& Potatoes C.53 IPS Chloroactanilides &&& Tomatoes C.54 IPS Chloroactanilides &&& Cucurbits C.55 IPS Chloroactanilides &&& Soybeans C.56 IPS Chloroactanilides &&& Maize C.57 IPS Chloroactanilides &&& Wheat C.58 IPS Chloroactanilides &&& pome fruit C.59 IPS Chloroactanilides &&& stone fruit C.60 IPS Chloroactanilides &&& citrus C.61 HOM 2,4-D, Mecoprop-P Cotton C.62 HOM 2,4-D, Mecoprop-P Rice C.63 HOM 2,4-D, Mecoprop-P Brassica C.64 HOM 2,4-D, Mecoprop-P Potatoes C.65 HOM 2,4-D, Mecoprop-P Tomatoes C.66 HOM 2,4-D, Mecoprop-P Cucurbits C.67 HOM 2,4-D, Mecoprop-P Soybeans C.68 HOM 2,4-D, Mecoprop-P Maize C.69 HOM 2,4-D, Mecoprop-P Wheat C.70 HOM 2,4-D, Mecoprop-P pome fruit C.71 HOM 2,4-D, Mecoprop-P stone fruit C.72 HOM 2,4-D, Mecoprop-P citrus C.73 PROTOX Protox inhibitors /// Cotton C.74 PROTOX Protox inhibitors /// Rice C.75 PROTOX Protox inhibitors /// Brassica C.76 PROTOX Protox inhibitors /// Potatoes C.77 PROTOX Protox inhibitors /// Tomatoes C.78 PROTOX Protox inhibitors /// Cucurbits C.79 PROTOX Protox inhibitors /// Soybeans C.80 PROTOX Protox inhibitors /// Maize C.81 PROTOX Protox inhibitors /// Wheat C.82 PROTOX Protox inhibitors /// pome fruit C.83 PROTOX Protox inhibitors /// stone fruit C.84 PROTOX Protox inhibitors /// citrus C.85 EPSPS Glyphosate and/or Sulphosate Cotton C.86 EPSPS Glyphosate and/or Sulphosate Rice C.87 EPSPS Glyphosate and/or Sulphosate Brassica C.88 EPSPS Glyphosate and/or Sulphosate Potatoes C.89 EPSPS Glyphosate and/or Sulphosate Tomatoes C.90 EPSPS Glyphosate and/or Sulphosate Cucurbits C.91 EPSPS Glyphosate and/or Sulphosate Soybeans C.92 EPSPS Glyphosate and/or Sulphosate Maize C.93 EPSPS Glyphosate and/or Sulphosate Wheat C.94 EPSPS Glyphosate and/or Sulphosate pome fruit C.95 EPSPS Glyphosate and/or Sulphosate stone fruit C.96 EPSPS Glyphosate and/or Sulphosate citrus C.97 GS Gluphosinate and/or Bialaphos Cotton C.98 GS Gluphosinate and/or Bialaphos Rice C.99 GS Gluphosinate and/or Bialaphos Brassica C.100 GS Gluphosinate and/or Bialaphos Potatoes C.101 GS Gluphosinate and/or Bialaphos Tomatoes C.102 GS Gluphosinate and/or Bialaphos Cucurbits C.103 GS Gluphosinate and/or Bialaphos Soybeans C.104 GS Gluphosinate and/or Bialaphos Maize C.105 GS Gluphosinate and/or Bialaphos Wheat C.106 GS Gluphosinate and/or Bialaphos pome fruit C.107 GS Gluphosinate and/or Bialaphos stone fruit C.108 GS Gluphosinate and/or Bialaphos citrus Abbreviations: Acetyl-COA Carboxylase: ACCase Acetolactate Synthase: ALS Hydroxyphenylpyruvat dioxygenase: HPPD Inhibition of protein synthesis: IPS Hormone mimic: HO Glutamine Synthetase: GS Protoporphyrinogen oxidase: PROTOX 5-Enolpyruvyl-3-Phosphoshikimate Synthase: EPSPS *** Included are Sulfonylureas, Imidazolinones, Triazolopyrimidines, Dimethoxypyrimidines and N-Acylsulfonamides: Sulfonylureas such as Chlorsulfuron, Chlorimuron, Ethamethsulfuron, Metsulfuron, Primisulfuron, Prosulfuron, Triasulfuron, Cinosulfuron, Trifusulfuron, Oxasulfuron, Bensulfuron, Tribenuron, ACC 322140, Fluzasulfuron, Ethoxysulfuron, Fluzasdulfuron, Nicosulfuron, Rimsulfuron, Thifensulfuron, Pyrazosulfuron, Clopyrasulfuron, NC 330, Azimsulfuron, Imazosulfuron, Sulfosulfuron, Amidosulfuron, Flupyrsulfuron, CGA 362622 Imidazolinones such as Imazamethabenz, Imazaquin, Imazamethypyr, Imazethapyr, Imazapyr and Imazamox; Triazolopyrimidines such as DE 511, Flumetsulam and Chloransulam; Dimethoxypyrimidines such as Pyrithiobac, Pyriminiobac, Bispyribac and Pyribenzoxim. +++ Tolerant to Diclofop-methyl, Fluazifop-P-butyl, Haloxyfop-P-methyl, Haloxyfop-P-ethyl, Quizalafop-P-ethyl, clodinafop propargyl, fenoxaprop - -ethyl, - Tepraloxydim, Alloxydim, Sethoxydim, Cycloxydim, Cloproxydim, Tralkoxydrim, Butoxydim, Caloxydim, Clefoxydim, Clethodim. &&& Chloroacetanilides such as Alachlor Acetochlor, Dimethenamid /// Protox inhibitors: For instance diphenyethers such as Acifluorfen, Aclonifen, Bifenox, Chlornitrofen, Ethoxyfen, Fluoroglycofen, Fomesafen, Lactofen, Oxyfluorfen; Imides such as Azafenidin, Carfentrazone-ethyl, Cinidon-ethyl, Flumiclorac-pentyl, Flumioxazin, Fluthiacetmethyl, Oxadiargyl, Oxadiazon, Pentoxazone, Sulfentrazone, Imides and others, such as Flumipropyn, Flupropacil, Nipyraclofen and Thidiazimin; and further Fluzazolate and Pyraflufen-ethyl Biological Examples Table 49: A method of controlling representatives of the genus Adoxophyes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 50: A method of controlling representatives of the genus Agrotis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 51: A method of controlling Alabama argillaceae comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant, and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 52: A method of controlling Anticarsia gemmatalis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 53: A method of controlling representatives of the genus Chilo comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 54: A method of controlling Clysia ambiguella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 55: A method of controlling representatives of the genus Cnephalocrocis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 56: A method of controlling Crocidolomia binotalis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 57: A method of controlling representatives of the genus Cydia comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 58: A method of controlling Diparopsis castanea comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 59: A method of controlling representatives of the genus Earias comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 60: A method of controlling representatives of the genus Ephestia comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 61: A method of controlling representatives of the genus Heliothis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 62: A method of controlling Hellula undalis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 63: A method of controlling Keiferia lycopersicella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 64: A method of controlling Leucoptera scitella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 65: A method of controlling representatives of the genus Lithocollethis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 66: A method of controlling Lobesia botrana comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 67: A method of controlling Ostrinia nubilalis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 68: A method of controlling representatives of the genus Pandemis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 69: A method of controlling Pectinophora gossypiella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 70: A method of controlling Phyllocnistis citrella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 71: A method of controlling representatives of the genus Pieris comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 72: A method of controlling Plutella xylostella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 73: A method of controlling representatives of the genus Scirpophaga comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 74: A method of controlling representatives of the genus Sesamia comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 75: A method of controlling representatives of the genus Sparganothis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 76: A method of controlling representatives of the genus Spodoptera comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 77: A method of controlling representatives of the genus Tortrix comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 78: A method of controlling Trichoplusia ni comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 79: A method of controlling representatives of the genus Agriotes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 80: A method of controlling Anthonomus grandis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 81: A method of controlling representatives of the genus Curculio comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 82: A method of controlling Diabrotica balteata comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 83: A method of controlling representatives of the genus Leptinotarsa comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 84: A method of controlling representatives of the genus Lissorhoptrus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 85: A method of controlling representatives of the genus Otiorhynchus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 86: A method of controlling representatives of the genus Aleurothrixus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 87: A method of controlling representatives of the genus Aleyrodes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 88: A method of controlling representatives of the genus Aonidiella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 89: A method of controlling representatives of the family Aphididae comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 90: A method of controlling representatives of the genus Aphis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 91: A method of controlling Bemisia tabaci comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 92: A method of controlling representatives of the genus Empoasca comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 93: A method of controlling representatives of the genus Mycus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 94: A method of controlling representatives of the genus Nephotettix comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 95: A method of controlling representatives of the genus Nilaparvata comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 96: A method of controlling representatives of the genus Pseudococcus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 97: A method of controlling representatives of the genus Psylla comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 98: A method of controlling representatives of the genus Quadraspidiotus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 99: A method of controlling representatives of the genus Schizaphis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 100: A method of controlling representatives of the genus Trialeurodes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 101: A method of controlling representatives of the genus Lyriomyza comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 102: A method of controlling representatives of the genus Oscinella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 103: A method of controlling representatives of the genus Phorbia comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 104: A method of controlling representatives of the genus Frankliniella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 105: A method of controlling representatives of the genus Thrips comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 106: A method of controlling Scirtothrips aurantii comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 107: A method of controlling representatives of the genus Aceria comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 108: A method of controlling representatives of the genus Aculus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 109: A method of controlling representatives of the genus Brevipalpus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 110: A method of controlling representatives of the genus Panonychus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 111: A method of controlling representatives of the genus Phyllocoptruta comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 112: A method of controlling representatives of the genus Tetranychus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 113: A method of controlling representatives of the genus Heterodera comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 114: A method of controlling representatives of the genus Meloidogyne comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 115: A method of controlling Mamestra brassica comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 116: A method of controlling representatives of the genus Adoxophyes comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 117: A method of controlling representatives of the genus Agrotis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 118: A method of controlling Alabama argillaceae comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 119: A method of controlling Anticarsia gemmatalis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 120: A method of controlling representatives of the genus Chilo comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 121: A method of controlling Clysia ambiguella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 122: A method of controlling representatives of the genus Cnephalocrocis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 123: A method of controlling Crocidolomia binotalis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 124: A method of controlling representatives of the genus Cydia comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 125: A method of controlling Diparopsis castanea comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 126: A method of controlling representatives of the genus Earias comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 127: A method of controlling representatives of the genus Ephestia comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 128: A method of controlling representatives of the genus Heliothis of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 129: A method of controlling Hellula undalis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 130: A method of controlling Keiferia lycopersicella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 131: A method of controlling Leucoptera scitella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 132: A method of controlling representatives of the genus Lithocollethis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 133: A method of controlling Lobesia botrana comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 134: A method of controlling Ostrinia nubilalis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 135: A method of controlling representatives of the genus Pandemis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 136: A method of controlling Pectinophora gossypiella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 137: A method of controlling Phyllocnistis citrella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 138: A method of controlling representatives of the genus Pieris comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 139: A method of controlling Plutella xylostella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 140: A method of controlling representatives of the genus Scirpophaga comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 141: A method of controlling representatives of the genus Sesamia comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 142: A method of controlling representatives of the genus Sparganothis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 143: A method of controlling representatives of the genus Spodoptera comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 144: A method of controlling representatives of the genus Tortrix comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 145: A method of controlling Trichoplusia ni comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 146: A method of controlling representatives of the genus Agriotes comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 147: A method of controlling Anthonomus grandis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 148: A method of controlling representatives of the genus Curculio comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 149: A method of controlling Diabrotica balteata comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 150: A method of controlling representatives of the genus Leptinotarsa comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 151: A method of controlling representatives of the genus Lissorhoptrus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 152: A method of controlling representatives of the genus Otiorhynchus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 153: A method of controlling representatives of the genus Aleurothrixus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 154: A method of controlling representatives of the genus Aleyrodes comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 155: A method of controlling representatives of the genus Aonidiella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 156: A method of controlling representatives of the family Aphididae comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 157: A method of controlling representatives of the genus Aphis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 158: A method of controlling Bemisia tabaci comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 159: A method of controlling representatives of the genus Empoasca comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 160: A method of controlling representatives of the genus Mycus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 161: A method of controlling representatives of the genus Nephotettix comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 162: A method of controlling representatives of the genus Nilaparvata comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 163: A method of controlling representatives of the genus Pseudococcus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 164: A method of controlling representatives of the genus Psylla comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 165: A method of controlling representatives of the genus Quadraspidiotus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 166: A method of controlling representatives of the genus Schizaphis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 167: A method of controlling representatives of the genus Trialeurodes comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 168: A method of controlling representatives of the genus Lyriomyza comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 169: A method of controlling representatives of the genus Oscinella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 170: A method of controlling representatives of the genus Phorbia comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 171: A method of controlling representatives of the genus Frankliniella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 172: A method of controlling representatives of the genus Thrips comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 173: A method of controlling Scirtothrips aurantii comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 174: A method of controlling representatives of the genus Aceria comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 175: A method of controlling representatives of the genus Aculus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 176: A method of controlling representatives of the genus Brevipalpus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 177: A method of controlling representatives of the genus Panonychus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 178: A method of controlling representatives of the genus Phyllocoptruta comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 179: A method of controlling representatives of the genus Tetranychus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 180: A method of controlling representatives of the genus Heterodera comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 181: A method of controlling representatives of the genus Meloidogyne comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 182: A method of controlling representatives of the genus Adoxophyes comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 183: A method of controlling representatives of the genus Agrotis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 184: A method of controlling Alabama argillaceae comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 185: A method of controlling Anticarsia gemmatalis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 186: A method of controlling representatives of the genus Chilo comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 187: A method of controlling Clysia ambiguella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 188: A method of controlling Crocidolomia binotalis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 189: A method of controlling representatives of the genus Cydia comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 190: A method of controlling Diparopsis castanea comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 191: A method of controlling representatives of the genus Earias comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 192: A method of controlling representatives of the genus Ephestia comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 193: A method of controlling representatives of the genus Heliothis of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 194: A method of controlling Hellula undalis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 195: A method of controlling Keiferia lycopersicella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 196: A method of controlling Leucoptera scitella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 197: A method of controlling representatives of the genus Lithocollethis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 198: A method of controlling Lobesia botrana comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 199: A method of controlling Ostrinia nubilalis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 200: A method of controlling representatives of the genus Pandemis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 201: A method of controlling Pectinophora gossypiella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 202: A method of controlling Phyllocnistis citrella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 203: A method of controlling representatives of the genus Pieris comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 204: A method of controlling Plutella xylostella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 205: A method of controlling representatives of the genus Scirpophaga comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 206: A method of controlling representatives of the genus Sesamia comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 207: A method of controlling representatives of the genus Sparganothis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 208: A method of controlling representatives of the genus Spodoptera comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 209: A method of controlling representatives of the genus Tortrix comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 210: A method of controlling Trichoplusia ni comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 211: A method of controlling representatives of the genus Agriotes comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 212: A method of controlling Anthonomus grandis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 213: A method of controlling representatives of the genus Curculio comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 214: A method of controlling Diabrotica balteata comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 215: A method of controlling representatives of the genus Leptinotarsa comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 216: A method of controlling representatives of the genus Lissorhoptrus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 217: A method of controlling representatives of the genus Otiorhynchus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 218: A method of controlling representatives of the genus Aleurothrixus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 219: A method of controlling representatives of the genus Aleyrodes comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 220: A method of controlling representatives of the genus Aonidiella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 221: A method of controlling representatives of the family Aphididae comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 222: A method of controlling representatives of the genus Aphis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 223: A method of controlling Bemisia tabaci comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 224: A method of controlling representatives of the genus Empoasca comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 225: A method of controlling representatives of the genus Mycus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 226: A method of controlling representatives of the genus Nephotettix comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 227: A method of controlling representatives of the genus Nilaparvata comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 228: A method of controlling representatives of the genus Pseudococcus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 229: A method of controlling representatives of the genus Psylla comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 230: A method of controlling representatives of the genus Quadraspidiotus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 231: A method of controlling representatives of the genus Schizaphis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 232: A method of controlling representatives of the genus Trialeurodes comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 233: A method of controlling representatives of the genus Lyriomyza comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 234: A method of controlling representatives of the genus Oscinella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 235: A method of controlling representatives of the genus Phorbia comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 236: A method of controlling representatives of the genus Frankliniella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 237: A method of controlling representatives of the genus Thrips comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 238: A method of controlling Scirtothrips aurantii comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 239: A method of controlling representatives of the genus Aceria comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 240: A method of controlling representatives of the genus Aculus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 241: A method of controlling representatives of the genus Brevipalpus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 242: A method of controlling representatives of the genus Panonychus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 243: A method of controlling representatives of the genus Phyllocoptruta comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 244: A method of controlling representatives of the genus Tetranychus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 245: A method of controlling representatives of the genus Heterodera comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 246: A method of controlling representatives of the genus Meloidogyne comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Table 247: A method of controlling Mamestra brassica comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. Example B1 Action Against Anthonomus grandis adults, Spodoptera littoralis or Heliothis virescens Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of imidacloprid respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising imidacloprid and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively. In this test, the control of the tested insects in the transgenic plant is superior to the control on the non-transgenic plant. Example B2 Action Against anthonomus grandis adults, spodoptera littoralis or heliothis virescens Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of thiamethoxam respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising thiamethoxam and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively. In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant. Example B3 Action Against Anthonomus grandis adults, Spodoptera littoralis or Heliothis virescens Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of Ti-435 respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising Ti-435 and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively. In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant. Example B4 Action Against Anthonomus grandis adults, Spodoptera littoralis or Heliothis virescens Young transgenic cotton plants which express the δ-endotoxin CryIa(c) are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of Ti-435 respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising Ti-435 and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively. In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant. Example B5 Action Against Anthonomus grandis adults, Spodoptera littoralis or Heliothis virescens Young transgenic cotton plants which express the δ-endotoxin CryIa(c) are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of thiamethoxam respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising thiamethoxam and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively. In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant. Example B6 Action Against Anthonomus grandis adults, Spodoptera littoralis or Heliothis virescens Young transgenic cotton plants which express the δ-endotoxin CryIa(c) are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of imidacloprid respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising imidacloprid conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively. In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant. Example B7 Action Against Ostrinia nubilalis, Spodoptera spp. or Heliothis sop. A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or Heliothis, are sprayed with an aqueous emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of Ti-435. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Ostrinia nubilalis, Spodoptera spp. or Heliothis is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B8 Action Against Ostrinia nubilalis, Spodoptera spp. or Heliothis spp. A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or Heliothis, are sprayed with an aqueous emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Ostrinia nubilalis, Spodoptera spp. or Heliothis is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B9 Action Against Ostrinia nubilalis, Spodoptera spp. or Heliothis spp. A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or Heliothis, are sprayed with an aqueous emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of imidacloprid. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Ostrinia nubilalis, Spodoptera spp. or Heliothis spp. is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B10 Action Against Diabrotica balteata A plot (a) planted with maize seedlings cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize are sprayed with an aqueous emulsion of a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the endotoxin expressed by KnockOut®. After the spray coating has dried on, the seedlings are populated with 10 Diabrotica balteata larvae in the second stage and transferred to a plastic container. The test is evaluated 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Diabrotica balteata is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B11 Action Against Aphis gossypii Cotton seedlings on a plot (a) expressing the δ-endotoxin CryIIIa on a plot (a) and conventional cotton seedlings on a plot (b) are infected with Aphis gossypi and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIIIa. The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 3 and 6 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Aphis gossypi is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B12 Action Against Frankliniella occidentalis Cotton seedlings expressing the δ-endotoxin CryIIIa on a plot (a) and conventional cotton seedlings on a plot (b) are infected with Frankliniella occidentalis and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately-afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIIIa. The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 3 and 6 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Frankliniella occidentalis is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B13 Action Against Aphis gossypii Cotton seedlings expressing the δ-endotoxin CryIA(c) on a plot (a) and conventional cotton seedlings on a plot (b) are infected with Aphis gossypii and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIIIa. The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 3 and 6 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Aphis gossypii is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B14 Action Against Frankliniella occidentalis Cotton seedlings expressing the δ-endotoxin CryIa(c) on a plot (a) and conventional cotton seedlings on a plot (b) are infected with Frankliniella occidentalis and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIa(c). The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 3 and 6 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Frankliniella occidentalis is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B15 Action Against Nephotettix cincticeps Rice plants on a plot (a) expressing the δ-endotoxin CryIA(b) and conventional rice plants on a plot (b) are sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIA(b). After the spray coating has dried on, the plants are infected with Nephotettix cincticeps of the 2nd and 3rd stages. The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 21 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nephotettix cincticeps is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B16 Action Against Nephotettix cincticeps (systemic) Rice plants expressing the 6-endotoxin CryIa(b) are planted in a in pot (A) and conventional ice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is placed in a pot containing 400 ppm thiamethoxam and 400 ppm of the 6-endotoxin CryI(b). The plants are subsequently infected with Nephotettix cincticeps larvae of the second and third stage. The test is evaluated after 6 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of Nephotettix cincticeps is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%. Example B17 Action Against Nilaparvata lugens Rice plants on a plot (a) expressing the 6-endotoxin CryIA(b) and conventional rice plants on a plot (b) are infected with Nilaparvata lugens, subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the 6-endotoxin CryIA(b). The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 21 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nilaparvata lugens is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B18 Action Against Nilaparvata lugens (Systemic) Rice plants expressing the 6-endotoxin CryIA(b) are planted in a in pot (A) and conventional rice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is place in a pot copntaining 400 ppm thiamethoxam and 400 ppm of the 6-endotoxin CryIA(b). The plants are subsequently infected with Nilaparvata lugens larvae of the second and third stage. The test is evaluated after 6 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of Nephotettix cincticeps is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%. Example B19 Action Against Nephotettix cincticeps Rice plants on a plot (a) expressing the 6-endotoxin CryIA(c) and conventional rice plants on a plot (b) are sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIA(c). After the spray coating has dried on, the plants are infected with Nephotettix cincticeps of the 2nd and 3rd stages. The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 21 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nephotettix cincticeps is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%. Example B20 Action Against Nephotettix cincticeps (Systemic) Rice plants expressing the 6-endotoxin CryIa(c) are planted in a in pot (A) and conventional ice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is placed in a pot containing 400 ppm thiamethoxam and 400 ppm of the 6-endotoxin CryI(c). The plants are subsequently infected with Nephotettix cincticeps larvae of the second and third stage. The test is evaluated after 6 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of Nephotettix cincticeps is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%. Example B21 Action Against Nilaparvata lugens Rice plants on a plot (a) expressing the 6-endotoxin CryIA(c) and conventional rice plants on a plot (b) are infected with Nilaparvata lugens, subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the 6-endotoxin CryIA(c). The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 21 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nilaparvata lugens is observed on the plants of plot (a), while plot (b) shows a control level of not over 0%. Example B22 Action Against Nilaparvata lugens (Systemic) Rice plants expressing the δ-endotoxin CryIA(c) are planted in a in pot (A) and conventional rice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is place in a pot copntaining 400 ppm thiamethoxam and 400 ppm of the 6-endotoxin CryIA(c). The plants are subsequently infected with Nilaparvata lugens larvae of the second and third stage. The test is evaluated after 6 days. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of Nephotettix cincticeps is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%. | 20041221 | 20060912 | 20050602 | 71629.0 | 1 | PRYOR, ALTON NATHANIEL | USE OF NEONICOTINOIDS IN PEST CONTROL | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||||
11,019,118 | ACCEPTED | Enhancement of vascular function by modulation of endogenous nitric oxide production or activity | Vascular function and structure is maintained or improved by long term administration of physiologically acceptable compounds which enhance the level of endogenous nitric oxide or other intermediates in the NO induced relaxation pathway in the host. Alternatively, or in combination, other compounds may be administered which provide for short term enhancement of nitric oxide, either directly or by physiological processes | 1. A method of improving function and structure of the vascular system of a human host, said method comprising: administering orally to said host in accordance with a predetermined regimen a prophylactic dose of a source of at least one of L-arginine and L-lysine as other than a natural food source to enhance the level of endogenous NO in the vascular system to improve vascular function. 2. A method according to claim 1, wherein said dose comprises at least 50% by weight of at least one of amino acid compounds L-arginine or L-lysine, polypeptides comprising at least about 40 mol % of at least one of said amino acids, or physiologically acceptable salt thereof. 3. A method according to claim 2, wherein said polypeptide is an oligopeptide of at least one of L-arginine and L-lysine. 4. A method according to claim 2, wherein said dose comprises L-arginine. 5. A method according to claim 4, wherein L-arginine is administered in a daily amount in the range of 1 to 25 g per day. 6. A method according to claim 4, wherein L-arginine is administered at a dosage in the range of 0.5 to 5 g per dose. 7. A method according to claim 2, wherein said dose comprises L-lysine. 8. A method according to claim 7, wherein L-lysine is administered in a daily amount in the range of 1 to 25 g per day. 9. A method according, to claim 7, wherein L-lysine is administered at a dosage in the range of 0.5 to 5 g per dose. 10. A method according to claim 1, wherein said dose comprises at least one of calcium, an amino acid absorption enhancing compound, a cofactor for NO synthase activity, or an antioxidant in an amount sufficient to enhance the prophylactic effect of said L-arginine and L-lysine. 11. A method according to any of claims 5, 6, 8 or 9, wherein said dose is administered as a tablet, capsule, or powder. 12. A method according to, claims 5, 6, 8 or 9, wherein said dosage is administered as a prepared solid food, nutritional supplement or liquid. 13. A method of preventing a reduction in vascular function of the vascular system of a human host as evidenced by reduced vasodilation, said method comprising: administering orally to said human host in accordance with a predetermined regimen a prophylactic dosage of at least one of L-arginine, L-lysine or physiologically acceptable salt thereof as other than a natural food source in a daily amount to provide a plasma level in the range of 0.15 to 3 mM to enhance the level of endogenous NO in the vascular system, whereby reduction in said vasodilation is inhibited. 14. A method according to claim 14, wherein said L-arginine, L-lysine or a physiologically acceptable salt thereof is present in a prepared food, nutritional supplement or liquid at from about 0.5-25 g. 15. A method according to claim 13, wherein said dose of L-arginine, L-lysine or a physiologically acceptable salt thereof, is in the range of 0.5-10 g in combination with at least one of calcium, folate, B12 or B6 in sufficient amount to enhance the effect of said L-arginine, L-lysine or a physiologically acceptable salt thereof. 16. A method according to claim 13, wherein said L-arginine, L-lysine or its physiologically acceptable salt is administered as a tablet, capsule, or powder. 17. A physiologically acceptable formulation comprising at least one of L-arginine, L-lysine or its physiologically acceptable salt in from about 0.5 to 5 g and at least one of calcium, folate, B6, or B12, in sufficient amount to enhance the effect of said L-arginine, L-lysine or its physiologically acceptable salt on enhancing the amount of NO in a human host. 18. A physiologically acceptable formulation comprising L-arginine or its physiologically acceptable salt. 19. A physiologically acceptable formulation comprising L-lysine or its physiologically acceptable salt. 20. A method for inhibiting vascular smooth muscle cell proliferation at a site of injury in the vascular system, said method comprising: administering at said site an effective amount of at least one of L-arginine, L-lysine or its physiologically acceptable salt to enhance NO production; whereby vascular smooth muscle cell proliferation is inhibited. 21. A method according to claim 20, wherein said injury is as a result of angioplasty. | INTRODUCTION This invention was supported in part by the United States Government under Grant 1KO7HCO2660 (NHLBI). The U.S. Government may have an interest in this application. TECHNICAL FIELD The field of this invention is the modulation of NO activity, which finds application in maintaining and improving vascular function and thereby preventing or improving vascular degenerative diseases. BACKGROUND Atherosclerosis and vascular thrombosis are a major cause of morbidity and mortality, leading to coronary artery disease, myocardial infarction, and stroke. Atherosclerosis begins with an alteration in the endothelium, which lines the blood vessels. The endothelial alteration results in adherence of monocytes, which penetrate the endothelial lining and take up residence in the subintimal space between the endothelium and the vascular smooth muscle of the blood vessels. The monocytes absorb increasing amounts of cholesterol (largely in the form of oxidized or modified low-density lipoprotein) to form foam cells. Oxidized low-density lipoprotein (LDL) cholesterol alters the endothelium, and the underlying foam cells distort and eventually may even rupture through the endothelium. Platelets adhere to the area of endothelial disruption and release a number of growth factors, including platelet derived growth factor (PDGF). PDGF, which is also released by foam cells and altered endothelial cells, stimulates migration and proliferation of vascular smooth muscle cells into the lesion. These smooth muscle cells release extracellular matrix (collagen and elastin) and the lesion continues to expand. Macrophages in the lesion elaborate proteases, and the resulting cell damage creates a necrotic core filled with cellular debris and lipid. The lesion is then referred to as a “complex lesion.” Rupture of this lesion can lead to thrombosis and occlusion of the blood vessel. In the case of a coronary artery, rupture of a complex lesion may precipitate a myocardial infarction, whereas in the case of a carotid artery, stroke may ensue. One of the treatments that cardiologists and other interventionalists employ to reopen a blood vessel which is narrowed by plaque is balloon angioplasty (approximately 300,000 coronary and 100,000 peripheral angioplasties are performed annually). Although balloon angioplasty is successful in a high percentage of the cases in opening the vessel, it unfortunately denudes the endothelium and injures the vessel in the process. This damage causes the migration and proliferation of vascular smooth muscle cells of the blood vessel into the area of injury to form a lesion, known as myointimal hyperplasia or restenosis. This new lesion leads to a recurrence of symptoms within three to six months after the angioplasty in a significant proportion of patients (30-40%). In atherosclerosis, thrombosis and restenosis there is also a loss of normal vascular function, such that vessels tend to constrict, rather than dilate. The excessive vasoconstriction of the vessel causes further narrowing of the vessel lumen, limiting blood flow. This can cause symptoms such as angina (if a heart artery is involved), or transient cerebral ischemia (i.e. a “small stroke”, if a brain vessel is involved). This abnormal vascular function (excessive vasoconstriction or inadequate vasodilation) occurs in other disease states as well. Hypertension (high blood pressure) is caused by excessive vasoconstriction, as well as thickening, of the vessel wall, particularly in the smaller vessels of the circulation. This process may affect the lung vessels as well causing pulmonary (lung) hypertension. Other disorders known to be associated with excessive vasoconstriction, or inadequate vasodilation include transplant atherosclerosis, congestive heart failure, toxemia of pregnancy, Raynaud's phenomenon, Prinzmetal's angina (coronary vasospasm), cerebral vasospasm, hemolytic-uremia and impotence. Because of their great prevalence and serious consequences, it is critically important to find therapies which can diminish the incidence of atherosclerosis, vascular thrombosis, restenosis, and these other disorders characterized by abnormality of vascular function and structure. Ideally, such therapies would inhibit the pathological vascular processes associated with these disorders, thereby providing prophylaxis, retarding the progression of the degenerative process, and restoring normal vasodilation. As briefly summarized above, these pathological processes are extremely complex, involving a variety of different cells which undergo changes in their character, composition, and activity, as well as in the nature of the factors which they secrete and the receptors that are up- or down-regulated. A substance released by the endothelium, “endothelium derived relaxing factor” (EDRF), may play an important role in inhibiting these pathologic processes. EDRF is now known to be nitric oxide (NO) or a labile nitroso compound which liberates NO. (For purposes of the subject invention, unless otherwise indicated, nitric oxide (NO) shall intend nitric oxide or the labile nitroso compound which liberates NO.) This substance relaxes vascular smooth muscle, inhibits platelet aggregation, inhibits mitogenesis and proliferation of cultured vascular smooth muscle, and leukocyte adherence. Because NO is the most potent endogenous vasodilator, and because it is largely responsible for exercise-induced vasodilation in the conduit arteries, enhancement of NO synthesis could also improve exercise capacity in normal individuals and those with vascular disease. NO may have other effects, either direct or indirect, on the various cells associated with vascular, walls and degenerative diseases of the vessel. RELEVANT LITERATURE Girerd et al. (1990) Circulation Research 67:1301-1308 report that intravenous administration of L-arginine potentiates endothelium-dependent relaxation in the hind limb of cholesterol-fed rabbits. The authors conclude that synthesis of EDRF can be increased by L-arginine in hypercholesterolemia. Rossitch et al. (1991) J. Clin. Invst. 87:1295-1299 report that in vitro administration of L-arginine to basilar arteries of hypercholesterolemic rabbits reverses the impairment of endothelium-dependent vasodilation and reduces vasoconstriction. They conclude that the abnormal vascular responses in hypercholesterolemic animals is due to a reversible reduction in intracellular arginine availability for metabolism to nitric oxide. Creager et al. (1992) J. Clin. Invest. 90:1248-1253, report that intravenous administration of L-arginine improves endothelium-derived NO-dependent vasodilation in hypercholesterolemic patients. Cooke et al., “Endothelial Dysfunction in Hypercholesterolemia is Corrected by L-arginine,” Endothelial Mechanisms of Vasomotor Control, eds. Drexler, Zeiher, Bassenge, and Just; Steinkopff Verlag Darmstadt, 1991, pp. 173-181, review the results of the earlier references and suggest, “If the result of these investigations may be extrapolated, exogenous administration of L-arginine (i.e., in the form of dietary supplements) might represent a therapeutic adjunct in the treatment and/or prevention of atherosclerosis”. Cooke (1990) Current Opinion in Cardiology 5:637-644 discusses the role of the endothelium in the atherosclerosis and restenosis, and the effect that these disorders have on endothelial function. Cooke (1992) J. Clin. Invest. 90:1168-1172, describe the effect of chronic administration of oral L-arginine in hypercholesterolemic animals on atherosclerosis. This is the first demonstration that oral L-arginine supplements can improve the release of NO from the vessel wall. The increase in NO release from the vessel wall was associated with a striking reduction in atherosclerosis in hypercholesterolemic animals. This is the first evidence to support the hypothesis that increasing NO production by the vessel wall inhibits the development of atherosclerosis. Cooke and Tsao (1992) Current Opinion in Cardiology 7:799-804 describe the mechanism of the progression of atherosclerosis and suggest that inhibition of nitric oxide may disturb vascular homeostasis and contribute to atherogenesis. Cooke and Santosa (1993) In: Steroid Hormones and Dysfunctional Bleeding, AAAS Press, review the activities of EDRF in a variety of roles and suggest that reversibility of endothelial dysfunction may be affected by the stage of atherosclerosis. They conclude that EDRF is a potent vasodilator, plays a key role in modulating conduit and resistance vessel tone, has important effects on cell growth and interactions of circulatory blood cells with a vessel wall, and that disturbances of EDRF activity may initiate or contribute to septic shock, hypertension, vasospasm, toxemia and atherosclerosis. Fitzpatrick et al., American Journal of Physiology 265 (Heart Circ. Physiol. 34):H774-H778, 1993 report that wine and other grape products may have endothelium-dependent vasorelaxing activity in vitro. Wang et al. (1994) J. Am. Cell. Cardiol. 23:452-458, report that oral administration of arginine prevents atherosclerosis in the coronary arteries of hypercholesterolemic rabbits. Drexler et al. (1994) Circulation 89:1615-1623 describe the effect of intravenous arginine upon coronary vascular tone. This was the first evidence that intravenous arginine could restore normal NO-dependent vasodilation in the coronary arteries of patients with cardiac transplants, Tsao et al. (1994) Circulation 89:2176-2182 demonstrates that oral administration of arginine to hypercholesterolemic rabbits enhances the release of nitric oxide by the vessel wall, and inhibits monocytes from sticking to the vessel. Tsao et al. (1994) J. Arterioscl. Thromb. 14:1529-1533 reveals that oral arginine administration to hypercholesterolemic rabbits inhibits platelet aggregation (blood clotting). Platelet aggregation plays an important role in causing vascular thrombosis in vascular degenerative disorders. Von de Leyen et al. (1995) PNAS USA, show that the gene encoding nitric oxide synthase (the enzyme that produces NO) can be inserted into the carotid artery of the rat. This causes the rat carotid artery to make more NO, and thereby enhances vasodilation and inhibits thickening of the vessel wall after balloon angioplasty. Noruse et al. (1994) Arterioscler. Thromb. 14:746-752, report that oral administration of an antagonist of NO production accelerates atherogenesis in hypercholesterolemic rabbits. Cayette et al. (1994) Arterioscler. Thromb. 14:753-759, also report that oral administration of an antagonist of NO production accelerates plaque development in hypercholesterolemic rabbits. Other references which refer to activities attributed to NO or its precursor include: Pohl and Busse (1989) Circ. Res. 65:1798-1803; Radomski et al. (1987) Br. J. Pharmacol. 92:181-187; Stamler et al. (1989) Circ. Res. 65:789-795; anti-platelet activity); Garg and Hassid (1989) J. Clin. Invest. 83:1774-1777; Weidinger et al. (1990) Circulation 81:1667-1679; NO activity in relation to vascular smooth muscle growth); Ross (1986) N. Engl. J. Med. 314:488-500; Bath et al. (1991) Arterioscler. Thromb. 11:254-260; Kubes et al. (1991) Proc. Natl. Acad. Sci. USA 89:6348-6352; Lefer et al. (1990) In: Endothelium-Derived Contracting Factors. Basel, S. Karger, pp. 190-197; NO activity in relation to leukocyte adhesion and migration); Heistad et al. (1984) Circ. Res. 43:711-718; Rossitch et al. (1991) J. Clin. Invest. 87:1295-1299; Yamamoto et al. (1988) ibid 81:1752-1758; Andrews et al. (1987) Nature 327:237-239; Tomita et al. (1990) Circ. Res. 66:18-27; Kugiyama et al. (1990) Nature 344:160-162; Mitchell et al. (1992) J. Vasc. Res. 29:169 (abst.); Minor et al. (1990) J. Clin. Invest. 86:2109-2116; NO activity in relation to hypercholesterolemia); Tanner et al. (1991) Circulation 83:2012-2020; Kuo et al. (1992) Circ. Res. 70:f465-476; Drexler et al. (1991) Lancet 338:1546-1550; Schuschke et al. (1994) Int. J. of Microcircu: Clin. and Exper. 14(4):204-211; Yao et al. (1992) Circulation 86:1302-1309; Higashi et al. (1995) Hypertension 25(4 Pt 2):898-902; Kharitonov et al. (1995) Clin. Sci. 88(2):135-139; Smulders et al. (1994) Clin. Sci. 87(1):37-43; Bode-boger et al. (1994) Clin. Sci. 87(3):303-310; Bode-Boger et al. (1994) Clin. Sci.; Randall et al. (1994) Clin. Sci. 87(1):53-59; Dubois-Rande et al. (1992) J. Card. Pharm. 20 Suppl. 12:S211-3; Otsuji et al. (1995) Am. Heart J. 129(6): 1094-1100; Nakanishi et al. (1992) Am. J. of Physio. 263(6 Pt 2):H1650-8; Kuo et al. (1992) Circ. Research 70(3): 465-476; Tanner et al. (1991) Circulation 83(6):2012-2020; Meng et al. (1995) J. Am. Col. Card. 25(1):269-275; Lefer and Ma (1993) Arterioscl. and Thromb. 13(6):771-776; McNamara et al. (1993) Biochem. and Biophys. Res. Comm. 193(1):291-296; Tarry and Makhoul (1994) Arter. and Thromb. 14(6):983-943; Davies et al. (1994) Surgery 116(3):557-568; and Raij (1994) Kidney Institute 45:775-781. SUMMARY OF THE INVENTION Methods are provided for improving vascular function and structure, particularly modulating vascular relaxation, cellular adhesion, infiltration and proliferation by modulating the level of nitric oxide or active precursor at a physiological site. The methods find use in preventing the degradation of vascular function, particularly as involved with the occurrence of atherosclerosis, restenosis, thrombosis, hypertension, impotence, and other disorders characterized by reduced or inadequate vasodilation. The enhancement of endogenous nitric oxide or secondary messenger availability at a physiological site improves vascular relaxation and thereby relieves symptoms due to inadequate blood flow (such as angina) and can counteract inappropriate elevation of blood pressure. The enhancement of endogenous nitric oxide also inhibits initiation and the progression of atherosclerosis, restenosis, vascular hypertrophy or hyperplasia and thrombosis. This is due to the fact that nitric oxide is not only a potent modulator, but can also inhibit platelets and white blood cells from adhering to the vessel wall. As a prophylaxis or treatment for vascular function deterioration, particularly in atherosclerotic susceptible hosts, the agent is chronically administered at an effective dosage. For restenosis, the agent may be administered for a limited period since this pathological process generally abates 3-6 months after the vascular injury (i.e. angioplasty or atherectomy). Oral administration of L-arginine, precursors to L-arginine, e.g. oligopeptides or polypeptides comprising L-arginine, or proteins comprising high levels of L-arginine, by itself or in combination with L-lysine, particularly further supplemented with GRAS substances which enhance the effectiveness of the active agents, as a dietary supplement will increase NO elaboration and thereby diminish the effects of atherogenesis. Other techniques to enhance NO or secondary messenger availability may be utilized such as increasing the availability of NO synthase, for example, as a result of enhanced expression of NO synthase in the vessel wall, particularly at the lesion site, release of NO from the vessel wall or reduction of degradation of NO or the secondary messenger, cyclic guanosine monophosphate (“cGMP”). BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a bar diagram of histomorphometric studies of the effect of L-arginine on atherosclerotic plaque in hypercholesterolemic animals. (See Ex. 1) FIG. 2 is a nephelometric scan of the effect of L-arginine diet supplement on platelet reactivity as evidenced by platelet aggregation initiated by adenosine diphosphate. (See Ex. 2) A) aggregation of platelets from hypercholesterolemic rabbit; B) reduced aggregation of platelets from hypercholesterolemic rabbit treated with L-arginine; C) antagonism of NO synthase by LNMMA reverses the beneficial effect of L-arginine. FIG. 3 is a bar diagram comparing the effect of L-arginine diet supplement on cell binding to aortic endothelium of hypercholesterolemic animals. (See Ex. 4) FIG. 4. Lesion surface area of thoracic aortae from all arginine treated hypercholesterolemic animals (ARG, weeks 14-23) is reduced in comparison to that of hypercholesterolemic animals receiving vehicle (CHOL, weeks 14-23). (See Ex. 5) FIG. 5. Macrophage accumulation in iliac arteries 4 weeks following balloon injury. (Macrophage infiltration into the vessel wall initiates and accelerates plaque formation). Data is expressed as a percent of the vessel that contain macrophages. Balloon injury in hypercholesterolemic rabbits (CHOL) results in a marked increase in arterial macrophage accumulation compared with injured iliac arteries from rabbits on normal chow (CONT). Macrophage accumulation in iliac arteries from hypercholesterolemic rabbits receiving L-arginine (ARG) is significantly reduced compared to the CHOL group. (; p<0.01, ARG v. CHOL). This study revealed that oral arginine treatment markedly reduced the infiltration of monocytes/macrophages into the vessel wall, explaining in part the effect of arginine to inhibit plaque formation. (See Ex. 6) FIG. 6. Stimulation of cultured endothelial cells with fluid flow causes them to secrete nitric oxide. Flow-induced secretion of nitric oxide decreases endothelial adhesiveness induced by oxidized LDL cholesterol (oxLDL; 30 μg/ml). Exposure of human aortic endothelial cells to oxLDL increased the ex vivo binding of monocytes when compared to Control. In comparison to cells not exposed to flow (static), previous exposure to flow inhibited the monocyte adhesion induced by oxLDL. These effects of flow were blocked by NO synthase inhibitors and mimicked by NO donors (PAPA-NO) or cyclic GMP (cGMP). Bars represent mean ± SEM. p<0.05; p<0.01. (See Ex. 8) FIG. 7 is a bar diagram of morphometric measurements of intimal lesion thickening two weeks after a balloon angioplasty in animals treated with a plasmid construct containing the gene for NO synthase (INJ+NOS) in comparison to control vector (INJ+CV) or untreated injured vessels (INJ). (See Ex. 11) FIG. 8 is a histogram showing the effect of local intraluminal administration of arginine on restenosis. Hypercholesterolemic rabbits had balloon angioplasty of the iliac artery. Immediately thereafter some animals received an infusion of arginine directly into the vessel by means of a catheter designed to apply high local concentrations of arginine to the vessel. Two to four weeks later, vessels were removed from the animals, and examined microscopically. Thickening of the vessel wall (internal thickening or “restenosis”) was reduced in the animals treated with intraluminal infusion of arginine (ARG) in comparison to those treated with vehicle. (See Ex. 12) FIG. 9 is a set of dose-response curves showing the effect of chronic lysine administration on endothelium dependent vasodilation in hypercholesterolemic rabbits. Chronic oral administration of lysine (for ten weeks) improved NO-mediated vasodilation; this improvement in NO activity was also associated with a marked reduction in plaque area. Chronic administration of lysine was just as effective as arginine in restoring vascular function and structure. (See Ex. 14) FIG. 10 is a scatter-diagram illustrating the relationship between the level of blood LDL-cholesterol and monocyte binding. Monocytes were isolated from the blood of humans with normal or elevated cholesterol levels. The binding of these monocytes to endothelial cells in culture was observed. Monocytes from individuals with high cholesterol levels have a greater adhesiveness for endothelial cells. This monocyte-endothelial cell interaction in vivo is the first step in the development of atherosclerotic plaque. (See Ex. 15) FIG. 11 is a bar diagram showing the adhesiveness of monocytes obtained from subjects with normal cholesterol levels (CONT) and those from hypercholesterolemic (HC) humans, before, during, and after treatment with arginine (the NO precursor). Prior to initiating arginine (Arg) or placebo (plac) treatment, monocytes from hypercholesterolemic individuals have a greater tendency to bind to endothelial cells ex vivo (baseline). After 2 weeks of arginine treatment monocytes from these hypercholesterolemic individuals have a significantly reduced adhesiveness and are no different from those of the normal subjects. At this point arginine therapy was discontinued and there was a washout (4 weeks). At this time point, monocytes from the patients previously treated with arginine now have increased adhesiveness, off of the arginine treatment. (See Ex. 15) FIG. 12 is a bar diagram which shows that monocytes from individuals with elevated cholesterol (CHOL) have greater adhesiveness for endothelial cells. However, after treatment with sodium nitroprusside (CHOL+SNP), the adhesiveness of these monocytes is normalized. SNP is an NO donor. (See Ex. 15) FIG. 13 is a set of histograms showing aggregation of platelets obtained in hypercholesterolemic humans (hc), and individuals with normal cholesterol levels (nc). Platelet aggregation ex vivo in response to adenosine diphosphate (ADP) is increased in hc individuals in comparison to normal individuals. After 2 weeks of treatment with oral L-arginine, platelet aggregation is attenuated in the hypercholesterolemic individuals, while an even greater effect of the treatment is seen at four weeks. (See Ex. 16) FIG. 14 is a bar graph showing increases in coronary blood flow in response to intracoronary infusions of acetylcholine (ACH) before and after intravenous infusion of L-arginine (30 g), in patients with transplant atherosclerosis. Acetylcholine stimulates the release of NO from the vessel wall causing vasodilation and increased blood flow. There is improved NO-dependent vasodilation after L-arginine administration. (See Ex. 18) DESCRIPTION OF SPECIFIC EMBODIMENTS In accordance with the subject invention, vascular function is maintained or its deterioration inhibited or retarded by enhancing the level or activity of endogenous nitric oxide. By enhancing the level or activity of endogenous nitric oxide, common vascular degenerative diseases such as atherosclerosis, restenosis, hypertension, vasospasm, impotence, angina, and vascular thrombosis, can be treated prophylactically and/or therapeutically. The enhanced level or activity of nitric oxide (which is intended to include any precursor of nitric oxide which results in such enhanced level) can be achieved by modulating the activity, synthesis or concentration of any of the components associated with the formation of nitric oxide in the nitric oxide synthetic pathway, or inhibiting the rate of degradation of nitric oxide, its precursors, or the secondary messengers associated with the relaxation signal. In referring to the enhanced level or activity, the term “effect” will be used to encompass the two situations. The enhanced effect of nitric oxide may be a result of oral or intravenous administration to the patient of a precursor in the metabolic pathway to the production of nitric oxide (such as L-arginine, L-lysine, polypeptides comprising these amino acids, and the like), providing an enzyme in the metabolic pathway to NO, particularly NO synthase, by introduction of the gene for NO synthase under conditions for integration of the gene into the endothelial or other cells and expression of the gene, or by directly adding an enzyme associated with the production of nitric oxide. The enhanced level of nitric oxide may also result from administration of an agent to protect the NO from degradation, such as an oxidant, reductant or superoxide dismutase. Alternatively, the agent may serve to enhance the bioavailability or effectiveness of the primary active agent, such as L-arginine or L-lysine. The agent, individually or in combination, will be administered in a form of other than a natural food source, such as meat or plants as natural protein sources, fruits or products derived therefrom. One approach is to employ L-arginine and/or L-lysine, as individual amino acids, in combination, or as a precursor to L-arginine, e.g. a monomer or a polypeptide, as a dietary supplement. The amino acid(s) are administered as any physiologically acceptable salt, such as the hydrochloride salt, glutamate salt, etc. They can also be administered as a peptide (e.g., poly-L-arginine, poly-L-lysine, or combinations thereof) so as to increase plasma levels of the NO precursor. Oligopeptides of particular interest include oligopeptides of from 2 to 30, usually 2 to 20, preferably 2 to 10 amino acids, having at least 50 mol % of L-arginine and/or L-lysine, preferably at least about 75 mol % of L-arginine and/or L-lysine, more preferably having at least about 75 mol % of L-arginine and/or L-lysine. The oligopeptides can be modified by being ligated to other compounds, which can enhance absorption from the gut, provide for enhancement of NO synthesis or stability, e.g. reducing agents and antioxidants, and the like. Naturally occurring sources include protamine or other naturally occurring L-arginine or -lysine containing protein, which is high in one or both of the indicated amino acids, e.g. greater than about 40%, preferably greater than about 50%. The administration of L-arginine, other convenient NO precursor, or other agent which enhances NO availability, would be in accordance with a predetermined regimen, which would be at least once weekly and over an extended period of time, generally at least one month, more usually at least three months, and as a chronic treatment, could last for one year or more, including the life of the host. The dosage administered will depend upon the frequency of the administration, the blood level desired, other concurrent therapeutic treatments, the severity of the condition, whether the treatment is for prophylaxis or therapy, the age of the patient, the natural level of NO in the patient, and the like. Desirably, the amount of L-arginine and/or L-lysine (R and/or K) or biologically equivalent compound which is used would generally provide a plasma level in the range of about 0.15 to 30 mM. The oral administration of R and/or K can be achieved by providing R and/or K, other NO precursor, or NO enhancing agent as a pill, powder, capsule, liquid solution or dispersion, particularly aqueous, or the like. Various carriers and excipients may find use in formulating the NO precursor, such as lactose, terra alba, sucrose, gelatin, aqueous media, physiologically acceptable oils, e.g. peanut oil, and the like. Usually, if daily, the administration of L-arginine and/or L-lysine for a human host will be about 1 to 12 g per day. Furthermore, other agents can be added to the oral formulation of the amino acids or polypeptides to enhance their absorption, and/or to enhance the activity of NO synthase, e.g. B6 (50-250 mg/d), folate (0.4-10 mg per daily dose), B12 (0.5-1 mg/d) or calcium (250-1000 mg per daily dose). Furthermore, agents known to protect NO from degradation, such as antioxidants (e.g. cysteine or N-acetyl cysteine 200-1000 mg/d Vitamin C (250-2000 mg daily dose), (coenzyme Q 25-90 mg daily dose, glutathione 50-250 mg daily dose), Vitamin E (200-1000 I.U. daily dose), or β-carotene (10-25,000 I.U. daily dose) or other naturally occurring plant antioxidants such as tocopherols, phenolic compounds, thiols, and ubiquinones can be added to the oral or intravenous formulations of R and/or K, or R and/or K-containing peptides. Alternatively, one may include the active agent in a nutritional supplement, where other additives may include vitamins, amino acids, or the like, where the subject active agent will be at least 10 weight %, more usually at least about 25 weight % of the active ingredients. The administration of R and/or K or its physiologic equivalent in supporting NO can be administered prophylactically to improve vascular function, serving to enhance vasodilation and to inhibit atherogenesis or restenosis, or therapeutically after atherogenesis has been initiated. Thus, for example, a patient who is to undergo balloon angioplasty can have a regimen of R and/or K administered substantially prior to the balloon angioplasty, preferably at least about a week or substantially longer. Alternatively, in a patient, the administration of R and/or K can begin at any time. Conveniently, the amino acid composition can be administered by incorporating the appropriate dose in a prepared food. Types of foods include gelatins, ice creams, cereals, candies, sugar substitutes, soft drinks, and the like. Of particular interest is the incorporation of R and/or K as a supplement in a food, such as a health bar, e.g. granola, other grains, fruit bars, such as a date bar, fig bar, apricot bar, or the like. The amount of R and/or K or the equivalent would be about 1-25 g per dosage or bar, preferably about 2-15 g. Instead of oral administration, intravascular administration can also be employed, particularly where more rapid enhancement of the nitric oxide level in the vascular system is desired (i.e. as with acute thrombosis of a critical vessel), so that combinations of oral and parenteral administrations can be employed in accordance with the needs of the patient. Furthermore, parenteral administration can allow for the administration of compounds which would not readily be transported across the mucosa from the gastrointestinal tract into the vascular system. Another approach is to administer the active ingredient of grape skin extract, which is known to enhance NO activity. See Fitzpatrick et al. (1993), supra. The extract can be enriched for the active component by employing separation techniques and assaying the activity of each of the fractions obtained. The grape skin extract can be divided into fractions using a first gel permeation separation to divide the extract by the size of the components. The active fraction(s) can be determined by an appropriate assay, see the experimental section. The active fraction(s) can be further separated using HPLC and an appropriate eluent, conveniently either an isocratic eluent of aqueous acetonitrile or propanol or a linearly varying eluent, using the same solvents. Fractions which are shown to be active and substantially pure, e.g. at least 80 weight %, by thin layer chromatography, mass spectrometry, gas phase chromatography, or the like can then be characterized using infra-red, nuclear magnetic resonance, mass or other spectroscopy. For oral or intravascular administration, one can provide R and/or K, by itself or in a polypeptide, or its physiological equivalent in supporting NO, together with antioxidants or scavengers of oxygen-derived free radicals (such as sulfhydryl containing compounds) or compounds that prevent the production of oxygen-derived free radicals (such as superoxide dismutase), as it is known that oxygen-derived free radicals (such as superoxide anion) can inactivate nitric oxide. Alternatively, or in addition, one can administer cofactors required for NO synthase activity, such as calcium or folate. The amounts of each of these co-agents can be determined empirically, using the assays in the experimental section to determine NO activity. The various cofactors that may be used with the NO precursors will vary in amount in relation to the amount of NO precursor and the effectiveness of the cofactor, particularly for oral administration. Generally, the cofactors may be present in amounts that would provide daily doses of folate (0.4-10 mg), B6 (50-250 mg), B12 (0.5-1 mg) and/or calcium (250-1000 mg). Usually, where the amount of the NO precursor is greater than about 2 g, it may be administered periodically during the day, being administered 2 to 4 times daily. For the most part, the cofactors will be GRAS substances and will be able to be taken at high dosages without adverse effects on the recipient host. The subject compositions will be for the most part administered orally and the dosage may take a variety of forms. The dosage may be tablets, pill, capsules, powders, solutions, dispersions, bars, ice creams, gelatins, and the like, formulated with physiologically acceptable carriers, and optionally stabilizers, colorants, flavoring agents, excipients, tabletting additives, and the like. Depending upon the mode of administration, the amount of active agent may be up to about 25 g. For formulations as dietary supplements, individual dosages will generally range from about 0.5 to 5 g, more usually from about 1 to 3 g of the NO precursor. Alternatively, one can enhance, either in conjunction with the enhancement of precursors to nitric oxides or independently, components of the nitric oxide metabolic pathway. For example, one can enhance the amount of nitric oxide synthase present in the vessel wall, particularly at the site of lesions. This can be done by local administration to the lesion site or systemically into the vascular system. The synthase can be administered using liposomes, slow release particles, or in the form of a depot, e.g. in collagen, hyaluronic acid, biocompatible gels, vascular stents, or other means, which will provide the desired concentration of the NO synthase at the lesion site. Instead of providing for the enhancement of NO at the physiological site of interest, one can choose to extend the lifetime of the signal transduced as a result of the presence of nitric oxide. Since cGMP is produced intracellularly as a result of a nitric oxide induced signal, employing agents which result in the production of or extending the lifetime of cGMP can be employed. Illustrative agents include cGMP phosphodiesterase inhibitors or agents which increase the amount of guanylate cyclase. Alternatively, cells can be genetically engineered to provide for constitutive or inducible expression of one or more genes, which will provide for the desired relaxation response, by expressing NO synthase, or other enzyme or protein which is secreted and acts extracellularly. Thus, expression vectors (viral or plasmid) can be prepared which contain the appropriate gene(s) and which can be introduced into host cells which will then produce high concentrations of nitric oxide or other intermediate in the relaxation pathway. These cells can be introduced at the lesion site or at another site in the host, where the expression will induce the appropriate response as to relaxation, proliferation, etc. The NO synthase or cells expressing the NO synthase can be present as depots by encapsulation and positioning at the site of interest. For example, porous stents can be produced which encapsulate the enzyme or cells to protect the enzyme from degradation or being washed away. Cultured cells can be transfected with expression vectors containing the NO synthase or other gene ex-vivo and then introduced into the vessel wall, using various intra-arterial or intra-venous catheter delivery systems. Alternatively, techniques of in vivo gene transfer can be employed to transfect vascular cells within the intact vessel in vivo. The gene(s) can be expressed at high constitutive levels or can be linked to an inducible promoter (which can have tissue specificity) to allow for regulation of expression. DNA constructs are prepared, where the appropriate gene, e.g. a NO synthase gene, is joined to an appropriate promoter, either with its native termination region or a different termination region, which can provide for enhanced stability of the messenger RNA. Constitutive promoters of particular interest will come from viruses, such as Simian virus, papilloma virus, adenovirus, HIV, Rous sarcoma virus, cytomegalovirus or the like, where the promoters include promoters for early or late genes, or long terminal repeats. Endogenous promoters can include the β-actin promoter, or cell-type specific promoters. A construct is prepared in accordance with conventional techniques, the various DNA fragments being introduced into an appropriate plasmid or viral vector, normally a vector capable of replication in a bacterial and/or eucaryotic host. Normally, the vector will include a marker, which allows for selection of cells carrying the vector, e.g. antibiotic resistance. The vector will normally also include an origin which is functional in the host for replication. Other functional elements can also be present in the vector. Once the vector has been prepared and replicated, it can then be used for introduction into host cells. The plasmid vector construct can be further modified by being joined to viral elements which allow for ease of transfection, can provide a marker for selection, e.g. antibiotic resistance, or other functional elements. Introduction of the plasmid vector construct into the host cells can be achieved by calcium phosphate precipitated DNA, transfection, electroporation, fusion, lipofection, viral capsid-mediated transfer, or the like. Alternatively, the expression construct within viral vectors can be introduced by standard infection techniques. For somatic cell gene therapy, autologous cells will generally be employed, although in some instances allogeneic cells or recombinantly modified cells can be employed. Usually the cells employed for genetic modification will be mature endothelial or vascular smooth muscle cells. Occasionally, the cells employed for genetic modification will be progenitor cells, particularly early progenitor cells. For example, myoblasts can be employed for muscle cells or hematopoietic stem cells or high proliferative potential cells can be employed for lymphoid and/or myelomonocytic cells. Depending upon the nature of the cells, they can be injected into tissue of the same or different cellular nature, they can be injected into the vascular system, where they may remain as mobile cells or home to a particular site (i.e. the lesion). For the NO synthase gene, the number of cells which are administered will depend upon the nature of the cells, the level of production of the NO synthase, the desired level of NO synthase in the host vascular system, at the lesion site, or the like, whether the enhanced level of NO synthase is the only treatment or is used in conjunction with other components of the nitric oxide synthetic pathway, and the like. Therefore, the particular number of cells to be employed will be determined empirically in accordance with the requirements of the particular patient. These cells can also be introduced into the circulation by first growing them on the surface of standard vascular graft material (i.e. Dacron or polytetrafluoroethylene grafts) or other synthetic vascular conduits or vascular bioprostheses. Alternatively, one can use viral vectors, which are capable of infecting cells in vivo, such as adenovirus or retroviruses. In this case, the viral vector containing the NO synthase gene or other gene involved with the relaxation pathway will be administered directly to the site of interest, where it will enter into a number of cells and become integrated into the cell genome. Thus, one can titer the desired level of nitric oxide synthase which is secreted or other protein which is expressed, by providing for one or more administrations of the virus, thus incrementally increasing the amount of synthase which is secreted or other protein which is produced. Alternatively, one can use modified liposomes as a vehicle for endovascular administration of the vector containing the NO synthase or other gene. One such modified liposome technique involves mixing the liposomes with the vector containing NO synthase. Once the gene expression construct-containing vector is incorporated into the liposome, the liposomes are coated with a protein (e.g. the viral coat protein of the Hemagglutinating Virus of Japan) that increases the affinity of the liposome for the vessel wall. In some situations, the NO synthase or other gene in the relaxation pathway can be co-transfected with-an artificial gene encoding an arginine and/or lysine rich polypeptide susceptible to proteolytic cleavage as an intracellular source of L-arginine and/or L-lysine. In other situations, the NO synthase or other gene can be co-transfected with the superoxide dismutase gene, so as to inhibit the degradation of the nitric oxide. In some situations, acute treatment may be involved, requiring one or a few administrations. This will normally be associated with compounds which can act as nitric oxide precursors and are other than naturally occurring compounds or are compounds which can be added with naturally occurring compounds to enhance the rate of formation of nitric oxide. Thus, one can provide for acute administration of L-arginine and/or L-lysine and superoxide dismutase to increase the nitric oxide concentration over a restricted period of time. These administrations can be independent of or in conjunction with long term regimens. The following examples are offered by way of illustration and not by way of limitation. EXPERIMENTAL Example 1 Anti-Atherogenic Effects of Oral Arginine Study design: (See, Cooke et al., 1992, supra) Male New Zealand white rabbits (n=49) were assigned to one of three treatment groups: 10 were fed with normal rabbit chow for ten weeks (Control); 19 received chow enriched with 1% cholesterol (Chol); and 20 received a 1% cholesterol diet supplemented with 2.25% L-arginine hydrochloride in the drinking water (Arg.). Following ten weeks of the dietary intervention, animals were lightly sedated and the central ear artery cannulated for measurement of intra-arterial blood pressure, followed by collection of blood samples for serum chemistries and plasma arginine. Subsequently the animals were sacrificed and the left main coronary artery and the thoracic aorta were harvested for studies of vascular reactivity and histomorphometry. In some animals, blood was collected for studies of platelet and monocyte reactivity. Results: Biochemical and physiological measurements. Hypercholesterolemic animals maintained on oral L-arginine supplementation (Arg) experienced a twofold elevation in plasma arginine levels in comparison to animals on a normal (Control) or 1% cholesterol (Chol) diet alone; the elevation in plasma arginine was maintained throughout the course of the study. Serum cholesterol measurements were elevated equally in both groups receiving the 1% cholesterol diet [50±6 vs. 1629±422 vs. 1852±356 mg/dl respectively for Control (=10), Chol (=13), and Arg (=14)]. There were no significant differences in hemodynamic measurements between groups. Organ chamber studies of isolated vessels: For NO-independent responses, there were no differences between the treatment groups in maximal response or sensitivity to norepinephrine (a vasoconstrictor), or to nitroglycerin (a nitrovasodilator). By contrast, NO-dependent relaxations were attenuated in vessels harvested from hypercholesterolemic animals with a reduction in the maximal response to acetylcholine. In comparison, vessels harvested from hypercholesterolemic animals receiving L-arginine supplementation had improved NO-dependent relaxation to acetylcholine. In a separate study, the effect of chronic arginine supplementation to improve NO-dependent relaxation was confirmed in the hypercholesterolemic rabbit abdominal aorta. Histomorphometric studies (planimetry of EVG-stained sections): A blinded histomorphometric analysis revealed that medial cross-sectional areas of thoracic aortae were not different between the groups. By contrast, the intimal cross-sectional area (i.e. amount of atherosclerotic plaque) of vessels from hypercholesterolemic animals receiving L-arginine supplementation was reduced in comparison to those from animals receiving cholesterol diet alone. In the Arg animals the reduction in the intimal lesion was most pronounced in the ascending thoracic aorta and left main coronary artery. In the left main coronary artery of hypercholesterolemic animals receiving arginine, essentially no atherosclerotic plaque developed. Changes in lesion surface area: In a second series of studies, the extent of the thoracic aorta involved by lesions was examined. In hypercholesterolemic rabbits receiving vehicle (n=6) or L-arginine supplement (n=6), thoracic aortae (from left subclavian artery to diaphragm) were harvested after ten weeks of treatment, bisected longitudinally, and stained with oil-red O. Vessels were photographed and vessel and lesion surface area determined by planimetry. Approximately 40% of the total surface area was covered with plaque in thoracic aortae from hypercholesterolemic animals receiving vehicle, whereas in thoracic aortae from arginine-treated hypercholesterolemic animals, less than 10% of the surface area was covered with plaque (FIG. 1). To summarize, dietary arginine supplementation increases plasma arginine levels, but does not alter serum cholesterol. This is associated with significant improvement in NO-dependent vasodilation as judged by bioassay. Finally, the improvement in NO-dependent vasodilation is associated with reduction in thickness and area of the lesions in vessels from hypercholesterolemic animals. Example 2 Inhibition of platelet aggregation by oral L-arginine: The effect of L-arginine supplementation on platelet reactivity in rabbits that had normal chow (Control; n=6), a 1% cholesterol diet (Chol; n=5), or a 1% cholesterol diet-supplemented with oral arginine (Arg; n=6), as detailed above, was examined. Arterial blood obtained after central ear artery cannulation was anticoagulated with 13 mM sodium citrate. Platelet-rich suspension was prepared by washing platelets in calcium-free Krebs-Henseleit solution and resuspending them in Tyrode's solution with albumin. Aggregation was initiated by addition of adenosine diphosphate and monitored by standard nephelometric techniques. In platelets derived from Chol animals, aggregation was not different in rate or maximum extent in comparison to platelets from Control animals (A, in FIG. 2). By contrast, aggregation of platelets from Arg animals was reduced by 50% (B, in FIG. 2). This reduction in platelet aggregation was associated with a two-fold greater cGMP content in aggregated platelets from arginine-treated animals. The reduction of platelet reactivity could be reversed by administration of N-methylarginine (10−4 M) in vitro (C, in FIG. 2). Therefore, the anti-platelet effect of chronic oral arginine administration can be credited to an increased synthesis of endogenous NO. Furthermore, NO synthesis may be induced in both the platelets and the endothelium. Example 3 Inhibition of Monocyte Adherence A. Functional Binding Assay: To determine if oral arginine supplementation affects monocyte adherence, blood was collected from rabbits fed normal chow (=6) a 1% cholesterol diet (=6), or a 1% cholesterol diet supplemented with L-arginine (=6), as described above. Mononuclear cells were purified from blood by Ficoll-paque density gradient centrifugation. In these preliminary studies, adhesion was examined of blood leukocytes to a transformed endothelial cell line, bEnd3 (mouse brain-derived polyoma middle T antigen transformed endothelial cells). The Bend3 cells display the morphology of endothelial cells, and like human endothelial cells are capable of uptake of acetylated low-density lipoprotein and express adhesion molecules in a cytokine-regulatable fashion. Cultured cells were grown to confluence in 0.5 cm2 Lab-Tek chamber slides (MilesScientific) and treated with control medium or with LPS (1 mg/ml) or TNFα (25 U/ml) for 18 hours. Cultures were washed with fresh assay buffer, and low, medium, or high concentrations of leukocytes (0.75, 1.5, or 3×105 cells/ml, respectively) were added per well. Following a 30-minute incubation on a rocking platform at room temperature to allow binding, the slides were inverted and immersed in buffer containing 2% (v/v) glutaraldehyde, such that non-adherent cells were lost and adherent cells were fixed to the monolayer. The adherent mononuclear cells were enumerated using video-light microscopy. Monocytes from hypercholesterolemic animals (Chol) exhibited greater adherence, consistent with observation by others, that monocytes from hypercholesterolemic cats or humans exhibit greater adherence to cultured endothelial cells. (deGruijter et al. (1991) Metabol. Clin. Exp. 40:1119-1121; Fan et al. (1991) Virchows Arch. B Cell Pathol. 61:19-27). In comparison to monocytes derived from vehicle-treated hypercholesterolemic animals (Chol), those from arginine-treated hypercholesterolemic animals (Arg) were much less adherent. This data shows that the arginine treatment inhibits adhesion of monocytes to the endothelium, which is the first observable event in atherogenesis. Example 4 Dietary L-Arginine Inhibits the Enhanced Endothelial-Monocyte Interaction In Hypercholesterolemia The earliest observable abnormality of the vessel wall in hypercholesterolemic animals is enhanced monocyte adherence to the endothelium, which occurs within one week of a high cholesterol diet. This event is thought to be mediated by the surface expression of endothelial adhesion molecules and chemotactic proteins induced by hypercholesterolemia. Another endothelial alteration that occurs in parallel is a reduced activity of nitric oxide. (i.e., NO), derived from metabolism of L-arginine. As shown above chronic dietary supplementation with L-arginine restores NO-dependent vasodilatation in hypercholesterolemic rabbits, and that this improvement in NO activity is associated with a striking anti-atherogenic effect. In the following study was tested the hypothesis that the anti-atherogenic effect of dietary arginine was mediated by endothelial derived NO which inhibits monocyte-endothelial cell interaction. Methods. Animals. Male New Zealand White rabbits were pair fed, receiving one of the following dietary interventions for two weeks: normal rabbit chow (Cont, n=7); rabbit chow enriched with 1% cholesterol (Chol, n=7); or 1% cholesterol chow supplemented with 2.25% L-arginine HCl in the drinking water (Arg, n=7) ad libitum throughout the course of the study. In a second series of studies designed to further explore the role of endogenous NO on monocyte-endothelial cell interaction, another group of animals were pair fed, receiving a normal rabbit diet supplemented with either vehicle control (N=5) or the NO synthase antagonist, nitro-L-arginine (L-NA, 10 mg/100 ml; n=5), administered in the drinking water ad libitum throughout the course of the study (for an average daily dose of 13.5 mg/kg/day). In a third series of experiments animals received a normal diet and either vehicle (n=4), L-NA (13.5 mg/kg/day; n=4), or L-NA and hydralazine (n=4) added to the drinking water for two weeks. At this dose, hydralazine (5 mg/kg/day) reversed the increase in blood pressure induced by L-NA. One day before sacrifice (after 2 weeks of dietary intervention), animals were lightly sedated and the central ear artery was cannulated for collection of blood samples. Mononuclear cell culture and isolation. Murine monocytoid cells, WEHI 78/24 cells were grown in Dulbecco's Modified Eagle's Medium supplemented 10% fetal calf serum (vol/vol) and were kept in an atmosphere of 5% CO2/95% air. Prior to binding studies, mononuclear cells were fluorescently labeled with TRITC (3 μg/ml). To confirm the results using WEHI cells, in some studies binding studies were performed in parallel using rabbit mononuclear cells. Mononuclear cells were isolated from fresh whole blood of Control rabbits before sacrifice. Preparation of aortic endothelium and binding assay. After 2 weeks of the dietary intervention, the thoracic aortae were removed and placed in cold, oxygenated saline. A 15 mm segment of thoracic aorta was excised from a point immediately distal to the left subclavian artery to the mid-thoracic aorta. The segments were then carefully opened longitudinally and placed into culture dishes containing HBSS medium. Aortic strips were fixed to the culture dish using 25 gauge needles so as to expose the endothelial surface to the medium. Culture dishes were then placed on a rocking platform at room temperature. After 10 minutes the HBSS medium was replaced by binding medium containing WEHI cells. The aortic strips were incubated with the mononuclear cells for 30 minutes. The medium was then replaced by fresh binding medium without cells to remove non-adherent cells. The aortic segments were then removed and placed on a glass slide, and adherent cells counted under epifluorescent microscopy from at least 30 sites on each segment. Results. Monocyte adhesion to rabbit aortic endothelium. Exposure of WEHI 78/24 cells to normal rabbit aortic endothelium results in a minimal cell binding in this ex vivo adhesion assay. However, when WEHI cells were incubated with aortic endothelium from hypercholesterolemic animals (Chol; n=7), cell binding was enhanced 3-fold in comparison to Cont (n=7). The increased cell binding manifested by aortic endothelium of hypercholesterolemic animals was significantly attenuated by L-arginine supplementation (n=7). (FIG. 3) Similar results were achieved when adhesion assays were performed in parallel with mononuclear cells that were freshly isolated from Cont animals (n=2) in each of the three groups. Effect of chronic NO synthase inhibition on endothelial adhesiveness. To further investigate the role of endothelium-derived NO in modulating endothelial-monocyte interaction, an additional series of binding studies were performed using thoracic aorta from animals that received regular chow supplemented with vehicle (n=5) or the NO synthase inhibitor, L-NA (n=5). The adhesion of WEHI cells was markedly increased when incubated with aortic endothelium from L-NA animals compared to control endothelium. This effect could not be attributed to hypertension caused by L-NA since concomitant administration of hydralazine normalized blood pressure but did not reverse the augmentation of cell binding induced by L-NA. In a separate series of studies it was confirmed that chronic administration of L-NA (the inhibitor of NO synthase) significantly inhibited generation and release of NO from the vessel wall (as measured by chemiluminescence), compared to vessels from animals treated with vehicle or arginine. The salient findings of this investigation are: 1) monocyte binding to the endothelium ex vivo is increased in vessels from hypercholesterolemic animals; 2) this increase in monocyte binding is attenuated in hypercholesterolemic animals treated chronically with the NO precursor L-arginine; 3) monocyte binding to the endothelium is increased in vessels from normocholesterolemic animals treated with the NO synthase antagonist L-nitro-arginine; and 4) this effect of NO synthase antagonism was not reversed by administration of hydralazine in doses sufficient to normalize blood pressure. These findings are consistent with the hypothesis that NO inhibits monocyte-endothelial cell interaction. To conclude, an ex vivo model of monocyte binding has been used to study the increase in endothelial adhesiveness induced by hypercholesterolemia. Endothelial adhesiveness is attenuated by oral administration of the NO precursor L-arginine is shown. Conversely, inhibition of NO synthase activity by oral administration of nitro-arginine strikingly increases endothelial affinity for monocytes ex vivo. The data are consistent with NO being an endogenous anti-atherogenic molecule. Example 5 Oral Arginine causes regression of atherosclerosis in hypercholesterolemic rabbits: Our previous work demonstrated that oral arginine could prevent the development of plaque in hypercholesterolemic animals but it was not known if pre-existing plaque could be affected by arginine treatment. This is clinically important if arginine is to be useful in the treatment of pre-existing atherosclerosis in humans. Accordingly, New Zealand white rabbits (n=85) received normal chow or 0.5% cholesterol chow for 10 weeks. Subsequently, half of the hypercholesterolemic rabbits were given 2.25% (W/V) L-arginine in their drinking water. Thoracic aortae were harvested at weeks 10, 14, 18, or 23. Rings of aorta were used to assess NO-dependent vasodilation to acetylcholine (ACh). Maximal relaxation to ACh in the hypercholesterolemic rabbits receiving vehicle (CHOL) became progressively attenuated from 53.4% (at week 10) to 17.4% (by week 23). Planimetry of the luminal surface of the aortae from CHOL animals revealed a progressive increase in plaque area from 30.3% (at week 10) to 56.5% (by week 23) of the total surface of the thoracic aorta. By contrast, hypercholesterolemic animals receiving arginine (ARG) manifested improved endothelium-dependent relaxation associated with a reduction of plaque area at 14 and 18 weeks. Lesion surface area in all arginine treated hypercholesterolemic animals (weeks 14-23) was significantly reduced in comparison to vehicle-treated hypercholesterolemic animals (FIG. 4). The arginine-induced improvement in endothelium-dependent relaxation was associated with an increased generation of vascular NO, and a reduced generation of vascular superoxide anion. By 23 weeks, 3 of 7 ARG animals had persistent improvement in NO-dependent vasodilation and exhibited a further reduction of plaque area to 5.4% Conclusions: hypercholesterolemia induces a progressive loss of NO-dependent vasodilation associated with progressive intimal lesion formation. Administration of L-arginine to animals with pre-existing intimal lesions augments vascular NO elaboration, reduces superoxide anion generation, and is associated with a reduction in plaque area. This is the first demonstration that restoration of NO activity can induce regression of pre-existing intimal lesions, and provides evidence that L-arginine therapy may be of potential clinical benefit. Example 6 Oral Arginine Administration Restores Vascular NO Activity and Inhibits Myointimal Hyperplasia After Balloon Injury in Hypercholesterolemic Rabbits Purpose. The purpose of this study was to determine if the alterations in vascular function and structure following balloon angioplasty in hypercholesterolemic rabbits could be inhibited by restoration of endogenous nitric oxide (NO) activity. Methods. Twenty-eight New Zealand white rabbits were randomized into one of three dietary groups and received either normal rabbit chow, 0.5% cholesterol diet, or 0.5% cholesterol diet plus L-arginine hydrochloride (2.25% W/V) in the drinking water. After six weeks of dietary intervention, the left iliac artery of each animal was subjected to a balloon angioplasty. Four weeks later, the iliac arteries were harvested for vascular reactivity studies and immunohistochemistry. Results. The bioassay studies indicated that endothelium-derived NO activity was inhibited in hypercholesterolemic animals in comparison to normocholesterolemic animals. The administration of arginine partially restored endothelium-derived NO activity. Balloon angioplasty induced intimal thickening which was largely composed of vascular smooth muscle cells and extracellular matrix. In the setting of hypercholesterolemia, vascular injury induced an exuberant myointimal lesion that was augmented by the accumulation of lipid-laden macrophages. Administration of L-arginine induced a quantitative as well as qualitative change in the lesion. Dietary arginine reduced intimal thickening in the injured vessels of hypercholesterolemic animals, and substantially inhibited the accumulation of macrophages in the lesion (FIG. 5). Conclusions. We report that the lesions induced by balloon angioplasty in hypercholesterolemic animals are markedly reduced by oral administration of arginine. Moreover, we find that the nature of the lesion is altered, with a striking reduction in the percentage of macrophages comprising the lesion. Hypercholesterolemia induces an endothelial vasodilator dysfunction in the rabbit iliac artery that is reversible by chronic oral administration of arginine. Example 7 Nitric oxide regulates monocyte chemotactic protein-1. Our previous studies had established that oral arginine administration could enhance vascular NO synthesis. This increase in vascular NO synthesis was associated with inhibition of monocyte adherence and accumulation in the vessel wall (thereby reducing the progression, and even inducing regression, of plaque). The question remained: “How does vascular nitric oxide inhibit monocyte adherence and accumulation in the vessel wall?” Monocyte chemotactic protein-1 (MCP-1) is a 76-amino acid chemokine thought to be the major chemotactic factor for monocytes (chemotactic factors are proteins that attract white blood cells). We hypothesized that the anti-atherogenic effect of NO may be due in part to its inhibition of MCP-1 expression. Methods and Results. Smooth muscle cells (SMC) were isolated from normal rabbit aortae by explant method. Cells were then exposed to oxidized LDL (30 μg/ml) (which is known to induce vascular cells to synthesize MCP-1). The expression of MCP-1 in SMC was associated with an increased generation of superoxide anion by the SMC, and increased activity of the transcriptional protein NFκB. All of these effects of oxidized LDL cholesterol were reduced by previous exposure of the SMC to the NO-donor DETA-NONOate (100 μM) (p<0.05). To determine if NO exerted its effect at a transcriptional level, SMC and COS cells were transfected with a 400 bp fragment of the MCP-1 promoter. Enhanced promoter activity by oxLDL was inhibited by DETA-NO. To investigate the role of endogenous NO in the regulation of MCP-1 in vivo, NZW rabbits were fed normal chow, normal chow plus nitro-L-arginine (L-NA) (to inhibit vascular NO synthesis), high cholesterol diet (Chol), or high cholesterol diet supplemented with L-arginine (Arg) (to enhance NO synthesis). After two weeks, thoracic aortae were harvested and total RNA was isolated. Northern analysis demonstrated increased expression of MCP-1 in Chol and L-NA aortae; this expression was decreased in aortae from Arg animals. These studies indicate that the anti-atherogenic effect of NO may be mediated in part by its inhibition of MCP-1 expression. NO inhibits the generation of superoxide anion by the vascular cells and thereby turns off an oxidant-responsive transcriptional pathway (i.e. NFκB-mediated transcription) activating MCP-1 expression. Example 8 Nitric Oxide Inhibits the Expression of an Endothelial Adhesion Molecule Known to be Involved in Atherosclerosis Vascular cell adhesion molecule (VCAM-1) is an endothelial adhesion molecule that binds monocytes. This molecule is expressed by the endothelium of hypercholesterolemic animals, and is expressed by endothelial cells overlying plaque in animals and humans. This adhesion molecule is believed to participate in monocyte adherence and accumulation in the vessel wall during the development of plaque. Other workers have shown that the expression of this molecule is regulated by an oxidant-responsive transcriptional pathway mediated by the transcriptional factor NFκB. Endothelial cells exposed to oxidized LDL cholesterol (or cytokines like TNF-α) begin to generate superoxide anion. Superoxide anion turns on oxidant-responsive transcription leading to the expression of VCAM-1 and MCP-1 (and probably other genes that participate in atherosclerosis). Our data indicates that NO inhibits the generation of superoxide anion, thereby turning off these oxidant-responsive transcriptional pathways. Methods and Results: Confluent monolayers of human aortic endothelial cells (HAEC) were exposed to static or fluid flow conditions for 4 hours (fluid flow stimulates the production of endogenous nitric oxide). Medium was then replaced and cells were then incubated with native LDL (50 μg/ml), oxidized LDL (30 μg/ml), or LPS (10 ng/ml)+TNF-α (10 U/ml) for an additional 4 hours. Functional binding assays utilizing THP-1 monocytes were then performed. Superoxide production by HAECs was monitored by lucigenin chemiluminescence and expression of the adhesion molecules VCAM-1 and ICAM-1 was quantitated by flow cytometry. Whereas native LDL had little effect, incubation with either oxLDL or LPS/TNF significantly increased superoxide production, NF-κB activity, VCAM-1 expression and endothelial adhesiveness for monocytes. Previous exposure to fluid flow inhibited endothelial adhesiveness for monocytes (FIG. 6) and the other sequelae of exposure to cytokines or oxidized lipoprotein. The effect of fluid flow was due to shear-induced release of nitric oxide since coincubation with L-nitro-arginine completely abolished these effects of flow. Furthermore, the NO donor PAPA-NONOate mimicked the effects of flow. Conclusions. Previous exposure to fluid flow decreased cytokine or lipoprotein-stimulated endothelial cell superoxide production, VCAM-1 expression and monocyte binding; the effects of flow are due at least in part to nitric oxide. NO participates in the regulation of the endothelial generation of superoxide anion and thereby inhibits oxidant-responsive transcription of genes (i.e. VCAM-1 and MCP-1) that are involved in atherogenesis. Example 9 Transfection of the Gene Encoding NO Synthase Increases NO Generation and Inhibits Monocyte Adherence The following experiment was done to determine if transfer of the gene encoding NO synthase (the enzyme that produces NO) could increase generation of nitric oxide and thereby inhibit monocyte adherence. Cultured endothelial cells (bEnd-3; a murine endothelial cell line) were transfected with a plasmid construct encoding the NO synthase gene, using lipofectamine liposomal technique. Forty-eight hours later, generation of nitric oxide was measured using chemiluminescence. Nitric oxide generation was increased 2-fold in cells transfected with the NO synthase construct (but not in cells transfected with a control construct). In parallel, binding assays were performed using a murine monocytoid cell line. The binding of monocytoid cells to the endothelial cells was reduced by 30% in those cells transfected with the NO synthase construct. Conclusion: endothelial cells transfected with a plasmid construct containing the NO synthase gene were able to elaborate more nitric oxide. The increased elaboration of nitric oxide was associated with an inhibition of monocyte binding to the endothelial cells. Example 10 Effect of NO synthase expression on proliferation of vascular smooth muscle cells: Cultured rat aortic vascular smooth muscle cells under confluent quiescent conditions were studied. An efficient viral coat protein-mediated DNA transfer method was employed to transfect the cells with the NO synthase gene driven by the β-actin promoter and CMV enhancer. This resulted in increased NO synthase activity (as measured by the arginine-to-citrulline conversion assay) in comparison to control vector transfected cells. Transfection of the NO synthase gene completely abolished serum-stimulated DNA synthesis compared to control vector transfection. These results indicated that increased expression of NO synthase (associated with increased production of NO) inhibits excessive proliferation of vascular smooth muscle cells. This inhibition can be correlated with treatment of atherosclerosis and restenosis. Example 11 Gene Therapy Using NO Synthase cDNA Prevents Restenosis The study above indicated that NO inhibits proliferation of vascular smooth muscle cells. In atherogenesis and restenosis, excessive proliferation of vascular smooth muscle cells contributes to lesion formation. Injury to the endothelium in atherosclerosis and after catheter interventions apparently reduces or removes the salutary influence of NO. The following study shows delivery of the gene for NO synthase to the vessel wall inhibits lesion formation. A plasmid construct encoding the cDNA of endothelial-type NO synthase (EC-NOS) was synthesized. A full length cDNA encoding for EC-NOS was inserted into the EcoRI site of the pUCcaggs expression vector. Balloon angioplasties of the carotid artery in Sprague-Dawley rats were performed and HVJ-liposomes with plasmids encoding EC-NOS cDNA infused, or plasmids lacking EC-NOS cDNA (control vector) infused. After 4 days to 2 weeks, the rats were sacrificed and the carotid arteries harvested for: 1) histomorphometry; 2) measurement of DNA synthesis; and 3) ex vivo determination of NO synthesis and release by bioassay and by chemiluminescence. Results. Morphometric measurements 2 weeks after injury revealed a significant (68%) reduction of intimal lesion thickness in EC-NOS treated (Inj+NOS) in comparison to control vector treated (Inj+CV) or untreated (Inj) injured vessels. (FIG. 7) Measurements of DNA synthesis were performed four days after injury using bromodeoxyuridine. EC-NOS transfection significantly limited bromodeoxyuridine incorporation (by 25%) in comparison to control vector treated or untreated injured vessels. Vessel segments were studied ex vivo using organ chamber technique to bioassay for NO release. Calcium ionophore increases intracellular calcium and activates NO synthase to produce NO. Calcium ionophore induced relaxations in injured carotid arteries transfected with control vector that were only 15% of uninjured vessels. Injured arteries that had been transfected with EC-NOS relaxed to a much greater degree, approximately 50% of that observed in uninjured vessels. Direct measurement of NO (by chemiluminescence) released into the medium revealed that NO released by injured tissues (transfected with the control vector) was only 20% of that released by normal uninjured tissues. By contrast, injured tissues transfected with EC-NOS released more NO (about 75% of normal). To conclude, balloon angioplasty of the rat carotid artery removes the endothelial source of NO, induces excessive vascular smooth muscle DNA synthesis and proliferation, resulting in an intimal lesion (restenosis). Transfection of the vessel with EC-NOS at the time of balloon injury partially restores NO production by the vessel, and this is associated with reduced DNA synthesis and vascular smooth muscle proliferation, thereby reducing lesion formation. These results are consistent with the conclusion that NO is an endogenous anti-atherogenic molecule. Example 12 Local Application of L-arginine to the Vessel Wall Inhibits Myointimal Hyperplasia The previous studies revealed that oral administration of arginine could enhance vascular NO activity and inhibit lesion formation induced by a high cholesterol diet and/or vascular injury (with balloon angioplasty). To determine if intraluminal application of arginine to the vessel wall at the time of balloon angioplasty could inhibit lesion formation, the following study was performed. Rabbits (n=7) were fed a 1% cholesterol diet. After one week, angioplasty of the iliac arteries was performed. After angioplasty of one iliac artery, a local infusion catheter was used to expose the injured area to a high concentration of arginine (6 mM). The other iliac artery was subjected to balloon angioplasty, but not treated with a local infusion. After four weeks, the vessels were harvested, and segments of the arteries processed for histomorphometry. Initial thickening in the arginine-treated vessels was significantly reduced (FIG. 8). This study indicates that the local intraluminal application of high doses of arginine can reduce myointimal hyperplasia after vascular injury. Example 13 Exclusion of the Effect of Enhanced Nitrogen or Caloric Balance as Causing the Observed Results To exclude an effect of L-arginine on nitrogen or caloric balance as the cause of these results, six animals received 1% cholesterol diet supplemented by additional methionine to increase the dietary methionine six-fold. At ten weeks animals were sacrificed for studies of platelet and vascular reactivity, and histomorphometry. Endothelium-dependent relaxation, platelet aggregation and intimal thickness were not different from those of animals fed 1% cholesterol diet alone. These results reveal that another amino acid, methionine (which is not a precursor of NO) does not mimic the effect of the amino acid L-arginine. Therefore it seems likely that the effect of L-arginine is due to its metabolism to nitric oxide, rather than some other effect of amino acid administration (i.e. change in nitrogen or caloric balance). Example 14 L-lysine Enhances Vascular NO Activity and Inhibits Atherogenesis L-lysine is a basic amino acid like L-arginine, but is not known to be metabolized by NO synthase to NO. Therefore, the following results were unexpected. New Zealand white rabbits were fed a normal or high cholesterol chow (n=18). Half of the animals on the cholesterol diet also received oral L-lysine. After ten weeks, the thoracic aortae were harvested and bioassayed for vascular NO synthesis, and histomorphometry to assess lesion formation was performed as described above. The administration of L-lysine was just as effective as L-arginine to increase vascular NO activity in the hypercholesterolemic animals as assessed by endothelium-dependent vasorelaxation. (FIG. 9) The improvement in vascular NO activity was associated with a marked reduction in vascular lesion formation. This study revealed the unexpected result that L-lysine can enhance vascular NO activity and inhibit atherosclerosis. Example 15 Oral L-arginine Normalizes Monocyte Adhesiveness in Hypercholesterolemic Humans Adherence of monocytes to the endothelium is the first observable event in the development of atherosclerosis. We hypothesized that chronic oral administration of L-arginine to hypercholesterolemic humans would enhance the generation of endothelium-derived NO, and thereby inhibit the interaction of monocytes with the endothelium. In this investigation we have developed a reproducible assay for the binding of human monocytes to cultured endothelial cells, and we have examined the effect of hypercholesterolemia and L-arginine treatment on this interaction. The control subject population in this study included 12 normal volunteers, (10 males and 2 females), with an average age of 37±2 yrs. Normalcy was determined by a careful history, physical examination, and laboratory analysis to exclude individuals with hematologic, renal, or hepatic dysfunction or clinically evident atherosclerosis. There were 20 patients (10 males and 10 females) with hypercholesterolemia as defined by a total plasma cholesterol greater than 240 mg/dl and a LDL cholesterol level greater than 160 mg/dl. These individuals had an average age of 51±2 yrs. None of the subjects were taking diuretics, vasoactive medications, antiplatelet or hypolipidemic medications. This study was approved by the Stanford University Administrative Panel on Human Subjects in Medical Research and each subject gave written informed consent before entry into the study. Blood was drawn from each subject in the postabsorptive state. We isolated human monocytes from citrated venous blood. The blood was centrifuged and the buffy coat removed and resuspended with HBSS. The suspension was then carefully layered onto a cushion of 1.068-d Histopaque, and centrifuged. After centrifugation, the monocytes were aspirated. We used the transformed endothelial cell (EC) line, bEnd3 to examine monocyte-endothelial binding ex vivo. The bEnd3 cells express endothelial adhesion molecules and bind monocytes in a cytokine-inducible fashion with kinetics similar to those observed with human umbilical vein endothelium. Monocytes were added to the wells containing the endothelial monolayers to reach a final cell number of 3×106/ml. In some studies, monocytes were exposed in vitro for 30 minutes to sodium nitroprusside (an NO donor) prior to the binding assay. The six-well plates were transferred to a rocking platform and rocked for 30 minutes at room temperature. After 30 minutes, the cell suspension was aspirated from each well and wells were then rinsed with binding buffer to remove non-adherent monocytes. Videomicroscopic counting of adherent cells was performed using a computer aided image analysis system. Results. Oral administration of L-arginine (7 g daily for 2 weeks) to hypercholesterolemic humans increased plasma arginine values by 60% (from 79±10 to 128±12 mM; n=7), whereas L-arginine values in the placebo-treated (n=3) and normocholesterolemic (n=6) groups remained unchanged. The administration of oral L-arginine had no effect on any of the biochemical or hematologic parameters and was well tolerated. Oral L-arginine did not lower total cholesterol or LDL cholesterol. Two patients dropped out of the study; one because he did not want to take the pills, and one because of reactivation of oral herpes during the study. The results of the adhesion assays were highly reproducible. Monocytes derived from hypercholesterolemic individuals demonstrated a 50±8% increase in bound cells/hpf in comparison to cells from normal individuals (p<0.0001). The degree of adhesiveness was correlated to the plasma levels of LDL cholesterol (R=0.7, n=33; p<0.0001; FIG. 10). In an open-label study, 3 hypercholesterolemic individuals were treated with oral L-arginine supplementation for 2 weeks. Arginine treatment resulted in a 38% decrease in monocyte adhesiveness. To confirm this effect of L-arginine treatment and to control for any experimental bias, a double-blinded, placebo-controlled, randomized study was performed. Ten hypercholesterolemic subjects were randomized (1:2) to placebo or L-arginine treatment; 6 normocholesterolemic individuals were studied in parallel to control for variation over time in the binding assay. At baseline, the adhesion of monocytes from both hypercholesterolemic groups was increased in comparison to the normocholesterolemic individuals (p<0.001). After 2 weeks of L-arginine administration, there was an absolute reduction of 53% in monocyte binding (n=7, p<0.005, baseline vs 2 weeks) (FIG. 11). By contrast, there was no significant change in the adhesiveness of monocytes isolated from hypercholesterolemic individuals treated with placebo. Two weeks after discontinuation of the L-arginine treatment, the adhesiveness of the monocytes isolated from hypercholesterolemic individuals had significantly increased compared to the normocholesterolermic individuals (34±9% increase in bound cells/hpf; p<0.05), and was also significantly increased in comparison to the binding obtained after 2 weeks of L-arginine therapy (an increase of 30±9%, p<0.05). The adhesiveness of monocytes from placebo-treated hypercholesterolemic individuals did not change significantly during the washout period. In some studies monocytes were exposed to sodium nitroprusside or vehicle control for 30 minutes in vitro. Pre-incubation of the cells from hypercholesterolemic individuals with the NO donor sodium nitroprusside (10−3M) markedly reduced binding (164±9% vs 98±7% vehicle vs sodium nitroprusside; n=7, p<0.0005; values expressed as a percent of the normocholesterolenic control exposed to vehicle; FIG. 12). To conclude, the salient findings of this investigation are that: 1) Hypercholesterolemia enhances the adhesiveness of monocytes for endothelial cells, 2) oral arginine supplementation reverses the increase in adhesiveness of monocytes from hypercholesterolemic individuals, and 3) the effect of oral arginine is mimicked in vitro by exposure of the monocytes from hypercholesterolemic individuals to sodium nitroprusside, an NO donor. Example 16 Platelet Hyperaggregability in Hypercholesterolemic Humans: Reversal by Oral L-Arginine In this study we tested the hypothesis that chronic L-arginine supplementation would inhibit platelet reactivity in hypercholesterolemic humans. Venous blood was collected from normal (NC; n=11) and hypercholesterolemic (HC; n=22) volunteers for isolation of platelet-rich plasma and aggregometry. Half the HC group received L-arginine (7 g/d) for 2 weeks; aggregometry was performed using collagen (5 mg/ml) before and after two weeks of treatment. Results: HC platelets were hyperaggregable. After two weeks of L-arginine, the aggregability of HC platelets was reduced (FIG. 13). These studies are consistent with our previous observations in animals that oral administration of L-arginine inhibits platelet reactivity. Example 17 Intravenous Administration of L-Arginine Improves Endothelium-Dependent Vasodilation in Hypercholesterolemic Humans Hyperlipoproteinemia impairs endothelium-dependent vasodilation, even before the development of atherosclerosis. We hypothesized that administration of L-arginine may increase synthesis of NO and thereby improve endothelium-dependent vasodilation in hypercholesterolemia. Indeed, our earlier studies conducted in cholesterol-fed rabbits support this notion. The following data demonstrates that L-arginine augments endothelium-dependent vasodilation in forearm resistance vessels of hypercholesterolemic humans. The control subject population in this study included 11 normal volunteers comprising (10 males and 1 female). Their ages ranged from 31 to 49 and averaged 39±2 yr. There were 14 patients with hypercholesterolemia. Hypercholesterolemia was defined as a serum LDL cholesterol level greater than the 75th percentile adjusted for age and sex. These individuals included 11 males and 3 females whose ages ranged from 22 to 48 and averaged 38±2 years. Under local anesthesia and sterile conditions, a polyethylene catheter was inserted into a brachial artery of each subject for determination of blood pressure and for infusion of drugs. A separate polyethylene catheter was inserted into the antecubital vein for infusion of L-arginine. Bilateral forearm blood flow was determined by venous occlusion strain gauge plethysmography, using calibrated mercury-in-silastic strain gauges, and expressed as ml/100 ml tissue per min. To assess NO-dependent vasodilation, methacholine chloride (which induces the endothelium to release NO) was administered via the brachial artery. Forearm blood flow was measured during infusion of methacholine chloride at concentrations of 0.3, 3, and 10 μg/min each for 3 min. After completion of the methacholine chloride infusions, all normal subjects and 10 individuals with hypercholesterolemia were given L-arginine intravenously over 30 minutes and then the methacholine infusions were repeated. D-arginine, the enantiomer of L-arginine, is not a precursor of NO. Thus, to ensure that any observed effects of L-arginine were due to its contribution to the synthesis of NO and not just secondary to its physiochemical properties, five individuals with hypercholesterolemia received D-arginine intravenously. Results. Baseline blood pressure, heart rate, and forearm blood flow did not differ between normal and hypercholesterolemic subjects. Intraarterial infusion of methacholine chloride caused a dose-dependent increase in forearm blood flow. In the hypercholesterolemic subjects, however, cholinergic vasodilation was less than that of normal subjects (p<0.05). The maximal forearm blood flow response to methacholine in normal subjects is 19.0±1.9 ml/100 ml of tissue per min, and in hypercholesterolemic subjects, it was 13.7±1.7 ml/100 ml of tissue per min (p<0.05). In the normal subjects, L-arginine did not potentiate the vasodilation that occurred during the administration of methacholine chloride. In the hypercholesterolemic subjects, however, the L-arginine infusion augmented the vasodilation to methacholine chloride by 25% (p<0.05). There were no complications or side-effects of the L-arginine infusions. The important findings in this study are: (a) endothelium-dependent vasodilation (due to the release of NO) is reduced in forearm resistance vessels of hypercholesterolemic humans; and (b) intravenous administration of L-arginine improves endothelium-dependent vasodilation in these individuals. NO not only causes vasodilation, but it also inhibits platelet aggregation and suppresses monocyte adhesion in hypercholesterolemic humans. Example 18 Administration of Intravenous L-Arginine Improves Coronary Endothelial Function in Cardiac Transplant Recipients A reduction in coronary NO-dependent vasodilation occurs in cardiac transplant recipients and may represent an early marker for the development of graft atherosclerosis. Reduced NO-dependent vasodilation in response to acetylcholine is an indicator of endothelial dysfunction and has been attributed to reduced synthesis or accelerated degradation of endothelium-derived nitric oxide. We hypothesized that endothelial dysfunction of epicardial coronary arteries at an early stage of coronary allograft atherosclerosis might be reversed by L-arginine. The present study tested the hypothesis that administration of L-arginine, the precursor of endothelium-derived NO, improves endothelial vasodilator function of coronary conduit and resistance vessels. Cardiac transplant recipients scheduled for elective annual coronary angiography at Stanford University hospital were screened for possible participation in the study. The study protocol was approved by the Stanford University Committee on Human Subjects in Medical Research. All patients gave written informed consent. Eighteen patients who had cardiac transplantation 1 to 13 years previously were studied. Vasoactive medications were discontinued at least 12 hours before the study. After diagnostic angiography revealed no visually apparent coronary stenosis, a guiding catheter was used to cannulate the left main coronary artery. An infusion catheter was then advanced over a Doppler flow velocity guide wire into a nonbranching segment of the coronary artery for infusion of acetylcholine (which stimulates the endothelium to release NO). After baseline angiography was, performed, increasing concentrations of acetylcholine were serially infused over 3 minutes. Infusion of acetylcholine continued until the maximum dose (10−4 mol/L) was reached or until total coronary occlusion occurred. Then an intravenous infusion of L-arginine (30 g over 15 minutes) was performed. Thereafter, the intracoronary infusion of acetylcholine was repeated. Coronary angiography and Doppler flow velocity recording was performed at the end of the L-arginine infusion and after the infusion of each concentration of acetylcholine. Results. In epicardial coronary arteries of these transplant recipients, acetylcholine caused vasoconstriction. Epicardial coronary vasoconstriction caused by acetylcholine was attenuated by infusion of L-arginine (10−4 mol/L, −6.8% versus −2.8%; p<0.01). In coronary resistance vessels, acetylcholine induced vasodilation, reflected by increases in blood flow. The increase in coronary blood flow was significantly enhanced with L-arginine (p<0.002; FIG. 14). There were no complications or side-effects of the L-arginine infusion. The coronary vasculature of cardiac transplant recipients exhibits a generalized reduction of NO-dependent vasodilation. L-arginine improves endothelial-derived NO dependent vasodilation of both coronary microvasculature and epicardial coronary arteries. It is evident from the above results, that by enhancing the nitric oxide levels, by means of nitric oxide precursor compounds or other compounds in the nitric oxide pathway, substantial benefits will ensue to patients with vascular degenerative diseases. This treatment will restore normal vascular tone (preventing excessive vasoconstriction and elevation of blood pressure; and will improve blood flow to the heart, brain, and other critical tissues thereby enhancing exercise tolerance and relieving symptoms such as angina or cerebral ischemia); and will diminish the formation of atherosclerotic plaque and restenosis (by inhibiting adhesion of monocytes and platelets, and by reducing the proliferation of vascular smooth muscle cells). Benefits may also ensue to normal individuals, ecause NO is critically involved in exercise-mediated vasodilation, an enhancement of NO synthesis could improve blood flow and exercise capacity even in normal individuals. By virtue of administering to the host, based on a predetermined regimen, or providing in the host a supply of a component in the synthetic pathway for production of nitric oxide, so as to maintain a mildly elevated level of nitric oxide in the host, particularly at the site to be treated, the incidence of plaque formation can be substantially diminished. This can be achieved in a variety of ways: by oral administration in accordance with a predetermined regimen of various compounds associated with nitric oxide formation, e.g. L-arginine and/or L-lysine; by administration at the site, in a predetermined regimen of compounds which can produce nitric oxide, either directly or as a result of physiologic action of endogenous compounds, e.g. enzymes; by employing combinations of compounds, which by their action result in the production of nitric oxide; or the like. These individual administrations, can be done independently or in conjunction with a regimen of other compounds associated with the production of nitric oxide. Alternatively, one may use genetic engineering to introduce a gene associated with a component in the synthetic pathway for production of nitric oxide, e.g. nitric oxide synthase, where the enhanced production of such compounds will have the effect of driving the equilibrium to an enhanced production of nitric oxide. Thus, the subject invention provides a plurality of pathways to enhance the synthesis or action of nitric oxide, or reduce the degradation of nitric oxide, thereby increasing the effect of endogenous nitric oxide to prevent the formation of vascular lesions and to inhibit restenosis. All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims. | <SOH> BACKGROUND <EOH>Atherosclerosis and vascular thrombosis are a major cause of morbidity and mortality, leading to coronary artery disease, myocardial infarction, and stroke. Atherosclerosis begins with an alteration in the endothelium, which lines the blood vessels. The endothelial alteration results in adherence of monocytes, which penetrate the endothelial lining and take up residence in the subintimal space between the endothelium and the vascular smooth muscle of the blood vessels. The monocytes absorb increasing amounts of cholesterol (largely in the form of oxidized or modified low-density lipoprotein) to form foam cells. Oxidized low-density lipoprotein (LDL) cholesterol alters the endothelium, and the underlying foam cells distort and eventually may even rupture through the endothelium. Platelets adhere to the area of endothelial disruption and release a number of growth factors, including platelet derived growth factor (PDGF). PDGF, which is also released by foam cells and altered endothelial cells, stimulates migration and proliferation of vascular smooth muscle cells into the lesion. These smooth muscle cells release extracellular matrix (collagen and elastin) and the lesion continues to expand. Macrophages in the lesion elaborate proteases, and the resulting cell damage creates a necrotic core filled with cellular debris and lipid. The lesion is then referred to as a “complex lesion.” Rupture of this lesion can lead to thrombosis and occlusion of the blood vessel. In the case of a coronary artery, rupture of a complex lesion may precipitate a myocardial infarction, whereas in the case of a carotid artery, stroke may ensue. One of the treatments that cardiologists and other interventionalists employ to reopen a blood vessel which is narrowed by plaque is balloon angioplasty (approximately 300,000 coronary and 100,000 peripheral angioplasties are performed annually). Although balloon angioplasty is successful in a high percentage of the cases in opening the vessel, it unfortunately denudes the endothelium and injures the vessel in the process. This damage causes the migration and proliferation of vascular smooth muscle cells of the blood vessel into the area of injury to form a lesion, known as myointimal hyperplasia or restenosis. This new lesion leads to a recurrence of symptoms within three to six months after the angioplasty in a significant proportion of patients (30-40%). In atherosclerosis, thrombosis and restenosis there is also a loss of normal vascular function, such that vessels tend to constrict, rather than dilate. The excessive vasoconstriction of the vessel causes further narrowing of the vessel lumen, limiting blood flow. This can cause symptoms such as angina (if a heart artery is involved), or transient cerebral ischemia (i.e. a “small stroke”, if a brain vessel is involved). This abnormal vascular function (excessive vasoconstriction or inadequate vasodilation) occurs in other disease states as well. Hypertension (high blood pressure) is caused by excessive vasoconstriction, as well as thickening, of the vessel wall, particularly in the smaller vessels of the circulation. This process may affect the lung vessels as well causing pulmonary (lung) hypertension. Other disorders known to be associated with excessive vasoconstriction, or inadequate vasodilation include transplant atherosclerosis, congestive heart failure, toxemia of pregnancy, Raynaud's phenomenon, Prinzmetal's angina (coronary vasospasm), cerebral vasospasm, hemolytic-uremia and impotence. Because of their great prevalence and serious consequences, it is critically important to find therapies which can diminish the incidence of atherosclerosis, vascular thrombosis, restenosis, and these other disorders characterized by abnormality of vascular function and structure. Ideally, such therapies would inhibit the pathological vascular processes associated with these disorders, thereby providing prophylaxis, retarding the progression of the degenerative process, and restoring normal vasodilation. As briefly summarized above, these pathological processes are extremely complex, involving a variety of different cells which undergo changes in their character, composition, and activity, as well as in the nature of the factors which they secrete and the receptors that are up- or down-regulated. A substance released by the endothelium, “endothelium derived relaxing factor” (EDRF), may play an important role in inhibiting these pathologic processes. EDRF is now known to be nitric oxide (NO) or a labile nitroso compound which liberates NO. (For purposes of the subject invention, unless otherwise indicated, nitric oxide (NO) shall intend nitric oxide or the labile nitroso compound which liberates NO.) This substance relaxes vascular smooth muscle, inhibits platelet aggregation, inhibits mitogenesis and proliferation of cultured vascular smooth muscle, and leukocyte adherence. Because NO is the most potent endogenous vasodilator, and because it is largely responsible for exercise-induced vasodilation in the conduit arteries, enhancement of NO synthesis could also improve exercise capacity in normal individuals and those with vascular disease. NO may have other effects, either direct or indirect, on the various cells associated with vascular, walls and degenerative diseases of the vessel. | <SOH> SUMMARY OF THE INVENTION <EOH>Methods are provided for improving vascular function and structure, particularly modulating vascular relaxation, cellular adhesion, infiltration and proliferation by modulating the level of nitric oxide or active precursor at a physiological site. The methods find use in preventing the degradation of vascular function, particularly as involved with the occurrence of atherosclerosis, restenosis, thrombosis, hypertension, impotence, and other disorders characterized by reduced or inadequate vasodilation. The enhancement of endogenous nitric oxide or secondary messenger availability at a physiological site improves vascular relaxation and thereby relieves symptoms due to inadequate blood flow (such as angina) and can counteract inappropriate elevation of blood pressure. The enhancement of endogenous nitric oxide also inhibits initiation and the progression of atherosclerosis, restenosis, vascular hypertrophy or hyperplasia and thrombosis. This is due to the fact that nitric oxide is not only a potent modulator, but can also inhibit platelets and white blood cells from adhering to the vessel wall. As a prophylaxis or treatment for vascular function deterioration, particularly in atherosclerotic susceptible hosts, the agent is chronically administered at an effective dosage. For restenosis, the agent may be administered for a limited period since this pathological process generally abates 3-6 months after the vascular injury (i.e. angioplasty or atherectomy). Oral administration of L-arginine, precursors to L-arginine, e.g. oligopeptides or polypeptides comprising L-arginine, or proteins comprising high levels of L-arginine, by itself or in combination with L-lysine, particularly further supplemented with GRAS substances which enhance the effectiveness of the active agents, as a dietary supplement will increase NO elaboration and thereby diminish the effects of atherogenesis. Other techniques to enhance NO or secondary messenger availability may be utilized such as increasing the availability of NO synthase, for example, as a result of enhanced expression of NO synthase in the vessel wall, particularly at the lesion site, release of NO from the vessel wall or reduction of degradation of NO or the secondary messenger, cyclic guanosine monophosphate (“cGMP”). | 20041222 | 20081118 | 20060112 | 73069.0 | A61K4800 | 48 | RUSSEL, JEFFREY E | ENHANCEMENT OF VASCULAR FUNCTION BY MODULATION OF ENDOGENOUS NITRIC OXIDE PRODUCTION OR ACTIVITY | UNDISCOUNTED | 1 | CONT-ACCEPTED | A61K | 2,004 |
|
11,019,655 | ACCEPTED | System and method for initiating a conference call | The present invention is a system and method for initiating conference calls via an instant messaging system to reduce the effort required to initiate and manage the call. The system uses an IM connection between a requesting party and a conference call server to inform the conference call server of the desire to initiate the conference call. The conference call server may initiate the conference call by having involved parties called by a conference bridge, thus reducing the effort required by the parties to join the call. | 1. A method for initiating a conference call, comprising the steps of: providing a conference call requester with a network access device, said network access device capable of communicating via an instant messaging service, said instant messaging service being adapted to communicate conference call request information with said conference call server; establishing a communications connection from said network access device to a conference call server; presenting said conference call requester with a display showing at least one potential target with whom a conference call may be initiated, said display further indicating whether said potential target is communicably connected to said instant messaging service; generating a conference call request by said conference call requester, said conference call request identifying at least one potential target for said conference call request; transmitting said conference call request from said network access device to said conference call server; establishing a conference call connection to said conference call requester, said conference call connection initiated by said conference call server, said conference call connection further being connected to at least a one other target. 2. A method for initiating a conference call according to claim 1, wherein said instant messaging service comprises a software client active on said network access device. 3. A method for initiating a conference call according to claim 1, wherein said instant messaging service comprises an internet accessible application, said internet accessible application being communicably connected to said network access device via the Internet. 4. A method for initiating a conference call according to claim 3, wherein said internet accessible application comprises a browser viewable web page. 5. A method for initiating a conference call according to claim 1, wherein said conference call connection utilizes a publicly switched telephone network. 6. A method for initiating a conference call according to claim 1, wherein said conference call connection utilizes a voice over internet-protocol communications path. 7. A method for initiating a conference call according to claim 1, wherein said conference call connection provides for video data transmission. 8. A method for initiating a conference call according to claim 1, wherein said conference call connection utilizes a cellular communications path. 9. A method for initiating a conference call according to claim 1, wherein said network access device further comprises an application sharing capability. 10. A method for initiating a conference call according to claim 8, wherein said application sharing capability comprises an application sharing client installed on said network access device. 11. A method for initiating a conference call according to claim 8, wherein said application sharing capability is integrated with said instant messaging service, said integration comprising functionality to allow a user to generate a conference call request via said instant messaging service from within said application sharing capability. 12. A method for initiating a conference call according to claim 1, further comprising the step of determining whether at least one potential target to a conference call is available for said conference call dependant upon the presence of an IM presence for said at least one potential target. 13. A method for initiating a conference call according to claim 12, wherein the step of initiating a conference call comprises communicating information from said conference call server to a third party conference call service, said third party conference call service establishing a conference bridge between said call requester and at least one target. 14. A method for initiating a conference call according to claim 13, wherein said conference bridge selects between alternate communications paths dependant upon cost criteria. 15. A method for initiating a conference call according to claim 14, wherein said alternate communications paths comprise a VOIP path. 16. A method for initiating a conference call according to claim 13, wherein said conference bridge selects between alternate communications paths dependant upon performance criteria. 17. A method for initiating a conference call according to claim 16, wherein said alternate communications paths comprise a VOIP path. 18. A method for initiating a conference call according to claim 1, wherein said conference call request comprises addresses for a plurality of potential targets. 19. A method for initiating a conference call according to claim 18, wherein at least one address comprises an automatic number identifier. 20. A method for initiating a conference call according to claim 19, wherein at least one address comprises a VOIP address. 21. A method for initiating a conference call according to claim 1, wherein said network access device comprises a capability for communicating audio information via an Internet protocol connection. 22. A method for initiating a conference call according to claim 1, wherein said network access device comprises a capability for communicating audio and visual information via an Internet protocol connection. 23. A method for initiating a conference call, comprising the steps of: providing a conference call server; providing a call requester with a network accessible device, the network accessible device being communicably connected to an instant messaging service, said instant messaging service being adapted to communicate conference call request information with said conference call server; presenting said conference call requester with a display showing at least one potential target with whom a conference call may be initiated, said display further indicating whether said potential target is communicably connected to said instant messaging service; generating a conference call request by said conference call requester, said conference call request identifying at least one potential target for joining in a conference call; transmitting said generated call request from said conference call requester to said conference call server; receiving said generated call request at said conference call server; parsing said conference call request to determine parameters associated with a requested conference call; and initiating a conference call in accordance with parameters associated with the requested conference call. 24. A method for initiating a conference call according to claim 23, wherein said initiated conference call connects at least one target via a voice over Internet protocol path. 25. A method for initiating a conference call according to claim 23, wherein said initiated conference call connects at least one potential call recipient via a publicly switched telephone network. 26. A method for initiating a conference call according to claim 23, wherein said initiated conference call comprises at least one path providing for transmission of visual data. 27. A method for initiating a conference call according to claim 26, wherein said visual data comprises video-conferencing images. 28. A method for initiating a conference call according to claim 26, wherein said visual data comprises image files in a digital format. 29. A method for initiating a conference call according to claim 23, wherein said conference call connection utilizes a cellular communications path. 30. A method for initiating a conference call according to claim 23, wherein said instant messaging service comprises a software client active on said network access device. 31. A method for initiating a conference call according to claim 30, further comprising the step of displaying for a call requester a conference call status display, said conference call status display listing targets involved in a conference call server initiated conference call. 32. A method for initiating a conference call according to claim 23, wherein said display showing at least one potential target with whom a conference call may be initiated comprises at least one potential target previously involved in a conference call server initiated conference call. 33. A method for initiating a conference call according to claim 23, wherein said display showing at least one potential target with whom a conference call may be initiated comprises at least one potential target identified from an e-mail application associated with said conference call requester's network access device. 34. A method for initiating a conference call according to claim 23, wherein said instant messaging service comprises an internet accessible application, said internet accessible application being communicably connected to said network access device via the Internet. 35. A method for initiating a conference call according to claim 34, wherein said internet accessible application comprises a browser-viewable web page. 36. A method for initiating a conference call according to claim 23, wherein said network access device further comprises an application sharing capability. 37. A method for initiating a conference call according to claim 36, wherein said application sharing capability comprises an application sharing client installed on said network access device. 38. A method for initiating a conference call according to claim 37, wherein said application sharing capability is integrated with said instant messaging service, said integration comprising functionality to allow a user to generate a conference call request via said instant messaging service from within said application sharing capability. 38. A method for initiating a conference call according to claim 23, wherein said network access device comprises a personal computer. 39. A method for initiating a conference call according to claim 23, wherein said network access device comprises a personal digital assistant, said personal digital assistant comprising an Internet connection. 40. A method for initiating a conference call according to claim 23, wherein said network access device comprises a cellular telephone, said cellular telephone comprising an Internet connection. 41. A method for initiating a conference call according to claim 23, wherein the step of initiating a conference call comprises communicating information from said conference call server to a third party conference call service, said third party conference call service establishing a conference bridge between said call requester and at least one target. 42. A method for initiating a conference call according to claim 41, wherein said conference call server further selects said third party conference call service from a plurality of available third party call services dependant upon cost criteria. 43. A method for initiating a conference call according to claim 23, wherein the step of initiating a conference call comprises communicating information from said conference call server establishes a conference bridge between said call requester and at least one target. 44. A method for initiating a conference call according to claim 43, wherein said conference call server further selects at least one connection path for said conference bridge from a plurality of connection paths dependant upon cost criteria. 45. A method for initiating a conference call according to claim 44, wherein said alternate communications paths comprise a VOIP path. 46. A method for initiating a conference call according to claim 43, wherein said conference call server further selects at least one connection path for said conference bridge from a plurality of connection paths dependant upon performance criteria. 47. A method for initiating a conference call according to claim 23, wherein said conference call request comprises addresses for a plurality of potential conference call recipients. 48. A method for initiating a conference call according to claim 47, wherein at least one address comprises a VOIP address. 49. A method for initiating a conference call according to claim 23, wherein said network access device comprises a capability for communicating audio information via an Internet protocol connection. 50. A method for initiating a conference call according to claim 23, wherein said network access device comprises a capability for communicating audio and visual information via an Internet protocol connection. 51. A method for initiating a conference call, comprising the steps of: providing a conference call server; providing a call requester with a network accessible device, the network accessible device having instant messaging software thereon, said instant messaging software being adapted to communicate conference call request information with said conference call server; presenting to said conference call requester a display showing at least one potential target with whom a conference call may be initiated, said display further indicating whether said potential target is communicably connected to said instant messaging service; generating a conference call request by the call requester; transmitting said generated call request from said call requester to said conference call server; receiving said generated call request at said conference call server; parsing said conference call request to determine parameters associated with a requested conference call; and initiating a conference call across a conference call connection in accordance with parameters associated with the requested conference call. 52. A method for initiating a conference call according to claim 51, wherein said network access device further comprises an application sharing capability. 53. A method for initiating a conference call according to claim 52, wherein said application sharing capability comprises an application sharing client installed on said network access device. 54. A method for initiating a conference call according to claim 53, wherein said application sharing capability is integrated with said instant messaging service, said integration comprising functionality to allow a conference call to generate a conference call request via said instant messaging service from within said application sharing capability. 55. A method for initiating a conference call according to claim 51, further comprising the step of displaying for a conference call requester a conference call status display, said conference call status display listing targets involved in a conference call initiated by said conference call server. 56. A method for initiating a conference call according to claim 51, wherein said display showing at least one potential target with whom a conference call may be initiated comprises identification of at least one potential target previously involved in a conference call server initiated conference call. 57. A method for initiating a conference call according to claim 51, wherein said display showing at least one potential target with whom a conference call may be initiated comprises identification of at least one potential target identified from an e-mail application associated with said conference call requester's network access device. 58. A method for initiating a conference call according to claim 51, wherein the step of initiating a conference call comprises communicating information from said conference call server to a third party conference call service, said third party conference call service establishing a conference bridge between said call requester and at least one call recipient. 59. A method for initiating a conference call according to claim 58, wherein said third party conference call service selects between alternate communications paths for the conference bridge dependant upon cost criteria. 60. A method for initiating a conference call according to claim 59, wherein at least one alternate communications path is a VOIP path. 61. A method for initiating a conference call according to claim 58, wherein said third party conference call service selects between alternate communications paths for the conference bridge dependant upon performance criteria. 62. A method for initiating a conference call according to claim 61, wherein at least one alternate communications path is a VOIP path. 63. A method for initiating a conference call according to claim 51, wherein said conference call request comprises addresses for a plurality of potential conference call targets. 64. A method for initiating a conference call according to claim 63, wherein at least one address comprises a VOIP address. 65. A method for initiating a conference call according to claim 51, wherein said network access device further comprises a capability for communicating audio information via an Internet protocol connection. 66. A method for initiating a conference call according to claim 51, wherein said network access device further comprises a capability for communicating audio and visual information via an Internet protocol connection. 67. A system for initiating conference calls, comprising: a conference call server, said conference call server having a network connection communicable with network access devices, said conference call server further comprising a database for storing prospective target information; at least one network access device, said at least one network access device being communicably connected to an instant messaging service, said instant messaging client being adapted to communicate a conference call request to said conference call server; a conference call bridge, said conference call bridge having a plurality of communications paths and hardware or software for bridging at least two of said paths for enabling a conference call. 68. A system for initiating conference calls according to claim 67, wherein said network access device further comprises application sharing capabilities. 69. A system for initiating conference calls according to claim 68, wherein said application sharing capabilities comprising an application sharing client installed on said network access device. 70. A system for initiating conference calls according to claim 69, wherein said application sharing capability is integrated with said instant messaging service, said integration comprising functionality to allow a user to generate a conference call request via said instant messaging service from within said application sharing capability. 71. A system for initiating conference calls according to claim 67, wherein said instant messaging service comprises a software client active on said network access device. 72. A system for initiating conference calls according to claim 67, wherein said instant messaging service comprises an internet accessible application, said internet accessible application being communicably connected to said network access device via the Internet. 73. A system for initiating conference calls according to claim 72, wherein said internet accessible application comprises a browser viewable web page. 74. A system for initiating conference calls according to claim 67, wherein at least one of said plurality of communications channels comprises a VOIP channel. 75. A system for initiating conference calls according to claim 67, wherein at least one of said plurality of communications channels comprises a publicly switched telephone network channel. 76. A system for initiating conference calls according to claim 67, wherein at least one of said plurality of communications channels comprises a channel capable of transmitting visual images. 77. A system for initiating conference calls according to claim 67, wherein said conference call server further comprises a database containing information derived from previous conference calls initiated by the conference call server. 78. A system for initiating conference calls according to claim 77, wherein said conference call server database information comprises addresses derived from previous conference calls initiated by the conference call server. 79. A system for initiating conference calls according to claim 67, further comprising an interface to an e-mail application resident on said conference call requester's network access device, said interface capable of querying said e-mail application to identify contact information for potential conference call targets. | RELATED APPLICATIONS The present application is a continuation-in-part of U.S. Provisional Patent Application Ser. No. 60/531,722 filed on Dec. 22, 2003, the entire contents of which are incorporated herein by reference thereto. FIELD OF THE INVENTION The present invention relates generally to a method for initiating a conference call between two or more users, and more particularly to initiating a voice conference call between two or more users using a central server to communicate parameters for the call and for initiating the call itself. BACKGROUND Business meetings where the differing perspectives of the participants provide the value of the meeting have been conducted for a long time. As the costs associated with travel have increased, companies have turned from face to face meetings to meetings allowing participants to be separately located, including telephone conferences, video conferences, and more recently through on-line meetings. As traffic congestion grows in every part of the country, and software tools improve, companies worldwide are recognizing that it is possible to have effective meetings on-line. There are various forms of real-time, or on-line, collaboration. The simplest form is instant messaging. The ability of messaging software to tell another user who is available at a given moment is called “presence”. Presence awareness has been proven to eliminate up to 35% of voicemail, and as much as 30% of email, particularly long threaded discussions. Because of this, instant messaging has become the fastest growing form of communication in history. Gartner predicts over 200 million business users will be using some form of enterprise instant messaging by the end of 2005, an increase of over 100 million users from 2003. Instant messaging has its roots in the consumer industry, but is virally working its way into corporations. Consumer messaging systems typically offer no security, no IT control over usage, and no reporting capabilities. Nor do consumer systems offer tracking history of conversations, a requirement of a number of federal statutes, from the SEC to Sarbanes-Oxley to the new medical HIPPA requirements. There are no clear leaders in the corporate instant messaging market, although the opportunity has been recently showcased by the entrance of Microsoft and IBM. Oftentimes, messaging leads to the requirement for one or more meetings with the participants. Historically this required travel, which lengthened the business processes and significantly increased costs. With the advent of various forms of desktop application sharing, it is now possible for multiple users to “see” the same desktop at the same time. This “real-time” collaboration market is just emerging, and is estimated by Collaborative Strategies to be about a $6 billion market, with an average annual growth rate of 64% through 2005, and is expected to add 20 million users to its ranks in the next several years. In a recent Deloitte Consulting survey of 300 of the Fortune 1000, collaboration was top priority with 75% of respondents. While less than 30% were using some form of collaborative tools today, 80% of respondents said they would implement some collaboration capability by 2005. According to a recent Yankee Group survey, companies will save $223B over next 5 years by collaborating over the Internet. Because of the size of this emerging opportunity, Microsoft recently acquired a company called Placeware, for $180 million, to provide software for on-line meetings. Placeware has been renamed and is now being offered by Microsoft, coupled with Windows 2003 server, as Microsoft Live Meeting. Microsoft internally calculates that they will save over $43 million this year alone in time and travel costs if just 1 in 5 meetings are conducted on-line. Microsoft will spend over $300 million this year promoting Live Meeting, and joins IBM with its Lotus Sametime product, WebEx, and another 3 dozen smaller competitors. The commonality of all of the collaboration products is that once the users begin their on-line meeting, they use a number of tools. Many of them require some form of application sharing, and all of them require some form of accompanying communication, from instant messaging to conference calls. Although instant messaging is sometimes used for extended conversations, most of the time the discussions are brief. ‘Conversations’ between a number of participants that become more involved are dependent upon the typing skills of each participant, which leads to the need for everyone to join in a conference call. Similarly, real-time collaboration products imply the need for a conference call. MS Live Meeting, IBM Lotus Sametime, WebEx, and a host of other software products all make an assumption that once you are sharing a document or spreadsheet, the users are on a conference call so they can discuss it. This brings real value to the meeting, yet the integration of the call into the collaboration process has not yet been addressed. In the past, the problem with integrating telephony products into software has centered on integration with the PBX. In large part this is because the call initiator's computer needed to pass the various telephony commands to the PBX, and no two PBX's are alike. This requires system integrators, and up until now has reduced the scalability of the opportunity. Furthermore, most PBX systems can only join a few users in a conference call. They cannot join many parties, leaving the originators the option of creating either a “meet me’ or an operator assisted conference call. Because the users must typically dial a central number, such as a toll free number, and enter a passcode, it is difficult to make the calls spontaneous. Yet, the needs of both instant messaging and on-line meetings demand it. A further concern arises regarding the security of a conference call using the call in model. Any caller knowing the call in number and passcode may enter into the conference call, without the knowledge of the other members of the call. Although it is possible for the call service to monitor the number of connections, the call service may be unable to ascertain the identity of callers, such as where the calling number is blocked. Furthermore, even if the identity of participants were disclosed to a call originator during a conference call, such information could be a distraction during the conference call. Conference calls today fall into 2 categories: 1. “Meet Me” calls—These conference calls involve all users of the call dialing, via a publicly switched telephone network (hereafter “PSTN”), cellular telephone, or via a voice over internet protocol network, a central phone number or ANI to a conference bridge and entering a personal identification number (hereafter “PIN”) or pass code to join the call. These calls may be may be set up by an originating user by going to a web site to set up the call, through calling an operator and setting the call up, or setting up a static DNIS to which all users may dial on occasion. 2. Host-initiated Calls—These calls involve the host originating calls to all of the participants. In order to accomplish this, the host must initiate the call one of two ways: a) either the host enters an ANI on his telephone and through pressing a combination of buttons has that party joined to the call, and repeats this process for each conference call participant, or; b) the host types in the phone numbers of all the expected participants, either to a web site after which the web site will initiate a conference bridge and dial all the participants, or manually provides them to an operator who initiates the calls to the participants. These methods are inefficient, in that they require a conference call requester or party to the conference call to manually inform either the parties to the conference call, or the conference bridge itself, of parameters, passwords, and phone numbers for the call. Instant messaging (hereafter “IM”) systems employ a client-server model on Internet protocol (hereafter “IP”) networks to deliver text chat and other information to distributed users in real-time. Instant Messaging client software may be loaded onto a user's workstation or may be used in a web browser, and may allow a user to log into a remote Instant Messaging server. Once a user has logged in, business rules may be used to determine which other users are available to communicate with the first user in the instant messaging system. Many IM systems allow users to create lists of other users that they commonly communicate with. When a user in such a list logs into the IM system, the server informs the list owner that a user in their list has logged on and is available to chat. In addition, Instant Messaging systems provide directory services that permit the users to search for another user. Once a user has the address of a second user, the first user can request a collaborative chat session with the second user. The second user can choose to either accept or reject the chat session. After the session has been accepted, the users may be able to communicate in a private or public chat session by typing text messages to one another. The message can be either transmitted through a central server, or directly between users (peer to peer) once the first user has determined the availability of the second user from the IM system. These chat sessions may take place over an unsecured IP network. Further extensions of IM allow multiple participants to be involved in a chat session. SUMMARY OF THE INVENTION The present invention may use a communications channel established through an instant messaging service to transmit a request to initiate a conference call from a network access device associated with a conference call requester to a conference call server. The conference call server, upon receiving the request, may initiate the formation of a conference bridge a conference call between the conference call requester and one or more call participants. In a first embodiment, the present invention may be embodied in a method for initiating a conference call, including the steps of providing a conference call server; providing a conference call requester with a network accessible device communicable with an instant messaging service; generating a conference call request by the conference call requester; transmitting the call request from the call requester to the conference call server; receiving the call request at the conference call server; parsing the conference call request to determine parameters associated with a requested conference call; and initiating a conference call in accordance with parameters associated with the requested conference call. The instant messaging service may be adapted to communicate conference call request information with the conference call server. The present invention may further use the presence component of an instant messaging system to determine whether prospective attendees are available for a conference call through this presence with the instant messaging service, then using stored information that includes an address for a party, either through an IM channel or at a specific phone number or VOIP address, create the ability for instant messaging users to immediately create any combination of PSTN, Cellular, and VOIP conference calls between users some of whom may be in instant messaging sessions, and without the necessity of each user to dial a telephone number or having the host look up the phone number of each participant in order to place an outbound telephone call. The invention may collect, through a variety of means, the information needed to join those users into a telephone conference call, pass the dialing information and other parameters to a central server, and send an invitation to each participant in advance of placing the call. The central server may directly or indirectly establish a conference bridge, initiate a series of outbound calls to each of the selected users from the instant messaging session, and seamlessly join those users in a conference call using a conference bridge. Via the instant messaging service, the conference call initiator may be able to see, via presence awareness, whether one of more additional users with whom he wishes to conference are available, and may invite these users to the call either through similar means, or by passing information to those users about how to connect to a call. Optionally, and at the users discretion, the central server can also add a “silent” user which is a recording device, to the conference bridge, record the call, and at the conclusion of the call pass the recorded voice transcript back to the Instant Messaging Server for archiving purposes. Additionally, using the instant messaging interface and based upon the conference server capabilities, the call initiator may apply certain business rules to various participants in the call, such as muting or dropping that participant from the call, archiving the participants telephone numbers, call duration, and call set-up parameters. FIGURES FIG. 1 shows a flowchart of the initiation of a conference call according to the present invention. FIG. 2 shows a more comprehensive illustrative flowchart of the initiation of a conference call according to the present invention. FIG. 3 shows a notional flowchart of the initiation of a conference call according to the present invention, in an environment in which each prospective caller has access to a network access device. FIG. 4 illustrates a block diagram of a system for accomplishing the initiation of conference calls according to the present invention. FIG. 5 illustrates a notional network access device display through which a conference call may be initiated. FIG. 6 shows a notional network access device display through which conference call targets may be selected. FIG. 7 shows a notional network access device display identifying parameters associated with a potential target for a conference call initiated according to the present invention. FIG. 8 shows a notional network access device display identifying targets previously involved in conference calls who are potentially available for a conference call, including identification of an availability status for each target where such potential target has an ongoing presence with the instant messaging service. FIG. 9 shows a notional network access device display identifying targets previously involved in conference calls who are potentially available for a conference call, filtered to display potential targets having access to application sharing capabilities. FIG. 10 shows a notional network access device display identifying targets previously involved in conference calls who are potentially available for a conference call, filtered to display only potential targets for which an e-mail client contact information is available. FIG. 11 shows a notional network access device display allowing retrieval of parameters associated with a previous conference call. FIG. 12 shows an alternate system and process process for initiating conference calls according to the present invention. FIG. 13 shows a notional network access device display for displaying conference call management parameters to a conference call requester. FIG. 14 shows a notional network access device display for displaying conference call management parameters associated with a particular conference call. FIG. 15 shows an alternate process for initiating conference calls according to the present invention. DETAILED DESCRIPTION The following definitions are provided to more readily describe the present invention, and are not intended to limit the scope of the claims: Access Authorization is the means by which a connection and/or request for service is authenticated to permit a party to access a service. There are many ways to authenticate a user, including, but not limited to, sign on ID's and passwords, digital signatures, electronic keycards, and biometric devices. A Network Access Device (hereafter “NAD”) is any device capable of communicating over a network to one or more other Network Access Devices using a common protocol. Such NADs can include but are not limited to computers, servers, workstations, Internet appliances, terminals, hosts, personal digital assistants (hereafter “PDAs”), and digital cellular telephones. Encryption is the transformation of data into a form that cannot be read or understood without the use of a decryption algorithm. The purpose of encryption is to minimize the ability of third parties (who are not desired to participate in a conference call) to understand the contents of a message. Decryption is the reverse of encryption; it is the transformation of encrypted data back into a readable form. Address—This is the identifier for where a participant to a conference call may be contacted, and may be, but is not limited to, a PSTN or cellular phone number, such as an ANI, or a unique identifier associated with a voice over Internet protocol communications path. ANI—Automatic Number Identifier—This is the direct phone number of a call participant, and is typically the number at which a person may be directly dialed. Conference Bridge—Switching circuitry used to interconnect two or more communications paths connected to participants to allow simultaneous conversations between the participants. Conference Call—A communication between two or more parties who are disparately located, using a connection allowing the transmission of audible, verbal, or visual data, or a combination thereof, including videoconferencing in which participants are visible to other participants as well as able to verbally communicate with each other. PSTN—The voice networks are referred to as a publicly switched telephone network (PSTN) and its related services. VOIP—Voice over Internet Protocol As shown in FIG. 1, the core of the present invention is the use of instant messaging to trigger initiation of a host initiated conference call. The first step is providing 102 a conference call server. The conference call server may be connected to a network, such as an Internet protocol based network. The conference call server may have the ability to receive instant messenger messages requesting initiation of a conference call. The conference call server may have one or more ports for connecting participants, such as by a VOIP path, or through a telephonic network. Connection of two or more paths allows the formation of a conference bridge. Alternately, the conference server may have stored information identifying one or more conference bridges discrete from the conference server, such as conference bridge capabilities provided by one or more third party vendors. Next, a first party, hereafter referred to as the conference call requester, may be provided 104 with a network access device (hereafter “NAD”). The NAD may be connected to a network to which a conference call server is connected, as well as to an instant messaging service adapted to communicate a conference call request to the conference call server. In particular, the instant messaging service may be adapted to communicate a request that a conference call be initiated, potentially including parameters associated with the desired call. The instant messaging service may be adapted to receive information in a tagged field format, such as HTML or XML, such that information contained in the message may be correctly parsed to allow the conference call server to properly initiate, or request initiation of, a conference call bridge. When a conference call requester desires to initiate a conference call, the conference call requester may generate 106 a message (hereafter referred to as the “conference request message”) to the conference server identifying parties who are potential participants (“potential targets”) to a conference call. The potential call targets may be identified by an alias, such as a user name associated with the conference call targets in the conference call requester's NAD. Alternately, the information may be an alias identifying information associated with the potential targets stored in the conference server. Alternately, the potential targets may be identified by phone numbers or other addresses for the potential targets. Once the conference request message has been generated, the conference request message may be transmitted 108 from the NAD to the conference call server. The conference request message may then be received 110 by the conference server. The conference server may parse 112 the received message to determine the address of the selected conference call targets. Parsing may involve stripping explicitly provided target phone numbers or VOIP addresses from the message, or converting aliases identified in a message. The conference call server may then initiate 114 or request initiation of a conference bridge between the conference call requester and the conference call targets. As may be noted in FIG. 1, the availability of conference call targets is not pre-determined in the simple process shown. As shown in FIG. 2, the instant messaging environment may be used to reduce the number of communications paths opened to unavailable or unwilling parties. In the process shown in FIG. 2, each of the conference call targets have an NAD in communication with an instant messaging service. Such a situation could arise where each of the targets are involved in a shared application session, with IM being used to provide a channel for communications outside the shared application session. In such a situation, the conference call server, which could be common with the shared application session server, could have a communications path 202 established with each of the NAD's associated with the conference call targets. When a conference call request is received by the conference server, the conference server may use the target identification portion of the message to determine the appropriate channel to the IM capability of the conference call target's IM software on their NAD, and generate 204 a conference request message to the conference call target or targets. The conference call targets could, upon receipt of the conference request message, decide 206 whether or not they desired to join the proposed conference call, and respond accordingly via their instant messaging software. The conference call server could then generate 208 a list of targets for the conference call, and then initiate 210 the conference call. As noted above, the initiation of the conference call may be accomplished by the forwarding of the list of attendees to conference call creator software, which could then initiate the conference call as discussed further below. Furthermore, conference bridges could be established for potential participants who are not connected through an instant messenger, although the potential then exists for the non-IM invitees to not be available to join a conference call. As shown in FIG. 3, a more robust embodiment of the present invention may be implemented to allow further functionality. For the purposes of illustration, the Figure shows three parties, User A 302, User B 304, and User C 306, involved 308 in an IM session, such as a chat session which could occur during a shared application session. User A 302, the conference call requester, could request a conference call through the NAD in use by User A. The IM service in communication with User A's NAD could be implemented to be aware of the on-going IM session, such that the software would determine the list of conference call targets from the list of parties presently in the IM session. Thus, User A could request a conference call with one step, such as through actuation of a “call now” button or icon associated with User A's IM service. Alternately, User A could be provided with a list of participants of the on-going IM session, and be provided 312 with the opportunity to add or remove potential participants from a planned conference call. The conference call server in communication with User A's NAD may be provided with functionality for assessing charges associated with the conference call. A first step may be to determine 314 whether User A is a subscriber to a service providing the conference call server. If User A is not a subscriber to the service, User A may be informed 316 that he is not allowed to use the service. Although not shown, User A may be provided with the opportunity to subscribe to the service at this point. If User A is determined to be a subscriber, User A may be queried to provide information identifying a method for paying for the proposed conference call, such as through use of a credit card. Alternately, a charge account may be associated with a subscriber, such that once it is determined that User A is a subscriber, User A may be prompted to verify that the call should be charged to the associated account. Once User A has provided 318 charge information, the charge information may be verified 320. If it is determined that the charge information is invalid, User A may be so informed 322. If it is determined that the charge information is valid, the conference call server may send 324 a conference call invitation to Users B and C. If Users B and C accept 326 the conference call invitation, the conference call server may prompt 328 Users B and C, via the IM functionality on their respective NADs, to verify their phone numbers for the conference call, or to provide information regarding calling them if no address information is available. The verification process may incorporate the use of information pre-stored in the conference call server for Users B and C, such that Users B and C may be prompted 330 with the pre-stored information to determine if it is correct, thus reducing the effort required for Users B and C to provide the necessary information to the conference call server. The conference call server may then initiate a conference call bridge between the conference requester and the targets. If it is determined that, for each target, that direct dial calls are enabled, the conference bridge provider can dial 334 the direct dial number for the targets, connect to VOIP paths if VOIP connections are to be used, or may implement a combination of direct dialed and VOIP connections. If it determined that a target is not able to be direct dialed, the conference call server may send 336 an IM message to the non-direct dial target, providing a call-in number and passcode for the proposed conference call. Additionally, the conference call server may instruct 338 the NADs of the targets to disable any conference call request functionality while the present conference call is underway. The conference call server may further utilize third party conference call providers for the actual initiation of a conference call based on parameters generated by the conference call server or the conference call requester. Various conference call providers may provide different functionality and/or rate structures. Functionality may include the ability to record a conference call, the ability to have listeners to the conference call (as opposed to parties with the ability to both listen and speak), the ability or inability to add or drop participants during a conference call, the ability to interactively mute a participant during a conference call, or the ability to provide video conferencing. Parameters associated with such choices may be provided for individual targets through target identity information provided to the conference call server, such as through the interface screen shown in FIG. 7, discussed further below. Selection of conference call providers may also be determined based on rates associated with long distance charges which would be incurred as a result of the conference call, or based upon a preferred routing where VOIP paths are used. Different users may be in different regions geographically, such that different phone service providers would charge different amounts for the long distance aspect of the conference call. Thus, use of rate information in association with geographic information associated with conference call targets would allow minimization of long distance fees based on the geographic aspect of the conference call targets. Where the conference call server initiates the conference call itself, the conference call server may use such geographic information to select specific long distance or data carriers for different conference call targets, again allowing minimization of the long distance, cost, or delay aspects. Such selections could include the selection of call repeaters at distant locations, to allow one communications service to forward the call into a geographic region, with a second service provider connecting to the conference call target. Such forwarding may be important where cellular or satellite paths are involved. Conference call recording may also be implemented within the process, such that the requesting party can indicate 340 a desire to have a conference call recorded. If such a desire is received, the request that the call is to be recorded can be transmitted to Users B and C, such as via the IM channel, and User B and C acceptance of the recording be determined and recorded. Having the acceptance recorded may provide benefits at a later date, should the recording be challenged by a User claiming not to have known the call was being recorded. Once the conference call is completed, the conference call server can record 342 the duration of the call, and assess appropriate charges to the designated account. If a conference call functionability was disabled during initiation of the conference call, the functionability that was previously disabled may be re-enabled 344. Furthermore, if the call was recorded, a transcript of the call may be generated 346 and forwarded to a relevant party. As shown in FIG. 4, a system for accomplishing the present invention may be implemented in a conference call server 402 connected to a network 404. The conference call server 402 may have a database 406 associated with the server 402 for storing account information, user information, and call management information, etc. Where one or more third party conference bridge providers may be used, information regarding the rate structures of the third party providers may be stored, to allow optimization of conference bridge provider selection. The conference call server may additionally be connected directly to a telephone network 408 or VOIP connection, or indirectly through a third party conference bridge 410a, 410b, . . . A shared application server may also be connected to allow information generated during a shared application session to be accessed by the conference call server as required, such as to determine a list of parties involved in a shared application session. Shared application sessions comprise the ability of multiple viewers to view the interface with a particular software application operating on a particular set of data, and may include the ability of each viewer to simultaneously operate the shared application. Such shared applications are discussed further in applicant's U.S. Patent Publication No. 20030018725, a.k.a. U.S. patent application Ser. No. 10/015,077, filed Oct. 26, 2001, the contents of which are herein incorporated in their entirety by reference thereto. The users may be connected to the system via a network access device 414, which may be any network communicable device having the appropriate IM software service access. Although shown as a separate element, each user may also have telephonic capabilities 416 associated with the user. As discussed above, the telephonic capability may be implemented into the NAD, such as through a digital cell phone, or VOIP connection through a desktop or laptop computer connected to the network. As shown in FIG. 5, a display 502 may be generated on the NAD of a conference call requester to allow the conference call requester to invite potential participants to a proposed conference call, where IM is implemented on the potential participants NAD, or may allow a conference call requester to select targets to be called directly to be included in a proposed conference call where the conference call target is not provided with an IM capable NAD. An IM presence of some or all of the prospective target may be monitored by the IM server, such that the presence of prospective targets may be displayed for the conference call requester, such as by showing prospective targets who are not presently connected via IM to the conference server in a grayed display 504 with prospective target list, or by the display of present or not present flags on the display. Providing such information to the conference call requester may have the additional advantage of providing the conference call requester with information on which to base a decision of whether or not to request a conference call at a given time, based on prospective target availability. FIG. 6 illustrates a notational information screen 602 for selecting prospective targets. The information screen 602 may include check boxes 604 to allow a conference call requester to designate potential targets that the conference call requester would like joined in a conference call, as well as a feature 606 allow the conference call requester to transmit information to the conference call server such that a conference call may be initiated. The information screen may also be provided with a feature 608 such that the conference call requester may be able to signal to the conference call server that an on-going conference call should be terminated. FIG. 7 illustrates a notional information screen 702 for querying and receiving parameters associated with a party. FIG. 8 shows a notional conference history display 802 for managing conference calls. Conference history information may be stored on the conference call server, such that the information may be accessible via an NAD. FIG. 8 illustrates a notional information screen 802 for allowing a conference call requester to select targets for a conference call from a list that has been filtered to only identify potential targets that have participated in previous conference calls. FIG. 9 illustrates a notional information screen 902 for allowing a conference call requester to select targets for a conference call from a list that has been filtered to only identify potential targets that have an application sharing capability through their network access devices. FIG. 10 illustrates a notional information screen 1002 for allowing a conference call requester to select targets for a conference call from a list that has been filtered to only identify potential targets for which contacts are available in the conference call requester's e-mail application. Alternately, such contacts could be obtained from any application maintaining a contact list. FIG. 11 illustrates a notional information screen 1102 to allow a conference call requester to retrieve parameters from a previous conference call. As a feature of the system, the conference call server may store identifying information regarding a previous conference call, including but not limited to, the addresses of participants, project identifying information 1104, and subject information 1106 for the prior conference call. This information may be displayed for the conference call requester to enable the conference call requester to recall and reuse parameters from the prior conference call. FIG. 12 illustrates an alternate system embodying the present invention. A text messaging server 1202 may be provided for coordinating IM text messaging between a conference call requester and one or more targets, shown as text messaging clients 1204a, 1204b, 1204c, and 1204d. The text messaging server may function concurrently as the conference call server, operating conference setup software 1206. The text messaging server 1202 may be connected through the conference setup software to a conference bridge 1208, either operated in conjunction with the text messaging server 1202, or maintained by a third party conference call service provider. The text messaging server 1202 may additionally be provided with access to a database 1208, either organically or remotely, to allow storage and retrieval associated with the instant messaging service, as well as the conference call service. The conference bridge may have several communications paths 1210a, 1210b, and 1210c, which allow the conference bridge to interconnect telephone lines to accomplish a conference call. Additionally, the conference bridge may be provided with network paths 1212a, 1212b, and 1212c, communicably connected to electronic devices such as personal computers 1214, to allow VOIP communications paths to be established to targets. The network paths are not restricted to VOIP protocols, but may alternately be used to provide videoconferencing capabilities, or the display of common visual displays for the participants to a conference call. FIG. 13 illustrates a notional information screen 1302 displaying management parameters associated with a completed conference call, such as date information 1304, a project identifier 1306, a subject identifier 1308, durational information 1310, attendance information 1312, and costing information 1314. This information may be collected by the conference call server or third party conference call service provider, and stored by the conference call server to enable management of conference calls. Such information may also be retained to function as a record of prior conference call participant information. As noted above, an indicator 1316 may also be provided indicating whether a conference call was recorded for later playback or transcription. FIG. 14 shows a notional information screen 1402 showing management details associated with a prior conference call, such as could be drilled down from the display of FIG. 13. Individual participants 1404 of a prior conference call could be listed on such a display. FIG. 15 illustrates an alternate process embodying the present invention, in which a conference call requester (“CCR”) accesses 1502 a network access device (“NAD”), such as to be involved in a shared application session, or simply for the purpose of initiating a conference call. The CCR may then cause the NAD to be connected to a conference call server (“CCS”) such as by entering an address into a web browser, or even by first creating a dial up connection to the Internet or CCS directly. Connection of the NAD to the CCS may cause the presentation of information regarding potential conference call targets on the NAD, such as through the displays discussed above. The CCR may select potential targets from the display, or manually add potential targets to a potential target list, to be included in a conference call request to be generated 1510 on and transmitted 1512 by the NAD to the conference call server, which may then initiate the conference call either directly or through a third party conference call service provider. Preferably, the conference call server or third party conference call service provider will identify optimized communications paths for the targets, and make connections from the conference call server or third party conference call service provider to the targets, interconnecting the related communications paths to form the conference call. Other variations and modifications of the present invention will be apparent to those of skill in the art, and it is the intent of the appended claims that such variations and modifications be covered. The particular values and configurations discussed above can be varied and are cited merely to illustrate a particular embodiment of the present invention and are not intended to limit the scope of the invention. It is contemplated that the use of the present invention can involve components having different characteristics as long as the principles of the invention are followed. | <SOH> BACKGROUND <EOH>Business meetings where the differing perspectives of the participants provide the value of the meeting have been conducted for a long time. As the costs associated with travel have increased, companies have turned from face to face meetings to meetings allowing participants to be separately located, including telephone conferences, video conferences, and more recently through on-line meetings. As traffic congestion grows in every part of the country, and software tools improve, companies worldwide are recognizing that it is possible to have effective meetings on-line. There are various forms of real-time, or on-line, collaboration. The simplest form is instant messaging. The ability of messaging software to tell another user who is available at a given moment is called “presence”. Presence awareness has been proven to eliminate up to 35% of voicemail, and as much as 30% of email, particularly long threaded discussions. Because of this, instant messaging has become the fastest growing form of communication in history. Gartner predicts over 200 million business users will be using some form of enterprise instant messaging by the end of 2005, an increase of over 100 million users from 2003. Instant messaging has its roots in the consumer industry, but is virally working its way into corporations. Consumer messaging systems typically offer no security, no IT control over usage, and no reporting capabilities. Nor do consumer systems offer tracking history of conversations, a requirement of a number of federal statutes, from the SEC to Sarbanes-Oxley to the new medical HIPPA requirements. There are no clear leaders in the corporate instant messaging market, although the opportunity has been recently showcased by the entrance of Microsoft and IBM. Oftentimes, messaging leads to the requirement for one or more meetings with the participants. Historically this required travel, which lengthened the business processes and significantly increased costs. With the advent of various forms of desktop application sharing, it is now possible for multiple users to “see” the same desktop at the same time. This “real-time” collaboration market is just emerging, and is estimated by Collaborative Strategies to be about a $6 billion market, with an average annual growth rate of 64% through 2005 , and is expected to add 20 million users to its ranks in the next several years. In a recent Deloitte Consulting survey of 300 of the Fortune 1000, collaboration was top priority with 75% of respondents. While less than 30% were using some form of collaborative tools today, 80% of respondents said they would implement some collaboration capability by 2005. According to a recent Yankee Group survey, companies will save $223B over next 5 years by collaborating over the Internet. Because of the size of this emerging opportunity, Microsoft recently acquired a company called Placeware, for $180 million, to provide software for on-line meetings. Placeware has been renamed and is now being offered by Microsoft, coupled with Windows 2003 server, as Microsoft Live Meeting. Microsoft internally calculates that they will save over $43 million this year alone in time and travel costs if just 1 in 5 meetings are conducted on-line. Microsoft will spend over $300 million this year promoting Live Meeting, and joins IBM with its Lotus Sametime product, WebEx, and another 3 dozen smaller competitors. The commonality of all of the collaboration products is that once the users begin their on-line meeting, they use a number of tools. Many of them require some form of application sharing, and all of them require some form of accompanying communication, from instant messaging to conference calls. Although instant messaging is sometimes used for extended conversations, most of the time the discussions are brief. ‘Conversations’ between a number of participants that become more involved are dependent upon the typing skills of each participant, which leads to the need for everyone to join in a conference call. Similarly, real-time collaboration products imply the need for a conference call. MS Live Meeting, IBM Lotus Sametime, WebEx, and a host of other software products all make an assumption that once you are sharing a document or spreadsheet, the users are on a conference call so they can discuss it. This brings real value to the meeting, yet the integration of the call into the collaboration process has not yet been addressed. In the past, the problem with integrating telephony products into software has centered on integration with the PBX. In large part this is because the call initiator's computer needed to pass the various telephony commands to the PBX, and no two PBX's are alike. This requires system integrators, and up until now has reduced the scalability of the opportunity. Furthermore, most PBX systems can only join a few users in a conference call. They cannot join many parties, leaving the originators the option of creating either a “meet me’ or an operator assisted conference call. Because the users must typically dial a central number, such as a toll free number, and enter a passcode, it is difficult to make the calls spontaneous. Yet, the needs of both instant messaging and on-line meetings demand it. A further concern arises regarding the security of a conference call using the call in model. Any caller knowing the call in number and passcode may enter into the conference call, without the knowledge of the other members of the call. Although it is possible for the call service to monitor the number of connections, the call service may be unable to ascertain the identity of callers, such as where the calling number is blocked. Furthermore, even if the identity of participants were disclosed to a call originator during a conference call, such information could be a distraction during the conference call. Conference calls today fall into 2 categories: 1. “Meet Me” calls—These conference calls involve all users of the call dialing, via a publicly switched telephone network (hereafter “PSTN”), cellular telephone, or via a voice over internet protocol network, a central phone number or ANI to a conference bridge and entering a personal identification number (hereafter “PIN”) or pass code to join the call. These calls may be may be set up by an originating user by going to a web site to set up the call, through calling an operator and setting the call up, or setting up a static DNIS to which all users may dial on occasion. 2. Host-initiated Calls—These calls involve the host originating calls to all of the participants. In order to accomplish this, the host must initiate the call one of two ways: a) either the host enters an ANI on his telephone and through pressing a combination of buttons has that party joined to the call, and repeats this process for each conference call participant, or; b) the host types in the phone numbers of all the expected participants, either to a web site after which the web site will initiate a conference bridge and dial all the participants, or manually provides them to an operator who initiates the calls to the participants. These methods are inefficient, in that they require a conference call requester or party to the conference call to manually inform either the parties to the conference call, or the conference bridge itself, of parameters, passwords, and phone numbers for the call. Instant messaging (hereafter “IM”) systems employ a client-server model on Internet protocol (hereafter “IP”) networks to deliver text chat and other information to distributed users in real-time. Instant Messaging client software may be loaded onto a user's workstation or may be used in a web browser, and may allow a user to log into a remote Instant Messaging server. Once a user has logged in, business rules may be used to determine which other users are available to communicate with the first user in the instant messaging system. Many IM systems allow users to create lists of other users that they commonly communicate with. When a user in such a list logs into the IM system, the server informs the list owner that a user in their list has logged on and is available to chat. In addition, Instant Messaging systems provide directory services that permit the users to search for another user. Once a user has the address of a second user, the first user can request a collaborative chat session with the second user. The second user can choose to either accept or reject the chat session. After the session has been accepted, the users may be able to communicate in a private or public chat session by typing text messages to one another. The message can be either transmitted through a central server, or directly between users (peer to peer) once the first user has determined the availability of the second user from the IM system. These chat sessions may take place over an unsecured IP network. Further extensions of IM allow multiple participants to be involved in a chat session. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention may use a communications channel established through an instant messaging service to transmit a request to initiate a conference call from a network access device associated with a conference call requester to a conference call server. The conference call server, upon receiving the request, may initiate the formation of a conference bridge a conference call between the conference call requester and one or more call participants. In a first embodiment, the present invention may be embodied in a method for initiating a conference call, including the steps of providing a conference call server; providing a conference call requester with a network accessible device communicable with an instant messaging service; generating a conference call request by the conference call requester; transmitting the call request from the call requester to the conference call server; receiving the call request at the conference call server; parsing the conference call request to determine parameters associated with a requested conference call; and initiating a conference call in accordance with parameters associated with the requested conference call. The instant messaging service may be adapted to communicate conference call request information with the conference call server. The present invention may further use the presence component of an instant messaging system to determine whether prospective attendees are available for a conference call through this presence with the instant messaging service, then using stored information that includes an address for a party, either through an IM channel or at a specific phone number or VOIP address, create the ability for instant messaging users to immediately create any combination of PSTN, Cellular, and VOIP conference calls between users some of whom may be in instant messaging sessions, and without the necessity of each user to dial a telephone number or having the host look up the phone number of each participant in order to place an outbound telephone call. The invention may collect, through a variety of means, the information needed to join those users into a telephone conference call, pass the dialing information and other parameters to a central server, and send an invitation to each participant in advance of placing the call. The central server may directly or indirectly establish a conference bridge, initiate a series of outbound calls to each of the selected users from the instant messaging session, and seamlessly join those users in a conference call using a conference bridge. Via the instant messaging service, the conference call initiator may be able to see, via presence awareness, whether one of more additional users with whom he wishes to conference are available, and may invite these users to the call either through similar means, or by passing information to those users about how to connect to a call. Optionally, and at the users discretion, the central server can also add a “silent” user which is a recording device, to the conference bridge, record the call, and at the conclusion of the call pass the recorded voice transcript back to the Instant Messaging Server for archiving purposes. Additionally, using the instant messaging interface and based upon the conference server capabilities, the call initiator may apply certain business rules to various participants in the call, such as muting or dropping that participant from the call, archiving the participants telephone numbers, call duration, and call set-up parameters. | 20041222 | 20100928 | 20051027 | 71952.0 | 14 | HONG, HARRY S | SYSTEM AND METHOD FOR INITIATING A CONFERENCE CALL | SMALL | 0 | ACCEPTED | 2,004 |
|||
11,020,377 | ACCEPTED | Semiconductor device and method for high-K gate dielectrics | A semiconductor device and process including a high-k gate dielectric is described. A substrate is provided, and a high-k gate dielectric material, preferably amorphous HfSiON, is deposited over the substrate. In preferred embodiments, the high-k dielectric material includes nitrogen. In a preferred embodiment, a silicon nitride layer is deposited using jet vapor deposition (JVD) on the high-k dielectric material. When the JVD nitride layer is deposited according to preferred embodiments, the layer has a low density of charge traps, it maintains comparable carrier mobility and provides better EOT compared to oxide or oxynitride. A second nitrogen-containing layer formed between the high-k dielectric and the gate electrode acts as a diffusion barrier. It also reduces problems relating to oxygen vacancy formation in high-k dielectric and therefore minimizes Fermi-level pinning. | 1. A semiconductor device, comprising: a substrate; a nitrogen-containing layer over the substrate; a high-k dielectric material having nitrogen over the nitrogen-containing layer; wherein the nitrogen percentage in the high-k dielectric material is lower than that in the nitrogen-containing layer; and a gate electrode material over the high-k dielectric material. 2. The semiconductor device of claim 1, wherein the nitrogen-containing layer is low-trap nitride. 3. The semiconductor device of claim 2, wherein the low-trap nitride is jet vapor deposited (JVD) silicon nitride. 4. The semiconductor device of claim 2, wherein the low-trap nitride has an interface state density less than about 5*1011 c/cm2. 5. The semiconductor device of claim 1, wherein the nitrogen-containing layer is less than about 3 nm thick. 6. The semiconductor device of claim 1, wherein the high-k gate dielectric further comprises a material selected from the group consisting essentially of HfSiON, amorphous HfSiON, Ta2O5, TiO2, Al2O3, ZrO2, HfO2, Y2O3, La2O3, aluminates, silicates, HfO2, HfSiOx, HfAlOx, Al2O3, TiO2, PbTiO3, BaTiO3, SrTiO3, and PbZrO3, and combinations thereof. 7. The semiconductor device of claim 1, wherein the substrate comprises Si, strained Si, Ge, strained Ge, SiC, strained SiGe, SOI, GOI, GaAs, a stacked arrangement of layers, or a combination thereof. 8. The semiconductor device of claim 1, wherein the gate electrode material is selected from the group consisting essentially of silicon, germanium, metal silicide, metal, and combinations thereof. 9. The semiconductor device of claim 1, further comprising a second nitrogen-containing layer over the high-k dielectric layer. 10. The semiconductor device of claim 9, wherein the second nitrogen-containing layer comprises JVD silicon nitride. 11. A semiconductor device, comprising: a substrate; a nitrogen-containing layer over the substrate, wherein the nitrogen-containing layer is deposited using jet vapor deposition (JVD); a high-k dielectric material having nitrogen over the nitrogen-containing layer; and a gate electrode material over the high-k dielectric material. 12. The semiconductor device of claim 11, wherein the nitrogen-containing layer is low-trap nitride. 13. The semiconductor device of claim 12, wherein the low-trap nitride has an interface state density less than about 5*1011 c/cm2 14. The semiconductor device of claim 11, wherein the nitrogen-containing layer is less than about 3 nm thick 15. The semiconductor device of claim 11, wherein the substrate comprises Si, strained Si, Ge, strained Ge, SiC, strained SiGe, SOI, GOI, GaAs, a stacked arrangement of layers, or a combination thereof. 16. The semiconductor device of claim 11, further comprising a second nitrogen-containing layer over the high-k dielectric layer. 17. The semiconductor device of claim 16, wherein the second nitrogen-containing layer comprises JVD silicon nitride. 18. A semiconductor device, comprising: a substrate; an interfacial layer over the substrate; a high-k dielectric material having nitrogen over the interfacial layer; a nitrogen-containing layer on the high-k dielectric material, wherein there is no substantial reaction layer between the high-k dielectric material and the nitrogen-containing layer; and a gate electrode material over the nitrogen-containing layer. 19. The semiconductor device of claim 18, wherein the nitrogen-containing layer is low-trap nitride. 20. The semiconductor device of claim 19, wherein the low-trap nitride is deposited using jet vapor deposition (JVD). 21. The semiconductor device of claim 19, wherein the low-trap nitride has an interface state density less than about 5*1011 c/cm2. 22. The semiconductor device of claim 18, wherein the reaction layer is less than about 0.5 nm. 23. The semiconductor device of claim 18, wherein the high-k dielectric material is less than about 5 nm thick. 24. The semiconductor device of claim 18, wherein the high-k dielectric material further comprises any material from the group consisting essentially of HfSiON, amorphous HfSiON, Ta2O5, TiO2, Al2O3, ZrO2, HfO2, Y2O3, La2O3, aluminates, silicates, HfO2, HfSiOx, HfAlOx, Al2O3, TiO2, PbTiO3, BaTiO3, SrTiO3, and PbZrO3, or combinations thereof. 25. The semiconductor device of claim 18, wherein the substrate comprises Si, strained Si, Ge, strained Ge, SiC, strained SiGe, SOI, GOI, GaAs, a stacked arrangement of layers, or a combination thereof. 26. The semiconductor device of claim 18, wherein the interfacial layer consists essentially of approximately stoichiometric silicon nitrite, non-stoichiometric silicon nitride, and combinations thereof. | TECHNICAL FIELD This invention relates generally to the fabrication of semiconductor devices, and more particularly to devices that include high-k gate dielectrics. BACKGROUND As metal oxide semiconductor field effect transistor (MOSFET) feature sizes decrease, the gate oxide thickness of the devices also decreases. This decrease is driven in part by the demands of overall device scaling. As gate conductor widths decrease, for example, other device dimensions decrease to maintain the proper device scale, and thus device operation. Another factor driving reduction of the gate oxide thickness is the increased transistor drain current realized from a reduced gate dielectric thickness. The transistor drain current is proportional to the amount of charge induced in the transistor channel region by the voltage applied to the gate conductor. The amount of charge induced by a given voltage drop across the gate dielectric (e.g., the gate oxide) is a factor of the capacitance of the gate dielectric. In order to achieve increased capacitance, gate oxide thicknesses have been decreased to as thin as 10 Å. These extremely thin gate oxides result in increased gate-to-channel leakage current, however. Problems such as this have led to the use of materials that have dielectric constants that are greater than the dielectric constant of silicon oxide, which has a k value of about 3.9. Higher k values, for example 20 or more, may be obtained with various transition metal oxides. These high-k materials allow high capacitances to be achieved with relatively thick dielectric layers. In this manner, the reliability problems associated with very thin dielectric layers can be avoided while improving transistor performance. There are, however, fabrication problems associated with forming gate dielectric layers that include high-k materials, particularly when a metal gate is employed. For example, high dielectric materials may contain a greater number of bulk traps and interface traps than gate dielectrics made from thermally grown SiO2. Traps adversely affect both subthreshold slope and threshold voltage (Vt). High trap density also leads to leakage through Frenkel-Poole tunneling, and it causes bias temperature instability. One class of high-k dielectrics that have received much attention recently is hafnium-based oxides. Unlike SiO2, wherein chemical bonding is predominately covalent, Hf-based oxides are predominately ionic and therefore exhibit their own host of problems. Control of flatband voltage (Vfb) has proven particularly difficult. Recent work has suggested that oxygen vacancy formation in the Hf dielectric and/or interfacial Hf reactions may account for the large observed Vfb, shifts, particularly in the case of p+ gates. Therefore, there is a need for passivating materials, structures, and methods in the manufacture of semiconductor devices that use high-k dielectrics. SUMMARY OF THE INVENTION These and other problems are generally solved or circumvented, and technical advantages are generally achieved by preferred embodiments of the present invention that provide a novel process and structure for semiconductor devices using high-k gate dielectric materials. A preferred embodiment of the invention comprises a substrate; a nitrogen-containing layer over the substrate, wherein the silicon nitride layer is deposited using jet vapor deposition (JVD); a high-k dielectric material comprising nitrogen over the nitrogen-containing layer; and a gate electrode material over the high-k dielectric material. In a preferred embodiment, a channel material of, for example, strained silicon (Si) or strained silicon germanium (SiGe) is deposited beneath the JVD nitrogen-containing layer to provide a surface channel for the resulting devices and to increase the carrier mobility. In another preferred embodiment, the high-k dielectric has a dielectric constant k greater than about 7, and may include amorphous HfSiON. Nitrides and high-k dielectric stacks may be used as the dielectric including Hf, Si, O and N. Tantalum (Ta) or lanthanum (La) oxides, aluminum oxide and/or nitrides, combination or stacked dielectrics and other known high-k dielectrics may be used. In another preferred embodiment, the devices may be fabricated over an insulator in a silicon-on-insulator (SOI) structure. The substrate material may be bulk silicon and may include n and p type doped well areas, alternatively the substrate may comprise SiGe, Ge, strained Si, strained Ge or a combination or stacked arrangement of Si/SiGe layers. In another preferred embodiment, a metal gate electrode or a combination material including a metal may be used for the gate electrode, for example a TiN (Titanium Nitride) metal gate electrode may be used. Polysilicon, and doped polysilicon, may be used for the gate electrode, the polysilicon gate electrodes may also incorporate an additional salicide coating for better performance. Additional features and advantages of embodiments of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the specific embodiments disclosed might be readily utilized as a basis for modifying or designing other structures or processes for carrying out the purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions and variations on the example embodiments described do not depart from the spirit and scope of the invention as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in coonjunction with the accompanying drawings, in which: FIG. 1 is a cross-sectional view of an embodiment of the present invention comprising a nitrogen-containing layer on a substrate; FIG. 2 is a cross-sectional view of an embodiment of the present invention comprising multiple nitrogen-containing layers; FIG. 3 is a cross-sectional view of an embodiment of the present invention comprising a nitrogen-containing layer on an extrinsic surface layer; and FIG. 4 is a cross-sectional view of a MOSFET manufactured according to preferred embodiments of the present invention. Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the preferred embodiments and are not necessarily drawn to scale. DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS The operation and fabrication of the presently preferred embodiments are discussed in detail below. However, the embodiments and examples described herein are not the only applications or uses contemplated for the invention. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention or the appended claims. FIG. 1 depicts a cross sectional view of an integrated circuit at an intermediate fabrication stage. It is not drawn to scale, but drawn as an illustration only. A semiconductor substrate 101 is preferably a silicon wafer, however, the substrate 101 may alternatively comprise Ge, SiGe, strained silicon, strained germanium, GaAs, silicon on insulator (SOI), germanium on insulator (GOI), a combination, or a stacked arrangement of layers such as Si/SiGe. Preferably, a first nitrogen-containing layer 103 is deposited using conventional jet vapor deposition (JVD). In preferred embodiments, the first nitrogen-containing layer thickness is less than about 30 Å and more preferably between about 5 and 15 Å. The JVD process utilizes a high-speed jet of a light carrier gas to transport the depositing species onto the substrate to form the desired film. The JVD process includes using jets in a low vacuum. For the deposition of silicon nitride, one may use a conventional coaxial dual nozzle jet vapor source. Highly diluted silane, SiH4, from the inner nozzle and N2 and He from the outer nozzle flow into a plasma discharge region sustained by a microwave cavity. The highly diluted silane concentration is preferably about 10 ppm in He and N2 carrier gases. The deposition rate and film composition is adjusted by changing the silane concentration and/or the SiH4/He and SiH4/N2 flow ratios. In preferred embodiments, the first nitrogen-containing layer 103 comprises essentially stoichiometric silicon nitride (Si3N4). Stoichiometric silicon nitride exhibits better electrical performance than other, non-stoichiometric, nitrides (SixNy). Less preferred compositions result in dangle bonds, thus increasing the amount of traps. In general, a low-trap nitride prevents trap-assisted carrier transport, and minimizes interaction between the substrate 101 and a high-k dielectric 105. The gaseous plasma is sustained only in the outer nozzle, as the pressure in the small inner nozzle is maintained sufficiently high, preferably about 600 Torr, to suppress plasma formation and premature silane dissociation. The pressure in the outer nozzle is preferably about 2 Torr. Energetic nitrogen species (including atomic nitrogen) generated in the plasma and silane molecules are both carried by the sonic He jet toward the substrate where they form silicon nitride. Because of the high kinetic energy of the impinging depositing species, intentional substrate heating is not necessary, thereby allowing for room temperature deposition. Better than 5% film uniformity across a large area can be achieved by scanning the substrate relative to the jet source. The deposition rate and film composition are controlled by the silane, helium, and nitrogen partial pressures as well as their flow rates. Under the conditions described herein, deposition rates of about 15 Å/min are achieved. Details of a conventional JVD process are described in a paper by T. P. Ma, IEEE Trans. Elec. Devices, Vol. 45(3) p. 680 (1998), which is hereby incorporated by reference in its entirety. The first nitrogen-containing layer 103 exhibits a sufficiently low interface state density to avoid problems such as increased leakage current and degraded carrier channel mobility, which are commonly encountered in conventional processing. JVD silicon nitride has predominantly S—N bonds, with small amounts of Si—H and N—H bonds. The hydrogen concentrations were lower than those in typical CVD nitrides, which may be partly responsible for JVD nitride's improved electrical properties. JVD-deposited nitride layers typically have an interface state density less than about 5*1011 c/cm2. The density can be obtained by carrying out charge-pumping (C-P) measurement. As described above, high-k dielectrics such as HfSiON suffer from bulk traps and interface traps. As known in the art, bulk trap problems are avoided by using amorphous HfSiON. Interfacial traps are isolated from a Si substrate by inserting an IL (interfacial layer), such as the first nitrogen-containing layer 103, between the substrate 101 and the high-k dielectric 105. To keep the electrically effective dielectric thickness thin enough, JVD nitride instead of oxide is used. This is because conventional CVD or PVD nitride still suffers from worse bulk traps and interface traps. Low-trap nitride, non-stoichiometric silicon nitride, or more preferably essentially stoichiometric silicon nitride, advantageously provide a higher dielectric constant than oxide and similar trap density with oxide. A further advantage of preferred embodiments is that JVD lends itself to deposition of homogeneous layers as described above. Therefore, embodiments avoid problems associated with spatial variation in device performance. This makes JVD nitridation suitable for next generation device scaling requirements. In a preferred embodiment of the invention illustrated in FIG. 1, the high-k gate dielectric 105 is deposited directly onto the first nitrogen-containing layer 103. Deposition of the high-k dielectric material 105 may be performed by conventional methods including remote plasma CVD (RPCVD), plasma enhanced CVD (PECVD), atomic layer deposition (ALD), MOCVD, PVD, sputtering or other methods known in the art. High-k dielectrics are those dielectrics that have a dielectric constant k of greater than silicon dioxide, about 3.9. Possible high-k dielectrics include Ta2O5, TiO2, Al2O3, ZrO2, HfO2, Y2O3, L2O3, and their aluminates and silicates. The high k dielectric material may comprise a single layer of one metal oxide or several layers including two or more metal oxides. Still other possible high-k dielectrics include silicon nitride, hafnium silicon oxynitride, lanthanum oxides, and other high-k dielectric materials known in the art. A range of dielectric constant materials is known, for example for the range of 3.9<k<9, the high-k gate dielectric may include oxy-nitride, oxygen containing dielectrics, nitrogen-containing dielectrics, combinations of these and multiple layers of these. For k>9.0, the dielectrics may include any of HfO2, HfSiOx, HfAlOx, zirconium such as ZrO2, aluminum such as Al2O3, titanium such as TiO2, tantalum pentoxide, lanthanum oxide such as La2O3, barium strontium compounds such as BST, lead based compounds such as PbTiO3, similar compounds such as BaTiO3, SrTiO3, PbZrO3, PST, PZN, PZT, PMN, metal oxides, metal silicates, metal nitrides, combinations and multiple layers of these. The dielectric 105 may further include Si, Ge, F, C, B, O, Al, Ti, Ta, La, Ce, Bi, W, or Zr for example. The high-k dielectric layer 105 is typically 1 to 100 Angstroms, preferably less than about 50 Å. In preferred embodiments, the high-k dielectric 105 includes ALD-deposited, amorphous HfSiON. In one example a high-k dielectric layer of HfSiON was deposited to about 40 Angstroms thickness and having an equivalent oxide thickness (EOT) of less than about 2.0 nanometers. As deposited, high-k layers typically have a high density of traps. These traps may be passivated by impregnating the layer with nitrogen. Suitably passivated embodiments result in a trapped charge density less than about 1011 to 1012 cm−2, thereby lowering leakage current, lowering EOT and improving dielectric reliability. However, conventional nitrogen passivation suffers from penetration of nitrogen into the substrate 101, thereby degrading NBTI (Negative Bias Temperature Instability) reliability. Preferred embodiments advantageously avoid this problem. Embodiments include methods for introducing nitrogen such as diffusion from a gas source, remote plasma nitridation, and decoupled plasma nitridation. One embodiment comprising a method for impregnating the dielectric layer with nitrogen includes heating for about 0.5 to 2 minutes at about 600 to 800° C., preferably in ammonia, nitrous oxide, and nitric oxide, or a combination thereof. Another embodiment includes remote plasma nitridation for about 0.5 to 4 minutes at about 400 to 1,000° C., preferably in ammonia, nitrogen, nitrous oxide, and nitric oxide, or a combination thereof. A preferred method of performing remote plasma nitridation is at about 550° C. for about 1 minute in nitrogen. Yet another embodiment for passivating traps in high-k layers includes using decoupled plasma nitridation for about 0.1 to 2 minutes at about 25 to 100° C., preferably in ammonia, nitrogen, nitrous oxide, and nitric oxide, or a combination thereof. A preferred method of performing decoupled plasma nitridation is at about 25° C. (or at room temperature) for about 30 seconds in nitrogen. Applicants find that the first nitrogen-containing layer 103 between the substrate 101 and the high-k dielectric 105 advantageously prevent additional nitrogen incorporation into the substrate 101 during nitrogen passivation, thereby avoiding NBTI reliability problems. In preferred embodiments, the concentration of nitrogen in the first nitrogen-containing layer 103 is greater than the nitrogen concentration in the high-k dielectric 105. The first nitrogen-containing layer 103 is preferably an essentially stoichiometric silicon nitride formed using JVD. FIG. 1 further depicts the gate electrode material 107 over the high-k dielectric 105. The gate electrode material 107 may include polysilicon, doped polysilicon, metal compositions such as titanium nitride (TiN), silicides, or other metal gate electrode materials used in the art. In a preferred embodiment the gate electrode material 107 is a doped polysilicon gate electrode material. The electrode may be deposited by a conventional CVD process to a thickness less than about 1500 Angstroms. In preferred embodiments the gate electrode includes a dopant of a first conductivity type, while the device source and drain regions include a dopant having a second conductivity type, as described below. For example, for a PMOS, the PMOS gate electrode is preferably n+ doped, while for a NMOS, the NMOS gate electrode is preferably p+ doped. The n+ poly-Si gate is preferably doped with a 10 KeV, 1×1015 cm−2 implant dose of phosphorus. The p+ poly-Si gate is preferably doped with a 5 KeV, 3.5×1015 cm−2 implant dose of boron. A spike activation anneal is done at approximately at 1050° C. FIG. 2 illustrates another preferred embodiment wherein a second nitrogen-containing layer 106, preferably a JVD nitride layer, is interposed between the gate electrode material 107 and the high-k dielectric 105. An advantage of preferred embodiments is that the second nitrogen-containing layer 106 acts as a diffusion barrier. Therefore, the second nitrogen-containing layer 106 advantageously prevents dopant and impurity diffusion and oxygen migration across interfacial boundaries. For example in FIG. 2, the second nitrogen-containing layer 106 prevents diffusion between the gate electrode material 107 and the high-k dielectric 105. Without the second nitrogen-containing layer 106, TEM analysis indicates that a reaction layer greater than about 0.5 nm thick (not shown) results from the reaction between the high-k dielectric 105 and the gate electrode 107. Without the second nitrogen-containing layer 106, the reaction layer induces Fermi-pinning at the interface between high-k dielectric 105 and gate electrode 107 (were the second nitrogen-containing layer 106 not present). With the second nitrogen-containing layer 106, the reaction layer is preferably reduced below about 0.5 nm. Some of the advantages of the preferred embodiment in FIG. 2 are summarized as follows. The first nitrogen-containing layer 103 advantageously keeps EOT low, and it also maintains good interfacial quality between the substrate 101 and the first nitrogen-containing layer 103. The second nitrogen-containing layer 106 advantageously serves as a diffusion barrier for oxygen vacancies, and it prevents interaction (e.g. Fermi-pining) between the high-k dielectric 105 and the gate electrode 107. By way of further illustration, the embodiment in FIG. 2 may comprise a boron-doped, p+ poly gate 107 on a JVD nitride layer 106. The second nitrogen-containing layer 106 is deposited on amorphous HfSiON 105, the amorphous HfSiON 105 being deposited on JVD nitride layer 103. In this illustration, the substrate 101 is preferably n-type since there is a p+ poly gate, 107. The embodiment in FIG. 2, therefore, advantageously prevents boron and phosphorous diffusion from their respective regions resulting in enhanced device performance. Still referring to FIG. 2, in an alternative embodiment, the second nitrogen-containing layer 106 includes a JVD nitride layer, while the first nitrogen-containing layer 103, may comprise an interfacial layer such as an oxide, or a nitride, SiON, or SiO2. In alternative preferred embodiments, both the gate electrode and the associated or corresponding source and drain may be of the same conductivity type, but with different or equal doping levels. Electrodes may be conventionally doped in situ with conventional dopants. Preferred n-type dopants, include antimony, phosphorous or arsenic, for example. Examples of preferred p-type dopants include boron, aluminum, gallium, or indium. The exemplary embodiments described herein do not preclude using additional materials and methods to increase performance. For example, a strained channel material such as SiGe is known in the art to increase the mobility of the carriers, which is particularly important in the production of P type MOS transistors. Such an embodiment is illustrated in FIG. 3, wherein a strained channel material, 102, preferably SiGe, is epitaxially grown on the substrate 101. The strained channel material 102 is deposited, for example, by epitaxial growth. It is preferably less than about 200 Angstroms, and in preferred embodiments, it is about 100 Angstroms. The strained material may be any of several semiconductor materials, compound or multilayer materials may be used, including non-doped SiGe, SiC, or Ge. In conventional MOS devices having strained channels, a Si cap layer is necessary to avoid interference from surface roughness and interface scattering. Since the cap layer results in a buried channel, such a configuration has severe short channel effects. In the preferred embodiment of FIG. 3, however, the first nitrogen-containing layer 103 eliminates the need for a cap layer, thereby reducing short channel effects. A high-k dielectric 105, preferably amorphous HfSiON, and a gate electrode material 107 further comprise the surface channel embodiment in FIG. 3. Conventional processing, known in the art, is followed to complete the construction of the MOSFET, FIG. 4. FIG. 4 depicts the substrate 101, in accordance with a preferred embodiment of the present invention after sidewall spacers 120 are deposited and patterned on either side of the gate electrode 107, the gate dielectric 105, and the first nitrogen-containing layer 103. The sidewall spacers 120 are deposited using a non-high-k dielectric to provide a protective spacer over the sidewalls of the electrode. The sidewall spacers 120 are preferably a nitrogen-containing oxide, silicon nitride, oxide or a stacked combination thereof. The sidewall spacers 120 may be deposited by low temperature deposition techniques including PECVD and remote plasma CVD (RPCVD). The sidewall spacers 120 may comprise silicon nitride or silicon oxynitrides. In a preferred embodiment the oxide or nitride sidewall spacer may be about 40 Angstroms wide. In an example, the sidewall spacers 120 are SiOxNy, nitride or a stacked combination thereof. As further depicted in FIG. 4, source and drain diffusions 122 and 124 are formed in the substrate areas using ion implantation and thermal anneal procedures as are known in the conventional art. Gate electrode 107, first nitrogen-containing layer 103, and the source 122 and drain 124 diffusions form a planar MOS transistor. Alternatively, the source and drain regions 122, 124 may be formed epitaxially, for example, LPE. Depending on the type of dopants used in the source, drain, and the substrate, the transistors may be of a P type MOS transistor or an N type MOS transistor. In a complementary MOS transistor integrated circuit, the transistors may be formed in well diffusions (not shown) that were performed prior to forming the STI region 126, as is known in the art, the wells being isolated by the STI regions 126. To summarize, a preferred embodiment discloses a method for fabricating a MOSFET. The method comprises providing a substrate; forming a shallow trench isolation region into the substrate; depositing a nitrogen-containing layer over the substrate, the layer of silicon nitride having sidewalls inside the shallow trench isolation region. The method further comprises depositing over the layer of silicon nitride, a high-k gate dielectric material having nitrogen, the high-k gate dielectric having sidewalls coextensive with the silicon nitride sidewalls. The method still further comprises depositing a gate electrode material including a dopant of a first conductivity type over the high-k gate dielectric material, the gate electrode having sidewalls coextensive with the dielectric sidewalls and the silicon nitride sidewalls; depositing sidewall spacers on the gate electrode sidewalls, on the dielectric sidewalls, and on the silicon nitride sidewalls; and forming a source and drain region including a dopant of a second conductivity type opposite to the first conductivity type, the source region adjacent one sidewall insulator and the drain region adjacent an opposite sidewall spacer. In further accordance with conventional processing, known in the art, for example, a silicide may be formed by depositing a metal such as titanium, cobalt, or nickel and then treating it to form self-aligned silicide, or salicide, on top of the gate electrode, the source and drain regions and other areas to provide a lower resistance and improve device performance. Following the salicide step, if used, interlevel insulation layers are formed above the substrate using deposition steps to deposit oxide, nitride or other conventional insulation layers, typically silicon dioxide is formed. Contact areas are patterned and etched into the insulators to expose the source, drain and gate electrodes, the resulting vias are filled with conductive material to provide electrical connectivity from metallization layers above the interlevel insulating layers down to the gate electrodes, the source region and the drain region. Metallization layers of aluminum, or copper, may be formed over the interlevel insulation layers using known techniques such as an aluminum metallization process or a dual damascene copper metallization process to provide one, or several, wiring layers that may contact the vias and make electrical connections to the gate electrodes, and the source and drain regions. Conventional clean up, passivation, die saw, packaging, assembly and test steps are used to complete the integrated circuit devices formed on the substrate. The embodiments of the invention described above are exemplary and not limiting, and variations that are apparent to those skilled in the art that include the features of the invention are within the scope of the invention and the appended claims. Although embodiments of the present invention and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, it will be readily understood by those skilled in the art that many of the features, functions, processes, and materials described herein may be varied while remaining within the scope of the present invention. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. | <SOH> BACKGROUND <EOH>As metal oxide semiconductor field effect transistor (MOSFET) feature sizes decrease, the gate oxide thickness of the devices also decreases. This decrease is driven in part by the demands of overall device scaling. As gate conductor widths decrease, for example, other device dimensions decrease to maintain the proper device scale, and thus device operation. Another factor driving reduction of the gate oxide thickness is the increased transistor drain current realized from a reduced gate dielectric thickness. The transistor drain current is proportional to the amount of charge induced in the transistor channel region by the voltage applied to the gate conductor. The amount of charge induced by a given voltage drop across the gate dielectric (e.g., the gate oxide) is a factor of the capacitance of the gate dielectric. In order to achieve increased capacitance, gate oxide thicknesses have been decreased to as thin as 10 Å. These extremely thin gate oxides result in increased gate-to-channel leakage current, however. Problems such as this have led to the use of materials that have dielectric constants that are greater than the dielectric constant of silicon oxide, which has a k value of about 3.9. Higher k values, for example 20 or more, may be obtained with various transition metal oxides. These high-k materials allow high capacitances to be achieved with relatively thick dielectric layers. In this manner, the reliability problems associated with very thin dielectric layers can be avoided while improving transistor performance. There are, however, fabrication problems associated with forming gate dielectric layers that include high-k materials, particularly when a metal gate is employed. For example, high dielectric materials may contain a greater number of bulk traps and interface traps than gate dielectrics made from thermally grown SiO 2 . Traps adversely affect both subthreshold slope and threshold voltage (Vt). High trap density also leads to leakage through Frenkel-Poole tunneling, and it causes bias temperature instability. One class of high-k dielectrics that have received much attention recently is hafnium-based oxides. Unlike SiO 2 , wherein chemical bonding is predominately covalent, Hf-based oxides are predominately ionic and therefore exhibit their own host of problems. Control of flatband voltage (V fb ) has proven particularly difficult. Recent work has suggested that oxygen vacancy formation in the Hf dielectric and/or interfacial Hf reactions may account for the large observed V fb , shifts, particularly in the case of p+ gates. Therefore, there is a need for passivating materials, structures, and methods in the manufacture of semiconductor devices that use high-k dielectrics. | <SOH> SUMMARY OF THE INVENTION <EOH>These and other problems are generally solved or circumvented, and technical advantages are generally achieved by preferred embodiments of the present invention that provide a novel process and structure for semiconductor devices using high-k gate dielectric materials. A preferred embodiment of the invention comprises a substrate; a nitrogen-containing layer over the substrate, wherein the silicon nitride layer is deposited using jet vapor deposition (JVD); a high-k dielectric material comprising nitrogen over the nitrogen-containing layer; and a gate electrode material over the high-k dielectric material. In a preferred embodiment, a channel material of, for example, strained silicon (Si) or strained silicon germanium (SiGe) is deposited beneath the JVD nitrogen-containing layer to provide a surface channel for the resulting devices and to increase the carrier mobility. In another preferred embodiment, the high-k dielectric has a dielectric constant k greater than about 7, and may include amorphous HfSiON. Nitrides and high-k dielectric stacks may be used as the dielectric including Hf, Si, O and N. Tantalum (Ta) or lanthanum (La) oxides, aluminum oxide and/or nitrides, combination or stacked dielectrics and other known high-k dielectrics may be used. In another preferred embodiment, the devices may be fabricated over an insulator in a silicon-on-insulator (SOI) structure. The substrate material may be bulk silicon and may include n and p type doped well areas, alternatively the substrate may comprise SiGe, Ge, strained Si, strained Ge or a combination or stacked arrangement of Si/SiGe layers. In another preferred embodiment, a metal gate electrode or a combination material including a metal may be used for the gate electrode, for example a TiN (Titanium Nitride) metal gate electrode may be used. Polysilicon, and doped polysilicon, may be used for the gate electrode, the polysilicon gate electrodes may also incorporate an additional salicide coating for better performance. Additional features and advantages of embodiments of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the specific embodiments disclosed might be readily utilized as a basis for modifying or designing other structures or processes for carrying out the purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions and variations on the example embodiments described do not depart from the spirit and scope of the invention as set forth in the appended claims. | 20041222 | 20080408 | 20060622 | 57833.0 | H01L2994 | 1 | BRYANT, KIESHA ROSE | SEMICONDUCTOR DEVICE AND METHOD FOR HIGH-K GATE DIELECTRICS | UNDISCOUNTED | 0 | ACCEPTED | H01L | 2,004 |
|
11,020,450 | ACCEPTED | Radiative focal area antenna transmission coupling arrangement | The present invention comprises a docking system for connecting a portable communication device to a further signal transmission line. The docking system may be arranged within a workstation such as a desk or a tray. The system may also envelope a room in a building or be located in a vehicle, to control and restrict the radiative emission from the communication device and to direct such radiation to a further remote antenna and or signal distribution system connected to the transmission line. | 1. A docking system for connecting a portable communication device to a further signal transmission line, said portable communication device having an externally radiative antenna, said system comprising: a shield for restricting at least a portion of any radiation emanating from said externally radiative antenna of said portable communication device; and a coupling probe mounted adjacent to said shield for radiatively coupling between said externally radiative antenna of said portable communication device and said further signal transmission line via radio frequency energy therebetween. 2. The docking system as recited in claim 1, wherein said shield is comprised of an electrically conductive material. 3. The docking system as recited in claim 1, wherein said shield defines a focal area station for receipt and transmission of a radio frequency signal, when a communication device is placed within said focal area. 4. The docking system as recited in claim 3, wherein said focal area stations may be selected from the group consisting of a desk, a room in a building, or a tray in a vehicle. 5. The docking system as recited in claim 1, wherein said further signal transmission line comprises a further antenna located at a location remote from said shield. 6. The docking system as recited in claim 1, wherein said further signal transmission line comprises a distribution network to permit communication of said communication device with other electrical communication devices. 7. The docking system as recited in claim 5, wherein said transmission line has a control unit therein, said control unit being arranged to permit monitoring and regulation of signals being transmitted through said transmission line. 8. The docking system as recited in claim 7, wherein said control unit comprises a computer arranged to monitor time or use of said docking system. 9. The docking system as recited in claim 3, wherein said shield and said probe are spaced apart from one another by a dielectric material. 10. The docking system as recited in claim 9, wherein said shield, said probe and said dielectric material are flexible. 11. The docking system as recited in claim 6, wherein a plurality of said communication devices are arranged in a simultaneous connection to said transmission line. 12. A method of coupling a portable communication device having an externally radiative antenna, to a signal transmission line having a further distribution system and/or remote antenna thereon, for the purpose of effecting radio signal communication therebetween, said method comprising the steps of: arranging a radiation shield in juxtaposition with at least a portion of said radiative antenna of said portable communication device; mounting a coupling probe adjacent said shield and in communication with said signal transmission line; and placing said externally radiative antenna of said portable communication device communicatively adjacent said shield so as to permit radiative communication between said externally radiative antenna of said communication device and said signal transmission line via said coupling probe; and arranging said shield in a generally planar work surface so as to restrict the propagation of at least a portion of the radiation emanating from said communication device. 13. The method of coupling said portable communication device to said signal transmission line, as recited in claim 12, including the step of: attaching a control unit to said transmission line to permit regulation of electric signals therethrough. 14. The method of coupling said portable communication device to said signal transmission line, as recited in claim 13, including the step of: adding a further communication device in juxtaposition with a further probe, so as to permit multiple simultaneous use of said transmission line and/or remote antenna therewith. 15. The method of coupling said portable communication device to said signal transmission line, as recited in claim 13, including the step of: billing any users of said distribution system/remote antenna by monitoring and tabulating any signals received by and sent through said control unit. | FIELD OF THE INVENTION This invention relates to a docking system for handheld electronic communication devices such as cellular telephones or the like, for use with structures or vehicles, and is a Continuation-In-Part Application of U.S. patent application Ser. No. 08/581,065, filed Dec. 29, 1995, which is a Continuation-In-Part Application of our allowed co-pending U.S. patent application Ser. No. 08/042,879, filed Apr. 5, 1993, each being incorporated herein by reference, in their entirety. BACKGROUND OF THE INVENTION Prior Art Extraneous radio frequency emission has become it serious concern of hand-held electronic communication devices such as portable facsimile machines, ground position indicators, and cellular telephone manufacturers and users alike. RF radiation is considered a potential carcinogen. The proliferation of these hand-held devices is evident everywhere. A single hand-held device however, should able to travel with its owner and be easily transferably usable in automobiles, planes, cabs or buildings (including hospitals) as well as at offices and at desks with no restrictions on their use, and without causing concern with regard to the radiation therefrom. The handheld devices should be portable for a user to carry in his pocket, yet be able to use that same cellular unit in such vehicle or building while minimizing such radiational effect therein. It is an object of the present invention to permit a user of a portable hand-held electronic communication device such as a cellular telephone or the like, to conveniently use that same hand-held device/cellular phone in an automobile, plane or building, office/desk, or anywhere signal transmission is needed, and to permit such signal to reach its intended destination such as a communications network or satellite, without interfering with other electrical equipment and in spite of interfering walls of buildings or structure and/or other electrical equipment. It is a further object of the present invention to minimize any radiation from such a portable device, such as a cellular telephone or the like, while such use occurs in an automobile, a building or an elevator, an airplane, a cab, or other public facility in which the user wishes to minimize his own exposure to stray radiation, and also to permit re-transmission of his signal, to avoid the necessity of connecting and disconnecting cables, and to permit a wide variety of cellular telephones such as would be utilized in a rental car where various manufactures' phones would be used, and to permit control of such re-transmission of signals where desired, so as to allow user/customer billing and monitoring thereof. BRIEF SUMMARY OF THE INVENTION The present invention comprises a docking system adaptable to an automobile, plane, building or desk for receipt of an electronic communication device such as a cellular telephone, portable computer, facsimile machine, pager or the like, to permit a user safe, environmentally safe, non-touching, radiationally communicative mating of the antenna of that device to a further transmission line through a juxtaposed pick-up probe, the signal coming in or going out through a communications network or further remote antenna. The docking system may comprise a “zone” or “focal area” as a generally rectilinear area/volume on/in a desk or work surface on/in which the electronic communication device may be placed, such a surface or space being possible on a desk, or in a plane. That focal area may also, in a further embodiment, be comprised of one or more rooms in a building, such focal area having a pick-up probe thereat, in conjunction with a shield placed on/in the desk, room, vehicle or building to prevent the radiation from that communication device from traveling in any undesired directions within the desk, room, vehicle or building. The focal area may be defined by a metal walled structure within or on which a broadband probe is arranged. The metal walled structure acts as a shield to minimize radiation from the communication device from passing therethrough. In a first embodiment, the shield may be comprised of a partial housing disposed within the upper work surface of a desk. The probe would be elongatively disposed within the partial housing and be in electrical communication with a transmission line such as coax cable, waveguide, or the like. The partial housing may have a planar dielectric layer thereover, which would also be co-planar with the surface of the desk. The communication device would be placed within the pickup zone of the focal area, and would be able to transmit and receive signals through the dielectric layer. The partial housing would act as the shield in the desk, to minimize radiation by the worker at the desk. In a further embodiment, the housing may be comprised of a thin, generally planar mat of conductive material, which mat may be flexible and distortable, for conformance to a particular work surface and for ease of storage capabilities. The mat has an upper layer of dielectric material (for example, plastic, foam or the like). A thin, flat, conformable coupling probe may be embedded into or printed onto the upper surface of the dielectric material. The mat may be utilized as a portable focal area for placement of a communication device thereon, or wrapped up in an enveloping manner therein. A yet further embodiment of the present invention includes a control unit in the transmission line from the pickup probe to the further remote antenna. The control unit may comprise a filter or switch connected to a computer. The computer may accumulate billing information, control system functions, or act as a regulator for multiple users of the antenna coupling system. The invention thus comprises a docking system for connecting a portable communication device to a further signal transmission line, the portable communication device having an externally radiative antenna, the system comprising a shield for restricting at least a portion of any radiation from the externally radiative antenna of said portable communication device, and a coupling probe mounted adjacent to the shield for radiatively coupling between the externally radiative antenna of the portable communication device and the further signal transmission line via radio frequency energy therebetween. The shield may be comprised of an electrically conductive material, or an attenuative material capable of blocking at least part of the radiofrequency radiation energy coming from the communication device(s) connected thereto. The shield defines a focal area for receipt and transmission of a radio frequency signal, when a communication device is placed within the focal area. The focal area or zone, may be selected from the group of structures consisting of a desk, a room in a building, or a tray or the like in a vehicle. The further signal transmission line may be connected to a further communication network and/or a further antenna connected to the transmission line, yet positioned at a location remote from the shield. The transmission line may have a control unit therein, the control unit being arranged to permit regulation of signals being transmitted through the transmission line. The control unit may comprise a computer arranged to monitor time or use of the docking system. The shield and the probe may be spaced apart by a dielectric material. The shield, the probe and the dielectric material may be flexible. The communication device may include at least two cellular telephones (or other portable communication devices) simultaneously connected to the remote antenna. The invention also includes a method of coupling a portable communication device having an externally radiative antenna, to a signal transmission line having a further remote antenna thereon, for the purpose of effecting radio signal transmission therebetween, the method comprising the steps of arranging a radiation shield in juxtaposition with at least a portion of said radiative antenna of the portable communication device,. mounting a coupling probe adjacent the shield and in communication with the signal transmission line, and placing the externally radiative antenna of the portable communication device close to the probe and the shield so as to permit radiative communication between the externally radiative antenna and the signal transmission line via the coupling probe. The method may include arranging the shield in or on a generally planar work surface so as to restrict the propagation of at least a portion of the radiation emanating from the communication device primarily only to the vicinity of the probe. The method may include attaching a control unit to the transmission line to permit regulation of electric signals therethrough, and adding a further communication device in juxtaposition with a further probe, the further probe also being in electronic communication with that control unit, so as to permit multiple simultaneous use of the transmission line and communication system and/or remote antenna therewith. The method of coupling the portable communication device to the signal transmission line, may also include the step of billing any users of the communication and/or remote antenna by monitoring and tabulating any signals received by and sent through the control unit. It is an object of the present invention to provide a shielded antenna docking arrangement, which itself may be portable, for use with a portable communication device such as a cellular telephone, facsimile machine or ground position indicator or the like, such use occurring in a vehicle such as a plane, an automobile or a cab or in a public or private building, office desk or elevator. BRIEF DESCRIPTION OF THE DRAWINGS The objects and advantages of the present invention will become more apparent when viewed in conjunction with the following drawings in which: FIG. 1a is a perspective view of a focal area docking arrangement, as may be utilized with a desk; FIG. 1b is a partial view taken along the lines A-A of FIG. 1a; FIG. 2a is a perspective view of a portable focal area docking system for portable communication devices; FIG. 2b is a view taken along the lines B-B of FIG. 2a; FIG. 3a is a block diagram of a docking system having a sensor unit arranged therewith; FIG. 3b is a block diagram of a further embodiment of that shown in FIG. 3a; and FIG. 4 is a side elevational view of a docking system, as it may be utilized in a vehicle. DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings in detail, and particularly to FIG. 1a, there is shown a portable communication device docking arrangement 10, to permit a portable communication device such as a hand-held cellular telephone 12 to be utilized thereon, such as on a desk 14 or adjacent to it, and as a personal communicator (i.e. cellular telephone, facsimile machine, pager or the like) which may also be carried on an individual. Such a docking system 10 of the present invention may also be adaptable to an automobile, plane, or building for providing radiationally restrictive communication between a portable electronic communication device 12 such as a cellular telephone, portable computer, facsimile machine, pager, or the like, while allowing communicative mating of the radiative antenna of that device to a further transmission line and communication system and/or a more remote antenna, as recited and shown in our aforementioned patent applications, incorporated herein by reference in their entirety. The docking system 10 may comprise a “zone” or “focal area” 16 as a rectilinear area/volume on/in a desk 14 or work surface on/in which the electronic communication device 12 may be placed, such a surface or space being in a structure such as an airplane. That focal area 16 has a pick-up coupling probe 22 thereat, as shown for example in FIG. 1b, in conjunction with a shield 24 placed on/in the desk 14, (or room, vehicle or building, as shown in FIGS. 3a and 3b), to prevent the radiation (electromagnetic/microwave) emanating from that communication device 12 from traveling in any undesired directions within the desk, room, vehicle or building. The focal area 16 may be defined by a metal walled housing structure 30 within which a broadband probe 22 is arranged, as shown in FIG. 1b. The metal walled structure 30 acts as a shield to minimize undesired radiation from the communication device 12 from passing therethrough. In a first embodiment, the shield may be comprised of a partial housing 34 disposed within the upper work surface 36 of a desk 14, as may be seen in FIG. 1b. The pick-up probe 22 would be elongatively disposed within the partial housing structure 30 and be in electrical communication with a transmission line 32 such as coaxial cable, waveguide, or the like. The transmission line 32 would be in electrical communication with an electric communications network or distribution system 38, and/or to a further remote antenna 40, such as may be seen in FIGS. 1b, 3a and 3b. The partial housing 30 may have a planar dielectric layer 42 thereover, which would also be co-planar with the surface of the desk 14. The communication device 12 would be placed within the pickup zone of the focal area 16, and would be able to transmit and receive signals through the dielectric layer 42. The partial housing 30 would act as the shield in the desk, to minimize radiation directed towards the worker(s) at the desk. In a further embodiment as shown in FIG. 2a, the shield or housing may be comprised of a thin, generally planar mat 50 of conductive material, which mat 50 may be flexible and distortable, for conformance to any surface (human or otherwise), and may be folded or rolled up to minimize storage requirements. The mat 50 has an upper layer 52 made of a dielectric material (plastic, foam or the like). A thin, flat, conformable coupling probe 54 is embedded into or printed onto the upper surface of the layer of dielectric material 52. The mat 50 may be utilized as a portable focal area for placement of a communication device thereon, or wrapped-up in an enveloping manner therein. The probe 54 is connected to a transmission line 56, in electrical contact with a network or remote antenna, not shown in this figure. A yet further embodiment of the present invention includes a control unit 60, connected into the transmission line 62 from the pickup probe 64 to the further remote antenna 66 shown in FIGS. 3a and 3b. The control unit 60 may comprise a filter, switch, amplifier, attenuator, combiner, splitter, or other type of frequency converter, connected to a computer 68. The computer 68 may be arranged to accumulate customer or billing information by functioning with a processor to print out use-data 69, to maintain frequency control functions, or to act as a regulator for multiple users of the antenna coupling system 10. There may be a plurality of pickup coupling probes 64 each connected to the control unit 60 and the transmission line 62, one probe 64 in each of a plurality of shielded rooms 65, each wall or work area(desk) having a shield, the rooms 65 shown in a building 67, in FIG. 3b. The view shown in FIG. 4, displays a portable communication device such as a facsimile machine or computer 70 supported on a tray 72 articulably mounted on the back of an airplane seat 74. The tray 72 has a “focal area” 75 therewithin, as represented by the dashed lines 76. The focal area 75 includes a conductive (preferably metallic) shield arranged beneath and partially surrounding a broadband probe 77. The probe 77 transmits electrical signals radiated to and from a radiative antenna on or in the base of the portable communication device 70. A transmission line 78 which may be comprised of coaxial cable, waveguide, or optical fibers, extends from the probe within the focal area, to a further remote antenna 80 mounted outside of the structure, which here, is identified as an airplane. A control unit 82, such as attenuators, heterodyne converters, amplifiers, bandpass filters, switches, or the like, may be arranged in communication with the transmission line 78 to monitor or control the time in the vehicle in which the communication device may be utilized, for example, to limit certain times when such devices may be utilized in an airplane, or to modulate the signal being transmitted or received by the remote antenna, and/or to monitor usage of the docking system for subsequent billing of those users. Thus what has been shown is a unique system for minimizing the detrimental effects of radiation from common portable communication devices to their users, while improving the transmission capabilities and customer usage of such devices, overcoming the barriers such as buildings and vehicles in which such devices might otherwise be utilized, that would interfere with the flow of signals transmitted. | <SOH> BACKGROUND OF THE INVENTION <EOH> | <SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The present invention comprises a docking system adaptable to an automobile, plane, building or desk for receipt of an electronic communication device such as a cellular telephone, portable computer, facsimile machine, pager or the like, to permit a user safe, environmentally safe, non-touching, radiationally communicative mating of the antenna of that device to a further transmission line through a juxtaposed pick-up probe, the signal coming in or going out through a communications network or further remote antenna. The docking system may comprise a “zone” or “focal area” as a generally rectilinear area/volume on/in a desk or work surface on/in which the electronic communication device may be placed, such a surface or space being possible on a desk, or in a plane. That focal area may also, in a further embodiment, be comprised of one or more rooms in a building, such focal area having a pick-up probe thereat, in conjunction with a shield placed on/in the desk, room, vehicle or building to prevent the radiation from that communication device from traveling in any undesired directions within the desk, room, vehicle or building. The focal area may be defined by a metal walled structure within or on which a broadband probe is arranged. The metal walled structure acts as a shield to minimize radiation from the communication device from passing therethrough. In a first embodiment, the shield may be comprised of a partial housing disposed within the upper work surface of a desk. The probe would be elongatively disposed within the partial housing and be in electrical communication with a transmission line such as coax cable, waveguide, or the like. The partial housing may have a planar dielectric layer thereover, which would also be co-planar with the surface of the desk. The communication device would be placed within the pickup zone of the focal area, and would be able to transmit and receive signals through the dielectric layer. The partial housing would act as the shield in the desk, to minimize radiation by the worker at the desk. In a further embodiment, the housing may be comprised of a thin, generally planar mat of conductive material, which mat may be flexible and distortable, for conformance to a particular work surface and for ease of storage capabilities. The mat has an upper layer of dielectric material (for example, plastic, foam or the like). A thin, flat, conformable coupling probe may be embedded into or printed onto the upper surface of the dielectric material. The mat may be utilized as a portable focal area for placement of a communication device thereon, or wrapped up in an enveloping manner therein. A yet further embodiment of the present invention includes a control unit in the transmission line from the pickup probe to the further remote antenna. The control unit may comprise a filter or switch connected to a computer. The computer may accumulate billing information, control system functions, or act as a regulator for multiple users of the antenna coupling system. The invention thus comprises a docking system for connecting a portable communication device to a further signal transmission line, the portable communication device having an externally radiative antenna, the system comprising a shield for restricting at least a portion of any radiation from the externally radiative antenna of said portable communication device, and a coupling probe mounted adjacent to the shield for radiatively coupling between the externally radiative antenna of the portable communication device and the further signal transmission line via radio frequency energy therebetween. The shield may be comprised of an electrically conductive material, or an attenuative material capable of blocking at least part of the radiofrequency radiation energy coming from the communication device(s) connected thereto. The shield defines a focal area for receipt and transmission of a radio frequency signal, when a communication device is placed within the focal area. The focal area or zone, may be selected from the group of structures consisting of a desk, a room in a building, or a tray or the like in a vehicle. The further signal transmission line may be connected to a further communication network and/or a further antenna connected to the transmission line, yet positioned at a location remote from the shield. The transmission line may have a control unit therein, the control unit being arranged to permit regulation of signals being transmitted through the transmission line. The control unit may comprise a computer arranged to monitor time or use of the docking system. The shield and the probe may be spaced apart by a dielectric material. The shield, the probe and the dielectric material may be flexible. The communication device may include at least two cellular telephones (or other portable communication devices) simultaneously connected to the remote antenna. The invention also includes a method of coupling a portable communication device having an externally radiative antenna, to a signal transmission line having a further remote antenna thereon, for the purpose of effecting radio signal transmission therebetween, the method comprising the steps of arranging a radiation shield in juxtaposition with at least a portion of said radiative antenna of the portable communication device,. mounting a coupling probe adjacent the shield and in communication with the signal transmission line, and placing the externally radiative antenna of the portable communication device close to the probe and the shield so as to permit radiative communication between the externally radiative antenna and the signal transmission line via the coupling probe. The method may include arranging the shield in or on a generally planar work surface so as to restrict the propagation of at least a portion of the radiation emanating from the communication device primarily only to the vicinity of the probe. The method may include attaching a control unit to the transmission line to permit regulation of electric signals therethrough, and adding a further communication device in juxtaposition with a further probe, the further probe also being in electronic communication with that control unit, so as to permit multiple simultaneous use of the transmission line and communication system and/or remote antenna therewith. The method of coupling the portable communication device to the signal transmission line, may also include the step of billing any users of the communication and/or remote antenna by monitoring and tabulating any signals received by and sent through the control unit. It is an object of the present invention to provide a shielded antenna docking arrangement, which itself may be portable, for use with a portable communication device such as a cellular telephone, facsimile machine or ground position indicator or the like, such use occurring in a vehicle such as a plane, an automobile or a cab or in a public or private building, office desk or elevator. | 20041222 | 20080715 | 20050901 | 62652.0 | 3 | TRINH, TAN H | RADIATIVE FOCAL AREA ANTENNA TRANSMISSION COUPLING ARRANGEMENT | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,020,457 | ACCEPTED | Efficient signaling over access channel | An apparatus and method for transmitting an indicator of channel quality while minimizing the use of a broadcast channel is described. A metric of forward link geometry of observed transmission signals is determined. An indicator of channel quality value is determined as a function of the observed transmission signals. An access sequence is selected, randomly, from one group of a plurality of groups of access sequences, wherein each of the plurality of groups of access sequences correspond to different ranges of channel quality values. | 1. In a wireless communication system, a method of determining an indicator of channel quality, the method comprising: determining a metric of an observed transmission; determining an estimate of channel quality based on at least the metric of the observed transmission; and selecting an access sequence, randomly, from one group of a plurality of groups of access sequences, wherein the plurality of groups of access sequences correspond to different ranges of channel quality values, and wherein the selected access sequence is from the group of the plurality of groups corresponding to the determined estimate of channel quality. 2. The method set forth in claim 1, wherein determining the metric further comprises determining the power of an observed pilot signal. 3. The method set forth in claim 1, wherein determining the estimate of channel quality further comprises determining the ratio of received pilot power to noise. 4. The method set forth in claim 1, wherein determining the estimate of channel quality further comprises determining the ratio of received pilot power to the sum of received pilot and power and noise. 5. The method set forth in claim 1, wherein the plurality of access sequences in the plurality of groups of access sequences are distributed non-uniformly. 6. The method set forth in claim 1, further comprising transmitting the selected access sequence. 7. The method set forth in claim 6, wherein transmitting further comprises transmitting in accordance with a Frequency Division Multiplex (FDM) scheme. 8. The method set forth in claim 6, wherein transmitting further comprises transmitting in accordance with a Code Division Multiplex (CDM) scheme. 9. The method set forth in claim 6, wherein the act of transmitting further comprises transmitting in accordance with an Orthogonal Frequency Division Multiple Access (OFDMA) scheme. 10. The method set forth in claim 1, wherein selecting further comprises selecting information indicative of access terminal requirements. 11. The method set forth in claim 10, wherein selecting information further comprises selecting information buffer level needs, quality of service requirements, a forward-link channel quality indicator. 12. In a wireless communication system, an apparatus to determine an indicator of channel quality, the apparatus comprising: a receiver configured to receive observed transmissions; a processor configured to determine a metric of the observed transmission, and to determine an estimate of channel quality as a function of at least the metric of the observed transmission; a memory element configured to store a plurality of groups of access sequences, wherein the plurality of groups of access sequences correspond to different ranges of channel quality values; and a selector configured to select an access sequence, randomly, from the group of the plurality of groups corresponding to the determined channel quality value. 13. The apparatus set forth in claim 12, the processor further comprises determining the ratio of received pilot power to noise. 14. The apparatus set forth in claim 12, the plurality of access sequences in the plurality of groups of access sequences are distributed non-uniformly. 15. The apparatus set forth in claim 12, further comprising a transmitter configured to transmit the selected access sequence. 16. The apparatus set forth in claim 15, wherein the transmitter is further configured to transmit in accordance with a Frequency Division Multiplex (FDM) scheme. 17. The apparatus set forth in claim 15, wherein the transmitter is further configured to transmit in accordance with a Code Division Multiplex (CDM) scheme. 18. The apparatus set forth in claim 14, wherein the transmitter is further configured to transmit in accordance with an Orthogonal Frequency Division Multiple Access (OFDMA) scheme. 19. The apparatus set forth in claim 11, wherein the selector is further configured to select information indicative of access terminal requirements. 20. The apparatus set forth in claim 19, wherein the information indicative of access terminal requirements comprises buffer level, quality of service requirements, a forward-link channel quality indicator. 21. In a wireless communication system, an apparatus for determining an indicator of channel quality, the means comprising: means for determining a power level of an observed transmission; means for determining a CQI value as a function of the power level of the observed transmission; and means for selecting an access sequence, randomly, from one group of a plurality of groups of access sequences, wherein the plurality of groups of access sequences correspond to different ranges of CQI values, and wherein the selected access sequence is from the group of the plurality of groups corresponding to the determined CQI value. 22. The apparatus set forth in claim 21, wherein means for determining a power level further comprises means for determining the power level of an observed pilot signal. 23. The apparatus set forth in claim 21, wherein the plurality of access sequences in the plurality of groups of access sequences are distributed non-uniformly. 24. The apparatus set forth in claim 21, further comprising means for transmitting the selected access sequence. 25. The apparatus set forth in claim 24, wherein means for transmitting further comprises means for transmitting in accordance with a Frequency Division Multiplex (FDM) scheme. 26. The apparatus set forth in claim 24, wherein means for transmitting further comprises means for transmitting in accordance with a Code Division Multiplex (CDM) scheme. 27. The apparatus set forth in claim 24, wherein means for transmitting further comprises transmitting in accordance with an Orthogonal Frequency Division Multiplex (OFDM) scheme. 28. The apparatus set forth in claim 24, wherein the means for transmitting further comprises means for transmitting in accordance with an Orthogonal Frequency Division Multiple Access (OFDMA) scheme. 29. The apparatus set forth in claim 21, wherein selecting further comprises means for selecting information indicative of access terminal requirements. 30. The apparatus set forth in claim 29, wherein means for selecting information further comprises selecting information regarding buffer level needs, quality of service requirements, and/or a forward-link channel quality indicator. 31. In a wireless communication system, a method of transmitting information regarding access terminal needs, the method comprising: determining a received power level of an observed pilot signal; determining a CQI value as a function of the received power level; and selecting an access sequence, randomly, from one group of a plurality of groups of access sequences, wherein the plurality of groups of access sequences correspond to a plurality of predetermined factors. 32. The method set forth in claim 31, wherein the predetermined factors include on or more of ranges of CQI values, ranges of buffer levels, packet size, traffic type, frequency bandwidth request and ranges of quality of service indicators. 33. In a wireless communication system, a method of communicating a channel quality indicator (CQI), the method comprising: determining a power level of an observed pilot signal; determining a CQI value as a function of the power level of the observed pilot signal; selecting an access sequence, randomly, from one group of a plurality of groups of access sequences, wherein the plurality of groups of access sequences correspond different the CQI values; appending the CQI value to the selected access sequence; and transmitting the access sequence and CQI value. 34. A method of partitioning a plurality of access sequences, the method comprising: determining a probability distribution of a plurality of access terminals about an access point, wherein the probability distribution is a function of a plurality of access terminals being partitioned into a plurality of sub-groups, wherein each sub-group is categorized as a function of CQI values within a predetermined range; and assigning groups of access sequences in proportion to the probability distribution. 35. The method set forth in claim 34, further comprising reassigning access sequences as a function of a change in distribution of access terminals about the access point. 36. In a wireless communication system, an apparatus for transmitting information regarding access terminal needs, the apparatus comprising: means for determining a received power level of an observed pilot signal; means for determining a CQI value as a function of the received power level; and means for selecting an access sequence, randomly, from one group of a plurality of groups of access sequences, wherein the plurality of groups of access sequences correspond to a plurality of predetermined factors. 37. The apparatus set forth in claim 31, wherein the predetermined factors include on or more of ranges of CQI values, ranges of buffer levels, packet size, traffic type, frequency bandwidth request and ranges of quality of service indicators. 38. In a wireless communication system, an apparatus for communicating a channel quality indicator (CQI), the apparatus comprising: means for determining a power level of an observed pilot signal; means for determining a CQI value as a function of the power level of the observed pilot signal; means for selecting an access sequence, randomly, from one group of a plurality of groups of access sequences, wherein the plurality of groups of access sequences correspond different the CQI values; means for appending the CQI value to the selected access sequence; and means for transmitting the access sequence and CQI value. 39. An apparatus for partitioning a plurality of access sequences, the apparatus comprising: means for determining a probability distribution of a plurality of access terminals about an access point, wherein the probability distribution is a function of a plurality of access terminals being partitioned into a plurality of sub-groups, wherein each sub-group is categorized as a function of CQI values within a predetermined range; and means for assigning groups of access sequences in proportion to the probability distribution. 40. The apparatus set forth in claim 34, further comprising means for reassigning access sequences as a function of a change in distribution of access terminals about the access point. 41. In a wireless communication system, a method of transmitting an acknowledgement of a detected access sequence, the method comprising: receiving an access sequence; determining at least one attribute of a given access terminal as a function of the access sequence; and transmitting information commensurate with the at least one attribute. 42. The method set forth in claim 41, wherein the attribute is at least one of a channel quality indicator, a buffer level indicator, a priority indicator and a quality of service indicator. 43. The method set forth in claim 41, wherein the transmitting information further comprises transmitting an indictor of acknowledgment. 44. The method set forth in claim 43, further comprising transmitting an indicator of acknowledgment over a shared signaling channel (SSCH). 45. The method set forth in claim 44, wherein the indicator of acknowledgment is included in a particular section of a shared signaling channel (SSCH), wherein the section of the SSCH is partitioned on a basis of the transmission power needed for the indicator of acknowledgment to be successfully received. 46. In a wireless communication system, a memory medium comprising N dimensions, wherein at least one of the dimensions comprises data correlating access sequences with indicators of channel quality. 47. The memory medium of claim 46, further comprising a dimension comprising data correlating access sequences with buffer level. 48. The memory medium of claim 46, further comprising a dimension comprising data correlating access sequences with packet size. 49. The memory medium of claim 46, further comprising a dimension comprising data correlating access sequences with traffic type. 50. The memory medium of claim 46, further comprising a dimension comprising data correlating access sequences with quality of service indicators. 51. The memory medium of claim 46, further comprising a dimension comprising data correlating access sequences with requests regarding frequency bandwidth. 52. In a wireless communication system, an apparatus for transmitting an acknowledgement of a detected access sequence, the apparatus comprising: means for receiving an access sequence; means for determining at least one attribute of a given access terminal as a function of the access sequence; and means for transmitting information commensurate with the at least one attribute. 53. The apparatus set forth in claim 52, wherein the attribute is at least one of a channel quality indicator, a buffer level indicator, a priority indicator and a quality of service indicator. 54. The apparatus set forth in claim 52, wherein the means for transmitting information further comprises transmitting an indictor of acknowledgment. 55. The apparatus set forth in claim 54, further comprising means for transmitting an indicator of acknowledgment over a shared signaling channel (SSCH). 56. The apparatus set forth in claim 54, wherein the indicator of acknowledgment is included in a particular section of a shared signaling channel (SSCH), wherein the section of the SSCH is partitioned on a basis of the transmission power needed for the indicator of acknowledgment to be successfully received. | CROSS-REFERENCE TO RELATED APPLICATION This application claims priority to U.S. Provisional Patent Application Ser. No. 60/590,113, filed Jul. 21, 2004, which is incorporated herein by reference in its entirety. BACKGROUND 1. Field The invention relates generally to wireless communications, and more specifically to data transmission in a multiple access wireless communication system. 2. Background An access channel is used on the reverse link by an access terminal for initial contact with an access point. The access terminal may initiate an access attempt in order to request dedicated channels, to register, or to perform a handoff, etc. Before initiating an access attempt, the access terminal receives information from the downlink channel in order to determine the strongest signal strength from nearby access points and acquire downlink timing. The access terminal is then able to decode the information transmitted by the given access point on a broadcast channel regarding choice of parameters governing the access terminal's access attempt. In some wireless communication systems, an access channel refers both to a probe and message being rendered. In other wireless communication systems, the access channel refers to the probe only. Once the probe is acknowledged, a message governing the access terminal's access attempt is transmitted. In an orthogonal frequency division multiple access (OFDMA) system, an access terminal typically separates the access transmission to be transmitted on the access channel into parts, a preamble transmission and a payload transmission. To prevent intra-cell interference due to lack of fine timing on the reverse link during the access preamble transmission, a CDM-based preamble transmission may be time-division-multiplexed with the rest of the transmissions (i.e., traffic, control, and access payload). To access the system, the access terminal then randomly selects one PN sequence out of a group of PN sequences and sends it as its preamble during the access slot. The access point searches for any preambles (i.e., all possible PN sequences) that may have been transmitted during the access slot. Access preamble transmission performance is measured in terms of collision probability, misdetection probability and false alarm probability. Collision probability refers to the probability that a particular pseudo-random (PN) sequence is chosen by more than one access terminal as its preamble in the same access slot. This probability is inversely proportional to the number of preamble sequences available. Misdetection probability refers to the probability that a transmitted PN sequence is not detected by the base station. False alarm probability refers to the probability that an access point erroneously declared that a preamble has been transmitted while no preamble is actually transmitted. This probability increases with the number of preambles available. The access point then transmits an acknowledgment for each of the preambles detected. The acknowledgement message may include a PN sequence detected, timing offset correction, and index of the channel for access payload transmission. Access terminal terminals whose PN sequence is acknowledged can then transmit the respective access payload using the assigned resource. Because the access point has no prior knowledge of where the access terminal is in the system (i.e. what its power requirements, buffer level, or quality of service may be), the acknowledgement message is broadcasted at a power level high enough such that all access terminals in the given cell can decode the message. The broadcast acknowledgement is inefficient as it requires a disproportionate amount of transmit power and/or frequency bandwidth to close the link. Thus, there is a need to more efficiently send an acknowledgment message to access terminals in a given cell. SUMMARY Embodiments of the invention minimize use of a broadcast acknowledgement channel during its preamble transmission. Embodiments of the invention further addresses how information regarding forward link channel quality can be efficiently signaled over the access channel during access preamble transmission. In one embodiment, an apparatus and method for transmitting an indicator of channel quality minimizing the use of a broadcast channel is described. A metric of forward link geometry of observed transmission signals is determined. An indicator of channel quality value is determined as a function of the observed transmission signals. An access sequence is selected, randomly, from one group of a plurality of groups of access sequences, wherein each of the plurality of groups of access sequences correspond to different ranges of channel quality values. The metric of forward link geometry may be determined as a function of observed pilot signals, noise, and/or traffic on data channels. The quantity of access sequences in the plurality of groups access sequences are distributed non-uniformly. In an embodiment, the access sequences are distributed to reflect the distribution of access terminals about the access point. In another embodiment, the access sequences are distributed in proportion to the number of access terminals that need a given amount of power needed to send an indicator of acknowledgment to the access terminal. In another embodiment, a method of partitioning a plurality of access sequences, is described. A probability distribution of a plurality of access terminals about-an access point is determined. The probability distribution is determined as a function of a plurality of access terminals having CQI values within a predetermined ranges. Groups of access sequences are assigned in proportion to the probability distribution. Access sequences can be reassigned as a function of a change in distribution of access terminals about the access point. In yet another embodiment, an apparatus and method of transmitting an acknowledgement of a detected access sequence is described. An access sequence is received. The access sequence can be looked-up in a look-up table, stored in memory, to determine at least one attribute of the given access terminal (as a function of the access sequence). The attribute can be information such as a channel quality indicator, a buffer level and a quality of service indicator. Information is then transmitted to the access terminal, where the information is commensurate and consistent with the attribute. Information transmitted may include an indicator of acknowledgment. The indicator of acknowledgment may be transmitted over a shared signalling channel (SSCH). Various aspects and embodiments of the invention are described in further detail below. BRIEF DESCRIPTION OF THE DRAWINGS The features and nature of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein: FIG. 1 illustrates a block diagram of a transmitter and a receiver; FIG. 2 illustrates the access probe structure and the access probe sequence; FIG. 3 illustrates a traditional call flow between an access terminal and an access point; FIG. 4 illustrates an embodiment of the invention that avoids the use of the broadcast acknowledgement; FIG. 5 illustrates a cell partitioned using uniform spacing; FIG. 6 illustrates a diagram showing weighted partitioning based on quantized CQI values; FIG. 7 illustrates a table stored in memory that partitions the group of access sequences into sub-groups of access sequences based on a variety of factors; and FIG. 8 illustrates a process for dynamically allocating access sequences. DETAILED DESCRIPTION The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. The techniques described herein for using multiple modulation schemes for a single packet may be used for various communication systems such as an Orthogonal Frequency Division Multiple Access (OFDMA) system, a Code Division Multiple Access (CDMA) system, a Time Division Multiple Access (TDMA) system, a Frequency Division Multiple Access (FDMA) system, an orthogonal frequency division multiplexing (OFDM)-based system, a single-input single-output (SISO) system, a multiple-input multiple-output (MIMO) system, and so on. These techniques may be used for systems that utilize incremental redundancy (IR) and systems that do not utilize IR (e.g., systems that simply repeats data). Embodiments of the invention avoid use of a broadcast acknowledgement channel by having the access terminals indicate a parameter, such as forward link channel quality (i.e., CQI), buffer level requirements, quality of service requirements, etc., during its preamble transmission. By having the access terminals indicate forward link channel quality, the access point can transmit each acknowledgment on a channel using an appropriate amount of power for a given access terminal or group of access terminals. In the case of the acknowledgment message being transmitted to a group of access terminals, an acknowledgment message is sent to multiple access terminals who have indicated the same or similar CQI values (within a range). Embodiments of the invention further address how CQI can be efficiently signaled over the access channel during access preamble transmission. An “access terminal” refers to a device providing voice and/or data connectivity to a user. An access terminal may be connected to a computing device such as a laptop computer or desktop computer, or it may be a self contained device such as a personal digital assistant. An access terminal can also be called a subscriber station, subscriber unit, mobile station, wireless device, mobile, remote station, remote terminal, user terminal, user agent, or user equipment. A subscriber station may be a cellular telephone, PCS telephone, a cordless telephone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device having wireless connection capability, or other processing device connected to a wireless modem. An “access point” refers to a device in an access network that communicates over the air-interface, through one or more sectors, with the access terminals or other access points. The access point acts as a router between the access terminal and the rest of the access network, which may include an IP network, by converting received air-interface frames to IP packets. Access points also coordinate the management of attributes for the air interface. An access point may be a base station, sectors of a base station, and/or a combination of a base transceiver station (BTS) and a base station controller (BSC). FIG. 1 illustrates a block diagram of a transmitter 210 and a receiver 250 in a wireless communication system 200. At transmitter 210, a TX data processor 220 receives data packets from a data source 212. TX data processor 220 processes (e.g., formats, encodes, partitions, interleaves, and modulates) each data packet in accordance with a mode selected for that packet and generates up to T blocks of data symbols for the packet. The selected mode for each data packet may indicate (1) the packet size (i.e., the number of information bits for the packet) and (2) the particular combination of code rate and modulation scheme to use for each data symbol block of that packet. A controller 230 provides various controls to data source 212 and TX data processor 220 for each data packet based on the selected mode. TX data processor 220 provides a stream of data symbol blocks (e.g., one block for each frame), where the blocks for each packet may be interlaced with the blocks for one or more other packets. A transmitter unit (TMTR) 222 receives the stream of data symbol blocks from TX data processor 220 and generates a modulated signal. Transmitter unit 222 multiplexes in pilot symbols with the data symbols (e.g., using time, frequency, and/or code division multiplexing) and obtains a stream of transmit symbols. Each transmit symbol may be a data symbol, a pilot symbol, or a null symbol having a signal value of zero. Transmitter unit 222 may perform OFDM modulation if OFDM is used by the system. Transmitter unit 222 generates a stream of time-domain samples and further conditions (e.g., converts to analog, frequency upconverts, filters, and amplifies) the sample stream to generate the modulated signal. The modulated signal is then transmitted from an antenna 224 and via a communication channel to receiver 250. At receiver 250, the transmitted signal is received by an antenna 252, and the received signal is provided to a receiver unit (RCVR) 254. Receiver unit 254 conditions, digitizes, and pre-processes (e.g., OFDM demodulates) the received signal to obtain received data symbols and received pilot symbols. Receiver unit 254 provides the received data symbols to a detector 256 and the received pilot symbols to a channel estimator 258. Channel estimator 258 processes the received pilot symbols and provides channel estimates (e.g., channel gain estimates and SIR estimates) for the communication channel. Detector 256 performs detection on the received data symbols with the channel estimates and provides detected data symbols to an RX data processor 260. The detected data symbols may be represented by log-likelihood ratios (LLRs) for the code bits used to form the data symbols (as described below) or by other representations. Whenever a new block of detected data symbols is obtained for a given data packet, RX data processor 260 processes (e.g., deinterleaves and decodes) all detected data symbols obtained for that packet and provides a decoded packet to a data sink 262. RX data processor 260 also checks the decoded packet and provides the packet status, which indicates whether the packet is decoded correctly or in error. A controller 270 receives the channel estimates from channel estimator 258 and the packet status from RX data processor 260. Controller 270 selects a mode for the next data packet to be transmitted to receiver 250 based on the channel estimates. Controller 270 also assembles feedback information. The feedback information is processed by a TX data processor 282, further conditioned by a transmitter unit 284, and transmitted via antenna 252 to transmitter 210. At transmitter 210, the transmitted signal from receiver 250 is received by antenna 224, conditioned by a receiver unit 242, and further processed by an RX data processor 244 to recover the feedback information sent by receiver 250. Controller 230 obtains the received feedback information, uses the ACK/NAK to control the IR transmission of the packet being sent to receiver 250, and uses the selected mode to process the next data packet to send to receiver 250. Controllers 230 and 270 direct the operation at transmitter 210 and receiver 250, respectively. Memory units 232 and 272 provide storage for program codes and data used by controllers 230 and 270, respectively. FIG. 2 illustrates the access probe structure and the access probe sequence 200. In FIG. 2, Ns probe sequences are shown, where each probe sequence has Np probes. The media access control layer (MAC) protocol transmits access probes by instructing the physical layer to transmit a probe. With the instruction, the access channel MAC protocol provides the physical layer with a number of elements, including, but not limited to, the power level, access sequence identification, pilot PN of the sector to which the access probe is to be transmitted, a timing offset field and a control segment field. Each probe in a sequence is transmitted at increasing power until the access terminal receives an access grant. Transmission is aborted if the protocol received a deactivate command, or if a maximum number of probes per sequence have been transmitted. Prior to transmission of the first probe of all probe sequences, the access terminal forms a persistence test which is used to control congestion on the access channel. FIG. 3 illustrates a traditional call flow between an access terminal and an access point 300. Access terminal 304 randomly selects a preamble, or PN sequence, out of a group of PN sequences and sends 308 the preamble during the access slot to the access point 312. Upon receipt, the access point 312 then transmits 316 an access grant, including a broadcast acknowledgement, for each of the preambles detected. This acknowledgement is a broadcasted acknowledgement transmitted at a high enough power such that all of the access terminals in a given cell are able to decode the broadcast acknowledgement. This is deemed necessary because the access point has no prior knowledge where the access terminals are in the system, and thus has no knowledge as to the power level necessary for the access terminal to decode the broadcasted acknowledgement. On receipt of the accent grant 316, access terminal 304 sends 320 the payload as per the defined resources allocated in the access grant. The broadcast acknowledgement transmission described above is relatively inefficient as it requires a disproportionate amount of transmit power and/or frequency bandwidth to close the link. FIG. 4 illustrates an embodiment 400 that avoids the use of the broadcast acknowledgement. An access terminal observes 408 transmissions from access points. In observing, the access terminal determines the power of transmissions it receives. These observations typically involve determining forward link channel quality from observed acquisition pilot signal transmissions or pilot transmissions as part of a shared signalling channel (SSCH) channel. The access terminal 404 then randomly selects a preamble, or access sequence, out of a group of access sequences and sends the preamble 410 to the access point 412. This preamble is transmitted along with some knowledge of forward link channel quality (CQI). CQI information may be transmitted as within the preamble, or appended to it. In another embodiment, an access sequence is randomly chosen out of a plurality of groups of access sequences, where each group of access sequences is designated for a range of CQI values. For example, indications of forward link channel quality may be observed pilot signal power. The observed pilot signal power may be quantized to CQI values based on a predetermined set of values. Thus, a given range of received pilot signal power may correspond to a given CQI value. Accordingly, the access point 412 may determine the CQI of a given access terminal by virtue of the access sequence chosen by the access terminal. Because the access terminal sends an indicator of forward link channel quality during its initial access attempt with the access point 412, the access point 412 has the knowledge needed to transmit 416 each acknowledgement on a channel using an appropriate amount of power for the designated access terminal 404. In an embodiment, the acknowledgment message may be sent to a group of access terminals having the same or similar CQI values. This may be through use of the SSCH. Thus, based on the power level needed for the access terminal to successfully receive the transmission, the access point sends the acknowledgement message in the appropriate section of the SSCH message. In addition to CQI information, the access terminal may send other information of interest to the access point during the initial access phase. For example, the access terminal may send a buffer level indicator, indicating the amount of data the access terminal intends to send to the access point. With such knowledge, the access point is able to appropriately dimension initial resource assignments. The access terminal may also send information regarding priority groups or quality of service. This information may be used to prioritize access terminals in the event of limited access point capability or system overload. Upon receipt of the access grant message by the access terminal, the access terminal 404 sends 420 payload as per the resources defined in the access grant message. By receiving additional information during the initial access phase, the access point will be able to take advantage of knowing the CQI, buffer level and quality of service information as part of the access grant message. FIG. 5 illustrates a cell 500 partitioned using uniform spacing. The cell is divided into a number of regions R, wherein each region is defined by having a probability of observed metrics within a given range. In an embodiment, observations of forward link geometry are used. For example, metrics such as C/I, where C is the received pilot power and I is the observed noise, may be used. Also, C/(C+I) may be used. In other words, some measure that utilizes observed signal power and noise is used. These observed metrics correspond to given CQI values, or value ranges, which thus define the region. For example, Region R1 defines a Region having CQI values corresponding to power and/or noise levels greater than P1. Region R2 defines a region having CQI values corresponding to power and/or noise levels such that P2>R2>P1. Similarly, Region R3 defines a Region having CQI values corresponding to power and/or noise levels such that P3>R3>P2, and so on. Region RN-1 has CQI values corresponding to power and/or noise levels such that they fall in the range of Px>RN-1>Py. Similarly, Region RN has CQI values corresponding to power and/or noise levels observed <Px. Theoretically, by choosing to transmit one of N possible preamble sequences, up to log2(N) bits of information may be conveyed. For example, when N=1024, as many as log2(1024)=10 bits may be conveyed. Thus, by choosing which preamble sequence to transmit, it is possible for user dependent information to be embedded as part of the preamble transmission. A commonly used technique is to partition then N preamble sequences into M distinct sets, labeled {1,2, . . . }To signal one of log2(*) possibilities (i.e., log2(M) bits), a sequence in an appropriate set is chosen and transmitted. For instance, to signal message index kE[1,2, . . . , M}, a sequence in the kth set is (randomly) chosen and transmitted. Assuming correct detection at the receiver, the transmitted information (i.e., the log2(M)-bit message) can be obtained based on the index of the set that the received sequence belongs to. In a uniform partitioning strategy, where the N preamble sequences are uniformly partitioned into M groups (i.e., each group contains N/M sequences). Based on the measured CQI value, one of the preamble sequences from an appropriate set is selected and transmitted. The collision probability, then, depends on the mapping/quantization of the measured CQI and the number of simultaneous access attempts. This can be illustrated by considering a simple 2-level quantization of CQI (i.e.,M=2), with Pr(M(CQI)=1)=α and Pr(M(CQI)=1)=α, where M(x) is a quantization function mapping the measured CQI value into one of the two levels. With uniform access sequence partitioning, the N preamble sequences are partitioned into two sets with N/2 sequences in each set. As by example, assume that there are two simultaneous access attempts (i.e., exactly two access terminals are trying to access the system in each access slot). The collision probability is given by α 2 = 1 ( N 2 ) + ( 1 - α ) 2 1 ( N 2 ) . With probability α2, the two access terminals wish to send M=1(i.e., they both have quantized CQI level=1). Since there are N/2 preamble sequences to choose from in the first set, the collision probability (given that both access terminals choose their sequence from this set) is 1/(N/2). Following the same logic, the collision probability for the other set can be derived. Thus, the overall collision probability depends on the parameter α and number of simultaneous access attempts. The collision probability can be as high as 2/N (α=0,1) or as low as 1/N (α=0.5). Thus, the best choice of α in this case is α=0.5. However, it is unclear whether the CQI quantization function that results in α=0.5 is a desirable function. The access point will transmit the acknowledgment channel at the power level required to close the link as indicated by the CQI level. In this example, with probability α, the access point has to transmit at the power corresponding to that of a broadcast channel and with probability 1-α, the access point can transmit at some lower power. Thus, with α=0.5, half the time the access point has to broadcast the acknowledgment channel. On the other hand, by choosing α=0.5, the access point is forced to broadcast the acknowledgement channel less frequently but incurring an increase in the transmit power in the remaining of the time and higher overall collision probability. FIG. 6 illustrates a diagram showing weighted partitioning 600 based on quantized CQI values. The region is partitioned into various regions that are not of a uniform space, but are rather partitioned based on quantized CQI values that are weighted. By weighting the regions, additional preamble sequences are available in regions that have a higher probability of access terminals being in that region (i.e., a higher mass function). For example, regions 604, 608, and 612 are larger regions that may correspond to having a larger number of access sequences available. Conversely, regions 616 and 620 are smaller regions that may indicate smaller quantities of users present and thus fewer access sequences available. Thus, the regions may be partitioned having some prior knowledge as to the distribution of C/I or received power in a specified range in a given cell. It is contemplated that geographic regions may not always represent concentrations of users within given CQI ranges. Rather, the graphical representations of non-uniform spacing is to indicate the non-uniform distribution of access sequences through a given cell region. In an embodiment, the probability distribution of access terminals within the cell may be dynamic based on the distribution of access terminals over time. Accordingly, certain partitioned regions may be larger or smaller based on the absence or presence of access terminals at a given time of the day, or otherwise adjusted as a function of the concentration of access terminals present in a given CQI region. Thus, the sequences available for initial access are divided into N number of partitions. The access terminal determines the partition to be used for the access attempt based on at least the observed pilot power and buffer level. It is contemplated that the partition may also be determined on a number of other factors, such as packet size, traffic type, bandwidth request, or quality of service. Once the partition is determined, the access terminals select the sequence ID using a uniform probability over that partition. Of the available sequences for access, a subset of sequences is reserved for active set operations, and another subset of sequences are available for initial access. In one embodiment, sequences 0, 1 and 2 are reserved for active set operations, and sequences 3 through the total number of access sequences are available for initial access. The size of each partition is determined by the access sequence partition field in the system information bock. This is typically part of the sector parameter. A particular partition number N comprises sequence identifiers ranging from a lower threshold, partition N lower, to an upper threshold, partition N upper. Both thresholds are determined using the partitions size, partially provided in table 1 below: Access Sequence Partition N Size (N from 1 to 8) Partition 1 2 3 4 5 6 7 8 00000 0 0 0 0 0 0 0 0 00001 S2 S2 S2 S2 S2 S2 S2 S2 00010 S3 S3 S S1 S1 S1 S1 S1 00011 S1 S1 S1 S3 S3 S3 S1 S1 00100 S1 S1 S1 S1 S1 S1 S3 S3 00101 S3 S1 S1 S3 S1 S1 S3 S1 00101 S1 S3 S1 S1 S3 S1 S1 S3 00110 S1 S1 S3 S1 S1 S3 S1 S1 00111 S3 S3 S1 S3 S1 S1 S1 S1 01000 S1 S1 S1 S3 S3 S1 S3 S1 This, in this embodiment the access terminal selects its pilot level based on the ratio, measured in decibels, of the acquisition pilot power from the sector where the access attempt is being made to the total power received in the acquisition channel time slot. The pilot threshold values are determined based on the pilot strength segmentation field of the system information message. Embodiments describe a technique whereby the access sequence space is partitioned according to the statistics of the quantized CQI. More precisely, p=[p1p2. . . pM] is the probability mass function of the quantized CQI values, where Pr(CQI=1)=p1, Pr(CQI=2)=p2, . . . , Pr(CQI=M)=pM). The access sequence space is then partitioned to have a similar probability mass function. That is, the ratio of the number of access sequences in each set to the total number of access sequences should be proportional, such that p [ p 1 p 2 ⋯ p M ] ( i . e . , ( N 1 N , N 2 N , ⋯ , N M N ) = ( p 1 p 2 ⋯ p M ) , where Nk is the number of access sequences in set KE {1,2, . . . , M} In the example describing the 2-level CQI quantization function yields the following: Pr(M(CQI)=1)=αand Pr(M(CQI)=2)=1−α The number of access sequences in each set is, therefore, (α)N and (1−α)N, respectively. The resulting collision probability is α 2 1 ( α N ) + ( 1 - α ) 2 1 ( ( 1 - α ) N ) = α N + ( 1 - α ) N = 1 N , which is the smallest collision probability possible. For a more general setting with M possible CQI levels and U simultaneous attempts, the analytical expression of the collision probability becomes more complex. In another example, consider M=6 ,U=8, and N=1024. Assume that the CQI values are quantized in the step of 4-5 dB. The quantized CQI values are given by [−3, 1, 5, 10, 15, 20] dB with the following probability mass function [0.05, 0.25, 0.25 0.20 0.15 0.10]. That is, 5% of the time, users will report CQI values lower than −3 dB, 25% of the time with CQI values between −3 and 1 dB, and so on. The access point can then adjust the power for the acknowledgment channel based on the reported CQI. Using the proposed access sequence partitioning technique, the resulting collision probability is approximately 2.5%. The collision probability using uniform access sequence partitioning compared is 3.3%. However, to get a similar collision probability when a uniform access sequence partitioning is used, the total number of sequences has to be increased by 25% to 1280. Accordingly, a larger number of access sequences to search translates directly to higher complexity and higher false alarm probability. This partitioning strategy can also be used when signaling other information such as packet size, traffic type, and bandwidth request over the access channel. This is particularly useful when the access channel (the preamble portion) is used as a means for users to get back into the system or to request resources. If information regarding the statistics of information to be conveyed is known (e.g., percentage of times a certain traffic connection (http, ftp, SMS) is requested or how much bandwidth is often required, etc.), then this information can be used in determining the partition of the access preamble sequence space. FIG. 7 illustrates a table 700 stored in memory that partitions the group of access sequences into sub-groups of access sequences based on a variety of factors. Factors include CQI ranges, buffer level, quality of service, packet size, frequency bandwidth request, or other factors. The quantity of access sequences in a given sub-group may be initially determined on statistics maintained of past concentration of users in the given cell as a function of the factors being considered. Thus, each cell may have a predetermined mass distribution of access sequences for combinations of the various factors. In so doing, the collision probability of multiple users selecting the same access sequence is minimized. In an embodiment, the quantity of access sequences assigned to various combinations of factors may dynamically change based on changes in the composition of users needs. Thus, if a higher quantity of users migrate to a region with a CQI within a given range and a buffer level of a certain amount, and other various factors, that region may be assigned additional access sequences. Dynamic allocation of access sequences thus mimics an optimal scenario whereby the collision probability is minimized. FIG. 8 illustrates such a process 800. Initial partitions are set 804, thereby partitioning the plurality of access sequences into a number of groups of access sequences. These groups may be based on ranges of CQI values. In an embodiment, the initial set may be based on uniform distribution of access sequences. In another embodiment, the initial partition sizes may be based on historical data. A counter 808 counts the access attempts in each subset. The counter can keep track of the access attempts over time to determine if there are patterns of varying heavy or light usage. Based on this access attempts over time, the expected value of access attempts in given subsets may be updated 812. The expected value may be represented by the following equation: Em:=(1−β)Em+β am(am−1) where Em is the expected value, am represents the quantity of access sequences in a given subset, and β is the forgetting factor. The forgetting factor computes an average recursively, that gives a larger weight to more recent data and a lesser weight to less recent data. Based on the new expected value, the new subset size may be determined 816. In an embodiment, the subset size is determined by the following equation: N m = N E m ∑ k = 1 M E k , 1 ≤ m ≤ M where Nm is the new subset size, Ek is the “old” expectation value of the kth subset, m is the given subset out of M total subsets. A determination is made 820 as to whether newly determined subset size is substantially different than the previously set subset size. The threshold for what constitutes “substantially different” is configurable. If a determination is made that the newly determined subset size is substantially different 824, then the subset sizes are reset. If not (828), the current subset sizes are maintained 832. The various aspects and features of the present invention have been described above with regard to specific embodiments. As used herein, the terms ‘comprises,’ ‘comprising,’ or any other variations thereof, are intended to be interpreted as non-exclusively including the elements or limitations which follow those terms. Accordingly, a system, method, or other embodiment that comprises a set of elements is not limited to only those elements, and may include other elements not expressly listed or inherent to the claimed embodiment. While the present invention has been described with reference to particular embodiments, it should be understood that the embodiments are illustrative and that the scope of the invention is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described above are possible. It is contemplated that these variations, modifications, additions and improvements fall within the scope of the invention as detailed within the following claims. | <SOH> BACKGROUND <EOH>1. Field The invention relates generally to wireless communications, and more specifically to data transmission in a multiple access wireless communication system. 2. Background An access channel is used on the reverse link by an access terminal for initial contact with an access point. The access terminal may initiate an access attempt in order to request dedicated channels, to register, or to perform a handoff, etc. Before initiating an access attempt, the access terminal receives information from the downlink channel in order to determine the strongest signal strength from nearby access points and acquire downlink timing. The access terminal is then able to decode the information transmitted by the given access point on a broadcast channel regarding choice of parameters governing the access terminal's access attempt. In some wireless communication systems, an access channel refers both to a probe and message being rendered. In other wireless communication systems, the access channel refers to the probe only. Once the probe is acknowledged, a message governing the access terminal's access attempt is transmitted. In an orthogonal frequency division multiple access (OFDMA) system, an access terminal typically separates the access transmission to be transmitted on the access channel into parts, a preamble transmission and a payload transmission. To prevent intra-cell interference due to lack of fine timing on the reverse link during the access preamble transmission, a CDM-based preamble transmission may be time-division-multiplexed with the rest of the transmissions (i.e., traffic, control, and access payload). To access the system, the access terminal then randomly selects one PN sequence out of a group of PN sequences and sends it as its preamble during the access slot. The access point searches for any preambles (i.e., all possible PN sequences) that may have been transmitted during the access slot. Access preamble transmission performance is measured in terms of collision probability, misdetection probability and false alarm probability. Collision probability refers to the probability that a particular pseudo-random (PN) sequence is chosen by more than one access terminal as its preamble in the same access slot. This probability is inversely proportional to the number of preamble sequences available. Misdetection probability refers to the probability that a transmitted PN sequence is not detected by the base station. False alarm probability refers to the probability that an access point erroneously declared that a preamble has been transmitted while no preamble is actually transmitted. This probability increases with the number of preambles available. The access point then transmits an acknowledgment for each of the preambles detected. The acknowledgement message may include a PN sequence detected, timing offset correction, and index of the channel for access payload transmission. Access terminal terminals whose PN sequence is acknowledged can then transmit the respective access payload using the assigned resource. Because the access point has no prior knowledge of where the access terminal is in the system (i.e. what its power requirements, buffer level, or quality of service may be), the acknowledgement message is broadcasted at a power level high enough such that all access terminals in the given cell can decode the message. The broadcast acknowledgement is inefficient as it requires a disproportionate amount of transmit power and/or frequency bandwidth to close the link. Thus, there is a need to more efficiently send an acknowledgment message to access terminals in a given cell. | <SOH> SUMMARY <EOH>Embodiments of the invention minimize use of a broadcast acknowledgement channel during its preamble transmission. Embodiments of the invention further addresses how information regarding forward link channel quality can be efficiently signaled over the access channel during access preamble transmission. In one embodiment, an apparatus and method for transmitting an indicator of channel quality minimizing the use of a broadcast channel is described. A metric of forward link geometry of observed transmission signals is determined. An indicator of channel quality value is determined as a function of the observed transmission signals. An access sequence is selected, randomly, from one group of a plurality of groups of access sequences, wherein each of the plurality of groups of access sequences correspond to different ranges of channel quality values. The metric of forward link geometry may be determined as a function of observed pilot signals, noise, and/or traffic on data channels. The quantity of access sequences in the plurality of groups access sequences are distributed non-uniformly. In an embodiment, the access sequences are distributed to reflect the distribution of access terminals about the access point. In another embodiment, the access sequences are distributed in proportion to the number of access terminals that need a given amount of power needed to send an indicator of acknowledgment to the access terminal. In another embodiment, a method of partitioning a plurality of access sequences, is described. A probability distribution of a plurality of access terminals about-an access point is determined. The probability distribution is determined as a function of a plurality of access terminals having CQI values within a predetermined ranges. Groups of access sequences are assigned in proportion to the probability distribution. Access sequences can be reassigned as a function of a change in distribution of access terminals about the access point. In yet another embodiment, an apparatus and method of transmitting an acknowledgement of a detected access sequence is described. An access sequence is received. The access sequence can be looked-up in a look-up table, stored in memory, to determine at least one attribute of the given access terminal (as a function of the access sequence). The attribute can be information such as a channel quality indicator, a buffer level and a quality of service indicator. Information is then transmitted to the access terminal, where the information is commensurate and consistent with the attribute. Information transmitted may include an indicator of acknowledgment. The indicator of acknowledgment may be transmitted over a shared signalling channel (SSCH). Various aspects and embodiments of the invention are described in further detail below. | 20041222 | 20150915 | 20060126 | 87942.0 | H04J314 | 2 | HAILE, AWET A | EFFICIENT SIGNALING OVER ACCESS CHANNEL | UNDISCOUNTED | 0 | ACCEPTED | H04J | 2,004 |
|
11,020,513 | ACCEPTED | Method and apparatus for providing emergency calls to a disabled endpoint device | The present invention enables the remote activation of a device by a packet-switched service, e.g., VoIP network service for the purposes of receiving calls identified as urgent from a pre-identified calling party when the device is disabled. The present invention enables registered users to select the calling parties they wish to receive emergency calls from. | 1. A method for enabling a disabled endpoint device in a communication network, comprising: receiving a call destined to the disabled endpoint device; determining whether a calling number of said call is on a list of emergency numbers; and activating the disabled endpoint device if said calling number is on said list of emergency numbers. 2. The method of claim 1, wherein said communication network is a Voice over Internet Protocol (VoIP) network. 3. The method of claim 1, wherein said call is received by a call control element (CCE). 4. The method of claim 1, wherein said activating comprises: sending a signal to the disabled endpoint device for activating the disabled device. 5. The method of claim 1, further comprising: sending an alert message in accordance with an alert option selected by a subscriber of said disabled endpoint device. 6. The method of claim 5, wherein said alert option comprises at least one of: a type of ring tone, a vibration and a text message. 7. The method of claim 5, wherein said sending is performed on a periodic basis until an acknowledgement of said alert message is received. 8. The method of claim 1, wherein said list of emergency numbers is registered by a subscriber. 9. The method of claim 1, wherein said disabled endpoint device is an internet protocol (IP) endpoint device. 10. A computer-readable medium having stored thereon a plurality of instructions, the plurality of instructions including instructions which, when executed by a processor, cause the processor to perform the steps of a method for enabling a disabled endpoint device in a communication network, comprising: receiving a call destined to the disabled endpoint device; determining whether a calling number of said call is on a list of emergency numbers; and activating the disabled endpoint device if said calling number is on said list of emergency numbers. 11. The computer-readable medium of claim 10, wherein said communication network is a Voice over Internet Protocol (VoIP) network. 12. The computer-readable medium of claim 10, wherein said call is received by a call control element (CCE). 13. The computer-readable medium of claim 10, wherein said activating comprises: sending a signal to the disabled endpoint device for activating the disabled device. 14. The computer-readable medium of claim 10, further comprising: sending an alert message in accordance with an alert option selected by a subscriber of said disabled endpoint device. 15. The computer-readable medium of claim 14, wherein said alert option comprises at least one of: a type of ring tone, a vibration and a text message. 16. The computer-readable medium of claim 14, wherein said sending is performed on a periodic basis until an acknowledgement of said alert message is received. 17. The computer-readable medium of claim 10, wherein said list of emergency numbers is registered by a subscriber. 18. The computer-readable medium of claim 10, wherein said disabled endpoint device is an internet protocol (IP) endpoint device. 19. A system for enabling a disabled endpoint device in a communication network, comprising: means for receiving a call destined to the disabled endpoint device; means for determining whether a calling number of said call is on a list of emergency numbers; and means for activating the disabled endpoint device if said calling number is on said list of emergency numbers. 20. The system of claim 19, wherein said communication network is a Voice over Internet Protocol (VoIP) network. | The present invention relates generally to communication networks and, more particularly, to a method and apparatus enabling emergency calls to reach a disabled endpoint device in packet-switched networks, e.g., Voice over Internet Protocol (VoIP) networks. BACKGROUND OF THE INVENTION Users of packet-switched network services, e.g., VoIP network services can turn off their devices that they use to access network services. This capability is extremely convenient for users who are unavailable to answer incoming calls. Occasionally, however, users will need to receive emergency or critical calls even though they desire to be uninterrupted for all other call types. Therefore, a need exists for a method and apparatus for enabling emergency calls to reach a disabled endpoint device in packet-switched networks, e.g., Voice over Internet Protocol (VoIP) networks. SUMMARY OF THE INVENTION In one embodiment, the present invention enables the remote activation of a device by a packet-switched network service, e.g., VoIP network service for the purposes of receiving calls identified as urgent from a pre-identified calling party when the device is disabled. The present invention enables registered users to select the calling parties they wish to receive emergency calls from. BRIEF DESCRIPTION OF THE DRAWINGS The teaching of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which: FIG. 1 illustrates an exemplary Voice over Internet Protocol (VoIP) network related to the present invention; FIG. 2 illustrates a flowchart of a method for registering emergency calls to disabled endpoint device feature in a VoIP network of the present invention; FIG. 3 illustrates a flowchart of a method for enabling emergency calls to disabled endpoint device in a VoIP network of the present invention; and FIG. 4 illustrates a high level block diagram of a general purpose computer suitable for use in performing the functions described herein. To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. DETAILED DESCRIPTION To better understand the present invention, FIG. 1 illustrates an example network, e.g., a packet-switched network such as a VoIP network related to the present invention. The VoIP network may comprise various types of customer endpoint devices connected via various types of access networks to a carrier (a service provider) VoIP core infrastructure over an Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) based core backbone network. Broadly defined, a VoIP network is a network that is capable of carrying voice signals as packetized data over an IP network. An IP network is broadly defined as a network that uses Internet Protocol to exchange data packets. The customer endpoint devices can be either Time Division Multiplexing (TDM) based or IP based. TDM based customer endpoint devices 122, 123, 134, and 135 typically comprise of TDM phones or Private Branch Exchange (PBX). IP based customer endpoint devices 144 and 145 typically comprise IP phones or PBX. The Terminal Adaptors (TA) 132 and 133 are used to provide necessary interworking functions between TDM customer endpoint devices, such as analog phones, and packet based access network technologies, such as Digital Subscriber Loop (DSL) or Cable broadband access networks. TDM based customer endpoint devices access VoIP services by using either a Public Switched Telephone Network (PSTN) 120, 121 or a broadband access network via a TA 132 or 133. IP based customer endpoint devices access VoIP services by using a Local Area Network (LAN) 140 and 141 with a VoIP gateway or router 142 and 143, respectively. The access networks can be either TDM or packet based. A TDM PSTN 120 or 121 is used to support TDM customer endpoint devices connected via traditional phone lines. A packet based access network, such as Frame Relay, ATM, Ethernet or IP, is used to support IP based customer endpoint devices via a customer LAN, e.g., 140 with a VoIP gateway and router 142. A packet based access network 130 or 131, such as DSL or Cable, when used together with a TA 132 or 133, is used to support TDM based customer endpoint devices. The core VoIP infrastructure comprises of several key VoIP components, such the Border Element (BE) 112 and 113, the Call Control Element (CCE) 111, and VoIP related servers 114. The BE resides at the edge of the VoIP core infrastructure and interfaces with customers endpoints over various types of access networks. A BE is typically implemented as a Media Gateway and performs signaling, media control, security, and call admission control and related functions. The CCE resides within the VoIP infrastructure and is connected to the BEs using the Session Initiation Protocol (SIP) over the underlying IP/MPLS based core backbone network 110. The CCE is typically implemented as a Media Gateway Controller and performs network wide call control related functions as well as interacts with the appropriate VoIP service related servers when necessary. The CCE functions as a SIP back-to-back user agent and is a signaling endpoint for all call legs between all BEs and the CCE. The CCE may need to interact with various VoIP related servers in order to complete a call that require certain service specific features, e.g. translation of an E.164 voice network address into an IP address. For calls that originate or terminate in a different carrier, they can be handled through the PSTN 120 and 121 or the Partner IP Carrier 160 interconnections. For originating or terminating TDM calls, they can be handled via existing PSTN interconnections to the other carrier. For originating or terminating VoIP calls, they can be handled via the Partner IP carrier interface 160 to the other carrier. In order to illustrate how the different components operate to support a VoIP call, the following call scenario is used to illustrate how a VoIP call is setup between two customer endpoints. A customer using IP device 144 at location A places a call to another customer at location Z using TDM device 135. During the call setup, a setup signaling message is sent from IP device 144, through the LAN 140, the VoIP Gateway/Router 142, and the associated packet based access network, to BE 112. BE 112 will then send a setup signaling message, such as a SIP-INVITE message if SIP is used, to CCE 111. CCE 111 looks at the called party information and queries the necessary VoIP service related server 114 to obtain the information to complete this call. If BE 113 needs to be involved in completing the call; CCE 111 sends another call setup message, such as a SIP-INVITE message if SIP is used, to BE 113. Upon receiving the call setup message, BE 113 forwards the call setup message, via broadband network 131, to TA 133. TA 133 then identifies the appropriate TDM device 135 and rings that device. Once the call is accepted at location Z by the called party, a call acknowledgement signaling message, such as a SIP-ACK message if SIP is used, is sent in the reverse direction back to the CCE 111. After the CCE 111 receives the call acknowledgement message, it will then send a call acknowledgement signaling message, such as a SIP-ACK message if SIP is used, toward the calling party. In addition, the CCE 111 also provides the necessary information of the call to both BE 112 and BE 113 so that the call data exchange can proceed directly between BE 112 and BE 113. The call signaling path 150 and the call data path 151 are illustratively shown in FIG. 1. Note that the call signaling path and the call data path are different because once a call has been setup up between two endpoints, the CCE 111 does not need to be in the data path for actual direct data exchange. Note that a customer in location A using any endpoint device type with its associated access network type can communicate with another customer in location Z using any endpoint device type with its associated network type as well. For instance, a customer at location A using IP customer endpoint device 144 with packet based access network 140 can call another customer at location Z using TDM endpoint device 123 with PSTN access network 121. The BEs 112 and 113 are responsible for the necessary signaling protocol translation, e.g., SS7 to and from SIP, and media format conversion, such as TDM voice format to and from IP based packet voice format. Users of packet-switched network services, e.g., VoIP network services, can turn off their devices that they use to access network services. This capability is extremely convenient for users who are unavailable to answer incoming calls. Occasionally, however, users will need to receive emergency or critical calls even though they desire to be uninterrupted for all other call types. To address this need, the present invention enables the remote activation of a device by a VoIP network service for the purposes of receiving calls identified as urgent from a pre-identified calling party when the device is disabled. The present invention enables registered users to select the calling parties they wish to receive “emergency” calls from. Returning to FIG. 1, a user using IP endpoint device 144 has subscribed to the emergency calls to disabled endpoint device service feature and has registered endpoint device 144 for the service feature. The user has disabled the device to be uninterrupted, i.e., the disabled device cannot receive or initial calls. This disabled state can be perceived as a standby state or a sleep state, where the endpoint device is consuming very little power. However, the endpoint device 144 supports the emergency calls to disabled endpoint device service feature and can be remotely activated by the network when necessary. The network receives a call from another user using endpoint device 135. CCE 211 checks and finds out that the call destined to endpoint device 144 has subscribed to the emergency calls to disabled endpoint device service feature and the calling endpoint device 135 is on the allowed list of emergency calls or emergency numbers. Therefore, CCE 211 sends a signaling message to endpoint device 144 to enable the device. CCE 211 also sends an alert using the user selected alert mechanism previously chosen by the user. CCE 211 repeats periodically the alert until the user answers and accepts the alert. FIG. 2 illustrates a flowchart of a method for registering emergency calls to disabled endpoint device feature by the packet-switched network, e.g., a VoIP network. Method 200 starts in step 205 and proceeds to step 210. In step 210, the method registers an IP endpoint device to receive the emergency calls to disabled endpoint device service feature. In step 220, the method registers the allowed list of calling numbers that the network will enable a turned off endpoint device. In step 230, the method registers the user selected alert mechanisms that will be used to alert the user. Alert mechanism options include choices of ring tones, vibrations as well as text messages. The method ends in step 240. FIG. 3 illustrates a flowchart of a method for enabling emergency calls to disabled endpoint device by the CCE in a packet-switched network, e.g., VoIP network. Method 300 starts in step 305 and proceeds to step 310. In step 310, the method receives a call destined to a disabled IP endpoint device that has subscribed to the emergency calls to disabled endpoint device service feature. In step 320, the method checks if the calling number is on the allowed emergency calling number list. If the calling number is on the allowed emergency calling number list, the method proceeds to step 330; otherwise, the method proceeds to step 370. In step 330, the method activates the disabled endpoint device, e.g., causing the endpoint device into an “on” state, where the endpoint device is capable of receiving an incoming call. For example, the method sends a signaling message to the disabled device to remotely enable the endpoint device. In step 340, once the disabled endpoint device has been activated, the method sends an alert (e.g., an alert message) to the remotely enabled device to alert the user of an incoming emergency call. The form of the alert message is dependent of the capability of the endpoint device, e.g., a type of ringing tone, a vibration, a flashing light indicator, e.g., a LED, a type of color of flashing LED and so on. In step 350, the method checks if the user has accepted or acknowledged the emergency call alert. Acceptance or acknowledgement of the emergency alert message can be implemented in different manners. Activating the endpoint device to read a text message, activating a button to stop the vibrating feature on the endpoint device, accessing a menu to view “missed calls”, retrieving a voice mail from the communication network are some examples of accepting or acknowledging the emergency alert message. If the alert has not been accepted or acknowledged, then the method proceeds to step 360; otherwise, the method proceeds to step 380. In step 360, the method waits a predefined period of time and then proceeds back to step 340. In step 370, the method processes the call using the called party unavailable service logic configured by the user. This includes, but is not limited to, sending the caller to a voicemail or a network announcement message stating the called party is unavailable at the moment. The method ends in step 380. Note that the endpoint device must support the emergency calls to disabled endpoint device service feature in order to be remotely activated by the network when necessary. For example, the endpoint device may have an off state that resembles a standby state or sleep state with low power consumption, where the endpoint device is technically off. However, under this “semi” or “hybrid” off state, the endpoint device will be unable to receive and/or initiate any calls, except that it can be enabled or activated by a remote signal initiated by the VoIP network. FIG. 4 depicts a high level block diagram of a general purpose computer suitable for use in performing the functions described herein. As depicted in FIG. 4, the system 400 comprises a processor element 402 (e.g., a CPU), a memory 404, e.g., random access memory (RAM) and/or read only memory (ROM), an emergency call to disabled IP endpoint device module 405, and various input/output devices 406 (e.g., storage devices, including but not limited to, a tape drive, a floppy drive, a hard disk drive or a compact disk drive, a receiver, a transmitter, a speaker, a display, a speech synthesizer, an output port, and a user input device (such as a keyboard, a keypad, a mouse, and the like)). It should be noted that the present invention can be implemented in software and/or in a combination of software and hardware, e.g., using application specific integrated circuits (ASIC), a general purpose computer or any other hardware equivalents. In one embodiment, the present emergency call to disabled IP endpoint device module or process 405 can be loaded into memory 404 and executed by processor 402 to implement the functions as discussed above. As such, the present emergency call to disabled IP endpoint device process 405 (including associated data structures) of the present invention can be stored on a computer readable medium or carrier, e.g., RAM memory, magnetic or optical drive or diskette and the like. While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. | <SOH> BACKGROUND OF THE INVENTION <EOH>Users of packet-switched network services, e.g., VoIP network services can turn off their devices that they use to access network services. This capability is extremely convenient for users who are unavailable to answer incoming calls. Occasionally, however, users will need to receive emergency or critical calls even though they desire to be uninterrupted for all other call types. Therefore, a need exists for a method and apparatus for enabling emergency calls to reach a disabled endpoint device in packet-switched networks, e.g., Voice over Internet Protocol (VoIP) networks. | <SOH> SUMMARY OF THE INVENTION <EOH>In one embodiment, the present invention enables the remote activation of a device by a packet-switched network service, e.g., VoIP network service for the purposes of receiving calls identified as urgent from a pre-identified calling party when the device is disabled. The present invention enables registered users to select the calling parties they wish to receive emergency calls from. | 20041223 | 20070529 | 20060629 | 61795.0 | H04M1104 | 0 | WOO, STELLA L | METHOD AND APPARATUS FOR PROVIDING EMERGENCY CALLS TO A DISABLED ENDPOINT DEVICE | UNDISCOUNTED | 0 | ACCEPTED | H04M | 2,004 |
|
11,020,547 | ACCEPTED | Methods and systems for down-converting electromagnetic signals, and applications thereof | Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal are described herein. Briefly stated, such methods, systems, and apparatuses operate by receiving an EM signal and an aliasing signal having an aliasing rate. The EM signal is aliased according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a demodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. | 1. A circuit for frequency down-converting an in-phase/quadrature-phase (I/Q) signal, comprising: a first universal frequency translation module accepting the I/Q signal; a second universal frequency translation module accepting the I/Q signal; and a splitter circuit accepting a local oscillating signal, wherein said splitter circuit comprises: a first inverter circuit comprising one or more inverters; a second inverter circuit comprising two or more inverters; a first flip-flop electrically coupled to said first inverter circuit; and a second flip-flop electrically coupled to said second inverter circuit, wherein said first inverter circuit receives said local oscillating signal and said first flip-flop outputs an “I-channel” oscillating signal, said second inverter circuit receives said local oscillating signal and said second flip-flop outputs a “Q-channel” oscillating signal, wherein said “I-channel” oscillating signal is electrically coupled to said first universal frequency translation module, and said “Q-channel” oscillating signal is electrically coupled to said second universal frequency translation module, thereby causing said first universal frequency translation module to output the down-converted “I” signal, and said second universal frequency translation module to output the down-converted “Q” signal. 2. The circuit of claim 1, wherein said first inverter circuit is comprised of an odd number of inverters, and said second inverter circuit is comprised of an even number of inverters. 3. The circuit of claim 1, wherein said “I-channel” oscillating signal has an “I-channel” frequency and an “I-channel” phase and said “Q-channel” oscillating signal has a “Q-channel” frequency and a “Q-channel” phase, wherein said “Q-channel” frequency is substantially equal to said “I-channel” frequency and said “Q-channel” phase is substantially 90° out of phase with said “I-channel” phase. 4. The circuit of claim 3, wherein said “I-channel” frequency is substantially equal to a sub-harmonic of a frequency of the “I/Q” signal. 5. The circuit of claim 1, wherein said first universal frequency translation module, said second universal frequency translation module, and said splitter circuit are fabricated in a complementary metal oxide semiconductor (CMOS) circuit. 6. A method for down-converting an in-phase/quadrature-phase (I/Q) signal, comprising the steps of: (1) delaying an oscillating signal by a first phase amount creating a first delayed oscillating signal; (2) delaying said oscillating signal by a second phase amount creating a second delayed oscillating signal; (3) routing said first delayed oscillating signal to a first flip-flop circuit, thereby creating an “I-channel” oscillating signal; (4) routing said second delayed oscillating signal to a second flip-flop circuit, thereby creating a “Q-channel” oscillating signal; (5) routing said “I-channel” oscillating signal to a first energy transfer module, said first energy transfer module also accepting the I/Q signal, to thereby generate a down-converted “I” signal; (6) routing said “Q-channel” oscillating signal to a second energy transfer module said second energy transfer module also accepting the I/Q signal, to thereby generate a down-converted “Q” signal. 7. The method of claim 6, wherein said “I-channel” oscillating signal has an “I-channel” frequency and an “I-channel” phase and said “Q-channel” oscillating signal has a “Q-channel” frequency and a “Q-channel” phase, wherein said “I-channel” frequency and said “Q-channel” frequency are substantially equal to said frequency of said oscillating signal and said “Q-channel” phase is substantially 90° out of phase with said “I-channel” phase. 8. A circuit for down-converting an electromagnetic signal, comprising: an energy transfer module and an energy storage module, said energy transfer module sampling the electromagnetic signal at an energy transfer rate to obtain sampled energy, said sampled energy being stored by said energy storage module, a down-converted signal being generated from said sampled energy, wherein said energy transfer module comprises: transistors coupled together, said transistors having a common first port, a common second port, and a common control port, wherein the electromagnetic signal is accepted at said common first port and said sampled energy is present at said common second port, and further wherein said common control port accepts a control signal, said control signal having a control frequency that is substantially equal to said energy transfer rate. | CROSS-REFERENCE TO OTHER APPLICATIONS This is a continuation application of U.S. application “Methods and Systems for Down-Converting Electromagnetic Signals, and Applications Threof,” Ser. No. 10/330,219, filed Dec. 30, 2002 (to issue on Dec. 28, 2004 as U.S. Pat. No. 6,836,650), which is a continuation of U.S. application “Frequency Translation Using Optimized Switch Structures,”Ser. No. 09/293,095, filed Apr. 16, 1999 (now U.S. Pat. No. 6,580,902), which is a continuation-in-part application of U.S. application “Method and System for Down-Converting Electromagnetic Signals,” Set. No. 09/176,022, filed Oct. 21, 1998 (now U.S. Pat. No. 6,061,551), each of which is herein incorporated by reference in its entirety. The following applications of common assignee are related to the present application, and are herein incorporated by reference in their entireties: “Method and System for Frequency Up-Conversion,” Ser. No. 09/176,154, filed Oct. 21, 1998 (now U.S. Pat. No. 6,091,940). “Method and System for Ensuring Reception of a Communications Signal,” Ser. No. 09/176,415, filed Oct. 21, 1998 (now U.S. Pat. No. 6,061,555). U.S. application “Integrated Frequency Translation and Selectivity,” Ser. No. 09/175,966, filed Oct. 21, 1998 (now U.S. Pat. No. 6,049,706). “Universal Frequency Translation, and Applications of Same,” Ser. No. 09/176,027, filed Oct. 21, 1998 (now abandoned). “Method and System for Down-Converting Electromagnetic Signals Including Resonant Structures for Enhanced Energy Transfer,” Ser. No. 09/293,342, filed Apr. 16, 1999. “Method and System for Frequency Up-Conversion Having Optimized Switch Structures,” Ser. No. 09/293,097, filed Apr. 16, 1999. “Method and System for Frequency Up-Conversion With a Variety of Transmitter Configurations,” Ser. No. 09/293,580, filed Apr. 16, 1999. “Integrated Frequency Translation And Selectivity With a Variety of Filter Embodiments,” Ser. No. 09/293,283, filed Apr. 16, 1999. “Frequency Translator Having a Controlled Aperture Sub-Harmonic Matched Filter,” Ser. No. 60/129,839, filed Apr. 16, 1999. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to down-conversion of electromagnetic (EM) signals. More particularly, the present invention relates to down-conversion of EM signals to intermediate frequency signals, to direct down-conversion of EM modulated carrier signals to demodulated baseband signals, and to conversion of FM signals to non-FM signals. The present invention also relates to under-sampling and to transferring energy at aliasing rates. 2. Related Art Electromagnetic (EM) information signals (baseband signals) include, but are not limited to, video baseband signals, voice baseband signals, computer baseband signals, etc. Baseband signals include analog baseband signals and digital baseband signals. It is often beneficial to propagate EM signals at higher frequencies. This is generally true regardless of whether the propagation medium is wire, optic fiber, space, air, liquid, etc. To enhance efficiency and practicality, such as improved ability to radiate and added ability for multiple channels of baseband signals, up-conversion to a higher frequency is utilized. Conventional up-conversion processes modulate higher frequency carrier signals with baseband signals. Modulation refers to a variety of techniques for impressing information from the baseband signals onto the higher frequency carrier signals. The resultant signals are referred to herein as modulated carrier signals. For example, the amplitude of an AM carrier signal varies in relation to changes in the baseband signal, the frequency of an FM carrier signal varies in relation to changes in the baseband signal, and the phase of a PM carrier signal varies in relation to changes in the baseband signal. In order to process the information that was in the baseband signal, the information must be extracted, or demodulated, from the modulated carrier signal. However, because conventional signal processing technology is limited in operational speed, conventional signal processing technology cannot easily demodulate a baseband signal from higher frequency modulated carrier signal directly. Instead, higher frequency modulated carrier signals must be down-converted to an intermediate frequency (IF), from where a conventional demodulator can demodulate the baseband signal. Conventional down-converters include electrical components whose properties are frequency dependent. As a result, conventional down-converters are designed around specific frequencies or frequency ranges and do not work well outside their designed frequency range. Conventional down-converters generate unwanted image signals and thus must include filters for filtering the unwanted image signals. However, such filters reduce the power level of the modulated carrier signals. As a result, conventional down-converters include power amplifiers, which require external energy sources. When a received modulated carrier signal is relatively weak, as in, for example, a radio receiver, conventional down-converters include additional power amplifiers, which require additional external energy. What is needed includes, without limitation: an improved method and system for down-converting EM signals; a method and system for directly down-converting modulated carrier signals to demodulated baseband signals; a method and system for transferring energy and for augmenting such energy transfer when down-converting EM signals; a controlled impedance method and system for down-converting an EM signal; a controlled aperture under-sampling method and system for down-converting an EM signal; a method and system for down-converting EM signals using a universal down-converter design that can be easily configured for different frequencies; a method and system for down-converting EM signals using a local oscillator frequency that is substantially lower than the carrier frequency; a method and system for down-converting EM signals using only one local oscillator; a method and system for down-converting EM signals that uses fewer filters than conventional down-converters; a method and system for down-converting EM signals using less power than conventional down-converters; a method and system for down-converting EM signals that uses less space than conventional down-converters; a method and system for down-converting EM signals that uses fewer components than conventional down-converters; a method and system for down-converting EM signals that can be implemented on an integrated circuit (1C); and a method and system for down-converting EM signals that can also be used as a method and system for up-converting a baseband signal. SUMMARY OF THE INVENTION Briefly stated, the present invention is directed to methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof. Generally, the invention operates by receiving an EM signal. The invention also receives an aliasing signal having an aliasing rate. The invention aliases the EM signal according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein and as covered by the invention, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the invention down-converts the EM signal to an intermediate frequency (IF) signal. In another embodiment, the invention down-converts the EM signal to a demodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. The invention is applicable to any type of EM signal, including but not limited to, modulated carrier signals (the invention is applicable to any modulation scheme or combination thereof) and unmodulated carrier signals. Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. It is noted that the invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The drawing in which an element first appears is typically indicated by the leftmost digit(s) in the corresponding reference number. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described with reference to the accompanying drawings wherein: FIG. 1 illustrates a structural block diagram of an example modulator; FIG. 2 illustrates an example analog modulating baseband signal; FIG. 3 illustrates an example digital modulating baseband signal; FIG. 4 illustrates an example carrier signal; FIGS. 5A-5C illustrate example signal diagrams related to amplitude modulation; FIGS. 6A-6C illustrate example signal diagrams related to amplitude shift keying modulation; FIGS. 7A-7C illustrate example signal diagrams related to frequency modulation; FIGS. 8A-8C illustrate example signal diagrams related to frequency shift keying modulation; FIGS. 9A-9C illustrate example signal diagrams related to phase modulation; FIGS. 10A-10C illustrate example signal diagrams related to phase shift keying modulation; FIG. 11 illustrates a structural block diagram of a conventional receiver; FIG. 12A-D illustrate various flowcharts for down-converting an EM-signal according to embodiments of the invention; FIG. 13 illustrates a structural block diagram of an aliasing system according to an embodiment of the invention; FIGS. 14A-D illustrate various flowcharts for down-converting an EM signal by under-sampling the EM signal according to embodiments of the invention; FIGS. 15A-E illustrate example signal diagrams associated with flowcharts in FIGS. 14A-D according to embodiments of the invention; FIG. 16 illustrates a structural block diagram of an under-sampling system according to an embodiment of the invention; FIG. 17 illustrates a flowchart of an example process for determining an aliasing rate according to an embodiment of the invention; FIGS. 18A-E illustrate example signal diagrams associated with down-converting a digital AM signal to an intermediate frequency signal by under-sampling according to embodiments of the invention; FIGS. 19A-E illustrate example signal diagrams associated with down-converting an analog AM signal to an intermediate frequency signal by under-sampling according to embodiments of the invention; FIGS. 20A-E illustrate example signal diagrams associated with down-converting an analog FM signal to an intermediate frequency signal by under-sampling according to embodiments of the invention; FIGS. 21A-E illustrate example signal diagrams associated with down-converting a digital FM signal to an intermediate frequency signal by under-sampling according to embodiments of the invention; FIGS. 22A-E illustrate example signal diagrams associated with down-converting a digital PM signal to an intermediate frequency signal by under-sampling according to embodiments of the invention; FIGS. 23A-E illustrate example signal diagrams associated with down-converting an analog PM signal to an intermediate frequency signal by under-sampling according to embodiments of the invention; FIG. 24A illustrates a structural block diagram of a make before break under-sampling system according to an embodiment of the invention; FIG. 24B illustrates an example timing diagram of an under sampling signal according to an embodiment of the invention; FIG. 24C illustrates an example timing diagram of an isolation signal according to an embodiment of the invention; FIGS. 25A-H illustrate example aliasing signals at various aliasing rates according to embodiments of the invention; FIG. 26A illustrates a structural block diagram of an exemplary sample and hold system according to an embodiment of the invention; FIG. 26B illustrates a structural block diagram of an exemplary inverted sample and hold system according to an embodiment of the invention; FIG. 27 illustrates a structural block diagram of sample and hold module according to an embodiment of the invention; FIGS. 28A-D illustrate example implementations of a switch module according to embodiments of the invention; FIGS. 29A-F illustrate example implementations of a holding module according to embodiments of the present invention; FIG. 29G illustrates an integrated under-sampling system according to embodiments of the invention; FIGS. 29H-K illustrate example implementations of pulse generators according to embodiments of the invention; FIG. 29L illustrates an example oscillator; FIG. 30 illustrates a structural block diagram of an under-sampling system with an under-sampling signal optimizer according to embodiments of the invention; FIG. 31 illustrates a structural block diagram of an under-sampling signal optimizer according to embodiments of the present invention; FIG. 32A illustrates an example of an under-sampling signal module according to an embodiment of the invention; FIG. 32B illustrates a flowchart of a state machine operation associated with an under-sampling module according to embodiments of the invention; FIG. 32C illustrates an example under-sampling module that includes an analog circuit with automatic gain control according to embodiments of the invention; FIGS. 33A-D illustrate example signal diagrams associated with direct down-conversion of an EM signal to a baseband signal by under-sampling according to embodiments of the present invention; FIGS. 34A-F illustrate example signal diagrams associated with an inverted sample and hold module according to embodiments of the invention; FIGS. 35A-E illustrate example signal diagrams associated with directly down-converting an analog AM signal to a demodulated baseband signal by under-sampling according to embodiments of the invention; FIGS. 36A-E illustrate example signal diagrams associated with down-converting a digital AM signal to a demodulated baseband signal by under-sampling according to embodiments of the invention; FIGS. 37A-E illustrate example signal diagrams associated with directly down-converting an analog PM signal to a demodulated baseband signal by under-sampling according to embodiments of the invention; FIGS. 38A-E illustrate example signal diagrams associated with down-converting a digital PM signal to a demodulated baseband signal by under-sampling according to embodiments of the invention; FIGS. 39A-D illustrate down-converting a FM signal to a non-FM signal by under-sampling according to embodiments of the invention; FIGS. 40A-E illustrate down-converting a FSK signal to a PSK signal by under-sampling according to embodiments of the invention; FIGS. 41A-E illustrate down-converting a FSK signal to an ASK signal by under-sampling according to embodiments of the invention; FIG. 42 illustrates a structural block diagram of an inverted sample and hold module according to an embodiment of the present invention; FIGS. 43A and 43B illustrate example waveforms present in the circuit of FIG. 31; FIG. 44A illustrates a structural block diagram of a differential system according to embodiments of the invention; FIG. 44B illustrates a structural block diagram of a differential system with a differential input and a differential output according to embodiments of the invention; FIG. 44C illustrates a structural block diagram of a differential system with a single input and a differential output according to embodiments of the invention; FIG. 44D illustrates a differential input with a single output according to embodiments of the invention; FIG. 44E illustrates an example differential input to single output system according to embodiments of the invention; FIGS. 45A-B illustrate a conceptual illustration of aliasing including under-sampling and energy transfer according to embodiments of the invention; FIGS. 46A-D illustrate various flowchart for down-converting an EM signal by transferring energy from the EM signal at an aliasing rate according to embodiments of the invention; FIGS. 47A-E illustrate example signal diagrams associated with the flowcharts in FIGS. 46A-D according to embodiments of the invention; FIG. 48 is a flowchart that illustrates an example process for determining an aliasing rate associated with an aliasing signal according to an embodiment of the invention; FIG. 49A-H illustrate example energy transfer signals according to embodiments of the invention; FIGS. 50A-G illustrate example signal diagrams associated with down-converting an analog AM signal to an intermediate frequency by transferring energy at an aliasing rate according to embodiments of the invention; FIGS. 51A-G illustrate example signal diagrams associated with down-converting an digital AM signal to an intermediate frequency by transferring energy at an aliasing rate according to embodiments of the invention; FIGS. 52A-G illustrate example signal diagrams associated with down-converting an analog FM signal to an intermediate frequency by transferring energy at an aliasing rate according to embodiments of the invention; FIGS. 53A-G illustrate example signal diagrams associated with down-converting an digital FM signal to an intermediate frequency by transferring energy at an aliasing rate according to embodiments of the invention; FIGS. 54A-G illustrate example signal diagrams associated with down-converting an analog PM signal to an intermediate frequency by transferring energy at an aliasing rate according to embodiments of the invention; FIGS. 55A-G illustrate example signal diagrams associated with down-converting an digital PM signal to an intermediate frequency by transferring energy at an aliasing rate according to embodiments of the invention; FIGS. 56A-D illustrate an example signal diagram associated with direct down-conversion according to embodiments of the invention; FIGS. 57A-F illustrate directly down-converting an analog AM signal to a demodulated baseband signal according to embodiments of the invention; FIGS. 58A-F illustrate directly down-converting an digital AM signal to a demodulated baseband signal according to embodiments of the invention; FIGS. 59A-F illustrate directly down-converting an analog PM signal to a demodulated baseband signal according to embodiments of the invention; FIGS. 60A-F illustrate directly down-converting an digital PM signal to a demodulated baseband signal according to embodiments of the invention; FIGS. 61A-F illustrate down-converting an FM signal to a PM signal according to embodiments of the invention; FIGS. 62A-F illustrate down-converting an FM signal to a AM signal according to embodiments of the invention; FIG. 63 illustrates a block diagram of an energy transfer system according to an embodiment of the invention; FIG. 64A illustrates an exemplary gated transfer system according to an embodiment of the invention; FIG. 64B illustrates an exemplary inverted gated transfer system according to an embodiment of the invention; FIG. 65 illustrates an example embodiment of the gated transfer module according to an embodiment of the invention; FIGS. 66A-D illustrate example implementations of a switch module according to embodiments of the invention; FIG. 67A illustrates an example embodiment of the gated transfer module as including a break-before-make module according to an embodiment of the invention; FIG. 67B illustrates an example timing diagram for an energy transfer signal according to an embodiment of the invention; FIG. 67C illustrates an example timing diagram for an isolation signal according to an embodiment of the invention; FIGS. 68A-F illustrate example storage modules according to embodiments of the invention; FIG. 68G illustrates an integrated gated transfer system according to an embodiment of the invention; FIGS. 68H-K illustrate example aperture generators; FIG. 68L illustrates an oscillator according to an embodiment of the present invention; FIG. 69 illustrates an energy transfer system with an optional energy transfer signal module according to an embodiment of the invention; FIG. 70 illustrates an aliasing module with input and output impedance match according to an embodiment of the invention; FIG. 71 illustrates an example pulse generator; FIGS. 72A and 72B illustrate example waveforms related to the pulse generator of FIG. 71; FIG. 73 illustrates an example energy transfer module with a switch module and a reactive storage module according to an embodiment of the invention; FIG. 74 illustrates an example inverted gated transfer module as including a switch module and a storage module according to an embodiment of the invention; FIGS. 75A-F illustrate an example signal diagrams associated with an inverted gated energy transfer module according to embodiments of the invention; FIGS. 76A-E illustrate energy transfer modules in configured in various differential configurations according to embodiments of the invention; FIGS. 77A-C illustrate example impedance matching circuits according to embodiments of the invention; FIGS. 78A-B illustrate example under-sampling systems according to embodiments of the invention; FIGS. 79A-F illustrate example timing diagrams for under-sampling systems according to embodiments of the invention; FIGS. 80A-F illustrate example timing diagrams for an under-sampling system when the load is a relatively low impedance load according to embodiments of the invention; FIGS. 81A-F illustrate example timing diagrams for an under-sampling system when the holding capacitance has a larger value according to embodiments of the invention; FIGS. 82A-B illustrate example energy transfer systems according to embodiments of the invention; FIGS. 83A-F illustrate example timing diagrams for energy transfer systems according to embodiments of the present invention; FIGS. 84A-D illustrate down-converting an FSK signal to a PSK signal according to embodiments of the present invention; FIG. 85A illustrates an example energy transfer signal module according to an embodiment of the present invention; FIG. 85B illustrates a flowchart of state machine operation according to an embodiment of the present invention; FIG. 85C is an example energy transfer signal module; FIG. 86 is a schematic diagram of a circuit to down-convert a 915 MHZ signal to a 5 MHZ signal using a 101.1 MHZ clock according to an embodiment of the present invention; FIG. 87 shows simulation waveforms for the circuit of FIG. 86 according to embodiments of the present invention; FIG. 88 is a schematic diagram of a circuit to down-convert a 915 MHZ signal to a 5 MHz signal using a 101 MHZ clock according to an embodiment of the present invention; FIG. 89 shows simulation waveforms for the circuit of FIG. 88 according to embodiments of the present invention; FIG. 90 is a schematic diagram of a circuit to down-convert a 915 MHZ signal to a 5 MHZ signal using a 101.1 MHZ clock according to an embodiment of the present invention; FIG. 91 shows simulation waveforms for the circuit of FIG. 90 according to an embodiment of the present invention; FIG. 92 shows a schematic of the circuit in FIG. 86 connected to an FSK source that alternates between 913 and 917 MHZ at a baud rate of 500 Kbaud according to an embodiment of the present invention; FIG. 93 shows the original FSK waveform 9202 and the down-converted waveform 9204 at the output of the load impedance match circuit according to an embodiment of the present invention; FIG. 94A illustrates an example energy transfer system according to an embodiment of the invention; FIGS. 94B-C illustrate example timing diagrams for the example system of FIG. 94A; FIG. 95 illustrates an example bypass network according to an embodiment of the invention; FIG. 96 illustrates an example bypass network according to an embodiment of the invention; FIG. 97 illustrates an example embodiment of the invention; FIG. 98A illustrates an example real time aperture control circuit according to an embodiment of the invention; FIG. 98B illustrates a timing diagram of an example clock signal for real time aperture control, according to an embodiment of the invention; FIG. 98C illustrates a timing diagram of an example optional enable signal for real time aperture control, according to an embodiment of the invention; FIG. 98D illustrates a timing diagram of an inverted clock signal for real time aperture control, according to an embodiment of the invention; FIG. 98E illustrates a timing diagram of an example delayed clock signal for real time aperture control, according to an embodiment of the invention; FIG. 98F illustrates a timing diagram of an example energy transfer module including pulses having apertures that are controlled in real time, according to an embodiment of the invention; FIG. 99 is a block diagram of a differential system that utilizes non-inverted gated transfer units, according to an embodiment of the invention; FIG. 100 illustrates an example embodiment of the invention; FIG. 101 illustrates an example embodiment of the invention; FIG. 102 illustrates an example embodiment of the invention; FIG. 103 illustrates an example embodiment of the invention; FIG. 104 illustrates an example embodiment of the invention; FIG. 105 illustrates an example embodiment of the invention; FIG. 106 illustrates an example embodiment of the invention; FIG. 107A is a timing diagram for the example embodiment of FIG. 103; FIG. 107B is a timing diagram for the example embodiment of FIG. 104; FIG. 108A is a timing diagram for the example embodiment of FIG. 105; FIG. 108B is a timing diagram for the example embodiment of FIG. 106; FIG. 109A illustrates and example embodiment of the invention; FIG. 109B illustrates equations for determining charge transfer, in accordance with the present invention; FIG. 109C illustrates relationships between capacitor charging and aperture, in accordance with the present invention; FIG. 109D illustrates relationships between capacitor charging and aperture, in accordance with the present invention; FIG. 109E illustrates power-charge relationship equations, in accordance with the present invention; FIG. 109F illustrates insertion loss equations, in accordance with the present invention; FIG. 110A illustrates aliasing module 11000 a single FET configuration; FIG. 110B illustrates FET conductivity vs. VGS; FIGS. 111A-C illustrate signal waveforms associated with aliasing module 11000; FIG. 112 illustrates aliasing module 11200 with a complementary FET configuration; FIGS. 113A-E illustrate signal waveforms associated with aliasing module 11200; FIG. 114 illustrates aliasing module 11400; FIG. 115 illustrates aliasing module 11500; FIG. 116 illustrates aliasing module 11602; FIG. 117 illustrates aliasing module 11702; FIGS. 118-120 illustrate signal waveforms associated with aliasing module 11602; FIGS. 121-123 illustrate signal waveforms associated with aliasing module 11702. FIG. 124A is a block diagram of a splitter according to an embodiment of the invention; FIG. 124B is a more detailed diagram of a splitter according to an embodiment of the invention; FIGS. 124C and 124D are example waveforms related to the splitter of FIGS. 124A and 124B; FIG. 124E is a block diagram of an I/Q circuit with a splitter according to an embodiment of the invention; FIGS. 124F-124J are example waveforms related to the diagram of FIG. 124A; FIG. 125 is a block diagram of a switch module according to an embodiment of the invention; FIG. 126A is an implementation example of the block diagram of FIG. 125; FIGS. 126B-126Q are example waveforms related to FIG. 126A; FIG. 127A is another implementation example of the block diagram of FIG. 125; FIGS. 127B-127Q are example waveforms related to FIG. 127A; FIG. 128A is an example MOSFET embodiment of the invention; FIG. 128B is an example MOSFET embodiment of the invention; FIG. 128C is an example MOSFET embodiment of the invention; FIG. 129A is another implementation example of the block diagram of FIG. 125; FIGS. 129B-129Q are example waveforms related to FIG. 127A; FIGS. 130 and 131 illustrate the amplitude and pulse width modulated transmitter according to embodiments of the present invention; FIGS. 132A-132D illustrate example signal diagrams associated with the amplitude and pulse width modulated transmitter according to embodiments of the present invention; FIG. 133 illustrates an example diagram associated with the amplitude and pulse width modulated transmitter according to embodiments of the present invention; FIG. 134 illustrates and example diagram associated with the amplitude and pulse width modulated transmitter according to embodiments of the present invention; FIG. 135 shows an embodiment of a receiver block diagram to recover the amplitude or pulse width modulated information; FIGS. 136A-136G illustrate example signal diagrams associated with a waveform generator according to embodiments of the present invention; FIGS. 137-139 are example schematic diagrams illustrating various circuits employed in the receiver of FIG. 135; FIGS. 140-143 illustrate time and frequency domain diagrams of alternative transmitter output waveforms; FIGS. 144 and 145 illustrate differential receivers in accord with embodiments of the present invention; and FIGS. 146 and 147 illustrate time and frequency domains for a narrow bandwidth/constant carrier signal in accord with an embodiment of the present invention. Table of Contents I. Introduction 1. General Terminology 1.1 Modulation 1.1.1 Amplitude Modulation 1.1.2 Frequency Modulation 1.1.3 Phase Modulation 1.2 Demodulation 2. Overview of the Invention 2.1 Aspects of the Invention 2.2 Down-Converting by Under-Sampling 2.2.1 Down-Converting to an Intermediate Frequency (IF) Signal 2.2.2 Direct-to-Data Down-Converting 2.2.3 Modulation Conversion 2.3 Down-Converting by Transferring Energy 2.3.1 Down-Converting to an Intermediate Frequency (IF) Signal 2.3.2 Direct-to-Data Down-Converting 2.3.3 Modulation Conversion 2.4 Determining the Aliasing Rate 3. Benefits of the Invention Using an Example Conventional Receiver for Comparison II. Under-Sampling 1. Down-Converting an EM Carrier Signal to an EM Intermediate Signal by Under-Sampling the EM Carrier Signal at the Aliasing Rate 1.1 High Level Description 1.1.1 Operational Description 1.1.2 Structural Description 1.2 Example Embodiments 1.2.1 First Example Embodiment: Amplitude Modulation 1.2.1.1 Operational Description 1.2.1.1.1 Analog AM Carrier Signal 1.2.1.1.2 Digital AM Carrier Signal 1.2.1.2 Structural Description 1.2.2 Second Example Embodiment: Frequency Modulation 1.2.2.1 Operational Description 1.2.2.1.1 Analog FM Carrier Signal 1.2.2.1.2 Digital FM Carrier Signal 1.2.2.2 Structural Description 1.2.3 Third Example Embodiment: Phase Modulation 1.2.3.1 Operational Description 1.2.3.1.1 Analog PM Carrier Signal 1.2.3.1.2 Digital PM Carrier Signal 1.2.3.2 Structural Description 1.2.4 Other Embodiments 1.3 Implementation Examples 2. Directly Down-Converting an EM Signal to a Baseband Signal (Direct-to-Data) 2.1 High Level Description 2.1.1 Operational Description 2.1.2 Structural Description 2.2 Example Embodiments 2.2.1 First Example Embodiment: Amplitude Modulation 2.2.1.1 Operational Description 2.2.1.1.1 Analog AM Carrier Signal 2.2.1.1.2 Digital AM Carrier Signal 2.2.1.2 Structural Description 2.2.2 Second Example Embodiment: Phase Modulation 2.2.2.1 Operational Description 2.2.2.1.1 Analog PM Carrier Signal 2.2.2.1.2 Digital PM Carrier Signal 2.2.2.2 Structural Description 2.2.3 Other Embodiments 2.3 Implementation Examples 3. Modulation Conversion 3.1 High Level Description 3.1.1 Operational Description 3.1.2 Structural Description 3.2 Example Embodiments 3.2.1 First Example Embodiment: Down-Converting an FM Signal to a PM Signal 3.2.1.1 Operational Description 3.2.1.2 Structural Description 3.2.2 Second Example Embodiment: Down-Converting an FM Signal to an AM Signal 3.2.2.1 Operational Description 3.2.2.2 Structural Description 3.2.3 Other Example Embodiments 3.3 Implementation Examples 4. Implementation Examples 4.1 The Under-Sampling System as a Sample and Hold System 4.1.1 The Sample and Hold System as a Switch Module and a Holding Module 4.1.2 The Sample and Hold System as Break-Before- Make Module 4.1.3 Example Implementations of the Switch Module 4.1.4 Example Implementations of the Holding Module 4.1.5 Optional Under-Sampling Signal Module 4.2 The Under-Sampling System as an Inverted Sample and Hold 4.3 Other Implementations 5. Optional Optimizations of Under-Sampling at an Aliasing Rate 5.1 Doubling the Aliasing Rate (FAR) of the Under-Sampling Signal 5.2 Differential Implementations 5.2.1 Differential Input-to-Differential Output 5.2.2 Single Input-to-Differential Output 5.2.3 Differential Input-to-Single Output 5.3 Smoothing the Down-Converted Signal 5.4 Load Impedance and Input/Output Buffering 5.5 Modifying the Under-Sampling Signal Utilizing Feedback III. Down-Converting by Transferring Energy 1. Energy Transfer Compared to Under-Sampling 1.1 Review of Under-Sampling 1.1.1 Effects of Lowering the Impedance of the Load 1.1.2 Effects of Increasing the Value of the Holding Capacitance 1.2 Introduction to Energy Transfer 2. Down-Converting an EM Signal to an IF EM Signal by Transferring Energy from the EM Signal at an Aliasing Rate 2.1 High Level Description 2.1.1 Operational Description 2.1.2 Structural Description 2.2 Example Embodiments 2.2.1 First Example Embodiment: Amplitude Modulation 2.2.1.1 Operational Description 2.2.1.1.1 Analog AM Carrier Signal 2.2.1.1.2 Digital AM Carrier Signal 2.2.1.2 Structural Description 2.2.2 Second Example Embodiment: Frequency Modulation 2.2.2.1 Operational Description 2.2.2.1.1 Analog FM Carrier Signal 2.2.2.1.2 Digital FM Carrier Signal 2.2.2.2 Structural Description 2.2.3 Third Example Embodiment: Phase Modulation 2.2.3.1 Operational Description 2.2.3.1.1 Analog PM Carrier Signal 2.2.3.1.2 Digital PM Carrier Signal 2.2.3.2 Structural Description 2.2.4 Other Embodiments 2.3 Implementation Examples 3. Directly Down-Converting an EM Signal to an Demodulated Baseband Signal by Transferring Energy from the EM Signal 3.1 High Level Description 3.1.1 Operational Description 3.1.2 Structural Description 3.2 Example Embodiments 3.2.1 First Example Embodiment: Amplitude Modulation 3.2.1.1 Operational Description 3.2.1.1.1 Analog AM Carrier Signal 3.2.1.1.2 Digital AM Carrier Signal 3.2.1.2 Structural Description 3.2.2 Second Example Embodiment: Phase Modulation 3.2.2.1 Operational Description 3.2.2.1.1 Analog PM Carrier Signal 3.2.2.1.2 Digital PM Carrier Signal 3.2.2.2 Structural Description 3.2.3 Other Embodiments 3.3 Implementation Examples 4. Modulation Conversion 4.1 High Level Description 4.1.1 Operational Description 4.1.2 Structural Description 4.2 Example Embodiments 4.2.1 First Example Embodiment: Down-Converting an FM Signal to a PM Signal 4.2.1.1 Operational Description 4.2.1.2 Structural Description 4.2.2 Second Example Embodiment: Down-Converting an FM Signal to an AM Signal 4.2.2.1 Operational Description 4.2.2.2 Structural Description 4.2.3 Other Example Embodiments 4.3 Implementation Examples 5. Implementation Examples 5.1 The Energy Transfer System as a Gated Transfer System 5.1.1 The Gated Transfer System as a Switch Module and a Storage Module 5.1.2 The Gated Transfer System as Break-Before-Make Module 5.1.3 Example Implementations of the Switch Module 5.1.4 Example Implementations of the Storage Module 5.1.5 Optional Energy Transfer Signal Module 5.2 The Energy Transfer System as an Inverted Gated Transfer System 5.2.1 The Inverted Gated Transfer System as a Switch Module and a Storage Module 5.3 Rail to Rail Operation for Improved Dynamic Range 5.3.1 Introduction 5.3.2 Complementary UFT Structure for Improved Dynamic Range 5.3.3 Biased Configurations 5.3.4 Simulation Examples 5.4 Optimized Switch Structures 5.4.1 Splitter in CMOS 5.4.2 I/Q Circuit 5.5 Example I and Q Implementations 5.5.1 Switches of Different Sizes 5.5.2 Reducing Overall Switch Area 5.5.3 Charge Injection Cancellation 5.5.4 Overlapped Capacitance 5.6 Other Implementations 6. Optional Optimizations of Energy Transfer at an Aliasing Rate 6.1 Doubling the Aliasing Rate (FAR) of the Energy Transfer Signal 6.2 Differential Implementations 6.2.1 An Example Illustrating Energy Transfer Differentially 6.2.1.1 Differential Input-to-Differential Output 6.2.1.2 Single Input-to-Differential Output 6.2.1.3 Differential Input-to-Single Output 6.2.2 Specific Alternative Embodiments 6.2.3 Specific Examples of Optimizations and Configurations for Inverted and Non-Inverted Differential Designs 6.3 Smoothing the Down-Converted Signal 6.4 Impedance Matching 6.5 Tanks and Resonant Structures 6.6 Charge and Power Transfer Concepts 6.7 Optimizing and Adjusting the Non-Negligible Aperture Width/Duration 6.7.1 Varying Input and Output Impedances 6.7.2 Real Time Aperture Control 6.8 Adding a Bypass Network 6.9 Modifying the Energy Transfer Signal Utilizing Feedback 6.10 Other Implementations 7. Example Energy Transfer Downconverters IV. Additional Embodiments V. Conclusions I. Introduction 1. General Terminology For illustrative purposes, the operation of the invention is often represented by flowcharts, such as flowchart 1201 in FIG. 12A. It should be understood, however, that the use of flowcharts is for illustrative purposes only, and is not limiting. For example, the invention is not limited to the operational embodiment(s) represented by the flowcharts. Instead, alternative operational embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. Also, the use of flowcharts should not be interpreted as limiting the invention to discrete or digital operation. In practice, as will be appreciated by persons skilled in the relevant art(s) based on the herein discussion, the invention can be achieved via discrete or continuous operation, or a combination thereof. Further, the flow of control represented by the flowcharts is provided for illustrative purposes only. As will be appreciated by persons skilled in the relevant art(s), other operational control flows are within the scope and spirit of the present invention. Also, the ordering of steps may differ in various embodiments. Various terms used in this application are generally described in this section. The description in this section is provided for illustrative and convenience purposes only, and is not limiting. The meaning of these terms will be apparent to persons skilled in the relevant art(s) based on the entirety of the teachings provided herein. These terms may be discussed throughout the specification with additional detail. The term modulated carrier signal, when used herein, refers to a carrier signal that is modulated by a baseband signal. The term unmodulated carrier signal, when used herein, refers to a signal having an amplitude that oscillates at a substantially uniform frequency and phase. The term baseband signal, when used herein, refers to an information signal including, but not limited to, analog information signals, digital information signals and direct current (DC) information signals. The term carrier signal, when used herein, and unless otherwise specified when used herein, refers to modulated carrier signals and unmodulated carrier signals. The term electromagnetic (EM) signal, when used herein, refers to a signal in the EM spectrum. EM spectrum includes all frequencies greater than zero hertz. EM signals generally include waves characterized by variations in electric and magnetic fields. Such waves may be propagated in any medium, both natural and manmade, including but not limited to air, space, wire, cable, liquid, waveguide, micro-strip, strip-line, optical fiber, etc. Unless stated otherwise, all signals discussed herein are EM signals, even when not explicitly designated as such. The term intermediate frequency (IF) signal, when used herein, refers to an EM signal that is substantially similar to another EM signal except that the IF signal has a lower frequency than the other signal. An IF signal frequency can be any frequency above zero HZ. Unless otherwise stated, the terms lower frequency, intermediate frequency, intermediate and IF are used interchangeably herein. The term analog signal, when used herein, refers to a signal that is constant or continuously variable, as contrasted to a signal that changes between discrete states. The term baseband, when used herein, refers to a frequency band occupied by any generic information signal desired for transmission and/or reception. The term baseband signal, when used herein, refers to any generic information signal desired for transmission and/or reception. The term carrier frequency, when used herein, refers to the frequency of a carrier signal. Typically, it is the center frequency of a transmission signal that is generally modulated. The term carrier signal, when used herein, refers to an EM wave having at least one characteristic that may be varied by modulation, that is capable of carrying information via modulation. The term demodulated baseband signal, when used herein, refers to a signal that results from processing a modulated signal. In some cases, for example, the demodulated baseband signal results from demodulating an intermediate frequency (IF) modulated signal, which results from down converting a modulated carrier signal. In another case, a signal that results from a combined downconversion and demodulation step. The term digital signal, when used herein, refers to a signal that changes between discrete states, as contrasted to a signal that is continuous. For example, the voltage of a digital signal may shift between discrete levels. The term electromagnetic (EM) spectrum, when used herein, refers to a spectrum comprising waves characterized by variations in electric and magnetic fields. Such waves may be propagated in any communication medium, both natural and manmade, including but not limited to air, space, wire, cable, liquid, waveguide, microstrip, stripline, optical fiber, etc. The EM spectrum includes all frequencies greater than zero hertz. The term electromagnetic (EM) signal, when used herein, refers to a signal in the EM spectrum. Also generally called an EM wave. Unless stated otherwise, all signals discussed herein are EM signals, even when not explicitly designated as such. The term modulating baseband signal, when used herein, refers to any generic information signal that is used to modulate an oscillating signal, or carrier signal. 1.1 Modulation It is often beneficial to propagate electromagnetic (EM) signals at higher frequencies. This includes baseband signals, such as digital data information signals and analog information signals. A baseband signal can be up-converted to a higher frequency EM signal by using the baseband signal to modulate a higher frequency carrier signal, FC. When used in this manner, such a baseband signal is herein called a modulating baseband signal FMB. Modulation imparts changes to the carrier signal FC that represent information in the modulating baseband signal FMB. The changes can be in the form of amplitude changes, frequency changes, phase changes, etc., or any combination thereof. The resultant signal is referred to herein as a modulated carrier signal FMC. The modulated carrier signal FMC includes the carrier signal FC modulated by the modulating baseband signal, FMB, as in: FMB combined with FC→FMC The modulated carrier signal FMC oscillates at, or near the frequency of the carrier signal FC and can thus be efficiently propagated. FIG. 1 illustrates an example modulator 110, wherein the carrier signal FC is modulated by the modulating baseband signal FMB, thereby generating the modulated carrier signal FMC. Modulating baseband signal FMB can be an analog baseband signal, a digital baseband signal, or a combination thereof. FIG. 2 illustrates the modulating baseband signal FMB as an exemplary analog modulating baseband signal 210. The exemplary analog modulating baseband signal 210 can represent any type of analog information including, but not limited to, voice/speech data, music data, video data, etc. The amplitude of analog modulating baseband signal 210 varies in time. Digital information includes a plurality of discrete states. For ease of explanation, digital information signals are discussed below as having two discrete states. But the invention is not limited to this embodiment. FIG. 3 illustrates the modulating baseband signal FMB as an exemplary digital modulating baseband signal 310. The digital modulating baseband signal 310 can represent any type of digital data including, but not limited to, digital computer information and digitized analog information. The digital modulating baseband signal 310 includes a first state 312 and a second state 314. In an embodiment, first state 312 represents binary state 0 and second state 314 represents binary state 1. Alternatively, first state 312 represents binary state 1 and second state 314 represents binary state 0. Throughout the remainder of this disclosure, the former convention is followed, whereby first state 312 represents binary state zero and second state 314 represents binary state one. But the invention is not limited to this embodiment. First state 312 is thus referred to herein as a low state and second state 314 is referred to herein as a high state. Digital modulating baseband signal 310 can change between first state 312 and second state 314 at a data rate, or baud rate, measured as bits per second. Carrier signal FC is modulated by the modulating baseband signal FMB, by any modulation technique, including, but not limited to, amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), etc., or any combination thereof. Examples are provided below for amplitude modulating, frequency modulating, and phase modulating the analog modulating baseband signal 210 and the digital modulating baseband signal 310, on the carrier signal FC. The examples are used to assist in the description of the invention. The invention is not limited to, or by, the examples. FIG. 4 illustrates the carrier signal FC as a carrier signal 410. In the example of FIG. 4, the carrier signal 410 is illustrated as a 900 MHZ carrier signal. Alternatively, the carrier signal 410 can be any other frequency. Example modulation schemes are provided below, using the examples signals from FIGS. 2, 3 and 4. 1.1.1 Amplitude Modulation In amplitude modulation (AM), the amplitude of the modulated carrier signal FMC is a function of the amplitude of the modulating baseband signal FMB. FIGS. 5A-5C illustrate example timing diagrams for amplitude modulating the carrier signal 410 with the analog modulating baseband signal 210. FIGS. 6A-6C illustrate example timing diagrams for amplitude modulating the carrier signal 410 with the digital modulating baseband signal 310. FIG. 5A illustrates the analog modulating baseband signal 210. FIG. 5B illustrates the carrier signal 410. FIG. 5C illustrates an analog AM carrier signal 516, which is generated when the carrier signal 410 is amplitude modulated using the analog modulating baseband signal 210. As used herein, the term “analog AM carrier signal” is used to indicate that the modulating baseband signal is an analog signal. The analog AM carrier signal 516 oscillates at the frequency of carrier signal 410. The amplitude of the analog AM carrier signal 516 tracks the amplitude of analog modulating baseband signal 210, illustrating that the information contained in the analog modulating baseband signal 210 is retained in the analog AM carrier signal 516. FIG. 6A illustrates the digital modulating baseband signal 310. FIG. 6B illustrates the carrier signal 410. FIG. 6C illustrates a digital AM carrier signal 616, which is generated when the carrier signal 410 is amplitude modulated using the digital modulating baseband signal 310. As used herein, the term “digital AM carrier signal” is used to indicate that the modulating baseband signal is a digital signal. The digital AM carrier signal 616 oscillates at the frequency of carrier signal 410. The amplitude of the digital AM carrier signal 616 tracks the amplitude of digital modulating baseband signal 310, illustrating that the information contained in the digital modulating baseband signal 310 is retained in the digital AM signal 616. As the digital modulating baseband signal 310 changes states, the digital AM signal 616 shifts amplitudes. Digital amplitude modulation is often referred to as amplitude shift keying (ASK), and the two terms are used interchangeably throughout the specification. 1.1.2 Frequency Modulation In frequency modulation (FM), the frequency of the modulated carrier signal FMC varies as a function of the amplitude of the modulating baseband signal FMB. FIGS. 7A-7C illustrate example timing diagrams for frequency modulating the carrier signal 410 with the analog modulating baseband signal 210. FIGS. 8A-8C illustrate example timing diagrams for frequency modulating the carrier signal 410 with the digital modulating baseband signal 310. FIG. 7A illustrates the analog modulating baseband signal 210. FIG. 7B illustrates the carrier signal 410. FIG. 7C illustrates an analog FM carrier signal 716, which is generated when the carrier signal 410 is frequency modulated using the analog modulating baseband signal 210. As used herein, the term “analog FM carrier signal” is used to indicate that the modulating baseband signal is an analog signal. The frequency of the analog FM carrier signal 716 varies as a function of amplitude changes on the analog baseband signal 210. In the illustrated example, the frequency of the analog FM carrier signal 716 varies in proportion to the amplitude of the analog modulating baseband signal 210. Thus, at time t1, the amplitude of the analog baseband signal 210 and the frequency of the analog FM carrier signal 716 are at maximums. At time t3, the amplitude of the analog baseband signal 210 and the frequency of the analog FM carrier signal 716 are at minimums. The frequency of the analog FM carrier signal 716 is typically centered around the frequency of the carrier signal 410. Thus, at time t2, for example, when the amplitude of the analog baseband signal 210 is at a mid-point, illustrated here as zero volts, the frequency of the analog FM carrier signal 716 is substantially the same as the frequency of the carrier signal 410. FIG. 8A illustrates the digital modulating baseband signal 310. FIG. 8B illustrates the carrier signal 410. FIG. 8C illustrates a digital FM carrier signal 816, which is generated when the carrier signal 410 is frequency modulated using the digital baseband signal 310. As used herein, the term “digital FM carrier signal” is used to indicate that the modulating baseband signal is a digital signal. The frequency of the digital FM carrier signal 816 varies as a function of amplitude changes on the digital modulating baseband signal 310. In the illustrated example, the frequency of the digital FM carrier signal 816 varies in proportion to the amplitude of the digital modulating baseband signal 310. Thus, between times t0 and t1, and between times t2 and t4, when the amplitude of the digital baseband signal 310 is at the higher amplitude second state, the frequency of the digital FM carrier signal 816 is at a maximum. Between times t1 and t2, when the amplitude of the digital baseband signal 310 is at the lower amplitude first state, the frequency of the digital FM carrier signal 816 is at a minimum. Digital frequency modulation is often referred to as frequency shift keying (FSK), and the terms are used interchangeably throughout the specification. Typically, the frequency of the digital FM carrier signal 816 is centered about the frequency of the carrier signal 410, and the maximum and minimum frequencies are equally offset from the center frequency. Other variations can be employed but, for ease of illustration, this convention will be followed herein. 1.1.3 Phase Modulation In phase modulation (PM), the phase of the modulated carrier signal FMC varies as a function of the amplitude of the modulating baseband signal FMB. FIGS. 9A-9C illustrate example timing diagrams for phase modulating the carrier signal 410 with the analog modulating baseband signal 210. FIGS. 10A-10C illustrate example timing diagrams for phase modulating the carrier signal 410 with the digital modulating baseband signal 310. FIG. 9A illustrates the analog modulating baseband signal 210. FIG. 9B illustrates the carrier signal 410. FIG. 9C illustrates an analog PM carrier signal 916, which is generated by phase modulating the carrier signal 410 with the analog baseband signal 210. As used herein, the term “analog PM carrier signal” is used to indicate that the modulating baseband signal is an analog signal. Generally, the frequency of the analog PM carrier signal 916 is substantially the same as the frequency of carrier signal 410. But the phase of the analog PM carrier signal 916 varies with amplitude changes on the analog modulating baseband signal 210. For relative comparison, the carrier signal 410 is illustrated in FIG. 9C by a dashed line. The phase of the analog PM carrier signal 916 varies as a function of amplitude changes of the analog baseband signal 210. In the illustrated example, the phase of the analog PM signal 916 lags by a varying amount as determined by the amplitude of the baseband signal 210. For example, at time t1, when the amplitude of the analog baseband signal 210 is at a maximum, the analog PM carrier signal 916 is in phase with the carrier signal 410. Between times t1 and t3, when the amplitude of the analog baseband signal 210 decreases to a minimum amplitude, the phase of the analog PM carrier signal 916 lags the phase of the carrier signal 410, until it reaches a maximum out of phase value at time t3. In the illustrated example, the phase change is illustrated as approximately 180 degrees. Any suitable amount of phase change, varied in any manner that is a function of the baseband signal, can be utilized. FIG. 10A illustrates the digital modulating baseband signal 310. FIG. 10B illustrates the carrier signal 410. FIG. 10C illustrates a digital PM carrier signal 1016, which is generated by phase modulating the carrier signal 410 with the digital baseband signal 310. As used herein, the term “digital PM carrier signal” is used to indicate that the modulating baseband signal is a digital signal. The frequency of the digital PM carrier signal 1016 is substantially the same as the frequency of carrier signal 410. The phase of the digital PM carrier signal 1016 varies as a function of amplitude changes on the digital baseband signal 310. In the illustrated example, when the digital baseband signal 310 is at the first state 312, the digital PM carrier signal 1016 is out of phase with the carrier signal 410. When the digital baseband signal 310 is at the second state 0.314, the digital PM carrier signal 1016 is in-phase with the carrier signal 410. Thus, between times t1 and t2, when the amplitude of the digital baseband signal 310 is at the first state 312, the digital PM carrier signal 1016 is out of phase with the carrier signal 410. Between times t0 and t1, and between times t2 and t4, when the amplitude of the digital baseband signal 310 is at the second state 314, the digital PM carrier signal 1016 is in phase with the carrier signal 410. In the illustrated example, the out of phase value between times t1 and t3 is illustrated as approximately 180 degrees out of phase. Any suitable amount of phase change, varied in any manner that is a function of the baseband signal, can be utilized. Digital phase modulation is often referred to as phase shift keying (PSK), and the terms are used interchangeably throughout the specification. 1.2 Demodulation When the modulated carrier signal FMC is received, it can be demodulated to extract the modulating baseband signal FMB. Because of the typically high frequency of modulated carrier signal FMC, however, it is generally impractical to demodulate the baseband signal FMB directly from the modulated carrier signal FMC. Instead, the modulated carrier signal FMC must be down-converted to a lower frequency signal that contains the original modulating baseband signal. When a modulated carrier signal is down-converted to a lower frequency signal, the lower frequency signal is referred to herein as an intermediate frequency (IF) signal FIF. The IF signal FIF oscillates at any frequency, or frequency band, below the frequency of the modulated carrier frequency FMC. Down-conversion of FMC to FIF is illustrated as: FMC→FIF After FMC is down-converted to the IF modulated carrier signal FIF, FIF can be demodulated to a baseband signal FDMB, as illustrated by: FIF→FDMB FDMB is intended to be substantially similar to the modulating baseband signal FMB, illustrating that the modulating baseband signal FMB can be substantially recovered. It will be emphasized throughout the disclosure that the present invention can be implemented with any type of EM signal, including, but not limited to, modulated carrier signals and unmodulated carrier signals. The above examples of modulated carrier signals are provided for illustrative purposes only. Many variations to the examples are possible. For example, a carrier signal can be modulated with a plurality of the modulation types described above. A carrier signal can also be modulated with a plurality of baseband signals, including analog baseband signals, digital baseband signals, and combinations of both analog and digital baseband signals. 2. Overview of the Invention Conventional signal processing techniques follow the Nyquist sampling theorem, which states that, in order to faithfully reproduce a sampled signal, the signal must be sampled at a rate that is greater than twice the frequency of the signal being sampled. When a signal is sampled at less than or equal to twice the frequency of the signal, the signal is said to be under-sampled, or aliased. Conventional signal processing thus teaches away from under-sampling and aliasing, in order to faithfully reproduce a sampled signal. 2.1 Aspects of the Invention Contrary to conventional wisdom, the present invention is a method and system for down-converting an electromagnetic (EM) signal by aliasing the EM signal. Aliasing is represented generally in FIG. 45A as 4502. By taking a carrier and aliasing it at an aliasing rate, the invention can down-convert that carrier to lower frequencies. One aspect that can be exploited by this invention is realizing that the carrier is not the item of interest, the lower baseband signal is of interest to reproduce sufficiently. This baseband signal's frequency content, even though its carrier may be aliased, does satisfy the Nyquist criteria and as a result, the baseband information can be sufficiently reproduced. FIG. 12A depicts a flowchart 1201 that illustrates a method for aliasing an EM signal to generate a down-converted signal. The process begins at step 1202, which includes receiving the EM signal. Step 1204 includes receiving an aliasing signal having an aliasing rate. Step 1206 includes aliasing the EM signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate and to down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. These concepts are described below. FIG. 13 illustrates a block diagram of a generic aliasing system 1302, which includes an aliasing module 1306. In an embodiment, the aliasing system 1302 operates in accordance with the flowchart 1201. For example, in step 1202, the aliasing module 1306 receives an EM signal 1304. In step 1204, the aliasing module 1306 receives an aliasing signal 1310. In step 1206, the aliasing module 1306 down-converts the EM signal 1304 to a down-converted signal 1308. The generic aliasing system 1302 can also be used to implement any of the flowcharts 1207, 1213 and 1219. In an embodiment, the invention down-converts the EM signal to an intermediate frequency (IF) signal. FIG. 12B depicts a flowchart 1207 that illustrates a method for under-sampling the EM signal at an aliasing rate to down-convert the EM signal to an IF signal. The process begins at step 1208, which includes receiving an EM signal. Step 1210 includes receiving an aliasing signal having an aliasing rate FAR. Step 1212 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to an IF signal. In another embodiment, the invention down-converts the EM signal to a demodulated baseband information signal. FIG. 12C depicts a flowchart 1213 that illustrates a method for down-converting the EM signal to a demodulated baseband signal. The process begins at step 1214, which includes receiving an EM signal. Step 1216 includes receiving an aliasing signal having an aliasing rate FAR. Step 1218 includes down-converting the EM signal to a demodulated baseband signal. The demodulated baseband signal can be processed without further down-conversion or demodulation. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. FIG. 12D depicts a flowchart 1219 that illustrates a method for down-converting the FM signal to a non-FM signal. The process begins at step 1220, which includes receiving an EM signal. Step 1222 includes receiving an aliasing signal having an aliasing rate. Step 1224 includes down-converting the FM signal to a non-FM signal. The invention down-converts any type of EM signal, including, but not limited to, modulated carrier signals and unmodulated carrier signals. For ease of discussion, the invention is further described herein using modulated carrier signals for examples. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert signals other than carrier signals as well. The invention is not limited to the example embodiments described above. In an embodiment, down-conversion is accomplished by under-sampling an EM signal. This is described generally in Section I.2.2. below and in detail in Section II and its sub-sections. In another embodiment, down-conversion is achieved by transferring non-negligible amounts of energy from an EM signal. This is described generally in Section I.2.3. below and in detail in Section III. 2.2 Down-Converting by Under-Sampling The term aliasing, as used herein, refers both to down-converting an EM signal by under-sampling the EM signal at an aliasing rate and to down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. Methods for under-sampling an EM signal to down-convert the EM signal are now described at an overview level. FIG. 14A depicts a flowchart 1401 that illustrates a method for under-sampling the EM signal at an aliasing rate to down-convert the EM signal. The process begins at step 1402, which includes receiving an EM signal. Step 1404 includes receiving an under-sampling signal having an aliasing rate. Step 1406 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal. Down-converting by under-sampling is illustrated by 4504 in FIG. 45A and is described in greater detail in Section II. 2.2.1 Down-Converting to an Intermediate Frequency (IF) Signal In an embodiment, an EM signal is under-sampled at an aliasing rate to down-convert the EM signal to a lower, or intermediate frequency (IF) signal. The EM signal can be a modulated carrier signal or an unmodulated carrier signal. In an exemplary example, a modulated carrier signal FMC is down-converted to an IF signal FIF. FMC→FIF FIG. 14B depicts a flowchart 1407 that illustrates a method for under-sampling the EM signal at an aliasing rate to down-convert the EM signal to an IF signal. The process begins at step 1408, which includes receiving an EM signal. Step 1410 includes receiving an under-sampling signal having an aliasing rate. Step 1412 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to an IF signal. This embodiment is illustrated generally by 4508 in FIG. 45B and is described in Section II.1. 2.2.2 Direct-to-Data Down-Converting In another embodiment, an EM signal is directly down-converted to a demodulated baseband signal (direct-to-data down-conversion), by under-sampling the EM signal at an aliasing rate. The EM signal can be a modulated EM signal or an unmodulated EM signal. In an exemplary embodiment, the EM signal is the modulated carrier signal FMC, and is directly down-converted to a demodulated baseband signal FDMB. FMC→FDMB FIG. 14C depicts a flowchart 1413 that illustrates a method for under-sampling the EM signal at an aliasing rate to directly down-convert the EM signal to a demodulated baseband signal. The process begins at step 1414, which includes receiving an EM signal. Step 1416 includes receiving an under-sampling signal having an aliasing rate. Step 1418 includes under-sampling the EM signal at the aliasing rate to directly down-convert the EM signal to a baseband information signal. This embodiment is illustrated generally by 4510 in FIG. 45B and is described in Section II.2. 2.2.3 Modulation Conversion In another embodiment, a frequency modulated (FM) carrier signal FMC is converted to a non-FM signal F(NON-FM), by under-sampling the FM carrier signal FFMC. FFMC→F(NON-FM) FIG. 14D depicts a flowchart 1419 that illustrates a method for under-sampling an FM signal to convert it to a non-FM signal. The process begins at step 1420, which includes receiving the FM signal. Step 1422 includes receiving an under-sampling signal having an aliasing rate. Step 1424 includes under-sampling the FM signal at the aliasing rate to convert the FM signal to a non-FM signal. For example, the FM signal can be under-sampled to convert it to a PM signal or an AM signal. This embodiment is illustrated generally by 4512 in FIG. 45B, and described in Section II.3. 2.3 Down-Converting by Transferring Energy The term aliasing, as used herein, refers both to down-converting an EM signal by under-sampling the EM signal at an aliasing rate and to down-converting an EM signal by transferring non-negligible amounts energy from the EM signal at the aliasing rate. Methods for transferring energy from an EM signal to down-convert the EM signal are now described at an overview level. More detailed descriptions are provided in Section III. FIG. 46A depicts a flowchart 4601 that illustrates a method for transferring energy from the EM signal at an aliasing rate to down-convert the EM signal. The process begins at step 4602, which includes receiving an EM signal. Step 4604 includes receiving an energy transfer signal having an aliasing rate. Step 4606 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal. Down-converting by transferring energy is illustrated by 4506 in FIG. 45A and is described in greater detail in Section III. 2.3.1 Down-Converting to an Intermediate Frequency (IF) Signal In an embodiment, EM signal is down-converted to a lower, or intermediate frequency (F) signal, by transferring energy from the EM signal at an aliasing rate. The EM signal can be a modulated carrier signal or an unmodulated carrier signal. In an exemplary example, a modulated carrier signal FMC is down-converted to an IF signal FIF. FMC→FIF FIG. 46B depicts a flowchart 4607 that illustrates a method for transferring energy from the EM signal at an aliasing rate to down-convert the EM signal to an IF signal. The process begins at step 4608, which includes receiving an EM signal. Step 4610 includes receiving an energy transfer signal having an aliasing rate. Step 4612 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal to an IF signal. This embodiment is illustrated generally by 4514 in FIG. 45B and is described in Section III.1. 2.3.2 Direct-to-Data Down-Converting In another embodiment, an EM signal is down-converted to a demodulated baseband signal by transferring energy from the EM signal at an aliasing rate. This embodiment is referred to herein as direct-to-data down-conversion. The EM signal can be a modulated EM signal or an unmodulated EM signal. In an exemplary embodiment, the EM signal is the modulated carrier signal FMC, and is directly down-converted to a demodulated baseband signal FDMB. FMC→FDMB FIG. 46C depicts a flowchart 4613 that illustrates a method for transferring energy from the EM signal at an aliasing rate to directly down-convert the EM signal to a demodulated baseband signal. The process begins at step 4614, which includes receiving an EM signal. Step 4616 includes receiving an energy transfer signal having an aliasing rate. Step 4618 includes transferring energy from the EM signal at the aliasing rate to directly down-convert the EM signal to a baseband signal. This embodiment is illustrated generally by 4516 in FIG. 45B and is described in Section III.2. 2.3.3 Modulation Conversion In another embodiment, a frequency modulated (FM) carrier signal FFMC is converted to a non-FM signal F(NON-FM), by transferring energy from the FM carrier signal FFMC at an aliasing rate. FFMC→F(NON-FM) The FM carrier signal FFMC can be converted to, for example, a phase modulated (PM) signal or an amplitude modulated (AM) signal. FIG. 46D depicts a flowchart 4619 that illustrates a method for transferring energy from an FM signal to convert it to a non-FM signal. Step 4620 includes receiving the FM signal. Step 4622 includes receiving an energy transfer signal having an aliasing rate. In FIG. 46D, step 4612 includes transferring energy from the FM signal to convert it to a non-FM signal. For example, energy can be transferred from an FSK signal to convert it to a PSK signal or an ASK signal. This embodiment is illustrated generally by 4518 in FIG. 45B, and described in Section III.3 2.4 Determining the Aliasing Rate In accordance with the definition of aliasing, the aliasing rate is equal to, or less than, twice the frequency of the EM carrier signal. Preferably, the aliasing rate is much less than the frequency of the carrier signal. The aliasing rate is preferably more than twice the highest frequency component of the modulating baseband signal FMB that is to be reproduced. The above requirements are illustrated in EQ. (1). 2FMC≧FAR>2·(Highest Freq. Component of FMB) EQ. (1) In other words, by taking a carrier and aliasing it at an aliasing rate, the invention can down-convert that carrier to lower frequencies. One aspect that can be exploited by this invention is that the carrier is not the item of interest; instead the lower baseband signal is of interest to be reproduced sufficiently. The baseband signal's frequency content, even though its carrier may be aliased, satisfies the Nyquist criteria and as a result, the baseband information can be sufficiently reproduced, either as the intermediate modulating carrier signal FIF or as the demodulated direct-to-data baseband signal FDMB. In accordance with the invention, relationships between the frequency of an EM carrier signal, the aliasing rate, and the intermediate frequency of the down-converted signal, are illustrated in EQ. (2). FC=n·FAR±FIF EQ. (2) Where: FC is the frequency of the EM carrier signal that is to be aliased; FAR is the aliasing rate; n identifies a harmonic or sub-harmonic of the aliasing rate (generally, n=0.5, 1, 2, 3, 4, . . . ); and FIF is the intermediate frequency of the down-converted signal. Note that as (n·FAR) approaches FC, FIF approaches zero. This is a special case where an EM signal is directly down-converted to a demodulated baseband signal. This special case is referred to herein as Direct-to-Data down-conversion. Direct-to-Data down-conversion is described in later sections. High level descriptions, exemplary embodiments and exemplary implementations of the above and other embodiments of the invention are provided in sections below. 3. Benefits of the Invention Using an Example Conventional Receiver for Comparison FIG. 11 illustrates an example conventional receiver system 1102. The conventional system 1102 is provided both to help the reader to understand the functional differences between conventional systems and the present invention, and to help the reader to understand the benefits of the present invention. The example conventional receiver system 1102 receives an electromagnetic (EM) signal 1104 via an antenna 1106. The EM signal 1104 can include a plurality of EM signals such as modulated carrier signals. For example, the EM signal 1104 includes one or more radio frequency (RF) EM signals, such as a 900 MHZ modulated carrier signal. Higher frequency RF signals, such as 900 MHZ signals, generally cannot be directly processed by conventional signal processors. Instead, higher frequency RF signals are typically down-converted to lower intermediate frequencies (IF) for processing. The receiver system 1102 down-converts the EM signal 1104 to an intermediate frequency (IF) signal 1108n, which can be provided to a signal processor 1110. When the EM signal 1104 includes a modulated carrier signal, the signal processor 1110 usually includes a demodulator that demodulates the IF signal 1108n to a baseband information signal (demodulated baseband signal). Receiver system 1102 includes an RF stage 1112 and one or more IF stages 1114. The RF stage 1112 receives the EM signal 1104. The RF stage 1112 includes the antenna 1106 that receives the EM signal 1104. The one or more IF stages 1114a-1114n down-convert the EM signal 1104 to consecutively lower intermediate frequencies. Each of the one or more IF sections 1114a-1114n includes a mixer 1118a-1118n that down-converts an input EM signal 1116 to a lower frequency IF signal 1108. By cascading the one or more mixers 1118a-1118n, the EM signal 1104 is incrementally down-converted to a desired IF signal 1108n. In operation, each of the one or more mixers 1118 mixes an input EM signal 1116 with a local oscillator (LO) signal 1119, which is generated by a local oscillator (LO) 1120. Mixing generates sum and difference signals from the input EM signal 1116 and the LO signal 1119. For example, mixing an input EM signal 1116a, having a frequency of 900 MHZ, with a LO signal 1119a, having a frequency of 830 MHZ, results in a sum signal, having a frequency of 900 MHZ+830 GHZ=1.73 MHZ, and a difference signal, having a frequency of 900 MHZ−830 MHZ=70 MHZ. Specifically, in the example of FIG. 11, the one or more mixers 1118 generate a sum and difference signals for all signal components in the input EM signal 1116. For example, when the EM signal 1116a includes a second EM signal, having a frequency of 760 MHZ, the mixer 1118a generates a second sum signal, having a frequency of 760 MHZ+830 MHZ=1.59 GHZ, and a second difference signal, having a frequency of 830 MHZ−760 MHZ=70 MHZ. In this example, therefore, mixing two input EM signals, having frequencies of 900 MHZ and 760 MHZ, respectively, with an LO signal having a frequency of 830 MHZ, results in two IF signals at 70 MHZ. Generally, it is very difficult, if not impossible, to separate the two 70 MHZ signals. Instead, one or more filters 1122 and 1123 are provided upstream from each mixer 1118 to filter the unwanted frequencies, also known as image frequencies. The filters 1122 and 1123 can include various filter topologies and arrangements such as bandpass filters, one or more high pass filters, one or more low pass filters, combinations thereof, etc. Typically, the one or more mixers 1118 and the one or more filters 1122 and 1123 attenuate or reduce the strength of the EM signal 1104. For example, a typical mixer reduces the EM signal strength by 8 to 12 dB. A typical filter reduces the EM signal strength by 3 to 6 dB. As a result, one or more low noise amplifiers (LNAs) 1121 and 1124a-1124n are provided upstream of the one or more filters 1123 and 1122a-1122n. The LNAs and filters can be in reversed order. The LNAs compensate for losses in the mixers 1118, the filters 1122 and 1123, and other components by increasing the EM signal strength prior to filtering and mixing. Typically, for example, each LNA contributes 15 to 20 dB of amplification. However, LNAs require substantial power to operate. Higher frequency LNAs require more power than lower frequency LNAs. When the receiver system 1102 is intended to be portable, such as a cellular telephone receiver, for example, the LNAs require a substantial portion of the total power. At higher frequencies, impedance mismatches between the various stages further reduce the strength of the EM signal 1104. In order to optimize power transferred through the receiver system 1102, each component should be impedance matched with adjacent components. Since no two components have the exact same impedance characteristics, even for components that were manufactured with high tolerances, impedance matching must often be individually fine tuned for each receiver system 1102. As a result, impedance matching in conventional receivers tends to be labor intensive and more art than science. Impedance matching requires a significant amount of added time and expense to both the design and manufacture of conventional receivers. Since many of the components, such as LNA, filters, and impedance matching circuits, are highly frequency dependent, a receiver designed for one application is generally not suitable for other applications. Instead, a new receiver must be designed, which requires new impedance matching circuits between many of the components. Conventional receiver components are typically positioned over multiple IC substrates instead of on a single IC substrate. This is partly because there is no single substrate that is optimal for both RF, IF, and baseband frequencies. Other factors may include the sheer number of components, their various sizes and different inherent impedance characteristics, etc. Additional signal amplification is often required when going from chip to chip. Implementation over multiple substrates thus involves many costs in addition to the cost of the ICs themselves. Conventional receivers thus require many components, are difficult and time consuming to design and manufacture, and require substantial external power to maintain sufficient signal levels. Conventional receivers are thus expensive to design, build, and use. In an embodiment, the present invention is implemented to replace many, if not all, of the components between the antenna 1106 and the signal processor 1110, with an aliasing module that includes a universal frequency translator (UFT) module. The UFT is able to down-convert a wide range of EM signal frequencies using very few components. The UFT is easy to design and build, and requires very little external power. The UFT design can be easily tailored for different frequencies or frequency ranges. For example, UFT design can be easily impedance matched with relatively little tuning. In a direct-to-data embodiment of the invention, where an EM signal is directly down-converted to a demodulated baseband signal, the invention also eliminates the need for a demodulator in the signal processor 1110. When the invention is implemented in a receiver system, such as the receiver system 1102, power consumption is significantly reduced and signal to noise ratio is significantly increased. In an embodiment, the invention can be implemented and tailored for specific applications with easy to calculate and easy to implement impedance matching circuits. As a result, when the invention is implemented as a receiver, such as the receiver 1102, specialized impedance matching experience is not required. In conventional receivers, components in the IF sections comprise roughly eighty to ninety percent of the total components of the receivers. The UFT design eliminates the IF section(s) and thus eliminates the roughly eighty to ninety percent of the total components of conventional receivers. Other advantages of the invention include, but are not limited to: The invention can be implemented as a receiver with only a single local oscillator; The invention can be implemented as a receiver with only a single, lower frequency, local oscillator; The invention can be implemented as a receiver using few filters; The invention can be implemented as a receiver using unit delay filters; The invention can be implemented as a receiver that can change frequencies and receive different modulation formats with no hardware changes; The invention can be also be implemented as frequency up-converter in an EM signal transmitter; The invention can be also be implemented as a combination up-converter (transmitter) and down-converter (receiver), referred to herein as a transceiver; The invention can be implemented as a method and system for ensuring reception of a communications signal, as disclosed in U.S. patent application Ser. No. 09/176,415, filed Oct. 21, 1998, incorporated herein by reference in its entirety; The invention can be implemented in a differential configuration, whereby signal to noise ratios are increased; A receiver designed in accordance with the invention can be implemented on a single IC substrate, such as a silicon-based IC substrate; A receiver designed in accordance with the invention and implemented on a single IC substrate, such as a silicon-based IC substrate, can down-convert EM signals from frequencies in the giga Hertz range; A receiver built in accordance with the invention has a relatively flat response over a wide range of frequencies. For example, in an embodiment, a receiver built in accordance with the invention to operate around 800 MHZ has a substantially flat response (i.e., plus or minus a few dB of power) from 100 MHZ to 1 GHZ. This is referred to herein as a wide-band receiver; and A receiver built in accordance with the invention can include multiple, user-selectable, Impedance match modules, each designed for a different wide-band of frequencies, which can be used to scan an ultra-wide-band of frequencies. II. Down-Converting by Under-Sampling 1. Down-Converting an EM Carrier Signal to an EM Intermediate Signal by Under-Sampling the EM Carrier Signal at the Aliasing Rate In an embodiment, the invention down-converts an EM signal to an IF signal by under-sampling the EM signal. This embodiment is illustrated by 4508 in FIG. 45B. This embodiment can be implemented with modulated and unmodulated EM signals. This embodiment is described herein using the modulated carrier signal FMC in FIG. 1, as an example. In the example, the modulated carrier signal FMC is down-converted to an IF signal FIF. The IF signal FIF can then be demodulated, with any conventional demodulation technique to obtain a demodulated baseband signal FDMB. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any EM signal, including but not limited to, modulated carrier signals and unmodulated carrier signals. The following sections describe example methods for down-converting the modulated carrier signal FMC to the IF signal FIF, according to embodiments of the invention. Exemplary structural embodiments for implementing the methods are also described. It should be understood that the invention is not limited to the particular embodiments described below. Equivalents, extensions, variations, deviations, etc., of the following will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such equivalents, extensions, variations, deviations, etc., are within the scope and spirit of the present invention. The following sections include a high level discussion, example embodiments, and implementation examples. 1.1 High Level Description This section (including its subsections) provides a high-level description of down-converting an EM signal to an IF signal FIF, according to the invention. In particular, an operational process of under-sampling a modulated carrier signal FMC to down-convert it to the IF signal FIF, is described at a high-level. Also, a structural implementation for implementing this process is described at a high-level. This structural implementation is described herein for illustrative purposes, and is not limiting. In particular, the process described in this section can be achieved using any number of structural implementations, one of which is described in this section. The details of such structural implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. 1.1.1 Operational Description FIG. 14B depicts a flowchart 1407 that illustrates an exemplary method for under-sampling an EM signal to down-convert the EM signal to an intermediate signal FIF. The exemplary method illustrated in the flowchart 1407 is an embodiment of the flowchart 1401 in FIG. 14A. Any and all combinations of modulation techniques are valid for this invention. For ease of discussion, the digital AM carrier signal 616 is used to illustrate a high level operational description of the invention. Subsequent sections provide detailed flowcharts and descriptions for AM, FM and PM example embodiments. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any type of EM signal, including any form of modulated carrier signal and unmodulated carrier signals. The method illustrated in the flowchart 1407 is now described at a high level using the digital AM carrier signal 616 of FIG. 6C. The digital AM carrier signal 616 is re-illustrated in FIG. 15A for convenience. FIG. 15E illustrates a portion 1510 of the AM carrier signal 616, between time t1 and t2, on an expanded time scale. The process begins at step 1408, which includes receiving an EM signal. Step 1408 is represented by the digital AM carrier signal 616. Step 1410 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 15B illustrates an example under-sampling signal 1502, which includes a train of pulses 1504 having negligible apertures that tend toward zero time in duration. The pulses 1504 repeat at the aliasing rate, or pulse repetition rate. Aliasing rates are discussed below. Step 1412 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to the intermediate signal FIF. When down-converting an EM signal to an IF signal, the frequency or aliasing rate of the pulses 1504 sets the IF. FIG. 15C illustrates a stair step AM intermediate signal 1506, which is generated by the down-conversion process. The AM intermediate signal 1506 is similar to the AM carrier signal 616 except that the AM intermediate signal 1506 has a lower frequency than the AM carrier signal 616. The AM carrier signal 616 has thus been down-converted to the AM intermediate signal 1506. The AM intermediate signal 1506 can be generated at any frequency below the frequency of the AM carrier signal 616 by adjusting the aliasing rate. FIG. 15D depicts the AM intermediate signal 1506 as a filtered output signal 1508. In an alternative embodiment, the invention outputs a stair step, non-filtered or partially filtered output signal. The choice between filtered, partially filtered and non-filtered output signals is generally a design choice that depends upon the application of the invention. The intermediate frequency of the down-converted signal FIF, which in this example is the AM intermediate signal 1506, can be determined from EQ. (2), which is reproduced below for convenience. FC=n·FAR±FIF EQ. (2) A suitable aliasing rate FAR can be determined in a variety of ways. An example method for determining the aliasing rate FAR, is provided below. After reading the description herein, one skilled in the relevant art(s) will understand how to determine appropriate aliasing rates for EM signals, including ones in addition to the modulated carrier signals specifically illustrated herein. In FIG. 17, a flowchart 1701 illustrates an example process for determining an aliasing rate FAR. But a designer may choose, or an application may dictate, that the values be determined in an order that is different than the illustrated order. The process begins at step 1702, which includes determining, or selecting, the frequency of the EM signal. The frequency of the FM carrier signal 616 can be, for example, 901 MHZ. Step 1704 includes determining, or selecting, the intermediate frequency. This is the frequency to which the EM signal will be down-converted. The intermediate frequency can be determined, or selected, to match a frequency requirement of a down-stream demodulator. The intermediate frequency can be, for example, 1 MHZ. Step 1706 includes determining the aliasing rate or rates that will down-convert the EM signal to the IF specified in step 1704. EQ. (2) can be rewritten as EQ. (3): n·Far=FC±FIF EQ. (3) Which can be rewritten as EQ. (4): n = F C ± F IF F AR EQ . ( 4 ) or as EQ. (5): F AR = F C ± F IF n EQ . ( 5 ) (FC±FIF) can be defined as a difference value FDIFF, as illustrated in EQ. (6): (FC±FIF)=FDIFF EQ. (6) EQ. (4) can be rewritten as EQ. (7): n = F DIFF F AR EQ . ( 7 ) From EQ. (7), it can be seen that, for a given n and a constant FAR, FDIFF is constant. For the case of FDIFF=FC−FIF, and for a constant FDIFF, as FC increases, FIF necessarily increases. For the case of FDIFF=FC+FIF, and for a constant FDIFF, as FC increases, FIF necessarily decreases. In the latter case of FDIFF=FC+FIF, any phase or frequency changes on FC correspond to reversed or inverted phase or frequency changes on FIF. This is mentioned to teach the reader that if FDIFF=FC+FIF is used, the above effect will affect the phase and frequency response of the modulated intermediate signal FIF. EQs. (2) through (7) can be solved for any valid n. A suitable n can be determined for any given difference frequency FDIFF and for any desired aliasing rate FAR(Desired). EQs. (2) through (7) can be utilized to identify a specific harmonic closest to a desired aliasing rate FAR(Desired) that will generate the desired intermediate signal FIF. An example is now provided for determining a suitable n for a given difference frequency FDIFF and for a desired aliasing rate FAR(Desired). For ease of illustration, only the case of (FC−FIF) is illustrated in the example below. n = F C - F IF F AR ( Desired ) = F DIFF F AR ( Desired ) The desired aliasing rate FAR(Desired) can be, for example, 140 MHZ. Using the previous examples, where the carrier frequency is 901 MHZ and the IF is 1 MHZ, an initial value of n is determined as: n = 901 MHZ - 1 MHZ 140 MHZ = 900 140 = 6.4 The initial value 6.4 can be rounded up or down to the valid nearest n, which was defined above as including (0.5, 1, 2, 3, . . . ). In this example, 6.4 is rounded down to 6.0, which is inserted into EQ. (5) for the case of (FC−FIF)=FDIFF: F AR = F c - F IF n F AR = 901 MHZ - 1 MHZ 6 = 900 MHZ 6 = 150 MHZ In other words, under-sampling a 901 MHZ EM carrier signal at 150 MHZ generates an intermediate signal at 1 MHZ. When the under-sampled EM carrier signal is a modulated carrier signal, the intermediate signal will also substantially include the modulation. The modulated intermediate signal can be demodulated through any conventional demodulation technique. Alternatively, instead of starting from a desired aliasing rate, a list of suitable aliasing rates can be determined from the modified form of EQ. (5), by solving for various values of n. Example solutions are listed below. F AR = ( F C - F IF ) n = F DIFF n = 901 MHZ - 1 MHZ n = 900 MHZ n Solving for n=0.5, 1, 2, 3, 4, 5 and 6: 900 MHZ/0.5=1.8 GHZ (i.e., second harmonic, illustrated in FIG. 25A as 2502); 900 MHZ/1=900 MHZ (i.e., fundamental frequency, illustrated in FIG. 25B as 2504); 900 MHZ/2=450 MHZ (i.e., second sub-harmonic, illustrated in FIG. 25C as 2506); 900 MHZ/3=300 MHZ (i.e., third sub-harmonic, illustrated in FIG. 25D as 2508); 900 MHZ/4=225 MHZ (i.e., fourth sub-harmonic, illustrated in FIG. 25E as 2510); 900 MHZ/5=180 MHZ (i.e., fifth sub-harmonic, illustrated in FIG. 25F as 2512); and 900 MHZ/6=150 MHZ (i.e., sixth sub-harmonic, illustrated in FIG. 25G as 2514). The steps described above can be performed for the case of (FC+FIF) in a similar fashion. The results can be compared to the results obtained from the case of (FC−FIF) to determine which provides better result for an application. In an embodiment, the invention down-converts an EM signal to a relatively standard IF in the range of, for example, 100 KHZ to 200 MHZ. In another embodiment, referred to herein as a small off-set implementation, the invention down-converts an EM signal to a relatively low frequency of, for example, less than 100 KHZ. In another embodiment, referred to herein as a large off-set implementation, the invention down-converts an EM signal to a relatively higher IF signal, such as, for example, above 200 MHZ. The various off-set implementations provide selectivity for different applications. Generally, lower data rate applications can operate at lower intermediate frequencies. But higher intermediate frequencies can allow more information to be supported for a given modulation technique. In accordance with the invention, a designer picks an optimum information bandwidth for an application and an optimum intermediate frequency to support the baseband signal. The intermediate frequency should be high enough to support the bandwidth of the modulating baseband signal FMB. Generally, as the aliasing rate approaches a harmonic or sub-harmonic frequency of the EM signal, the frequency of the down-converted IF signal decreases. Similarly, as the aliasing rate moves away from a harmonic or sub-harmonic frequency of the EM signal, the IF increases. Aliased frequencies occur above and below every harmonic of the aliasing frequency. In order to avoid mapping other aliasing frequencies in the band of the aliasing frequency (IF) of interest, the IF of interest is preferably not near one half the aliasing rate. As described in example implementations below, an aliasing module, including a universal frequency translator (UFT) module built in accordance with the invention, provides a wide range of flexibility in frequency selection and can thus be implemented in a wide range of applications. Conventional systems cannot easily offer, or do not allow, this level of flexibility in frequency selection. 1.1.2 Structural Description FIG. 16 illustrates a block diagram of an under-sampling system 1602 according to an embodiment of the invention. The under-sampling system 1602 is an example embodiment of the generic aliasing system 1302 in FIG. 13. The under-sampling system 1602 includes an under-sampling module 1606. The under-sampling module 1606 receives the EM signal 1304 and an under-sampling signal 1604, which includes under-sampling pulses having negligible apertures that tend towards zero time, occurring at a frequency equal to the aliasing rate FAR. The under-sampling signal 1604 is an example embodiment of the aliasing signal 1310. The under-sampling module 1606 under-samples the EM signal 1304 at the aliasing rate FAR of the under-sampling signal 1604. The under-sampling system 1602 outputs a down-converted signal 1308A. Preferably, the under-sampling module 1606 under-samples the EM signal 1304 to down-convert it to the intermediate signal FIF in the manner shown in the operational flowchart 1407 of FIG. 14B. But it should be understood that the scope and spirit of the invention includes other structural embodiments for performing the steps of the flowchart 1407. The specifics of the other structural embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. In an embodiment, the aliasing rate FAR of the under-sampling signal 1604 is chosen in the manner discussed in Section II.1.1.1 so that the under-sampling module 1606 under-samples the EM carrier signal 1304 generating the intermediate frequency FIF. The operation of the under-sampling system 1602 is now described with reference to the flowchart 1407 and to the timing diagrams in FIGS. 15A-D. In step 1408, the under-sampling module 1606 receives the AM signal 616 (FIG. 15A). In step 1410, the under-sampling module 1606 receives the under-sampling signal 1502 (FIG. 15B). In step 1412, the under-sampling module 1606 under-samples the AM carrier signal 616 at the aliasing rate of the under-sampling signal 1502, or a multiple thereof, to down-convert the AM carrier signal 616 to the intermediate signal 1506 (FIG. 15D). Example implementations of the under-sampling module 1606 are provided in Sections 4 and 5 below. 1.1 Example Embodiments Various embodiments related to the method(s) and structure(s) described above are presented in this section (and its subsections). These embodiments are described herein for purposes of illustration, and not limitation. The invention is not limited to these embodiments. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. The method for down-converting the EM signal 1304 to the intermediate signal FIF, illustrated in the flowchart 1407 of FIG. 14B, can be implemented with any type of EM signal, including unmodulated EM carrier signals and modulated carrier signals including, but not limited to, AM, FM, PM, etc., or any combination thereof. Operation of the flowchart 1407 of FIG. 14B is described below for AM, FM and PM carrier signals. The exemplary descriptions below are intended to facilitate an understanding of the present invention. The present invention is not limited to or by the exemplary embodiments below. 1.2.1 First Example Embodiment: Amplitude Modulation 1.2.1.1 Operational Description Operation of the exemplary process of the flowchart 1407 in FIG. 14B is described below for the analog AM carrier signal 516, illustrated in FIG. 5C, and for the digital AM carrier signal 616, illustrated in FIG. 6C. 1.2.1.1.1 Analog AM Carrier Signal A process for down-converting the analog AM carrier signal 516 in FIG. 5C to an analog AM intermediate signal is now described with reference to the flowchart 1407 in FIG. 14B. The analog AM carrier signal 516 is re-illustrated in FIG. 19A for convenience. For this example, the analog AM carrier signal 516 oscillates at approximately 901 MHZ. In FIG. 19B, an analog AM carrier signal 11904 illustrates a portion of the analog AM carrier signal 516 on an expanded time scale. The process begins at step 1408, which includes receiving the EM signal. This is represented by the analog AM carrier signal 516 in FIG. 19A. Step 1410 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 19C illustrates an example under-sampling signal 1906 on approximately the same time scale as FIG. 19B. The under-sampling signal 1906 includes a train of pulses 1907 having negligible apertures that tend towards zero time in duration. The pulses 1907 repeat at the aliasing rate, or pulse repetition rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. For this example, the aliasing rate is approximately 450 MHZ. Step 1412 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to the intermediate signal FIF. Step 1412 is illustrated in FIG. 19B by under-sample points 1905. Because a harmonic of the aliasing rate is off-set from the AM carrier signal 516, the under-sample points 1905 “walk through” the analog AM carrier signal 516. In this example, the under-sample points 1905 “walk through” the analog AM carrier signal 516 at approximately a one megahertz rate. In other words, the under-sample points 1905 occur at different locations on subsequent cycles of the AM carrier signal 516. As a result, the under-sample points 1905 capture varying amplitudes of the analog AM signal 516. For example, under-sample point 1905A has a larger amplitude than under-sample point 1905B. In FIG. 19D, the under-sample points 1905 correlate to voltage points 1908. In an embodiment, the voltage points 1908 form an analog AM intermediate signal 1910. This can be accomplished in many ways. For example, each voltage point 1908 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as discussed below. In FIG. 19E, an AM intermediate signal 1912 represents the AM intermediate signal 1910, after filtering, on a compressed time scale. Although FIG. 19E illustrates the AM intermediate signal 1912 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The AM intermediate signal 1912 is substantially similar to the AM carrier signal 516, except that the AM intermediate signal 1912 is at the 1 MHZ intermediate frequency. The AM intermediate signal 1912 can be demodulated through any conventional AM demodulation technique. The drawings referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the AM intermediate signal 1910 in FIG. 19D and the AM intermediate signal 1912 in FIG. 19E illustrate that the AM carrier signal 516 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 1.2.1.1.2 Digital AM Carrier Signal A process for down-converting the digital AM carrier signal 616 in FIG. 6C to a digital AM intermediate signal is now described with reference to the flowchart 1407 in FIG. 14B. The digital AM carrier signal 616 is re-illustrated in FIG. 18A for convenience. For this example, the digital AM carrier signal 616 oscillates at approximately 901 MHZ. In FIG. 18B, an AM carrier signal 1804 illustrates a portion of the AM signal 616, from time t0 to t1, on an expanded time scale. The process begins at step 1408, which includes receiving an EM signal. This is represented by the AM signal 616 in FIG. 18A. Step 1410 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 18C illustrates an example under-sampling signal 1806 on approximately the same time scale as FIG. 18B. The under-sampling signal 1806 includes a train of pulses 1807 having negligible apertures that tend towards zero time in duration. The pulses 1807 repeat at the aliasing rate, or pulse repetition rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. For this example, the aliasing rate is approximately 450 MHZ. Step 1412 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to the intermediate signal FIF. Step 1412 is illustrated in FIG. 18B by under-sample points 1805. Because a harmonic of the aliasing rate is off-set from the AM carrier signal 616, the under-sample points 1805 walk through the AM carrier signal 616. In other words, the under-sample points 1805 occur at different locations of subsequent cycles of the AM signal 616. As a result, the under-sample points 1805 capture various amplitudes of the AM signal 616. In this example, the under-sample points 1805 walk through the AM carrier signal 616 at approximately a 1 MHZ rate. For example, under-sample point 1805A has a larger amplitude than under-sample point 1805B. In FIG. 18D, the under-sample points 1805 correlate to voltage points 1808. In an embodiment, the voltage points 1805 form an AM intermediate signal 1810. This can be accomplished in many ways. For example, each voltage point 1808 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as discussed below. In FIG. 18E, an AM intermediate signal 1812 represents the AM intermediate signal 1810, after filtering, on a compressed time scale. Although FIG. 18E illustrates the AM intermediate signal 1812 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The AM intermediate signal 1812 is substantially similar to the AM carrier signal 616, except that the AM intermediate signal 1812 is at the 1 MHZ intermediate frequency. The AM intermediate signal 1812 can be demodulated through any conventional AM demodulation technique. The drawings referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the AM intermediate signal 1810 in FIG. 18D and the AM intermediate signal 1812 in FIG. 18E illustrate that the AM carrier signal 616 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 1.2.1.2 Structural Description The operation of the under-sampling system 1602 is now described for the analog AM carrier signal 516, with reference to the flowchart 1407 and to the timing diagrams of FIGS. 19A-E. In step 1408, the under-sampling module 1606 receives the AM carrier signal 516 (FIG. 19A). In step 1410, the under-sampling module 1606 receives the under-sampling signal 1906 (FIG. 19C). In step 1412, the under-sampling module 1606 under-samples the AM carrier signal 516 at the aliasing rate of the under-sampling signal 1906 to down-convert it to the AM intermediate signal 1912 (FIG. 19E). The operation of the under-sampling system 1602 is now described for the digital AM carrier signal 616, with reference to the flowchart 1407 and to the timing diagrams of FIGS. 18A-E. In step 1408, the under-sampling module 1606 receives the AM carrier signal 616 (FIG. 18A). In step 1410, the under-sampling module 1606 receives the under-sampling signal 1806 (FIG. 18C). In step 1412, the under-sampling module 1606 under-samples the AM carrier signal 616 at the aliasing rate of the under-sampling signal 1806 to down-convert it to the AM intermediate signal 1812 (FIG. 18E). Example implementations of the under-sampling module 1606 are provided in Sections 4 and 5 below. 1.2.2 Second Example Embodiment: Frequency Modulation 1.2.2.1 Operational Description Operation of the exemplary process of the flowchart 1407 in FIG. 14B is described below for the analog FM carrier signal 716, illustrated in FIG. 7C, and for the digital FM carrier signal 816, illustrated in FIG. 8C. 1.2.2.1.1 Analog FM Carrier Signal A process for down-converting the analog FM carrier signal 716 to an analog FM intermediate signal is now described with reference to the flowchart 1407 in FIG. 14B. The analog FM carrier signal 716 is re-illustrated in FIG. 20A for convenience. For this example, the analog FM carrier signal 716 oscillates at approximately 901 MHZ. In FIG. 20B, an FM carrier signal 2004 illustrates a portion of the analog FM carrier signal 716, from time t1 to t3, on an expanded time scale. The process begins at step 1408, which includes receiving an EM signal. This is represented in FIG. 20A by the FM carrier signal 716. Step 1410 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 20C illustrates an example under-sampling signal 2006 on approximately the same time scale as FIG. 20B. The under-sampling signal 2006 includes a train of pulses 2007 having negligible apertures that tend towards zero time in duration. The pulses 2007 repeat at the aliasing rate or pulse repetition rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. For this example, where the FM carrier signal 716 is centered around 901 MHZ, the aliasing rate is approximately 450 MHZ. Step 1412 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to the intermediate signal FIF. Step 1412 is illustrated in FIG. 20B by under-sample points 2005. Because a harmonic of the aliasing rate is off-set from the FM carrier signal 716, the under-sample points 2005 occur at different locations of subsequent cycles of the under-sampled signal 716. In other words, the under-sample points 2005 walk through the signal 716. As a result, the under-sample points 2005 capture various amplitudes of the FM carrier signal 716. In FIG. 20D, the under-sample points 2005 correlate to voltage points 2008. In an embodiment, the voltage points 2005 form an analog FM intermediate signal 2010. This can be accomplished in many ways. For example, each voltage point 2008 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as discussed below. In FIG. 20E, an FM intermediate signal 2012 illustrates the FM intermediate signal 2010, after filtering, on a compressed time scale. Although FIG. 20E illustrates the FM intermediate signal 2012 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The FM intermediate signal 2012 is substantially similar to the FM carrier signal 716, except that the FM intermediate signal 2012 is at the 1 MHZ intermediate frequency. The FM intermediate signal 2012 can be demodulated through any conventional FM demodulation technique. The drawings referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the FM intermediate signal 2010 in FIG. 20D and the FM intermediate signal 2012 in FIG. 20E illustrate that the FM carrier signal 716 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 1.2.2.1.2 Digital FM Carrier Signal A process for down-converting the digital FM carrier signal 816 to a digital FM intermediate signal is now described with reference to the flowchart 1407 in FIG. 14B. The digital FM carrier signal 816 is re-illustrated in FIG. 21A for convenience. For this example, the digital FM carrier signal 816 oscillates at approximately 901 MHZ. In FIG. 21B, an FM carrier signal 2104 illustrates a portion of the FM carrier signal 816, from time t1 to t3, on an expanded time scale. The process begins at step 1408, which includes receiving an EM signal. This is represented in FIG. 21A, by the FM carrier signal 816. Step 1410 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 21C illustrates an example under-sampling signal 2106 on approximately the same time scale as FIG. 21B. The under-sampling signal 2106 includes a train of pulses 2107 having negligible apertures that tend toward zero time in duration. The pulses 2107 repeat at the aliasing rate, or pulse repetition rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. In this example, where the FM carrier signal 816 is centered around 901 MHZ, the aliasing rate is selected as approximately 450 MHZ, which is a sub-harmonic of 900 MHZ, which is off-set by 1 MHZ from the center frequency of the FM carrier signal 816. Step 1412 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to an intermediate signal FIF. Step 1412 is illustrated in FIG. 21B by under-sample points 2105. Because a harmonic of the aliasing rate is off-set from the FM carrier signal 816, the under-sample points 2105 occur at different locations of subsequent cycles of the FM carrier signal 816. In other words, the under-sample points 2105 walk through the signal 816. As a result, the under-sample points 2105 capture various amplitudes of the signal 816. In FIG. 21D, the under-sample points 2105 correlate to voltage points 2108. In an embodiment, the voltage points 2108 form a digital FM intermediate signal 2110. This can be accomplished in many ways. For example, each voltage point 2108 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as described below. In FIG. 21E, an FM intermediate signal 2112 represents the FM intermediate signal 2110, after filtering, on a compressed time scale. Although FIG. 21E illustrates the FM intermediate signal 2112 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The FM intermediate signal 2112 is substantially similar to the FM carrier signal 816, except that the FM intermediate signal 2112 is at the 1 MHZ intermediate frequency. The FM intermediate signal 2112 can be demodulated through any conventional FM demodulation technique. The drawings referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the FM intermediate signal 2110 in FIG. 21D and the FM intermediate signal 2112 in FIG. 21E illustrate that the FM carrier signal 816 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 1.2.2.2 Structural Description The operation of the under-sampling system 1602 is now described for the analog FM carrier signal 716, with reference to the flowchart 1407 and the timing diagrams of FIGS. 20A-E. In step 1408, the under-sampling module 1606 receives the FM carrier signal 716 (FIG. 20A). In step 1410, the under-sampling module 1606 receives the under-sampling signal 2006 (FIG. 20C). In step 1412, the under-sampling module 1606 under-samples the FM carrier signal 716 at the aliasing rate of the under-sampling signal 2006 to down-convert the FM carrier signal 716 to the FM intermediate signal 2012 (FIG. 20E). The operation of the under-sampling system 1602 is now described for the digital FM carrier signal 816, with reference to the flowchart 1407 and the timing diagrams of FIGS. 21A-E. In step 1408, the under-sampling module 1606 receives the FM carrier signal 816 (FIG. 21A). In step 1410, the under-sampling module 1606 receives the under-sampling signal 2106 (FIG. 21C). In step 1412, the under-sampling module 1606 under-samples the FM carrier signal 816 at the aliasing rate of the under-sampling signal 2106 to down-convert the FM carrier signal 816 to the FM intermediate signal 2112 (FIG. 21E). Example implementations of the under-sampling module 1606 are provided in Sections 4 and 5 below. 1.2.3 Third Example Embodiment: Phase Modulation 1.2.3.1 Operational Description Operation of the exemplary process of the flowchart 1407 in FIG. 14B is described below for the analog PM carrier signal 916, illustrated in FIG. 9C, and for the digital PM carrier signal 1016, illustrated in FIG. 10C. 1.2.3.1.1 Analog PM Carrier Signal A process for down-converting the analog PM carrier signal 916 to an analog PM intermediate signal is now described with reference to the flowchart 1407 in FIG. 14B. The analog PM carrier signal 916 is re-illustrated in FIG. 23A for convenience. For this example, the analog PM carrier signal 916 oscillates at approximately 901 MHZ. In FIG. 23B, a PM carrier signal 2304 illustrates a portion of the analog PM carrier signal 916, from time t1 to t3, on an expanded time scale. The process of down-converting the PM carrier signal 916 to a PM intermediate signal begins at step 1408, which includes receiving an EM signal. This is represented in FIG. 23A, by the analog PM carrier signal 916. Step 1410 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 23C illustrates an example under-sampling signal 2306 on approximately the same time scale as FIG. 23B. The under-sampling signal 2306 includes a train of pulses 2307 having negligible apertures that tend towards zero time in duration. The pulses 2307 repeat at the aliasing rate, or pulse repetition rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. In this example, the aliasing rate is approximately 450 MHZ. Step 1412 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to the intermediate signal FIF. Step 1412 is illustrated in FIG. 23B by under-sample points 2305. Because a harmonic of the aliasing rate is off-set from the PM carrier signal 916, the under-sample points 2305 occur at different locations of subsequent cycles of the PM carrier signal 916. As a result, the under-sample points capture various amplitudes of the PM carrier signal 916. In FIG. 23D, voltage points 2308 correlate to the under-sample points 2305. In an embodiment, the voltage points 2308 form an analog PM intermediate signal 2310. This can be accomplished in many ways. For example, each voltage point 2308 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as described below. In FIG. 23E, an analog PM intermediate signal 2312 illustrates the analog PM intermediate signal 2310, after filtering, on a compressed time scale. Although FIG. 23E illustrates the PM intermediate signal 2312 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The analog PM intermediate signal 2312 is substantially similar to the analog PM carrier signal 916, except that the analog PM intermediate signal 2312 is at the 1 MHZ intermediate frequency. The analog PM intermediate signal 2312 can be demodulated through any conventional PM demodulation technique. The drawings referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the analog PM intermediate signal 2310 in FIG. 23D and the analog PM intermediate signal 2312 in FIG. 23E illustrate that the analog PM carrier signal 2316 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 1.2.3.1.2 Digital PM Carrier Signal A process for down-converting the digital PM carrier signal 1016 to a digital PM intermediate signal is now described with reference to the flowchart 1407 in FIG. 14B. The digital PM carrier signal 1016 is re-illustrated in FIG. 22A for convenience. For this example, the digital PM carrier signal 1016 oscillates at approximately 901 MHZ. In FIG. 22B, a PM carrier signal 2204 illustrates a portion of the digital PM carrier signal 1016, from time t1 to t3, on an expanded time scale. The process begins at step 1408, which includes receiving an EM signal. This is represented in FIG. 22A by the digital PM carrier signal 1016. Step 1408 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 22C illustrates example under-sampling signal 2206 on approximately the same time scale as FIG. 22B. The under-sampling signal 2206 includes a train of pulses 2207 having negligible apertures that tend towards zero time in duration. The pulses 2207 repeat at the aliasing rate, or a pulse repetition rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. In this example, the aliasing rate is approximately 450 MHZ. Step 1412 includes under-sampling the EM signal at the aliasing rate to down-convert the EM signal to an intermediate signal FIF. Step 1412 is illustrated in FIG. 22B by under-sample points 2205. Because a harmonic of the aliasing rate is off-set from the PM carrier signal 1016, the under-sample points 2205 occur at different locations of subsequent cycles of the PM carrier signal 1016. In FIG. 22D, voltage points 2208 correlate to the under-sample points 2205. In an embodiment, the voltage points 2208 form a digital PM intermediate signal 2210. This can be accomplished in many ways. For example, each voltage point 2208 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as described below. In FIG. 22E, a digital PM intermediate signal 2212 represents the digital PM intermediate signal 2210 on a compressed time scale. Although FIG. 22E illustrates the PM intermediate signal 2212 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The digital PM intermediate signal 2212 is substantially similar to the digital PM carrier signal 1016, except that the digital PM intermediate signal 2212 is at the 1 MHZ intermediate frequency. The digital PM carrier signal 2212 can be demodulated through any conventional PM demodulation technique. The drawings referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the digital PM intermediate signal 2210 in FIG. 22D and the digital PM intermediate signal 2212 in FIG. 22E illustrate that the digital PM carrier signal 1016 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 1.2.3.2 Structural Description The operation of the under-sampling system 1602 is now described for the analog PM carrier signal 916, with reference to the flowchart 1407 and the timing diagrams of FIGS. 23A-E. In step 1408, the under-sampling module 1606 receives the PM carrier signal 916 (FIG. 23A). In step 1410, the under-sampling module 1606 receives the under-sampling signal 2306 (FIG. 23C). In step 1412, the under-sampling module 1606 under-samples the PM carrier signal 916 at the aliasing rate of the under-sampling signal 2306 to down-convert the PM carrier signal 916 to the PM intermediate signal 2312 (FIG. 23E). The operation of the under-sampling system 1602 is now described for the digital PM carrier signal 1016, with reference to the flowchart 1407 and the timing diagrams of FIGS. 22A-E. In step 1408, the under-sampling module 1606 receives the PM carrier signal 1016 (FIG. 22A). In step 1410, the under-sampling module 1606 receives the under-sampling signal 2206 (FIG. 22C). In step 1412, the under-sampling module 1606 under-samples the PM carrier signal 1016 at the aliasing rate of the under-sampling signal 2206 to down-convert the PM carrier signal 1016 to the PM intermediate signal 2212 (FIG. 22E). Example implementations of the under-sampling module 1606 are provided in Sections 4 and 5 below. 1.2.4 Other Embodiments The embodiments described above are provided for purposes of illustration. These embodiments are not intended to limit the invention. Alternate embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate embodiments fall within the scope and spirit of the present invention. Example implementations of the under-sampling module 1606 are provided in Sections 4 and 5 below. 1.3 Implementation Examples Exemplary operational and/or structural implementations related to the method(s), structure(s), and/or embodiments described above are presented in Sections 4 and 5 below. The implementations are presented for purposes of illustration, and not limitation. The invention is not limited to the particular implementation examples described therein. Alternate implementations (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. 2. Directly Down-Converting an EM Signal to a Baseband Signal (Direct-to-Data) In an embodiment, the invention directly down-converts an EM signal to a baseband signal, by under-sampling the EM signal. This embodiment is referred to herein as direct-to-data down-conversion and is illustrated in FIG. 45B as 4510. This embodiment can be implemented with modulated and unmodulated EM signals. This embodiment is described herein using the modulated carrier signal FMC in FIG. 1, as an example. In the example, the modulated carrier signal FMC is directly down-converted to the demodulated baseband signal FDMB. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention is applicable to down-convert any EM signal, including but not limited to, modulated carrier signals and unmodulated carrier signals. The following sections describe example methods for directly down-converting the modulated carrier signal FMC to the demodulated baseband signal FDMB. Exemplary structural embodiments for implementing the methods are also described. It should be understood that the invention is not limited to the particular embodiments described below. Equivalents, extensions, variations, deviations, etc., of the following will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such equivalents, extensions, variations, deviations, etc., are within the scope and spirit of the present invention. The following sections include a high level discussion, example embodiments, and implementation examples. 2.1 High Level Description This section (including its subsections) provides a high-level description of directly down-converting the modulated carrier signal FMC to the demodulated baseband signal FDMB, according to the invention. In particular, an operational process of directly down-converting the modulated carrier signal FMC to the demodulated baseband signal FDMB is described at a high-level. Also, a structural implementation for implementing this process is described at a high-level. The structural implementation is described herein for illustrative purposes, and is not limiting. In particular, the process described in this section can be achieved using any number of structural implementations, one of which is described in this section. The details of such structural implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. 2.1.1 Operational Description FIG. 14C depicts a flowchart 1413 that illustrates an exemplary method for directly down-converting an EM signal to a demodulated baseband signal FDMB. The exemplary method illustrated in the flowchart 1413 is an embodiment of the flowchart 1401 in FIG. 14A. Any and all combinations of modulation techniques are valid for this invention. For ease of discussion, the digital AM carrier signal 616 is used to illustrate a high level operational description of the invention. Subsequent sections provide detailed descriptions for AM and PM example embodiments. FM presents special considerations that are dealt with separately in Section II.3, below. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any type of EM signal, including any form of modulated carrier signal and unmodulated carrier signals. The method illustrated in the flowchart 1413 is now described at a high level using the digital AM carrier signal 616, from FIG. 6C. The digital AM carrier signal 616 is re-illustrated in FIG. 33A for convenience. The process of the flowchart 1413 begins at step 1414, which includes receiving an EM signal. Step 1414 is represented by the digital AM carrier signal 616 in FIG. 33A. Step 1416 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 33B illustrates an example under-sampling signal 3302 which includes a train of pulses 3303 having negligible apertures that tend towards zero time in duration. The pulses 3303 repeat at the aliasing rate or pulse repetition rate. The aliasing rate is determined in accordance with EQ. (2), reproduced below for convenience. FC=n·FAR±FIF EQ. (2) When directly down-converting an EM signal to baseband (i.e., zero IF), EQ. (2) becomes: FC=n·FAR EQ. (8) Thus, to directly down-convert the AM signal 616 to a demodulated baseband signal, the aliasing rate is substantially equal to the frequency of the AM signal 616 or to a harmonic or sub-harmonic thereof. Although the aliasing rate is too low to permit reconstruction of higher frequency components of the AM signal 616 (i.e., the carrier frequency), it is high enough to permit substantial reconstruction of the lower frequency modulating baseband signal 310. Step 1418 includes under-sampling the EM signal at the aliasing rate to directly down-convert it to the demodulated baseband signal FDMB. FIG. 33C illustrates a stair step demodulated baseband signal 3304, which is generated by the direct down-conversion process. The demodulated baseband signal 3304 is similar to the digital modulating baseband signal 310 in FIG. 3. FIG. 33D depicts a filtered demodulated baseband signal 3306, which can be generated from the stair step demodulated baseband signal 3304. The invention can thus generate a filtered output signal, a partially filtered output signal, or a relatively unfiltered stair step output signal. The choice between filtered, partially filtered and non-filtered output signals is generally a design choice that depends upon the application of the invention. 2.1.2 Structural Description FIG. 16 illustrates the block diagram of the under-sampling system 1602 according to an embodiment of the invention. The under-sampling system 1602 is an example embodiment of the generic aliasing system 1302 in FIG. 13. In a direct to data embodiment, the frequency of the under-sampling signal 1604 is substantially equal to a harmonic of the EM signal 1304 or, more typically, a sub-harmonic thereof. Preferably, the under-sampling module 1606 under-samples the EM signal 1304 to directly down-convert it to the demodulated baseband signal FDMB, in the manner shown in the operational flowchart 1413. But it should be understood that the scope and spirit of the invention includes other structural embodiments for performing the steps of the flowchart 1413. The specifics of the other structural embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. The operation of the aliasing system 1602 is now described for the digital AM carrier signal 616, with reference to the flowchart 1413 and to the timing diagrams in FIGS. 33A-D. In step 1414, the under-sampling module 1606 receives the AM carrier signal 616 (FIG. 33A). In step 1416, the under-sampling module 1606 receives the under-sampling signal 3302 (FIG. 33B). In step 1418, the under-sampling module 1606 under-samples the AM carrier signal 616 at the aliasing rate of the under-sampling signal 3302 to directly down-convert the AM carrier signal 616 to the demodulated baseband signal 3304 in FIG. 33C or the filtered demodulated baseband signal 3306 in FIG. 33D. Example implementations of the under-sampling module 1606 are provided in Sections 4 and 5 below. 2.2 Example Embodiments Various embodiments related to the method(s) and structure(s) described above are presented in this section (and its subsections). These embodiments are described herein for purposes of illustration, and not limitation. The invention is not limited to these embodiments. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. The method for down-converting the EM signal 1304 to the demodulated baseband signal FDMB, illustrated in the flowchart 1413 of FIG. 14C, can be implemented with any type EM signal, including modulated carrier signals, including but not limited to, AM, PM, etc., or any combination thereof. Operation of the flowchart 1413 of FIG. 14C is described below for AM and PM carrier signals. The exemplary descriptions below are intended to facilitate an understanding of the present invention. The present invention is not limited to or by the exemplary embodiments below. 2.2.1 First Example Embodiment: Amplitude Modulation 2.2.1.1 Operational Description Operation of the exemplary process of the flowchart 1413 in FIG. 14C is described below for the analog AM carrier signal 516, illustrated in FIG. 5C and for the digital AM carrier signal 616, illustrated in FIG. 6C. 2.2.1.1.1 Analog AM Carrier Signal A process for directly down-converting the analog AM carrier signal 516 to a demodulated baseband signal is now described with reference to the flowchart 1413 in FIG. 14C. The analog AM carrier signal 516 is re-illustrated in 35A for convenience. For this example, the analog AM carrier signal 516 oscillates at approximately 900 MHZ. In FIG. 35B, an analog AM carrier signal 3504 illustrates a portion of the analog AM carrier signal 516 on an expanded time scale. The process begins at step 1414, which includes receiving an EM signal. This is represented by the analog AM carrier signal 516. Step 1416 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 35C illustrates an example under-sampling signal 3506 on approximately the same time scale as FIG. 35B. The under-sampling signal 3506 includes a train of pulses 3507 having negligible apertures that tend towards zero time in duration. The pulses 3507 repeat at the aliasing rate or pulse repetition rate, which is determined or selected as previously described. Generally, when directly down-converting to a demodulated baseband signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the under-sampled signal. In this example, the aliasing rate is approximately 450 MHZ. Step 1418 includes under-sampling the EM signal at the aliasing rate to directly down-convert it to the demodulated baseband signal FDMB. Step 1418 is illustrated in FIG. 35B by under-sample points 3505. Because a harmonic of the aliasing rate is substantially equal to the frequency of the signal 516, essentially no IF is produced. The only substantial aliased component is the baseband signal. In FIG. 35D, voltage points 3508 correlate to the under-sample points 3505. In an embodiment, the voltage points 3508 form a demodulated baseband signal 3510. This can be accomplished in many ways. For example, each voltage point 3508 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as described below. In FIG. 35E, a demodulated baseband signal 3512 represents the demodulated baseband signal 3510, after filtering, on a compressed time scale. Although FIG. 35E illustrates the demodulated baseband signal 3512 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The demodulated baseband signal 3512 is substantially similar to the modulating baseband signal 210. The demodulated baseband signal 3512 can be processed using any signal processing technique(s) without further down-conversion or demodulation. The aliasing rate of the under-sampling signal is preferably controlled to optimize the demodulated baseband signal for amplitude output and polarity, as desired. In the example above, the under-sample points 3505 occur at positive locations of the AM carrier signal 516. Alternatively, the under-sample points 3505 can occur at other locations including negative points of the analog AM carrier signal 516. When the under-sample points 3505 occur at negative locations of the AM carrier signal 516, the resultant demodulated baseband signal is inverted relative to the modulating baseband signal 210. The drawings referred to herein illustrate direct to data down-conversion in accordance with the invention. For example, the demodulated baseband signal 3510 in FIG. 35D and the demodulated baseband signal 3512 in FIG. 35E illustrate that the AM carrier signal 516 was successfully down-converted to the demodulated baseband signal 3510 by retaining enough baseband information for sufficient reconstruction. 2.2.1.1.2 Digital AM Carrier Signal A process for directly down-converting the digital AM carrier signal 616 to a demodulated baseband signal is now described with reference to the flowchart 1413 in FIG. 14C. The digital AM carrier signal 616 is re-illustrated in FIG. 36A for convenience. For this example, the digital AM carrier signal 616 oscillates at approximately 901 MHZ. In FIG. 36B, a digital AM carrier signal 3604 illustrates a portion of the digital AM carrier signal 616 on an expanded time scale. The process begins at step 1414, which includes receiving an EM signal. This is represented by the digital AM carrier signal 616. Step 1416 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 36C illustrates an example under-sampling signal 3606 on approximately the same time scale as FIG. 36B. The under-sampling signal 3606 includes a train of pulses 3607 having negligible apertures that tend towards zero time in duration. The pulses 3607 repeat at the aliasing rate or pulse repetition rate, which is determined or selected as previously described. Generally, when directly down-converting to a demodulated baseband signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the under-sampled signal. In this example, the aliasing rate is approximately 450 MHZ. Step 1418 includes under-sampling the EM signal at the aliasing rate to directly down-convert it to the demodulated baseband signal FDMB. Step 1418 is illustrated in FIG. 36B by under-sample points 3605. Because the aliasing rate is substantially equal to the AM carrier signal 616, or to a harmonic or sub-harmonic thereof, essentially no IF is produced. The only substantial aliased component is the baseband signal. In FIG. 36D, voltage points 3608 correlate to the under-sample points 3605. In an embodiment, the voltage points 3608 form a demodulated baseband signal 3610. This can be accomplished in many ways. For example, each voltage point 3608 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as described below. In FIG. 36E, a demodulated baseband signal 3612 represents the demodulated baseband signal 3610, after filtering, on a compressed time scale. Although FIG. 36E illustrates the demodulated baseband signal 3612 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The demodulated baseband signal 3612 is substantially similar to the digital modulating baseband signal 310. The demodulated analog baseband signal 3612 can be processed using any signal processing technique(s) without further down-conversion or demodulation. The aliasing rate of the under-sampling signal is preferably controlled to optimize the demodulated baseband signal for amplitude output and polarity, as desired. In the example above, the under-sample points 3605 occur at positive locations of signal portion 3604. Alternatively, the under-sample points 3605 can occur at other locations including negative locations of the signal portion 3604. When the under-sample points 3605 occur at negative points, the resultant demodulated baseband signal is inverted with respect to the modulating baseband signal 310. The drawings referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the demodulated baseband signal 3610 in FIG. 36D and the demodulated baseband signal 3612 in FIG. 36E illustrate that the digital AM carrier signal 616 was successfully down-converted to the demodulated baseband signal 3610 by retaining enough baseband information for sufficient reconstruction. 2.2.1.2 Structural Description The operation of the under-sampling module 1606 is now described for the analog AM carrier signal 516, with reference to the flowchart 1413 and the timing diagrams of FIGS. 35A-E. In step 1414, the under-sampling module 1606 receives the analog AM carrier signal 516 (FIG. 35A). In step 1416, the under-sampling module 1606 receives the under-sampling signal 3506 (FIG. 35C). In step 1418, the under-sampling module 1606 under-samples the analog AM carrier signal 516 at the aliasing rate of the under-sampling signal 3506 to directly to down-convert the AM carrier signal 516 to the demodulated analog baseband signal 3510 in FIG. 35D or to the filtered demodulated analog baseband signal 3512 in FIG. 35E. The operation of the under-sampling system 1602 is now described for the digital AM carrier signal 616, with reference to the flowchart 1413 and the timing diagrams of FIGS. 36A-E. In step 1414, the under-sampling module 1606 receives the digital AM carrier signal 616 (FIG. 36A). In step 1416, the under-sampling module 1606 receives the under-sampling signal 3606 (FIG. 36C). In step 1418, the under-sampling module 1606 under-samples the digital AM carrier signal 616 at the aliasing rate of the under-sampling signal 3606 to down-convert the digital AM carrier signal 616 to the demodulated digital baseband signal 3610 in FIG. 36D or to the filtered demodulated digital baseband signal 3612 in FIG. 36E. Example implementations of the under-sampling module 1606 are provided in Sections 4 and 5 below. 2.2.2 Second Example Embodiment: Phase Modulation 2.2.2.1 Operational Description Operation of the exemplary process of the flowchart 1413 in FIG. 14C is described below for the analog PM carrier signal 916, illustrated in FIG. 9C, and for the digital PM carrier signal 1016, illustrated in FIG. 10C. 2.2.2.1.1 Analog PM Carrier Signal A process for directly down-converting the analog PM carrier signal 916 to a demodulated baseband signal is now described with reference to the flowchart 1413 in FIG. 14C. The analog PM carrier signal 916 is re-illustrated in 37A for convenience. For this example, the analog PM carrier signal 916 oscillates at approximately 900 MHZ. In FIG. 37B, an analog PM carrier signal 3704 illustrates a portion of the analog PM carrier signal 916 on an expanded time scale. The process begins at step 1414, which includes receiving an EM signal. This is represented by the analog PM signal 916. Step 1416 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 37C illustrates an example under-sampling signal 3706 on approximately the same time scale as FIG. 37B. The under-sampling signal 3706 includes a train of pulses 3707 having negligible apertures that tend towards zero time in duration. The pulses 3707 repeat at the aliasing rate or pulse repetition rate, which is determined or selected as previously described. Generally, when directly down-converting to a demodulated baseband signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the under-sampled signal. In this example, the aliasing rate is approximately 450 MHZ. Step 1418 includes under-sampling the analog PM carrier signal 916 at the aliasing rate to directly down-convert it to a demodulated baseband signal. Step 1418 is illustrated in FIG. 37B by under-sample points 3705. Because a harmonic of the aliasing rate is substantially equal to the frequency of the signal 916, or substantially equal to a harmonic or sub-harmonic thereof, essentially no IF is produced. The only substantial aliased component is the baseband signal. In FIG. 37D, voltage points 3708 correlate to the under-sample points 3705. In an embodiment, the voltage points 3708 form a demodulated baseband signal 3710. This can be accomplished in many ways. For example, each voltage point 3708 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as described below. In FIG. 37E, a demodulated baseband signal 3712 represents the demodulated baseband signal 3710, after filtering, on a compressed time scale. Although FIG. 37E illustrates the demodulated baseband signal 3712 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The demodulated baseband signal 3712 is substantially similar to the analog modulating baseband signal 210. The demodulated baseband signal 3712 can be processed without further down-conversion or demodulation. The aliasing rate of the under-sampling signal is preferably controlled to optimize the demodulated baseband signal for amplitude output and polarity, as desired. In the example above, the under-sample points 3705 occur at positive locations of the analog PM carrier signal 916. Alternatively, the under-sample points 3705 can occur at other locations include negative points of the analog PM carrier signal 916. When the under-sample points 3705 occur at negative locations of the analog PM carrier signal 916, the resultant demodulated baseband signal is inverted relative to the modulating baseband signal 210. The drawings referred to herein illustrate direct to data down-conversion in accordance with the invention. For example, the demodulated baseband signal 3710 in FIG. 37D and the demodulated baseband signal 3712 in FIG. 37E illustrate that the analog PM carrier signal 916 was successfully down-converted to the demodulated baseband signal 3710 by retaining enough baseband information for sufficient reconstruction. 2.2.2.1.2 Digital PM Carrier Signal A process for directly down-converting the digital PM carrier signal 1016 to a demodulated baseband signal is now described with reference to the flowchart 1413 in FIG. 14C. The digital PM carrier signal 1016 is re-illustrated in 38A for convenience. For this example, the digital PM carrier signal 1016 oscillates at approximately 900 MHZ. In FIG. 38B, a digital PM carrier signal 3804 illustrates a portion of the digital PM carrier signal 1016 on an expanded time scale. The process begins at step 1414, which includes receiving an EM signal. This is represented by the digital PM signal 1016. Step 1416 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 38C illustrates an example under-sampling signal 3806 on approximately the same time scale as FIG. 38B. The under-sampling signal 3806 includes a train of pulses 3807 having negligible apertures that tend towards zero time in duration. The pulses 3807 repeat at the aliasing rate or pulse repetition rate, which is determined or selected as described above. Generally, when directly down-converting to a demodulated baseband signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the under-sampled signal. In this example, the aliasing rate is approximately 450 MHZ. Step 1418 includes under-sampling the digital PM carrier signal 1016 at the aliasing rate to directly down-convert it to a demodulated baseband signal. This is illustrated in FIG. 38B by under-sample points 3705. Because a harmonic of the aliasing rate is substantially equal to the frequency of the signal 1016, essentially no IF is produced. The only substantial aliased component is the baseband signal. In FIG. 38D, voltage points 3808 correlate to the under-sample points 3805. In an embodiment, the voltage points 3808 form a demodulated baseband signal 3810. This can be accomplished in many ways. For example, each voltage point 3808 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as described below. In FIG. 38E, a demodulated baseband signal 3812 represents the demodulated baseband signal 3810, after filtering, on a compressed time scale. Although FIG. 38E illustrates the demodulated baseband signal 3812 as a filtered output signal, the output signal does not need to be filtered or smoothed to be within the scope of the invention. Instead, the output signal can be tailored for different applications. The demodulated baseband signal 3812 is substantially similar to the digital modulating baseband signal 310. The demodulated baseband signal 3812 can be processed without further down-conversion or demodulation. The aliasing rate of the under-sampling signal is preferably controlled to optimize the demodulated baseband signal for amplitude output and polarity, as desired. In the example above, the under-sample points 3805 occur at positive locations of the digital PM carrier signal 1016. Alternatively, the under-sample points 3805 can occur at other locations include negative points of the digital PM carrier signal 1016. When the under-sample points 3805 occur at negative locations of the digital PM carrier signal 1016, the resultant demodulated baseband signal is inverted relative to the modulating baseband signal 310. The drawings referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the demodulated baseband signal 3810 in FIG. 38D and the demodulated baseband signal 3812 in FIG. 38E illustrate that the digital PM carrier signal 1016 was successfully down-converted to the demodulated baseband signal 3810 by retaining enough baseband information for sufficient reconstruction. 2.2.1.2 Structural Description The operation of the under-sampling system 1602 is now described for the analog PM carrier signal 916, with reference to the flowchart 1413 and the timing diagrams of FIGS. 37A-E. In step 1414, the under-sampling module 1606 receives the analog PM carrier signal 916 (FIG. 37A). In step 1416, the under-sampling module 1606 receives the under-sampling signal 3706 (FIG. 37C). In step 1418, the under-sampling module 1606 under-samples the analog PM carrier signal 916 at the aliasing rate of the under-sampling signal 3706 to down-convert the PM carrier signal 916 to the demodulated analog baseband signal 3710 in FIG. 37D or to the filtered demodulated analog baseband signal 3712 in FIG. 37E. The operation of the under-sampling system 1602 is now described for the digital PM carrier signal 1016, with reference to the flowchart 1413 and the timing diagrams of FIGS. 38A-E. In step 1414, the under-sampling module 1606 receives the digital PM carrier signal 1016 (FIG. 38A). In step 1416, the under-sampling module 1606 receives the under-sampling signal 3806 (FIG. 38C). In step 1418, the under-sampling module 1606 under-samples the digital PM carrier signal 1016 at the aliasing rate of the under-sampling signal 3806 to down-convert the digital PM carrier signal 1016 to the demodulated digital baseband signal 3810 in FIG. 38D or to the filtered demodulated digital baseband signal 3812 in FIG. 38E. 2.2.3 Other Embodiments The embodiments described above are provided for purposes of illustration. These embodiments are not intended to limit the invention. Alternate embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate embodiments fall within the scope and spirit of the present invention. 2.3 Implementation Examples Exemplary operational and/or structural implementations related to the method(s), structure(s), and/or embodiments described above are presented in Sections 4 and 5 below. These implementations are presented for purposes of illustration, and not limitation. The invention is not limited to the particular implementation examples described therein. Alternate implementations (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. 3. Modulation Conversion In an embodiment, the invention down-converts an FM carrier signal F§MC to a non-FM signal F(NON-FM), by under-sampling the FM carrier signal FFMC. This embodiment is illustrated in FIG. 45B as 4512. In an example embodiment, the FM carrier signal FFMC is down-converted to a phase modulated (PM) signal FPM. In another example embodiment, the FM carrier signal FFMC is down-converted to an amplitude modulated (AM) signal FAM. The invention is not limited to these embodiments. The down-converted signal can be demodulated with any conventional demodulation technique to obtain a demodulated baseband signal FDMB. The invention can be implemented with any type of FM signal. Exemplary embodiments are provided below for down-converting a frequency shift keying (FSK) signal to a non-FSK signal. FSK is a sub-set of FM, wherein an FM signal shifts or switches between two or more frequencies. FSK is typically used for digital modulating baseband signals, such as the digital modulating baseband signal 310 in FIG. 3. For example, in FIG. 8, the digital FM signal 816 is an FSK signal that shifts between an upper frequency and a lower frequency, corresponding to amplitude shifts in the digital modulating baseband signal 310. The FSK signal 816 is used in example embodiments below. In a first example embodiment, the FSK signal 816 is under-sampled at an aliasing rate that is based on a mid-point between the upper and lower frequencies of the FSK signal 816. When the aliasing rate is based on the mid-point, the FSK signal 816 is down-converted to a phase shift keying (PSK) signal. PSK is a sub-set of phase modulation, wherein a PM signal shifts or switches between two or more phases. PSK is typically used for digital modulating baseband signals. For example, in FIG. 10, the digital PM signal 1016 is a PSK signal that shifts between two phases. The PSK signal 1016 can be demodulated by any conventional PSK demodulation technique(s). In a second example embodiment, the FSK signal 816 is under-sampled at an aliasing rate that is based upon either the upper frequency or the lower frequency of the FSK signal 816. When the aliasing rate is based upon the upper frequency or the lower frequency of the FSK signal 816, the FSK signal 816 is down-converted to an amplitude shift keying (ASK) signal. ASK is a sub-set of amplitude modulation, wherein an AM signal shifts or switches between two or more amplitudes. ASK is typically used for digital modulating baseband signals. For example, in FIG. 6, the digital AM signal 616 is an ASK signal that shifts between the first amplitude and the second amplitude. The ASK signal 616 can be demodulated by any conventional ASK demodulation technique(s). The following sections describe methods for under-sampling an FM carrier signal FFMC to down-convert it to the non-FM signal F(NON-FM). Exemplary structural embodiments for implementing the methods are also described. It should be understood that the invention is not limited to the particular embodiments described below. Equivalents, extensions, variations, deviations, etc., of the following will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such equivalents, extensions, variations, deviations, etc., are within the scope and spirit of the present invention. The following sections include a high level discussion, example embodiments, and implementation examples. 3.1 High Level Description This section (including its subsections) provides a high-level description of under-sampling the FM carrier signal FFM to down-convert it to the non-FM signal F(NON-FM) according to the invention. In particular, an operational process for down-converting the FM carrier signal FFM to the non-FM signal F(NON-FM) is described at a high-level. Also, a structural implementation for implementing this process is described at a high-level. The structural implementation is described herein for illustrative purposes, and is not limiting. In particular, the process described in this section can be achieved using any number of structural implementations, one of which is described in this section. The details of such structural implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. 3.1.1 Operational Description FIG. 14D depicts a flowchart 1419 that illustrates an exemplary method for down-converting the FM carrier signal FFMC to the non-FM signal F(NON-FM). The exemplary method illustrated in the flowchart 1419 is an embodiment of the flowchart 1401 in FIG. 14A. Any and all forms of frequency modulation techniques are valid for this invention. For ease of discussion, the digital FM carrier (FSK) signal 816 is used to illustrate a high level operational description of the invention. Subsequent sections provide detailed flowcharts and descriptions for the FSK signal 816. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any type of FM signal. The method illustrated in the flowchart 1419 is described below at a high level for down-converting the FSK signal 816 in FIG. 8C to a PSK signal. The FSK signal 816 is re-illustrated in FIG. 39A for convenience. The process of the flowchart 1419 begins at step 1420, which includes receiving an FM signal. This is represented by the FSK signal 816. The FSK signal 816 shifts between an upper frequency 3910 and a lower frequency 3912. In an exemplary embodiment, the upper frequency 3910 is approximately 901 MHZ and the lower frequency 3912 is approximately 899 MHZ. Step 1422 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 39B illustrates an example under-sampling signal 3902 which includes a train of pulses 3903 having negligible apertures that tend towards zero time in duration. The pulses 3903 repeat at the aliasing rate or pulse repetition rate. When down-converting an FM carrier signal FFMC to a non-FM signal F(NON-FM), the aliasing rate is substantially equal to a frequency contained within the FM signal, or substantially equal to a harmonic or sub-harmonic thereof. In this example overview embodiment, where the FSK signal 816 is to be down-converted to a PSK signal, the aliasing rate is based on a mid-point between the upper frequency 3910 and the lower frequency 3912. For this example, the mid-point is approximately 900 MHZ. In another embodiment described below, where the FSK signal 816 is to be down-converted to an ASK signal, the aliasing rate is based on either the upper frequency 3910 or the lower frequency 3912, not the mid-point. Step 1424 includes under-sampling the FM signal FFMC at the aliasing rate to down-convert the FM carrier signal FFMC to the non-FM signal F(NON-FM). Step 1424 is illustrated in FIG. 39C, which illustrates a stair step PSK signal 3904, which is generated by the modulation conversion process. When the upper frequency 3910 is under-sampled, the PSK signal 3904 has a frequency of approximately 1 MHZ and is used as a phase reference. When the lower frequency 3912 is under-sampled, the PSK signal 3904 has a frequency of 1 MHZ and is phase shifted 180 degrees from the phase reference. FIG. 39D depicts a PSK signal 3906, which is a filtered version of the PSK signal 3904. The invention can thus generate a filtered output signal, a partially filtered output signal, or a relatively unfiltered stair step output signal. The choice between filtered, partially filtered and non-filtered output signals is generally a design choice that depends upon the application of the invention. The aliasing rate of the under-sampling signal is preferably controlled to optimize the down-converted signal for amplitude output and polarity, as desired. Detailed exemplary embodiments for down-converting an FSK signal to a PSK signal and for down-converting an FSK signal to an ASK signal are provided below. 3.1.2 Structural Description FIG. 16 illustrates the block diagram of the under-sampling system 1602 according to an embodiment of the invention. The under-sampling system 1602 includes the under-sampling module 1606. The under-sampling system 1602 is an example embodiment of the generic aliasing system 1302 in FIG. 13. In a modulation conversion embodiment, the EM signal 1304 is an FM carrier signal and the under-sampling module 1606 under-samples the FM carrier signal at a frequency that is substantially equal to a harmonic of a frequency within the FM signal or, more typically, substantially equal to a sub-harmonic of a frequency within the FM signal. Preferably, the under-sampling module 1606 under-samples the FM carrier signal FFMC to down-convert it to a non-FM signal F(NON-FM) in the manner shown in the operational flowchart 1419. But it should be understood that the scope and spirit of the invention includes other structural embodiments for performing the steps of the flowchart 1419. The specifics of the other structural embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. The operation of the under-sampling system 1602 shall now be described with reference to the flowchart 1419 and the timing diagrams of FIGS. 39A-39D. In step 1420, the under-sampling module 1606 receives the FSK signal 816. In step 1422, the under-sampling module 1606 receives the under-sampling signal 3902. In step 1424, the under-sampling module 1606 under-samples the FSK signal 816 at the aliasing rate of the under-sampling signal 3902 to down-convert the FSK signal 816 to the PSK signal 3904 or 3906. Example implementations of the under-sampling module 1606 are provided in Section 4 below. 3.2 Example Embodiments Various embodiments related to the method(s) and structure(s) described above are presented in this section (and its subsections). These embodiments are described herein for purposes of illustration, and not limitation. The invention is not limited to these embodiments. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. The method for down-converting an FM carrier signal FFMC to a non-FM signal, F(NON-FM), illustrated in the flowchart 1419 of FIG. 14D, can be implemented with any type of FM carrier signal including, but not limited to, FSK signals. The flowchart 1419 is described in detail below for down-converting an FSK signal to a PSK signal and for down-converting a FSK signal to an ASK signal. The exemplary descriptions below are intended to facilitate an understanding of the present invention. The present invention is not limited to or by the exemplary embodiments below. 3.2.1 First Example Embodiment: Down-Converting an FM Signal to a PM Signal 3.2.1.1 Operational Description Operation of the exemplary process of the flowchart 1419 in FIG. 14D is now described for down-converting the FSK signal 816 illustrated in FIG. 8C to a PSK signal. The FSK signal 816 is re-illustrated in FIG. 40A for convenience. The FSK signal 816 shifts between a first frequency 4006 and a second frequency 4008. In the exemplary embodiment, the first frequency 4006 is lower than the second frequency 4008. In an alternative embodiment, the first frequency 4006 is higher than the second frequency 4008. For this example, the first frequency 4006 is approximately 899 MHZ and the second frequency 4008 is approximately 901 MHZ. FIG. 40B illustrates an FSK signal portion 4004 that represents a portion of the FSK signal 816 on an expanded time scale. The process of down-converting the FSK signal 816 to a PSK signal begins at step 1420, which includes receiving an FM signal. This is represented by the FSK signal 816. Step 1422 includes receiving an under-sampling signal having an aliasing rate FAR. FIG. 40C illustrates an example under-sampling signal 4007 on approximately the same time scale as FIG. 40B. The under-sampling signal 4007 includes a train of pulses 4009 having negligible apertures that tend towards zero time in duration. The pulses 4009 repeat at the aliasing rate, which is determined or selected as described above. Generally, when down-converting an FM signal to a non-FM signal, the aliasing rate is substantially equal to a harmonic or, more typically, a sub-harmonic of a frequency contained within the FM signal. In this example, where an FSK signal is being down-converted to a PSK signal, the aliasing rate is substantially equal to a harmonic of the mid-point between the frequencies 4006 and 4008 or, more typically, substantially equal to a sub-harmonic of the mid-point between the frequencies 4006 and 4008. In this example, where the first frequency 4006 is 899 MHZ and second frequency 4008 is 901 MHZ, the mid-point is approximately 900 MHZ. Suitable aliasing rates include 1.8 GHZ, 900 MHZ, 450 MHZ, etc. In this example, the aliasing rate of the under-sampling signal 4008 is approximately 450 MHZ. Step 1424 includes under-sampling the FM signal at the aliasing rate to down-convert it to the non-FM signal F(NON-FM). Step 1424 is illustrated in FIG. 40B by under-sample points 4005. The under-sample points 4005 occur at the aliasing rate of the pulses 4009. In FIG. 40D, voltage points 4010 correlate to the under-sample points 4005. In an embodiment, the voltage points 4010 form a PSK signal 4012. This can be accomplished in many ways. For example, each voltage point 4010 can be held at a relatively constant level until the next voltage point is received. This results in a stair-step output which can be smoothed or filtered if desired, as described below. When the fist frequency 4006 is under-sampled, the PSK signal 4012 has a frequency of approximately 1 MHZ and is used as a phase reference. When the second frequency 4008 is under-sampled, the PSK signal 4012 has a frequency of 1 MHZ and is phase shifted 180 degrees from the phase reference. In FIG. 28C, the switch module 2810 is illustrated as a diode switch 2812, which operates as a two lead device when the under-sampling signal 1604 is coupled to the output 2813. In FIG. 28D, the switch module 2810 is illustrated as a diode switch 2814, which operates as a two lead device when the under-sampling signal 1604 is coupled to the output 2815. 4.1.4 Example Implementations of the Holding Module The holding modules 2706 and 2416 preferably captures and holds the amplitude of the original, unaffected, EM signal 1304 within the short time frame of each negligible aperture under-sampling signal pulse. In an exemplary embodiment, holding modules 2706 and 2416 are implemented as a reactive holding module 2901 in FIG. 29A, although the invention is not limited to this embodiment. A reactive holding module is a holding module that employs one or more reactive electrical components to preferably quickly charge to the amplitude of the EM signal 1304. Reactive electrical components include, but are not limited to, capacitors and inductors. In an embodiment, the holding modules 2706 and 2416 include one or more capacitive holding elements, illustrated in FIG. 29B as a capacitive holding module 2902. In FIG. 29C, the capacitive holding module 2902 is illustrated as one or more capacitors illustrated generally as capacitor(s) 2904. Recall that the preferred goal of the holding modules 2706 and 2416 is to quickly charge to the amplitude of the EM signal 1304. In accordance with principles of capacitors, as the negligible aperture of the under-sampling pulses tends to zero time in duration, the capacitive value of the capacitor 2904 can tend towards zero Farads. Example values for the capacitor 2904 can range from tens of pico Farads to fractions of pico Farads. A terminal 2906 serves as an output of the sample and hold module 2604. The capacitive holding module 2902 provides the under-samples at the terminal 2906, where they can be measured as a voltage. FIG. 29F illustrates the capacitive holding module 2902 as including a series capacitor 2912, which can be utilized in an inverted sample and hold system as described below. In an alternative embodiment, the holding modules 2706 and 2416 include one or more inductive holding elements, illustrated in FIG. 29D as an inductive holding module 2908. In an alternative embodiment, the holding modules 2706 and 2416 include a combination of one or more capacitive holding elements and one or more inductive holding elements, illustrated in FIG. 29E as a capacitive/inductive holding module 2910. FIG. 29G illustrates an integrated under-sampling system that can be implemented to down-convert the EM signal 1304 as illustrated in, and described with reference to, FIGS. 79A-F. 4.1.5 Optional Under-Sampling Signal Module FIG. 30 illustrates an under-sampling system 3001, which is an example embodiment of the under-sampling system 1602. The under-sampling system 3001 includes an optional under-sampling signal module 3002 that can perform any of a variety of functions or combinations of functions, including, but not limited to, generating the under-sampling signal 1604. In an embodiment, the optional under-sampling signal module 3002 includes an aperture generator, an example of which is illustrated in FIG. 29J as an aperture generator 2920. The aperture generator 2920 generates negligible aperture pulses 2926 from an input signal 2924. The input signal 2924 can be any type of periodic signal, including, but not limited to, a sinusoid, a square wave, a saw-tooth wave, etc. Systems for generating the input signal 2924 are described below. The width or aperture of the pulses 2926 is determined by delay through the branch 2922 of the aperture generator 2920. Generally, as the desired pulse width decreases, the tolerance requirements of the aperture generator 2920 increase. In other words, to generate negligible aperture pulses for a given input EM frequency, the components utilized in the example aperture generator 2920 require greater reaction times, which are typically obtained with more expensive elements, such as gallium arsenide (GaAs), etc. The example logic and implementation shown in the aperture generator 2920 are provided for illustrative purposes only, and are not limiting. The actual logic employed can take many forms. The example aperture generator 2920 includes an optional inverter 2928, which is shown for polarity consistency with other examples provided herein. An example implementation of the aperture generator 2920 is illustrated in FIG. 29K. Additional examples of aperture generation logic is provided in FIGS. 29H and 29I. FIG. 29H illustrates a rising edge pulse generator 2940, which generates pulses 2926 on rising edges of the input signal 2924. FIG. 29I illustrates a falling edge pulse generator 2950, which generates pulses 2926 on falling edges of the input signal 2924. In an embodiment, the input signal 2924 is generated externally of the under-sampling signal module 3002, as illustrated in FIG. 30. Alternatively, the input signal 2924 is generated internally by the under-sampling signal module 3002. The input signal 2924 can be generated by an oscillator, as illustrated in FIG. 29L by an oscillator 2930. The oscillator 2930 can be internal to the under-sampling signal module 3002 or external to the under-sampling signal module 3002. The oscillator 2930 can be external to the under-sampling system 3001. The type of down-conversion performed by the under-sampling system 3001 depends upon the aliasing rate of the under-sampling signal 1604, which is determined by the frequency of the pulses 2926. The frequency of the pulses 2926 is determined by the frequency of the input signal 2924. For example, when the frequency of the input signal 2924 is substantially equal to a harmonic or a sub-harmonic of the EM signal 1304, the EM signal 1304 is directly down-converted to baseband (e.g. when the EM signal is an AM signal or a PM signal), or converted from FM to a non-FM signal. When the frequency of the input signal 2924 is substantially equal to a harmonic or a sub-harmonic of a difference frequency, the EM signal 1304 is down-converted to an intermediate signal. The optional under-sampling signal module 3002 can be implemented in hardware, software, firmware, or any combination thereof. 4.2 The Under-Sampling System as an Inverted Sample and Hold FIG. 26B illustrates an exemplary inverted sample and hold system 2606, which is an alternative example implementation of the under-sampling system 1602. FIG. 42 illustrates a inverted sample and hold system 4201, which is an example implementation of the inverted sample and hold system 2606 in FIG. 26B. The sample and hold system 4201 includes a sample and hold module 4202, which includes a switch module 4204 and a holding module 4206. The switch module 4204 can be implemented as described above with reference to FIGS. 28A-D. The holding module 4206 can be implemented as described above with reference to FIGS. 29A-F, for the holding modules 2706 and 2416. In the illustrated embodiment, the holding module 4206 includes one or more capacitors 4208. The capacitor(s) 4208 are selected to pass higher frequency components of the EM signal 1304 through to a terminal 4210, regardless of the state of the switch module 4204. The capacitor 4208 stores charge from the EM signal 1304 during aliasing pulses of the under-sampling signal 1604 and the signal at the terminal 4210 is thereafter off-set by an amount related to the charge stored in the capacitor 4208. Operation of the inverted sample and hold system 4201 is illustrated in FIGS. 34A-F. FIG. 34A illustrates an example EM signal 1304. FIG. 34B illustrates the EM signal 1304 after under-sampling. FIG. 34C illustrates the under-sampling signal 1606, which includes a train of aliasing pulses having negligible apertures. FIG. 34D illustrates an example down-converted signal 1308A. FIG. 34E illustrates the down-converted signal 1308A on a compressed time scale. Since the holding module 4206 is series element, the higher frequencies (e.g., RF) of the EM signal 1304 can be seen on the down-converted signal. This can be filtered as illustrated in FIG. 34F. The inverted sample and hold system 4201 can be used to down-convert any type of EM signal, including modulated carrier signals and unmodulated carrier signals, to IF signals and to demodulated baseband signals. 4.3 Other Implementations The implementations described above are provided for purposes of illustration. These implementations are not intended to limit the invention. Alternate implementations, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. 5. Optional Optimizations of Under-Sampling at an Aliasing Rate The methods and systems described in sections above can be optionally optimized with one or more of the optimization methods or systems described below. 5.1 Doubling the Aliasing Rate (FAR) of the Under-Sampling Signal In an embodiment, the optional under-sampling signal module 3002 in FIG. 30 includes a pulse generator module that generates aliasing pulses at a multiple of the frequency of the oscillating source, such as twice the frequency of the oscillating source. The input signal 2926 may be any suitable oscillating source. FIG. 31 illustrates an example circuit 3102 that generates a doubler output signal 3104 (FIGS. 31 and 43B) that may be used as an under-sampling signal 1604. The example circuit 3102 generates pulses on rising and falling edges of the input oscillating signal 3106 of FIG. 43A. Input oscillating signal 3106 is one embodiment of optional input signal 2926. The circuit 3102 can be implemented as a pulse generator and aliasing rate (FAR) doubler, providing the under-sampling signal 1604 to under-sampling module 1606 in FIG. 30. The aliasing rate is twice the frequency of the input oscillating signal Fosc 3106, as shown by EQ. (9) below. FAR=2·Fosc EQ. (9) The aperture width of the aliasing pulses is determined by the delay through a first inverter 3108 of FIG. 31. As the delay is increased, the aperture is increased. A second inverter 3112 is shown to maintain polarity consistency with examples described elsewhere. In an alternate embodiment inverter 3112 is omitted. Preferably, the pulses have negligible aperture widths that tend toward zero time. The doubler output signal 3104 may be further conditioned as appropriate to drive a switch module with negligible aperture pulses. The circuit 3102 may be implemented with integrated circuitry, discretely, with equivalent logic circuitry, or with any valid fabrication technology. 5.2 Differential Implementations The invention can be implemented in a variety of differential configurations. Differential configurations are useful for reducing common mode noise. This can be very useful in receiver systems where common mode interference can be caused by intentional or unintentional radiators such as cellular phones, CB radios, electrical appliances etc. Differential configurations are also useful in reducing any common mode noise due to charge injection of the switch in the switch module or due to the design and layout of the system in which the invention is used. Any spurious signal that is induced in equal magnitude and equal phase in both input leads of the invention will be substantially reduced or eliminated. Some differential configurations, including some of the configurations below, are also useful for increasing the voltage and/or for increasing the power of the down-converted signal 1308A. While an example of a differential under-sampling module is shown below, the example is shown for the purpose of illustration, not limitation. Alternate embodiments (including equivalents, extensions, variations, deviations, etc.) of the embodiment described herein will be apparent to those skilled in the relevant art based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. FIG. 44A illustrates an example differential system 4402 that can be included in the under-sampling module 1606. The differential system 4202 includes an inverted under-sampling design similar to that described with reference to FIG. 42. The differential system 4402 includes inputs 4404 and 4406 and outputs 4408 and 4410. The differential system 4402 includes a first inverted sample and hold module 4412, which includes a holding module 4414 and a switch module 4416. The differential system 4402 also includes a second inverted sample and hold module 4418, which includes a holding module 4420 and the switch module 4416, which it shares in common with sample and hold module 4412. One or both of the inputs 4404 and 4406 are coupled to an EM signal source. For example, the inputs can be coupled to an EM signal source, wherein the input voltages at the inputs 4404 and 4406 are substantially equal in amplitude but 180 degrees out of phase with one another. Alternatively, where dual inputs are unavailable, one of the inputs 4404 and 4406 can be coupled to ground. In operation, when the switch module 4416 is closed, the holding modules 4414 and 4420 are in series and, provided they have similar capacitive values, they charge to equal amplitudes but opposite polarities. When the switch module 4416 is open, the voltage at the output 4408 is relative to the input 4404, and the voltage at the output 4410 is relative to the voltage at the input 4406. Portions of the voltages at the outputs 4408 and 4410 include voltage resulting from charge stored in the holding modules 4414 and 4420, respectively, when the switch module 4416 was closed. The portions of the voltages at the outputs 4408 and 4410 resulting from the stored charge are generally equal in amplitude to one another but 180 degrees out of phase. Portions of the voltages at the outputs 4408 and 4410 also include ripple voltage or noise resulting from the switching action of the switch module 4416. But because the switch module is positioned between the two outputs, the noise introduced by the switch module appears at the outputs 4408 and 4410 as substantially equal and in-phase with one another. As a result, the ripple voltage can be substantially filtered out by inverting the voltage at one of the outputs 4408 or 4410 and adding it to the other remaining output. Additionally, any noise that is impressed with substantially equal amplitude and equal phase onto the input terminals 4404 and 4406 by any other noise sources will tend to be canceled in the same way. The differential system 4402 is effective when used with a differential front end (inputs) and a differential back end (outputs). It can also be utilized in the following configurations, for example: a) A single-input front end and a differential back end; and b) A differential front end and single-output back end. Examples of these system are provided below. 5.2.1 Differential Input-to-Differential Output FIG. 44B illustrates the differential system 4402 wherein the inputs 4404 and 4406 are coupled to equal and opposite EM signal sources, illustrated here as dipole antennas 4424 and 4426. In this embodiment, when one of the outputs 4408 or 4410 is inverted and added to the other output, the common mode noise due to the switching module 4416 and other common mode noise present at the input terminals 4404 and 4406 tend to substantially cancel out. 5.2.2 Single Input-to-Differential Output FIG. 44C illustrates the differential system 4402 wherein the input 4404 is coupled to an EM signal source such as a monopole antenna 4428 and the input 4406 is coupled to ground. FIG. 44E illustrates an example single input to differential output receiver/down-converter system 4436. The system 4436 includes the differential system 4402 wherein the input 4406 is coupled to ground. The input 4404 is coupled to an EM signal source 4438. The outputs 4408 and 4410 are coupled to a differential circuit 4444 such as a filter, which preferably inverts one of the outputs 4408 or 4410 and adds it to the other output 4408 or 4410. This substantially cancels common mode noise generated by the switch module 4416. The differential circuit 4444 preferably filters the higher frequency components of the EM signal 1304 that pass through the holding modules 4414 and 4420. The resultant filtered signal is output as the down-converted signal 1308A. 5.2.3 Differential Input-to-Single Output FIG. 44D illustrates the differential system 4402 wherein the inputs 4404 and 4406 are coupled to equal and opposite EM signal sources illustrated here as dipole antennas 4430 and 4432. The output is taken from terminal 4408. 5.3 Smoothing the Down-Converted Signal The down-converted signal 1308A may be smoothed by filtering as desired. The differential circuit 4444 implemented as a filter in FIG. 44E illustrates but one example. Filtering may be accomplished in any of the described embodiments by hardware, firmware and software implementation as is well known by those skilled in the arts. 5.4 Load Impedance and Input/Output Buffering Some of the characteristics of the down-converted signal 1308A depend upon characteristics of a load placed on the down-converted signal 1308A. For example, in an embodiment, when the down-converted signal 1308A is coupled to a high impedance load, the charge that is applied to a holding module such as holding module 2706 in FIG. 27 or 2416 in FIG. 24A during a pulse generally remains held by the holding module until the next pulse. This results in a substantially stair-step-like representation of the down-converted signal 1308A as illustrated in FIG. 15C, for example. A high impedance load enables the under-sampling system 1606 to accurately represent the voltage of the original unaffected input signal. The down-converted signal 1308A can be buffered with a high impedance amplifier, if desired. Alternatively, or in addition to buffering the down-converted signal 1308A, the input EM signal may be buffered or amplified by a low noise amplifier. 5.5 Modifying the Under-Sampling Signal Utilizing Feedback FIG. 30 shows an embodiment of a system 3001 which uses down-converted signal 1308A as feedback 3006 to control various characteristics of the under-sampling module 1606 to modify the down-converted signal 1308A. Generally, the amplitude of the down-converted signal 1308A varies as a function of the frequency and phase differences between the EM signal 1304 and the under-sampling signal 1604. In an embodiment, the down-converted signal 1308A is used as the feedback 3006 to control the frequency and phase relationship between the EM signal 1304 and the under-sampling signal 1604. This can be accomplished using the example block diagram shown in FIG. 32A. The example circuit illustrated in FIG. 32A can be included in the under-sampling signal module 3002. Alternate implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Alternate implementations fall within the scope and spirit of the present invention. In this embodiment a state-machine is used for clarity, and is not limiting. In the example of FIG. 32A, a state machine 3204 reads an analog to digital converter, A/D 3202, and controls a digital to analog converter (DAC) 3206. In an embodiment, the state machine 3204 includes 2 memory locations, Previous and Current, to store and recall the results of reading A/D 3202. In an embodiment, the state machine 3204 utilizes at least one memory flag. DAC 3206 controls an input to a voltage controlled oscillator, VCO 3208. VCO 3208 controls a frequency input of a pulse generator 3210, which, in an embodiment, is substantially similar to the pulse generator shown in FIG. 29J. The pulse generator 3210 generates the under-sampling signal 1604. In an embodiment, the state machine 3204 operates in accordance with the state machine flowchart 3220 in FIG. 32B. The result of this operation is to modify the frequency and phase relationship between the under-sampling signal 1604 and the EM signal 1304, to substantially maintain the amplitude of the down-converted signal 1308A at an optimum level. The amplitude of the down-converted signal 1308A can be made to vary with the amplitude of the under-sampling signal 1604. In an embodiment where Switch Module 2702 is a FET as shown in FIG. 28A, wherein the gate 2804 receives the under-sampling signal 1604, the amplitude of the under-sampling signal 1604 can determine the “on” resistance of the FET, which affects the amplitude of down-converted signal 1308A. Under-sampling signal module 3002, as shown in FIG. 32C, can be an analog circuit that enables an automatic gain control function. Alternate implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Alternate implementations fall within the scope and spirit of the present invention. III. Down-Converting by Transferring Energy The energy transfer embodiments of the invention provide enhanced signal to noise ratios and sensitivity to very small signals, as well as permitting the down-converted signal to drive lower impedance loads unassisted. The energy transfer aspects of the invention are represented generally by 4506 in FIGS. 45A and 45B. Fundamental descriptions of how this is accomplished is presented step by step beginning with a comparison with an under-sampling system. 1. Energy Transfer Compared to Under-Sampling Section II above disclosed methods and systems for down-converting an EM signal by under-sampling. The under-sampling systems utilize a sample and hold system controlled by an under-sampling signal. The under-sampling signal includes a train of pulses having negligible apertures that tend towards zero time in duration. The negligible aperture pulses minimize the amount of energy transferred from the EM signal. This protects the under-sampled EM signal from distortion or destruction. The negligible aperture pulses also make the sample and hold system a high impedance system. An advantage of under-sampling is that the high impedance input allows accurate voltage reproduction of the under-sampled EM signal. The methods and systems disclosed in Section II are thus useful for many situations including, but not limited to, monitoring EM signals without distorting or destroying them. Because the under-sampling systems disclosed in Section II transfer only negligible amounts of energy, they are not suitable for all situations. For example, in radio communications, received radio frequency (RF) signals are typically very weak and must be amplified in order to distinguish them over noise. The negligible amounts of energy transferred by the under-sampling systems disclosed in Section II may not be sufficient to distinguish received RF signals over noise. In accordance with an aspect of the invention, methods and systems are disclosed below for down-converting EM signals by transferring non-negligible amounts of energy from the EM signals. The resultant down-converted signals have sufficient energy to allow the down-converted signals to be distinguishable from noise. The resultant down-converted signals also have sufficient energy to drive lower impedance circuits without buffering. Down-converting by transferring energy is introduced below in an incremental fashion to distinguish it from under-sampling. The introduction begins with further descriptions of under-sampling. 1.1 Review of Under-Sampling FIG. 78A illustrates an exemplary under-sampling system 7802 for down-converting an input EM signal 7804. The under-sampling system 7802 includes a switching module 7806 and a holding module shown as a holding capacitance 7808. An under-sampling signal 7810 controls the switch module 7806. The under-sampling signal 7810 includes a train of pulses having negligible pulse widths that tend toward zero time. An example of a negligible pulse width or duration can be in the range of 1-10 psec for under-sampling a 900 MHZ signal. Any other suitable negligible pulse duration can be used as well, where accurate reproduction of the original unaffected input signal voltage is desired without substantially affecting the original input signal voltage. In an under-sampling environment, the holding capacitance 7808 preferably has a small capacitance value. This allows the holding capacitance 7808 to substantially charge to the voltage of the input EM signal 7804 during the negligible apertures of the under-sampling signal pulses. For example, in an embodiment, the holding capacitance 7808 has a value in the range of 1 pF. Other suitable capacitance values can be used to achieve substantially the voltage of the original unaffected input signal. Various capacitances can be employed for certain effects, which are described below. The under-sampling system is coupled to a load 7812. In FIG. 78B, the load 7812 of FIG. 78A is illustrated as a high impedance load 7818. A high impedance load is one that is relatively insignificant to an output drive impedance of the system for a given output frequency. The high impedance load 7818 allows the holding capacitance 7808 to substantially maintain the charge accumulated during the under-sampling pulses. FIGS. 79A-F illustrate example timing diagrams for the under-sampling system 7802. FIG. 79A illustrates an example input EM signal 7804. FIG. 79C illustrates an example under-sampling signal 7810, including pulses 7904 having negligible apertures that tend towards zero time in duration. FIG. 79B illustrates the negligible effects to the input EM signal 7804 when under-sampled, as measured at a terminal 7814 of the under-sampling system 7802. In FIG. 79B, negligible distortions 7902 correlate with the pulses of the under-sampling signal 7810. In this embodiment, the negligible distortions 7902 occur at different locations of subsequent cycles of the input EM signal 7804. As a result, the input EM signal will be down-converted. The negligible distortions 7902 represent negligible amounts of energy, in the form of charge that is transferred to the holding capacitance 7808. When the load 7812 is a high impedance load, the holding capacitance 7808 does not significantly discharge between pulses 7904. As a result, charge that is transferred to the holding capacitance 7808 during a pulse 7904 tends to “hold” the voltage value sampled constant at the terminal 7816 until the next pulse 7904. When voltage of the input EM signal 7804 changes between pulses 7904, the holding capacitance 7808 substantially attains the new voltage and the resultant voltage at the terminal 7816 forms a stair step pattern, as illustrated in FIG. 79D. FIG. 79E illustrates the stair step voltage of FIG. 79D on a compressed time scale. The stair step voltage illustrated in FIG. 79E can be filtered to produce the signal illustrated in FIG. 79F. The signals illustrated in FIGS. 79D, E, and F have substantially all of the baseband characteristics of the input EM signal 7804 in FIG. 79A, except that the signals illustrated in FIGS. 79D, E, and F have been successfully down-converted. Note that the voltage level of the down-converted signals illustrated in FIGS. 79E and 79F are substantially close to the voltage level of the input EM signal 7804. The under-sampling system 7802 thus down-converts the input EM signal 7804 with reasonable voltage reproduction, without substantially affecting the input EM signal 7804. But also note that the power available at the output is relatively negligible (e.g.: V2/R; ˜5 mV and 1 MOhm), given the input EM signal 7804 would typically have a driving impedance, in an RF environment, of 50 Ohms (e.g.: V2/R; ˜5 mV and 50 Ohms). 1.1.1 Effects of Lowering the Impedance of the Load Effects of lowering the impedance of the load 7812 are now described. FIGS. 80A-E illustrate example timing diagrams for the under-sampling system 7802 when the load 7812 is a relatively low impedance load, one that is significant relative to the output drive impedance of the system for a given output frequency. FIG. 80A illustrates an example input EM signal 7804, which is substantially similar to that illustrated in FIG. 79A. FIG. 80C illustrates an example under-sampling signal 7810, including pulses 8004 having negligible apertures that tend towards zero time in duration. The example under-sampling signal 7810 illustrated in FIG. 80C is substantially similar to that illustrated in FIG. 79C. FIG. 80B illustrates the negligible effects to the input EM signal 7804 when under-sampled, as measured at a terminal 7814 of the under-sampling system 7802. In FIG. 80B, negligible distortions 8002 correlate with the pulses 8004 of the under-sampling signal 7810 in FIG. 80C. In this example, the negligible distortions 8002 occur at different locations of subsequent cycles of the input EM signal 7804. As a result, the input EM signal 7804 will be down-converted. The negligible distortions 8002 represent negligible amounts of energy, in the form of charge that is transferred to the holding capacitance 7808. When the load 7812 is a low impedance load, the holding capacitance 7808 is significantly discharged by the load between pulses 8004 (FIG. 80C). As a result, the holding capacitance 7808 cannot reasonably attain or “hold” the voltage of the original EM input signal 7804, as was seen in the case of FIG. 79D. Instead, the charge appears as the output illustrated in FIG. 80D. FIG. 80E illustrates the output from FIG. 80D on a compressed time scale. The output in FIG. 80E can be filtered to produce the signal illustrated in FIG. 80F. The down-converted signal illustrated in FIG. 80F is substantially similar to the down-converted signal illustrated in FIG. 79F, except that the signal illustrated in FIG. 80F is substantially smaller in magnitude than the amplitude of the down-converted signal illustrated in FIG. 79F. This is because the low impedance of the load 7812 prevents the holding capacitance 7808 from reasonably attaining or “holding” the voltage of the original EM input signal 7804. As a result, the down-converted signal illustrated in FIG. 80F cannot provide optimal voltage reproduction, and has relatively negligible power available at the output (e.g.: V2/R; ˜200 μV and 2 KOhms), given the input EM signal 7804 would typically have a driving impedance, in an RF environment, of 50 Ohms (e.g.: V2/R; ˜5 mV and 50 Ohms). 1.1.2 Effects of Increasing the Value of the Holding Capacitance Effects of increasing the value of the holding capacitance 7808, while having to drive a low impedance load 7812, is now described. FIGS. 81A-F illustrate example timing diagrams for the under-sampling system 7802 when the holding capacitance 7808 has a larger value, in the range of 18 pF for example. FIG. 81A illustrates an example input EM signal 7804, which is substantially similar to that illustrated in FIGS. 79A and 80A. FIG. 81C illustrates an example under-sampling signal 7810, including pulses 8104 having negligible apertures that tend towards zero time in duration. The example under-sampling signal 7810 illustrated in FIG. 81C is substantially similar to that illustrated in FIGS. 79C and 80C. FIG. 81B illustrates the negligible effects to the input EM signal 7804 when under-sampled, as measured at a terminal 7814 of the under-sampling system 7802. In FIG. 81B, negligible distortions 8102 correlate with the pulses 8104 of the under-sampling signal 7810 in FIG. 81C. Upon close inspection, the negligible distortions 8102 occur at different locations of subsequent cycles of the input EM signal 7804. As a result, the input EM signal 7804 will be down-converted. The negligible distortions 8102 represent negligible amounts of energy, in the form of charge that is transferred to the holding capacitance 7808. FIG. 81D illustrates the voltage measured at the terminal 7816, which is a result of the holding capacitance 7808 attempting to attain and “hold” the original input EM signal voltage, but failing to do so, during the negligible apertures of the pulses 8104 illustrated in FIG. 81C. Recall that when the load 7812 is a low impedance load, the holding capacitance 7808 is significantly discharged by the load between pulses 8104 (FIG. 81C), this again is seen in FIGS. 81D and E. As a result, the holding capacitance 7808 cannot reasonably attain or “hold” the voltage of the original EM input signal 7804, as was seen in the case of FIG. 79D. Instead, the charge appears as the output illustrated in FIG. 81D. FIG. 81E illustrates the down-converted signal 8106 on a compressed time scale. Note that the amplitude of the down-converted signal 8106 is significantly less than the amplitude of the down-converted signal illustrated in FIGS. 80D and 80E. This is due to the higher capacitive value of the holding capacitance 7808. Generally, as the capacitive value increases, it requires more charge to increase the voltage for a given aperture. Because of the negligible aperture of the pulses 8104 in FIG. 81C, there is insufficient time to transfer significant amounts of energy or charge from the input EM signal 7804 to the holding capacitance 7808. As a result, the amplitudes attained by the holding capacitance 7808 are significantly less than the amplitudes of the down-converted signal illustrated in FIGS. 80D and 80E. In FIGS. 80E and 80F, the output signal, non-filtered or filtered, cannot provide optimal voltage reproduction, and has relatively negligible power available at the output (e.g.: V2/R; ˜150 μV and 2 KOhms), given the input EM signal 7804 would typically have a driving impedance, in an RF environment, of 50 Ohms (e.g.: V2/R; ˜5 mV and 50 Ohms). In summary, under-sampling systems, such as the under-sampling system 7802 illustrated in FIG. 78, are well suited for down-converting EM signals with relatively accurate voltage reproduction. Also, they have a negligible affect on the original input EM signal. As illustrated above, however, the under-sampling systems, such as the under-sampling system 7802 illustrated in FIG. 78, are not well suited for transferring energy or for driving lower impedance loads. 1.2 Introduction to Energy Transfer In an embodiment, the present invention transfers energy from an EM signal by utilizing an energy transfer signal instead of an under-sampling signal. Unlike under-sampling signals that have negligible aperture pulses, the energy transfer signal includes a train of pulses having non-negligible apertures that tend away from zero. This provides more time to transfer energy from an EM input signal. One direct benefit is that the input impedance of the system is reduced so that practical impedance matching circuits can be implemented to further improve energy transfer and thus overall efficiency. The non-negligible transferred energy significantly improves the signal to noise ratio and sensitivity to very small signals, as well as permitting the down-converted signal to drive lower impedance loads unassisted. Signals that especially benefit include low power ones typified by RF signals. One benefit of a non-negligible aperture is that phase noise within the energy transfer signal does not have as drastic of an effect on the down-converted output signal as under-sampling signal phase noise or conventional sampling signal phase noise does on their respective outputs. FIG. 82A illustrates an exemplary energy transfer system 8202 for down-converting an input EM signal 8204. The energy transfer system 8202 includes a switching module 8206 and a storage module illustrated as a storage capacitance 8208. The terms storage module and storage capacitance, as used herein, are distinguishable from the terms holding module and holding capacitance, respectively. Holding modules and holding capacitances, as used above, identify systems that store negligible amounts of energy from an under-sampled input EM signal with the intent of “holding” a voltage value. Storage modules and storage capacitances, on the other hand, refer to systems that store non-negligible amounts of energy from an input EM signal. The energy transfer system 8202 receives an energy transfer signal 8210, which controls the switch module 8206. The energy transfer signal 8210 includes a train of energy transfer pulses having non-negligible pulse widths that tend away from zero time in duration. The non-negligible pulse widths can be any non-negligible amount. For example, the non-negligible pulse widths can be ½ of a period of the input EM signal. Alternatively, the non-negligible pulse widths can be any other fraction of a period of the input EM signal, or a multiple of a period plus a fraction. In an example embodiment, the input EM signal is approximately 900 MHZ and the non-negligible pulse width is approximately 550 pico seconds. Any other suitable non-negligible pulse duration can be used. In an energy transfer environment, the storage module, illustrated in FIG. 82 as a storage capacitance 8208, preferably has the capacity to handle the power being transferred, and to allow it to accept a non-negligible amount of power during a non-negligible aperture period. This allows the storage capacitance 8208 to store energy transferred from the input EM signal 8204, without substantial concern for accurately reproducing the original, unaffected voltage level of the input EM signal 8204. For example, in an embodiment, the storage capacitance 8208 has a value in the range of 18 pF. Other suitable capacitance values and storage modules can be used. One benefit of the energy transfer system 8202 is that, even when the input EM signal 8204 is a very small signal, the energy transfer system 8202 transfers enough energy from the input EM signal 8204 that the input EM signal can be efficiently down-converted. The energy transfer system 8202 is coupled to a load 8212. Recall from the overview of under-sampling that loads can be classified as high impedance loads or low impedance loads. A high impedance load is one that is relatively insignificant to an output drive impedance of the system for a given output frequency. A low impedance load is one that is relatively significant. Another benefit of the energy transfer system 8202 is that the non-negligible amounts of transferred energy permit the energy transfer system 8202 to effectively drive loads that would otherwise be classified as low impedance loads in under-sampling systems and conventional sampling systems. In other words, the non-negligible amounts of transferred energy ensure that, even for lower impedance loads, the storage capacitance 8208 accepts and maintains sufficient energy or charge to drive the load 8202. This is illustrated below in the timing diagrams of FIGS. 83A-F. FIGS. 83A-F illustrate example timing diagrams for the energy transfer system 8202 in FIG. 82. FIG. 83A illustrates an example input EM signal 8302. FIG. 83C illustrates an example under-sampling signal 8304, including energy transfer pulses 8306 having non-negligible apertures that tend away from zero time in duration. FIG. 83B illustrates the effects to the input EM signal 8302, as measured at a terminal 8214 in FIG. 82A, when non-negligible amounts of energy are transfer from it. In FIG. 83B, non-negligible distortions 8308 correlate with the energy transfer pulses 8306 in FIG. 83C. In this example, the non-negligible distortions 8308 occur at different locations of subsequent cycles of the input EM signal 8302. The non-negligible distortions 8308 represent non-negligible amounts of transferred energy, in the form of charge that is transferred to the storage capacitance 8208 in FIG. 82. FIG. 83D illustrates a down-converted signal 8310 that is formed by energy transferred from the input EM signal 8302. FIG. 83E illustrates the down-converted signal 8310 on a compressed time scale. The down-converted signal 8310 can be filtered to produce the down-converted signal 8312 illustrated in FIG. 83F. The down-converted signal 8312 is similar to the down-converted signal illustrated in FIG. 79F, except that the down-converted signal 8312 has substantially more power (e.g.: V2/R; approximately (˜) 2 mV and 2K Ohms) than the down-converted signal illustrated in FIG. 79F (e.g.: V2/R; -5 mV and 1M Ohms). As a result, the down-converted signals 8310 and 8312 can efficiently drive lower impedance loads, given the input EM signal 8204 would typically have a driving impedance, in an RF environment, of 50 Ohms (V2/R; ˜5 mV and 50 Ohms). The energy transfer aspects of the invention are represented generally by 4506 in FIGS. 45A and 45B. 2. Down-Converting an EM Signal to an IF EM Signal by Transferring Energy from the EM Signal at an Aliasing Rate In an embodiment, the invention down-converts an EM signal to an IF signal by transferring energy from the EM signal at an aliasing rate. This embodiment is illustrated by 4514 in FIG. 45B. This embodiment can be implemented with any type of EM signal, including, but not limited to, modulated carrier signals and unmodulated carrier signals. This embodiment is described herein using the modulated carrier signal FMC in FIG. 1 as an example. In the example, the modulated carrier signal FMC is down-converted to an intermediate frequency (IF) signal FIF. The intermediate frequency signal FIF can be demodulated to a baseband signal FDMB using conventional demodulation techniques. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any EM signal, including, but not limited to, modulated carrier signals and unmodulated carrier signals. The following sections describe methods for down-converting an EM signal to an IF signal FIF by transferring energy from the EM signal at an aliasing rate. Exemplary structural embodiments for implementing the methods are also described. It should be understood that the invention is not limited to the particular embodiments described below. Equivalents, extensions, variations, deviations, etc., of the following will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such equivalents, extensions, variations, deviations, etc., are within the scope and spirit of the present invention. The following sections include a high level discussion, example embodiments, and implementation examples. 2.1 High Level Description This section (including its subsections) provides a high-level description of down-converting an EM signal to an IF signal FIF by transferring energy, according to the invention. In particular, an operational process of down-converting the modulated carrier signal FMC to the IF modulated carrier signal FIF, by transferring energy, is described at a high-level. Also, a structural implementation for implementing this process is described at a high-level. This structural implementation is described herein for illustrative purposes, and is not limiting. In particular, the process described in this section can be achieved using any number of structural implementations, one of which is described in this section. The details of such structural implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. 2.1.1 Operational Description FIG. 46B depicts a flowchart 4607 that illustrates an exemplary method for down-converting an EM signal to an intermediate signal FIF, by transferring energy from the EM signal at an aliasing rate. The exemplary method illustrated in the flowchart 4607 is an embodiment of the flowchart 4601 in FIG. 46A. Any and all combinations of modulation techniques are valid for this invention. For ease of discussion, the digital AM carrier signal 616 is used to illustrate a high level operational description of the invention. Subsequent sections provide detailed flowcharts and descriptions for AM, FM and PM example embodiments. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any type of EM signal, including any form of modulated carrier signal and unmodulated carrier signals. The method illustrated in the flowchart 4607 is now described at a high level using the digital AM carrier signal 616 of FIG. 6C. Subsequent sections provide detailed flowcharts and descriptions for AM, FM and PM example embodiments. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any type of EM signal, including any form of modulated carrier signal and unmodulated carrier signals. The process begins at step 4608, which includes receiving an EM signal. Step 4608 is illustrated by the digital AM carrier signal 616. The digital AM carrier signal 616 of FIG. 6C is re-illustrated in FIG. 47A for convenience. FIG. 47E illustrates a portion of the digital AM carrier signal 616 on an expanded time scale. Step 4610 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 47B illustrates an example energy transfer signal 4702. The energy transfer signal 4702 includes a train of energy transfer pulses 4704 having non-negligible apertures 4701 that tend away from zero time duration. Generally, the apertures 4701 can be any time duration other than the period of the EM signal. For example, the apertures 4701 can be greater or less than a period of the EM signal. Thus, the apertures 4701 can be approximately 1/10, ¼, ½, ¾, etc., or any other fraction of the period of the EM signal. Alternatively, the apertures 4701 can be approximately equal to one or more periods of the EM signal plus 1/10, ¼, ½, ¾, etc., or any other fraction of a period of the EM signal. The apertures 4701 can be optimized based on one or more of a variety of criteria, as described in sections below. The energy transfer pulses 4704 repeat at the aliasing rate. A suitable aliasing rate can be determined or selected as described below. Generally, when down-converting an EM signal to an intermediate signal, the aliasing rate is substantially equal to a difference frequency, which is described below, or substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency. Step 4612 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal to the intermediate signal FIF. FIG. 47C illustrates transferred energy 4706, which is transferred from the EM signal during the energy transfer pulses 4704. Because a harmonic of the aliasing rate occurs at an off-set of the frequency of the AM signal 616, the pulses 4704 “walk through” the AM signal 616 at the off-set frequency. By “walking through” the AM signal 616, the transferred energy 4706 forms an AM intermediate signal 4706 that is similar to the AM carrier signal 616, except that the AM intermediate signal has a lower frequency than the AM carrier signal 616. The AM carrier signal 616 can be down-converted to any frequency below the AM carrier signal 616 by adjusting the aliasing rate FAR, as described below. FIG. 47D depicts the AM intermediate signal 4706 as a filtered output signal 4708. In an alternative embodiment, the invention outputs a stair step, or non-filtered output signal. The choice between filtered, partially filtered and non-filtered output signals is generally a design choice that depends upon the application of the invention. The intermediate frequency of the down-converted signal FIF, which, in this example, is the intermediate signal 4706 and 4708, can be determined from EQ. (2), which is reproduced below for convenience. FC=n·FAR±FIF EQ. (2) A suitable aliasing rate FAR can be determined in a variety of ways. An example method for determining the aliasing rate FAR, is provided below. After reading the description herein, one skilled in the relevant art(s) will understand how to determine appropriate aliasing rates for EM signals, including ones in addition to the modulated carrier signals specifically illustrated herein. In FIG. 48, a flowchart 4801 illustrates an example process for determining an aliasing rate FAR. But a designer may choose, or an application may dictate, that the values be determined in an order that is different than the illustrated order. The process begins at step 4802, which includes determining, or selecting, the frequency of the EM signal. The frequency of the AM carrier signal 616 can be, for example, 901 MHZ. Step 4804 includes determining, or selecting, the intermediate frequency. This is the frequency to which the EM signal will be down-converted The intermediate frequency can be determined, or selected, to match a frequency requirement of a down-stream demodulator. The intermediate frequency can be, for example, 1 MHZ. Step 4806 includes determining the aliasing rate or rates that will down-convert the EM signal to the IF specified in step 4804. EQ. (2) can be rewritten as EQ. (3): n·FAR=FC±FIF EQ. (3) Which can be rewritten as EQ. (4): n = F C ± F IF F AR EQ . ( 4 ) or as EQ. (5): F AR = F C ± F IF n EQ . ( 5 ) (FC±FIF) can be defined as a difference value FDIFF, as illustrated in EQ. (6): (FC±FIF)=FDIFF EQ. (6) EQ. (4) can be rewritten as EQ. (7): n = F DIFF F AR EQ . ( 7 ) From EQ. (7), it can be seen that, for a given n and a constant FAR, FDIFF is constant. For the case of FDIFF=FC−FIF, and for a constant FDIFF, as FC increases, FIF necessarily increases. For the case of FDIFF=FC+FIF, and for a constant FDIFF, as FC increases, FIF necessarily decreases. In the latter case of FDIFF=FC+FIF, any phase or frequency changes on FC correspond to reversed or inverted phase or frequency changes on FIF. This is mentioned to teach the reader that if FDIFF=FC+FIF is used, the above effect will occur to the phase and frequency response of the modulated intermediate signal FIF. EQs. (2) through (7) can be solved for any valid n. A suitable n can be determined for any given difference frequency FDIFF and for any desired aliasing rate FAR(Desired). EQs. (2) through (7) can be utilized to identify a specific harmonic closest to a desired aliasing rate FAR(Desired) that will generate the desired intermediate signal FIF. An example is now provided for determining a suitable n for a given difference frequency FDIFF and for a desired aliasing rate FAR(Desired). For ease of illustration, only the case of (FC−FIF) is illustrated in the example below. n = F C - F IF F AR ( Desired ) = F DIFF F AR ( Desired ) The desired aliasing rate FAR(Desired) can be, for example, 140 MHZ. Using the previous examples, where the carrier frequency is 901 MHZ and the IF is 1 MHZ, an initial value of n is determined as: n = 901 MHZ - 1 MHZ 140 MHZ = 900 140 = 6.4 The initial value 6.4 can be rounded up or down to the valid nearest n, which was defined above as including (0.5, 1, 2, 3, . . . ). In this example, 6.4 is rounded down to 6.0, which is inserted into EQ. (5) for the case of (FC−FIF)=FDIFF: F AR = F c - F IF n F AR = 901 MHZ - 1 MHZ 6 = 900 MHZ 6 = 150 MHZ In other words, transferring energy from a 901 MHZ EM carrier signal at 150 MHZ generates an intermediate signal at 1 MHZ. When the EM carrier signal is a modulated carrier signal, the intermediate signal will also substantially include the modulation. The modulated intermediate signal can be demodulated through any conventional demodulation technique. Alternatively, instead of starting from a desired aliasing rate, a list of suitable aliasing rates can be determined from the modified form of EQ. (5), by solving for various values of n. Example solutions are listed below. F AR = ( F C - F IF ) n = F DIFF n = 901 MHZ - 1 MHZ n = 900 MHZ n Solving for n=0.5, 1, 2, 3, 4, 5 and 6: 900 MHZ/0.5=1.8 GHZ (i.e., second harmonic); 900 MHZ/1=900 MHZ (i.e., fundamental frequency); 900 MHZ/2=450 MHZ (i.e., second sub-harmonic); 900 MHZ/3=300 MHZ (i.e., third sub-harmonic); 900 MHZ/4=225 MHZ (i.e., fourth sub-harmonic); 900 MHZ/5=180 MHZ (i.e., fifth sub-harmonic); and 900 MHZ/6=150 MHZ (i.e., sixth sub-harmonic). The steps described above can be performed for the case of (FC+FIF) in a similar fashion. The results can be compared to the results obtained from the case of (FC−FIF) to determine which provides better result for an application. In an embodiment, the invention down-converts an EM signal to a relatively standard IF in the range of, for example, 100 KHZ to 200 MHZ. In another embodiment, referred to herein as a small off-set implementation, the invention down-converts an EM signal to a relatively low frequency of, for example, less than 100 KHZ. In another embodiment, referred to herein as a large off-set implementation, the invention down-converts an EM signal to a relatively higher IF signal, such as, for example, above 200 MHZ. The various off-set implementations provide selectivity for different applications. Generally, lower data rate applications can operate at lower intermediate frequencies. But higher intermediate frequencies can allow more information to be supported for a given modulation technique. In accordance with the invention, a designer picks an optimum information bandwidth for an application and an optimum intermediate frequency to support the baseband signal. The intermediate frequency should be high enough to support the bandwidth of the modulating baseband signal FMB. Generally, as the aliasing rate approaches a harmonic or sub-harmonic frequency of the EM signal, the frequency of the down-converted IF signal decreases. Similarly, as the aliasing rate moves away from a harmonic or sub-harmonic frequency of the EM signal, the IF increases. Aliased frequencies occur above and below every harmonic of the aliasing frequency. In order to avoid mapping other aliasing frequencies in the band of the aliasing frequency (IF) of interest, the IF of interest should not be near one half the aliasing rate. As described in example implementations below, an aliasing module, including a universal frequency translator (UFT) module built in accordance with the invention provides a wide range of flexibility in frequency selection and can thus be implemented in a wide range of applications. Conventional systems cannot easily offer, or do not allow, this level of flexibility in frequency selection. 2.1.2 Structural Description FIG. 63 illustrates a block diagram of an energy transfer system 6302 according to an embodiment of the invention. The energy transfer system 6302 is an example embodiment of the generic aliasing system 1302 in FIG. 13. The energy transfer system 6302 includes an energy transfer module 6304. The energy transfer module 6304 receives the EM signal 1304 and an energy transfer signal 6306, which includes a train of energy transfer pulses having non-negligible apertures that tend away from zero time in duration, occurring at a frequency equal to the aliasing rate FAR. The energy transfer signal 6306 is an example embodiment of the aliasing signal 1310 in FIG. 13. The energy transfer module 6304 transfers energy from the EM signal 1304 at the aliasing rate FAR of the energy transfer signal 6306. Preferably, the energy transfer module 6304 transfers energy from the EM signal 1304 to down-convert it to the intermediate signal FIF in the manner shown in the operational flowchart 4607 of FIG. 46B. But it should be understood that the scope and spirit of the invention includes other structural embodiments for performing the steps of the flowchart 4607. The specifics of the other structural embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. The operation of the energy transfer system 6302 is now described in detail with reference to the flowchart 4607 and to the timing diagrams illustrated in FIGS. 47A-E. In step 4608, the energy transfer module 6304 receives the AM carrier signal 616. In step 4610, the energy transfer module 6304 receives the energy transfer signal 4702. In step 4612, the energy transfer module 6304 transfers energy from the AM carrier signal 616 at the aliasing rate to down-convert the AM carrier signal 616 to the intermediate signal 4706 or 4708. Example implementations of the energy transfer system 6302 are provided in Sections 4 and 5 below. 2.2 Example Embodiments Various embodiments related to the method(s) and structure(s) described above are presented in this section (and its subsections). These embodiments are described herein for purposes of illustration, and not limitation. The invention is not limited to these embodiments. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. The method for down-converting the EM signal 1304 by transferring energy can be implemented with any type of EM signal, including modulated carrier signals and unmodulated carrier signals. For example, the method of the flowchart 4601 can be implemented to down-convert AM signals, FM signals, PM signals, etc., or any combination thereof. Operation of the flowchart 4601 of FIG. 46A is described below for down-converting AM, FM and PM. The down-conversion descriptions include down-converting to intermediate signals, directly down-converting to demodulated baseband signals, and down-converting FM signals to non-FM signals. The exemplary descriptions below are intended to facilitate an understanding of the present invention. The present invention is not limited to or by the exemplary embodiments below. 2.2.1 First Example Embodiment: Amplitude Modulation 2.2.1.1 Operational Description Operation of the exemplary process of the flowchart 4607 in FIG. 46B is described below for the analog AM carrier signal 516, illustrated in FIG. 5C, and for the digital AM carrier signal 616, illustrated in FIG. 6C. 2.2.1.1.1 Analog AM Carrier Signal A process for down-converting the analog AM carrier signal 516 in FIG. 5C to an analog AM intermediate signal is now described for the flowchart 4607 in FIG. 46B. The analog AM carrier signal 516 is re-illustrated in FIG. 50A for convenience. For this example, the analog AM carrier signal 516 oscillates at approximately 901 MHZ. In FIG. 50B, an analog AM carrier signal 5004 illustrates a portion of the analog AM carrier signal 516 on an expanded time scale. The process begins at step 4608, which includes receiving the EM signal. This is represented by the analog AM carrier signal 516. Step 4610 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 50C illustrates an example energy transfer signal 5006 on approximately the same time scale as FIG. 50B. The energy transfer signal 5006 includes a train of energy transfer pulses 5007 having non-negligible apertures 5009 that tend away from zero time in duration. The energy transfer pulses 5007 repeat at the aliasing rate FAR, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. Step 4612 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal to an intermediate signal FIF. In FIG. 50D, an affected analog AM carrier signal 5008 illustrates effects of transferring energy from the analog AM carrier signal 516 at the aliasing rate FAR. The affected analog AM carrier signal 5008 is illustrated on substantially the same time scale as FIGS. 50B and 50C. FIG. 50E illustrates a down-converted AM intermediate signal 5012, which is generated by the down-conversion process. The AM intermediate signal 5012 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The down-converted signal 5012 includes portions 5010A, which correlate with the energy transfer pulses 5007 in FIG. 50C, and portions 5010B, which are between the energy transfer pulses 5007. Portions 5010A represent energy transferred from the AM analog signal 516 to a storage device, while simultaneously driving an output load. The portions 5010A occur when a switching module is closed by the energy transfer pulses 5007. Portions 5010B represent energy stored in a storage device continuing to drive the load. Portions 5010B occur when the switching module is opened after energy transfer pulses 5007. Because a harmonic of the aliasing rate is off-set from the analog AM carrier signal 516, the energy transfer pulses 5007 “walk through” the analog AM carrier signal 516 at the difference frequency FDIFF. In other words, the energy transfer pulses 5007 occur at different locations of subsequent cycles of the AM carrier signal 516. As a result, the energy transfer pulses 5007 capture varying amounts of energy from the analog AM carrier signal 516, as illustrated by portions 5010A, which provides the AM intermediate signal 5012 with an oscillating frequency FIF. In FIG. 50F, an AM intermediate signal 5014 illustrates the AM intermediate signal 5012 on a compressed time scale. In FIG. 50G, an AM intermediate signal 5016 represents a filtered version of the AM intermediate signal 5014. The AM intermediate signal 5016 is substantially similar to the AM carrier signal 516, except that the AM intermediate signal 5016 is at the intermediate frequency. The AM intermediate signal 5016 can be demodulated through any conventional demodulation technique. The present invention can output the unfiltered AM intermediate signal 5014, the filtered AM intermediate signal 5016, a partially filtered AM intermediate signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The signals referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the AM intermediate signals 5014 in FIG. 50F and 5016 in FIG. 50G illustrate that the AM carrier signal 516 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 2.2.1.2.2 Digital AM Carrier Signal A process for down-converting the digital AM carrier signal 616 to a digital AM intermediate signal is now described for the flowchart 4607 in FIG. 46B. The digital AM carrier signal 616 is re-illustrated in FIG. 51A for convenience. For this example, the digital AM carrier signal 616 oscillates at approximately 901 MHZ. In FIG. 51B, a digital AM carrier signal 5104 illustrates a portion of the digital AM carrier signal 616 on an expanded time scale. The process begins at step 4608, which includes receiving an EM signal. This is represented by the digital AM carrier signal 616. Step 4610 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 51C illustrates an example energy transfer signal 5106 on substantially the same time scale as FIG. 51B. The energy transfer signal 5106 includes a train of energy transfer pulses 5107 having non-negligible apertures 5109 that tend away from zero time in duration. The energy transfer pulses 5107 repeat at the aliasing rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. Step 4612 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal to the intermediate signal FIF. In FIG. 51D, an affected digital AM carrier signal 5108 illustrates effects of transferring energy from the digital AM carrier signal 616 at the aliasing rate FAR. The affected digital AM carrier signal 5108 is illustrated on substantially the same time scale as FIGS. 51B and 51C. FIG. 51E illustrates a down-converted AM intermediate signal 5112, which is generated by the down-conversion process. The AM intermediate signal 5112 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The down-converted signal 5112 includes portions 5110A, which correlate with the energy transfer pulses 5107 in FIG. 51C, and portions 5110B, which are between the energy transfer pulses 5107. Portions 5110A represent energy transferred from the digital AM carrier signal 616 to a storage device, while simultaneously driving an output load. The portions 5110A occur when a switching module is closed by the energy transfer pulses 5107. Portions 5110B represent energy stored in a storage device continuing to drive the load. Portions 5110B occur when the switching module is opened after energy transfer pulses 5107. Because a harmonic of the aliasing rate is off-set from the frequency of the digital AM carrier signal 616, the energy transfer pulses 5107 “walk through” the digital AM signal 616 at the difference frequency FDIFF. In other words, the energy transfer pulse 5107 occur at different locations of subsequent cycles of the digital AM carrier signal 616. As a result, the energy transfer pulses 5107 capture varying amounts of energy from the digital AM carrier signal 616, as illustrated by portions 5110, which provides the AM intermediate signal 5112 with an oscillating frequency FIF. In FIG. 51F, a digital AM intermediate signal 5114 illustrates the AM intermediate signal 5112 on a compressed time scale. In FIG. 51G, an AM intermediate signal 5116 represents a filtered version of the AM intermediate signal 5114. The AM intermediate signal 5116 is substantially similar to the AM carrier signal 616, except that the AM intermediate signal 5116 is at the intermediate frequency. The AM intermediate signal 5116 can be demodulated through any conventional demodulation technique. The present invention can output the unfiltered AM intermediate signal 5114, the filtered AM intermediate signal 5116, a partially filtered AM intermediate signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The signals referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the AM intermediate signals 5114 in FIG. 51F and 5116 in FIG. 51G illustrate that the AM carrier signal 616 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 2.2.1.2 Structural Description The operation of the energy transfer system 6302 is now described for the analog AM carrier signal 516, with reference to the flowchart 4607 and to the timing diagrams in FIGS. 50A-G. In step 4608, the energy transfer module 6304 receives the analog AM carrier signal 516. In step 4610, the energy transfer module 6304 receives the energy transfer signal 5006. In step 4612, the energy transfer module 6304 transfers energy from the analog AM carrier signal 516 at the aliasing rate of the energy transfer signal 5006, to down-convert the analog AM carrier signal 516 to the AM intermediate signal 5012. The operation of the energy transfer system 6302 is now described for the digital AM carrier signal 616, with reference to the flowchart 1401 and the timing diagrams in FIGS. 51A-G. In step 4608, the energy transfer module 6304 receives the digital AM carrier signal 616. In step 4610, the energy transfer module 6304 receives the energy transfer signal 5106. In step 4612, the energy transfer module 6304 transfers energy from the digital AM carrier signal 616 at the aliasing rate of the energy transfer signal 5106, to down-convert the digital AM carrier signal 616 to the AM intermediate signal 5112. Example embodiments of the energy transfer module 6304 are disclosed in Sections 4 and 5 below. 2.2.2 Second Example Embodiment: Frequency Modulation 2.2.2.1 Operational Description Operation of the exemplary process of the flowchart 4607 in FIG. 46B is described below for the analog FM carrier signal 716, illustrated in FIG. 7C, and for the digital FM carrier signal 816, illustrated in FIG. 8C. 2.2.2.1.1 Analog FM Carrier Signal A process for down-converting the analog FM carrier signal 716 in FIG. 7C to an FM intermediate signal is now described for the flowchart 4607 in FIG. 46B. The analog FM carrier signal 716 is re-illustrated in FIG. 52A for convenience. For this example, the analog FM carrier signal 716 oscillates around approximately 901 MHZ. In FIG. 52B, an analog FM carrier signal 5204 illustrates a portion of the analog FM carrier signal 716 on an expanded time scale. The process begins at step 4608, which includes receiving an EM signal. This is represented by the analog FM carrier signal 716. Step 4610 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 52C illustrates an example energy transfer signal 5206 on approximately the same time scale as FIG. 52B. The energy transfer signal 5206 includes a train of energy transfer pulses 5207 having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses 5207 repeat at the aliasing rate FAR, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. Step 4612 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal to an intermediate signal FIF. In FIG. 52D, an affected analog FM carrier signal 5208 illustrates effects of transferring energy from the analog FM carrier signal 716 at the aliasing rate FAR. The affected analog FM carrier signal 5208 is illustrated on substantially the same time scale as FIGS. 52B and 52C. FIG. 52E illustrates a down-converted FM intermediate signal 5212, which is generated by the down-conversion process. The FM intermediate signal 5212 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The down-converted signal 5212 includes portions 5210A, which correlate with the energy transfer pulses 5207 in FIG. 52C, and portions 5210B, which are between the energy transfer pulses 5207. Portions 5210A represent energy transferred from the analog FM carrier signal 716 to a storage device, while simultaneously driving an output load. The portions 5210A occur when a switching module is closed by the energy transfer pulses 5207. Portions 5210B represent energy stored in a storage device continuing to drive the load. Portions 5210B occur when the switching module is opened after energy transfer pulses 5207. Because a harmonic of the aliasing rate is off-set from the frequency of the analog FM carrier signal 716, the energy transfer pulses 5207 “walk through” the analog FM carrier signal 716 at the difference frequency FDIFF. In other words, the energy transfer pulse 5207 occur at different locations of subsequent cycles of the analog FM carrier signal 716. As a result, the energy transfer pulses 5207 capture varying amounts of energy from the analog FM carrier signal 716, as illustrated by portions 5210, which provides the FM intermediate signal 5212 with an oscillating frequency FIF. In FIG. 52F, an analog FM intermediate signal 5214 illustrates the FM intermediate signal 5212 on a compressed time scale. In FIG. 52G, an FM intermediate signal 5216 represents a filtered version of the FM intermediate signal 5214. The FM intermediate signal 5216 is substantially similar to the analog FM carrier signal 716, except that the FM intermediate signal 5216 is at the intermediate frequency. The FM intermediate signal 5216 can be demodulated through any conventional demodulation technique. The present invention can output the unfiltered FM intermediate signal 5214, the filtered FM intermediate signal 5216, a partially filtered FM intermediate signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The signals referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the FM intermediate signals 5214 in FIGS. 52F and 5216 in FIG. 52G illustrate that the FM carrier signal 716 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 2.2.2.1.2 Digital FM Carrier Signal A process for down-converting the digital FM carrier signal 816 in FIG. 8C is now described for the flowchart 4607 in FIG. 46B. The digital FM carrier signal 816 is re-illustrated in FIG. 53A for convenience. For this example, the digital FM carrier signal 816 oscillates at approximately 901 MHZ. In FIG. 53B, a digital FM carrier signal 5304 illustrates a portion of the digital FM carrier signal 816 on an expanded time scale. The process begins at step 4608, which includes receiving an EM signal. This is represented by the digital FM carrier signal 816. Step 4610 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 53C illustrates an example energy transfer signal 5306 on substantially the same time scale as FIG. 53B. The energy transfer signal 5306 includes a train of energy transfer pulses 5307 having non-negligible apertures 5309 that tend away from zero time in duration. The energy transfer pulses 5307 repeat at the aliasing rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. Step 4612 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal to the an intermediate signal FIF. In FIG. 53D, an affected digital FM carrier signal 5308 illustrates effects of transferring energy from the digital FM carrier signal 816 at the aliasing rate FAR. The affected digital FM carrier signal 5308 is illustrated on substantially the same time scale as FIGS. 53B and 53C. FIG. 53E illustrates a down-converted FM intermediate signal 5312, which is generated by the down-conversion process. The down-converted signal 5312 includes portions 531A, which correlate with the energy transfer pulses 5307 in FIG. 53C, and portions 5310B, which are between the energy transfer pulses 5307. Down-converted signal 5312 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. Portions 5310A represent energy transferred from the digital FM carrier signal 816 to a storage device, while simultaneously driving an output load. The portions 5310A occur when a switching module is closed by the energy transfer pulses 5307. Portions 5310B represent energy stored in a storage device continuing to drive the load. Portions 5310B occur when the switching module is opened after energy transfer pulses 5307. Because a harmonic of the aliasing rate is off-set from the frequency of the digital FM carrier signal 816, the energy transfer pulses 5307 “walk through” the digital FM carrier signal 816 at the difference frequency FDIFF. In other words, the energy transfer pulse 5307 occur at different locations of subsequent cycles of the digital FM carrier signal 816. As a result, the energy transfer pulses 5307 capture varying amounts of energy from the digital FM carrier signal 816, as illustrated by portions 5310, which provides the FM intermediate signal 5312 with an oscillating frequency FIF. In FIG. 53F, a digital FM intermediate signal 5314 illustrates the FM intermediate signal 5312 on a compressed time scale. In FIG. 53G, an FM intermediate signal 5316 represents a filtered version of the FM intermediate signal 5314. The FM intermediate signal 5316 is substantially similar to the digital FM carrier signal 816, except that the FM intermediate signal 5316 is at the intermediate frequency. The FM intermediate signal 5316 can be demodulated through any conventional demodulation technique. The present invention can output the unfiltered FM intermediate signal 5314, the filtered FM intermediate signal 5316, a partially filtered FM intermediate signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The signals referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the FM intermediate signals 5314 in FIGS. 53F and 5316 in FIG. 53G illustrate that the FM carrier signal 816 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 2.2.2.2 Structural Description The operation of the energy transfer system 6302 is now described for the analog FM carrier signal 716, with reference to the flowchart 4607 and the timing diagrams in FIGS. 52A-G. In step 4608, the energy transfer module 6304 receives the analog FM carrier signal 716. In step 4610, the energy transfer module 6304 receives the energy transfer signal 5206. In step 4612, the energy transfer module 6304 transfers energy from the analog FM carrier signal 716 at the aliasing rate of the energy transfer signal 5206, to down-convert the analog FM carrier signal 716 to the FM intermediate signal 5212. The operation of the energy transfer system 6302 is now described for the digital FM carrier signal 816, with reference to the flowchart 4607 and the timing diagrams in FIGS. 53A-G. In step 4608, the energy transfer module 6304 receives the digital FM carrier signal 816. In step 4610, the energy transfer module 6304 receives the energy transfer signal 5306. In step 4612, the energy transfer module 6304 transfers energy from the digital FM carrier signal 816 at the aliasing rate of the energy transfer signal 5306, to down-convert the digital FM carrier signal 816 to the FM intermediate signal 5212. Example embodiments of the energy transfer module 6304 are disclosed in Sections 4 and 5 below. 2.2.3 Third Example Embodiment: Phase Modulation 2.2.3.1 Operational Description Operation of the exemplary process of the flowchart 4607 in FIG. 46B is described below for the analog PM carrier signal 916, illustrated in FIG. 9C, and for the digital PM carrier signal 1016, illustrated in FIG. 10C. 2.2.3.1.1 Analog PM Carrier Signal A process for down-converting the analog PM carrier signal 916 in FIG. 9C to an analog PM intermediate signal is now described for the flowchart 4607 in FIG. 46B. The analog PM carrier signal 916 is re-illustrated in FIG. 54A for convenience. For this example, the analog PM carrier signal 916 oscillates at approximately 901 MHZ. In FIG. 54B, an analog PM carrier signal 5404 illustrates a portion of the analog PM carrier signal 916 on an expanded time scale. The process begins at step 4608, which includes receiving an EM signal. This is represented by the analog PM carrier signal 916. Step 4610 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 54C illustrates an example energy transfer signal 5406 on approximately the same time scale as FIG. 54B. The energy transfer signal 5406 includes a train of energy transfer pulses 5407 having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses 5407 repeat at the aliasing rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. Step 4612 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal to the IF signal FIF. In FIG. 54D, an affected analog PM carrier signal 5408 illustrates effects of transferring energy from the analog PM carrier signal 916 at the aliasing rate FAR. The affected analog PM carrier signal 5408 is illustrated on substantially the same time scale as FIGS. 54B and 54C. FIG. 54E illustrates a down-converted PM intermediate signal 5412, which is generated by the down-conversion process. The down-converted PM intermediate signal 5412 includes portions 5410A, which correlate with the energy transfer pulses 5407 in FIG. 54C, and portions 5410B, which are between the energy transfer pulses 5407. Down-converted signal 5412 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. Portions 5410A represent energy transferred from the analog PM carrier signal 916 to a storage device, while simultaneously driving an output load. The portions 5410A occur when a switching module is closed by the energy transfer pulses 5407. Portions 5410B represent energy stored in a storage device continuing to drive the load. Portions 5410B occur when the switching module is opened after energy transfer pulses 5407. Because a harmonic of the aliasing rate is off-set from the frequency of the analog PM carrier signal 916, the energy transfer pulses 5407 “walk through” the analog PM carrier signal 916 at the difference frequency FDIFF. In other words, the energy transfer pulse 5407 occur at different locations of subsequent cycles of the analog PM carrier signal 916. As a result, the energy transfer pulses 5407 capture varying amounts of energy from the analog PM carrier signal 916, as illustrated by portions 5410, which provides the PM intermediate signal 5412 with an oscillating frequency FIF. In FIG. 54F, an analog PM intermediate signal 5414 illustrates the PM intermediate signal 5412 on a compressed time scale. In FIG. 54G, an PM intermediate signal 5416 represents a filtered version of the PM intermediate signal 5414. The PM intermediate signal 5416 is substantially similar to the analog PM carrier signal 916, except that the PM intermediate signal 5416 is at the intermediate frequency. The PM intermediate signal 5416 can be demodulated through any conventional demodulation technique. The present invention can output the unfiltered PM intermediate signal 5414, the filtered PM intermediate signal 5416, a partially filtered PM intermediate signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The signals referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the PM intermediate signals 5414 in FIGS. 54F and 5416 in FIG. 54G illustrate that the PM carrier signal 916 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 2.2.3.1.2 Digital PM Carrier Signal A process for down-converting the digital PM carrier signal 1016 in FIG. 10C to a digital PM signal is now described for the flowchart 4607 in FIG. 46B. The digital PM carrier signal 1016 is re-illustrated in FIG. 55A for convenience. For this example, the digital PM carrier signal 1016 oscillates at approximately 901 MHZ. In FIG. 55B, a digital PM carrier signal 5504 illustrates a portion of the digital PM carrier signal 1016 on an expanded time scale. The process begins at step 4608, which includes receiving an EM signal. This is represented by the digital PM carrier signal 1016. Step 4610 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 55C illustrates an example energy transfer signal 5506 on substantially the same time scale as FIG. 55B. The energy transfer signal 5506 includes a train of energy transfer pulses 5507 having non-negligible apertures 5509 that tend away from zero time in duration. The energy transfer pulses 5507 repeat at an aliasing rate, which is determined or selected as previously described. Generally, when down-converting to an intermediate signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the difference frequency FDIFF. Step 4612 includes transferring energy from the EM signal at the aliasing rate to down-convert the EM signal to an intermediate signal FIF. In FIG. 55D, an affected digital PM carrier signal 5508 illustrates effects of transferring energy from the digital PM carrier signal 1016 at the aliasing rate FAR. The affected digital PM carrier signal 5508 is illustrated on substantially the same time scale as FIGS. 55B and 55C. FIG. 55E illustrates a down-converted PM intermediate signal 5512, which is generated by the down-conversion process. The down-converted PM intermediate signal 5512 includes portions 5510A, which correlate with the energy transfer pulses 5507 in FIG. 55C, and portions 5510B, which are between the energy transfer pulses 5507. Down-converted signal 5512 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. Portions 5510A represent energy transferred from the digital PM carrier signal 1016 to a storage device, while simultaneously driving an output load. The portions 5510A occur when a switching module is closed by the energy transfer pulses 5507. Portions 5510B represent energy stored in a storage device continuing to drive the load. Portions 5510B occur when the switching module is opened after energy transfer pulses 5507. Because a harmonic of the aliasing rate is off-set from the frequency of the digital PM carrier signal 716, the energy transfer pulses 5507 “walk through” the digital PM carrier signal 1016 at the difference frequency FDIFF. In other words, the energy transfer pulse 5507 occur at different locations of subsequent cycles of the digital PM carrier signal 1016. As a result, the energy transfer pulses 5507 capture varying amounts of energy from the digital PM carrier signal 1016, as illustrated by portions 5510, which provides the PM intermediate signal 5512 with an oscillating frequency FIF. In FIG. 55F, a digital PM intermediate signal 5514 illustrates the PM intermediate signal 5512 on a compressed time scale. In FIG. 55G, an PM intermediate signal 5516 represents a filtered version of the PM intermediate signal 5514. The PM intermediate signal 5516 is substantially similar to the digital PM carrier signal 1016, except that the PM intermediate signal 5516 is at the intermediate frequency. The PM intermediate signal 5516 can be demodulated through any conventional demodulation technique. The present invention can output the unfiltered PM intermediate signal 5514, the filtered PM intermediate signal 5516, a partially filtered PM intermediate signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The signals referred to herein illustrate frequency down-conversion in accordance with the invention. For example, the PM intermediate signals 5514 in FIGS. 55F and 5516 in FIG. 55G illustrate that the PM carrier signal 1016 was successfully down-converted to an intermediate signal by retaining enough baseband information for sufficient reconstruction. 2.2.3.2 Structural Description Operation of the energy transfer system 6302 is now described for the analog PM carrier signal 916, with reference to the flowchart 4607 and the timing diagrams in FIGS. 54A-G. In step 4608, the energy transfer module 6304 receives the analog PM carrier signal 916. In step 4610, the energy transfer module 6304 receives the energy transfer signal 5406. In step 4612, the energy transfer module 6304 transfers energy from the analog PM carrier signal 916 at the aliasing rate of the energy transfer signal 5406, to down-convert the analog PM carrier signal 916 to the PM intermediate signal 5412. Operation of the energy transfer system 6302 is now described for the digital PM carrier signal 1016, with reference to the flowchart 4607 and the timing diagrams in FIGS. 55A-G. In step 4608, the energy transfer module 6304 receives the digital PM carrier signal 1016. In step 4610, the energy transfer module 6304 receives the energy transfer signal 5506. In step 4612, the energy transfer module 6304 transfers energy from the digital PM carrier signal 1016 at the aliasing rate of the energy transfer signal 5506, to down-convert the digital PM carrier signal 1016 to the PM intermediate signal 5512. Example embodiments of the energy transfer module 6304 are disclosed in Sections 4 and 5 below. 2.2.4 Other Embodiments The embodiments described above are provided for purposes of illustration. These embodiments are not intended to limit the invention. Alternate embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate embodiments fall within the scope and spirit of the present invention. Example implementations of the energy transfer module 6304 are disclosed in Sections 4 and 5 below. 2.3 Implementation Examples Exemplary operational and/or structural implementations related to the method(s), structure(s), and/or embodiments described above are presented in Sections 4 and 5 below. These implementations are presented for purposes of illustration, and not limitation. The invention is not limited to the particular implementation examples described therein. Alternate implementations (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. 3. Directly Down-Converting an EM Signal to an Demodulated Baseband Signal by Transferring Energy from the EM Signal In an embodiment, the invention directly down-converts an EM signal to a baseband signal, by transferring energy from the EM signal. This embodiment is referred to herein as direct-to-data down-conversion and is illustrated by 4516 in FIG. 45B. This embodiment can be implemented with modulated and unmodulated EM signals. This embodiment is described herein using the modulated carrier signal FMC in FIG. 1, as an example. In the example, the modulated carrier signal FMC is directly down-converted to the demodulated baseband signal FDMB. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any EM signal, including but not limited to, modulated carrier signals and unmodulated carrier signals. The following sections describe methods for directly down-converting the modulated carrier signal FMC to the demodulated baseband signal FDMB. Exemplary structural embodiments for implementing the methods are also described. It should be understood that the invention is not limited to the particular embodiments described below. Equivalents, extensions, variations, deviations, etc., of the following will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such equivalents, extensions, variations, deviations, etc., are within the scope and spirit of the present invention. The following sections include a high level discussion, example embodiments, and implementation examples. 3.1 High Level Description This section (including its subsections) provides a high-level description of transferring energy from the modulated carrier signal FMC to directly down-convert the modulated carrier signal FMC to the demodulated baseband signal FDMB, according to the invention. In particular, an operational process of directly down-converting the modulated carrier signal FMC to the demodulated baseband signal FDMB is described at a high-level. Also, a structural implementation for implementing this process is described at a high-level. The structural implementation is described herein for illustrative purposes, and is not limiting. In particular, the process described in this section can be achieved using any number of structural implementations, one of which is described in this section. The details of such structural implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. 3.1.1 Operational Description FIG. 46C depicts a flowchart 4613 that illustrates an exemplary method for transferring energy from the modulated carrier signal FMC to directly down-convert the modulated carrier signal FMC to the demodulated baseband signal FDMB. The exemplary method illustrated in the flowchart 4613 is an embodiment of the flowchart 4601 in FIG. 46A. Any and all combinations of modulation techniques are valid for this invention. For ease of discussion, the digital AM carrier signal 616 is used to illustrate a high level operational description of the invention. Subsequent sections provide detailed flowcharts and descriptions for AM and PM example embodiments. FM presents special considerations that are dealt with separately in Section III.3. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any type of EM signal, including any form of modulated carrier signal and unmodulated carrier signals. The high-level process illustrated in the flowchart 4613 is now described at a high level using the digital AM carrier signal 616, from FIG. 6C. The digital AM carrier signal 616 is re-illustrated in FIG. 56A for convenience. The process of the flowchart 4613 begins at step 4614, which includes receiving an EM signal. Step 4613 is represented by the digital AM carrier signal 616. Step 4616 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 56B illustrates an example energy transfer signal 5602, which includes a train of energy transfer pulses 5604 having apertures 5606 that are optimized for energy transfer. The optimized apertures 5606 are non-negligible and tend away from zero. The non-negligible apertures 5606 can be any width other than the period of the EM signal, or a multiple thereof. For example, the non-negligible apertures 5606 can be less than the period of the signal 616 such as, ⅛, ¼, ½, ¾, etc., of the period of the signal 616. Alternatively, the non-negligible apertures 5606 can be greater than the period of the signal 616. The width and amplitude of the apertures 5606 can be optimized based on one or more of a variety of criteria, as described in sections below. The energy transfer pulses 5604 repeat at the aliasing rate or pulse repetition rate. The aliasing rate is determined in accordance with EQ. (2), reproduced below for convenience. FC=n·FAR±FIF EQ. (2) When directly down-converting an EM signal to baseband (i.e., zero IF), EQ. (2) becomes: FC=n·FAR EQ. (8) Thus, to directly down-convert the AM signal 616 to a demodulated baseband signal, the aliasing rate is substantially equal to the frequency of the AM signal 616 or to a harmonic or sub-harmonic thereof. Although the aliasing rate is too low to permit reconstruction of higher frequency components of the AM signal 616 (i.e., the carrier frequency), it is high enough to permit substantial reconstruction of the lower frequency modulating baseband signal 310. Step 4618 includes transferring energy from the EM signal at the aliasing rate to directly down-convert the EM signal to a demodulated baseband signal FDMB. FIG. 56C illustrates a demodulated baseband signal 5610 that is generated by the direct down-conversion process. The demodulated baseband signal 5610 is similar to the digital modulating baseband signal 310 in FIG. 3. FIG. 56D depicts a filtered demodulated baseband signal 5612, which can be generated from the demodulated baseband signal 5610. The invention can thus generate a filtered output signal, a partially filtered output signal, or a relatively unfiltered output signal. The choice between filtered, partially filtered and non-filtered output signals is generally a design choice that depends upon the application of the invention. 3.1.2 Structural Description In an embodiment, the energy transfer system 6302 transfers energy from any type of EM signal, including modulated carrier signals and unmodulated carrier signal, to directly down-convert the EM signal to a demodulated baseband signal. Preferably, the energy transfer system 6302 transfers energy from the EM signal 1304 to down-convert it to demodulated baseband signal in the manner shown in the operational flowchart 4613. However, it should be understood that the scope and spirit of the invention includes other structural embodiments for performing the steps of the flowchart 4613. The specifics of the other structural embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. Operation of the energy transfer system 6302 is now described in at a high level for the digital AM carrier signal 616, with reference to the flowchart 4613 and the timing diagrams illustrated in FIGS. 56A-D. In step 4614, the energy transfer module 6304 receives the digital AM carrier signal 616. In step 4616, the energy transfer module 6304 receives the energy transfer signal 5602. In step 4618, the energy transfer module 6304 transfers energy from the digital AM carrier signal 616 at the aliasing rate to directly down-convert it to the demodulated baseband signal 5610. Example implementations of the energy transfer module 6302 are disclosed in Sections 4 and 5 below. 3.2 Example Embodiments Various embodiments related to the method(s) and structure(s) described above are presented in this section (and its subsections). These embodiments are described herein for purposes of illustration, and not limitation. The invention is not limited to these embodiments. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. The method for down-converting the EM signal to the demodulated baseband signal FDMB, illustrated in the flowchart 4613 of FIG. 46C, can be implemented with various types of modulated carrier signals including, but not limited to, AM, PM, etc., or any combination thereof. The flowchart 4613 of FIG. 46C is described below for AM and PM. The exemplary descriptions below are intended to facilitate an understanding of the present invention. The present invention is not limited to or by the exemplary embodiments below. 3.2.1 First Example Embodiment: Amplitude Modulation 3.2.1.1 Operational Description Operation of the exemplary process of the flowchart 4613 in FIG. 46C is described below for the analog AM carrier signal 516, illustrated in FIG. 5C, and for the digital AM carrier signal 616, illustrated in FIG. 6C. 3.2.1.1.1 Analog AM Carrier Signal A process for directly down-converting the analog AM carrier signal 516 in FIG. 5C to a demodulated baseband signal is now described with reference to the flowchart 4613 in FIG. 46C. The analog AM carrier signal 516 is re-illustrated in 57A for convenience. For this example, the analog AM carrier signal 516 oscillates at approximately 900 MHZ. In FIG. 57B, an analog AM carrier signal portion 5704 illustrates a portion of the analog AM carrier signal 516 on an expanded time scale. The process begins at step 4614, which includes receiving an EM signal. This is represented by the analog AM carrier signal 516. Step 4616 includes receiving an energy transfer signal having an aliasing rate FAR. In FIG. 57C, an example energy transfer signal 5706 is illustrated on approximately the same time scale as FIG. 57B. The energy transfer signal 5706 includes a train of energy transfer pulses 5707 having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses 5707 repeat at the aliasing rate, which is determined or selected as previously described. Generally, when down-converting an EM signal to a demodulated baseband signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the EM signal. Step 4618 includes transferring energy from the EM signal at the aliasing rate to directly down-convert the EM signal to the demodulated baseband signal FDMB. In FIG. 57D, an affected analog AM carrier signal 5708 illustrates effects of transferring energy from the analog AM carrier signal 516 at the aliasing rate FAR. The affected analog AM carrier signal 5708 is illustrated on substantially the same time scale as FIGS. 57B and 57C. FIG. 57E illustrates a demodulated baseband signal 5712, which is generated by the down-conversion process. Because a harmonic of the aliasing rate is substantially equal to the frequency of the signal 516, essentially no IF is produced. The only substantial aliased component is the baseband signal. The demodulated baseband signal 5712 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The demodulated baseband signal 5712 includes portions 5710A, which correlate with the energy transfer pulses 5707 in FIG. 57C, and portions 5710B, which are between the energy transfer pulses 5707. Portions 5710A represent energy transferred from the analog AM carrier signal 516 to a storage device, while simultaneously driving an output load. The portions 5710A occur when a switching module is closed by the energy transfer pulses 5707. Portions 5710B represent energy stored in a storage device continuing to drive the load. Portions 5710B occur when the switching module is opened after energy transfer pulses 5707. In FIG. 57F, a demodulated baseband signal 5716 represents a filtered version of the demodulated baseband signal 5712, on a compressed time scale. The demodulated baseband signal 5716 is substantially similar to the modulating baseband signal 210 and can be further processed using any signal processing technique(s) without further down-conversion or demodulation. The present invention can output the unfiltered demodulated baseband signal 5712, the filtered demodulated baseband signal 5716, a partially filtered demodulated baseband signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The aliasing rate of the energy transfer signal is preferably controlled to optimize the demodulated baseband signal for amplitude output and polarity, as desired. The drawings referred to herein illustrate direct down-conversion in accordance with the invention. For example, the demodulated baseband signals 5712 in FIGS. 57E and 5716 in FIG. 57F illustrate that the analog AM carrier signal 516 was directly down-converted to a demodulated baseband signal by retaining enough baseband information for sufficient reconstruction. 3.2.1.1.2 Digital AM Carrier Signal A process for directly down-converting the digital AM carrier signal 616 in FIG. 6C to a demodulated baseband signal is now described for the flowchart 4613 in FIG. 46C. The digital AM carrier signal 616 is re-illustrated in 58A for convenience. For this example, the digital AM carrier signal 616 oscillates at approximately 900 MHZ. In FIG. 58B, a digital AM carrier signal portion 5804 illustrates a portion of the digital AM carrier signal 616 on an expanded time scale. The process begins at step 4614, which includes receiving an EM signal. This is represented by the digital AM carrier signal 616. Step 4616 includes receiving an energy transfer signal having an aliasing rate FAR. In FIG. 58C, an example energy transfer signal 5806 is illustrated on approximately the same time scale as FIG. 58B. The energy transfer signal 5806 includes a train of energy transfer pulses 5807 having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses 5807 repeat at the aliasing rate, which is determined or selected as previously described. Generally, when directly down-converting an EM signal to a demodulated baseband signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the EM signal. Step 4618 includes transferring energy from the EM signal at the aliasing rate to directly down-convert the EM signal to the demodulated baseband signal FDMB. In FIG. 58D, an affected digital AM carrier signal 5808 illustrates effects of transferring energy from the digital AM carrier signal 616 at the aliasing rate FAR. The affected digital AM carrier signal 5808 is illustrated on substantially the same time scale as FIGS. 58B and 58C. FIG. 58E illustrates a demodulated baseband signal 5812, which is generated by the down-conversion process. Because a harmonic of the aliasing rate is substantially equal to the frequency of the signal 616, essentially no IF is produced. The only substantial aliased component is the baseband signal. The demodulated baseband signal 5812 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The demodulated baseband signal 5812 includes portions 5810A, which correlate with the energy transfer pulses 5807 in FIG. 58C, and portions 5810B, which are between the energy transfer pulses 5807. Portions 5810A represent energy transferred from the digital AM carrier signal 616 to a storage device, while simultaneously driving an output load. The portions 5810A occur when a switching module is closed by the energy transfer pulses 5807. Portions 5810B represent energy stored in a storage device continuing to drive the load. Portions 5810B occur when the switching module is opened after energy transfer pulses 5807. In FIG. 58F, a demodulated baseband signal 5816 represents a filtered version of the demodulated baseband signal 5812, on a compressed time scale. The demodulated baseband signal 5816 is substantially similar to the modulating baseband signal 310 and can be further processed using any signal processing technique(s) without further down-conversion or demodulation. The present invention can output the unfiltered demodulated baseband signal 5812, the filtered demodulated baseband signal 5816, a partially filtered demodulated baseband signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The aliasing rate of the energy transfer signal is preferably controlled to optimize the down-converted signal for amplitude output and polarity, as desired. The drawings referred to herein illustrate direct down-conversion in accordance with the invention. For example, the demodulated baseband signals 5812 in FIGS. 58E and 5816 in FIG. 58F illustrate that the digital AM carrier signal 616 was directly down-converted to a demodulated baseband signal by retaining enough baseband information for sufficient reconstruction. 3.2.1.2 Structural Description In an embodiment, the energy transfer module 6304 preferably transfers energy from the EM signal to directly down-convert it to a demodulated baseband signal in the manner shown in the operational flowchart 4613. But it should be understood that the scope and spirit of the invention includes other structural embodiments for performing the steps of the flowchart 1413. The specifics of the other structural embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. Operation of the energy transfer system 6302 is now described for the digital AM carrier signal 516, with reference to the flowchart 4613 and the timing diagrams in FIGS. 57A-F. In step 4612, the energy transfer module 6404 receives the analog AM carrier signal 516. In step 4614, the energy transfer module 6404 receives the energy transfer signal 5706. In step 4618, the energy transfer module 6404 transfers energy from the analog AM carrier signal 516 at the aliasing rate of the energy transfer signal 5706, to directly down-convert the digital AM carrier signal 516 to the demodulated baseband signals 5712 or 5716. The operation of the energy transfer system 6402 is now described for the digital AM carrier signal 616, with reference to the flowchart 4613 and the timing diagrams in FIGS. 58A-F. In step 4614, the energy transfer module 6404 receives the digital AM carrier signal 616. In step 4616, the energy transfer module 6404 receives the energy transfer signal 5806. In step 4618, the energy transfer module 6404 transfers energy from the digital AM carrier signal 616 at the aliasing rate of the energy transfer signal 5806, to directly down-convert the digital AM carrier signal 616 to the demodulated baseband signals 5812 or 5816. Example implementations of the energy transfer module 6302 are disclosed in Sections 4 and 5 below. 3.2.2 Second Example Embodiment: Phase Modulation 3.2.2.1 Operational Description Operation of the exemplary process of flowchart 4613 in FIG. 46C is described below for the analog PM carrier signal 916, illustrated in FIG. 9C and for the digital PM carrier signal 1016, illustrated in FIG. 10C. 3.2.2.1.1 Analog PM Carrier Signal A process for directly down-converting the analog PM carrier signal 916 to a demodulated baseband signal is now described for the flowchart 4613 in FIG. 46C. The analog PM carrier signal 916 is re-illustrated in 59A for convenience. For this example, the analog PM carrier signal 916 oscillates at approximately 900 MHZ. In FIG. 59B, an analog PM carrier signal portion 5904 illustrates a portion of the analog PM carrier signal 916 on an expanded time scale. The process begins at step 4614, which includes receiving an EM signal. This is represented by the analog PM carrier signal 916. Step 4616 includes receiving an energy transfer signal having an aliasing rate FAR. In FIG. 59C, an example energy transfer signal 5906 is illustrated on approximately the same time scale as FIG. 59B. The energy transfer signal 5906 includes a train of energy transfer pulses 5907 having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses 5907 repeat at the aliasing rate, which is determined or selected as previously described. Generally, when directly down-converting an EM signal to a demodulated baseband signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the EM signal. Step 4618 includes transferring energy from the EM signal at the aliasing rate to directly down-convert the EM signal to the demodulated baseband signal FDMB. In FIG. 59D, an affected analog PM carrier signal 5908 illustrates effects of transferring energy from the analog PM carrier signal 916 at the aliasing rate FAR. The affected analog PM carrier signal 5908 is illustrated on substantially the same time scale as FIGS. 59B and 59C. FIG. 59E illustrates a demodulated baseband signal 5912, which is generated by the down-conversion process. Because a harmonic of the aliasing rate is substantially equal to the frequency of the signal 516, essentially no IF is produced. The only substantial aliased component is the baseband signal. The demodulated baseband signal 5912 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The demodulated baseband signal 5912 includes portions 5910A, which correlate with the energy transfer pulses 5907 in FIG. 59C, and portions 5910B, which are between the energy transfer pulses 5907. Portions 5910A represent energy transferred from the analog PM carrier signal 916 to a storage device, while simultaneously driving an output load. The portions 5910A occur when a switching module is closed by the energy transfer pulses 5907. Portions 5910B represent energy stored in a storage device continuing to drive the load. Portions 5910B occur when the switching module is opened after energy transfer pulses 5907. In FIG. 59F, a demodulated baseband signal 5916 represents a filtered version of the demodulated baseband signal 5912, on a compressed time scale. The demodulated baseband signal 5916 is substantially similar to the modulating baseband signal 210 and can be further processed using any signal processing technique(s) without further down-conversion or demodulation. The present invention can output the unfiltered demodulated baseband 5912, the filtered demodulated baseband signal 5916, a partially filtered demodulated baseband signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The aliasing rate of the energy transfer signal is preferably controlled to optimize the down-converted signal for amplitude output and polarity, as desired. The drawings referred to herein illustrate direct down-conversion in accordance with the invention. For example, the demodulated baseband signals 5912 in FIGS. 59E and 5916 in FIG. 59F illustrate that the analog PM carrier signal 916 was successfully down-converted to a demodulated baseband signal by retaining enough baseband information for sufficient reconstruction. 3.2.2.1.2 Digital PM Carrier Signal A process for directly down-converting the digital PM carrier signal 1016 in FIG. 6C to a demodulated baseband signal is now described for the flowchart 4613 in FIG. 46C. The digital PM carrier signal 1016 is re-illustrated in 60A for convenience. For this example, the digital PM carrier signal 1016 oscillates at approximately 900 MHZ. In FIG. 60B, a digital PM carrier signal portion 6004 illustrates a portion of the digital PM carrier signal 1016 on an expanded time scale. The process begins at step 4614, which includes receiving an EM signal. This is represented by the digital PM carrier signal 1016. Step 4616 includes receiving an energy transfer signal FAR. In FIG. 60C, an example energy transfer signal 6006 is illustrated on approximately the same time scale as FIG. 60B. The energy transfer signal 6006 includes a train of energy transfer pulses 6007 having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses 6007 repeat at the aliasing rate, which is determined or selected as previously described. Generally, when directly down-converting an EM signal to a demodulated baseband signal, the aliasing rate FAR is substantially equal to a harmonic or, more typically, a sub-harmonic of the EM signal. Step 4618 includes transferring energy from the EM signal at the aliasing rate to directly down-convert the EM signal to the demodulated baseband signal FDMB. In FIG. 60D, an affected digital PM carrier signal 6008 illustrates effects of transferring energy from the digital PM carrier signal 1016 at the aliasing rate FAR. The affected digital PM carrier signal 6008 is illustrated on substantially the same time scale as FIGS. 60B and 60C. FIG. 60E illustrates a demodulated baseband signal 6012, which is generated by the down-conversion process. Because a harmonic of the aliasing rate is substantially equal to the frequency of the signal 1016, essentially no IF is produced. The only substantial aliased component is the baseband signal. The demodulated baseband signal 6012 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The demodulated baseband signal 6012 includes portions 6010A, which correlate with the energy transfer pulses 6007 in FIG. 60C, and portions 6010B, which are between the energy transfer pulses 6007. Portions 6010A represent energy transferred from the digital PM carrier signal 1016 to a storage device, while simultaneously driving an output load. The portions 6010A occur when a switching module is closed by the energy transfer pulses 6007. Portions 6010B represent energy stored in a storage device continuing to drive the load. Portions 6010B occur when the switching module is opened after energy transfer pulses 6007. In FIG. 60F, a demodulated baseband signal 6016 represents a filtered version of the demodulated baseband signal 6012, on a compressed time scale. The demodulated baseband signal 6016 is substantially similar to the modulating baseband signal 310 and can be further processed using any signal processing technique(s) without further down-conversion or demodulation. The present invention can output the unfiltered demodulated baseband signal 6012, the filtered demodulated baseband signal 6016, a partially filtered demodulated baseband signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The aliasing rate of the energy transfer signal is preferably controlled to optimize the down-converted signal for amplitude output and polarity, as desired. The drawings referred to herein illustrate direct down-conversion in accordance with the invention. For example, the demodulated baseband signals 6012 in FIGS. 60E and 6016 in FIG. 60F illustrate that the digital PM carrier signal 1016 was successfully down-converted to a demodulated baseband signal by retaining enough baseband information for sufficient reconstruction. 3.2.2.2 Structural Description In an embodiment, the energy transfer system 6302 preferably transfers energy from an EM signal to directly down-convert it to a demodulated baseband signal in the manner shown in the operational flowchart 4613. But it should be understood that the scope and spirit of the invention includes other structural embodiments for performing the steps of the flowchart 1413. The specifics of the other structural embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. Operation of the energy transfer system 6302 is now described for the analog PM carrier signal 916, with reference to the flowchart 4613 and the timing diagrams in FIGS. 59A-F. In step 4614, the energy transfer module 6304 receives the analog PM carrier signal 916. In step 4616, the energy transfer module 6304 receives the energy transfer signal 5906. In step 4618, the energy transfer module 6304 transfers energy from the analog PM carrier signal 916 at the aliasing rate of the energy transfer signal 5906, to directly down-convert the analog PM carrier signal 916 to the demodulated baseband signals 5912 or 5916. Operation of the energy transfer system 6302 is now described for the digital PM carrier signal 1016, with reference to the flowchart 4613 and to the timing diagrams in FIGS. 60A-F. In step 4614, the energy transfer module 6404 receives the digital PM carrier signal 1016. In step 4616, the energy transfer module 6404 receives the energy transfer signal 6006. In step 4618, the energy transfer module 6404 transfers energy from the digital PM carrier signal 1016 at the aliasing rate of the energy transfer signal 6006, to directly down-convert the digital PM carrier signal 1016 to the demodulated baseband signal 6012 or 6016. Example implementations of the energy transfer module 6302 are disclosed in Sections 4 and 5 below. 3.2.3 Other Embodiments The embodiments described above are provided for purposes of illustration. These embodiments are not intended to limit the invention. Alternate embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate embodiments fall within the scope and spirit of the present invention. Example implementations of the energy transfer module 6302 are disclosed in Sections 4 and 5 below. 3.3 Implementation Examples Exemplary operational and/or structural implementations related to the method(s), structure(s), and/or embodiments described above are presented in Sections 4 and 5 below. These implementations are presented for purposes of illustration, and not limitation. The invention is not limited to the particular implementation examples described therein. Alternate implementations (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. 4. Modulation Conversion In an embodiment, the invention down-converts an FM carrier signal FFMC to a non-FM signal F(NON-FM), by transferring energy from the FM carrier signal FFMC at an aliasing rate. This embodiment is illustrated in FIG. 45B as 4518. In an example embodiment, the FM carrier signal FFMC is down-converted to a phase modulated (PM) signal FPM. In another example embodiment, the FM carrier signal FFMC is down-converted to an amplitude modulated (AM) signal FAM. The down-converted signal can be demodulated with any conventional demodulation technique to obtain a demodulated baseband signal FDMB. The invention can be implemented with any type of FM signal. Exemplary embodiments are provided below for down-converting a frequency shift keying (FSK) signal to a non-FSK signal. FSK is a sub-set of FM, wherein an FM signal shifts or switches between two or more frequencies. FSK is typically used for digital modulating baseband signals, such as the digital modulating baseband signal 310 in FIG. 3. For example, in FIG. 8, the digital FM signal 816 is an FSK signal that shifts between an upper frequency and a lower frequency, corresponding to amplitude shifts in the digital modulating baseband signal 310. The FSK signal 816 is used in example embodiments below. In a first example embodiment, energy is transferred from the FSK signal 816 at an aliasing rate that is based on a mid-point between the upper and lower frequencies of the FSK signal 816. When the aliasing rate is based on the mid-point, the FSK signal 816 is down-converted to a phase shift keying (PSK) signal. PSK is a sub-set of phase modulation, wherein a PM signal shifts or switches between two or more phases. PSK is typically used for digital modulating baseband signals. For example, in FIG. 10, the digital PM signal 1016 is a PSK signal that shifts between two phases. The PSK signal 1016 can be demodulated by any conventional PSK demodulation technique(s). In a second example embodiment, energy is transferred from the FSK signal 816 at an aliasing rate that is based upon either the upper frequency or the lower frequency of the FSK signal 816. When the aliasing rate is based upon the upper frequency or the lower frequency of the FSK signal 816, the FSK signal 816 is down-converted to an amplitude shift keying (ASK) signal. ASK is a sub-set of amplitude modulation, wherein an AM signal shifts or switches between two or more amplitudes. ASK is typically used for digital modulating baseband signals. For example, in FIG. 6, the digital AM signal 616 is an ASK signal that shifts between the first amplitude and the second amplitude. The ASK signal 616 can be demodulated by any conventional ASK demodulation technique(s). The following sections describe methods for transferring energy from an FM carrier signal FFMC to down-convert it to the non-FM signal F(NON-FM). Exemplary structural embodiments for implementing the methods are also described. It should be understood that the invention is not limited to the particular embodiments described below. Equivalents, extensions, variations, deviations, etc., of the following will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such equivalents, extensions, variations, deviations, etc., are within the scope and spirit of the present invention. The following sections include a high level discussion, example embodiments, and implementation examples. 4.1 High Level Description This section (including its subsections) provides a high-level description of transferring energy from the FM carrier signal FFM to down-convert it to the non-FM signal F(NON-FM), according to the invention. In particular, an operational process for down-converting the FM carrier signal FFM to the non-FM signal F(NON-FM) is described at a high-level. Also, a structural implementation for implementing this process is described at a high-level. The structural implementation is described herein for illustrative purposes, and is not limiting. In particular, the process described in this section can be achieved using any number of structural implementations, one of which is described in this section. The details of such structural implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. 4.1.1 Operational Description FIG. 46D depicts a flowchart 4619 that illustrates an exemplary method for down-converting the FM carrier signal FFMC to the non-FM signal F(NON-FM). The exemplary method illustrated in the flowchart 4619 is an embodiment of the flowchart 4601 in FIG. 46A. Any and all forms of frequency modulation techniques are valid for this invention. For ease of discussion, the digital FM carrier (FSK) signal 816 is used to illustrate a high level operational description of the invention. Subsequent sections provide detailed flowcharts and descriptions for the FSK signal 816. Upon reading the disclosure and examples therein, one skilled in the relevant art(s) will understand that the invention can be implemented to down-convert any type of FM signal. The method illustrated in the flowchart 4619 is described below at a high level for down-converting the FSK signal 816 in FIG. 8C to a PSK signal. The FSK signal 816 is re-illustrated in FIG. 84A for convenience. The process of the flowchart 4619 begins at step 4620, which includes receiving an FM signal. This is represented by the FSK signal 816. The FSK signal 816 shifts between a first frequency 8410 and a second frequency 8412. The first frequency 8410 can be higher or lower than the second frequency 8412. In an exemplary embodiment, the first frequency 8410 is approximately 899 MHZ and the second frequency 8412 is approximately 901 MHZ. Step 4622 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 84B illustrates an example energy transfer signal 8402 which includes a train of energy transfer pulses 8403 having non-negligible apertures 8405 that tend away from zero time in duration. The energy transfer pulses 8403 repeat at the aliasing rate FAR, which is determined or selected as previously described. Generally, when down-converting an FM carrier signal FFMC to a non-FM signal F(NON-FM), the aliasing rate is substantially equal to a harmonic or, more typically, a sub-harmonic of a frequency within the FM signal. In this example overview embodiment, where the FSK signal 816 is to be down-converted to a PSK signal, the aliasing rate is substantially equal to a harmonic or, more typically, a sub-harmonic of the mid-point between the first frequency 8410 and the second frequency 8412. For the present example, the mid-point is approximately 900 MHZ. Step 4624 includes transferring energy from the FM carrier signal FFMC at the aliasing rate to down-convert the FM carrier signal FFMC to the non-FM signal F(NON-FM). FIG. 84C illustrates a PSK signal 8404, which is generated by the modulation conversion process. When the second frequency 8412 is under-sampled, the PSK signal 8404 has a frequency of approximately 1 MHZ and is used as a phase reference. When the first frequency 8410 is under-sampled, the PSK signal 8404 has a frequency of 1 MHZ and is phase shifted 180 degrees from the phase reference. FIG. 84D depicts a PSK signal 8406, which is a filtered version of the PSK signal 8404. The invention can thus generate a filtered output signal, a partially filtered output signal, or a relatively unfiltered stair step output signal. The choice between filtered, partially filtered and non-filtered output signals is generally a design choice that depends upon the application of the invention. The aliasing rate of the energy transfer signal is preferably controlled to optimize the down-converted signal for amplitude output and polarity, as desired. Detailed exemplary embodiments for down-converting an FSK signal to a PSK signal and for down-converting an FSK signal to an ASK signal are provided below. 4.1.2 Structural Description FIG. 63 illustrates the energy transfer system 6302 according to an embodiment of the invention. The energy transfer system 6302 includes the energy transfer module 6304. The energy transfer system 6302 is an example embodiment of the generic aliasing system 1302 in FIG. 13. In a modulation conversion embodiment, the EM signal 1304 is an FM carrier signal FFMC and the energy transfer module 6304 transfers energy from FM carrier signal at a harmonic or, more typically, a sub-harmonic of a frequency within the FM frequency band. Preferably, the energy transfer module 6304 transfers energy from the FM carrier signal FFMC to down-convert it to a non-FM signal F(NON-FM) in the manner shown in the operational flowchart 4619. But it should be understood that the scope and spirit of the invention includes other structural embodiments for performing the steps of the flowchart 4619. The specifics of the other structural embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. The operation of the energy transfer system 6302 shall now be described with reference to the flowchart 4619 and the timing diagrams of FIGS. 84A-84D. In step 4620, the energy transfer module 6304 receives the FSK signal 816. In step 4622, the energy transfer module 6304 receives the energy transfer signal 8402. In step 4624, the energy transfer module 6304 transfers energy from the FSK signal 816 at the aliasing rate of the energy transfer signal 8402 to down-convert the FSK signal 816 to the PSK signal 8404 or 8406. Example implementations of the energy transfer module 6302 are provided in Section 4 below. 4.2 Example Embodiments Various embodiments related to the method(s) and structure(s) described above are presented in this section (and its subsections). These embodiments are described herein for purposes of illustration, and not limitation. The invention is not limited to these embodiments. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. The method for down-converting an FM carrier signal FMC to a non-FM signal, F(NON-FM), illustrated in the flowchart 4619 of FIG. 46D, can be implemented with any type of FM carrier signal including, but not limited to, FSK signals. The flowchart 4619 is described in detail below for down-converting an FSK signal to a PSK signal and for down-converting a FSK signal to an ASK signal. The exemplary descriptions below are intended to facilitate an understanding of the present invention. The present invention is not limited to or by the exemplary embodiments below. 4.2.1 First Example Embodiment: Down-Converting an FM Signal to a PM Signal 4.2.1.1 Operational Description A process for down-converting the FSK signal 816 in FIG. 8C to a PSK signal is now described for the flowchart 4619 in FIG. 46D. The FSK signal 816 is re-illustrated in FIG. 61A for convenience. The FSK signal 816 shifts between a first frequency 6106 and a second frequency 6108. In the exemplary embodiment, the first frequency 6106 is lower than the second frequency 6108. In an alternative embodiment, the first frequency 6106 is higher than the second frequency 6108. For this example, the first frequency 6106 is approximately 899 MHZ and the second frequency 6108 is approximately 901 MHZ. FIG. 61B illustrates an FSK signal portion 6104 that represents a portion of the FSK signal 816 on an expanded time scale. The process begins at step 4620, which includes receiving an FM signal. This is represented by the FSK signal 816. Step 4622 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 61C illustrates an example energy transfer signal 6107 on approximately the same time scale as FIG. 61B. The energy transfer signal 6107 includes a train of energy transfer pulses 6109 having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses 6109 repeat at the aliasing rate FAR, which is determined or selected as described above. Generally, when down-converting an FM signal to a non-FM signal, the aliasing rate is substantially equal to a harmonic or, more typically, a sub-harmonic of a frequency within the FM signal. In this example, where an FSK signal is being down-converted to a PSK signal, the aliasing rate is substantially equal to a harmonic or, more typically, a sub-harmonic, of the mid-point between the frequencies 6106 and 6108. In this example, where the first frequency 6106 is 899 MHZ and second frequency 6108 is 901 MHZ, the mid-point is approximately 900 MHZ. Suitable aliasing rates thus include 1.8 GHZ, 900 MHZ, 450 MHZ, etc. Step 4624 includes transferring energy from the FM signal at the aliasing rate to down-convert it to the non-FM signal F(NON-FM). In FIG. 61D, an affected FSK signal 6118 illustrates effects of transferring energy from the FSK signal 816 at the aliasing rate FAR. The affected FSK signal 6118 is illustrated on substantially the same time scale as FIGS. 61B and 61C. FIG. 61E illustrates a PSK signal 6112, which is generated by the modulation conversion process. PSK signal 6112 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The PSK signal 6112 includes portions 6110A, which correlate with the energy transfer pulses 6107 in FIG. 61C. The PSK signal 6112 also includes portions 6110B, which are between the energy transfer pulses 6109. Portions 6110A represent energy transferred from the FSK 816 to a storage device, while simultaneously driving an output load. The portions 6110A occur when a switching module is closed by the energy transfer pulses 6109. Portions 6110B represent energy stored in a storage device continuing to drive the load. Portions 6110B occur when the switching module is opened after energy transfer pulses 6107. In FIG. 61F, a PSK signal 6114 represents a filtered version of the PSK signal 6112, on a compressed time scale. The present invention can output the unfiltered demodulated baseband signal 6112, the filtered demodulated baseband signal 6114, a partially filtered demodulated baseband signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The PSK signals 6112 and 6114 can be demodulated with a conventional demodulation technique(s). The aliasing rate of the energy transfer signal is preferably controlled to optimize the down-converted signal for amplitude output and polarity, as desired. The drawings referred to herein illustrate modulation conversion in accordance with the invention. For example, the PSK signals 6112 in FIGS. 61E and 6114 in FIG. 61F illustrate that the FSK signal 816 was successfully down-converted to a PSK signal by retaining enough baseband information for sufficient reconstruction. 4.2.1.2 Structural Description The operation of the energy transfer system 1602 is now described for down-converting the FSK signal 816 to a PSK signal, with reference to the flowchart 4619 and to the timing diagrams of FIGS. 61A-E. In step 4620, the energy transfer module 1606 receives the FSK signal 816 (FIG. 61A). In step 4622, the energy transfer module 1606 receives the energy transfer signal 6107 (FIG. 61C). In step 4624, the energy transfer module 1606 transfers energy from the FSK signal 816 at the aliasing rate of the energy transfer signal 6107 to down-convert the FSK signal 816 to the PSK signal 6112 in FIG. 61E or the PSK signal 6114 in FIG. 61F. 4.2.2 Second Example Embodiment: Down-Converting an FM Signal to an AM Signal 4.2.2.1 Operational Description A process for down-converting the FSK signal 816 in FIG. 8C to an ASK signal is now described for the flowchart 4619 in FIG. 46D. The FSK signal 816 is re-illustrated in FIG. 62A for convenience. The FSK signal 816 shifts between a first frequency 6206 and a second frequency 6208. In the exemplary embodiment, the first frequency 6206 is lower than the second frequency 6208. In an alternative embodiment, the first frequency 6206 is higher than the second frequency 6208. For this example, the first frequency 6206 is approximately 899 MHZ and the second frequency 6208 is approximately 901 MHZ. FIG. 62B illustrates an FSK signal portion 6204 that represents a portion of the FSK signal 816 on an expanded time scale. The process begins at step 4620, which includes receiving an FM signal. This is represented by the FSK signal 816. Step 4622 includes receiving an energy transfer signal having an aliasing rate FAR. FIG. 62C illustrates an example energy transfer signal 6207 on approximately the same time scale as FIG. 62B. The energy transfer signal 6207 includes a train of energy transfer pulses 6209 having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses 6209 repeat at the aliasing rate FAR, which is determined or selected as described above. Generally, when down-converting an FM signal to a non-FM signal the aliasing rate is substantially equal to a harmonic or, more typically, a sub-harmonic of a frequency within the FM signal. In this example, where an FSK signal is being down-converted to an ASK signal, the aliasing rate is substantially equal to a harmonic or, more typically, a sub-harmonic, of either the first frequency 6206 or the second frequency 6208. In this example, where the first frequency 6206 is 899 MHZ and the second frequency 6208 is 901 MHZ, the aliasing rate can be substantially equal to a harmonic or sub-harmonic of 899 MHZ or 901 MHZ. Step 4624 includes transferring energy from the FM signal at the aliasing rate to down-convert it to the non-FM signal F(NON-FM). In FIG. 62D, an affected FSK signal 6218 illustrates effects of transferring energy from the FSK signal 816 at the aliasing rate FAR. The affected FSK signal 6218 is illustrated on substantially the same time scale as FIGS. 62B and 62C. FIG. 62E illustrates an ASK signal 6212, which is generated by the modulation conversion process. ASK signal 6212 is illustrated with an arbitrary load impedance. Load impedance optimizations are discussed in Section 5 below. The ASK signal 6212 includes portions 6210A, which correlate with the energy transfer pulses 6209 in FIG. 62C. The ASK signal 6212 also includes portions 6210B, which are between the energy transfer pulses 6209. Portions 6210A represent energy transferred from the FSK 816 to a storage device, while simultaneously driving an output load. Portions 6210A occur when a switching module is closed by the energy transfer pulses 6207. Portions 6210B represent energy stored in a storage device continuing to drive the load. Portions 6210B occur when the switching module is opened after energy transfer pulses 6207. In FIG. 62F, an ASK signal 6214 represents a filtered version of the ASK signal 6212, on a compressed time scale. The present invention can output the unfiltered demodulated baseband signal 6212, the filtered demodulated baseband signal 6214, a partially filtered demodulated baseband signal, a stair step output signal, etc. The choice between these embodiments is generally a design choice that depends upon the application of the invention. The ASK signals 6212 and 6214 can be demodulated with a conventional demodulation technique(s). The aliasing rate of the energy transfer signal is preferably controlled to optimize the down-converted signal for amplitude output and/or polarity, as desired. The drawings referred to herein illustrate modulation conversion in accordance with the invention. For example, the ASK signals 6212 in FIGS. 62E and 6214 in FIG. 62F illustrate that the FSK signal 816 was successfully down-converted to an ASK signal by retaining enough baseband information for sufficient reconstruction. 4.2.2.2 Structural Description The operation of the energy transfer system 1602 is now described for down-converting the FSK signal 816 to an ASK signal, with reference to the flowchart 4619 and to the timing diagrams of FIGS. 62A-F. In step 4620, the energy transfer module 6304 receives the FSK signal 816 (FIG. 62A). In step 4622, the energy transfer module 6304 receives the energy transfer signal 6207 (FIG. 62C). In step 4624, the energy transfer module 6304 transfers energy from the FSK signal 818 at the aliasing rate of the energy transfer signal 6207 to down-convert the FSK signal 816 to the ASK signal 6212 in FIG. 62E or the ASK signal 6214 in FIG. 62F. 4.2.3 Other Example Embodiments The embodiments described above are provided for purposes of illustration. These embodiments are not intended to limit the invention. Alternate embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate embodiments fall within the scope and spirit of the present invention. Example implementations of the energy transfer module 6302 are disclosed in Sections 4 and 5 below. 4.3 Implementation Examples Exemplary operational and/or structural implementations related to the method(s), structure(s), and/or embodiments described above are presented in Sections 4 and 5 below. These implementations are presented for purposes of illustration, and not limitation. The invention is not limited to the particular implementation examples described therein. Alternate implementations (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. 5. Implementation Examples Exemplary operational and/or structural implementations related to the method(s), structure(s), and/or embodiments described above are presented in this section (and its subsections). These implementations are presented herein for purposes of illustration, and not limitation. The invention is not limited to the particular implementation examples described herein. Alternate implementations (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. FIG. 63 illustrates an energy transfer system 6302, which is an exemplary embodiment of the generic aliasing system 1302 in FIG. 13. The energy transfer system 6302 includes an energy transfer module 6304, which receives the EM signal 1304 and an energy transfer signal 6306. The energy transfer signal 6306 includes a train of energy transfer pulses having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses repeat at an aliasing rate FAR. The energy transfer module 6304 transfers energy from the EM signal 1304 at the aliasing rate of the energy transfer signal 6306, as described in the sections above with respect to the flowcharts 4601 in FIG. 46A, 4607 in FIG. 46B, 4613 in FIGS. 46C and 4619 in FIG. 46D. The energy transfer module 6304 outputs a down-converted signal 1308B, which includes non-negligible amounts of energy transferred from the EM signal 1304. FIG. 64A illustrates an exemplary gated transfer system 6402, which is an example of the energy transfer system 6302. The gated transfer system 6402 includes a gated transfer module 6404, which is described below. FIG. 64B illustrates an exemplary inverted gated transfer system 6406, which is an alternative example of the energy transfer system 6302. The inverted gated transfer system 6406 includes an inverted gated transfer module 6408, which is described below. 5.1 The Energy Transfer System as a Gated Transfer System FIG. 64A illustrates the exemplary gated transfer system 6402, which is an exemplary implementation of the energy transfer system 6302. The gated transfer system 6402 includes the gated transfer module 6404, which receives the EM signal 1304 and the energy transfer signal 6306. The energy transfer signal 6306 includes a train of energy transfer pulses having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses repeat at an aliasing rate FAR. The gated transfer module 6404 transfers energy from the EM signal 1304 at the aliasing rate of the energy transfer signal 6306, as described in the sections above with respect to the flowcharts 4601 in FIG. 46A, 4607 in FIG. 46B, 4613 in FIGS. 46C and 4619 in FIG. 46D. The gated transfer module 6404 outputs the down-converted signal 1308B, which includes non-negligible amounts of energy transferred from the EM signal 1304. 5.1.1 The Gated Transfer System as a Switch Module and a Storage Module FIG. 65 illustrates an example embodiment of the gated transfer module 6404 as including a switch module 6502 and a storage module 6506. Preferably, the switch module 6502 and the storage module 6506 transfer energy from the EM signal 1304 to down-convert it in any of the manners shown in the operational flowcharts 4601 in FIG. 46A, 4607 in FIG. 46B, 4613 in FIGS. 46C and 4619 in FIG. 46D. For example, operation of the switch module 6502 and the storage module 6506 is now described for down-converting the EM signal 1304 to an intermediate signal, with reference to the flowchart 4607 and the example timing diagrams in FIG. 83A-F. In step 4608, the switch module 6502 receives the EM signal 1304 (FIG. 83A). In step 4610, the switch module 6502 receives the energy transfer signal 6306 (FIG. 83C). In step 4612, the switch module 6502 and the storage module 6506 cooperate to transfer energy from the EM signal 1304 and down-convert it to an intermediate signal. More specifically, during step 4612, the switch module 6502 closes during each energy transfer pulse to couple the EM signal 1304 to the storage module 6506. In an embodiment, the switch module 6502 closes on rising edges of the energy transfer pulses. In an alternative embodiment, the switch module 6502 closes on falling edges of the energy transfer pulses. While the EM signal 1304 is coupled to the storage module 6506, non-negligible amounts of energy are transferred from the EM signal 1304 to the storage module 6506. FIG. 83B illustrates the EM signal 1304 after the energy is transferred from it. FIG. 83D illustrates the transferred energy stored in the storage module 6506. The storage module 6506 outputs the transferred energy as the down-converted signal 1308B. The storage module 6506 can output the down-converted signal 1308B as an unfiltered signal such as signal shown in FIG. 83E, or as a filtered down-converted signal (FIG. 83F). 5.1.2 The Gated Transfer System as Break-Before-Make Module FIG. 67A illustrates an example embodiment of the gated transfer module 6404 as including a break-before-make module 6702 and a storage module 6716. Preferably, the break before make module 6702 and the storage module 6716 transfer energy from the EM signal 1304 to down-convert it in any of the manners shown in the operational flowcharts 4601 in FIG. 46A, 4607 in FIG. 46B, 4613 in FIGS. 46C and 4619 in FIG. 46D. In FIG. 67A, the break-before-make module 6702 includes a includes a normally open switch 6704 and a normally closed switch 6706. The normally open switch 6704 is controlled by the energy transfer signal 6306. The normally closed switch 6706 is controlled by an isolation signal 6712. In an embodiment, the isolation signal 6712 is generated from the energy transfer signal 6306. Alternatively, the energy transfer signal 6306 is generated from the isolation signal 6712. Alternatively, the isolation signal 6712 is generated independently from the energy transfer signal 6306. The break-before-make module 6702 substantially isolates an input 6708 from an output 6710. FIG. 67B illustrates an example timing diagram of the energy transfer signal 6306, which controls the normally open switch 6704. FIG. 67C illustrates an example timing diagram of the isolation signal 6712, which controls the normally closed switch 6706. Operation of the break-before-make module 6702 is now described with reference to the example timing diagrams in FIGS. 67B and 67C. Prior to time t0, the normally open switch 6704 and the normally closed switch 6706 are at their normal states. At time t0, the isolation signal 6712 in FIG. 67C opens the normally closed switch 6706. Thus, just after time t0, the normally open switch 6704 and the normally closed switch 6706 are open and the input 6708 is isolated from the output 6710. At time t1, the energy transfer signal 6306 in FIG. 67B closes the normally open switch 6704 for the non-negligible duration of a pulse. This couples the EM signal 1304 to the storage module 6716. Prior to t2, the energy transfer signal 6306 in FIG. 67B opens the normally open switch 6704. This de-couples the EM signal 1304 from the storage module 6716. At time t2, the isolation signal 6712 in FIG. 67C closes the normally closed switch 6706. This couples the storage module 6716 to the output 6710. The storage module 6716, is similar to the storage module 6506 FIG. 65. The break-before-make gated transfer system 6701 down-converts the EM signal 1304 in a manner similar to that described with reference to the gated transfer system 6501 in FIG. 65. 5.1.3 Example Implementations of the Switch Module The switch module 6502 in FIG. 65 and the switch modules 6704 and 6706 in FIG. 67A can be any type of switch device that preferably has a relatively low impedance when closed and a relatively high impedance when open. The switch modules 6502, 6704 and 6706 can be implemented with normally open or normally closed switches. The switch modules need not be ideal switch modules. FIG. 66B illustrates the switch modules 6502, 6704 and 6706 as a switch module 6610. Switch module 6610 can be implemented in either normally open or normally closed architecture. The switch module 6610 (e.g., switch modules 6502, 6704 and 6706) can be implemented with any type of suitable switch device, including, but not limited, to mechanical switch devices and electrical switch devices, optical switch devices, etc., and combinations thereof. Such devices include, but are not limited to transistor switch devices, diode switch devices, relay switch devices, optical switch devices, micro-machine switch devices, etc., or combinations thereof. In an embodiment, the switch module 6610 can be implemented as a transistor, such as, for example, a field effect transistor (FET), a bi-polar transistor, or any other suitable circuit switching device. In FIG. 66A, the switch module 6610 is illustrated as a FET 6602. The FET 6602 can be any type of FET, including, but not limited to, a MOSFET, a JFET, a GaAsFET, etc. The FET 6602 includes a gate 6604, a source 6606 and a drain 6608. The gate 6604 receives the energy transfer signal 6306 to control the switching action between the source 6606 and the drain 6608. In an embodiment, the source 6606 and the drain 6608 are interchangeable. It should be understood that the illustration of the switch module 6610 as a FET 6602 in FIG. 66A is for example purposes only. Any device having switching capabilities could be used to implement the switch module 6610 (i.e., switch modules 6502, 6704 and 6706), as will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. In FIG. 66C, the switch module 6610 is illustrated as a diode switch 6612, which operates as a two lead device when the energy transfer signal 6306 is coupled to the output 6613. In FIG. 66D, the switch module 6610 is illustrated as a diode switch 6614, which operates as a two lead device when the energy transfer signal 6306 is coupled to the output 6615. 5.1.4 Example Implementations of the Storage Module The storage modules 6506 and 6716 store non-negligible amounts of energy from the EM signal 1304. In an exemplary embodiment, the storage modules 6506 and 6716 are implemented as a reactive storage module 6801 in FIG. 68A, although the invention is not limited to this embodiment. A reactive storage module is a storage module that employs one or more reactive electrical components to store energy transferred from the EM signal 1304. Reactive electrical components include, but are not limited to, capacitors and inductors. In an embodiment, the storage modules 6506 and 6716 include one or more capacitive storage elements, illustrated in FIG. 68B as a capacitive storage module 6802. In FIG. 68C, the capacitive storage module 6802 is illustrated as one or more capacitors illustrated generally as capacitor(s) 6804. The goal of the storage modules 6506 and 6716 is to store non-negligible amounts of energy transferred from the EM signal 1304. Amplitude reproduction of the original, unaffected EM input signal is not necessarily important. In an energy transfer environment, the storage module preferably has the capacity to handle the power being transferred, and to allow it to accept a non-negligible amount of power during a non-negligible aperture period. A terminal 6806 serves as an output of the capacitive storage module 6802. The capacitive storage module 6802 provides the stored energy at the terminal 6806. FIG. 68F illustrates the capacitive storage module 6802 as including a series capacitor 6812, which can be utilized in an inverted gated transfer system described below. In an alternative embodiment, the storage modules 6506 and 6716 include one or more inductive storage elements, illustrated in FIG. 68D as an inductive storage module 6808. In an alternative embodiment, the storage modules 6506 and 6716 include a combination of one or more capacitive storage elements and one or more inductive storage elements, illustrated in FIG. 68E as a capacitive/inductive storage module 6810. FIG. 68G illustrates an integrated gated transfer system 6818 that can be implemented to down-convert the EM signal 1304 as illustrated in, and described with reference to, FIGS. 83A-F. 5.1.5 Optional Energy Transfer Signal Module FIG. 69 illustrates an energy transfer system 6901, which is an example embodiment of the energy transfer system 6302. The energy transfer system 6901 includes an optional energy transfer signal module 6902, which can perform any of a variety of functions or combinations of functions including, but not limited to, generating the energy transfer signal 6306. In an embodiment, the optional energy transfer signal module 6902 includes an aperture generator, an example of which is illustrated in FIG. 68J as an aperture generator 6820. The aperture generator 6820 generates non-negligible aperture pulses 6826 from an input signal 6824. The input signal 6824 can be any type of periodic signal, including, but not limited to, a sinusoid, a square wave, a saw-tooth wave, etc. Systems for generating the input signal 6824 are described below. The width or aperture of the pulses 6826 is determined by delay through the branch 6822 of the aperture generator 6820. Generally, as the desired pulse width increases, the difficulty in meeting the requirements of the aperture generator 6820 decrease. In other words, to generate non-negligible aperture pulses for a given EM input frequency, the components utilized in the example aperture generator 6820 do not require as fast reaction times as those that are required in an under-sampling system operating with the same EM input frequency. The example logic and implementation shown in the aperture generator 6820 are provided for illustrative purposes only, and are not limiting. The actual logic employed can take many forms. The example aperture generator 6820 includes an optional inverter 6828, which is shown for polarity consistency with other examples provided herein. An example implementation of the aperture generator 6820 is illustrated in FIG. 68K. Additional examples of aperture generation logic are provided in FIGS. 68H and 68I. FIG. 68H illustrates a rising edge pulse generator 6840, which generates pulses 6.826 on rising edges of the input signal 6824. FIG. 68I illustrates a falling edge pulse generator 6850, which generates pulses 6826 on falling edges of the input signal 6824. In an embodiment, the input signal 6824 is generated externally of the energy transfer signal module 6902, as illustrated in FIG. 69. Alternatively, the input signal 6924 is generated internally by the energy transfer signal module 6902. The input signal 6824 can be generated by an oscillator, as illustrated in FIG. 68L by an oscillator 6830. The oscillator 6830 can be internal to the energy transfer signal module 6902 or external to the energy transfer signal module 6902. The oscillator 6830 can be external to the energy transfer system 6901. The output of the oscillator 6830 may be any periodic waveform. The type of down-conversion performed by the energy transfer system 6901 depends upon the aliasing rate of the energy transfer signal 6306, which is determined by the frequency of the pulses 6826. The frequency of the pulses 6826 is determined by the frequency of the input signal 6824. For example, when the frequency of the input signal 6824 is substantially equal to a harmonic or a sub-harmonic of the EM signal 1304, the EM signal 1304 is directly down-converted to baseband (e.g. when the EM signal is an AM signal or a PM signal), or converted from FM to a non-FM signal. When the frequency of the input signal 6824 is substantially equal to a harmonic or a sub-harmonic of a difference frequency, the EM signal 1304 is down-converted to an intermediate signal. The optional energy transfer signal module 6902 can be implemented in hardware, software, firmware, or any combination thereof. 5.2 The Energy Transfer System as an Inverted Gated Transfer System FIG. 64B illustrates an exemplary inverted gated transfer system 6406, which is an exemplary implementation of the energy transfer system 6302. The inverted gated transfer system 6406 includes an inverted gated transfer module 6408, which receives the EM signal 1304 and the energy transfer signal 6306. The energy transfer signal 6306 includes a train of energy transfer pulses having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses repeat at an aliasing rate FAR. The inverted gated transfer module 6408 transfers energy from the EM signal 1304 at the aliasing rate of the energy transfer signal 6306, as described in the sections above with respect to the flowcharts 4601 in FIG. 46A, 4607 in FIG. 46B, 4613 in FIGS. 46C and 4619 in FIG. 46D. The inverted gated transfer module 6408 outputs the down-converted signal 1308B, which includes non-negligible amounts of energy transferred from the EM signal 1304. 5.2.1 The Inverted Gated Transfer System as a Switch Module and a Storage Module FIG. 74 illustrates an example embodiment of the inverted gated transfer module 6408 as including a switch module 7404 and a storage module 7406. Preferably, the switch module 7404 and the storage module 7406 transfer energy from the EM signal 1304 to down-convert it in any of the manners shown in the operational flowcharts 4601 in FIG. 46A, 4607 in FIG. 46B, 4613 in FIG. 46C and 4619 in FIG. 46D. The switch module 7404 can be implemented as described above with reference to FIGS. 66A-D. The storage module 7406 can be implemented as described above with reference to FIGS. 68A-F. In the illustrated embodiment, the storage module 7206 includes one or more capacitors 7408. The capacitor(s) 7408 are selected to pass higher frequency components of the EM signal 1304 through to a terminal 7410, regardless of the state of the switch module 7404. The capacitor 7408 stores non-negligible amounts of energy from the EM signal 1304. Thereafter, the signal at the terminal 7410 is off-set by an amount related to the energy stored in the capacitor 7408. Operation of the inverted gated transfer system 7401 is illustrated in FIGS. 75A-F. FIG. 75A illustrates the EM signal 1304. FIG. 75B illustrates the EM signal 1304 after transferring energy from it. FIG. 75C illustrates the energy transfer signal 6306, which includes a train of energy transfer pulses having non-negligible apertures. FIG. 75D illustrates an example down-converted signal 1308B. FIG. 75E illustrates the down-converted signal 1308B on a compressed time scale. Since the storage module 7406 is a series element, the higher frequencies (e.g., RF) of the EM signal 1304 can be seen on the down-converted signal. This can be filtered as illustrated in FIG. 75F. The inverted gated transfer system 7401 can be used to down-convert any type of EM signal, including modulated carrier signals and unmodulated carrier signals. 5.3 Rail to Rail Operation for Improved Dynamic Range 5.3.1 Introduction FIG. 110A illustrates aliasing module 11000 that down-converts EM signal 11002 to down-converted signal 11012 using aliasing signal 11014 (sometimes called an energy transfer signal). Aliasing module 11000 is an example of energy transfer module 6304 in FIG. 63. Aliasing module 11000 includes UFT module 11004 and storage module 11008. As shown in FIG. 11A, UFT module 11004 is implemented as a n-channel FET 11006, and storage module 11008 is implemented as a capacitor 11010, although the invention is not limited to this embodiment. FET 11006 receives the EM signal 11002 and aliasing signal 11014. In one embodiment, aliasing signal 11014 includes a train of pulses having non-negligible apertures that repeat at an aliasing rate. The aliasing rate may be harmonic or sub-harmonic of the EM signal 11002. FET 11006 samples EM signal 11002 at the aliasing rate of aliasing signal 11014 to generate down-converted signal 11012. In one embodiment, aliasing signal 11014 controls the gate of FET 11006 so that FET 11006 conducts (or turns on) when the FET gate-to-source voltage (VGS) exceeds a threshold voltage (VT). When the FET 11006 conducts, a channel is created from source to drain of FET 11006 so that charge is transferred from the EM signal 11002 to the capacitor 11010. More specifically, the FET 11006 conductance (1/R) vs VGS is a continuous function that reaches an acceptable level at VT, as illustrated in FIG. 110B. The charge stored by capacitor 11010 during successive samples forms down-converted signal 11012. As stated above, n-channel FET 11006 conducts when VGS exceeds the threshold voltage VT. As shown in FIG. 110A, the gate voltage of FET 11006 is determined by aliasing signal 11014, and the source voltage is determined by the input EM signal 11002. Aliasing signal 11014 is preferably a plurality of pulses whose amplitude is predictable and set by a system designer. However, the EM signal 11002 is typically received over a communications medium by a coupling device (such as antenna). Therefore, the amplitude of EM signal 11102 may be variable and dependent on a number of factors including the strength of the transmitted signal, and the attenuation of the communications medium. Thus, the source voltage on FET 11006 is not entirely predictable and will affect VGS and the conductance of FET 11006, accordingly. For example, FIG. 111A illustrates EM signal 11102, which is an example of EM signal 11002 that appears on the source of FET 11006. EM signal 11102 has a section 11104 with a relatively high amplitude as shown. FIG. 111B illustrates the aliasing signal 11106 as an example of aliasing signal 11014 that controls the gate of FET 11006. FIG. 111C illustrates VGS 11108, which is the difference between the gate and source voltages shown in FIGS. 111B and 111A, respectively. FET 11006 has an inherent threshold voltage VT 11112 shown in FIG. 111C, above which FET 11006 conducts. It is preferred that VGS>VT during each pulse of aliasing signal 11106, so that FET 11006 conducts and charge is transferred from the EM signal 11102 to the capacitor 11010 during each pulse of aliasing signal 11106. As shown in FIG. 111C, the high amplitude section 11104 of EM signal 11102 causes a VG pulse 11110 that does exceed the VT 11112, and therefore FET 11006 will not fully conduct as is desired. Therefore, the resulting sample of EM signal 11102 may be degraded, which potentially negatively affects the down-converted signal 11012. As stated earlier, the conductance of FET 11006 vs VGS is mathematically continuous and is not a hard cutoff. In other words, FET 11006 will marginally conduct when controlled by pulse 11110, even though pulse 11110 is below VT 11112. However, the insertion loss of FET 11006 will be increased when compared with a VGS pulse 11111, which is greater than VT 11112. The performance reduction caused by a large amplitude input signal is often referred to as clipping or compression. Clipping causes distortion in the down-converted signal 11012, which adversely affects the faithful down-conversion of input EM signal 11102. Dynamic range is a figure of merit associated with the range of input signals that can be faithfully down-converted without introducing distortion in the down-converted signal. The higher the dynamic range of a down-conversion circuit, the larger the input signals that can down-converted without introducing distortion in the down-converted signal. 5.3.2 Complementary UFT Structure for Improved Dynamic Range FIG. 112 illustrates aliasing module 11200, according to an embodiment of the invention, that down-converts EM signal 11208 to generate down-converted signal 11214 using aliasing signal 11220. Aliasing module 11200 is able to down-convert input signals over a larger amplitude range as compared to aliasing module 11000, and therefore aliasing module 11200 has an improved dynamic range when compared with aliasing module 11000. The dynamic range improvement occurs because aliasing module 11200 includes two UFT modules that are implemented with complementary FET devices. In other words, one FET is n-channel, and the other FET is p-channel, so that at least one FET is always conducting during an aliasing signal pulse, assuming the input signal does not exceed the power supply constraints. Aliasing module 11200 includes: delay 11202; UFT modules 11206, 11216; nodes 11210, 11212; and inverter 11222. Inverter 11222 is tied to voltage supplies V+ 11232 and V− 11234. UFT module 11206 comprises n-channel FET 11204, and UFT module 11216 comprises p-channel FET 11218. As stated, aliasing module 11200 operates two complementary FETs to extend the dynamic range and reduce any distortion effects. This requires that two complementary aliasing signals 11224, 11226 be generated from aliasing signal 11220 to control the sampling by FETs 11218, 11204, respectively. To do so, inverter 11222 receives and inverts aliasing signal 11220 to generate aliasing signal 11224 that controls p-channel FET 11218. Delay 11202 delays aliasing signal 11220 to generate aliasing signal 11226, where the amount of time delay is approximately equivalent to that associated with inverter 11222. As such, aliasing signals 11224 and 11226 are approximately complementary in amplitude. Node 11210 receives EM signal 11208, and couples EM signals 11227, 11228 to the sources of n-channel FET 11204 and p-channel FET 11218, respectively, where EM signals 11227, 11228 are substantially replicas of EM signal 11208. N-channel FET 11204 samples EM signal 11227 as controlled by aliasing signal 11226, and produces samples 11236 at the drain of FET 11204. Likewise, p-channel FET 11218 samples EM signal 11228 as controlled by aliasing signal 11224, and produces samples 11238 at the drain of FET 11218. Node 11212 combines the resulting charge samples into charge samples 11240, which are stored by capacitor 11230. The charge stored by capacitor 11230 during successive samples forms down-converted signal 11214. Aliasing module 11200 offers improved dynamic range over aliasing module 11000 because n-channel FET 11204 and p-channel FET 11214 are complementary devices. Therefore, if one device is cutoff because of a large input EM signal 11208, the other device will conduct and sample the input signal, as long as the input signal is between the power supply voltages V+ 11232 and V− 11234. This is often referred to as rail-to-rail operation as will be understood by those skilled in the arts. For example, FIG. 113A illustrates EM signal 11302 which is an example of EM signals 11227, 11228 that are coupled to the sources of n-channel FET 11204 and p-channel FET 11218, respectively. As shown, EM signal 11302 has a section 11304 with a relatively high amplitude including pulses 11303, 11305. FIG. 113B illustrates the aliasing signal 11306 as an example of aliasing signal 11226 that controls the gate of n-channel FET 11204. Likewise for the p-channel FET, FIG. 113D illustrates the aliasing signal 11314 as an example of aliasing signal 11224 that controls the gate of p-channel FET 11218. Aliasing signal 11314 is the amplitude complement of aliasing signal 11306. FIG. 113C illustrates VGS 11308, which is the difference between the gate and source voltages on n-channel FET 11204 that are depicted in FIGS. 113B and 113A, respectively. FIG. 113C also illustrates the inherent threshold voltage VT 11309 for FET 11204, above which FET 11204 conducts. Likewise for the p-channel FET, FIG. 113E illustrates VGS 11316, which is the difference between the gate and source voltages for p-channel FET 11218 that are depicted in FIGS. 113D and 113A, respectively. FIG. 113E also illustrates the inherent threshold voltage VT 11317 for FET 11218, below which FET 11218 conducts. As stated, n-channel FET 11204 conducts when VGS 11308 exceeds VT 11309, and p-channel FET 11218 conducts when VGS 11316 drops below VT 11317. As illustrated by FIG. 113C, n-channel FET 11204 conducts over the range of EM signal 11302 depicted in FIG. 113A, except for the EM signal pulse 11305 that results in a corresponding VGS pulse 11310 (FIG. 113C) that does not exceed VT 11309. However, p-channel FET 11218 does conduct because the same EM signal pulse 11305 causes a VGS pulse 11320 (FIG. 113E) that drops well below that of VT 11317 for the p-channel FET. Therefore, the sample of the EM signal 11302 is properly taken by p-channel FET 11218, and no distortion is introduced in down-converted signal 11214. Similarly, EM signal pulse 11303 results in VGS pulse 11322 (FIG. 113E) that is inadequate for the p-channel FET 11218 to fully conduct. However, n-channel FET 11204 does fully conduct because the same EM signal pulse 11303 results in a VGS 11311 (FIG. 113C) that greatly exceeds VT 11309. As illustrated above, aliasing module 11200 offers an improvement in dynamic range over aliasing module 11000 because of the complimentary FET structure. Any input signal that is within the power supply voltages V+ 11232 and V− 11234 will cause either FET 11204 or FET 11218 to conduct, or cause both FETs to conduct, as is demonstrated by FIGS. 113A-113E. This occurs because any input signal that produces a VGS that cuts-off the n-channel FET 11204 will push the p-channel FET 11218 into conduction. Likewise, any input signal that cuts-off the p-channel FET 11218 will push the n-channel FET 11204 into conduction, and therefore prevent any distortion of the down-converted output signal. 5.3.3 Biased Configurations FIG. 114 illustrates aliasing module 11400, which is an alternate embodiment of aliasing module 11200. Aliasing module 11400 includes positive voltage supply (V+) 11402, resistors 11404, 11406, and the elements in aliasing module 11200. V+ 11402 and resistors 11404, 11406 produce a positive DC voltage at node 11405. This allows node 11405 to drive a coupled circuit that requires a positive voltage supply, and enables unipolar supply operation of aliasing module 11400. The positive supply voltage also has the effect of raising the DC level of the input EM signal 11208. As such, any input signal that is within the power supply voltages V+ 11402 and ground will cause either FET 11204 or FET 11218 to conduct, or cause both FETs to conduct, as will be understood by those skilled in the arts based on the discussion herein. FIG. 115 illustrates aliasing module 11500, which is an alternate biased configuration of aliasing module 11200. Aliasing module 11500 includes positive voltage supply 11502, negative voltage supply 11508, resistors 11504, 11506, and the elements in aliasing module 11200. The use of both a positive and negative voltage supply allows for node 11505 to be biased anywhere between V+ 11502 and V− 11508. This allows node 11505 to drive a coupled circuit that requires either a positive or negative supply voltage. Furthermore, any input signal that is within the power supply voltages V+ 11502 and V− 11508 will cause either FET 11204 or FET 11218 to conduct, or cause both FETs to conduct, as will be understood by those skilled in the arts based on the discussion herein. 5.3.4 Simulation Examples As stated, an aliasing module with a complementary FET structure offers improved dynamic range when compared with a single (or unipolar) FET configuration. This is further illustrated by comparing the signal waveforms associated aliasing module 11602 (of FIG. 116) which has a complementary FET structure, with that of aliasing module 11702 (of FIG. 117) which has a single (or unipolar) FET structure. Aliasing module 11602 (FIG. 116) down-converts EM signal 11608 using aliasing signal 11612 to generate down-converted signal 11610. Aliasing module 11602 has a complementary FET structure and includes n-channel FET 11604, p-channel FET 11606, inverter 11614, and aliasing signal generator 11608. Aliasing module 11602 is biased by supply circuit 11616 as is shown. Aliasing module 11702 (FIG. 117) down-converts EM signal 11704 using aliasing signal 11708 to generate down-converted signal 11706. Aliasing module 11702 is a single FET structure comprising n-channel FET 11712 and aliasing signal generator 11714, and is biased using voltage supply circuit 11710. FIGS. 118-120 are signal waveforms that correspond to aliasing module 11602, and FIGS. 121-123 are signal waveforms that correspond to aliasing module 11702. FIGS. 118 and 121 are down-converted signals 11610, 11706, respectively. FIGS. 119 and 122 are the sampled EM signal 11608, 11704, respectively. FIGS. 120 and 123 are the aliasing signals 11612, 11708, respectively. Aliasing signal 11612 is identical to aliasing signal 11708 in order that a proper comparison between modules 11602 and 11702 can be made. EM signals 11608, 11704 are relatively large input signals that approach the power supply voltages of ±1.65 volts, as is shown in FIGS. 119 and 122, respectively. In FIG. 119, sections 11802 and 11804 of signal 11608 depict energy transfer from EM signal 11608 to down-converted signal 11610 during by aliasing module 11602. More specifically, section 11802 depicts energy transfer near the −1.65v supply, and section 11804 depicts energy transfer near the +1.65v supply. The symmetrical quality of the energy transfer near the voltage supply rails indicates that at least one of complementary FETs 11604, 11606 are appropriately sampling the EM signal during each of the aliasing pulses 11612. This results in a down-converted signal 11610 that has minimal high frequency noise, and is centered between −1.0v and 1.0v (i.e. has negligible DC voltage component). Similarly in FIG. 122, sections 11902 and 11904 illustrate the energy transfer from EM signal 11704 to down-converted signal 11706 by aliasing module 11702 (single FET configuration). More specifically, section 11902 depicts energy transfer near the −1.65v supply, and section 11904 depicts energy transfer near the +1.65v supply. By comparing sections 11902, 11904 with sections 11802, 11804 of FIG. 119, it is clear that the energy transfer in sections 11902, 11904 is not as symmetrical near the power supply rails as that of sections 11802, 11804. This is evidence that the EM signal 11704 is partially pinching off single FET 11712 over part of the signal 11704 trace. This results in a down-converted signal 11706 that has more high frequency noise when compared to down-converted signal 11610, and has a substantial negative DC voltage component. In summary, down-converted signal 11706 reflects distortion introduced by a relatively large EM signal that is pinching-off the single FET 11712 in aliasing module 11702. Down-converted signal 11610 that is produced by aliasing module 11602 is relatively distortion free. This occurs because the complementary FET configuration in aliasing module 11602 is able to handle input signals with large amplitudes without introducing distortion in the down-converted signal 11610. Therefore, the complementary FET configuration in the aliasing module 11602 offers improved dynamic range when compared with the single FET configuration of the aliasing module 11702. 5.4 Optimized Switch Structures 5.4.1 Splitter in CMOS FIG. 124A illustrates an embodiment of a splitter circuit 12400 implemented in CMOS. This embodiment is provided for illustrative purposes, and is not limiting. In an embodiment, splitter circuit 12400 is used to split a local oscillator (LO) signal into two oscillating signals that are approximately 90° out of phase. The first oscillating signal is called the I-channel oscillating signal. The second oscillating signal is called the Q-channel oscillating signal. The Q-channel oscillating signal lags the phase of the I-channel oscillating signal by approximately 90°. Splitter circuit 12400 includes a first I-channel inverter 12402, a second I-channel inverter 12404, a third I-channel inverter 12406, a first Q-channel inverter 12408, a second Q-channel inverter 12410, an I-channel flip-flop 12412, and a Q-channel flip-flop 12414. FIGS. 124F-J are example waveforms used to illustrate signal relationships of splitter circuit 12400. The waveforms shown in FIGS. 124F-J reflect ideal delay times through splitter circuit 12400 components. LO signal 12416 is shown in FIG. 124F. First, second, and third I-channel inverters 12402, 12404, and 12406 invert LO signal 12416 three times, outputting inverted LO signal 12418, as shown in FIG. 124G. First and second Q-channel inverters 12408 and 12410 invert LO signal 12416 twice, outputting non-inverted LO signal 12420, as shown in FIG. 124H. The delay through first, second, and third I-channel inverters 12402, 12404, and 12406 is substantially equal to that through first and second Q-channel inverters 12408 and 12410, so that inverted LO signal 12418 and non-inverted LO signal 12420 are approximately 180° out of phase. The operating characteristics of the inverters may be tailored to achieve the proper delay amounts, as would be understood by persons skilled in the relevant art(s). I-channel flip-flop 12412 inputs inverted LO signal 12418. Q-channel flip-flop 12414 inputs non-inverted LO signal 12420. In the current embodiment, I-channel flip-flop 12412 and Q-channel flip-flop 12414 are edge-triggered flip-flops. When either flip-flop receives a rising edge on its input, the flip-flop output changes state. Hence, I-channel flip-flop 12412 and Q-channel flip-flop 12414 each output signals that are approximately half of the input signal frequency. Additionally, as would be recognized by persons skilled in the relevant art(s), because the inputs to I-channel flip-flop 12412 and Q-channel flip-flop 12414 are approximately 180° out of phase, their resulting outputs are signals that are approximately 90° out of phase. I-channel flip-flop 12412 outputs I-channel oscillating signal 12422, as shown in FIG. 124I. Q-channel flip-flop 12414 outputs Q-channel oscillating signal 12424, as shown in FIG. 124J. Q-channel oscillating signal 12424 lags the phase of I-channel oscillating signal 12422 by 90°, also as shown in a comparison of FIGS. 124I and 124J. FIG. 124B illustrates a more detailed circuit embodiment of the splitter circuit 12400 of FIG. 124. The circuit blocks of FIG. 124B that are similar to those of FIG. 124A are indicated by corresponding reference numbers. FIGS. 124C-D show example output waveforms relating to the splitter circuit 12400 of FIG. 124B. FIG. 124C shows I-channel oscillating signal 12422. FIG. 124D shows Q-channel oscillating signal 12424. As is indicated by a comparison of FIGS. 124C and 124D, the waveform of Q-channel oscillating signal 12424 of FIG. 124D lags the waveform of I-channel oscillating signal 12422 of FIG. 124C by approximately 90°. It should be understood that the illustration of the splitter circuit 12400 in FIGS. 124A and 124B is for example purposes only. Splitter circuit 12400 may be comprised of an assortment of logic and semiconductor devices of a variety of types, as will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. 5.4.2 I/Q Circuit FIG. 124E illustrates an example embodiment of a complete I/Q circuit 12426 in CMOS. I/Q circuit 12426 includes a splitter circuit 12400 as described in detail above. Further description regarding I/Q circuit implementations are provided herein, including the applications referenced above. 5.5 Example I and Q Implementations 5.5.1 Switches of Different Sizes In an embodiment, the switch modules discussed herein can be implemented as a series of switches operating in parallel as a single switch. The series of switches can be transistors, such as, for example, field effect transistors (FET), bi-polar transistors, or any other suitable circuit switching devices. The series of switches can be comprised of one type of switching device, or a combination of different switching devices. For example, FIG. 125 illustrates a switch module 12500. In FIG. 125, the switch module is illustrated as a series of FETs 12502a-n. The FETs 12502a-n can be any type of FET, including, but not limited to, a MOSFET, a JFET, a GaAsFET, etc. Each of FETs 12502a-n includes a gate 12504a-n, a source 12506a-n, and a drain 12508a-n, similarly to that of FET 2802 of FIG. 28A. The series of FETs 12502a-n operate in parallel. Gates 12504a-n are coupled together, sources 12506a-n are coupled together, and drains 12508a-n are coupled together. Each of gates 12504a-n receives the control signal 1604, 8210 to control the switching action between corresponding sources 12506a-n and drains 12508a-n. Generally, the corresponding sources 12506a-n and drains 12508a-n of each of FETs 12502a-n are interchangeable. There is no numerical limit to the number of FETs. Any limitation would depend on the particular application, and the “a-n” designation is not meant to suggest a limit in any way. In an embodiment, FETs 12502a-n have similar characteristics. In another embodiment, one or more of FETs 12502a-n have different characteristics than the other FETs. For example, FETs 12502a-n may be of different sizes. In CMOS, generally, the larger size a switch is (meaning the larger the area under the gate between the source and drain regions), the longer it takes for the switch to turn on. The longer turn on time is due in part to a higher gate to channel capacitance that exists in larger switches. Smaller CMOS switches turn on in less time, but have a higher channel resistance. Larger CMOS switches have lower channel resistance relative to smaller CMOS switches. Different turn on characteristics for different size switches provides flexibility in designing an overall switch module structure. By combining smaller switches with larger switches, the channel conductance of the overall switch structure can be tailored to satisfy given requirements. In an embodiment, FETs 12502a-n are CMOS switches of different relative sizes. For example, FET 12502a may be a switch with a smaller size relative to FETs 12502b-n. FET 12502b may be a switch with a larger size relative to FET 12502a, but smaller size relative to FETs 12502c-n. The sizes of FETs 12502c-n also may be varied relative to each other. For instance, progressively larger switch sizes may be used. By varying the sizes of FETs 12502a-n relative to each other, the turn on characteristic curve of the switch module can be correspondingly varied. For instance, the turn on characteristic of the switch module can be tailored such that it more closely approaches that of an ideal switch. Alternately, the switch module could be tailored to produce a shaped conductive curve. By configuring FETs 12502a-n such that one or more of them are of a relatively smaller size, their faster turn on characteristic can improve the overall switch module turn on characteristic curve. Because smaller switches have a lower gate to channel capacitance, they can turn on more rapidly than larger switches. By configuring FETs 12502a-n such that one or more of them are of a relatively larger size, their lower channel resistance also can improve the overall switch module turn on characteristics. Because larger switches have a lower channel resistance, they can provide the overall switch structure with a lower channel resistance, even when combined with smaller switches. This improves the overall switch structure's ability to drive a wider range of loads. Accordingly, the ability to tailor switch sizes relative to each other in the overall switch structure allows for overall switch structure operation to more nearly approach ideal, or to achieve application specific requirements, or to balance trade-offs to achieve specific goals, as will be understood by persons skilled in the relevant arts(s) from the teachings herein. It should be understood that the illustration of the switch module as a series of FETs 12502a-n in FIG. 125 is for example purposes only. Any device having switching capabilities could be used to implement the switch module (e.g., switch modules 2802, 2702, 2404 and 2406), as will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. 5.5.2 Reducing Overall Switch Area Circuit performance also can be improved by reducing overall switch area. As discussed above, smaller switches (i.e., smaller area under the gate between the source and drain regions) have a lower gate to channel capacitance relative to larger switches. The lower gate to channel capacitance allows for lower circuit sensitivity to noise spikes. FIG. 126A illustrates an embodiment of a switch module, with a large overall switch area. The switch module of FIG. 126A includes twenty FETs 12602-12640. As shown, FETs 12602-12640 are the same size (“Wd” and “lng” parameters are equal). Input source 12646 produces the input EM signal. Pulse generator 12648 produces the energy transfer signal for FETs 12602-12640. Capacitor C1 is the storage element for the input signal being sampled by FETs 12602-12640. FIGS. 126B-126Q illustrate example waveforms related to the switch module of FIG. 126A. FIG. 126B shows a received 1.01 GHz EM signal to be sampled and downconverted to a 10 MHZ intermediate frequency signal. FIG. 126C shows an energy transfer signal having an aliasing rate of 200 MHZ, which is applied to the gate of each of the twenty FETs 12602-12640. The energy transfer signal includes a train of energy transfer pulses having non-negligible apertures that tend away from zero time in duration. The energy transfer pulses repeat at the aliasing rate. FIG. 126D illustrates the affected received EM signal, showing effects of transferring energy at the aliasing rate, at point 12642 of FIG. 126A. FIG. 126E illustrates a down-converted signal at point 12644 of FIG. 126A, which is generated by the down-conversion process. FIG. 126F illustrates the frequency spectrum of the received 1.01 GHz EM signal. FIG. 126G illustrates the frequency spectrum of the received energy transfer signal. FIG. 126H illustrates the frequency spectrum of the affected received EM signal at point 12642 of FIG. 126A. FIG. 126I illustrates the frequency spectrum of the down-converted signal at point 12644 of FIG. 126A. FIGS. 126J-126M respectively further illustrate the frequency spectrums of the received 1.01 GHz EM signal, the received energy transfer signal, the affected received EM signal at point 12642 of FIG. 126A, and the down-converted signal at point 12644 of FIG. 126A, focusing on a narrower frequency range centered on 1.00 GHz. As shown in FIG. 126L, a noise spike exists at approximately 1.0 GHz on the affected received EM signal at point 12642 of FIG. 126A. This noise spike may be radiated by the circuit, causing interference at 1.0 GHz to nearby receivers. FIGS. 126N-126Q respectively illustrate the frequency spectrums of the received 1.01 GHz EM signal, the received energy transfer signal, the affected received EM signal at point 12642 of FIG. 126A, and the down-converted signal at point 12644 of FIG. 126A, focusing on a narrow frequency range centered near 10.0 MHZ. In particular, FIG. 126Q shows that an approximately 5 mV signal was downconverted at approximately 10 MHZ. FIG. 127A illustrates an alternative embodiment of the switch module, this time with fourteen FETs 12702-12728 shown, rather than twenty FETs 12602-12640 as shown in FIG. 126A. Additionally, the FETs are of various sizes (some “Wd” and “1 ng” parameters are different between FETs). FIGS. 127B-127Q, which are example waveforms related to the switch module of FIG. 127A, correspond to the similarly designated figures of FIGS. 126B-126Q. As FIG. 127L shows, a lower level noise spike exists at 1.0 GHz than at the same frequency of FIG. 126L. This correlates to lower levels of circuit radiation. Additionally, as FIG. 127Q shows, the lower level noise spike at 1.0 GHz was achieved with no loss in conversion efficiency. This is represented in FIG. 127Q by the approximately 5 mV signal downconverted at approximately 10 MHZ. This voltage is substantially equal to the level downconverted by the circuit of FIG. 126A. In effect, by decreasing the number of switches, which decreases overall switch area, and by reducing switch area on a switch-by-switch basis, circuit parasitic capacitance can be reduced, as would be understood by persons skilled in the relevant art(s) from the teachings herein. In particular this may reduce overall gate to channel capacitance, leading to lower amplitude noise spikes and reduced unwanted circuit radiation. It should be understood that the illustration of the switches above as FETs in FIGS. 126A-126Q and 127A-127Q is for example purposes only. Any device having switching capabilities could be used to implement the switch module, as will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. 5.5.3 Charge Injection Cancellation In embodiments wherein the switch modules discussed herein are comprised of a series of switches in parallel, in some instances it may be desirable to minimize the effects of charge injection. Minimizing charge injection is generally desirable in order to reduce the unwanted circuit radiation resulting therefrom. In an embodiment, unwanted charge injection effects can be reduced through the use of complementary n-channel MOSFETs and p-channel MOSFETs. N-channel MOSFETs and p-channel MOSFETs both suffer from charge injection. However, because signals of opposite polarity are applied to their respective gates to turn the switches on and off, the resulting charge injection is of opposite polarity. Resultingly, n-channel MOSFETs and p-channel MOSFETs may be paired to cancel their corresponding charge injection. Hence, in an embodiment, the switch module may be comprised of n-channel MOSFETs and p-channel MOSFETS, wherein the members of each are sized to minimize the undesired effects of charge injection. FIG. 129A illustrates an alternative embodiment of the switch module, this time with fourteen n-channel FETs 12902-12928 and twelve p-channel FETs 12930-12952 shown, rather than twenty FETs 12602-12640 as shown in FIG. 126A. The n-channel and p-channel FETs are arranged in a complementary configuration. Additionally, the FETs are of various sizes (some “Wd” and “lng” parameters are different between FETs). FIGS. 129B-129Q, which are example waveforms related to the switch module of FIG. 129A, correspond to the similarly designated figures of FIGS. 126B-126Q. As FIG. 129L shows, a lower level noise spike exists at 1.0 GHz than at the same frequency of FIG. 126L. This correlates to lower levels of circuit radiation. Additionally, as FIG. 129Q shows, the lower level noise spike at 1.0 GHz was achieved with no loss in conversion efficiency. This is represented in FIG. 129Q by the approximately 5 mV signal downconverted at approximately 10 MHZ. This voltage is substantially equal to the level downconverted by the circuit of FIG. 126A. In effect, by arranging the switches in a complementary configuration, which assists in reducing charge injection, and by tailoring switch area on a switch-by-switch basis, the effects of charge injection can be reduced, as would be understood by persons skilled in the relevant art(s) from the teachings herein. In particular this leads to lower amplitude noise spikes and reduced unwanted circuit radiation. It should be understood that the use of FETs in FIGS. 129A-129Q in the above description is for example purposes only. From the teachings herein, it would be apparent to persons of skill in the relevant art(s) to manage charge injection in various transistor technologies using transistor pairs. 5.5.4 Overlapped Capacitance The processes involved in fabricating semiconductor circuits, such as MOSFETs, have limitations. In some instances, these process limitations may lead to circuits that do not function as ideally as desired. For instance, a non-ideally fabricated MOSFET may suffer from parasitic capacitances, which in some cases may cause the surrounding circuit to radiate noise. By fabricating circuits with structure layouts as close to ideal as possible, problems of non-ideal circuit operation can be minimized. FIG. 128A illustrates a cross-section of an example n-channel enhancement-mode MOSFET 12800, with ideally shaped n+ regions. MOSFET 11800 includes a gate 12802, a channel region 12804, a source contact 12806, a source region 12808, a drain contact 12810, a drain region 12812, and an insulator 12814. Source region 12808 and drain region 12812 are separated by p-type material of channel region 12804. Source region 12808 and drain region 12812 are shown to be n+ material. The n+ material is typically implanted in the p-type material of channel region 12804 by an ion implantation/diffusion process. Ion implantation/diffusion processes are well known by persons skilled in the relevant art(s). Insulator 12814 insulates gate 12802 which bridges over the p-type material. Insulator 12814 generally comprises a metal-oxide insulator. The channel current between source region 12808 and drain region 12812 for MOSFET 12800 is controlled by a voltage at gate 12802. Operation of MOSFET 12800 shall now be described. When a positive voltage is applied to gate 12802, electrons in the p-type material of channel region 12804 are attracted to the surface below insulator 12814, forming a connecting near-surface region of n-type material between the source and the drain, called a channel. The larger or more positive the voltage between the gate contact 12806 and source region 12808, the lower the resistance across the region between. In FIG. 128A, source region 12808 and drain region 12812 are illustrated as having n+ regions that were formed into idealized rectangular regions by the ion implantation process. FIG. 128B illustrates a cross-section of an example n-channel enhancement-mode MOSFET 12816 with non-ideally shaped n+ regions. Source region 12820 and drain region 12822 are illustrated as being formed into irregularly shaped regions by the ion implantation process. Due to uncertainties in the ion implantation/diffusion process, in practical applications, source region 12820 and drain region 12822 do not form rectangular regions as shown in FIG. 128A. FIG. 128B shows source region 12820 and drain region 12822 forming exemplary irregular regions. Due to these process uncertainties, the n+ regions of source region 12820 and drain region 12822 also may diffuse further than desired into the p-type region of channel region 12818, extending underneath gate 12802. The extension of the source region 12820 and drain region 12822 underneath gate 12802 is shown as source overlap 12824 and drain overlap 12826. Source overlap 12824 and drain overlap 12826 are further illustrated in FIG. 128C. FIG. 128C illustrates a top-level view of an example layout configuration for MOSFET 12816. Source overlap 12824 and drain overlap 12826 may lead to unwanted parasitic capacitances between source region 12820 and gate 12802, and between drain region 12822 and gate 12802. These unwanted parasitic capacitances may interfere with circuit function. For instance, the resulting parasitic capacitances may produce noise spikes that are radiated by the circuit, causing unwanted electromagnetic interference. As shown in FIG. 128C, an example MOSFET 12816 may include a gate pad 12828. Gate 12802 may include a gate extension 12830, and a gate pad extension 12832. Gate extension 12830 is an unused portion of gate 12802 required due to metal implantation process tolerance limitations. Gate pad extension 12832 is a portion of gate 12802 used to couple gate 12802 to gate pad 12828. The contact required for gate pad 12828 requires gate pad extension 12832 to be of non-zero length to separate the resulting contact from the area between source region 12820 and drain region 12822. This prevents gate 12802 from shorting to the channel between source region 12820 and drain region 12822 (insulator 12814 of FIG. 128B is very thin in this region). Unwanted parasitic capacitances may form between gate extension 12830 and the substrate (FET 12816 is fabricated on a substrate), and between gate pad extension 12832 and the substrate. By reducing the respective areas of gate extension 12830 and gate pad extension 12832, the parasitic capacitances resulting therefrom can be reduced. Accordingly, embodiments address the issues of uncertainty in the ion implantation/diffusion process. it will be obvious to persons skilled in the relevant art(s) how to decrease the areas of gate extension 12830 and gate pad extension 12832 in order to reduce the resulting parasitic capacitances. It should be understood that the illustration of the n-channel enhancement-mode MOSFET is for example purposes only. The present invention is applicable to depletion mode MOSFETs, and other transistor types, as will be apparent to persons skilled in the relevant art(s) based on the discussion contained herein. 5.6 Other Implementations The implementations described above are provided for purposes of illustration. These implementations are not intended to limit the invention. Alternate implementations, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. 6. Optional Optimizations of Energy Transfer at an Aliasing Rate The methods and systems described in sections above can be optimized with one or more of the optimization methods or systems described below. 6.1 Doubling the Aliasing Rate (FAR) of the Energy Transfer Signal In an embodiment, the optional energy transfer signal module 6902 in FIG. 69 includes a pulse generator module that generates aliasing pulses at twice the frequency of the oscillating source. The input signal 6828 may be any suitable oscillating source. FIG. 71 illustrates a circuit 7102 that generates a doubler output signal 7104 (FIG. 72B) that may be used as an energy transfer signal 6306. The circuit 7102 generates pulses on both rising and falling edges of the input oscillating signal 7106 of FIG. 72A. The circuit 7102 can be implemented as a pulse generator and aliasing rate (FAR) doubler. The doubler output signal 7104 can be used as the energy transfer signal 6306. In the example of FIG. 71, the aliasing rate is twice the frequency of the input oscillating signal Fosc 7106, as shown by EQ. (9) below. FAR=2·Fosc EQ. (9) The aperture width of the aliasing pulses is determined by the delay through a first inverter 7108 of FIG. 71. As the delay is increased, the aperture is increased. A second inverter 7112 is shown to maintain polarity consistency with examples described elsewhere. In an alternate embodiment inverter 7112 is omitted. Preferably, the pulses have non-negligible aperture widths that tend away from zero time. The doubler output signal 7104 may be further conditioned as appropriate to drive the switch module with non-negligible aperture pulses. The circuit 7102 may be implemented with integrated circuitry, discretely, with equivalent logic circuitry, or with any valid fabrication technology. 6.2 Differential Implementations The invention can be implemented in a variety of differential configurations. Differential configurations are useful for reducing common mode noise. This can be very useful in receiver systems where common mode interference can be caused by intentional or unintentional radiators such as cellular phones, CB radios, electrical appliances etc. Differential configurations are also useful in reducing any common mode noise due to charge injection of the switch in the switch module or due to the design and layout of the system in which the invention is used. Any spurious signal that is induced in equal magnitude and equal phase in both input leads of the invention will be substantially reduced or eliminated. Some differential configurations, including some of the configurations below, are also useful for increasing the voltage and/or for increasing the power of the down-converted signal 1308B. Differential systems are most effective when used with a differential front end (inputs) and a differential back end (outputs). They can also be utilized in the following configurations, for example: a) A single-input front end and a differential back end; and b) A differential front end and a single-output back end. Examples of these system are provided below, with a first example illustrating a specific method by which energy is transferred from the input to the output differentially. While an example of a differential energy transfer module is shown below, the example is shown for the purpose of illustration, not limitation. Alternate embodiments (including equivalents, extensions, variations, deviations etc.) of the embodiment described herein will be apparent to those skilled in the relevant art based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. 6.2.1 An Example Illustrating Energy Transfer Differentially FIG. 76A illustrates a differential system 7602 that can be included in the energy transfer module 6304. The differential system 7602 includes an inverted gated transfer design similar to that described with reference to FIG. 74. The differential system 7602 includes inputs 7604 and 7606 and outputs 7608 and 7610. The differential system 7602 includes a first inverted gated transfer module 7612, which includes a storage module 7614 and a switch module 7616. The differential system 7602 also includes a second inverted gated transfer module 7618, which includes a storage module 7620 and a switch module 7616, which it shares in common with inverted gated transfer module 7612. One or both of the inputs 7604 and 7606 are coupled to an EM signal source. For example, the inputs can be coupled to an EM signal source, wherein the input voltages at the inputs 7604 and 7606 are substantially equal in amplitude but 180 degrees out of phase with one another. Alternatively, where dual inputs are unavailable, one of the inputs 7604 and 7606 can be coupled to ground. In operation, when the switch module 7616 is closed, the storage modules 7614 and 7620 are in series and, provided they have similar capacitive values, accumulate charge of equal magnitude but opposite polarities. When the switch module 7616 is open, the voltage at the output 7608 is relative to the input 7604, and the voltage at the output 7610 is relative to the voltage at the input 7606. Portions of the signals at the outputs 7608 and 7610 include signals resulting from energy stored in the storage modules 7614 and 7620, respectively, when the switch module 7616 was closed. The portions of the signals at the outputs 7608 and 7610 resulting from the stored charge are generally equal in amplitude to one another but 180 degrees out of phase. Portions of the signals at the outputs 7608 and 7610 also include ripple voltage or noise resulting from the switching action of the switch module 7616. But because the switch module is positioned between the two outputs 7608 and 7610, the noise introduced by the switch module appears at the outputs as substantially equal and in-phase with one another. As a result, the ripple voltage can be substantially canceled out by inverting the signal at one of the outputs 7608 or 7610 and adding it to the other remaining output. Additionally, any noise that is impressed with equal amplitude and equal phase onto the input terminals 7604 and 7606 by any other noise sources will tend to be canceled in the same way. 6.2.1.1 Differential Input-to-Differential Output FIG. 76B illustrates the differential system 7602 wherein the inputs 7604 and 7606 are coupled to equal and opposite EM signal sources, illustrated here as dipole antennas 7624 and 7626. In this embodiment, when one of the outputs 7608 or 7610 is inverted and added to the other output, the common mode noise due to the switching module 7616 and other common mode noise present at the input terminals 7604 and 7606 tend to substantially cancel out. 6.2.1.2 Single Input-to-Differential Output FIG. 76C illustrates the differential system 7602 wherein the input 7604 is coupled to an EM signal source such as a monopole antenna 7628 and the input 7606 is coupled to ground. In this configuration, the voltages at the outputs 7608 and 7610 are approximately one half the value of the voltages at the outputs in the implementation illustrated in FIG. 76B, given all other parameters are equal. FIG. 76E illustrates an example single input to differential output receiver/down-converter system 7636. The system 7636 includes the differential system 7602 wherein the input 7606 is coupled to ground as in FIG. 76C. The input 7604 is coupled to an EM signal source 7638 through an optional input impedance match 7642. The EM signal source impedance can be matched with an impedance match system 7642 as described in section 5 below. The outputs 7608 and 7610 are coupled to a differential circuit 7644 such as a filter, which preferably inverts one of the outputs 7608 or 7610 and adds it to the other output 7608 or 7610. This substantially cancels common mode noise generated by the switch module 7616. The differential circuit 7644 preferably filters the higher frequency components of the EM signal 1304 that pass through the storage modules 7614 and 7620. The resultant filtered signal is output as the down-converted signal 1308B. 6.2.1.3 Differential Input-to-Single Output FIG. 76D illustrates the differential input to single output system 7629 wherein the inputs 7604 and 7606 of the differential system 7602 are coupled to equal and opposite EM signal dipole antennas 7630 and 7632. In system 7629, the common mode noise voltages are not canceled as in systems shown above. The output is coupled from terminal 7608 to a load 7648. 6.2.2 Specific Alternative Embodiments In specific alternative embodiments, the present invention is implemented using a plurality of gated transfer modules controlled by a common energy transfer signal with a storage module coupled between the outputs of the plurality of gated transfer modules. For example, FIG. 99 illustrates a differential system 9902 that includes first and second gated transfer modules 9904 and 9906, and a storage module 9908 coupled between. Operation of the differential system 9902 will be apparent to one skilled in the relevant art(s), based on the description herein. As with the first implementation described above in section 5.5.1 and its sub-sections, the gated transfer differential system 9902 can be implemented with a single input, differential inputs, a single output, differential outputs, and combinations thereof. For example, FIG. 100 illustrates an example single input-to-differential output system 10002. Where common-mode rejection is desired to protect the input from various common-mode effects, and where common mode rejection to protect the output is not necessary, a differential input-to-single output implementation can be utilized. FIG. 102 illustrates an example differential-to-single ended system 10202, where a balance/unbalance (balun) circuit 10204 is utilized to generate the differential input. Other input configurations are contemplated. A first output 10206 is coupled to a load 10208. A second output 10210 is coupled to ground point 10212. Typically, in a balanced-to-unbalanced system, where a single output is taken from a differential system without the use of a balun, (i.e., where one of the output signals is grounded), a loss of about 6 db is observed. In the configuration of FIG. 102, however, the ground point 10212 simply serves as a DC voltage reference for the circuit. The system 10202 transfers charge from the input in the same manner as if it were full differential, with its conversion efficiency generally affected only by the parasitics of the circuit components used, such as the Rds(on) on FET switches if used in the switch module. In other words, the charge transfer still continues in the same manner of a single ended implementation, providing the necessary single-ended ground to the input circuitry when the aperture is active, yet configured to allow the input to be differential for specific common-mode rejection capability and/or interface between a differential input and a single ended output system. 6.2.3 Specific Examples of Optimizations and Configurations for Inverted and Non-Inverted Differential Designs Gated transfer systems and inverted gated transfer systems can be implemented with any of the various optimizations and configurations disclosed through the specification, such as, for example, impedance matching, tanks and resonant structures, bypass networks, etc. For example, the differential system 10002 in FIG. 100, which utilizes gated transfer modules with an input impedance matching system 10004 and a tank circuit 10006, which share a common capacitor. Similarly, differential system 10102 in FIG. 101, utilizes an inverted gated transfer module with an input impedance matching system 10104 and a tank circuit 10106, which share a common capacitor. 6.3 Smoothing the Down-Converted Signal The down-converted signal 1308B may be smoothed by filtering as desired. The differential circuit 7644 implemented as a filter in FIG. 76E illustrates but one example. This may be accomplished in any of the described embodiments by hardware, firmware and software implementation as is well known by those skilled in the arts. 6.4 Impedance Matching The energy transfer module has input and output impedances generally defined by (1) the duty cycle of the switch module, and (2) the impedance of the storage module, at the frequencies of interest (e.g. at the EM input, and intermediate/baseband frequencies). Starting with an aperture width of approximately ½ the period of the EM signal being down-converted as a preferred embodiment, this aperture width (e.g. the “closed time”) can be decreased. As the aperture width is decreased, the characteristic impedance at the input and the output of the energy transfer module increases. Alternatively, as the aperture width increases from ½ the period of the EM signal being down-converted, the impedance of the energy transfer module decreases. One of the steps in determining the characteristic input impedance of the energy transfer module could be to measure its value. In an embodiment, the energy transfer module's characteristic input impedance is 300 ohms. An impedance matching circuit can be utilized to efficiently couple an input EM signal that has a source impedance of, for example, 50 ohms, with the energy transfer module's impedance of, for example, 300 ohms. Matching these impedances can be accomplished in various manners, including providing the necessary impedance directly or the use of an impedance match circuit as described below. Referring to FIG. 70, a specific embodiment using an RF signal as an input, assuming that the impedance 7012 is a relatively low impedance of approximately 50 Ohms, for example, and the input impedance 7016 is approximately 300 Ohms, an initial configuration for the input impedance match module 7006 can include an inductor 7306 and a capacitor 7308, configured as shown in FIG. 73. The configuration of the inductor 7306 and the capacitor 7308 is a possible configuration when going from a low impedance to a high impedance. Inductor 7306 and the capacitor 7308 constitute an L match, the calculation of the values which is well known to those skilled in the relevant arts. The output characteristic impedance can be impedance matched to take into consideration the desired output frequencies. One of the steps in determining the characteristic output impedance of the energy transfer module could be to measure its value. Balancing the very low impedance of the storage module at the input EM frequency, the storage module should have an impedance at the desired output frequencies that is preferably greater than or equal to the load that is intended to be driven (for example, in an embodiment, storage module impedance at a desired 1 MHz output frequency is 2K ohm and the desired load to be driven is 50 ohms). An additional benefit of impedance matching is that filtering of unwanted signals can also be accomplished with the same components. In an embodiment, the energy transfer module's characteristic output impedance is 2K ohms. An impedance matching circuit can be utilized to efficiently couple the down-converted signal with an output impedance of, for example, 2K ohms, to a load of, for example, 50 ohms. Matching these impedances can be accomplished in various manners, including providing the necessary load impedance directly or the use of an impedance match circuit as described below. When matching from a high impedance to a low impedance, a capacitor 7314 and an inductor 7316 can be configured as shown in FIG. 73. The capacitor 7314 and the inductor 7316 constitute an L match, the calculation of the component values being well known to those skilled in the relevant arts. The configuration of the input impedance match module 7006 and the output impedance match module 7008 are considered to be initial starting points for impedance matching, in accordance with the present invention. In some situations, the initial designs may be suitable without further optimization. In other situations, the initial designs can be optimized in accordance with other various design criteria and considerations. As other optional optimizing structures and/or components are utilized, their affect on the characteristic impedance of the energy transfer module should be taken into account in the match along with their own original criteria. 6.5 Tanks and Resonant Structures Resonant tank and other resonant structures can be used to further optimize the energy transfer characteristics of the invention. For example, resonant structures, resonant about the input frequency, can be used to store energy from the input signal when the switch is open, a period during which one may conclude that the architecture would otherwise be limited in its maximum possible efficiency. Resonant tank and other resonant structures can include, but are not limited to, surface acoustic wave (SAW) filters, dielectric resonators, diplexers, capacitors, inductors, etc. An example embodiment is shown in FIG. 94A. Two additional embodiments are shown in FIG. 88 and FIG. 97. Alternate implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Alternate implementations fall within the scope and spirit of the present invention. These implementations take advantage of properties of series and parallel (tank) resonant circuits. FIG. 94A illustrates parallel tank circuits in a differential implementation. A first parallel resonant or tank circuit consists of a capacitor 9438 and an inductor 9420 (tank1). A second tank circuit consists of a capacitor 9434 and an inductor 9436 (tank2). As is apparent to one skilled in the relevant art(s), parallel tank circuits provide: low impedance to frequencies below resonance; low impedance to frequencies above resonance; and high impedance to frequencies at and near resonance. In the illustrated example of FIG. 94A, the first and second tank circuits resonate at approximately 920 Mhz. At and near resonance, the impedance of these circuits is relatively high. Therefore, in the circuit configuration shown in FIG. 94A, both tank circuits appear as relatively high impedance to the input frequency of 950 Mhz, while simultaneously appearing as relatively low impedance to frequencies in the desired output range of 50 Mhz. An energy transfer signal 9442 controls a switch 9414. When the energy transfer signal 9442 controls the switch 9414 to open and close, high frequency signal components are not allowed to pass through tank1 or tank2. However, the lower signal components (50 Mhz in this embodiment) generated by the system are allowed to pass through tank1 and tank2 with little attenuation. The effect of tank1 and tank2 is to further separate the input and output signals from the same node thereby producing a more stable input and output impedance. Capacitors 9418 and 9440 act to store the 50 Mhz output signal energy between energy transfer pulses. Further energy transfer optimization is provided by placing an inductor 9410 in series with a storage capacitor 9412 as shown. In the illustrated example, the series resonant frequency of this circuit arrangement is approximately 1 GHz. This circuit increases the energy transfer characteristic of the system. The ratio of the impedance of inductor 9410 and the impedance of the storage capacitor 9412 is preferably kept relatively small so that the majority of the energy available will be transferred to storage capacitor 9412 during operation. Exemplary output signals A and B are illustrated in FIGS. 94B and 94C, respectively. In FIG. 94A, circuit components 9404 and 9406 form an input impedance match. Circuit components 9432 and 9430 form an output impedance match into a 50 ohm resistor 9428. Circuit components 9422 and 9424 form a second output impedance match into a 50 ohm resistor 9426. Capacitors 9408 and 9412 act as storage capacitors for the embodiment. Voltage source 9446 and resistor 9402 generate a 950 Mhz signal with a 50 ohm output impedance, which are used as the input to the circuit. Circuit element 9416 includes a 150 Mhz oscillator and a pulse generator, which are used to generate the energy transfer signal 9442. FIG. 88 illustrates a shunt tank circuit 8810 in a single-ended to-single-ended system 8812. Similarly, FIG. 97 illustrates a shunt tank circuit 9710 in a system 9712. The tank circuits 8810 and 9710 lower driving source impedance, which improves transient response. The tank circuits 8810 and 9710 are able store the energy from the input signal and provide a low driving source impedance to transfer that energy throughout the aperture of the closed switch. The transient nature of the switch aperture can be viewed as having a response that, in addition to including the input frequency, has large component frequencies above the input frequency, (i.e. higher frequencies than the input frequency are also able to effectively pass through the aperture). Resonant circuits or structures, for example resonant tanks 8810 or 9710, can take advantage of this by being able to transfer energy throughout the switch's transient frequency response (i.e. the capacitor in the resonant tank appears as a low driving source impedance during the transient period of the aperture). The example tank and resonant structures described above are for illustrative purposes and are not limiting. Alternate configurations can be utilized. The various resonant tanks and structures discussed can be combined or utilized independently as is now apparent. 6.6 Charge and Power Transfer Concepts Concepts of charge transfer are now described with reference to FIGS. 109A-F. FIG. 109A illustrates a circuit 10902, including a switch S and a capacitor 10906 having a capacitance C. The switch S is controlled by a control signal 10908, which includes pulses 19010 having apertures T. In FIG. 109B, Equation 10 illustrates that the charge q on a capacitor having a capacitance C, such as the capacitor 10906, is proportional to the voltage V across the capacitor, where: q=Charge in Coulombs C=Capacitance in Farads V=Voltage in Volts A=Input Signal Amplitude Where the voltage V is represented by Equation 11, Equation 10 can be rewritten as Equation 12. The change in charge Aq over time t is illustrated as in Equation 13 as Δq(t), which can be rewritten as Equation 14. Using the sum-to-product trigonometric identity of Equation 15, Equation 14 can be rewritten as Equation 16, which can be rewritten as equation 17. Note that the sin term in Equation 11 is a function of the aperture T only. Thus, Δq(t) is at a maximum when T is equal to an odd multiple of π (i.e., π, 3π, 5π, . . . ). Therefore, the capacitor 10906 experiences the greatest change in charge when the aperture T has a value of π or a time interval representative of 180 degrees of the input sinusoid. Conversely, when T is equal to 2π, 4π, 6π, . . . , minimal charge is transferred. Equations 18, 19, and 20 solve for q(t) by integrating Equation 10, allowing the charge on the capacitor 10906 with respect to time to be graphed on the same axis as the input sinusoid sin(t), as illustrated in the graph of FIG. 109C. As the aperture T decreases in value or tends toward an impulse, the phase between the charge on the capacitor C or q(t) and sin(t) tend toward zero. This is illustrated in the graph of FIG. 109D, which indicates that the maximum impulse charge transfer occurs near the input voltage maxima. As this graph indicates, considerably less charge is transferred as the value of T decreases. Power/charge relationships are illustrated in Equations 21-26 of FIG. 109E, where it is shown that power is proportional to charge, and transferred charge is inversely proportional to insertion loss. Concepts of insertion loss are illustrated in FIG. 109F. Generally, the noise figure of a lossy passive device is numerically equal to the device insertion loss. Alternatively, the noise figure for any device cannot be less that its insertion loss. Insertion loss can be expressed by Equation 27 or 28. From the above discussion, it is observed that as the aperture T increases, more charge is transferred from the input to the capacitor 10906, which increases power transfer from the input to the output. It has been observed that it is not necessary to accurately reproduce the input voltage at the output because relative modulated amplitude and phase information is retained in the transferred power. 6.7 Optimizing and Adjusting the Non-Negligible Aperture Width/Duration 6.7.1 Varying Input and Output Impedances In an embodiment of the invention, the energy transfer signal 6306 of FIG. 63 is used to vary the input impedance seen by the EM Signal 1304 and to vary the output impedance driving a load. An example of this embodiment is described below using the gated transfer module 6404 shown in FIG. 68G, and in FIG. 82A. The method described below is not limited to the gated transfer module 6404, as it can be applied to all of the embodiments of energy transfer module 6304. In FIG. 82A, when switch 8206 is closed, the impedance looking into circuit 8202 is substantially the impedance of storage module illustrated as the storage capacitance 8208, in parallel with the impedance of the load 8212. When the switch 8206 is open, the impedance at point 8214 approaches infinity. It follows that the average impedance at point 8214 can be varied from the impedance of the storage module illustrated as the storage capacitance 8208, in parallel with the load 8212, to the highest obtainable impedance when switch 8206 is open, by varying the ratio of the time that switch 8206 is open to the time switch 8206 is closed. Since the switch 8206 is controlled by the energy transfer signal 8210, the impedance at point 8214 can be varied by controlling the aperture width of the energy transfer signal, in conjunction with the aliasing rate. An example method of altering the energy transfer signal 6306 of FIG. 63 is now described with reference to FIG. 71, where the circuit 7102 receives the input oscillating signal 7106 and outputs a pulse train shown as doubler output signal 7104. The circuit 7102 can be used to generate the energy transfer signal 6306. Example waveforms of 7104 are shown on FIG. 72B. It can be shown that by varying the delay of the signal propagated by the inverter 7108, the width of the pulses in the doubler output signal 7104 can be varied. Increasing the delay of the signal propagated by inverter 7108, increases the width of the pulses. The signal propagated by inverter 7108 can be delayed by introducing a R/C low pass network in the output of inverter 7108. Other means of altering the delay of the signal propagated by inverter 7108 will be well known to those skilled in the art. 6.7.2 Real Time Aperture Control In an embodiment, the aperture width/duration is adjusted in real time. For example, referring to the timing diagrams in FIGS. 98B-F, a clock signal 9814 (FIG. 98B) is utilized to generate an energy transfer signal 9816 (FIG. 98F), which includes energy transfer pluses 9818, having variable apertures 9820. In an embodiment, the clock signal 9814 is inverted as illustrated by inverted clock signal 9822 (FIG. 98D). The clock signal 9814 is also delayed, as illustrated by delayed clock signal 9824 (FIG. 98E). The inverted clock signal 9814 and the delayed clock signal 9824 are then ANDed together, generating an energy transfer signal 9816, which is active—energy transfer pulses 9818—when the delayed clock signal 9824 and the inverted clock signal 9822 are both active. The amount of delay imparted to the delayed clock signal 9824 substantially determines the width or duration of the apertures 9820. By varying the delay in real time, the apertures are adjusted in real time. In an alternative implementation, the inverted clock signal 9822 is delayed relative to the original clock signal 9814, and then ANDed with the original clock signal 9814. Alternatively, the original clock signal 9814 is delayed then inverted, and the result ANDed with the original clock signal 9814. FIG. 98A illustrates an exemplary real time aperture control system 9802 that can be utilized to adjust apertures in real time. The example real time aperture control system 9802 includes an RC circuit 9804, which includes a voltage variable capacitor 9812 and a resistor 9826. The real time aperture control system 9802 also includes an inverter 9806 and an AND gate 9808. The AND gate 9808 optionally includes an enable input 9810 for enabling/disabling the AND gate 9808. The RC circuit 9804. The real time aperture control system 9802 optionally includes an amplifier 9828. Operation of the real time aperture control circuit is described with reference to the timing diagrams of FIGS. 98B-F. The real time control system 9802 receives the input clock signal 9814, which is provided to both the inverter 9806 and to the RC circuit 9804. The inverter 9806 outputs the inverted clock signal 9822 and presents it to the AND gate 9808. The RC circuit 9804 delays the clock signal 9814 and outputs the delayed clock signal 9824. The delay is determined primarily by the capacitance of the voltage variable capacitor 9812. Generally, as the capacitance decreases, the delay decreases. The delayed clock signal 9824 is optionally amplified by the optional amplifier 9828, before being presented to the AND gate 9808. Amplification is desired, for example, where the RC constant of the RC circuit 9804 attenuates the signal below the threshold of the AND gate 9808. The AND gate 9808 ANDs the delayed clock signal 9824, the inverted clock signal 9822, and the optional Enable signal 9810, to generate the energy transfer signal 9816. The apertures 9820 are adjusted in real time by varying the voltage to the voltage variable capacitor 9812. In an embodiment, the apertures 9820 are controlled to optimize power transfer. For example, in an embodiment, the apertures 9820 are controlled to maximize power transfer. Alternatively, the apertures 9820 are controlled for variable gain control (e.g. automatic gain control—AGC). In this embodiment, power transfer is reduced by reducing the apertures 9820. As can now be readily seen from this disclosure, many of the aperture circuits presented, and others, can be modified in the manner described above (e.g. circuits in FIGS. 68H-K). Modification or selection of the aperture can be done at the design level to remain a fixed value in the circuit, or in an alternative embodiment, may be dynamically adjusted to compensate for, or address, various design goals such as receiving RF signals with enhanced efficiency that are in distinctively different bands of operation, e.g. RF signals at 900 MHz and 1.8 GHz. 6.8 Adding a Bypass Network In an embodiment of the invention, a bypass network is added to improve the efficiency of the energy transfer module. Such a bypass network can be viewed as a means of synthetic aperture widening. Components for a bypass network are selected so that the bypass network appears substantially lower impedance to transients of the switch module (i.e., frequencies greater than the received EM signal) and appears as a moderate to high impedance to the input EM signal (e.g., greater that 100 Ohms at the RF frequency). The time that the input signal is now connected to the opposite side of the switch module is lengthened due to the shaping caused by this network, which in simple realizations may be a capacitor or series resonant inductor-capacitor. A network that is series resonant above the input frequency would be a typical implementation. This shaping improves the conversion efficiency of an input signal that would otherwise, if one considered the aperture of the energy transfer signal only, be relatively low in frequency to be optimal. For example, referring to FIG. 95 a bypass network 9502 (shown in this instance as capacitor 9512), is shown bypassing switch module 9504. In this embodiment the bypass network increases the efficiency of the energy transfer module when, for example, less than optimal aperture widths were chosen for a given input frequency on the energy transfer signal 9506. The bypass network 9502 could be of different configurations than shown in FIG. 95. Such an alternate is illustrated in FIG. 90. Similarly, FIG. 96 illustrates another example bypass network 9602, including a capacitor 9604. The following discussion will demonstrate the effects of a minimized aperture and the benefit provided by a bypassing network. Beginning with an initial circuit having a 550 ps aperture in FIG. 103, its output is seen to be 2.8 mVpp applied to a 50 ohm load in FIG. 107A. Changing the aperture to 270 ps as shown in FIG. 104 results in a diminished output of 2.5Vpp applied to a 50 ohm load as shown in FIG. 107B. To compensate for this loss, a bypass network may be added, a specific implementation is provided in FIG. 105. The result of this addition is that 3.2Vpp can now be applied to the 50 ohm load as shown in FIG. 108A. The circuit with the bypass network in FIG. 105 also had three values adjusted in the surrounding circuit to compensate for the impedance changes introduced by the bypass network and narrowed aperture. FIG. 106 verifies that those changes added to the circuit, but without the bypass network, did not themselves bring about the increased efficiency demonstrated by the embodiment in FIG. 105 with the bypass network. FIG. 108B shows the result of using the circuit in FIG. 106 in which only 1.88Vpp was able to be applied to a 50 ohm load. 6.9 Modifying the Energy Transfer Signal Utilizing Feedback FIG. 69 shows an embodiment of a system 6901 which uses down-converted Signal 1308B as feedback 6906 to control various characteristics of the energy transfer module 6304 to modify the down-converted signal 1308B. Generally, the amplitude of the down-converted signal 1308B varies as a function of the frequency and phase differences between the EM signal 1304 and the energy transfer signal 6306. In an embodiment, the down-converted signal 1308B is used as the feedback 6906 to control the frequency and phase relationship between the EM signal 1304 and the energy transfer signal 6306. This can be accomplished using the example logic in FIG. 85A. The example circuit in FIG. 85A can be included in the energy transfer signal module 6902. Alternate implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Alternate implementations fall within the scope and spirit of the present invention. In this embodiment a state-machine is used as an example. In the example of FIG. 85A, a state machine 8504 reads an analog to digital converter, A/D 8502, and controls a digital to analog converter, DAC 8506. In an embodiment, the state machine 8504 includes 2 memory locations, Previous and Current, to store and recall the results of reading A/D 8502. In an embodiment, the state machine 8504 utilizes at least one memory flag. The DAC 8506 controls an input to a voltage controlled oscillator, VCO 8508. VCO 8508 controls a frequency input of a pulse generator 8510, which, in an embodiment, is substantially similar to the pulse generator shown in FIG. 68J. The pulse generator 8510 generates energy transfer signal 6306. In an embodiment, the state machine 8504 operates in accordance with a state machine flowchart 8519 in FIG. 85B. The result of this operation is to modify the frequency and phase relationship between the energy transfer signal 6306 and the EM signal 1304, to substantially maintain the amplitude of the down-converted signal 1308B at an optimum level. The amplitude of the down-converted signal 1308B can be made to vary with the amplitude of the energy transfer signal 6306. In an embodiment where the switch module 6502 is a FET as shown in FIG. 66A, wherein the gate 6604 receives the energy transfer signal 6306, the amplitude of the energy transfer signal 6306 can determine the “on” resistance of the FET, which affects the amplitude of the down-converted signal 1308B. The energy transfer signal module 6902, as shown in FIG. 85C, can be an analog circuit that enables an automatic gain control function. Alternate implementations will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Alternate implementations fall within the scope and spirit of the present invention. 6.10 Other Implementations The implementations described above are provided for purposes of illustration. These implementations are not intended to limit the invention. Alternate implementations, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate implementations fall within the scope and spirit of the present invention. 7. Example Energy Transfer Downconverters Example implementations are described below for illustrative purposes. The invention is not limited to these examples. FIG. 86 is a schematic diagram of an exemplary circuit to down convert a 915 MHz signal to a 5 MHz signal using a 101.1 MHz clock. FIG. 87 shows example simulation waveforms for the circuit of FIG. 86. Waveform 8602 is the input to the circuit showing the distortions caused by the switch closure. Waveform 8604 is the unfiltered output at the storage unit. Waveform 8606 is the impedance matched output of the downconverter on a different time scale. FIG. 88 is a schematic diagram of an exemplary circuit to downconvert a 915 MHz signal to a 5 MHz signal using a 101.1 MHz clock. The circuit has additional tank circuitry to improve conversion efficiency. FIG. 89 shows example simulation waveforms for the circuit of FIG. 88. Waveform 8802 is the input to the circuit showing the distortions caused by the switch closure. Waveform 8804 is the unfiltered output at the storage unit. Waveform 8806 is the output of the downconverter after the impedance match circuit. FIG. 90 is a schematic diagram of an exemplary circuit to downconvert a 915 MHz signal to a 5 MHz signal using a 101.1 MHz clock. The circuit has switch bypass circuitry to improve conversion efficiency. FIG. 91 shows example simulation waveforms for the circuit of FIG. 90. Waveform 9002 is the input to the circuit showing the distortions caused by the switch closure. Waveform 9004 is the unfiltered output at the storage unit. Waveform 9006 is the output of the downconverter after the impedance match circuit. FIG. 92 shows a schematic of the example circuit in FIG. 86 connected to an FSK source that alternates between 913 and 917 MHz, at a baud rate of 500 Kbaud. FIG. 93 shows the original FSK waveform 9202 and the downconverted waveform 9204 at the output of the load impedance match circuit. IV. Additional Embodiments Additional aspects/embodiments of the invention are considered in this section. In one embodiment of the present invention there is provided a method of transmitting information between a transmitter and a receiver comprising the steps of transmitting a first series of signals each having a known period from the transmitter at a known first repetition rate; sampling by the receiver each signal in the first series of signals a single time and for a known time interval the sampling of the first series of signals being at a second repetition rate that is a rate different from the first repetition rate by a known amount; and generating by the receiver an output signal indicative of the signal levels sampled in step B and having a period longer than the known period of a transmitted signal. In another embodiment of the invention there is provided a communication system comprising a transmitter means for transmitting a first series of signals of known period at a known first repetition rate, a receiver means for receiving the first series of signals, the receiver means including sampling means for sampling the signal level of each signal first series of signals for a known time interval at a known second repetition rate, the second repetition rate being different from the first repetition rate by a known amount as established by the receiver means. The receiver means includes first circuit means for generating a first receiver output signal indicative of the signal levels sampled and having a period longer than one signal of the first series of signals. The transmitter means includes an oscillator for generating an oscillator output signal at the first repetition rate, switch means for receiving the oscillator output signal and for selectively passing the oscillator output signal, waveform generating means for receiving the oscillator output signal for generating a waveform generator output signal having a time domain and frequency domain established by the waveform generating means. The embodiment of the invention described herein involves a single or multi-user communications system that utilizes coherent signals to enhance the system performance over conventional radio frequency schemes while reducing cost and complexity. The design allows direct conversion of radio frequencies into baseband components for processing and provides a high level of rejection for signals that are not related to a known or controlled slew rate between the transmitter and receiver timing oscillators. The system can be designed to take advantage of broadband techniques that further increase its reliability and permit a high user density within a given area. The technique employed allows the system to be configured as a separate transmitter-receiver pair or a transceiver. The basic objectives of the present system is to provide a new communication technique that can be applied to both narrow and wide band systems. In its most robust form, all of the advantages of wide band communications are an inherent part of the system and the invention does not require complicated and costly circuitry as found in conventional wide band designs. The communications system utilizes coherent signals to send and receive information and consists of a transmitter and a receiver in its simplest form. The receiver contains circuitry to turn its radio frequency input on and off in a known relationship in time to the transmitted signal. This is accomplished by allowing the transmitter timing oscillator and the receiver timing oscillator to operate at different but known frequencies to create a known slew rate between the oscillators. If the slew rate is small compared to the timing oscillator frequencies, the transmitted waveform will appear stable in time, i.e., coherent (moving at the known slew rate) to the receiver's switched input. The transmitted waveform is the only waveform that will appear stable in time to the receiver and thus the receiver's input can be averaged to achieve the desired level filtering of unwanted signals. This methodology makes the system extremely selective without complicated filters and complex encoding and decoding schemes and allows the direct conversion of radio frequency energy from an antenna or cable to baseband frequencies with a minimum number of standard components further reducing cost and complexity. The transmitted waveform can be a constant carrier (narrowband), a controlled pulse (wideband and ultra-wideband) or a combination of both such as a dampened sinusoidal wave and or any arbitrary periodic waveform thus the system can be designed to meet virtually any bandwidth requirement. Simple standard modulation and demodulation techniques such as AM and Pulse Width Modulation can be easily applied to the system. Depending on the system requirements such as the rate of information transfer, the process gain, and the intended use, there are multiple preferred embodiments of the invention. The embodiment discussed herein will be the amplitude and pulse width modulated system. It is one of the simplest implementations of the technology and has many common components with the subsequent systems. A amplitude modulated transmitter consists of a Transmitter Timing Oscillator, a Multiplier, a Waveform Generator, and an Optional Amplifier. The Transmitter Timing Oscillator frequency can be determined by a number of resonate circuits including an inductor and capacitor, a ceramic resonator, a SAW resonator, or a crystal. The output waveform is sinusoidal, although a squarewave oscillator would produce identical system performance. The Multiplier component multiplies the Transmitter Timing Oscillator output signal by 0 or 1 or other constants, K1 and K2, to switch the oscillator output on and off to the Waveform Generator. In this embodiment, the information input can be digital data or analog data in the form of pulse width modulation. The Multiplier allows the Transmitter Timing Oscillator output to be present at the Waveform Generator input when the information input is above a predetermined value. In this state the transmitter will produce an output waveform. When the information input is below a predetermined value, there is no input to the Waveform Generator and thus there will be no transmitter output waveform. The output of the Waveform Generator determines the system's bandwidth in the frequency domain and consequently the number of users, process gain immunity to interference and overall reliability), the level of emissions on any given frequency, and the antenna or cable requirements. The Waveform Generator in this example creates a one cycle pulse output which produces an ultra-wideband signal in the frequency domain. An optional power Amplifier stage boosts the output of the Waveform Generator to a desired power level. With reference now to the drawings, the amplitude and pulse width modulated transmitter in accord with the present invention is depicted at numeral 13000 in FIGS. 130 and 131. The Transmitter Timing Oscillator 13002 is a crystal-controlled oscillator operating at a frequency of 25 MHZ. Multiplier 13004 includes a two-input NAND gate 13102 controlling the gating of oscillator 13002 output to Waveform Generator 13006. Waveform Generator 13006 produces a pulse output as depicted at 13208 in FIGS. 132A-132D and 133, which produces a frequency spectrum 13402 in FIG. 134. Amplifier 13008 is optional. The transmitter 13000 output is applied to antenna or cable 13010, which as understood in the art, may be of various designs as appropriate in the circumstances. FIGS. 132A-132D, 133 and 134 illustrate the various signals present in transmitter 13000. The output of transmitter 13000 in FIG. 132A may be either a sinusoidal or squarewave signal 13202 that is provided as one input into NAND gate 13102. Gate 13102 also receives an information signal 13204 in FIG. 132B which, in the embodiment shown, is digital in form. The output 13206 of Multiplier 13004 can be either sinusoidal or squarewave depending upon the original signal 13202. Waveform Generator 13006 provides an output of a single cycle impulse signal 13208. The single cycle impulse 13210 varies in voltage around a static level 13212 and is created at 40 nanoseconds intervals. In the illustrated embodiment, the frequency of transmitter 13002 is 25 MHZ and accordingly, one cycle pulses of 1.0 GHZ are transmitted every 40 nanoseconds during the total time interval that gate 13102 is “on” and passes the output of transmitter oscillator 13002. FIG. 135 shows the preferred embodiment receiver block diagram to recover the amplitude or pulse width modulated information and consists of a Receiver Timing Oscillator 13510, Waveform Generator 13508, RF Switch Fixed or Variable Integrator 13506, Decode Circuit 13514, two optional Amplifier/Filter stages 13504 and 13512, antenna or cable input 13502, and Information Output 13516. The Receiver Timing Oscillator 13510 frequency can be determined by a number of resonate circuits including an inductor and capacitor, a ceramic resonator, a SAW resonator, or a crystal. As in the case of the transmitter, the oscillator 13510 shown here is a crystal oscillator. The output waveform is a squarewave, although a sinewave oscillator would produce identical system performance. The squarewave timing oscillator output 13602 is shown in FIG. 136A. The Receiver Timing Oscillator 13510 is designed to operate within a range of frequencies that creates a known range of slew rates relative to the Transmitter Timing Oscillator 13002. In this embodiment, the Transmitter Timing Oscillator 13002 frequency is 25 MHZ and the Receiver Timing Oscillator 13510 outputs between 25.0003 MHZ and 25.0012 MHZ which creates a +300 to +1200 Hz slew rate. The Receiver Timing Oscillator 13510 is connected to the Waveform Generator 13508 which shapes the oscillator signal into the appropriate output to control the amount of the time that the RF switch 13506 is on and off. The on-time of the RF switch 13506 should be less than ½ of a cycle ( 1/10 of a cycle is preferred) or in the case of a single pulse, no wider than the pulse width of the transmitted waveform or the signal gain of the system will be reduced. Examples are illustrated in Table A1. Therefore the output of the Waveform Generator 13508 is a pulse of the appropriate width that occurs once per cycle of the receiver timing oscillator 13510. The output 13604 of the Waveform Generator is shown in FIG. 136B. TABLE A1 Transmitted Waveform Gain Limit on-time Preferred on-time Single 1 nanosecond pulse 1 nanosecond 100 picoseconds 1 Gigahertz 1, 2, 3..etc. 500 picoseconds 50 picoseconds cycle output 10 Gigahertz 1, 2, 3..etc. 50 picoseconds 5 picoseconds cycle output The RF Switch/Integrator 13506 samples the RF signal 13606 shown in FIG. 136C when the Waveform Generator output 13604 is below a predetermined value. When the Waveform Generator output 13604 is above a predetermined value, the RF Switch 13506 becomes a high impedance node and allows the Integrator to hold the last RF signal sample 13606 until the next cycle of the Waveform Generator 13508 output. The Integrator section of 13506 is designed to charge the Integrator quickly (fast attack) and discharge the Integrator at a controlled rate (slow decay). This embodiment provides unwanted signal rejection and is a factor in determining the baseband frequency response of the system. The sense of the switch control is arbitrary depending on the actual hardware implementation. In an embodiment of the present invention, the gating or sampling rate of the receiver 13500 is 300 Hz higher than the 25 MHZ transmission rate from the transmitter 13000. Alternatively, the sampling rate could be less than the transmission rate. The difference in repetition rates between the transmitter 13000 and receiver 13500, the “slew rate,” is 300 Hz and results in a controlled drift of the sampling pulses over the transmitted pulse which thus appears “stable” in time to the receiver 13500. With reference now to FIGS. 132A-D and 136A-G, an example is illustrated for a simple case of an output signal 13608 (FIG. 136D) that is constructed of four samples from four RF input pulses 13606 for ease of explanation. As can be clearly seen, by sampling the RF pulses 13606 passed when the transmitter information signal 13204 (FIG. 132B) is above a predetermine threshold the signal 13608 is a replica of a signal 13606 but mapped into a different time base. In the case of this example, the new time base has a period four times longer than real time signal. The use of an optional amplifier/filter 13512 results in a further refinement of the signal 13608 which is present in FIG. 136E as signal 13610. Decode Circuitry 13514 extracts the information contained in the transmitted signal and includes a Rectifier that rectifies signal 13608 or 13610 to provide signal 13612 in FIG. 136G. The Variable Threshold Generator circuitry in circuit 13514 provides a DC threshold signal level 13614 for signal 13610 that is used to determine a high (transmitter output on) or low (transmitter output off) and is shown in FIG. 136G. The final output signal 13616 in FIG. 136F is created by an output voltage comparator in circuit 13514 that combines signals 13612 and 13614 such that when the signal 13612 is a higher voltage than signal 13614, the information output signal goes high. Accordingly, signal 13616 represents, for example, a digital “1” that is now time-based to a 1:4 expansion of the period of an original signal 13606. While this illustration provides a 4:1 reduction in frequency, it is sometimes desired to provide a reduction of more than 50,000:1; in the preferred embodiment, 100,000:1 or greater is achieved. This results in a shift directly from RF input frequency to low frequency baseband without the requirement of expensive intermediate circuitry that would have to be used if only a 4:1 conversion was used as a first stage. Table A2 provides information as to the time base conversion and includes examples. TABLE A2 Units s = 1 ps = 1 · 1012 ns = 1 · 10−9 us = 1 · 10−6 MHz = 1 · 106 KHz = 1 · 103 Receiver Timing Oscillator Frequency = 25.0003 MHz Transmitter Timing Oscillator Frequency = 25 MHz period = 1 Transmitter Timing Oscillator Frequency period = 40 ns slew rate = 1 Receiver Timing Oscillator Frequency - Transmitter Timing Oscillator Frequency slew rate = 0.003 s time base multiplier = slew rate period seconds per nanosecond time base multiplier = 8.333 · 104 Example 1: 1 nanosecond translates into 83.33 microseconds time base = (1 ns) · time base multiplier time base = 83.333 us Example 2: 2 Gigahertz translates into 24 Kilohertz 2 Gigahertz = 500 picosecond period time base = (500 ps) · time base multiplier time base = 41.667 us frequency = 1 time base frequency = 24 KHz In the illustrated preferred embodiment, the signal 13616 in FIG. 136F has a period of 83.33 usec, a frequency of 12 KHz and it is produced once every 3.3 msec for a 300 Hz slew rate. Stated another way, the system is converting a 1 gigahertz transmitted signal into an 83.33 microsecond signal. Accordingly, the series of RF pulses 13210 that are transmitted during the presence of an “on” signal at the information input gate 13102 are used to reconstruct the information input signal 13204 by sampling the series of pulses at the receiver 13500. The system is designed to provide an adequate number of RF inputs 13606 to allow for signal reconstruction. An optional Amplifier/Filter stage or stages 13504 and 13512 may be included to provide additional receiver sensitivity, bandwidth control or signal conditioning for the Decode Circuitry 13514. Choosing an appropriate time base multiplier will result in a signal at the output of the Integrator 13506 that can be amplified and filtered with operational amplifiers rather than RF amplifiers with a resultant simplification of the design process. The signal 13610 in FIG. 136E illustrates the use of Amplifier/Filter 13512 (FIG. 137). The optional RF amplifier 13504 shown as the first stage of the receiver should be included in the design when increased sensitivity and/or additional filtering is required. Example receiver schematics are shown in FIGS. 137-139. FIGS. 140-143 illustrate different pulse output signals 14002 and 14202 and their respective frequency domain at 14102 and 14302. As can be seen from FIGS. 140 and 141, the half-cycle signal 14002 generates a spectrum less subject to interference than the single cycle of FIG. 133 and the 10-cycle pulse of FIG. 142. The various outputs determine the system's immunity to interference, the number of users in a given area, and the cable and antenna requirements. FIGS. 133 and 134 illustrate example pulse outputs. FIGS. 144 and 145 show example differential receiver designs. The theory of operation is similar to the non-differential receiver of FIG. 135 except that the differential technique provides an increased signal to noise ratio by means of common mode rejection. Any signal impressed in phase at both inputs on the differential receiver will attenuated by the differential amplifier shown in FIGS. 144 and 145 and conversely any signal that produces a phase difference between the receiver inputs will be amplified. FIGS. 146 and 147 illustrate the time and frequency domains of a narrow band/constant carrier signal in contrast to the ultra-wide band signals used in the illustrated embodiment. V. CONCLUSIONS Example embodiments of the methods, systems, and components of the present invention have been described herein. As noted elsewhere, these example embodiments have been described for illustrative purposes only, and are not limiting. Other embodiments are possible and are covered by the invention. Such other embodiments include but are not limited to hardware, software, and software/hardware implementations of the methods, systems, and components of the invention. Such other embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to down-conversion of electromagnetic (EM) signals. More particularly, the present invention relates to down-conversion of EM signals to intermediate frequency signals, to direct down-conversion of EM modulated carrier signals to demodulated baseband signals, and to conversion of FM signals to non-FM signals. The present invention also relates to under-sampling and to transferring energy at aliasing rates. 2. Related Art Electromagnetic (EM) information signals (baseband signals) include, but are not limited to, video baseband signals, voice baseband signals, computer baseband signals, etc. Baseband signals include analog baseband signals and digital baseband signals. It is often beneficial to propagate EM signals at higher frequencies. This is generally true regardless of whether the propagation medium is wire, optic fiber, space, air, liquid, etc. To enhance efficiency and practicality, such as improved ability to radiate and added ability for multiple channels of baseband signals, up-conversion to a higher frequency is utilized. Conventional up-conversion processes modulate higher frequency carrier signals with baseband signals. Modulation refers to a variety of techniques for impressing information from the baseband signals onto the higher frequency carrier signals. The resultant signals are referred to herein as modulated carrier signals. For example, the amplitude of an AM carrier signal varies in relation to changes in the baseband signal, the frequency of an FM carrier signal varies in relation to changes in the baseband signal, and the phase of a PM carrier signal varies in relation to changes in the baseband signal. In order to process the information that was in the baseband signal, the information must be extracted, or demodulated, from the modulated carrier signal. However, because conventional signal processing technology is limited in operational speed, conventional signal processing technology cannot easily demodulate a baseband signal from higher frequency modulated carrier signal directly. Instead, higher frequency modulated carrier signals must be down-converted to an intermediate frequency (IF), from where a conventional demodulator can demodulate the baseband signal. Conventional down-converters include electrical components whose properties are frequency dependent. As a result, conventional down-converters are designed around specific frequencies or frequency ranges and do not work well outside their designed frequency range. Conventional down-converters generate unwanted image signals and thus must include filters for filtering the unwanted image signals. However, such filters reduce the power level of the modulated carrier signals. As a result, conventional down-converters include power amplifiers, which require external energy sources. When a received modulated carrier signal is relatively weak, as in, for example, a radio receiver, conventional down-converters include additional power amplifiers, which require additional external energy. What is needed includes, without limitation: an improved method and system for down-converting EM signals; a method and system for directly down-converting modulated carrier signals to demodulated baseband signals; a method and system for transferring energy and for augmenting such energy transfer when down-converting EM signals; a controlled impedance method and system for down-converting an EM signal; a controlled aperture under-sampling method and system for down-converting an EM signal; a method and system for down-converting EM signals using a universal down-converter design that can be easily configured for different frequencies; a method and system for down-converting EM signals using a local oscillator frequency that is substantially lower than the carrier frequency; a method and system for down-converting EM signals using only one local oscillator; a method and system for down-converting EM signals that uses fewer filters than conventional down-converters; a method and system for down-converting EM signals using less power than conventional down-converters; a method and system for down-converting EM signals that uses less space than conventional down-converters; a method and system for down-converting EM signals that uses fewer components than conventional down-converters; a method and system for down-converting EM signals that can be implemented on an integrated circuit ( 1 C); and a method and system for down-converting EM signals that can also be used as a method and system for up-converting a baseband signal. | <SOH> SUMMARY OF THE INVENTION <EOH>Briefly stated, the present invention is directed to methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof. Generally, the invention operates by receiving an EM signal. The invention also receives an aliasing signal having an aliasing rate. The invention aliases the EM signal according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein and as covered by the invention, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the invention down-converts the EM signal to an intermediate frequency (IF) signal. In another embodiment, the invention down-converts the EM signal to a demodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. The invention is applicable to any type of EM signal, including but not limited to, modulated carrier signals (the invention is applicable to any modulation scheme or combination thereof) and unmodulated carrier signals. Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. It is noted that the invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The drawing in which an element first appears is typically indicated by the leftmost digit(s) in the corresponding reference number. | 20041227 | 20070320 | 20050915 | 86164.0 | 1 | APPIAH, CHARLES NANA | METHODS AND SYSTEMS FOR DOWN-CONVERTING A SIGNAL USING A COMPLEMENTARY TRANSISTOR STRUCTURE | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,020,860 | ACCEPTED | Macrolides | A mixture comprising a poly-ene macrolide and an antioxidant. Preferably, the poly-ene macrolide is rapamycin and the antioxidant is 2, 6-di-tert.-butyl-4-methylphenol. The presence of the antioxidant improves the stability of the poly-ene macrolide to oxidation. | 1. A mixture comprising a poly-ene macrolide and an antioxidant. 2. A mixture according to claim 1, wherein the antioxidant is present in an amount of up to 1% based on the macrolide weight. 3. A mixture according to claim 1, wherein the antioxidant is present in an amount of 0.2% based on the macrolide weight. 4. A mixture according to claim 1, wherein the antioxidant is 2,6-di-tert.-butyl-4-methylphenol. 5. A mixture according to claim 1, wherein the poly-ene macrolide is rapamycin or 40-O-(2-hydroxy)ethyl-rapamycin. 6. A mixture according to claim 1, in solide form. 7. A pharmaceutical composition comprising, as active ingredient, a mixture according to claim 1 together with one or more pharmaceutically acceptable carrier or diluent. 8. A process for stabilizing a poly-ene macrolide comprising adding an antioxidant to the purified macrolide. 9. 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form. 10. The compound according to claim 9, in crystalline non-solvate form. 11. The compound according to claim 9, having a crystal lattice a=14.37 Å, b=11.24 Å, c=18.31 Å, the volume being 2805 Å3. 12. A pharmaceutical composition comprising a compound according to claim 11, together with one or more pharmaceutically acceptable diluents or carriers therefor. 13. A process for purifying 40-O-(2-hydroxy)ethyl-rapamycin, comprising crystallizing 40-O-(2-hydroxy)ethyl-rapamycin from a crystal bearing medium and recovering the crystals thus obtained. | This application is a continuation of International Application No. PCT/EP99109521, filed Dec. 6, 1999, the contents of which are incorporated herein by reference. The present invention relates to the stabilization of a pharmaceutically active ingredient sensitive to oxidation, e.g. a poly-ene macrolide, preferably a poly-ene macrolide having immunosuppressant properties, particularly rapamycins. The handling and storage particularly in the bulk form of pharmaceutically active ingredients which are sensitive to oxidation is difficult. Special handling is necessary and often the oxidation-sensitive ingredient is stored in air-tight packaging under protective gas. Substantial amounts of stabilizers are added during the formulating process of such pharmaceutically active ingredients. Poly-ene macrolides have satisfactory stability properties. However, it has now been found that their stability to oxygen may substantially be improved by the addition of a stabilizer, e.g. an antioxidant, during their isolation step. According to the invention, there is provided 1. A process for stabilizing a poly-ene macrolide comprising adding an antioxidant to the purified macrolide, preferably at the commencement of its isolation step. This process is particularly useful for the production of a stabilized poly-ene macrolide in bulk. The amount of antioxidant may conveniently be up to 1%, more preferably from 0.01 to 0.5% (based on the weight of the macrolide). Such a small amount is referred to hereinafter as a catalytic amount. As alternatives to the above the present invention also provides: 2. A mixture, e.g. a bulk mixture, comprising a poly-ene macrolide and an anti-oxidant, preferably a catalytic amount thereof, preferably in solid form. The mixture may be in particulate form e.g. cristailized or amorphous form. It may be in a sterile or substantially sterile condition, e.g. in a condition suitable for pharmaceutical use. 3. Use of a mixture as defined above in 2, in the manufacture of a pharmaceutical composition. Examples of poly-enes macrolides are e.g. molecules comprising double bonds, preferably conjugated double bonds, for example such having antibiotic and/or immunosuppressant properties, e.g. macrolides comprising a lactam or lactone bond and their derivatives, e.g. compounds which have a biological activity qualitatively similar to that of the natural macrolide, e.g. chemically substituted macrolides. Suitable examples include e.g. rapamycins and ascomycins. A preferred poly-ene macrolide is a macrolide comprising at least 2 conjugated double bonds, e.g. 3 conjugated double bonds. Rapamycin is a known lactam macrolide produceable, for example by Streptomyces hygroscopicus. The structure of rapamycin is given in Kessler, H. et al.; 1993; Helv. Chim. Acta, 76: 117. Rapamycin has antibiotic and immunosuppressant properties. Derivatives of rapamycin are known, e.g. 16-O-substituted rapamycins, for example as disclosed in WO 94/02136 and WO 96/41807, 40-O-substituted rapamycins, for example as disclosed in WO 94/09010, WO 92/05179, WO 95/14023, 94/02136. WO 94/02385 and WO 96/13273, all of which being incorporated herein by reference. Preferred rapamycin derivatives are e.g. rapamycins wherein the hydroxy in position 40 of formula A illustrated at page 1 of WO 94/09010 is replaced by —OR wherein R is hydroxyalkyl, hydroxyalkoxyalkyl, acylaminoalkyl or aminoalkyl, e.g. 40-O-(2-hydroxy)ethyl-rapamycin, 400-(3-hydroxy)propyl-rapamycin, and 400-[2-(2-hydroxy)ethoxy]ethyl-rapamycin. Ascomycins, of which FK-506 and ascomycin are the best known, form another class of lactam macrolides, many of which have potent immunosuppressive and anti-inflammatory activity. FK506 is a lactam macrolide produced by Streptomyces tsukubaensis. The structure of FK506 is given in the Appendix to the Merck Index, 11 th ed. (1989) as item A5. Ascomycin is described e.g. In U.S. Pat. No. 3,244,592. Ascomycin, FK506, other naturally occurring macrolides having a similar biological activity and their derivatives, e.g. synthetic analogues and derivatives are termed collectively “Ascomycins”. Examples of synthetic analogues or derivatives are e.g. halogenated ascomycins, e.g. 33-epi-chloro-33-desoxy-ascomycin such as disclosed in EP-A427,680, tetrahydropyran derivatives, e.g. as disclosed in EP-A-626,385. Particularly preferred macrolides are rapamycin and 40-O-(2-hydroxy)ethyl-rapamycin. Preferred antioxidants are for example 2,6-di-tert.-butyl-4-methylphenol (hereinafter BHT), vitamin E or C, BHT being particularly preferred. A particularly preferred mixture of the invention is a mixture of rapamycin or 40-O-(2-hydroxy)ethyl-rapamycin and 0.2% (based on the weight of the macrolide) of antioxidant, preferably BHT. The antioxidant may be added to the poly-ene macrolide at the commencement of the isolation steps, preferably the final isolation step, more preferably just prior to the final precipitation step. The macrolide is preferably in a purified state. It may be dissolved in an inert solvent and the antioxidant is added to the resulting solution, followed by a precipitation step of the stabilized macrolide, e.g. in an amorphous form or in the form of crystals. Preferably the mixture of the invention is in amorphous form. The resulting stabilized macrolide exhibits surprisingly an improved stability to oxidation and its handling and storage, e.g. in bulk form prior to its further processing for example into a galenic composition, become much easier. It is particularly interesting for macrolides in amorphous form. The macrolide stabilized according to the invention may be used as such for the production of the desired galenic formulation. Such formulations may be prepared according to methods known in the art, comprising the addition of one or more pharmaceutically acceptable diluent or carrier, including the addition of further stabilizer if required. Accordingly there is further provided: 4. A pharmaceutical composition comprising, as active ingredient, a stabilized mixture as disclosed above, together with one or more pharmaceutically acceptable diluent or carrier. The composition of the invention may be adapted for oral, parenteral, topical (e.g. on the skin), occular, nasal or inhalation (e.g. pulmonary) administration. A preferred composition is one for oral administration, preferably a water-free composition when the active ingredient is a lactone macrolide. The pharmaceutical compositions of the invention may comprise further excipients, e.g. a lubricant, a disintegrating agent, a surfactant, a carrier, a diluent, a flavor enhancer, etc. It may be in liquid form, e.g. solutions, suspensions or emulsions such as a microemulsions, e.g. as disclosed in U.S. Pat. No. 5,536,729, or in solid form, e.g. capsules, tablets, dragees, powders (including micronized or otherwise reduced particulates), solid dispersions, granulates, etc., e.g. as disclosed in WO 97/03654, the contents of which being incorporated herein by reference, or semi-solid forms such as ointments, gels, creams and pastes. They are preferably adapted to be in a form suitable for oral administration. Preferably they are in solid form. The pharmaceutical compositions of the invention may be prepared according to known methods, by mixing the macrolide stabilized according to the invention with the additional ingredients under stirring; the ingredients may be milled or ground and if desired compressed, e.g into tablets. This invention is particularly interesting for rapamycin compositions in liquid or solid form. A particularly preferred composition is a solid dispersion, e.g. comprising a stabilized rapamycin according to the invention and a carrier medium, e.g. a water-soluble polymer such as hydroxypropylmethylcellulose, e.g. as disclosed in WO 97/03654. The compositions of the invention are useful for the indications as known for the macrolide they contain at e.g. known dosages. For example, when the macrolide has immunosuppressant properties, e.g. rapamycin or a rapamycin derivative, the composition may be useful e.g. in the treatment or prevention of organ or tissue acute or chronic allo or xeno-transplant rejection, autoimmune diseases or inflammatory conditions, asthma, proliferative disorders, e.g tumors, or hyperproliferative vascular disorders, preferably In the prevention or treatment of transplant rejection. The amount of macrolide and of the composition to be administered depend on a number of factors, e.g. the active ingredient used, the conditions to be treated, the duration of the treatment etc. For e.g. rapamycin or 40-O-(2-hydroxy)ethyl-rapamycin, a suitable daily dosage form for oral administration comprise from 0.1 to 10 mg, to be administered once or in divided form. In another aspect, this invention also provides 40-O-(2-hydroxy)ethyl-rapamycin in a crystalline form, particularly in a substantially pure form. Preferably the crystal form is characterized by the absence or substantial absence of any solvent component; it is in non-solvate form. 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form belongs to the monoclinic system. The resulting crystals have a m.p. of 146°-147° C., especially 146.5° C. To assist identification of the new crystalline form, X-ray diffraction analysis data are provided. The conditions under which these data are obtained are as follows: Temperature 293(2)K Wavelength 1.54178 Å Space group P21 Unit cell dimensions a 14.378.(2) Å b 11.244(1) Å c 18.310(2) Å β 108.58(1)° Volume 2805.8(6) Å3 Z 2 Density (calculated) 1.134 g/cm3 Absorption coefficient 0.659 mm−1 F(000) 1040 Crystal size 0.59 × 0.11 × 0.03 mm θ range for data collection 2.55 to 57.20° Reflections collected 4182 Independent reflections 4037 [R(int) = 0.0341] Intensity decay 32% Refinement method Full-matrix least-squares on F2 Data/restraints/parameters 3134/1/613 Goodness-of-fit on F2 1.055 Final R indices R1 = 0.0574, wR2 = 0.1456 [l > 2 sigma(l)] Largest diff. peak and hole 0.340 and −0.184 e/Å3 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form may be prepared by dissolving the amorphous compound in a solvant e.g. ethyl acetate and adding an aliphatic hydrocarbon CnH2n42 (n=5, 6 or 7). After addition of the hydrocarbon, the resulting mixture may be warmed e.g. at a temperature of 25 to 50° C., e.g. up to 30-35° C. Storing of the resulting mixture may conveniently take place at a low temperature, e.g. below 25° C., preferably from 0 to 25° C. The crystals are filtered and dried. Heptane is preferred as an aliphatic hydrocarbon. If desired, nucleation procedures may be commenced e.g. by sonication or seeding. The present invention also provides a process for purifying 40-O-(2-hydroxy)ethyl-rapamycin comprising crystallizing 40-O-(2-hydroxy)ethyl-rapamycin from a crystal bearing medium, e.g. as disclosed above, and recovering the crystals thus obtained. The crystal bearing medium may include one or more components in addition to those recited above. A particularly suitable crystal bearing medium has been found to be one comprising ca. 2 parts ethyl acetate and ca. 5 parts aliphatic hydrocarbon, e.g. heptane. 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form has been found to possess in vitro and in vivo immunosuppressive activity comparable to that of the amorphous form. In the localized GvHD, maximal inhibition (70-80%) of lymph node swelling is achieved with a dosage of 3 mg with 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form. 40-O-(2-hydroxy)ethyl-rapamycin may be useful for the same indications as known for the amorphous compound, e.g. to prevent or treat acute and chronic allo- or xeno-transplant rejection, autoimmune diseases or inflammatory conditions, asthma, proliferative disorders, e.g tumors, or hyperproliferative vascular disorders, e.g as disclosed in WO 94/09010 or in WO 97/35575, the contents thereof being incorporated herein by reference. In general, satisfactory results are obtained on oral administration at dosages on the order of from 0.05 to 5 or up to 20 mg/kg/day, e.g. on the order of from 0.1 to 2 or up to 7.5 mg/kg/day administered once or, in divided doses 2 to 4× per day. Suitable daily dosages for patients are thus on the order of up to 10 mg., e.g. 0.1 to 10 mg. 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form may be administered by any conventional route, e.g. orally, for example tablets or capsules, or nasallly or pulmonary (by inhalation). It may be administered as the sole active ingredient or together with other drugs, e.g. immunosuppressive and/or immunomodulatory and/or anti-inflammatory agents, e.g. as disclosed in WO 94/09010. In accordance with the foregoing, the present invention also provides: 5. A method for preventing or treating acute or chronic alto- or xeno-transplant rejection, autoimmune diseases or inflammatory conditions, asthma, proliferative disorders, or hyperproliferative vascular disorders, in a subject in need of such treatment, which method comprises administering to said subject a therapeutically effective amount of 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form; 6. 40-O-(2-hydroxy)ethyl-rapamycin In crystalline form for use as a pharmaceutical; e.g. in a method as disclosed above; 7. A pharmaceutical composition comprising 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form together with a pharmaceutically acceptable diluent or carrier therefor; 8. A kit or package for use in immunosuppression or inflammation, including a pharmaceutical composition as disclosed above and a pharmaceutical composition comprising an immunosuppressant or immunomodulatory drug or an anti-inflammatory, agent. The following examples illustrate the invention without limiting it. EXAMPLE 1 Crystallisation 0.5 g amorphous 40-O-(2-hydroxy)ethyl-rapamycin is dissolved In 2.0 ml ethyl acetate at 40° C. 5.0 ml heptane is added and the solution becomes “milky”. After warming to 30° C., the solution becomes clear again. Upon cooling to 0° C. and with scratching an oil falls out of the solution. The test tube is closed and stored at 10° C. overnight. The resulting white voluminous solid is then filtered and washed with 0.5 ml of a mixture of ethyl acetate/hexane (1:2.5) and the resulting crystals are dried at 40° C. under 5 mbar for 16 hours. 40-O-(2-hydroxy)ethyl-rapamycin in crystalline form having a m.p. of 146.5° C. Is thus obtained. Crystallisation at a larger scale may be performed as follows: 250 g amorphous 40-O-(2-hydroxy)ethyl-rapamycin is dissolved in 1.0 l ethyl acetate under argon with slow stirring. This solution is heated at 30° C. and then during 45 minutes, 1.5 l heptane is added dropwise. 0.25 g of seed crystals prepared as disclosed above are added under the same conditions in portions. The mixture is further stirred at 30° C. over a period of 2 hours and the crystallisation mixture is cooled to 25° C. over 1 hour and then to 10° C. for 30 minutes and filtered. The crystals are washed with 100 ml of a mixture ethyl acetate/hexane (2:3). Subsequent drying is performed at 50° C. and ca 5 mbar. m.p. 146.5° C. IR In KBr 3452, 2931; 1746, 1717, 1617, 1453, 1376, 1241, 1191, 1163, 1094, 1072, 1010, 985, 896 cm−1 Single X-ray structure with coordinates are indicated in FIGS. 1 to 3 below. EXAMPLE 2 Production of Stabilized 40-O-(2-hydroxy)ethyl-rapamycin 10 g 40-O-(2-hydroxy)ethyl-rapamycin are dissolved in 600 l abs. ethanol. After addition of 0.2 g BHT, the resulting solution is added dropwise with stirring to 3.0 l water within 1 hour. The resulting suspension is stirred for an additional 30 minutes. Filtration with subsequent washing (3×200 ml water/ethanol at a v/v ratio of 5:1) results in a moist white product which is further dried under vacuum (1 mbar) at 30° C. for 48 hours. The resulting dried product contains 0.2% (w/w) BHT. The resulting product shows improved stability on storage. The sum of by-products and degradation products in % after 1 week storage are as follows: Compound 50° C. in open flask Ex. 2 (0.2% BHT) 1.49 Without BHT >10 The procedure of above Example may be repeated but using, as active ingredient, rapamycin. | 20041223 | 20071120 | 20050519 | 63031.0 | 7 | KIFLE, BRUCK | MACROLIDES | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||||
11,021,000 | ACCEPTED | Protection device stem design | The present invention relates to a connection system for use with an active or passive protection device that minimizes weight. In accordance with the present invention, a single stem connection system for use with an active protection device includes a single bent cable that is attached to the single cable terminal of the active protection device. A stem tube is fitted over a portion of the bent cable giving the appearance and benefits of a single stem. However, a portion of the bent cable is left separated thereby automatically forming a clip-in point for the entire active protection device. Unlike conventional single stem connection systems, the single stem system in accordance with the present invention only requires coupling the cable to the cable terminal thereby reducing manufacturing cost and minimizing overall weight. Alternatively, a similar connection system can be used with a passive protection device to provide many of the same benefits. | 1. A single stem active protection device comprising: an axle; a terminal having a first side and a second side, wherein the middle of the axle is coupled to the terminal between the first and second side of the terminal; a plurality of opposing cam lobes coupled to the axle; a retraction system coupled to the plurality of opposing cam lobes; and a connection system attached to the terminal, wherein the connection system includes a cable having two ends and wherein the two ends are coupled to the terminal. 2. The single stem active protection device of claim 1, wherein the terminal comprises two adjacent terminals. 3. The single stem active protection device of claim 1, wherein the terminal is disposed between at least two of the plurality of opposing cam lobes. 4. The single stem active protection device of claim 1, wherein the first side is substantially parallel to the second side of the terminal. 5. The single stem active protection device of claim 1, wherein the axle includes a first axle and a second axle and wherein two of the plurality of opposing cam lobes are coupled to the first axle and two other opposing cam lobes are coupled to the second axle. 6. The single stem active protection device of claim 1, wherein the retraction system includes: a plurality of torsion springs coupled to the axle and the plurality of opposing cam lobes; and a triggering system coupled to the plurality of opposing cam lobes. 7. The triggering system of claim 6, wherein the triggering system includes a trigger shaped in a manner to minimize the necessary distance of the trigger from the cam lobes while ensuring that the cam lobes do not contact a user's hand during a retraction process. 8. The single stem active protection device of claim 1, wherein the retraction system includes: a plurality of compression springs coupled to the triggering system and the connection system; and a triggering system coupled to the plurality of opposing cam lobes. 9. The triggering system of claim 8, wherein the triggering system includes a trigger shaped in a manner to minimize the necessary distance of the trigger from the cam lobes while ensuring that the cam lobes do not contact a user's hand during a retraction process. 10. The single stem active protection device of claim 1, wherein the retraction system includes: a plurality of extension springs coupled to the axle and the plurality of opposing cam lobes; and a triggering system coupled to the plurality of opposing cam lobes. 11. The triggering system of claim 10, wherein the triggering system includes a trigger shaped in a manner to minimize the necessary distance of the trigger from the cam lobes while ensuring that the cam lobes do not contact a user's hand during a retraction process. 12. The single stem active protection device of claim 1, wherein a middle portion of the cable is routed through a stem tube that is coupled to the terminal such that a loop of cable is formed opposite the terminal. 13. The single stem active protection device of claim 1, wherein the terminal includes two holes to facilitate two axles, and wherein the two ends of the cable are coupled to the terminal between the two holes. 14. The single stem active protection device of claim 1, wherein the two ends of the cable are coupled to the terminal by routing the two ends of the cable through the terminal and coupling them to a ball wedge. 15. The single stem active protection device of claim 1, wherein the two ends of the cable are coupled to the terminal by swaging into at least one recess in a lower member of the terminal. 16. The single stem active protection device of claim 1, wherein the connection system further includes a doubled sling stitched in configuration to allow use of the full length of the sling and such that the sling is biased into an open position. 17. A single stem active protection device comprising: a terminal member having a first side and a second side, wherein the middle portion of the terminal member is a terminal portion and an outer portion of the terminal member is an axle portion; a plurality of opposing cam lobes coupled to the terminal member; a retraction system coupled to the plurality of opposing cam lobes; and a connection system attached to the terminal member, wherein the connection system includes a cable having two ends and wherein the two ends are coupled to the terminal member. 18. A camming device comprising: a spindle member; a camming system for engaging a surface, said camming system defining a plurality of holes for pivotally engaging said spindle member; a bias system for biasing said camming system towards an extended position; an anti-bias system for allowing a user to force said camming system towards a retracted position; a stem having a cable with a first end, a second end, and a mid-section located between said first and second ends; wherein said spindle member comprises a terminal; wherein said first and second ends of said cable are operatively engaged to said terminal such that no one of said plurality of holes defined by said camming system is located between said first end and said second end. 19. A camming device, as claimed in claim 18, wherein said terminal defines a hole for receiving both said first and second ends of said cable. 20. A camming device, as claimed in claim 19, wherein said stem comprises a swage attached to said first and second ends of said cable. 21. A camming device, as claimed in claim 19, wherein said terminal defines a recess for receiving both said first and second ends of said cable, and wherein said recess extends from an opening to a closed end. 22. A camming device, as claimed in claim 21, wherein said closed end is located between said opening and a spindle of said spindle member. 23. A camming device, as claimed in claim 21, wherein said closed end is located between said opening and a plane defined by two spindles of said spindle member. 24. A camming device, as claimed in claim 21, wherein said recess is intersected by a line defined by a spindle of said spindle member. 25. A camming device, as claimed in claim 21, wherein said recess is intersected by a plane defined by two spindles of said spindle member. 26. A camming device, as claimed in claim 21, wherein a portion of said recess is located between the lines defined by two spindles of said spindle member. 27. A camming device, as claimed in claim 18, wherein said terminal defines a first engagement structure for receiving said first end of said cable and a second engagement structure for receiving said second end of said cable. 28. A camming device, as claimed in claim 27, wherein said first engagement structure comprises one of the following: a hole and a recess. 29. A camming device, as claimed in claim 28, wherein said second engagement structure comprises one of the following: a hole and a recess. 30. A camming device, as claimed in claim 29, wherein said terminal comprises a first portion and a second portion that is separate from said first portion, and wherein said first portion defines said first engagement structure, and wherein said second portion defines said second engagement structure. 31. A camming device, as claimed in claim 18, wherein said spindle member comprises said terminal and a spindle that extends from a first spindle end that is located on one side of said terminal to a second spindle end that is located on an opposite side of said terminal. 32. A camming device, as claimed in claim 31, wherein said terminal defines a hole for accommodating said spindle. 33. A camming device, as claimed in claim 31, wherein said terminal and said spindle are a single piece of material. 34. A camming device, as claimed in claim 18, wherein said spindle member comprises said terminal and a pair of spindles that each extend from a first spindle end that is located on one side of said terminal to a second spindle end that is located on an opposite side of said terminal. 35. A camming device, as claimed in claim 34, wherein said terminal defines a pair of holes with each of said pair of holes accommodating one of said pair of spindles. 36. A camming device, as claimed in claim 34, wherein said terminal and said pair of spindles are a single piece of material. 37. A camming device, as claimed in claim 18, wherein said mid-section of said cable comprises a first cable cover portion, a second cable cover portion, and a clip section located between said first and second cable cover portions, and wherein said stem comprises a cable cover that encloses said first and second cable cover portions. 38. A camming device, as claimed in claim 37, wherein said anti-bias system comprises a trigger that defines a hole for receiving said cable cover. 39. A passive protection device comprising: a camming head shaped to taper in one or more planes; a substantially circular recess in the camming head; and a connection system attached to the camming head wherein the connection system includes a cable having two ends and wherein the two ends are coupled to the camming head within the substantially circular recess such that the two ends are in direct contact with one another. 40. The passive protection device of claim 39, wherein the camming head is shaped in the form of a wedge having at least six sides. 41. The passive protection device of claim 39, wherein the two ends of the cable are coupled to the camming head by routing the two ends of the cable through the substantially circular recess and coupling the two ends to a ball wedge outside the camming head. 42. The passive protection device of claim 39, wherein the two ends of the cable are coupled to the camming head by swaging the two ends of the cable within the substantially circular recess of the camming head. 43. A single stem active protection device comprising: an axle; a terminal having a first side and a second side, wherein the middle of the axle is coupled to the terminal between the first and second side of the terminal; a plurality of opposing cam lobes coupled to the axle; a retraction system coupled to the plurality of opposing cam lobes; and a connection system attached to the terminal, wherein the connection system includes a sling that biases in an open position and effectively doubles the shear strength of a single looped sling. 44. The single stem active protection device of claim 43, wherein the sling further includes: an inner sling loop; an outer sling loop that surrounds the inner sling loop; and a plurality of stitches, wherein the plurality of stitches bias the outer sling loop in an open position. 45. A method of manufacturing a single stem active protection device comprising the acts of: providing a cable with a first end and a second end; bending the cable so as to position the first end substantially adjacent to the second end thereby forming a loop section and a middle section; covering the middle section of the cable; and coupling the two ends of the cable to a terminal. 46. The method of claim 45 further including the acts of: providing a plurality of opposing cam lobes coupled to a terminal; providing a retraction system coupled to the plurality of opposing cam lobes; and providing a connection system attached to the terminal. 47. The method of claim 45 further including the act of positioning a thumb rest over the two ends of the cable at the intersection between the loop and the middle sections. 48. The method of claim 45 further including the acts of: positioning a flexible loop tube over one end of the cable; and sliding the loop tube to a center portion of the cable. 49. The method of claim 45 further including the act of routing the ends of the cable and the covered middle section through a retraction system. 50. The method of claim 45 wherein the act of covering the middle section of the cable further includes the acts of: compressing the middle section of cable; sliding a stem tube over the two ends; and feeding the two ends of the cable through the stem tube. 51. The method of claim 45 wherein the act of coupling the two ends of the cable to a terminal further includes the acts of: routing the two ends of the cable through a single hole in the cable terminal; and coupling the two ends of the cable to a ball wedge. 52. The method of claim 45 wherein the act of coupling the two ends of the cable to a terminal further includes the acts of: routing the two ends of the cable through two holes in the cable terminal; and coupling the two ends of the cable to a ball wedge. 53. The method of claim 45 wherein the act of coupling the two ends of the cable to a terminal further includes the acts of: routing the two ends of the cable into a substantially circular recess in the terminal; and coupling the two ends of the cable to the terminal. 54. The method of claim 45 wherein the act of coupling the two ends of the cable to a terminal further includes the acts of: routing the two ends of the cable into two substantially circular recesses in the terminal; and coupling the two ends of the cable to the terminal. 55. The method of claim 45 wherein the act of coupling the two ends of the cable to a terminal further includes the acts of: routing the two ends of the cable into a lower member of the cable terminal; and coupling the two ends of the cable to the lower member of the cable terminal. | RELATED APPLICATIONS This application claims priority to U.S. Provisional Application Ser. No. 60/538,406 filed Jan. 22, 2004, entitled “PROTECTION DEVICE STEM DESIGN”. TECHNICAL FIELD The present invention relates to active and passive protection devices and more particularly to the stem of an active or passive protection device. BACKGROUND Climbers generally use clean protection devices for two distinct purposes. First, a clean protection device may be used as a form of safety protection for protecting a climber in the event of a fall and second, a clean protection device may intentionally be used to artificially support a climber's weight. Clean protection devices cam or wedge into a crack, hole, gap, orifice, taper, or recess in order to support an outward force. The area or surface within which the clean protection device supports the outward force is considered the protection surface. The protection surface can consist of natural materials such as rock or may consist of artificial materials such as concrete. Clean protection devices are generally divided into active and passive categories. Passive protection devices include a single object, which contacts the protection surface to support an outward force. For example, a wedge is a passive protection device because it has a single head with a fixed shape. There are numerous types of passive protection devices including nuts, hexes, tri-cams, wedges, rocks, and chocks. Active protection devices include at least two movable objects that can move relative to one another to create a variety of shapes. For example, a slidable chock or slider nut is considered an active protection device because it includes two wedges that move relative to one another to wedge into various shaped crevices. When the two wedges of the slider nut are positioned adjacent to one another, the overall width of the protection device is significantly larger than if the two wedges are positioned on top of one another. The two wedges must make contact with the protection surface in order to actively wedge the device within the protection surface. A further subset of active protection devices is camming devices. These devices translate rotational displacement into linear displacement. Therefore, a slider chock would not be an active camming device because the two wedges simply slide relative to one another and do not rotate. Camming devices include two, three, and four cam lobe devices. The cam lobes on an active camming device are generally spring biased into an expanded position and are able to rotate or pivot about an axle to retract. In operation, at least one cam lobe on either side of the unit must make contact with the protection surface for the device to be able to actively support an outward force. Some active protection devices can also be used passively to support outward forces as well. Active protection devices are generally preferable to passive protection devices because of their ability to cam into a variety of features. For example, a standard four-cam unit has a particular camming range that allows it to cam into features within a particular size range. Whereas, a passive protection device is limited to a single shape and can therefore only cam or wedge into features that conform to that particular shape. Unfortunately, the largest disadvantage of active protection devices is their considerable weight in relation to passive protection devices. One of the heavier components of an active protection device is the connection system. The connection system connects the camming objects to some form of clip-in point. The two most common connection systems used in three and four cam units are single stem and double stem systems. Double stem systems include a U-shaped cable that attaches independently to two cable terminals on either end of the head of the protection device. The clip-in point of a double stem system is simply the bottom of the U-shaped cable. Single stem systems include a single cable that is attached to a single cable terminal located at the center of the head of the protection device. The single stem system generally includes some form of clip-in loop attached to the single cable. Alternatively, a clip-in loop can be created by coupling the single cable back to itself with some form of swage. Single stem connection systems are generally preferable for larger cams because they are less likely to obstruct particular camming placements. SUMMARY Existing single stem connection systems for use with active protection devices possess many limitations. One of the main problems associated with conventional single stem systems is their weight. Weight is an extremely important factor in climbing equipment because any unnecessary weight requires a climber to expend additional energy in making upward progress up a particular climb. In addition, climbers must often carry their protection devices long distances before a climb begins causing the climber to expel even more energy if a protection device includes unnecessary weight. Alternatively, if a particular protection device is perceived to include unnecessary weight a climber is unlikely to use it. From a business standpoint, climbers are unlikely to purchase protection devices that are perceived to possess unnecessary weight. Therefore, there is a need in the industry for a single stem connection system compatible with active protection devices that minimizes weight but maintains the existing benefits. In addition, a second problem associated with conventional single stem systems is their high manufacturing costs. Single stem systems are generally more expensive to manufacture than double stem systems because of the additional clip-in loop that must be attached to the stem. As discussed above, conventional single stem systems do not automatically possess a clip-in point. Therefore, a clip-in point or loop must be connected to the single stem or created by coupling the single stem back to itself. The clip-in point or loop is generally a metal or plastic piece that must be independently manufactured. The connection between the clip-in point and the single stem or the single stem and itself must also be performed as part of the assembly process. These additional steps and parts unnecessarily raise the manufacturing cost of producing single stem systems. Therefore, there is a need in the industry for a single stem system that is less expensive to manufacture but maintains the benefits of existing single stem systems. The present invention relates to a connection system for use with an active or passive protection device that minimizes weight. In accordance with the present invention, a single stem connection system for use with an active protection device includes a single bent cable that is attached to the single cable terminal of the active protection device. A stem tube is fitted over a portion of the bent cable giving the appearance and benefits of a single stem. However, a portion of the bent cable is left separated thereby automatically forming a clip-in point for the entire active protection device. Unlike conventional single stem connection systems, the single stem system in accordance with the present invention only requires coupling the cable to the cable terminal thereby reducing manufacturing cost and minimizing overall weight. Alternatively, a similar connection system can be used with a passive protection device to provide many of the same benefits. In one embodiment, the connection system includes coupling the cable to the cable terminal by extending the two ends of the cable through a single hole in the cable terminal and then coupling the ends of the cable to a ball wedge. The ball wedge is shaped in a substantially conical manner that prevents the ball wedge from extending back down through the cable terminal. In an alternative embodiment, the single cable terminal is actually two independent cable terminals adjacent to one another. The two ends of the cable are then independently coupled to each of the two cable terminals. In yet another alternative embodiment, the cable terminal includes a lower member within which the cable is coupled. Therefore, rather than extending the cable through a recess between the axle holes of the cable terminal, the cable is coupled to the cable terminal at the lower member. In yet another alternative embodiment, the cable is coupled directly to the cable terminal. The cable is extended through a hole or recess between the axle holes and is then directly coupled to the cable terminal with a coupling technique such as compression swaging. In yet another alternative embodiment, a terminal member is used that integrates both a cable terminal and an axle into one member. The terminal member is coupled to the cable either internally or externally as described in the other embodiments. Because the axle is integrated with the cable terminal it is not necessary to provide axle holes. In yet another alternative embodiment, the cable is coupled to a camming head to form a passive protection device. The two ends of the cable are extended into the camming head through a single hole or recess. The ends of the cable are directly coupled to the camming head or externally coupled by coupling to a member such as a ball wedge. The embodiments described above may also be combined in any manner to create additional embodiments. The foregoing and other features, utilities, and advantages of the invention will be apparent from the following detailed description of the invention with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate various embodiments of the present invention and are a part of the specification. The illustrated embodiments are merely examples of the present invention and do not limit the scope of the invention. FIG. 1 illustrates an exploded view of a dual axle, four-cam unit, including one embodiment of a connection system according to the present invention; FIG. 2 illustrates a perspective view of the dual axle, four-cam unit shown in FIG. 1 in an expanded configuration; FIG. 3 illustrates a perspective view of the dual axle, four-cam unit shown in FIG. 1 in a retracted configuration; FIG. 4 illustrates a perspective view of an alternative embodiment of a connection system according to the present invention wherein the connection system includes two adjacent terminals; FIG. 5 illustrates a perspective view of yet another alternative embodiment of a cable terminal according to the present invention wherein the cable terminal includes a lower member; FIG. 6 illustrates a perspective view of yet another alternative embodiment of a cable terminal according to the present invention wherein the cable is configured to attach to the cable terminal through a single hole; FIG. 7 illustrates a perspective view of yet another alternative embodiment of a terminal member according to the present invention wherein a terminal member includes an integrated cable terminal and axle; FIG. 8 illustrates a passive protection device incorporating a connection system according to the present invention; and FIG. 9 illustrates an alternative embodiment of a sling for use with an active camming device. Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. DETAILED DESCRIPTION Reference will now be made to the drawings to describe presently preferred embodiments of the invention. It is to be understood that the drawings are diagrammatic and schematic representations of the presently preferred embodiments, and are not limiting of the present invention, nor are they necessarily drawn to scale. The present invention relates to a connection system for use with an active or passive protection device that minimizes weight. In accordance with the present invention, a single stem connection system for use with an active protection device includes a single bent cable that is attached to the single cable terminal of the active protection device. A stem tube is fitted over a portion of the bent cable giving the appearance and benefits of a single stem. However, a portion of the bent cable is left separated thereby automatically forming a clip-in point for the entire active protection device. Unlike conventional single stem connection systems, the single stem system in accordance with the present invention only requires coupling the cable to the cable terminal thereby reducing manufacturing cost and minimizing overall weight. Alternatively, a similar connection system can be used with a passive protection device to provide many of the same benefits. Also, while embodiments of the present invention are described in the context of a connection system for use with a protection device, and a method of manufacturing, it will be appreciated that the teachings of the present invention are applicable to other applications as well. Reference is initially made to FIG. 1, which illustrates an exploded view of a dual axle, four-cam unit, including one embodiment of a connection system according to the present invention. The active protection device illustrated in FIG. 1 is designated generally at 100. The active protection device includes a camming system, a retraction system, and a connection system. The illustrated camming system includes four cam lobes 150, two axles 175, two torsion springs 160, a cable terminal 135, and two axle connectors 165. The camming system is configured to actively cam against a protection surface. The middle of the axles 175 are positioned substantially within the two holes 141 of the cable terminal 135. The cam lobes 150, torsion springs 160, and axle connectors 165 are positioned on either side of the two axles 175 as shown in FIG. 1. Two of the cam lobes are coupled to one axle 175 while the other two cam lobes 150 are coupled to the other axle. A cable terminal or terminal is defined broadly to include any means for coupling the axle and or the cam lobes to the stem portion of the device. The cam lobes 150 each include a fixed axle hole 154, an open axle area 155, a trigger hole 152, and a body 156. The torsion springs 160 are each coupled to a single cam lobe 150 and an adjacent torsion spring 160 as shown in FIG. 1. This configuration results in biasing the cam lobes 150 in an extended position. The cam lobes 150 are prevented from over rotating through the use of the dual axle design and more specifically the open axle areas 155 abutting against the axles 175. Alternatively, if the active protection device 100 utilizes a single axle design, cam stops would need to be included on the cam lobes to prevent them from over-rotating. The axle connectors 165 are positioned on the outer edges of the axles 175 to prevent the cam lobes 150 from sliding off the axles 175. Alternatively, compression springs, extension springs, leaf springs, or a compliant mechanism could be used to bias the cam lobes 150 in the extended position. Although the illustrated embodiment shows two axles 175, it should be noted that the teachings of the present invention can be utilized with any number of axles and remain consistent with the present invention. The retraction system includes the various components to retract the cam lobes 150 into a retracted position. The retraction system includes a trigger 125 and four trigger wires 170. The trigger 125 further includes two trigger wire holes 129, a stem hole 128, and a body 127. The trigger 125 is configured to be slidable with respect to the stem such that a user can retract the trigger away from the cable terminal 135. The trigger 125 is independently coupled to each of the cam lobes 150 via the trigger wires 170. The trigger wires 170 hook into the trigger holes 152 in the cam lobes 150 and the trigger wire holes 129 on the trigger 125. The distance between the trigger and the cable terminal 135 must be precisely measured in order to maintain proper retraction ergonomics while minimizing overall device weight. For example, if the distance between the trigger 125 and cable terminal 135 is too short, it is possible for the cam lobes 150 to touch or rub a user's hand during retraction. Likewise, if the distance between the trigger 125 and the cable terminal 135 is too long, the device includes unnecessary weight. Therefore, the trigger 125 must be optimally positioned a particular distance from the cable terminal 135. However, by swooping or bending the body 127 of the trigger 125, as shown in FIGS. 1-3, the trigger 125 can be positioned even closer to the cable terminal 135 without risking contact between a user's hand and the cam lobes 150 during retraction. The connection system is designed to provide a system by which a user can connect the camming system to a rope or other device. The connection system in accordance with the embodiment illustrated in FIG. 1 includes a single cable terminal 135, a stem tube 130, a thumb rest 120, a cable cover 105, a cable 115, and a connection sling 110. Although the illustrated embodiments show the cable 115 being oriented parallel to the axle, it should be noted that the cable could be oriented perpendicular or in any other orientation with respect to the axle and remain consistent with the present invention. The connection system of the present invention is unique in that it creates the appearance of a single stem and automatically forms a clip-in point for a user. In addition, the illustrated connection system minimizes the amount of connections or swages by using a single cable 115 and a single terminal 135. The cable 115 extends through the cable cover 105 at a median point on the cable 115 which will form the clip-in point. The cable cover 105 prevents external devices from contacting the cable 115. A connection sling 110 is also coupled to the cable cover 105 to provide an auxiliary clip-in point. Alternatively, the connection sling 110 could be doubled around the cable cover 105, as described in more detail with reference to FIG. 9, to increases the force necessary to cut the connection sling 105 on the cable cover 105 and cable 115. In addition, different webbing materials may also be used for the connection sling 110 to increase the force necessary to cut the connection sling 105 on the cable cover 105 and the cable 115. The cable 115 extends through the thumb rest 120 and stem tube 130 as shown in FIG. 1. The stem tube 130 compresses the two halves of the wire up against one another giving the appearance of a single stem. The thumb rest 120 assists in transitioning the cable 115 from the separated or clip-in portion to the compressed or single-stem portion. The thumb rest 120 also provides a location for a user to apply an opposing force when retracting the trigger 125. The ends of the cable 115 that extend through the stem tube 130 are extended through cable hole 137 in the cable terminal 135 and coupled to the ball wedge 145 at a single connection point. The ball wedge 145 is shaped in a substantially conical configuration to prevent being extended back through the cable hole 137 of the cable terminal 135. The coupling between the cable 115 and the ball wedge 145 includes but is not limited to a compression swage or a heated solder coupling. Alternatively, other embodiments of a connection system in accordance with the present invention are described with reference to FIGS. 4-7. The connection system illustrated in FIG. 1 has many benefits over those found in conventional active protection devices. Minimizing the cable's 115 gauge or thickness and the number of cable 115 connections or couplings effectively minimize the overall weight of the connection system. Conventional single stem connection systems utilize a heavier gauge wire and multiple wire connection points. The thickness or gauge of the wire and the number of connection points dramatically affects the overall weight of an active protection device. Likewise, dual stem active protection devices include multiple cable terminals and therefore multiple cable connection points also resulting in additional weight. Reference is next made to FIGS. 2 and 3, which illustrate perspective views of the dual axle, four-cam unit shown in FIG. 1 in an expanded and retracted configurations respectively. As discussed above, the cam lobes 150 can be positioned in either an expanded or retracted position. The expanded position shown in FIG. 2 results from no force being applied to the trigger 125 thereby allowing the torsion springs to bias the cam lobes 150 into the extended position. When a retraction force 180 is applied to the trigger 125 and a stabilizing force 180 is applied to the thumb rest, the cam lobes 150 are retracted into the retracted position as shown in FIG. 3. The retraction force 180 applied to the trigger 125 causes the trigger wires 170 to retract or rotate the cam lobes 150 as shown. As soon as the retraction force 180 is released from the trigger 125, the torsion springs 160 will cause the cam lobes 150 to automatically return to the expanded configuration shown in FIG. 2. Reference is next made to FIG. 4, which illustrates an alternative embodiment of a connection system according to the present invention wherein the connection system includes two adjacent terminals. The active protection device 200 illustrated in FIG. 4 is incomplete for the purpose of illustrating an alternative connection system in accordance with the present invention. The alternative connection system includes a cable 215, a stem tube 230, a thumb rest 220, a cable cover 205, and two cable terminals 235, 240. The two cable terminals 235, 240 are positioned adjacent and substantially coupled to one another as shown in FIG. 4. The cable 215 is extended through the cable cover 205, thumb rest 220, and stem tube 230 in the same manner as described with reference to the connection system illustrated in FIG. 1. The two individual ends of the cable 215 are then independently coupled to each of the cable terminals 235, 240. Although FIG. 4 illustrates coupling the ends of the cable 215 to a ball wedge 245 beyond each of the cable terminals 235, 240, it will be appreciated that other cable 215 to cable terminal 235, 240 coupling systems may be used and remain consistent with the present invention. Reference is next made to FIG. 5, which illustrates yet another alternative embodiment of a cable terminal according to the present invention wherein the cable terminal includes a lower member. The cable terminal 300 illustrated in FIG. 5 is only a portion of a connection system but is configured such that it could be substituted into the active protection device 100 illustrated in FIG. 1. The cable terminal 335 includes a top portion 339, two axle holes 341, and a lower member 343. Unlike the embodiments described with reference to FIGS. 1-4, the cable 315 only extends into the lower member 343 of the cable terminal 300 as shown in phantom. The cable 315 is coupled to the lower member 343 with a coupling system including but not limited to swaging or soldering. This embodiment may be particularly useful for very small active protection devices wherein the necessary spacing between the axle holes 341 does not allow for the cable 315 to be extended all the way through the cable terminal 335. Reference is next made to FIG. 6, which illustrates yet another alternative embodiment of a cable terminal according to the present invention wherein the cable is configured to attach to the cable terminal through a single hole. The cable terminal 400 illustrated in FIG. 6 is only a portion of a connection system but is configured such that it could be substituted into the active protection device 100 illustrated in FIG. 1. The cable terminal 435 includes a body 439 and two axle holes 441. The cable 415 is able to extend all the way through the cable terminal 435 similar to the embodiment shown in FIGS. 1-3. However, the ends of the cable 415 are swaged directly to the cable terminal 435 rather than to a ball wedge. This embodiment is particularly useful for large active camming units where there is sufficient space between the axle holes 441 to extend the cable 415 between the axles holes 441 and swage it to the cable terminal 435. Reference is next made to FIG. 7, which illustrates yet another alternative embodiment of a terminal member according to the present invention wherein a terminal member includes an integrated cable terminal and axle. The terminal member 500 illustrated in FIG. 7 is only a portion of a connection system but is configured such that it could be substituted into a single axle active protection device. The terminal member 500 includes an axle portion 575 disposed on the outer portion and a terminal portion 540 disposed on the middle portion of the terminal member 500. The terminal portion includes a cable terminal 539 and two cable receiving holes 545. The cable 515 is coupled to the terminal member 500 either directly (as discussed with reference to FIG. 6) or externally (as discussed with reference to FIGS. 1-4). In addition, the axle portion 575 can be configured to conform to the size requirements necessary to accommodate any type of cam lobe. The terminal member 500 embodiment illustrated in FIG. 7 is particularly useful for small single axle active protection devices. Reference is next made to FIG. 8, which illustrates a passive protection device incorporating a connection system according to the present invention. The passive protection device 600 illustrated in FIG. 8 is a standard wedge chock but the connection system in accordance with the present invention could be used with any type of passive protection device. The passive protection device 600 includes a camming head 620 and a cable 615. The camming head 620 is shaped and tapered to passively cam into one or more particularly sized tapers. The camming head includes a body 625 and a recess 630 that extends through the body 625. The cable 615 is coupled to the camming head 620 by extending into the single recess 630 and directly coupling to the camming head 620. The coupling technique between the camming head 620 and the cable 615 includes but is not limited to swaging or soldering. Alternatively, the cable 615 could extend through the camming head 620 and be coupled to an external member such as a ball wedge. Reference is next made to FIG. 9, which illustrates an alternative embodiment of a sling 110 for use with an active camming device. The illustrated sling 110 configuration increases the force required for the cable 115 to cut through the sling. The area around the cable 115 is effectively doubled. In addition, the stitching configuration of the sling allows for the entire length of the sling to be usable rather than a portion. Likewise, the stitching configuration naturally biases the sling in an open position allowing for easy clipping and grabbing. These are significant advantages over the prior art double sling configurations. While this invention has been described with reference to certain specific embodiments and examples, it will be recognized by those skilled in the art that many variations are possible without departing from the scope and spirit of this invention. For example, the teachings of one embodiment may be combined with the teachings of another and remain consistent with the scope and spirit of this invention. The invention, as defined by the claims, is intended to cover all changes and modifications of the invention which do not depart from the spirit of the invention. The words “including” and “having,” as used in the specification, including the claims, shall have the same meaning as the word “comprising.” | <SOH> BACKGROUND <EOH>Climbers generally use clean protection devices for two distinct purposes. First, a clean protection device may be used as a form of safety protection for protecting a climber in the event of a fall and second, a clean protection device may intentionally be used to artificially support a climber's weight. Clean protection devices cam or wedge into a crack, hole, gap, orifice, taper, or recess in order to support an outward force. The area or surface within which the clean protection device supports the outward force is considered the protection surface. The protection surface can consist of natural materials such as rock or may consist of artificial materials such as concrete. Clean protection devices are generally divided into active and passive categories. Passive protection devices include a single object, which contacts the protection surface to support an outward force. For example, a wedge is a passive protection device because it has a single head with a fixed shape. There are numerous types of passive protection devices including nuts, hexes, tri-cams, wedges, rocks, and chocks. Active protection devices include at least two movable objects that can move relative to one another to create a variety of shapes. For example, a slidable chock or slider nut is considered an active protection device because it includes two wedges that move relative to one another to wedge into various shaped crevices. When the two wedges of the slider nut are positioned adjacent to one another, the overall width of the protection device is significantly larger than if the two wedges are positioned on top of one another. The two wedges must make contact with the protection surface in order to actively wedge the device within the protection surface. A further subset of active protection devices is camming devices. These devices translate rotational displacement into linear displacement. Therefore, a slider chock would not be an active camming device because the two wedges simply slide relative to one another and do not rotate. Camming devices include two, three, and four cam lobe devices. The cam lobes on an active camming device are generally spring biased into an expanded position and are able to rotate or pivot about an axle to retract. In operation, at least one cam lobe on either side of the unit must make contact with the protection surface for the device to be able to actively support an outward force. Some active protection devices can also be used passively to support outward forces as well. Active protection devices are generally preferable to passive protection devices because of their ability to cam into a variety of features. For example, a standard four-cam unit has a particular camming range that allows it to cam into features within a particular size range. Whereas, a passive protection device is limited to a single shape and can therefore only cam or wedge into features that conform to that particular shape. Unfortunately, the largest disadvantage of active protection devices is their considerable weight in relation to passive protection devices. One of the heavier components of an active protection device is the connection system. The connection system connects the camming objects to some form of clip-in point. The two most common connection systems used in three and four cam units are single stem and double stem systems. Double stem systems include a U-shaped cable that attaches independently to two cable terminals on either end of the head of the protection device. The clip-in point of a double stem system is simply the bottom of the U-shaped cable. Single stem systems include a single cable that is attached to a single cable terminal located at the center of the head of the protection device. The single stem system generally includes some form of clip-in loop attached to the single cable. Alternatively, a clip-in loop can be created by coupling the single cable back to itself with some form of swage. Single stem connection systems are generally preferable for larger cams because they are less likely to obstruct particular camming placements. | <SOH> SUMMARY <EOH>Existing single stem connection systems for use with active protection devices possess many limitations. One of the main problems associated with conventional single stem systems is their weight. Weight is an extremely important factor in climbing equipment because any unnecessary weight requires a climber to expend additional energy in making upward progress up a particular climb. In addition, climbers must often carry their protection devices long distances before a climb begins causing the climber to expel even more energy if a protection device includes unnecessary weight. Alternatively, if a particular protection device is perceived to include unnecessary weight a climber is unlikely to use it. From a business standpoint, climbers are unlikely to purchase protection devices that are perceived to possess unnecessary weight. Therefore, there is a need in the industry for a single stem connection system compatible with active protection devices that minimizes weight but maintains the existing benefits. In addition, a second problem associated with conventional single stem systems is their high manufacturing costs. Single stem systems are generally more expensive to manufacture than double stem systems because of the additional clip-in loop that must be attached to the stem. As discussed above, conventional single stem systems do not automatically possess a clip-in point. Therefore, a clip-in point or loop must be connected to the single stem or created by coupling the single stem back to itself. The clip-in point or loop is generally a metal or plastic piece that must be independently manufactured. The connection between the clip-in point and the single stem or the single stem and itself must also be performed as part of the assembly process. These additional steps and parts unnecessarily raise the manufacturing cost of producing single stem systems. Therefore, there is a need in the industry for a single stem system that is less expensive to manufacture but maintains the benefits of existing single stem systems. The present invention relates to a connection system for use with an active or passive protection device that minimizes weight. In accordance with the present invention, a single stem connection system for use with an active protection device includes a single bent cable that is attached to the single cable terminal of the active protection device. A stem tube is fitted over a portion of the bent cable giving the appearance and benefits of a single stem. However, a portion of the bent cable is left separated thereby automatically forming a clip-in point for the entire active protection device. Unlike conventional single stem connection systems, the single stem system in accordance with the present invention only requires coupling the cable to the cable terminal thereby reducing manufacturing cost and minimizing overall weight. Alternatively, a similar connection system can be used with a passive protection device to provide many of the same benefits. In one embodiment, the connection system includes coupling the cable to the cable terminal by extending the two ends of the cable through a single hole in the cable terminal and then coupling the ends of the cable to a ball wedge. The ball wedge is shaped in a substantially conical manner that prevents the ball wedge from extending back down through the cable terminal. In an alternative embodiment, the single cable terminal is actually two independent cable terminals adjacent to one another. The two ends of the cable are then independently coupled to each of the two cable terminals. In yet another alternative embodiment, the cable terminal includes a lower member within which the cable is coupled. Therefore, rather than extending the cable through a recess between the axle holes of the cable terminal, the cable is coupled to the cable terminal at the lower member. In yet another alternative embodiment, the cable is coupled directly to the cable terminal. The cable is extended through a hole or recess between the axle holes and is then directly coupled to the cable terminal with a coupling technique such as compression swaging. In yet another alternative embodiment, a terminal member is used that integrates both a cable terminal and an axle into one member. The terminal member is coupled to the cable either internally or externally as described in the other embodiments. Because the axle is integrated with the cable terminal it is not necessary to provide axle holes. In yet another alternative embodiment, the cable is coupled to a camming head to form a passive protection device. The two ends of the cable are extended into the camming head through a single hole or recess. The ends of the cable are directly coupled to the camming head or externally coupled by coupling to a member such as a ball wedge. The embodiments described above may also be combined in any manner to create additional embodiments. The foregoing and other features, utilities, and advantages of the invention will be apparent from the following detailed description of the invention with reference to the accompanying drawings. | 20041222 | 20110614 | 20050728 | 97011.0 | 1 | SMITH, NKEISHA | PROTECTION DEVICE STEM DESIGN | SMALL | 0 | ACCEPTED | 2,004 |
|||
11,021,119 | ACCEPTED | Method and apparatus for printing using a tandem electrostatographic printer | A tandem color electrostatographic printer apparatus has five or more color printing stations or modules for applying respective color separation toner images to a receiver member to form a pentachrome color image in a single pass. A fuser station fuses the pentachrome color image. A clear toner overcoat is then applied to the fused pentachrome toner image and enhanced glossing of the image is provided by a belt glosser to improve color gamut. | 1. In a tandem color electrostatographic printer apparatus having five or more color printing stations for applying respective color separation toner images to a receiver member, a method of forming a pentachrome color image comprising: passing a receiver member through the printer apparatus to serially deposit thereon in a single pass at least five different colors which form various combinations of color at different pixel locations to form a pentachrome image thereon; a first fusing step of fusing the pentachrome image by passing the receiver member through a fuser station; passing the receiver member again through the printer apparatus and depositing a clear toner overcoat to the fused pentachrome toner image; and a second fusing step of passing the receiver member with the clear toner overcoat and fused pentachrome toner image again through the fuser station to fix the clear toner overcoat to the receiver member. 2. The method of claim 1 and wherein operating parameters of the fuser station are adjusted to provide a reduced fusing condition in the first fusing step. 3. The method of claim 1 and wherein the pentachrome image is comprised of respective color separation images of cyan, magenta, yellow, black, and red. 4. The method of the claim 1 and wherein the pentachrome image is comprised of respective color separation images of cyan, magenta, yellow, black, and blue. 5. The method of claim 1 and wherein the pentachrome image is comprised of respective color separation images of cyan, magenta, yellow, black and green. 6. The method of the claim 1 and wherein during the second pass of the receiver member through the printer apparatus, the first four color printing stations are disabled by establishing zero or no print data in an electro-optical writer associated with each of the first four color printing stations. 7. The method of claim 1 and wherein during the second pass of the receiver member through the printer apparatus, the first four color printing stations are disabled by disabling of a color development station associated with each of the first four color printing stations. 8. The method of claim 1 and including the step of passing the receiver member having the fused clear toner overcoat and pentachrome image through a glosser. 9. The method of claim 8 and wherein the glosser includes a pair of belts between which the receiver member is passed to provide gloss enhancement of the image formed on the receiver member comprising the fused clear toned overcoat and pentachrome color image. 10. The method of claim 1 and wherein the clear toner is applied in accordance with an inverse mask application onto the pentachrome color toner image. 11. The method of claim 1 and wherein for a receiver member comprising a matte paper and parameters of the fusing station for the first fusing step are the same as that for the second fusing step. 12. The method of claim 1 and wherein clear toner is provided as a uniform overcoat to the pentachrome image in the uniform overcoat is adjusted in accordance with characteristics of the receiver member. 13. The method of claim 1 and wherein the clear toner overcoat is adjusted in accordance with characteristics of the receiver member. 14. The method of the claim 1 and the clear toner overcoat is deposited in accordance with an inverse mask relative to pigmented toner deposited at corresponding respective locations and the characteristics of the inverse mask are adjusted for type of receiver. 15. The method of claim 14 and wherein one of the five or more color printing stations is modified prior to the second pass so as to print with clear toner. 16. A system for printing color images comprising: a tandem color electrostatographic printer apparatus having five or more color printing stations for applying respective color separation toner images to a receiver member passing therethrough in a single pass to form a pentachrome color image; a fusing station for fusing the pentachrome image; a clear toner overcoat printing station for applying a clear toner overcoat to the fused pentachrome toner image; and a belt glosser for providing enhanced gloss to the pentachrome color image having the clear toner overcoat. 17. The system of claim 16 and wherein the pentachrome image is comprised of respective color separation images of cyan, magenta, yellow, black, and red. 18. The system of claim 16 and wherein the pentachrome image is comprised of respective color separation images of cyan, magenta, yellow, black, and blue. 19. The system of claim 16 and wherein the pentachrome image is comprised of respective color separation images of cyan, magenta, yellow, black, and green. 20. The system of claim 16 and wherein a controller controls operating components so that the clear toner is applied in accordance with an inverse mask application onto the pentachrome color toner image. 21. The system of claim 20 and wherein the inverse mask is adjusted in accordance with characteristics of the receiver member. 22. The system of claim 16 and wherein a controller controls operating components so that the clear toner overcoat is deposited in accordance with an inverse mask relative to pigmented toner deposited at corresponding respective locations and the characteristics of the inverse mask are adjusted for type of receiver. 23. The system of claim 16 and wherein a controller controls operating components so that the clear toner overcoat is adjusted in accordance with characteristics of the receiver member. 24. A method of printing to form colored images with improved color gamut and enhanced gloss, the method comprising: forming a color print using five or more different color pigments which in combination form at least a pentachrome color image; depositing a clear toner overcoat to the at least pentachrome color image; and subjecting the clear toner overcoat and the at least pentachrome color image to a gloss enhancing process. 25. The method of a claim 24 and wherein the clear toner overcoat is formed as an inverse mask. 26. The method of claim 25 and wherein the at least pentachrome color image is formed in an electrostatographic printing process and is fused before application of the clear toner overcoat thereupon. 27. The method of claim 24 and wherein the at least pentachrome color image is formed in an electrostatographic printing process and is subject to a fusing step before application of the clear toner overcoat thereupon. 28. The method of claim 24 and wherein the color image is a pentachrome color image and the pentachrome color image is formed in a single pass through a printer apparatus. 29. The method of claim 28 and wherein the clear toner overcoat is formed in a second pass through the apparatus that forms the pentachrome color image. 30. The method of claim 24 and wherein the at least pentachrome color image is formed in a single pass through a printer apparatus. 31. The method of claim 30 and wherein the clear toner overcoat is formed in a second pass through the printer apparatus that forms the at least pentachrome color image. 32. The method of a claim 31 and wherein the clear toner overcoat is formed as an inverse mask. 33. The method of a claim 32 and wherein the clear toner overcoat is adjusted in accordance with characteristics of the receiver member. 34. The method of a claim 31 and wherein the clear toner overcoat is adjusted in accordance with characteristics of the receiver member. 35. A gloss enhancement apparatus comprising: a clear toner depositing module for forming a clear toner overcoat upon a color image that is supported on a receiver sheet; and a belt glosser operatively associated with the clear toner depositing module for receiving the receiver sheet and treating the receiver sheet to pressure and heat imposed by the belt upon the clear toner overcoat to enhance the resulting gloss of the print. 36. The apparatus of claim 35 and wherein a controller controls the clear toner-depositing module so as to form an inverse mask clear toner overcoat upon the color image. | FIELD OF THE INVENTION The invention relates to electrostatographic reproduction apparatus and methods and more particularly to color electrostatographic printers wherein color toner separation images are serially deposited upon a receiver member. BACKGROUND OF THE INVENTION In an electrophotographic modular printing machine of known type, such as for example the NexPress 2100 printer manufactured by NexPress Solutions, Inc., based in Rochester, N.Y., color toner images are made sequentially in a plurality of color imaging modules arranged in tandem, and the toner images are successively electrostatically transferred to a receiver sheet adhered to a transport web moved through the modules. Commercial machines of this type typically employ intermediate transfer members in the respective modules for the transfer to the receiver member of individual color separation toner images. However, the invention as described herein also contemplates the use of tandem electrostatographic printers that do not employ intermediate transfer members but rather transfer each color separation toner image directly to the receiver member. Electrostatographic printers having a four-color capability are known to also provide a fifth toner depositing station for depositing for example, clear toner. The provision of a clear toner overcoat to a color print is desirable for providing protection of the print from fingerprints and reducing certain visual artifacts. However, a clear toner overcoat may add cost and may reduce color gamut of the print so it is desirable to provide for operator/user selection to determine whether or not a clear toner overcoat will be applied to the entire print. In U.S. Pat. No. 5,234,783, (Ng) it is noted that in lieu of providing a uniform layer of clear toner that a layer that varies inversely according to heights of the toner stack may be used instead as a compromise approach to even toner stack heights. As is known, the respective color toners are deposited one upon the other at respective locations on the receiver and the height of a respective color toner stack comprises the sum of the toner contributions of each respective color. The invention recognizes that a four-color process provides a color gamut that is relatively limiting. The invention further recognizes that in using a tandem printer apparatus with five printing stations or modules one can unexpectedly still achieve an improved color gamut with application of clear toner in accordance with the teachings set forth herein. SUMMARY OF THE INVENTION The above and other aspects of the invention are realized in accordance with a first aspect of the invention wherein there is provided in a tandem color electrostatographic printer apparatus having five or more color printing stations for applying respective color separation toner images to a receiver member, a method of forming a pentachrome color image comprising passing a receiver member through the printer apparatus to serially deposit thereon in a single pass, at least five different colors which form various combinations of color at different pixel locations to form a pentachrome image thereon; a first fusing step of fusing the pentachrome image by passing the receiver member through a fuser station; passing the receiver member again through the printer apparatus and depositing a clear toner overcoat to the fused pentachrome toner image; a second fusing step of passing the receiver member with the clear toner overcoat and fused pentachrome toner image again through the fuser station to fix the clear toner overcoat to the receiver member. In accordance with a second aspect of the invention, there is provided a system for printing color images comprising a tandem color electrostatographic printer apparatus having five or more color printing stations for applying respective color separation toner images to a receiver member passing therethrough in a single pass to form a pentachrome color image; a fusing station for fusing the pentachrome image; a clear toner overcoat printing station for applying a clear toner overcoat to the fused pentachrome toner image; and a belt glosser for providing enhanced gloss to the pentachrome color image having the clear toner overcoat. In accordance with a third aspect of the invention, there is provided a method of printing to form colored images with improved color gamut and enhanced gloss, the method comprising forming a color print using five or more different color pigments which in combination form at least a pentachrome color image; depositing a clear toner overcoat to the at least pentachrome color image; and subjecting the clear toner overcoat and the at least pentachrome color image to a gloss enhancing process. Other objects, advantages and novel features of the present invention will become more apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS In the detailed description of the preferred embodiments of the invention presented below, reference is made to the accompanying drawings, in some of which the relative relationships of the various components are illustrated, it being understood that orientation of the apparatus may be modified. For clarity of understanding of the drawings some elements have been removed and relative proportions depicted of the various disclosed elements may not be representative of the actual proportions, and some of the dimensions may be selectively exaggerated. FIGS. 1A and 1B are a schematic of a tandem electrophotographic print engine or printer apparatus, having five color printing stations or modules that may be used in accordance with the invention to generate multicolor including pentachrome prints; FIG. 2 is a schematic of a representative color printing station or module used in the print engine apparatus of FIG. 1A and showing additional details thereof; FIG. 3 is an illustration of a belt glosser apparatus that may be used in accordance with the invention; FIG. 4 is a flowchart illustrating operation of the apparatus of FIGS. 1A through 3 in accordance with the method of the invention; FIG. 5 is a schematic of an image processing system for providing image data to color and clear toner printing stations of the apparatus FIGS. 1A and 1B in accordance with the invention; FIG. 6 are exemplary graphs illustrating amounts of clear toner to be deposited at pixel locations versus amounts of pigmented toner in a pentachrome image using an inverse mask for depositing the clear toner; FIGS. 7A-7I are graphs illustrating a color gamut relationship between processing of a receiver sheet in accordance with four color processing as is known in the prior art vis-à-vis processing of a similar type of receiver sheet using a five color pentachrome processing with gloss enhancement in accordance with the invention, the outer area in each figure being the pentachrome image; and FIG. 8 is a schematic of an alternative embodiment of the invention. DETAILED DESCRIPTION OF THE INVENTION FIGS. 1A and 1B is an elevational view showing schematically portions of an electrophotographic print engine or printer apparatus suitable for printing of pentachrome images. Although one embodiment of the invention involves printing using an electrophotographic engine having five sets of single color image producing or printing stations or modules and arranged in a so-called tandem arrangement, the invention contemplates that more than five colors may be combined on a single receiver member. The invention further contemplates that the images formed therein may also be generated using electrographic writers and thus the apparatus of the invention is broadly referred to as an electrostatographic reproduction or printer apparatus. In FIG. 1A there is shown an electrostatographic printer apparatus 100 having a number of tandemly arranged electrostatographic image forming modules or printing stations M1, M2, M3, M4, and M5. Each of the modules generates a single-color toner image for transfer to a receiver member successively moved through the modules. Each receiver member during a single pass through the five modules can have transferred in registration thereto up to five single-color toner images to form a pentachrome image. As used herein the term pentachrome implies that in an image formed on the receiver combinations of subsets of the five colors are combined to form other colors on the receiver at various locations on the receiver and that all five colors participate to form process colors in at least some of the subsets wherein each of the five colors may be combined with one more of the other colors at a particular location on the receiver to form a color different than the specific color toners combined at that location. In a particular embodiment, M1 forms black (K) toner color separation images, M2 forms yellow (Y) toner color separation images, M3 forms magenta (M) toner color separation images M4 forms cyan (C) toner color separation images. M5 may form one of red, blue, green or other fifth color separation image. It is well known that the four primary colors cyan, magenta, yellow and black may combine in various combinations of subsets thereof to form a representative spectrum of colors and having a respective gamut or range dependent upon the materials used and process used for forming the colors. However, in the electrostatographic printer apparatus of the invention a fifth color is added to improve the color gamut. In addition to adding to the color gamut, the fifth color may also be used as a specialty color toner image such as for making proprietary logos. Receiver members are delivered from a paper supply unit (not shown) and transported through the modules. The receiver members are adhered (e.g., preferably electrostatically via coupled corona tack down chargers 124, 125) to an endless transport web 101 entrained and driven around rollers 102, 103. Alternatively, mechanical devices such as grippers, as is well-known, may be used to adhere the receiver members to the transport web 101. The receiver members are preferably passed through a paper conditioning unit (not shown) before entering the first module. Each of the modules includes a photoconductive imaging roller, an intermediate transfer member roller, and a transfer backup roller. Thus in module M1, a black color toner separation image can be created on the photoconductive imaging roller 111 (PC1), transferred to intermediate transfer member 112 (ITM1), and transferred again to a receiver sheet moving through a transfer station, which transfer station includes ITM1 forming a pressure nip with a transfer backup roller 113 (TR1). Similarly, modules M2, M3, M4, M5 include, respectively: PC2, ITM2, TR2 (121, 122, 123); PC3, ITM3, TR3 (131, 132, 133); PC4, ITM4, TR4 (141, 142, 143); and PC5, ITM5, TR5 (151, 152, 153). A receiver member, Rn, arriving from the supply, is shown passing over roller 102 for subsequent entry into the transfer station of the first module, M I, in which the preceding receiver member R(n-1) is shown. Similarly, receiver members R(n-2), R(n-3), R(n-4), and R(n-5) are shown moving respectively through the transfer stations of modules M2, M3, M4, and M5. An unfused print formed on receiver member R(n-6) is moving as shown towards a fuser 60 for fusing the unfused print, the fuser being shown in FIG. 1B. A power supply unit 105 provides individual transfer currents to the transfer backup rollers TR1, TR2, TR3, TR4, and TR5 respectively. A logic and control unit 230 (FIG. 2) includes one or more computers and in response to signals from various sensors associated with the apparatus provides timing and control signals to the respective components to provide control of the various components and process control parameters of the apparatus in accordance with well understood and known employments. A cleaning station (not shown) for cleaning web 101 is also typically provided to allow continued reuse thereof. With reference to FIG. 2 wherein a representative module is shown, each module of the printer apparatus includes a plurality of electrophotographic imaging subsystems for producing a single color toned image. Included in each module is a primary charging subsystem 210 for uniformly electrostatically charging a surface 206 of a photoconductive imaging member shown in the form of an imaging cylinder 205, an exposure subsystem 220 for image-wise modulating the uniform electrostatic charge by exposing the photoconductive imaging member to form a latent electrostatic color separation image in the respective color, a development station subsystem 225 for toning the image-wise exposed photoconductive imaging member with toner of the respective color, an intermediate transfer member 215 for transferring the respective color separation image from the photoconductive imaging member through a transfer nip 201 to the surface 216 of the intermediate transfer member 215 and from the intermediate transfer member to a receiver member (receiver member 236 shown prior to entry into the transfer nip and receiver 237 shown subsequent to transfer of the toned color separation image) which receives the respective toned color separation images in superposition to form a composite multicolor image thereon. Subsequent to transfer of the respective color separation images, one from each of the respective printing subsystems or modules, the receiver member is advanced to a fusing subsystem to fuse the multicolor toner image to the receiver member. Additional members provided for control may be assembled about the various elements, such as for example a meter 211 for measuring the uniform electrostatic charge and a meter 212 for measuring the post-exposure surface potential within a patch area of a patch latent image formed from time to time in a non-image area on surface 206. Further details regarding the printer apparatus 100 are also provided in U.S. Pat. No. 6,608,641, the contents of which are incorporated herein by reference. In an alternative embodiment the image-recording member 205 can alternatively have the form of an endless web and the intermediate transfer member 215 may also be an endless web although it is preferred to be a compliant roller of well-known type. The exposure device may comprise an LED writer or laser writer or other electro-optical or optical recording element. Charging device 210 can be any suitable device for producing uniform pre-exposure potential on photoconductive image recording member 205, the charging device including any type of corona charger or roller charger. A cleaning device may be associated with the surface 206 of the photoconductive image recording member and another cleaning device associated with the surface 216 of the intermediate transfer member after respective transfer of the toned images therefrom. Associated with the modules 200 is the logic and control unit (LCU) 230, which receives input signals from the various sensors associated with the printer apparatus and sends control signals to the chargers 210, the LED writers 220 and the development stations 225 of the modules. Each module may also have its own respective controller coupled to the printer apparatus' main controller. Subsequent to the transfer of the five color toner separation images in superposed relationship to each receiver member, the receiver member is then serially detacked from transport web 101 and sent in a direction indicated by arrow B to a fusing station to fuse or fix the dry toner images to the receiver member. The transport web is then reconditioned for reuse by cleaning and providing charge to both surfaces 124, 125 which neutralizes charge on the two surfaces of the transport web. The electrostatic image is developed, preferably using the well-known discharged area development technique, by application of pigmented marking particles to the latent image bearing photoconductive drum by the respective development station 220 which development station preferably employs so-called “SPD”(Small Particle Development) developers. Each of development stations is respectively electrically biased by a suitable respective voltage to develop the respective latent image, which voltage may be supplied by a power supply or by individual power supplies (not illustrated). Preferably, the respective developer is a two component developer that includes toner marking particles and magnetic carrier particles. Each color development station has a particular color of pigmented toner marking particles associated respectively therewith for toning. Thus, each of the five modules creates a series of different color marking particle images on the respective photographic drum. Alternatively, the developer may comprise a single component developer. It is also contemplated that the color toners may each be associated with a liquid developer. As will be discussed further below, a clear toner development station may be substituted for one of the pigmented developer stations so as to operate in similar manner to that of the other modules which deposit pigmented toner, however the development station of the clear toner module has toner particles associated respectively therewith that are similar to the toner marking particles of the color development stations but without the pigmented material incorporated within the toner binder. With reference to FIG. 1B, transport belt 101 transports the toner image carrying receiver members to a fusing or fixing assembly 60, which fixes the toner particles to the image substrate by the application of heat and pressure. More particularly, fusing station 60 includes a heated fusing roller 62 and an opposing pressure roller 64 that form a fusing nip 66 therebetween. Fusing station 60 also includes a release fluid application substation generally designated 68 that applies release fluid, such as, for example, silicone oil, to fusing roller 62. The image substrate carrying the fused image is transported from the fusing station 60 along a path to either a remote output tray 69 or to a glossing station 70 (FIG. 3), or is returned to the image forming apparatus of FIG. 1A for the purpose to be described below. In the embodiment shown, glossing station 70 is a stand-alone and/or off-line unit. However, it is to be understood that glossing station 70 can be alternatively configured as an integral and/or built-in station of the printer apparatus 100. With reference to FIG. 3 glossing station 70 includes a finishing belt 74, preferably formed of solgel, heated glossing roller 76, steering roller 78, pressure roller 80 and heat shield 82. Fusing belt 74 is entrained about glossing roller 76 and steering roller 78. Pressure roller 80 is opposed to, engages, and forms glossing nip 84 with heated glossing roller 76. Finishing belt 74 and the image substrate are cooled, such as, for example, by a flow of cooling air, upon exiting the nip 84 in order to reduce offset of the image to the finishing belt 74. The logic and control unit (LCU) 230 includes a microprocessor and suitable tables and control software which is executable by the LCU. The control software is preferably stored in memory associated with the LCU. Sensors associated with the fusing and glossing stations provide appropriate signals to the LCU when the glosser is integrated with the printing apparatus. In any event the glosser can have separate controls providing control over temperature of the glossing roller and the downstream cooling of the belt and control of glossing nip pressure. In response to the sensors, the LCU issues command and control signals that adjust the heat and/or pressure within fusing nip 66 so as to reduce image artifacts which are attributable to and/or are the result of release fluid disposed upon and/or impregnating image substrate that is subsequently processed by/through glossing station 70, and otherwise generally nominalizes and/or optimizes the operating parameters of fusing station 60 for imaging substrates that are not subsequently processed by/through glossing station 70. With reference now to the flowchart 300 of FIG. 4, the assumption is that a five-color pentachrome image is to be formed on a receiver substrate, step 310. Through a single pass of the receiver member through the five color printing stations of printing apparatus 100, a receiver member in the form of a sheet, which may be of a paper, plastic, coated metal or a textile material receives a five color toner separation image formed thereon. Subsequent processing of the imaged receiver member is dependent upon whether or not the operator has input via an input device such as a computer terminal or other operator input device a request for subsequent glossing treatment. Where no glossing treatment or enhancement is requested regular fusing of the five-color image is performed, step 314, in accordance with the requirements of the receiver type. Typically, the parameters for nominal fusing of a typical receiver such as paper will be dependent upon the thickness and/or weight of the paper and its surface characteristics, such as manufactured gloss finish or matte finish. Subsequently, to fusing the image formed on the surface is complete, step 316, and no further processing of this receiver is required, except for perhaps forming another image on the opposite surface, i.e. duplex formation which is a standard practice and need not be discussed further herein. Where glossing treatment is desired and assuming the receiver type is a matte paper, subsequent to five-color pentachrome processing in step 310, regular or nominal fusing for this paper type is provided for, step 322. The term regular or nominal fusing implies that similar conditions, e.g. temperature and pressure, for fusing a five color pentachrome image is provided for in this step as would be the case for fusing of a similar receiver sheet having a pentachrome image formed thereon and which is not to receive a glossing treatment. In order to provide for a glossing treatment, the fifth toner station is modified such as by substituting a clear toner (CT) development station for the fifth color development station used in the formation of the pentachrome image. This development station may contain a coating that is automatically sensed by the printer apparatus so that processing conditions for using the clear toner are automatically established. The presence of the clear toner development station and the selection of a glossing treatment may also adjust the other pigmented toner printing stations to either disable the printers or development of toner at the first four printing stations or modules. The receiver sheet with the fused pentachrome image is then reinserted into the printer apparatus 100 such as by manual placement in a supply tray or by recirculating from an automatic feeder after fusing. The receiver sheet with the pentachrome image formed thereon is then carried by the transport web 101 past the four now inoperative color image forming modules M1-M4, step 334 or 328, to the fifth image forming module M5 which is now provided with clear toner. Subsequent to the step of regular or nominal fusing, a determination is made as to whether or not an inverse mask (IVM) is selected, step 324. In lieu of providing a uniform application of clear toner to cover the entire image area, it is known to reduce the amount of clear toner by application of an inverse mask wherein one lays down more clear toner in areas that have less color toner coverage. In this IVM mode, balance is created in toner stack heights by providing relatively greater amounts of clear toner coverage to areas of an image having relatively lower amounts of color toner coverage and lesser amounts of clear toner coverage to areas of the image having relatively greater amounts of color toner coverage. In this regard, reference is made to U.S. Pat. No. 5,234,783. The controller of the printer apparatus may be programmed so as to be operative, for example by selection by the operator, to process the printing of a clear toner image in accordance with plural selectable modes so that some prints may be formed that are uniformly covered with clear toner and other prints may be formed with the clear toner deposited or printed in an IVM mode wherein balance is achieved in toner stack heights. Further details regarding the IVM mode are provided below. Where the IVM is selected, the electro-optical recording element associated with the fifth image-forming module M5 is enabled in accordance with the information for establishing or printing an inverse mask in clear toner, step 338. Image data for the clear toner IVM is developed in accordance with paper type and the pixel by pixel locations as to where to apply the clear toner, step 336. Information regarding the pentachrome image is analyzed by a raster image processor (RIP see FIG. 5) associated with the logic and control unit to establish on a pixel by pixel basis as to where pigmented toner is located on the pentachrome printed receiver. Pixel locations having relatively large amounts of pigmented toner are designated as pixel locations to receive a corresponding lesser amount of clear toner so as to balance the overall height of pixel locations with combinations of pigmented toner and clear toner. Thus pixel locations having relatively low amounts of pigmented toner are provided with correspondingly greater amounts of clear toner, step 338. With reference to FIG. 6, there are illustrated exemplary graphs illustrating various inverse masks providing a relationship relative to amounts of clear toner to be deposited at pixel locations versus amounts of pigmented toner in the pentachrome image at the corresponding pixel location using one of the inverse masks illustrated. Where an overall uniform clear toner overcoat is selected, step 326, the electro-optical recording element associated with the fifth image forming module M5 may be enabled in accordance with the information for establishing or printing an overall uniform coat in clear toner. Image data may be developed in accordance with paper type and the pixel by pixel locations suitably discharged or the electrostatic charge on the photoconductive surface of the imaging cylinder suitably reduced in the entire area where discharge area development is employed. More preferably, the electro-optical writer may be disabled and the uniform charger and clear toner development station electrical bias adjusted to provide a charge suitable for developing on the imaging cylinder an overall clear toner in the image area, by the clear toner development station, of a thickness suited for the receiver type, step 330. After printing of the pentachrome image with clear toner either using the inverse mask mode or uniform clear toner application mode, the receiver with the image formed thereon is again moved into the fuser 66 to fuse the clear toner IVM image or uniform clear toner overcoat to the pentachrome image, steps 340 or 332. Thereafter the receiver with the fused CT overcoated pentachrome image is moved into the belt glosser, step 346. A fused and gloss enhanced pentachrome image is thus provided, step 350. In the event that the receiver type employed is a glossy paper, five color pentachrome processed image formed by a single pass through the image forming modules M1-M5 is subjected to a reduced fusing processing, step 352, for this paper type wherein the fuser is adjusted to reduce temperature and/or pressure from a nominal setting established for this paper type for fusing a pentachrome image that is not to be subject to a further glossing step. The receiver sheet with the pentachrome image formed thereon is then reinserted into the printer apparatus 100 in accordance with the description provided above for the matte paper for a second pass through the apparatus wherein the image forming modules M1-M4 are once again disabled and the pigmented toner station of image forming module M5 provided with clear toner. A decision is made in step 352, as to whether or not an inverse mask or uniform clear toner overcoat is to be provided. The inverse mask preferably is adjusted for the type of paper as will be described below. Additionally, the amount of uniform clear toner overcoat provided where that mode is selected may also be adjusted for this type of glossy paper. The processing steps for processing of the printed inverse mask clear toner overcoat over the pentachrome image on the glossy paper, steps 334, 336, 338, 340, 346, and 350 are similar to that described for the matte paper embodiment. The parameters, however, for establishing the inverse mask, the fusing conditions and the conditions of the belt glosser are adjusted for this type of receiver. Herein, the processing steps 328, 330, 332, 346, and 350 will also be similar to that described for the matte paper embodiment with the amount of clear toner deposited, the fusing conditions and the conditions, of the belt glosser adjusted for this type of receiver. As noted in commonly assigned U.S. application Ser. No. 10/933,986, filed on Sep. 3, 2004, a third mode may also be provided wherein back-transfer artifacts are reduced or eliminated without the need or expense of providing uniform coverage of clear toner to the print wherein a five color tandem printer is used to print fewer than five colors. In this third mode, the fifth station may be used during the first pass as a clear toner station to deposit more clear toner in relatively higher colored areas and less clear toner in areas having relatively lower amounts of colored toner. With reference now to FIG. 3, image data for writing by the printer apparatus 500 may be processed by a raster image processor (RIP) 501 which may include a color separation screen generator or generators. The output of the RIP may be stored in frame or line buffers 502 for transmission of the color separation print data to each of the respective LED writers 506 K, Y, M, C and R (which stand for black, yellow, magenta, cyan, and red respectively and assuming that the fifth color is red). The RIP and/or color separation screen generator may be a part of the printer apparatus or remote therefrom. Image data processed by the RIP may be obtained from a color document scanner or a digital camera or generated by a computer or from a memory or network which typically includes image data representing a continuous image that needs to be reprocessed into halftone image data in order to be adequately represented by the printer. The RIP may perform image processing processes including color correction, etc. in order to obtain the desired color print. Color image data is separated into the respective colors and converted by the RIP to halftone dot image data in the respective color using threshold matrices, which comprise desired screen angles and screen rulings. The RIP may be a suitably programmed computer and/or logic devices and is adapted to employ stored or generated threshold matrices and templates for processing separated color image data into rendered image data in the form of halftone information suitable for printing. With continued reference to FIG. 5, incoming image data to be printed is input to the RIP 501 and converted to printer dependent color separation image data in each of the five color images printed by the printer apparatus 500. The clear toner image generator, which also may be a part of the RIP, creates a clear toner “image” from the five color separation images previously created as will be further described in more detail below and assuming that glossing is to be done during a second pass and an inverse mask is established for printing of the clear toner. Halftone screen generators or generators may also form a part of the RIP and convert each of the five color separation images into color separation halftone screened images. Additionally, the halftone screen generators may also convert the clear toner “image” into a halftone screen pattern (see dashed line) of image information, or alternatively (see full-line) the clear toner whether printed as an inverse mask or uniform overcoat may be established using continuous tone and not halftone printing. The image data from each of the four halftone screened color separation images and clear toner halftone screen separation image are output to frame buffers 502K, Y, M, C, and Red respectively from which they are sent to a printer host side interface. A printer board communicates with the printer host side interface and includes supporting circuitry for outputting corrected image information for printing by each of the respective writers 506 K, Y, M, C, and Red with appropriate synchronization. The clear toner (CT) image for IVM overcoat is determined as will be described below and printed during the second pass. With reference now also to FIG. 6, an example of a general relationship between density of a color image at a particular pixel location or image area and a preferred amount of clear toner to be applied to the area as an inverse mask is shown. As may be noted from the graph “A” a 90% coverage level of clear toner or clear dry ink (CDI) is employed at pixel locations or image areas where color separation image percent is from 0% to 40%, i.e. the highlight region to the mid-tone region. For pixel locations or image areas where color separation image percent is greater than 40%, the mid-tone ranges through to the shadow region where toner buildup is greatest, there is a generally progressive decrease in percent of clear toner laid down with increases of color density or color separation image coverage. The generation of the “image” map for depositing the clear toner is generated for each pixel location for the clear toner “image.” The generated image map, for the clear toner image, may be subjected to processing through a halftone screen generator or instead be of a continuous tone. The halftone screen generated image information for each the five color separation images and the image data for the clear toner image are modified to printer dependent image data and stored in frame buffers 502. The printer image data may also provide for correction for non-uniformities of the recording elements and/or other correction information or more preferably this can be provided on the printer board. In accordance with well-known techniques for printing the information stored in the frame buffers are output at suitably synchronized times for imaging of the respective electrostatic color separation images during the first pass and the clear toner image during the second pass by the respective writers as described above. As a convenience in calculation, rather than determining pigmented toner coverage at any pixel area in accordance with the sum of the five-color contributions at that pixel location, one may select the maximum contribution by a color at that pixel location as the percentage of pigmented toner coverage present at that location for use in determining the amount of clear toner overcoat to be applied in the inverse mask in accordance with the graph of FIG. 6. As a further convenience in calculation, in lieu of making such calculation for the inverse mask using a pixel by pixel calculation, one may group local areas of say 4×4 pixels or 16 pixels to determine the amount of clear toner in the inverse mask calculation for this small area formed by a group of pixels. The specific IVM masks illustrated in FIG. 6 are merely exemplary. The IVM mask illustrated by curve “A” and described above may be referred to as a 90/90/40 mask illustrating the relationship from the highlight region to the mid-tone region and then with a gradual roll-off in the mid-tone region to the shadow region. The IVM mask illustrated by curve “B” may be referred to as a 90/90/20 IVM mask. The IVM mask illustrated by curve “C” may be referred to as a 90/90/00 IVM mask. The IVM mask illustrated by curve “D” may be referred to as a 70/90/00 IVM mask. This latter mask conserves clear toner use in the highlight region. Other IVM masks more suited to matte type receivers or uncoated receivers may have an IVM mask providing greater amounts of clear toner in the highlight area. For example, for such papers a 100/100/20 IVM mask (curve “E”) might be used, it being understood that this refers to actual lay down of clear toner instead of differences in exposure setting for the writer that is used to “write” the clear toner image or inverse mask. The higher level for the IVM mask for the matte or uncoated receivers appears to provide for reduction of pinhole artifacts. The IVM mask curve may be optimized to reduce gamut loss and may be variable in accordance with substrate used for the receiver sheet or process stability or charge to mass (Q/M). In this regard wherein there is input or sensing of one more of factors including receiver type, electrostatographic process conditions including sensing of or determination of toner charge to mass, and toner type and in response selecting a suitable IVM mask in accordance with the appropriate conditions. In an example of employing parameters suitable for an application of the invention, a Sappi Lustro Gloss 216 paper receiver has a glossy coating thereon. The paper weight is 216 g/m2, Sheffield smoothness of 16, an IVM mask of 90/90/00 may be used, a fuser temperature of 163° C. may be used, a reduced fuser nip pressure, that creates a nip width of 14 mm may be used, a fuser nip energy flow of 2064 joules may be used, a glosser temperature of 160° C. may be used, a glosser nip pressure that creates a nip width of 13 may be used. When no clear toner overcoat is provided for this paper and no treatment by the glosser, the color image formed thereon might be fuser processed with a fuser temperature similarly of 163° C., a fuser nip pressure that creates a nip width of 20 mm which would be considered nominal for this receiver (which is higher than the reduced fusing pressure applied to the pentachrome image before application of the clear toner IVM mask embodiment), a fuser energy flow for the non-clear toner coated embodiment of 2264 joules-which is also higher than the reduced fusing condition where the pentachrome image is formed before application of the clear toner IVM mask embodiment. The invention thus provides for the use of an inverse mask mode with a pentachrome color image. Balance is created in toner stack heights by providing relatively greater amounts of clear toner coverage to areas of an image having relatively lower amounts of color toner coverage and lesser amounts of clear toner coverage to areas of the image having relatively greater amounts of color toner coverage. Differential gloss is reduced. The controller of the printer, which preferably includes a computer, may be programmed so as to be operative, for example by selection by the operator, to process the printing of an image in accordance with anyone of the three selectable modes so that some prints may be formed that are uniformly covered with clear toner, other prints may be formed in accordance with the aforesaid third mode wherein back-transfer artifacts are reduced or eliminated wherein less than five colors are used to produce a multicolor image in a five color station tandem printer and without the need to and expense of providing uniform coverage of clear toner to the print and still other prints may be formed in accordance with the noted second mode wherein balance is achieved in toner stack heights using the inverse mask in a pentachrome color image. In FIG. 7a-i there is illustrated a comparison of color gamuts in various L* slices in a*, b* space of a four-color single pass CMYK color printed image versus a five color CMYK plus Blue color printed image formed in a single pass and provided with a clear toner overcoat in a second pass and then finished with the belt glosser. There appears to be an increase in color gamut in the blue region and high gloss (G20 of 90 value) can be achieved with medium gloss paper (paper gloss about 35 with G60 measurement). Although the invention has been described in terms of a two pass system, the first pass providing the pentachrome color image and the second pass involving disablement of the first four color stations and the provision of a clear toner overcoat to the pentachrome image and then glossing the clear toner overcoated image, it will be understood that the glossing apparatus may be provided with a clear toner applicator located at the output of the fusing station of the printer apparatus of FIG. 1. Additional color stations may be provided in the printer apparatus to form multicolor images having more than five colors and thus the printer apparatus may be said to be adapted to form at least a pentachrome color image. In addition the at least pentachrome color images may be formed using inkjet, thermal or other printing technology instead of electrostatographic reproduction as described herein. In an alternative embodiment of the invention the glosser itself may have a clear dry ink toner toning station before the belt finishing station. In such an example a finished pentachrome image with enhanced gloss can be provided in a single pass by forming the pentachrome image in the printing apparatus 100 and subjecting the pentachrome image to a fusing step by passing the receiver within the fusing rollers and subjecting the receiver with the pentachrome image formed thereon to heat and pressure to fuse the pentachrome toner image to the receiver and subsequent to such fusing passing the fused pentachrome toner image to a glossing station having a clear toner overcoating station so that the clear toner is applied over the fused pentachrome toner image either as a uniform overcoat or as an inverse mask applied overcoat and then subjecting the overcoated pentachrome toner image to gloss enhancement in the belt glosser. In this regard, reference may be made to the apparatus shown in FIG. 8. In accordance with the invention, an at least pentachrome image comprises an image formed from at least five distinct color ink pigments that combine to form a color gamut. Examples of such pigmented combinations forming a pentachrome image, and which examples should not be considered limiting, include CMYK+Red, CMYK+Blue, CMYK+Green, CMYK+Orange, CMYK+Violet, and CMYK+Red+Blue+Green. Still other alternatives contemplated by the invention include substituting the black toner used in one of the toner printing modules or printing stations of printer apparatus 100 with toner of another color so that pentachrome color images may be formed from five colors such as cyan, magenta, yellow, red and blue in a first or single pass. This allows for even further expansion of color gamut. Subsequent to fusing of the image formed from five color pigments (CMY, Red, Blue) the clear dry toner ink may be applied either in a uniform overcoat or inverse mask application in a second pass through the color printer apparatus 100 having the clear toner substituted for the pigmented toner in the last color station with disablement of the printing stations or modules upstream. Where the inverse mask is used, the mask may be in relation to the cyan, magenta and yellow (CMY) toner amounts at respective pixel locations. In still other alternatives, the pentachrome color image having another color, such as blue or green, substituted for black may be sent in a first pass subsequent to fusing to a toning station having the clear toner such as the glosser which includes a clear toner precoater and then subjected to enhanced glossing by passing through the belt glosser. This provides for single pass pentachrome color images with enhanced color gamut and gloss enhancement. With reference to the alternative embodiment illustrated in FIG. 8, a five module electrostatographic printer apparatus similar to that described above with reference to FIGS. 1A and 1B is positioned adjacent a gloss enhancement apparatus 70A. The printing modules M1-M5 are provided with respective different color toners to provide a pentachrome color image on a receiver sheet passing through the printing stations while being supported on the transport belt or web 101. The description above relative to the printer apparatus 100 and the different combinations of toner colors employed to create a printed pentachrome image are pertinent to the description of the embodiment of FIG. 8. After creation of the pentachrome image on the receiver sheet, the receiver sheet enters the fusing station 60 and the pentachrome image is fused to the receiver sheet as it exits the printer apparatus 100. The gloss enhancement apparatus 70A includes a clear toner-printing module MCT that may be similar to one of the modules M1-M5. A computer controller 250 may receive image data from a network or terminal or other image data input device and input this data to the printer apparatus 100 and to the clear toner printing module MCT for creation of an inverse mask in accordance with signals sent from this terminal to a controller associated with the gloss enhancement apparatus 70A. Alternatively, the clear toner-printing module may be used to provide a uniform overcoat layer to the pentachrome image. Whether the clear toner printing module MCT prints an inverse mask clear toner overcoat or provides a uniform clear toner overcoat, the characteristics of this clear toner overcoat may be adjusted for the type of receiver as has been described above. In this regard memory in one or more of the controllers may contain tables providing fusing and clear toner characteristics to be provided for possible receivers to be processed by the printer apparatus 100 and the gloss enhancement apparatus 70A. Where the gloss enhancement apparatus 70A only provides for a generally uniform clear toner overcoat, the nature of the printer apparatus may be simplified such as by eliminating the electro-optical writer and providing for clear toner overcoats through control of the development station or providing some other uniform toner coating device. Subsequent to placement of the clear toner overcoat upon the pentachrome print by the module MCT, the coated pentachrome print then enters the glosser as described above for gloss enhancement treatment. As noted above for certain receiver members, such as relatively rough papers, the fusing conditions in the first pass for fusing the pentachrome image may be substantially similar to the fusing conditions for fusing when the receiver member with the clear toner overcoat and the fused pentachrome image is passed through the fusing rollers in a second pass. A uniform overcoat of clear toner can be optimized for different receiver substrates; for example, a 70% overall coverage for very smooth paper (Sheffield smoothness between about 10-15), versus a 90% to 100% coverage for a slightly rougher paper (Sheffield smoothness about 40-70). The provision of a uniform clear toner overcoat is simpler to perform than using the inverse mask although the IVM does save on the usage of clear toner. It is desirable to have clear toner on low-pigmented toner coverage or highlight areas to prevent offset of the color toners to the belt glosser. The clear toner may be deposited in accordance with a continuous tone or a halftone. There has thus been shown an improved printer apparatus and method of printing wherein color images with improved color gamut may be printed with minimization of artifacts such as differential gloss, provided for through selective depositing of clear toner to the image. The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>In an electrophotographic modular printing machine of known type, such as for example the NexPress 2100 printer manufactured by NexPress Solutions, Inc., based in Rochester, N.Y., color toner images are made sequentially in a plurality of color imaging modules arranged in tandem, and the toner images are successively electrostatically transferred to a receiver sheet adhered to a transport web moved through the modules. Commercial machines of this type typically employ intermediate transfer members in the respective modules for the transfer to the receiver member of individual color separation toner images. However, the invention as described herein also contemplates the use of tandem electrostatographic printers that do not employ intermediate transfer members but rather transfer each color separation toner image directly to the receiver member. Electrostatographic printers having a four-color capability are known to also provide a fifth toner depositing station for depositing for example, clear toner. The provision of a clear toner overcoat to a color print is desirable for providing protection of the print from fingerprints and reducing certain visual artifacts. However, a clear toner overcoat may add cost and may reduce color gamut of the print so it is desirable to provide for operator/user selection to determine whether or not a clear toner overcoat will be applied to the entire print. In U.S. Pat. No. 5,234,783, (Ng) it is noted that in lieu of providing a uniform layer of clear toner that a layer that varies inversely according to heights of the toner stack may be used instead as a compromise approach to even toner stack heights. As is known, the respective color toners are deposited one upon the other at respective locations on the receiver and the height of a respective color toner stack comprises the sum of the toner contributions of each respective color. The invention recognizes that a four-color process provides a color gamut that is relatively limiting. The invention further recognizes that in using a tandem printer apparatus with five printing stations or modules one can unexpectedly still achieve an improved color gamut with application of clear toner in accordance with the teachings set forth herein. | <SOH> SUMMARY OF THE INVENTION <EOH>The above and other aspects of the invention are realized in accordance with a first aspect of the invention wherein there is provided in a tandem color electrostatographic printer apparatus having five or more color printing stations for applying respective color separation toner images to a receiver member, a method of forming a pentachrome color image comprising passing a receiver member through the printer apparatus to serially deposit thereon in a single pass, at least five different colors which form various combinations of color at different pixel locations to form a pentachrome image thereon; a first fusing step of fusing the pentachrome image by passing the receiver member through a fuser station; passing the receiver member again through the printer apparatus and depositing a clear toner overcoat to the fused pentachrome toner image; a second fusing step of passing the receiver member with the clear toner overcoat and fused pentachrome toner image again through the fuser station to fix the clear toner overcoat to the receiver member. In accordance with a second aspect of the invention, there is provided a system for printing color images comprising a tandem color electrostatographic printer apparatus having five or more color printing stations for applying respective color separation toner images to a receiver member passing therethrough in a single pass to form a pentachrome color image; a fusing station for fusing the pentachrome image; a clear toner overcoat printing station for applying a clear toner overcoat to the fused pentachrome toner image; and a belt glosser for providing enhanced gloss to the pentachrome color image having the clear toner overcoat. In accordance with a third aspect of the invention, there is provided a method of printing to form colored images with improved color gamut and enhanced gloss, the method comprising forming a color print using five or more different color pigments which in combination form at least a pentachrome color image; depositing a clear toner overcoat to the at least pentachrome color image; and subjecting the clear toner overcoat and the at least pentachrome color image to a gloss enhancing process. Other objects, advantages and novel features of the present invention will become more apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings. | 20041222 | 20090310 | 20060622 | 77188.0 | G03G1520 | 7 | HE, AMY | METHOD AND APPARATUS FOR PRINTING USING A TANDEM ELECTROSTATOGRAPHIC PRINTER | UNDISCOUNTED | 0 | ACCEPTED | G03G | 2,004 |
|
11,021,560 | ACCEPTED | Frictional holding pad | A frictional holding pad for removably attaching items, such as a cell phone, to a surface, such as a dash, to allow storage of items on the pad to prevent the items from shifting or sliding due to the movement of the support surface. A bottom surface of the pad is tacky to cling to the surface and a top surface is tacky to cling to the item. A lowermost contact surface of the pad can have a greater surface area than an uppermost contact surface. Indicia can be formed on the pad. The pad can be translucent or transparent. The pad can include an expanded vinyl material or a polyurethane material. | 1. A frictional holding device configured to be disposed on a vehicle surface and to receive and secure an item thereon, the device comprising: a) a pad having different top and bottom surfaces, the bottom surface configured to be disposed on the vehicle surface, and the top configured to removably receive the item thereon; and b) at least a substantial portion of the top surface being a contoured top surface with a plurality of protrusions or indentations. 2. A device in accordance with claim 1, wherein: the bottom surface includes a contoured bottom surface with a plurality of protrusions or indentations, and with a lowermost contact surface configured to contact and frictionally cling to the vehicle surface; and the contoured top surface has an uppermost contact surface that is less than the lowermost contact surface. 3. A device in accordance with claim 1, wherein the contoured top surface defines an item receiving area extending at least substantially across the top of the pad. 4. A device in accordance with claim 1, wherein the bottom surface has a lowermost contact surface configured to contact and frictionally cling to the vehicle surface; and the contoured top surface has an uppermost contact surface that is less than the lowermost contact surface. 5. A device in accordance with claim 1, wherein at least a portion of the pad is at least translucent. 6. A device in accordance with claim 1, wherein the pad is at least translucent. 7. A device in accordance with claim 1, wherein the pad is formed of polyurethane. 8. A device in accordance with claim 1, wherein the bottom surface has a lowermost contact surface that is flat. 9. A device in accordance with claim 1, wherein the top surface has an uppermost contact surface that is flat; and wherein the contoured top surface includes indentations. 10. A device in accordance with claim 1, further comprising: indicia, formed on the top surface of the pad, the indicia being selected from the group consisting of: a logo, an advertisement, an instruction, a promotion, a company name, and a product name. 11. A device in accordance with claim 1, wherein the top surface includes at least two sections, including a first section that is substantially flat and has indicia thereon, and a second section that is contoured and configured to receive the item thereon. 12. A device in accordance with claim 1, further comprising: a removable backing layer, removably coupled to the bottom surface of the pad. 13. A device in accordance with claim 12, further comprising: a removable wrapper, formed around the pad and the backing layer, the removable backing layer resisting the bottom surface of the pad from coupling to the wrapper. 14. A frictional holding device configured to be disposed on a vehicle surface and to receive and secure an item thereon, the device comprising: a) a pad having different top and bottom surfaces, the bottom surface configured to be disposed on the vehicle surface, and the top configured to removably receive the item thereon; b) at least a substantial portion of the top surface being a contoured top surface with a plurality of protrusions or indentations defining an uppermost contact surface configured to contact and frictionally cling to the item; c) the bottom surface including a contoured bottom surface with a plurality of protrusions or indentations defining a lowermost contact surface configured to contact and frictionally cling to the vehicle surface; and d) the lowermost contact surface having a greater surface area than the uppermost contact surface. 15. A device in accordance with claim 14, wherein the contoured top surface defines an item receiving area extending at least substantially across the top of the pad. 16. A device in accordance with claim 14, wherein at least a portion of the pad is at least translucent. 17. A frictional holding device configured to be disposed on a vehicle surface and to receive and secure an item thereon, the device comprising: a) a pad having different top and bottom surfaces, the bottom surface configured to be disposed on the vehicle surface, and the top configured to removably receive the item thereon; b) the pad being at least translucent; c) at least a substantial portion of the top surface being a contoured top surface with a plurality of protrusions or indentations defining an uppermost contact surface configured to contact and frictionally cling to the item; d) the bottom surface including a contoured bottom surface with a plurality of protrusions or indentations defining a lowermost contact surface configured to contact and frictionally cling to the vehicle surface; and e) the lowermost contact surface having a greater surface area than the uppermost contact surface. 18. A device in accordance with claim 17, wherein the contoured top surface defines an item receiving area extending at least substantially across the top of the pad. 19. A method for releasably securing an item on a vehicle surface without marring or altering the vehicle surface, comprising the steps of: a) placing a frictional holding pad on the vehicle surface with a lowermost contact surface of the frictional holding pad contacting and frictionally clinging to the vehicle surface without marring or altering the vehicle surface; b) placing the item on an uppermost contact surface of a contoured top surface of the frictional holding pad with the uppermost contact surface of the frictional holding pad frictionally clinging to the item, the uppermost contact surface being formed by indentations or protrusions in the contoured top surface, the contoured top surface extending substantially across a top of the frictional holding pad, the lowermost contact surface having a greater surface area than the uppermost contact surface; and c) removing the item from the uppermost contact surface of the frictional holding pad while the frictional holding pad remains on the vehicle surface. 20. A method in accordance with claim 19, further comprising the step of: viewing the vehicle surface through at least a portion of the frictional holding pad that is at least translucent. | This is a continuation-in-part of U.S. patent application Ser. No. 10/684,008, filed Oct. 10, 2003; which is a divisional of U.S. Pat. No. 6,673,409, filed Jul. 30, 2002; which claims benefit of U.S. Provisional Patent Application Nos. 60/308,955, filed Jul. 31, 2001, and 60/344,571, filed Dec. 28, 2001, is claimed. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to a frictional holding pad, particularly useful to releasably secure an object, such as from movement in a vehicle. 2. Related Art It is often desirable to non-permanently adhere a first object to a second object, but retain the option of removing the first object without damaging either object. Conventional adhesive devices, however, often utilize a chemical bond that is permanent in nature so that removal of the adhesive device either damages the object on which it was used, or leaves a residue on the object that is difficult to remove without damaging the object. Similarly, mechanical retaining devices often are mounted to an object in such a way as to permanently alter the object. There are also magnetic devices in which two pieces are glued to the dash and phone, and then magnetically couple together. Additionally, many items carried in day-to-day life must often be temporarily stored to free an individual's hands for other tasks. One common example of such a situation arises when an individual enters a vehicle. Items such as cell phones, personal digital assistants, writing instruments or glasses must be stored in order to free the hands of the individual so that he or she may operate the vehicle. In many cases, however, an individual may wish to have ready access to the items should the items be quickly needed, for instance if a call is received on the cell phone. Because most vehicles involve stop-and-go or side-to-side motion, placing such items on open surfaces raises the risk that the items will slide off the open surface during operation of the vehicle. The movement of such items can cause damage to the item itself, damage to the vehicle or interior accessories, and posses a safety problem. For example, a cell phone may break if it falls to the floor, or may fall onto another object, such as a laptop computer, causing further damage. In addition, a driver may be distracted by trying to retrieve the phone from the floor. Hence, storing such items on open surfaces is generally not a viable option. While most vehicles include storage locations for such personal items, storing the items generally requires the inconvenience of opening a compartment, such as a glove box in an automobile, and storing the items along with the other items already contained within the compartment. Once stored in such compartments, items are not visible to an individual and are not easily accessible should the individual wish to quickly access the items. Various solutions to the problem have been proposed. Most notably, special mounting devices have been used to secure items in the car. Such mounting devices typically have a base that is secured to some object in the vehicle, and a receiving portion to receive and hold the item. For example, some devices are configured to receive and hold a cell phone. Other devices are configured to receive and hold sunglasses. One disadvantage with such mounting devices is that they are typically customized to hold a particular item, or type of item, and are ill suited for other items. For example, a mounting device for a cell phone may not adequately hold sunglasses. Thus, it may be necessary to have several mounting devices within the vehicle, one for a cell phone, one for sunglasses, one for a GPS unit, etc. One disadvantage with having several mounting devices is that the vehicle appears cluttered. In addition, such mounting devices are typically sold as accessories, and thus add expense. Another disadvantage with such mounting devices is that they can permanently alter and devalue the vehicle. SUMMARY OF THE INVENTION It has been recognized that it would be advantageous to develop a system and method to releaseably secure items to a surface without permanently altering the surface. In addition, it has been recognized that it would be advantageous to develop a system and method to releaseably secure items to a surface in a vehicle without permanently altering the vehicle surface, and allowing for ready retrieval of the object. In addition, it has been recognized that it would be advantageous to develop such a system and method capable of being used with various different items. In addition, it has been recognized that it would be advantageous to develop such a system and method capable of providing advertisement, and/or personalization or customization. The invention provides a frictional holding device to be disposed on a vehicle surface and to receive and secure an item thereon. The device includes a pad having different top and bottom surfaces. The bottom surface is to be disposed on the vehicle surface, and the top is to removably receive the item thereon. At least a substantial portion of the top surface is a contoured top surface with a plurality of protrusions or indentations. In accordance with another aspect of the present invention, the bottom surface can include a contoured bottom surface with a plurality of protrusions or indentations. In addition the bottom surface can have a lowermost contact surface to contact and frictionally cling to the vehicle surface. The contoured top surface can have an uppermost contact surface that is less than the lowermost contact surface of the bottom surface. In accordance with another aspect of the present invention, the contoured top surface can define an item receiving area extending at least substantially across the top of the pad. In accordance with another aspect of the present invention, at least a portion of the pad is at least translucent. In another aspect, the pad is at least translucent. The pd can be formed of polyurethane. The invention also provides a method for releasably securing an item on a vehicle surface without marring or altering the vehicle surface. A frictional holding pad is placed on the vehicle surface with a lowermost contact surface of the frictional holding pad contacting and frictionally clinging to the vehicle surface without marring or altering the vehicle surface. An item is placed on an uppermost contact surface of a contoured top surface of the frictional holding pad with the uppermost contact surface of the frictional holding pad frictionally clinging to the item. The uppermost contact surface is formed by indentations or protrusions in the contoured top surface. The contoured top surface extends substantially across a top of the frictional holding pad. The lowermost contact surface has a greater surface area than the uppermost contact surface. The item can be removed from the uppermost contact surface of the frictional holding pad while the frictional holding pad remains on the vehicle surface. In accordance with another aspect of the present invention, the vehicle surface can be viewed through at least a portion of the frictional holding pad that is at least translucent. Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a frictional holding pad in accordance with an embodiment of the present invention, shown disposed on a dashboard of a vehicle and with a cellular phone disposed thereon; FIG. 2 is a cross-sectional view of the frictional holding pad of FIG. 1; FIG. 3 is a detailed, partial cross-sectional view of the frictional holding pad of FIG. 1; FIG. 4 is a detailed, partial cross-sectional view of the frictional holding pad of FIG. 1 with a release layer and a wrapper in accordance with an embodiment of the present invention; FIG. 5 is a detailed cross-sectional view of the frictional holding pad of FIG. 1; FIG. 6 is a cross-sectional view of another frictional holding pad in accordance with another embodiment of the present invention, shown disposed on a dashboard of a vehicle and with a cellular phone disposed thereon; FIG. 7 is a top view of another frictional holding pad in accordance with an embodiment of the present invention; FIG. 8 is a top view of another frictional holding pad in accordance with an embodiment of the present invention shown with a corner pulled-up to reveal a bottom surface; FIG. 9 is a detailed, partial cross-sectional side view of the frictional holding pad of FIG. 8; FIG. 10 is a perspective view of the frictional holding pad of either of FIG. 7 or 8, shown disposed on a dashboard of a vehicle and with a cellular phone disposed thereon; FIG. 11 is a top view of another frictional holding pad in accordance with an embodiment of the present invention; and FIG. 12 is a perspective view of the frictional holding pad of FIG. 11, shown disposed on a dashboard of a vehicle and with a cellular phone disposed thereon. DETAILED DESCRIPTION Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention. As illustrated in FIGS. 1-5, a frictional holding pad, indicated generally at 10, in accordance with the present invention is shown for releasably retaining, or selectively maintaining, an item 14 on a surface 16. The pad 10 is disposed on the surface 16, and receives the item 14 thereon. The surface 16 can be planer or curved, and can include a dashboard or console of a vehicle. The item 14 can be any of a number of items, including for example, a cell phone, a personal digital assistant (PDA), a writing instrument, such as a pen or pencil, a pair of sunglasses, a pair of eye glasses, a global positioning system (GPS), a radio, a two-way radio, a citizens band (CB) radio, a walkie-talkie, a camera, a video recorder, a cassette player/recorder, a mini-cassette recorder, a DVD player, a mini-disk player, a portable television (TV), etc. Securing personal items in a vehicle is one field that may benefit from use of the present invention. It will be appreciated that other items can be selectively secured to the surface 16 by the pad 10. In addition, it will be appreciated that the pad can be disposed on other surfaces. The frictional holding pad 10 has an upper or uppermost surface 20 and a lower surface 22. The upper surface 20 is holds one or more objects 14 securely in place despite movement of the surface 16 or vehicle. The lower surface 22 is disposed on and grips the surface 16. The lower surface 22 of the frictional holding pad 10 can be “tacky”, such that the pad 10 tends to cling to the surface 16 in a mechanical fashion, as opposed to a chemical or adhesive manner. The lower surface 22 also can be smoother than the upper surface 20, or have a more shiny appearance. In addition, the lower surface 22 can have a greater surface area in contact with the surface 16 to provide a greater frictional engagement. The upper surface 20 can have less surface area in contact with the object 14 to provide less frictional engagement. Thus, the pad 10 remains on the surface 16 when the object 14 is removed, rather than removing the pad from the surface while the object is removed from the pad. The upper surface 20 can have contours or texture (indicated at 21) formed thereon to reduce the surface area of the upper surface 20 in contact with the item 14 disposed thereon. Thus, the item 14 can be removed from the pad 10 without the pad sticking to the item or being removed from the surface 16. The frictional holding pad 10 can be flexible and capable of bending (indicated at 23 in FIG. 2) to conform to curves or details in the surface 16. The frictional holding pad 10 also can have a planer configuration and can be used on planar surfaces. The frictional holding pad 10 can be provided in an original planar configuration, supported by a paper backing or release layer 24. The release layer 24 prevents or resists the pad 10 or lower surface 22 from sticking or clinging to any wrapper or packaging of the pad. The release layer 24 may be stiffer than the pad to maintain the pad in a planar configuration. In addition, the release layer 24 can include indicia thereon, such as instructions for use and care of the pad. The release layer 24 can include a tab 25 protruding therefrom beyond a perimeter of the pad 10 to facilitate removal of the release layer from the pad. Upon removal of the release layer 24, the pad 10 is flexible to enable conformity with a wide array of curved surfaces. In addition, removal of the release layer 24 exposes the lower surface 22 of the pad to be disposed on the surface 16. A removable wrapper 26 can be formed around the pad 10 and the backing layer 24 to protect the pad prior to use. The wrapper 26 and backing layer 24 can be removed prior to placing the pad on the surface 16. The upper surface 20 of the pad 10 can be non-chemically adhered to items 14 placed thereon. Like the bottom surface 22, the upper surface 20 can be “tacky”, such that the pad 10 tends to cling to the item 14 in a mechanical fashion, as opposed to a chemical or adhesive manner. As stated above, the upper surface 20 can be contoured to include protrusions 30 and/or indentations 32. The protrusions 30 and indentations 32 can be rounded or curvilinear to form a more gradual transition between the protrusions and indentations, and create a contour on the upper surface 20 that is wavy or with a more natural appearance, creating a leather-like texture that can match the surface 16. The contour of the surface 20 creates an uppermost surface on the tops of the protrusions 30 that contacts the item 14. The upper or uppermost surface 20 thus has less surface area in contact with the item 14 than the lower surface 22 has in contact with the surface 16. Thus, a greater clinging force is exerted on the item 14 than on the surfaced 16 such that the item 14 can be removed from the pad 10 or upper surface 20 without removing the pad from the surface 16. In addition, the item 14 can be smaller than the pad itself, thus also contributing to less surface contact between the upper surface 20 and the item 14. The contour, or protrusions or indentations, can extend at least substantially across the top of the pad, as shown in FIG. 1. Thus, the contour extends into an interior region of the pad. The contoured top surface defines an item receiving area where the item can be placed. The item receiving area thus extends at least substantially across the top of the pad. The contour can be disposed on a majority of the upper surface. Referring to FIG. 5, an array or matrix of a plurality of indentations 34 can be formed in the upper surface 20 of the pad 10 creating a plurality of protrusions 36 therebetween. The indentations 34 and protrusions 36 can be more straight, linear or recta-linear to create a more modern appearance. The pad 10 can be formed of or can include an expanded vinyl material. It has been found that the expanded vinyl material provides a good frictional or “tacky” quality that remains disposed on the surface, and that retains the items thereon. In addition, it has been found that such an expanded vinyl material typically can be disposed on the surface 16 without marring or otherwise chemically interfering with the material of many surfaces, such as vehicle dashboards. It will be appreciated that many surfaces, such as a vehicle dashboard, have a finished surface configured to be aesthetically pleasing and luxurious. Such surfaces can be formed of a plastic or leather material, and can be expensive to replace or repair. In addition, it will be appreciated that some surfaces are subjected to extreme conditions, such as heat and sunlight. It has been found that the expanded vinyl material not only provides the required retention of objects and fixed relationship with the surface, but also typically does so without chemically interacting with the material of surface, or otherwise damage the surface. The expanded vinyl material of the frictional holding pad 10 forms a temporary non-chemical bond with both 1) the items 14 stored on the upper surface 20, and 2) the surface 16. The pad 10 can be removed from the surface 16 without leaving behind any residue and without damaging the pad. In this manner the pad 10 can be easily moved to any location the user desires. Because the pad is made from expanded vinyl, it can be easily cleaned with soap and water, and still retain its tackiness, and is thus reusable. The expanded vinyl material more specifically can include: diisodecy/phlthalate; polymeric plasticer; a UV stabilizer; a vinyl hear stabilizer; a blowing agent for vinyl plastisol; and vinyl resin (plastic). The expanded vinyl material can have a weight between approximately 10 and 20 ounces per square yard; more preferably between approximately 12 and 18 ounces per square yard; and most preferably between approximately 14 and 16 ounces per square yard. The frictional holding pad 10 can have a thickness between approximately 0.03 and 0.09; more preferably between approximately 0.04 and 0.08 inches; and most preferably between approximately 0.05 and 0.06 inches. The frictional holding pad 10 can be formed of different layers with different materials. For example, the pad 10 can have a skin layer 40 formed on the bottom surface 22 formed of a different material than the rest of the pad. For example, the material of the skin layer 40 can include: aqua ammonia (NH4OH); azardine; rubber; color; and body for thickening. The skin layer 28 can have a thickness between 0.003 and 0.006 inches, and more preferably between 0.004 and 0.005 inches. In addition, a perforated pattern can be formed in the pad 10 to give the impression of a stitching. For example, a plurality of holes 44 can be formed around a perimeter of the pad near the edge to give the appearance of a stitched edge that can be more visually consistent with the surface 16. The pad 10 can be die cut from a larger sheet of material. The perforated pattern can similarly be formed by a die. The frictional holding pad 10 also can include indicia 52 formed on the upper surface 20. The indicia 52 can be formed by ink, or ink-like materials, printed on the upper surface. The indicia 52 can include: a logo, an advertisement, an instruction, a promotion, a company name, and a product name. Thus, the frictional holding pad 10 can be used as a promotional item by including a business or product logo or name. It will be appreciated that such frictional holding pads can be inexpensively manufactured, and in use, can occupy a position of high and frequent visibility. Thus, such frictional holding pads can be inexpensively manufactured, and given away as promotional items. In addition, the indicia 52 can include instructions that can be related or unrelated to the use or care of the pad. For example, the instructions can include how to use or place the pad, and how to clean or wash the pad. As another example, the instructions can relate to the use of something other than the pad itself, such as an item to be disposed thereon. Thus, the pad serves dual functions, both as a frictional holding pad to secure and item, and providing ready instructions. The instructions can relate to the use of the item to be disposed thereon. Thus, such a pad can be provided with an item, or provided for use with such an item. For example, the instructions can relate to the use of a cellular phone. In addition, the indicia can include warning, such as warning not to drive while talking on the phone. Referring to FIG. 6, another frictional holding pad, indicated generally at 110, is shown which is similar in many respects to the frictional holding pad described above and shown in the other drawings. The pad 110 can be translucent or transparent. Thus, surface details 114 on the surface 16 can be viewed or are visible through the pad 110 (indicated at 116 in FIG. 6). The translucent or transparent nature of the pad 110 can make the pad blend-in or match the surface 16 because of the surface details 114 showing through the pad. If the pad is translucent, it can also include a light coloring. Such coloring can help visually distinguish the pad 110 from the surface 16. Thus, a translucent pad can both blend with the surface while still being visually distinguishable therefrom. The pad 110 can be formed of, or can include, a translucent or transparent material. For example, the pad 110 can include a molded polyurethane material. It has been found that the polyurethane material provides both a frictional or “tacky” quality that remains disposed on the surface, and that is transparent or translucent. In addition, the polyurethane material can be easily cleaned with soap and water. The pad 110 also can include indicia 52 formed thereon. The indicia 52 can be formed on the bottom surface 22 of the pad 110 and still be visible because the pad is translucent or transparent. Forming the indicia 52 on the bottom surface 22 of the pad can also protect the indicia from wear or removal. The pad 110 also can include a printable portion or section 120 that can include a substantially flat area on the upper surface 20. Thus, the upper surface 20 can be substantially contoured, but still have a flat printable portion or section 120 for indicia 52. The pad 110 preferably has a low profile, or is thin, having a thickness of less than approximately 1/8th of an inch. Thus, the items 14 are kept close to the surface 16 without extending where they might interfere with the operation of the vehicle. Thus, the pad 110 can be a thin sheet of polyurethane material with a substantially smooth and continuous lower surface 22 with a tacky characteristic to non-chemically and removably adhere to the surface 16, and a contoured upper surface 20 also with a tacky characteristic to non-chemically and removably adhere to an item. The pad or polyurethane material can be translucent or transparent, and can include printing on either the upper or lower surface. The frictional holding pads described above can be sized and shaped to match the desired surface. For example, the pads can be sized to receive the above identified objects thereon, and to fit on typical dash boards. As an example, a size less than seven inches has been found to be useful. In addition, the pads can be sized or shaped to match other designs, such as logos. Referring to FIGS. 7-10, other frictional holding pads 310 and 314 are shown that are similar in most respects to those described above. The frictional holding pad 314 can also include a contoured bottom surface. Referring to FIG. 7, the frictional holding pad 310 is similar to the frictional holding pad 110 shown in FIG. 6. The pad 310 has different top and bottom surfaces. The bottom surface can be substantially flat, as described above, to be disposed on the vehicle surface. Alternatively, the bottom surface can be contoured, as described below. The top surface 318 can be different from the bottom surface and can include a contoured top surface to removably receive the item. At least a substantial portion of the top surface can be the contoured top surface. The contoured top surface can include a plurality of protrusions 322 and/or indentations 326. The protrusions 322 can extend from the top surface forming the indentations 326 therebetween, or the indentations 326 can extend into the top surface forming the protrusions 322 therebetween. As discussed above, the contoured top surface can be formed by an array or matrix of indentations extending across a majority of the top surface. Also as described above, the contoured top surface has an uppermost contact surface that is less than a lowermost contact surface the bottom surface. In addition, the contoured top surface can define an item receiving area 330 that extends at least substantially across the top or top surface 318 of the pad 310. Referring to FIGS. 8 and 9, the bottom surface 334 also can be contoured and can include a contoured bottom surface. The contoured bottom surface includes a plurality of protrusions 338 and/or indentations 342. The protrusions and indentations of the bottom surface can be similar to those of the top surface, but can provide a lowermost contact surface to contact and frictionally cling to the vehicle surface. The lowermost contact surface of the bottom surface can have a greater surface area than the uppermost contact surface of the top. For example, the protrusions 338 of the bottom surface 334 can be larger than the protrusions 322 of the upper surface 318. Or the indentations 342 of the bottom surface 334 can be larger than the indentations 322 of the top surface 318. As shown in FIG. 9, the protrusions 322 or 338 of the top or bottom surfaces 318 or 334 can be substantially flat, or the uppermost and lowermost contact surfaces can be flat to maximize the surface area in contact with the vehicle surface or item. Referring to FIG. 10, either pad 310 or 314 can be translucent or transparent, or have at least a portion that is at least translucent. Thus, the vehicle surface 20 or features 346 thereof can be visible through the pad so that the pad blends-in with the vehicle surface. The pad can formed of polyurethane, which has been found to provide both tackiness and transparency/translucency, without marring most vehicle surfaces. In addition, referring to FIG. 8, the contoured bottom surface can be visible through the pad, indicated at 348, creating an interesting visual appearance. Indicia 350 can be formed on the top surface 318 of the pad 310 or 314. The indicia can include: a logo, an advertisement, an instruction, a promotion, a company name, and a product name. The top surface 318 can include a first or flat section 354 that is flat, and upon which the indicia 350 can be disposed. In addition, the top surface 318 can include a second or remaining section that is contoured and configured to receive the item. Referring to FIGS. 11 and 12, another frictional holding pad 410 is shown that is similar in most respects to those described above, namely the frictional holding pad 10 of FIGS. 1-4. Again, the contoured top surface 414 can extend substantially across the top surface. The contoured top surface can include protrusion and/or indentations that are curved or wavy. The pad can be formed of an expanded vinyl material, and can have indicia 418 printed thereon. A perimeter can include holes or indentations 422 to appear as stitching or to provide a more finished looking edge. A method for releasably securing an item on a vehicle surface without marring or altering the vehicle surface includes placing a frictional holding pad on the vehicle surface with a lowermost contact surface of the frictional holding pad contacting and frictionally clinging to the vehicle surface without marring or altering the vehicle surface. The item is placed on an uppermost contact surface of a contoured top surface of the frictional holding pad with the uppermost contact surface of the frictional holding pad frictionally clinging to the item. The uppermost contact surface can be formed by indentations and/or protrusions in the contoured top surface. The contoured top surface extends substantially across a top of the frictional holding pad. The lowermost contact surface has a greater surface area than the uppermost contact surface. The item can be removed from the uppermost contact surface of the frictional holding pad while the frictional holding pad remains on the vehicle surface. In addition, the vehicle surface can be viewed through at least a portion of the frictional holding pad that is at least translucent. It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention while the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth in the claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates generally to a frictional holding pad, particularly useful to releasably secure an object, such as from movement in a vehicle. 2. Related Art It is often desirable to non-permanently adhere a first object to a second object, but retain the option of removing the first object without damaging either object. Conventional adhesive devices, however, often utilize a chemical bond that is permanent in nature so that removal of the adhesive device either damages the object on which it was used, or leaves a residue on the object that is difficult to remove without damaging the object. Similarly, mechanical retaining devices often are mounted to an object in such a way as to permanently alter the object. There are also magnetic devices in which two pieces are glued to the dash and phone, and then magnetically couple together. Additionally, many items carried in day-to-day life must often be temporarily stored to free an individual's hands for other tasks. One common example of such a situation arises when an individual enters a vehicle. Items such as cell phones, personal digital assistants, writing instruments or glasses must be stored in order to free the hands of the individual so that he or she may operate the vehicle. In many cases, however, an individual may wish to have ready access to the items should the items be quickly needed, for instance if a call is received on the cell phone. Because most vehicles involve stop-and-go or side-to-side motion, placing such items on open surfaces raises the risk that the items will slide off the open surface during operation of the vehicle. The movement of such items can cause damage to the item itself, damage to the vehicle or interior accessories, and posses a safety problem. For example, a cell phone may break if it falls to the floor, or may fall onto another object, such as a laptop computer, causing further damage. In addition, a driver may be distracted by trying to retrieve the phone from the floor. Hence, storing such items on open surfaces is generally not a viable option. While most vehicles include storage locations for such personal items, storing the items generally requires the inconvenience of opening a compartment, such as a glove box in an automobile, and storing the items along with the other items already contained within the compartment. Once stored in such compartments, items are not visible to an individual and are not easily accessible should the individual wish to quickly access the items. Various solutions to the problem have been proposed. Most notably, special mounting devices have been used to secure items in the car. Such mounting devices typically have a base that is secured to some object in the vehicle, and a receiving portion to receive and hold the item. For example, some devices are configured to receive and hold a cell phone. Other devices are configured to receive and hold sunglasses. One disadvantage with such mounting devices is that they are typically customized to hold a particular item, or type of item, and are ill suited for other items. For example, a mounting device for a cell phone may not adequately hold sunglasses. Thus, it may be necessary to have several mounting devices within the vehicle, one for a cell phone, one for sunglasses, one for a GPS unit, etc. One disadvantage with having several mounting devices is that the vehicle appears cluttered. In addition, such mounting devices are typically sold as accessories, and thus add expense. Another disadvantage with such mounting devices is that they can permanently alter and devalue the vehicle. | <SOH> SUMMARY OF THE INVENTION <EOH>It has been recognized that it would be advantageous to develop a system and method to releaseably secure items to a surface without permanently altering the surface. In addition, it has been recognized that it would be advantageous to develop a system and method to releaseably secure items to a surface in a vehicle without permanently altering the vehicle surface, and allowing for ready retrieval of the object. In addition, it has been recognized that it would be advantageous to develop such a system and method capable of being used with various different items. In addition, it has been recognized that it would be advantageous to develop such a system and method capable of providing advertisement, and/or personalization or customization. The invention provides a frictional holding device to be disposed on a vehicle surface and to receive and secure an item thereon. The device includes a pad having different top and bottom surfaces. The bottom surface is to be disposed on the vehicle surface, and the top is to removably receive the item thereon. At least a substantial portion of the top surface is a contoured top surface with a plurality of protrusions or indentations. In accordance with another aspect of the present invention, the bottom surface can include a contoured bottom surface with a plurality of protrusions or indentations. In addition the bottom surface can have a lowermost contact surface to contact and frictionally cling to the vehicle surface. The contoured top surface can have an uppermost contact surface that is less than the lowermost contact surface of the bottom surface. In accordance with another aspect of the present invention, the contoured top surface can define an item receiving area extending at least substantially across the top of the pad. In accordance with another aspect of the present invention, at least a portion of the pad is at least translucent. In another aspect, the pad is at least translucent. The pd can be formed of polyurethane. The invention also provides a method for releasably securing an item on a vehicle surface without marring or altering the vehicle surface. A frictional holding pad is placed on the vehicle surface with a lowermost contact surface of the frictional holding pad contacting and frictionally clinging to the vehicle surface without marring or altering the vehicle surface. An item is placed on an uppermost contact surface of a contoured top surface of the frictional holding pad with the uppermost contact surface of the frictional holding pad frictionally clinging to the item. The uppermost contact surface is formed by indentations or protrusions in the contoured top surface. The contoured top surface extends substantially across a top of the frictional holding pad. The lowermost contact surface has a greater surface area than the uppermost contact surface. The item can be removed from the uppermost contact surface of the frictional holding pad while the frictional holding pad remains on the vehicle surface. In accordance with another aspect of the present invention, the vehicle surface can be viewed through at least a portion of the frictional holding pad that is at least translucent. Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention. | 20041222 | 20070807 | 20050915 | 96225.0 | 10 | AHMAD, NASSER | FRICTIONAL HOLDING PAD | SMALL | 1 | CONT-ACCEPTED | 2,004 |
|||
11,021,637 | ACCEPTED | System and method for integrated header, state, rate and content anomaly prevention with policy enforcement | The present invention provides an integrated prevention of header, state, rate and content anomalies along with network policy enforcement. A hardware based apparatus classifies layers 2, 3, 4 and 7 network data and maintains rate-thresholds through continuous and adaptive learning. In the process of classifying the packets, the apparatus can determine header and state anomalies and drop packets containing those anomalies. Accurate detection and prevention of layer 7 content anomalies is achieved using fragment assembly, TCP reorder and retransmission removal components, which also identify anomalies in those areas. Content inspection is achieved at high speed through a Content Inspection Engine. The apparatus integrates advantageous solutions to prevent anomalous packets and enables a policy based packet filter. | 1. An apparatus capable of enforcing network policies and preventing attacks related to header, state, rate and content anomalies, said apparatus comprising: a) a Packet Interface capable of receiving inbound/outbound packets, storing the packets in a memory buffer, releasing the packet with a packet-id to subsequent blocks for inspection, dropping the packets altogether, and sending the packets onto forensic ports based on a unified decision; b) a Classifier coupled to the Packet Interface and capable of classifying packets received from the Packet Interface, and retrieving layer 2, layer 3, layer 4, and layer 7 header information from the packets; c) a Header and State Anomaly Prevention Engine coupled to the Classifier via a classification bus and capable of determining layers 2, 3, 4, and 7 header and state anomalies; d) a Continuous and Adaptive Rate Anomaly Prevention Engine coupled to the classification bus and capable of determining and estimating rate thresholds for layers 2, 3, 4, and 7 parameters and subsequently determining rate anomalies for these parameters; e) a Recon Prevention Engine coupled to the classification bus and capable of determining recon activities at layers 3 and 4; f) a Content Anomaly Engine coupled to the classification bus and capable of determining known attacks using signatures; g) a Policy Lookup Engine coupled to the classification bus and capable of determining policy violation in packets; and h) a Decision Multiplexer for generating the unified decision about a packet-id based on information received from a plurality of sources including the Header and State Anomaly Prevention Engine, the Continuous and Adaptive Rate Anomaly Prevention Engine, the Recon Prevention Engine, the Content Anomaly Engine, and the Policy Lookup Engine. 2. The apparatus of claim 1, further comprising: a host interface for setting necessary data structures in memory of logic blocks through host commands. 3. The apparatus of claim 1, further comprising: copper interfaces, fiber interfaces, or a combination of both, through which the Packet Interface receives the inbound/outbound packets. 4. The apparatus of claim 1, wherein the Classifier further comprises: layers 2, 3, 4, and 7 classifiers; a Fragment Reassembly Engine for assembling the packets; a Transmission Control Protocol (TCP) Reorder Processing and Retransmission Removal Engine for ordering the assembled packets; and a Protocol Normalization Engine for normalizing the ordered packets. 5. The apparatus of claim 4, wherein the Fragment Reassembly Engine performs fragment reassembly to accurately classify packets at layer 4; and wherein the Fragment Reassembly Engine provides statistics for rate anomalies for fragmented packets and header anomalies for packets with fragmentation related anomalies. 6. The apparatus of claim 5, wherein the TCP Reorder Processing and Retransmission Removal Engine performs TCP reordering and retransmission removal at layer 4 to accurately classify fragment-assembled packets for content inspection at layer 7; and wherein the TCP Reorder Processing and Retransmission Removal Engine operates to isolate packets with retransmission anomalies. 7. The apparatus of claim 6, wherein the Protocol Normalization Engine performs protocol normalization on the assembled and ordered packets to accurately classify these packets for content inspection at layer 7; and wherein the Protocol Normalization Engine operates to isolate packets with content anomalies. 8. The apparatus of claim 4, further comprising: a Multi-rule Search Engine for isolating a rule-set that matches a given packet among a set of rules based on the given packet's network parameters identified by the layer 2, 3, 4 and 7 classifiers; a Rule Matching Engine for validating each rule from the rule-set identified by Multi-rule Search Engine; a Content Inspection Engine for providing necessary stateful content inspection; a Stateful Sub-rule Traversal Engine operating along with the Rule Matching Engine and the Content Inspection Engine to statefully parse signatures across the packets and validate packets that match all signatures; and an Event Queuing Engine for the Rule Matching Engine to deposit events related to content matches, the Event Queuing Engine later combines and prioritizes all events for a given packet and outputs a corresponding decision to the Decision Multiplexer. 9. The apparatus of claim 8, wherein the Content Inspection Engine further comprises: a first engine for matching an incoming string against a set of strings in a single pass; a second engine for matching the incoming single string with the packet's substrings; a third engine for converting the packet's substrings into numbers usable as offsets or limits; and a fourth engine for comparing the packet's substrings. 10. The apparatus of claim 1, further comprising: a Layer 2 Rate Anomaly Meter for detecting and preventing Layer 2 rate anomalies in layer 2 parameters; a Layer 3 Rate Anomaly Meter for detecting and preventing Layer 3 rate anomalies in layer 3 parameters; a Layer 4 Rate Anomaly Meter for detecting and preventing Layer 4 rate anomalies in layer 4 parameters; and a Layer 7 Rate Anomaly Meter for detecting and preventing Layer 7 rate anomalies in layer 7 parameters. 11. The apparatus of claim 10, wherein layer 2 parameters include Address Resource Protocol (ARP), Reverse ARP (RARP), Broadcast, Multicast, Non-Internet Protocol (IP), Virtual Local Area Network (VLAN), and Double Encapsulated VLAN; layer 3 parameters include Source, Destination, Type of Service (TOS), IP Options, Fragmented Packets, and Protocols; layer 4 parameters include TCP Ports, User Datagram Protocol (UDP) Ports, Internet Control Message Protocol (ICMP) Type/Codes, synchronization (SYN) packets, and Connection Rates; and layer 7 parameters include Hyper-Text Transfer Protocol (HTTP) Requests, HTTP Replies, File Transfer Protocol (FTP) Requests, FTP Replies, TELNET commands and replies, Domain Name Service (DNS) queries and replies, Simple Mail Transfer Protocol (SMTP) commands and replies, Postal Office Protocol (POP) commands and replies, and Remote Procedure Call (RPC) methods and replies. 12. A system for enforcing network policies and preventing attacks related to header, state, rate and content anomalies, said system comprising: a controlling host; an apparatus coupled to the controlling host, comprising: a) a Packet Interface for receiving inbound/outbound packets, storing the packets in a memory buffer, releasing the packet with a packet-id to subsequent blocks for inspection, dropping the packets altogether, and sending the packets onto forensic ports based on a unified decision; b) a Classifier coupled to the Packet Interface and capable of classifying packets received from the Packet Interface, and retrieving layer 2, layer 3, layer 4, and layer 7 header information from the packets; c) a Header and State Anomaly Prevention Engine coupled to the Classifier via a classification bus and capable of determining layers 2, 3, 4, and 7 header and state anomalies; d) a Continuous and Adaptive Rate Anomaly Prevention Engine coupled to the classification bus and capable of determining and estimating rate thresholds for layers 2, 3, 4, and 7 parameters and subsequently determining rate anomalies for these parameters; e) a Recon Prevention Engine coupled to the classification bus and capable of determining recon activities at layers 3 and 4; f) a Content Anomaly Engine coupled to the classification bus and capable of determining known attacks using signatures; g) a Policy Lookup Engine coupled to the classification bus and capable of determining policy violation in packets; and h) a Decision Multiplexer for generating the unified decision about a packet-id based on information received from a plurality of sources including the Header and State Anomaly Prevention Engine, the Continuous and Adaptive Rate Anomaly Prevention Engine, the Recon Prevention Engine, the Content Anomaly Engine, and the Policy Lookup Engine; and i) a host interface for setting necessary data structures in memory of logic blocks through host commands. 13. The system of claim 12, wherein the Classifier further comprises: layers 2, 3, 4, and 7 classifiers; a Fragment Reassembly Engine for assembling the packets and providing statistics for rate anomalies for fragmented packets and header anomalies for packets with fragmentation related anomalies; a TCP Reorder Processing and Retransmission Removal Engine for ordering the packets and isolating packets with retransmission anomalies; and a Protocol Normalization Engine for normalizing the packets and isolating packets with content anomalies. 14. The system of claim 13, further comprising: a Multi-rule Search Engine for isolating a rule-set that matches a given packet among a set of rules based on the given packet's network parameters identified by the layer 2, 3, 4 and 7 classifiers; a Rule Matching Engine for validating each rule from the rule-set identified by Multi-rule Search Engine; a Content Inspection Engine for providing necessary stateful content inspection; a Stateful Sub-rule Traversal Engine operating along with the Rule Matching Engine and the Content Inspection Engine to statefully parse signatures across the packets and validate packets that match all signatures; and an Event Queuing Engine for the Rule Matching Engine to deposit events related to content matches, the Event Queuing Engine later combines and prioritizes all events for a given packet and outputs a corresponding decision to the Decision Multiplexer. 15. The system of claim 14, wherein the Content Inspection Engine further comprises: a first engine for matching an incoming string against a set of strings in a single pass based on a Deterministic Finite Automaton in a memory efficient manner; a second engine for matching the incoming single string with the packet's substrings; a third engine for converting the packet's substrings into numbers usable as offsets or limits; and a fourth engine for comparing the packet's substrings using stored Perl Compatible Regular Expression automata. 16. The system of claim 12, further comprising: a Layer 2 Rate Anomaly Meter for detecting and preventing Layer 2 rate anomalies in layer 2 parameters; wherein layer 2 parameters include ARP, RARP, Broadcast, Multicast, Non-IP, VLAN, and Double Encapsulated VLAN; a Layer 3 Rate Anomaly Meter for detecting and preventing Layer 3 rate anomalies in layer 3 parameters; wherein layer 3 parameters include Source, Destination, TOS, IP Options, Fragmented Packets, and Protocols; a Layer 4 Rate Anomaly Meter for detecting and preventing Layer 4 rate anomalies in layer 4 parameters; wherein layer 4 parameters include TCP Ports, UDP Ports, ICMP Type/Codes, SYN packets, and Connection Rates; and a Layer 7 Rate Anomaly Meter for detecting and preventing Layer 7 rate anomalies in layer 7 parameters; wherein layer 7 parameters include HTTP Requests, HTTP Replies, FTP Requests, FTP Replies, TELNET commands and replies, DNS queries and replies, SMTP commands and replies, POP commands and replies, and RPC methods and replies. 17. The system of claim 12, wherein the controlling host is capable of reading the maximum packet rates at a regular interval for network parameters at layers 2, 3, 4 and 7 and of using those rates to populate the rate thresholds for those network parameters, thereby enabling the apparatus to determine and prevent rate anomalies. 18. The system of claim 12, wherein the controlling host is capable of populating state transition tables, output tables and data structures in DRAM, SRAM and BRAM via host commands. 19. The system of claim 12, wherein the controlling host is capable of populating policies for network access, rate anomalies, state anomalies, header anomalies, retrieving information on events related to packets that violate the populated policies; and logging policy violation events for analysis. 20. The system of claim 14, further comprising: a set of copper and fiber line interfaces; a quad-port gigabit transceiver coupled to the line interfaces, the transceiver allowing 10, 100 and 1000 Mbps full-duplex operation; a quad-port Media Access Controller coupled to the transceiver; a set of Field Programmable Gate Arrays or a single chip implementing the Classifier, the Header and State Anomaly Prevention Engine, the Continuous and Adaptive Rate Anomaly Prevention Engine, the Recon Prevention Engine, the Content Anomaly Engine, the Rule Matching Engine, and the Content Inspection Engine; a Network Search Engine implementing the Policy Lookup Engine and performing rule matching operations; and a Peripheral Component Interconnect bridge implementing the host interface. | CROSS-REFERENCE TO RELATED APPLICATIONS The present invention relates to co-pending U.S. patent applications Ser. No. 10/759,799, filed Jan. 15, 2004, entitled “METHOD AND APPARATUS FOR RATE BASED DENIAL OF SERVICE ATTACK DETECTION AND PREVENTION” and U.S. patent applications Ser. No. 10/984,244, filed Nov. 08, 2004, entitled “LAYERED MEMORY ARCHITECTURE FOR DETERMINISTIC FINITE AUTOMATON BASED STRING MATCHING USEFUL IN NETWORK INTRUSION DETECTION AND PREVENTION SYSTEMS AND APPARATUSES,” which are incorporated herein by reference. FIELD OF THE INVENTION The present invention relates generally to intrusion prevention and more particular to an integrated system and methods for the prevention of network header, state, rate, and content anomalies with policy enforcement. DESCRIPTION OF THE BACKGROUND ART Intrusion prevention appliances have been widely available in the last few years. Published U.S. patent application Nos. 20030004688, 20030004689, 20030009699, 20030014662, 20030204632, 20030123452, 20030123447, 20030097557, and 20030041266 disclose systems, methods and techniques that primarily focused on content, header and state anomaly based intrusion prevention with little or no emphasis on adaptive rate anomalies. These prior systems find rate anomalies using either a profile based approach or fixed thresholds. As one skilled in the art knows, internet attacks have been growing in complexity and have been more wide-spread due to a variety of readily available attack toolkits. To protect critical resources, a new intrusion prevention method and system is therefore necessary to thwart attacks on these fronts at line-speeds available today. The present invention addresses this need. SUMMARY OF THE INVENTION The present invention fulfills the aforementioned need and desire for a new intrusion prevention system, method and apparatus with a single appliance that is capable of protecting critical servers and networks from protocol header, state, rate and content anomalies while enforcing network policies. While it is impossible to predict the behavior of all types of future attacks, current trends in attacks lead to certain known categories of attacks, viz. pre-attack probes, header anomalies, state anomalies, rate anomalies and content anomalies. Some of these known attacks can be prevented using policy lookup. Policies such as denying protocols, ports, IP-address ranges can in fact deny several types of known attacks. The inventive system disclosed herein provides copper and optical connectivity. A Packet Interface block interfaces with external network through a PHY and a MAC device and buffers packets until a decision has been made about them. A Classifier interfaces with Packet interface to classifier. The Rate Anomaly Meters receive classifier output and maintain the instantaneous packet-rates and compare against the thresholds set adaptively and continuously by the controlling host. If the specific type of packets exceeds the rate threshold, packets of that type or belonging to that group are discarded for a certain time period. The anomaly engines drop packets that have header or state anomalies in different layers of protocol. A fragment reassembly engine reassembles any fragments according to processes well-known in the art. Assembled or unfragmented packets are then sent to an engine that removes any reordering issues or retransmission anomalies for TCP packets. Ordered TCP as well as non-TCP packets are then sent to relevant protocol normalization engines. The derived layers 2, 3, 4 and 7 header-parameters and state information are then used by the Multi-rule search engine to find a rule-set that matches the incoming packet. A rule-matching engine drives the content inspection engine to validate if contents of the packet match any of the anomalous signatures. A Stateful sub-rule traversal engine then validates if further contents of the packet meet sub-signatures of the rule. If a rule match is found, it is added to the event queue corresponding to the packet. A packet may match multiple rules. After all the rules matches have been performed, a decision multiplexer picks the highest priority rule match and informs the MAC interface whether to let the packet through or to drop the packet. Allowed packets are then sent out. An object of the present invention is to provide a high-rate hardware based integrated system and method of preventing network packets across, the packets having layers 2, 3, 4, and 7 header anomalies; layers 2, 3, 4, and 7 state transition and state based anomalies; layers 2, 3, 4, and 7 rate anomalies as detected by the system which is continuously and adaptively adjusting rate thresholds; characteristics of network probes or reconnaissance as detected by certain meters; content anomalies as defined by a set of content rules; or violate network policies as set by a system administrator. Still further objects and advantages of the present invention will become apparent to one skilled in the art upon reading and understanding the preferred embodiments described below with reference to the following drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an exemplary apparatus embodying the present invention. FIG. 2 schematically shows architectural details of FIG. 1, depicting some of the key components necessary to implement a system according to the present invention. FIG. 3 illustrates further details of the Content Inspection Engine of FIG. 2. FIG. 4 illustrates an exemplary apparatus embodying exemplary hardware components implementing the architecture of FIG. 2. DETAILED DESCRIPTION The present invention provides an integrated intrusion prevention solution. A single hardware based appliance integrates a plurality of mechanisms to prevent different anomalies and enables a policy based packet filter. FIG. 1 depicts an exemplary apparatus 101 illustrating the functionality of an integrated system 100 for the prevention of network attacks. The four main components are the Header and State Anomaly Prevention 110, the Continuous Adaptive Rate Anomaly and Reconnaissance Prevention 111, the Content Anomaly Prevention 112, and the Policy Lookup Engine 113. Network inbound packets 102 enter the apparatus 101 and exit as cleansed inbound packets 104. Similarly, network outbound packets 103 enter the apparatus 101 and exit as cleansed outbound packets 105. The dropped packets make the difference between packets at ingress and at egress. For the purpose of forensic analysis, these dropped packets are routed to two forensic ports viz. the Dropped Inbound Packets 106, and the Dropped Outbound Packets 107. Packets entering the system 100 are buffered in the Packet Interface block 108. A copy of these packets is passed to the Classifier 109 which passes on the header and other relevant information over the Classification bus 115 to the subsequent blocks for decision making. The Packet Interface block 108 receives a multiplexed decision about each packet buffered within and either allows the packets or drops the packets. The drop packets are optionally copied to the forensic ports 106 and 107. The decision making operation of determining which packets need to be dropped is handled by the four major blocks, viz. the Header and State Anomaly Prevention 110, the Rate Anomaly and Reconnaissance Prevention 111, the Content Anomaly Prevention 112, and the Policy Lookup Engine 113. They send the results to the Decision Multiplexer 114 via the Decision bus 116. A controlling host uses the Host Interface 118 to read the controlling parameter and set the parameters of different blocks via the Host Interface Bus 117. The controlling host also reads events related to policy violations and anomalies. In some embodiments, these events are subsequently logged and/or analyzed. The Header Anomaly Prevention block within 110 prevents packets that have layers 2, 3, 4 and 7 header anomalies according to protocols under consideration. For example, in an exemplary embodiment of this invention, layer 3 header anomaly prevention looks for packets that are marked IPV4 packets in layer 2 header but do not have version 4 in the IP header. Similarly, besides other anomalies, layer 4 header anomaly prevention block looks for TCP packets that have illegal flag combinations such as SYN and FIN set together. In an exemplary embodiment of this invention, the layer 7 header anomaly prevention block looks for anomalous behavior such as non-HTTP traffic on port 80. The State Anomaly Prevention block within 110 prevents packets that violate standard state transitions in protocols. In an exemplary embodiment of this invention, the layer 4 state anomaly prevention block prevents packets that do not belong to any established connection and have ACK bit on in the TCP flags. In an exemplary embodiment of this invention, the layer 7 state anomaly prevention block prevents HTTP packets that have a GET as the method, but do not have a valid URI parameter. The Continuous and Adaptive Rate Anomaly Prevention block within 112 prevents instantaneous rate anomaly as detected through continuous and adaptive learning. In an exemplary embodiment of this invention, rate anomalies at network layers 2, 3, 4 and 7 are to be detected and prevented by this block. As an example, TCP option rate anomaly is prevented by seeing/detecting packets with a specific TCP option type exceeding their adaptively learnt threshold. The Reconnaissance Prevention block within 112 prevents reconnaissance (recon) activities. In an exemplary embodiment of this invention, as an example, one of the recon prevention schemes is implemented utilizing a port-scan counter. The Content Anomaly Prevention block 112 prevents packets that match known signature of attacks in the application content of the packet. In an exemplary embodiment of this invention, these rules consist of signatures in the packet anywhere or within specifically parsed areas of the packets such as HTTP URI, or other parameters. In an exemplary embodiment of this invention, necessary packet normalization for accurate content inspection may be supplemented with processing such as fragment reassembly, TCP assembly, reordering, retransmission removal, URI normalization, etc. The purpose of such normalization is to send normalized packets for content inspection. The Policy Lookup engine 113 prevents packets that violate the network policies set by an administrator. In an exemplary embodiment of the current inventions, the policies are set by the administrator and consist of rules which allow or deny packets based on interface, source IP address, destination IP address, IPV4 or IPV6 protocol, source port, destination port, and/or ICMP type and code. The Decision Multiplexer block 114 receives decisions from decision making blocks 110, 111, 112, and 113 over the Decision bus 116 and combines them as a single decision and forwards them to the Packet Interface block 108. The controlling host can read the control registers and set them to manage the functionality of different components. The Host Interface block 118 accesses other blocks through the Host Interface Bus 117. The controlling host can also read the statistics related to packets being dropped due to anomalies or policy violation. The controlling host can then use this data for logging and analysis. FIG. 2 illustrates further details of the system 100 from FIG. 1. Packet Interface 201 receives packets, buffers them, releases a copy of the packets to the subsequent logic, re-releases another copy of the packets held upon order from certain blocks, awaits decisions and subsequently either transmits them further or drops and/or transmits them on forensic ports. The Classifier 109 is further illustrated in detail through the Layer 2 Classifier 202, the Layer 3 Classifier 203, the Fragment Reassembly Engine 204, the TCP Reorder Processing and Retransmission Removal Engine 205, the Layer 4 Classifier 206, the Layer 7 Classifier 207, and the Protocol Normalization Engine 208. The Layer 2 Classifier 202 receives frames from Packet Interface 201 and classifies packets based on their layer 2 characteristics. It parses the layer 2 headers and passes that information to subsequent logic blocks over the Classification Bus 223. In an exemplary embodiment of this invention, this block can parse Ethernet frames and IEEE 802.2/3 frames and can determine ARP, RARP, Broadcast, Multicast, non-IP, VLAN tagged frames, and double encapsulated VLAN tagged frames. The Layer 3 Classifier 203 receives packet data as well as layer 2 classifier information from the Layer 2 Classifier 202. It extracts the layer 3 header information in IPV4 and IPV6 headers and passes it on to the subsequent logic over the Classification Bus 223. In some embodiments of this invention, the Classifier parses IPV4 and IPV6 packets and determines properties such as TOS, IP Options, fragmentation, and layer 4 protocol. The Fragment Reassembly Engine 204 receives layer 3 header information from the Layer 3 Classifier 203 as well as the packet data. In cases where the Layer 3 Classifier 203 informs that this packet is a fragmented packet, the Fragment Reassembly Engine 204 requests the Packet Interface Block 201 to hold the packet. It also informs subsequent blocks not to inspect the packet as it is not yet assembled. It stores the information about fragments in its internal data-structures related to reassembly. Packets that are not fragmented are passed through. A timeout based mechanism is then used to wait until all the fragments that belong together have been received. An ager based mechanism periodically wakes up and determines whether some fragments are over-age and discards them from memory. Once the Fragment Reassembly Engine 204 determines that all fragments are in-order and do not violate any fragmentation related anomalies, it requests the Packet Interface Engine 201 to re-release them in-order. These packets are then passed through the subsequent blocks in order for further inspection. The Fragment Reassembly Engine 204 therefore guarantees that blocks subsequent to it always receive datagram fragments in-order. The Fragment Reassembly Engine 204 also determines whether there are fragmentation related anomalies and, if so, marks those packets as invalid and informs the decision to the Decision Multiplexer 222 over the Decision Bus 224. The techniques necessary to achieve fragment assembly as well as fragmentation related anomaly prevention are well known to those skilled in the art and thus are not further described herein. The allowed assembled packets leave as original unmodified packets with their own packet ID, but they leave the Fragment Reassembly Engine 204 in order so that subsequent blocks can inspect the content in order. The Layer 4 Classifier 205, similarly, parses the layer 4 information from packets that are guaranteed to be free of fragmentation. In an exemplary embodiment of this invention this classifier looks at TCP, UDP, ICMP, IPSec-ESP, and IPSec-AH headers. This information is passed to the subsequent blocks over the Classification Bus 223. In an exemplary embodiment of this invention, this classifier can parse layer 4 information such as TCP Options, TCP ports, UDP Ports, ICMP types/codes, TCP flags, sequence numbers, ACK numbers etc. Packets that are anomalous are dropped. The TCP Reordering Processing and Retransmission Removal Engine 206 receives classified packets from the Layer 4 Classifier 205. It only monitors TCP packets and it passes the rest further to subsequent blocks for further inspections. It creates connection states in memory tables and ensures that packets follow well-known TCP state transitions. Packets that are anomalous are dropped through a decision sent over the Decision Bus 224 to the Decision Multiplexer 222. In a preferred embodiment of this invention, this block further checks whether the packet's TCP sequence number is in order and within the receiver's window. Packets that are outside the window are dropped through the Decision Multiplexer 222. Packets that are in-order and not retransmissions are passed through. For all packets within the window that have not been acknowledged yet, a CRC based checksum is saved as part of the state for the connection. It requests subsequent blocks not to inspect the packets which are out of order. It holds data structure related to such packets in memory. For every such packet stored in memory, a self-generated ACK is sent to the sender to facilitate quicker reordering. A timeout based mechanism is then used to wait until expected sequence number arrives for the connection. An ager based mechanism periodically wakes up and determines whether some packets are over-age and discards them from memory. The ordered packets are then passed through the subsequent blocks in order for further inspection. This way, the subsequent blocks can always assume that TCP packets will always be in-order. The engine 206 also determines whether there are retransmission related anomalies and, if so, marks those packets as invalid and informs the decision to the Decision Multiplexer 222 over the Decision Bus 224. Retransmission anomalies are determined using the CRC based checksum stored. Retransmitted packets that are equal or larger than the previous transmission can be determined to be anomalous through a CRC comparison. Retransmissions that are smaller than earlier transmission are discarded. The techniques necessary to achieve TCP reordering as well as retransmission related anomaly prevention are well known to those skilled in the art and thus are not further described herein. The allowed ordered packets leave as original unmodified packets with their own packet ID, but they leave the engine 206 in order so that subsequent blocks can inspect the content in order. The Layer 7 Classifier 207 receives un-fragmented IP, ordered TCP and other packets, and parses layer 7 header information. In an exemplary embodiment of this invention, this block parses headers of protocols such as FTP, HTTP, TELNET, DNS, SMTP, POP, RPC, etc. It does so using stateful parsing techniques well-known to those aware of the art. In an embodiment of this invention, the FTP classifier within 207 determines the commands and replies being used in the FTP packets. Commands parsed include USER,PASS, ACCT, CWD, CDUP, SMNT, REIN, QUIT, PORT, PASV, TYPE, STRU, MODE, RETR, STOR, STOU, APPE, ALLO, REST, RNFR, RNTO, ABOR, DELE, RMD, MKD, PWD, LIST, NLST, SITE, SYST, STAT, HELP, NOOP. 3-digit reply codes are parsed as well and grouped as positive and negative. In an embodiment of this invention, the HTTP classifier within 207 determines the requests and replies being used in the HTTP packets. Requests are parsed as Method, Request-URI, Request-Header Fields, and HTTP-Version. The Method is further classified as OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, CONNECT, and extension methods. The request URI is isolated and passed further. Request-Header Fields such as Accept-Charset, Accept-Encoding, Accept-Language, Authorization, Expect, From, Host, If-Match, If-Modified-Since, If-None-Match, If-Range, If-Unmodified-Since, Max-Forwards, Proxy-Authorization, Range, Referer, TE, User-Agent. 3-digit status codes are parsed as well and grouped as positive and negative. In an embodiment of this invention, the TELNET classifier within 207 determines the telnet commands. The commands classified are SE, NOP, Data Mark, Break, Interrupt Process, Abort Output, Are you there, Erase character, Erase line, Go ahead, SB, WILL, Won't, Do, Don't and IAC. In an embodiment of this invention, the TELNET classifier within 207 determines the telnet commands. The commands classified are SE, NOP, Data Mark, Break, Interrupt Process, Abort Output, Are you there, Erase character, Erase line, Go ahead, SB, WILL, Won't, Do, Don't and IAC. In an embodiment of this invention, the DNS classifier within 207 parses the DNS queries. The parser breaks the DNS message into Header, Question, Answer, Authority, and Additional sections. The header is further parsed to determine whether the message is a query, response or some other code. The Question section is further parsed as QNAME, QTYPE and QCLASS. The Answer section is further classified as resource record (RR) consisting of Domain Name, Type, Class, TTL, and Resource data length. In an embodiment of this invention, the SMTP classifier within 207 parses the SMTP commands and replies. The commands are further parsed as EHLO, HELO, MAIL, RCPT, DATA, RSET, VRFY, EXPN, HELP, NOOP, and QUIT. Replies are further decoded as positive and negative. In an embodiment of this invention, the POP classifier within 207 parses the POP commands and responses. The commands are further parsed as USER, PASS, APOP, QUIT, STAT, LIST, RETR, DELE, NOOP, RSET, TOP, UIDL, and QUIT. Responses are further decoded as positive and negative. In an embodiment of this invention, the RPC classifier within 207 parses the RPC message. The message is parsed as transaction id, followed by the call or reply. The call is further parsed as RPC version, program number, version number, procedure and the rest of the call body. The reply is further parsed as accepted or denied. Protocol Normalization Engine 208 receives classified packets and normalizes the parsed data so that it can be inspected for content anomalies. In a preferred embodiment of the invention, the normalization is done for URI portion of the within HTTP. The normalizations include Hex-encoding, Double Percent Hex-encoding, Double Nibble Hex Encoding, First Nibble Hex Encoding, Second Nibble Hex Encoding, UTF-8 Encoding, UTF-8 Bare Byte Encoding, Unicode, Microsoft % U encoding, Alt-Unicode, Double encode, IIS Flip Slash, White-space, etc. In a preferred embodiment of this invention the normalization is done for RPC records by consolidating records broken into more than one record fragment into a single record fragment. In a preferred embodiment of this invention, the TELNET protocol normalization removes negotiation sequences. This normalization prunes negotiation code by copying all non-negotiation data from the packet. In a preferred embodiment of this invention, the TELNET normalization is also performed on the FTP packets. The Continuous and Adaptive Rate Anomaly block within 111 is further illustrated in the Layer 2 Rate Anomaly Meters 209, the Layer 3 Rate Anomaly Meters 211, the Layer 4 Rate Anomaly Meters 213, and the Layer 7 Rate Anomaly Meters 215. The meters 209, 211, and 213 continuously and adaptively determine rate thresholds for layers 2, 3 and 4 network parameters and determine whether flood is occurring for any of the parameters. A controlling host uses the Host Interface 225 to learn the rate and set the threshold. All the meters support a two way communication with the host through the Host Interface Bus 226. The above referenced co-pending U.S. patent application Ser. No. 10/759,799, entitled “METHOD AND APPARATUS FOR RATE BASED DENIAL OF SERVICE ATTACK DETECTION AND PREVENTION,” discusses in detail how rate based denial of service attacks can be prevented using a continuous and adaptive learning approach for layers 2, 3 and 4 based attacks. The Layer 7 Rate Anomaly Meters 215 continuously and adaptively determine rate thresholds for layer 7 network parameters and determine whether flood is occurring for any of the parameters. In an exemplary embodiment of this invention, the apparatus 101 can detect and prevent following application layer floods: HTTP Request Type Floods, HTTP Failure Floods, FTP Request Floods, and FTP Failure Floods. According to the invention, a HTTP Request Rate Anomaly Meter prevents different request methods such as GET, PUT, POST etc. from being used more often than the previously observed threshold. A HTTP Failure Floods Meter prevents http failure floods where a single source continuously fails in getting an HTTP request serviced through HTTP negative reply status code above 400. A FTP Request Rate Anomaly Meter prevents different request methods such as RETR, STOR, USER, PORT, ABOR, etc. from being used more often than the previously observed threshold. A FTP Failure Floods prevents FTP failure floods where a single source continuously having negative replies above code 400. The Host Interface Bus 226 is used to inform the controlling host, via the Host Interface 225, of the continuous rates being learnt so that the controlling host can adaptively set the thresholds for layer 7 Rate Anomaly Meters 215. The Recon Prevention sub-block within 111 is further illustrated in the Layer 3 Recon Prevention sub-block within 211 and the Layer 4 Recon Prevention sub-block within 213. The Layer 3 Recon Prevention sub-block within 211 prevents reconnaissance activity at layer 3. In an exemplary embodiment of this invention, this block prevents IP-address scanning, using information received from the layer 3 classifier and determines whether a single source is connecting to many IP addresses within a short interval. In another embodiment of this invention, this block prevents dark-address scanning, using information received from the layer 3 classifier and determines whether a source is scanning unused IP address ranges. The Layer 4 Recon Prevention sub-block within 213 prevents reconnaissance activity at layer 4. In an exemplary embodiment of this invention, this block prevents port-scanning, using information received from the layer 3 and layer 4 classifiers and determines whether a single source is connecting to many layer 4 TCP/UDP ports within a short interval. The Header and State Anomaly Prevention block within 110 is further illustrated in the Layer 2 Anomaly Engine 210, the Layer 3 Anomaly Engine 212, the Layer 4 Anomaly Engine 214, and the Layer 7 Anomaly Engine 216. The Engines 210, 212, 214 and 216 receive corresponding classifier outputs over the Classification Bus 223 and determine whether the header has any anomaly or whether the state transition due to header values leads to anomalies. The packets determined to be anomalous are dropped via a decision sent over the Decision Bus 224 to the Decision Multiplexer 222. In some embodiments, the Layer 3 Anomaly Engine 212 detects and prevents IPV4 packets that have one or more of the following anomalies: invalid IP header checksum, version other than 4, source or destination equivalent to local host, same source and destination, end of packet before 20 bytes, end of packets before the length specified by total length, end of packet while parsing options, option length less than 3, time to live is 0, protocol corresponding to ipv6, etc. In some embodiments, the Layer 3 Anomaly Engine 212 detects and prevents IPV6 packets that have one or more of the following anomalies: version other than 6, source or destination equivalent to local host, same source and destination, end of packet before the header, end of packet in the middle of the headers, end of packet while parsing options, same extension header occurring more than once, hop-limit of 0, Protocol corresponding to ipv4, etc. In some embodiments, the Layer 3 Anomaly Engine 212 also prevents fragmented packets that have over assembly related anomalies as detected by Fragment Assembly Engine 204. In some embodiments, the Layer 4 Anomaly Engine 214, detects and prevents TCP packets that have one or more of the following anomalies: data offset less than 5, TCP checksum error, illegal TCP flag combinations, urgent flag set, but urgent pointer is zero, end of packet before 20 bytes of TCP header, length field in window scale option is other than 3, TCP Option length is less than 2, etc. In some embodiments, the Layer 4 State Anomaly Engine 214, detects and prevents UDP packets that have one or more of the following anomalies: optional UDP checksum error, end of packet before 8 bytes of UDP header, etc. In some embodiments, the Layer 4 State Anomaly Engine 214 detects and prevents TCP packets that violate valid state transitions that are expected by standard TCP state machines. For this purpose, it receives information from the Layer 4 Classifier 205 and the TCP Reorder Processing and Retransmission Removal Engine 206. Packets that are outside the receiver's window as maintained by the state table are also dropped for being anomalous. Retransmitted packets that are determined by the Retransmission Removal engine 206 to be different from the original transmission are also dropped by the Layer 4 State Anomaly Engine 214. In some embodiments, the Layer 7 Anomaly Engine 216 prevents state transition anomalies at layer 7 protocols such as HTTP, e.g., the GET keyword for request method must be followed by a URI. Similarly, the FTP protocol Anomaly Engine within 216 can identify requests that are within the allowed requests as defined in the RFC. The Content Anomaly Prevention block 112 is further illustrated via its sub-components Multi-Rule Search Engine 217, Rule Matching Engine 218, Stateful Sub-rule Traversal Engine 219, Event Queuing Engine 220, and Content Inspection Engine 221. The Multi-rule Search Engine 217 gets classification information from the Classification Bus 223. Part of this information, viz. Interface, Source IP Address, Destination IP Address, Protocol, Source Port, and Destination Port, is used to first search through a search engine to determine whether the packet violates any policies. If so, the packet is dropped through a decision conveyed over the Decision Bus 224 to the Decision Multiplexer 222. If the search matches certain rules and requires further content inspection, the Rule Matching Engine 218 sends the assembled, ordered, normalized data to the Content Inspection Engine 221. An external host loads the contents of the BRAM, SRAM, and DRAM of the Content Inspection Engine 221 with necessary signatures corresponding to the rule-sets through the Host Interface 225 over the Host Interface Bus 226. The Content Inspection Engine 221 can start the initial state at a specific point where the last match for the previous packet had occurred. This helps in statefully matching the strings across packets. Once the Rule Matching Engine 218 determines, via the Content Inspection Engine 221, that the packet matches at least one of the signatures, it needs to statefully walk through all the optional sub-signatures within the rule. The statefulness is required because the signatures may be split across fragmented packets or reordered packets. For this purpose, the state of the last match where it was left is kept in the memory for the specific connection. Once all signatures are found to be present in the packet, the rule is said to be matched. Such a match is denoted as an event. This event is queued against the packet's ID in the Event Queuing Engine 220. A packet may match multiple such events. A priority scheme within the Event Queuing Engine 220 picks the highest priority event from the determined events for the packet and informs the corresponding decision to the Decision Multiplexer 222 over the Decision Bus 224. Blocks such as 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, and 220 inform of their decision, whether to drop the packet or not, to the Decision Multiplexer 222. FIG. 3 illustrates further details of the Content Inspection Engine block 221 from FIG. 2. In an exemplary embodiment of this invention, the Content Inspection Engine 221 contains 4 types of content inspection blocks. These are Set-wise String Matching Engine 301, String Conversion Engine 302, String Comparison Engine 303, and Perl Compatible Regular Expression Engine 304. Together these four engines provide the necessary stateful content inspection capability. The Packet Buffers 305 (PB0 through PB27) allow incoming packets to be buffered until all processing has been done on them. Once a packet buffer is filled and available for processing, the Load Balancing Arbiter assigns 306 the buffer to an available processing engine out of the available pool from 301, 302, 303 and 304, depending on the type of requested operation. This is done in a way to optimize the resources. The packet data arrives from the preceding blocks via the Packet Data signal 318 with a corresponding Packet ID 319. The preceding block can flush the packet using the Flush Packet signal 320 and the corresponding Packet ID 319, after all the processing has been completed on the packet. The Operation Code on the packet buffer is identified using Op Code signal 312. This can be one of the four corresponding to the four engines. Other parameters such as Initial State 313, Case-no-case 314, Offset 315, Limit 316, and Matching Rule-set/String ID 317, are provided to the engines through the input interface. The engines provide (output) the following parameters: Last State 321, Offset 322, Matched Output ID 323, corresponding Packet ID 324, match 325, no match 326, and partial match 327. These are used by the preceding blocks, i.e., the Rule Matching Engine 218, and the Stateful Sub-rule Traversal Engine 219. The engines use the RAM 308, the SRAM 309, and the DRAM 310 per their needs for storage of states, strings, outputs, and any other relevant data structures. These memory areas are initialized through the Host Interface 307 by the controlling host using the Host Commands 311. The host can also read statistics related to matches and errors using 307 and 311. For set-wise string matching at high rate, the set-wise rule matching engine 301 advantageously utilizes the innovative layered memory architecture, system, and method disclosed in the above-referenced co-pending U.S. patent application Ser. No. 10/984,244, entitled “LAYERED MEMORY ARCHITECTURE FOR DETERMINISTIC FINITE AUTOMATON BASED STRING MATCHING USEFUL IN NETWORK INTRUSION DETECTION AND PREVENTION SYSTEMS AND APPARATUSES.” The String Conversion Engine 302 allows the strings in various formats such as hexadecimal, decimal, octal, binary to be converted to numbers. The String Comparison Engine 303 compares incoming packet's sub-strings with signature-strings stored in DRAM at given offsets and within limits. The PCRE Engine 304 matches Perl Compatible Regular Expressions with incoming packet's sub-strings with a given Perl-Compatible Regular Expression automata stored in DRAM at given offsets and within limits. FIG. 4 illustrates an exemplary apparatus embodying exemplary hardware components according to an implementation of the architecture of FIG. 2. In the example shown in FIG. 4, a Quad-port system 400 is implemented wherein two ports are ingress and egress of data while the other two ports are for forensic purpose. The two ingress and egress data ports can be implemented using either copper or fiber interface. Copper interfaces are shown as RJ45 interfaces 403 and 404. Fiber interfaces are shown as GBICs 405 and 406. The forensic ports are shown as 401, and 402. A Quad-port 10/100/1000 Mbps transceiver 407 interfaces with the copper or fiber interfaces and passes the signals further to a Quad-port MAC 408. The subsequent blocks described above with reference to FIG. 2 are implemented using four FPGAs 409, 412, 415 and 418. Each of these FPGAs has a provision of buffering packets and other relevant information using SRAM 410, 413, 416, and 419, and DRAM 411, 414, 417, and 420. The third FPGA 415 uses a high speed Network Search Engine 421 to search through a set of rules stored therein. This is also used as a policy lookup engine. In some embodiments, the host interface is implemented using a PCI Host Bridge 422. The host can control the logic blocks in different FPGAs, the NSE and the Quad-port MAC, via the PCI Local Bus 423. The FPGAs communicate classification information over the Classification Bus 424 and the decisions over Decision Bus 425. The controlling host can access the statistics related to events of dropping the packets due to anomalies or policy violations through the same PCI interface and use that information to log the events for further analysis. Although the present invention and its advantages have been described in detail, it should be understood that the present invention is not limited to or defined by what is shown or discussed herein. For example, the logic in the four FPGAs 409, 412, 415 and 418 may be combined in a custom silicon ASIC while providing the same functionality. Moreover, as one skilled in the art will appreciate, any digital computer systems can be configured or otherwise programmed to implement the methods and apparatuses disclosed herein, and to the extent that a particular digital computer system is configured to implement the methods and apparatuses of this invention, it is within the scope and spirit of the present invention. Once a digital computer system is programmed to perform particular functions pursuant to computer-executable instructions from program software that implements the present invention, it in effect becomes a special purpose computer particular to the present invention. The techniques necessary to achieve this are well known to those skilled in the art and thus are not further described herein. Computer executable instructions implementing the methods and techniques of the present invention can be distributed to users on a computer-readable medium and are often copied onto a hard disk or other storage medium. When such a program of instructions is to be executed, it is usually loaded into the random access memory of the computer, thereby configuring the computer to act in accordance with the techniques disclosed herein. All these operations are well known to those skilled in the art and thus are not further described herein. The term “computer-readable medium” encompasses distribution media, intermediate storage media, execution memory of a computer, and any other medium or device capable of storing for later reading by a computer a computer program implementing the present invention. Accordingly, drawings, tables, and description disclosed herein illustrate technologies related to the invention, show examples of the invention, and provide examples of using the invention and are not to be construed as limiting the present invention. Known methods, techniques, or systems may be discussed without giving details, so to avoid obscuring the principles of the invention. As it will be appreciated by one of ordinary skill in the art, the present invention can be implemented, modified, or otherwise altered without departing from the principles and spirit of the present invention. Therefore, the scope of the present invention should be determined by the following claims and their legal equivalents. | <SOH> DESCRIPTION OF THE BACKGROUND ART <EOH>Intrusion prevention appliances have been widely available in the last few years. Published U.S. patent application Nos. 20030004688, 20030004689, 20030009699, 20030014662, 20030204632, 20030123452, 20030123447, 20030097557, and 20030041266 disclose systems, methods and techniques that primarily focused on content, header and state anomaly based intrusion prevention with little or no emphasis on adaptive rate anomalies. These prior systems find rate anomalies using either a profile based approach or fixed thresholds. As one skilled in the art knows, internet attacks have been growing in complexity and have been more wide-spread due to a variety of readily available attack toolkits. To protect critical resources, a new intrusion prevention method and system is therefore necessary to thwart attacks on these fronts at line-speeds available today. The present invention addresses this need. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention fulfills the aforementioned need and desire for a new intrusion prevention system, method and apparatus with a single appliance that is capable of protecting critical servers and networks from protocol header, state, rate and content anomalies while enforcing network policies. While it is impossible to predict the behavior of all types of future attacks, current trends in attacks lead to certain known categories of attacks, viz. pre-attack probes, header anomalies, state anomalies, rate anomalies and content anomalies. Some of these known attacks can be prevented using policy lookup. Policies such as denying protocols, ports, IP-address ranges can in fact deny several types of known attacks. The inventive system disclosed herein provides copper and optical connectivity. A Packet Interface block interfaces with external network through a PHY and a MAC device and buffers packets until a decision has been made about them. A Classifier interfaces with Packet interface to classifier. The Rate Anomaly Meters receive classifier output and maintain the instantaneous packet-rates and compare against the thresholds set adaptively and continuously by the controlling host. If the specific type of packets exceeds the rate threshold, packets of that type or belonging to that group are discarded for a certain time period. The anomaly engines drop packets that have header or state anomalies in different layers of protocol. A fragment reassembly engine reassembles any fragments according to processes well-known in the art. Assembled or unfragmented packets are then sent to an engine that removes any reordering issues or retransmission anomalies for TCP packets. Ordered TCP as well as non-TCP packets are then sent to relevant protocol normalization engines. The derived layers 2 , 3 , 4 and 7 header-parameters and state information are then used by the Multi-rule search engine to find a rule-set that matches the incoming packet. A rule-matching engine drives the content inspection engine to validate if contents of the packet match any of the anomalous signatures. A Stateful sub-rule traversal engine then validates if further contents of the packet meet sub-signatures of the rule. If a rule match is found, it is added to the event queue corresponding to the packet. A packet may match multiple rules. After all the rules matches have been performed, a decision multiplexer picks the highest priority rule match and informs the MAC interface whether to let the packet through or to drop the packet. Allowed packets are then sent out. An object of the present invention is to provide a high-rate hardware based integrated system and method of preventing network packets across, the packets having layers 2 , 3 , 4 , and 7 header anomalies; layers 2 , 3 , 4 , and 7 state transition and state based anomalies; layers 2 , 3 , 4 , and 7 rate anomalies as detected by the system which is continuously and adaptively adjusting rate thresholds; characteristics of network probes or reconnaissance as detected by certain meters; content anomalies as defined by a set of content rules; or violate network policies as set by a system administrator. Still further objects and advantages of the present invention will become apparent to one skilled in the art upon reading and understanding the preferred embodiments described below with reference to the following drawings. | 20041222 | 20091013 | 20060622 | 94403.0 | H04L1228 | 1 | AHMED, SALMAN | SYSTEM AND METHOD FOR INTEGRATED HEADER, STATE, RATE AND CONTENT ANOMALY PREVENTION WITH POLICY ENFORCEMENT | UNDISCOUNTED | 0 | ACCEPTED | H04L | 2,004 |
|
11,021,967 | ACCEPTED | Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis | The invention relates to a complex compound of ruthenium of the general structural formula I in which X1 and X2 may be identical or different and represent an anionic ligand, in which R1 and R2 are identical or different, but may also have a ring, in which R1 and R2 represent hydrogen or/and a hydrocarbon group, in which the ligand L1 is a N-heterocyclic carbene and in which the ligand L2 is a neutral electron donor, especially a N-heterocyclic carbene or an amine, imine, phosphane, phosphite, stibine, arsine, carbonyl compound, carboxyl compound, nitrile, alcohol, ether, thiol or thioether, wherein R1, R2, R3 and R4 represent hydrogen or/and hydrocarbon groups. The invention relates also to a process for the preparation of acyclic olefins having two or more carbon atoms or/and of cyclic olefins having four or more carbon atoms from acyclic olefins having two or more carbon atoms or/and from cyclic olefins having four or more carbon atoms by olefin metathesis reaction in the presence of at least one catalyst, wherein such a complex compound is used as catalyst and wherein R′1, R′2, R′3 and R′4 hydrogen or/and hydrocarbon groups. | 1. A complex of ruthenium of the structural formula I, where X1 and X2 are identical or different and are each an anionic ligand, R1 and R2 are identical or different and are each hydrogen or a hydrocarbon group, where the hydrocarbon groups are identical or different and are selected independently from among straight-chain, branched, cyclic or noncyclic radicals from the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having up to 50 carbon atoms, alkynyl radicals having up to 50 carbon atoms, aryl radicals having from up to 30 carbon atoms and silyl radicals, or R1 and R2 contain a ring, where one or more of the hydrogen atoms in the hydrocarbon or silyl groups or both the hydrocarbon and silyl group can be replaced independently by identical or different alkyl, aryl, alkenyl, alkynyl, metallocenyl, halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio or sulfonyl groups, the ligand L1 is an N-heterocyclic carbene of the formula II or IV and the ligand L2 is an amine, imine, phosphine, phosphite, stibine, arsine, carbonyl compound, carboxyl compound, nitrile, alcohol, ether, thiol or thioether where R1, R2, R3 and R4 in the formulae II and IV are identical or different and are each hydrogen or a hydrocarbon group, where the hydrocarbon groups comprise identical or different, cyclic, noncyclic, straight-chain or/and branched radicals selected from the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having up to 50 carbon atoms, alkynyl radicals having up to 50 carbon atoms and aryl radicals having up to 30 carbon atoms, in which at least one hydrogen may be replaced by functional groups, and where one or both of R3 and R4 may be identical or different halogen, nitro, nitroso, alkoxy, aryloxy, amido, carboxyl, carbonyl, thio or sulfonyl groups. 2. A complex as claimed in claim 1, wherein X1 and X2 are identical or different and are each halide, pseudohalide, tetraphenylborate, perhalogenated tetraphenylborate, tetrahaloborate, hexahalophosphate, hexahaloantimonate, trihalomethanesulfonate, alkoxide, carboxylate, tetrahaloaluminate, tetracarbonylcobaltate, hexahaloferrate (III), (III) or tetrahalopalladate (II). 3. A complex as claimed in claim 1, wherein some or all of the hydrogen atoms in the hydrocarbon groups R1, R2, R3 and R4 in the formulae II and IV are replaced independently by identical or different halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or metallocenyl groups. 4. A complex as claimed in claim 1, wherein R3 and R4 in the formulae II form a fused-on ring system. 5. A complex as claimed in claim 1, wherein L1 and L2 form a chelating ligand of the formula VI L1-Y-L2 VI where the bridges Y comprise cyclic, noncyclic, straight-chain or branched radicals selected from the group consisting of alkylene radicals having up to 50 carbon atoms, alkenylene radicals having up to 50 carbon atoms, alkynylene radicals having up to 50 carbon atoms, arylene radicals having up to 30 carbon atoms, metallocenylene, borylene and silylene radicals in which one or more hydrogens may be replaced independently by identical or different alkyl, aryl, alkenyl, alkynyl, metallocenyl, halo, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio or sulfonyl groups. 6. A complex as claimed in claim 5, wherein the ligands of the formulae II, IV, or VI have central, axial or planar chirality. 7. A complex as claimed in claim 1, wherein R1 and R2 in the structural formula I are independently hydrogen, substituted or unsubstituted alkyl, alkenyl or aryl radicals, X1 and X2 independently are halide, alkoxide or carboxylate ions and L1 and L2 are each an N-heterocyclic carbene of the formula II. 8. A process for preparing acyclic olefins having two or more carbon atoms or cyclic olefins having four or more carbon atoms, in each case of the formula VII from acyclic olefins having two or more carbon atoms or from cyclic olefins having four or more carbon atoms, in each case corresponding to the formula VII by an olefin metathesis reaction in the presence of at least one catalyst comprising the complex as claimed in claim 1 and R′1, R′2, R′3 and R′4 in the formula VII are hydrogen or hydrocarbon groups, where the hydrocarbon groups are each selected independently from among straight-chain, branched, cyclic or noncyclic radicals of the group consisting of alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having up to 50 carbon atoms, alkynyl radicals having up to 50 carbon atoms, aryl radicals having up to 30 carbon atoms, metallocenyl or silyl radicals, in which one or more hydrogens may be replaced by a functional group, where one or more of R′1, R′2, R′3 and R′4 may independently be identical or different halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or metallocenyl groups. 9. The process as claimed in claim 8, wherein one or more double bonds are present in the olefins used. 10. The process as claimed in claim 8, wherein R′1, R′2, R′3 and R′4 in the olefins of the formula VII to be prepared form, in pairs, one or more identical or different rings. 11. The process as claimed in claim 8, wherein some or all of the hydrogen atoms in the hydrocarbon groups R′1, R′2, R′3 and R′4 of the olefins of the formula VII to be prepared are replaced independently by identical or different halogen, silyl, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or metallocenyl groups. 12. The process as claimed in claim 8, wherein the process is carried out in the presence of solvents. 13. The process as claimed in claim 8, wherein the process is carried out with addition of a Brönsted acid. 14. The process as claimed in claim 8, wherein the process is carried out with addition of a Lewis acid. 15. (canceled) 16. The complex as claimed in claim 2, wherein X1 and X2 are each identical or different and are halide, pseudohalide, tetraphenylborate, perfluorinated tetraphenylborate, tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, trifluoromethanesulfonate, alkoxide, carboxylate, tetrachloroaluminate, tetracarbonylcobaltate, hexafluoroferrate (III), tetrachloroferrate (III) or tetrachloropalladate (II). 17. The complex as claimed in claim 2, wherein the ligands X1 and X2 are identical or different and are each pseudohalides being cyanide, thiocyanate, cyanate, isocyanate or isothiocyanate. 18. The complex as claimed in claim 5, wherein the Y is alkyl, aryl or metallocenyl group. 19. The process as claimed in claim 12, wherein said solvents are organic solvents. 20. The process as claimed in claim 13, wherein the process is carried out with the addition of HCl, HBr, HI, HBF4, HPF6 or trifluoroacetic acid or mixture thereof. 21. The process as claimed in claim 14, wherein the process is carried out with the addition of BF3, AlCl3 or ZnI2 or mixture thereof. | DESCRIPTION Alkylidene complexes of ruthenium with N-heterocyclic carbene ligands and their use as highly active, selective catalysts for olefin metathesis. The invention relates to alkylidene complex compounds of ruthenium with N-heterocyclic carbene ligands and to a process for the preparation of olefins by olefin metathesis from acyclic olefins having two or more carbon atoms or/and from cyclic olefins having four or more carbon atoms, wherein at least one of those alkylidene complex compounds is used as catalyst. Transition-metal-catalyzed C—C linkages belong to the most important reactions of organic synthesis chemistry. Olefin metathesis constitutes an important element in this connection, because it is possible by means of that reaction to synthesize olefins that are free of by-products. Olefin metathesis has high potential not only in the field of preparative organic synthesis (RCM, ethenolysis, metathesis of acylic olefins), but also in polymer chemistry (ROMP, ADMET, alkyne polymerization). Since its discovery in the 1950s, it has been possible to implement several large-scale processes. Nevertheless, olefin metathesis has only recently advanced to a widely applicable synthesis method owing to the discovery of new catalysts (J. C. Mol in: B. Cornils, W. A. Herrmann: Applied Homogeneous Catalysis with Organometallic Compounds, VCH, Weinheim, 1996, p. 318-332; M. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124-2144; Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2056). Numerous standard works have made a substantial contribution towards the understanding of such transition-metal-catalyzed reactions, in which an exchange of alkylidene units between olefins takes place. The generally accepted mechanism contains metal alkylidene complexes as the active species. These react with olefins to form metallacyclobutane intermediates, which generate olefins and alkylidene complexes again by cycloreversion. The isolation of metathesis-active alkylidene and metallacyclobutane complexes substantiates these mechanistic ideas. Many examples are found primarily in the complex chemistry of molybdenum and tungsten. Schrock's works in particular have yielded well-defined alkylidene complexes which are controllable in terms of their reactivity (J. S. Murdzek, R. R. Schrock, Organometallics 1987, 6, 1373-1374). The introduction of a chiral ligand sphere into such complexes enabled the synthesis of polymers having high tacticity (K. M. Totland, T. J. Boyd, G. C. Lavoie, W. M. Davis, R. R. Schrock, Macromolecules 1996, 29, 6114-6125). Chiral complexes of the same structural type have also been used successfully in ring-closing metathesis (O. Fujimura, F. J. d. I. Mata, R. H. Grubbs, Organometallics 1996, 15, 1865-1871). However, high sensitivity towards functional groups, air and water is found to be a disadvantage. Phosphane-containing complex systems of ruthenium have recently become established (R. H. Grubbs, S. T. Nguyen, L. K. Johnson, M. A. Hillmyer., G. C. Fu, WO 96/04289, 1994; P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem. 1995, 107, 2179-2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2039-2041). Owing to the electron-rich, “soft” nature of later transition metals, such complexes have high tolerance towards hard, functional groups. This is demonstrated, for example, by their use in the chemistry of natural substances (RCM of dienes) (Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angew. Chem. 1997, 109, 170-172; Angew. Chem., Int. Ed. Engl. 1997, 36, 166-168; D. Meng, P. Bertinato, A. Balog, D. S. Su, T. Kamenecka, E. J. Sorensen, S. J. Danishefsky, J. Am. Chem. Soc. 1997, 119, 2733-2734; D. Schinzer, A. Limberg, A. Bauer, O. M. Böhm, M. Cordes, Angew. Chem. 1997, 109, 543-544; Angew. Chem., Int. Ed. Engl. 1997, 36, 523-524; A. Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130-9136). However, the range of variation of the phosphane ligands used is very limited on account of steric and electronic factors. Only strongly basic, sterically demanding alkylphosphanes such as tricyclohexyl-, triisopropyl- and tricyclopentyl-phosphane are suitable for the metathesis of acyclic olefins and slightly strained ring systems. Accordingly, such catalysts cannot be adjusted in terms of their reactivity. Nor has it been possible to produce chiral complexes of that structural type. For those reasons, the object was to develop tailored metathesis catalysts which are distinguished by a variable ligand sphere as well as by high tolerance towards functional groups, and which allow fine adjustment of the catalyst for specific properties of different olefins. A further object was to provide a process for the preparation of olefins, in which process the reactivity is adjustable and chiral complexes can be produced. The object is achieved according to the invention by a complex compound of ruthenium of the general structural formula I in which X1 and X2, which may be identical or different, represent an anionic ligand, in which R1 and R2 are identical or different, but may also have a ring, in which R1 and R2 represent hydrogen or/and a hydrocarbon group, wherein the hydrocarbon groups, which may be identical or different, consist of straight-chain, branched, cyclic or/and non-cyclic radicals from the group alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms, aryl radicals having from 1 to 30 carbon atoms and silyl radicals, wherein the hydrogen atoms in the hydrocarbon or/and silyl groups may be replaced partially or wholly by one or more identical or different groups alkyl, aryl, alkenyl, alkynyl, metallocenyl, halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio or/and sulfonyl, in which the ligand L1 is a N-heterocyclic carbene of the general formulae II-V and in which the ligand L2 is a neutral electron donor, especially a N-heterocyclic carbene of the general formulae II-V or an amine, imine, phosphane, phosphite, stibine, arsine, carbonyl compound, carboxyl compound, nitrile, alcohol, ether, thiol or thioether, wherein R1, R2, R3 and R4 in formulae II, III, IV and V may be identical or different and represent hydrogen or/and hydrocarbon groups, wherein the hydrocarbon groups consist of identical or different, cyclic, non-cyclic, straight-chain or/and branched radicals from the group alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms and aryl radicals having from 1 to 30 carbon atoms, in which at least one hydrogen may optionally be replaced by functional groups, and wherein R3 and R4 may optionally represent one or more identical or different groups halogen, nitro, nitroso, alkoxy, aryloxy, amido, carboxyl, carbonyl, thio or/and sulfonyl. The complex compounds according to the invention are highly active catalysts for olefin metathesis. They are particularly inexpensive. Olefin metathesis using the catalysts according to the invention is distinguished by their great variety in the ligand sphere as well as by high tolerance towards very different functional groups. By varying the N-heterocyclic carbene ligands, which are readily accessible in terms of preparation, the activity and selectivity can be controlled in a targeted manner and, moreover, chirality can be introduced in a simple manner. The anionic ligands X1 and X2 of the complex compound according to the invention may be identical or different and are preferably halide, pseudohalide, tetraphenyl borate, perhalogenated tetraphenyl borate, tetrahaloborate, hexahalophosphate, hexahaloantimonate, trihalomethane-sulfonate, alkoxide, carboxylate, tetrahaloaluminate, tetracarbonyl cobaltate, hexahaloferrate(III), tetrahaloferrate(III) or/and tetrahalopalladate(II), wherein halide, pseudohalide, tetraphenyl borate, perfluorinated tetra-phenyl borate, tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, trifluoromethanesulfonate, alkoxide, carboxylate, tetrachloroaluminate, tetracarbonyl cobaltate, hexafluoroferrate(III), tetrachloroferrate(III) or/and tetrachloropalladate(II) are preferred and wherein, of the pseudohalides, preference is given to cyanide, rhodanide, cyanate, isocyanate, thiocyanate and isothiocyanate. In the general formulae II, III, IV and V, the hydrogen in the hydrocarbon groups R1, R2, R3 and R4 may be replaced partially or wholly by one or more identical or different groups halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or/and metallocenyl. In those formulae, R3 and R4 may represent a fused ring system. The ligands L1 and L2 of the complex compound of the general structural formula I may form a chelate ligand of the general formula VI wherein the bridging members designated Y may consist of cyclic, non-cyclic, straight-chain or/and branched radicals from the group alkylene radicals having from 1 to 50 carbon atoms, alkenylene radicals having from 1 to 50 carbon atoms, alkynylene radicals having from 1 to 50 carbon atoms, arylene radicals having from 1 to 30 carbon atoms, metallocenylene, borylene and silylene radicals, in which at least one hydrogen may optionally be substituted by one or more identical or different groups alkyl, aryl, alkenyl, alkynyl, metallocenyl, halogen, nitro, nitroso, hydroxo, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio or/and sulfonyl, preferably by alkyl, aryl or/and metallocenyl. The alkyl radicals, alkenyl radicals, alkynyl radicals, or the alkylene radicals, alkenylene radicals, alkynylene radicals, in formulae I to VII preferably have from 1 to 20 carbon atoms, particularly preferably from 1 to 12 carbon atoms. The ligands of the general formulae II, III, IV, V or/and VI may have central, axial or/and planar chirality. In the general structural formula I of the complex compound, R1 to R2 preferably represent hydrogen, substituted or/and unsubstituted alkyl, alkenyl or/and aryl radicals, X1 and X2 are preferably halide, alkoxide or/and carboxylate ions, and L1 and L2 preferably represent a N-heterocyclic carbene of the general formula II. The synthesis of the complexes is usually carried out by ligand substitution of appropriate phosphane complexes. Those complexes may be selectively disubstituted according to reaction equation (1) or monosubstituted according to reaction equation (2). In the case of monosubstitution, the second phosphane may be selectively substituted by a different electron donor, e.g. pyridine, phosphane, N-heterocycle carbene, phosphite, stibine, arsine, according to reaction equation (3). In that manner it is possible in particular to prepare for the first time chiral ruthenium-based catalysts having metathesis activity (complex examples 2 and 3). The complex compounds according to the invention prove to be extremely efficient catalysts in olefin metathesis. The excellent metathesis activity is demonstrated in the Examples by means of several examples of different metathesis reactions. Accordingly, this invention also includes the processes of all olefin metathesis reactions, such as ring-opening metathesis polymerization (ROMP), metathesis of acyclic olefins, ethenolysis, ring-closing metathesis (RCM), acyclic diene metathesis polymerization (ADMET) and depolymerization of olefinic polymers. The high stability and tolerance of the complex compounds according to the invention towards functional groups, especially groups of alcohols, amines, thiols, ketones, aldehydes, carboxylic acids, esters, amides, ethers, silanes, sulfides and halogens, permits the presence of such functional groups during the metathesis reaction. The object is further achieved by a process for the preparation of acyclic olefins having two or more carbon atoms or/and of cyclic olefins having four or more carbon atoms, in each case corresponding to the general formula VII from acyclic olefins having two or more carbon atoms or/and from cyclic olefins having four or more carbon atoms, in each case corresponding to the general formula VII, by olefin metathesis reaction in the presence of at least one catalyst, wherein a catalyst as claimed in any one of claims 1 to 7 is used and R′1, R′2, R′3 and R′4 in the general formula VII represent hydrogen or/and hydrocarbon groups, wherein the hydrocarbon group consists of identical or different straight-chain, branched, cyclic or/and non-cyclic radicals from the group alkyl radicals having from 1 to 50 carbon atoms, alkenyl radicals having from 1 to 50 carbon atoms, alkynyl radicals having from 1 to 50 carbon atoms, aryl radicals having from 1 to 30 carbon atoms, metallocenyl or/and silyl radicals, in which at least one hydrogen may optionally be replaced by a functional group, wherein R′1, R′2, R′3 and R′4 optionally represent one or more identical or different groups halogen, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or/and metallocenyl. The olefins that are used or/and that are to be prepared preferably contain one or/and more than one double bond. One or more of R′1, R′2, R′3 and R′4, identical or different, in the olefins of the general formula VII, in pairs, especially form a ring. The hydrogen in the hydrocarbon groups R′1, R′2, R′3 and R′4 in the olefins of the general formula VII has preferably been replaced partially or wholly by one or more identical or different groups halogen, silyl, nitro, nitroso, hydroxy, alkoxy, aryloxy, amino, amido, carboxyl, carbonyl, thio, sulfonyl or/and metallocenyl. In the process according to the invention, the process may be carried out with or without a solvent, but preferably with organic solvents. The process according to the invention can preferably be carried out with the addition of a Brönstedt acid, preferably HCl, HBr, HI, HBF4, HPF6 or/and trifluoroacetic acid, or/and with the addition of a Lewis acid, preferably BF3, AlCl3 or/and ZnI2. Surprisingly, it accordingly becomes possible for the first time to tailor the most varied olefins individually to different properties on the basis of a slight variation in the catalysis conditions or/and in the catalysts, because the process according to the invention for the preparation of olefins has unexpectedly high tolerance towards functional groups. EXAMPLES The Examples which follow illustrate the invention but do not limit the scope thereof. 1) Preparation of the complex compound according to the invention General Working Procedure: 1 mmol. of (PPh3)2Cl2Ru(═CHPh) was dissolved in 20 ml of toluene, and a solution of 2.2 equiv. of the appropriate imidazolin-2-ylidene in 5 ml of toluene was added thereto. The reaction solution was stirred for 45 minutes at room temperature RT and then concentrated to about 2 ml, and the crude product was precipitated with 25 ml of pentane. The crude product was taken up several times in 2 ml of toluene and precipitated with 25 ml of pentane. The residue was extracted with toluene, and the solution was concentrated to dryness, washed twice with pentane and dried for several hours under a high vacuum. For characterization purposes, the data of low-temperature NMR spectra are for the most part given, because some of the spectra at room temperature do not contain all the information on account of dynamic effects. The following compounds are prepared according to the indicated general working procedure: 1a) Benzylidene-dichloro-bis(1,3-diisopropylimidazolin-2-ylidene)-ruthenium-complex compound 1 Yield: 487 mg (0.86 mmol.=86.% of theory) Elemental analysis EA for C25H38Cl2N4Ru (566.58): found C 53.21H 6.83 N 9.94; calculated C 53.00H 6.76 N 9.89. 1H-NMR (CD2Cl2/200 K): δ 20.33 (1H, s, Ru═CH), 8.25 (2H, d, 3JHH=7.6 Hz, o-H of C6H5), 7.63 (1H, t, 3JHH=7.6 Hz, p-H of C6H5), 7.34 (2H, t, m-H of C6H5, 3JHH=7.6 Hz), 7.15 (2H, br, NCH), 7.03 (2H, br, NCH), 5.97 (2H, spt, 3JHH=6.4 Hz, NCHMe2), 3.73 (2H, spt, 3JHH=6.4 Hz, NCHMe2), 1.64 (12H, d, 3JHH=6.4 Hz, NCHMe2), 1.11 (6H, d, 3JHH=6.4 Hz, NCHMe2), 0.75 (6H, d, 3JHH=6.4 Hz, NCHMe2). 13C-NMR (CD2Cl2/200 K): δ 295.6 (Ru═CH), 183.5 (NCN), 151.6 (ipso-C of C6H5), 129.5, 128.6 and 128.1 (o-C, m-C and p-C of C6H5), 118.1 and 117.2 (NCH), 52.1 and 50.1 (NCHMe2), 24.5, 23.8, 23.8 and 22.4 (NCHMe2). 1b) Benzylidene-dichloro-bis(1,3-di-((R)-1′-phenylethyl)-imidazolin-2-ylidene)-ruthenium-complex compound 2 Yield: 676 mg (0.83 mmol.=83% of theory) EA for C45H46Cl2N4Ru (814.86): found C 66.48H 5.90 N 6.73; calc. C 66.33H 5.69 N 6.88 1H-NMR (CD2Cl2/200 K): δ 20.26 (1H, s, Ru═CH), 8.13 (2H, br, o-H C6H5), 7.78-6.67 (29H, of which 2m-H and 1p-H of C6H5, 20H of NCHMePh, 2H of NCHMePh and 4H of NCH), 4.91 (2H, m, NCHMePh), 1.84 (3H, d, 3JHH=6.6 Hz, NCHMePh), 1.81 (3H, d, 3JHH=6.6 Hz, NCHMePh), 1.51 (3H, d, 3JHH=6.6 Hz, NCHMePh), 1.21 (3H, d, 3JHH=6.6 Hz, NCHMePh). 13C-NMR (CD2Cl2/200 K): δ 294.7 (Ru═CH), 186.0 and 185.6 (NCN), 151.2 (ipso-C of C6H5), 141.2, 140.3, 140.1 and 139.9 (ipso-C of NCHMePh), 133.1-125.9. (o-C, m-C, p-C of C6H5 and NCHMePh), 120.5, 119.9, 119.2 and 118.8 (NCH), 57.6, 57.4, 56.7 and 56.1 (NCHMePh), 22.2, 20.6, 20.4 and 20.3 (NCHMePh). 1c) Benzylidene-dichloro-bis(1,3-di((R)-1′-naphthylethyl)-imidazolin-2-ylidene)-ruthenium-complex compound 3 Yield: 792 mg (0.78 mmol.=78% of theory) EA for C61H54Cl2N4Ru (1015.1): found C 72.34H 5.46 N 5.45; calc. C 72.18H 5.36 N 5.52. 1H-NMR (CD2Cl2/260 K): δ 20.90 (1H, s, Ru═CH), 8.99 (2H, br, o-H of C6H5), 8.2-5.6 (39H, of which 2m-H and 1p-H of C6H5, 28H of NCHMeNaph, 4H of NCH and 4H of NCHMeNaph), 2.5-0.8 (12H, m, NCHMeNaph). 13C-NMR (CD2Cl2/260 K): δ 299.9 (Ru═CH), 187.2 and 184.7 (NCN), 152.0 (ipso-C of C6H5), 136.0-124.0 (o-C, m-C, p-C of C6H5 and NCHMeNaph), 121.7, 121.0, 119.9 and 118.9 (NCH), 56.7, 56.1, 55.0 and 54.7 (NCHMeNaph), 24.7, 24.3, 21.0 and 20.0 (NCHMeNaph). Slight deviations from the general working procedure are necessary for the following complexes: 1d) (4-Chlorobenzylidene)-dichloro-bis(1,3-diisopropyl-imidazolin-2-ylidene)-ruthenium-complex Compound 4 1 mmol. of (PPh3)2Cl2Ru[═CH(p-C6H4Cl)] was used as starting material. The further procedure corresponded to the general working procedure. Yield: 535 mg (0.89 mmol.=89% of theory) EA for C24H38Cl3N4Ru (601.03): found C 48.13H 6.33 N 9.24; calc. C 47.96H 6.37 N 9.32. 1H-NMR (CD2Cl2/200 K): δ 20.33 (1H, s, Ru═CH), 8.25 (2H, d, JHH=7.6 Hz, o-H of C6H4Cl), 7.63 (1H, t, 3JHH=7.6 Hz, m-H of C6H4Cl), 7.15 (2H, br, NCH), 7.03 (2H, br, NCH), 5.97 (2H, spt, 3JHH=6.4 Hz, NCHMe2), 3.73 (2H, spt, 3JHH=6.4 Hz, NCHMe2), 1.64 (12H, d, 3JHH=6.4 Hz, NCHMe2), 1.11 (6H, d, 3JHH=6.4 Hz, NCHMe2), 0.75 (6H, d, 3JHH=6.4 Hz, NCHMe2). 13C-NMR (CD2Cl2/200 K): δ 295.6 (Ru═CH), 183.5 (NCN), 151.6 (ipso-C of C6H4Cl), 134.3 (p-C of C6H4Cl), 128.6 and 128.1 (o-C and m-C of C6H4Cl), 118.1 and 117.2 (NCH), 52.1 and 50.1 (NCHMe2), 24.5, 23.8, 23.8 and 22.4 (NCHMe2). 1e) Benzylidene-dichloro-bis(1,3-dicyclohexylimidazolin-2-ylidene)-ruthenium-complex Compound 5 1 mmol. of (PPh3)2Cl2Ru(═CHPh) was dissolved in 25 ml of toluene, and a solution of 2.2 equiv. of 1,3-dicyclohexyl-imidazolin-2-ylidene in 5 ml of toluene was added thereto. The reaction solution was stirred for 45 minutes at RT and then freed of solvent. Unlike in the general working procedure, the crude product was purified by flash chromatography. Yield: 305 mg (0.42 mmol.=42% of theory) EA for C37H54Cl2N4Ru (726.84): found C 61.23H 7.56 N 7.87; calc. C 61.14H 7.49 N 7.71. 1H-NMR (CD2Cl2/298 K): δ 20.45 (1H, s, Ru═CH), 8.31 (2H, d, 3JHH=7.6 Hz, o-H— of C6H5), 7.63 (1H, t, 3JHH=7.6 Hz, p-H— of C6H5), 7.34 (2H, t, 3JHH=7.6 Hz, m-H— of C6H5), 7.14 (2H, br, NCH), 7.00 (2H, br, NCH), 6.06 (2H, br, CH of NC6H11), 3.82 (2H, br, CH of NC6H11), 1.64 (12H, br, CH2 of NC6H11), 0.93 (12H, br, CH2 of NC6H11). 13C-NMR (CD2Cl2/298 K): δ 299.4 (Ru═CH), 182.9 (NCN), 152.0 (ipso-C of C6H5), 131.1, 129.8 and 129.1 (o-C, m-C and p-C of C6H5), 118.3 and 117.8 (br, NCH), 59.6 and 57.5 (br, CH of NC6H11), 35.7, 26.9 and 25.6 (br, CH2 of NC6H11). 1f) Benzylidene-dichloro-(1,3-di-tert.-butylimidazolin-2-ylidene)-(triphenylphosphine)-ruthenium-complex Compound 6 1 mmol. of (PPh3)2Cl2Ru(═CHPh) was dissolved in 20 ml of toluene, and a solution of 1.1 equiv. of 1,3-di-tert.-butylimidazolin-2-ylidene in 5 ml of toluene was added thereto. The reaction solution was stirred for 30 minutes at RT and then concentrated to about 2 ml, and the crude product was precipitated with 25 ml of pentane. Further working-up was carried out in accordance with the general working procedure. Yield: 493 mg (0.70 mmol.=70% of theory) EA for C36H41Cl2N2P1Ru (704.69): found C 61.12H 5.55 N 3.62 P 4.59 calc. C 61.36H 5.86 N 3.98 P 4.38. 1H-NMR (CD2Cl2/200 K): δ 20.70 (1H, s, Ru═CH), 8.03 (2H, d, 3JHH=7.6 Hz, o-H of C6H5), 7.50-6.95 (20H, of which 2m-H and 1p-H of C6H5, 15H of PPh3 and 2H of NCH), 1.86 (9H, s, NCMe3), 1.45 (9H, s, NCMe3). 13C-NMR (CD2Cl2/200 K): δ 307.4 (br, Ru═CH), 178.3 (d, JPC=86 Hz, NCN), 151.5 (d, JPC=4.5 Hz, ipso-C of C6H5), 135.0 (m, o-C of PPh3), 131.9 (m, ipso-C of PPh3), 130.2 (s, p-C of PPh3), 129.5, 128.6 and 128.1 (s, o-C, m-C and p-C of C6H5), 128.0 (m, m-C of PPh3), 117.7 and 117.6 (NCH), 58.7 and 58.5 (NCMe3), 30.0 and 29.5 (NCMe3). 31P-NMR (CD2Cl2/200 K): δ 40.7 (s, PPh3). 2) Use of the Complex Compound According to the Invention in Olefin Metathesis The Examples given hereinbelow demonstrate the potential of the complex compounds according to the invention in olefin metathesis. The advantage of the complex compounds according to the invention compared with phosphane-containing complexes is that the radicals R on the nitrogen atoms of the N-heterocyclic carbene ligands can be varied in a targeted and inexpensive manner. By tailoring the catalysts according to the invention in that manner relative to individual properties of the olefins to be metathesized, the activity and the selectivity of the reaction can be controlled. 2a) Ring-opening metathesis polymerization (ROMP): Norbornene, cyclooctene and functionalized norbornene derivatives are used as examples. Typical Reaction Batch for the Polymerization of Cyclooctene (or Norbornene): 410 μl (3.13 mmol.) of cyclooctene were introduced into a solution of 3.6 mg (6.3 μmol.) of 1 in 0.5 ml of methylene chloride. After about 10 minutes, a highly viscous gel had formed, which could no longer be stirred. 1 ml of methylene chloride was added. This procedure was repeated whenever the stirrer ceased to perform (3 ml of methylene chloride in total). After 1 hour, 5 ml of methylene chloride were added, to which small amounts of tert.-butyl ether and 2,6-di-tert.-butyl-4-methylphenol had been added. After a further 10 minutes, the solution was slowly added dropwise to a large excess of methanol, and the whole was filtered and dried for several hours under a high vacuum. Yield: 291 mg (2.64 mmol.=84.3% of theory) TABLE 1 Polymerization of norbornene and cyclooctene Ratio [monomer]/ Reaction Example Complex Monomer [cat.] time t Yield 2.1a 1 norbornene 100:1 1 min 91% 2.1b 5 norbornene 100:1 1 min 92% 2.1c 1 cyclooctene 500:1 1 h 84% 2.1d 1 cyclooctene 500:1 2 h 97% 2.1e 5 cyclooctene 500:1 1 h 87% Typical Reaction Batch for the Polymerization of Functionalized Norbornene Derivatives: Formula VIII illustrates the basic structure of the norbornene derivatives used in Table 2. 0.3 ml of a solution of 432 mg (3.13 mmol.) of 5-carboxylic acid 2-norbornene (formula VIII with R═CO2H) in methylene chloride was added to a solution of 3.6 mg (6.3 μmol.) of 1 in 0.2 ml of methylene chloride. After about 10 minutes, a highly viscous gel had formed, which could no longer be stirred. A further 0.5 ml of methylene chloride was added. This procedure was repeated whenever the stirrer ceased to perform. After 1 hour, 5 ml of methylene chloride were added, to which small amounts of tert.-butyl ether and 2,6-di-tert.-butyl-4-methylphenol had been added. After a further 10 minutes, the solution was slowly added dropwise to a large excess of methanol, and the whole was filtered and dried for several hours under a high vacuum. Yield: 423 mg (3.06 mmol.=98.1% of theory) The reactions at 50° C. were carried out in an analogous manner in dichloroethane instead of methylene chloride. TABLE 2 Polymerization of functionalized norbornene derivatives Radical R in Reaction Example Complex formula VIII T [° C.] time t Yield 2.1f 1 O2CCH3 25 30 min 99% 2.1g 1 CH2OH 25 2 h 15% 2.1h 1 CH2OH 50 2 h 18% 2.1i 1 CHO 25 2 h 36% 2.1k 1 CHO 50 2 h 52% 2.1l 1 COCH3 25 2 h 42% 2.1m 1 COCH3 50 2 h 67% 2.1n 1 CO2H 25 2 h 98% The polymerization of norbornene took place within a period of seconds. In the cyclooctene polymerization, almost quantitative conversions were obtained within an hour (Table 1). Differences in respect of activity can be demonstrated by the use of different complexes under dilute conditions and show the dependence of the activity on the substitution pattern of the carbene ligands used. The high stability and tolerance towards functional groups is demonstrated by the polymerization of functionalized norbornene derivatives with esters, alcohol, aldehyde, ketone or/and carboxylic acid (Table 2). It has thereby been possible to polymerize monomers of the general formula VIII wherein R═CH2OH, CHO and CO2H for the first time. 2.2) Ring-closing metathesis (RCM) of 1,7-octadiene: Typical Reaction Batch for the RCM of 1,7-octadiene: 46 μl (0.31 mmol.) of 1,7-octadiene were added to a solution of 3.6 mg (6.3 μmol.) of 1 in 2 ml of dichloro-ethane, and the reaction batch was placed in an oil bath at 60° C. After 1 hour, the reaction mixture was examined by GC/MS analysis. TABLE 3 RCM of 1,7-octadiene (octadiene/catalyst = 50:1) T Reaction Example Complex Solvent [° C.] time t Yield 2.2a 1 methylene chloride 25 5.5 h 51% 2.2b 1 methylene chloride 25 24 h 70% 2.2c 1 dichloroethane 60 1 h 99% 2.2d 2 dichloroethane 60 1 h 99% 2.2e 3 dichloroethane 60 1 h 99% 2.2f 5 dichloroethane 60 1 h 99% The potential in the ring-closing metathesis has been illustrated by the reaction of 1,7-octadiene to cyclohexene with the liberation of ethylene (Table 3). With 1, a yield of 51% was achieved after 5.5 hours; at 60° C., quantitative conversions were even achieved with all the complex compounds according to the invention which were used. 2.3) Metathesis of Acyclic Olefins A) Metathesis of 1-octene: Typical Reaction Batch for the Metathesis of 1-octene: 49 μl (0.31 mmol.) of 1-octene were added to a solution of 3.6 mg (6.3 μmol.) of 1 in 2 ml of dichloroethane, and the reaction batch was placed in an oil bath at 60° C. After 3 hours, the reaction mixture was examined by GC/MS analysis. TABLE 4 Homo-metathesis of 1-octene (octene/catalyst = 50:1) T Reaction Conversion Example Complex [° C.] time t of 1-octene Selectivitya 2.3a 2 60 1 h 31% 98% 2.3b 2 60 2 h 58% 97% 2.3c 1 60 1 h 83% 73% 2.3d 1 60 3 h 97% 63% aThe selectivity indicates the proportion of 7-tetradecene compared with other metathesis products B) Metathesis of Methyl Oleate: Typical Reaction Batch for the Metathesis of Methyl Oleate: 1.06 ml (3.13 mmol.) of methyl oleate were added to a solution of 3.6 mg (6.3 μmol.) of 1 in 0.5 ml of dichloroethane, and the reaction batch was placed in an oil bath at 60° C. for 15 hours. GC/MS analysis yielded the equilibrium of metathesis products shown in reaction equation (7). The metathesis of terminal and internal olefins has been demonstrated by the homo-metathesis of 1-octene and methyl oleate. In the metathesis of methyl oleate as a natural raw material, the thermodynamic equilibrium can almost be reached within a period of 15 hours with catalyst 1 at an olefin:catalyst ratio of 500:1. In the metathesis of 1-octene, 7-tetradecene was not obtained as the only reaction product in all cases. An isomerization, detected by NMR spectroscopy, of 1-octene to 2-octene and subsequent olefin metathesis is responsible for that situation. Homo- and cross-metathesis of 1-octene and 2-octene yielded, in addition to 7-tetradecene, also 6-tridecene as the most frequent by-product, and small amounts of 6-dodecene, 1-heptene and 2-nonene. The product distribution is greatly dependent on the catalyst used. In the case of 2, 7-tetradecene was obtained almost selectively; the more active complex 1, on the other hand, yielded 7-tetradecene with a selectivity of only 63%, at a high conversion. 6-Tridecene was obtained as the principal by-product of the cross-metathesis of 1-octene with 2-octene. | 20041223 | 20100126 | 20050519 | 90776.0 | 2 | NAZARIO GONZALEZ, PORFIRIO | ALKYLIDENE COMPLEXES OF RUTHENIUM CONTAINING N-HETEROCYCLIC CARBENE LIGANDS; USE AS HIGHLY ACTIVE, SELECTIVE CATALYSTS FOR OLEFIN METATHESIS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||||
11,022,080 | ACCEPTED | Circuit board having a peripheral antenna apparatus with selectable antenna elements | A circuit board for wireless communications includes communication circuitry for modulating and/or demodulating a radio frequency (RF) signal and an antenna apparatus for transmitting and receiving the RF signal, the antenna apparatus having selectable antenna elements located near one or more peripheries of the circuit board. A first antenna element produces a first directional radiation pattern; a second antenna element produces a second directional radiation pattern offset from the first radiation pattern. The antenna elements may include one or more reflectors configured to provide gain and broaden the frequency response of the antenna element. A switching network couples one or more of the selectable elements to the communication circuitry and provides impedance matching regardless of which or how many of the antenna elements are selected. Selecting different combinations of antenna elements results in a configurable radiation pattern; alternatively, selecting several elements may result in an omnidirectional radiation pattern. | 1. A system, comprising: communication circuitry located in a first area of a circuit board, the communication circuitry configured to generate an RF signal into an antenna feed port of the circuit board; a first antenna element located near a first periphery of the circuit board, the first antenna element configured to produce a first directional radiation pattern when coupled to the antenna feed port; and a second antenna element located near a second periphery of the circuit board, the second antenna element configured to produce a second directional radiation pattern offset from the first directional radiation pattern when coupled to the antenna feed port. 2. The system of claim 1 further comprising a switching network configured to selectively couple the antenna feed port to the first antenna element and the second antenna element. 3. The system of claim 2 wherein the switching network comprises a first RF switch located at about a multiple of one-half wavelength from the antenna feed port, the first RF switch configured to selectively couple the antenna feed port to the first antenna element. 4. The system of claim 1 further comprising: a first feed line of the circuit board configured to couple the antenna feed port to the first antenna element; and a second feed line of the circuit board configured to couple the antenna feed port to the second antenna element, the second feed line having electrical length of about a multiple of one-half wavelength as compared to the first feed line. 5. The system of claim 1 wherein the first antenna element and the second antenna element produce a substantially omnidirectional radiation coverage when the first antenna element and the second antenna element are coupled to the antenna feed port. 6. The system of claim 1 wherein the first antenna element comprises a modified dipole. 7. The system of claim 6 wherein the modified dipole comprises a bent dipole component. 8. The system of claim 6 wherein the first antenna element further comprises a reflector, the reflector configured to concentrate the radiation pattern of the first antenna element. 9. The system of claim 6 wherein the first antenna element further comprises a reflector, the reflector configured to broaden the frequency response of the first antenna element. 10. The system of claim 1 wherein the first antenna element comprises a first dipole component and a second dipole component, at least one of the first dipole component and the second dipole component formed on an exterior surface of the circuit board. 11. The system of claim 1 wherein the first antenna element comprises a first dipole component formed on a surface of the circuit board and a second dipole component formed on an opposite surface of the circuit board, the second dipole component coupled to an internal ground layer of the circuit board. 12. A system, comprising: communication circuitry located in a first area of a circuit board, the communication circuitry configured to generate an RF signal into an antenna feed port of the circuit board; a plurality of antenna elements arranged near at least two edges of the circuit board, each of the antenna elements configured to form a directional radiation pattern when coupled to the antenna feed port; and a switching network configured to selectively couple the antenna feed port to each of the plurality of antenna elements to result in a configurable radiation pattern ranging from highly directional to substantially non-directional. 13. The system of claim 12 wherein the switching network comprises an RF switch for each of the antenna elements, the RF switch located at about a multiple of one-half wavelength from the antenna feed port. 14. The system of claim 13 further comprising a feed line coupling the RF switch to the antenna element, the plurality of feed lines having electrical length of about a multiple of one-half wavelength as compared to each other. 15. The system of claim 12 wherein at least one of the antenna elements comprises a modified dipole. 16. The system of claim 15 further comprising at least one phase inverted modified dipole. 17. The system of claim 15 further comprising a reflector for the modified dipole, the reflector configured to concentrate the radiation pattern of the modified dipole. 18. The system of claim 15 further comprising a reflector for the modified dipole, the reflector configured to broaden the frequency response of the modified dipole. 19. A method, comprising: generating an RF signal in communication circuitry located on a first area of a circuit board; routing the RF signal from the communication circuitry to an antenna feed port of the circuit board; and coupling the RF signal from the antenna feed port to a first antenna element and a second antenna element, the first antenna element located near a first periphery of the circuit board, the second antenna element located near a second periphery of the circuit board, the first antenna element configured to produce a first directional radiation pattern when coupled to the antenna feed port, the second antenna element configured to produce a second directional radiation pattern offset from the first radiation pattern when coupled to the antenna feed port. 20. The method of claim 19 wherein coupling the RF signal from the antenna feed port to the first antenna element comprises enabling an RF switch, the RF switch coupled to the circuit board at about a multiple of one-half wavelength of the RF signal from the antenna feed port. 21. The method of claim 20 wherein the RF switch comprises a PIN diode. 22. The method of claim 20 wherein the RF switch is coupled to the circuit board at an offset from the multiple of one-half wavelength of the RF signal from the antenna feed port, the offset based upon a stray capacitance of at least one of the antenna feed port and the RF switch. 23. The method of claim 19 wherein coupling the RF signal to the first antenna element and the second antenna element comprises energizing a first feed line of the circuit board and a second feed line of the circuit board, the second feed line comprising about a multiple of one-half wavelength as compared to the first feed line. 24. The method of claim 19 wherein coupling the RF signal to the first antenna element and the second antenna element comprises routing the RF signal to the first antenna element and the second antenna element so that the first antenna element is substantially in phase with the second antenna element. 25. The method of claim 19 wherein first periphery and the second periphery comprise substantially opposite edges of the circuit board. 26. The method of claim 19 wherein the first antenna element comprises a modified dipole. 27. The method of claim 26 wherein the first antenna element further comprises a reflector. 28. A system, comprising: communication circuitry located on a first area of a circuit board, the communication circuitry configured to generate an RF signal into a distribution port of the circuit board; first means for radiating the RF signal in a first directional radiation pattern, the first means formed in a first periphery of the circuit board; second means for radiating the RF signal in a second directional radiation pattern offset from the first directional radiation pattern, the second means formed in a second periphery of the circuit board; and means for coupling the distribution port to the first means for radiating the RF signal and the second means for radiating the RF signal. 29. The system of claim 28, wherein the first means for radiating the RF signal comprises means for concentrating the first directional radiation pattern. 30. The system of claim 20, wherein the means for coupling further comprises means for selectively coupling the distribution port to the first means and the second means. 31. A circuit board, comprising: an antenna feed port configured to distribute an RF signal generated by communication circuitry located on the circuit board; a first antenna element located near a first periphery of the circuit board, the first antenna element configured to produce a first directional radiation pattern when coupled to the RF signal; and a second antenna element located near a second periphery of the circuit board, the second antenna element configured to produce a second directional radiation pattern offset from the first directional radiation pattern when coupled to the RF signal. 32. The circuit board of claim 31 further comprising a switching network adapted to receive a first RF switch and a second RF switch, the switching network configured to couple the antenna feed port to the first antenna element when the first RF switch is enabled and to the second antenna element when the second RF switch is enabled. 33. The circuit board of claim 32 wherein the switching network is configured with the first RF switch at about a multiple of one-half wavelength of the RF signal from the antenna feed port. 34. The circuit board of claim 31 wherein the first antenna element comprises a modified dipole. 35. The circuit board of claim 34 wherein the first antenna element further comprises a reflector, the reflector configured to concentrate the radiation pattern of the first antenna element. 36. The circuit board of claim 34 wherein the first antenna element further comprises a reflector, the reflector configured to broaden the frequency response of the first antenna element. 37. The system of claim 31 wherein the first antenna element comprises a first dipole component formed on a surface of the circuit board, a second dipole component formed on an opposite surface of the circuit board, the second dipole component coupled to an internal ground layer of the circuit board. | CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 60/630,499, entitled “Method and Apparatus for Providing 360 Degree Coverage via Multiple Antenna Elements Co-located with Electronic Circuitry on a Printed Circuit Board Assembly,” filed Nov. 22, 2004, which is hereby incorporated by reference. This application is also related to co-pending U.S. patent application Ser. No. ______, titled “System and Method for an Omnidirectional Planar Antenna Apparatus with Selectable Elements,” filed Dec. 9, 2004, which is hereby incorporated by reference. BACKGROUND OF INVENTION 1. Field of the Invention The present invention relates generally to wireless communications, and more particularly to a circuit board having a peripheral antenna apparatus with selectable antenna elements. 2. Description of the Prior Art In communications systems, there is an ever-increasing demand for higher data throughput and a corresponding drive to reduce interference that can disrupt data communications. For example, in an IEEE 802.11 network, an access point (i.e., base station) communicates data with one or more remote receiving nodes (e.g., a network interface card) over a wireless link. The wireless link may be susceptible to interference from other access points, other radio transmitting devices, changes or disturbances in the wireless link environment between the access point and the remote receiving node, and so on. The interference may be such to degrade the wireless link, for example by forcing communication at a lower data rate, or may be sufficiently strong to completely disrupt the wireless link. One solution for reducing interference in the wireless link between the access point and the remote receiving node is to provide several omnidirectional antennas for the access point, in a “diversity” scheme. For example, a common configuration for the access point comprises a data source coupled via a switching network to two or more physically separated omnidirectional antennas. The access point may select one of the omnidirectional antennas by which to maintain the wireless link. Because of the separation between the omnidirectional antennas, each antenna experiences a different signal environment, and each antenna contributes a different interference level to the wireless link. The switching network couples the data source to whichever of the omnidirectional antennas experiences the least interference in the wireless link. However, one limitation with using two or more omnidirectional antennas for the access point is that each omnidirectional antenna comprises a separate unit of manufacture with respect to the access point, thus requiring extra manufacturing steps to include the omnidirectional antennas in the access point. A further limitation is that the omnidirectional antenna typically comprises an upright wand attached to a housing of the access point. The wand typically comprises a rod exposed outside of the housing, and may be subject to breakage or damage. Another limitation is that typical omnidirectional antennas are vertically polarized. Vertically polarized radio frequency (RF) energy does not travel as efficiently as horizontally polarized RF energy inside a typical office or dwelling space, additionally, most laptop computer network interface cards have horizontally polarized antennas. Typical solutions for creating horizontally polarized RF antennas to date have been expensive to manufacture, or do not provide adequate RF performance to be commercially successful. A still further limitation with the two or more omnidirectional antennas is that because the physically separated antennas may still be relatively close to each other, each of the several antennas may experience similar levels of interference and only a relatively small reduction in interference may be gained by switching from one omnidirectional antenna to another omnidirectional antenna. SUMMARY OF INVENTION A system comprises communication circuitry, a first antenna element, and a second antenna element. The communication circuitry is located in a first area of a circuit board and is configured to generate an RF signal into an antenna feed port of the circuit board. The first antenna element is located near a first periphery of the circuit board and is configured to produce a first directional radiation pattern when coupled to the antenna feed port. The second antenna element is located near a second periphery of the circuit board and is configured to produce a second directional radiation pattern offset from the first directional radiation pattern when coupled to the antenna feed port. A method comprises generating an RF signal in communication circuitry located on a first area of a circuit board, routing the RF signal from the communication circuitry to an antenna feed port of the circuit board; and coupling the RF signal from the antenna feed port to a first antenna element and a second antenna element. The first antenna element is located near a first periphery of the circuit board and configured to produce a first directional radiation pattern when coupled to the antenna feed port. The second antenna element is located near a second periphery of the circuit board and is configured to produce a second directional radiation pattern offset from the first radiation pattern when coupled to the antenna feed port. A circuit board comprises an antenna feed port configured to distribute an RF signal generated by communication circuitry located on the circuit board, a first antenna element located near a first periphery of the circuit board and configured to produce a first directional radiation pattern when coupled to the RF signal, and a second antenna element located near a second periphery of the circuit board and configured to produce a second directional radiation pattern offset from the first directional radiation pattern when coupled to the RF signal. BRIEF DESCRIPTION OF DRAWINGS The present invention will now be described with reference to drawings that represent a preferred embodiment of the invention. In the drawings, like components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following figures: FIG. 1 illustrates an exemplary schematic for a system incorporating a circuit board having a peripheral antenna apparatus with selectable elements, in one embodiment in accordance with the present invention; FIG. 2 illustrates the circuit board having the peripheral antenna apparatus with selectable elements of FIG. 1, in one embodiment in accordance with the present invention; FIG. 3A illustrates a modified dipole for the antenna apparatus of FIG. 2, in one embodiment in accordance with the present invention; FIG. 3B illustrates a size reduced modified dipole for the antenna apparatus of FIG. 2, in an alternative embodiment in accordance with the present invention; FIG. 3C illustrates an alternative modified dipole for the antenna apparatus of FIG. 2, in an alternative embodiment in accordance with the present invention; FIG. 3D illustrates a modified dipole with coplanar strip transition for the antenna apparatus of FIG. 2, in an alternative embodiment in accordance with the present invention; FIG. 4 illustrates the antenna element of FIG. 3A, showing multiple layers of the circuit board, in one embodiment of the invention; FIG. 5A illustrates the antenna feed port and the switching network of FIG. 2, in one embodiment in accordance with the present invention; FIG. 5B illustrates the antenna feed port and the switching network of FIG. 2, in an alternative embodiment in accordance with the present invention; and FIG. 5C illustrates the antenna feed port and the switching network of FIG. 2, in an alternative embodiment in accordance with the present invention. DETAILED DESCRIPTION A system for a wireless (i.e., radio frequency or RF) link to a remote receiving device includes a circuit board comprising communication circuitry for generating an RF signal and an antenna apparatus for transmitting and/or receiving the RF signal. The antenna apparatus includes two or more antenna elements arranged near the periphery of the circuit board. Each of the antenna elements provides a directional radiation pattern. In some embodiments, the antenna elements may be electrically selected (e.g., switched on or off) so that the antenna apparatus may form configurable radiation patterns. If multiple antenna elements are switched on, the antenna apparatus may form an omnidirectional radiation pattern. Advantageously, the circuit board interconnects the communication circuitry and provides the antenna apparatus in one easily manufacturable printed circuit board. Including the antenna apparatus in the printed circuit board reduces the cost to manufacture the circuit board and simplifies interconnection with the communication circuitry. Further, including the antenna apparatus in the circuit board provides more consistent RF matching between the communication circuitry and the antenna elements. A further advantage is that the antenna apparatus radiates directional radiation patterns substantially in the plane of the antenna elements. When mounted horizontally, the radiation patterns are horizontally polarized, so that RF signal transmission indoors is enhanced as compared to a vertically polarized antenna. FIG. 1 illustrates an exemplary schematic for a system 100 incorporating a circuit board having a peripheral antenna apparatus with selectable elements, in one embodiment in accordance with the present invention. The system 100 may comprise, for example without limitation, a transmitter/receiver such as an 802.11 access point, an 802.11 receiver, a set-top box, a laptop computer, a television, a cellular telephone, a cordless telephone, a wireless VoIP phone, a remote control, and a remote terminal such as a handheld gaming device. In some exemplary embodiments, the system 100 comprises an access point for communicating to one or more remote receiving nodes over a wireless link, for example in an 802.11 wireless network. The system 100 comprises a circuit board 105 including a radio modulator/demodulator (modem) 120 and a peripheral antenna apparatus 110. The radio modem 120 may receive data from a router connected to the Internet (not shown), convert the data into a modulated RF signal, and the antenna apparatus 110 may transmit the modulated RF signal wirelessly to one or more remote receiving nodes (not shown). The system 100 may also form a part of a wireless local area network by enabling communications among several remote receiving nodes. Although the disclosure will focus on a specific embodiment for the system 100 including the circuit board 105, aspects of the invention are applicable to a wide variety of appliances, and are not intended to be limited to the disclosed embodiment. For example, although the system 100 may be described as transmitting to a remote receiving node via the antenna apparatus 110, the system 100 may also receive RF-modulated data from the remote receiving node via the antenna apparatus 110. FIG. 2 illustrates the circuit board 105 having the peripheral antenna apparatus 110 with selectable elements of FIG. 1, in one embodiment in accordance with the present invention. In some embodiments, the circuit board 105 comprises a printed circuit board (PCB) such as FR4, Rogers 4003, or other dielectric material with four layers, although any number of layers is comprehended, such as six. The circuit board 105 includes an area 210 for interconnecting circuitry including for example a power supply 215, an antenna selector 220, a data processor 225, and a radio modulator/demodulator (modem) 230. In some embodiments, the data processor 225 comprises well-known circuitry for receiving data packets from a router connected to the Internet (e.g., via a local area network). The radio modem 230 comprises communication circuitry including virtually any device for converting the data packets processed by the data processor 225 into a modulated RF signal for transmission to one or more of the remote receiving nodes, and for reception therefrom. In some embodiments, the radio modem 230 comprises circuitry for converting the data packets into an 802.11 compliant modulated RF signal. From the radio modem 230, the circuit board 105 also includes a microstrip RF line 234 for routing the modulated RF signal to an antenna feed port 235. Although not shown, in some embodiments, an antenna feed port 235 is configured to distribute the modulated RF signal directly to antenna elements 240A-240G of the peripheral antenna apparatus 110 (not labeled) by way of antenna feed lines. In the embodiment depicted in FIG. 2, the antenna feed port 235 is configured to distribute the modulated RF signal to one or more of the selectable antenna elements 240A-240G by way of a switching network 237 and microstrip feed lines 239A-G. Although described as microstrip, the feed lines 239 may also comprise coupled microstrip, coplanar strips with impedance transformers, coplanar waveguide, coupled strips, and the like. The antenna feed port 235, the switching network 237, and the feed lines 239 comprise switching and routing components on the circuit board 105 for routing the modulated RF signal to the antenna elements 240A-G. As described further herein, the antenna feed port 235, the switching network 237, and the feed lines 239 include structures for impedance matching between the radio modem 230 and the antenna elements 240. The antenna feed port 235, the switching network 237, and the feed lines 239 are further described with respect to FIG. 5. As described further herein, the peripheral antenna apparatus comprises a plurality of antenna elements 240A-G located near peripheral areas of the circuit board 105. Each of the antenna elements 240 produces a directional radiation pattern with gain (as compared to an omnidirectional antenna) and with polarization substantially in the plane of the circuit board 105. Each of the antenna elements may be arranged in an offset direction from the other antenna elements 240 so that the directional radiation pattern produced by one antenna element (e.g., the antenna element 240A) is offset in direction from the directional radiation pattern produced by another antenna element (e.g., the antenna element 240C). Certain antenna elements may also be arranged in substantially the same direction, such as the antenna elements 240D and 240E. Arranging two or more of the antenna elements 240 in the same direction provides spatial diversity between the antenna elements 240 so arranged. In embodiments with the switching network 237, selecting various combinations of the antenna elements 240 produces various radiation patterns ranging from highly directional to omnidirectional. Generally, enabling adjacent antenna elements 240 results in higher directionality in azimuth as compared to selecting either of the antenna elements 240 alone. For example, selecting the adjacent antenna elements 240A and 240B may provide higher directionality than selecting either of the antenna elements 240A or 240B alone. Alternatively, selecting every other antenna element (e.g., the antenna elements 240A, 240C, 240E, and 240G) or all of the antenna elements 240 may produce an omnidirectional radiation pattern. The operating principle of the selectable antenna elements 240 may be further understood by review of co-pending U.S. patent application Ser. No. ______, titled “System and Method for an Omnidirectional Planar Antenna Apparatus with Selectable Elements,” filed Dec. 9, 2004, incorporated by reference herein. FIG. 3A illustrates the antenna element 240A of FIG. 2, in one embodiment in accordance with the present invention. The antenna element 240A of this embodiment comprises a modified dipole with components on both exterior surfaces of the circuit board 105 (considered as the plane of FIG. 3A). Specifically, on a first surface of the circuit board 105, the antenna element 240A includes a first dipole component 310. On a second surface of the circuit board 105, depicted by dashed lines in FIG. 3, the antenna element 240A includes a second dipole component 311 extending substantially opposite from the first dipole component 310. The first dipole component 310 and the second dipole component 311 form the antenna element 240A to produce a generally cardioid directional radiation pattern substantially in the plane of the circuit board. In some embodiments, such as the antenna elements 240B and 240C of FIG. 2, the dipole component 310 and/or the dipole component 311 may be bent to conform to an edge of the circuit board 105. Incorporating the bend in the dipole component 310 and/or the dipole component 311 may reduce the size of the circuit board 105. Although described as being formed on the surface of the circuit board 105, in some embodiments the dipole components 310 and 311 are formed on interior layers of the circuit board, as described herein. The antenna element 240A may optionally include one or more reflectors (e.g., the reflector 312). The reflector 312 comprises elements that may be configured to concentrate the directional radiation pattern formed by the first dipole component 310 and the second dipole component 311. The reflector 312 may also be configured to broaden the frequency response of the antenna component 240A. In some embodiments, the reflector 312 broadens the frequency response of each modified dipole to about 300 MHz to 500 MHz. In some embodiments, the combined operational bandwidth of the antenna apparatus resulting from coupling more than one of the antenna elements 240 to the antenna feed port 235 is less than the bandwidth resulting from coupling only one of the antenna elements 240 to the antenna feed port 235. For example, with four antenna elements 240 (e.g., the antenna elements 240A, 240C, 240E, and 240G) selected to result in an omnidirectional radiation pattern, the combined frequency response of the antenna apparatus is about 90 MHz. In some embodiments, coupling more than one of the antenna elements 240 to the antenna feed port 235 maintains a match with less than 10 dB return loss over 802.11 wireless LAN frequencies, regardless of the number of antenna elements 240 that are switched on. FIG. 3B illustrates the antenna element 240A of FIG. 2, in an alternative embodiment in accordance with the present invention. The antenna element 240A of this embodiment may be reduced in dimension as compared to the antenna element 240A of FIG. 3A. Specifically, the antenna element 240A of this embodiment comprises a first dipole component 315 incorporating a meander, a second dipole component 316 incorporating a corresponding meander, and a reflector 317. Because of the meander, the antenna element 240A of this embodiment may require less space on the circuit board 105 as compared to the antenna element 240A of FIG. 3A. FIG. 3C illustrates the antenna element 240A of FIG. 2, in an alternative embodiment in accordance with the present invention. The antenna element 240A of this embodiment includes one or more components on one or more layers internal to the circuit board 105. Specifically, in one embodiment, a first dipole component 321 is formed on an internal ground plane of the circuit board 105. A second dipole component 322 is formed on an exterior surface of the circuit board 105. As described further with respect to FIG. 4, a reflector 323 may be formed internal to the circuit board 105, or may be formed on the exterior surface of the circuit board 105. An advantage of this embodiment of the antenna element 240A is that vias through the circuit board 105 may be reduced or eliminated, making the antenna element 240A of this embodiment less expensive to manufacture. FIG. 3D illustrates the antenna element 240A of FIG. 2, in an alternative embodiment in accordance with the present invention. The antenna element 240A of this embodiment includes a modified dipole with a microstrip to coplanar strip (CPS) transition 332 and CPS dipole arms 330A and 330B on a surface layer of the circuit board 105. Specifically, this embodiment provides that the CPS dipole arm 330A may be coplanar with the CPS dipole arm 330B, and may be formed on the same surface of the circuit board 105. This embodiment may also include a reflector 331 formed on one or more interior layers of the circuit board 105 or on the opposite surface of the circuit board 105. An advantage of this embodiment is that no vias are needed in the circuit board 105. It will be appreciated that the dimensions of the individual components of the antenna elements 240A-G (e.g., the first dipole component 310, the second dipole component 311, and the reflector 312) depend upon a desired operating frequency of the antenna apparatus. Furthermore, it will be appreciated that the dimensions of wavelength depend upon conductive and dielectric materials comprising the circuit board 105, because speed of electron propagation depends upon the properties of the circuit board 105 material. Therefore, dimensions of wavelength referred to herein are intended specifically to incorporate properties of the circuit board, including considerations such as the conductive and dielectric properties of the circuit board 105. The dimensions of the individual components may be established by use of RF simulation software, such as IE3D from Zeland Software of Fremont, Calif. FIG. 4 illustrates the antenna element 240A of FIG. 3A, showing multiple layers of the circuit board 105, in one embodiment of the invention. The circuit board 105 of this embodiment comprises a 60 mil thick stackup with three dielectrics and four metallization layers A-D, with an internal RF ground plane at layer B (10 mils from top layer A to the internal ground layer B). Layer B is separated by a 40 mil thick dielectric to the next layer C, which may comprise a power plane. Layer C is separated by a 10 mil dielectric to the bottom layer D. The first dipole component 310 and portions 412A of the reflector 312 is formed on the first (exterior) surface layer A. In the second metallization layer B, which includes a connection to the ground layer (depicted as an open trace), corresponding portions 412B of the reflector 312 are formed. On the third metallization layer C, corresponding portions 412C of the reflector 312 are formed. The second dipole component 411D is formed along with corresponding portions of the reflector 412D on the fourth (exterior) surface metallization layer D. The reflectors 412A-D and the second dipole component 411B-D on the different layers are interconnected to the ground layer B by an array of metallized vias 415 (only one via 415 shown, for clarity) spaced less than 1/20th of a wavelength apart, as determined by an operating RF frequency range of 2.4-2.5 GHz for 802.11. It will be apparent to a person or ordinary skill that the reflector 312 comprises four layers, depicted as 412A-D. An advantage of the antenna element 240A of FIG. 4 is that transitions in the RF path are avoided. Further, because of the cutaway portion of the reflector 412A and the array of vias interconnecting the layers of the circuit board 105, the antenna element 240A of this embodiment offers a good ground plane for the ground dipole 311 and the reflector element 312. FIG. 5A illustrates the antenna feed port 235 and the switching network 237 of FIG. 2, in one embodiment in accordance with the present invention. The antenna feed port 235 of this embodiment receives the RF line 234 from the radio modem 230 into a distribution point 235A. From the distribution point 235A, impedance matched RF traces 515A-G extend to PIN diodes 520A-G. In one embodiment, the RF traces 515A-G comprise 20 mils wide traces, based upon a 10 mil dielectric from the internal ground layer (e.g., the ground layer B of FIG. 4). Feed lines 239A-G (only portions of the feed lines 239 are shown for clarity) extend from the PIN diodes 520A-G to each of the antenna elements 240. Each PIN diode 520 comprises a single-pole single-throw switch to switch each antenna element 240 either on or off (i.e., couple or decouple each of the antenna elements 240 to the antenna feed port 235). In one embodiment, a series of control signals (not shown) is used to bias each PIN diode 520. With the PIN diode 520 forward biased and conducting a DC current, the PIN diode 520 is switched on, and the corresponding antenna element 240 is selected. With the PIN diode 520 reverse biased, the PIN diode 520 is switched off. In one embodiment, the RF traces 515A-G are of length equal to a multiple of one half wavelength from the antenna feed port 235. Although depicted as equal length in FIG. 5A, the RF traces 515A-G may be unequal in length, but multiples of one half wavelength from the antenna feed port 235. For example, the RF trace 515A may be of zero length so that the PIN diode 520A is directly attached to the antenna feed port 235. The RF trace 515B may be one half wavelength, the RF trace 515C may be one wavelength, and so on, in any combination. The PIN diodes 520A-G are multiples of one half wavelength from the antenna feed port 235 so that disabling one PIN diode (e.g. the PIN diode 520A) does not create an RF mismatch that would cause RF reflections back to the distribution point 235A and to other traces 515 that are enabled (e.g., the trace 515B). In this fashion, when the PIN diode 540A is “off,” the radio modem 230 sees a high impedance on the trace 515A, and the impedance of the trace 515B that is “on” is virtually unaffected by the PIN diode 540A. In some embodiments, the PIN diodes 520A-G are located at an offset from the one half wavelength distance. The offset is determined to account for stray capacitance in the distribution point 235A and/or the PIN diodes 520A-G. FIG. 5B illustrates the antenna feed port 235 and the switching network 237 of FIG. 2, in an alternative embodiment in accordance with the present invention. The antenna feed port 235 of this embodiment receives the RF line 234 from the radio modem 230 into a distribution point 235B. The distribution point 235B of this embodiment is configured as a solder pad for the PIN diodes 520A-G. The PIN diodes 520A-G are soldered between the distribution point 235B and the ends of the feed lines 239A-G. In essence, the distribution point 235B of this embodiment acts as a zero wavelength distance from the antenna feed port 235. An advantage of this embodiment is that the feed lines extending from the PIN diodes 520A-G to the antenna elements 240A-G offer unbroken controlled impedance. FIG. 5C illustrates the antenna feed port and the switching network of FIG. 2, in an alternative embodiment in accordance with the present invention. This embodiment may be considered as a combination of the embodiments depicted in FIGS. 5A and 5B. The PIN diodes 520A, 520C, 520E, and 520G are connected to the RF traces 515A, 515C, 515E, and 515G, respectively, in similar fashion to that described with respect to FIG. 5A. However, the PIN diodes 520B, 520D, and 520F are soldered to a distribution point 235C and to the corresponding feed lines 239B, 239D, and 239F, in similar fashion to that described with respect to FIG. 5B. Although the switching network 237 is described as comprising PIN diodes 520, it will be appreciated that the switching network 237 may comprise virtually any RF switching device such as a GaAs FET, as is well known in the art. In some embodiments, the switching network 237 comprises one or more single-pole multiple-throw switches. In some embodiments, one or more light emitting diodes (not shown) are coupled to the switching network 237 or the feed lines 239 as a visual indicator of which of the antenna elements 240 is on or off. In one embodiment, a light emitting diode is placed in circuit with each PIN diode 520 so that the light emitting diode is lit when the corresponding antenna element 240 is selected. Referring to FIG. 2, because in some embodiments the antenna feed port 235 is not in the center of the circuit board 105, which would make the antenna feed lines 239 of equal length and minimum loss, the lengths of the antenna feed lines 239 may not comprise equivalent lengths from the antenna feed port 235. Unequal lengths of the antenna feed lines 239 may result in phase offsets between the antenna elements 240. Accordingly, in some embodiments not shown in FIG. 2, each of the feed lines 239 to the antenna elements 240 are designed to be as long as the longest of the feed lines 239, even for antenna elements 240 that are relatively close to the antenna feed port 235. In some embodiments, the lengths of the feed lines 239 are designed to be a multiple of a half-wavelength offset from the longest of the feed lines 239. In still other embodiments, the lengths of the feed lines 239 which are odd multiples of one half wavelength from the other feed lines 239 incorporate a “phase-inverted” antenna element 240 to compensate. For example, referring to FIG. 2, the antenna elements 240C and 240F are inverted by 180 degrees because the feed lines 239C and 239F are 180 degrees out of phase from the feed lines 239A, 239B, 239D, 239E, and 239G. In an antenna element 240 that is phase inverted, the first dipole component (e.g., surface layer) replaces the second dipole component (e.g., ground layer). It will be appreciated that this provides the 180 degree phase shift in the antenna element to compensate for the 180 degree feed line phase shift. An advantage of the system 100 (FIG. 1) incorporating the circuit board 105 having the peripheral antenna apparatus with selectable antenna elements 240 (FIG. 2) is that the antenna elements 240 are constructed directly on the circuit board 105, therefore the entire circuit board 105 can be easily manufactured at low cost. As depicted in FIG. 2, one embodiment or layout of the circuit board 105 comprises a substantially square or rectangular shape, so that the circuit board 105 is easily panelized from readily available circuit board material. As compared to a system incorporating externally-mounted vertically polarized “whip” antennas for diversity, the circuit board 105 minimizes or eliminates the possibility of damage to the antenna elements 240. A further advantage of the circuit board 105 incorporating the peripheral antenna apparatus with selectable antenna elements 240 is that the antenna elements 240 may be configured to reduce interference in the wireless link between the system 100 and a remote receiving node. For example, the system 100 communicating over the wireless link to the remote receiving node may select a particular configuration of selected antenna elements 240 that minimizes interference over the wireless link. For example, if an interfering signal is received strongly via the antenna element 240C, and the remote receiving node is received strongly via the antenna element 240A, selecting only the antenna element 240A may reduce the interfering signal as opposed to selecting the antenna element 240C. The system 100 may select a configuration of selected antenna elements 240 corresponding to a maximum gain between the system and the remote receiving node. Alternatively, the system 100 may select a configuration of selected antenna elements 240 corresponding to less than maximal gain, but corresponding to reduced interference. Alternatively, the antenna elements 240 may be selected to form a combined omnidirectional radiation pattern. Another advantage of the circuit board 105 is that the directional radiation pattern of the antenna elements 240 is substantially in the plane of the circuit board 105. When the circuit board 105 is mounted horizontally, the corresponding radiation patterns of the antenna elements 240 are horizontally polarized. Horizontally polarized RF energy tends to propagate better indoors than vertically polarized RF energy. Providing horizontally polarized signals improves interference rejection (potentially, up to 20 dB) from RF sources that use commonly-available vertically polarized antennas. The invention has been described herein in terms of several preferred embodiments. Other embodiments of the invention, including alternatives, modifications, permutations and equivalents of the embodiments described herein, will be apparent to those skilled in the art from consideration of the specification, study of the drawings, and practice of the invention. The embodiments and preferred features described above should be considered exemplary, with the invention being defined by the appended claims, which therefore include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention. | <SOH> BACKGROUND OF INVENTION <EOH>1. Field of the Invention The present invention relates generally to wireless communications, and more particularly to a circuit board having a peripheral antenna apparatus with selectable antenna elements. 2. Description of the Prior Art In communications systems, there is an ever-increasing demand for higher data throughput and a corresponding drive to reduce interference that can disrupt data communications. For example, in an IEEE 802.11 network, an access point (i.e., base station) communicates data with one or more remote receiving nodes (e.g., a network interface card) over a wireless link. The wireless link may be susceptible to interference from other access points, other radio transmitting devices, changes or disturbances in the wireless link environment between the access point and the remote receiving node, and so on. The interference may be such to degrade the wireless link, for example by forcing communication at a lower data rate, or may be sufficiently strong to completely disrupt the wireless link. One solution for reducing interference in the wireless link between the access point and the remote receiving node is to provide several omnidirectional antennas for the access point, in a “diversity” scheme. For example, a common configuration for the access point comprises a data source coupled via a switching network to two or more physically separated omnidirectional antennas. The access point may select one of the omnidirectional antennas by which to maintain the wireless link. Because of the separation between the omnidirectional antennas, each antenna experiences a different signal environment, and each antenna contributes a different interference level to the wireless link. The switching network couples the data source to whichever of the omnidirectional antennas experiences the least interference in the wireless link. However, one limitation with using two or more omnidirectional antennas for the access point is that each omnidirectional antenna comprises a separate unit of manufacture with respect to the access point, thus requiring extra manufacturing steps to include the omnidirectional antennas in the access point. A further limitation is that the omnidirectional antenna typically comprises an upright wand attached to a housing of the access point. The wand typically comprises a rod exposed outside of the housing, and may be subject to breakage or damage. Another limitation is that typical omnidirectional antennas are vertically polarized. Vertically polarized radio frequency (RF) energy does not travel as efficiently as horizontally polarized RF energy inside a typical office or dwelling space, additionally, most laptop computer network interface cards have horizontally polarized antennas. Typical solutions for creating horizontally polarized RF antennas to date have been expensive to manufacture, or do not provide adequate RF performance to be commercially successful. A still further limitation with the two or more omnidirectional antennas is that because the physically separated antennas may still be relatively close to each other, each of the several antennas may experience similar levels of interference and only a relatively small reduction in interference may be gained by switching from one omnidirectional antenna to another omnidirectional antenna. | <SOH> SUMMARY OF INVENTION <EOH>A system comprises communication circuitry, a first antenna element, and a second antenna element. The communication circuitry is located in a first area of a circuit board and is configured to generate an RF signal into an antenna feed port of the circuit board. The first antenna element is located near a first periphery of the circuit board and is configured to produce a first directional radiation pattern when coupled to the antenna feed port. The second antenna element is located near a second periphery of the circuit board and is configured to produce a second directional radiation pattern offset from the first directional radiation pattern when coupled to the antenna feed port. A method comprises generating an RF signal in communication circuitry located on a first area of a circuit board, routing the RF signal from the communication circuitry to an antenna feed port of the circuit board; and coupling the RF signal from the antenna feed port to a first antenna element and a second antenna element. The first antenna element is located near a first periphery of the circuit board and configured to produce a first directional radiation pattern when coupled to the antenna feed port. The second antenna element is located near a second periphery of the circuit board and is configured to produce a second directional radiation pattern offset from the first radiation pattern when coupled to the antenna feed port. A circuit board comprises an antenna feed port configured to distribute an RF signal generated by communication circuitry located on the circuit board, a first antenna element located near a first periphery of the circuit board and configured to produce a first directional radiation pattern when coupled to the RF signal, and a second antenna element located near a second periphery of the circuit board and configured to produce a second directional radiation pattern offset from the first directional radiation pattern when coupled to the RF signal. | 20041223 | 20070320 | 20060525 | 59493.0 | H01Q928 | 2 | CHEN, SHIH CHAO | CIRCUIT BOARD HAVING A PERIPHERAL ANTENNA APPARATUS WITH SELECTABLE ANTENNA ELEMENTS | UNDISCOUNTED | 0 | ACCEPTED | H01Q | 2,004 |
|
11,022,110 | ACCEPTED | Surface-mounting coil component and method of producing the same | A surface-mounting choke coil has a resin coating material with magnetic powder which is filled a space between the upper flange and the lower flange of a drum-type ferrite core, while covering the circumferential of the winding. The resin coating material with magnetic powder has a glass transition temperature Tg of about −20° C. or lower, more preferably about −50° C. or lower in a course of transferring from a glass state to a rubber state during changing of shear modulus with respect to temperature as a physical property when hardening, and the thickness of the upper flange of the drum-type ferrite core is about 0.35 mm or less, and a value of a ratio L2/L1 of an outer diameter L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core is about 1.9 or more. | 1. A surface-mounting coil component, comprising: a drum-type ferrite core comprising a winding core, and upper and lower flanges provided on each ends of the winding core; external electrodes provided on a surface of either of the flanges; and a winding wound around the winding core of the drum-type ferrite core and conductively connected to the external electrodes on both ends, wherein the surface-mounting coil component has a resin coating material with magnetic powder that fills a space between the upper flange and the lower flange of the drum-type ferrite core, covering the winding between the upper flange and the lower flange, and wherein the physical property of the resin coating material with magnetic powder upon hardening is, regarding changes of modulus in torsion to temperature, that a glass transition temperature of about −20° C. or lower in a course of transferring from a glass state to a rubber state. 2. The surface-mounting coil component as described in claim 1, wherein the glass transition temperature is about −50° C. or lower. 3. The surface-mounting coil component as described in claim 1, wherein the thickness of the upper flange of the drum-type ferrite core is about 0.35 mm or less, and wherein a ratio between L2 and L1, where L2 is an outer diameter of the upper flange and L1 is a diameter of the winding core of the drum-type ferrite core, is about 1.9 or more. 4. A method of producing a surface-mounting coil component, comprising: preparing a drum-type ferrite core in which an upper flange and a lower flange are formed as one body, wherein the lower flange is disposed on the other end of the upper flange facing toward the upper flange; providing external electrodes that are direct-mounted to the core on the bottom surface of the lower flange; wrapping a winding around the winding core of the drum-type ferrite core and conductively connecting both ends of the winding to the external electrodes; filling a paint of a resin coating material with magnetic powder in a space range defined between the upper flange and the lower flange in opposition to this upper flange; and hardening the paint of the resin coating material with magnetic powder, wherein the filling of the paint of the resin coating material with magnetic powder uses a paint of the resin coating material with magnetic powder having the glass transition temperature of about −20° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening. 5. The method of producing the surface-mounting coil component asset forth in claim 4, wherein the glass transition temperature is about −50° C. or lower. 6. The surface-mounting coil component as described in claim 2, wherein the resin coating material with magnetic powder is a hardened paint that contains magnetic powder, epoxy resin, and carboxyl group modified propylene glycol. 7. The surface-mounting coil component as described in claim 2, wherein the resin coating material with magnetic powder is a hardened paint that contains magnetic powder and silicone resin. 8. The surface-mounting coil component as described in claim 2, wherein the resin coating material with magnetic powder is a hardened paint that contains magnetic powder, polyether amine, and epoxy resin. 9. The surface-mounting coil component as described in claim 3, wherein the drum-type ferrite core has a upper flange with maximum overhang size of about 1.0 mm or more in the diameter direction from the outer circumference of the winding core. 10. The surface-mounting coil component as described in claim 3, wherein the drum-type ferrite core is unified by using a dry forming press and baked thereafter. 11. The surface-mounting coil component as described in claim 3, wherein the drum-type ferrite core is produced by obtaining a plate shaped ferrite body, and grinding and baking it. 12. The surface-mounting coil component as described in claim 3, wherein the drum-type ferrite core has guide grooves on the bottom surface of the lower flange for ends of a winding. 13. The surface-mounting coil component as described in claim 3, wherein at least one pair or two pairs of external electrodes are arranged on the bottom surface of the lower flange. 14. The surface-mounting coil component as described in claim 13, wherein the external electrodes are formed by coating and baking a paste of an Ag electrode material. 15. The surface-mounting coil component as described in claim 13, wherein the external electrodes are applied Ni plating, Tin plating, or Cu plating on the surface of Ag baked electrodes. 16. The method of producing the surface-mounting coil component as described in claim 5, wherein the paint of the resin coating material with magnetic powder contains magnetic powder, epoxy resin, and carboxyl group modified propylene glycol. 17. The method of producing the surface-mounting coil component as described in claim 5, wherein the paint of the resin coating material with magnetic powder contains magnetic powder and silicone resin. 18. The method of producing the surface-mounting coil component as described in claim 5, wherein the paint of the resin coating material with magnetic powder contains magnetic powder, polyether amine, and epoxy resin. 19. The method of producing the surface-mounting coil component as described in claim 4, wherein the thickness of the upper flange is about 0.35 mm or less. 20. The method of producing the surface-mounting coil component as described in claim 4, wherein a ratio of L2/L1 is about 1.9 or more, where L2 is an outer diameter of the upper flange and L1 is a diameter of the winding core of the drum-type ferrite core. | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-mounting coil component applied, for example, to coils for heightening and lowering voltage of DC/DC source of portable electronic devices. 2. Description of the Related Art A current corresponding coil (such as choke coil) for application to DC/DC power source of the portable electronic devices such as portable telephones or digital still cameras has been in particular demanded to have a surface-mounting coil component of low height in an external dimension while securing a desired inductor characteristic. The portable electronic device is usually carried around and subjected to severe changing of circumstances in temperatures, and therefore a surface-mounting coil component mounted on a board housed inside of the portable electronic device is imposed heat cycle tests of 10 cycles at −25° C. to +85° C., or most severely, 10 cycles at −40° C. to +85° C. As representative structures of the surface-mounting coil component used to the existing portable electronic machinery, a sleeve core is covered on the outer circumference of the drum-type ferrite core to which the winding is wound around the winding core portion connecting the upper flange and the lower flange, the sleeve core is fixed by an adhesive with terminal electrodes of a metal frame, and both ends of the winding are fixedly bound and soldered on the terminal electrode (not shown). Further, as other existing surface-mounting coil components, there are the surface-mounting coil components of a structure solely composed of the drum-type ferrite core wherein the winding is wound around the winding core and both ends of the winding are conductively connected to plane external electrodes directly attached to the core, or of a structure of filling an resin coating material to cover around the winding between both flanges of the drum-type ferrite core. As the structure of the conventional surface-mounting coil component, the under mentioned [Patent Literature 1] describes the structure of a coil part using the drum-type ferrite core as shown in FIG. 6, a perspective view from the bottom side. That is, the coil part 10 has the structure comprising the drum-type ferrite core 8 that is composed of the upper flange 4 and the lower flange 2 extended to set on both upper and lower ends of the winding core 1 with a vertical winding axis, two pairs of external electrodes 3a, 3b, 3c, 3d, being furnished in the lower flange 2 of the drum-type ferrite core 8, and the windings 5, 6, being wound around the winding core 1 of the drum-type ferrite core 8 and having both ends 5a, 5b, and 6a, 6b respectively connected to the external electrodes 3a, 3b, 3c, 3d by soldering or thermal press-attaching. [Patent Literature 1] Laid Open No. 115023/1995 Upon progressing reduction of height in surface-mounting coil components using the conventional drum-type ferrite core, in a type of using the drum-type ferrite core and a sleeve core, the sleeve core is disposed adjoining the circumferences of both flanges of the drum-type ferrite core. Since this type appears similar to the structure of a closed magnetic circuit, although it is advantageous in the coil characteristics (in particular, L: inductance), it is disadvantageous in cost and reduction in height since more number of parts are required. On the other hand, in the conventional surface-mounting coil component 10 shown in FIG. 6, for realizing reduction in height and concurrently providing the current corresponding coil having a desired inductor characteristic, it is necessary to cover the outer circumference of the winding wound around the winding core between the flanges with the resin coating material with magnetic powder of 60 to 90 wt % in order to secure a necessary capacity of the winding and form an effective magnetic path around the winding. For producing the surface-mounting coil component of the outside dimension of 1.2 mm or lower using the simplex drum-type ferrite core, the prior art took a technique of bringing a linear expansion coefficient of the drum-type ferrite core and a linear expansion coefficient of resin coating material with magnetic powder to the closer value. However, in the surface-mounting coil component by the above-mentioned conventional technique, with respect to the flange of the drum-type ferrite core which is 0.35 mm or less in thickness, and has a value of 1.9 or more of a ratio L2/L1 an outer diameter L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core (the flange in the present pertinent surface-mounting coil component, corresponding to such a flange having the maximum overhang size exceeding 1.0 mm in the diameter direction from the outer circumference of the winding core of the upper flange of the drum-type ferrite core), strength of the flange of the drum-type ferrite core could not counter work the stress arising due to the difference between the linear expansion coefficient of the drum-type ferrite core and the linear expansion coefficient of the resin coating material with magnetic powder in the heat cycle tests (−25° C. to +85° C., 10 cycles, or −40° C. to +85° C., 10 cycles) which is generally required for the parts of portable electronic devices, and the flanges could not avoid inconvenience of cracks occurring. Further, in the producing process, due to hardening and shrinking of the resin coating material with magnetic powder when filling and hardening this resin on the outer circumference of the winding wound around the winding core between the flanges of the drum-type ferrite core, the flanges also had inconvenience of cracks occurring. SUMMARY OF THE INVENTION One aspect of the invention provides a surface-mounting coil component which concurrently realizes low cost, reduction in height, and durability demanded in the heat cycle test. Another aspect of the invention provides: (1) surface-mounting coil component, having a drum-type ferrite core composed of the winding core arranged vertically to a mounting surface, an upper flange and a lower flange formed as one body with the winding core on the upper and lower ends thereof, at least one pair of core-directly attached external electrodes being provided on the lower surface of the lower flange of the drum-type ferrite core, and the winding being wound around the winding core and being conductively connected to the external electrodes at both ends, the surface-mounting coil component comprising a resin coating material with magnetic powder which is filled a space between the upper flange and the lower flange of the drum-type ferrite core while covering the winding between the upper flange and the lower flange, wherein the resin coating material with magnetic powder has a glass transition temperature of about −20° C. or lower in a course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening. (2) the surface-mounting coil component as set forth in (1) wherein the glass transition temperature is about −50° C. or lower. (3) the surface-mounting coil component as set forth in (1) wherein thickness of the upper flange of the drum-type ferrite core is about 0.35 mm or less, wherein a value of a ratio L2/L1 of an outer diameter L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core is about 1.9 or larger. (4) a method of producing a surface-mounting coil component, comprising: a step of preparing the drum-type ferrite core where an upper flange and a lower flange are formed as one body, said upper flange being disposed on one end of a winding core with about 0.35 mm or less in thickness, and having a value of about 1.9 or more in a ratio L2/L1 of an outer diameter L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core, and said lower flange being disposed on the other end of the winding core in opposition to said upper flange; a step of providing core-directly attached external electrodes on the lower surface of the lower flange; a step of wrapping a winding around the winding core of said drum-type ferrite core, and conductively connecting both ends of the winding to the external electrodes; a step of filling a paint of a resin coating material with magnetic powder in a space between the upper flange and the lower flange, said upper flange being disposed on the outer circumference of the winding wound around the winding core, being about 0.35 mm or less in thickness, and having a value of about 1.9 or more in a ratio L2/L1 of an outside dimension L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core; and a step of hardening the paint of the resin coating material with magnetic powder; wherein the step of filling the paint of the resin coating material with magnetic powder uses a paint of the resin coating material with magnetic powder having the glass transition temperature of about −20° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening. (5) a method of producing the surface-mounting coil component as set forth in (4), wherein the glass transition temperature is about −50° C. or lower. The surface-mounting coil component and the production method thereof are constituted as mentioned above, and therefore embodiments of the invention can provide: (1) the current corresponding coil having a desired inductor characteristic in spite of requiring low cost and low height, (2) the surface-mounting coil component having the resin coating material with magnetic powder filled on the outer circumference of the winding wound around the winding core and in the space between the upper flange and the lower flange, in which the resin coating material with magnetic powder has the glass transition temperature of about −20° C. or lower, more preferably about −50° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening, whereby the flanges can be prevented from cracking in the heat cycle test, and therefore the surface-mounting coil component are suited to being mounted and served on the board housed inside of the portable electronic machinery being subjected to severe changing in circumstances of serving temperatures, and (3) the surface-mounting coil component having the step of filling the paint of the resin coating material with magnetic powder on the outer circumference of the winding wound around the winding core and in the space range defined between the upper flange and the lower flange in opposition to said upper flange being disposed on the outer circumference of the winding wound around the winding core, being about 0.35 mm or less in thickness, and having a value of about 1.9 or more of the ratio L2/L1 of an outside dimension L2 of the upper flange to the diameter L1 of the winding core of the drum-type ferrite core, and the step of hardening the paint of the resin coating material with magnetic powder, where the step of filling the paint of the resin coating material with magnetic powder uses the paint of the resin coating material with magnetic powder having the glass transition temperature of about −20° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening, thereby to decrease the thermal stress owing to the expanding and shrinking behavior of the resin generated in the hardening and heating course after coating the resin in the production process and prevent the flanges of the drum-type ferrite core from breakage. Consequently, it is possible to produce the surface-mounting coil component having high reliability to changing in circumstances of serving temperatures at higher yield. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a perspective view seen from the top, showing the structure of the surface-mount choke coil being a typical face-mounting coil parts according to one embodiment of the invention; FIG. 2 shows a perspective view seen from the bottom, showing the structure of the surface-mount choke coil according to one embodiment of the invention; FIG. 3 shows a front view of the surface-mount choke coil according to one embodiment of the invention; FIG. 4 shows a vertical cross-sectional view of the surface-mount choke coil according to one embodiment of the invention; FIG. 5 shows a flow chart diagram for explaining the method of producing the surface-mount choke coil according to one embodiment of the invention; and FIG. 6 shows a perspective view seen from the bottom of the conventional surface-mount choke coil. DESCRIPTION OF THE PREFERRED EMBODIMENTS Explanation will be made on embodiments of the invention, referring to the attached drawings. FIG. 1 is a perspective view seen from the top showing the structure of the face-mounting choke coil that is a typical surface-mounting coil component according to one embodiment of the invention, FIG. 2 is a perspective view seen from the bottom showing the structure of the face-mounting choke coil according to one embodiment of the invention, FIG. 3 is a front view of the face-mounting choke coil according to one embodiment of the invention, and FIG. 4 is a vertical cross-sectional view of the face-mounting choke coil according to one embodiment of the invention. In FIGS. 1 to 4, the surface-mounting choke coil 20 has the drum-type ferrite core 14, at least one couple of core-directly attached external electrodes 15a, 15b provided on the lower surface of the lower flange 13 of the drum-type ferrite core 14, and the winding 17, the drum-type ferrite core being composed of the winding core 11 arranged with the wound axis vertically with respect to the mounting face as well as the upper flange 12 and the lower flange 13 formed as one body with the winding core 11 on the upper and lower ends thereof, and the winding 17 being wound around the winding core 11 of the drum-type ferrite core 14 as well as conductively connected at its both ends to said external electrodes 15a, 15b by soldering or thermally press-attaching. In particular, the surface mount choke coil 20 has the resin coating material with magnetic powder 18 which is filled the space between the upper flange 12 and the lower flange 13 of the drum-type ferrite core 14, while covering the winding 17 between the upper flange 12 and the lower flange 13. The resin coating material with magnetic powder 18 is characterized by having the glass transition temperature Tg of about −20° C. or lower, more preferably about −50° C. or lower in a course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening. Further, in addition to the above mentioned structure, the surface-mounting choke coil 20 has characteristics that the thickness d of the upper flange 12 of the drum-type ferrite core 14 is about 0.35 mm or less, and the value of the ratio L2/L1 of the outer diameter L2 of the upper flange (in case the flange is circular, its diameter, and in case the flange is rectangular, its longer side) to the diameter L1 of the winding core of the drum-type ferrite core is about 1.9 or more, and as to the present minimum drum-type ferrite core, the maximum overhang size t corresponds to a size of about 1.0 mm or more in the diameter direction from the outer circumference of the winding core 11 of the upper flange 12, and the maximum overhang size t is from the outer circumference of the winding core to the maximum outer diameter of the upper flange. Limiting the thickness d of the upper flange 12 is advantageous for reducing the height of the surface-mounting coil component (the height H in FIG. 3 is about 1.6 mm or lower). The requirement of the value of about 1.9 or more in the ratio L2/L1 of the outer diameter L2 of the upper flange to the diameter L1 of the winding core, or the requirement of the maximum overhang size t in the diameter direction from the outer circumference of the winding core 11 of the upper flange 12 concerned with present miniaturized drum-type ferrite core, is advantageous for securing a winding capacity necessary for obtaining the choke characteristic with the simplex of the drum-type ferrite core besides restraining the height size H. Incidentally, the lower limit of the thickness d of the upper flange 12 should be reduced soon by development of a processing technique of ferrite material or a baking technique. The requirement for the resin coating material with magnetic powder 18, that having the glass transition temperature Tg of about −20° C. or lower in a course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening, is advantageous for providing an effect of avoiding cracks in the upper flange 12. The requirement is obtained by inventors' intensive studies based on actually measured values of generating conditions of cracking of the upper flange 12 resulted from the heat cycle tests of 50 cycles at −25° C. to +85° C. carried out on the surface-mounting choke coil 20. The requirement for having the temperature of about −50° C. or lower is advantageous for providing an effect of avoiding cracks in the upper flange 12 obtained based on actually measured values of generating conditions of cracking of the upper flange 12 resulted from the heat cycle tests of 50 cycles at −40° C. to +85° C. carried out on the surface-mounting choke coil 20. Next, the method of producing the surface-mounting choke coil 20 as a typical model of the surface-mounting coil component according to one embodiment of the invention has the characteristics of carrying steps 1 to 5 as shown in the flow chart in FIG. 5. In the following description, each of the processes will be explained while adding respective embodiments. Step 1: A step of preparing the drum-type ferrite core 14, in which the upper flange 12 and the lower flange 13 are formed as one body, the upper flange 12 being disposed on the winding core 11 and on one end of this winding core 11, being about 0.35 mm or less in thickness d, and having the value of about 1.9 or more of the ratio L2/L1 of the outer diameter L2 of the upper flange 12 to the diameter L1 of the winding core of the drum-type ferrite core 14, and the lower flange 13 being disposed on the other end in opposition to the upper flange 12. Specifically, a formed body is produced through a technique of atomizing a slurry containing nickel zinc based ferrite material powders, a binder and a solvent, drying the slurry into pellets, and forming palletized powders into the drum-type ferrite core by use of a dry forming press, or a technique of producing the plate shaped ferrite formed body by the same technique as mentioned above, followed by carrying out the grinding to form the drum-type ferrite core, and this formed body is baked at 1050° C. for two hours to turn out the drum-type baked ferrite core 14. By the way, sizes of the value of L2/L1 of the outside dimension L2 to the diameter L1 of the winding core of the drum-type ferrite core 14 are closely related with occurrence of cracks. Step 2: A step of providing the core-directly attached external electrodes 15a, 15b in ranges including winding guide grooves 19 of the lower surface 13a of the lower flange 13. Specifically, depending on a screen process printing, the drum-type ferrite core 14 is supported on a printing stage by use of a screen mask having a desired opening pattern, and a paste of Ag electrode material containing Ag conductive powders, glass frit and vehicle is coated by a squeegee, and baked 650° C. for 30 minutes. If needed, Ag baked electrode is performed on the surface with Ni plate and Ti plate, or Cu plate. Step 3: A step of winding the winding 17 around the winding core 11 of the drum-type ferrite core 14, and conductively connecting both ends of the winding 17 to the external electrodes 15a, 15b. Specifically, the winding 17 of polyurethane resin covered copper wire having 100 μm diameter is wound 10 turns around the outer circumference of the winding core 11 of the drum-type ferrite core 14, and both ends are respectively bent on along the external electrodes 15a, 15b of the winding core guide grooves 19. Flux component containing soldering paste is subjected to a stencil printing on the surface of the external electrodes 15a, 15b so as to cover the end of the winding 17, dried, contacted on the solder surface with a hot plate heated to 300° C., and held for 30 seconds to fuse the solder paste, and to dissolve and remove the polyurethane resin cover, and solder the end of the copper wire and the external electrodes 15a, 15b. The soldering process may be divided before and after winding of the winding, or the wind of the winding and the soldering may be performed independently. Step 4: A step of filling the paint 18 of the resin coating material with magnetic powder in the space range defined between the upper flange 12 and the lower flange 13 in opposition to this upper flange 12, the upper flange 12 being disposed on the outer circumference of the winding 17 wound around the winding core 11, being about 0.35 mm or less in thickness, and having the value of about 1.9 or more of the ratio L2/L1 of the outside dimension L2 of the upper flange 12 to the diameter L1 of the winding core 11 of the drum-type ferrite core 14, and this step of filling the paint of the resin coating material with magnetic powder uses the paint of the resin coating material with magnetic powder 18 having the glass transition temperature Tg of about −20° C. or lower, or about −50° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening. Specifically, the resin coating material with magnetic powder is charged on the outer circumference of the winding i.e., in the space range defined between the upper flange 12 and the lower flange 13, by use of a dispenser and left at room temperature for 30 minutes to dry. As the resin coating material with magnetic powder 18, such a paint is employed where, for example, epoxy resin and carboxyl modified propyleneglycol are mixed at the compositions shown in (Mixture 3) to (Mixture 7) of the glass transition temperature Tg being about −20° C. or lower in the under Table 1 of the resin coating material with magnetic powder and the physical properties after hardening (1), and at the compositions shown in (Mixture 6) or (Mixture 7) of the glass transition temperature Tg being about −50° C. or lower. For reference, (Mixture 1) shows the mixture of the resin coating material with magnetic powder 18 containing as the main component of only epoxy resin generally used in the existing surface-mounting coil components, and (Mixture 2) shows the mixture at 7:3 of epoxy resin and carboxyl group modified propylene glycol. It is seen from Table 1 that the higher is the rate of carboxyl group modified propylene glycol to epoxy resin, the lower is the glass transition temperature Tg under about −20° C. Also it is seen that, from (Mixture 3) to (Mixture 7), in case the glass transition temperature is below about −20° C. (especially lower than about −50° C.), the Young's modulus at the room temperature (20° C.) of the resin coating material with magnetic powder 18 after hardening remarkably goes down in comparison with (Mixture 1) or (Mixture 2), and that the resin coating material with magnetic powder is rich in a property of a soft resin. TABLE 1 Resin coating material with magnetic powder paint and physical properties after hardening (1) H1 H2 H3 H4 H5 H6 H7 A 0 30 40 50 55 60 70 B 100 70 60 50 45 40 30 C 111 111 111 11 111 111 111 D 1 1 1 1 1 1 1 E 5 5 5 5 5 5 5 F 15 15 15 15 15 15 15 Total 232 232 232 232 232 232 232 Tg(° C.) 120 −10 −20 −34 −40 −50 −53 G 10000 3800 1500 320 155 37 17 A: Carboxyl group modified propylene glycol B: Epoxy resin C: Ferrite magnetic powder D: Silica E: Hardening agent F: Solvent G: Young's modulus(Mpa) at 20° C. H: Mixture As a pertinent example other than the above mentioned resin coating material with magnetic powder 18, (Mixture 8) of adding ferrite magnetic powder of the same weight part to Silicone resin TSE325-B by GE Toshiba Silicone (KK) is shown in the resin coating material with magnetic powder and the physical properties (2) after hardening of Table 2. TABLE 2 Resin coating material with magnetic powder paint and physical properties after hardening (2) Mixture 8 Silicone resin TSE325-B 100 Ferrite magnetic powder 100 Silica 0 Hardening agent 0 Solvent 0 Total 200 Tg(° C.) −60 Young's modulus(Mpa) at 20° C. 0.2 As far as satisfying the condition that the resin coating material with magnetic powder 18 has the glass transition temperature of about −20° C. or lower, more preferably about −50° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening, desirable is such a resin coating material with magnetic powder containing the ferrite magnetic powder of 10 to 90 wt % for improving the inductor characteristic. Step 5: A step of heating and hardening the paint of the resin coating material with magnetic powder 18. Specifically, the heating treatment is carried out in the heating furnace at 150° C. for 10 minutes. The paints of the resin coating material with magnetic powder of (Mixture 1) to (Mixture 8) produced by the above mentioned method were used, and the heat cycle tests were carried out, repeating 50 cycles operations of keeping at −40° C. for 30 minutes, followed by keeping at +85° C. for 30 minutes, and again cooling to −40° C. in the heat cycle testing chamber to the respective samples of the surface-mount choke coils (the number n of the samples under the respective conditions=3). The respective samples have the upper flanges 12 of the outside dimension of 4 mm square; the value of 2.1 in the ratio L2/L1 of the outside dimension L2 to the diameter L1 of the winding core; the size y between the upper and lower flanges of 0.5 mm, and the thicknesses d of the upper flanges of 0.25 mm, 0.30 mm, 0.35 mm, and 0.4 mm. The Table below 3 shows the visually observed results of the cracks occurring in the upper flanges 12 of the respective samples after the tests. TABLE 3 Heating cycle test (−40˜85° C. 50Cycles) ◯: No cracks ●: Cracks Thickness of flange (mm) H1 H2 H3 H4 H5 H6 H7 H8 0.25 ●●● ●●● ●●● ●●● ◯●● ◯◯● ◯◯◯ ◯◯◯ 0.30 ●●● ●●● ●●● ●●● ◯◯● ◯◯◯ ◯◯◯ ◯◯◯ 0.35 ●●● ●●● ●●● ●●● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ 0.40 ◯●● ◯◯● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ Outer diameter 4 mm square Outer diameter/axis diameter = 2.1 H: Mixture The same samples of (Mixture 1) to (Mixture 8) as in Table 3 were carried out with the tests by repeating 50 cycles operations of keeping at −25° C. for 30 minutes, followed by keeping at +85° C. for 30 minutes, and again cooling to −25° C. in the heat cycle testing chamber. The Table 4 below shows the visually observed results of the cracks occurring in the upper flanges 12 of the respective samples after the tests. TABLE 4 Heating cycle test (−25˜85° C. 50Cycles) ◯: No cracks ●: Cracks Thickness of flange (mm) H1 H2 H3 H4 H5 H6 H7 H8 0.25 ●●● ●●● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ 0.30 ●●● ◯●● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ 0.35 ◯●● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ 0.40 ◯◯● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ Outer diameter 4 mm square Outer diameter/axis diameter = 2.1 H: Mixture The Table 5 below shows the visually observed results of the cracks occurring in the upper flanges 12 of the respective samples after the heat cycle tests of 50 cycles at −40° C. to +85° C. on the respective samples of (Mixture 1) to (Mixture 8) of the thickness d of the upper flange 12: 0.35 mm, the size y between the upper and lower flanges: 0.5 mm, and the values: 4.00, 2.50, 1.90, and 1.30 in the ratio L2/L1 of the outside dimension L2 to the diameter L1 of the wound flanges 12, wherein the value of 4.00 corresponds to 1.5 mm of the maximum overhang size of the upper flange, the value of 2.50 corresponds to 1.2 mm of the same, 1.90 to 1.0 mm of the same, and 1.30 to 0.5 mm of the same. TABLE 5 Heating cycle test (−40 to 85° C. 50Cycles) ◯: No cracks ●: Cracks I H1 H2 H3 H4 H5 H6 H7 H8 4.00 ●●● ●●● ●●● ●●● ●●● ◯●● ◯◯◯ ◯◯◯ 2.50 ●●● ●●● ●●● ●●● ◯●● ◯◯◯ ◯◯◯ ◯◯◯ 1.90 ●●● ●●● ●●● ●●● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ 1.30 ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ Outer diameter 4 mm square Thickness of flange 0.35 mm H: Mixture I: Outer diameter/axis diameter The same samples of (Mixture 1) to (Mixture 8) as in Table 5 were carried out with the tests of 50 cycles of at −25° C. to +85° C. The Table 6 below shows the visually observed results of the cracks occurring in the upper flanges 12 of the respective samples after the tests. TABLE 6 Heating cycle test (−25 to 85° C. 50Cycles) ◯: No cracks ●: Cracks I H1 H2 H3 H4 H5 H6 H7 H8 4.00 ●●● ●●● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ 2.50 ●●● ●●● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ 1.90 ◯●● ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ 1.30 ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ ◯◯◯ Outer diameter 4 mm square Thickness of flange 0.35 mm H: Mixture I: Outer diameter/axis diameter It is seen from Table 4 that in the heat cycle tests of 50 cycles at −25° C. to +85° C., the samples of (Mixture 3) to (Mixture 8) of the glass transition temperature Tg at about −20° C. or lower have no cracks, and in particular, as seen from Table 3, the samples of (Mixture 6) to (Mixture 8) of the glass transition temperature Tg at about −50° C. or lower have scarcely cracks in the heat cycle of 50 cycles at −40° C. to +85° C. Further, in view of the value of L2/L1 of the outside dimension L2 to the diameter L1 of the winding core 12 of the drum-type ferrite core 14, as seen from Table 6, in regard to the samples of the value of L2/L1 being about 1.9 or more, no cracks occur in all samples of (Mixture 3) to (Mixture 8) of the glass transition temperature Tg at about −20° C. or lower in the heat cycles of 50 cycles at −25° C. to +85° C., and in particular, as seen from Table 5, the samples of (Mixture 6) to (Mixture 8) of the glass transition temperature Tg at about −50° C. or lower have scarcely cracks in the heat cycle of 50 cycles at −40° C. to +85° C. In the surface-mount choke coil 20 having the above mentioned structure, in view of the results of Table 1 to Table 6, the resin coating material with magnetic powder 18 is charged on the outer circumference of the winding 17 wound around the winding core 11 and in the space range defined between the respective corners of the upper surface of the lower flange 13 and the lower surface of the upper flange 12, and therefore the resin coating material with magnetic powder 18 does not mutually hold the upper flange 12 and the lower flange 13 at large rigidity under the condition of serving temperatures, but has action of relieving stress caused within the core, so to speak as a cushion material. Consequently, it is possible to prevent the upper flange 12 from occurring of cracks in the above mentioned heat cycle test. By the way, (Mixture 3) to (Mixture 8), in particular (Mixture 6) to (Mixture 8) comparatively lengthen the pot lives after mixing, and are excellent in stability of the processing conditions in case of mass production of the face-mounting coil parts. The Table 7 below shows modified examples of 2-Liquid Type as other modified examples of the resin coating material with magnetic powder having the glass transition temperature of about −50° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature. Specifically, it is possible to use Jeffamine D-2000 made by San Techno Chemical Co., Ltd. of 70 wt parts, epoxy resin (Bisphenol A Type) of 30 wt parts, ferrite magnetic powder of 100 wt parts, and the solvent of 20 wt parts. The glass transition temperature Tg of the resin coating material with magnetic powder after hardening is −50° C., but being 2-liquid type, the pot life enabling to coat the dispenser after mixing is about 1 hour, aiming at productions of small amount of many kinds. TABLE 7 Mixing examples of low Tg (2-Liquid Type) Mixtures Jeffamine D-2000(1) 70 Epoxy resin (Bisphenol A Type) 30 Ferrite powder 100 Solvent 20 San Techno Chemical Co., Ltd. It is preferable that an area of the upper flange 12 is equal to or smaller than that of the lower flange 13 arranged oppositely corresponding to at least 85%. Further, it is possible to restrain the height H of the surface-mount choke coil 20 having the abovementioned structure to be about 1.2 mm or lower or about 1.0 mm or lower, and to realize reduction in height than that of the existing surface-mount choke coil (about 1.6 mm or higher). In regard to the shape of the drum-type ferrite core 14, the winding core 11 may be a circular or square pillar, the upper and lower flanges 12, 13 may be disc, square or rectangular. In addition, the external electrodes 15a, 15b are enough to dispose at least one couple or two couples on the lower surface 13a of the lower flange 13. Neither the position nor the shape is limited. While the above description has pointed out novel features of the invention as applied to various embodiments, the skilled person will understand that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made without departing from the scope of the invention. Therefore, the scope of the invention is defined by the appended claims rather than by the foregoing description. All variations coming within the meaning and range of equivalency of the claims are embraced within their scope. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a surface-mounting coil component applied, for example, to coils for heightening and lowering voltage of DC/DC source of portable electronic devices. 2. Description of the Related Art A current corresponding coil (such as choke coil) for application to DC/DC power source of the portable electronic devices such as portable telephones or digital still cameras has been in particular demanded to have a surface-mounting coil component of low height in an external dimension while securing a desired inductor characteristic. The portable electronic device is usually carried around and subjected to severe changing of circumstances in temperatures, and therefore a surface-mounting coil component mounted on a board housed inside of the portable electronic device is imposed heat cycle tests of 10 cycles at −25° C. to +85° C., or most severely, 10 cycles at −40° C. to +85° C. As representative structures of the surface-mounting coil component used to the existing portable electronic machinery, a sleeve core is covered on the outer circumference of the drum-type ferrite core to which the winding is wound around the winding core portion connecting the upper flange and the lower flange, the sleeve core is fixed by an adhesive with terminal electrodes of a metal frame, and both ends of the winding are fixedly bound and soldered on the terminal electrode (not shown). Further, as other existing surface-mounting coil components, there are the surface-mounting coil components of a structure solely composed of the drum-type ferrite core wherein the winding is wound around the winding core and both ends of the winding are conductively connected to plane external electrodes directly attached to the core, or of a structure of filling an resin coating material to cover around the winding between both flanges of the drum-type ferrite core. As the structure of the conventional surface-mounting coil component, the under mentioned [Patent Literature 1] describes the structure of a coil part using the drum-type ferrite core as shown in FIG. 6 , a perspective view from the bottom side. That is, the coil part 10 has the structure comprising the drum-type ferrite core 8 that is composed of the upper flange 4 and the lower flange 2 extended to set on both upper and lower ends of the winding core 1 with a vertical winding axis, two pairs of external electrodes 3 a , 3 b , 3 c , 3 d , being furnished in the lower flange 2 of the drum-type ferrite core 8 , and the windings 5 , 6 , being wound around the winding core 1 of the drum-type ferrite core 8 and having both ends 5 a , 5 b , and 6 a , 6 b respectively connected to the external electrodes 3 a , 3 b , 3 c , 3 d by soldering or thermal press-attaching. [Patent Literature 1] Laid Open No. 115023/1995 Upon progressing reduction of height in surface-mounting coil components using the conventional drum-type ferrite core, in a type of using the drum-type ferrite core and a sleeve core, the sleeve core is disposed adjoining the circumferences of both flanges of the drum-type ferrite core. Since this type appears similar to the structure of a closed magnetic circuit, although it is advantageous in the coil characteristics (in particular, L: inductance), it is disadvantageous in cost and reduction in height since more number of parts are required. On the other hand, in the conventional surface-mounting coil component 10 shown in FIG. 6 , for realizing reduction in height and concurrently providing the current corresponding coil having a desired inductor characteristic, it is necessary to cover the outer circumference of the winding wound around the winding core between the flanges with the resin coating material with magnetic powder of 60 to 90 wt % in order to secure a necessary capacity of the winding and form an effective magnetic path around the winding. For producing the surface-mounting coil component of the outside dimension of 1.2 mm or lower using the simplex drum-type ferrite core, the prior art took a technique of bringing a linear expansion coefficient of the drum-type ferrite core and a linear expansion coefficient of resin coating material with magnetic powder to the closer value. However, in the surface-mounting coil component by the above-mentioned conventional technique, with respect to the flange of the drum-type ferrite core which is 0.35 mm or less in thickness, and has a value of 1.9 or more of a ratio L2/L1 an outer diameter L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core (the flange in the present pertinent surface-mounting coil component, corresponding to such a flange having the maximum overhang size exceeding 1.0 mm in the diameter direction from the outer circumference of the winding core of the upper flange of the drum-type ferrite core), strength of the flange of the drum-type ferrite core could not counter work the stress arising due to the difference between the linear expansion coefficient of the drum-type ferrite core and the linear expansion coefficient of the resin coating material with magnetic powder in the heat cycle tests (−25° C. to +85° C., 10 cycles, or −40° C. to +85° C., 10 cycles) which is generally required for the parts of portable electronic devices, and the flanges could not avoid inconvenience of cracks occurring. Further, in the producing process, due to hardening and shrinking of the resin coating material with magnetic powder when filling and hardening this resin on the outer circumference of the winding wound around the winding core between the flanges of the drum-type ferrite core, the flanges also had inconvenience of cracks occurring. | <SOH> SUMMARY OF THE INVENTION <EOH>One aspect of the invention provides a surface-mounting coil component which concurrently realizes low cost, reduction in height, and durability demanded in the heat cycle test. Another aspect of the invention provides: (1) surface-mounting coil component, having a drum-type ferrite core composed of the winding core arranged vertically to a mounting surface, an upper flange and a lower flange formed as one body with the winding core on the upper and lower ends thereof, at least one pair of core-directly attached external electrodes being provided on the lower surface of the lower flange of the drum-type ferrite core, and the winding being wound around the winding core and being conductively connected to the external electrodes at both ends, the surface-mounting coil component comprising a resin coating material with magnetic powder which is filled a space between the upper flange and the lower flange of the drum-type ferrite core while covering the winding between the upper flange and the lower flange, wherein the resin coating material with magnetic powder has a glass transition temperature of about −20° C. or lower in a course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening. (2) the surface-mounting coil component as set forth in (1) wherein the glass transition temperature is about −50° C. or lower. (3) the surface-mounting coil component as set forth in (1) wherein thickness of the upper flange of the drum-type ferrite core is about 0.35 mm or less, wherein a value of a ratio L2/L1 of an outer diameter L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core is about 1.9 or larger. (4) a method of producing a surface-mounting coil component, comprising: a step of preparing the drum-type ferrite core where an upper flange and a lower flange are formed as one body, said upper flange being disposed on one end of a winding core with about 0.35 mm or less in thickness, and having a value of about 1.9 or more in a ratio L2/L1 of an outer diameter L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core, and said lower flange being disposed on the other end of the winding core in opposition to said upper flange; a step of providing core-directly attached external electrodes on the lower surface of the lower flange; a step of wrapping a winding around the winding core of said drum-type ferrite core, and conductively connecting both ends of the winding to the external electrodes; a step of filling a paint of a resin coating material with magnetic powder in a space between the upper flange and the lower flange, said upper flange being disposed on the outer circumference of the winding wound around the winding core, being about 0.35 mm or less in thickness, and having a value of about 1.9 or more in a ratio L2/L1 of an outside dimension L2 of the upper flange to a diameter L1 of the winding core of the drum-type ferrite core; and a step of hardening the paint of the resin coating material with magnetic powder; wherein the step of filling the paint of the resin coating material with magnetic powder uses a paint of the resin coating material with magnetic powder having the glass transition temperature of about −20° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening. (5) a method of producing the surface-mounting coil component as set forth in (4), wherein the glass transition temperature is about −50° C. or lower. The surface-mounting coil component and the production method thereof are constituted as mentioned above, and therefore embodiments of the invention can provide: (1) the current corresponding coil having a desired inductor characteristic in spite of requiring low cost and low height, (2) the surface-mounting coil component having the resin coating material with magnetic powder filled on the outer circumference of the winding wound around the winding core and in the space between the upper flange and the lower flange, in which the resin coating material with magnetic powder has the glass transition temperature of about −20° C. or lower, more preferably about −50° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening, whereby the flanges can be prevented from cracking in the heat cycle test, and therefore the surface-mounting coil component are suited to being mounted and served on the board housed inside of the portable electronic machinery being subjected to severe changing in circumstances of serving temperatures, and (3) the surface-mounting coil component having the step of filling the paint of the resin coating material with magnetic powder on the outer circumference of the winding wound around the winding core and in the space range defined between the upper flange and the lower flange in opposition to said upper flange being disposed on the outer circumference of the winding wound around the winding core, being about 0.35 mm or less in thickness, and having a value of about 1.9 or more of the ratio L2/L1 of an outside dimension L2 of the upper flange to the diameter L1 of the winding core of the drum-type ferrite core, and the step of hardening the paint of the resin coating material with magnetic powder, where the step of filling the paint of the resin coating material with magnetic powder uses the paint of the resin coating material with magnetic powder having the glass transition temperature of about −20° C. or lower in the course of transferring from the glass state to the rubber state during changing of shear modulus with respect to temperature as the physical property when hardening, thereby to decrease the thermal stress owing to the expanding and shrinking behavior of the resin generated in the hardening and heating course after coating the resin in the production process and prevent the flanges of the drum-type ferrite core from breakage. Consequently, it is possible to produce the surface-mounting coil component having high reliability to changing in circumstances of serving temperatures at higher yield. | 20041222 | 20070424 | 20050929 | 70589.0 | 1 | MAI, ANH T | SURFACE-MOUNTING COIL COMPONENT AND METHOD OF PRODUCING THE SAME | UNDISCOUNTED | 0 | ACCEPTED | 2,004 |
|||
11,022,183 | ACCEPTED | "Seeing eye" mouse for a computer system | A hand operated pointing device for use with a computer includes a movable housing, a source of non-coherent light illuminating a work surface and circuitry in the movable housing using arrays of data related to light reflected by the illuminated work surface to produce values by processing portions of a first array with portions of a second array. One of the values may be identified to represent movement of the housing relative to the work surface. The light may illuminate surface irregularities at an angle of incidence low enough to produce suitable arrays of data for processing from highlights and shadows of the illuminated surface irregularities. The circuitry may produce additional values by processing another selected portion of the first array with portions of a third array or may select a fourth array for processing with the third array. Predictions may be derived from the values. Signal may be sent to a computer related to movement of the housing. | 1-12. (canceled) 13. A hand operated pointing device for use with a computer, comprising: a movable housing; a source of non-coherent light illuminating a work surface; and circuitry in the movable housing using a plurality of two dimensional arrays of data related to light reflected by the illuminated work surface to produce a first plurality of values by processing at least a portion of a first array of the plurality of arrays of data with a plurality of portions of a second array of the plurality of arrays of data, the circuitry processes the first plurality of values to identify a value representing a valid first movement of the housing relative to the work surface. 14. The invention of claim 13 wherein the circuitry derives a prediction of a second movement from the identified value. 15. The invention of claim 14, wherein the circuitry selects one of a portion of the first array and a third array of the plurality of arrays in accordance with the prediction to produce a second plurality of values. 16. The invention of claim 15, wherein the circuitry processes the values of the second plurality of values and provides a signal to the computer related to a valid second movement only if a value related to a valid second movement is identified. 17. The invention of claim 13, wherein the circuitry selects one of a portion of the first array and a third array of the plurality of arrays in accordance with the identified value to produce a second plurality of values. 18. The invention of claim 17, wherein the circuitry processes the second plurality of values to send a signal to the computer related to a valid second movement. 19. The invention of claim 13, wherein the circuitry sends a signal to the computer related to the valid first movement. 20. A hand operated pointing device for use with a computer, comprising: a movable housing; circuitry in the movable housing using a plurality of two dimensional arrays of data related to light reflected from a work surface to produce a first plurality of values by processing a selected first portion of a first array of the plurality of arrays with a plurality of portions of a second array of the plurality of arrays, the circuitry processes the first plurality of values to identify a value representing a valid first movement of the housing relative to the work surface; and a source of non-coherent light illuminating surface irregularities on the work surface at an angle of incidence low enough to produce suitable arrays of data for processing from highlights and shadows of the illuminated surface irregularities. 21. The invention of claim 20 wherein the circuitry derives a prediction of a second movement from the identified value. 22. The invention of claim 21 wherein the circuitry analyzes the prediction of a second movement in accordance with the selected first portion of the first array in order to select one of a second portion of the first array and a third array of the plurality of arrays to process with portions of a fourth array of the plurality of arrays to produce a second plurality of values. 23. The invention of claim 22 wherein the circuitry processes the values of the second plurality of values and provides a signal to the computer related to a valid second movement only if a value related to a valid second movement is identified. 24. The invention of claim 21 wherein the circuitry analyzes the prediction in accordance with the selected first portion of the first array to select one of a second portion of the first array and a third array of the plurality of arrays to process with portions of a fourth array of the plurality of arrays to produce a second plurality of values. 25. The invention of claim 24 wherein the circuitry processes the second plurality of values to send a signal to the computer related to a valid second movement. 26. The invention of claim 20 wherein the circuitry sends a signal to the computer related to the valid first movement. 27. A hand operated pointing device for use with a computer, comprising: a movable housing; a light source illuminating a work surface; and circuitry in the movable housing using a plurality of two dimensional arrays of data related to light reflected by the illuminated work surface to produce a first plurality of values by processing a selected first portion of a first array of the plurality of arrays with a plurality of portions of a second array of the plurality of arrays, the circuitry produces a second plurality of values by processing a second selected portion of the first array with portions of a third array and processes the first and second pluralities of values to identify first and second movements of the housing relative to the work surface. 28. The invention of claim 27 wherein the circuitry derives predictions of movements from the first and second plurality of values. 29. The invention of claim 28 wherein the circuitry uses the movement predicted from the second plurality of values and the second selected portion of the first array to select one of a third portion of the first array and a third array of the plurality of arrays, to process with a fourth array of the plurality of arrays to produce a third plurality of values. 30. The invention of claim 29 wherein the circuitry processes the first, second and third plurality of values and provides a signal to the computer related to valid movements of the housing when values related to valid movements are identified or provides a signal not related to valid movements when values related to valid movements are not identified. 31. A hand operated pointing device for use with a computer, comprising: a movable housing; a light source illuminating a work surface; and circuitry in the movable housing using a plurality of arrays of data related to light reflected by the illuminated work surface to produce a first plurality of values by processing at least a portion of a first array of the plurality of arrays with a plurality of portions of a second array of the plurality of arrays, the circuitry derives a prediction of a movement of the housing relative to the work surface from the first plurality of values. 32. The invention of claim 31, wherein the circuitry selects one of a portion of the first array and a third array of the plurality of arrays in accordance with the prediction to produce a second plurality of values. 33. The invention of claim 32 wherein the circuitry processes the values of the second plurality of values and sends a signal to the computer related to a valid movement only if a value related to a valid second movement is identified. 34. The invention of claim 31, wherein the circuitry processes the values of the first plurality of values and sends a signal to the computer related to a valid movement only if a value related to a valid movement is identified. 35. A hand operated pointing device for use with a computer, comprising: a movable housing; a light source illuminating a work surface; and circuitry in the movable housing using a plurality of arrays of data related to light reflected by the illuminated work surface to produce a first plurality of values by processing at least a portion of a first array of the plurality of arrays with a plurality of portions of a second array of the plurality of arrays, the circuitry selects one of a portion of the first array and a third array of the plurality of arrays in accordance with a prediction of a movement to produce a second plurality of values. 36. The invention of claim 35 wherein the circuitry processes the values of the second plurality of values and sends a signal to the computer related to a valid second movement only if a value related to a valid second movement is identified. 37. A hand operated pointing device for use with a computer, comprising: a movable housing; a light source illuminating a work surface; and circuitry in the movable housing using a plurality of arrays of data related to light reflected by the illuminated work surface to produce a first plurality of values by processing at least a portion of a first array of the plurality of arrays with a plurality of portions of a second array of the plurality of arrays, the circuitry processes the values of the first plurality of values and sends a signal to the computer related to a valid movement of the housing with respect to the work surface only if a value related to a valid movement is identified. 38. The invention of claims 13-19, 31-35 or 37 wherein a selected portion of the first array is processed to produce the first plurality of values. 39. The invention of claim 38 wherein the first array is reused to produce subsequent pluralities of values by selection of a second selected portion of the first array. 40. The invention of claims 13-36 or 37, wherein the circuitry produces the first plurality of values by correlation. 41. The invention of claims 13-36 or 37, wherein the circuitry identifies a value representing a valid first movement by comparing the values. 42. The invention of claims 13-36 or 37, wherein the circuitry produces the first plurality of values by correlation and identifies a value related to a valid first movement by comparing the correlation results. 43. The invention of claims 13-36 or 37, wherein the circuitry identifies a value representing a valid first movement if that value is not sufficiently uniform in value with the other values in the first plurality of values to indicate invalid data. 44. The invention of claims 13-36 or 37, wherein the circuitry does not identify a value representing a valid first movement if the values are sufficiently uniform. 45. The invention of claims 13-36 or 37, wherein the first plurality of values represents an array of values and the circuitry identifies a value representing a valid first movement by analysis of surrounding values in the array of values. 46. The invention of claims 14-16, 21-26, 28-35 or 36, wherein the prediction is related to the first valid movement. 47. The invention of claims 15, 16, 22-25, 28-30, 32-35 or 36 wherein the circuitry selects the third array to produce the second plurality of values if the predicted movement exceeds a maximum value. 48. The invention of claims 15, 16, 18, 22-25, 29, 32, 33, 35 or 36 wherein the circuitry selects the third array to produce the second plurality of values if the prediction exceeds a value related to the position of the portion of first array used to produce the first plurality of values. 49. The invention of claims 13-26, 30, 33, 34, 36 or 37 wherein the circuitry suspends sending signals related to the then current movement of the housing if no value related to a valid movement is identified. 50. The invention of claims 14-16, 18, 21-23, 25, 26, 27-30 or 33 wherein the circuitry sends signals not related to the then current second movement if a value related to a valid second movement is not identified. 51. The invention of claims 13-36 or 37, wherein the circuitry suspends sending signals related to a valid current movement of the housing if the plurality of portions of the second array are sufficiently uniform to indicate invalid data. 52. The inventions of claims 13-19, 27-36 or 37, wherein the source of light further comprises: a source of non-coherent light illuminating surface irregularities on the work surface at an angle of incidence sufficiently low to produce suitable arrays of data. 53. The invention of claim 52 wherein the angle of incidence is a grazing angle. 54. The invention of claim 52 wherein the angle of incidence between about 5° and about 20°. | CROSS REFERENCE TO RELATED APPLICATION This application is a Continuation of an earlier filed co-pending Application originally entitled “SEEING EYE” MOUSE FOR A COMPUTER SYSTEM, whose title is now PROXIMITY DETECTOR FOR A “SEEING EYE” MOUSE, Ser. No. 09/052,046 and filed 30 Mar. 1998 by Gary B. Gordon et al. REFERENCE TO RELATED PATENTS This Application is related to the subject matter described in the following two U.S. patents: U.S. Pat. No. 5,578,813 filed 2 Mar. 1995, issued 26 Nov. 1996 and entitled FREEHAND IMAGE SCANNING DEVICE WHICH COMPENSATES FOR NON-LINEAR MOVEMENT; and U.S. Pat. No. 5,644,139, filed 14 Aug. 1996, issued 1 Jul. 1997 and entitled NAVIGATION FOR DETECTING MOVEMENT OF NAVIGATION SENSORS RELATIVE TO AN OBJECT. Both of these Patents have the same inventors: Ross R. Allen, David Beard, Mark T. Smith and Barclay J. Tullis, and both Patents are assigned to Hewlett-Packard Co. This application is also related to the subject matter described in U.S. Pat. No. 5,786,804 filed 6 Oct. 1995, entitled METHOD AND SYSTEM FOR TRACKING ATTITUDE, issued 28 Jul. 1998, and also assigned to Hewlett-Packard Co. These three Patents describe techniques of tracking position movement. Those techniques are a component in the preferred embodiment described below. Accordingly, U.S. Pat. Nos. 5,578,813, 5,644,139 and 5,786,804 are hereby incorporated herein by reference. BACKGROUND OF THE INVENTION The use of a hand operated pointing device for use with a computer and its display has become almost universal. By far the most popular of the various devices is the conventional (mechanical) mouse. A conventional mouse typically has a bottom surface carrying three or more downward projecting pads of a low friction material that raise the bottom surface a short distance above the work surface of a cooperating mouse pad. Centrally located within the bottom surface of the mouse is a hole through which a portion of the underside of a rubber-surfaced steel ball (hereinafter called simply a rubber ball) extends; in operation gravity pulls the ball downward and against the top surface of the mouse pad. The mouse pad is typically a closed cell foam rubber pad covered with a suitable fabric. The low friction pads slide easily over the fabric, but the rubber ball does not skid, but instead rolls as the mouse is moved. Interior to the mouse are rollers, or wheels, that contact the ball at its equator (the great circle parallel to the bottom surface of the mouse) and convert its rotation into electrical signals. The external housing of the mouse is shaped such that when it is covered by the user's hand it appears to have a “front-to-back” axis (along the user's forearm) and an orthogonal “left-to-right” axis. The interior wheels that contact the ball's equator are arranged so that one wheel responds only to rolling of the ball that results from a motion component of the mouse that is along the front-to-back axis, and also so that the other wheel responds only to rolling produced by a motion component along the left-to-right axis. The resulting rotations of the wheels or contact rollers produce electrical signals representing these motion components. (Say, F/B representing Forward and Backward, and L/R representing Left or Right.) These electrical signals F/B and L/R are coupled to the computer, where software responds to the signals to change by a Δx and a Δy the displayed position of a pointer (cursor) in accordance with movement of the mouse. The user moves the mouse as necessary to get the displayed pointer into a desired location or position. Once the pointer on the screen points at an object or location of interest, one of one or more buttons on the mouse is activated with the fingers of the hand holding the mouse. The activation serves as an instruction to take some action, the nature of which is defined by the software in the computer. Unfortunately, the usual sort of mouse described above is subject to a number of shortcomings. Among these are deterioration of the mouse ball or damage to its surface, deterioration or damage to the surface of the mouse pad, and degradation of the ease of rotation for the contact rollers (say, (a) owing to the accumulation of dirt or of lint, or (b) because of wear, or (c) both (a) and (b)). All of these things can contribute to erratic or total failure of the mouse to perform as needed. These episodes can be rather frustrating for the user, whose complaint might be that while the cursor on the screen moves in all other directions, he can't get the cursor to, say, move downwards. Accordingly, industry has responded by making the mouse ball removable for easy replacement and for the cleaning of the recessed region into which it fits. Enhanced mouse ball hygiene was also a prime motivation in the introduction of mouse pads. Nevertheless, some users become extremely disgusted with their particular mouse of the moment when these remedies appear to be of no avail. Mouse and mouse pad replacement is a lively business. The underlying reason for all this trouble is that the conventional mouse is largely mechanical in its construction and operation, and relies to a significant degree on a fairly delicate compromise about how mechanical forces are developed and transferred. There have been several earlier attempts to use optical methods as replacements for mechanical ones. These have included the use of photo detectors to respond to mouse motion over specially marked mouse pads, and to respond to the motion of a specially striped mouse ball. U.S. Pat. No. 4,799,055 describes an optical mouse that does not require any specially pre-marked surface. (Its disclosed two orthogonal one pixel wide linear arrays of photo sensors in the X and Y directions and its state-machine motion detection mechanism make it a distant early cousin to the technique of the incorporated patents, although it is our view that the shifted and correlated array [pixel pattern within an area] technique of the incorporated patents is considerably more sophisticated and robust.) To date, and despite decades of user frustration with the mechanical mouse, none of these earlier optical techniques has been widely accepted as a satisfactory replacement for the conventional mechanical mouse. Thus, it would be desirable if there were a non-mechanical mouse that is viable from a manufacturing perspective, relatively inexpensive, reliable, and that appears to the user as essentially the operational equivalent of the conventional mouse. This need could be met by a new type of optical mouse has a familiar “feel” and is free of unexpected behaviors. It would be even better if the operation of this new optical mouse did not rely upon cooperation with a mouse pad, whether special or otherwise, but was instead able to navigate upon almost any arbitrary surface. SUMMARY OF THE INVENTION A solution to the problem of replacing a conventional mechanical mouse with an optical counterpart is to optically detect motion by directly imaging as an array of pixels the various particular spatial features of a work surface below the mouse, much as human vision is believed to do. In general, this work surface may be almost any flat surface; in particular, the work surface need not be a mouse pad, special or otherwise. To this end the work surface below the imaging mechanism is illuminated from the side, say, with an infrared (IR) light emitting diode (LED). A surprisingly wide variety of surfaces create a rich collection of highlights and shadows when illuminated with a suitable angle of incidence. That angle is generally low, say, on the order of five to twenty degrees, and we shall term it a “grazing” angle of incidence. Paper, wood, formica and painted surfaces all work well; about the only surface that does not work is smooth glass (unless it is covered with fingerprints!). The reason these surfaces work is that they possess a micro texture, which in some cases may not be perceived by the unaided human senses. IR light reflected from the micro textured surface is focused onto a suitable array (say, 16×16 or 24×24) of photo detectors. The LED may be continuously on with either a steady or variable amount of illumination servoed to maximize some aspect of performance (e.g., the dynamic range of the photo detectors in conjunction with the albedo of the work surface). Alternatively, a charge accumulation mechanism coupled to the photo detectors may be “shuttered” (by current shunting switches) and the LED pulsed on and off to control the exposure by servoing the average amount of light. Turning the LED off also saves power; an important consideration in battery operated environments. The responses of the individual photo detectors are digitized to a suitable resolution (say, six or eight bits) and stored as a frame into corresponding locations within an array of memory. Having thus given our mouse an “eye”, we are going to further equip it to “see” movement by performing comparisons with successive frames. Preferably, the size of the image projected onto the photo detectors is a slight magnification of the original features being imaged, say, by two to four times. However, if the photo detectors are small enough it may be possible and desirable to dispense with magnification. The size of the photo detectors and their spacing is such that there is much more likely to be one or several adjacent photo detectors per image feature, rather than the other way around. Thus, the pixel size represented by the individual photo detectors corresponds to a spatial region on the work surface of a size that is generally smaller than the size of a typical spatial feature on that work surface, which might be a strand of fiber in a cloth covering a mouse pad, a fiber in a piece of paper or cardboard, a microscopic variation in a painted surface, or an element of an embossed micro texture on a plastic laminate. The overall size of the array of photo detectors is preferably large enough to receive the images of several features. In this way, images of such spatial features produce translated patterns of pixel information as the mouse moves. The number of photo detectors in the array and the frame rate at which their contents are digitized and captured cooperate to influence how fast the seeing-eye mouse can be moved over the work surface and still be tracked. Tracking is accomplished by comparing a newly captured sample frame with a previously captured reference frame to ascertain the direction and amount of movement. One way that may be done is to shift the entire content of one of the frames by a distance of one pixel (corresponds to a photo detector), successively in each of the eight directions allowed by a one pixel offset trial shift (one over, one over and one down, one down, one up, one up and one over, one over in the other direction, etc.). That adds up to eight trials, but we mustn't forget that there might not have been any motion, so a ninth trial “null shift” is also required. After each trial shift those portions of the frames that overlap each other are subtracted on a pixel by pixel basis, and the resulting differences are (preferably squared and then) summed to form a measure of similarity (correlation) within that region of overlap. Larger trial shifts are possible, of course (e.g., two over and one down), but at some point the attendant complexity ruins the advantage, and it is preferable to simply have a sufficiently high frame rate with small trial shifts. The trial shift with the least difference (greatest correlation) can be taken as an indication of the motion between the two frames. That is, it provides a raw F/B and L/R. The raw movement information may be scaled and or accumulated to provide display pointer movement information (Δx and Δy) of a convenient granularity and at a suitable rate of information exchange. The actual algorithms described in the incorporated Patents (and used by the seeing eye mouse) are refined and sophisticated versions of those described above. For example, let us say that the photo detectors were a 16×16 array. We could say that we initially take a reference frame by storing the digitized values of the photo detector outputs as they appear at some time t0. At some later time t1 we take a sample frame and store another set of digitized values. We wish to correlate a new collection of nine comparison frames (thought to be, null, one over, one over and one up, etc.) against a version of the reference frame representing “where we were last time”. The comparison frames are temporarily shifted versions of the sample frame; note that when shifted a comparison frame will no longer overlap the reference frame exactly. One edge, or two adjacent edges will be unmatched, as it were. Pixel locations along the unmatched edges will not contribute to the corresponding correlation (i.e., for that particular shift), but all the others will. And those others are a substantial number of pixels, which gives rise to a very good signal to noise ratio. For “nearest neighbor” operation (i.e., limited to null, one over, one up/down, and the combinations thereof) the correlation produces nine “correlation values”, which may be derived from a summing of squared differences for all pixel locations having spatial correspondence (i.e., a pixel location in one frame that is indeed paired with a pixel location in the other frame—unmatched edges won't have such pairing). A brief note is perhaps in order about how the shifting is done and the correlation values obtained. The shifting is accomplished by addressing offsets to memories that can output an entire row or column of an array at one time. Dedicated arithmetic circuitry is connected to the memory array that contains the reference frame being shifted and to the memory array that contains the sample frame. The formulation of the correlation value for a particular trial shift (member of the nearest or near neighbor collection) is accomplished very quickly. The best mechanical analogy is to imagine a transparent (reference) film of clear and dark patterns arranged as if it were a checker board, except that the arrangement is perhaps random. Now imagine that a second (sample) film having the same general pattern is overlaid upon the first, except that it is the negative image (dark and clear are interchanged). Now the pair is aligned and held up to the light. As the reference film is moved relative to the sample film the amount of light admitted through the combination will vary according to the degree that the images coincide. The positioning that admits the least light is the best correlation. If the negative image pattern of the reference film is a square or two displaced from the image of the sample film, the positioning admits the least light will be one that matches that displacement. We take note of which displacement admits the least light; for the seeing eye mouse we notice the positioning with the best correlation and say that the mouse moved that much. That, in effect, is what happens within an integrated circuit (IC) having photo detectors, memory and arithmetic circuits arranged to implement the image correlation and tracking technique we are describing. It would be desirable if a given reference frame could be re-used with successive sample frames. At the same time, each new collection of nine (or twenty-five) correlation values (for collections at t1, ti+1, etc.) that originates from a new image at the photo detectors (a next sample frame) should contain a satisfactory correlation. For a hand held mouse, several successive collections of comparison frames can usually be obtained from the (16×16) reference frame taken at t0. What allows this to be done is maintaining direction and displacement data for the most recent motion (which is equivalent to knowing velocity and time interval since the previous measurement). This allows “prediction” of how to (permanently!) shift the collection of pixels in the reference frame so that for the next sample frame a “nearest neighbor” can be expected to correlate. This shifting to accommodate prediction throws away, or removes, some of the reference frame, reducing the size of the reference frame and degrading the statistical quality of the correlations. When an edge of the shifted and reduced reference frame begins to approach the center of what was the original reference frame it is time to take a new reference frame. This manner of operation is termed “prediction” and could also be used with comparison frames that are 5×5 and an extended “near neighbor” (null, two over/one up, one over/two up, one over/one up, two over, one over, . . . ) algorithm. The benefits of prediction are a speeding up of the tracking process by streamlining internal correlation procedure (avoiding the comparison of two arbitrarily related 16×16 arrays of data) and a reduction of the percentage of time devoted to acquiring reference frames. In addition to the usual buttons that a mouse generally has, our seeing eye mouse may have another button that suspends the production of movement signals to the computer, allowing the mouse to be physically relocated on the work surface without disturbing the position on the screen of the pointer. This may be needed if the operator runs out of room to physically move the mouse further, but the screen pointer still needs to go further. This may happen, say, in a UNIX system employing a display system known as “Single Logical Screen” (SLS) where perhaps as many as four monitors are arranged to each display some subportion of the overall “screen”. If these monitors were arranged as one high by four across, then the left to right distance needed for a single corresponding maximal mouse movement would be much wider than usually allowed for. The usual maneuver executed by the operator for, say, an extended rightward excursion, is to simply pick the mouse up at the right side of the work surface (a mouse pad, or perhaps simply the edge of clearing on an otherwise cluttered surface of his desk), set it down on the left and continue to move it to the right. What is needed is a way to keep the motion indicating signals from undergoing spurious behavior during this maneuver, so that the pointer on the screen behaves in an expected and non-obnoxious manner. The function of the “hold” button may be performed automatically by a proximity sensor on the underside of the mouse that determines that the mouse is not in contact with the work surface, or by noticing that all or a majority of the pixels in the image have “gone dark” (it's actually somewhat more complicated than that—we shall say more about this idea in the next paragraph). Without a hold feature, there may be some slight skewing of the image during the removal and replacement of the mouse, owing either: (a) to a tilting of the field of view as the mouse is lifted; or (b) to some perverse mistake where frames for two disparate and widely separated spatial features imaged at very different times during the removal and replacement are nevertheless taken as representing a small distance between two frames for the same feature. A convenient place for an actual hold button is along the sides of the mouse near the bottom, where the thumb and the opposing ring finger would grip the mouse to lift it up. A natural increase in the gripping force used to lift the mouse would also engage the hold function. A hold feature may incorporate an optional brief delay upon either the release of the hold button, detection of proper proximity or the return of reasonable digitized values. During that delay any illumination control servo loops or internal automatic gain controls would have time to stabilize and a new reference frame would be taken prior to the resumption of motion detection. And now for this business of the pixels in the image “going dark”. What happens, of course, is that the IR light from the illuminating LED no longer reaches the photo detectors in the same quantity that it did, if at all; the reflecting surface is too far away or is simply not in view. However, if the seeing eye mouse were turned over, or its underside exposed to an intensely lit environment as a result of its being lifted, then the outputs of the photo detectors might be at any level. The key is that they will be uniform, or nearly so. The main reason that they become uniform is that there is no longer a focused image; all the image features are indistinct and they are each spread out over the entire collection of photo detectors. So the photo detectors uniformly come to some average level. This is in distinct contrast with the case when there is a focused image. In the focused case the correlations between frames (recall the one over, one over and one down, etc.) exhibit a distinct phenomenon. Assume that the spatial features being tracked mapped exactly onto the photo detectors, through the lens system, and that mouse movement were jerky by exactly the amount and in the directions needed for a feature to go from detector to detector. Now for simplicity assume also that there is only one feature, and that its image is the size of a photo detector. So, all the photo detectors but one are all at pretty much the same level, and the one detector that is not at that level is at a substantially different level, owing to the feature. Under these highly idealized conditions it is clear that the correlations will be very well behaved; eight “large” differences and one small difference (a sink hole in an otherwise fairly flat surface) in a system using nine trials for a nearest neighbor algorithm (and remembering that there may have been no motion). [Note: The astute reader will notice that the “large” difference in this rather contrived example actually corresponds to, or originates with, only one pixel, and probably does not deserve to be called “large”—recall the earlier shifted film analogy. The only light passed by the films for this example would be for the one pixel of the feature. A more normal image having a considerably more diverse collection of pixels increases the difference to where it truly is a “large” difference.] Now, such highly idealized conditions are not the usual case. It is more normal for the image of the tracked spatial features to be both larger and smaller than the size of the photo detectors, and for the mouse motion to be continuous, following a path that allows those images to fall onto more than one detector at once. Some of the detectors will receive only a partial image, which is to say, some detectors will perform an analog addition of both light and dark. The result is at least a “broadening” of the sink hole (in terms of the number of photo detectors associated with it) and very possibly a corresponding decrease in the depth of the sink hole. The situation may be suggested by imagining a heavy ball rolling along a taut but very stretchable membrane. The membrane has a discrete integer Cartesian coordinate system associated with it. How much does the membrane distend at any integer coordinate location as the ball rolls? First imagine that the ball is of a very small diameter but very heavy, and then imagine that the ball is of a large diameter, but still weighs the same. The analogy may not be exact, but it serves to illustrate the idea of the “sink hole” mentioned above. The general case is that the generally flat surface with sharply defined sink hole becomes a broad concavity, or bowl. We shall term the surface produced or described by the various correlation values the “correlation surface” and will, at various times, be most interested in the shape of that surface. We say all of this to make two points. First, the shifting shape of the concavity in the correlation surface as the seeing eye mouse moves allows interpolation to a granularity finer than the simple size/spacing of the photo detectors. We point this out, with the remark that our seeing eye mouse can do that, and leave it at that. The full details of interpolation are described in the incorporated patents. No further discussion of interpolation is believed necessary. Second, and this is our real reason for the discussion of the preceding paragraphs, is the observation that what happens when the seeing eye mouse is picked up is that the concavity in the correlation surface goes away, to be replaced by generally equal values for the correlations (i.e., a “flat” correlation surface). It is when this happens that we may say with considerable assurance that the seeing eye mouse is airborne, and can then automatically invoke the hold feature, until after such time that a suitable concavity (“bowl”) reappears. Another method for invoking or initiating a hold feature is to simply notice that the seeing eye mouse is moving faster than a certain threshold velocity (and is thus presumably experiencing an abrupt retrace motion in a maneuver intended to translate the screen pointer further than the available physical space within which the mouse is operating). Once the velocity threshold is exceeded the motion indicating signals that would otherwise be associated with that movement are suppressed until such time as the velocity drops below a suitable level. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified pictographic cut-away side view of a prior art imaging and navigation arrangement; FIG. 2 is a bottom view of a mouse constructed in accordance with the invention; FIG. 3 is a side perspective view of a mouse constructed in accordance with one aspect of the invention; and FIG. 4 is a simplified side cut-away view of a proximity sensor in the base of the mouse of FIGS. 2 and 3 and used to automatically activate a hold feature; FIG. 5 is a simplified flow chart describing an aspect of internal seeing eye mouse operation related to the operation of the hold feature when used in conjunction with a feature called prediction; FIG. 6 is a simplified portion of a modification of the flow chart of FIG. 5 and illustrates the velocity detection method of invoking the hold feature; and FIG. 7 is a perspective view of a plotted correlation surface that has good concavity. DESCRIPTION OF A PREFERRED EMBODIMENT Refer now to FIG. 1, wherein is shown a simplified representation of a cut-away side view of a prior art imaging and navigation arrangement 1 that is generally of the type described by the incorporated patents. An LED 2, which may be an IR LED, emits light which is projected by lens 3 (which instead of being separate may be an integral part of the LED's package), through orifice 13 in bottom surface 6 and onto a region 4 that is part of a work surface 5. The average angle of incidence is preferably within the range of five to twenty degrees. Although it has been omitted for clarity, the orifice 13 might include a window that is transparent for the light from LED 2, and which would serve to keep dust, dirt or other contamination out of the innards of the seeing eye mouse. Work surface 5 might belong to a special object, such as a mouse pad, or more generally, it will not, and might be the surface of nearly anything except smooth glass. Examples of suitable materials include, but are not limited to, paper, cloth, laminated plastic tops, painted surfaces, frosted glass (smooth side down, thank you), desk pads, real wood, fake wood, etc. Generally, any micro textured surface having features whose size falls within the range of 5 to 500 microns will do. The illumination of micro textured surfaces is most effective when done from the side, as this accentuates the pattern of highlights and shadows produced by surface height irregularities. Suitable angles of incidence for illumination cover the range of about five to twenty degrees. A very smooth or flat surface (e.g., one that has been ground and polished) having simple variations in reflectivity owing to (micro scale) compositional variation works, too. In such a case (and assuming that it can be guaranteed) the angle of incidence for the illumination could approach ninety degrees, since the urge to create shadows goes away. However, such a smooth yet micro detailed surface is not what we would ordinarily think of when we say “arbitrary surface”, and a seeing eye mouse intended for use on an “arbitrary surface” that is more likely micro textured would work best if equipped to provide a grazing angle of incident illumination. An image of the illuminated region 4 is projected through an optical window 9 in package portion 8a of an integrated circuit and onto an array 10 of photo detectors. This is done with the aid of lens 7. The package portion 8a might also dispense with separate window 9 and lens 7 by combining them into one and the same element. The photo detectors may comprise a square array of, say, 12 to 24 detectors on a side, each detector being a photo transistor whose photo sensitive region is 45 by 45 microns and of 60 microns center to center spacing. The photo transistors charge capacitors whose voltages are subsequently digitized and stored in a memory. The array 10 is fabricated onto a portion of an integrated circuit die 12 affixed by an adhesive 11 onto package portion 8b. What is not shown are any of the details of how the integrated circuit is held in place (probably by a printed circuit board), the shape or composition of the lenses, or of how the lenses are mounted; it is clear that those things are doable in a conventional manner. It is also clear that the general level of illumination of region 4 may be controlled by noticing the output levels of the photo detectors and adjusting the intensity of light issuing from the LED 2. This could be either continuous control or pulse width modulation, or some combination of both. Once again, the reader is reminded that the details of the motion sensing operation are thoroughly described in the incorporated patents (and briefly described in the Summary); accordingly, they need not be repeated here. Refer now to FIG. 2, which is a bottom view of a mouse 14 constructed in accordance with the invention. In short, this bottom view of this particular seeing eye mouse 14 looks very similar to the bottom view of a particular conventional mouse from Hewlett-Packard Co., to wit: the C1413A. The major difference is that where there ought to be a ball there is a protective lens or window 16 that is transparent to IR light. This is the omitted transparent window in orifice 13 that was mentioned in the description of FIG. 1. Also missing is the usual rotatable annulus that serves as a removable retainer to allow access to the ball for cleaning or replacement. What is shown in the figure is the underside 15 of the mouse 14 (corresponds to 6 in FIG. 1), low friction glides 19 and connecting cable 17 with its strain relief 18. Of course, our seeing eye mouse 14 could be a cordless mouse, as well, with an optical or radio communication link to the computer. Refer now to FIG. 3, wherein is shown a side perspective view of a mouse 14 constructed in accordance with one aspect of the invention. That aspect of the invention is the hold feature. The hold feature is an aspect of seeing eye mouse operation that suspends the production of movement information or signals to the computer when it is determined that the mouse is not suitably proximate to the work surface whose spatial features are being tracked. This allows the seeing eye mouse to be picked up, translated and set back down, or, as we shall term such an operation, “swiped” across the work surface. In particular, the seeing eye mouse 14 in FIG. 3 includes at least one hold button 24 located in side skirt 20 near the bottom surface 15 so as to be beneath the right thumb or the left ring finger, depending upon which hand the operator is using. There may be another symmetrically located button on the other side (not shown) that would contact either the left thumb or the right ring finger. The mouse 14 conventionally includes a surface 21 which nestles in the palm of the hand, and first and second “regular” mouse buttons 22 and 23 that are actuated by the index and middle fingers. These operate in their normal fashion. Button or buttons 24 are activated by a natural increase in the gripping force needed to pick the mouse 14 up during a swipe. When one or both of these button are pressed the hold feature is activated. For the duration of the hold the sending of motion signals to the computer is suspended. When the hold is over (the buttons are released) a new reference frame is taken before any new motion signals are sent to the computer. This allows swiping, and has the advantage that the user has the ability to expressly force the onset of the hold feature. The hold feature could also be automatically activated by the action of a separate proximity sensor on the bottom of the mouse. This is what is shown in FIG. 4, where a shouldered aperture 26 in the base 6 receives a shouldered plunger 25 made captive by the lever arm of a switch 28 above. The switch 28 is activated by movement of the plunger 25, such that when the plunger moves significantly in the direction of arrow 27 the hold feature is activated. The exact nature of the separate proximity sensor is a matter of choice, and while it could be a simple as the micro switch 28 operated by the weight of the mouse through the plunger 25, other, non-mechanical, methods are also possible. Yet another way to automatically activate and deactivate the hold feature is to examine the nature of the digitized data of the array 10 of photo detectors. When the outputs of the photo detectors become sufficiently uniform it may be surmised that there is no longer an image with variations projected onto the array 10 of photo detectors. This uniformity will reveal itself by producing a correlation surface that is flat, or nearly so. Rather than separately detecting uniform levels (which would use hardware not otherwise present), we prefer instead to examine the shape of the correlation surface, (which surface we need for other reasons, anyway). The most probable cause of a flat correlation surface is that the mouse has been picked up. This mode of operation may require that there be a fairly narrow depth of field, lest there occur undue delay in activating the hold. Such delay could produce minor artifacts in screen pointer movement. These might include slight unintended screen pointer movements owing to tilting of the mouse as it is either picked up or replaced. As long as activating the hold feature (however done, whether manually or automatically) forces acquisition of a new reference frame before resuming the production of motion signals, there should be no danger of producing a spurious indication resulting from the combination of old data with some new data that just accidentally looks like a proper small motion in some inappropriate direction. However, with mere uniform level detection (of, say, a sample frame) it may be difficult to guarantee that while in motion in the air there occur no optical effects (a reflection of a bright source) that would confuse the algorithm. It will be appreciated that the shape of the correlation surface is a much more reliable indicator. All of that said, it must still be remembered that the steering, as it were, of the screen pointer is an incrementally driven servo-like operation performed by a human being; if the screen pointer isn't there yet, just keep moving the mouse as needed! Small perturbations during swiping are not fatal, and may not even be particularly noticeable, depending upon the specific application being performed. Refer now to FIG. 5, wherein is shown a flow chart 29 that describes an aspect of seeing eye mouse operation involving the hold and prediction properties. We may assume that there is some start condition or location 30, from which is reached step 31: ACQUIRE A REFERENCE FRAME. This refers to illuminating the LED 2 and storing a collection of digitized photo detector values into an array of memory (not shown). The next step 32 is ACQUIRE A SAMPLE FRAME. This refers to the same actions, except that the data is stored in a different array of memory, and may reflect mouse motion relative to where it was when step 31 was performed. At step 33, COMPUTE CORRELATION VALUES, the nine (or perhaps twenty-five) correlation values are quickly computed by some heavy duty dedicated arithmetic hardware assisted by automatic address translation and a very wide path out of the memory arrays. At step 34, IS THE CORRELATION SURFACE SUITABLY CONCAVE?, the nature of the correlation surface described by the collection of correlation values computed in step 33 is examined. We want to know if it is shaped like a bowl, and if so, “how much water will it hold,” so to speak. If the shape of the correlation surface is a good bowl, then path 36 takes us to the optional step 37: IS THE HOLD BUTTON PRESSED?; more about that in the next paragraph. Otherwise, we have a flat correlation surface, or a “bad bowl,” and proceed along path 35 to optional step 42, DELAY. There are several possible causes for this exit from qualifier 34: e.g., extreme velocity, a suddenly featureless work surface, and, an airborne mouse. In the absence of an explicit HOLD button, we will rely upon exit path 35 to provide proper seeing eye mouse behavior by suppressing motion signals to the computer during the airborne portion of a swiping operation. If the seeing eye mouse does have a HOLD button, then optional qualifier 37 is present, and it is there that the status dressed or not) of the HOLD 24 button is determined. The case where it is pressed is treated the same as that for a bad bowl at qualifier 34. That is, path 38 is taken, which also leads to optional step 42. Optional step 42 provides a delay which may be useful in several ways. First, if there is a swipe in progress, then it takes some time, and by not imagining during that time some battery power can be saved. Also, suppose that the nature of the delay is slightly more complex than a pause in the motion of a moving finger on the flow chart. Suppose that the ACQUIRE REFERENCE FRAME step 31 were influenced by there having been a delay at step 42, in that part way through the delay an illumination level control operation is initiated. This could allow time for re-adjustment of illumination levels, and so forth. Whether or not there is a DELAY at optional step 42, path 43 leads back to step 31, where another motion detection cycle begins. To resume, path 39 leads to step 40: PREDICT SHIFT IN REFERENCE FRAME. As mentioned above, it is generally not necessary to obtain and maintain actual velocities in X and Y, and time interval information, to find the displacement needed for prediction. One can imagine measurement environments where that might be needed, but the one shown here is not one of them. Instead, the predicted shift can be taken as the amount of movement corresponding to the correlation at the preceding step 34. The next step 44 is OUTPUT ΔX & ΔY. It is here that we take note of how much mouse motion there has been since the last measurement cycle. The amount of shift needed to attain correlation is the desired amount These values may be found by noticing which comparison frame actually correlated (assuming no interpolation). These “raw” ΔX and ΔY motion values may be accumulated into running values that are sent to the computer at a lower rate than that at which the raw values of step 44 are produced. At qualifier 45 we ask if we NEED A NEW REFERENCE FRAME?. If the answer is YES, then path 46 leads to step 48: STORE PRESENT SAMPLE FRAME IN REFERENCE FRAME. (A little thought will confirm that this re-use of the sample frame cooperates with not having to maintain actual velocities and time intervals for the prediction process. If we took a separate new reference frame it would complicate a lot of things, and would probably force the use of D=RT—i.e., the distance formula—for prediction.) We need a new reference frame when there has been enough shifting of it, owing to predictions, that not enough of it overlaps the comparison frames for reliable correlations. Somewhere in the range of three to five shifts (that do not retrace themselves) is about the limit for a 16×16 reference frame. If the answer to qualifier 45 is NO, and we do not need to replace the reference frame, then path 47 takes us to the same step 49 as does the path leading from step 48. Step 49, SHIFT REFERENCE FRAME, performs the actual permanent shift of the values in the memory array representing the reference frame. The shift is by the prediction amount, and data shifted away is lost. Following the shifting of the reference frame path 50 returns to step 32, ACQUIRE A SAMPLE FRAME, where the next measurement cycle begins. Refer now to FIG. 6, wherein is shown a simplified flow chart segment 50 that shows how to replace step 44 of the flow chart 29 in FIG. 5 with steps 51-55. The purpose for doing this is similar to the various manners of hold operation already described, and may be used in conjunction therewith, or instead thereof. The general idea of the modification represented by FIG. 6 is to outfox the computer by either not sending any updated information by skipping step 55A or (optionally, with step 55B) sending zeros for ΔX and ΔY, even when that is not true. This is done whenever step 52 ascertains that the rate of mouse motion exceeds, say, three to six inches per second. For a given seeing eye mouse such a limit is easily expressed as a displacement by a certain number of pixels within some number of measurement cycles, assuming that the measurement cycle rate is fast compared to normal mouse motion. The idea is that normal casual mouse motion probably will not require either a new nearest neighbor reference frame (let alone a maximally shifted one for 5×5 near neighbor operation) every measurement cycle for some large (say, ten to twenty-five) number of consecutive measurement cycles. For if that were the case, the seeing eye mouse would be operating on the hairy edge of the hold mode via a NO answer to qualifier 34 and path 35. (According to the assumption, any higher velocity will result in loss of correlation!) That is, the expectation is that taking a new reference frame is normally much less frequent. Of course, it could happen that the velocity of the mouse is really high, and path 35 gets used, anyway. That is as it should be. But if the measurement cycle rate is not sufficiently high with respect to normal expected mouse motion, then it might not be appropriate to use the technique of FIG. 6. Step 51 represents anything in the old step 44 over and above the actual communication to the computer of the values ΔX and ΔY. A tricky example of this difference might be an internal accumulation of motion that has not yet be dispatched to the computer, owing to a higher internal motion measurement cycle rate for the seeing eye mouse than the information exchange rate with the computer. Now, it may well be the case that in some systems this accumulated information is used for internal mouse purposes other than strictly for keeping the computer informed. If so, then it would need to be preserved, for all that qualifier 52, path 53 (and bypassed step 55A) need to accomplish is NOT tell the computer there has been motion; we want to fool the computer but without making the mouse lose its mind. It will be noticed that if such an accumulation were allowed to continued during a rapid retrace, intended to mimic picking the mouse up, the computer might still win in the end when the velocity drops to normal amounts and the accumulation is finally sent; the screen cursor could snap to the correct location, anyway, depending upon how the overall system works. In such a case a separate set of accumulations should be maintained, with those for the computer remaining in bypassed step 55A. Of course, it may be the case that there is no internal use by the mouse of accumulated ΔX and ΔY, other than to send it to the computer. In that case nothing needs to be done, other than to leave that accumulation in bypassed step 55A. It is also possible that in the mouse there simply are no accumulations to cause such concerns; say, any such accumulations were done by software in the computer. Finally, refer now to FIG. 7. It is a plot 56 of a near neighbor (5×5) correlation surface 57 having a suitable concavity. The two horizontal axes 58 and 59 represent the X and Y axes of mouse motion; the units indicated along the axes are pixels. Drawn onto the plane of the axes 58 and 59 are smoothed and interpolated contour lines 60 intended to further indicate the shape of the correlation surface directly above. The vertical axis 61 a measure of correlation expressed in essentially arbitrary units. | <SOH> BACKGROUND OF THE INVENTION <EOH>The use of a hand operated pointing device for use with a computer and its display has become almost universal. By far the most popular of the various devices is the conventional (mechanical) mouse. A conventional mouse typically has a bottom surface carrying three or more downward projecting pads of a low friction material that raise the bottom surface a short distance above the work surface of a cooperating mouse pad. Centrally located within the bottom surface of the mouse is a hole through which a portion of the underside of a rubber-surfaced steel ball (hereinafter called simply a rubber ball) extends; in operation gravity pulls the ball downward and against the top surface of the mouse pad. The mouse pad is typically a closed cell foam rubber pad covered with a suitable fabric. The low friction pads slide easily over the fabric, but the rubber ball does not skid, but instead rolls as the mouse is moved. Interior to the mouse are rollers, or wheels, that contact the ball at its equator (the great circle parallel to the bottom surface of the mouse) and convert its rotation into electrical signals. The external housing of the mouse is shaped such that when it is covered by the user's hand it appears to have a “front-to-back” axis (along the user's forearm) and an orthogonal “left-to-right” axis. The interior wheels that contact the ball's equator are arranged so that one wheel responds only to rolling of the ball that results from a motion component of the mouse that is along the front-to-back axis, and also so that the other wheel responds only to rolling produced by a motion component along the left-to-right axis. The resulting rotations of the wheels or contact rollers produce electrical signals representing these motion components. (Say, F/B representing Forward and Backward, and L/R representing Left or Right.) These electrical signals F/B and L/R are coupled to the computer, where software responds to the signals to change by a Δx and a Δy the displayed position of a pointer (cursor) in accordance with movement of the mouse. The user moves the mouse as necessary to get the displayed pointer into a desired location or position. Once the pointer on the screen points at an object or location of interest, one of one or more buttons on the mouse is activated with the fingers of the hand holding the mouse. The activation serves as an instruction to take some action, the nature of which is defined by the software in the computer. Unfortunately, the usual sort of mouse described above is subject to a number of shortcomings. Among these are deterioration of the mouse ball or damage to its surface, deterioration or damage to the surface of the mouse pad, and degradation of the ease of rotation for the contact rollers (say, (a) owing to the accumulation of dirt or of lint, or (b) because of wear, or (c) both (a) and (b)). All of these things can contribute to erratic or total failure of the mouse to perform as needed. These episodes can be rather frustrating for the user, whose complaint might be that while the cursor on the screen moves in all other directions, he can't get the cursor to, say, move downwards. Accordingly, industry has responded by making the mouse ball removable for easy replacement and for the cleaning of the recessed region into which it fits. Enhanced mouse ball hygiene was also a prime motivation in the introduction of mouse pads. Nevertheless, some users become extremely disgusted with their particular mouse of the moment when these remedies appear to be of no avail. Mouse and mouse pad replacement is a lively business. The underlying reason for all this trouble is that the conventional mouse is largely mechanical in its construction and operation, and relies to a significant degree on a fairly delicate compromise about how mechanical forces are developed and transferred. There have been several earlier attempts to use optical methods as replacements for mechanical ones. These have included the use of photo detectors to respond to mouse motion over specially marked mouse pads, and to respond to the motion of a specially striped mouse ball. U.S. Pat. No. 4,799,055 describes an optical mouse that does not require any specially pre-marked surface. (Its disclosed two orthogonal one pixel wide linear arrays of photo sensors in the X and Y directions and its state-machine motion detection mechanism make it a distant early cousin to the technique of the incorporated patents, although it is our view that the shifted and correlated array [pixel pattern within an area] technique of the incorporated patents is considerably more sophisticated and robust.) To date, and despite decades of user frustration with the mechanical mouse, none of these earlier optical techniques has been widely accepted as a satisfactory replacement for the conventional mechanical mouse. Thus, it would be desirable if there were a non-mechanical mouse that is viable from a manufacturing perspective, relatively inexpensive, reliable, and that appears to the user as essentially the operational equivalent of the conventional mouse. This need could be met by a new type of optical mouse has a familiar “feel” and is free of unexpected behaviors. It would be even better if the operation of this new optical mouse did not rely upon cooperation with a mouse pad, whether special or otherwise, but was instead able to navigate upon almost any arbitrary surface. | <SOH> SUMMARY OF THE INVENTION <EOH>A solution to the problem of replacing a conventional mechanical mouse with an optical counterpart is to optically detect motion by directly imaging as an array of pixels the various particular spatial features of a work surface below the mouse, much as human vision is believed to do. In general, this work surface may be almost any flat surface; in particular, the work surface need not be a mouse pad, special or otherwise. To this end the work surface below the imaging mechanism is illuminated from the side, say, with an infrared (IR) light emitting diode (LED). A surprisingly wide variety of surfaces create a rich collection of highlights and shadows when illuminated with a suitable angle of incidence. That angle is generally low, say, on the order of five to twenty degrees, and we shall term it a “grazing” angle of incidence. Paper, wood, formica and painted surfaces all work well; about the only surface that does not work is smooth glass (unless it is covered with fingerprints!). The reason these surfaces work is that they possess a micro texture, which in some cases may not be perceived by the unaided human senses. IR light reflected from the micro textured surface is focused onto a suitable array (say, 16×16 or 24×24) of photo detectors. The LED may be continuously on with either a steady or variable amount of illumination servoed to maximize some aspect of performance (e.g., the dynamic range of the photo detectors in conjunction with the albedo of the work surface). Alternatively, a charge accumulation mechanism coupled to the photo detectors may be “shuttered” (by current shunting switches) and the LED pulsed on and off to control the exposure by servoing the average amount of light. Turning the LED off also saves power; an important consideration in battery operated environments. The responses of the individual photo detectors are digitized to a suitable resolution (say, six or eight bits) and stored as a frame into corresponding locations within an array of memory. Having thus given our mouse an “eye”, we are going to further equip it to “see” movement by performing comparisons with successive frames. Preferably, the size of the image projected onto the photo detectors is a slight magnification of the original features being imaged, say, by two to four times. However, if the photo detectors are small enough it may be possible and desirable to dispense with magnification. The size of the photo detectors and their spacing is such that there is much more likely to be one or several adjacent photo detectors per image feature, rather than the other way around. Thus, the pixel size represented by the individual photo detectors corresponds to a spatial region on the work surface of a size that is generally smaller than the size of a typical spatial feature on that work surface, which might be a strand of fiber in a cloth covering a mouse pad, a fiber in a piece of paper or cardboard, a microscopic variation in a painted surface, or an element of an embossed micro texture on a plastic laminate. The overall size of the array of photo detectors is preferably large enough to receive the images of several features. In this way, images of such spatial features produce translated patterns of pixel information as the mouse moves. The number of photo detectors in the array and the frame rate at which their contents are digitized and captured cooperate to influence how fast the seeing-eye mouse can be moved over the work surface and still be tracked. Tracking is accomplished by comparing a newly captured sample frame with a previously captured reference frame to ascertain the direction and amount of movement. One way that may be done is to shift the entire content of one of the frames by a distance of one pixel (corresponds to a photo detector), successively in each of the eight directions allowed by a one pixel offset trial shift (one over, one over and one down, one down, one up, one up and one over, one over in the other direction, etc.). That adds up to eight trials, but we mustn't forget that there might not have been any motion, so a ninth trial “null shift” is also required. After each trial shift those portions of the frames that overlap each other are subtracted on a pixel by pixel basis, and the resulting differences are (preferably squared and then) summed to form a measure of similarity (correlation) within that region of overlap. Larger trial shifts are possible, of course (e.g., two over and one down), but at some point the attendant complexity ruins the advantage, and it is preferable to simply have a sufficiently high frame rate with small trial shifts. The trial shift with the least difference (greatest correlation) can be taken as an indication of the motion between the two frames. That is, it provides a raw F/B and L/R. The raw movement information may be scaled and or accumulated to provide display pointer movement information (Δx and Δy) of a convenient granularity and at a suitable rate of information exchange. The actual algorithms described in the incorporated Patents (and used by the seeing eye mouse) are refined and sophisticated versions of those described above. For example, let us say that the photo detectors were a 16×16 array. We could say that we initially take a reference frame by storing the digitized values of the photo detector outputs as they appear at some time t 0 . At some later time t 1 we take a sample frame and store another set of digitized values. We wish to correlate a new collection of nine comparison frames (thought to be, null, one over, one over and one up, etc.) against a version of the reference frame representing “where we were last time”. The comparison frames are temporarily shifted versions of the sample frame; note that when shifted a comparison frame will no longer overlap the reference frame exactly. One edge, or two adjacent edges will be unmatched, as it were. Pixel locations along the unmatched edges will not contribute to the corresponding correlation (i.e., for that particular shift), but all the others will. And those others are a substantial number of pixels, which gives rise to a very good signal to noise ratio. For “nearest neighbor” operation (i.e., limited to null, one over, one up/down, and the combinations thereof) the correlation produces nine “correlation values”, which may be derived from a summing of squared differences for all pixel locations having spatial correspondence (i.e., a pixel location in one frame that is indeed paired with a pixel location in the other frame—unmatched edges won't have such pairing). A brief note is perhaps in order about how the shifting is done and the correlation values obtained. The shifting is accomplished by addressing offsets to memories that can output an entire row or column of an array at one time. Dedicated arithmetic circuitry is connected to the memory array that contains the reference frame being shifted and to the memory array that contains the sample frame. The formulation of the correlation value for a particular trial shift (member of the nearest or near neighbor collection) is accomplished very quickly. The best mechanical analogy is to imagine a transparent (reference) film of clear and dark patterns arranged as if it were a checker board, except that the arrangement is perhaps random. Now imagine that a second (sample) film having the same general pattern is overlaid upon the first, except that it is the negative image (dark and clear are interchanged). Now the pair is aligned and held up to the light. As the reference film is moved relative to the sample film the amount of light admitted through the combination will vary according to the degree that the images coincide. The positioning that admits the least light is the best correlation. If the negative image pattern of the reference film is a square or two displaced from the image of the sample film, the positioning admits the least light will be one that matches that displacement. We take note of which displacement admits the least light; for the seeing eye mouse we notice the positioning with the best correlation and say that the mouse moved that much. That, in effect, is what happens within an integrated circuit (IC) having photo detectors, memory and arithmetic circuits arranged to implement the image correlation and tracking technique we are describing. It would be desirable if a given reference frame could be re-used with successive sample frames. At the same time, each new collection of nine (or twenty-five) correlation values (for collections at t 1 , t i+1 , etc.) that originates from a new image at the photo detectors (a next sample frame) should contain a satisfactory correlation. For a hand held mouse, several successive collections of comparison frames can usually be obtained from the (16×16) reference frame taken at t 0 . What allows this to be done is maintaining direction and displacement data for the most recent motion (which is equivalent to knowing velocity and time interval since the previous measurement). This allows “prediction” of how to (permanently!) shift the collection of pixels in the reference frame so that for the next sample frame a “nearest neighbor” can be expected to correlate. This shifting to accommodate prediction throws away, or removes, some of the reference frame, reducing the size of the reference frame and degrading the statistical quality of the correlations. When an edge of the shifted and reduced reference frame begins to approach the center of what was the original reference frame it is time to take a new reference frame. This manner of operation is termed “prediction” and could also be used with comparison frames that are 5×5 and an extended “near neighbor” (null, two over/one up, one over/two up, one over/one up, two over, one over, . . . ) algorithm. The benefits of prediction are a speeding up of the tracking process by streamlining internal correlation procedure (avoiding the comparison of two arbitrarily related 16×16 arrays of data) and a reduction of the percentage of time devoted to acquiring reference frames. In addition to the usual buttons that a mouse generally has, our seeing eye mouse may have another button that suspends the production of movement signals to the computer, allowing the mouse to be physically relocated on the work surface without disturbing the position on the screen of the pointer. This may be needed if the operator runs out of room to physically move the mouse further, but the screen pointer still needs to go further. This may happen, say, in a UNIX system employing a display system known as “Single Logical Screen” (SLS) where perhaps as many as four monitors are arranged to each display some subportion of the overall “screen”. If these monitors were arranged as one high by four across, then the left to right distance needed for a single corresponding maximal mouse movement would be much wider than usually allowed for. The usual maneuver executed by the operator for, say, an extended rightward excursion, is to simply pick the mouse up at the right side of the work surface (a mouse pad, or perhaps simply the edge of clearing on an otherwise cluttered surface of his desk), set it down on the left and continue to move it to the right. What is needed is a way to keep the motion indicating signals from undergoing spurious behavior during this maneuver, so that the pointer on the screen behaves in an expected and non-obnoxious manner. The function of the “hold” button may be performed automatically by a proximity sensor on the underside of the mouse that determines that the mouse is not in contact with the work surface, or by noticing that all or a majority of the pixels in the image have “gone dark” (it's actually somewhat more complicated than that—we shall say more about this idea in the next paragraph). Without a hold feature, there may be some slight skewing of the image during the removal and replacement of the mouse, owing either: (a) to a tilting of the field of view as the mouse is lifted; or (b) to some perverse mistake where frames for two disparate and widely separated spatial features imaged at very different times during the removal and replacement are nevertheless taken as representing a small distance between two frames for the same feature. A convenient place for an actual hold button is along the sides of the mouse near the bottom, where the thumb and the opposing ring finger would grip the mouse to lift it up. A natural increase in the gripping force used to lift the mouse would also engage the hold function. A hold feature may incorporate an optional brief delay upon either the release of the hold button, detection of proper proximity or the return of reasonable digitized values. During that delay any illumination control servo loops or internal automatic gain controls would have time to stabilize and a new reference frame would be taken prior to the resumption of motion detection. And now for this business of the pixels in the image “going dark”. What happens, of course, is that the IR light from the illuminating LED no longer reaches the photo detectors in the same quantity that it did, if at all; the reflecting surface is too far away or is simply not in view. However, if the seeing eye mouse were turned over, or its underside exposed to an intensely lit environment as a result of its being lifted, then the outputs of the photo detectors might be at any level. The key is that they will be uniform, or nearly so. The main reason that they become uniform is that there is no longer a focused image; all the image features are indistinct and they are each spread out over the entire collection of photo detectors. So the photo detectors uniformly come to some average level. This is in distinct contrast with the case when there is a focused image. In the focused case the correlations between frames (recall the one over, one over and one down, etc.) exhibit a distinct phenomenon. Assume that the spatial features being tracked mapped exactly onto the photo detectors, through the lens system, and that mouse movement were jerky by exactly the amount and in the directions needed for a feature to go from detector to detector. Now for simplicity assume also that there is only one feature, and that its image is the size of a photo detector. So, all the photo detectors but one are all at pretty much the same level, and the one detector that is not at that level is at a substantially different level, owing to the feature. Under these highly idealized conditions it is clear that the correlations will be very well behaved; eight “large” differences and one small difference (a sink hole in an otherwise fairly flat surface) in a system using nine trials for a nearest neighbor algorithm (and remembering that there may have been no motion). [Note: The astute reader will notice that the “large” difference in this rather contrived example actually corresponds to, or originates with, only one pixel, and probably does not deserve to be called “large”—recall the earlier shifted film analogy. The only light passed by the films for this example would be for the one pixel of the feature. A more normal image having a considerably more diverse collection of pixels increases the difference to where it truly is a “large” difference.] Now, such highly idealized conditions are not the usual case. It is more normal for the image of the tracked spatial features to be both larger and smaller than the size of the photo detectors, and for the mouse motion to be continuous, following a path that allows those images to fall onto more than one detector at once. Some of the detectors will receive only a partial image, which is to say, some detectors will perform an analog addition of both light and dark. The result is at least a “broadening” of the sink hole (in terms of the number of photo detectors associated with it) and very possibly a corresponding decrease in the depth of the sink hole. The situation may be suggested by imagining a heavy ball rolling along a taut but very stretchable membrane. The membrane has a discrete integer Cartesian coordinate system associated with it. How much does the membrane distend at any integer coordinate location as the ball rolls? First imagine that the ball is of a very small diameter but very heavy, and then imagine that the ball is of a large diameter, but still weighs the same. The analogy may not be exact, but it serves to illustrate the idea of the “sink hole” mentioned above. The general case is that the generally flat surface with sharply defined sink hole becomes a broad concavity, or bowl. We shall term the surface produced or described by the various correlation values the “correlation surface” and will, at various times, be most interested in the shape of that surface. We say all of this to make two points. First, the shifting shape of the concavity in the correlation surface as the seeing eye mouse moves allows interpolation to a granularity finer than the simple size/spacing of the photo detectors. We point this out, with the remark that our seeing eye mouse can do that, and leave it at that. The full details of interpolation are described in the incorporated patents. No further discussion of interpolation is believed necessary. Second, and this is our real reason for the discussion of the preceding paragraphs, is the observation that what happens when the seeing eye mouse is picked up is that the concavity in the correlation surface goes away, to be replaced by generally equal values for the correlations (i.e., a “flat” correlation surface). It is when this happens that we may say with considerable assurance that the seeing eye mouse is airborne, and can then automatically invoke the hold feature, until after such time that a suitable concavity (“bowl”) reappears. Another method for invoking or initiating a hold feature is to simply notice that the seeing eye mouse is moving faster than a certain threshold velocity (and is thus presumably experiencing an abrupt retrace motion in a maneuver intended to translate the screen pointer further than the available physical space within which the mouse is operating). Once the velocity threshold is exceeded the motion indicating signals that would otherwise be associated with that movement are suppressed until such time as the velocity drops below a suitable level. | 20041223 | 20100126 | 20050818 | 71118.0 | 1 | DHARIA, PRABODH M | "SEEING EYE" MOUSE FOR A COMPUTER SYSTEM | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,022,272 | ACCEPTED | Thermally stable diamond polycrystalline diamond constructions | Thermally stable diamond constructions comprise a diamond body having a plurality of bonded diamond crystals and interstitial regions disposed among the crystals. A metallic substrate is attached to the body. The body includes a first region substantially free of a catalyst material that extends a partial depth from a surface into the body, and a second region that includes the catalyst material. The body can include natural diamond grains and/or a blend of natural and synthetic diamond grains, and is treated to form the first region. Before treatment, a portion of the body to be treated is finished to an approximate final dimension so that the depth of the first region of the finished product is substantially the same as when treated. During treatment, catalyst materials as well as non-catalyst metallic materials are removed from the diamond body to provide a further enhanced degree of thermal stability. | 1. A thermally stable diamond construction comprising: a diamond body comprising a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the bonded diamond crystals, the diamond body comprising: a first region that is substantially free of a catalyst material and that extends a partial depth from a surface into the diamond body; and a second region that includes the catalyst material; a metallic substrate attached to the diamond body second region; wherein the diamond body comprises natural diamond grains. 2. The thermally stable diamond construction as recited in claim 1 wherein the first region partial depth extends from a working surface of the diamond body and has a depth of between about 0.02 mm to 0.09 mm. 3. The thermally stable diamond construction as recited in claim 1 wherein the first region comprises the natural diamond grains. 4. The thermally stable diamond construction as recited in claim 3 wherein the second region comprises synthetic diamond grains. 5. The thermally stable diamond construction as recited in claim 1 wherein the first region comprises a mixture of the natural diamond grains and synthetic diamond grains. 6. The thermally stable diamond construction as recited in claim 1 wherein diamond grains used to form the diamond body consist essentially of the natural diamond grains. 7. The thermally stable diamond construction as recited in claim 1 wherein the first region extends a partial depth from at least a portion of both a working surface and a side surface of the diamond body extending a length from the working surface towards the metallic substrate, the first region extending along about 25 to 100 percent of the side surface length as measured from the working surface. 8. The thermally stable diamond construction as recited in claim 7 wherein the first region extends from the side surface a depth within the diamond body of about 0.02 micrometers to 1 mm. 9. The thermally stable diamond construction as recited in claim 7 wherein the first region extends from the side surface a depth within the diamond body that changes moving along the length of the diamond body side surface. 10. A thermally stable diamond construction prepared by the process of: forming a polycrystalline diamond body by subjecting diamond grains and a catalyst material to a high pressure/high temperature condition to cause diamond-to-diamond bonding, at least a portion of the diamond grains being natural diamond grains, the resulting diamond body comprising a plurality of intercrystalline bonded diamond grains and interstitial regions disposed therebetween; and treating the diamond body to render a first region extending a partial depth from a surface of the diamond body substantially free of the catalyst material, and to allow the catalyst material in a second region of the diamond body to remain untreated. 11. The thermally stable diamond construction as recited in claim 10 wherein prior to treating, finishing at least the surface to be treated to an approximate final dimension. 12. The thermally stable diamond construction as recited in claim 10 wherein, during the forming step, the portion of the diamond body treated to form the first region comprises the natural diamond grains. 13. The thermally stable diamond construction as recited in claim 10 wherein the first region partial depth is between about 0.02 mm to 0.09 mm. 14. The thermally stable diamond construction as recited in claim 10 wherein the first region extends from a side surface of the diamond body extending along about 25 to 100 percent of the length of the side surface as measured from a working surface of the diamond body. 15. The thermally stable diamond construction as recited in claim 14 wherein the first region partial depth is about 0.1 mm to 0.5 mm. 16. The thermally stable diamond construction as recited in claim 14 wherein the first region partial depth changes moving along the diamond body side surface. 17. A thermally stable diamond construction comprising: a diamond body having a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the bonded diamond crystals, the diamond body including a working surface and a side surface extending away from the working surface, the diamond body comprising: a first region that is substantially free of a catalyst material and that extends a partial depth from a surface of the diamond body; and a second region that includes the catalyst material; a metallic substrate attached to the diamond body second region; and wherein the first region is formed by treating the diamond body after the surface selected for forming the first region has been finished to an approximate final dimension. 18. The thermally stable diamond construction as recited in claim 17 wherein the first region extends from at least a portion of the diamond body working surface a depth of from between about 0.02 mm to 0.09 mm. 19. The thermally stable diamond construction as recited in claim 17 wherein the first region comprises natural diamond grains, and the second region comprises synthetic diamond grains. 20. The thermally stable diamond construction as recited in claim 17 wherein the first region extends from at least a portion of the side surface extending along about 25 to 100 percent of the length of the side surface as measured from the working surface. 21. The thermally stable diamond construction as recited in claim 20 wherein the first region partial depth is about 0.02 micrometers to 1 mm. 22. A method for making a thermally stable polycrystalline diamond construction comprising a polycrystalline diamond compact having a polycrystalline diamond body and a metallic substrate attached thereto, the polycrystalline diamond body including a plurality of intercrystalline bonded diamond grains and interstitial regions disposed therebetween, the polycrystalline diamond body having a working surface and a side surface extending from the working surface to the substrate, the method comprising: treating the compact after the diamond body has been finished to an approximate final dimension to render a first region of the diamond body substantially free of a catalyst material while allowing the catalyst material to remain in a second region of the diamond body, the first region extending a partial depth within the diamond body from at least a portion of the working surface, and extending a partial depth within the diamond body from at least a portion of the side surface. 23. The method as recited in claim 22, wherein during the step of treating, the portion of the diamond body first region at the side surface is treated to extend along about 25 to 100 percent of a length of the side surface as measured from the working surface. 24. The method as recited in claim 22, wherein prior to the step of treating, forming the diamond body using natural diamond grains. 25. The method as recited in claim 24, wherein the first region comprises the natural diamond grains. 26. The method as recited in claim 22, wherein prior to the step of treating, forming the diamond body using both natural and synthetic diamond grains, wherein the natural diamond grains are used to form the portion of the diamond body that is treated to become the first region, and the synthetic diamond grains are used to form the portion of the body that is treated to become the second region. 27. A method for making a polycrystalline diamond compact having a polycrystalline diamond body and a metallic substrate attached thereto, the method comprising the steps of: using natural diamond grains to form a polycrystalline diamond body first region; using synthetic diamond grains to form a polycrystalline diamond body second region; combining a metallic substrate with the polycrystalline diamond first and second body regions; pressurizing the combined metallic substrate and polycrystalline diamond body first and second regions at high temperature to form the polycrystalline diamond compact, wherein the polycrystalline diamond compact includes a working surface along at least a portion of the polycrystalline diamond body first region. 28. The method as recited in claim 27 wherein the polycrystalline diamond body first region has a level of thermal stability that is greater than that of the second region. 29. A thermally stable diamond construction comprising: a diamond body having a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the bonded diamond crystals, the diamond body including a working surface and comprising: a first region that is substantially free of a catalyst material and that extends a partial depth from at least a portion of the working surface into the diamond body; and a second region that includes the catalyst material; a metallic substrate attached to the diamond body; wherein the first region is formed by acid treating the diamond body to remove both the catalyst material and non-catalyst metallic materials therefrom. | RELATION TO COPENDING PATENT APPLICATION This patent application is a continuation-in-part of U.S. patent application Ser. No. 10/947,075 filed on Sep. 21, 2004, which is incorporated herein by reference. FIELD OF THE INVENTION This invention generally relates to polycrystalline diamond materials and, more specifically, to polycrystalline diamond materials that have been specifically engineered to provide an improved degree of thermal stability when compared to conventional polycrystalline diamond materials, thereby providing an improved degree of service life in desired cutting and/or drilling applications. BACKGROUND OF THE INVENTION Polycrystalline diamond (PCD) materials and PCD elements formed therefrom are well known in the art. Conventional PCD is formed by combining synthetic diamond grains with a suitable solvent catalyst material to form a mixture. The mixture is subjected to processing conditions of extremely high pressure/high temperature, where the solvent catalyst material promotes desired intercrystalline diamond-to-diamond bonding between the grains, thereby forming a PCD structure. The resulting PCD structure produces enhanced properties of wear resistance and hardness, making PCD materials extremely useful in aggressive wear and cutting applications where high levels of wear resistance and hardness are desired. Solvent catalyst materials typically used for forming conventional PCD include metals from Group VIII of the Periodic table, with cobalt (Co) being the most common. Conventional PCD can comprise from 85 to 95% by volume diamond and a remaining amount solvent catalyst material. The material microstructure of conventional PCD comprises regions of intercrystalline bonded diamond with solvent catalyst material attached to the diamond and/or disposed within interstices or interstitial regions that exist between the intercrystalline bonded diamond regions. A problem known to exist with such conventional PCD materials is that they are vulnerable to thermal degradation, when exposed to elevated temperature cutting and/or wear applications, caused by the differential that exists between the thermal expansion characteristics of the interstitial solvent metal catalyst material and the thermal expansion characteristics of the intercrystalline bonded diamond. Such differential thermal expansion is known to occur at temperatures of about 400° C., can cause ruptures to occur in the diamond-to-diamond bonding, and eventually result in the formation of cracks and chips in the PCD structure, rendering the PCD structure unsuited for further use. Another form of thermal degradation known to exist with conventional PCD materials is one that is also related to the presence of the solvent metal catalyst in the interstitial regions and the adherence of the solvent metal catalyst to the diamond crystals. Specifically, the solvent metal catalyst is known to cause an undesired catalyzed phase transformation in diamond (converting it to carbon monoxide, carbon dioxide, or graphite) with increasing temperature, thereby limiting practical use of the PCD material to about 750° C. Attempts at addressing such unwanted forms of thermal degradation in conventional PCD materials are known in the art. Generally, these attempts have focused on the formation of a PCD body having an improved degree of thermal stability when compared to the conventional PCD materials discussed above. One known technique of producing a PCD body having improved thermal stability involves, after forming the PCD body, removing all or a portion of the solvent catalyst material therefrom. For example, U.S. Pat. No. 6,544,308 discloses a PCD element having improved wear resistance comprising a diamond matrix body that is integrally bonded to a metallic substrate. While the diamond matrix body is formed using a catalyzing material during high temperature/high pressure processing, the diamond matrix body is subsequently treated to render a region extending from a working surface to a depth of at least about 0.1 mm substantially free of the catalyzing material, wherein 0.1 mm is described as being the critical depletion depth. Japanese Published Patent Application 59-219500 discloses a diamond sintered body joined together with a cemented tungsten carbide base formed by high temperature/high pressure process, wherein the diamond sintered body comprises diamond and a ferrous metal binding phase. Subsequent to the formation of the diamond sintered body, a majority of the ferrous metal binding phase is removed from an area of at least 0.2 mm from a surface layer of the diamond sintered body. In addition to the above-identified references that disclose treatment of the PCD body to improve the thermal stability by removing the catalyzing material from a region of the diamond body extending a minimum distance from the diamond body surface, there are other known references that disclose the practice of removing the catalyzing material from the entire PCD body. While this approach produces an entire PCD body that is substantially free of the solvent catalyst material, is it fairly time consuming. Additionally, a problem known to exist with this approach is that the lack of solvent metal catalyst within the PCD body precludes the subsequent attachment of a metallic substrate to the PCD body by solvent catalyst infiltration. Additionally, PCD bodies rendered thermally stable by removing substantially all of the catalyzing material from the entire body have a coefficient of thermal expansion that is sufficiently different from that of conventional substrate materials (such as WC—Co and the like) that are typically infiltrated or otherwise attached to the PCD body. The attachment of such substrates to the PCD body is highly desired to provide a PCD compact that can be readily adapted for use in many desirable applications. However, the difference in thermal expansion between the thermally stable PCD body and the substrate, and the poor wetability of the thermally stable PCD body diamond surface due to the substantial absence of solvent metal catalyst, makes it very difficult to bond the thermally stable PCD body to conventionally used substrates. Accordingly, such PCD bodies must be attached or mounted directly to a device for use, i.e., without the presence of an adjoining substrate. Since such PCD bodies, rendered thermally stable by having the catalyzing material removed from the entire diamond body, are devoid of a metallic substrate they cannot (e.g., when configured for use as a drill bit cutter) be attached to a drill bit by conventional brazing process. The use of such thermally stable PCD body in this particular application necessitates that the PCD body itself be mounted to the drill bit by mechanical or interference fit during manufacturing of the drill bit, which is labor intensive, time consuming, and does not provide a most secure method of attachment. While these above-noted known approaches provide insight into diamond bonded constructions capable of providing some improved degree of thermal stability when compared to conventional PCD constructions, it is believed that further improvements in thermal stability for PCD materials useful for desired cutting and wear applications can be obtained according to different approaches that are both capable of minimizing the amount of time and effort necessary to achieve the same, and that permit formation of a thermally stable PCD construction comprising a desired substrate bonded thereto to facilitate attachment of the construction with a desired application device. It is, therefore, desired that diamond compact constructions be developed that include a PCD body having an improved degree of thermal stability when compared to conventional PCD materials, and that include a substrate material bonded to the PCD body to facilitate attachment of the resulting thermally stable compact construction to an application device by conventional method such as welding or brazing and the like. It is further desired that such a compact construction provide a desired degree of thermal stability in a manner that can be manufactured at reasonable cost without requiring excessive manufacturing times and without the use of exotic materials or techniques. SUMMARY OF THE INVENTION Thermally stable diamond constructions, prepared according to principles of this invention, comprise a diamond body having a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the crystals. A metallic substrate is attached to the diamond body. The diamond body includes a first region that is substantially free of a catalyst material and that extends a partial depth from a surface into the diamond body. The diamond body further includes a second region that includes the catalyst material. In an example embodiment, the diamond body comprises natural diamond grains. The first region may comprise the natural diamond grains, or may comprise a mixture of natural and synthetic diamond grains. The second region may comprise synthetic diamond grains. The diamond body is formed by subjecting the selected diamond grains and a catalyst material to a high pressure/high temperature condition to cause diamond-to-diamond bonding, forming PCD. The diamond body may then treated to form the first region that is substantially free of the catalyst material, and to allow the catalyst material to remain in the second region of the diamond body. In the event that a portion of the diamond body is formed from natural diamond, such treating may not be necessary to obtain a desired degree of relative thermal stability. In an example embodiment where the first region is treated to render the first region substantially free of the catalyst material, before such treating step, the surface portion of the diamond body to be treated is finished to an approximate final dimension so that the depth of the treated region remains substantially the same in the final construction as it was when treated. In an example embodiment, during the treating step, an acid material is used to remove the catalyst material and also results in the removal of non-catalyst metallic materials from the region of the diamond body that is treated. The removal of non-catalyst metallic materials, in addition to catalyst material, is believed to provide a further enhanced degree of thermal stability to the first region. In an example embodiment the first region may extend a depth from a working surface of the diamond body and/or from a side surface of the diamond body. When extending a depth from a working surface, such depth may be between about 0.02 mm to 0.09 mm. When extending a depth from the side surface of the diamond body, such depth may be about 0.02 micrometers to 1 mm, and the first region may extend a length along such side surface that is about 25 to 100 percent of the side surface length as measured from the working surface. The depth along this side surface can vary as a function of distance moving away from the working surface. In an example embodiment, the diamond body comprises diamond crystals having an average diamond grain size of greater than about 0.02 mm, and comprises at least 85 percent by volume diamond based on the total volume of the diamond body. Additionally, the second region can have an average thickness of at least about 0.01 mm. Thermally stable constructions of this invention display an enhanced degree of thermal stability when compared to conventional PCD materials, and include a substrate material bonded to the PCD body that facilitates attachment therewith to an application device by conventional method such as welding or brazing and the like. BRIEF DESCRIPTION OF THE DRAWINGS These and other features and advantages of the present invention will be appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein: FIG. 1 is a schematic view of a region of polycrystalline diamond prepared in accordance with principals of this invention; FIGS. 2A to 2E are perspective views of different polycrystalline diamond compacts of this invention comprising the region illustrated in FIG. 1; FIG. 3 is a perspective view of an example embodiment thermally stable polycrystalline diamond construction of this invention; FIG. 4 is a cross-sectional side view of the example embodiment thermally stable polycrystalline diamond construction of this invention as illustrated in FIG. 3; FIG. 5 is a schematic view of a region of the thermally stable polycrystalline diamond construction of this invention; FIG. 6 is a cross-sectional side view of a region of an example embodiment thermally stable polycrystalline diamond construction of this invention; FIG. 7 is a perspective side view of an insert, for use in a roller cone or a hammer drill bit, comprising the thermally stable polycrystalline diamond construction of this invention; FIG. 8 is a perspective side view of a roller cone drill bit comprising a number of the inserts of FIG. 7; FIG. 9 is a perspective side view of a percussion or hammer bit comprising a number of inserts of FIG. 7; FIG. 10 is a schematic perspective side view of a diamond shear cutter comprising the thermally stable polycrystalline diamond construction of this invention; FIG. 11 is a perspective side view of a drag bit comprising a number of the shear cutters of FIG. 10; and FIG. 12 is a cross-sectional perspective view of a protective fixture. DETAILED DESCRIPTION Thermally stable polycrystalline diamond (TSPCD) constructions of this invention are specifically engineered having a diamond bonded body comprising a region of thermally stable diamond extending a selected depth from a body working or cutting surface, thereby providing an improved degree of thermal stability when compared to conventional PCD materials not having such a thermally stable diamond region. As used herein, the term “PCD” is used to refer to polycrystalline diamond that has been formed, at high pressure/high temperature (HPHT) conditions, through the use of a solvent metal catalyst, such as those included in Group VIII of the Periodic table. “Thermally stable polycrystalline diamond” as used herein is understood to refer to intercrystalline bonded diamond that includes a volume or region that is or that has been rendered substantially free of the solvent metal catalyst used to form PCD, or the solvent metal catalyst used to form PCD remains in the region of the diamond body but is otherwise reacted or otherwise rendered ineffective in its ability adversely impact the bonded diamond at elevated temperatures as discussed above. TSPCD constructions of this invention can further include a substrate attached to the diamond body that facilitates the attachment of the TSPCD construction to cutting or wear devices, e.g., drill bits when the TSPCD construction is configured as a cutter, by conventional means such as by brazing and the like. FIG. 1 illustrates a region of PCD 10 formed during a high pressure/high temperature (HPHT) process stage of forming this invention. The PCD has a material microstructure comprising a material phase of intercrystalline diamond made up of a plurality of bonded together adjacent diamond grains 12 at HPHT conditions. The PCD material microstructure also includes interstitial regions 14 disposed between bonded together adjacent diamond grains. During the HPHT process, the solvent metal catalyst used to facilitate the bonding together of the diamond grains migrates into and resides within these interstitial regions 14. FIG. 2A illustrates an example PCD compact 16 formed in accordance with this invention by HPHT process. The PCD compact 16 generally comprises a PCD body 18, having the material microstructure described above and illustrated in FIG. 1, that is bonded to a desired substrate 20. Although the PCD compact 16 is illustrated as being generally cylindrical in shape and having a disk-shaped flat or planar surface 22, it is understood that this is but one preferred embodiment and that the PCD body as used with this invention can be configured other than as specifically disclosed or illustrated. It is further to be understood that the compact 16 may be configured having working or cutting surfaces disposed along the disk-shaped surface and/or along side surfaces 24 of the PCD body, depending on the particular cutting or wear application. Alternatively, the PCD compact may be configured having an altogether different shape but generally comprising a substrate and a PCD body bonded to the substrate, wherein the PCD body is provided with working or cutting surfaces oriented as necessary to perform working or cutting service when the compact is mounted to a desired drilling or cutting device, e.g., a drill bit. FIGS. 2B to 2D illustrate alternative embodiments of PCD compacts of this invention having a substrate and/or PCD body configured differently than that illustrated in FIG. 2A. For example, FIG. 2B illustrates a PCD compact 16 configured in the shape of a preflat or gage trimmer including a cut-off portion 19 of the PCD body 18 and the substrate 20. The preflat includes working or cutting surface positioned along a disk-shaped surface 22 and a side surface 24 working surface. Alternative preflat or gage trimmer PCD compact configurations intended to be within the scope of this invention include those described in U.S. Pat. No. 6,604,588, which is incorporated herein by reference. FIG. 2C illustrates another embodiment of a PCD compact 16 of this invention configured having the PCD body 18 disposed onto an angled underlying surface of the substrate 20 and having a disk-shaped surface 22 that is the working surface and that is positioned at an angle relative to an axis of the compact. FIG. 2D illustrates another embodiment of a PCD compact 16 of this invention configured having the substrate 20 and the PCD body 18 disposed onto a surface of the substrate. In this particular embodiment, the PCD body has a domed or convex surface 22 serving as the working surface 22 (similar to the PCD compact embodiment described below and illustrated in FIG. 7). FIG. 2E illustrates a still other embodiment of a PCD compact 16 of this invention that is somewhat similar to that illustrated in FIG. 2A in that it includes a PCD body 18 disposed on the substrate 20 and having a disk-shaped surface 22 as a working surface. Unlike the embodiment of FIG. 2A, however, this PCD compact includes an interface 21 between the PCD body and the substrate that is not uniformly planar. In this particular example, the interface 21 is canted or otherwise non-axially symmetric. It is to be understood that PCD compacts of this invention can be configured having PCD body-substrate interfaces that are uniformly planer or that are not uniformly planer in a manner that is symmetric or nonsymmetric relative to an axis running through the compact. Examples of other configurations of PCD compacts having nonplanar PCD body-substrate interfaces include those described in U.S. Pat. No. 6,550,556, which is incorporated herein by reference. Diamond grains useful for forming the PCD body of this invention during the HPHT process include diamond powders having an average diameter grain size in the range of from submicrometer in size to 0.1 mm, and more preferably in the range of from about 0.005 mm to 0.08 mm. The diamond powder can contain grains having a mono or multi-modal size distribution. In a preferred embodiment for a particular application, the diamond powder has an average particle grain size of approximately 20 to 25 micrometers. However, it is to be understood that the use of diamond grains having a grain size less than this amount, e.g., less than about 15 micrometers, is useful for certain drilling and/or cutting applications. In the event that diamond powders are used having differently sized grains, the diamond grains are mixed together by conventional process, such as by ball or attrittor milling for as much time as necessary to ensure good uniform distribution. The diamond powder used to prepare the PCD body can be synthetic diamond powder. Synthetic diamond powder is known to include small amounts of solvent metal catalyst material and other materials entrained within the diamond crystals themselves. Alternatively, the diamond powder used to prepare the PCD body can be natural diamond powder. Unlike synthetic diamond grains, natural diamond grains do not include solvent metal catalyst material and/or other noncatalyst materials entrained within the diamond crystals. The inclusion of catalyst material as well as other noncatalyst material in the crystals of the synthetic diamond powder can operate to impair or limit the extent to which the resulting PCD body is or can be rendered thermally stable. Since natural diamond grains are largely devoid of these other materials which cannot be removed from the synthetic diamond grains, a higher degree of thermal stability exists or can thus be obtained. Accordingly, for applications calling for a high degree of thermal stability, the use of natural diamond for forming the PCD body is preferred. Additionally, PCD bodies of this invention can be formed by selectively use of natural diamond grains to form the entire PCD body or one or more regions of the body where a desired improved degree of thermal stability is desired. In such embodiment, the PCD body can be formed using natural diamond to form a first region where a desired improved degree of thermal stability is desired, e.g., a region defining a working or side surface of the body, and another region of the body can be formed from synthetic diamond grains. This other region can, for example, a region that does not form a working surface but perhaps forms an interface with a substrate, where such an improved degree of thermal stability is not needed. Alternatively, PCD bodies of this invention can be formed using a mixture of natural diamond and synthetic diamond throughout the entire diamond body, or only at one or more selected regions of the PCD body. For example, natural diamond and synthetic diamond grains can be combined at a desired mix ratio to provide a tailored improvement in the degree of thermal stability for the particular PCD body region or regions best suited for a particular PCD body application. While PCD bodies of this invention include a region rendered thermally stable by treating to render the region substantially free of a catalyst material, it is to be understood that PCD bodies of this invention may also include a region wherein the thermally stability is improved without requiring such treatment by forming such region to have a higher diamond density using natural diamond grains. The diamond grain powder, whether synthetic or natural, is combined with or already includes a desired amount of catalyst material to facilitate desired intercrystalline diamond bonding during HPHT processing. Suitable catalyst materials useful for forming the PCD body include those solvent metals selected from the Group VIII of the Periodic table, with cobalt (Co) being the most common, and mixtures or alloys of two or more of these materials. The diamond grain powder and catalyst material mixture can comprise 85 to 95% by volume diamond grain powder and the remaining amount catalyst material. Alternatively, the diamond grain powder can be used without adding a solvent metal catalyst in applications where the solvent metal catalyst can be provided by infiltration during HPHT processing from the adjacent substrate or adjacent other body to be bonded to the PCD body. In certain applications it may be desired to have a PCD body comprising a single PCD-containing volume or region, while in other applications it may be desired that a PCD body be constructed having two or more different PCD-containing volumes or regions. For example, it may be desired that the PCD body include a first PCD-containing region extending a distance from a working surface, and a second PCD-containing region extending from the first PCD-containing region to the substrate. The PCD-containing regions can be formed having different diamond densities and/or be formed from different diamond grain sizes. It is, therefore, understood that TSPCD constructions of this invention may include one or multiple PCD regions within the PCD body as called for by a particular drilling or cutting application. The diamond grain powder and catalyst material mixture is preferably cleaned, and loaded into a desired container for placement within a suitable HPHT consolidation and sintering device, and the device is then activated to subject the container to a desired HPHT condition to consolidate and sinter the diamond powder mixture to form PCD. In an example embodiment, the device is controlled so that the container is subjected to a HPHT process comprising a pressure in the range of from 5 to 7 GPa and a temperature in the range of from about 1320 to 1600° C., for a sufficient period of time. During this HPHT process, the catalyst material in the mixture melts and infiltrates the diamond grain powder to facilitate intercrystalline diamond bonding. During the formation of such intercrystalline diamond bonding, the catalyst material migrates into the interstitial regions within the microstructure of the so-formed PCD body that exists between the diamond bonded grains (see FIG. 1). The PCD body can be formed with or without having a substrate material bonded thereto. In the event that the formation of a PCD compact comprising a substrate bonded to the PCD body is desired, a selected substrate is loaded into the container adjacent the diamond powder mixture prior to HPHT processing. An advantage of forming a PCD compact having a substrate bonded thereto is that it enables attachment of the to-be-formed TSPCD construction to a desired wear or cutting device by conventional method, e.g., brazing or welding. Additionally, in the event that the PCD body is to be bonded to a substrate, and the substrate includes a metal solvent catalyst, the metal solvent catalyst needed for catalyzing intercrystalline bonding of the diamond can be provided by infiltration. In which case is may not be necessary to mix the diamond powder with a metal solvent catalyst prior to HPHT processing. Suitable materials useful as substrates for forming PCD compacts of this invention include those conventionally used as substrates for conventional PCD compacts, such as those formed from metallic and cermet materials. In a preferred embodiment, the substrate is provided in a preformed state and includes a metal solvent catalyst that is capable of infiltrating into the adjacent diamond powder mixture during processing to facilitate and provide a bonded attachment therewith. Suitable metal solvent catalyst materials include those selected from Group VIII elements of the Periodic table. A particularly preferred metal solvent catalyst is cobalt (Co). In a preferred embodiment, the substrate material comprises cemented tungsten carbide (WC—Co). Once formed, the PCD body or compact is treated to render a selected region thereof thermally stable. This can be done, for example, by removing substantially all of the catalyst material from the selected region by suitable process, e.g., by acid leaching, aqua regia bath, electrolytic process, or combinations thereof. Alternatively, rather than actually removing the catalyst material from the PCD body or compact, the selected region of the PCD body or compact can be rendered thermally stable by treating the catalyst material in a manner that reduces or eliminates the potential for the catalyst material to adversely impact the intercrystalline bonded diamond at elevated temperatures. For example, the catalyst material can be combined chemically with another material to cause it to no longer act as a catalyst material, or can be transformed into another material that again causes it to no longer act as a catalyst material. Accordingly, as used herein, the terms “removing substantially all” or “substantially free” as used in reference to the catalyst material is intended to cover the different methods in which the catalyst material can be treated to no longer adversely impact the intercrystalline diamond in the PCD body or compact with increasing temperature. Additionally, as noted above, the PCD body may alternatively be formed from natural diamond grains and to have a higher diamond density, to thereby reduce the level of catalyst material in the body. In some applications, this may be considered to render it sufficiently thermally stable without the need for further treatment It is desired that the selected thermally stable region for TSPCD constructions of this invention is one that extends a determined depth from at least a portion of the surface, e.g., at least a portion of the working or cutting surface, of the diamond body independent of the working or cutting surface orientation. Again, it is to be understood that the working or cutting surface may include more than one surface portion of the diamond body. In an example embodiment, it is desired that the thermally stable region extend from a working or cutting surface of the PCD body an average depth of at least about 0.008 mm to an average depth of less than about 0.1 mm, preferably extend from a working or cutting surface an average depth of from about 0.02 mm to an average depth of less than about 0.09 mm, and more preferably extend from a working or cutting surface an average depth of from about 0.04 mm to an average depth of about 0.08 mm. The exact depth of the thermally stable region can and will vary within these ranges for TSPCD constructions of this invention depending on the particular cutting and wear application. Generally, it has been shown that thermally stable regions within these ranges of depth from the working surface produce a TSPCD construction having improved properties of wear and abrasion resistance when compared to conventional PCD compacts, while also providing desired properties of fracture strength and toughness. It is believed that thermally stable regions having depths beneath the working surface greater than the upper limits noted above, while possibly capable of exhibiting a higher degree of wear and abrasion resistance, would in fact be brittle and have reduced strength and toughness, for aggressive drilling and/or cutting applications, and for this reason would likely fail in application and exhibit a reduced service life due to premature spalling or chipping. It is to be understood that the depth of the thermally stable region from at least a portion of the working or cutting surface is represented as being a nominal, average value arrived at by taking a number of measurements at preselected intervals along this region and then determining the average value for all of the points. The region remaining within the PCD body or compact beyond this thermally stable region is understood to still contain the catalyst material. Additionally, when the PCD body to be treated includes a substrate, i.e., is provided in the form of a PCD compact, it is desired that the selected depth of the region to be rendered thermally stable be one that allows a sufficient depth of region remaining in the PCD compact that is untreated to not adversely impact the attachment or bond formed between the diamond body and the substrate, e.g., by solvent metal infiltration during the HPHT process. In an example PCD compact embodiment, it is desired that the untreated or remaining region within the diamond body have a thickness of at least about 0.01 mm as measured from the substrate. It is, however, understood that the exact thickness of the PCD region containing the catalyst material next to the substrate can and will vary depending on such factors as the size and configuration of the compact, i.e., the smaller the compact diameter the smaller the thickness, and the particular PCD compact application. In an example embodiment, the selected region of the PCD body is rendered thermally stable by removing substantially all of the catalyst material therefrom by exposing the desired surface or surfaces to acid leaching, as disclosed for example in U.S. Pat. No. 4,224,380, which is incorporated herein by reference. Generally, after the PCD body or compact is made by HPHT process, the identified surface or surfaces, e.g., at least a portion of the working or cutting surfaces, are placed into contact with the acid leaching agent for a sufficient period of time to produce the desired leaching or catalyst material depletion depth. Suitable leaching agents for treating the selected region to be rendered thermally stable include materials selected from the group consisting of inorganic acids, organic acids, mixtures and derivatives thereof. The particular leaching agent that is selected can depend on such factors as the type of catalyst material used, and the type of other non-diamond metallic materials that may be present in the PCD body, e.g., when the PCD body is formed using synthetic diamond powder. While removal of the catalyst material from the selected region operates to improve the thermal stability of the selected region, it is known that PCD bodies especially formed from synthetic diamond powder can include, in addition to the catalyst material, noncatalyst materials, such as other metallic elements that can also contribute to thermal instability. For example, one of the primary metallic phases known to exist in the PCD body formed from synthetic diamond powder is tungsten. It is, therefore, desired that the leaching agent selected to treat the selected PCD body region be one capable of removing both the catalyst material and such other known metallic materials. In an example embodiment, suitable leaching agents include hydrofluoric acid (HF), hydrochloric acid (HCl), nitric acid (HNO3), and mixtures thereof. In an example embodiment, where the diamond body to be treated is in the form of a PCD compact, the compact is prepared for treatment by protecting the substrate surface and other portions of the PCD body adjacent the desired treated region from contact (liquid or vapor) with the leaching agent. Methods of protecting the substrate surface include covering, coating or encapsulating the substrate and portion of PCD body with a suitable barrier member or material such as wax, plastic or the like. Referring to FIG. 12, in a preferred embodiment, the compact substrate surface and portion of the diamond body is protected by using an acid-resistant fixture 106 that is specially designed to encapsulate the desired surfaces of the substrate and diamond body. Specifically, the fixture 106 is configured having a cylindrical body 108 within an inside surface diameter 110 that is sized to fit concentrically around the outside surface 111 of the compact 1113. The fixture inside surface 110 can include a groove 112 extending circumferentially therearound and that is positioned adjacent to an end 114 of the fixture. The groove is sized to accommodate placement of a seal 115, e.g., in the form of an elastomeric O-ring or the like, therein. Alternatively, the fixture can be configured without a groove and a suitable seal can simply be interposed between the opposed respective compact and fixture outside and inside diameter surfaces. When placed around the outside surface of the compact, the seal operates to provide a leak-tight seal between the compact and the fixture to prevent unwanted migration of the leaching agent therebetween. In a preferred embodiment, the fixture 106 includes an opening 117 in its end that is axially opposed to end 114. The opening operates both to prevent an unwanted build up of pressure within the fixture when the PCD compact is loaded therein (which pressure could operate to urge the compact away from its loaded position within the fixture), and to facilitate the removal of the compact from the fixture once the treatment process is completed (e.g., the opening provides an access port for pushing the compact out of the fixture by mechanical or pressure means). During the process of treating the compact, the opening 117 is closed using a suitable seal element 119, e.g., in the form of a removable plug or the like. In preparation for treatment, the fixture is positioned axially over the PCD compact and the compact is loaded into the fixture with the compact working surface directly outwardly towards the fixture end 114. The compact is then positioned within the fixture so that the compact working surface 121 projects a desired distance outwardly from sealed engagement with the fixture inside wall. Positioned in this manner within the fixture, the compact working surface 121 is freely exposed to make contact with the leaching agent via fixture opening 123 positioned at end 114. The PCD compact 113 and fixture 106 form an assembly that are then placed into a suitable container that includes a desired volume of the leaching agent 125. In a preferred embodiment, the level of the leaching agent within the container is such that the diamond body working surface 121 exposed within the fixture is completely immersed into the leaching agent. In a preferred embodiment, a sheet of perforated material 127, e.g., in the form of a mesh material that is chemically resistant to the leaching agent, can be placed within the container and interposed between the assembly and the container surface to provide a desired distance between the fixture and the container. The use of a perforated material ensures that, although it is in contact with the assembly, the leaching agent will be permitted to flow to the exposed compact working surface to produce the desired leaching result. FIGS. 3 and 4 illustrate an embodiment of the TSPCD construction 26 of this invention after its has been treated to render a selected region of the PCD body thermally stable. The construction comprises a thermally stable region 28 that extends a selected depth “D” from a working or cutting surface 30 of the diamond body 32. The remaining region 34 of the diamond body 32 extending from the thermally stable region 28 to the substrate 36 comprises PCD having the catalyst material intact. In a first example embodiment, the thermally stable region extends a depth of approximately 0.045 mm from the working or cutting surface. In a second example embodiment, the thermally stable region extends a depth of approximately 0.075 mm from the working or cutting surface. Again, it is to be understood that the exact depth of the thermally stable region can and will vary within the ranges noted above depending on the particular end use drilling and or cutting applications. Additionally, as mentioned briefly above, it is to be understood that the TSPCD construction described above and illustrated in FIGS. 3 and 4 are representative of a single embodiment of this invention for purposes of reference, and that TSPCD constructions other than that specifically described and illustrated are within the scope of this invention. For example, TSPCD constructions comprising a diamond body having a thermally stable region and then two or more other regions are possible, wherein a region interposed between the thermally stable region and the region adjacent the substrate may be a transition region having a diamond density and/or formed from diamond grains sized differently from that of the other diamond-containing regions. FIG. 5 illustrates the material microstructure 38 of the TSPCD construction of this invention and, more specifically, a section of the thermally stable region of the TSPCD construction. The thermally stable region comprises the intercrystalline bonded diamond made up of the plurality of bonded together diamond grains 40, and a matrix of interstitial regions 42 between the diamond grains that are now substantially free of the catalyst material. The thermally stable region comprising the interstitial regions free of the catalyst material is shown to extend a distance “D” from a working or cutting surface 44 of the TSPCD construction. In an example embodiment, the distance “D” is identified and measured by cross sectioning a TSPCD construction and using a sufficient level of magnification to identify the interface between the first and second regions. As illustrated in FIG. 5, the interface is generally identified as the location within the diamond body where a sufficient population of the catalyst material 46 is shown to reside within the interstitial regions. The so-formed thermally stable region of TSPCD constructions of this invention is not subject to the thermal degradation encountered in the remaining areas of the PCD diamond body, resulting in improved thermal characteristics. The remaining region of the diamond body extending from depth “D” has a material microstructure that comprises PCD, as described above and illustrated in FIG. 1, that includes catalyst material 46 disposed within the interstitial regions. In an example embodiment, the working surface extends along the upper surface of the construction embodiment illustrated in FIG. 2. FIG. 6 illustrates an example embodiment TSPCD construction 48 of this invention comprising a working surface 50 that includes a substantially planar upper surface 52 of the construction and may be considered to also include a beveled surface 54 that defines a circumferential edge of the upper surface. In this embodiment, the thermally stable region 56 extends the selected depth into the diamond body 57 from both the upper and beveled surfaces 52 and 54. Accordingly, in this example embodiment, the upper and beveled surfaces 52 and 54 are understood to be the working surfaces of the construction. Alternatively, TSPCD constructions of this invention may include a working surface a first beveled or radiused surface, a second beveled or radiused surface, or other surface feature interposed between the upper surface and a side surface, as well as the side surface. In such case, the first beveled surface may be considered part of the working surface and any subsequent surface, especially if at an angle greater than 65° with respect to a plane at the top surface, considered part of the side surface. In general, the side surface is understood to be any surface substantially perpendicular to the upper surface of the constriction. In such embodiment, prior to treating the PCD compact to render the selected region thermally stable, the PCD compact is formed to have such working surface, i.e., is formed by machine process or the like to provide the desired the beveled surface 54 or other surface feature as discussed above. In an example embodiment, the PCD compact is finished into its approximate final dimension prior to treating, e.g., is machine finished prior to leaching. Thus, a feature of TSPCD constructions of this invention is that they include working or cutting surfaces, independent of location or orientation, having a thermally stable region extending a predetermined depth into the diamond body that is not substantially altered subsequent to treating and prior to use. For certain applications, it has been discovered than an improved degree of thermal stability can be realized by providing a thermally stable region along the side surface of the construction As illustrated in FIG. 6, the thermally stable region 56 extends along a side surface 58 of the construction and includes the beveled surface 54. As noted above, the side surface 58 of the construction is oriented substantially perpendicular to the upper surface 52, and extends from the bevel surface to the substrate 60. Extending the thermally stable region to along the side surface 58 of the construction operates to improve the life of the construction when placed into operation, e.g., when used as a cutter in a drill bit placed into a subterranean drilling application. This is believed to occur because the enhanced thermal conductivity provided by the thermally stable side surface portion operates to help conduct heat away working surface of the construction, thereby increasing the thermal gradient of the TSPCD construction, its thermal resistance and service life. In an example embodiment, where the TSPCD construction is provided in the form of a cutting element for use in a drill bit and the cutting element includes a working surface comprising an upper surface and/or a beveled or other intermediate surface feature extending between the upper surface and the side surface, the thermally stable region may extend axially from the working surface along the side surface of the construction for a distance or length that will vary depending on such factors as the particular material make up of the TSPCD construction, its configuration, and its application. Generally, it is desired that the thermally stable region extend a length that is sufficient to provide a desired improvement in the construction thermal stability and service life. In an example embodiment, the thermally stable region of the TSPCD construction can extend along the side surface 58 for a length of about 25 to 100 percent of the total length of the side surface as measured from the working surface. The total length of the side surface is that which extends between the working surface and an opposite end of the PCD body or, between the working surface and interface of the substrate 60. In an example embodiment, the thermally stable region can extend along the side surface of the construction for a length that is at least about 40 percent of the total length, or preferably that is at least about 50 percent of the total length. The thermally stable region extending along the side surface can be formed in the manner described above by selectively covering only that portion of the side surface that is not to be treated along with the substrate. In an example embodiment, where a fixture as described above is used, the fixture can be positioned over a portion of the construction to cover the substrate and any portion of the side surface not to be treated so that both remain protected from the leaching agent. In the event that it is desired that the thermally stable region extend along the entire length of the side surface, then appropriate steps are taken using the fixture or other means to protect only the surface of the substrate from being exposed to the leaching agent. In an example embodiment, the thermally stable region extending along such side surface is formed after the construction has been finished to an approximate final dimension as noted above. The depth of the thermally stable region extending along the side surface can vary depending on a number of factors, such as the material make up, size, configuration and application of the construction. In an example embodiment, the thermally stable region extends from the side surface a depth within the diamond body of between about 0.02 micrometers to 1 mm. In some cases it may be preferably between about 0.1 mm to 0.5 mm, and more preferably between about 0.15 to 0.3 mm. It is generally desired that the depth of the thermally stable region be sufficient to provide a desired degree thermal stability, hardness and/or toughness to provide the desired improvement in service life. The same treatment techniques discussed above for providing the thermally stable region depth beneath the working surface can be used to provide the desired thermally stable region depth extending from the side surface. Additionally, in some embodiments, the depth of the thermally stable region extending along the length of the side surface may not be constant. For example, the thermally stable region can be configured to change as a function of distance from the working or cutting surface. In an example embodiment, the depth can decrease or increase as a function of distance from the working surface, thereby providing a tapered depth profile. This profile can be a gradient or can be stepped. In an example embodiment, the TSPCD construction has a thermally stable region extending along the side surface having a tapered depth profile that decreases as a function of distance from the working surface. The change in depth in such embodiments can be achieved by varying the treatment or process parameters for example by varying the leaching time used along the side surface This can be achieved by immersing the construction over a period of time into the leaching agent, thereby subjecting the first immersed portion of the side surface to a longer leaching time than a later immersed portion. Alternatively, the change in depth can be achieved by controlling certain features of the construction itself, e.g., by the selective use of differently sized diamond grains to form different regions along the side surface or throughout the diamond body, which grain side different may influence leaching efficiency. This may also result using PDC construction having a diamond density that varies along the length of the side surface. While the feature of forming a thermally stable region extending along a side surface portion of TSPCD construction has been described above and illustrated in FIG. 6, it is to be understood according to the practice of this invention that such extended thermally stable regions can be used in conjunction with working or cutting surfaces of any configuration, orientation or placement on the TSPCD construction. Additionally, while the feature of an extended thermally stable region extending along a side surface of TSPCD constructions of this invention has been disclosed in conjunction with a TSPCD construction having a thermally stable region extending a depth from a working or cutting surface, other embodiments in accordance with the invention may include TSPCD constructions configured to have a thermally stable region extending along a side surface of the construction without a thermally stable region extending a depth along the working or top surface. Such TSPCD constructions, having a thermally stable region extending into the diamond body along a length of the side surface and not extending a depth beneath the working or cutting surface, can be formed by using the same general techniques described above, except that extra measures are used to protect the working or cutting surface from being exposed to during treatment to form the thermally stable region. This can be done by using the same types of barrier materials disclosed above, or by using a special fixture designed to be placed over the working or cutting surface, to protect the working or cutting surfaces from exposure during treatment. Alternatively, a technique may be used wherein the working or cutting surface is protected by simply not being immersed into any such treating agent, or by a combination of not being immersed and also being protected. Selected example TSPCD constructions of this invention will be better understood with reference to the following examples: EXAMPLE 1 TSPCD Construction Synthetic diamond powder having an average grain size of approximately 20 micrometers was mixed together for a period of approximately 1 hour by conventional process. The resulting mixture included approximately six percent by volume cobalt solvent metal catalyst, and WC—Co based on the total volume of the mixture, and was cleaned. The mixture was loaded into a refractory metal container with a cemented tungsten carbide substrate and the container was surrounded by pressed salt (NaCl) and this arrangement was placed within a graphite heating element. This graphite heating element containing the pressed salt and the diamond powder/substrate encapsulated in the refractory container was then loaded in a vessel made of a high-temperature/high-pressure self-sealing powdered ceramic material formed by cold pressing into a suitable shape. The self-sealing powdered ceramic vessel was placed in a hydraulic press having one or more rams that press anvils into a central cavity. The press was operated to impose a pressure and temperature condition of approximately 5,500 MPa and approximately 1450° C. on the vessel for a period of approximately 20 minutes. During this HPHT processing, the cobalt solvent metal catalyst infiltrated through the diamond powder and catalyzed intercrystalline diamond-to-diamond bonding to form a PCD body having a material microstructure as discussed above and illustrated in FIG. 1. Additionally, the solvent metal catalyst in the substrate infiltrated into the diamond powder mixture to form a bonded attachment with the PCD body, thereby resulting in the formation of a PCD compact. The container was removed from the device, and the resulting PCD compact was removed from the container. Prior to leaching, the PCD compact was finished machined and ground to achieve the desired compact finished dimensions, size and configuration. The resulting PCD compact had a diameter of approximately 16 mm, the PCD diamond body had a thickness of approximately 3 mm, and the substrate had a thickness of approximately 13 mm. The PCD compact had a beveled surface defining a circumferential edge of the upper surface. The PCD compact had a working or cutting surface defined by the upper surface and the beveled edge and a side surface. A protective fixture as described above was placed concentrically around the outside surface of the compact to cover the substrate and a portion of the diamond body. The fixture was formed from a plastic material capable of surviving exposure to the leaching agent, and included an elastomeric O-ring disposed circumferentially therein around an inside fixture surface adjacent an end of the fixture. The fixture was positioned over the compact so that a portion of the diamond body desired to be rendered thermally stable was exposed therefrom. The O-ring provided a desired seal between the PCD compact and fixture. The PCD compact and fixture assembly was placed with the compact exposed portion immersed into a volume of leaching agent disposed within a suitable container. The leaching agent was a mixture of HF and HNO3 that was provided at a temperature of approximately 22° C. The depth that the PCD compact was immersed into the leaching agent was a depth sufficient to provide a thermally stable region along the portion of the diamond body comprising the working surfaces, including the upper surface and beveled surface for this particular example. As noted above, if desired, the depth of immersion can be deeper to extend beyond the beveled surface to include a portion of the PCD body side surface extending from the working or cutting surfaces. In this example, the immersion depth was approximately 4 mm. The PCD compact was immersed on the leaching agent for a period of approximately 150 minutes. After the designated treatment time had passed, the PCD compact and fixture assembly were removed from the leaching agent and the compact was removed from the protective fixture. It is to be understood that the time period for leaching to achieve a desired thermally stable region according to the practice of this invention can and will vary depending on a number of factors, such as the diamond volume density, the diamond grain size, the leaching agent, and the temperature of the leaching agent. The resulting TSPCD construction formed according to this example had a thermally stable region that extended from the working surfaces a distance into the diamond body of approximately 0.045 mm. EXAMPLE 2 TSPCD Construction A TSPCD construction of this invention was prepared according to the process described above for example 1 except that the treatment for providing a thermally stable region in the PCD body was conducted for longer period of time. Specifically, the PCD compact was immersed on the leaching agent for a period of approximately 300 minutes. After the designated treatment time had passed, the PCD compact and fixture assembly was removed from the leaching agent and PCD compact was removed from the protective fixture. The resulting TSPCD construction formed according to this example had a thermally stable region that extended from the working surfaces a distance into the diamond body of approximately 0.075 mm. A feature of TSPCD constructions of this invention is that they include a defined thermally stable region within a PCD body that provides an improved degree of wear and abrasion resistance, when compared to conventional PCD, while at the same time providing a desired degree of strength and toughness unique to conventional PCD that has been rendered thermally stable by either removing the catalyst material from a more substantial portion of the diamond body or by removing the catalyst material entirely therefrom. A further feature of TSPCD constructions of this invention is that they include a thermally stable region that extends a determined depth from at least a portion of a working or cutting surface and/or that extends a depth along a side surface the construction, thereby operating to provide a further enhanced degree of thermal stability and resistance during cutting and/or wear service to thereby provide improved service life. A further feature of TSPCD constructions of this invention is that they can be formed from natural diamond grains that, unlike synthetic diamond grains, do not include catalyst metal and metallic impurities entrapped in the diamond crystals themselves that can limit the extent to which optimal or a desired degree of thermal stability can be achieved by the treatment techniques described above. Accordingly, in certain applications calling for a high degree of thermally stability, the use of natural diamond can be used to achieve this result. A still further feature of TSPCD constructions of this invention is that the thermally stable region is formed in a manner that does not adversely impact the compact substrate. Specifically, the treatment process is carefully controlled to ensure that a sufficient region within the PCD body adjacent the substrate remains unaffected and includes the catalyst material, thereby ensuring that the desired bond between the substrate and PCD body remain intact. Additionally, during the treatment process, means are used to protect the surface of the substrate from liquid or vapor contact with the leaching agent, to ensure that the substrate is in no way adversely impacted by the treatment. A still further feature of TSPCD constructions of this invention is that they are provided in the form of a compact comprising a PCD body, having a thermally stable region, which body is bonded to a metallic substrate. This enables TSPCD constructions of this invention to be attached with different types of well known cutting and wear devices such as drill bits and the like by conventional attachment techniques such as by brazing or welding. TSPCD constructions of this invention can be used in a number of different applications, such as tools for mining, cutting, machining and construction applications, where the combined properties of thermal stability, wear and abrasion resistance, and strength and toughness are highly desired. TSPCD constructions of this invention are particularly well suited for forming working, wear and/or cutting components in machine tools and drill and mining bits such as roller cone rock bits, percussion or hammer bits, diamond bits, and shear cutters. FIG. 7 illustrates an embodiment of a TSPCD construction of this invention provided in the form of an insert 62 used in a wear or cutting application in a roller cone drill bit or percussion or hammer drill bit. For example, such TSPCD inserts 62 are constructed having a substrate portion 64, formed from one or more of the substrate materials disclosed above, that is attached to a PCD body 66 having a thermally stable region. In this particular embodiment, the insert comprises a domed working surface 68, and the thermally stable region is positioned along the working surface and extends a selected depth therefrom into the diamond body. The insert can be pressed or machined into the desired shape or configuration prior to the treatment for rendering the selected region thermally stable. It is to be understood that TSPCD constructions can be used with inserts having geometries other than that specifically described above and illustrated in FIG. 7. FIG. 8 illustrates a rotary or roller cone drill bit in the form of a rock bit 70 comprising a number of the wear or cutting TSPCD inserts 72 disclosed above and illustrated in FIG. 7. The rock bit 70 comprises a body 74 having three legs 76 extending therefrom, and a roller cutter cone 78 mounted on a lower end of each leg. The inserts 72 are the same as those described above comprising the TSPCD constructions of this invention, and are provided in the surfaces of each cutter cone 78 for bearing on a rock formation being drilled. FIG. 9 illustrates the TSPCD insert described above and illustrated in FIG. 7 as used with a percussion or hammer bit 80. The hammer bit generally comprises a hollow steel body 82 having a threaded pin 84 on an end of the body for assembling the bit onto a drill string (not shown) for drilling oil wells and the like. A plurality of the inserts 86 are provided in the surface of a head 88 of the body 82 for bearing on the subterranean formation being drilled. FIG. 10 illustrates a TSPCD construction of this invention as embodied in the form of a shear cutter 90 used, for example, with a drag bit for drilling subterranean formations. The TSPCD shear cutter comprises a PCD body 92 that is sintered or otherwise attached to a cutter substrate 94 as described above. The PCD body includes a working or cutting surface 96 that is formed from the thermally stable region of the PCD body. As discussed and illustrated above, the shear cutter working or cutting surface can include the upper surface and a beveled surface defining a circumferential edge of the upper. The shear cutter has a PCD body including a thermally stable region that can extend a depth from such working surfaces and/or a depth from the side surface extending axially a length away from the working surfaces to provide an enhanced degree of thermal stability and thermal resistance to the cutter. It is to be understood that TSPCD constructions can be used with shear cutters having geometries other than that specifically described above and illustrated in FIG. 10. FIG. 11 illustrates a drag bit 98 comprising a plurality of the TSPCD shear cutters 100 described above and illustrated in FIG. 10. The shear cutters are each attached to blades 102 that extend from a head 104 of the drag bit for cutting against the subterranean formation being drilled. Because the TSPCD shear cutters of this invention include a metallic substrate, they are attached to the blades by conventional method, such as by brazing or welding. Other modifications and variations of TSPCD constructions as practiced according to the principles of this invention will be apparent to those skilled in the art. It is, therefore, to be understood that within the scope of the appended claims, this invention may be practiced otherwise than as specifically described. | <SOH> BACKGROUND OF THE INVENTION <EOH>Polycrystalline diamond (PCD) materials and PCD elements formed therefrom are well known in the art. Conventional PCD is formed by combining synthetic diamond grains with a suitable solvent catalyst material to form a mixture. The mixture is subjected to processing conditions of extremely high pressure/high temperature, where the solvent catalyst material promotes desired intercrystalline diamond-to-diamond bonding between the grains, thereby forming a PCD structure. The resulting PCD structure produces enhanced properties of wear resistance and hardness, making PCD materials extremely useful in aggressive wear and cutting applications where high levels of wear resistance and hardness are desired. Solvent catalyst materials typically used for forming conventional PCD include metals from Group VIII of the Periodic table, with cobalt (Co) being the most common. Conventional PCD can comprise from 85 to 95% by volume diamond and a remaining amount solvent catalyst material. The material microstructure of conventional PCD comprises regions of intercrystalline bonded diamond with solvent catalyst material attached to the diamond and/or disposed within interstices or interstitial regions that exist between the intercrystalline bonded diamond regions. A problem known to exist with such conventional PCD materials is that they are vulnerable to thermal degradation, when exposed to elevated temperature cutting and/or wear applications, caused by the differential that exists between the thermal expansion characteristics of the interstitial solvent metal catalyst material and the thermal expansion characteristics of the intercrystalline bonded diamond. Such differential thermal expansion is known to occur at temperatures of about 400° C., can cause ruptures to occur in the diamond-to-diamond bonding, and eventually result in the formation of cracks and chips in the PCD structure, rendering the PCD structure unsuited for further use. Another form of thermal degradation known to exist with conventional PCD materials is one that is also related to the presence of the solvent metal catalyst in the interstitial regions and the adherence of the solvent metal catalyst to the diamond crystals. Specifically, the solvent metal catalyst is known to cause an undesired catalyzed phase transformation in diamond (converting it to carbon monoxide, carbon dioxide, or graphite) with increasing temperature, thereby limiting practical use of the PCD material to about 750° C. Attempts at addressing such unwanted forms of thermal degradation in conventional PCD materials are known in the art. Generally, these attempts have focused on the formation of a PCD body having an improved degree of thermal stability when compared to the conventional PCD materials discussed above. One known technique of producing a PCD body having improved thermal stability involves, after forming the PCD body, removing all or a portion of the solvent catalyst material therefrom. For example, U.S. Pat. No. 6,544,308 discloses a PCD element having improved wear resistance comprising a diamond matrix body that is integrally bonded to a metallic substrate. While the diamond matrix body is formed using a catalyzing material during high temperature/high pressure processing, the diamond matrix body is subsequently treated to render a region extending from a working surface to a depth of at least about 0.1 mm substantially free of the catalyzing material, wherein 0.1 mm is described as being the critical depletion depth. Japanese Published Patent Application 59-219500 discloses a diamond sintered body joined together with a cemented tungsten carbide base formed by high temperature/high pressure process, wherein the diamond sintered body comprises diamond and a ferrous metal binding phase. Subsequent to the formation of the diamond sintered body, a majority of the ferrous metal binding phase is removed from an area of at least 0.2 mm from a surface layer of the diamond sintered body. In addition to the above-identified references that disclose treatment of the PCD body to improve the thermal stability by removing the catalyzing material from a region of the diamond body extending a minimum distance from the diamond body surface, there are other known references that disclose the practice of removing the catalyzing material from the entire PCD body. While this approach produces an entire PCD body that is substantially free of the solvent catalyst material, is it fairly time consuming. Additionally, a problem known to exist with this approach is that the lack of solvent metal catalyst within the PCD body precludes the subsequent attachment of a metallic substrate to the PCD body by solvent catalyst infiltration. Additionally, PCD bodies rendered thermally stable by removing substantially all of the catalyzing material from the entire body have a coefficient of thermal expansion that is sufficiently different from that of conventional substrate materials (such as WC—Co and the like) that are typically infiltrated or otherwise attached to the PCD body. The attachment of such substrates to the PCD body is highly desired to provide a PCD compact that can be readily adapted for use in many desirable applications. However, the difference in thermal expansion between the thermally stable PCD body and the substrate, and the poor wetability of the thermally stable PCD body diamond surface due to the substantial absence of solvent metal catalyst, makes it very difficult to bond the thermally stable PCD body to conventionally used substrates. Accordingly, such PCD bodies must be attached or mounted directly to a device for use, i.e., without the presence of an adjoining substrate. Since such PCD bodies, rendered thermally stable by having the catalyzing material removed from the entire diamond body, are devoid of a metallic substrate they cannot (e.g., when configured for use as a drill bit cutter) be attached to a drill bit by conventional brazing process. The use of such thermally stable PCD body in this particular application necessitates that the PCD body itself be mounted to the drill bit by mechanical or interference fit during manufacturing of the drill bit, which is labor intensive, time consuming, and does not provide a most secure method of attachment. While these above-noted known approaches provide insight into diamond bonded constructions capable of providing some improved degree of thermal stability when compared to conventional PCD constructions, it is believed that further improvements in thermal stability for PCD materials useful for desired cutting and wear applications can be obtained according to different approaches that are both capable of minimizing the amount of time and effort necessary to achieve the same, and that permit formation of a thermally stable PCD construction comprising a desired substrate bonded thereto to facilitate attachment of the construction with a desired application device. It is, therefore, desired that diamond compact constructions be developed that include a PCD body having an improved degree of thermal stability when compared to conventional PCD materials, and that include a substrate material bonded to the PCD body to facilitate attachment of the resulting thermally stable compact construction to an application device by conventional method such as welding or brazing and the like. It is further desired that such a compact construction provide a desired degree of thermal stability in a manner that can be manufactured at reasonable cost without requiring excessive manufacturing times and without the use of exotic materials or techniques. | <SOH> SUMMARY OF THE INVENTION <EOH>Thermally stable diamond constructions, prepared according to principles of this invention, comprise a diamond body having a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the crystals. A metallic substrate is attached to the diamond body. The diamond body includes a first region that is substantially free of a catalyst material and that extends a partial depth from a surface into the diamond body. The diamond body further includes a second region that includes the catalyst material. In an example embodiment, the diamond body comprises natural diamond grains. The first region may comprise the natural diamond grains, or may comprise a mixture of natural and synthetic diamond grains. The second region may comprise synthetic diamond grains. The diamond body is formed by subjecting the selected diamond grains and a catalyst material to a high pressure/high temperature condition to cause diamond-to-diamond bonding, forming PCD. The diamond body may then treated to form the first region that is substantially free of the catalyst material, and to allow the catalyst material to remain in the second region of the diamond body. In the event that a portion of the diamond body is formed from natural diamond, such treating may not be necessary to obtain a desired degree of relative thermal stability. In an example embodiment where the first region is treated to render the first region substantially free of the catalyst material, before such treating step, the surface portion of the diamond body to be treated is finished to an approximate final dimension so that the depth of the treated region remains substantially the same in the final construction as it was when treated. In an example embodiment, during the treating step, an acid material is used to remove the catalyst material and also results in the removal of non-catalyst metallic materials from the region of the diamond body that is treated. The removal of non-catalyst metallic materials, in addition to catalyst material, is believed to provide a further enhanced degree of thermal stability to the first region. In an example embodiment the first region may extend a depth from a working surface of the diamond body and/or from a side surface of the diamond body. When extending a depth from a working surface, such depth may be between about 0.02 mm to 0.09 mm. When extending a depth from the side surface of the diamond body, such depth may be about 0.02 micrometers to 1 mm, and the first region may extend a length along such side surface that is about 25 to 100 percent of the side surface length as measured from the working surface. The depth along this side surface can vary as a function of distance moving away from the working surface. In an example embodiment, the diamond body comprises diamond crystals having an average diamond grain size of greater than about 0.02 mm, and comprises at least 85 percent by volume diamond based on the total volume of the diamond body. Additionally, the second region can have an average thickness of at least about 0.01 mm. Thermally stable constructions of this invention display an enhanced degree of thermal stability when compared to conventional PCD materials, and include a substrate material bonded to the PCD body that facilitates attachment therewith to an application device by conventional method such as welding or brazing and the like. | 20041222 | 20090414 | 20060323 | 68072.0 | E21B1036 | 1 | TURNER, ARCHENE A | THERMALLY STABLE DIAMOND POLYCRYSTALLINE DIAMOND CONSTRUCTIONS | UNDISCOUNTED | 1 | CONT-ACCEPTED | E21B | 2,004 |
|
11,022,642 | ACCEPTED | Dosing cap for powders or liquids | A dosing cap (1) for powders or liquids including an outer body (2) designed to be inserted into the neck of the container to which the cap (1) is applied and an inner body (3) of a substantially cylindrical shape, which contains the powder or liquid, is mobile inside the outer body (2), and is designed to break the sealing membrane (5) of the dosing cap (1) in response to an axial pressure exerted on its top part. Housed in the inner body (3) is a body (4), preferably cylindrical in shape, which is adjacent to the internal surface of the inner body (1) and is designed to break the sealing membrane (5) of the dosing cap (1) in response to an axial pressure exerted on its top part. Preferably the body (4) is fixed to the sealing membrane (5) of the dosing cap (1). | 1. A dosing cap (1) for powders or liquids comprising an outer body (2)—designed to be inserted into the neck of a container (10) to which the cap (1) is applied—and an inner body (3), which contains the powder or the liquid and is mobile within the outer body (2), said cap being characterized in that housed in the inner body (3) is a body (4), adjacent to the internal surface of the inner body (3), designed to break the sealing membrane (5) of the dosing cap (1) in response to an axial pressure exerted on the top part of the inner body (3). 2. The dosing cap (1) of claim 1, wherein the body (4) is fixed to the sealing membrane (5) of the dosing cap (1). 3. The dosing cap (1) of claim 1, wherein the body (4) is fixed to the top part of the inner body (3). 4. The dosing cap (1) of claim 1, wherein the body (4) is a cylindrical body. 5. The dosing cap (1) of claim 1, wherein the outer body (2), the body (4) and the sealing membrane (5) are formed by a single body made of a plastic material. 6. The dosing cap (1) of claim 5, wherein the single body comprising the outer body (2), the body (4) and the sealing membrane (5) has an area of pre-set breaking (7) of the sealing membrane (5) set between the edge of the outer body (2) and that of the body (4). 7. The dosing cap (1) of claim 1, wherein also the inner body (3) is made of a plastic material. 8. The dosing cap (1) of claim 1, wherein it comprises a plurality of compartments (6) made in the internal wall of the outer body (2) and designed to set the inside of the container (10) in communication with the outside environment after breaking of the sealing membrane (5). 9. The dosing cap (1) of claim 8, wherein the compartments (6) are uniformly distributed along the periphery of the internal wall of the outer body (2). 10. The dosing cap (1) of claim 1, wherein it further comprises a dispensing element (8), which can be applied to the neck of the container (10) on top of the dosing cap (1). 11. The dosing cap (1) of claim 10, wherein the dispensing element (8) is fixed to a threaded area (9) present on the neck of the container (10). | FIELD OF THE INVENTION The present invention relates to a dosing cap containing a powder or a liquid to be mixed, exclusively at the moment of its use, with a liquid contained in the container (normally a bottle or a flask) to which the cap is applied. DESCRIPTION OF THE BACKGROUND ART The above dosing caps are widely used, in particular in the pharmaceutical sector, for keeping one (more) easily degradable component, contained in the cap, separate from a second (more) stable component, contained in the container, until the moment of use. With explicit reference to the pharmaceutical field, if an active principle (for example an antibiotic or a vitamin complex) is (more) easily degradable when it is dissolved in the component contained in the flask, it is a common procedure to contain said active principle in the cap in a (more) stable form (for example, in the form of a liquid or powder) and to mix it, at the moment of use, with the component contained in the flask, breaking a membrane that seals the cap. In known dosing caps, the component contained in the cap is set inside a body having a substantially cylindrical shape, which is mobile within the body of the cap inserted in the neck of the container; by exerting a pressure on the (substantially) cylindrical body, its bottom edge breaks the sealing membrane causing the contents of the cap to drop into the liquid present in the container. In known dosing caps, the bottom edge of the (substantially) cylindrical body has an inclined profile, like the mouthpiece of a flute, which presents the drawback of breaking off at least part of the sealing membrane of the cap, causing the broken part to drop into the liquid contained in the container. SUMMARY OF THE INVENTION The purpose of the present invention is to provide a dosing cap which is free from the aforesaid drawback. Said purpose is achieved according to the invention by providing a dosing cap which presents the characteristics described herein. Further characteristics of the invention will emerge more clearly from the ensuing detailed description with reference to some embodiments thereof, which are provided purely by way of example and hence are non-limiting; they are illustrated in the annexed plate of drawings, in which: BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic illustration of a see-through view of a dosing cap made according to the present invention; FIG. 2 is a top view of the cap of FIG. 1; FIG. 3 shows the cap of FIG. 1 sectioned according to the plane A-A of FIG. 2; FIG. 4 is a schematic illustration, at an enlarged scale, of the detail highlighted in FIG. 3; and FIGS. 5 and 6 are, respectively, an exploded side view and an exploded perspective view of a possible variant of the cap of FIG. 1. DETAILED DESCRIPTION OF THE INVENTION In the attached figures, corresponding elements will be designated by the same reference numbers. FIG. 1 is a schematic illustration of a see-through view of a dosing cap made according to the present invention, designated as a whole by 1. The cap 1 comprises an outer body 2—designed to be inserted into the neck of the container 10 (FIGS. 5 and 6) to which the cap 1 is applied—and an inner body 3, which contains the powder or liquid (omitted in the attached figures for reasons of simplicity of graphic representation) and which is axially mobile within the outer body 2. Housed inside the inner body 3 is a body 4 (more clearly visible in the cross-sectional view of FIG. 3), which is adjacent to the internal surface of the inner body 3 and is designed to break, in response to an axial pressure exerted on the top part of the inner body 3, the sealing membrane 5 of the dosing cap 1 (FIG. 3), enabling the powder or liquid contained in the cap 1 to drop into the liquid contained in the container 10. In the preferred embodiment described herein, the body 4 is a cylindrical body but, without departing from the scope of the invention, the body 4 may have the cross section deemed in each case to be most advantageous for meeting the specific needs. On account of the eccentric position of the body 4, the sealing membrane 5 is not separated completely from the outer body 2, to which it remains connected in the (strengthened) area diametrally opposite to that on which the body 4 acts: it is thus obtained that at least part of the membrane 5 is prevented from possibly dropping into the container 10 to which the cap 1 is applied. In the preferred embodiment described herein, the body 4 is fixed to the sealing membrane 5 of the dosing cap 1 but, without departing from the scope of the invention, the body 4 may be fixed to the top part of the inner body 3. In this latter case, it is advisable to provide means, set within the inner body 3 and adjacent to the sealing membrane 5, designed to keep the body 4 in position. Advantageously, the outer body 2, the sealing membrane 5, and the body 4 are formed by a single body made of a plastic material. Advantageously, also the inner body 3 is made of a plastic material. FIG. 2 shows a view from above of the cap 1. Visible in FIG. 2 is a plurality of compartments 6 (only one of which is identified by the corresponding reference number for simplicity of graphic representation), made in the internal wall of the outer body 2—along the periphery of which they are uniformly distributed—and designed to set the inside of the container 10 in communication with the outside environment after breaking of the sealing membrane 5, enabling the contents of the container 10 to be assumed without having to remove the cap 1. FIG. 3 shows the cap 1 sectioned according to the plane A-A of FIG. 2. Visible in FIG. 3 are the outer body 2, the inner body 3, inside which the body 4 and the sealing membrane 5 of the cap 1 are present. FIG. 4 is a schematic illustration, at an enlarged scale, of the detail highlighted in FIG. 3, from which it emerges that the single body, which comprises the outer body 2, the sealing membrane 5, and the body 4, has an area of pre-prepared breaking 7 of the sealing membrane 5, set between the edge of the outer body 2 and that of the body 4. FIGS. 5 and 6 show, respectively, an exploded side view and an exploded perspective view of a possible variant of the cap forming the subject of the present invention, which differs from the one illustrated in the previous figures basically on account of the fact that it further comprises a dispensing element 8 which can be applied to the neck of the container 10 on top of the dosing cap 1. Preferably, the dispensing element 8 is fixed to a threaded area 9 present on the neck of the container 10. Said dispensing element 8 enables the contents of the container 10 to be assumed more easily, said contents coming out of the seats 6 after the membrane 5 has been broken. The above embodiment of the cap 1 can advantageously be used in combination with a container 10 formed by a drinking bottle or the like: the contents of the cap 1 (for example, an energy beverage or an integrator of mineral salts) are dissolved in the liquid present in the flask 10, and the liquid thus enriched, coming out from the seats 6 and the dispensing element 8, can be assumed. Without departing from the scope of the invention, a person skilled in the art can make to the cap forming the subject of the present invention all the modifications and improvements suggested by his own experience and by the natural evolution of techniques. | <SOH> DESCRIPTION OF THE BACKGROUND ART <EOH>The above dosing caps are widely used, in particular in the pharmaceutical sector, for keeping one (more) easily degradable component, contained in the cap, separate from a second (more) stable component, contained in the container, until the moment of use. With explicit reference to the pharmaceutical field, if an active principle (for example an antibiotic or a vitamin complex) is (more) easily degradable when it is dissolved in the component contained in the flask, it is a common procedure to contain said active principle in the cap in a (more) stable form (for example, in the form of a liquid or powder) and to mix it, at the moment of use, with the component contained in the flask, breaking a membrane that seals the cap. In known dosing caps, the component contained in the cap is set inside a body having a substantially cylindrical shape, which is mobile within the body of the cap inserted in the neck of the container; by exerting a pressure on the (substantially) cylindrical body, its bottom edge breaks the sealing membrane causing the contents of the cap to drop into the liquid present in the container. In known dosing caps, the bottom edge of the (substantially) cylindrical body has an inclined profile, like the mouthpiece of a flute, which presents the drawback of breaking off at least part of the sealing membrane of the cap, causing the broken part to drop into the liquid contained in the container. | <SOH> SUMMARY OF THE INVENTION <EOH>The purpose of the present invention is to provide a dosing cap which is free from the aforesaid drawback. Said purpose is achieved according to the invention by providing a dosing cap which presents the characteristics described herein. Further characteristics of the invention will emerge more clearly from the ensuing detailed description with reference to some embodiments thereof, which are provided purely by way of example and hence are non-limiting; they are illustrated in the annexed plate of drawings, in which: | 20041228 | 20060425 | 20050630 | 76536.0 | 1 | DERAKSHANI, PHILIPPE | DOSING CAP FOR POWDERS OR LIQUIDS | SMALL | 0 | ACCEPTED | 2,004 |
|||
11,022,908 | ACCEPTED | Method and apparatus for continuously harvesting grain from a row of mature grain plants comprised of plant segments and alley segments | A wheel mounted grain harvester includes a harvesting head for depositing grain in a grain handling assembly comprised of a plurality of grain moving parts. Control means are located on the harvester for selectively interrupting grain flow along the grain moving parts causing harvested grain from a new separate row segment to temporarily accumulate. Means are provided for transporting the harvested grain from separate row segments into separate collection bins permit the separate evaluation of the harvested grain in each row segment. Means are provided for moving the harvester along the row at a constant rate of speed to avoid the necessity of stopping the harvester between row segments to effect the separate evaluation of the harvested grain. The selective interruption by the control means is accomplished by either interrupting at least one of the grain moving parts or by selectively closing a movable blocking wall mounted on the harvester. | 1-19. (canceled) 20. A grain harvester, comprising: a grain handling assembly mounted on the harvester having a plurality of grain moving parts; and a controller connected to the grain handling assembly and operable to selectively interrupt the operation of at least one of the grain moving parts such that a first row segment of harvested grain is separated from a second row segment of harvested grain. 21. A wheel mounted grain harvester having a grain harvesting head capable of harvesting grain from mature grain plants in a row of mature grain plots comprising a plurality of longitudinal spaced row segments spaced intermittently by aligned alley segments, removing grain from the grain plants in the rows and delivering the removed grain upwardly and rearwardly for deposit in a grain handling assembly comprised of a plurality of grain moving parts for delivery of the removed grain to a grain collection hopper, the invention comprising: a control means on the harvester for selectively interrupting at least one of the grain moving parts after a first row segment is harvested so that no new harvested grain from a second and next adjacent row segment will be commingled with the harvested grain from the first row segment, causing harvested grain from the second row segment to temporarily accumulate adjacent the grain moving part that is temporarily stopped, and selectively restarting the stopped grain moving part after a period while the harvesting head is capable of harvesting a first plant in the second row segment, and means for transporting the harvested grain from separate row segments into separate collection bins to permit the separate evaluation of the harvested grain in each row segment. 22. A method of harvesting grain from at least one row of mature grain plants growing in first row segments and intermittently interrupted by an alley segment where no grain plants exist, comprising the steps of: providing a grain handling assembly mounted on a harvester, the grain handling assembly having a plurality of grain moving parts, selectively interrupting the operation of at least one of the grain moving parts such that a first row segment of harvested grain is separated from a second row segment of harvested grain. | CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 60/454,122, filed Mar. 12, 2003. BACKGROUND OF THE INVENTION Test and Research Grain Plots are planted in parallel rows interrupted by transverse alleys. The row segments are normally comprised of different varieties of grain and must be separately harvested and not commingled. The crops are harvested by special combines which harvest one or several rows at a time. Such a combine is shown in U.S. Pat. No. 5,664,402. Typically, the combine harvests the row segment; and the operator stops the combine at the alleys to permit the grain from the harvested row segment to be processed (e.g., weighed, bagged, and identified, etc.) The stopping and starting of the combine at the alleys is inefficient, hard on the combine, and hard on the operator. It is therefore a principal object of this invention to provide a method and apparatus for continuously harvesting grain from a row of mature grain plants comprised of plant segments and alley segments. A further object of this invention is to enhance the harvesting operation by speeding it up through driving the combine at a continuous and constant speed through the field. These and other objects will be apparent to those skilled in the art. SUMMARY OF THE INVENTION A wheel mounted grain harvester includes a harvesting head for depositing grain in a grain handling assembly comprised of a plurality of grain moving parts. Control means are located on the harvester for selectively interrupting grain flow along the grain moving parts causing harvested grain from a new separate row segment to temporarily accumulate. Means are provided for transporting the harvested grain from separate row segments into separate collection bins permit the separate evaluation of the harvested grain in each row segment. Means are provided for moving the harvester along the row at a constant rate of speed to avoid the necessity of stopping the harvester between row segments to effect the separate evaluation of the harvested grain. The selective interruption by the control means is accomplished by either interrupting at least one of the grain moving parts or by selectively closing a movable blocking wall mounted on the harvester. BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a perspective view of a typical research field showing a plurality of rows (ranges) separated by transverse alleys; FIG. 2 is an enlarged scale perspective view of the area outlined in lines 2-2 of FIG. 1; FIG. 3 is a side elevational view of a harvesting combine and, FIG. 4 is a side schematic elevation of a combine with a corn head. BRIEF DESCRIPTION OF THE DRAWINGS The numeral 10 designates a research field in which row crop seeds are planted for research purposes. The planting locations of each seed planted is designated by the numeral 12, and the plants resulting from the subsequent germination of the seeds are designated by the numerals 14. The field 10 is divided into a plurality of plots 16 which are comprised of a plurality of parallel rows 17. The plots are located in a series of parallel ranges 18 which are separated by laterally extending alleys 20 (geometrically in an “x” direction) and a series of longitudinal alleys 22 (geometrically in a “y” direction). Alleys 20 are typically at right angles to each other. Each range has a plurality of parallel crop rows 17 that are comprised of crop segments 17 and alley segments 17A. A grain harvester 21 includes a combine 22 and harvesting head 24 suitable for corn with gathering chains 26 that sever the crop and move it (e.g., ears of corn) upwardly and rearwardly. A grain transfer assembly includes drag chains 30 for transporting grains from the harvesting head 24 to the combine 22. A grain handling assembly includes grain moving parts such as cross auger 28, drag chains 30, rotors 32, cleaning system 34, clean grain auger 36, and elevator hopper 38. A suitable power means 39 operates all of these conventional components. A controller 41 in the cab of the combine is capable of selectively and separately operating each of the grain moving parts by selectively actuating the power supply 39. Suitable controllers 41 include but are not limited to central processing units or the like. A blocking wall 42 is also operated by the controller 41. The blocking wall 42 is adapted for selective vertical movement and can be located between the cross auger 28 and head 24 to selectively stop the travel of harvested crop to the drag chains 30. This would temporarily interrupt the flow of harvested crop into the combine 22. Similarly, the controller 41 can also selectively stop the cross auger 28, for example, to also interrupt the flow of harvested grain. When this flow is interrupted, the harvested crop accumulates at collection area 40 until the controller 41 either raises blocking wall 42 or restarts the cross auger 28, or other parts that may have its operation stopped. Blocking wall 42 may be located at alternative positions to selectively stop the travel of harvested crop. Specifically, blocking wall 42 may be positioned between the grain transferring assembly (including drag chains 30) and combine 22 portion of the harvester 21. In operation, the harvester 21 continuously harvests grain from at least one row of mature grain plants growing in first row segments and intermittently interrupted by an alley segment where no grain plants exist. The harvester 21 straddles the row with the wheel-mounted combine 22 having the harvesting head 24 to remove grain from the grain plants in the row and delivering the removed grain upwardly and rearwardly for deposit in the grain handling assembly comprised of the plurality of grain moving parts (28, 30, 32, 34, 36, & 38) for delivery of the removed grain to a conventional grain collection hopper (not shown). Power means 39 on the harvester 21 operates the harvesting head 24 and the grain moving parts and permitting the harvester 21 to selectively continuously move longitudinally over the row segments 17 and the alley segments 17A between the row segments 17. The control means 41 on the combine selectively interrupts at least one of the grain moving parts as soon as the last plant in a first row segment is harvested so that no new harvested grain from a second and next adjacent row segment will be commingled with the harvested grain from the first row segment. This causes harvested grain from the second row segment to temporarily accumulate adjacent the grain moving part that is temporarily stopped. The control means 41 then actuates the power means 39 to start the stopped grain moving part after a period of time (or distance) while the harvesting head 24 is harvesting plants in the second row segment, and transporting the harvested grain from separate row segments into conventional separate collection bins (not shown) to permit the separate evaluation of the harvested grain in each row segment. Meanwhile the harvester 21 moves along the row at a continuous and constant rate of speed to avoid the necessity of stopping the harvester 21 at each alley 17A to effect the separate evaluation of the harvested grain from aligned separate row segments 17 in all row segments 17 adjacent each alley 17A. Current methods of harvesting such plots by the stop and go method reveal the data in Table 1. TABLE 1 Current methods Length MPH Ft/sec 17.5 0.48 0.700 25 0.60 0.875 20 0.66 0.972 18 0.80 1.167 15 By contrast, the method of this invention improves the harvesting efficiency, as shown in Table 2 below. TABLE 2 Non-Stop Harvesting Alley Length Pl. Length 24″ 30″ 36″ 42″ 48″ MPH ft/sec 17.5 2 2.5 3 3.5 4 0.8 1.173 14.92 1.71 2.13 2.56 2.98 3.41 0.9 1.319 13.27 1.52 1.90 2.27 2.65 3.03 1 1.466 11.94 1.36 1.71 2.05 2.39 2.73 2 2.932 5.97 0.68 0.85 1.02 1.19 1.36 This results in an increased efficiency in harvesting time as shown in Table 3. In Table 3, the horizontal line starting with 14.92 indicates seconds per plot for the new system. The column numbers starting with 25 represents seconds per plate under existing systems. Table 3 is calculated for a row of plants 17.5 feet in length. TABLE 3 Efficiency Factors VS. 14.92 13.27 11.94 5.97 25 1.68 1.88 2.09 4.19 20 1.34 1.51 1.68 3.35 18 1.21 1.36 1.51 3.02 15 1.01 1.13 1.26 2.51 Tables 1-3 above show that the present invention has several advantages. The alleys between the plots create approximately a two second delay in material flow into the harvester 21. These alleys 20 can be sensed by the control means 41 of the present invention through a sensor means (not shown). Suitable sensor means include, but are not limited to the following: Global Positioning System (GPS), stalk sensor, encoder, and/or key entry by the operator. Specifically, the sensor means would indicate to the control means when the harvester 21 reaches the last plant in the particular plot 16. The control means 41 would then selectively interrupt the grain flow so that no new harvested grain from the second and next adjacent row segment will be commingled with the harvested grain from the first row segment. The control means 41 will continue this interruption for a pre-determined period, such as a period of time or distance. For instance, as previously discussed above, the control means 41 can selectively interrupt the flow of grain by stalling the cross auger 28. Such a stalling of the cross auger 28 could be accomplished by a clutch associated with the cross auger 28. For example, the control means 41 could activate the clutch associated with the cross auger 28 to stall the cross auger 28 for two seconds. Such a break in grain flow will amplify the alley 20 to produce a desirable break in the material flow, where the break in material flow is approximately four seconds total. Meanwhile, additional corn is still gathered and moved to the cross auger 28 by the gathering chains 26. Thus, approximately 30 inches of roll length or 4 to 6 ears of corn will be gathered at cross auger 28 during the break in material flow. This results in a front loading of material flow into the harvesting head 24 at each plot 16. This additional front loading of the plot 16 potentially improves threshing by improving the load of the cylinder. Additionally, such a process improves data gathering, as there is little motion in the weight hopper (not shown) when the harvester 21 is moving at one foot per second. This type of movement would be no more than the normal machine vibration, and is an improvement over the prior art. Further, the present invention eliminates the need for stopping and starting of the harvester 21 at the alleys 20, greatly reducing operator fatigue and greatly reducing wear and tear on equipment drives. One of ordinary skill in the art, will appreciate that air hopper controls may be used to increase the speed of harvester 21, without departing from the present invention. Additionally, it is contemplated that Near-Infrared (NIR) or other similar technology can be implemented with the present invention where higher moisture levels are present. It is therefore seen that this invention will achieve at least all of its stated objectives. | <SOH> BACKGROUND OF THE INVENTION <EOH>Test and Research Grain Plots are planted in parallel rows interrupted by transverse alleys. The row segments are normally comprised of different varieties of grain and must be separately harvested and not commingled. The crops are harvested by special combines which harvest one or several rows at a time. Such a combine is shown in U.S. Pat. No. 5,664,402. Typically, the combine harvests the row segment; and the operator stops the combine at the alleys to permit the grain from the harvested row segment to be processed (e.g., weighed, bagged, and identified, etc.) The stopping and starting of the combine at the alleys is inefficient, hard on the combine, and hard on the operator. It is therefore a principal object of this invention to provide a method and apparatus for continuously harvesting grain from a row of mature grain plants comprised of plant segments and alley segments. A further object of this invention is to enhance the harvesting operation by speeding it up through driving the combine at a continuous and constant speed through the field. These and other objects will be apparent to those skilled in the art. | <SOH> SUMMARY OF THE INVENTION <EOH>A wheel mounted grain harvester includes a harvesting head for depositing grain in a grain handling assembly comprised of a plurality of grain moving parts. Control means are located on the harvester for selectively interrupting grain flow along the grain moving parts causing harvested grain from a new separate row segment to temporarily accumulate. Means are provided for transporting the harvested grain from separate row segments into separate collection bins permit the separate evaluation of the harvested grain in each row segment. Means are provided for moving the harvester along the row at a constant rate of speed to avoid the necessity of stopping the harvester between row segments to effect the separate evaluation of the harvested grain. The selective interruption by the control means is accomplished by either interrupting at least one of the grain moving parts or by selectively closing a movable blocking wall mounted on the harvester. | 20041227 | 20080715 | 20050623 | 63228.0 | 1 | TORRES, ALICIA M | METHOD AND APPARATUS FOR CONTINUOUSLY HARVESTING GRAIN FROM A ROW OF MATURE GRAIN PLANTS COMPRISED OF PLANT SEGMENTS AND ALLEY SEGMENTS | SMALL | 1 | CONT-ACCEPTED | 2,004 |
|||
11,023,037 | ACCEPTED | Cone beam computed tomography with a flat panel imager | A radiation therapy system that includes a radiation source that moves about a path and directs a beam of radiation towards an object and a cone-beam computer tomography system. The cone-beam computer tomography system includes an x-ray source that emits an x-ray beam in a cone-beam form towards an object to be imaged and an amorphous silicon flat-panel imager receiving x-rays after they pass through the object, the imager providing an image of the object. A computer is connected to the radiation source and the cone beam computerized tomography system, wherein the computer receives the image of the object and based on the image sends a signal to the radiation source that controls the path of the radiation source. | 1. A radiation therapy system comprising: a radiation source that moves about a path and directs a beam of radiation towards an object; a cone-beam computer tomography system comprising: an x-ray source that emits an x-ray beam in a cone-beam form towards said object; an amorphous silicon flat-panel imager receiving x-rays after they pass through the object, said imager providing an image of said object; and a computer connected to said radiation source and said cone beam computerized tomography system, wherein said computer receives said image of said object and based on said image sends a signal to said radiation source that controls said path of said radiation source. 2-93. (canceled) | Applicants claim, under 35 U.S.C. § 119(e), the benefit of priority of the filing date of Feb. 18, 2000, of U.S. Provisional Patent Application Ser. No. 60/183,590, filed on the aforementioned date, the entire contents of which are incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to a cone-beam computed tomography system and, more particularly, to a cone-beam computed tomography system that employs an amorphous silicon flat-panel imager for use in radiotherapy applications where the images of the patient are acquired with the patient in the treatment position on the treatment table. 2. Discussion of the Related Art Radiotherapy involves delivering a prescribed tumorcidal radiation dose to a specific geometrically defined target or target volume. Typically, this treatment is delivered to a patient in one or more therapy sessions (termed fractions). It is not uncommon for a treatment schedule to involve twenty to forty fractions, with five fractions delivered per week. While radiotherapy has proven successful in managing various types and stages of cancer, the potential exists for increased tumor control through increased dose. Unfortunately, delivery of increased dose is limited by the presence of adjacent normal structures and the precision of beam delivery. In some sites, the diseased target is directly adjacent to radiosensitive normal structures. For example, in the treatment of prostate cancer, the prostate and rectum are directly adjacent. In this situation, the prostate is the targeted volume and the maximum deliverable dose is limited by the wall of the rectum. In order to reduce the dosage encountered by radiosensitive normal structures, the location of the target volume relative to the radiation therapy source must be known precisely in each treatment session in order to accurately deliver a tumorcidal dose while minimizing complications in normal tissues. Traditionally, a radiation therapy treatment plan is formed based on the location and orientation of the lesion and surrounding structures in an initial computerized tomography or magnetic resonance image. However, the location and orientation of the lesion may vary during the course of treatment from that used to form the radiation therapy treatment plan. For example, in each treatment session, systematic and/or random variations in patient setup (termed interfraction setup errors) and in the location of the lesion relative to surrounding anatomy (termed interfraction organ motion errors) can each change the location and orientation of the lesion at the time of treatment compared to that assumed in the radiation therapy treatment plan. Furthermore, the location and orientation of the lesion can vary during a single treatment session (resulting in intrafraction errors) due to normal biological processes, such as breathing, peristalsis, etc. In the case of radiation treatment of a patient's prostate, it is necessary to irradiate a volume that is enlarged by a margin to guarantee that the prostate always receives a prescribed dose due to uncertainties in patient positioning and daily movement of the prostate within the patient. Significant dose escalation may be possible if these uncertainties could be reduced from current levels (˜10 mm) to 2-3 mm. Applying large margins necessarily increases the volume of normal tissue that is irradiated, thereby limiting the maximum dose that can be delivered to the lesion without resulting in complication in normal structures. There is strong reason to believe that increasing the dose delivered to the lesion can result in more efficacious treatment. However, it is often the case that the maximum dose that can be safely delivered to the target volume is limited by the associated dose to surrounding normal structures incurred through the use of margins. Therefore, if one's knowledge of the location and orientation of the lesion at the time of treatment can be increased, then margins can be reduced, and the dose to the target volume can be increased without increasing the risk of complication in normal tissues. A number of techniques have been developed to reduce uncertainty associated with systematic and/or random variations in lesion location resulting from interfraction and intrafraction errors. These include patient immobilization techniques (e.g., masks, body casts, bite blocks, etc.), off-line review processes (e.g., weekly port films, population-based or individual-based statistical approaches, repeat computerized tomography scans, etc.), and on-line correction strategies (e.g., pre-ports, MV or kV radiographic or fluoroscopic monitoring, video monitoring, etc.). It is believed that the optimum methodology for reducing uncertainties associated with systematic and/or random variations in lesion location can only be achieved through using an on-line correction strategy that involves employing both on-line imaging and guidance system capable of detecting the target volume, such as the prostate, and surrounding structures with high spatial accuracy. An on-line imaging system providing suitable guidance has several requirements if it is to be applied in radiotherapy of this type. These requirements include contrast sensitivity sufficient to discern soft-tissue; high spatial resolution and low geometric distortion for precise localization of soft-tissue boundaries; operation within the environment of a radiation treatment machine; large field-of-view (FOV) capable of imaging patients up to 40 cm in diameter; rapid image acquisition (within a few minutes); negligible harm to the patient from the imaging procedure (e.g., dose much less than the treatment dose); and compatibility with integration into an external beam radiotherapy treatment machine. Several examples of known on-line imaging systems are described below. For example, strategies employing x-ray projections of the patient (e.g., film, electronic portal imaging devices, kV radiography/fluoroscopy, etc.) typically show only the location of bony anatomy and not soft-tissue structures. Hence, the location of a soft-tissue target volume must be inferred from the location of bony landmarks. This obvious shortcoming can be alleviated by implanting radio-opaque markers on the lesion; however, this technique is invasive and is not applicable to all treatment sites. Tomographic imaging modalities (e.g., computerized tomography, magnetic resonance, and ultrasound), on the other hand, can provide information regarding the location of soft-tissue target volumes. Acquiring computerized tomography images at the time of treatment is possible, for example, by incorporating a computerized tomography scanner into the radiation therapy environment (e.g., with the treatment table translated between the computerized tomography scanner gantry and the radiation therapy gantry along rails) or by modifying the treatment machine to allow computerized tomography scanning. The former approach is a fairly expensive solution, requiring the installation of a dedicated computerized tomography scanner in the treatment room. The latter approach is possible, for example, by modifying a computer tomography scanner gantry to include mechanisms for radiation treatment delivery, as in systems for tomotherapy. Finally, soft-tissue visualization of the target volume can in some instances be accomplished by means of an ultrasound imaging system attached in a well-defined geometry to the radiation therapy machine. Although this approach is not applicable to all treatment sites, it is fairly cost-effective and has been used to illustrate the benefit of on-line therapy guidance. As illustrated in FIGS. 1(a)-(c), a typical radiation therapy system 100 incorporates a 4-25 MV medical linear accelerator 102, a collimator 104 for collimating and shaping the radiation field 106 that is directed onto a patient 108 who is supported on a treatment table 110 in a given treatment position. Treatment involves irradiation of a lesion 112 located within a target volume with a radiation beam 114 directed at the lesion from one or more angles about the patient 108. An imaging device 116 may be employed to image the radiation field 118 transmitted through the patient 108 during treatment. The imaging device 116 for imaging the radiation field 118 can be used to verify patient setup prior to treatment and/or to record images of the actual radiation fields delivered during treatment. Typically, such images suffer from poor contrast resolution and provide, at most, visualization of bony landmarks relative to the field edges. Another example of a known on-line imaging system used for reducing uncertainties associated with systematic and/or random variations in lesion location is an X-ray cone-beam computerized tomography system. Mechanical operation of a cone beam computerized tomography system is similar to that of a conventional computerized tomography system, with the exception that an entire volumetric image is acquired through a single rotation of the source and detector. This is made possible by the use of a two-dimensional (2-D) detector, as opposed to the 1-D detectors used in conventional computerized tomography. There are constraints associated with image reconstruction under a cone-beam geometry. However, these constraints can typically be addressed through innovative source and detector trajectories that are well known to one of ordinary skill in the art. As mentioned above, a cone beam computerized tomography system reconstructs three-dimensional (3-D) images from a plurality of two-dimensional (2-D) projection images acquired at various angles about the subject. The method by which the 3-D image is reconstructed from the 2-D projections is distinct from the method employed in conventional computerized tomography systems. In conventional computerized tomography systems, one or more 2-D slices are reconstructed from one-dimensional (1-D) projections of the patient, and these slices may be “stacked” to form a 3-D image of the patient. In cone beam computerized tomography, a fully 3-D image is reconstructed from a plurality of 2-D projections. Cone beam computerized tomography offers a number of advantageous characteristics, including: formation of a 3-D image of the patient from a single rotation about the patient (whereas conventional computerized tomography typically requires a rotation for each slice); spatial resolution that is largely isotropic (whereas in conventional computerized tomography the spatial resolution in the longitudinal direction is typically limited by slice thickness); and considerable flexibility in the imaging geometry. Such technology has been employed in applications such as micro-computerized tomography, for example, using a kV x-ray tube and an x-ray image intensifier tube to acquire 2-D projections as the object to be imaged is rotated, e.g., through 180° or 360°. Furthermore, cone beam computerized tomography has been used successfully in medical applications such as computerized tomography angiography, using a kV x-ray tube and an x-ray image intensifier tube mounted on a rotating C-arm. The development of a kV cone-beam computerized tomography imaging system for on-line tomographic guidance has been reported. The system consists of a kV x-ray tube and a radiographic detector mounted on the gantry of a medical linear accelerator. The imaging detector is based on a low-noise charge-coupled device (CCD) optically coupled to a phosphor screen. The poor optical coupling efficiency (−10−4) between the phosphor and the CCD significantly reduces the detective quantum efficiency (DQE) of the system. While this system is capable of producing cone beam computerized tomography images of sufficient quality to visualize soft tissues relevant to radiotherapy of the prostate, the low DQE requires imaging doses that are a factor of 3-4 times larger than would be required for a system with an efficient coupling (e.g. −50% or better) between the screen and detector. Another example of a known auxiliary cone beam computerized tomography imaging system is shown in FIG. 2. The auxiliary cone beam computerized tomography imaging system 200 replaces the CCD-based imager of FIGS. 1(a)-(c) with a flat-panel imager. In particular, the imaging system 200 consists of a kilovoltage x-ray tube 202 and a flat panel imager 204 having an array of amorphous silicon detectors that are incorporated into the geometry of a radiation therapy delivery system 206 that includes an MV x-ray source 208. A second flat panel imager 210 may optionally be used in the radiation therapy delivery system 206. Such an imaging system 200 could provide projection radiographs and/or continuous fluoroscopy of the lesion 212 within the target volume as the patient 214 lies on the treatment table 216 in the treatment position. If the geometry of the imaging system 200 relative to the system 206 is known, then the resulting kV projection images could be used to modify patient setup and improve somewhat the precision of radiation treatment. However, such a system 200 still would not likely provide adequate visualization of soft-tissue structures and hence be limited in the degree to which it could reduce errors resulting from organ motion. Accordingly, it is an object of the present invention to generate KV projection images in a cone beam computerized tomography system that provide adequate visualization of soft-tissue structures so as to reduce errors in radiation treatment resulting from organ motion. BRIEF SUMMARY OF THE INVENTION One aspect of the present invention regards a radiation therapy system that includes a radiation source that moves about a path and directs a beam of radiation towards an object and a cone-beam computer tomography system. The cone-beam computer tomography system includes an x-ray source that emits an x-ray beam in a cone-beam form towards an object to be imaged and an amorphous silicon flat-panel imager receiving x-rays after they pass through the object, the imager providing an image of the object. A computer is connected to the radiation source and the cone beam computerized tomography system, wherein the computer receives the image of the object and based on the image sends a signal to the radiation source that controls the path of the radiation source. A second aspect of the present invention regards a method of treating an object with radiation that includes moving a radiation source about a path, directing a beam of radiation from the radiation source towards an object and emitting an x-ray beam in a cone beam form towards the object. The method further includes detecting x-rays that pass through the object due to the emitting an x-ray beam with an amorphous silicon flat-panel imager, generating an image of the object from the detected x-rays and controlling the path of the radiation source based on the image. Each aspect of the present invention provides the advantage of generating KV projection images in a cone beam computerized tomography system that provide adequate visualization of soft-tissue structures so as to reduce errors in radiation treatment resulting from organ motion. Each aspect of the present invention provides an apparatus and method for improving the precision of radiation therapy by incorporating a cone beam computerized tomography imaging system in the treatment room, the 3-D images from which are used to modify current and subsequent treatment plans. Each aspect of the present invention represents a significant shift in the practice of radiation therapy. Not only does the high-precision, image-guided system for radiation therapy address the immediate need to improve the probability of cure through dose escalation, but it also provides opportunity for broad innovation in clinical practice. Each aspect of the present invention may permit alternative fractionation schemes, permitting shorter courses of therapy and allowing improved integration in adjuvant therapy models. Each aspect of the present invention provides valuable imaging information for directing radiation therapy also provides an explicit 3-D record of intervention against which the success or failure of treatment can be evaluated, offering new insight into the means by which disease is managed. Additional objects, advantages and features of the present invention will become apparent from the following description and the appended claims when taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1(a)-(c) schematically show the geometry and operation of a conventional radiation therapy apparatus; FIG. 2 schematically shows a perspective view of a known radiation therapy apparatus including an auxiliary apparatus for cone beam computerized tomography imaging; FIG. 3 is a diagrammatic view of a bench-top cone beam computerized tomography system employing a flat-panel imager, according to a first embodiment of the present invention; FIG. 4 is a schematic illustration of the geometry and procedures of the cone beam computerized tomography system shown in FIG. 3; FIGS. 5(a)-5(d) are graphs depicting the fundamental performance characteristics of the flat-panel imager used in the cone beam computerized tomography system of FIG. 3; FIGS. 6(a)-6(d) show various objects used in tests to investigate the performance of the cone beam computerized tomography system of the present invention, including a uniform water cylinder, six low-contrast inserts in a water bath, a steel wire under tension with a water bath, and an euthanized rat, respectively; FIGS. 7(a)-7(d) depict uniformity of response of the cone beam computerized tomography system of the present invention, including axial and sagittal slices through volume images of a uniform water bath, radial profiles, and a vertical signal profile, respectively; FIGS. 8(a)-8(d) illustrate the noise characteristics of the cone beam computerized tomography system of the present invention, including axial and sagittal noise images from volume reconstructions of a uniform water bath, radial noise profiles, and vertical nose profiles, respectively; FIGS. 9(a)-9(b) depict response linearity and voxel noise, respectively, for the cone beam computerized tomography system of the present invention and a conventional computerized tomography scanner; FIGS. 10(a)-10(c) depict the noise-power spectrum from the cone beam computerized tomography system of the present invention, including a gray scale plot of the axial noise-power spectrum, the noise-power spectrum measured at various exposures, and the noise-power spectrum for the cone beam computerized tomography system compared to a conventional computerized tomography scanner, respectively; FIGS. 11 (a)-11 (b) depict the spatial resolution of the cone beam computerized tomography system of the present invention, including the surface plot of an axial slice image of the thin steel wire shown in FIG. 6(c) and the modulation transfer function measured for the cone beam computerized tomography system and for a conventional computerized tomography scanner, respectively; FIGS. 12(a)-12(b) show images of a low-contrast phantom obtained from the cone beam computerized tomography system of the present invention and a conventional computerized tomography scanner, respectively; FIGS. 13(a)-13(i) show cone beam computerized tomography images of the euthanized rat shown in FIG. 6(d), including regions of the lungs (FIGS. 13(a)-13(c)), the kidneys (FIGS. 13(d)-13(f)), and the lower spine (FIGS. 13(g)-13(i)); FIGS. 14(a)-14(d) show volume renderings of cone beam computerized tomography images of the euthanized rat shown in FIG. 6(d) illustrating the degree of spatial resolution achieved in delineating structures of the vertebra, including volume renderings with axial and sagittal cut planes showing the skeletal anatomy along with soft-tissue structures of the abdomen, volume renderings with axial and sagittal cut planes, window to show skeletal features only, a magnified view of a region of the spine and ribs of the rat, and a magnified view of a part of two vertebra, respectively; FIGS. 15(a)-15(b) depict the axial images of euthanized rat shown in FIG. 6(d) obtained from the cone beam computerized tomography system of the present invention and a conventional computerized tomography scanner, respectively; FIG. 16 is a graph showing detected quantum efficiency calculated as a function of exposure for an existing and hypothetical flat-panel imager configuration; FIGS. 17(a)-(e) are diagrammatic views of several angular orientations of a wall-mounted cone beam computerized tomography system employing a flat-panel imager, according to a second embodiment of the present invention; FIG. 18 shows a side view of the cone beam computerized tomography system of FIG. 17 when employing a first embodiment of a support for a flat-panel imager according to the present invention; FIG. 19(a) shows a perspective exploded view of a mounting to be used with the support for a flat-panel imager of FIG. 18; FIG. 19(b) shows a perspective exploded view of a rotational coupling to be used with the mounting of FIG. 19(a); FIGS. 20(a)-(b) schematically shows a front view of the wall-mounted cone beam computerized tomography system of FIG. 17 when employing a second embodiment of a support for a flat-panel imager according to the present invention; FIGS. 21(a)-(b) schematically shows a front view of the wall-mounted cone beam computerized tomography system of FIG. 17 when employing a third embodiment of a support for a flat-panel imager according to the present invention; FIG. 22 is a diagrammatic view of a portable cone beam computerized tomography system employing a flat-panel imager according to fifth embodiment of the present invention; FIGS. 23(a)-(d) are diagrammatic sketches illustrating the geometry and operation of the cone beam computerized tomography imaging systems of FIGS. 17-22; FIG. 24 is a flow-chart showing an embodiment of the processes involved in acquiring a cone beam computerized image for the cone beam computerized tomography imaging systems of FIGS. 17-22; FIG. 25 is a perspective drawing illustrating an embodiment of a method for geometric calibration of the imaging and treatment delivery systems of FIGS. 17-22; and FIG. 26 is a flow-chart showing an embodiment of the processes involved in the image-guided radiation therapy systems of FIGS. 17-22, based on cone beam computerized tomography imaging of a patient, on-line correction of setup errors and organ motion, and off-line modification of subsequent treatment plans. PREFERRED EMBODIMENTS OF THE INVENTION A bench-top cone beam computerized tomography (CBCT) system 300 is shown in FIG. 3, according to an embodiment of the present invention. The CBCT system 300 was constructed to mimic the geometry of the CBCT scanner currently installed on a linear accelerator, with a source-to-axis distance of 1000 mm and a source-detector distance of 1600 mm. The primary components of the system 300 include an x-ray tube 302, a rotation stage 304 and flat-panel imager (FPI) 306. These components are rigidly mounted to an optical bench 308. The relative position of these components is controlled by three translation stages, including an xobject stage 310, a yobject stage 312 and a yimage stage 314, which are used during initial setup to accurately determine and control the imaging geometry. The cone beam computerized tomography system 300 generates images of an object 316, identified throughout as a phantom, mounted on the rotation stage 304. Each stage 310, 312 and 314 contains a home or limit switch, and the imaging geometry is referenced to the location of these switches with a reproducibility of ±0.01 mm. The specific geometries used in the discussion herein are shown in FIG. 4, and are set to simulate the imaging geometry that would be implemented for a cone beam computerized tomography system incorporated on a radiotherapy treatment machine. Table 1 below shows the parameters of the system 300. A set of alignment lasers 318 allow visualization of the axis of rotation 320 and the source plane perpendicular to the axis of rotation 320 and intersects focal spot 322 of the x-ray source or tube 302. The axis of rotation 320 is positioned such that it intersects the central ray 324 between the focal spot 322 and the detector plane 326 (+0.01 mm). The flat plane imager 326 is positioned such that the piercing point (i.e., the intersection of the central ray and the image plane) is centered on the imaging array (i.e., between columns #256 and #257, ±0.01 mm), with a quarter-pixel offset applied to give improved view sampling for cone beam computerized tomography acquisitions in which the object 316 is rotated through 360°. The stage 310 is controlled manually by means of a positioning micrometer. The source-to-object (SOD) and source-to-image (SID) distances were measured to within ±0.5 mm and give an objection magnification of 1.60, equal to that of the imaging system on the linear accelerator. The cone angle for this geometry is −7.1. Radiographic exposures used in the acquisition procedure are produced under computer control with a 300 kHU x-ray tube 302, such as General Electric Maxi-ray 75 and a 100 kW generator, such as the General Electric MSI-800. The tube 302 has a total minimum filtration of 2.5 mm A1, with an additional filtration of 0.127 mm Cu to further harden the beam, and a nominal focal spot size of 0.6 mm. The 100 kV beam is characterized by first and second HVLs of 5.9 and 13.4 mm A1, respectively. The accelerating potential of the generator was monitored over a one-week period and was found to be stable to within ±1%. All exposures were measured using an x-ray multimeter, such as the RTI Electronics, Model PMX-III with silicon diode detector. The exposures for the cone beam computerized tomography acquisitions are reported in terms of exposure to air at the axis of rotation 320 in the absence of the object 316. The same method of reporting exposure can be used for the images acquired on the conventional scanner. For the conventional scanner, the exposure per unit charge is measured with the gantry rotation disabled and the collimators set for a 10 mm slice thickness, thereby guaranteeing complete coverage of the silicon diode. The exposure per unit charge at 100 kVp was 9.9 mR/mAs and 14.9 mR/mAs for the bench-top and conventional scanners, respectively. The flat panel imager 306 can be the EG&G Heimann Optoelectronics (RID 512-400 AO) that incorporates a 512×512 array of a-Si:H photodiodes and thin-film transistors. The electromechanical characteristics of the imager are shown in Table 1. The flat plane imager 306 is read-out at one of eight present frame rates (up to 5 frames per second) and operates asynchronously of the host computer 328 schematically shown in FIG. 4. The analog signal from each pixel is integrated by ASIC amplifiers featuring correlated double-sampling noise reduction circuitry. Digitization is performed at 16 bit resolution. The values are transferred via an RS-422 bus to a hardware buffer in the host computer 328. The processor in the host computer 328 is interrupted when a complete frame is ready for transfer to host memory. TABLE 1 CBCT Characteristic Value Acquisition Geometry Source-axis-distance (SAD) 103.3 cm Source-imager-distance (SID) 165.0 cm Cone angle 7.1° Maximum angular rotation rate 0.5°/sec Field of view (FOV) 12.8 cm X-ray Beam/Exposure Characteristics Beam energy 100 kVp Added filtration 1.5 mm A1 + 0.129 mm Cu Beam quality HVL1 = 5.9 MM A1 HVL2 = 13.4 MM A1 Scatter-to-primary ratio 0.18, 1:5 (11 cm object) Frame time 6.4 sec Tube output at (SAD) 9.34 mR/mAs Exposure rate (at SID) 3.65 mR/mAs Flat-Panel Imager Designation RID 512-400 AO Array format 512 × 512 pixels Pixel pitch 400 μm Area ˜20.5 20.5 cm2 Pixel fill factor 0.80 Photodiode charge capacity ˜62 Pc ASIC amplifier charge capacity ˜23 pC ASIC amplifier noise ˜12,700 e ADC bit-depth 16 bit TFT thermal noise (on) ˜1800 e Photodiode Shot Noise (1 fps) ˜1200 e Digitazation noise ˜630 e Nominal frame rate 0.16 fps Maximum frame rate 5 fps X-ray converter 133 mg/cm2Gd2O2S:Tb Acquisition Procedure Number of projections 300 Angular increment 1.2° Total rotation angle 360° Maximum angular rotation rate 05D/s Reconstruction Parameters Reconstruction matrix 561 × 561 × (1-512), 281 × 281 × (1-500) Voxel size 0.25 × 0.25 × 0.25 mm2, 0.5 × 0.5 × 0.25 W. parameter 1.60 γ, cutoff frequency modification 1.0 α, modified Hamming filter parameter 0.50 Range of convolution ±25 mm The cone-beam scanning procedure includes a repeated sequence of radiographic exposure, array readout, and object rotation. The timing of this procedure is driven by the asynchronous frame clock of the flat plane imager readout electronics. A conservative frame time of 6.4 s was used. Between the periodic frame transfers from the flat plane imager 306, the host computer advances the motorized rotation stage 304 and triggers the x-ray generator or tube 302. The rotor of the x-ray tube 302 remains spinning throughout the scanning procedure. The control software allows the operator to specify the number of frames between exposures. This was designed as a mechanism to investigate methods of reducing the amount of lag in sequential projections. The detector signal from a group of nine pixels in the bare-beam region of the flat plane imager 306 is monitored to measure and verify the stability of each radiographic exposure. Exposures outside tolerance are trapped and repeated at the same projection angle. Each projection image is written to hard disk between frame transfer and motor rotation. After the projections are acquired, a set of flood and dark field images (20 each) are collected to construct gain and offset images for flat-field processing of the projection images. In addition to gain and offset corrections, median filtration (3×3) is performed using a pre-constructed map of unstable pixels. Finally, the signal in each projection is normalized to account for small variations in x-ray exposure, this is performed using a cluster of nine pixels in the periphery of the detector well outside the objects shadow. A volumetric computerized tomography data set is reconstructed from the projections using a filtered back-projection technique. The filter used in the reconstruction is constructed using Webb's three-parameter formula. The parameters and their corresponding values are shown in Table 1. In the current configuration, the reconstruction field of vision is limited to a 12.4 cm diameter cylinder, approximately 12.1 cm in length; the lateral extent of objects to be reconstructed must lie well-within this cylinder. The voxel values in the resulting volumetric data sets are scaled linearly to produce a mean CT number of zero in air and 1000 in water. The time required to filter (100 element kernel) and back-project a single projection (512×512) on to a 281×281×500 voxel data set was 1 minute and 21 seconds. The basic signal and noise characteristics of the flat plane imager 306 were measured. The detector gain and linearity are presented in FIG. 5(a). For an x-ray beam energy of 120 kVp, the detector gain was measured to be 18.2×105 e/mR/pixel (17.8×106 e/mR at 100 kVp). The detector exhibits excellent linearity with exposure up to 50% of its sensitive range (5 mR). The various additive electronic noise sources and their magnitudes are listed in Table 1. The total additive electronic noise is found to depend upon frame time, ranging from 13,300 e at a frame time of 200 ms to 22,500 e at a frame time of 25.6 s. The amplifier noise (12,700 e) is the dominant component at high frame rates. The significance of amplifier noise on the zero-frequency detective quantum efficiency (DQE) was studied using a cascaded system model that analyzes signal and noise propagation in the FPI 306. FIG. 5(b) shows the dependence of detective quantum efficiency on exposure for the RID 512-400AO, as well as for two hypothetical imagers with reduced amplifier noise. The primary quantum efficiency for the detector is approximately 0.57; losses due to energy absorption noise and additive sources reduce the detective quantum efficiency to ˜0:41 for exposures above 1 mR. For exposures below 0.1 mR, the detective quantum efficiency falls rapidly for amplifier noise values comparable to that found in the EG&G detector. Thus for thicker/denser objects [e.g., a pelvis (˜30 cm water)] resulting in significantly reduced dose to the detector (e.g., ˜0.001 mR) improvements in amplifier noise (and/or x-ray converter, e.g. Csl;Tl) will significantly improve detective quantum efficiency. The temporal stability of the detector dark signal is presented in FIG. 5(c). This plot corresponds to a selected group of ‘typical’ pixels. The dark signal drifts significantly during the first 2 h of operation, which correlates with the change in temperature within the flat panel imager enclosure. After the temperature has stabilized, the dark signal also stabilizes. Based on these results, all cone beam computerized tomography scans were performed after the array had been powered-on for at least 2 hours. In some regions of the array, the dark signal does not stabilize, even after thermal equilibrium. It is assumed that these regions are the result of variations in the array manufacturing process. The continuously changing scene in computerized tomography necessitates a detector with rapid read out and minimal temporal blurring, or ‘lag.’ Such characteristics have been measured using a short, intra-frame, x-ray exposure. FIG. 5(d) shows the pixel signal following a single radiographic exposure applied within the acquisition period of frame number 0. Subsequent frames exhibit lag signal ranging from ˜4% to ˜0.04% for frame members 1 through 9. It is interesting and important to note that the lag demonstrates a dependence not upon frame time, but also exclusively upon the number of frames. Prior to reconstruction, the projections are corrected for stationary pixel-to-pixel variations in offset and gain. Defective pixels with significant variations in dark field signal or with aberrant signal response are median filtered. The resulting projections are padded by an additional 128 columns prior to reconstruction. The value of the padded pixels is set row-by-row to the average of the 7 pixels at the periphery of the array. Finally, to account for small variations in x-ray tube output, the signal in each projection is normalized using signal measured from the bare-beam monitors pixels mentioned above (nine pixels). The pre-construction processing can be performed on a 250 MHz UltraSparc processor, such as the Enterprise 450, Sun Microsystems, Sunnyvale, Calif. Feldkamp's filtered back-projection algorithm can be used to reconstruct the data set. Images are reconstructed on a Cartesian matrix of voxels 561×561×N, where the number of slices, N, depends on the object of interest. The voxel size used in these reconstructions was typically 0.25×0.25×0.25 mm. The filtering used in the reconstruction follows the formalism of Webb. Table 1 contains the three parameters that specify the filter used in these investigations. Upon completion of the reconstruction, an offset and scale parameters are constant for a 9 mm set of reconstruction and acquisition parameters. The reconstruction of the volumetric cone beam computerized tomography data sets is also performed on the UltraSparc system. The uniformity of response of the imaging system 300 over the three-dimensional (3-D) field-of-view (FOV) was studied by imaging a cylindrical water bath [110 mm diameter]. Scans of the same phantom were also acquired on the conventional scanner. The response was examined along both radial and vertical profiles through the reconstructed volume. The noise in reconstructed images of the water bath was studied as a function of x-ray exposure. Images were acquired at exposures of 131, 261, 653, 1310, 3260, and 6530 mR. The images were reconstructed on a 561×561×11 matrix with voxel dimensions of 0.25 mm on a side. For all reconstructions, the reconstruction filter was fixed at the parameters specified in Table 1. Varying these parameters can have a significant effect on the noise characteristics of the reconstructed images. The noise characteristics of these image sets were analyzed by analysis of the standard deviation in CT number in 5×5×1 regions throughout the data set, and by calculation of the noise power spectrum (NPS) from the 3D data sets. Both methods of analysis were performed as a function of exposure. The relative stability of the noise was assessed by examining the uniformity of the noise over the entire 3-D data set. These results indicated that the noise characteristics of the data set vary only slightly with location. These initial results lend support to the application of noise power analysis, since stability is a necessary condition for proper interpretation of noise power results. The noise-power spectrum (NPS) was analyzed from the volumetric data by extension of methods employed for analysis of known 2-D projection images. The volume data was normalized such that the mean CT number within the water cylinder was 1000. A tetragonal region (256×256×20 voxels) within the water cylinder was cropped from the volume, and a small number of voxel defects (always <1%) were 3×3 median filtered. In order to obtain a convergent 2-D central slice of the 3-D Fourier transform, the twenty slices were averaged along the z-direction, and it was found that averaging more slices did not affect the noise-power spectrum, i.e, the data was convergent. A background slice formed from the average of 81 slices in a separate scan was subtracted in order to reduce background trends. Low-frequency trends were further reduced by subtraction of a planar fit to the data, yielding a 2-D zero-mean realization. The two-dimensional Fast Fourier Transform (FFT) was computed from ensembles of sixteen 64×64 non-overlapping regions within the realization, and the results were averaged. The results were normalized to account for voxel size and for average in z, and the volume under the noise-power spectrum was compared to the square of the standard deviation. The resulting noise-power spectrum represents a central slice in the (uxuy) domain, i.e., the Fourier counterpart to the (x,y) domain. Strips along the ux axis were extracted in order to show 1-D power spectra, NPS(ux), e.g., are various exposure levels. The noise characteristics of the cone beam computerized tomography system 300 were compared to those of the conventional computerized tomography scanner. To allow meaningful comparison, the two systems must demonstrate identical response over the range of signal variation. The response was tested by scanning an electron density phantom (shown in FIG. 6(b)) with the two systems. Seven inserts with coefficients near that of water were inserted into a 110 mm diameter water bath. The inserts are taken from the RMI electron density phantom having nominal CT numbers. In FIG. 6(b), clockwise from the top: CT Solid Water (CT#1001), BR-SRI Breast (CT# 945), BRN-SR2 Brain (CT#1005), C133 Resin Mix (CT#1002), LV1 Liver (CT#1082), and, Polyethylene (CT#897). This phantom was imaged at equivalent exposure and kVp with both the cone beam computerized tomography system 300 and the conventional scanner. The attenuation coefficients (relative to water) reported by the cone beam computerized tomography system 300 were compared to those reported by the conventional scanner. A first-order fit to the measured data was calculated to determine the relative linearity of the two systems. The noise characteristics of the conventional scanner were also measured using the water cylinder test phantom described above images were acquired at 100 kVp with a slice thickness of 1 mm at four different exposure levels (743, 1490, 2970, and 5940 mR). Three images were acquired at each exposure level. Reconstructions were performed on the conventional scanner using the ‘High Res Head (#1H)’, ‘Standard Head (#2)’, and ‘Smooth Abdomen (#3)’ filters. The noise analysis was identical to that applied to the cone beam computerized tomography data sets. In order to compare noise results measured on each system, analysis of the cone beam computerized tomography data sets was repeated wherein the cone beam computerized tomography data was first average over 2×2×4 voxels to yield an equivalent (0.5×0.5×1 mm′) voxel size to that given by the conventional scanner. The spatial frequency transfer characteristics of the cone beam computerized tomography system 300 were measured using a wire test object, shown in FIG. 6(c). The test object consists of a 0.254 mm diameter steel wire suspended in a 50 mm diameter water bath. The phantom was imaged on the cone beam computerized tomography system 300 (at 100 kVp) with the wire centered on the axis of rotation 320 and with the wire located −30 mm off-axis. The resulting images were reconstructed on a high resolution reconstruction grid of 0.1×0.1×0.25 mm3 using the filter described in Table 1. Six adjacent slices (each 0.25 mm thick) were averaged to generate a low noise point spread function (PSF). Orthogonal slices through the 2-D modulation transfer function (MTF) were calculated by first computing the Radon transform of the point spread function (i.e., integrating along either the x or y axis), and then calculating the 1-D Fourier transform. Each 1-D profile was normalized to unity area. A correction was applied to compensate for the finite diameter of the steel wire. For purposes of comparison, the same tests were performed on the conventional scanner at 100 kVp for a slice thickness of 1.5 mm. Images were reconstructed using three different reconstruction filters [“High Res Head (#1H),” “Standard Head (#2),” and “Smooth Abdomen (#3)”]. The relative imaging performance of the cone beam computerized tomography system 300 and the conventional scanner were compared using phantoms and small animals. A simple comparison in soft-tissue detectability was performed with the phantom shown in FIG. 6(b). The proximity in CT number between each of the six cylinders makes this phantom a useful test object for examining contrast sensitivity and soft-tissue detectability, images were acquired of the phantom with both the cone beam computerized tomography system 300 and conventional scanners. Multiple high-resolution cone beam computerized tomography slices were averaged to produce an equivalent slice thickness to that used on the conventional scanner (1.5 mm). Equivalent exposure (2980 mR) and kVp were used in the two different scans. A second test of soft-tissue sensitivity was performed by imaging a laboratory rat that had been euthanized for other purposes, FIG. 6(d). A scanning procedure identical to that described above was used, delivering an in-air, on-axis exposure of 2980 mR at 100 kVp for both systems. The resulting 3-D data was reconstructed at voxel sizes of 0.25×0.25×0.25 mm3. The subject was also scanned on the conventional computerized tomography scanner at a slice thickness of 1.5 mm. This scan delivered the same imaging dose as was delivered by the cone beam computerized tomography system 300. For purposes of intercomparison, six slices from the cone beam computerized tomography data set were averaged to produce a slice thickness equivalent to that of the conventional scan. The imagers were displayed at comparable window and level to allow comparison. The uniformity of response of the cone beam computerized tomography scanner shown in shown in FIGS. 7(a)-7(d). Axial and sagittal slices through the cone beam computerized tomography 3-D data set are shown. The images demonstrate a relatively uniform response over the entire field of view of the system. A slight non-uniformity of approximately 20 CT numbers (2%) is visible in the histogram equalized-regions of the images. This non-uniformity appears as a combined cupping and capping artifact. The radial profile (FIG. 7(c)) illustrates this point further by comparing to the results obtained from the conventional scanner (dotted line). An internal check of the reconstruction process using simulated projection data demonstrates that the non-uniformity is an artifact of the reconstruction process and is dependent upon the choice of filtering parameters. Apart from the non-uniformity inherent to the reconstruction, the response of the cone beam computerized tomography system 300 is highly uniform, particularly along the z-dimension. In addition to demonstrating uniformity of system response, the images in FIG. 7 also demonstrate uniform noise characteristics with few artifacts. This is the case for the full range of exposures studied. The magnitude and uniformity of the noise is demonstrated in FIGS. 8(a)-8(d). The noise varies to a slight degree along the radial axis and to a negligible degree along the vertical axis. A slight dependence on radial position is expected due to the differences in transmission across the cylindrical water bath. FIG. 8(c) also presents the measured dependence of noise on exposure [also shown below, in relation to FIG. 9(b)]. Overall, the cone beam computerized tomography system 300 is capable of achieving a noise level of approximately 20 CT numbers for an in-air exposure of 6560 MR at isocenter. The noise measured for the cone beam computerized tomography system 300 as a function of exposure is shown in the top curve of FIG. 9(b). The noise is seen to decrease from −80 units at the lowest exposure examined down to −20 units at the highest. Superimposed is a least squares fit of the form σ=a+b/√{square root over (X)}, where σ is the noise in voxel values, X is the exposure in air at the isocenter, and a and b are constants obtained from the numerical fit. This inverse-square root dependence upon exposure is consistent with basic noise transfer theory for x-ray tomographic reconstructions. In order to examine the linearity and accuracy of system response, the CT numbers reported by the cone beam computerized tomography system 300 for a variety of materials (FIG. 6) were compared to those reported by the conventional scanner. As shown in FIG. 9(b), the CT numbers of the cone beam computerized tomography system 300 agree well with those of the conventional scanner. The largest discrepancy over the range of CT numbers was 8 units, with an average discrepancy of 5.7. The high coefficient of correlation indicates that, over the range examined, the values reported by the cone beam computerized tomography system 300 are proportional to attenuation coefficient. The voxel noise of the cone beam computerized tomography system 300 and the conventional scanner was compared as a function of exposure, shown in FIG. 9(b). Shown by the open circles and dashed lines are the results for the conventional scanner using the “High-Res Head (#!H)” and “Standard Head (#2)” reconstruction filters. In each case, the noise decreases with exposure. An exact comparison between the two systems requires that both data sets be reconstructed at equivalent voxel size and with the same reconstruction filter. The requirement for equivalent voxel size was achieved by repeating the noise analysis for the cone beam computerized tomography system 300, with the volume data averaged to give a voxel size equivalent to that of the scanner. In order to illustrate the effect of the reconstruction filter upon the voxel noise, reconstructions were performed with both the “High-Res Head” and “Standard Head” reconstruction filters. The noise for the cone beam computerized tomography system 300 at equivalent voxel size is shown by the lower solid curve with a least-squares fit superimposed. At equivalent voxel size, it is clear that the cone beam computerized tomography system 300 has higher noise at lower exposures than the “Standard Head” computerized tomography scanner results. Compared to the “High-Res Head” results for the conventional scanner, however, the cone beam computerized tomography system 300 actually provides lower noise at all but the very highest exposures. Clearly, careful matching of reconstruction filters and reconstruction matrix is required to permit exact intercomparison of the two systems. Nonetheless, the results obtained using the cone beam computerized tomography system 300 are encouraging, since the early prototype flat-panel detector used in this system is known to exhibit a fairly high level of additive electronics noise, a factor of −5-10 higher than that achieved, by more recent electronics designs. Results of the noise-power spectrum measurements are summarized in FIGS. 10(a)-10(c). The 2-D noise-power spectrum in the axial plane (FIG. 10(a)) exhibits a spectral shape typical of systems employing filtered back-projection reconstruction. The spectral density is reduced (but non-zero) near zero-frequency, increases at mid-frequencies due to the ramp filter (e.g., peaking around −0.5 mm−1), and declines at higher frequencies by virtue of the low-pass noise characteristics of the system (e.g., 2-D image blur and choice of apodisation window). Slices of the noise-power spectrum along the ux dimension are shown in FIG. 10(b) for various exposure levels. Since the mean signal level is fixed for each case (i.e., CT#=1000 within the water phantom), the noise-power spectrum decreases with increasing exposure. Specifically, the noise-power spectrum appears inversely proportional to exposure in a fashion consistent with the form of the numerical fits in FIG. 9(b). As shown in FIG. 10(c), the noise-power spectrum measured at −1.3 R (in air at isocenter) is −30 mm3 near zero-frequency, increases by a factor of −4 at mid-frequencies, and then descends to about the initial level of spectral density at the Nyquist frequency. Superimposed in FIG. 10(c) are the results measured for the conventional scanner using three reconstruction filters, and to facilitate intercomparison, noise-power spectrum results for the cone beam computerized tomography system 300 are shown for an equivalent voxel size. For the #2 and #3 filters, the conventional scanner exhibits a noise-power spectrum with the characteristic shape described above; however, the high-resolution #1H filter is seen to significantly amplify high-frequency noise. The cone beam computerized tomography system 300 appears to exhibit low-frequency noise-power spectrum comparable to the conventional scanner using the #2 and #1H filters. Given that the choice of reconstruction filter can significantly affect noise and spatial resolution, and considering the two cases that seem most closely matched the cone beam computerized tomography system 300—even in its initial, un-optimized configuration—appears to provide noise performance comparable to the conventional scanner. As evident in FIG. 9(b), the cone beam computerized tomography system 300 exhibits lower voxel noise than the conventional scanner (#1H) at low exposures. Similarly, the cone beam computerized tomography system 300 exhibits reduced high-frequency noise-power spectrum. These initial results are especially promising considering the on-going improvements in FPI design and readout electronics. The response of the cone beam computerized tomography system 300 to the wire test object is presented in FIG. 11(a). Overall, the PSF is symmetric (aside from a small streak artifact believed associated with the image lag characteristics of the system) and has a full-width at half-maximum (FWHM) of 0.6 mm. The system MTF is shown in FIG. 11(b) for both the on- and off-axis wire results. These results suggest that the frequency pass of the system in the z=0 plane does not change significantly over the relatively s mall (−30 mm) range examined. The strong influence of the reconstruction filter is demonstrated in the MTF results for the conventional scanner, also shown in FIG. 11(b). The “Standard Head (#2)” filter significantly reduces the signal pass of the system compared to the High-Res Head (#1H)” filter. The results demonstrate that the MTF of the conventional scanner is comparable to that of the cone beam computerized tomography system 300 when the “High-Res Head (#1H)” filter is used. This observation is consistent with the noise results presented in FIG. 9(b). The resolution of the cone beam computerized tomography system 300 and conventional scanner have not been compared in the z-dimension. It is expected, however, that the spatial resolution of the cone beam computerized tomography system 300 in the z-dimension will be comparable to that measured in the axial plane. Of course, the spatial resolution of the conventional scanner will be limited by the selected slice thickness, which is typically 1 mm or greater. The nearly isotropic resolution of the cone beam computerized tomography system 300 is expected to be a significant advantage for detection and localization. FIGS. 12(a) and 12(b) show axial image slices of the low-contract phantom obtained on the cone beam computerized tomography system 300 and the conventional computerized scanner at equivalent kVp and exposure. The grayscale window in each case is quite narrow in order to maximize the displayed contrast, and despite the slight signal non-uniformity evident for the cone beam computerized tomography image (cupping/capping artifact discussed above) the visibility of each insert is comparable to the conventional scanner. The mean signal values for each material are as shown in FIG. 9(a). Slight differences in system response (e.g., due to detector response, x-ray spectrum, etc.) can result in contract reversal for materials with CT# very close to that of water. For example in the case of the brain insert (lower right), even the slight (−5 CT#) difference between the mean value reported by the cone beam computerized tomography system 300 and the conventional scanner is sufficient to give an apparent inversion in the density of the material relative to water. The minimum detectable contrast is arguably superior for the cone beam computerized tomography system 300 (e.g., visibility of the brain and CB-3 inserts), but this remains to be verified by a more controlled, quantitative observer study. The overall performance of the cone beam computerized tomography system 300 is demonstrated in the images of the volumetric data set illustrated in FIGS. 13(a)-13(i). These images of an euthanized rat demonstrate the soft tissue sensitivity and high spatial resolution of the system. Example images are shown from various regions throughout the volumetric set [e.g., in regions of the lungs (a,b,c), the kidney (d,e,f), and lower spine (g,h,i)] to illustrate the quantity and uniform quality of the data produced with the cone beam computerized tomography system 300. The clear visualization of soft-tissue structures demonstrates the soft-tissue contrast sensitivity of the scanner. In FIGS. 13(a)-13(c), the window and level have been set to emphasize features in the lung of the rat. In addition to the lung detail, there are some streak artifacts evident, the origin of which is unknown, but is believed to be associated with detector lag effects or beam hardening. The soft tissue contrast sensitivity of the cone beam computerized tomography system 300 is illustrated in FIGS. 13(d)-13(f), in which the window and level have been set to delineate fat and muscle. The cross-hair in each image indicates the location of the rat's left kidney. These images illustrate the advantage of a nearly isotropic spatial resolution for delineation of a 3-D structure such as the kidney. Other structures, such as the stomach, bowel and liver are also clearly visible. The spatial resolution performance of the system 300 is demonstrated in FIGS. 13(g-i), in which the same rat data set is displayed with window and level selected to display bony features. The clear visibility of the intervertebral spaces and the non-cortical bone in the pelvis is stunning. It should be kept in mind that this level of detail was produced on a cone beam computerized tomography system 300 that operates on a scale that mimics the geometry of the linear accelerator. Therefore, this level of detail would be expected in the clinical implementation of the device, given accurate correction of mechanical flex. The volumetric data set is illustrated further in FIG. 14, in which volume renderings demonstrate the fully 3-D nature of the data set and show the level of detail contained within the cone beam computerized tomography data. It is interesting to note that all the data presented in FIGS. 13 and 14 were obtained from a single acquisition performed in a single rotation. Finally, the quality of images produced by the cone beam computerized tomography system 300 was assessed by comparison to images produced by the conventional scanner. FIGS. 15(a)-15(b) show an axial slice of the rat acquired on the two systems. At equivalent exposure, the images produced by the two systems are of comparable quality both in terms of spatial resolution and contrast sensitivity. The flat panel imager-based cone beam computerized tomography image exhibits exquisite spatial resolution and provides clear delineation of soft-tissue boundaries and detail in the gut. The spatial resolution of the cone beam computerized tomography system 300 appears to exceed that of the conventional scanner; however, it must be noted that restrictions in available reconstruction matrices for the conventional computerized tomography scanner limited the voxel size to twice that of the cone beam computerized tomography image. Lack of obvious pixelation in the flat panel imager-based cone beam computerized tomography image indicates that this level of detail represents the physical limits in spatial resolution of the current system. The objective of these investigations is to evaluate the applicability of flat-panel technology as a detector in a cone beam computerized tomography system, specifically, a tomographic imaging system for use in the guidance of radiation therapy on a medical linear accelerator. The quantitative and qualitative results of our studies suggest that a cone beam computerized tomography scanner based on flat panel detector technology is a viable means for high performance computed tomography. Initial studies of signal response uniformity demonstrated that the response of the system is uniform over the field of view to within ±2%, with the slight degree of non-uniformity apparent as a combined cupping and capping artifact in the x-y plane attributable to a reconstruction artifact. The linearity of response was demonstrated using a range of soft-tissue test materials and was found to be linear to within ±0.6%. Measurements of image noise versus exposure demonstrate that the prototype cone beam computerized tomography system 300 performs comparably to the conventional scanner, demonstrating the inverse square root exposure dependence predicted by theory. Investigations of noise power spectrum and spatial frequency response for the two systems reinforce these conclusions and illustrate the advantages of developing more extensive (empirical and theoretical) frequency-dependent characterization methods for volumetric computed tomography systems. In addition to the quantitative measures of performance, the images of low-contract phantoms and small animal anatomy confirm the conclusions drawn from these measures, showing excellent detail and soft-tissue contract, more than sufficient for tissue localization in radiation oncology. The results presented here demonstrate the potential of this approach for volumetric imaging. However, this study has been performed under conditions of small object size and small cone angle. These conditions are imposed by the size of the detector used in this investigation. Imaging with larger detectors allows increased cone angle and, for computerized tomography, increased object thickness. The extrapolation of performance based on the results presented here to that for larger detectors must be done with some caution. Imaging larger objects with an increased field of view will result in increased scatter and reduced transmission. The increase in scatter can be expected to have a negative impact on computerized tomography imaging performance by introducing non-uniformities in the reconstructed image (e.g., cupping and/or streaks), and by adding additional x-ray quantum noise to the image signal. The magnitude of scatter reaching the detector will depend greatly on the cone-angle and air gap employed, and studies suggest that scatter at these distances may be reduced compared to conventional radiographic applications. Quantifying the magnitude of the x-ray scatter problem and developing methods to reduce it are areas of ongoing investigation. In addition to concerns of x-ray scatter at large cone-angles, the scanning of larger objects will significantly reduce the fluence arriving at the detector. This reduced transmission will negatively impact the performance of the flat-panel detector. Currently available flat panel imagers demonstrate performance inferior to conventional image intensifiers at fluoroscopic exposure rates, due to the presence of additive noise in the flat-panel readout electronics. Additive noise causes the detected quantum efficiency of the imager to depend on the number of x-rays forming an image. This dependence is illustrated in FIG. 16 for the flat-panel imager 306 used in these investigations and for hypothetical detectors that embody the most recent advances in imager 306 design, including higher x-ray quantum detection efficiency through the use of Csl:TI and a reduction in additive noise through improvements in readout electronics. The zero-frequency detected quantum efficiency was computed using a model for signal and noise transfer that has demonstrated excellent agreement with measurements. It is clear from FIG. 16 that improvements in the x-ray converter and electronics noise significantly reduce the exposure dependency of the detected quantum efficiency over the broad range of exposures required for computerized tomography. The magnitude of the reduction depends greatly on the amplifier noise in the system. For the prototype imager used in these studies, the amplifier noise is very high at 12,700 e. For the low transmitted exposure levels in computerized tomography of pelvic anatomy, for example, this detector would achieve a zero-frequency detected quantum efficiency of less than 10%. In comparison, an imager than incorporates the recent advances in design listed above (e.g., a high-quality Csl:TI converter and amplifier noise of 3000 3 or better) would achieve a higher detected quantum efficiency (−65%) at full transmission and maintain a detected quantum efficiency of >40% even at the low exposure levels. Such enhancements in imager design are within the current capabilities of flat panel imager manufacturers and will greatly facilitate the application of flat panel imagers in cone-beam computerized tomography of human beings. Furthermore, these improvements are largely driven by other forces in digital imaging that anticipates use of flat panel imagers in place of conventional image-intensifier systems for interventional fluoroscopy. For this reason, it can be expected that imagers with such characteristics will be available within the next five years. Overall, the operating characteristics of the flat-panel are highly compatible with acquisition in a cone beam computerized tomography scanning geometry. Unlike image-intensifier or lens based systems, flat panel detectors are geometrically robust under a rotating geometry, eliminating concerns of image distortion. The proximity of the analog-to-digital converter to the pixel element and the relatively large charge signals make the panels robust in high radio-frequency power environments; this is of particular interest for radiotherapy applications. The high readout rate of these detectors allows for imaging sequences of 300 projection images to be acquired within 10 seconds (operating at 30 fps). This is more than sufficient to satisfy the allowable rotation rates for the gantry of a medical linear accelerator. In fact, while the International Electromechanical Commission (IEC) recommends less than 1 revolution per minute for linear accelerators, it would be reasonable to reconsider such constraints in light of the advantages of cone beam computerized tomography guidance in the treatment room. Currently, the detector size and aspect ratio are driven by the needs of digital radiography, producing detectors comparable in size to radiographic film. These sizes limit the field-of-view of the reconstruction if sufficient clearance is to be maintained between ft detector and patient during gantry rotation. This problem can be addressed using offset detector schemes that use 360° of gantry rotation. Ultimately, a specialized detector could be designed with a size and aspect ratio that match the requirements for cone beam computerized tomography (e.g., a −25×50 cm2 area panel). Given the potential that this technology is demonstrating, the opportunities for new areas of application for computed tomography are significant. Imaging systems based on this technology can be constructed to address specific imaging problems, including non-destructive testing (at kilovoltage or megavoltage energies), early detection and monitoring of specific medical conditions, and, of course, navigational imaging for therapies. The compact nature of the panels allow flat panel imager-based cone beam computerized tomography imagers to be applied in situations that would never be considered feasible for a conventional computerized tomography scanner. The cone beam computerized tomography approach offers two important features that dramatically reduce its cost in comparison to a conventional scanner. First, the cone-beam nature of the acquisition does not require an additional mechanism to move the patient (or object) during image acquisition. Second, the use of a cone-beam, as opposed to a fan-beam, significantly increases the x-ray utilization, lowering the x-ray tube heat capacity required for volumetric scanning. For the same source and detector geometry, the efficiency roughly scales with the slice thickness. For example, the x-ray utilization increased by a factor of 30 in going from a 3 mm slice in a conventional scanner to a cone-angle corresponding to a 100 mm slice with a cone-beam system, This would decrease heat-load capacities dramatically. From our experience, a 5200 kHU x-ray tube costs approximately $70,000, whereas a 600 kHU x-ray tube (a factor of −10 lower in capacity) costs roughly $6,000. Cone-beam computed tomography has been a topic of active research and development for over a decade in areas such as nuclear medicine and industrial testing; however, only recently has it begun to appear in the diagnostic computerized tomography arena. The developments in this area have been for the most part limited to multi-slice detectors. In this investigation, the use of an alternative detector for high-quality computerized tomography has been studied. The results of the investigation suggest that there is a significant potential for the use of these detectors in cone beam computerized tomography systems for radiotherapy and quite possibly for diagnostic and interventional computerized tomography imaging tasks that will take advantage of the fully 3-D nature of cone beam computerized tomography. Based upon the positive results presented previously with respect to the cone beam computerized tomography system 300, several embodiments of a flat panel imager-based kilovoltage cone beam computerized tomography scanner for guiding radiation therapy on a medical linear accelerator are envisioned. For example, FIGS. 17(a)-(e) and 18 are diagrammatic and schematic views of an embodiment of a wall-mounted cone beam computerized tomography system 400. The cone beam computerized tomography system 400 includes an x-ray source, such as x-ray tube 402, and a flat-panel imager 404 mounted on a gantry 406. The x-ray tube 402 generates a beam of x-rays 407 in the form of a cone or pyramid that have an energy ranging from approximately 30 KeV to 150 KeV, preferably approximately 100 KeV. The flat-panel imager 404 employs amorphous silicon detectors. The system 400 may be retrofitted onto an existing or new radiation therapy system 700 that includes a separate radiation therapy x-ray source, such as a linear source 409, that operates at a power level higher than that of x-ray tube 402 so as to allow for treatment of a target volume in a patient. The linear source 409 generates a beam of x-rays or particles 411, such as photons or electrons, that have an energy ranging from 4 MeV to 25 MeV. The system 400 may also include an imager (not shown) that is aligned with the linear source 409 with the patient interposed therebetween. The imager forms projection images of the patient based on the remnants of the beam 411 that passes through the patient. Note that the x-ray sources 402 and 409 may be separate and contained with the same structure or be combined into a single source that can generate x-rays of different energies. As shown in FIGS. 17(a)-(e) and 18-19, the flat-panel imager 404 can be mounted to the face of a flat, circular, rotatable drum 408 of the gantry 406 of a medical linear accelerator 409, where the x-ray beam 407 produced by the x-ray tube 402 is approximately orthogonal to the treatment beam 411 produced by the radiation therapy source 409. Attachment of the flat plane imager 404 is accomplished by an imager support system 413 that includes three 1 m long arms 410, 412 and 415 that form a tripod. Side arms 410 and 415 are identical to one another in shape and have ends attached to a Ax95 Guy pivot 417 which in turn is attached to a mounting 414 by screws that are threaded through aligned threaded holes of the pivot 417 and threaded holes 425 and 431 of plates 433 and 435, respectively, as shown in FIGS. 18 and 19(a)-(b). As shown in FIGS. 17(b) and 18, the mountings 414 for the arms 410 and 415 are aligned with one another along a line segment 419 that is contained within a plane 421 that is parallel to and offset by approximately 30 cm from the plane containing the flat-plane imager 404. The mountings 414 are separated from one another by approximately 70 cm and are symmetrically positioned with respect to a plane bisecting an imager mount 423 that is attached to the drum 408 270° from the radiation therapy source 409. As shown in FIGS. 18 and 19(a)-(b), each mounting 414 is attached to an end portion 416 of the drum 408 by inserting a threaded male member 418 through an opening 437 formed through the drum 408. Once inserted, the male member 418 is attached to the drum 408 by tightening a nut 420 onto the threaded male member 418. The other ends of the arms 410 and 415 are attached to Ax95 Guy pivots 422 attached to the back of an ⅜ inch thick Aluminum square plate 424 is attached to the rear of the flat-panel imager 404 via bolts (not shown). As shown in FIGS. 17(d)-(e), there are two preset positions of the flat panel imager 404 relative to the plate 424. As shown in FIG. 17(d), the flat panel imager 404 is centered about the ends of the arm 412. In order to provide a larger field of view, an offset flat panel imager 404 can be used as shown in FIG. 17(e) where the imager 404 is attached to a side of the plate 424 via bolts. Note that it is possible to use a motorized system to move the flat panel imager 404 relative to the plate 424 to provide an easy way to vary the field of view of a cone beam computerized tomography system. A center arm 412 is also attached to the drum 408 and the flat-panel imager 404. The center arm 412 has one end attached to Ax95 Guy pivot 427 that is in turn attached to a tapped, triangular-shaped, reinforcing plate 426 formed on the drum 408 as shown in FIGS. 17(b) and 18. The plate 426 is approximately 433.8 mm from the rotational axis 428 that intersects the iso-center 430 of the imaging system 400. A second end of the center arm 412 is attached to the plate 424 via a Cx95A right angle joint 425. As shown in FIGS. 17(b) and 18, the end of the arm 412 lies along a line that is the perpendicular bisector of the line segment 419 and is radially separated from the midpoint between mountings 414 as measured along line segment 419 by a distance D of approximately 30 cm. As shown in FIGS. 17(b) and 18, the other ends of the arms 410, 412 and 415 are attached to the plate 424 so as to be positioned approximately 20 cm from the rear edge 429 of the plate 434 and approximately midway between the left and right edges of the plate 434. Once the arms 410, 412 and 415 are attached to the drum 408 and the plate 424, the arms can be pivoted so that the flat panel imager 404 moves to a position where its rear side is separated from the iso-center 430 by a distance L of approximately 600 mm. One advantage of the imager support system 413 is that it can be used to retrofit existing stand-alone radiation treatment devices so they have the capability to have a flat panel imager attached thereto. The imager support system 413 is very rigid, i.e., constant tension and compression, which reduces movement of the imager 404 and so leads to cleaner imaging data. Note that the x-ray tube 402 can also be retrofitted onto an existing stand-alone treatment device so as to be positioned opposite to the flat panel imager 404. As shown in FIGS. 17(a)-(e), the x-ray tube 402 is attached to tube support 440 that is composed of a pair of front and rear faces 442 and 444 and a pair of side faces 446. A multi-leaf collimator 448 is supported within the interior of the tube support 440. The front and rear faces 442 and 444 each include three openings 450, 452 that are aligned with one another and receive three cylindrical support arms 454 that are attached to a bearing housing 456 that is bolted to the drum 408. The tube support 440 and the x-ray tube 402 are able to slide along the support arms 454. Note that a cable support 458 spans between the tube support 440 and the bearing housing 456 and contains the wiring necessary to operate the x-ray tube 402. An alternative imager support system for the flat panel imager 404 of FIG. 17 is shown in FIGS. 20(a)-(b). In particular, the imager support system 507 shown in FIGS. 20(a)-(b) includes a single pivoting arm 510 that has one end 511 pivotably attached to a lower corner of the radiation therapy source 409. The other end 512 of the arm 510 is pivotably attached to an end of the flat-panel imager 404. The arm 510 and flat-panel imager 404 are movable from a retracted position of FIG. 20(a) to an extended position of FIG. 20(b) and vice versa. Movement of the arm 510 and the flat-panel imager 404 may be moved either manually or via a motor. Note that when the imager support system 507 is used, the x-ray tube 402 is attached to a second lower corner of the radiation therapy source 409 in order to simplify the support structure and reduce the mechanical complexity of the overall system. The position of the x-ray tube 402 also reduces interference with staff access to the patient. Note that in this embodiment, the distance from the x-ray tube 402 to the axis of rotation 428 is not necessarily equal to the distance from the radiation therapy source 409 to the axis of rotation 428. Also, the amount of extension of the arm 510 shown in FIG. 20(b) will vary depending on the desired field of view for cone beam computerized tomography imaging. Note that if the mechanics are engineered to be sufficiently precise, the arm 510 can move in and out during image acquisition during gantry rotation so as to allow the imager 404 to dynamically avoid potential rotation-induced collisions with the patient or the table. The head of the radiation therapy source 409 can be altered to provide additional lead shielding on the imager side to limit radiation induced damage to the imager 404 while in the retracted position of FIG. 20(a). This will increase the life span of the imager 404. A second alternative imager support system for the flat panel imager 404 of FIG. 17 is shown in FIGS. 21(a)-(b). In particular, the imager support system 607 shown in FIGS. 21(a)-(b) includes a single C-arm 610 that is attached to an arm support 611 that is attached to the front or rear of the radiation therapy source 409. At one end of the C-arm 610 the x-ray tube 402 is attached and at the other end the flat-panel imager 404 is attached. The C-arm 610 is moved either manually or by a motor within the arm support 611, so that the x-ray tube 402 and the flat-panel imager 404 can move along an arc. Note that in this embodiment, the distance from the x-ray tube 402 to the axis of rotation 428 is not necessarily equal to the distance from the radiation therapy source 409 to the axis of rotation 428. The arm 610 does not necessarily be in the shape of an arc of a circle. Also, the axis of rotation of the arm 610 is not necessarily coincident with the axis of rotation 428 of the radiation therapy source 409, which allows the same device to be fitted on machines with different face-to-isocenter distances without altering the radius of the C-arm 610. Use of the C-arm 610 of FIGS. 21 (a)-(b) allows for a great amount of flexibility in obtaining cone beam computerized tomography images. For instance, image data can be obtained by only having the drum 408 of the gantry 406 rotate. Image data can be obtained in a second manner by having the C-arm 610 move independently of the gantry 406 in a circular path. Image data can be obtained by having the C-arm 610 and the drum 408 work cooperatively to generate images along a circular path so that the angular range of acquisition is increased and so instabilities in the angular velocity of the gantry are addressed. A fourth manner of imaging involves rotating the drum 408 and pivoting the C-arm 610 about the mounting point on the gantry 406 with a sinusoidal pattern to effect non-circular orbits that involve a sinusoidal trajectory on a spherical surface. Such a non-circular orbit allows more complete image reconstructions by satisfying Tuy's condition. FIG. 22 shows a portable cone beam computerized tomography system 700. In this embodiment, the system 700 is on a mobile platform 702 so that it can be moved relative to a patient 441 positioned on a table 443 relative to a rotating radiation therapy source 409 (not shown). The cone beam computerized tomography system 700 includes an x-ray source, such as x-ray tube 402 positioned on one side of a C-arm 704, and a flat-panel imager 404 positioned on an opposite side of the C-arm 704. The C-arm 704 can rotate about two axes of rotation when in operation. The system 700 can be moved to a radiation therapy system (not shown) and can be used to generate images that aid in the alignment of the radiation therapy system. With the above descriptions of the cone beam computerized tomography system 400 and the various embodiments of the imager support systems shown in FIGS. 18-22 in mind, operation of the system 400 is described below. In the description to follow, the term “shape” of the radiation therapy beam 411 is understood to refer to the spatial distribution of the beam in a plane perpendicular to the direction of the beam or to the frequency modulation of the beam after being transmitted through some beam-limiting device. The term “planning image” refers to an image of the patient acquired by the cone beam computerized tomography system 400 prior to treatment delivery used for radiation therapy treatment planning. The term “constrained plan set” refers to a plurality of radiation therapy treatment plans for a given patient, where each radiation therapy treatment plan is calculated assuming some perturbation of lesion location and/or orientation compared to that in the planning image. For example, a constrained plan set could be calculated where each plan corresponds to a different magnitude of lesion rotation about the y and/or z axes. The cone beam computerized tomography imaging system 400 preferably includes an x-ray tube 402 and a flat panel imager 404 in any one of the geometries illustrated in FIGS. 23(a)-(d), capable of forming 3-D images of the patient on the treatment table in the treatment position. The x-ray tube 402 may be operated so as to produce a pulsed or continuous beam of x-rays 407. The flat panel imager 404 includes an active matrix of imaging pixels incorporating mechanisms for: 1.) converting incident x-rays to electronic charge (e.g., a scintillator in combination with optically sensitive elements at each pixel, or a photoconductor); 2.) integrating and storing the electronic charge at each pixel (e.g., the capacitance of photodiode(s), capacitors, etc. located at each pixel); and 3.) reading the electronic charge out of the device (e.g., a thin-film transistor switch or the like at each pixel, with associated switching control lines and readout lines). The x-ray tube 402 and the flat panel imager 404 preferably move in a circular orbit (or variation thereof) about the longitudinal axis of the patient. Depending on which ones of the imager support systems used in FIGS. 18-22, the imager support system should accommodate offsets in the x and/or z directions as illustrated in FIG. 23(b). Note that the combined motion of the x-ray tube 402 and/or the flat panel imager 404 in x, y, and/or z is termed the orbit, and may be circular about the patient, or non-circular, e.g., comprising of some combination of linear, sinusoidal, circular, and/or random paths. For example, in the case where the source 402 and imager 404 move independently with respect to one another, the source 402 can move on a sinusoidal or sawtooth path constrained to the surface of a cylinder while the imager 404 moves in a circular path on the surface of a cylinder. In this scenario, the collimator adjusts in real time the shape of the radiation field so it is confined to the imager 404 despite the allowed independent motion of the source 402 and imager 404. Cone beam computerized tomography image acquisition involves acquisition of a plurality of 2-D images, where each image preferably corresponds to a different orientation of the x-ray beam 407 and the flat panel imager 404 with respect to the patient 441, e.g., where the x-ray tube 402 and the flat panel imager 404 traverse a circular or non-circular path about the patient 441 as illustrated in FIG. 23(d). Note that the cone beam computerized tomography image is preferably acquired with the patient on the treatment table, in the treatment position, and immediately prior to treatment delivery. The processes involved in the preferred method for cone beam computerized tomography image acquisition are illustrated in FIG. 24, divided conceptually into a variety of off-line and on-line processes, and mechanisms for 2-D image acquisition and 3-D image reconstruction. The off-line processes schematically shown in FIG. 24 include acquisition of a plurality of 2-D images acquired in the absence of x-ray irradiation (termed dark fields) and with uniform x-ray irradiation (termed flood fields). Such dark and flood fields are used to correct stationary nonuniformities in the imaging system arising from nonuniformity in pixel operational and response characteristics. Also included is a mechanism for identifying and correcting defective pixels in the 2-D images (e.g., a pixel defect map that identifies aberrant pixel coordinates, and application of a filter to the corresponding pixel values). Thirdly, a measure and process for correction of orbit non-idealities, described below, is preferably employed. The on-line processes schematically shown in FIG. 24 include: 1.) control and monitoring of the x-ray tube; 2.) control and monitoring of the orbit traversed by the x-ray tube 402 and the flat panel imager 404 (e.g., by rotating the gantry 406); and 3.) control and readout of the flat panel imager 404. The x-ray source 402 produces x-rays in either a pulsed or continuous manner, and variations in the magnitude of x-ray tube output are monitored by an output monitor, which preferably includes a radiation sensitive electronic device such as a diode placed inside the x-ray tube collimator assembly. Alternatively, the output monitor could be placed outside the x-ray tube 402 in a position that allows it to measure variations in x-ray tube output, or the output could be measured using pixels on the flat panel imager 404, such that these pixels are not occluded by the patient in the plurality of 2-D projection images. The orbit of the x-ray tube 402 and the flat panel imager 404 about the patient is preferably controlled via computer-controlled rotation of the gantry 406, combined with a precise measurement of the gantry angle at which each 2-D image is acquired. For embodiments in which the x-ray source 402 and the flat panel imager 404 are not both mounted on the treatment gantry 406, such as the portable embodiment of FIG. 22, a similar mechanism for measuring and recording the location of these two components for each 2-D image is employed. Thirdly, a plurality of 2-D images are read from the flat panel imager 404 by a control/acquisition computer. The readout of the flat panel imager 404 is preferably synchronized with the operation of the x-ray tube 402 as well as with the rotation of the x-ray tube 402 and the flat panel imager 404 support structure(s), such as those described previously with respect to FIGS. 18-22. The timing of x-ray exposures, gantry rotation, and flat panel imager readout is preferably synchronized by: 1.) the control/acquisition computer; or 2.) an external trigger mechanism (gating source), such as a device for active breathing control, electrocardiac gating, etc. For the former case, the preferred embodiment includes computer-control of: 1.) x-ray pulses generated by the x-ray source 402; 2.) gantry rotation (e.g., in increments of ˜1° through ˜360°; and flat panel imager readout (e.g., at a readout rate consistent with the limitations in x-ray tube output and gantry rotation). For the latter case, the preferred embodiment is such that the gating source triggers x-ray production, gantry rotation, and flat panel imager readout in a manner synchronized with the motion of anatomical structures in the patient 441 in order to reduce the deleterious effects of organ motion in image reconstructions. The preferred embodiment includes a mechanism (reconstruction engine) for high-speed cone beam computerized tomography image reconstruction. The plurality of 2-D projections is first processed by dark and flood field correction, and the measurements of orbit non-ideality (below), tube output variations, and gantry rotation are used together with the processed 2-D projections to form 3-D cone beam computerized tomography image reconstructions of the patient 441. A variety of cone-beam reconstruction techniques are known within the art, including cone-beam filtered back-projection. The cone beam computerized tomography image is then made available to a system for on-line treatment planning. In the interim between the 2-D image acquisition and correction of lesion localization errors, the patient 441 is preferably monitored by periodic radiographs obtained with the flat panel imager at one or more gantry angles. In the preferred embodiment, these monitor radiographs are analyzed (e.g., by calculation of difference images) in order to provide a check against intrafraction motion of the patient 441. The preferred embodiment includes a computer-controlled treatment table 443 for correction of lesion localization errors. The table 443 preferably allows translation of the patient 441 in the x, y, and z directions as well as rotation about the x axis. Rotation about the y axis (tilt) and z axis (roll) is possible for an embodiment in which lesion localization errors are corrected by such motions (as opposed to correction of such errors through selection of an appropriate RTTP from a constrained plan set), provided that such motions do not cause uncertainty in the location/orientation of the lesion 444 and/or surrounding structures, e.g., due to the effects of gravity. Furthermore, the treatment table 443 is preferably constructed of radio-translucent material so as not to interfere significantly with the acquisition of cone beam computerized tomography images. The preferred embodiment includes a method for calibration of the radiation therapy delivery system accomplished using a radiation therapy system including the radiation therapy source 409, a collimating structure such as a multi-leaf collimator, and an imager 446. The imager 446 is located opposite the radiation therapy source 409 on a support arm attached to the radiotherapy gantry 406 and in the preferred embodiment is a flat panel imager 404 designed for imaging of the high energy beam 411. The calibration method preferably employs a reference BB 448 embedded in a lucite cube 450 and located at a known location with respect to the isocenter 430 of gantry rotation, as illustrated in FIG. 25. The cube 450 is precisely leveled, and marks on the cube surface project the location of the isocenter within the cube. The reference BB 448 is imaged at angular increments using the radiation therapy source 409 and imager 446 as the gantry 406 rotates through 360°, preferably clockwise and counter-clockwise. In each image, the reference BB 448 is located preferably by an automated centroid calculation, and the edge of each leaf of the multi-leaf collimator and the edge of the collimators are localized by calculation of maximum signal gradient. After subtracting a sinusoid of specified amplitude from the measured deflections, the residuals represent imperfections in leaf placement. These residuals can then be incorporated into the controller of the multi-leaf collimator and calibrated out. An alternative approach is to modify the planning system to generate “corrected” leaf positions. After calibration, the patient positioning lasers in the treatment room are adjusted to the set of laser alignment marks located on the lucite cube. The preferred embodiment furthermore includes a calibrator that calibrates the cone beam computerized tomography imaging geometry relative to that of the radiation therapy source 409. Calibration of the cone beam calibration tomography geometry is preferably performed immediately following multi-leaf collimator leaf calibration, without moving the reference BB 448. The same procedure is performed using the x-ray source 402 and the flat panel imager 404; however, in this case, the residuals are used to adjust the back-projection trajectories in the reconstruction process. The image of the localized BB 448 is preferably analyzed using a 3-D centroid algorithm, and the location of isocenter 430 is calculated as a simple offset from the centroid. The isocenter 430 can thus be explicitly identified within the 3-D matrix of cone beam computerized tomography images. In the preferred embodiment, the cross-calibration of the cone beam computerized tomography imaging system 400 and the radiation therapy delivery system can be tested with a mechanism (phantom) for combined geometry and dosimetry measurement. The phantom preferably includes a water-filled or water-equivalent volume in which a dosimetry insert is rigidly placed at various locations. The dosimetry insert preferably contains either: 1.) a detector matrix of electronic dosimeters, or 2.) a volume of radiosensitive gel dosimeter. In the former case, the dosimeters are embedded in a water-equivalent insert and placed asymmetrically to allow unambiguous identification in a computerized tomography image; furthermore, each dosimeter is sufficiently small as to have legible influence on the dosimetry of other detectors. The electronic signals from the dosimeter matrix are preferably used in either of two ways: 1.) the dosimetry of a complete delivery can be tested by recording the signal from all detectors and comparing to calculations, thereby providing a point dose verification of the delivery as well as routine pre-treatment quality assurance; and/or 2.) the precision and accuracy of the combined imaging and delivery system can be measured by recording the dose to the detectors as the geometric edge of a leaf can be inferred and compared to the planning system dose calculation. This test is preferably performed for all the leaves in the system by moving the location of the dosimetry insert within the volume. In the case of a radiosensitive gel dosimeter, measurement of 3-D dose distributions delivered by a given treatment scheme can be quantitatively evaluated. The preferred embodiment furthermore includes delineating the target volume immediately following acquisition of the cone beam computerized tomography image of the patient 441 on the treatment table 443 in the treatment position. Localization of the target volume/lesion 444 and/or surrounding structures can be performed manually, e.g., by contouring of structures in some combination of transaxial, sagittal, coronal, and/or oblique slices. Alternatively, the target volume/lesion 444 and/or surrounding structures can be delineated by an automated localization algorithm, as recognized in the art. In this approach, the target volume/lesion 444 defined in the planning image is overlaid on a given on-line cone beam computerized tomography image, and the images are matched, e.g., by translating and rotating the reference target contour in such a way as to minimize the standard deviation of pixel values compared to the planning image. In the planning image, bony structures are defined, and matching of the planning image with the on-line cone beam computerized tomography image (both with calibrated isocenter positions) on bony structures determines the setup error (rotation and translation) of the bony anatomy. The motion of the soft-tissue target relative to the bony anatomy is quantified by translating and rotating the target volume contours until they cover a homogeneous area (i.e., standard deviation in pixel value differences is minimized). The treatment plan for the current session can be modified based on the cone beam computerized tomography image data by a number of methods or combinations therein, including recalculation of the RTTP, selection of a modified RTTP from a previously calculated set of plans, and/or translation, rotation, and/or angulation of the patient. The method chosen should provide a modified plan for the current treatment session in a manner that does not cause uncertainty in the location/orientation of the lesion; therefore, the method should be completed within a short time frame in order to minimize intrafraction organ motion effects, and should not significantly distort patient anatomy. Recalculation of the RTTP based on the cone beam computerized tomography image data should be consistent with such time constraints. Similarly translation, rotation, and/or angulation of the patient should not perturb patient anatomy compared to that measured in the cone beam computerized tomography image, e.g., due to the effects of gravity. The preferred embodiment entails a streamlined process for rapid lesion localization, selection of an appropriate RTTP, dosimetry review, and transfer of the prescription to the radiation therapy delivery system. The process for on-line cone beam computerized tomography guidance of radiation therapy procedures is illustrated in FIG. 26, which conceptually separates the system into: 1.) the off-line treatment process; 2.) priors for on-line selection and correction; and 3.) the on-line imaging and treatment process. The off-line treatment process in the preferred embodiment begins with a planning image on which contours of the target volume and surrounding structures are defined, and margins for target deformation, delivery precision, and delineation precision are applied. Inverse planning is performed according to a given protocol for radiation therapy of the given treatment site, e.g., a number of radiation therapy beams 411 directed at the patient 441 from various angles, with target dose uniformity and normal tissue volume constraints to match the prescription. In addition to this reference plan, a plurality of additional plans (the constrained plan set) are generated as a function of various translations and/or rotations of the target volume. Plans are preferably generated at small increments of each possible translation and/or rotation (e.g., rotation of the target volume about the y axis). In the preferred embodiment for on-line plan selection and correction of lesion localization errors, the target volume/lesion 444 and its relationship to bony structure in the planning image are prepared for use as priors, and the constrained plan set is transferred to the radiation therapy system to verify deliverability prior to the on-line procedure. In the on-line treatment process, the patient 441 is set up on the treatment table 443 in the treatment position, and cone beam computerized tomography images are acquired as described above. The target volume/lesion 444 and surrounding structures are delineated in the cone beam computerized tomography data, thereby identifying the translations and/or rotations of the target volume/lesion 444 relative to the position and orientation in the planning image. As described above, translations may be corrected by translation of the computer-controlled treatment table 443, and rotations may be corrected by selection of an appropriate plan from the constrained plan set. The translation of the lesion 444 observed in the cone beam computerized tomography image relative to the planning image is corrected by translation of the patient 441 on the treatment table 443 in the y and/or z directions, and/or by rotation about the x axis. The orientation of the lesion 444 (i.e., rotations about the y and/or z axes) are corrected by selecting from the previously calculated constrained plan set a modified RTTP that most closely corresponds to the measured rotation of the lesion 444. Meanwhile, radiographic monitoring of the patient 441 can be used to check against intrafraction motion of the patient 441. Furthermore, a cone beam computerized tomography image acquired immediately prior to, during, or following the treatment procedure can be obtained in order to provide accurate representation of the location of patient anatomy during treatment delivery, which can be stored for off-line review, evaluation, and modification of subsequent treatment sessions. Following transferal of the prescription to the delivery system, the treatment plan is executed according to the patient setup and treatment plan determined from the cone beam computerized tomography image. The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims. For example, the cone beam computerized tomography system can be adapted to perform animal testing identification, and non-invasive and non-destructive component structural testing. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates generally to a cone-beam computed tomography system and, more particularly, to a cone-beam computed tomography system that employs an amorphous silicon flat-panel imager for use in radiotherapy applications where the images of the patient are acquired with the patient in the treatment position on the treatment table. 2. Discussion of the Related Art Radiotherapy involves delivering a prescribed tumorcidal radiation dose to a specific geometrically defined target or target volume. Typically, this treatment is delivered to a patient in one or more therapy sessions (termed fractions). It is not uncommon for a treatment schedule to involve twenty to forty fractions, with five fractions delivered per week. While radiotherapy has proven successful in managing various types and stages of cancer, the potential exists for increased tumor control through increased dose. Unfortunately, delivery of increased dose is limited by the presence of adjacent normal structures and the precision of beam delivery. In some sites, the diseased target is directly adjacent to radiosensitive normal structures. For example, in the treatment of prostate cancer, the prostate and rectum are directly adjacent. In this situation, the prostate is the targeted volume and the maximum deliverable dose is limited by the wall of the rectum. In order to reduce the dosage encountered by radiosensitive normal structures, the location of the target volume relative to the radiation therapy source must be known precisely in each treatment session in order to accurately deliver a tumorcidal dose while minimizing complications in normal tissues. Traditionally, a radiation therapy treatment plan is formed based on the location and orientation of the lesion and surrounding structures in an initial computerized tomography or magnetic resonance image. However, the location and orientation of the lesion may vary during the course of treatment from that used to form the radiation therapy treatment plan. For example, in each treatment session, systematic and/or random variations in patient setup (termed interfraction setup errors) and in the location of the lesion relative to surrounding anatomy (termed interfraction organ motion errors) can each change the location and orientation of the lesion at the time of treatment compared to that assumed in the radiation therapy treatment plan. Furthermore, the location and orientation of the lesion can vary during a single treatment session (resulting in intrafraction errors) due to normal biological processes, such as breathing, peristalsis, etc. In the case of radiation treatment of a patient's prostate, it is necessary to irradiate a volume that is enlarged by a margin to guarantee that the prostate always receives a prescribed dose due to uncertainties in patient positioning and daily movement of the prostate within the patient. Significant dose escalation may be possible if these uncertainties could be reduced from current levels (˜10 mm) to 2-3 mm. Applying large margins necessarily increases the volume of normal tissue that is irradiated, thereby limiting the maximum dose that can be delivered to the lesion without resulting in complication in normal structures. There is strong reason to believe that increasing the dose delivered to the lesion can result in more efficacious treatment. However, it is often the case that the maximum dose that can be safely delivered to the target volume is limited by the associated dose to surrounding normal structures incurred through the use of margins. Therefore, if one's knowledge of the location and orientation of the lesion at the time of treatment can be increased, then margins can be reduced, and the dose to the target volume can be increased without increasing the risk of complication in normal tissues. A number of techniques have been developed to reduce uncertainty associated with systematic and/or random variations in lesion location resulting from interfraction and intrafraction errors. These include patient immobilization techniques (e.g., masks, body casts, bite blocks, etc.), off-line review processes (e.g., weekly port films, population-based or individual-based statistical approaches, repeat computerized tomography scans, etc.), and on-line correction strategies (e.g., pre-ports, MV or kV radiographic or fluoroscopic monitoring, video monitoring, etc.). It is believed that the optimum methodology for reducing uncertainties associated with systematic and/or random variations in lesion location can only be achieved through using an on-line correction strategy that involves employing both on-line imaging and guidance system capable of detecting the target volume, such as the prostate, and surrounding structures with high spatial accuracy. An on-line imaging system providing suitable guidance has several requirements if it is to be applied in radiotherapy of this type. These requirements include contrast sensitivity sufficient to discern soft-tissue; high spatial resolution and low geometric distortion for precise localization of soft-tissue boundaries; operation within the environment of a radiation treatment machine; large field-of-view (FOV) capable of imaging patients up to 40 cm in diameter; rapid image acquisition (within a few minutes); negligible harm to the patient from the imaging procedure (e.g., dose much less than the treatment dose); and compatibility with integration into an external beam radiotherapy treatment machine. Several examples of known on-line imaging systems are described below. For example, strategies employing x-ray projections of the patient (e.g., film, electronic portal imaging devices, kV radiography/fluoroscopy, etc.) typically show only the location of bony anatomy and not soft-tissue structures. Hence, the location of a soft-tissue target volume must be inferred from the location of bony landmarks. This obvious shortcoming can be alleviated by implanting radio-opaque markers on the lesion; however, this technique is invasive and is not applicable to all treatment sites. Tomographic imaging modalities (e.g., computerized tomography, magnetic resonance, and ultrasound), on the other hand, can provide information regarding the location of soft-tissue target volumes. Acquiring computerized tomography images at the time of treatment is possible, for example, by incorporating a computerized tomography scanner into the radiation therapy environment (e.g., with the treatment table translated between the computerized tomography scanner gantry and the radiation therapy gantry along rails) or by modifying the treatment machine to allow computerized tomography scanning. The former approach is a fairly expensive solution, requiring the installation of a dedicated computerized tomography scanner in the treatment room. The latter approach is possible, for example, by modifying a computer tomography scanner gantry to include mechanisms for radiation treatment delivery, as in systems for tomotherapy. Finally, soft-tissue visualization of the target volume can in some instances be accomplished by means of an ultrasound imaging system attached in a well-defined geometry to the radiation therapy machine. Although this approach is not applicable to all treatment sites, it is fairly cost-effective and has been used to illustrate the benefit of on-line therapy guidance. As illustrated in FIGS. 1 ( a )-( c ), a typical radiation therapy system 100 incorporates a 4-25 MV medical linear accelerator 102 , a collimator 104 for collimating and shaping the radiation field 106 that is directed onto a patient 108 who is supported on a treatment table 110 in a given treatment position. Treatment involves irradiation of a lesion 112 located within a target volume with a radiation beam 114 directed at the lesion from one or more angles about the patient 108 . An imaging device 116 may be employed to image the radiation field 118 transmitted through the patient 108 during treatment. The imaging device 116 for imaging the radiation field 118 can be used to verify patient setup prior to treatment and/or to record images of the actual radiation fields delivered during treatment. Typically, such images suffer from poor contrast resolution and provide, at most, visualization of bony landmarks relative to the field edges. Another example of a known on-line imaging system used for reducing uncertainties associated with systematic and/or random variations in lesion location is an X-ray cone-beam computerized tomography system. Mechanical operation of a cone beam computerized tomography system is similar to that of a conventional computerized tomography system, with the exception that an entire volumetric image is acquired through a single rotation of the source and detector. This is made possible by the use of a two-dimensional (2-D) detector, as opposed to the 1-D detectors used in conventional computerized tomography. There are constraints associated with image reconstruction under a cone-beam geometry. However, these constraints can typically be addressed through innovative source and detector trajectories that are well known to one of ordinary skill in the art. As mentioned above, a cone beam computerized tomography system reconstructs three-dimensional (3-D) images from a plurality of two-dimensional (2-D) projection images acquired at various angles about the subject. The method by which the 3-D image is reconstructed from the 2-D projections is distinct from the method employed in conventional computerized tomography systems. In conventional computerized tomography systems, one or more 2-D slices are reconstructed from one-dimensional (1-D) projections of the patient, and these slices may be “stacked” to form a 3-D image of the patient. In cone beam computerized tomography, a fully 3-D image is reconstructed from a plurality of 2-D projections. Cone beam computerized tomography offers a number of advantageous characteristics, including: formation of a 3-D image of the patient from a single rotation about the patient (whereas conventional computerized tomography typically requires a rotation for each slice); spatial resolution that is largely isotropic (whereas in conventional computerized tomography the spatial resolution in the longitudinal direction is typically limited by slice thickness); and considerable flexibility in the imaging geometry. Such technology has been employed in applications such as micro-computerized tomography, for example, using a kV x-ray tube and an x-ray image intensifier tube to acquire 2-D projections as the object to be imaged is rotated, e.g., through 180° or 360°. Furthermore, cone beam computerized tomography has been used successfully in medical applications such as computerized tomography angiography, using a kV x-ray tube and an x-ray image intensifier tube mounted on a rotating C-arm. The development of a kV cone-beam computerized tomography imaging system for on-line tomographic guidance has been reported. The system consists of a kV x-ray tube and a radiographic detector mounted on the gantry of a medical linear accelerator. The imaging detector is based on a low-noise charge-coupled device (CCD) optically coupled to a phosphor screen. The poor optical coupling efficiency (−10 −4 ) between the phosphor and the CCD significantly reduces the detective quantum efficiency (DQE) of the system. While this system is capable of producing cone beam computerized tomography images of sufficient quality to visualize soft tissues relevant to radiotherapy of the prostate, the low DQE requires imaging doses that are a factor of 3-4 times larger than would be required for a system with an efficient coupling (e.g. −50% or better) between the screen and detector. Another example of a known auxiliary cone beam computerized tomography imaging system is shown in FIG. 2 . The auxiliary cone beam computerized tomography imaging system 200 replaces the CCD-based imager of FIGS. 1 ( a )-( c ) with a flat-panel imager. In particular, the imaging system 200 consists of a kilovoltage x-ray tube 202 and a flat panel imager 204 having an array of amorphous silicon detectors that are incorporated into the geometry of a radiation therapy delivery system 206 that includes an MV x-ray source 208 . A second flat panel imager 210 may optionally be used in the radiation therapy delivery system 206 . Such an imaging system 200 could provide projection radiographs and/or continuous fluoroscopy of the lesion 212 within the target volume as the patient 214 lies on the treatment table 216 in the treatment position. If the geometry of the imaging system 200 relative to the system 206 is known, then the resulting kV projection images could be used to modify patient setup and improve somewhat the precision of radiation treatment. However, such a system 200 still would not likely provide adequate visualization of soft-tissue structures and hence be limited in the degree to which it could reduce errors resulting from organ motion. Accordingly, it is an object of the present invention to generate KV projection images in a cone beam computerized tomography system that provide adequate visualization of soft-tissue structures so as to reduce errors in radiation treatment resulting from organ motion. | <SOH> BRIEF SUMMARY OF THE INVENTION <EOH>One aspect of the present invention regards a radiation therapy system that includes a radiation source that moves about a path and directs a beam of radiation towards an object and a cone-beam computer tomography system. The cone-beam computer tomography system includes an x-ray source that emits an x-ray beam in a cone-beam form towards an object to be imaged and an amorphous silicon flat-panel imager receiving x-rays after they pass through the object, the imager providing an image of the object. A computer is connected to the radiation source and the cone beam computerized tomography system, wherein the computer receives the image of the object and based on the image sends a signal to the radiation source that controls the path of the radiation source. A second aspect of the present invention regards a method of treating an object with radiation that includes moving a radiation source about a path, directing a beam of radiation from the radiation source towards an object and emitting an x-ray beam in a cone beam form towards the object. The method further includes detecting x-rays that pass through the object due to the emitting an x-ray beam with an amorphous silicon flat-panel imager, generating an image of the object from the detected x-rays and controlling the path of the radiation source based on the image. Each aspect of the present invention provides the advantage of generating KV projection images in a cone beam computerized tomography system that provide adequate visualization of soft-tissue structures so as to reduce errors in radiation treatment resulting from organ motion. Each aspect of the present invention provides an apparatus and method for improving the precision of radiation therapy by incorporating a cone beam computerized tomography imaging system in the treatment room, the 3-D images from which are used to modify current and subsequent treatment plans. Each aspect of the present invention represents a significant shift in the practice of radiation therapy. Not only does the high-precision, image-guided system for radiation therapy address the immediate need to improve the probability of cure through dose escalation, but it also provides opportunity for broad innovation in clinical practice. Each aspect of the present invention may permit alternative fractionation schemes, permitting shorter courses of therapy and allowing improved integration in adjuvant therapy models. Each aspect of the present invention provides valuable imaging information for directing radiation therapy also provides an explicit 3-D record of intervention against which the success or failure of treatment can be evaluated, offering new insight into the means by which disease is managed. Additional objects, advantages and features of the present invention will become apparent from the following description and the appended claims when taken in conjunction with the accompanying drawings. | 20041227 | 20081230 | 20060309 | 70760.0 | A61N510 | 1 | HO, ALLEN C | CONE BEAM COMPUTED TOMOGRAPHY WITH A FLAT PANEL IMAGER | UNDISCOUNTED | 1 | CONT-ACCEPTED | A61N | 2,004 |
|
11,023,063 | ACCEPTED | Amusement ride | An amusement ride (10) involving riders (17) being conveyed through the air. The amusement ride (10) comprises a tower (11) having a column (23), typically of a height of at least 30 metres. A hub structure (33) is supported on the column (23) for rotation with respect thereto and for displacement therealong. A first drive means (51) is provided for rotating the hub structure (33) with respect to the column (23). A second drive means (61) is provided for displacing the hub structure (33) along the column (23). Rider carriers (81) are suspended from the hub structure (33) to undergo motion in response to movement of the hub structure (33) with respect to the column (23), involving the riders (17) being conveyed along a path around the column (23), with the elevation of the riders changing during the ride through displacement of the hub structure (33) along the column (23). The amusement ride (10) is of a design which is conducive to construction on a large scale. | 1. An amusement ride comprising a tower, a hub structure supported on the tower for rotation with respect thereto and for displacement therealong, a first drive means for rotating the hub structure with respect to the tower, a second drive means for displacing the hub structure along the tower, and a rider carrier suspended from the hub structure to undergo motion in response to movement of the hub structure with respect to the tower. 2. An amusement ride according to claim 1 wherein the rider carrier is suspended from the hub structure by a flexible suspension link extending therebetween. 3. An amusement ride according to claim 2 wherein the flexible suspension link comprises at least one flexible line. 4. An amusement ride according to claim 2 wherein the rider carrier is connected to the rotatable hub for swivelling movement with respect thereto. 5. An amusement ride according to claim 4 wherein the swivelling movement is provided by a swivel connection between the flexible suspension link and the rotatable hub. 6. An amusement ride according to claim 4 wherein the swivelling movement comprises rotation about an axis corresponding to the longitudinal extent of the flexible suspension link. 7. An amusement ride according to claim 1 wherein the rider carrier is adapted to rotate about an axis transverse to the longitudinal extent of the flexible suspension link. 8. An amusement ride according to claim 7 wherein the rider carrier is provided with a control device for imparting rotational motion about the rotational axis during movement of the rider carrier through the air. 9. An amusement ride according to claim 8 further comprising provision for a rider to selectively operate the control device during the ride for providing variation to the ride. 10. An amusement ride according to claim 1 wherein the tower comprises a base and a column upstanding from the base. 11. An amusement ride according to claim 10 wherein the base is adapted to be releasably anchored to the ground. 12. An amusement ride according to claim 10 wherein the column comprises a plurality of column sections disposed in series and connected one to another. 13. An amusement ride according to claim 10 wherein the column is of framework construction comprising a plurality of longitudinal elements. 14. An amusement ride according to claim 13 wherein the framework defining the column is of open construction to provide an open space within the column. 15. An amusement ride according to claim 1 wherein the tower comprises a column having extended and contracted conditions and wherein the column comprises a plurality of column sections movable one relative to another for moving the column between the extended and contracted conditions. 16. An amusement ride according to claim 14 wherein the column sections are disposed in a telescopic arrangement. 17. An amusement ride according to claim 15 wherein the column is pivotally mounted on a trailer whereby the contracted column is pivotally movable between an upright condition and a collapsed condition folded down onto the trailer for transportation. 18. An amusement ride according to claim 17 further comprising a hydraulic ram operably connected between the column and the trailer for moving the contracted column between the collapsed and upright conditions. 19. An amusement ride according to claim 10 wherein the tower extends to a height of at least 30 metres. 20. An amusement ride according to claim 19 wherein the tower has a height of about 60 metres. 21. An amusement ride according to claim 1 wherein the hub structure is rotatably supported on a ring structure adapted for displacement along the tower while being fixed against rotation with respect to the tower. 22. An amusement ride according to claim 21 wherein the hub structure comprises a plurality of outriggers, one corresponding to each rider carrier, with the flexible suspension link from which each rider carrier is suspended being connected to a respective one of the outriggers. 23. An amusement ride according to claim 21 wherein the outriggers are each movable between an outwardly extending operating condition and a collapsed condition disposed alongside the column. 24. An amusement ride according to claim 21 wherein the tower comprises a column and wherein the ring structure is mounted on the column for guided rolling movement therealong. 25. An amusement ride according to claim 24 wherein the ring structure has rollers in rolling engagement with tracks on the column and wherein the column is of framework construction comprising a plurality of longitudinal elements defined by at least some of the longitudinal elements within the framework construction. 26. An amusement ride according to claim 24 the column has extended and contracted conditions, the column comprising a plurality of column sections movable one relative to another for moving the column between the extended and contracted conditions and wherein the ring structure has a roller assembly for rolling engagement with a side of the column, the roller assembly comprising a roller having an operating condition for engaging one column section for guiding movement of the ring structure therealong and a retracted condition for accommodating a further column section of larger lateral dimension. 27. An amusement ride according to claim 26 wherein in the retracted condition the roller is in rolling engagement with the further column section. 28. An amusement ride according to claim 26 wherein in the retracted condition the roller is in rolling engagement with the further column section for guiding movement of the ring structure therealong. 29. An amusement ride according to claim 26 wherein there is a further roller assembly, whereby the two roller assemblies provide a pair of roller assemblies disposed on opposed sides of the column for rolling engagement therewith. 30. An amusement ride according to claim 28 wherein the column comprises first, second and third column sections in a telescopic arrangement and wherein each roller assembly comprises first, second and third rollers, the first roller being provided for rolling engagement along the first column section, the second roller being provided for rolling engagement along the second column section, and the third roller being provided for rolling engagement along the third column section, the second roller being retractable from an operating condition in which it can rollingly engage the second column section to guide movement of the ring structure therealong, the second roller being retractable into a retracted condition accommodating the first column section wherein the second roller when in the retracted condition rolls along the first column section, the third roller being retractable from an operating condition in which it can rollingly engage the third column section to guide movement of the ring structure therealong, the third roller having two retracted conditions, being an intermediate retracted condition accommodating the second column section wherein the third roller rolls along the second column section and a fully retracted condition accommodating the first column section wherein the third rolls along the first column section. 31. An amusement ride according to claim 30 wherein the third roller when in the intermediate retracted condition rolls along the second column section in a floating fashion without the interaction necessarily providing any effective guidance to the ring structure and wherein the third roller when in the fully retracted condition rolls along the first column section interacting therewith to provide some guidance to the ring structure. 32. An amusement ride according to claim 30 wherein the second and third rollers are biased towards its respective operating condition, and also moveableaway from that condition towards the retracted condition upon contact with a step at the junction between adjacent column sections. 33. An amusement ride according to claim 32 wherein each first roller is supported on a rigid arm, and each of the second and third rollers is supported on a respective swing arm for pivotal movement between the operating and retracted conditions. 34. An amusement ride according to claim 33 wherein the swing arms are oriented so that the rollers supported thereon are biased into their operating conditions under the influence of gravity. 35. An amusement ride according to claim 33 wherein a stop is associated with each swing arm to limit the extent of retraction of the swing arm, the stop associated with swing arm supporting the second roller determining the retracted condition thereof, and the stop associated with the swing arm supporting the third roller determining the fully retracted condition thereof. 36. An amusement ride according to claim 21 wherein first drive means comprises a drive wheel and a motor for rotating the drive wheel, the drive wheel being in driving engagement with the hub structure, whereby rotation of the drive wheel causes rotation of the hub structure relative to the ring structure. 37. An amusement ride according to claim 36 wherein the second drive means is operable for selectively causing the ring structure to undergo displacement with respect to the tower. 38. An amusement ride according to claim 37 wherein the second drive means comprises a cable and pulley system from which the ring structure issuspended, and a winch mechanism, the cable and pulley system comprising a pulley mounted on the tower above the uppermost extent of displacement of the ring structure and a cable having an end thereof connected to the ring structure, the cable extending upwardly from the ring structure, around the pulley and downwardly to be operable by the winch mechanism. 39. An amusement ride according to claim 38 wherein the cable is connected to a counter-weight, the counter-weight being connected to the winch mechanism by way of a winch cable. 40. An amusement ride according to claim 38 wherein the cable and pulley system comprises a plurality of cables and associated pulleys, each cablebeing connected at one end to the ring structure, extending upwardly over its respective pulley and downwardly to be operable by the winch mechanism. 41. An amusement ride according to claim 39 wherein the counter-weight is accommodated within the interior of the column. 42. An amusement ride according to claim 39 wherein the winch mechanism is accommodated within the interior of the column. 43. An amusement ride according to claim 41 wherein the winch mechanism is accommodated on the trailer. 44. An amusement ride according to claim 1 further comprising a braking mechanism associated with the winch mechanism for retarding downward movement of the hub structure with respect to the tower, the brake mechanism comprising a disc brake provided on the winch mechanism. 45. An amusement ride comprising a tower, a ring structure adapted for displacement along the tower while being fixed against rotation with respect to the tower, a hub structure rotatably supported on the ring structure, a first drive means for rotating the hub structure with respect to the ring structure, a second drive means for displacing the ring structure along the tower, a rider carrier suspended from the hub structure to undergo motion in response to movement of the ring structure with respect to the tower, the tower comprising a column of framework construction having a plurality of longitudinal elements, the ring structure having rollers in rolling engagement with tracks on the column defined by at least some of the longitudinal elements within the framework construction for guided movement along the column. 46. An amusement ride comprising a tower, a ring structure adapted for displacement along the tower while being fixed against rotation with respect to the tower, a hub structure rotatably supported on the ring structure, a first drive means for rotating the hub structure with respect to the ring structure, a second drive means for displacing the ring structure along the tower, a rider carrier suspended from the hub structure to undergo motion in response to movement of the ring structure with respect to the tower, the second drive means comprising a cable and pulley system from which the ring structure is suspended, and a winch mechanism, the cable and pulley system comprising a pulley mounted on the tower above the uppermost extent of displacement of the ring structure and a cable having one end thereof connected to the ring structure and the other end thereof connected to a counter-weight, the cable extending upwardly from the ring structure, around the pulley and downwardly to the counter-weight, the winch mechanism being operably connected to the counter-weight. 47. An amusement ride comprising a tower, a hub structure supported on the tower for rotation with respect thereto and for displacement therealong, a first drive means for rotating the hub structure with respect to the tower, a second drive means for displacing the hub structure along the tower, a rider carrier suspended from the hub structure to undergo motion in response to movement of the hub structure with respect to the tower, the tower extending to a height of at least 30 metres and comprising a column of framework construction, the column comprising a plurality of column sections disposed in series and connected one to another. 48. An amusement ride comprising a tower, a ring structure adapted for displacement along the tower while being fixed against rotation with respect to the tower, the tower comprising a column having extended and contracted conditions, the column comprising a plurality of column sections movable one relative to another for moving the column between the extended and contracted conditions and wherein the ring structure has a roller assembly for rolling engagement with a side of the column, the roller assembly comprising a roller having an operating condition for engaging one column section for guiding movement of the ring structure therealong and a retracted condition for accommodating a further column section of larger lateral dimension. 49. An amusement ride according to claim 48 wherein in the retracted condition the roller is in rolling engagement with the further column section. 50. An amusement ride according to claim 48 wherein in the retracted condition the roller is in rolling engagement with the further column section for guiding movement of the ring structure therealong. 51. An amusement ride according to claim 48 wherein there is a further roller assembly, whereby the two roller assemblies provide a pair of roller assemblies disposed on opposed sides of the column for rolling engagement therewith. 52. An amusement ride comprising a tower, a ring structure adapted for displacement along the tower while being fixed against rotation with respect to the tower, the tower comprising a column, the column comprising first, second and third column sections in a telescopic arrangement, and wherein the ring structure has a roller assembly for rolling engagement with a side of the column, each roller assembly comprising first, second and third rollers, the first roller being provided for rolling engagement along the first column section, the second roller being provided for rolling engagement along the second column section, and the third roller being provided for rolling engagement along the third column section, the second roller being retractable from an operating condition in which it can rollingly engage the second column section to guide movement of the ring structure therealong, the second roller being retractable into a retracted condition accommodating the first column section wherein the second roller when in the retracted condition rolls along the first column section, the third roller being retractable from an operating condition in which it can rollingly engage the third column section to guide movement of the ring structure therealong, the third roller having two retracted conditions, being an intermediate retracted condition accommodating the second column section wherein the third roller rolls along the second column section and a fully retracted condition accommodating the first column section wherein the third rolls along the first column section. 53. An amusement ride comprising a tower, a ring structure adapted for displacement along the tower while being fixed against rotation with respect to the tower, the tower comprising a column, the column comprising first, second and third column sections in a telescopic arrangement and wherein the ring structure has a roller assembly for rolling engagement with a side of the column, each roller assembly comprising first, second and third rollers, the first roller being provided for rolling engagement along the first column section, the second roller being provided for rolling engagement along the second column section, and the third roller being provided for rolling engagement along the third column section, the second roller being retractable from an operating condition in which it can rollingly engage the second column section to guide movement of the ring structure therealong, the second roller being retractable into a retracted condition accommodating the first column section wherein the second roller when in the retracted condition rolls along the first column section, the third roller being retractable from an operating condition in which it can rollingly engage the third column section to guide movement of the ring structure therealong, the third roller having two retracted conditions, being an intermediate retracted condition accommodating the second column section wherein the third roller rolls along the second column section and a fully retracted condition accommodating the first column section wherein the third rolls along the first column section, first roller being supported on a rigid arm, and each of the second and third rollers being supported on a respective swing arm for pivotal movement between the operating and retracted conditions, the second and third rollers each being biased towards its respective operating condition, and also moveable away from that condition towards the retracted condition upon contact with a step at the junction between adjacent column sections. 54. An amusement ride comprising a tower carried on a trailer, a ring structure adapted for displacement along the tower while being fixed against rotation with respect to the tower, the tower comprising a column having extended and contracted conditions, the column comprising a plurality of column sections movable one relative to another for moving the column between the extended and contracted conditions and wherein the ring structure has a roller assembly for rolling engagement with a side of the column, the roller assembly comprising a roller having an operating condition for engaging one column section for guiding movement of the ring structure therealong and a retracted condition for accommodating a further column section of larger lateral dimension, the column being pivotally mounted on the trailer whereby the contracted column is pivotally movable between an upright condition and a collapsed condition folded down onto the trailer for transportation. | FIELD OF THE INVENTION This invention relates to an amusement ride, and more particularly to an aerial amusement ride involving one or more riders being conveyed through the air. The invention also relates to a method of conducting an amusement ride. BACKGROUND ART There are a variety of amusement rides involving a rider or riders being conveyed through the air in a manner somewhat simulating flight. The rides can be on a relatively small scale for use in playgrounds, or on a much larger scale for use in fair grounds and theme parks. One example of a ride involving conveyance of a rider through the air is a swing. Swings can range from the simple variety as commonly used in children's playgrounds to somewhat sophisticated structures requiring mechanisms for raising riders into a launch position from which they are released to swing through a curved trajectory. Whilst swings can provide an entertaining ride, they are generally rather limited in simulating flight, as typically riders only swing back and forth along a curved trajectory. Consequently, the rider achieves essentially the same ride each time. Another ride involving conveyance of a rider through the air is an aerial carousel, where one or more riders are moved through a generally circular path. Typically, an aerial carousel involves a central column supporting a rotatable hub from which riders are suspended to be conveyed through a circular path about the column, thereby simulating flight. In a simple playground version of such an amusement ride, chains extend from the rotatable hub and have handles (typically configured as rings) attached to their free end so that they can be grasped by the riders. With such rides, the riders initially propel the hub by running around the column while gripping the chains, and thereafter lift their feet from the ground so as to move through the air, simulating flight. In more sophisticated arrangements, the aerial carousels may incorporate rider carriers (such as harnesses or carriages), and also a drive system for driving the hub to cause the rider carriers to move through a circular path around the central column. As with other aerial amusement rides, the ride offered by an aerial carousel is somewhat limited, as the riders merely move through a generally circular path, achieving essentially the same ride each time. It would be advantageous for there to be an aerial amusement ride which can move a rider through the air but with provision for the ride to be varied should that be desired in order to enhance the sensation experienced by the rider. DISCLOSURE OF THE INVENTION According to a first aspect of the present invention there is provided an amusement ride comprising a tower, a hub structure supported on the tower for rotation with respect thereto and for displacement therealong, a first drive means for rotating the hub structure with respect to the tower, a second drive means for displacing the hub structure along the tower, and a rider carrier suspended from the hub structure to undergo motion in response to movement of the hub structure with respect to the tower. With this arrangement, the rider carrier can undergo motion involving rotation around the tower and also displacement along the tower to provide a change in elevation during the ride. The change in elevation as the rider moves in a path around the tower can enhance the sensation experienced during the ride. Preferably, the rider carrier is suspended from the hub structure by a flexible suspension link extending therebetween. The flexible suspension link may comprise at least one flexible line (such as a cable or chain), or a plurality of flexible lines operating in conjunction. The rider carrier may also be connected to the rotatable hub for swivelling movement with respect thereto. Typically, such an arrangement may be achieved by way of a swivel connection between the flexible suspension link and the rotatable hub. Swivelling movement can provide a further aspect to the sensation experienced during the ride. Typically, the swivelling movement comprises rotation about an axis corresponding to the longitudinal extent of the flexible suspension link. Preferably, the amusement ride is adapted to accommodate a plurality of riders at the same time. This may be achieved by the provision of a plurality of rider carriers connected to the rotatable hub in circumferentially spaced relation. The or each rider carrier may be of any appropriate form such as, for example, a harness structure to receive an support a rider or several riders, or a carriage (such as a chair or pod) in which one or more riders can be accommodated. A rider carrier which can accommodate several riders is advantageous in that there is any opportunity for riders to enjoy the thrill of riding together in a common carrier. In one arrangement, the rider carrier may be adapted to rotate about an axis transverse to the longitudinal extent of the flexible suspension link. In such an arrangement, the rider carrier may comprise a capsule with seating for accommodating one or more riders. The rider carrier may be provided with a control device such as a vane or other control surface for imparting rotational motion about the rotational axis during movement of the rider carrier through the air. There may also be provision for a rider to selectively operate the control device during the ride for providing variation to the ride. The tower may be a permanent installation or it may be demountable to permit relocation. In another arrangement the tower may be mounted on a trailer and be collapsible onto the trailer for transportation. The tower may, in one arrangement, comprise a column having a plurality of column sections disposed in series and connected one to another. The column sections may be detachably connected together to facilitate demounting for relocation. The tower may, in another arrangement, comprise a column having extended and contracted conditions, the column comprising a plurality of column sections moveable one relative to another for moving the column between the extended and contracted conditions. Typically, the column sections are disposed in a telescopic arrangement. With this arrangement, the column may be pivotally mounted on a trailer whereby the contracted column is pivotally moveable between an upright condition and a collapsed condition folded down onto the trailer for transportation. Preferably, the tower extends to a height of at least 30 metres. Typically, the tower has a height of about 60 metres, and possibly higher in certain applications. The hub structure may comprise a plurality of outriggers, one corresponding to each rider carrier, with the flexible suspension link from which each rider carrier is suspended being connected to a respective one of the outriggers. The connection between each suspension flexible link and the respective outrigger may comprise the swivel connection which permits swivelling movement of the rider carrier referred to previously. Where the tower is collapsible into a folded condition on a trailer, the outriggers are preferably also collapsible into a condition alongside the column. Preferably the hub structure is rotatably supported on a ring structure adapted for displacement along the tower while being fixed against rotation with respect to the tower. The first drive means may comprise a drive wheel and a motor for rotating the drive wheel, the drive wheel being in driving engagement with the hub structure, whereby rotation of the drive wheel causes rotation of the hub structure relative to the ring structure. The second drive means is preferably, operable for selectively causing the ring structure to undergo displacement with respect to the tower. The second drive means may comprise a cable and pulley system from which the ring structure is suspended, and a winch mechanism, the cable and pulley system comprising a pulley mounted on the tower above the uppermost extent of displacement of the ring structure and a cable having an end thereof connected to the ring structure, the cable extending upwardly from the ring structure, around the pulley and downwardly to be operable by the winch mechanism. The cable is preferably connected to a counter-weight, the counter weight being connected to the winch mechanism by way of a winch cable. Preferably, the cable and pulley system comprises a plurality of cables and associated pulleys, each cable being connected at one end to the ring structure, extending upwardly over its respective pulley and downwardly to be operable by the winch mechanism. Preferably, the counter-weight is accommodated within the open interior of the column. The design of the amusement ride according to the invention is conducive to construction on a very large scale. As alluded to earlier, it is envisaged that the tower may have a height in excess of 60 metres in certain applications. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be better understood by reference to the following description of several specific embodiments thereof as shown in the accompanying drawings in which: FIG. 1 is a schematic perspective view of an amusement ride according to a first embodiment; FIG. 2 is a schematic fragmentary side view of the amusement ride, illustrating a support head moveably mounted on a tower; FIG. 3 is a schematic perspective view of the support head; FIG. 4 is a plan view illustrating the support head mounted on the tower; FIGS. 5a to 5d are schematic side elevational views illustrating the amusement device in various stages of operation; FIG. 6 is a schematic perspective view of an amusement ride according to a second embodiment; FIG. 7 is a plan view of the amusement ride of FIG. 6; FIG. 8 is a schematic side elevational view of the amusement ride, with the support head shown in a lowered condition; FIG. 9 is a plan view of the tower forming part of the amusement ride according to the second embodiment; FIG. 10 is a fragmentary elevational view of the lower end of the tower; FIG. 11 is a fragmentary view illustrating a rider carrier and suspension link for an amusement ride according to a third embodiment; FIG. 12 is a schematic view of a capsule defining the rider carrier shown in FIG. 11; FIG. 13 is a schematic elevational view of an amusement ride according to a fourth embodiment; FIG. 14 is a schematic side elevational view of the amusement ride of FIG. 13 shown in a collapsed condition for transport; FIG. 15 is a schematic side elevational view of the amusement ride of FIG. 13, shown at one stage of the erection process; FIG. 16 is a schematic side elevational view of the amusement ride of FIG. 13, shown at a further stage of the erection process; FIG. 17 is a schematic side elevation view of the amusement ride of FIG. 13, shown at a still further stage of the erection process; FIG. 18 is a view similar to FIG. 17, with the exception that it illustrates some componentry not previously visible; FIG. 19 is a schematic side view of the tower mounted on the trailer, showing in particular the mechanism for extending and contracting the tower; FIG. 20 is a schematic plan view of the amusement ride of FIG. 13, illustrating in particular deployed outrigger legs for the trailer; FIG. 21 is a schematic plan view of a support head mounted on the tower, the support head incorporating outriggers from which riders are suspended; FIG. 22 is a schematic perspective view of the support head but only showing two opposed outriggers; FIG. 23 is a schematic side view illustrating the support head mounted on the tower for rolling movement therealong; FIG. 24 is a schematic elevational view illustrating two roller assemblies forming part of the support head undergoing rolling movement along a lower section of the tower; FIG. 25 is a view similar to FIG. 24, with the exception that the roller assemblies are shown moving over the transition between the lower section of the tower and an intermediate section thereof; FIG. 26 is also a view similar to FIG. 24, with the exception that the roller assemblies are shown moving along the intermediate section of the tower; FIG. 27 is also a view similar to FIG. 24, with the exception that the roller assemblies are shown moving across the transition between the intermediate section of the tower and an upper section thereof; FIG. 28 is a still further view similar to FIG. 24, with the exception that the roller assemblies are shown moving along the upper section of the tower; and FIG. 29 is a fragmentary view illustrating the roller assemblies on a larger scale. BEST MODE(S) FOR CARRYING OUT THE INVENTION Referring to FIGS. 1 to 5 of the drawings, there is shown an aerial amusement ride 10 according to a first embodiment. The aerial amusement ride 10 involves conveyance of riders through the air in a manner somewhat simulating flight at an elevation sufficiently high to provide a thrilling sensation. The aerial amusement ride 10 comprises a tower 11 anchored to the ground 13. A support head 15 is mounted on the tower 13 and riders 17 are suspended from the support head 15 by way of flexible suspension links 19 for conveyance through the air about the tower. The riders 17 are conveyed along a path which extends around the tower 11, with the elevation of the riders being selectively variable, as will be explained later. The tower 11 comprises a base 21 and a column 23 mounted on the base 21. The column 23 is of framework construction, comprising a plurality of longitudinal elements 25 connected one to another by lateral elements 26 which provide bracing, as best seen in FIG. 4 of the drawings. Each longitudinal elements 25 is of rectangular cross-section and is oriented diagonally so that two adjacent faces 27, 28 thereof are outwardly facing, as best seen in FIG. 4. While not shown in the drawings, the column 23 in this embodiment comprises a plurality of column sections disposed in series one upon another, with adjacent sections being detachably connected together. With this arrangement, the height of the column, which is a matter of design choice, can be established by using an appropriate number of column sections. Additionally, the arrangement facilitates erection of the column 23, as it is merely necessary to fit one column section upon another, typically with the assistance of a crane or other suitable load lifting apparatus. Because of the framework construction of the column 23, there is an open space 29 defined within the column. The support head 15 comprises an inner ring structure 31 adapted for displacement along the column 23 while being fixed against rotation with respect thereto, and an outer hub structure 33 rotatably supported on the inner ring structure 31. The inner ring structure 31 is mounted on the column 23 for guided rolling movement therealong. Specifically, the inner ring structure 31 comprises a peripheral frame 35 of generally circular construction extending around the column 23. A plurality of sets of rollers 37 are mounted on the frame 35 in two groups spaced one with respect to the other in the longitudinal direction of the column 23. The roller sets 37 in each group are circumferentially spaced around the column 23, with each roller set 37 corresponding to one of the longitudinal elements 25 of the column 23. Each roller set 37 comprises two rollers 39 positioned for rolling engagement against respective outer adjacent faces 27, 28 of the corresponding longitudinal element 25, as best seen in FIG. 4. This is achieved by supporting the rollers 39 in each set with their axis of rotation substantially at 90 degrees with respect to each other. With this arrangement, the respective longitudinal element 25 defines a track and the faces 27, 28 define two track surfaces, with each roller 39 in the roller set 37 engaging a respective one of the track surfaces. The orientation of the two rollers 39 in each roller set 37 and also the track surfaces, ensures that the ring structure 31 is supported for guided rolling movement along the column 23 while being restrained against rotation around the column. The hub structure 33 comprises a hub frame 41 of generally circular construction rotatably mounted on the ring structure 31, and a plurality of outriggers 43 extending from the hub frame 41. A canopy covers the hub structure 33. The canopy 45 is shown partly cut-away in FIGS. 2 and 3. A first drive means 51 is provided for rotating the hub structure 33 with respect to the ring structure 31, thereby rotating the hub structure 33 with respect to the column 23. The drive means 51 comprises an electric motor 53 and a drive wheel 55 drivingly connected to the motor 53. The electric motor 53 is supported on the inner ring structure 31 and the drive wheel 55 is in driving engagement with a drive ring 57 mounted on the hub frame 41. In this embodiment, the drive wheel 55 comprises a rubber wheel which is adapted to frictionally engage the drive ring 57, whereby rotational torque applied to the drive wheel 55 is transmitted to the hub structure 33 through frictional engagement between the drive wheel 55 and the drive ring 57 mounted on the hub frame 41. A second drive means 61 is provided for displacing the support head 15, and thus the hub structure 33 forming part thereof, along the column 23. The second drive means 61 comprises a cable and pulley system 63 from which the support head 15 is suspended, together with a counter-weight 65 and a winch mechanism 67. The cable and pulley system 63 comprises a plurality of cables 71 (there being four such cables in this embodiment). One end of each cable 71 is attached to the ring structure 31 of the support head 15 and the other end of each cable is connected to the counter-weight 65. Each cable 71 passes over a respective pulley 73 mounted on the column 23 at a location above the uppermost extent of displacement of the support head 15. From the connection to the support head 15, each cable 71 passes upwardly to be routed around its respective pulley 73 and then extends downwardly to the counter-weight 65. The counter-weight 65 is connected to the winch mechanism 67 by way of a winch cable 75. The winch mechanism 67 incorporates a winch drum 68 about which the winch cable 75 can be wound and unwound. The counter-weight 65 is selected such that the support head 15 can travel downwardly under the influence of gravity, with its weight partly being compensated by the counter-weight 65. The rate of decent of the support means 15 on the column 23 is controlled by the rate at which the winch cable 75 is unwound from the winch mechanism 67. The winch mechanism 67 incorporates a disc brake (not shown) operation of which can regulate the rate at which the winch cable 75 is unwound. Operation of the winch mechanism 67 to wind the winch cable 75 about the winch drum pulls the counter-weight 65 downwardly thereby pulling the support head 15 upwardly through the cable and pulley system 63. The counter-weight 65 is accommodated within the open space 29 within the framework defining the column 23. This provides for compactness of construction and also allows the longitudinal elements 25 within the column 23 to be used for the purposes of guiding movement of the counter-weight as it moves upwardly and downwardly corresponding to displacement of the support head 15. To this end, the periphery of the counter-weight 65 is configured so that the counter-weight can be accommodated within the open space 29 for guided movement therealong by the longitudinal elements 25. Compactness of construction is further achieved by positioning the winch mechanism 67 on the base 21 and also within the open space 29 defined by the column 23. Accordingly, both the counter-weight 65 and the winch mechanism 67 are accommodated within the confines of the tower 13. The riders 17 are accommodated in rider carriers 81 which are suspended from the outriggers 43 by way of the flexible suspension links 19. Each flexible suspension link 19 comprises a flexible line 83 which in this embodiment is in the form of a cable or chain, with one end of the flexible line 83 being connected to a respective one of the outriggers 43 and the other end of the flexible link 83 being connected to a respective rider carrier 81. In this embodiment, the rider carriers 81 comprise harness structures in which the riders 17 can be accommodated. Other types of rider carriers are of course possible, including carriages in the form of seats or pods accommodating one or more riders. While the harness structures defining the rider carriers 81 in the embodiment each accommodate a single rider, it is possible to utilise a tandem or other multiple harness in which several riders may engage in the thrill of riding together in a common carrier. The connection between each suspension line 83 and its respective rider carrier 81 may incorporate a swivel to permit the rider to twist around an axis corresponding to the longitudinal extent of the suspension line. In this way, the rider has the option of twisting or otherwise manipulating his or her body around in order to provide further variety to the ride and thus enhance the sensation experienced during the ride. Operation of the ride according to the first embodiment will now be described. The ride commences with the riders 17 at ground level or at an appropriate loading station near ground level, as shown in FIG. 5a. The support head 15 is lowered by operating the winch mechanism 67 to unwind the winch cable 75 from the winch drum 68. Once the support head 15 has been lowered sufficiently so that the riders 17 can be accommodated in the rider carriers 81 and appropriately secured in position, the winch mechanism 67 is operated to wind in the winch cable 75, thereby pulling the counter-weight 65 downwardly and thus causing the support head 15 to move upwardly along the column 23, as illustrated in FIG. 5b. During the upward ascent, and once the riders 17 are sufficiently clear of the ground or loading station as well as any other obstacles, the first drive means 51 can be actuated so as to cause the hub structure 33 to rotate about the column 23. This causes the riders 17 to swing outwardly on the suspension lines 83 and move through a somewhat circular path around the column 23, also as shown in FIG. 5b. During the ride, the support head 15 can be lowered as illustrated in FIG. 5c and raised as illustrated in FIG. 5d in order to change the elevation of the riders as they move through the circular path about the column 23. The speed of rotation of the hub structure 23 can also be varied if desired to provide variation to the ride characteristics. Typically, the hub structure 33 rotates at about 10 rpm in this embodiment. The displacement of the support head involving movement upwardly and downwardly during the ride may be at speeds up to about 5 m/s. During the ride, the support head 15 can be lowered at a rate faster than the riders 17, thus providing situations where the riders 17 may be higher than the points at which they are attached to the ride. The variation in elevation during the revolving motion of the riders provides an exciting ride, particularly when regard is had to the significant height at which the ride is conducted. Further variation is available to the riders 17 during the ride through swivelling movement at the connection between the suspension line 83 and the rider carrier 81. To complete the ride, the support head 15 is lowered so as to return the riders 17 to the ground or loading platform. Referring now to FIGS. 6 to 10 of the drawings, there is shown an amusement ride 100 according to a second embodiment. The amusement ride 100 is similar in many respects to the amusement ride 10 according to the first embodiment and corresponding reference numerals are used to identify similar parts. The tower 11 comprises a base 21 and a column 23, as was the case in the first embodiment. In this embodiment, the base 21 comprises a plurality of legs 101 extending radially outwardly, with anchoring pads 103 provided on the outer ends of the legs 101 for engagement with the ground 13. The base 21 also incorporates a station 105 at which riders are loaded onto, and unloaded from, the ride. The station 105 comprises a platform 107 which extends around the tower 11 and which is accessible by way of stairs 109. The base 21 also incorporates a portion 111 extending downwardly, accommodated within a hole 113 formed in the ground. The column 23 is of framework construction and is formed in column sections 115 connected one to another at junctions 117. In this embodiment, the rider carriers 81 comprise chair structures 119 which may be fitted with an appropriate restraint system for the purposes of restraining riders in position during operation of the ride. The flexible suspension link 19 suspending each rider carrier 81 to a respective outrigger 43 comprises a pair of flexible lines 121 such as cables or chains. The flexible lines 121 are connected at their upper end to a crossbar 123 which in turn is connected to the respective outrigger 41 by way of swivel connection 125. Operation of the amusement ride 100 according to the second embodiment is similar to that of amusement ride 10 according to the first embodiment, with the ride commencing with the support head 15 lowered into a position at which riders can enter the chairs 119 at the station 105, as shown in FIG. 8 of the drawings. The support head is then raised into an operative condition and rotated and displaced in a similar fashion to the first embodiment. In this embodiment, all chairs 119 are accommodated at the station 105 at the same time. Thus, riders enter and leave the various chairs 119 at the station at the same time. In an alternative arrangement, the station may be at a specific location, with the chairs 119 moving sequentially into and out of the station. With such an arrangement, the drive means for rotating the support head 15 can be utilised to rotate the chairs in an indexing fashion, with the chairs moving into and out of the station one after another. This can be advantageous in that the ride operator would than be in a better position to exercise control over the loading and unloading process, particularly with regard to the manner in which riders enter and leave each chair. The amusement ride 100 according to the second embodiment has been designed so that it is conducive to construction on a very large scale. Indeed, the tower 11 is approximately 60 metres in height and the diameter of the rotatable support head 15 is approximately 18 metres. The enormous size of the amusement device ensures that the riders are exposed to an extreme height during the ride, thereby enhancing the sensation experienced during the ride. Referring now to FIGS. 11 and 12, there is shown a rider carrier 81 and a flexible suspension link 19 for an amusement ride according to a third embodiment. The flexible suspension link 19 comprises two lines 131 suspended from a cross member 133 connected by pivot connection 135 to outrigger 43. The pivot connection 135 facilitates outward swinging motion of the rider carrier. The rider carrier 81 comprises a capsule 141 in which several riders can be accommodated. The capsule 141 incorporates seating 143 for riders in the capsule. The capsule 141 is rotatable supported between a two trunnions 145, with each trunnion 145 being connected to one of the lines 131. With this arrangement, the trunnions 145 define a rotational axis about which the capsule 141 can rotate. The capsule 141 has an outer periphery fitted with control devices 147 in the form of vanes, as shown in FIG. 12. The vanes 147 cause the capsule 141 to rotate about the rotational axis upon movement of the capsule through the air with rotation of the hub structure 33. The angle of attack of the vanes 147 determines the speed of rotation of the capsule. The direction of rotation may be altered by altering the attitude of the vanes; that is, by facing them in an opposite direction relative to the rotational axis of the capsule. There may be provision for a rider to selectively move one or both of the vanes for the purposes of controlling the direction and speed of rotation of the capsule. The control may be achieved by way of a lever mechanism located within the capsule 141 and operatively connected to one or both vanes. This presents the rider with an opportunity to control his or her own ride, thereby providing variation to the ride and further enhancing the sensation experienced on the ride. There may also be provision for locking the capsule 141 against rotation during the ride. The locking mechanism may be controlled by the ride operator who may provide the rider with the choice as to whether or not the rotational function will be employed during the ride. The rotatable capsule provides a further axis of rotation during the ride, providing variety and thus a generally more exciting ride. The feature may also be conducive to repeat business, as riders may wish to develop their skills over time in controlling the ride. In the embodiments previously described, the amusement rides are not readily transportable from one location to another. In particular, each embodiment has the tower thereof anchored to the ground. This is appropriate for amusement rides intended to be permanent installations, such as for instance in amusement parks. However, there is a need for an amusement ride that can be transported from one location to another according to demands and opportunities presented for the amusement ride. Such an amusement ride would be particularly advantageous for use at temporary amusement sites, such as those created in public open space, fairgrounds, parklands, and parking areas and other spaces at shopping centres. An amusement ride can be provided with mobility by appropriate design to facilitate ready disassembly into a condition for road transport such as by incorporating the ride onto a transport vehicle such as a trailer. However, many jurisdictions only allow one trailer and so it would be advantageous for the amusement ride to be incorporated on a single trailer. The fourth embodiment, as shown in FIGS. 13 to 28, provides such an amusement ride. Referring now to FIGS. 13 to 29, there is shown a mobile amusement ride 150 incorporated on a trailer 165. The amusement ride 150 comprises a tower 151 and a support head 153 mounted on the tower 151. Riders 155 can be suspended from the support head 153 by way of flexible suspension links 157 such as cables for conveyance through the air about the tower. The riders 155 are carried in rider carriers 158 attached to the ends of the flexible suspension links 157. In this embodiment, the rider carriers 158 comprise harnesses. However, the rider carriers may take any other appropriate form such as seat structures and gondolas. The tower 151 comprises a column 161 mounted on a base 163 incorporated into the trailer 165. The trailer 165 is of conventional construction, involving a frame structure 167 carried on wheels 169. The frame structure 167 has facility at the forward end thereof for attachment to a towing vehicle. The frame structure 167 incorporates a stabiliser system 170 comprising retractable outrigger legs 171, as best seen in FIG. 20, for engagement with the ground 172 to stabilise the trailer 165 when the amusement ride is operational. The amusement ride 150 is selectively moveable between an operational condition and a collapsed condition on the trailer 165 for transport. When the amusement ride 150 is in the operational condition, the column 161 occupies an upright condition, extending upwardly from the base 163, as shown in FIG. 13. The column 161 is of telescopic construction, comprising a plurality of column sections 180 moveable one with respect to another to provide extended and contracted conditions for the column. In this embodiment, there are three column sections 180, being a first column section 181, a second column section 182 and a third column section 183. The first column section 181 is lowermost and the third column section 183 is uppermost, with the second column section 182 being intermediate the other two column sections. The first section 181 receives the intermediate section 182 which in turn receives the upper section 183 as the column 161 moves from the extended condition into the contracted condition. In the contracted condition of the column 161, the various column sections 180 are in a nested arrangement. Cable and pulley system 186 is provided for controlling extension and contraction of the column 161. The system 186 operates in conjunction with winch 188 mounted on the trailer, as shown in FIG. 19. In this embodiment, the column 161 is of rectangular cross-section, comprising four longitudinal outer sides 162. The column sections 180 have outer faces 184 which co-operate to form the four column sides 162. With the column 161 being of telescopic construction, the various column sections 180 necessarily have different lateral dimensions and consequently there are two steps 185, 187 present in the outer sides 162 at the locations of overlap between the respective column sections 180. In this embodiment, the lateral dimensions of each column comprise width and depth, represented by the spacing between opposed sides thereof. The column 161 is hingedly mounted at hinge 189 to the base 163 for pivotal movement into the collapsed condition whereby the contracted column is folded down into a compact arrangement on the trailer, 165 as best seen in FIG. 14 of the drawings. A power device in the form of a hydraulic ram 191 is provided for pivotally moving the contracted column 161 about the hinge 189 between the collapsed and upright conditions. The support head 153 comprises an inner ring structure 193 adapted for displacement along the column 161 while being fixed against rotation with respect thereto, and an outer hub structure 195 rotatably supported on the ring structure 193, as was the case with earlier embodiments. As is also the case with earlier embodiments, the ring structure 193 is mounted on the column 161 for guided rolling movement therealong. In the present embodiment, however, there is a need for the inner ring structure 193 to accommodate the different lateral dimensions that exist along the column 161 as a result of the telescopic construction of the column, as well as the resultant steps 185, 187. For this purpose, the ring structure 193 is provided with four roller assemblies 200, one corresponding to each of the four longitudinal outer sides 162 of the column 161, with each roller assembly 200 adapted for rolling movement along one of the respective column sides. The roller assemblies 200 are each mounted on a frame 201 forming part of the ring structure 193. Each roller assembly 200 comprises two sets of rollers 210 mounted on the frame 201 spaced one with respect to the other in the longitudinal direction of the column 161, thereby providing two groups 205, 207. Each roller set 210 comprises three rollers positioned for rolling engagement against a respective outer side 162 of the column 161. More particularly, each roller set 210 comprises a first roller 211, a second roller 212 and a third roller 213. The first roller 211 is provided for rolling engagement along the respective outer face 184 of the first column section 181, the second roller 212 is provided for rolling engagement along the respective outer face 184 of the second column section 182, and the third roller 213 is provided for rolling engagement along the respective outer column face 184 of the third column section 183. It is necessary for each roller set 210 to accommodate the different lateral dimensions of the three column sections 181, 182 and 183. For this purpose, the second roller 212 in each roller set 210 is retractable from an operating condition in which it can rollingly engage the second column section 182 to guide movement of the ring structure 193 therealong. The second roller 212 is retractable into a retracted condition which accommodates the first column section 181. In the retracted condition, the second roller 212 rolls along the first column section 181, and in doing so interacts with that column section to provide some guidance. The third roller 213 is also retractable from an operating condition in which it can rollingly engage the third column section 183 to guide movement of the ring structure 193 therealong. The third roller 213 has two retracted conditions, being an intermediate retracted condition accommodating the second column section 182 and a fully retracted condition accommodating the first column section 181. In each of the intermediate retracted condition, the third roller 213 rolls along the second column section 182 in a floating fashion without the interaction necessarily providing any effective guidance, However, in the fully retracted condition the third roller 213 can interact with the first column section 181 to provide some guidance. The second and third rollers 212, 213 are each biased towards its respective operating condition, and also is moveable away from that condition towards the relevant retracted condition upon contact with the step 185, 187 at the junction between adjacent column sections during descent of the support head 153 along the column 161. Each first roller 211 is supported on a rigid arm 221, and each of the second and third rollers 212, 213 are supported on a swing arm. Specifically, each second roller 212 is supported on swing arm 222 and each third roller 213 is supported on swing arm 223. The swing arms 222 and 223 are pivotally supported on the frame 201 for pivotal movement between the operating and retracted conditions. The swing arms 222, 223 are oriented so that the rollers supported thereon are biased into their operating conditions under the influence of gravity. A stop 225 is associated with each swing arm 222, 223 to limit the extent of retraction of the swing arm. With this arrangement, the stop 225 associated with swing arm 222 determines the retracted condition thereof, and the stop 225 associated with the third swing arm 223 determines the fully retracted condition thereof. The manner of operation of the roller assemblies is best seen with reference to FIGS. 24 to 28 of the drawings, where two opposed roller assemblies 200 are shown in engagement with the column 161. In the drawings, only two roller assemblies 200 are shown, being the roller assemblies in engagement with two opposed outer sides 162a and 162b of the column. It will be appreciated that there are a further two roller assemblies which are not shown in engagement with the other two opposed faces. As is illustrated in FIG. 24, each of the rollers is in contact with the respective outer side 162 of the column 161. The first rollers 211 are in contact with the outer side 162 for guiding movement therealong by virtue of their position as determined by the rigid arms 221. The second rollers 212 are in rolling contact with the outer side 162 for guiding movement therealong by virtue of being in their retracted conditions as determined by their respective stops 225. Similarly, the third rollers 213 are in rolling contact with the outer side 162 for guiding movement therealong also by virtue of their fully retracted conditions as determined by their respective stops 225. As the roller assemblies 200 move across the step 185 between the first and second column sections 181, 182, the second rollers 212 move under the influence of gravity into their operating conditions, and the third roller assemblies 213 move into their intermediate retracted conditions. At this stage, guiding support is provided by the trailing group 207 of rollers being in engagement with the first column section 181, and the second rollers 212 within the leading group 205 being in guiding engagement with the second column section 182, as shown in FIG. 25. While the third rollers 213 within the leading group 205 are in contact with the second column section 182, it is only a floating engagement by virtue of the influence of gravity; they do not provide any significant guiding support. Continued upward movement results in both rollers groups 205, 207 within the roller assemblies 200 being in contact with the second column section 182, as shown in FIG. 26. At this stage, guiding support is provided by the second rollers 212. The first rollers 211 are entirely clear of the second column section 182, and the third rollers 213 are merely in floating engagement with the columns section. As the roller assemblies 200 continue their upward movement they encounter the second step 187, as shown in FIG. 27 of the drawings. At this stage, the third rollers 213 in the leading group 205 have moved into their operating conditions for rolling engagement with the third column section 183, with the result that guiding movement is provided by those rollers in the leading group 205 as well as the second rollers 212 in the trailing group 207. Further continued upward movement of the roller assemblies 200 results in all of the third rollers 213 being in rolling engagement with the third column section 183 for guiding movement therealong, as shown in FIG. 28. A similar sequence operates upon reverse movement of the roller assemblies 200 upon descent of the support head 150. As the roller assemblies 200 encounter the step 187 during the descent, the second rollers 212 move into their operating conditions for engagement with the second column section 182 and the third rollers 213 are deflected into their intermediate retracted condition by contact with the step. Similarly, upon encountering the step 185, the first rollers 211 move into engagement with the first column section 181, and the second rollers 212 are deflected into their retracted conditions for rolling engagement with the first column section 181. Similarly, the third rollers 213 are deflected from their intermediate retracted condition into their fully retracted condition, also for rolling engagement with the first column section 181. A first drive means (not shown) is provided for rotating the hub structure 195 with respect to the ring structure 193, thereby rotating the hub structure with respect to the column 161. The drive means is of similar construction, and also operates in a similar way, to first drive means 51 in earlier embodiment and so will not be described further. A second drive means 231 is provided for displacing the support head 153, and thus the hub structure 195 forming part thereof, along the column 161. The second drive means 231 comprises a cable and pulley system 233 from which the support head 153 is suspended, together with a counter-weight 235 and a winch mechanism 237. The winch mechanism 237 is mounted on the trailer 165. The cable and pulley system 233 comprises a plurality of cables 239 (there being four such cables in this embodiment one corresponding to each side of the column). One end of each cable 239 is attached to the corresponding frame 201 of the ring structure 193 of the support head 153, and the other end of each cable is connected to the counter-weight 235. Each cable 239 passes over a respective pulley system 241 mounted on the column 161 at a location above the uppermost extent of displacement of the support head 153. From the connection to the support head 153, each cable 239 passes upwardly to be routed around its respective pulley system 241 and then extends downwardly to the counter-weight 235. The counter-weight 235 is connected to the winch mechanism 237 by way of a pair winch cables 245. The winch cables 239 are provided as a pair for safety purposes. The winch mechanism 237 incorporates a winch drum 247 about which the winch cables 245 can be wound and unwound. The counter-weight 235 is selected such that the support head 153 can travel downwardly under the influence of gravity, with its weight being partly compensated by the counter-weight 235. The rate of decent of the support means 153 on the column 161 is controlled by the rate at which the winch cables 245 are unwound from the winch mechanism 237. The winch mechanism 67 incorporates a disc brake (not shown) operation of which can regulate the rate at which the winch cable 245 are unwound. The counter-weight 235 is accommodated within the open interior 251 in the column 161. This provides for compactness of construction. Additionally, a safety brake 249 is associated with each cable 239 in the cable and pulley system 233. Operation of the winch mechanism 237 to wind the winch cables 245 about the winch drum 247 pulls the counter-weight 235 downwardly, thereby pulling the support head 153 upwardly through the cable and pulley system 233. The outer hub structure 195 comprises an inner hub portion 261 rotatably supported on the inner ring structure 93, and a plurality of outriggers 263 extending outwardly from the inner hub portion 261. Each outrigger 263 comprises a rigid outrigger arm 265 configured as a pair of rigid elements 267, as shown in FIG. 22. The outrigger arm 265 is pivotally connected at its inner end by hinge 268 to the inner hub portion 261. Each outrigger 263 further comprises a flexible tensile element 271 configured as two cables 273 each attached at one end 275 to the inner hub portion 261 and attached at 277 to the outer end of the rigid outrigger arm 265. With this arrangement, the outriggers 263 are foldable between an operating condition extending outwardly from the inner hub portions 261 for supporting riders (as shown in FIG. 13) and a collapsed condition (as shown in FIGS. 14 and 15). Each outrigger 263 is moveable from the operating condition to the collapsed condition by pivotal movement of the rigid outrigger arms 265 about the hinges 268. In the collapsed condition, the rigid outrigger arms 265 are folded upwardly to lie alongside the column 161. The flexible nature of the cables 273 facilitate folding movement of the outrigger arms 265. The outriggers 263 are returned to the operating condition by folding the rigid outrigger arms 265 outwardly about the hinge axis 268 until the cables 273 are under tension, thereby supporting the rigid outrigger arms in the extended condition. A control mechanism (not shown) is provided for moving the outrigger portion 263 between the folded and extended conditions. Folding of the outriggers 263 provides the support head 153 with the feature of collapsibility. A cradle 250 is provided for accommodating the support head 153 in its lowermost position on the column 161. The support head 153 is rested on the cradle 250 before the support head 153 is collapsed. Once erected, the amusement ride 150 according to this embodiment operates in a generally similar way to the amusement ride 10 of the first embodiment. However, the amusement ride 150 is mobile and that aspect of the ride will now be described. As explained previously, the amusement ride 150 has a collapsed condition for transport, as illustrated in FIG. 14. In the collapsed condition, the amusement ride 150 is accommodated on the trailer 165 which can be towed to a site at which the amusement ride is to be erected. Upon arrival at the site, the stabilizer system 170 is deployed, involving extension of the outrigger legs 171 outwardly for engagement with the ground, as illustrated in FIG. 20. Once the trailer 165 has been stabilized, the column 161 is pivoted from the collapsed condition into the upright condition by operation of the hydraulic ram 191. At this stage, the amusement ride 150 is in the condition illustrated in FIG. 15. It will be noted that the column 161 is still in its contracted condition and the support head 153 is also in its collapsed condition. The support head 153 is then moved from the collapsed condition to the operating condition, involving pivotal movement of the outriggers 263 outwardly into the extended condition, as shown in FIG. 16. The column 161 is then moved from the contracted condition into the extended condition, as shown in FIG. 17. Other procedures involved in assembly of the amusement ride 150 for use can then be completed. As alluded to previously, the ride 150 operates in a similar fashion to the ride 10 according to the first embodiment, and so will not require further description, apart from noting that the roller assemblies 200 operate in the manner described in relation to FIGS. 24 to 28 in order to accommodate the various lateral dimensions of the column 161. When the amusement ride 150 is to be removed from site, it is disassembled in a procedure which is essentially a reverse of the assembly procedure, returning the ride 150 to the collapsed condition, as shown in FIG. 14, where it is accommodate on the trailer 165 for transport to another location. From the foregoing, it is evident that the present invention provides an amusement ride involving one or more riders being conveyed through the air but with the possibility of sufficient variation to provide an exciting ride conducive to riders returning for further rides. The amusement ride according to the invention can be constructed on a large scale such that the riders are elevated to a height that in itself provides excitement. The amusement ride is of a design which is conducive to construction on such a large scale. This is achievable even in the mobile amusement ride which is collapsible onto a trailer for transport, owing to the telescopic nature of the column and the ability of the support head to move along the telescopic column in a manner accommodating variations in lateral dimensions of the column. The ride also incorporates a simple yet highly effective arrangement for driving the support head both rotationally for moving the riders around through the air, and also linearly for varying the elevation of the riders during the ride as well as raising and lowering the riders with respect to the ground or a station at which the riders embark upon, and disembark from, the ride. Modifications and improvements may be made without departing from the spirit of the invention. Throughout the specification, unless the context requires otherwise, the word “comprise” or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. | <SOH> BACKGROUND ART <EOH>There are a variety of amusement rides involving a rider or riders being conveyed through the air in a manner somewhat simulating flight. The rides can be on a relatively small scale for use in playgrounds, or on a much larger scale for use in fair grounds and theme parks. One example of a ride involving conveyance of a rider through the air is a swing. Swings can range from the simple variety as commonly used in children's playgrounds to somewhat sophisticated structures requiring mechanisms for raising riders into a launch position from which they are released to swing through a curved trajectory. Whilst swings can provide an entertaining ride, they are generally rather limited in simulating flight, as typically riders only swing back and forth along a curved trajectory. Consequently, the rider achieves essentially the same ride each time. Another ride involving conveyance of a rider through the air is an aerial carousel, where one or more riders are moved through a generally circular path. Typically, an aerial carousel involves a central column supporting a rotatable hub from which riders are suspended to be conveyed through a circular path about the column, thereby simulating flight. In a simple playground version of such an amusement ride, chains extend from the rotatable hub and have handles (typically configured as rings) attached to their free end so that they can be grasped by the riders. With such rides, the riders initially propel the hub by running around the column while gripping the chains, and thereafter lift their feet from the ground so as to move through the air, simulating flight. In more sophisticated arrangements, the aerial carousels may incorporate rider carriers (such as harnesses or carriages), and also a drive system for driving the hub to cause the rider carriers to move through a circular path around the central column. As with other aerial amusement rides, the ride offered by an aerial carousel is somewhat limited, as the riders merely move through a generally circular path, achieving essentially the same ride each time. It would be advantageous for there to be an aerial amusement ride which can move a rider through the air but with provision for the ride to be varied should that be desired in order to enhance the sensation experienced by the rider. | <SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>The invention will be better understood by reference to the following description of several specific embodiments thereof as shown in the accompanying drawings in which: FIG. 1 is a schematic perspective view of an amusement ride according to a first embodiment; FIG. 2 is a schematic fragmentary side view of the amusement ride, illustrating a support head moveably mounted on a tower; FIG. 3 is a schematic perspective view of the support head; FIG. 4 is a plan view illustrating the support head mounted on the tower; FIGS. 5 a to 5 d are schematic side elevational views illustrating the amusement device in various stages of operation; FIG. 6 is a schematic perspective view of an amusement ride according to a second embodiment; FIG. 7 is a plan view of the amusement ride of FIG. 6 ; FIG. 8 is a schematic side elevational view of the amusement ride, with the support head shown in a lowered condition; FIG. 9 is a plan view of the tower forming part of the amusement ride according to the second embodiment; FIG. 10 is a fragmentary elevational view of the lower end of the tower; FIG. 11 is a fragmentary view illustrating a rider carrier and suspension link for an amusement ride according to a third embodiment; FIG. 12 is a schematic view of a capsule defining the rider carrier shown in FIG. 11 ; FIG. 13 is a schematic elevational view of an amusement ride according to a fourth embodiment; FIG. 14 is a schematic side elevational view of the amusement ride of FIG. 13 shown in a collapsed condition for transport; FIG. 15 is a schematic side elevational view of the amusement ride of FIG. 13 , shown at one stage of the erection process; FIG. 16 is a schematic side elevational view of the amusement ride of FIG. 13 , shown at a further stage of the erection process; FIG. 17 is a schematic side elevation view of the amusement ride of FIG. 13 , shown at a still further stage of the erection process; FIG. 18 is a view similar to FIG. 17 , with the exception that it illustrates some componentry not previously visible; FIG. 19 is a schematic side view of the tower mounted on the trailer, showing in particular the mechanism for extending and contracting the tower; FIG. 20 is a schematic plan view of the amusement ride of FIG. 13 , illustrating in particular deployed outrigger legs for the trailer; FIG. 21 is a schematic plan view of a support head mounted on the tower, the support head incorporating outriggers from which riders are suspended; FIG. 22 is a schematic perspective view of the support head but only showing two opposed outriggers; FIG. 23 is a schematic side view illustrating the support head mounted on the tower for rolling movement therealong; FIG. 24 is a schematic elevational view illustrating two roller assemblies forming part of the support head undergoing rolling movement along a lower section of the tower; FIG. 25 is a view similar to FIG. 24 , with the exception that the roller assemblies are shown moving over the transition between the lower section of the tower and an intermediate section thereof; FIG. 26 is also a view similar to FIG. 24 , with the exception that the roller assemblies are shown moving along the intermediate section of the tower; FIG. 27 is also a view similar to FIG. 24 , with the exception that the roller assemblies are shown moving across the transition between the intermediate section of the tower and an upper section thereof; FIG. 28 is a still further view similar to FIG. 24 , with the exception that the roller assemblies are shown moving along the upper section of the tower; and FIG. 29 is a fragmentary view illustrating the roller assemblies on a larger scale. detailed-description description="Detailed Description" end="lead"? | 20041227 | 20100223 | 20051027 | 74020.0 | 2 | NGUYEN, KIEN T | AMUSEMENT RIDE | SMALL | 0 | ACCEPTED | 2,004 |
|||
11,023,216 | ACCEPTED | Close fitting leakage resistant feminine hygiene pad | A feminine hygiene pad has a wider absorbent forward pad portion and a relatively narrow rear portion. The forward pad portion has a minimum width between two longitudinal sides, the minimum width is at least twice the maximum width of the rear portion, and the forward pad portion is at least one and one half times longer than the rear pad portion. | 1. A feminine hygiene pad having a wider absorbent forward pad portion and a relatively narrow rear portion; said forward pad portion having two sides and a minimum width between said sides, said minimum width being at least twice the maximum width of said rear portion; said forward pad portion being at least one and one half times longer than said rear pad portion. 2. The feminine hygiene pad of claim 1 further comprising a border of relatively thin material encompassing said forward pad portion and said rear pad portion. 3. The feminine hygiene pad of claim 1 wherein said forward pad portion has substantially straight sides. 4. The feminine hygiene pad of claim 1 wherein said forward pad portion has concavely curved sides. 5. The feminine hygiene pad of claim 1 wherein said narrow pad portion is short relative to said forward pad portion. 6. The feminine hygiene pad of claim 1 wherein said narrow pad portion is relatively long. 7. The feminine hygiene pad of claim 1 wherein said pad is made in sizes small medium and large. 8. A feminine hygiene pad having an elongated partially rounded generally rectangular wider absorbent pad portion, a tail-like narrow absorbent pad portion extending from said wider absorbent pad portion, said front pad portion being at least twice the length of said narrow absorbent pad portion, and a border of relatively thin material entirely encompassing said wider absorbent pad portion and said narrow absorbent pad portion. 9. The feminine hygiene pad of claim 8, said wider absorbent pad portion and said narrow absorbent pad portion each having a corresponding width, said wider absorbent pad portion being at least twice as wide as said narrow absorbent pad portion. 10. The feminine hygiene pad of claim 8, said wider absorbent pad portion and said narrow absorbent pad portion each having a corresponding length, said narrow absorbent pad portion being less than one half as long as said wider absorbent pad portion. 11. A feminine hygiene pad having a wider absorbent pad portion, a narrow absorbent pad portion extending from said wider absorbent pad portion, each pad portion having a corresponding length and width, said narrow absorbent pad portion having a maximum width less than about one half of the minimum width of said wider absorbent pad portion and the length about twice the length of said wider absorbent pad portion. 12. The feminine hygiene pad of claim 11 further comprising a border of relatively thin material entirely encompassing said wider absorbent pad portion and said narrow absorbent pad portion. 13. A feminine hygiene pad having an elongated partially rounded generally rectangular wider absorbent pad portion, a narrow tail-like absorbent rear pad portion extending from said wider absorbent pad portion, said wider forward pad portion being at least one and a half times the length of said rear pad portion. 14. The pad of claim 13 further comprising a border of relatively thin material entirely encompassing said wider absorbent pad portion and said narrow absorbent pad portion. 15. A feminine hygiene pad having a wider absorbent forward pad portion and a relatively narrow rear portion; each said forward pad portion and said rear portion being of partially rounded generally rectangular shape; said forward pad having a minimum width at least twice the maximum width of said rear portion; said forward pad portion being at least one and one half times longer than said rear pad portion. | CROSS REFERENCE TO RELATED APPLICATIONS THIS APPLICATION IS A CONTINUATION OF APPLICATION NO. 10/241,726 FILED ON Sep. 11, 2002. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to feminine hygiene pads. 2. State of the Prior Art Feminine hygiene pads are disposable, liquid absorbent pads applied to the crotch area by women in order to absorb menstrual fluids. Existing feminine hygiene pads are symmetrical in shape along a longitudinal dimension, with wider rounded ends and a narrower mid-portion defined between opposite concave side edges. In existing pads the wide rear portion of the pad fits over the buttocks and allows menstrual fluids to leak to the rear of the thighs and onto the buttocks. This prevents women wearing these pads from sleeping on their backs in order to control such leakage. Another shortcoming of existing pads is that they are oversized and cannot be worn discreetly with skimpy or small garments or tight fitting clothing. A need exists for improved feminine hygiene pads which fit better to the contour of the user's body to control rearward leakage of menstrual fluid and to permit discreet use of the pad with close fitting or skimpy clothing. SUMMARY OF THE INVENTION This invention addresses the aforementioned need by providing a feminine hygiene pad having an absorbent forward pad portion, the forward portion having a longitudinal dimension and a transverse dimension, and a rear portion extending from the forward portion along the longitudinal dimension and having a width lesser than one half of the transverse dimension. The width of the rear portion may be about one-third of the transverse dimension and the rear portion may have a length of approximately one-third of the aforementioned longitudinal dimension. The forward portion may have a wider front and a narrower mid-portion, both the forward portion and the mid-portion being substantially wider than the rear portion. The rear portion is of sufficient length in the direction of the longitudinal dimension to be retained between the buttocks of a user, and preferably the rear portion is formed integrally with the forward portion and is made of the same material as the forward portion. The forward portion has an absorbent body bonded along a perimeter thereof by a bonded edge. The mid-portion has two opposite concavely curved sides and a convexly curved front edge, while the rear portion may have generally parallel sides in the direction of the longitudinal dimension, such that the rear portion is a generally rectangular elongated tab. More generally, this invention is a feminine hygiene pad having a longitudinal dimension along the length thereof, a relatively wide absorbent frontal portion and a much narrower elongated rear portion sized for retention between the buttocks of a user. Set forth below is a brief summary of the invention which achieves the foregoing and other objectives and provides the foregoing and hereafter stated benefits and advantages in accordance with the structure, function and results of the present invention as embodied and broadly described herein. This feature is specific to, but not limited by this specificity, the need to prevent leakage of fluids, the main point of absorbency is in the main portion of the pad. Another feature of this aspect of the Feminine Hygiene Pad is that it is of minimal size and is intended to be worn with small sized textile and tight fitting garments. More specifically, the feminine hygiene pad of this invention has a wider absorbent forward pad portion and a relatively narrow rear portion adapted to be worn between the buttocks of a user, the rear portion having a rear edge and a rear width between rear side edges, the forward pad portion having forward side edges including divergent side edge portions diverging from the rear side edges and a transition from the divergent side edge portions to non-divergent side edge portions. The forward pad portion increases in width between the divergent side edges to a location along the longitudinal dimension corresponding to a pad width of at least twice the rear width. The forward pad portion has a forward pad length measured from the location along the longitudinal dimension to a front edge of the pad. The rear portion has a rear length measured from the rear edge to the aforementioned location along the longitudinal dimension. The forward pad length is at least one and one half times longer than the rear length, and the pad has a border of relatively thin material along at least some of the side edges, the rear edge and the front edge. In one form of the invention, the forward pad length is about twice as long as the rear length. The rear portion is preferably integral with the forward pad portion, and the absorbent forward pad portion may be substantially thicker than a thickness of the rear portion. The absorbent forward pad portion may be much thicker than a thickness of the rear portion. The forward pad portion has a wider front and a narrower mid-portion, the mid-portion being at least twice as wide as a width of the rear portion. The rear portion may be made of the same material as the forward pad portion. The forward pad portion has an absorbent body bonded along a perimeter thereof by a bonded edge of the above mentioned relatively thin material. The hygiene pad may have a continuous upper surface and a continuous bottom surface, each surface being common to the forward pad portion and the rear pad portion. In another aspect of this invention the forward side edges of the forward pad portion have inturned side edge portions defining therebetween a pad mid-portion of minimum width longitudinally located between pad portions of greater width than the minimum width and also longitudinally located between the transition and a front edge of the pad, the minimum width being greater than the rear width, and a border of relatively thin material along at least some of the side edges, the rear edge and the front edge. The minimum width is preferably more than twice the rear width of the rear portion, the inturned side edges may have concavely curved portions of the forward side edges, and the pad mid-portion of minimum width is desirably located approximately midway between the divergent side edge portions and the front edge of the pad. In one possible form of the invention the forward pad portion increases in width between the divergent side edges to a location along the longitudinal dimension preferably corresponding to a pad width of at least twice the rear width, the forward pad portion has a forward pad length measured from the said location along the longitudinal dimension to a front edge of the pad, the rear portion has a rear length measured from the rear edge to the said location along the longitudinal dimension, and the forward pad length is substantially longer than the rear length. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top view of the feminine hygiene pad; FIG. 2 is a right side view thereof; FIG. 3 is a left side view thereof; FIG. 4 is a rear end view thereof; FIG. 5 is a bottom view thereof; and FIG. 6 is a front end view thereof. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT With reference to the drawings, FIG. 1 shows the feminine hygiene pad generally designated by the numeral 10. The feminine hygiene pad 10 has an absorbent front portion 12 having a longitudinal dimension between a front end 14 and a rear portion 20, and a transverse dimension between a left side edge 16 and a right side edge 18. The top view of the pad in FIG. 1 with top pad surface 15 is seen to be similar to the bottom view of the pad with bottom pad surface 17 in FIG. 3. The two side edges 16, 18 of the front portion are seen in FIG. 1 to have concave portions 22 which define a narrower mid-portion 24 in relation to the wider front 26 defined by convex front edge 28. The pad is also seen to have a thicker central portion or absorbent body 30 which is permanently bonded at its perimeter by bonded edge 32. The side edges 16, 18 have convergent portions 34 which taper inwardly to a transition 36 from which extends the rear portion 20. The rear portion 20 is seen to have two straight mutually parallel sides 38 and a transverse rear edge 40. The side edges 38 are relatively long in relation to the rear edge 40 such that the rear portion is a generally rectangular elongated tab extending from the forward portion 12 along the longitudinal dimension. It will be further seen from the drawings that the rear portion 20 is much narrower than the front portion 12, and in the illustrated embodiment the width of the rear portion 20 is about one third the width between the side edges 16, 18 of the front portion 12. The drawings further show the rear portion to have a length, as measured along the side edges 22 from the transition 36 to the rear edge 40, also of about one third the length of the front portion as measured from the front end 14 to the transition 36. The elongated rear portion 20 is integral with the forward portion 12, and preferably is made of the same materials, the choice of which will be apparent to those skilled in the art. As shown in the drawings, the forward pad portion 12 has a minimum transverse width which in the illustrated embodiment occurs at the narrowest point of the midportion 24 between the concavely shaped sides 22 of the forward portion 12. As shown, the rear portion 20 has a width between sides 38 which is less than half of this minimum transverse width. Stated otherwise, the absorbent forward pad portion 12 is at least twice the width of the rear portion at any point along the length of the forward pad portion, from front 14 to transition 36. The length of the forward pad portion from front 14 to transition 36 is substantially longer than the length of the rear portion measured between the transition 36 to rear 40, and as shown, the forward pad portion 12 is between one and one-half and twice the length of the rear portion 20. The absorbent forward pad portion 12 is of sufficient length relative to the rear portion 20 to provide both an absorbent intermediate pad portion for receiving menstrual fluid and an absorbent front portion of the pad. The absorbent intermediate pad portion is generally the rear half of the forward pad portion 12, which as is well understood by users of such articles, tends to receive and collect the bulk of the menstrual fluid discharge. The absorbent front portion of the pad is generally the front half of the absorbent pad portion 12, and, as is also well understood by such users, provides extended coverage and containment of the fluid received and collected by the absorbent intermediate pad portion. From the foregoing, it may be understood that the pad 10 has three general portions, an absorbent front portion, an absorbent intermediate portion, and a rear portion. As particularly appreciated in FIGS. 2, 3 and 4 of the drawings is that the entire pad 10 including absorbent forward portion 12 and rear portion 20 is substantially planar or essentially flat except for variations in pad thickness. That is, the rear portion 20 lies, at least in an initial condition of the hygienic pad, in a plane common to both the forward portion 12 and the rear portion 20 of the pad 10. FIGS. 1 and 5 show the top pad surface 15 and bottom pad surface 17, respectively, to be continuous over both the absorbent forward portion 12 and the narrower tail portion 20. In the particular embodiment depicted in FIGS. 2 and 3, the absorbent forward portion 12 of the pad is seen to be much thicker, due in part to the absorbent body 30, than the relatively thin rear portion 20 of the pad, as seen in the drawings. The use and proper application of the hygiene pad 10 will be evident to those of the female gender by inspection of the drawings without further explanation. It may be briefly said that the wider forward portion is applied over the vaginal opening while the rearward appendage 20 is worn between and retained between the buttocks. This use of the rearward appendage 20 is evident from the widespread use among women of tong style undergarments which in part are similarly worn between the buttocks, in contrast to conventional briefs which are worn over the buttocks. The appendage 20 is thus able to retain the rear of the absorbent forward portion closer against the body following the contour of the crotch area and thereby better absorb and control rearward leakage of fluid from the vaginal area towards the rear of the thighs and the buttocks. This permits the user to sleep on her back with much reduced risk of rearward leakage of fluids. The elongated rear appendage is received between the user's buttocks and insures that the pad stays in place, and also replaces the wide rear end of conventional hygienic pads thereby reducing the size of the pad so that it can be more discreetly worn with small sized textiles and tight fitting garments. An absorbent article; as apparent in FIGS. 1 through 6, the preferred embodiment consists of an absorbent body (1). The Absorbent body (1) is adhered or otherwise permanently bonded at its perimeter by the bonded edge. (2) A positioning point is formed on the main absorbent portion of the pad and an absorbent point is formed on the main portion of the pad. (3) The Elongated Rearward Appendage is fabricated of the same material as, and at the same time as the Absorbent body. The ELONGATED REARWARD APPENDICE is considered to be integral to the Absorbent Body (1) and the invention as a whole. The following portion of the detailed description of the invention is made with reference to FIGS. 1 through 6 of the drawings in general and to particular Figures as may be indicated below. As best seen in the top and bottom views of FIGS. 1 and 5 respectively, the rear portion 20 has a rear width between two side edges 38′, the forward pad portion 12 has a front edge 14′, two opposite forward side edges 16′, 18′ and a maximum forward width between the forward side edges. The forward side edges 16′, 18′ include convexly curved divergent side edge portions 34′ for tapering the width of the forward pad portion to the rear width of the rear portion 20. The rear portion has a maximum rear width between the rear side edges 38′ of about one third of the maximum forward width. The rear portion 20 has a rear length from the rear edge 40′ to the first transition 36′ of the convexly curved divergent side edges 34′ of about one third of a full pad length measured from the rear edge 40′ to the front edge 14′. The pad 10 has a border 32 of relatively thin material which encompasses the pad along the side edges 16′, 18′, the rear edge 40′ and the front edge 14′. The divergent portions 34′ of the forward side edges 16′, 18′ transition to non-divergent side edge portions 22′ of the forward side edges at a second transition point 42 of the side edges 16′, 18′ such that the forward pad portion 12 measured along its longitudinal dimension from the second transition point 42 to the front edge 14′ is substantially longer than the rear portion 20 measured from the rear edge 40′ to the second transition point 42 along the longitudinal dimension. The forward side edges 16′, 18′ each have an in-turned edge portion 22′ located longitudinally between the divergent side edge portions 34′ and the front edge 14′ to define a narrower mid-portion 24 of the pad including a minimum width of the forward pad portion between the innermost points 25 of the in-turned edge portions 22′. Preferably the maximum width of the forward pad portion is located longitudinally between the narrower mid-portion 24 and the front edge 14′, and the in-turned edge portions 22′ are concavely curved. The forward pad portion 12 increases in width between the divergent side edges 34′ to a location 44 along its longitudinal dimension corresponding to a pad width of at least twice the rear width, and the forward pad portion 12 has a forward pad length measured from the aforesaid location 44 along its longitudinal dimension to a front edge 14′ of the pad. The rear portion 20 has a rear length measured from the rear edge 40′ along the longitudinal dimension to a point aligned with the same aforesaid location 44, the forward pad length being substantially longer than the rear length. As previously explained, a border 32 of relatively thin material encompasses the pad, such that the relative lengths of the forward pad length and the rear pad length are measured exclusive of the encompassing thin material 32 around the inner edges identified by primed numerals. In a more general sense the invention concerns a feminine hygiene pad 10 having a wider absorbent forward pad portion 12, and a relatively narrow rear portion 20 adapted to be worn between the buttocks of a user. The rear portion 20 has a rear edge 40′ and a rear width between rear side edges 38′. The forward pad portion 12 has forward side edges 16′, 18′ including divergent side edge portions 34′ diverging from the rear side edges 38′ and a second transition 42 from the divergent side edge portions 34′ to non-divergent side edge portions 22′. The forward pad portion 12 has a mid-portion 24 of minimum width which is longitudinally located between the divergent side edge portions 34′ and the front edge 14′ of the pad, the minimum width being greater than the aforementioned rear width. More particularly, the said minimum width may be more than twice the rear width of the aforementioned rear portion 20. In a presently preferred form, the pad 10 may be divided into three imaginary parts, one imaginary part comprising the rear portion 20, a second imaginary part comprising a one-half length of the forward pad portion 12 extending from the rear pad portion 20 to the aforementioned minimum width, and a third imaginary portion extending from the minimum width to the front edge 14′, the three imaginary parts being of generally similar length along a longitudinal dimension of the pad between the rear edge 40′ and the front edge 14′. In the preferred form, the forward pad portion 12 is much wider than the rear pad portion 20 at all points along its length from the aforesaid second transition 42 to the front edge 14′. The forward pad portion 12 tapers rearwardly in width between the divergent side portions 34′ including a location 44 along the pad 10 at which the forward pad portion 12 is about twice the rear width, the pad 10 having a length between the location 44 and the front edge 14′ which is substantially greater than a pad length between the said location 44 and the rear edge 40′. The invention may also be understood as a feminine hygiene pad 10 having a wider absorbent forward pad portion 12 and a relatively narrow rear portion 20 adapted to be worn between the buttocks of a user, the rear portion 20 having a rear edge 40′ and a rear width between rear side edges 38′, the forward pad portion 12 having forward side edges 16′, 18′ including divergent side edge portions 34′ diverging from the rear side edges 38′ and a transition from the divergent side edge portions 34′ to non-divergent side edge portions 22′, the forward pad portion 12 being much wider than the rear pad portion 20 at all points along its length from the transition 42 to the front edge 14′. The forward pad portion 12 tapers in width between the divergent side portions 34′ including at least one location 44 along the divergent sides 34′ at which the width of the forward pad portion 12 is about twice the rear width, the pad 10 having a forward length between the aforesaid location 44 and the front edge 14′ which is substantially greater than a rear pad length measured between the said location 44 and the rear edge 40′. In all of the forms and embodiments of the invention described above, the pad lengths, measurements and proportions of the various pad portions are measured from inner pad edges identified by primed numerals as opposed to outer edges identified by similar but non-primed numerals, and are exclusive of the encompassing border portions 32 of thin material which defines the outer edges, such that border portions 32 are not included in those lengths, measurements and proportions. Likewise, all references to lengths, relative proportions and edges in the claims are understood to refer to the aforementioned inner edges, without regard to the thin sheet material encompassing the forward pad portion and the rear pad portion. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention This invention relates to feminine hygiene pads. 2. State of the Prior Art Feminine hygiene pads are disposable, liquid absorbent pads applied to the crotch area by women in order to absorb menstrual fluids. Existing feminine hygiene pads are symmetrical in shape along a longitudinal dimension, with wider rounded ends and a narrower mid-portion defined between opposite concave side edges. In existing pads the wide rear portion of the pad fits over the buttocks and allows menstrual fluids to leak to the rear of the thighs and onto the buttocks. This prevents women wearing these pads from sleeping on their backs in order to control such leakage. Another shortcoming of existing pads is that they are oversized and cannot be worn discreetly with skimpy or small garments or tight fitting clothing. A need exists for improved feminine hygiene pads which fit better to the contour of the user's body to control rearward leakage of menstrual fluid and to permit discreet use of the pad with close fitting or skimpy clothing. | <SOH> SUMMARY OF THE INVENTION <EOH>This invention addresses the aforementioned need by providing a feminine hygiene pad having an absorbent forward pad portion, the forward portion having a longitudinal dimension and a transverse dimension, and a rear portion extending from the forward portion along the longitudinal dimension and having a width lesser than one half of the transverse dimension. The width of the rear portion may be about one-third of the transverse dimension and the rear portion may have a length of approximately one-third of the aforementioned longitudinal dimension. The forward portion may have a wider front and a narrower mid-portion, both the forward portion and the mid-portion being substantially wider than the rear portion. The rear portion is of sufficient length in the direction of the longitudinal dimension to be retained between the buttocks of a user, and preferably the rear portion is formed integrally with the forward portion and is made of the same material as the forward portion. The forward portion has an absorbent body bonded along a perimeter thereof by a bonded edge. The mid-portion has two opposite concavely curved sides and a convexly curved front edge, while the rear portion may have generally parallel sides in the direction of the longitudinal dimension, such that the rear portion is a generally rectangular elongated tab. More generally, this invention is a feminine hygiene pad having a longitudinal dimension along the length thereof, a relatively wide absorbent frontal portion and a much narrower elongated rear portion sized for retention between the buttocks of a user. Set forth below is a brief summary of the invention which achieves the foregoing and other objectives and provides the foregoing and hereafter stated benefits and advantages in accordance with the structure, function and results of the present invention as embodied and broadly described herein. This feature is specific to, but not limited by this specificity, the need to prevent leakage of fluids, the main point of absorbency is in the main portion of the pad. Another feature of this aspect of the Feminine Hygiene Pad is that it is of minimal size and is intended to be worn with small sized textile and tight fitting garments. More specifically, the feminine hygiene pad of this invention has a wider absorbent forward pad portion and a relatively narrow rear portion adapted to be worn between the buttocks of a user, the rear portion having a rear edge and a rear width between rear side edges, the forward pad portion having forward side edges including divergent side edge portions diverging from the rear side edges and a transition from the divergent side edge portions to non-divergent side edge portions. The forward pad portion increases in width between the divergent side edges to a location along the longitudinal dimension corresponding to a pad width of at least twice the rear width. The forward pad portion has a forward pad length measured from the location along the longitudinal dimension to a front edge of the pad. The rear portion has a rear length measured from the rear edge to the aforementioned location along the longitudinal dimension. The forward pad length is at least one and one half times longer than the rear length, and the pad has a border of relatively thin material along at least some of the side edges, the rear edge and the front edge. In one form of the invention, the forward pad length is about twice as long as the rear length. The rear portion is preferably integral with the forward pad portion, and the absorbent forward pad portion may be substantially thicker than a thickness of the rear portion. The absorbent forward pad portion may be much thicker than a thickness of the rear portion. The forward pad portion has a wider front and a narrower mid-portion, the mid-portion being at least twice as wide as a width of the rear portion. The rear portion may be made of the same material as the forward pad portion. The forward pad portion has an absorbent body bonded along a perimeter thereof by a bonded edge of the above mentioned relatively thin material. The hygiene pad may have a continuous upper surface and a continuous bottom surface, each surface being common to the forward pad portion and the rear pad portion. In another aspect of this invention the forward side edges of the forward pad portion have inturned side edge portions defining therebetween a pad mid-portion of minimum width longitudinally located between pad portions of greater width than the minimum width and also longitudinally located between the transition and a front edge of the pad, the minimum width being greater than the rear width, and a border of relatively thin material along at least some of the side edges, the rear edge and the front edge. The minimum width is preferably more than twice the rear width of the rear portion, the inturned side edges may have concavely curved portions of the forward side edges, and the pad mid-portion of minimum width is desirably located approximately midway between the divergent side edge portions and the front edge of the pad. In one possible form of the invention the forward pad portion increases in width between the divergent side edges to a location along the longitudinal dimension preferably corresponding to a pad width of at least twice the rear width, the forward pad portion has a forward pad length measured from the said location along the longitudinal dimension to a front edge of the pad, the rear portion has a rear length measured from the rear edge to the said location along the longitudinal dimension, and the forward pad length is substantially longer than the rear length. | 20041227 | 20060502 | 20050519 | 63717.0 | 1 | BOGART, MICHAEL G | CLOSE FITTING LEAKAGE RESISTANT FEMININE HYGIENE PAD | SMALL | 1 | CONT-ACCEPTED | 2,004 |
|||
11,023,590 | ACCEPTED | Semiconductor device and semiconductor device module | A control output signal is supplied to a gate electrode of the transistor which is an insulated gate transistor from a control signal output terminal of a control device, however, with regard to the insulated gate transistor, a control output signal is also influenced when that transistor is short-circuited, and a signal waveform different from that in a normal operating state occurs. With employing this, the short-circuit is detected by monitoring the control output signal of the insulated gate transistor, and in case of the short-circuit, the short-circuit protection of the insulated gate transistor is performed by forcing the control device to stop that control output signal. | 1. A semiconductor device controlling a drive of an insulated gate transistor by generating a control output signal on a basis of a control input signal, comprising: a driver outputting said control output signal and a short-circuit protection circuit detecting said control output signal and controlling and forcing said driver to stop said control output signal when a detecting voltage of said control output signal exceeds a predetermined reference voltage before a predetermined period passes after said control output signal indicates a conduction of said insulated gate transistor. 2. The semiconductor device according to claim 1, wherein said short-circuit protection circuit includes: pulse generation circuit receiving said control input signal and outputting a first pulse signal being significant only in said predetermined period according to a timing when said control input signal indicates a conduction of said insulated gate transistor; a comparator receiving a detecting voltage of said control output signal, performing a comparison with said reference voltage and outputting a second pulse signal being significant during a period when a detecting voltage of said control output signal exceeds said reference voltage; and a logical circuit receiving said first and second pulse signals and outputting a stop signal forcing said driver to stop an output of said control output signal when said second pulse signal becomes significant during a period when said first pulse signal is significant. 3. The semiconductor device according to claim 2, wherein said predetermined period when said first pulse signal is significant is set on a basis of a period when a voltage of said control output signal is clamped constantly when said insulated gate transistor normally operates. 4. A semiconductor device module, comprising: at least one set of first and second insulated gate transistors inserted in series between a high potential first main power terminal and a low potential second main power terminal and complementarily operating; a first control device controlling a drive of said first insulated gate transistor of high potential side; and a second control device controlling a drive of said second insulated gate transistor of low potential side, wherein said at least one set of first and second insulated gate transistors and said first and said second control devices are sealed with a resin in a package and said semiconductor device according to claim 2 is employed as said second control device. 5. The semiconductor device according to claim 1, wherein said short-circuit protection circuit includes: pulse generation circuit receiving said control input signal and outputting a first pulse signal being significant only in said predetermined period according to a timing when said control input signal indicates a conduction of said insulated gate transistor; a signal selective part receiving a detecting voltage of said control output signal and a predetermined voltage lower than said reference voltage and selectively outputting one of them on a basis of said first pulse signal; and a comparator receiving said output of said signal selective part, performing a comparison with said reference voltage and outputting a second pulse signal being significant during a period when said output exceeds said reference voltage, wherein said signal selective part receives said first pulse signal, selects and outputs a detecting voltage of said control output signal during a period when said first pulse signal is significant and selects and outputs a predetermined voltage lower than said reference voltage during a period when said first pulse signal is not significant, said comparator receives a detecting voltage of said control output signal only in a period when said first pulse signal is significant and makes said second pulse signal be significant in case that a detecting voltage of said control output signal exceeds said reference voltage and said second pulse signal functions as a stop signal forcing said driver to stop an output of said control output signal when said second pulse signal is significant. 6. The semiconductor device according to claim 5, wherein a detecting voltage of said control output signal is detected by a divided resistance connected in series between an output terminal of said driver and a reference potential. 7. The semiconductor device according to claim 5, wherein said predetermined period when said first pulse signal is significant is set on a basis of a period when a voltage of said control output signal is clamped constantly when said insulated gate transistor normally operates. 8. A semiconductor device module, comprising: at least one set of first and second insulated gate transistors inserted in series between a high potential first main power terminal and a low potential second main power terminal and complementarily operating; a first control device controlling a drive of said first insulated gate transistor of high potential side; and a second control device controlling a drive of said second insulated gate transistor of low potential side, wherein said at least one set of first and second insulated gate transistors and said first and said second control devices are sealed with a resin in a package and said semiconductor device according to claim 5 is employed as said second control device. 9. A semiconductor device module, comprising: at least one set of first and second insulated gate transistors inserted in series between a high potential first main power terminal and a low potential second main power terminal and complementarily operating; a first control device controlling a drive of said first insulated gate transistor of high potential side; and a second control device controlling a drive of said second insulated gate transistor of low potential side, wherein said at least one set of first and second insulated gate transistors and said first and said second control devices are sealed with a resin in a package and said semiconductor device according to claim 6 is employed as said second control device. | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a semiconductor device module, and more particularly, it relates to a semiconductor device and a semiconductor device module including a short-circuit protection function of an insulated gate type switching device such as an IGBT (Insulated Gate Bipolar Transistor) and so on. 2. Description of the Background Art A semiconductor device in which the insulated gate type switching device such as the IGBT and so on and a control circuit controlling a drive of that switching device are packaged is called as an IPM (Intelligent Power Module), and with regard to a conventional IPM, a short-circuit protection is performed by connecting a shunt resistor detecting a main current flowing between main power terminals of the switching device outside the package and monitoring the main current. For example, in FIG. 1 of Japanese Patent Application Laid-Open No. 2002-247857, a composition that a shunt resistor detecting a DC current flowing between main power terminals is connected outside a package is disclosed, and a current detecting terminal to detect a voltage put on the shunt resistor is set in the package. As described above, with regard to the conventional IPM, the short-circuit protection is performed by detecting the main current of the switching device by the shunt resistor set outside the package, thus the current detecting terminal is necessary to detect the voltage put on the shunt resistor. Moreover, it is necessary to set a filter circuit such as a CR filter and so on outside the package to remove a noise entering the shunt resistor and the current detecting terminal, and there is a possibility that a device becomes massive. Moreover, when a length of a wiring from a ground main electrode to a ground terminal of the switching device becomes long by setting the shunt resistor, a voltage surge according to a switching of the switching device becomes large, and there is also a possibility that an error occurs. SUMMARY OF THE INVENTION A semiconductor device which realizes a short-circuit protection function without a shunt resistor and an IPM in which the semiconductor device is built are provided. An aspect of a semiconductor device according to the present invention is that a semiconductor device controls a drive of an insulated gate transistor by generating a control output signal on a basis of a control input signal, and includes a driver outputting the control output signal and a short-circuit protection circuit detecting the control output signal and controlling and forcing the driver to stop the control output signal when a detecting voltage of the control output signal exceeds a predetermined reference voltage before a predetermined period passes after the control output signal indicates a conduction of the insulated gate transistor. According to the semiconductor device described above, the short-circuit protection circuit detecting the control output signal of the insulated gate transistor and controlling and forcing the driver to stop the control output signal when a detecting voltage of the control output signal exceeds a predetermined reference voltage before a predetermined period passes after the control output signal indicates a conduction of the insulated gate transistor is included, thus a composition for the short-circuit protection can be simplified. These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a drawing illustrating a composition of an inverter module according to the present invention. FIG. 2 is a drawing illustrating a composition of a control device in a preferred embodiment 1 according to the present invention. FIG. 3 is a drawing illustrating a composition of a one-shot pulse generation circuit. FIG. 4 is a timing-chart for describing a performance of the one-shot pulse generation circuit. FIG. 5 is a timing-chart for describing a performance of the control device in the preferred embodiment 1 according to the present invention. FIG. 6 is a drawing illustrating a composition of a control device in a preferred embodiment 2 according to the present invention. FIG. 7 is a drawing illustrating a composition of a filter circuit. FIG. 8 is a timing-chart for describing a performance of the filter circuit. FIG. 9 is a timing-chart for describing a performance of the control device in the preferred embodiment 2 according to the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS <Composition Example of an IPM Applying the Present Invention> An internal composition of an inverter module 100 is described as an example of the IPM (Intelligent Power-Module) applying the present invention in FIG. 1. Besides, the inverter module 100 has a DIP (Dual-In-line Package) structure that terminal rows are set in a row on two longitudinal side surfaces of a package PG, respectively. As shown in FIG. 1, groups of transistors 11 and 12, 21 and 22 and 31 and 32 (all N channel type) which are insulated gate type switching devices such as an IGBT (Insulated Gate Bipolar Transistor) and so on are connected in a totem pole like between P-N terminals (between a high potential main power terminal P and a low potential main power terminal N) which are connected with a power source PS and becomes a main power terminal, and connection nodes are connected with output terminals U, V and W of a U phase, a V phase and a W phase of the package PG, respectively. Besides, the respective phases of a three-phase motor M are connected with the output terminals U, V and W, for example. Moreover, free-wheeling diodes 111, 121, 211, 221, 311 and 321 are in inverse-parallel connection with the transistors 11, 12, 21, 22, 31 and 32, respectively. Moreover, control devices HIC1, HIC2 and HIC3 are provided to control the transistors 11, 21 and 31 which are high potential devices, respectively. Besides, the control devices HIC1 to HIC3 are a so-called HVIC (High Voltage Integrated Circuit) and are functionally identical with each other, thus identical terminal codes are put on them. The inverter module 100 has a composition that a control output signal is supplied to respective gate electrodes of the transistors 11, 21 and 31 from respective control signal output terminals HO of the control devices HIC1, HIC2 and HIC3. Moreover, respective reference potential terminals VS of the control devices HIC1 to HIC3 are connected with not only the output terminals U, V and W but also reference potential terminals VUFS, VVFS and VWFS of the package PG. Moreover, respective drive voltage terminals VB of the control devices HIC1 to HIC3 are connected with drive voltage terminals VUFB, VVFB and VWFB of the package PG. Besides, the drive voltage terminal VB is a terminal providing a drive voltage VB of high potential side to the respective HVIC, and the reference potential terminal VS is a terminal providing a reference potential VS of high potential side to the respective HVIC. Moreover, the control devices HIC1 to HIC3 have a drive voltage terminals VCC, a ground terminal COM and a control signal input terminal IN, respectively. Then, the respective drive voltage terminals VCC of the control devices HIC1 to HIC3 are connected with drive voltage terminals VP1, VP2 and VP3 of the package PG, and the respective ground terminals COM are connected with a ground terminal VNC of the package PG in common. Moreover, the respective control signal input terminals IN of the control devices HIC1 to HIC3 are connected with control signal input terminals UP, VP and WP of the package PG. Moreover, a control device LIC is provided in the inverter module 100 to control the transistors 12, 22 and 32 which are low potential devices. Besides, the control device LIC is a so-called LVIC (Low Voltage Integrated Circuit). The inverter module 100 has a composition that a control output signal is supplied to respective gate electrodes of the transistors 12, 22 and 32 from control signal output terminals UOUT, VOUT and WOUT of the control device LIC, respectively. Moreover, a reference potential terminal VNO of the control device LIC is connected with the main power terminal N of low potential side of the package PG. Besides, the reference potential terminal VNO is a terminal providing a reference potential (ground potential) of low potential side to the control device LIC. Moreover, the control device LIC has control signal input terminals UIN, VIN and WIN to which a control output signal to control the respective transistors 12, 22 and 32 is supplied and has a drive voltage terminal VCC, a fault terminal FO, an error output time setting terminal CFO setting a time since an abnormal state such as a short-circuit and so on occurs until a protection performance is cancelled and also has a ground terminal GND. Moreover, the drive voltage terminal Vcc, the fault terminal FO, the error output time setting terminal CFO and the ground terminal GND of the control device LIC are connected with a drive voltage terminal VN1, a fault terminal FO, error output time setting terminal CFO and the ground terminal VNC of the package PG, respectively. Moreover, the control signal input terminals UIN, VIN and WIN of the control device LIC are connected with control signal input terminals UN, VN and WN of the package PG, respectively. The inverter module 100 described above has a composition that a shunt resistor and a current detecting terminal connecting the shunt resistor which are conventionally necessary are not included but the LVIC or the HVIC in the module includes the short-circuit protection function. A case that the LVIC and the HVIC include the short-circuit protection function is described hereinafter in preferred embodiments 1 and 2, respectively. A. Preferred Embodiment 1 <A-1. Composition of the Device> A composition of the control device LIC including the short-circuit protection function is illustrated in FIG. 2 as the preferred embodiment 1 according to the present invention. Besides, in FIG. 2, the composition is described by applying a circuit performing a switching control of the transistor 12 as an example in the control device LIC. As shown in FIG. 2, the control output signal is supplied to the gate electrode of the transistor 12 from the control signal output terminal UOUT of the control device LIC, however, with regard to the insulated gate transistor, the control output signal is also influenced when that transistor is short-circuited, and a signal waveform different from that in a normal operating state occurs. The present invention is focused on this phenomenon, and it detects the short-circuit by monitoring the control output signal of the insulated gate transistor, and in case of the short-circuit, the short-circuit protection of the insulated gate transistor is performed by forcing the control device LIC to stop the control output signal. In particular, the control output signal of the insulated gate transistor, that is to say, an output signal of a gate driver GD composed of a P channel MOS transistor 4 and a N channel MOS transistor 5 connected in series between a drive voltage VCC and the ground potential GND is supplied as a control output signal S3 to the gate electrode of the transistor 12, and it is inputted to a + (plus) side input terminal of a comparator 2 as a detecting voltage of the control output signal S3, too, and in the comparator 2, a comparison with a reference voltage V1 supplied to a − (minus) side input terminal is performed, and its comparison result is outputted as a comparison result signal S4. Besides, a resistance R1 inserted in a+ side input line of the comparator 2 and a capacitor C1 inserted between that + side input line and the ground potential GND constitute a noise filter. Here, as a composition to supply the reference voltage V1, an easy composition employing a constant current source CS and a zener diode ZD can be applied as shown in FIG. 2, for example, the reference voltage V1 can be obtained by clamping the drive voltage VCC to a desired voltage with employing a zener voltage characteristic of the zener diode ZD. In the meantime, a control input signal S1 supplied to control the transistor 12 from the outside through the control signal input terminal UIN is supplied not only to the gate driver GD via an inverter circuit G3, a NOR circuit G4 and an inverter circuit G5 but also to an one-shot generation circuit 1. The one-shot pulse generation circuit 1 is a circuit which rises according to a timing of a rising of the control input signal S1 and outputs singly a pulse signal S2 maintaining a high potential (“H”) state for a certain period which is predetermined. Here, a composition example and a performance of the one-shot pulse generation circuit 1 is described with employing FIG. 3 and FIG. 4. As shown in FIG. 3, the one-shot pulse generation circuit 1 has four inverter circuits G11, G12, G13 and G14 connected in series with each other, an inverter circuit G15 provided in parallel with the inverter circuits G11 to G14, an OR circuit G16 receiving outputs of the inverter circuits G14 and G15, an inverter circuit G17 receiving an output of the OR circuit G16 and capacitors C11 and C12 provided between a connection point of the inverter circuits G11 and G12 and the ground potential GND and between a connection point of the inverter circuits G12 and G13 and the ground potential GND, respectively. In FIG. 3, a signal input part of the inverter circuits G11 and G15 is illustrated as an A point, an output point of the inverter circuit G14 is illustrated as a B point, an output point of the inverter circuit G15 is illustrated as a C point and an output point of the inverter circuit G17 is illustrated as a D point, and signal states in the respective points are illustrated in FIG. 4. Besides, a pulse signal in the A point illustrated in FIG. 4 corresponds to the control input signal S1 supplied to the one-shot pulse generation circuit 1. A delay occurs on a pulse signal inputted to the inverter circuit G11 while going through the inverter circuits G12 and G13 by a presence of the capacitor C11, and the pulse signal becomes one delayed sharply in the B point, as shown in FIG. 4. In the meantime, a pulse inputted in the inverter circuit G15 is outputted inverted in the C point, however, the delay does not occur. Accordingly, when signals in the B point and the C point are inputted to the OR circuit G16 and the output of the OR circuit G16 is inputted to the inverted circuit G17, an one-shot pulse having a pulse width corresponding to a signal delay width can be obtained in the D point. In this manner, a pulse which is synchronous with the building-up of the inputted pulse signal and also can maintain the “H” state for a certain period set in an internal composition of the circuit can be obtained by inputting the pulse signal to the one-shot pulse generation circuit 1. Here, the description of FIG. 2 returns again. The pulse signal S2 outputted by the one-shot pulse generation circuit is supplied to a NAND circuit G1 with the comparison result signal S4 outputted by the comparator 2, and an output of the NAND circuit G1 is supplied to a set input (S) of a RS flip-flop circuit 3 as a signal S5 via an inverter circuit G2. Moreover, the control input signal S1 inverted via the inverter circuit G3 is supplied to a reset input (R) of the RS flip-flop circuit 3, and a Q output of the RS flip-flop circuit 3 is supplied to one input of the NOR circuit G4. The control input signal S1 inverted via the inverter circuit G3 is supplied to the other input of the NOR circuit G4, and an output of the NOR circuit G4 is inverted via the inverter circuit G5 and is supplied the gate electrodes of the P channel MOS transistor 4 and the N channel MOS transistor 5. Besides, elements except for the gate driver GD constitute a short-circuit protection circuit SP in FIG. 2. <A-2. Performance of the Device> Next, a performance of the control device LIC is described with employing a timing chart illustrated in FIG. 5 in reference to FIG. 2. The control input signal S1 supplied from the outside through the control signal input terminal UIN makes the transistor 12 be ON according to its rising and the transistor 12 maintains the ON state during a period when that control input signal S1 is in a high potential state. Accordingly, as shown in FIG. 5, the control output signal S3 outputted from the gate driver GD rises according to the building up of the control input signal S1. Moreover, when a voltage of the control output signal S3 exceeds a threshold value of the transistor 12, the transistor 12 comes to be in ON state, and a collector-emitter voltage of the transistor 12 drops, thus a voltage of the control output signal S3 is clamped to a certain voltage for a determined period by a mirror effect, however, the voltage of the control output signal S3 rises to be a value almost equal to the drive voltage VCC of the gate driver GD after that. Moreover, it falls according to a trailing edge of the control input signal S1, and makes the transistor 12 be OFF. In this manner, the transistor 12 which is the insulated gate type switching device such as the IGBT and so on has a characteristic that its control output signal S3 is clamped to a certain voltage for the determined period after its rising, in case that it normally operates. Here, the control output signal S3 is supplied to the comparator 2, too, and compared with the reference voltage V1, and the comparator 2 makes the comparison result signal S4 which is the output of the comparator 2 be in a significant condition and a high potential “H” state in this case, when the voltage of the control output signal S3 exceeds the reference voltage V1. The state is maintained while the voltage of the control output signal S3 exceeds the reference voltage V1. Accordingly, in case that the transistor 12 illustrated in FIG. 2 is activated normally (in a normal state), the voltage of the control output signal S3 begins to increase after passing a clamp period, and when it exceeds the reference voltage V1, the comparator 2 outputs the comparison result signal S4. Moreover, the control output signal S3 begins to fall and when if falls below the reference voltage V1, the comparison result signal S4 falls, too. In this manner, in case that the transistor 12 normally operates, the comparison result signal S4 outputted from the comparator 2 after the voltage of the control output signal S3 passes the clamp period comes to be in the significant condition. Besides, a value of the reference voltage V1 is set to be lower than the drive voltage VCC and higher than the clamp voltage. A value increasing approximately fifty percent of the clamp voltage is applied as an example. Here, the one-shot pulse generation circuit 1 outputs the pulse signal S2 which comes to be in the significant condition according to the building up of the control input signal S1, and a period t1 in the significant condition, in the “H” state in this case, is set to be almost equal to a period when the control output signal S3 is clamped to a certain voltage. Accordingly, when the transistor 12 normally operates, the pulse signal S2 and the comparison result signal S4 outputted by the comparator 2 do not come to be in the significant condition synchronously, thus the signal S5 supplied to the setting input of the RS flip-flop circuit 3 maintains the low potential (“L”) state, and the Q output of the RS flip-flop circuit 3 maintains the “L” state, too. Accordingly, the control output signal S3 is maintained, too, and the ON state in the transistor 12 is maintained. By setting the period t1 in this manner, it is possible to prevent the transistor 12 from being forced to be turned OFF, even if the control output signal S3 exceeds the reference voltage V1 when the transistor 12 normally operates. In the meantime, in case that the transistor 12 comes to be ON in a state that a short-circuit occurs between the source and the drain of the transistor 12, or, in case that the transistor 12 comes to be ON in a state that the transistor 11 connected in the totem pole like with the transistor 12 (FIG. 1) is ON (arm short-circuit), a clamp period of the voltage does not exist in the control output signal S3, and the voltage of the control output signal S3 rises rapidly to be almost equal to that of the drive voltage VCC. This state is illustrated in FIG. 5 as a waveform of the control output signal S3 in a short-circuit state. As shown in FIG. 5, when the transistor 12 is short-circuited, the voltage of the control output signal S3 rises rapidly and exceeds the reference voltage V1 of the comparator 2, and the comparison result signal S4 outputted from the comparator 2 comes to be in the significant condition. In this time, the pulse signal S2 is outputted from the one-shot pulse generation circuit 1 according to the rising of the control input signal S1, and the comparison result signal S4 also comes to be in the significant condition during the period when the pulse signal S2 is in the significant condition, thus a period when the pulse signal S2 and the comparison result signal S4 are in the significant condition synchronously exists, and the signal S5 supplied to the setting input of the RS flip-flop circuit 3 comes to be in the “H” state during that period. As a result, the Q output of the RS flip-flop circuit 3 changes to be in the “H” state, the P channel MOS transistor 4 of the gate driver GD comes to be in OFF state, the N channel MOS transistor 5 comes to be in ON state, the control output signal S3 comes to be in the “L” state and the transistor 12 is forced to be in OFF state. Besides, there is a case that the signal S5 is called as a stop signal, too, by reason that it stops a significant output of the control output signal S3 of the gate driver GD. <A-3. Effect> As described above, with regard to the control device LIC including the short-circuit protection function, the short-circuit state is detected by monitoring the control output signal S3 of the transistor 12 constituting the main circuit, and in case that the transistor 12 comes to be in the short-circuit state, the control output signal S3 is forced to stop, thus it is not necessary for the inverter module 100 to set the shunt resistor outside of the package PG (FIG. 1), differing from the conventional IPM. According to this, the current detecting terminal to measure the voltage of the shunt resistor is not necessary for the package PG and the control device LIC, and it is possible to make the module small, and moreover, the filter circuit to remove the noise entering the shunt resistor and the current detecting terminal is not necessary, too, thus it is possible to make the device small totally. Moreover, the shunt resistor is not necessary, thus the length of the wiring from the ground main potential to the ground terminal of the switching device can be made to be short, and the voltage surge according to the switching of the switching device can be reduced. B. Preferred Embodiment 2 <B-1. Composition of the Device> A composition of the control device HIC1 including the short-circuit protection function is illustrated in FIG. 6 as the preferred embodiment 2 according to the present invention. Besides, the control device HIC1 illustrated in FIG. 6 is a circuit performing a switching control of the transistor 11, and the control devices HIC2 and HIC3 illustrated in FIG. 1 also have a similar function. As shown in FIG. 6, an output signal of a gate driver GD1 composed of a P channel MOS transistor 17 and a N channel MOS transistor 18 connected in series between the drive voltage VB and the reference potential VS is supplied as a control output signal S13 to the gate electrode of the transistor 11 from the control signal output terminal HO, and moreover, the control output signal S13 is resistively divided between a resistance R11 and a resistance R12 and is inputted to a + (plus) side input terminal of a comparator 13 as a detecting voltage of the control output signal S13, too. In a comparator 13, a comparison with the reference voltage V1 supplied to the − (minus) side input terminal is performed, and its comparison result is outputted as a comparison result signal S14. Besides, the composition illustrated in FIG. 2 can be applied as a composition to supply the reference voltage V1. Here, the resistance R11 and the resistance R12 are set in series between the control signal output terminal HO and the reference potential VS to divide resistively the resistance of the control output signal S13, and a connection point of the resistance R11 and the resistance R12 is connected with an input terminal of a transmission gate 15. Moreover, a reference potential side end part of the resistance R12 is connected with an input terminal of a transmission gate 16, and an output terminal of the transmission gates 15 and 16 is connected with a + (plus) side input terminal of the comparator 13. In this manner, the control output signal S13 of the transistor 11 which is a so-called device of high potential side can be detected by including the composition of dividing resistively the control output signal S13. Besides, the transmission gates 15 and 16 output the voltage and the ground potential that the control output signal S13 is resistively divided on the basis of a pulse signal S12 outputted by a filter circuit 19 selectively, thus they are called as a signal selective part SL. Moreover, a control signal S122 of the transmission gates 15 and 16 can be obtained by inverting the pulse signal S12 outputted by the filter circuit 19 in an inverter circuit G24, and the control device HIC1 has a composition that the control signal S122 is supplied to an inverted gate of the transmission gate 15 and a gate of the transmission gate 16 and the control signal S122 inverted furthermore in an inverter circuit G25 is supplied to a gate of the transmission gate 15 and an inverted gate of the transmission gate 16. A control input signal S10 supplied from outside through the control signal input terminal IN to control the transistor 11 is supplied to a level shift device 11 for a level shifting. That is to say, the transistor 11 is the device of high potential, and its reference potential is supplied from a reference potential terminal Vs. Accordingly, it is necessary to level-shift the control input signal S10 generated on a basis of the ground potential to the high potential side through the level shift device 11. The level shift device 11 generates an one-shot pulse signal indicating a timing of ON and OFF of the transistor 11 on a basis of the control input signal S10 supplied to it. Besides, that one-shot pulse signal is level-shifted to a signal based on the high potential through a high voltage transistor in the level shift device 11 and is outputted as one-shot pulse signals S21 and S22. Moreover, the one-shot pulse signals S21 and S22 are supplied to a set input (S) and a reset input (R) of a RS flip-flop circuit 12, respectively, and they are outputted as a level-shifted signal S11 equal to the control input signal S10 from a Q output of the RS flip-flop circuit 12. The level-shifted signal S11 is supplied to the gate driver GD1 via an inverter circuit G21, a NOR circuit G22 and an inverter circuit G23, and moreover, it is also supplied to a reset input of a RS flip-flop circuit 14. In the meantime, the comparison result signal S14 is supplied to a set input of the RS flip-flop circuit 14, and a Q output of the RS flip-flop circuit 14 is supplied to one input of the NOR circuit G22. The level-shifted signal S11 inverted via the inverter circuit G21 is supplied to the other input of the NOR circuit G22, and an output of the NOR circuit G22 is inverted via the inverter circuit G23 and is supplied to gate electrodes of a P channel MOS transistor 17 and a N channel MOS transistor 18. Here, a composition example and a performance of the filter circuit performing as a pulse generation circuit is described with employing FIG. 7 and FIG. 8. As shown in FIG. 7, the filter circuit 19 includes a constant current source CS1, a N channel MOS transistor Q1 whose drain is connected with the constant current source CS1 and source is connected with the reference potential VS, an inverter circuit G31 receiving the level-shifted signal S11 outputted from the RS flip-flop circuit 12 and inverting that level-shifted signal S11 and supplying it to the gate electrode of the transistor Q1, a comparator 191 whose + (plus) side input terminal is connected with a drain of the transistor Q1, a capacitor C21 inserted between the drain of the transistor Q1 and the reference potential VS, an inverter circuit G32 receiving an output signal S121 of the comparator 191, a NAND circuit G33 receiving an output of the inverter circuit G32 and the level-shifted signal S11 outputted by the RS flip-flop circuit 12 and an inverter circuit G34 inverting an output of the NAND circuit G33 and outputting it as the pulse signal S12. Next, the performance is described. When the level-shifted signal S11 comes to be in the “H” state and the transistor Q1 comes to be OFF, a current flows from the constant current source CS to charge the capacitor C21. Moreover, when a voltage of the capacitor C21 exceeds a value of a reference voltage VREF supplied to the comparator 191, the output signal S121 of the comparator 191 comes to be in the “H” state. Besides, a time passed until a rising of the output signal S121 is set according to a capacitance of the capacitor C21 and a value of the reference voltage VREF. As shown in FIG. 8, the pulse signal S12 comes to be in the “H” state (significant condition) during a period when the level-shifted signal S11 is in the “H” state and the output signal S121 is in the “L” state, and this period t1 is a period when the short-circuit protection function is activated, and it is set to be almost equal to a period when the control output signal S13 is champed to a constant voltage. Moreover, in FIG. 6, elements except for the gate driver GD1, the level shift device 11 and the RS flip-flop circuit 12 constitute a short-circuit protection circuit SP1. <B-2. Performance of the Device> Next, a performance of the control device HIC1 is described with employing a timing chart illustrated in FIG. 9 in reference to FIG. 6. A control input signal S10 supplied from the outside through a control signal input terminal IN is converted by the level shift device 11 into the one-shot pulse signal S21 rising according to a leading edge of the level shift device 11 and the one-shot pulse signal S22 rising according to a trailing edge of the level shift device 11. Moreover, the one-shot pulse signals S21 and S22 are supplied to the RS flip-flop circuit 12 and become the level-shifted signal S11. The level-shifted signal S11 makes the transistor 11 be ON according to its rising and the transistor 11 maintains the ON state during a period when that level-shifted signal S11 is in a high potential state. As shown in FIG. 9, the control output signal S13 outputted from the gate driver GD1 rises according to the leading edge of the level-shifted signal S11, and the level-shifted signal S11 is substantially identical with the control input signal 10, thus there is also a case that the level-shifted signal S11 is called as a control input signal. Besides, a waveform of the control output signal S13 when the transistor 11 normally operates and also when it is short-circuited is identical with that of the control output signal S3 described in the preferred embodiment 1, thus the description is omitted. Besides, in FIG. 9, the control output signal S13 and the reference voltage V1 are illustrated as to compare with each other, however, this is a description for convenience, and actually, a divided voltage of the control output signal S13 and the reference voltage V1 are compared with each other. A voltage of the control output signal S13 is divided by the resistances R11 and R12, supplied to the comparator 13 and compared with the reference voltage 1, however, the transmission gate 16 is ON during the period when the pulse signal S12 outputted by the filter circuit 19 is in the “L” state, thus the reference potential VS is supplied to the comparator 13, and the comparison result signal S14 outputted by the comparator 13 is always in the “L” state. In the meantime, the transmission gate 15 is ON during the period when the pulse signal S12 is in the “H” state, thus the divided voltage of the control output signal S13 is supplied to the comparator 13, and the comparison result signal S14 outputted by the comparator 13 comes to be in the “H” or the “L” state on a basis of a comparison result between that divided voltage and the reference voltage V1. That is to say, when the divided voltage of the control output signal S13 exceeds the reference voltage V1, the comparator 13 makes the comparison result signal S14 which is the output of the comparator 13 be in the significant condition, the “H” state in this case. When the transistor 11 is short-circuited, the voltage of the control output signal S13 rises rapidly and its divided voltage exceeds the reference voltage V1 of the comparator 13, however, the pulse signal S12 is in the “H” state at this time, thus the comparator 13 makes the comparison result signal S14 which is the output of the comparator 13 be in the “H” state (the significant condition). This state is maintained while the divided voltage of the control output signal S13 exceeds the reference voltage V1. As a result, the Q output of the RS flip-flop circuit 14 changes to be in the “H” state, the P channel MOS transistor 17 of the gate driver GD1 comes to be in OFF state, the N channel MOS transistor 18 comes to be in ON state, the control output signal S13 comes to be in the “L” state and the transistor 11 is forced to be in OFF state. Besides, there is a case that the signal S13 is called as a stop signal, too, by reason that it stops a significant output of the control output signal S13 of the gate driver GD1. Besides, in case that the transistor 11 normally operates (in a normal state), the voltage begins to increase after passing the clamp period of the control output signal S13 and exceeds the reference voltage V1, and the pulse signal S12 is in the “L” state at this time, thus the comparison result signal S14 is in the “L” state. As a result, the Q output of the RS flip-flop circuit 14 maintains the “L” state, and the control output signal S13 maintains the “H” state, thus the transistor 11 maintains the ON state. <B-3. Effect> As described above, with regard to the control device HIC1 including the short-circuit protection function, the short-circuit state is detected by monitoring the control output signal S13 of the transistor 11 constituting the main circuit, and in case that the transistor 11 comes to be in the short-circuit state, the control output signal S13 is forced to stop, thus it is not necessary for the inverter module 100 to set the shunt resistor outside of the package PG (FIG. 1), differing from the conventional IPM. According to this, the current detecting terminal to measure the voltage of the shunt resistor is not necessary for the package PG, and it is possible to make the module small, and moreover, the filter circuit to remove the noise entering the shunt resistor and the current detecting terminal is not necessary, too, thus it is possible to make the device small totally. Moreover, the shunt resistor is not necessary, thus the length of the wiring from the ground main potential to the ground terminal of the switching device can be made to short, and the voltage surge according to the switching of the switching device can be reduced. Moreover, the period t1 when the short-circuit protection function is activated is set and the control output signal S13 is monitored only in that period t1 by the filter circuit 19, thus a strain on a motor system can be reduced. <B-4. Modification Example The preferred embodiment 2 described above is premised on being applied to the HV1C, however, it can be applied to the LVIC, too. In that case, the level shift device 11 and the RS flip-flop circuit 12 are not necessary, and the control input signal S1 is supplied to the inverter circuit G21 and the filter circuit 19 instead of the level-shifted signal S11. And the ground potential GND is used instead of the reference potential VS. Moreover, the partial pressure voltages R11 and R12 are not necessary, too, and it is applicable to supply the control output signal S13 to the input of the transmission gate 15 and to connect the input of the transmission gate 16 with the ground potential. Moreover, each signal is described as one which does not have a delay as compared with the control input signal in the preferred embodiments 1 and 2 described above, however, there is also a case that, for example, the pulse signal S2 is delayed as compared with the control input signal S1 in some degree, however, a trouble does not occur to the performance of the present invention even in that case. Moreover, the insulated gate transistors 11, 12, 21, 22, 31 and 32 are described as the N channel type transistors in the preferred embodiments 1 and 2 described above, however, the P channel type is also applicable to constitute them. While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a semiconductor device and a semiconductor device module, and more particularly, it relates to a semiconductor device and a semiconductor device module including a short-circuit protection function of an insulated gate type switching device such as an IGBT (Insulated Gate Bipolar Transistor) and so on. 2. Description of the Background Art A semiconductor device in which the insulated gate type switching device such as the IGBT and so on and a control circuit controlling a drive of that switching device are packaged is called as an IPM (Intelligent Power Module), and with regard to a conventional IPM, a short-circuit protection is performed by connecting a shunt resistor detecting a main current flowing between main power terminals of the switching device outside the package and monitoring the main current. For example, in FIG. 1 of Japanese Patent Application Laid-Open No. 2002-247857, a composition that a shunt resistor detecting a DC current flowing between main power terminals is connected outside a package is disclosed, and a current detecting terminal to detect a voltage put on the shunt resistor is set in the package. As described above, with regard to the conventional IPM, the short-circuit protection is performed by detecting the main current of the switching device by the shunt resistor set outside the package, thus the current detecting terminal is necessary to detect the voltage put on the shunt resistor. Moreover, it is necessary to set a filter circuit such as a CR filter and so on outside the package to remove a noise entering the shunt resistor and the current detecting terminal, and there is a possibility that a device becomes massive. Moreover, when a length of a wiring from a ground main electrode to a ground terminal of the switching device becomes long by setting the shunt resistor, a voltage surge according to a switching of the switching device becomes large, and there is also a possibility that an error occurs. | <SOH> SUMMARY OF THE INVENTION <EOH>A semiconductor device which realizes a short-circuit protection function without a shunt resistor and an IPM in which the semiconductor device is built are provided. An aspect of a semiconductor device according to the present invention is that a semiconductor device controls a drive of an insulated gate transistor by generating a control output signal on a basis of a control input signal, and includes a driver outputting the control output signal and a short-circuit protection circuit detecting the control output signal and controlling and forcing the driver to stop the control output signal when a detecting voltage of the control output signal exceeds a predetermined reference voltage before a predetermined period passes after the control output signal indicates a conduction of the insulated gate transistor. According to the semiconductor device described above, the short-circuit protection circuit detecting the control output signal of the insulated gate transistor and controlling and forcing the driver to stop the control output signal when a detecting voltage of the control output signal exceeds a predetermined reference voltage before a predetermined period passes after the control output signal indicates a conduction of the insulated gate transistor is included, thus a composition for the short-circuit protection can be simplified. These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings. | 20041229 | 20070227 | 20050707 | 83453.0 | 1 | ENGLUND, TERRY LEE | SEMICONDUCTOR DEVICE WHICH REALIZES A SHORT-CIRCUIT PROTECTION FUNCTION WITHOUT SHUNT RESISTOR, AND SEMICONDUCTOR DEVICE MODULE | UNDISCOUNTED | 0 | ACCEPTED | 2,004 |
|||
11,023,692 | ACCEPTED | Light source with LED and optical protrusions | A light source with LED and optical protrusions is provided. It comprises an optical panel and at least one optical plate. The light source can be used together with a heat sink or an optical element to enhance its performance. The optical panel forms an optical surface having plural optical protrusions to reflect and mix lights emitted from the LEDs. The optical plate is inserted into at least one slot on the optical panel, and it comprises a heat dissipation core plate and at least one electric circuit layer. The electric circuit layer comprises LEDs and at least one control circuitry. The electric circuit layer can be attached to either single side or both sides of the heat dissipation core plate. The invention achieves good uniformity and high intensity of the combined lights with desired chromaticity. | 1. A light source with light emitting diode (LED) and optical protrusions, comprising: an optical panel having at least one slot thereon and plural optical protrusions to reflect and combine lights; and at least one optical plate inserted into said at least one slot on said optical panel, each optical plate having a heat dissipation core plate and at least one electric circuit layer, each said electric circuit layer having at least one LED and at least one control circuitry to control the operation of said LED. 2. The light source with LED and optical protrusions as claimed in claim 1, wherein said LED is bare LED chip that is encapsulated with a transparent material. 3. The light source with LED and optical protrusions as claimed in claim 2, wherein said transparent material is chosen from the group of epoxy and silicone. 4. The light source with LED and optical protrusions as claimed in claim 1, wherein said LED is an LED package. 5. The light source with LED and optical protrusions as claimed in claim 1, wherein said heat dissipation core plate is made of a material chosen from the group of a dielectric material, an electrical conductor, and a thermal conductor. 6. The light source with LED and optical protrusions as claimed in claim 1, wherein the shapes of said optical protrusions include pyramidal, conic, parabolic, and semispherical shapes. 7. The light source with LED and optical protrusions as claimed in claim 1, wherein said electric circuit layer is an insulating layer. 8. The light source with LED and optical protrusions as claimed in claim 1, wherein said control circuitry is stacked on said electric circuit layer. 9. The light source with LED and optical protrusions as claimed in claim 1, wherein said control circuitry is printed on said electric circuit layer. 10. The light source with LED and optical protrusions as claimed in claim 2, wherein said bare LED chips are attached to said electric circuit layer via a flip chip. 11. The light source with LED and optical protrusions as claimed in claim 2, wherein said bare LED chips are attached to said electric circuit layer via wire bonding. 12. The light source with LED and optical protrusions as claimed in claim 2, wherein said bare LED chips are attached to said electric circuit layer in a way such that their chips surfaces face said optical protrusions. 13. The light source with LED and optical protrusions as claimed in claim 1, wherein adjacent said LEDs emit lights of different colors. 14. The light source with LED and optical protrusions as claimed in claim 1, wherein adjacent said LEDs emit lights of same colors. 15. The light source with LED and optical protrusions as claimed in claim 1, wherein each optical plate includes a heat dissipation core plate and two electric circuit layers, and one electric circuit layer is attached to each side of the heat dissipation core plate. 16. The light source with LED and optical protrusions as claimed in claim 1, wherein each optical plate includes a heat dissipation core plate and one electric circuit layer. The electric circuit layer is attached to single side of the heat dissipation core plate. 17. The light source with LED and optical protrusions as claimed in claim 1, wherein said light source further comprises a heat sink that is attached to said optical panel to enhance heat dissipation. 18. The light source with LED and optical protrusions as claimed in claim 1, wherein said light source further comprises an optical element that is used to guide said combined light towards a display screen. 19. The light source with LED and optical protrusions as claimed in claim 7, wherein said electric circuit layer is chosen from the group of printed circuit board, oxide, and ceramic material. 20. The light source with LED and optical protrusions as claimed in claim 18, wherein said optical element is a light diffuser. 21. The light source with LED and optical protrusions as claimed in claim 18, wherein said optical element is a wave guide. 22. The light source with LED and optical protrusions as claimed in claim 18, wherein each optical plate includes a heat dissipation core plate and two electric circuit layers, and one electric circuit layer is attached to each side of the heat dissipation core plate. 23. The light source with LED and optical protrusions as claimed in claim 18, wherein each optical plate includes a heat dissipation core plate and one electric circuit layer, and the electric circuit layer is attached to single side of the heat dissipation core plate. | FIELD OF THE INVENTION The present invention generally relates to a light emitting diode (LED) lighting system, and more specifically to a light source with LED and optical protrusions. BACKGROUND OF THE INVENTION A light source for illuminating an information source is often required in many applications. In particular, liquid crystal displays (LCDs) have become more and more popular in many electronic media. LCDs are commonly adopted in various applications, such as laptop computers, display monitors, video cameras, automatic teller machine displays, displays in avionics, televisions etc. In general, a backlight module is required for the LCDs to illuminate the information to be displayed. There are various kinds of light sources used in a backlight module of an LCD, e.g., fluorescent lamps and LEDs. While the fluorescent lamps are inexpensive and do not need a complex control circuitry, they are sometimes inadequate for certain applications that require good color quality and long lamp life. LEDs have been proposed for use as light sources, such as LCD backlight modules, for many reasons. These advantages of LED light sources include long life, ease of replacement, robust mechanical property, and better color quality than fluorescent lamps. Certain applications (e.g., avionics) require a specific chromaticity of light emitted from the LCD backlight module. However, most commercially available LEDs are made with a limited number of chromaticity choices and their chromaticity may change over time. An LED light source with a raised LED 100, as shown in FIG. 1, to improve the chromaticity of a combined light was disclosed in U.S. Pat. No. 6,666,567. The raised LED 100 includes an LED diode 101 encased in a package 102 which is raised above the floor 103 of optical cavities. The raised structure permits light to be emitted from the base of the LED. Additionally, reflective protrusions may be placed beneath the raised LED to aid in redirecting the light trajectory. A combination of fluorescent lamps and LEDs were also proposed to form a hybrid light source. However, all these schemes increase the complexity and cost of the light source. As shown in FIG. 2 and FIG. 3, an LCD backlight 200, which includes a first LED array 201 that provides light with a first chromaticity and a second LED array 202 that provides light with a second chromaticity, was disclosed in another U.S. Pat. No. 6,608,614. The lights emitted from these two LED arrays 201 and 202 are combined through a combining element 301 (e.g., a wave guide) and then projected towards an LCD stack 302. The LED chip normally emits light in a direction which is approximately perpendicular to the chip surface. The directions of light emitted from the first and the second LED arrays are approximately perpendicular and parallel to the panel surface, respectively. A separate combining element 301 is required in this light source. The chromaticity of the combined light can only be adjusted by changing the chromaticity of the second LED array 202 through a control system (not shown). Therefore, there is a limited flexibility for chromaticity adjustment. According to another prior art, a Luxeon side-emitter having packaged LED chips was disclosed, as shown in FIG. 4. The side-emitter may provide good uniformity of combined light but the light intensity is poor. In addition, packaged LED chips normally occupy a much larger area than the bare chips scheme of the present invention. It is known that the majority of lights emitted from LED chips travel in a direction approximately perpendicular to the chip surface. Therefore, the LED chips need to be arranged in a way such that the lights emitted from different LED chips have a chance to be combined and mixed in order to achieve desired chromaticity before they reach a display screen. It is the main objective of the present invention to use a low complexity and low cost system to achieve high intensity and good color quality. SUMMARY OF THE INVENTION The present invention has been made to achieve the advantages of a practical LED light source. The primary object is to provide a light source with LED and optical protrusions. It eliminates the need of a package for encasing an LED chip, and thus reduces cost and space. The high intensity is also achieved due to a high LED packaging density. In the first embodiment of the invention, the LED light source comprises an optical panel and at least one optical plate. This LED light source can be used together with a heat sink to enhance its performance. The optical panel forms an optical surface having plural optical protrusions to reflect and combine lights that are emitted from the LED. The optical plate is inserted into at least one slot on the optical panel. The optical plate comprises a heat dissipation core plate and at least one electric circuit layer. One electric circuit layer comprises at least one LED and at least one control circuitry which is designed to control the operation of the bare LED chips. In the second embodiment, the LED light source further includes an optical element that is used to guide said combined light towards a display screen. The optical element may be a light diffuser or a wave guide. The optical plate includes a heat dissipation core plate and two electric circuit layers. One electric circuit layer is attached to each side of the heat dissipation core plate. Alternatively, the optical plate includes a heat dissipation core plate and one electric circuit layer. The electric circuit layer is attached to single side of the heat dissipation core plate. According to the invention, the LEDs are attached to an electric circuit layer via a flip chip or wire bonding. The LEDs are attached in a way such that their chip surfaces face the optical protrusions. Therefore, the emitted lights from different LEDs have a chance to be reflected and combined on the optical surface in order to achieve desired chromaticity before they reach a display screen. These LEDs can be encapsulated with a transparent material to prevent the LEDs from reacting with air. The control circuitry is used to power up the LEDs, to control the brightness of the LEDs, to provide electrostatic discharge protection for the LEDs, and to adjust the chromaticity of the combined light to meet desired applications. The control circuitry may be stacked or printed on the electric circuit layer. Simulation results indicate that good uniformity and high intensity of combined lights with desired chromaticity are achieved. The combined lights can be further directed towards a light diffuser or a wave guide. Moreover, the heat dissipation core plates are normally connected to a heat sink to enhance dissipation of heat, and thus enhance the performance and increase the life time of the light source. The LED light source of this invention can be used as a backlight module for a liquid-crystal display. The foregoing and other objects, features, aspects and advantages of the present invention will become better understood from a careful reading of a detailed description provided herein below with appropriate reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional raised LED structure. FIG. 2 shows a conventional LED-based LCD backlight. FIG. 3 shows a side elevational view of the LCD backlight shown in FIG. 2. FIG. 4 shows a Luxeon side-emitter. FIG. 5A shows a top view of a light source with LED and optical protrusions according to a first embodiment of the present invention. FIG. 5B is an enlarged view of the optical plate in FIG. 5A. FIG. 6 shows a second embodiment of a light source with LED and optical protrusions according to the present invention. FIG. 7A shows a flip chip bonding. FIG. 7B shows an edge wire bonding. FIG. 7C shows a center wire bonding. FIG. 8 shows the intensity of the combined light from left/bottom to right/top of a screen surface. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 5A and FIG. 5B depict a preferred embodiment of a light source 500 with LED and optical protrusions according to the present invention. Referring to FIG. 5A, the light source 500 comprises an optical panel 501 and at least one optical plate 505. The optical panel 501 forms an optical surface having plural optical protrusions 503 to reflect and combine lights that are emitted from LEDs 504 and travel approximately in parallel to the surface of the optical panel 501. The optical plate 505 is inserted into at least one slot 509 on the optical panel 501. The slot may span from one panel edge to another. This light source 500 can be used together with a heat sink to enhance its performance. For example, a heat sink (shown in dotted line) 502 is attached to the optical panel 501 to enhance heat dissipation. As shown in FIG. 5B, the optical plate 505 further comprises a heat dissipation core plate 508 and at least one electric circuit layer which is attached to the heat dissipation core plate 508. One electric circuit layer 506 further comprises at least one LED 504 and at least one control circuitry 507 which is designed to control the operation of the bare LED chips 504. The combined lights can be further directed towards a light diffuser or a wave guide (not shown). Moreover, the heat dissipation core plates 508 are usually connected to the heat sink 502 to enhance the dissipation of heat, and thus enhance the performance and increase the life time of the light source 500. The light source 500 of this invention can be used as a backlight module for a liquid-crystal display. The light source 500 eliminates the need of a package for encasing an LED chip, and thus reduces cost and space. However, this light source do not prohibit using packaged LED lamps and should not be limited to the use of bare LED chips only. One electric circuit layer 506 is attached to each side of the heat dissipation core plate 508, and the LEDs 504 on the electric circuit layer 506 are exposed on the optical surface to emit lights. The LEDs 504 are attached to the electric circuit layer 506 in a way such that their chips surfaces face the optical protrusions 503. Therefore, the majority of lights are emitted towards the optical protrusions 503, which are then reflected and combined by the optical protrusions 503 on the optical surface. Alternatively, only single side of the heat dissipation core plate 508 is attached with an electric circuit layer 506. Adjacent LEDs are allowed to emit lights of different or same colors depending on desired applications. The control circuitry 507 is used to power up the LEDs 504, to control the brightness of the LEDs 504, to provide electrostatic discharge protection for the bare LED chips 504, and to adjust the chromaticity of the combined light to meet desired applications. The control circuitry 507 may be stacked or printed on the electric circuit layer 506. FIG. 6 shows a second embodiment of a light source 600 with LED and optical protrusions according to the present invention, wherein an optical element 601 is placed in between a display screen 602 and the light source 500 shown in FIG. 5A. The optical element 601 is used to guide the combined light towards the display screen 602 such as an LCD stack. The optical element 601 may be a light diffuser or a wave guide. According to desired applications, the optical protrusions can be formed in any suitable manner and shape and made of any suitable material. The shape of the optical protrusions can be, but not limited to, pyramidal or conic or parabolic or semispherical. The electric circuit layer is made of an insulating layer, such as printed circuit board (PCB), oxide and ceramic material. These LEDs can be encapsulated with a transparent material to prevent the LEDs from reacting with air. Furthermore, total reflection can be avoided if the refractive index of the transparent material is properly selected. The transparent material can be chosen from the group of, but not limited to, epoxy and silicone. The heat dissipation core plate can be made of a material chosen from the group of a dielectric material, an electrical conductor, and a thermal conductor. According to the invention, the LEDs are attached to the electric circuit layer via a flip chip or wire bonding. FIG. 7A shows a flip chip bonding, wherein an LED chip 701 is bonded onto a substrate (i.e., electric circuit layer 506) with paste or solder. The flip chip bonding eliminates the need of a conventional wire bonding which is used to electrically connect the chip to an external circuitry. The bonding pads of a flip chip are also served as electrical connections to the control circuitry. The flip chip bonding is often adopted for applications that require a small form factor or have a high density of bonding pads. The wire bonding further includes edge wire bonding and center wire bonding. FIGS. 7B and 7C show an edge wire bonding and a center wire bonding, respectively. Wherein an LED chip 702 or 703 is first bonded onto a substrate (i.e., electric circuit layer 506) with paste or solder, and then metal wire bonding is followed to complete the electrical connections to the control circuitry. In a simulated RGB color map of a combined light at a screen surface, it shows that the chromaticity of the combined light using the light source with LED and optical protrusions according to the invention well matches a targeted white color. The light intensity is also higher than that can be achieved with the conventional schemes. FIG. 8 further shows the intensity of the combined light from left/bottom to right/top of the screen surface. The horizontal axis represents the location on the screen. The solid line represents the horizontal component of the light intensity and the dashed line represents the vertical component of the light intensity. The results indicate that good uniformity and high intensity of the combined lights with desired chromaticity are achieved in both horizontal and vertical directions. Although the present invention has been described with reference to the preferred embodiments, it will be understood that the invention is not limited to the details described thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>A light source for illuminating an information source is often required in many applications. In particular, liquid crystal displays (LCDs) have become more and more popular in many electronic media. LCDs are commonly adopted in various applications, such as laptop computers, display monitors, video cameras, automatic teller machine displays, displays in avionics, televisions etc. In general, a backlight module is required for the LCDs to illuminate the information to be displayed. There are various kinds of light sources used in a backlight module of an LCD, e.g., fluorescent lamps and LEDs. While the fluorescent lamps are inexpensive and do not need a complex control circuitry, they are sometimes inadequate for certain applications that require good color quality and long lamp life. LEDs have been proposed for use as light sources, such as LCD backlight modules, for many reasons. These advantages of LED light sources include long life, ease of replacement, robust mechanical property, and better color quality than fluorescent lamps. Certain applications (e.g., avionics) require a specific chromaticity of light emitted from the LCD backlight module. However, most commercially available LEDs are made with a limited number of chromaticity choices and their chromaticity may change over time. An LED light source with a raised LED 100 , as shown in FIG. 1 , to improve the chromaticity of a combined light was disclosed in U.S. Pat. No. 6,666,567. The raised LED 100 includes an LED diode 101 encased in a package 102 which is raised above the floor 103 of optical cavities. The raised structure permits light to be emitted from the base of the LED. Additionally, reflective protrusions may be placed beneath the raised LED to aid in redirecting the light trajectory. A combination of fluorescent lamps and LEDs were also proposed to form a hybrid light source. However, all these schemes increase the complexity and cost of the light source. As shown in FIG. 2 and FIG. 3 , an LCD backlight 200 , which includes a first LED array 201 that provides light with a first chromaticity and a second LED array 202 that provides light with a second chromaticity, was disclosed in another U.S. Pat. No. 6,608,614. The lights emitted from these two LED arrays 201 and 202 are combined through a combining element 301 (e.g., a wave guide) and then projected towards an LCD stack 302 . The LED chip normally emits light in a direction which is approximately perpendicular to the chip surface. The directions of light emitted from the first and the second LED arrays are approximately perpendicular and parallel to the panel surface, respectively. A separate combining element 301 is required in this light source. The chromaticity of the combined light can only be adjusted by changing the chromaticity of the second LED array 202 through a control system (not shown). Therefore, there is a limited flexibility for chromaticity adjustment. According to another prior art, a Luxeon side-emitter having packaged LED chips was disclosed, as shown in FIG. 4 . The side-emitter may provide good uniformity of combined light but the light intensity is poor. In addition, packaged LED chips normally occupy a much larger area than the bare chips scheme of the present invention. It is known that the majority of lights emitted from LED chips travel in a direction approximately perpendicular to the chip surface. Therefore, the LED chips need to be arranged in a way such that the lights emitted from different LED chips have a chance to be combined and mixed in order to achieve desired chromaticity before they reach a display screen. It is the main objective of the present invention to use a low complexity and low cost system to achieve high intensity and good color quality. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention has been made to achieve the advantages of a practical LED light source. The primary object is to provide a light source with LED and optical protrusions. It eliminates the need of a package for encasing an LED chip, and thus reduces cost and space. The high intensity is also achieved due to a high LED packaging density. In the first embodiment of the invention, the LED light source comprises an optical panel and at least one optical plate. This LED light source can be used together with a heat sink to enhance its performance. The optical panel forms an optical surface having plural optical protrusions to reflect and combine lights that are emitted from the LED. The optical plate is inserted into at least one slot on the optical panel. The optical plate comprises a heat dissipation core plate and at least one electric circuit layer. One electric circuit layer comprises at least one LED and at least one control circuitry which is designed to control the operation of the bare LED chips. In the second embodiment, the LED light source further includes an optical element that is used to guide said combined light towards a display screen. The optical element may be a light diffuser or a wave guide. The optical plate includes a heat dissipation core plate and two electric circuit layers. One electric circuit layer is attached to each side of the heat dissipation core plate. Alternatively, the optical plate includes a heat dissipation core plate and one electric circuit layer. The electric circuit layer is attached to single side of the heat dissipation core plate. According to the invention, the LEDs are attached to an electric circuit layer via a flip chip or wire bonding. The LEDs are attached in a way such that their chip surfaces face the optical protrusions. Therefore, the emitted lights from different LEDs have a chance to be reflected and combined on the optical surface in order to achieve desired chromaticity before they reach a display screen. These LEDs can be encapsulated with a transparent material to prevent the LEDs from reacting with air. The control circuitry is used to power up the LEDs, to control the brightness of the LEDs, to provide electrostatic discharge protection for the LEDs, and to adjust the chromaticity of the combined light to meet desired applications. The control circuitry may be stacked or printed on the electric circuit layer. Simulation results indicate that good uniformity and high intensity of combined lights with desired chromaticity are achieved. The combined lights can be further directed towards a light diffuser or a wave guide. Moreover, the heat dissipation core plates are normally connected to a heat sink to enhance dissipation of heat, and thus enhance the performance and increase the life time of the light source. The LED light source of this invention can be used as a backlight module for a liquid-crystal display. The foregoing and other objects, features, aspects and advantages of the present invention will become better understood from a careful reading of a detailed description provided herein below with appropriate reference to the accompanying drawings. | 20041227 | 20070417 | 20060629 | 84622.0 | H05B3702 | 2 | WILLIAMS, JOSEPH L | LIGHT SOURCE WITH LED AND OPTICAL PROTRUSIONS | UNDISCOUNTED | 0 | ACCEPTED | H05B | 2,004 |
|
11,023,783 | ACCEPTED | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support | Methods and systems for endovascular, endocardiac, or endoluminal approaches to a patient's heart to perform surgical procedures that may be performed or used without requiring extracorporeal cardiopulmonary bypass. Furthermore, these procedures can be performed through a relatively small number of small incisions. These procedures may illustratively include heart valve implantation, heart valve repair, resection of a diseased heart valve, replacement of a heart valve, repair of a ventricular aneurysm, repair of an arrhythmia, repair of an aortic dissection, etc. Such minimally invasive procedures are preferably performed transapically (i.e., through the heart muscle at its left or right ventricular apex). | 1. A method of operating on a patient comprising: accessing the patient's heart; installing an access device in a wall of the heart, the access device having means for preventing bleeding through the access device; and performing a surgical procedure. 2. The method of claim 1 further comprising resecting a native heart valve. 3. The method of claim 1 further comprising implanting a heart valve. 4. The method of claim 1 further comprising repairing an aortic dissection. 5. The method of claim 1 further comprising repairing a heart valve. 6. The method of claim 1 wherein installing the access device in the wall of the heart further comprises installing the access device in a ventricular apex of the heart. 7. A method for implanting a heart valve comprising: accessing a patient's heart; installing an access device in a wall of the heart, the access device having means for preventing bleeding through the access device; inserting a valve delivery device through the access device; and installing the heart valve. 8. The method of claim 7 further comprising resecting a native heart valve. 9. The method of claim 8 wherein the resecting the native heart valve is performed percutaneously and the installing the heart valve is performed transapically. 10. The method of claim 7 wherein the installing the heart valve further comprises radially expanding the heart valve. 11. The method of claim 7 wherein the installing the heart valve further comprises pulling leaflets of a native heart valve downward. 12. A device for implanting a heart valve comprising: means for radially expanding the heart valve; and means for supplementing blood flow through the device during the implanting the heart valve. 13. The device of claim 12 further comprising means for pulling leaflets of a native valve downward. 14. The device of claim 12 wherein the radially expanding the heart valve occurs in more than one stage. 15. The device of claim 14 wherein the more than one stage is effectuated by a multi-stage balloon. 16. A method of visualizing a portion of a patient's circulatory system comprising: injecting a transparent oxygen-carrying fluid into the portion of the circulatory system; and inserting an optical device into the portion of the circulatory system containing the transparent oxygen-carrying fluid. 17. The method of claim 16 further comprising temporarily exchanging all blood of the patient's circulatory system with the transparent oxygen-carrying fluid. 18. Instrumentation for accessing a chamber of a patient's heart, the heart having a myocardium, the instrumentation comprising: a catheter having a proximal sealing device for sealing the catheter against a proximal surface of the myocardium; and means for preventing bleeding through the catheter. 19. The instrumentation of claim 18 further comprising a distal sealing device for sealing the catheter against the distal surface of the myocardium. 20. An implantable heart valve comprising: a tissue support structure; and tissue valve leaflets, wherein the tissue valve leaflets are grown inside the tissue support structure by genetic engineering. 21. The heart valve of claim 20 wherein the tissue support structure is a stent. 22. The heart valve of claim 20 wherein the tissue support structure comprises stainless steel. 23. The heart valve of claim 20 wherein the tissue support structure comprises a self-expanding material. 24. The heart valve of claim 23 wherein the self-expanding material is nitinol. 25. A device for inserting more than one guidewire into a patient comprising: a wire placement device; and a guidewire attached to the wire placement device, wherein the wire placement device is configured to track an already placed guidewire. 26. The device of claim 25 wherein the guidewire is removably attached to the wire placement device. 27. The device of claim 25 wherein the wire placement device comprises a locking mechanism. 28. A method of breaking down calcification of a heart valve comprising: inserting a catheter-based ultrasound device into a calcified heart valve; and concentrating ultrasound radiation on the calcification of the calcified heart valve to break down the calcification. 29. The method of claim 28 further comprising inserting a reflector into the calcified heart valve to magnify the ultrasound radiation. 30. A low-profile heart valve comprising: at least three leaflets, wherein one side of each leaflet overlaps a neighboring leaflet such that the leaflets open sequentially and close sequentially. 31. A heart valve comprising: an inner circumference and an outer circumference, wherein the inner circumference is a circumference of an annulus formed by leaflets of the heart valve; and the outer circumference is a circumference of a fluid-tight diaphragm, wherein the diaphragm fills a space between the inner circumference and the outer circumference. 32. A mitral valve repair device comprising: a first head defining an operating plane; and a second head operably attached to the first head and configured to displace a leaflet with respect to the operating plane. 33. The repair device of claim 32 wherein the first head is a U-shaped head. 34. The repair device of claim 32 wherein the first head comprises an attachment mechanism for attaching at least two portions of the leaflet. 35. The repair device of claim 32 further comprising a handle for operating the second head with respect to the first head. 36. A method of repairing an aortic dissection comprising: accessing a patient's heart; installing an access device in a wall of the heart, the access device having means for preventing bleeding through the access device; inserting a dissection repair device through the access device; and repairing the aortic dissection. 37. A device for repairing an aortic dissection comprising: annularly enlargeable componentry configured to be inserted into a patient's aorta; and means for closing a void created by the aortic dissection. 38. The device of claim 37 wherein the means for closing the void comprise injection needles for injecting a tissue sealant. 39. The device of claim 38 wherein the tissue sealant comprises a biologically compatible glue. 40. The device of claim 38 wherein the tissue sealant comprises mechanical sutures. 41. The device of claim 38 wherein the tissue sealant comprises surgical staples. 42. The device of claim 38 wherein the annularly enlargeable componentry comprises means for supplementing blood flow through the componentry during the repair. 43. A device for resecting a diseased heart valve comprising: a first set of annularly enlargeable componentry having a first longitudinal axis and a proximal cutting edge; a second set of annularly enlargeable componentry having a second longitudinal axis and a distal cutting edge; wherein the device is configured to resect the diseased heart valve when the first set of componentry is enlarged on a distal side of the diseased heart valve and the second set of componentry is enlarged on a proximal side of the diseased heart valve and the sets of componentry are drawn axially together along the longitudinal axes. 44. The device of claim 43 wherein the first longitudinal axis and the second longitudinal axis are coaxial. 45. A method for implanting an endoprosthesis comprising: accessing a patient's heart; installing an access device in a wall of the heart, the access device having means for preventing bleeding through the access device; inserting an endoprosthesis delivery device through the access device; and installing the endoprosthesis. | This application claims the benefit of U.S. provisional patent application No. 60/615,009, filed Oct. 2, 2004, which is hereby incorporated by reference herein in its entirety. FIELD OF THE INVENTION This invention relates generally to devices and methods for performing cardiovascular procedures wherein a heart valve or segment of the aorta is being repaired or replaced without the use of extracorporeal cardiopulmonary support (commonly referred to as “off-pump” procedures). For example, the invention relates to devices and methods for accessing, resecting, repairing, and/or replacing one of the heart valves, in particular the aortic valve. This invention also relates to methods and systems for performing minimally-invasive cardiac procedures such as the endovascular, endocardiac or endoluminal placement, implantation or removal and consecutive replacement of heart valves. These techniques may be generally referred to as direct access percutaneous valve replacement (“DAPVR”). BACKGROUND OF THE INVENTION Of particular interest to the present invention is the treatment of heart valve disease. There are two major categories of heart valve disease: (i) stenosis, which is an obstruction to forward blood flow caused by a heart valve, and (ii) regurgitation, which is the retrograde leakage of blood through a heart valve. Stenosis often results from calcification of a heart valve that makes the valve stiffer and less able to open fully. Therefore, blood must be pumped through a smaller opening. Regurgitation can be caused by the insufficiency of any of the valve leaflets such that the valve does not fully close. In the past, repairing or replacing a malfunctioning heart valve within a patient has been achieved with a major open-heart surgical procedure, requiring general anesthesia and full cardiopulmonary by-pass. This requires complete cessation of cardiopulmonary activity. While the use of extracorporeal cardiopulmonary by-pass for cardiac support is a well accepted procedure, such use has often involved invasive surgical procedures (e.g., median sternotomies, or less commonly, thoracotomies). These operations usually require one to two weeks of hospitalization and several months of rehabilitation time for the patient. The average mortality rate with this type of procedure is about five to six percent, and the complication rate is substantially higher. Endovascular surgical techniques for heart surgery have been under recent development. In contrast to open-heart surgical procedures, endovascular procedures may have a reduced mortality rate, may require only local anesthesia, and may necessitate only a few days of hospitalization. However, the range of procedures that has been developed for an endovascular approach to date has been limited to repair of the coronary arteries, such as angioplasty and atherectomy. Some progress has been made in the development of endovascular heart valve procedures. For example, for patients with severe stenotic valve disease who are too compromised to tolerate open-heart surgery to replace the heart valve as described above, surgeons have attempted endovascular balloon aortic or mitral valvuloplasty. These procedures involve endovascularly advancing a balloon dilatation catheter into the patient's vasculature until the balloon of the catheter is positioned between the valve leaflets. Then the balloon is inflated to either: (i) split the commissures in a diseased valve with commissural fusion, or (ii) crack calcific plaques in a calcified stenotic valve. However, this method may only provide partial and temporary relief for a patient with a stenotic valve. Instances of restenosis and mortality following balloon aortic valvuloplasty have led to virtual abandonment of this procedure as a treatment for a diseased aortic valve. Endovascular procedures for valve implantation inside a native and diseased valve have been explored. A catheter-mounted valve is incorporated into a collapsible cylindrical structure, such as a stent (commonly referred to as a “valved stent”). In these procedures, an elongated catheter is used to insert a mechanical valve into the lumen of the aorta via entry through a distal artery (e.g., the femoral or brachial artery). Such procedures have been attempted on selective, terminally ill patients as a means of temporarily relieving the symptoms of a diseased valve. The percutaneous placement of an artificial valve may have certain limitations and ancillary effects. For example, at present, such procedures are only of benefit to a small number of patients and are not meant to become an alternative to surgical heart valve procedures requiring the use of extracorporeal bypass. Another issue is that performing the entire procedure via small diameter vessels (e.g., the femoral, iliac or brachial arteries) restricts the use of larger tools and devices for the resection or repair of the diseased heart valve. Furthermore, this endovascular procedure may increase the risk of various vascular complications such as bleeding, dissection, rupture of the blood vessel, and ischemia to the extremity supplied by the vessel used to perform the operation. Moreover, in some cases, one or more of a patient's femoral arteries, femoral veins, or other vessels for arterial and venous access may not be available for introduction of delivery devices or valve removal tools due to inadequate vessel diameter, vessel stenosis, vascular injury, or other conditions. In such cases, there may not be sufficient arterial and venous access to permit the contemporaneous use of the necessary interventional devices (e.g., an angioplasty catheter, atherectomy catheter, or other device) for a single surgical procedure. Therefore, unless alternate arterial or venous access for one or more of these catheters can be found, the procedure cannot be performed using endovascular techniques. Another possible disadvantage of the small vessel procedure is that the new valve must be collapsed to a very small diameter that could result in structural damage to the new valve. Additionally, such remote access sites like the femoral artery may make precise manipulation of the surgical tools more difficult (e.g., exchange of guide wires and catheters and deployment of the new valve). Furthermore, placing wires, catheters, procedural tools, or delivery devices through one or more heart structures (e.g., the mitral valve) to reach the target site can result in damage to those structures (e.g., acute malfunctioning or insufficiency of the valve being mechanically hindered by the surgical equipment or valve deterioration resulting from mechanical friction inflicting micro-lesions on the valve). Also to be considered in connection with such procedures is the potential of obstructing the coronary ostia. The known percutaneous procedures for implanting heart valves do not have a safety mechanism to ensure proper orientation of the new valve. Therefore, there is a possibility that the deployed valve will obstruct the coronary ostia, which can result in myocardial ischemia, myocardial infarction, and eventually the patient's death. These procedures leave the old valve in place, and the new valve is implanted within the diseased valve after the diseased valve has been compressed by a balloon or other mechanical device. Therefore, there may be a possibility of embolic stoke or embolic ischemia from valve or vascular wall debris that is liberated into the blood flow as the diseased valve is dilated and compressed. Furthermore, a rim of diseased tissue (e.g., the compressed native valve) decreases the diameter and cross-sectional surface of the implanted valve, potentially under-treating the patient and leading to only partial relief of his symptoms. It would therefore be desirable to develop systems and methods for satisfactorily performing various cardiovascular procedures, particularly procedures for heart valve placement or removal and replacement, which do not require the use of an extracorporeal bypass or invasive surgical procedure, such as a sternotomy. It would be further desirable to perform such procedures through very small incisions in the patient (e.g., via several small thoracotomies). The devices and methods will preferably facilitate the access, resection, repair, implantation, and/or replacement of the diseased cardiac structure (e.g., one or more diseased heart valves). The devices and methods should preferably minimize the number of arterial and venous penetrations required during the closed-chest procedures, and desirably, should require no more than one cardiac and one femoral arterial penetration. The present invention satisfies these and other needs. The descriptive terms antegrade and retrograde mean in the direction of blood flow and opposite the direction of blood flow, respectively, when used herein in relation to the patient's vasculature. In the arterial system, antegrade refers to the downstream direction (i.e., the same direction as the physiological blood flow), while retrograde refers to the upstream direction (i.e., opposite the direction of the physiological blood flow). The terms proximal and distal, when used herein in relation to instruments used in the procedure, refer to directions closer to and farther away from the heart, respectively. The term replacement normally signifies removal of the diseased valve and implantation of a new valve. However, a new valve may also be implanted directly over top of a diseased valve. An implantation procedure would be the same as a replacement procedure without the removal of the diseased valve. SUMMARY OF THE INVENTION The present invention is directed to a method and system for an endovascular, endocardiac, or endoluminal approach to a patient's heart to perform an operation that does not require an extracorporeal cardiopulmonary bypass circuit and that can be performed through a limited number of small incisions, thus eliminating the need for a sternotomy. The invention contemplates, at least in its preferred embodiments, the possibility of effective aortic valve implantation, aortic valve repair, resection of the aortic valve and replacement of the aortic valve, all without necessitating extracorporeal cardiopulmonary by-pass, a median sternotomy or other grossly thoracic incisions. The present invention contemplates replacing any of the four valves of the heart via an antegrade approach through the wall of the appropriate chamber. Preferably, valves are implanted transapically (i.e., through the heart muscle at its left or right ventricular apex). However, in this case, replacement of the mitral and tricuspid valves may be performed via a retrograde approach, because accessing these valves via the left or right ventricles requires approaching these valves against the flow of blood through the valve. In accordance with the present invention, a surgeon may perform a minimally invasive operation on a patient that includes accessing the patient's heart and installing an access device in a wall of the heart that has means for preventing bleeding through the access device. A new heart valve may be implanted via the access device. In addition to implanting a heart valve during such a procedure, the surgeon can also resect a diseased native heart valve. The surgeon may also repair an aortic dissection using such a procedure. The surgeon may also choose to repair a damaged heart valve using similar techniques. The access device described may be preferably installed in the ventricular apex of the heart. Surgical methods in accordance with the present invention may also include resecting a diseased heart valve percutaneously, while installing the new heart valve transapically. Alternatively, a surgeon may resect a diseased valve transapically and implant a new valve percutaneously. Additionally, both removal and implantation could be performed transapically. The new heart valve is preferably implanted by radially expanding the heart valve. In some embodiments, the radial expansion occurs in multiple stages that may be effectuated by a multi-stage balloon. The implantation device may include a mechanism to pull the leaflets of a native valve downward while the new valve is installed within the native valve. A device for resecting a diseased heart valve in accordance with the present invention may include a first set of annularly enlargeable componentry having a first longitudinal axis and a proximal cutting edge and a second set of annularly enlargeable componentry having a second longitudinal axis and a distal cutting edge. The device resects the diseased heart valve when the first set of componentry is enlarged on a distal side of the diseased heart valve and the second set of componentry is enlarged on a proximal side of the diseased heart valve and the sets of componentry are drawn axially together along the longitudinal axes. The first and second sets of annularly enlargeable componentry may be coaxial. In accordance with the present invention, blood flow through the surgical devices placed in the patient (e.g., inside the patient's aorta) may be supplemented with artificial devices such as ventricular assist devices. The surgical site may be visualized with direct optical technology. For example, transparent oxygen-carrying fluid may be injected into a portion of the circulatory system of a patient, and an optical device may be inserted into the transparent fluid to transmit images of the surgical site. Using such techniques, all blood of a patient's circulatory system may be temporarily exchanged with the transparent oxygen-carrying fluid. Instrumentation for accessing a chamber of a patient's heart may include a catheter having a proximal sealing device for sealing the catheter against a proximal surface of the myocardium. The instrumentation may also include means for preventing bleeding through the catheter. In some embodiments, the instrumentation includes a distal sealing device for sealing the catheter against the distal surface of the myocardium. In accordance with the present invention, an implantable heart valve may include a tissue support structure and tissue valve leaflets that are grown inside the tissue support structure by genetic engineering. The genetically engineered leaflets may grow inside a stainless steel stent, a nitinol stent, or any other suitable tissue support structure. Low-profile heart valves may also be used that include at least three leaflets. One side of each leaflet overlaps a neighboring leaflet such that the leaflets open sequentially and close sequentially. Replacement heart valves may also be used that correct overly-dilated heart valve annuluses. Such a heart valve may include an inner circumference defined by the leaflets of the heart valve and an outer circumference defined by the outer limits of a fluid-tight diaphragm. The diaphragm fills the space between the inner circumference and the outer circumference. Surgeons may be aided by a device for inserting more than one guidewire into a patient. Such a device includes an annular wire placement device and one or more guidewires removably attached to the annular wire placement device. The annular wire placement device is configured to track an already placed guidewire. In accordance with the present invention, calcification of a heart valve may be broken down by inserting a catheter-based ultrasound device into a calcified heart valve and concentrating ultrasound radiation on the calcification of the calcified heart valve to break down the calcification. Such a procedure may be enhanced by inserting a reflector into the calcified heart valve to magnify the ultrasound radiation. A mitral valve repair device in accordance with the present invention may include a first head defining an operating plane and a second head operably attached to the first head. The second head is configured to displace a leaflet with respect to the operating plane. The first head may be U-shaped and include an attachment mechanism for attaching at least two portions of a mitral valve leaflet. The repair device includes a handle for operating the second head with respect to the first head. In accordance with the present invention, aortic dissections may be repaired by accessing a patient's heart and placing an access device in a wall of the heart that prevents bleeding through the access device. A dissection repair device is inserted through the access device to repair the aortic dissection. The device may include annularly enlargeable componentry configured to be inserted into the patient's aorta and means for closing a void created by the aortic dissection. The void can be closed by injecting a biologically compatible glue (e.g., fibrin, thrombin, or any other suitable chemical or biological substance) through needles into the void. It may also be closed using mechanical sutures or surgical staples, for example. BRIEF DESCRIPTION OF THE DRAWINGS Further features of the invention, its nature, and various advantages will be more apparent from the following detailed description and the accompanying drawings, wherein like reference characters represent like elements throughout, and in which: FIG. 1 is a view of a surgical site in accordance with the principles of the present invention. FIG. 2 is a detailed cut-away view of a portion of the surgical site illustrated in FIG. 1. FIG. 3 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 4 is a view similar to FIG. 3 showing a later stage in the illustrative procedure depicted in part by FIG. 3, together with related apparatus, all in accordance with this invention. FIG. 5 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3 and 4, together with related apparatus, all in accordance with this invention. FIG. 6 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-5, together with related apparatus, all in accordance with this invention. FIG. 7 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-6, together with related apparatus, all in accordance with this invention. FIG. 8 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-7, together with related apparatus, all in accordance with this invention. FIG. 9 shows alternative related apparatus to that shown in FIG. 8 and shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-7, together with related apparatus, all in accordance with this invention. FIG. 10 shows alternative related apparatus to that shown in FIGS. 8 and 9 and shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-7, together with related apparatus, all in accordance with this invention. FIG. 11 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-10, together with related apparatus, all in accordance with this invention. FIG. 12 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-11, together with related apparatus, all in accordance with this invention. FIG. 13 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-12, together with related apparatus, all in accordance with this invention. FIG. 14 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-13, together with related apparatus, all in accordance with this invention. FIG. 15 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-14, together with related apparatus, all in accordance with this invention. FIG. 16 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-15, together with related apparatus, all in accordance with this invention. FIG. 17 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-16, together with related apparatus, all in accordance with this invention. FIG. 18 shows an even later stage in the illustrative procedure depicted in part by FIGS. 3-17, together with related apparatus, all in accordance with this invention. FIG. 19 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 19A is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 20 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 21 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 22 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 23 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 24 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 25 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 26 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 27 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 28 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 29 is a view showing an illustrative procedure incorporating the apparatus of FIG. 28 in accordance with this invention. FIG. 30 is a view similar to FIG. 29 showing a later stage in the illustrative procedure depicted in part by FIG. 29, together with related apparatus, all in accordance with this invention. FIG. 31 shows an early stage in an illustrative procedure, together with related apparatus, all in accordance with this invention. FIG. 32 is a view similar to FIG. 31 showing a later stage in the illustrative procedure depicted in part by FIG. 31, together with related apparatus, all in accordance with this invention. FIG. 33 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 34 shows an early stage in an illustrative procedure, together with related apparatus, all in accordance with this invention. FIG. 35 shows an early stage in an illustrative procedure, together with related apparatus, all in accordance with this invention. FIG. 36 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 37 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 38 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 39 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 40 is a perspective view of an illustrative embodiment of apparatus in accordance with the principles of the present invention. FIG. 41 is a view similar to FIG. 40 showing an earlier stage in an illustrative procedure depicted in part by FIG. 40, together with related apparatus, all in accordance with this invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Because the present invention has a number of different applications, each of which may warrant some modifications of such parameters as instrument size and shape, it is believed best to describe certain aspects of the invention with reference to relatively generic schematic drawings. To keep the discussion from becoming too abstract, however, and as an aid to better comprehension and appreciation of the invention, references will frequently be made to specific uses of the invention. Most often these references will be to use of the invention to resect and replace or implant an aortic valve with an antegrade surgical approach. It is emphasized again, however, that this is only one of many possible applications of the invention. Assuming that the invention is to be used to resect and replace or implant an aortic valve, the procedure may begin by setting up fluoroscopy equipment to enable the surgeon to set and use various reference points during the procedure. The surgeon may begin by performing a thoracotomy to create an access site for the surgical procedure. The endovascular, endocardiac or endoluminal surgical system of the present invention incorporates accessing the interior of the heart by directly penetrating the heart muscle, preferably through the heart muscle at its left or right ventricular apex (hereinafter referred to as “transapically”). Thoracotomy sites may be prepared at any of third intercostal space 12, fourth intercostal space 14, fifth intercostal space 16, or subxyphoidal site 18 (i.e., just below xyphoid process 19) of patient 11, as shown in FIG. 1. Any intercostal space may serve as a suitable surgical site, and in some embodiments of the present invention, the fourth, fifth, or sixth intercostal spaces are the preferred sites. All of these sites provide surgical access to apex 17 of heart 10. A 5-10 cm incision at any one of these sites may allow the surgeon to perform the entire procedure through one access site. However, alternatively, the surgeon may prefer to use an endoscopic technique wherein he or she may utilize 1-3 cm incisions at multiple sites to insert various instruments. Once the heart is exposed, the surgeon may place one or multiple purse-string sutures around the ventricular apex surgical site. This will allow the surgeon to synch the heart muscle around any equipment that is passed through the heart wall during surgery to prevent bleeding. Other techniques for preventing bleeding from the heart chamber that is accessed for surgery will be described in more detail below. FIG. 2 illustrates the four chambers of heart 10: right atrium 24, left atrium 25, left ventricle 26, and right ventricle 27. FIG. 2 also shows the four valves of heart 10: aortic valve 20, mitral valve 21, pulmonary valve 22, and tricuspid valve 23. Ascending aorta 28 and descending aorta 29 are also illustrated. A procedure to replace aortic valve 20 may require a left thoracotomy and a left transapical incision to the heart muscle. Alternatively, a procedure to replace pulmonary valve 22 may require a right thoracotomy and a right transapical incision to the heart muscle. Direct access may be made via incisions to right and left atria 24 and 25 as well to enable antegrade approaches to tricuspid valve 23 and mitral valve 21. While the procedure may be used for antegrade and retrograde repair to any of a patient's heart valves, the following illustrative procedure relates to the resection and antegrade replacement of aortic valve 20. It should be understood that the resection steps may be skipped in the following procedure, and a replacement valve may alternatively be placed concentrically within the diseased valve. In addition to the thoracotomy access site, the surgeon may also desire endoluminal (e.g., percutaneous) access sites, preferably via the patient's femoral vein or artery. A femoral vein access site may be used to place ultrasound equipment 34 inside the patient's right atrium adjacent aortic valve 20 and sino-tubular junction 36, as shown in FIG. 3. Ultrasound equipment 34 may, for example, be an AcuNav™ Diagnostic Ultrasound Catheter. Ultrasound equipment 34 could also be placed via the internal jugular vein (IJV). Placement of ultrasound equipment 34 via a femoral or iliac access site versus an IJV site may reverse the orientation of ultrasound equipment 34 (i.e., from which direction ultrasound equipment 34 enters the patient's right atrium). As an alternative to percutaneous ultrasound equipment, a surgeon may choose to use esophageal visualization technology such as, for example, TransEsophageal Echo (“TEE”) to provide an image of the target valve replacement site. After accessing the heart muscle via one or more thoracotomies described above, an incision is made to pericardium 30 at access site 32. Next, myocardium 40 is punctured with needle 42 or other suitable device to gain access to the inner heart structures (in this case, left ventricle 26), as illustrated in FIG. 4. Guidewire 44 is fed into left ventricle 26 in antegrade direction 46. Following the direction of blood flow, guidewire 44 is advanced through aortic valve 20 and into aorta 28. Guidewire 44 may be further advanced into the iliac or femoral arteries. In such embodiments, a wire with a snare loop may be advanced from the femoral endoluminal access site to retrieve guidewire 44 and pull it out the femoral endoluminal access site. This enables guidewire 44 to pass through the patient's vasculature from transapical access site 17 to the femoral endoluminal access site. Guidewire 44 may be a relatively thin and flexible guidewire. In order to provide sturdier support for the exchange of surgical tools, it may be desirable to replace guidewire 44 with a stiffer guidewire. This is accomplished by passing catheter 50 over guidewire 44, removing guidewire 44 from the patient while catheter 50 holds its place, and inserting a stiffer guidewire, as shown by FIG. 5. Once the stiffer guidewire has been passed through catheter 50, catheter 50 can be removed, leaving the stiffer guidewire in place. A guidewire that is externalized from the patient at both ends (i.e., at the transapical site and the femoral endoluminal access site) would allow bi-directional use. Wire-guided devices could be inserted from both ends, allowing the insertion of wire-guided devices from the antegrade and retrograde directions. In some embodiments of the present invention, multiple guidewires may be placed to provide access for more surgical devices. Using multiple guidewires may provide advantages such as allowing two devices to be placed next to each other (e.g., intravascular ultrasound could be operated next to valve deployment devices). Multiple guidewires may be placed simultaneously as shown in FIGS. 19 and 19A. Guidewire 198 is the already placed initial guidewire (e.g., guidewire 66 of FIG. 6). Wire placement device 190 or 195 glides over guidewire 198 via hollow opening 191 or 197. Additional guidewires 192, 194, and 196 are attached to wire placement device 190 such that all three additional wires are placed at one time. Additional guidewire 193 is attached to wire placement device 195. Any number of guidewires can be attached to wire placement device 190 or 195 so that the desired number of additional guidewires can be simultaneously placed. Wire placement device 190 or 195 may be broken-off or cut away from the additional guidewires once they have been placed through the body. Also, wire placement devices 190 and 195 may incorporate locking mechanisms. Thus, if the additional guidewires are not to be passed all the way through the body such that they emerge at a second end, the wires can be clamped in place (e.g., wire placement devices 190 and 195 may clamp to the initially placed guidewire to hold the additional guidewires in place). Next, a dilator (not shown) may be advanced over stiffer guidewire 66 (FIG. 6) to dilate the opening created by needle 42 (FIG. 4) in myocardium 40. Once the opening in myocardium 40 has been dilated to the necessary size, access device 60 can be placed. Access device 60 will provide an access port to the surgical site inside left ventricle 26, while preventing the heart chamber from bleeding out. Access device 60 (shown in FIG. 6) allows for easy and rapid insertion of tools, devices, instruments, wires, catheters and delivery systems that will enable the repair or resection of a diseased heart valve or the implantation or replacement of a new heart valve. A second access device or introducer may be placed inside the distal artery (e.g., the femoral artery at the endoluminal access site). Furthermore, additional guidewires may be placed from the endoluminal access site. One or more additional guidewires may be placed using the piggy-back approach described in more detail above. Access device 60 may include catheter 64 with distal balloon 61 and proximal balloon 62. Balloons 61 and 62 may sandwich myocardium 40 to prevent bleeding from left ventricle 26. Access device 60 may be anchored in other suitable ways, as long as left ventricle 26 is appropriately sealed to prevent bleeding, and such that blood flow through the coronary arteries is not occluded. Access device 60 also includes valve 63. Valve 63 allows the passage of guidewire 66 and the insertion of surgical tools while preventing bleeding through catheter 64. Valve 63 may be mechanically operable as an iris diaphragm (e.g., like the aperture of a lens). Alternatively, valve 63 may be constructed of an elastic material with a small central opening that is dilated by whatever equipment is inserted therethrough, but always maintains a fluid-tight seal with the inserted equipment. Valve 63 may compose any fluid-tight valve structure. Access device 60 can include one or multiple valve-like structures, like valve 63. Multiple valves in series may act as added protection against leakage from the heart chamber. Furthermore, because of the potential for leakage around multiple tools, access device 60 may include multiple valves in parallel. Thus, each tool could be inserted through its own valve. This could ensure that a proper seal is created around each tool being used during the operation. In some embodiments of the present invention, various endovascular, endocardiac, and/or endoluminal visualization aids may be used. Such devices are illustrated in FIG. 7. Additionally, extracorporeal X-ray based radiographic devices may be employed. Preferably, intracardiac ultrasound 34 is placed in the right atrium via a femoral vein, and intravascular ultrasound (IVUS) 70 is placed over guidewire 66 and into a heart chamber or into the diseased valve. External fluoroscopy is also utilized to map and visualize the surgical site. IVUS 70 may be used to locate aortic valve 20, sino-tubular junction 36, and brachio-cephalic trunk 72. In order to determine the precise location of each, IVUS probe 70's location is simultaneously tracked with AcuNav™ 34 and fluoroscopy. Once each landmark is located, a radioopaque marker may be placed on the patient's skin or the heart's surface so that extracorporeal fluoroscopy can later be used to relocate these points without IVUS 70 taking up space inside the surgical site. The end of the native leaflet in systole may also be marked with a radioopaque marker in order to temporarily define the target zone. This technique requires that the patient and the fluoroscopy equipment not be moved during the procedure, because landmarks inside the heart and aorta are being marked by radioopaque markers placed on the patient's skin outside the body or on the beating heart's surface. It may be desirable to place the radioopaque markers directly on the heart and aorta. IVUS 70, AcuNav™ 34, and the fluoroscopy equipment can also be used to take measurements of the diseased valve. This allows the surgeon to chose a properly sized replacement heart valve. As an alternative to fluoroscopy, a surgeon may choose to use standard dye visualization techniques such as angiography. Although it would create material limitations for manufacturing the replacement heart valve, MRI technology could be used as an alternative means of visualizing the target surgical site. Additionally, with the development of cameras that can see through blood, direct optical technology could be used to create an image of the target site. Real-time three-dimensional construction of ultrasound data is another visualization procedure that is currently under development that could provide a suitable alternative. With respect to direct optical technology, a clear liquid could be introduced to the aorta or other components of the circulatory system near the target surgical site. Placing a clear liquid that is capable of carrying oxygen (i.e., capable of carrying on the blood's biological function, temporarily) in the patient's circulatory system would improve the ability to use direct optical imaging. Furthermore, because the heart is beating, the patient could be transfused with the clear oxygen-carrying fluid for the duration of the procedure so that direct optical visualization is enabled throughout the procedure. The patient's regular blood would be retransfused at the conclusion of the procedure. Another option for a direct visualization technique includes placing a transparent balloon (filled with a transparent fluid such as water) in front of the camera. The camera and liquid-filled balloon are pushed against the surface that the surgeon wishes to view. The transparent balloon displaces blood from the camera's line of sight such that an image of what the camera sees through the balloon is transmitted to the surgeon. Furthermore, the invention may include the placement of embolic protection device 80 in the ascending aorta by means of a catheter, as shown in FIG. 8. Embolic protection device 80 is preferably placed from the endoluminal femoral access site in a retrograde approach to the aortic valve site. Embolic protection device 80 may comprise a filtering mesh or net made from any suitable material. The chosen material should be able to be collapsed, expanded, and re-collapsed multiple times. Embolic protection device 80 may alternatively be placed from the antegrade direction. Either approach may be made using guidewire 66 or additional guidewires inserted in accordance with the present invention. Single embolic protection device 80 may have unique properties to protect the outflow region of the aortic valve which feeds aorta 28 and coronary sinuses 82 and 84. Device 80 may comprise tight mesh 200 (see FIG. 20) formed in a conical shape. Conical mesh 200 may terminate in perimeter 204 that exerts a radially outward force on the wall of aorta 28. Device 80 is operated via catheter 202 and is dimensioned so that it is capable of filtering the blood supply to the aorta and the coronary arteries. In some embodiments, embolic protection device 80 may be replaced with multiple embolic protection devices 90, 92, and 94, as illustrated in FIG. 9. In FIG. 9, each of coronary sinuses 82 and 84 is protected by its own embolic protection device (embolic protection devices 92 and 94, respectively), and aorta 28 is protected by embolic protection device 90. Embolic protection devices 92 and 94 may be placed further into the coronary arteries to keep the surgical site inside the aorta as clear as possible. Embolic protection device 80 of FIG. 8 is designed so that proper placement of the single protection device will prevent the flow of embolic material into any of aorta 28 and coronary sinuses 82 and 84. In certain embodiments of the present invention, the embolic protection device may be placed in an antegrade approach. For example, FIG. 10 shows embolic protection devices 92′ and 94′ having been inserted in the antegrade direction. Placing devices 92′ and 94′ in the coronary sinuses from the antegrade direction leaves guidewires 101 and 102 to exit the patient at the thoracotomy access site. Coronary sinuses 82 and 84 provide useful landmarks in placing a new aortic valve. Thus, by placing devices 92′ and 94′ in this manner, the surgeon is provided with a guide to proper placement of the new valve (i.e., guidewires 101 and 102 which terminate at coronary sinuses 82 and 84). The new valve may be inserted in the antegrade direction along guidewires 101 and 102 to ensure proper placement. Additionally, embolic filters may be placed in the brachiocephalic, left common carotid, and left subclavian arteries of the aortic arch. Some embodiments of the present invention may employ a valve-tipped catheter or other temporary valve device that is capable of temporarily replacing the native valve function during and after resection or removal until the new valve is deployed and functional. Such temporary valve devices may be placed in any number of acceptable locations. For example, when replacing the aortic valve's function, it may be preferable to place the temporary valve in the ascending aorta just distal to the native aortic valve. However, it is possible to temporarily replace the aortic valve function with a device placed in the descending aorta. Such a placement may have the disadvantage of causing the heart to work harder, but such placements have been proven acceptable in previous surgical procedures. Additionally, some embodiments of the present invention may include the use of a percutaneously placed small caliber blood pump containing an impellor (e.g., a VAD (Ventricular Assist Device)). The VAD may be inserted in a retrograde or in an antegrade direction over guidewire 66. Alternatively, the VAD may be inserted over a secondary guidewire. Because of the resection and implantation equipment that will be inserted in the antegrade direction, it may be desirable to place the VAD in a retrograde approach from the percutaneous femoral access site. The VAD or other temporary pump device will be used to support the heart's natural function while the native valve is being resected or repaired. The temporary assistance device will remain in place until the new valve is deployed and functional. FIG. 39 shows one possible combination of an embolic filter, temporary valve, and VAD. The FIG. 39 embodiment shows VAD 393 passing through embolic filter 394 and temporary valve 395. These components are positioned distal to aortic valve 392 in ascending aorta 396. Embolic filter 394 is designed to also protect coronary arteries 390 and 391. Embolic filter 394, VAD 393, and temporary valve 395 may all be guided by guidewire 397. This is just one possible arrangement for the components that may be used in a valve repair or replacement procedure. In some embodiments of the present invention, the placement of a new valve may first involve the full or partial resection of the diseased valve or cardiac structure. To perform a resection of the diseased valve, a surgeon may use valve removal tool 110, shown in FIG. 11. Valve removal tool 110 incorporates outer inflation lumen 111 and inner inflation lumen 112, which is placed coaxially within outer inflation lumen 111. Outer inflation lumen 111 terminates at proximal balloon 113. Inner inflation lumen 112 terminates at distal balloon 114. Coaxial catheters 111 and 112 can be advanced over guidewire 66 and passed through valve 63 of access device 60. Radially expandable proximal cutting device 115 is mounted to the surface of distal balloon 113. Radially expandable distal cutting device 116 is mounted to the surface of distal balloon 114. Valve removal tool 110 is advanced with balloons 113 and 114 in the deflated state and cutting devices 115 and 116 in the collapsed state until distal cutting device 116 is located just distal to diseased aortic valve 20 and proximal cutting device 115 is positioned just proximal to diseased aortic valve 20. As shown in FIG. 12, balloons 113 and 114 are inflated such that cutting devices 115 and 116 are radially expanded to the approximate diameter of the diseased valve. Next, inner inflation lumen 112, distal balloon 114, and distal cutting device 116 are pulled in the retrograde direction. This causes cutting devices 115 and 116 to cooperate with one another to cut away diseased aortic valve leaflets 130, as shown in FIG. 13. Balloons 113 and 114 can be deflated and cutting devices 115 and 116 collapsed while retaining cut away valve leaflets 130. Thus, valve removal tool 110 and resected leaflets 130 can be removed via access device 60. Further, valve removal device 110 may possess self-centering properties. Valve removal device 110's cutting mechanism may allow the device to cut or resect any calcified or diseased tissue within the heart cavities or the vasculature. The size or cut of each bite made by the removal device, as well as the shape of the cut may be determined by the surgeon by adjusting the valve removal device. When performing surgical techniques inside a patient's vasculature, it may be beneficial to use ring-shaped balloons so that blood can continue to circulate through the balloon. Also, whether using ring-shaped balloons or more standardized balloons, it may be beneficial to use a balloon that has more than one chamber, so that the balloon can be selectively inflated. Examples of a ring-shaped balloon and a cylindrical balloon, both having more than one inflation chamber are illustrated in FIGS. 37 and 38, respectively. FIG. 37 shows ring-shaped balloon 370. Balloon 370 may be divided into three inflation chambers by dividers 373′, 373″, and 373′″. Each inflation chamber may be attached to an inflation flange (e.g., flanges 374′, 374″, and 374′″). Each inflation flange is correspondingly attached to an inflation lumen of catheter 371 (e.g., inflation lumens 372′, 372″, and 372′″). Thus, blood flow is able to continue through the three openings left between inflation flanges 374′, 374′″, and 374′″. Furthermore, surgical tools (e.g., VADs, etc.) may be passed through the openings. Balloon 370 may be guided by guidewire 375. FIG. 38 shows cylindrical balloon 380 with inflation chambers 381, 382, and 383. The inflation chambers may be selectively inflated by inflation lumens 384, 385, and 386, respectively of catheter 387. Balloon 380 may be guided by guidewire 388. By providing selectively inflatable chambers in either type of balloon, a surgeon may have the ability to manipulate tissue inside a patient's vasculature or properly position surgical equipment and prostheses, for example. In some embodiments of the present invention, a valve removal tool such as ronjeur device 210 may be used (see FIG. 21). Ronjeur device 210 may have spoon-shaped heads 212 and 214 which are operably controlled by handles 216 and 218 via hinge 211. Spoon-shaped heads 212 and 214 may have sharpened tips 213 and 215, respectively. Ronjeur device 210 may be used to bite away the leaflets of a diseased valve and trap the dissected tissue within spoon-shaped heads 212 and 214. Ronjeur device 210 may be operable via access device 60. In other embodiments of the present invention, valve resector 220 of FIG. 22 can be used to resect the diseased valve. Valve resector 220 has handle 222, shaft 224, recess 226, and resector tip 228. Resector tip 228 may be used to cut away or tear away the diseased leaflets of a native valve. Recess 226 may be used to retain the resected tissue for removal. Resector tip 228 may also be mechanically operable to snip away the diseased leaflets. Resector 220 is also operable via access device 60. Other suitable techniques for resecting a diseased valve may also be used before implanting a new valve. In preparation for valve resection, it may be beneficial to soften or break-up the calcification of the diseased valve. Concentrated ultrasound waves could be used to break-up the valve's calcification. A similar procedure is used to break down kidney stones in some patients. Calcification of the aortic valve is often trapped in tissue pockets. Thus the broken-down calcification would likely be retained by the valve leaflets. However, the leaflets would now be more pliable and easier to compress behind a new valve or to remove. An intraluminal ultrasound device may be used to deliver the concentrated ultrasound waves. Furthermore, an intraluminal reflector may be used to magnify the waves' intensity and break-up the calcium deposits even quicker. In addition to or as an alternative to resecting the diseased valve, plaque or calcification of a diseased valve may be chemically dissolved. With embolic protection devices 90, 92, and 94 in place, a chemical can be introduced to the diseased valve that will dissolve or release the plaque deposits. The target valve site may first be isolated to contain the chemical during this process. This isolation may be achieved by inflating two balloons to create a chemical ablation chamber defined by the wall of the aorta and the two balloons. Isolation may also be achieved by a device like ablation chamber 360 shown in FIG. 36. Ablation chamber 360 is positioned inside the patient's vasculature (e.g., aorta 362). The chamber may be placed percutaneously, by direct access, or by any other suitable technique. Ablation chamber 360 comprises ring-shaped balloons 361 and 363. Balloons 361 and 363 are joined by tubular member 367 which creates a channel for blood to by-pass the ablation site. A ventricular assist device may be inserted through opening 365 in tubular member 367 to aid the patient's blood flow through the temporarily narrowed passageway. Ablation chamber 360 may include chemical introducer 364 and chemical evacuator 366 to introduce a chemical to the ablation site and to clear the chemical from the ablation site when the procedure is completed. Thus, the chemical ablation procedure is performed in the chamber of the isolated segment of the aorta while normal circulatory function takes place. Such a technique isolates the chemical being used from entering the patient's circulatory system. This treatment may be performed to repair a diseased valve, to decalcify a diseased valve before resection by a valve removal tool, or to decalcify a diseased valve before placing a new valve within and over top of the diseased valve. Laser ablation may also be used to break up valve calcification or to remove and destroy diseased valve leaflets. As another alternative, the diseased and calcified valve can be left as is and a new valve can be implanted within and over top of the diseased valve. In some embodiments of the present invention, it may be desirable to perform a valvuloplasty to percutaneously destroy the leaflets of the diseased valve. It may be easier to dilate the diseased valve with the new valve if it has been partially destroyed first. Once any manipulation of the diseased valve is complete (e.g., marking landmark locations, resecting the diseased leaflets, chemically dissolving calcification, etc.), embolic protection devices 90, 92, and 94 can be removed (FIG. 14). The resection of diseased leaflets 130 (FIG. 13) may leave behind valve rim 141 (FIG. 14). Once the embolic protection devices have been removed, valve delivery device 142 may be inserted into left ventricle 26 via access device 60. Valve delivery device 142 carries new valve 140 in a radially compressed state. Valve 140 has been crimped onto delivery device 142. Alternatively, valve 140 may be folded or collapsed in any other suitable manner. Valve delivery device 142 is advanced along guidewire 66. In embodiments like that shown in FIG. 10, valve delivery device 142 may also be guided by guidewires 101 and 102 to ensure safe orientation of valve 140 prior to release and deployment. Such a delivery approach would eliminate the danger of coronary obstruction, because guidewires 101 and 102 terminate at coronary sinuses 82 and 84. The spaces between the commissure supports of valve 140 could be properly aligned with coronary sinuses 82 and 84 to allow maximum blood flow to the coronary arteries. In other embodiments of the present invention, the placement of valve 140 may be assisted by intracardiac ultrasound (i.e., ultrasound equipment 34 of FIG. 7) and fluoroscopy. Positioning, release, and deployment of valve 140 could be simultaneously monitored by the intracardiac ultrasound and fluoroscopy equipment. The fluoroscopy equipment would monitor the target zone based on the radioopaque markers that were placed earlier in the procedure. When the fluoroscopic (marker position) and sonographic (intracardiac ultrasound) target sites are congruent, the proper position for valve deployment has been located. At that moment, valve 140 may be deployed as described below. Additionally, valve delivery device 142 may contain two radioopaque markers. With the coronaries being visualized with fluoroscopy, the surgeon could visualize the alignment of the two marker bands on delivery device 142. Thus, the surgeon would be able to properly orient the valve such that the commissure posts are properly positioned upon valve deployment. Valve delivery device 142 may terminate in two phase balloon 150, as shown in FIG. 15. Alternatively, the end of device 142 carrying valve 140 may have two separately operable balloons. The first phase of balloon 150 may be inflated to provide a positioning guide for valve 140. The first phase of balloon 150 provides a bumper such that delivery device 142 is prevented from further advancement when the proximal end of balloon 150 (i.e., the first phase of balloon 150) reaches the region of left ventricle 26 just proximal to the aortic valve site. Continued expansion of balloon 150 causes base ring 154 of valve 140 to expand. As base ring 154 expands, hooks 156 may bite into remaining aortic rim 141. Alternatively, hooks 156 may not penetrate rim 141, but rather grasp the rim tightly. Commissure support tissue 158 also begins to open up. In some embodiments of the present invention, valve 140 includes distal stent-like structure 152 to support a replacement aortic valve distal to coronary sinuses 82 and 84 in sino-tubular junction 36. During expansion, intracardiac ultrasound and fluoroscopy can be used to monitor the orientation and placement of valve 140. Before valve 140 is fully expanded, the surgeon may rotate delivery device 142 such that the spaces between commissure supports 158 align with coronary sinuses 82 and 84. Upon full expansion of ring 154 (see FIG. 16), hooks 156 may fully engage rim 141, and hooks 156 and rim 141 may be partially embedded in aortic wall 151. Stent-like structure 152 may engage aortic wall 151 in sino-tubular junction region 36. Commissure supports 158 will be fully expanded, too. Support structure 152 may expand in unison with base ring 154. Alternatively, valve placement may take place in a stepped process, wherein base ring 154 expands and secures the base of the valve before support-structure 152 expands to secure the distal end of the valve. The location and function of new valve 140 are identified and monitored with IVUS, intracardiac ultrasound, and/or fluoroscopy. Once placement and function is satisfactory to the surgeon, balloon 150 is deflated, and valve delivery device 142 is removed from left ventricle 26. The implantation process should be done quickly, because there will be a brief total occlusion of the aorta. It may be desirable to block the inflow to the heart. Thus, the heart is not straining to pump blood out, and a dangerous lowering of the patient's heart rate may be prevented. Valve delivery device 142 may be designed to draw the native leaflets downward when a new valve is being implanted over top of an existing diseased valve. The native leaflets could obstruct blood flow to the coronary arteries. However, pulling the native leaflets downward before compressing them against the aorta wall would prevent such occlusion. In some embodiments of the present invention, new valve 140 may be a self-expanding valve that can be implanted without the use of a balloon. Base ring 154, hooks 156, and stent-like structure 152 may be constructed of nitinol or some other shape-memory or self-expanding material. In some embodiments, valve 140 may be deployed by mechanical means, such as by releasing a lasso that surrounds the exterior of valve 140 or by operating a mechanical expansion device within valve 140. In certain embodiments of the present invention, valve 140 may not have a stent-like support structure at the distal end (i.e., stent-like structure 152). If commissure supports 158 are constructed from or supported by a stiff enough support post, valve 140 may not be fixed to the aorta at its distal end. The mounting at base ring 154 may sufficiently secure valve 140 in place to function normally and not obstruct blood flow to the coronary arteries. Valve 140 may be secured in place by any suitable method for anchoring tissue within the body. The radial expansion forces of base ring 154 may be strong enough to secure valve 140 against dislodgment by radial strength alone. If no native valve rim remains, hooks 156 may be designed to grasp aortic wall 151. Mechanically placed sutures or staples could be used to secure valve 140 in place. Furthermore, biocompatible glue could be used to secure valve 140 in the appropriate position. During a valve implantation procedure, it may be desirable to have the ability to retract expansion of new valve 140. If the commissures are not properly aligned with the coronary arteries or if the valve is not properly positioned within the native annulus, retracting the expansion would enable repositioning or realignment of the valve. Such a retraction technique is illustrated in FIG. 23 wherein valve 230 is one illustration of a possible embodiment of valve 140. Valve 230 has radially expandable support ring 232 and radially expandable mounting structure 231. Mounting structure 231 may be a sinusoidal ring of nitinol wire. Mounting structure 231 is attached to wires 237, 238, and 239 at points 234, 235, and 236, respectively. By advancing tube 233 or withdrawing wires 237, 238, and 239, mounting structure 231 may be drawn radially inward, effectively retracting the expansion of valve 230. Other means of retracting valve expansion could be employed in accordance with the principles of the present invention. In some embodiments of the present invention, the dilated opening in myocardium 40 is sealed with an automatic closure device. The automatic closure device may be part of access device 60. Alternatively, the automatic closure device may be inserted through access device 60 such that removal of access device 60 leaves the automatic closure device behind. For example, FIG. 17 shows automatic closure device 172 being delivered with closure delivery device 170. Closure device 172 may include proximal umbrella 174, distal umbrella 178, and connecting shaft 176 therebetween. Delivery rod 171 may be used to advance proximal umbrella 174 from delivery device 170 such that umbrella 174 opens. Balloons 61 and 62 of access device 60 are deflated. Then, both access device 60 and delivery device 170 are withdrawn from heart 10. Umbrella 174 will contact the inner surface of myocardium 40, as shown in FIG. 18. Upon further withdrawal of access device 60 and delivery device 170, distal umbrella 178 will be permitted to deploy. Upon deployment of umbrella 178, the hole formed in myocardium 40 will be sealed. Myocardium 40 may be sealed using any acceptable automatic closure device. Alternatively, myocardium 40 may be sutured closed. Additionally, myocardium 40 may be closed with any known closure device, such as an Amplatzer™ occlusion device, other double-button device, plug, or laser plug. Bleeding into the space between the myocardium and the pericardium should be prevented. The myocardium can be closed without a need to close the pericardium. However, if the pericardium is to be sealed with the automatic closure device, the seal must be tight enough to prevent bleeding into the void between the two. The percutaneous femoral access site will also need to be sealed. This may be done with sutures, or with a self-closing device such as an Angioseal™ Hemostatic Puncture Closure Device. Implantable valves in accordance with the preferred embodiments of the present invention may take on a number of forms. However, the implantable valves will likely exhibit several beneficial characteristics. Implantable valves should preferably be constructed of as little material as possible, and should be easily collapsible. The valve may be radially compressed to a size significantly smaller than its deployed diameter for delivery. The implantable valve or support elements of the valve may contain Gothic arch-type structural support elements to efficiently support and maintain the valve once it is implanted. The implantable valve may have an outer stent that is installed before deploying the valve structure. Valves manufactured in accordance with the principles of the present invention are preferably constructed of biocompatible materials. Some of the materials may be bioabsorbable, so that shortly after the implantation procedure, only the anchoring device and tissue valve remain permanently implanted. The valve leaflets may be composed of homograph valve tissue, animal tissue, valve rebuild material, pericardium, synthetics, or alloys, such as a thin nitinol mesh. Implantable valves in accordance with the principles of the present invention may be drug eluding to prevent restenosis by inhibiting cellular division or by preventing reapposition of calcium. The drug may act as an active barrier that prevents the formation of calcium on the valve. Additionally, the drug may stimulate healing of the new valve with the aorta. Furthermore, the implantable valves are preferably treated to resist calcification. The support elements of the implantable valve may be exterior to the valve (e.g., between the new valve tissue and the aorta wall), interior to the valve (e.g., valve tissue is between the support elements and the aorta wall), or may form an endoskeleton of the valve (e.g., support elements of the valve may be within the tissue of the implantable valve). FIGS. 24-26 illustrate new valves that could be used for replacement or implantation procedures in accordance with the principles of the present invention. Valve 240 of FIG. 24 has sinusoidal attachment member 241 encircling the base of commissure posts 242, 243, and 244. Attachment member 241 may be any radially compressible and expandable member. Member 241 of FIG. 24 has proximal peaks 245 and distal peaks 246 which may be turned outward. Peaks 245 and 246 may be better suited to engage the wall of the aorta when the peaks are turned outward. Peaks 245 and 246 may also be pointed or sharpened so that they penetrate the aorta wall. In embodiments in which a small rim of native valve has been left behind after resection, peaks 245 and 246 may be biased to close outwardly, effectively biting the rim of remaining tissue. Commissure posts 242, 243, and 244 and the valve's leaflets (not shown) fold and collapse when member 241 is radially compressed for delivery. Valve 240 may have distal mounting ring 248 in some embodiments. Ring 248 may engage the distal portion of the sino-tubular junction. Ring 248 may have segments 249 that are biased radially outward so as to more securely engage the inner wall of the aorta. The replacement valve may be designed to mimic the natural curvature of the sino-tubular junction. This curvature creates a natural bulge, in which the replacement valve may be able to secure itself against dislodgement. Valve 250 of FIG. 25 shows tissue 252 inside stent frame 254. Tissue 252, which forms the leaflets of the implantable valve may be engineered and/or grown directly inside of stent frame 254. Alternatively, tissue 252 may be glued or sutured to stent frame 254. Stent frame 252 may incorporate peaks that are turned outward that may have pointed or sharpened tips like those described with respect to valve 240 of FIG. 24. Also, ring 256 may have hook features such as hooks 156 of FIG. 15. Stent frame 252 may be constructed from a shape memory or other self-expanding material. Alternatively, stent frame 252 may be constructed from stainless steel or other materials that are balloon expanded or mechanically expanded. Valve 260 of FIG. 26 illustrates one embodiment of a low profile valve. Such a low profile valve may reduce the likelihood of coronary artery obstruction. Valve 260 may comprise any number of leaflets. Valve 260 is illustratively shown with five leaflets (i.e., leaflets 261, 262, 263, 264 and 265). The leaflets overlap one another in a domino-type arrangement. Leaflet 265 is the top-most leaflet, overlapping the left side of leaflet 264. The right side of leaflet 264 overlaps the left side of leaflet 263, and so on with leaflet 261 being the bottom-most leaflet. The leaflets may be arranged such that they overlap one another in a clockwise or a counterclockwise fashion. Valve 260 may appear to open like the iris of a camera when viewed from the top (as shown in FIG. 26). The leaflets actually rise out of the plane of the valve annulus. However, because of the valve's very low profile, no commissure supports are needed. Additionally, spiral, or rolled valves may be used in the implantation or replacement procedure. Such valves unwind instead of being radially expanded. Rolled valves are reduced in diameter for percutaneous or minimally invasive implantation by rolling the valve material into a spiral. It may be beneficial to replace an insufficient valve with a new valve that is designed so that it does not dilate to the size of the diseased valve. Insufficient valves do not fully close, permitting regurgitation in the blood flow. This is often the result of a dilated valve annulus, which does not allow the valve leaflets to come together in the center. Therefore, it may be desirable for the new valve to fill a smaller annulus. This can be achieved by designing a valve such as valve 270 of FIG. 27. Valve 270 has fluid-tight membrane 276. Thus, while support structure 272 dilates to the diameter of the diseased valve's annulus, leaflets 274 of the replacement valve operate in an annulus of fixed size determined by membrane 276. In some embodiments of the present invention, the new valve may be designed to be exchangeable. Many replacement heart valves have a life expectancy of 10-20 years. Therefore, many patients will require follow-up valve replacements. Certain structural components of the heart valve (e.g., the base ring, hooks, etc.) could be permanent, while the tissue leaflets may be exchangeable. It may be preferable to simply dilate the old valve with the new valve. In some embodiments of the present invention, a valve implantation procedure may take place “off-pump,” but the patient's heart may be temporarily arrested. The patient's heart is stopped using fibrillation. A surgeon will have just under three minutes to perform the surgical procedure without risking harm to the patient. However, the anesthetized patient could be cooled to provide the surgeon with more time without increasing the risk for brain damage. Once the patient's heart is stopped, an incision is made to the aorta just distal to the aortic valve. Blood is cleared from this region so that the surgeon can visualize the valve site. Using a delivery device like that described above (except making a retrograde approach in this case), the new valve is implanted directly over the diseased valve. Because the valve is being installed in a retrograde approach, the native leaflets will be pushed downward before being compressed against the aorta wall. Therefore, there is no concern of coronary artery occlusion. Once the new valve is installed, the surgical site inside the aorta is cleared of air, and a side bite clamp is placed on the lesion. The heart is restarted with the electrodes that were used to stop it previously. Once the heart is beating again, the clamped lesion is sutured closed. An introducer device (similar to access device 60) can be used at the incision site to prevent the need for clearing the blood from the surgical site and later deairing the site. There are numerous procedures that may be performed transapically in accordance with the principles of the present invention. The following describes several of the illustrative procedures that may be performed via a transapical access device. Insufficient mitral valves often result from a dilated posterior leaflet. FIGS. 28-30 demonstrate a tool that could be used to repair an insufficient mitral valve via a transapical access device. Repair tool 280 may have U-shaped head 282 and single-pronged head 284. Heads 282 and 284 may be operably attached by hinge 288. When posterior leaflet 290 (FIG. 29) is inserted between heads 282 and 284, handles 283 and 285 can be squeezed together to cause a portion of posterior leaflet 290 to be drawn downward. At this point, attachment tool 286 can deploy connector 300 (FIG. 30) to retain posterior leaflet 290 in a constrained state, repairing any excess dilation of the mitral annulus. Connector 300 may be a surgical staple, mechanical suture, or other suitable connector. Aortic dissection is another defect that may be repaired via transapical access to the heart. Aortic dissection occurs from a tear or damage to the inner wall of the aorta. Aortic dissection may be caused by traumatic injury or connective tissue diseases such as Marfan syndrome or Ehlers-Danlos syndrome, for example. Aortic dissection may result in atherosclerosis or high blood pressure. As shown in FIG. 31, aortic dissection 318 may result in void 319. Aortic dissection repair device 310 may be transapically inserted into a patient via access device 311 (substantially similar to access device 60 of FIG. 6). Repair device 310 may include balloon 312 and catheter 314 and may be guided by guidewire 316. Though not shown, catheter 314 may include several lumens (e.g., a balloon inflation lumen, a guidewire lumen, and a glue delivery lumen). Once repair device 310 is properly located, balloon 312 may be inflated as shown in FIG. 32. The inflation of balloon 312 may cause needles 320 to penetrate aortic dissection 318 such that the tips of needles 320 are exposed to void 319. A biologically compatible glue may be injected through needles 320 via the glue delivery lumen (not shown) of catheter 314. Further inflation of balloon 312 may ensure that dissection 318 is securely affixed to the aorta wall by the biologically compatible glue. In order to make sure that the biologically compatible glue is only injected into void 319, and not the remainder of the aorta (which may introduce the biologically compatible glue to the circulatory system), dye may first be injected through select channels (i.e., needles 320). This will allow a surgeon to determine if injected glue would only end up in the desired locations. Repair device 310 may then be rotated to align the needles that will inject the biologically compatible glue with void 319. Alternatively, the needles that will be used to inject the glue may be selectable so that the surgeon activates only the needles aligned with void 319. Because balloon 312 fully occludes the aorta, balloon 312 may be doughnut-shaped to allow blood to pass, like balloon 330 of FIG. 33. Additionally, balloon 330 may include VAD device 332 to pump blood from the proximal side of balloon 330 (at inlet ports 334) to the distal side of balloon 330 (at outlet ports 336). The repair device may still include needles 338. The aortic dissection repair procedure may be monitored with any of the visualization equipment discussed in more detail above. Once the aortic dissection has been repaired, balloon 312 or 330 may be deflated, and repair device 310 is removed from the patient. Left ventricular aneurysms are another deformity of the heart that may be treated transapically. The heart muscle in the area of a blood vessel blockage can die over time. The healing process may form a scar that could thin and stretch to form a ventricular aneurysm. Such aneurysms may be repaired as described below. Left ventricular aneurysm 340 may form in left ventricle 341 of a patient, as shown in FIG. 34. Because aneurysm 340 can cause the heart to work harder over time and result in eventual heart failure, the aneurysm should be treated. Aneurysm repair device 336 may be inserted through access device 344 (substantially like access device 60 of FIG. 6). Repair device 346 may include liquid filled bolster 342 that is mounted inside left ventricular aneurysm 340. Bolster 342 may be mounted with a biologically compatible glue, by mechanical means, or by any other suitable mounting technique. In some embodiments of the present invention, aneurysm 340 may be repaired by pulling the ends of aneurysm 340 together, as depicted by FIG. 35. In such embodiments, aneurysm repair device 350 may be used to deploy hooks 352 and 354. Hooks 352 and 354 may grasp the interior of the heart at the extremes of the aneurysm and then draw the aneurysm closed. Once the aneurysm has been drawn together, any suitable technique can be used to secure the aneurysm in the closed position (e.g., biologically compatible glue, surgical staples, mechanically placed sutures, etc.) Once the aneurysm has been fully sealed, repair device 350 may be withdrawn from the patient. In some embodiments of the present invention, endoprostheses may be placed percutaneously, transapically, or via any combination of surgical approaches. Endoprostheses may be placed in the ascending aorta that have arms capable of extending into the coronary arteries. Endoprostheses for the ascending aorta could also include a replacement valve or a valved stent. Endoprostheses for the descending aorta could also be placed transapically or percutaneously, for example, to repair an abdominal aortic aneurysm. Additionally, endoprostheses may be placed in the aortic arch. One embodiment of an endoprosthesis for the aortic arch is shown in FIG. 40. Endoprosthesis 402 may be placed in aortic arch 400. Furthermore, endoprosthesis 402 may include arms 403, 405, and 407 that extend into brachiocephalic artery 404, left common carotid artery 406, and left subclavian artery 408, respectively. Endoprosthesis 402 may be placed using guidewires 410, 412, 414, and 416, as shown in FIG. 41. Guidewire 410 may pass through the body of endoprosthesis 402, while guidewires 412, 414, and 416 may pass through holes 403′, 405′, and 407′ of the ends of arms 403, 405, and 407, respectively. Once endoprosthesis 402 is properly positioned in aortic arch 400, arms 403, 405, and 407 may be extended to a position substantially perpendicular to the body of endoprostheses 402. In order to aid the insertion of the arms of endoprosthesis 402 into the respective arterial branches, small catheters, or other pushing devices, may be inserted over guidewires 412, 414, and 416 to manipulate (e.g., push) the arms of the endoprosthesis. The arms and body of endoprosthesis 402 may be radially expanded once the endoprosthesis is properly positioned. Currently, ventricular arrhythmias are percutaneously repaired with radio frequency, cold, heat, or microwave that is applied to the offending tissue to destroy the source of the arrhythmia. Ventricular arrhythmias could be repaired transapically in accordance with the principles of the present invention. Radio frequency, cold, heat, or microwave devices can be introduced through an access device like access device 60 of FIG. 6. Hypertrophic obstructions (i.e., obstructions distal to a heart valve) and subvalvular stenosis (i.e., an obstruction proximal to a heart valve) may also be treated transapically. Devices such as those described above to resect a diseased valve could be inserted transapically to cut away the hypertrophic or subvalvular obstruction. The extra tissue could be removed from the heart in the same way that the diseased valve is resected and removed. Robotic technology similar to that currently used in operating rooms could be used to perform some of the steps of the heart valve removal and replacement or implantation procedure. For example, it may be desirable to have a robot perform the delicate resection procedure via the access device. Furthermore, a robot could exercise precision in rotating and positioning the replacement valve with proper alignment of the commissure posts. Because the heart valve operation is being performed inside one or more of the heart's chambers, all of the equipment described above should be atraumatic to limit damage to the endothelial wall of the heart. It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the order of some steps in the procedures that have been described are not critical and can be changed if desired. Also, various steps may be performed with various techniques. For example, the diseased valve may be removed transapically, while the replacement valve is implanted percutaneously, or vice versa. The manner in which visualization equipment and techniques are used for observation of the apparatus inside the patient may vary. Many surgical repair procedures can be performed on or near the heart in accordance with the principles of the present invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>Of particular interest to the present invention is the treatment of heart valve disease. There are two major categories of heart valve disease: (i) stenosis, which is an obstruction to forward blood flow caused by a heart valve, and (ii) regurgitation, which is the retrograde leakage of blood through a heart valve. Stenosis often results from calcification of a heart valve that makes the valve stiffer and less able to open fully. Therefore, blood must be pumped through a smaller opening. Regurgitation can be caused by the insufficiency of any of the valve leaflets such that the valve does not fully close. In the past, repairing or replacing a malfunctioning heart valve within a patient has been achieved with a major open-heart surgical procedure, requiring general anesthesia and full cardiopulmonary by-pass. This requires complete cessation of cardiopulmonary activity. While the use of extracorporeal cardiopulmonary by-pass for cardiac support is a well accepted procedure, such use has often involved invasive surgical procedures (e.g., median sternotomies, or less commonly, thoracotomies). These operations usually require one to two weeks of hospitalization and several months of rehabilitation time for the patient. The average mortality rate with this type of procedure is about five to six percent, and the complication rate is substantially higher. Endovascular surgical techniques for heart surgery have been under recent development. In contrast to open-heart surgical procedures, endovascular procedures may have a reduced mortality rate, may require only local anesthesia, and may necessitate only a few days of hospitalization. However, the range of procedures that has been developed for an endovascular approach to date has been limited to repair of the coronary arteries, such as angioplasty and atherectomy. Some progress has been made in the development of endovascular heart valve procedures. For example, for patients with severe stenotic valve disease who are too compromised to tolerate open-heart surgery to replace the heart valve as described above, surgeons have attempted endovascular balloon aortic or mitral valvuloplasty. These procedures involve endovascularly advancing a balloon dilatation catheter into the patient's vasculature until the balloon of the catheter is positioned between the valve leaflets. Then the balloon is inflated to either: (i) split the commissures in a diseased valve with commissural fusion, or (ii) crack calcific plaques in a calcified stenotic valve. However, this method may only provide partial and temporary relief for a patient with a stenotic valve. Instances of restenosis and mortality following balloon aortic valvuloplasty have led to virtual abandonment of this procedure as a treatment for a diseased aortic valve. Endovascular procedures for valve implantation inside a native and diseased valve have been explored. A catheter-mounted valve is incorporated into a collapsible cylindrical structure, such as a stent (commonly referred to as a “valved stent”). In these procedures, an elongated catheter is used to insert a mechanical valve into the lumen of the aorta via entry through a distal artery (e.g., the femoral or brachial artery). Such procedures have been attempted on selective, terminally ill patients as a means of temporarily relieving the symptoms of a diseased valve. The percutaneous placement of an artificial valve may have certain limitations and ancillary effects. For example, at present, such procedures are only of benefit to a small number of patients and are not meant to become an alternative to surgical heart valve procedures requiring the use of extracorporeal bypass. Another issue is that performing the entire procedure via small diameter vessels (e.g., the femoral, iliac or brachial arteries) restricts the use of larger tools and devices for the resection or repair of the diseased heart valve. Furthermore, this endovascular procedure may increase the risk of various vascular complications such as bleeding, dissection, rupture of the blood vessel, and ischemia to the extremity supplied by the vessel used to perform the operation. Moreover, in some cases, one or more of a patient's femoral arteries, femoral veins, or other vessels for arterial and venous access may not be available for introduction of delivery devices or valve removal tools due to inadequate vessel diameter, vessel stenosis, vascular injury, or other conditions. In such cases, there may not be sufficient arterial and venous access to permit the contemporaneous use of the necessary interventional devices (e.g., an angioplasty catheter, atherectomy catheter, or other device) for a single surgical procedure. Therefore, unless alternate arterial or venous access for one or more of these catheters can be found, the procedure cannot be performed using endovascular techniques. Another possible disadvantage of the small vessel procedure is that the new valve must be collapsed to a very small diameter that could result in structural damage to the new valve. Additionally, such remote access sites like the femoral artery may make precise manipulation of the surgical tools more difficult (e.g., exchange of guide wires and catheters and deployment of the new valve). Furthermore, placing wires, catheters, procedural tools, or delivery devices through one or more heart structures (e.g., the mitral valve) to reach the target site can result in damage to those structures (e.g., acute malfunctioning or insufficiency of the valve being mechanically hindered by the surgical equipment or valve deterioration resulting from mechanical friction inflicting micro-lesions on the valve). Also to be considered in connection with such procedures is the potential of obstructing the coronary ostia. The known percutaneous procedures for implanting heart valves do not have a safety mechanism to ensure proper orientation of the new valve. Therefore, there is a possibility that the deployed valve will obstruct the coronary ostia, which can result in myocardial ischemia, myocardial infarction, and eventually the patient's death. These procedures leave the old valve in place, and the new valve is implanted within the diseased valve after the diseased valve has been compressed by a balloon or other mechanical device. Therefore, there may be a possibility of embolic stoke or embolic ischemia from valve or vascular wall debris that is liberated into the blood flow as the diseased valve is dilated and compressed. Furthermore, a rim of diseased tissue (e.g., the compressed native valve) decreases the diameter and cross-sectional surface of the implanted valve, potentially under-treating the patient and leading to only partial relief of his symptoms. It would therefore be desirable to develop systems and methods for satisfactorily performing various cardiovascular procedures, particularly procedures for heart valve placement or removal and replacement, which do not require the use of an extracorporeal bypass or invasive surgical procedure, such as a sternotomy. It would be further desirable to perform such procedures through very small incisions in the patient (e.g., via several small thoracotomies). The devices and methods will preferably facilitate the access, resection, repair, implantation, and/or replacement of the diseased cardiac structure (e.g., one or more diseased heart valves). The devices and methods should preferably minimize the number of arterial and venous penetrations required during the closed-chest procedures, and desirably, should require no more than one cardiac and one femoral arterial penetration. The present invention satisfies these and other needs. The descriptive terms antegrade and retrograde mean in the direction of blood flow and opposite the direction of blood flow, respectively, when used herein in relation to the patient's vasculature. In the arterial system, antegrade refers to the downstream direction (i.e., the same direction as the physiological blood flow), while retrograde refers to the upstream direction (i.e., opposite the direction of the physiological blood flow). The terms proximal and distal, when used herein in relation to instruments used in the procedure, refer to directions closer to and farther away from the heart, respectively. The term replacement normally signifies removal of the diseased valve and implantation of a new valve. However, a new valve may also be implanted directly over top of a diseased valve. An implantation procedure would be the same as a replacement procedure without the removal of the diseased valve. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention is directed to a method and system for an endovascular, endocardiac, or endoluminal approach to a patient's heart to perform an operation that does not require an extracorporeal cardiopulmonary bypass circuit and that can be performed through a limited number of small incisions, thus eliminating the need for a sternotomy. The invention contemplates, at least in its preferred embodiments, the possibility of effective aortic valve implantation, aortic valve repair, resection of the aortic valve and replacement of the aortic valve, all without necessitating extracorporeal cardiopulmonary by-pass, a median sternotomy or other grossly thoracic incisions. The present invention contemplates replacing any of the four valves of the heart via an antegrade approach through the wall of the appropriate chamber. Preferably, valves are implanted transapically (i.e., through the heart muscle at its left or right ventricular apex). However, in this case, replacement of the mitral and tricuspid valves may be performed via a retrograde approach, because accessing these valves via the left or right ventricles requires approaching these valves against the flow of blood through the valve. In accordance with the present invention, a surgeon may perform a minimally invasive operation on a patient that includes accessing the patient's heart and installing an access device in a wall of the heart that has means for preventing bleeding through the access device. A new heart valve may be implanted via the access device. In addition to implanting a heart valve during such a procedure, the surgeon can also resect a diseased native heart valve. The surgeon may also repair an aortic dissection using such a procedure. The surgeon may also choose to repair a damaged heart valve using similar techniques. The access device described may be preferably installed in the ventricular apex of the heart. Surgical methods in accordance with the present invention may also include resecting a diseased heart valve percutaneously, while installing the new heart valve transapically. Alternatively, a surgeon may resect a diseased valve transapically and implant a new valve percutaneously. Additionally, both removal and implantation could be performed transapically. The new heart valve is preferably implanted by radially expanding the heart valve. In some embodiments, the radial expansion occurs in multiple stages that may be effectuated by a multi-stage balloon. The implantation device may include a mechanism to pull the leaflets of a native valve downward while the new valve is installed within the native valve. A device for resecting a diseased heart valve in accordance with the present invention may include a first set of annularly enlargeable componentry having a first longitudinal axis and a proximal cutting edge and a second set of annularly enlargeable componentry having a second longitudinal axis and a distal cutting edge. The device resects the diseased heart valve when the first set of componentry is enlarged on a distal side of the diseased heart valve and the second set of componentry is enlarged on a proximal side of the diseased heart valve and the sets of componentry are drawn axially together along the longitudinal axes. The first and second sets of annularly enlargeable componentry may be coaxial. In accordance with the present invention, blood flow through the surgical devices placed in the patient (e.g., inside the patient's aorta) may be supplemented with artificial devices such as ventricular assist devices. The surgical site may be visualized with direct optical technology. For example, transparent oxygen-carrying fluid may be injected into a portion of the circulatory system of a patient, and an optical device may be inserted into the transparent fluid to transmit images of the surgical site. Using such techniques, all blood of a patient's circulatory system may be temporarily exchanged with the transparent oxygen-carrying fluid. Instrumentation for accessing a chamber of a patient's heart may include a catheter having a proximal sealing device for sealing the catheter against a proximal surface of the myocardium. The instrumentation may also include means for preventing bleeding through the catheter. In some embodiments, the instrumentation includes a distal sealing device for sealing the catheter against the distal surface of the myocardium. In accordance with the present invention, an implantable heart valve may include a tissue support structure and tissue valve leaflets that are grown inside the tissue support structure by genetic engineering. The genetically engineered leaflets may grow inside a stainless steel stent, a nitinol stent, or any other suitable tissue support structure. Low-profile heart valves may also be used that include at least three leaflets. One side of each leaflet overlaps a neighboring leaflet such that the leaflets open sequentially and close sequentially. Replacement heart valves may also be used that correct overly-dilated heart valve annuluses. Such a heart valve may include an inner circumference defined by the leaflets of the heart valve and an outer circumference defined by the outer limits of a fluid-tight diaphragm. The diaphragm fills the space between the inner circumference and the outer circumference. Surgeons may be aided by a device for inserting more than one guidewire into a patient. Such a device includes an annular wire placement device and one or more guidewires removably attached to the annular wire placement device. The annular wire placement device is configured to track an already placed guidewire. In accordance with the present invention, calcification of a heart valve may be broken down by inserting a catheter-based ultrasound device into a calcified heart valve and concentrating ultrasound radiation on the calcification of the calcified heart valve to break down the calcification. Such a procedure may be enhanced by inserting a reflector into the calcified heart valve to magnify the ultrasound radiation. A mitral valve repair device in accordance with the present invention may include a first head defining an operating plane and a second head operably attached to the first head. The second head is configured to displace a leaflet with respect to the operating plane. The first head may be U-shaped and include an attachment mechanism for attaching at least two portions of a mitral valve leaflet. The repair device includes a handle for operating the second head with respect to the first head. In accordance with the present invention, aortic dissections may be repaired by accessing a patient's heart and placing an access device in a wall of the heart that prevents bleeding through the access device. A dissection repair device is inserted through the access device to repair the aortic dissection. The device may include annularly enlargeable componentry configured to be inserted into the patient's aorta and means for closing a void created by the aortic dissection. The void can be closed by injecting a biologically compatible glue (e.g., fibrin, thrombin, or any other suitable chemical or biological substance) through needles into the void. It may also be closed using mechanical sutures or surgical staples, for example. | 20041228 | 20120522 | 20060406 | 94050.0 | A61F224 | 1 | MASHACK, MARK F | METHODS AND DEVICES FOR REPAIR OR REPLACEMENT OF HEART VALVES OR ADJACENT TISSUE WITHOUT THE NEED FOR FULL CARDIOPULMONARY SUPPORT | UNDISCOUNTED | 0 | ACCEPTED | A61F | 2,004 |
|
11,023,909 | ACCEPTED | Combination ID/tag holder | A combination ID/tag holder is disclosed. The holder comprises (i) a holder body, (ii) a first pouch for holding a traditional ID card, (iii) a second pouch for holding a tag container, (iv) a tag container, for placement in the second pouch, and (v) a tag, such as a RFID tag, for placement in the tag container. The present invention can be used in conjunction with an automated attendance monitoring system to monitor attendance of students or other individuals whose whereabouts need to be tracked. | 1. A holder comprising: a. a body; b. a first pouch for holding an ID, wherein said first pouch is supported by said body; c. a second pouch for holding a tag container, wherein said second pouch is supported by said body; d. a tag container, for placement in said second pouch. 2. The holder according to claim 1, additionally comprising a tag associated with said tag container. 3. The holder according to claim 2, wherein said tag is an RFID tag. 4. The holder according to claim 1, additionally comprising a protective air cushion in said tag container. 5. The holder according to claim 4, wherein said protective air cushion measures at least 0.5 mm. 6. The holder according to claim 1, wherein said second pouch is sealed after the tag container has been placed in said second pouch. 7. The holder according to claim 1, additionally comprising caps on said tag container. 8. The holder according to claim 1, wherein said tag container and said second pouch are sized and shaped so that said tag container snugly fits within said tag container. 9. A holder comprising: a. a body; b. a pouch for holding a tag container, wherein said pouch is supported by said body; c. a tag container, for placement in said pouch; and d. a tag, for placement in said tag container. 10. The holder according to claim 9, wherein said tag is affixed to said tag container. 11. The holder according to claim 9, wherein said tag is placed into but not affixed to said tag container. 12. The holder according to claim 9, wherein said tag container includes a protective air cushion. 13. The holder according to claim 12, wherein said protective air cushion is at least 0.5 mm. 14. The holder according to claim 13, wherein said tag is an RFID tag. 15. A tag container assembly, comprising: a. a hollow tag container; b. a tag associated said tag container; and c. a protective air cushion in said tag container, said protective air cushion defined as an open space within said tag container from said tag to an opposite point on said tag container. 16. The tag container assembly according to claim 14, wherein said tag is affixed to said tag container. 17. The tag container assembly according to claim 14, wherein said tag is placed in but not affixed to said tag container. 18. The tag container assembly according to claim 14, wherein said protective air cushion measures at least 0.5 mm. 19. The tag container assembly according to claim 14, additionally comprising tag container caps for sealing said tag container. 20. The tag container assembly according to claim 14, wherein said tag is affixed to an inside wall of said tag container. 21. A method of creating and using a tag holder: a. providing a tag; b. providing a hollow tag container; c. placing said tag in said tag container; d. providing a holder with a pouch; e. placing said tag container in said pouch; and f. directing human users of said holder to wear said holder for attendance tracking purposes. 22. The method according to claim 21, additionally comprising affixing said tag to said tag container. 23. The method according to claim 21, additionally comprising sealing said second pouch after placing said tag in said tag container. 24. The method according to claim 21, additionally comprising sealing said tag container by placing caps on said tag container. 25. A tag holder, comprising: a. means for holding an ID card b. means for holding a tag; c. means for ensuring that said tag maintains a constant orientation; d. means for attaching said holder to a person; and e. means for minimizing interference to said tag from said person. 26. A combination ID/tag holder comprising: a. a body, said body having a first side and a second side; b. a first pouch on said first side; c. a second pouch on said second side; d. an ID in said first pouch; e. a tag container in said second pouch; f. a tag in said tag container; g. a protective air cushion in said tag container; and h. means for attaching said holder to a person. 27. The holder according to claim 26, wherein said tag is an RFID tag. | BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to holders for ID cards and other objects. 2. General Background The applicants for the present application have previously developed an automated attendance tracking system. That system is disclosed in U.S. Ser. No. 10/919,723, filed Aug. 16, 2004, and the disclosure of that application is incorporated herein by reference. The applicant's automated attendance monitoring system uses tags (worn or carried by students or other attendees) and readers to monitor the whereabouts of individuals. Thus, for instance, as students enter a classroom, the antenna of a reader placed near the door would interact with Radio Frequency Identification (“RFID”) tags that are worn or carried by the students. The system would then track which students have entered the classroom, and by comparing the list of entering students with the class list, the system could generate a provisional list of absent students. The teacher or other attendance monitor could then visually confirm attendance, and could use a handheld computer system to update and finalize the provisional attendance record. In order for such an automated attendance tracking system to reliably monitor attendance, there must be good communication between the tag and the antenna of the reader. A number of factors can affect the ability of the tag to communicate with the antenna of the reader. First, the position of the tag relative to the antenna of the reader can affect “readability.” Given current RFID technology, the tag should generally be parallel to the reader's antenna. For tracking the movement of inanimate objects, like inventory or crates, it is not difficult to maintain the tag in the proper orientation, but for humans—especially constantly-moving students—it may be difficult to maintain proper orientation. Second, the signal between the antenna of the reader and the tag is subject to interference, especially from the moisture and organic compounds that are associated with the human body, as well as clothes, backpacks, etc. Because of these hurdles, RFID tags have not been widely used for tracking humans, but instead have been primarily used for tracking objects such as inventory. However, as explained below, the applicants have now overcome the obstacles that have hindered the use of RFID tags on humans. SUMMARY OF THE INVENTION The present invention is a combination ID/tag holder, comprising (i) a holder body, (ii) a first pouch for holding a traditional ID card, (iii) a second pouch for holding a tag container, (iv) a tag container, for placement in the second pouch, and (v) a tag, for placement in the tag container. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an environmental drawing showing a holder according to an embodiment of the present invention as worn by a student, wherein the holder hangs from a lanyard around the student's neck. FIG. 2 is an environmental drawing showing a holder according to an embodiment of the present invention as worn by a student, wherein the holder is clipped to the student's shirt. FIG. 3 is a front view of a holder according to an embodiment of the present invention. FIG. 4 is a rear view of a holder according to an embodiment of the present invention. FIG. 5 is a cross-section taken along lines 5-5 of FIG. 3. This is the only figure that shows the embodiment containing a pocket flap. FIG. 6 is a sectional view taken along lines 6-6 of FIG. 4. FIG. 7 is a sectional view taken along lines 7-7 of FIG. 4. FIG. 8 is a perspective view of a tag container and a tag according to an embodiment of the present invention. DETAILED DESCRIPTION The present invention is a combination ID/tag holder, comprising (i) a holder body, (ii) a first pouch 18 for holding a traditional ID card, (iii) a second pouch 20, (iv) a tag container 30, for placement in the second pouch, and (v) a tag 34 for placement in the tag container 30. The present invention also optionally includes (vi) clip apertures 12, 13, for clipping the holder to a user's clothing, (vii) a lanyard aperture 16, for hanging the holder from a lanyard, (viii) a pocket flap 22 for securing the holder to a user's pocket, (ix) an ID pouch zip locking means 24, for sealing the ID pouch, and (x) tag container caps 32, 33 for sealing the ends of the tag container 30. The holder includes a body 10 that supports the pouches and other features of the present invention. See FIGS. 1-7. The body 10 may be integrated into a single piece, or it may be made of multiple pieces. For purposes of this patent, “body” refers to any structure that supports the pouches. The body 10 has a first pouch 18 for holding an ID card, such as a student ID or an employee ID. See FIGS. 1-7. The first pouch 18 may have zip-locking means 24 to seal the pouch. See FIG. 5. Typically, the first pouch 18 would be on the front of the holder 10, so that the ID could be conveniently shown to teachers or others. The body 10 also has a second pouch 20, as shown best in FIGS. 4, 5, and 6. This second pouch 20 is for holding the tag container 30. The second pouch 20 would typically but not necessarily be placed on the opposite side of the body 10 from the first pouch 18. The second pouch 20 may be sealed at the ends after the tag container 30 has been inserted, to prevent tampering. See FIG. 6. The second pouch 20 would typically run longitudinally along the pouch, thereby keeping the tag container 30 and thus the tag 34 in a horizontal position, parallel to the antenna of the reader. (Readers and their antennas would typically be installed in a horizontal position, possibly over a doorway). With current RFID technology, it is advantageous to keep the tag in a position parallel to the reader to maximize readability. The tag container 30 holds the tag 34. In one embodiment, the tag container 30 is a hollow rectangular container with tag container caps 32, 33 at the ends for sealing the container 30. The tag container 30 can also be many other shapes, including circular, oval etc. The size and shape of the tag container 30 will vary with the size and shape of the tag 34. See FIGS. 6 and 8. The tag container 30 typically is made of plastic, such as Polyethylene Terephthalate Glycol (“PETG”), but numerous other grades and types of plastic could be used. The tag container should not have a high carbon concentration, it should be crush resistant, and it should not melt or soften at temperatures below 120° F. The tag container 30 and second pouch 20 typically would be designed so as to hold the tag 34 in a substantially horizontal position, so long as the user is upright in a normal sitting or standing position. Thus, in one embodiment, the second pouch 20 holds the tag container 34 so that it—and therefore the tag 34 itself—cannot be rotated while in the pouch 20. This goal is accomplished by sizing and shaping the second pouch 20 so that it is only slightly larger than the tag container 30 itself, thereby ensuring that tag container 30 fits snugly in the second pouch 20. See FIGS. 5 and 6. The tag 34 is used to automatically track attendance, and for purposes of this patent, “tag” refers to any electronic device that can be used to indicate physical location. “Tag” includes but is not limited to RFID tags. The tag 34 is placed in or on the tag container 30. In one embodiment, the tag is affixed to the inside surface of a wall in the tag container 30. See FIG. 5. This configuration provides a protective air cushion between the tag 34 and the user, thereby minimizing the interference caused by the humidity and organic compounds associated with the human body. As shown in FIG. 5, the tag container 30 can be placed in the second pouch 20 so that the protective air cushion is between the user's body and the tag 34. For a rectangular container, the protective air cushion is defined by the distance between the interior surface of one wall of the container 30 (where the tag 34 is affixed) and the interior surface of the opposite wall. In one embodiment, this distance is at least 0.5 mm, and it could be even greater. In general terms, the protective air cushion is the open space between the tag and an opposite point or wall on the tag container. In addition to the protective air cushion, the walls of the tag container 30 itself also help to protect the tag 34 from interference by moisture and organic compounds. In alternative embodiments, the tag 34 can also be placed in the interior of the tag container, and not affixed to a wall. If the tag 34 is placed in the middle of the tag container 30, then it may have a protective air cushion on both sides. The body 10 may have clip apertures 12, 13 for attaching the holder to a user's clothing by means of a clip 50. See FIGS. 1-4. It may also have a lanyard aperture 16 for attaching the holder to a lanyard 40 that is worn around the user's neck. See FIGS. 1-4. The body may also have a pocket flap 22 for insertion into a user's pocket. See FIG. 5. In use, a tag container 30 with a user's tag 34 would be placed into the second pouch 20. The second pouch 20 would then typically be sealed, to ensure that the tag 34 is not tampered with or removed. The user's ID could then be placed in the first pouch 18. The user would then wear the holder, either with a lanyard 40, or with a clip 50, or in the user's shirt pocket using the pocket flap 22. See FIGS. 1 and 2. Because the tag container 30 is snugly held within the second pouch 20, the tag container 30 will stay in a horizontal position, parallel to the antenna of the reader, so long as the user stays in an upright position. The holder and its protective air cushion also maintain a minimum distance between the user's body and the tag 30, so as to minimize absorption of RFID waves or other signals by the user's body The user's whereabouts could then be tracked throughout the school or other area, using the automated attendance monitoring system. The present device greatly enhances the readability of tags worn by humans, and therefore has a number of advantages. For instance, unlike users of proximity cards, the users of the present invention would not need to hold their tag close to a reader in order for it to be read by the scanner. Instead, users of the present device could simply walk past the reader, confident that their tags would be read. The holder and its components 10 may be made of many materials, including various types of plastics. One skilled in the art will appreciate that the present invention can be practiced by other than the preferred embodiments, which are presented for purposes of illustration and not of limitation. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention This invention relates to holders for ID cards and other objects. 2. General Background The applicants for the present application have previously developed an automated attendance tracking system. That system is disclosed in U.S. Ser. No. 10/919,723, filed Aug. 16, 2004, and the disclosure of that application is incorporated herein by reference. The applicant's automated attendance monitoring system uses tags (worn or carried by students or other attendees) and readers to monitor the whereabouts of individuals. Thus, for instance, as students enter a classroom, the antenna of a reader placed near the door would interact with Radio Frequency Identification (“RFID”) tags that are worn or carried by the students. The system would then track which students have entered the classroom, and by comparing the list of entering students with the class list, the system could generate a provisional list of absent students. The teacher or other attendance monitor could then visually confirm attendance, and could use a handheld computer system to update and finalize the provisional attendance record. In order for such an automated attendance tracking system to reliably monitor attendance, there must be good communication between the tag and the antenna of the reader. A number of factors can affect the ability of the tag to communicate with the antenna of the reader. First, the position of the tag relative to the antenna of the reader can affect “readability.” Given current RFID technology, the tag should generally be parallel to the reader's antenna. For tracking the movement of inanimate objects, like inventory or crates, it is not difficult to maintain the tag in the proper orientation, but for humans—especially constantly-moving students—it may be difficult to maintain proper orientation. Second, the signal between the antenna of the reader and the tag is subject to interference, especially from the moisture and organic compounds that are associated with the human body, as well as clothes, backpacks, etc. Because of these hurdles, RFID tags have not been widely used for tracking humans, but instead have been primarily used for tracking objects such as inventory. However, as explained below, the applicants have now overcome the obstacles that have hindered the use of RFID tags on humans. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention is a combination ID/tag holder, comprising (i) a holder body, (ii) a first pouch for holding a traditional ID card, (iii) a second pouch for holding a tag container, (iv) a tag container, for placement in the second pouch, and (v) a tag, for placement in the tag container. | 20041227 | 20080226 | 20060713 | 65968.0 | G08B1314 | 3 | LEE, BENJAMIN C | COMBINATION ID/TAG HOLDER | SMALL | 0 | ACCEPTED | G08B | 2,004 |
|
11,024,195 | ACCEPTED | Systems and methods for managing content on a content addressable storage system | A method for storing content on a storage system wherein the content is defined an associated retention period. The retention period prescribes a fixed amount of time that the content will be stored without the possibility of deletion. After the retention period expires, the content and all metadata associated with the content can be deleted from the storage system. | 1. A method for storing content with retention management properties on a storage system, the method comprising: defining an object type for the content; associating user-defined object properties with the content; transmitting the object properties to a content management server; selecting the storage system on which to store the content and object properties based on the object type; and transmitting the content and object properties to the selected storage system through a plugin configured to communicate with the selected storage system. 2. The method of claim 1, wherein the selected storage system is a content addressable storage system. 3. The method of claim 2, wherein the user-defined object properties include a retention period. 4. The method of claim 2, wherein the content addressable storage system returns a content address for the content and object properties to the content management server; and the content management server associates the content address with the content and object properties and stores the associated content address and object properties in a database. 5. The method of claim 1, wherein: the user-defined object properties include a retention period. 6. The method of claim 5, wherein: the content can be deleted when the retention period expires. 7. A method for storing content on a content addressable storage system, comprising: associating user-defined object properties with the content; transmitting the object properties to a content management server; transmitting the content and object properties to the content addressable storage system through a plugin library configured to communicate with the content addressable storage system. 8. The method of claim 7, wherein the content addressable storage system returns a content address for the content and object properties to the content management server; and the content management server associates the content address with the content and object properties and stores the associated content address with the content and object properties in a relational database. 9. The method of claim 7, wherein the user-defined object properties include a retention period. 10. The method of claim 9, wherein the content can be deleted when the retention period expires. 11. The method of claim 7, wherein the plugin library comprises: methods for writing, updating, reading, and deleting content from the content addressable storage system. 12. The method of claim 11, wherein the method of writing content to the content addressable storage system comprises: fixing an object type that is configured to store object properties and content on a content addressable storage system; assigning a unique identifier to the content; associating user-defined object properties to the content; streaming the user-defined content properties to a content management server; streaming the content and the object properties to the content addressable storage system; and returning a content address to the content management server, wherein the content management server associates the content address with the content and object properties and stores the associated content address with the content and object properties in a database. 13. The method of claim 11, wherein the method for reading content from the content addressable storage system comprises: using an assigned unique identifier to locate the content; determining the content address of the content from the unique identifier; sending the content address to the content addressable storage system; and retrieving the content associated with the content address. 14. The method of claim 11, wherein the method for updating content on a content addressable storage system comprises: determining if the content is modified; sending the updated content to the content addressable storage system; receiving a new content address from the content addressable storage system; storing the new content address in a database; and relating the new content address with the content. 15. The method of claim 11, wherein the method of deleting content from a content addressable storage system comprises: determining the content address of the content; sending a delete request to the content addressable storage system for the content associated with the content address; determining if a retention period has been set; determining if a retention period has expired; and deleting the content and the content address. 16. A method for storing content on a content addressable storage system, comprising: assigning a unique identifier to the content; associating a user-defined retention period with the content; transmitting the retention period to a content management server, wherein the content management server interprets the retention period and configures the retention period of the content; transmitting the content and the retention period to the content addressable storage system through a plugin library configured to communicate with the content addressable storage system, wherein the content addressable storage system returns a content address for the content and retention period to the content management server; associating the content address with the content and retention period; and storing the associated content address and retention period in a database. 17. The method according to claim 16, further comprising: methods for reading and deleting content, and updating object properties from the content addressable storage system. 18. The method of claim 17, wherein the method for reading content from the content addressable storage system comprises: using the assigned unique identifier to locate the content; determining the content address of the content from the unique identifier; sending the content address to the content addressable storage system; and retrieving the content associated with the content address. 19. The method of claim 17, wherein the method for updating object properties on a content addressable storage system comprises: determining if the object properties are modified; sending the updated object properties to the content addressable storage system; receiving a new content address from the content addressable storage system; storing the new content address in a relational database; and relating the new content address with an original content address of the content. 20. The method of claim 17, wherein the method of deleting content from a content addressable storage system comprises: determining the content address of the content; sending a delete request to the content addressable storage system for the content associated with the content address; determining if the retention period has expired; and deleting the content and the content address. 21. A method for implementing retention management in a content addressable storage system, comprising: creating a content object; fixing the content object as a storage object type that supports retention management; defining a retention period for the content; transmitting the content object and retention period to a content management server; transmitting the content to a storage system through a plugin library configured to transmit content objects of a storage type that supports retention management to the storage system. 22. A system for storing content created by an application on a content addressable storage system, wherein the content has an associated retention period, the system comprising: a content management server; a database; proprietary foundation classes for creating content objects and the retention period and facilitating the transmission of the content objects and the retention period from the application to the content management server; and a plugin library for streaming the content and the associated retention period to the content addressable storage system. 23. The system according to claim 22, wherein the content management server comprises software configured to: manage the storage and retrieval of the content from the content addressable storage system; interpret the retention period, and other user-defined object properties, and transmit the retention period and other user-defined object properties to the database; and associate a content address returned from the content addressable storage system upon a successful storage of content with the stored content and associated retention period and other object properties. 24. The system according to claim 22, wherein the plugin library comprises: functions for facilitating the transmittal of content and the associated retention period between the content management server and the content addressable storage system. 25. The system according to claim 24, wherein the plugin library further comprises: functions for reading, updating, and deleting content from the content addressable storage system. | DESCRIPTION OF THE INVENTION This application claims the benefit of priority of U.S. Provisional Application No. 60/584,765, filed Jun. 30, 2004, which is incorporated herein by reference. FIELD OF THE INVENTION The invention is related to the field of enterprise content management systems, and the software used to facilitate the storage of content within enterprise content management systems. BACKGROUND OF THE INVENTION Enterprise content exists in many forms, such as text documents, spreadsheets, images, e-mail messages, and fixed content such as schematics, records, and scanned images. The need has arisen for an enterprise to treat this content as resource: managing and leveraging content as an asset, and reducing its risks as a liability, and reducing its cost of storage. Moreover, compliance regulations are making it necessary to have rapid and easy accessibility to content. Companies in financial services, regulated industries, and governmental agencies are faced with complying with new and existing government regulations, wherein the need to access and supply files and records is imperative to avoid fines, or forced closures. In the wake of recent high profile accounting scandals and the passage of the Sarbanes-Oxley Act, all publicly traded U.S. companies are required to manage and archive content. With the need to be able to access documents at any time, and from any location, many enterprises are using content management systems which employ storage servers for storing and archiving content. These content management systems allow for much more flexibility than traditional localized storage. Relationships between content can be established, allowing the same content to be used in multiple contexts and renditions. It allows content to be published through multiple channels. For example, the same content can be easily faxed, or published to a web site. More importantly, the content can be accessed by users who are either away from the office, or in a regional office on the other side of the globe. Typically the storage servers employed by content management systems store content on traditional file system disk drives, optical storage, tape drives, or SAN or NAS systems. These systems do not offer much protection for the stored content, however, as they physically store content by a traditional file name hierarchy. Employees or hackers who wish to destroy content can locate the content by the file path, and then simply delete it. This has led to the adoption of storing content on write once, read many, or WORM, devices, which is non-magnetic, non-erasable media. However, with WORM devices, if it is no longer necessary to store content, the only way to destroy the content is to literally break the optical platter that is typically used for WORM storage. U.S. Pat. No. 6,807,632 ('632 patent) proposes a solution to some of the shortcomings of the prior art storage systems. The '632 patent describes a method for content addressable storage, storage that relies on a content address for describing the physical location of content instead of file paths. Content addressable storage takes a piece of content and saves it in a storage server, typically a node comprised of magnetic disks. When the content is saved, the storage server returns a claim check, a content address, that identifies not only where the content is stored, but also other properties of the content, called metadata. The content metadata is digital assets of the content, such as the name, date created, date last accessed, author, permissions, etc. The returned content address is a cryptographic hash value, generally a string of characters, that is generated from the metadata and other assets of the content. This is then put into an XML document which stores the content address as well as a locator for a descriptor file which holds the “keys” to deciphering the hash. By storing the metadata along with the content, it is easy to verify the content, and determine other properties of the content simply by accessing the metadata. Furthermore, by having the location where the content is stored as part of the metadata, the content will always be able to be located without the user or administrator having to track the physical location of stored content. A drawback to the system of the '632 patent is that there is no method for managing the retention of the content or metadata. For most content, it is only necessary for them to be archived for a set amount of time, after which, the content is no longer needed. It is accordingly a primary object of the invention to implement a method for storing content on a storage system, wherein an administrator can set certain properties, or metadata, of the content, which will be persisted with the content when it is stored. The metadata is also associated with the content and stored in a relational database, allowing retrieval of the content by means of the associated metadata. One of the properties that is settable by the user is a retention date. This retention date defines a point in time, after which the content and all associated metadata may be deleted from the storage system. This is achieved by using a storage object and abstraction in the form of a plugin library which is configured to pass the user-defined metadata, including the retention period, and the content to the storage system. The storage object and plugin library are configured to interface with a particular type of storage system, such that when a content management server identifies a storage object associated with a particular storage system, it loads the appropriate plugin library for passing the content and metadata to the particular storage system. This allows for storage on a variety of storage systems, including traditional disk storage, databases, and content addressable storage. SUMMARY OF THE INVENTION In accordance with the invention, herein is described a method for storing content with retention management properties on a storage system. The method comprises defining an object type for the content, associating user-defined object properties with the content, transmitting an object associating the object properties and the content to a content management server, selecting the storage system on which to store the content and object properties based on the object type, and transmitting the content and object properties to the selected storage system through a plugin configured to communicate with the selected storage system. The object type and plugin permit the implementation of user-defined storage policies, including a user-defined retention period, into the content stored in the storage system. Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one embodiment of the invention and together with the description, serve to explain the principles of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B are diagrams illustrating a content addressable storage system consistent with the present invention. FIG. 2 is a diagram illustrating the relationship of content objects to document objects. FIG. 3 is a flowchart illustrating the steps of a method for writing to a content addressable storage system consistent with the present invention. FIG. 4 is a flowchart illustrating the modification of the write process of FIG. 3 when content metadata has been modified consistent with the present invention. FIG. 5 is a flowchart illustrating the steps of a method for reading content from a content addressable storage system consistent with the present invention. FIG. 6 is a flowchart illustrating the steps of a method for deleting content from a content addressable storage system consistent with the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENT Reference will now be made in detail to an exemplary embodiment of the invention, which is illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. The following provides a system and method for storing content. While the preferred embodiment of the present invention is directed towards storing content in a content addressable storage system, further embodiments are within the scope of the invention that would allow content to be stored on other types of storage systems. FIGS. 1A and 1B are diagrams illustrating a system for storing content on a content addressable storage system consistent with the present invention. As shown in FIG. 1B, an application 112 is in communication with a content management server, or content server 100 by a means of Remote Procedure Calls (RPC) 114. The application 112 is designed for content management, and is a tool used by the administrator of the content server to define storage policies for content on the content server. The storage policies are set in content objects that are created by the application 112, and are subsequently interpreted by the content server 100 to facilitate storing and retrieving content upon request. The application 112 has defined proprietary foundation classes 102 that are used for defining storage management through the content objects, and communicating with the content server. The basic mechanism of the system operates such that when content is stored, the application 112 creates a content object for storing the content. The content object can be further described as a set of instructions that relate the actual content and any properties associated with the content, and further define the storage policies of the content. The application can set the content object as a storage object of a specific type, for storage in a specific type of storage system. The content object is streamed to the content server 100 and identifies the content object as being of a storage object type that correlates to a specific type of storage system. The content server 100 streams the content to a storage system, such as a database table 108, a file system storage or disk drive 106, or a content addressable storage system 110 through the use of an abstraction 116 which is designed for a specific storage system. The abstraction 116 is a plugin library, which can be in the form of a DLL or shared library that is configured to implement a specific interface to allow the content server 100 to be able to successfully pass the content and its associated object and storage properties to the storage system. When it is saved to a content addressable storage system 110, the content server 100 streams the content to the content addressable storage system 110, and the content addressable storage system 110 returns a content address to the content server 100. The content server 100 then stores the content address in the relational database 104. One method and system for storing and accessing content on a content addressable storage system 110 is described above. An embodiment consistent with the present invention incorporates a unique storage object type and plugin library as an abstraction 116. The new storage object type has associated attributes, or object properties, that the user can define and which can be associated with the content that is being stored. The storage object comprises attributes whose values can define storage system specific parameters, metadata and retention policies. By allowing the user to modify or create a retention period, the user can set a date, after which, the archived content can be destroyed. For example, if the user wishes a document to remain archived for five years, the user can set this property, and after five years, the content can be destroyed. A user can also define a default retention period, wherein the content will be able to be destroyed after the default period, if the user does not define a different retention period. In one embodiment of the present invention enterprise users may save documents on a centralized server that allows for remote access and archiving. The documents typically are word processing documents, portable document files, e-mails, but can also be any other type of file. FIG. 2 is a diagram illustrating the relationship of content objects to document objects, consistent with the present invention. As shown in FIG. 2, when a document 200 is too large to be saved as a singular content object, the document is saved as pieces of content. For example, a large document could be stored as individual pages. To store the plurality of pieces of content, embodiments consistent with the present invention may create a plurality of content objects. Each content object may have an associated object ID that is assigned by the content server. The associated object ID allows the application to locate the content when it is stored in the storage system. The document, or parent object, points only to the primary content object 202, P0, and all other secondary, or subcontent objects 204, P1, P2 . . . Pn, point back to the parent object, that is, the stored document 200. This method of storing content as primary content 202 and secondary or subcontent objects 204 also allows storage methods consistent with the present invention to associate a content object 200 with multiple content addresses. When the content associated with a content object 200 is originally saved to a content addressable storage system, the content address that is returned will be saved as an attribute of the primary content object 202. Each time the content object metadata is modified, the storage system returns a new content address. These subsequent content addresses are then saved as attributes of the subcontent objects 204. Thus, a subcontent object 204, will have saved many content address attributes, that point to the same document object 200. An embodiment consistent with the present invention has the ability to write, read, update, and delete content on the storage system. FIG. 3 is a flowchart illustrating a process for writing to a content addressable storage system consistent with the present invention. As shown in FIG. 3, the process begins when the application creates a content object for storing content (step 300). The application fixes the storage object type that defines how the content will be stored (step 302). Typically, content can be stored as a storage object type that is associated with the storage system on which the content will be stored, such as, a file system or disk drive storage, a database table storage, or a content addressable storage system. In this case, the storage object type will be fixed as a storage object type consistent with an embodiment of the present invention, which will be stored on a content addressable storage system. The application may begin to communicate with the content server by asking for an unique object ID (step 304). This unique object ID is associated with the content object, and the ID is persisted in the memory of the application (step 306). Next, the user is able to define object properties of the storage object (step 308). The object properties, or metadata, of a content object of the storage object type may include the retention period for the content being stored. The user then associates the content with the metadata (step 310). The content can either be new content created by an end user, or existing content that is already present on an end user's computer that has been marked for archival. The content will be passed from the end user's computer to the content server where the metadata is associated with the content. By associating the defined metadata with the content, the content server will be passed instructions for storing and retrieving the content on the storage system. The application streams the storage object, with the content-associated metadata, to the content server (step 312). The content server determines where the content will be stored by, for example, determining the storage object type that was fixed by the application (step 314). The associated storage object passes properties of the content, the metadata, to the plugin (step 314). The plugin connects with the storage system and streams the content and metadata to the storage system (step 318). The plugin includes specific application program interfaces (APIs) to the type of storage system, configured to allow the metadata to be set, and a retention period to be defined, such that they are stored on the storage system. The content and the metadata that are streamed to the storage system will be persisted in the storage system. At this point, the content server may analyze the metadata to determine if any component of the metadata requires interpretation. For example, if the user set a retention period for the content, the content server may interpret the retention period set by the user and translate the period into a number of seconds since the creation date of the content, which may be added to the metadata and persisted in the relational database with the content object. The number of seconds may be used for comparison with the number of seconds elapsed since creation of the content on, for example, a delete call, to determine whether the period has expired. As the storage system saves the content and metadata, the storage system returns a content address to the content server, through the plugin (step 320). The content address is added as an attribute to the content object, which may be passed to and persisted in a relational database. After the content object and metadata are saved in the relational database (step 322), the application regains control of the content (step 324). The ability to modify the metadata of content consistent with the present invention provides flexibility and adaptability in enterprise content management. For example, if a user originally sets a regulation-mandated retention period of 5 years, but, two years later, regulations change, and it is necessary to retain documents for 10 years, the user will need to modify the retention period. Modifying metadata values may be performed by the write process above, by simply defining the modified, or new, object properties, and associating these new properties with the content. However, when content is saved to the storage system, the metadata values are not compared to the original metadata values associated with the content, so even if none of the metadata values have been changed, the storage system cannot make the distinction, regards it as a successful save of content, and returns a new content address. FIG. 4 is a flowchart illustrating the modification of the write process of FIG. 3 when content metadata has been modified consistent with the present invention. As shown in FIG. 4, if the content is modified (step 400), the storage system passes a new content address to the content server (step 402) as the content is saved in the storage system (step 404). The new content address is passed with the rest of the metadata to the relational database (step 406), wherein the new content address is related to the original content (step 408). A single content object can be related to multiple content addresses, indicating multiple modifications of the content metadata, however, on each successive call for the content object, only the last content address returned from the storage system content address is used. FIG. 5 is a flowchart illustrating the steps of a method for reading content from a content addressable storage system consistent with the present invention. As shown in FIG. 5, when the application initiates a read request (step 500), the application locates the content object by, for example, the name or the unique object ID that was associated with the content when it was first stored (step 502). If the name or ID is unknown, the user can perform a text search to find the desired name or ID. The search may be a search of the relational database, or of the object IDs that are persisted in the application's memory. However, the user is only able to view results for content for which it has at least view permission. The application subsequently sends a request to the content server for the content object (step 504). The content server identifies the storage object type (step 506), and loads the appropriate plugin for communicating with the storage system for the identified storage object type (step 508). From the object ID or name, the content server may retrieve the metadata associated with the content object of that name or ID from the relational database. The metadata includes, for example, the content address of the content. Thus, when the content server retrieves the metadata from the relational database, the content server is able to determine the content address from the metadata (step 510). If the content object has multiple content addresses, only the most recently returned content address is retrieved. The retrieved content address is passed to the plugin (step 512), and the plugin connects with the storage system (step 514). The content associated with the content address is subsequently passed back to the content server (step 516). The content server may then pass the content to the application (step 518). Control of the content is then passed to the application (step 520). FIG. 6 is a flowchart illustrating the steps of a method for deleting content from a content addressable storage system consistent with the present invention. When the delete command is initiated (step 600), the application locates the content by, for example, the name or the unique object ID that was associated with the content when it was first stored (step 602). If the name or ID is unknown, the user can perform a text search to find the desired name or ID. The search may be a search of the relational database, or of the object IDs that are persisted in the application's memory. The application communicates a request to the content server to delete the identified content (step 604). The content server performs a series of checks on the content object to ensure that a deletion is authorized. The content server first determines if the storage object type originally fixed by the application is one that is designed for storage on a content addressable storage system (step 606). If the storage object type is designed for storage on a content addressable storage system, the checks will proceed, otherwise an error will be returned (step 616). In one embodiment consistent with the present invention, the function in the plugin library that handles deletions has an attribute flag DESTROY_ALWAYS which can be set, for example, to TRUE or FALSE, or YES or NO, or 1 or 0. The process checks to see if the attribute flag DESTROY_ALWAYS has been set to a positive indicator, for example, TRUE (step 608). If it has been set to, for example, TRUE, the content will be deleted without performing further checks (step 618). If it has been set to, for example, FALSE, the process will check to see if a retention period has been set by the user (step 610). If a retention period has been set, the content server skips other checks and determines whether the retention period has expired (step 612). If the retention period has not expired, the object will check to determine whether the underlying file system allows deletions (step 614). If a retention period has been set, and has expired, the object will be deleted regardless of whether the underlying file system allows deletions (step 618). For cases when the retention period has not expired, or the file system does not allow deletions, an error is returned (step 616). If the content has multiple content addresses associated with it, either from modified metadata or content stored as multiple pieces of content as described in FIG. 2, the content server will check the retention periods of all of the content addresses associated with the content. The process will return an error at the first content address that has not expired. If all content addresses have expired, the content is deleted. Deleting content has the effect of not only destroying the content on the storage system, but also all associated content objects and metadata, including content addresses, stored in the relational database. Using FIG. 2 as an example, if a user wishes to delete a large piece of content, for example a document 200, the content server unlinks all associated content objects 202, 204 from the document object 200. The result is that the content objects 202, 204 are no longer pointing to the deleted parent document object 200. If the content objects 204 are no longer pointing to any parent document objects 200, or there are not any parent objects 200 pointing to the content objects 202, they are marked for deletion and are subsequently destroyed. The content is subsequently destroyed on the storage system when the content server calls a delete function contained in the plugin that may instruct the storage system to physically clean the sectors where the content is stored, ensuring that the content is unrecoverable. Although the preferred embodiment is designed for use in a content addressable storage system, the storage object type and abstraction can be modified or adapted such that they will allow the definition of metadata and a retention period on many types of storage systems. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>Enterprise content exists in many forms, such as text documents, spreadsheets, images, e-mail messages, and fixed content such as schematics, records, and scanned images. The need has arisen for an enterprise to treat this content as resource: managing and leveraging content as an asset, and reducing its risks as a liability, and reducing its cost of storage. Moreover, compliance regulations are making it necessary to have rapid and easy accessibility to content. Companies in financial services, regulated industries, and governmental agencies are faced with complying with new and existing government regulations, wherein the need to access and supply files and records is imperative to avoid fines, or forced closures. In the wake of recent high profile accounting scandals and the passage of the Sarbanes-Oxley Act, all publicly traded U.S. companies are required to manage and archive content. With the need to be able to access documents at any time, and from any location, many enterprises are using content management systems which employ storage servers for storing and archiving content. These content management systems allow for much more flexibility than traditional localized storage. Relationships between content can be established, allowing the same content to be used in multiple contexts and renditions. It allows content to be published through multiple channels. For example, the same content can be easily faxed, or published to a web site. More importantly, the content can be accessed by users who are either away from the office, or in a regional office on the other side of the globe. Typically the storage servers employed by content management systems store content on traditional file system disk drives, optical storage, tape drives, or SAN or NAS systems. These systems do not offer much protection for the stored content, however, as they physically store content by a traditional file name hierarchy. Employees or hackers who wish to destroy content can locate the content by the file path, and then simply delete it. This has led to the adoption of storing content on write once, read many, or WORM, devices, which is non-magnetic, non-erasable media. However, with WORM devices, if it is no longer necessary to store content, the only way to destroy the content is to literally break the optical platter that is typically used for WORM storage. U.S. Pat. No. 6,807,632 ('632 patent) proposes a solution to some of the shortcomings of the prior art storage systems. The '632 patent describes a method for content addressable storage, storage that relies on a content address for describing the physical location of content instead of file paths. Content addressable storage takes a piece of content and saves it in a storage server, typically a node comprised of magnetic disks. When the content is saved, the storage server returns a claim check, a content address, that identifies not only where the content is stored, but also other properties of the content, called metadata. The content metadata is digital assets of the content, such as the name, date created, date last accessed, author, permissions, etc. The returned content address is a cryptographic hash value, generally a string of characters, that is generated from the metadata and other assets of the content. This is then put into an XML document which stores the content address as well as a locator for a descriptor file which holds the “keys” to deciphering the hash. By storing the metadata along with the content, it is easy to verify the content, and determine other properties of the content simply by accessing the metadata. Furthermore, by having the location where the content is stored as part of the metadata, the content will always be able to be located without the user or administrator having to track the physical location of stored content. A drawback to the system of the '632 patent is that there is no method for managing the retention of the content or metadata. For most content, it is only necessary for them to be archived for a set amount of time, after which, the content is no longer needed. It is accordingly a primary object of the invention to implement a method for storing content on a storage system, wherein an administrator can set certain properties, or metadata, of the content, which will be persisted with the content when it is stored. The metadata is also associated with the content and stored in a relational database, allowing retrieval of the content by means of the associated metadata. One of the properties that is settable by the user is a retention date. This retention date defines a point in time, after which the content and all associated metadata may be deleted from the storage system. This is achieved by using a storage object and abstraction in the form of a plugin library which is configured to pass the user-defined metadata, including the retention period, and the content to the storage system. The storage object and plugin library are configured to interface with a particular type of storage system, such that when a content management server identifies a storage object associated with a particular storage system, it loads the appropriate plugin library for passing the content and metadata to the particular storage system. This allows for storage on a variety of storage systems, including traditional disk storage, databases, and content addressable storage. | <SOH> SUMMARY OF THE INVENTION <EOH>In accordance with the invention, herein is described a method for storing content with retention management properties on a storage system. The method comprises defining an object type for the content, associating user-defined object properties with the content, transmitting an object associating the object properties and the content to a content management server, selecting the storage system on which to store the content and object properties based on the object type, and transmitting the content and object properties to the selected storage system through a plugin configured to communicate with the selected storage system. The object type and plugin permit the implementation of user-defined storage policies, including a user-defined retention period, into the content stored in the storage system. Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one embodiment of the invention and together with the description, serve to explain the principles of the invention. | 20041229 | 20091201 | 20060105 | 98008.0 | G06F1730 | 3 | CHOE, YONG J | SYSTEMS AND METHODS FOR MANAGING CONTENT HAVING A RETENTION PERIOD ON A CONTENT ADDRESSABLE STORAGE SYSTEM | UNDISCOUNTED | 0 | ACCEPTED | G06F | 2,004 |
|
11,025,429 | ACCEPTED | Dental absorbent pad | A dental absorbent pad (10) is disclosed having a moisture permeable, outer layer (11), a moisture absorbent layer (12), a stiffening plate (13), and a moisture impermeable backing (14). The moisture absorbent layer and stiffening plate are smaller in size than the overlying outer layer and backing so that a margin (17) is formed thereby which surrounds the moisture absorbent layer and stiffening plate. The margin is very flexible and therefor comfortable to a patient undergoing a dental procedure. | 1. A dental absorbent pad comprising: a moisture permeable outer layer; a moisture absorbent layer positioned adjacent said moisture permeable outer layer; a stiffening plate positioned adjacent said moisture absorbent layer opposite said moisture permeable outer layer; and a backing layer positioned adjacent said stiffening plate opposite said moisture absorbent layer; said stiffening plate having a size and shape smaller than the size and shape of said moisture permeable outer layer and said backing layer to create a peripheral margin portion upon said moisture permeable outer layer and said backing layer; and said peripheral margin portion of said moisture permeable outer layer being bonded to said peripheral margin portion of said backing layer. 2. The dental absorbent pad of claim 1 wherein said moisture absorbent layer and said stiffening plate have the same shape and size. 3. The dental absorbent pad of claim 2 wherein said moisture absorbent layer is adhered to said stiffening plate. 4. The dental absorbent pad of claim 1 wherein said moisture permeable outer layer is a polyethylene outer layer. 5. The dental absorbent pad of claim 4 wherein said polyethylene outer layer is a netting. 6. A dental absorbent pad comprising a flexible outer covering having a moisture permeable front layer and a back layer bonded to said front layer along a peripheral margin, said peripheral margin defining an internal cavity between said front layer and said back layer, and a core positioned within said cavity, said core having a moisture absorbent layer and a stiffening layer, whereby the stiffening layer provides rigidity to a middle portion of the pad while the peripheral margin remains flexible. 7. The dental absorbent pad of claim 6 wherein said moisture absorbent layer is adhered to said stiffening layer. 8. The dental absorbent pad of claim 6 wherein said front layer is a polyethylene outer layer. 9. The dental absorbent pad of claim 8 wherein said polyethylene front layer is a netting. | TECHNICAL FIELD This invention relates generally to absorbent pads, and particularly absorbent pads which are used in the dental industry. BACKGROUND OF THE INVENTION Small absorbent pads or points are often used in dentistry to absorb saliva from the mouth of a patient during a dental procedure. These pads are typically positioned between the teeth and cheek or between the teeth and tongue and are replaced when they become saturated. Today, the most effective dental absorbent pads typically have a moisture permeable outer layer made of a nylon fabric, a super absorbent polymer core, and a moisture impermeable, second outer layer of polyethylene film, as shown in FIG. 3. These materials are held together with a thick layer of hardened, hot-melt adhesive. This hardened adhesive however causes the peripheral edges of the pad to be stiff and abrasive, which may cause irritation to the tissue of the mouth. Accordingly, it is seen that a need remains for a dental absorbent pad which is more comfortable for a patient. It is to the provision of such that the present invention is primarily directed. SUMMARY OF THE INVENTION In a preferred form of the invention a dental absorbent pad comprises a moisture permeable outer layer, a moisture absorbent layer positioned adjacent the moisture permeable outer layer, a stiffening plate positioned adjacent the moisture absorbent layer opposite the moisture permeable outer layer, and a backing layer positioned adjacent the stiffening plate opposite the moisture absorbent layer. The stiffening plate has a size and shape smaller than the size and shape of the moisture permeable outer layer and the backing layer to create a peripheral margin portion upon the moisture permeable outer layer and backing layer. The peripheral margin portion of the moisture permeable outer layer is bonded to the peripheral margin portion of the backing layer. BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a perspective view of a dental absorbent pad in a preferred form of the invention. FIG. 2 is a cross-sectional view of the dental absorbent pad of FIG. 1. FIG. 3 is a cross-sectional view of a prior art dental absorbent pad. DETAILED DESCRIPTION With reference next to the drawings, there is shown in FIGS. 1 and 2 a dental absorbent pad 10 embodying principles of the invention in a preferred form. The pad 10 has a moisture permeable, outer or front layer 11, a moisture absorbent layer 12, a stiffening plate or layer 13, and a moisture impermeable backing or back layer 14. The moisture absorbent layer 12 and stiffening plate 13 are smaller in size than the overlying outer layer 11 and backing 14 so that an approximately 0.5 cm margin 17 is formed by the outer layer 11 and backing 14 extending beyond and around the absorbent layer 12 and plate 13, i.e., the outer layer 11 and backing 14 are adhered to each other along their periphery to form a thin, flexible margin 17. An internal cavity 18 is formed within the peripheral margin and between the outer layer 11 and backing 14. As such, the combination of the outer layer 11 and backing 14 form an outer covering while the combination of the absorbent layer 12 and plate 13 form a core. The moisture permeable outer layer 11 may be made of a micro-thin high density polyethylene woven or non-woven netting, such as the 0.11 mm non-woven film model number DELNET P530 HDPE sold by Delstar Technologies, Inc. of Middletown, Del. The absorbent layer 12 may be made of composite composed of high performance cellulose fibers and granular super absorbent polymer, such as the 0.76 mm material sold as model number Chem-Posite 11C-130 by Emerging Technologies, Inc. of Greensboro, N.C. The stiffening plate 13 may be made of a 6 mil polystyrene film such as that sold as model number Opticite 500 by Interfilm Corporation of Piedmont, S.C. The backing 14 may be made of a 2.3 mil white cavitated (BOPP) polypropylene film, such as that sold by Palmetto Custom Films International of Piedmont, S.C. To construct the pad 10 the stiffening plate 13 is treated with a very thin layer of medical grade, rubber based pressure sensitve adhesive, such as model number DM-1187 sold by DermaMed of Tallmadge, Ohio. The stiffening plate 13 is pressed against the absorbent layer 12 to form a bond therebetween. Also, the backing 14 is treated with an extremely thin layer of pressure sensitive adhesive, such as model number DM-1187 sold by DermaMed of Tallmadge, Ohio. The backing is pressed against the stiffening plate 13 and the peripheral portion of the moisture permeable, outer layer 11 to form a bond therebetween to form the peripheral margin 17. It should be understood that as the margin 17 area of the pad is formed from very thin and flexible layers of material and adhesive, this area of the pad is not considered to be stiff, as opposed to prior art pads. Furthermore, the reduction in stiffness and thickness of this peripheral area reduces the abrasiveness of the peripheral edge against the mouth tissues, thereby further increasing the comfort of the present invention over prior art dental absorbent pads. It should be understood that the composition of the material is not intended to be limited by those recited herein and may be different from that specifically used in the preferred embodiment. For example, the outer layer 11 may be made of a thin woven, non-woven or porous material, such as a polymer material, woven nylon or non-woven fiber. Similarly, the absorbent layer 12 may be made of other types of conventionally known absorbent material, such as an acrylate polymer. The stiffening plate 13 may be made of any non-reactive material, such as that made of nylon, polyester, polyethylene or fiberboard. It thus is seen that a dental absorbent pad is now provided which is more comfortable for a patient. And though the invention has been shown and described in its preferred form, it should be understood that additions, deletions and modifications may be made without departure from the spirit and scope of the invention as set forth in the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>Small absorbent pads or points are often used in dentistry to absorb saliva from the mouth of a patient during a dental procedure. These pads are typically positioned between the teeth and cheek or between the teeth and tongue and are replaced when they become saturated. Today, the most effective dental absorbent pads typically have a moisture permeable outer layer made of a nylon fabric, a super absorbent polymer core, and a moisture impermeable, second outer layer of polyethylene film, as shown in FIG. 3 . These materials are held together with a thick layer of hardened, hot-melt adhesive. This hardened adhesive however causes the peripheral edges of the pad to be stiff and abrasive, which may cause irritation to the tissue of the mouth. Accordingly, it is seen that a need remains for a dental absorbent pad which is more comfortable for a patient. It is to the provision of such that the present invention is primarily directed. | <SOH> SUMMARY OF THE INVENTION <EOH>In a preferred form of the invention a dental absorbent pad comprises a moisture permeable outer layer, a moisture absorbent layer positioned adjacent the moisture permeable outer layer, a stiffening plate positioned adjacent the moisture absorbent layer opposite the moisture permeable outer layer, and a backing layer positioned adjacent the stiffening plate opposite the moisture absorbent layer. The stiffening plate has a size and shape smaller than the size and shape of the moisture permeable outer layer and the backing layer to create a peripheral margin portion upon the moisture permeable outer layer and backing layer. The peripheral margin portion of the moisture permeable outer layer is bonded to the peripheral margin portion of the backing layer. | 20041229 | 20080916 | 20060629 | 95393.0 | A61F1315 | 1 | HAND, MELANIE JO | DENTAL ABSORBENT PAD | SMALL | 0 | ACCEPTED | A61F | 2,004 |
|
11,025,457 | ACCEPTED | Methods and systems of dynamic channel allocation for access points in wireless networks | A method for dynamic channel allocation for access points in wireless networks. Communication information of wireless devices is gathered. A network topology formed by the wireless devices is derived according to the communication information. Switch channel indexes for each wireless device are calculated according to the communication information and network topology. Desired wireless devices for switching channels are determined according to the switch channel indexes. | 1. A system of dynamic channel allocation for access points in a wireless network, comprising a plurality of wireless devices, each allocated with a communication channel, the system comprising: an allocating server, gathering communication information of each wireless device, deriving a network topology formed by the wireless devices according to the communication information, calculating switch channel indexes for the each wireless device according to the communication information and network topology, and determining desired wireless devices for switching channels according to the switch channel indexes. 2. The system of dynamic channel allocation as claimed in claim 1, wherein the allocating server determines, according to an SCI of a wireless device or the channel load of a channel allocated to the wireless device, whether the channel of the wireless device has to be switched. 3. The system of dynamic channel allocation as claimed in claim 2, wherein the allocating server determines to switch the channel of the wireless device if the SCI is greater than an SCI threshold or the channel load of the channel of the wireless device is greater than a channel load threshold. 4. The system of dynamic channel allocation as claimed in claim 3, wherein the allocating server further calculates switch channel indexes corresponding to each communication channel according to the communication information and network topology, and chooses a channel with a minimum SCI for allocation to the wireless device. 5. A system of dynamic channel allocation for access points in a wireless network, comprising at least one first, second, third, and fourth wireless devices, each is allocated a first, second, third, and fourth communication channels respectively, wherein the first, third, and fourth communication channels do not interfere with each other and the first communication channel is identical to the second communication channel, the system comprising: an allocating server, connecting to the wireless devices through a hub, gathering communication information of each wireless device, deriving a network topology formed by the wireless devices according to the communication information, calculating a first, second, third, and fourth switch channel indexes for the each wireless device according to the communication information and network topology, and, when the first SCI is greater than a SCI threshold, determining to allocate the third or fourth communication channel to the first wireless device. 6. The system of dynamic channel allocation as claimed in claim 5, wherein the allocating server determines to allocate the third or fourth communication channel to the first wireless device when the first SCI is greater than the SCI threshold or the channel load of the first communication channel is greater than a channel load threshold. 7. The system of dynamic channel allocation as claimed in claim 6, wherein the allocating server further calculates the third and fourth switch channel indexes according to the communication information and network topology, and determines to allocate the third communication channel to the first wireless device when the third SCI is smaller than the fourth SCI. 8. The system of dynamic channel allocation as claimed in claim 5, wherein the communication information comprises a packet loss ratio during packet transmission for a wireless device, calculated according to packet retransmission timeout. 9. The system of dynamic channel allocation as claimed in claim 8, wherein the communication information comprises packet reception and transmission time during packet transmission for the wireless device, indicating the packet load for the wireless device. 10. The system of dynamic channel allocation as claimed in claim 9, wherein the communication information comprises mutual scan information between any two wireless devices, determining whether transmission coverage of one wireless device overlaps the other. 11. The system of dynamic channel allocation as claimed in claim 10, wherein the communication information comprises association and disassociation records of a wireless device. 12. A method of dynamic channel allocation for access points in a wireless network, comprising a plurality of wireless devices, each allocated with a communication channel, the method comprising: gathering communication information of each wireless device; deriving a network topology formed by the wireless devices according to the communication information; calculating switch channel indexes for the each wireless device according to the communication information and network topology; and determining desired wireless devices for switching channels according to the switch channel indexes. 13. The method of dynamic channel allocation as claimed in claim 12, wherein the channel switch further determines, according to an SCI of a wireless device or the channel load of a channel allocated to the wireless device, whether the channel of the wireless device is switched. 14. The method of dynamic channel allocation as claimed in claim 13, wherein the channel of the wireless device is switched if the SCI is greater than an SCI threshold or the channel load of the channel of the wireless device is greater than a channel load threshold. 15. The method of dynamic channel allocation as claimed in claim 14, further comprising calculating switch channel indexes corresponding to each communication channel according to the communication information and network topology, and chooses a channel with a minimum SCI for allocation to the wireless device. 16. The method of dynamic channel allocation as claimed in claim 12, wherein the communication information comprises a packet loss ratio during packet transmission for a wireless device, calculated according to packet retransmission timeout. 17. The method of dynamic channel allocation as claimed in claim 16, wherein the communication information comprises packet reception and transmission time during packet transmission for the wireless device, indicating the packet load for the wireless device. 18. The method of dynamic channel allocation as claimed in claim 17, wherein the communication information comprises mutual scan information between any two wireless devices, determining whether transmission coverage of one wireless device overlaps another wireless device. 19. The method of dynamic channel allocation as claimed in claim 18, wherein the communication information comprises association and disassociation records of a wireless device. 20. A wireless network, comprising: a plurality of wireless devices, each allocated with a communication channel; a hub; and an allocating server, connecting to the wireless devices through a hub, gathering communication information of each wireless device, deriving a network topology formed by the wireless devices according to the communication information, calculating switch channel indexes for each wireless device according to the communication information and network topology, and determining desired wireless devices for switching channels according to the switch channel indexes. 21. The wireless network for dynamic channel allocation as claimed in claim 20, wherein the allocating server determines, according to an SCI of a wireless device or the channel load of a channel allocated to the wireless device, whether the channel of the wireless device has to be switched. 22. The wireless network for dynamic channel allocation as claimed in claim 21, wherein the allocating server determines to switch the channel of the wireless device if the SCI is greater than an SCI threshold or the channel load of the channel of the wireless device is greater than a channel load threshold. 23. The wireless network for dynamic channel allocation as claimed in claim 22, wherein the allocating server further calculates switch channel indexes corresponding to each communication channel according to the communication information and network topology, and chooses a channel with a minimum SCI for allocation to the wireless device. | BACKGROUND The invention relates to wireless communication protocols, and more particularly, to methods of dynamic channel allocation for access points in wireless networks. In conventional wireless local area network (WLAN) environments complying with Institute of Electrical and Electronic Engineers (IEEE) 802.11 communication standards, to enhance communication ability and accommodate a greater number of mobile hosts (MH), multiple access points (AP) are located in a communication area, for example, in a schools building or airport, such that a mobile host anywhere in the building can receive wireless signals. Network administrators statically deploy network access points and allocate communication channels therefor, manually deriving communication channels for each access point, such that signal interference between access points is minimized, and communication channels allocated to access points will not be reallocated. Access points described herein serve as bridges in wireless networks, connecting conventional wired LANs and wireless LANs, such that a personal computer equipped with an wireless card can share resources from LANs or wide area networks (WANs) Additionally, access points provide network management functions, controlling and managing personal computers connected thereto via wireless cards. The number of available communication channels is limited in that many access points use identical or adjacent channels if a considerable number of access points are located in the same area, resulting in signal interference if two neighboring access points use identical or adjacent channels. However, mobile hosts may not equally associate with each access point. If there is no mobile host which associates with one of two adjacent access point and is present in the signal coverage of the access points, the two access points can use the same channel and it may reduce the possibility of signal interference caused by access points with high channel load. Referring to FIG. 1A, both access points AP1 and AP4 are allocated communication channel C1, access point AP2 is allocated communication channel C6, and access point AP3 is allocated communication channel C11. Mobile host MH6 associates with access point AP1, mobile hosts MH7˜MH11 associate with access point AP2, mobile hosts MH12˜MH14 associate with access point AP3, and mobile hosts MH15 and MH16 associate with access point AP4. Referring to FIG. 1B, when mobile hosts MH7˜MH11 disassociate with access point AP2 and associate with access point AP1, the possibility of signal interference between access points AP1 and AP4 may increase due to the channel load of access point AP1 increase and the same communication channel to access point AP4. Thus, a method for dynamic channel allocation for access points in wireless networks is desirable. SUMMARY Systems of dynamic channel allocation for access points in wireless networks, comprising a plurality of wireless devices, each allocated a communication channel, are provided. An embodiment of such a system comprises an allocating server, gathering communication information of each wireless device, deriving a network topology formed by the wireless devices according to the communication information, calculating switch channel indexes for the each wireless device according to the communication information and network topology, and determining desired wireless devices for switching channels according to the switch channel indexes. Also disclosed is another system of dynamic channel allocation for access points in wireless networks, comprising at least one first, second, third, and fourth wireless devices, each allocated a first, second, third, and fourth communication channels respectively, in which the first, third, and fourth communication channels do not interfere with each other and the first communication channel is identical to the second communication channel. An embodiment of such a system comprises an allocating server, connecting to the wireless devices through a hub, gathering communication information of each wireless device, deriving a network topology formed by the wireless devices according to the communication information, calculating a first, second, third, and fourth switch channel indexes for the each wireless device according to the communication information and network topology, and, when the first switch channel index (SCI) is greater than an SCI threshold, allocating the third or fourth communication channel to the first wireless device. Further disclosed are methods of dynamic channel allocation for access points in wireless networks, comprising a plurality of wireless devices, each allocated a communication channel. In an embodiment of such a method, communication information of each wireless device is gathered. A network topology formed by the wireless devices is derived according to the communication information. Switch channel indexes for each wireless device are calculated according to the communication information and network topology. Desired wireless devices for switching channels are determined according to the switch channel indexes. BRIEF DESCRIPTION OF THE DRAWINGS Systems and methods of dynamic channel allocation for access points in wireless networks can be more fully understood by reading the subsequent detailed description and examples of embodiments thereof with reference made to the accompanying drawings, wherein: FIGS. 1A and 1B are schematic views of conventional channel allocation for access points; FIG. 2A is a schematic view of an embodiment of a system of dynamic channel allocation for access points in wireless networks; FIG. 2B is a schematic view of an embodiment of relative locations for access points in a local area network; FIG. 2C is a schematic view of an embodiment of relative locations for two access points in a local area network, in which the two access points directly interfere with each other; FIG. 2D is a schematic view of an embodiment of relative locations for two access points in a local area network, in which the two access points indirectly interfere with each other; FIG. 3 is a flowchart of an embodiment of a method of channel allocation determination; FIG. 4 is a flowchart of an embodiment of a method of dynamic channel allocation for access points in wireless networks; and FIG. 5 is a schematic view of an embodiment of channel allocation for access points. DETAILED DESCRIPTION Embodiments of the invention disclose methods and systems of dynamic channel allocation for access points in wireless networks. Several exemplary embodiments of the invention will now be described with reference to FIGS. 2 through 5, which generally relate to channel allocation for access points. US Patent Publication No. 20020060995 discloses “Dynamic channel selection scheme for IEEE 820.11 WLANs”, disclosure thereof has a portion similar to the invention, description thereof is provided in the following. Disclosed is a method and system for dynamically selecting a communication channel between an access point (AP) and a plurality of stations (STAs) in an IEEE 802.11 wireless local area network (WLAN). The method includes the steps of: determining whether a new channel between the AP and STAs within a particular basic service set (BSS) is needed; requesting some of the plurality of stations to measure the channel signal quality by the AP; reporting a channel signal quality report back to the AP based on a received signal strength indication (RSSI) and a packet error rate (PER) of all channels detected by the stations within the BSS; selecting a new channel based on the channel quality report for use in communication between the AP and the plurality of stations. Characteristics of the invention, however, are essentially different from the disclosed invention. The invention exchanges messages between multiple access points in a wireless network and determines available channels for each access point. Additionally, an access point can switch to an available channel at an appropriate time. Herein, channel utilization relates to interference between access points and the load thereof, distinct from the above disclosure. Embodiments of dynamic channel allocation for access points are in the following. IEEE 802.11b communication standards use the frequency of 2.4 GHz and allow regulatory bodies to define different required frequency ranges, comprising 2.4 GHz˜2.4835 GHz, 2.4465 GHz˜2.4835 GHz, 2.445 GHz˜2.475 GHz, and others. Further, a frequency range comprises multiple available channels, in which the frequency range of 2.4 GHz˜2.4835 GHz comprises 11 available channels, 2.4465 GHz˜2.4835 GHz comprises 4 available channels, and 2.445 GHz˜2.475 GHz comprises 2 available channels. Additionally, interference may occur between channels due to signal coverage of a channel overlapping another channel. In the frequency range of 2.4 GHz˜2.4835 GHz comprising 11 available channels, in which the 1st, 6th, and 11th channels can be allocated to access points for preventing signal interference. The three channels as example but are not intended to limit the invention thereto. In practice, purposes thereof can be achieved using channels with little or no interference. Additionally, IEEE 802.11b communication standards provide two operation modes, comprising an ad hoc mode and infrastructure mode. An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. In such an environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination, due to the limited range of each mobile host's wireless transmissions. In an infrastructure network, a base station, gateway, or router usually acts as a central point between two or more wireless devices. Often these devices will share a broadband Internet connection. Each wireless device must have an adapter that can associate with the base station or another available wireless access point. As described above, such an infrastructure structure typically exists in a school building or airport. Embodiments of the invention solve channel allocation problems occurring in the mentioned infrastructure, but are not intended to limit the invention thereto. FIG. 2A is a schematic view of an embodiment of a system of dynamic channel allocation for access points in wireless networks. A network structure of an embodiment of the invention comprises a dynamic channel allocation (DCA) server 100 and a hub (or switch) 200, serving as a bridge between a DCA server and access points. In practice, a DCA server 100, combined with a dynamic host configuration protocol (DHCP) server, associates with access points AP1˜AP4 via hub (or switch) 200. Referring to FIG. 2B, in a wireless network comprising access points AP1˜AP4 complying with IEEE 802.11b communication standards, access points AP1˜AP4 can communicate with each other via hub (or switch) 200 complying with Ethernet standards. DCA server 100 gathers communication information of each access point (operation (1) shown in FIG. 2A), derives a network topology formed by the access points according to the communication information, calculates switch channel indexes for each access point according to the communication information and network topology, and determines desired access points for switching channels according to the switch channel indexes (operation (2) shown in FIG. 2A), details of which are further described in the following. The communication information comprises a packet loss ratio, packet reception and transmission time, mutual scan information between access points, and association and disassociation records of an access point. Signal interference or high data load causes transmission failure and access points can calculate packet loss ratio during packet transmission according to packet retransmission timeout. The degree of interference is determined according to the packet loss ratio. The packet reception and transmission time indicates the packet load for an access point. Current IEEE 802.11 communication standards support multi-rate transmission, such that an access point transmits packets using different transmission rates. Thus, embodiments of the invention represent the data load for an access point with packet reception and transmission time instead of data amount, details of which are further described in the following. A network topology is created according to the mutual scan information between access points. In this embodiment of the invention, an access point can translate an operating mode thereof as a client mode (i.e., taking itself as a mobile host) and implement an active scan operation to determine neighbor access points directly resulting in interference. The active scan operation can be performed by sending out probe frames. Association and disassociation records for mobile hosts complement mutual scan information to form a network topology. One access point may not detect another because the former one is outside the transmission range of the later but basic service areas (BSAs) thereof overlap, resulting in interference. To determine such interference states, association and disassociation records for mobile hosts must be gathered, details of which further described in the following. Gathered communication information is periodically returned to DAC server 100. FIG. 2C is a schematic view of an embodiment of relative locations for two access points in a local area network, in which the two access points directly interfere with each other. FIG. 2D is a schematic view of an embodiment of relative locations for two access points in a local area network, in which the two access points indirectly interfere with each other. DAC server 100 of an embodiment of the invention constructs a network topology according to relative locations of access points, as shown in FIG. 1, implemented according to mutual scan information and association and disassociation records of access points. IEEE 802.11 communication standards define active and passive scan methods, enabling one access point can detect another access point under an infrastructure mode. Active scan allows an access point to actively transmit a probe request packet. When another access point receives the probe request packet, indicating it is located within transmission coverage of the former access point, the access point replies with a probe reply packet to the former access point. Referring to FIG. 2C, for example, access points AP1 and AP2 are located within transmission coverage of the other side (i.e. directly interfering with each other). Access point AP1 translates an operating mode thereof as a client mode (i.e. taking itself as a mobile host) and transmits a probe request packet. When access point AP2 receives the probe request packet, it replies with a probe reply packet to access point AP1, indicating access point AP2 is a neighbor to access point AP1 (within transmission coverage). Passive scan allows access point AP1 to detect a neighbor, access point AP2, when the access point AP1 receives a beacon from access point AP2. Access point AP1 does not directly transmit any message to other access points. The described scan process determines whether directly neighboring access points exist. Referring to FIG. 2D, access points AP3 and AP4 are not located within transmission coverage of the other side (i.e. indirectly interfering with each other). Transmission coverage thereof overlap each other, and, if there is a mobile host inside the overlapping transmission coverage, the mobile host receives both signals from access points AP3 and AP4 and interference occurs. Thus, relative locations of each access point in a network topology must be acquired to determine whether such interference exists. Embodiments of the invention obtain relative location information of each access point according to association and disassociation records thereof. As shown in FIG. 2D, mobile host MH18 associates with access point AP3 and moves to transmission coverage of access point AP4 for association thereto. As previously described, mobile host MH18 disassociates from access point AP3 and reassociates with access point AP4, and access points AP3 and AP4 must record occurrence times of such events and a media access control (MAC) address of mobile host MH18, reported to DAC server 100 via hub (or switch) 200, as shown in FIG. 2A. Accordingly, DCA server 100 can acquire relative locations of each access point. The described process refers to the gathered information to determine whether indirectly neighboring access points exist. Embodiments of the invention define a switch channel index (SCI) for determining the time to switch and allocate channels. An SCI can respond to interference and load states of an access point, an equation thereof is defined as follows: SCI = PLR 1 - RT + TrT TCT , where PLR indicates packet loss rate, RT indicates receive time, TrT indicates transmit time, TCT indicates total communication time, an amount of receiving time, transmitting time, and idle time. Additionally, the PLR responds to interference states of an access point and the RT + TrT TCT responds with load states thereof. In an embodiment of the invention, the packet load is estimated according to data transmission time instead of data load. Data transmission, for example, lasts 7 seconds during a data process lasting 10 seconds. An SCI increases that indicates greater signal interference (resulting in greater packet loss ratio) or the data load, thereby requires a channel switch. Since two access points are located as shown in FIG. 2C, request to send (RTS)/clear to send (CTS) packet switching therebetween decreases packet loss ratio therefor. Thus, embodiments of the invention provide a channel load concept, calculated using the same method as the data load for access points. When two access points are located as shown in FIG. 2C and are allocated the same channel, the amount of the channel load of the allocated channel is the addition of each channel load thereof. Thus, an access point is to be determined and allocated a channel with a lighter channel load if required. FIG. 3 is a flowchart of an embodiment of a method of channel allocation determination, determining whether to switch channels according to SCI and the channel load. An SCI threshold and the channel load threshold are defined (step S11). It is determined whether an SCI of the access point is greater than the SCI threshold (step S12), and, if so, the process proceeds to step S13, and, if not, to step S14. If the SCI is greater than the SCI threshold, indicating the access point suffers from greater interference with requiring switch channel, a channel with a smaller SCI is determined to be allocated to the access point (step S13). If the SCI is smaller than the SCI threshold, it is then determined whether the channel load for an allocated channel to the access point is greater than the channel load threshold (step S14), and, if so, the process proceeds to step S15, and, if not, the process concludes. If the channel load is greater than the channel load threshold, indicating a heavier channel load for the allocated channel to the access point, a channel with the lighter channel load is determined to be allocated to the access point (step S15). When channels allocated to access points are determined to be switched, which channel allocated to one access point is then determined, using a processing method similar to SCI calculation. Switch channel indexes of each available channel is calculated according to gathered information and a network topology formed by access points and a channel with a smallest SCI is allocated to a desired access point. FIG. 4 is a flowchart of an embodiment of a method of dynamic channel allocation for access points in wireless networks. Communication information reported by access points is gathered (step 21), comprising packet loss ratios, packet reception and transmission time, interaction scan information, and association and disassociation records. Next, a network topology formed by the wireless devices is derived according to the communication information (step 22), acquiring information related to direct and indirect neighbor to each access point. Access points that require switching channel are determined (step 23) and switch channel indexes for each available channels are calculated (step 24) according to the communication information and network topology. A channel with a smaller SCI is allocated to a desired access point (step 25). FIG. 5 is a schematic view of an embodiment of channel allocation for access points. To compare with FIG. 1B, when mobile hosts MH7˜MH11 disassociate with access point AP2 and associate with access point AP1, no mobile host is presently associated to access point AP2 and the load of access point AP1 increases. Additionally, interference may occur due to the same channel is allocated to access points AP1 and AP4. Thus, using dynamic channel allocation method of the invention allocates the same channel as allocated to access point AP2, thereby no interference between access points AP1 and AP4 occurs. Although access points AP2 and AP4 use the same channel (CH6) with no mobile host associated to access point AP2, the data load of access point AP2 and the channel load of channel CH6 are low. Accordingly, performance is not affected. Embodiments of the invention determine appropriate channels for allocation to at least one desired access point to be switched, reducing interference between access points. Additionally, a DCA server is located in the wired LAN, only applicably modified with a software application applied to the access points, to provide functions described above to achieve the purposes of the invention. Further, an available channel to be allocated is determined according to the channel load in addition to the interference and data load. Although the present invention has been described in preferred embodiments, it is not intended to limit the invention thereto. Those who are skilled in this technology can still make various alterations and modifications without departing from the scope and spirit of this invention. Therefore, the scope of the present invention shall be defined and protected by the following claims and their equivalents. | <SOH> BACKGROUND <EOH>The invention relates to wireless communication protocols, and more particularly, to methods of dynamic channel allocation for access points in wireless networks. In conventional wireless local area network (WLAN) environments complying with Institute of Electrical and Electronic Engineers (IEEE) 802.11 communication standards, to enhance communication ability and accommodate a greater number of mobile hosts (MH), multiple access points (AP) are located in a communication area, for example, in a schools building or airport, such that a mobile host anywhere in the building can receive wireless signals. Network administrators statically deploy network access points and allocate communication channels therefor, manually deriving communication channels for each access point, such that signal interference between access points is minimized, and communication channels allocated to access points will not be reallocated. Access points described herein serve as bridges in wireless networks, connecting conventional wired LANs and wireless LANs, such that a personal computer equipped with an wireless card can share resources from LANs or wide area networks (WANs) Additionally, access points provide network management functions, controlling and managing personal computers connected thereto via wireless cards. The number of available communication channels is limited in that many access points use identical or adjacent channels if a considerable number of access points are located in the same area, resulting in signal interference if two neighboring access points use identical or adjacent channels. However, mobile hosts may not equally associate with each access point. If there is no mobile host which associates with one of two adjacent access point and is present in the signal coverage of the access points, the two access points can use the same channel and it may reduce the possibility of signal interference caused by access points with high channel load. Referring to FIG. 1A , both access points AP 1 and AP 4 are allocated communication channel C 1 , access point AP 2 is allocated communication channel C 6 , and access point AP 3 is allocated communication channel C 11 . Mobile host MH 6 associates with access point AP 1 , mobile hosts MH 7 ˜MH 11 associate with access point AP 2 , mobile hosts MH 12 ˜MH 14 associate with access point AP 3 , and mobile hosts MH 15 and MH 16 associate with access point AP 4 . Referring to FIG. 1B , when mobile hosts MH 7 ˜MH 11 disassociate with access point AP 2 and associate with access point AP 1 , the possibility of signal interference between access points AP 1 and AP 4 may increase due to the channel load of access point AP 1 increase and the same communication channel to access point AP 4 . Thus, a method for dynamic channel allocation for access points in wireless networks is desirable. | <SOH> SUMMARY <EOH>Systems of dynamic channel allocation for access points in wireless networks, comprising a plurality of wireless devices, each allocated a communication channel, are provided. An embodiment of such a system comprises an allocating server, gathering communication information of each wireless device, deriving a network topology formed by the wireless devices according to the communication information, calculating switch channel indexes for the each wireless device according to the communication information and network topology, and determining desired wireless devices for switching channels according to the switch channel indexes. Also disclosed is another system of dynamic channel allocation for access points in wireless networks, comprising at least one first, second, third, and fourth wireless devices, each allocated a first, second, third, and fourth communication channels respectively, in which the first, third, and fourth communication channels do not interfere with each other and the first communication channel is identical to the second communication channel. An embodiment of such a system comprises an allocating server, connecting to the wireless devices through a hub, gathering communication information of each wireless device, deriving a network topology formed by the wireless devices according to the communication information, calculating a first, second, third, and fourth switch channel indexes for the each wireless device according to the communication information and network topology, and, when the first switch channel index (SCI) is greater than an SCI threshold, allocating the third or fourth communication channel to the first wireless device. Further disclosed are methods of dynamic channel allocation for access points in wireless networks, comprising a plurality of wireless devices, each allocated a communication channel. In an embodiment of such a method, communication information of each wireless device is gathered. A network topology formed by the wireless devices is derived according to the communication information. Switch channel indexes for each wireless device are calculated according to the communication information and network topology. Desired wireless devices for switching channels are determined according to the switch channel indexes. | 20041229 | 20080520 | 20060525 | 57652.0 | H04Q700 | 2 | HO, CHUONG T | METHODS AND SYSTEMS OF DYNAMIC CHANNEL ALLOCATION FOR ACCESS POINTS IN WIRELESS NETWORKS | UNDISCOUNTED | 0 | ACCEPTED | H04Q | 2,004 |
|
11,025,715 | ACCEPTED | System for controlling the communication of medical imaging data | A system for controlling the communication of medical imaging data is disclosed generally comprising a computer, a plurality of sources of medical imaging data and a plurality of destinations of medical imaging data in communication with the computer, and a touchscreen for simultaneously displaying a plurality of source icons and a plurality of destination icons controlled by the computer. The source icons correspond to the plurality of sources to allow a user to select a particular source of imaging data, and the destination icons correspond to the plurality of destinations to allow the user to select at least one particular destination for the imaging data. In certain embodiments, the touchscreen includes a display window for displaying medical images generated from the imaging data supplied by the presently selected source. In some embodiments, the touchscreen includes a set of controls associated with the presently selected source. | 1. A system for controlling the communication of medical imaging data, comprising: a computer; a plurality of sources of medical imaging data in communication with said computer; a plurality of destinations for the medical imaging data in communication with said computer; and a touchscreen controlled by said computer for simultaneously displaying a plurality of source icons and a plurality of destination icons; wherein the plurality of source icons correspond to said plurality of sources in order to allow a user of said system to select a particular source of medical imaging data, and the plurality of destination icons correspond to said plurality of destinations in order to allow the user to select at least one particular destination to receive the medical imaging data supplied by the selected source. 2. A system as claimed in claim 1, wherein said touchscreen further comprises a display window for displaying medical images generated from the medical imaging data supplied by the selected source. 3. A system as claimed in claim 2, wherein the display window is located between the plurality of source icons and the plurality of destination icons. 4. A system as claimed in claim 2, wherein said touchscreen further comprises a source indicator located adjacent to the display window, wherein the source indicator corresponds to the selected source. 5. A system as claimed in claim 4, wherein the source indicator is located above the display window. 6. A system as claimed in claim 4, wherein the source indicator comprises a graphic corresponding to the selected source. 7. A system as claimed in claim 6, wherein the graphic comprises a graphical representation of the selected source. 8. A system as claimed in claim 6, wherein the graphic comprises a logo designating the selected source. 9. A system as claimed in claim 6, wherein said touchscreen further comprises text describing the selected source adjacent to the source indicator. 10. A system as claimed in claim 2, wherein said touchscreen further comprises a set of controls associated with the selected source. 11. A system as claimed in claim 10, wherein the set of controls is located below the display window. 12. A system as claimed in claim 10, wherein the controls comprise virtual buttons. 13. A system as claimed in claim 12, wherein the controls include panning controls. 14. A system as claimed in claim 12, wherein the controls include zooming controls. 15. A system as claimed in claim 12, wherein the controls include rotating controls. 16. A system as claimed in claim 12, wherein the controls include a freeze control for freezing video. 17. A system as claimed in claim 12, wherein the controls include a save control for saving images. 18. A system as claimed in claim 12, wherein the controls include a control option icon for changing at least some of the controls. 19. A system as claimed in claim 10, wherein: at least one said plurality of sources of medical imaging data comprises a recording device adapted to receive medical imaging data from another of said sources; and the set of controls includes a source selection icon to allow a user to display a palette containing the source icons corresponding to the sources of medical imaging data from which the recording device is able to receive medical imaging data and select a source therefrom. 20. A system as claimed in claim 19, wherein the source selection icon includes a source indicator that corresponds to the source from which the recording device is receiving medical imaging data. 21. A system as claimed in claim 2, wherein said touchscreen further includes a telestration icon to allow a user to enter a telestration mode, whereby the user can use a finger to draw on the medical images displayed in the display window. 22. A system as claimed in claim 2, wherein at least one of said plurality of sources of medical imaging data comprises a processor for routing medical imaging data from a plurality of other sources to the computer simultaneously. 23. A system as claimed in claim 22, wherein the display window is divided into a plurality of sections for separately displaying the medical images generated from the medical imaging data supplied by a corresponding plurality of sources when the processor for routing medical imaging data from a plurality of other sources is the selected source. 24. A system as claimed in claim 23, wherein the touchscreen further comprises a set of controls associated with the processor for routing medical imaging data from a plurality of other sources. 25. A system as claimed in claim 24, wherein the set of controls includes a source selection panel having a plurality of sections corresponding to the plurality of sections in the display window to allow a user to select the source from which medical imaging data is used to generate the medical images displayed in the corresponding section of the display window. 26. A system as claimed in claim 25, wherein the set of controls comprises: mode selectors to allow the user to select one of a plurality of alternate modes; and any one of a plurality of alternate control panels, the control panel corresponding to the selected mode. 27. A system as claimed in claim 26, wherein one of the alternate control panels comprises a quad image panel. 28. A system as claimed in claim 26, wherein one of the alternate control panels comprises a dual image panel. 29. A system as claimed in claim 26, wherein one of the alternate control panels comprises a picture-in-picture panel. 30. A system as claimed in claim 29, wherein: the window display includes a first image, and a second image smaller than the first image; and the control panel includes a size icon for changing the size of the second image. 31. A system as claimed in claim 29, wherein: the window display includes a first image, and a second image smaller than the first image; and the control panel includes a position icon for changing the position of the second image. 32. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a camera. 33. A system as claimed in claim 32, wherein at least one said plurality of sources of medical imaging data comprises an endoscopic camera. 34. A system as claimed in claim 32, wherein at least one said plurality of sources of medical imaging data comprises a room camera. 35. A system as claimed in claim 32, wherein at least one said plurality of sources of medical imaging data comprises a light camera. 36. A system as claimed in claim 32, wherein at least one said plurality of sources of medical imaging data comprises a boom camera. 37. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a video endoscope. 38. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a VCR. 39. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a digital video recorder. 40. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a device for storing images. 41. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises an image capture device. 42. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a PACS computer. 43. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a control computer that centrally controls a plurality of devices. 44. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a patient monitor. 45. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises a hospital information system. 46. A system as claimed in claim 1, wherein at least one said plurality of sources of medical imaging data comprises an auxiliary input for external devices. 47. A system as claimed in claim 1, wherein at least one said plurality of destinations for the medical imaging data comprises a display. 48. A system as claimed in claim 47, wherein at least one said plurality of destinations for the medical imaging data comprises a flat panel display. 49. A system as claimed in claim 47, wherein at least one said plurality of destinations for the medical imaging data comprises a plasma screen. 50. A system as claimed in claim 47, wherein at least one said plurality of destinations for the medical imaging data comprises a computer monitor. 51. A system as claimed in claim 1, wherein at least one said plurality of destinations for the medical imaging data comprises a recording device. 52. A system as claimed in claim 1, wherein at least one said plurality of destinations for the medical imaging data comprises a storage device. 53. A system as claimed in claim 1, wherein each of the plurality of source icons comprises a virtual button. 54. A system as claimed in claim 53, wherein the virtual button includes a graphic corresponding to the selected source. 55. A system as claimed in claim 54, wherein the graphic comprises a graphical representation of the selected source. 56. A system as claimed in claim 54, wherein the graphic comprises a logo designating the selected source. 57. A system as claimed in claim 1, wherein each of the plurality of destination icons includes a source indicator that corresponds to the selected source for that destination. 58. A system as claimed in claim 1, wherein said touchscreen further comprises an additional sources icon to allow a user to display a palette of additional source icons corresponding to additional sources of medical imaging data and select a source therefrom. 59. A system as claimed in claim 58, wherein the palette of additional source icons is superimposed on the plurality of source icons. 60. A system as claimed in claim 58, wherein the palette of additional source icons disappears after a predetermined period of time. 61. A system as claimed in claim 1, wherein said touchscreen further comprises an external feeds icon to allow the user to display a palette of remote destination icons corresponding to remote destinations to which the medical imaging data can be communicated and select at least one remote destination therefrom. 62. A system as claimed in claim 61, wherein the palette of remote destination icons is superimposed on the plurality of destination icons. 63. A system as claimed in claim 61, wherein the palette of remote destination icons disappears after a predetermined period of time. 64. A system as claimed in claim 63, wherein said touchscreen further comprises a caution indicator if a remote destination has been selected. 65. A system as claimed in claim 64, wherein the caution indicator comprises an additional external feeds icon to allow the user to display the palette of remote destination icons. 66. A system as claimed in claim 64, wherein the caution indicator comprises a blinking light. 67. A system as claimed in claim 61, wherein the palette of remote destination icons includes a termination icon for terminating all communications of medical imaging data to remote devices. 68. A system as claimed in claim 1, wherein said touchscreen further comprises a lighting icon for displaying a palette of lighting controls. 69. A system as claimed in claim 68, wherein the lighting controls include intensity control. 70. A system as claimed in claim 68, wherein the lighting controls include color control. 71. A system as claimed in claim 1, wherein said touchscreen further includes a CD player icon for displaying controls associated with a CD player. 72. A system as claimed in claim 1, wherein said touchscreen further comprises a speakerphone icon for displaying controls associated with a speakerphone. 73. A system as claimed in claim 1, wherein said touchscreen further comprises a videoconference button for displaying a videoconferencing interface. 74. A system as claimed in claim 1, wherein the videoconferencing interface comprises: a palette containing the source icons corresponding to the sources of medical imaging data from which the user can select the source of medical imaging data to be communicated to a remote user; a display window for displaying medical images generated from the medical imaging data supplied by the selected source; a set of controls associated with the selected source; and a set of controls associated with videoconferencing. 75. A system as claimed in claim 74, further comprising a control panel containing the set of controls associated with the selected source, said control panel being movable around the videoconferencing interface. 76. A system as claimed in claim 1, wherein said touchscreen further includes a presets icon to allow a user to enter a presets utility. 77. A system as claimed in claim 76, wherein the presets utility includes controls for storing a set of parameters for at least some of the selections of the user and assigning a name to the stored set of parameters. 78. A system as claimed in claim 1, wherein said touchscreen further comprises an off icon for displaying a query to a user to confirm that the user would like to cease use of the system. 79. A system for controlling the communication of medical imaging data, comprising: a computer; a plurality of sources of medical imaging data in communication with said computer; a plurality of destinations for the medical imaging data in communication with said computer; a touchscreen controlled by said computer; software executing on said computer for displaying on said touchscreen a plurality of source icons corresponding to said plurality of sources of medical imaging data in order to allow a user of said system to select a particular source of medical imaging data; and software executing on said computer for displaying on said touchscreen a plurality of destination icons corresponding to said plurality of destinations in order to allow the user to select at least one particular destination to receive the medical imaging data supplied by the selected source. 80. A system as claimed in claim 79, further comprising software executing on said computer for displaying on said touchscreen medical images generated from the medical imaging data supplied by the selected source. 81. A system as claimed in claim 80, wherein the medical images are displayed between the plurality of source icons and the plurality of destination icons. 82. A system as claimed in claim 80, further comprising software executing on said computer for displaying on said touchscreen a source indicator located adjacent to the displayed medical images, wherein the source indicator corresponds to the selected source. 83. A system as claimed in claim 80, further comprising software executing on said computer for displaying on said touchscreen a set of controls associated with the selected source. 84. A system as claimed in claim 83, wherein the set of controls is displayed below the displayed medical images. | FIELD OF THE INVENTION The present invention relates to a system for controlling the communication of medical imaging data. More specifically, the invention relates to a touchscreen interface for routing and controlling medical imaging data between a number of different sources and destinations. BACKGROUND OF THE INVENTION Today, a wide variety of medical imaging systems are known for performing diagnostic and surgical procedures. Specifically, systems have been developed to increase a surgeon's ability to perform surgery on a patient by providing the surgeon with intra-operative images of anatomical structures within a patient's body. Accordingly, during various types of minimally invasive surgeries-such as endoscopic, arthroscopic, and laparoscopic procedures-a surgeon is able to visually examine the interior of an organ or joint while the surgeon is conducting the surgery. These systems typically include the use of some specialized form of camera or medical endoscope. Additionally, recent developments have resulted in systems incorporating various audiovisual devices to allow both the surgeon, as well as others in the surgical suite or located remotely therefrom who may be assisting or observing, to better monitor the procedure. Accordingly, both still images and live video being acquired during the surgery can be output to various different screens or recording devices. Additionally, various devices have been incorporated into these systems to allow the surgeon, or other individuals assisting or observing, to utilize the imaging capabilities of the system in different ways, simultaneously or at different times, for a variety of different objectives. For example, a surgeon may wish to view a live video feed, and freeze and capture images as he does so, and then compare those frozen images with other images of the same patient that were stored during a previous procedure. As another example, a doctor may wish to record a clean copy of video on a linear tape deck, yet also annotate or telestrate on that video and then digitally record this marked video as well. As yet another example, an observer may wish to view the surgical suite and the doctor's movements, while simultaneously viewing the results of those movements taking place inside the patient's body. In light of the many capabilities that have emerged with respect to medical imaging, and the many devices (and interconnection of those devices) necessary to realize those capabilities, many surgical suites have become fairly complex just with respect to the imaging aspect of the procedure alone. Though certain systems presently exist for centrally controlling various medical devices in an operating room, there is presently a need to provide a way of interfacing with all of the imaging devices available for the procedure that is simpler to use and permits quicker execution than present systems for controlling devices, which may entail detailed command inputs, such as by a keyboard, or hierarchies of menus and sub-menus. As a result, there is a need to provide users with a system for interfacing with many imaging devices potentially useful in a medical procedure that allows the user to easily and quickly select particular devices and route imaging data from various devices to various other devices. Additionally, there is a need to allow the user to easily control the devices that are presently selected. Finally, there is a need to allow a user to easily preview or alter the images that are being routed to the other individuals to whom the images are ultimately being communicated. What is desired, therefore, is a system for controlling the communication of medical imaging data that allows a user to easily and quickly select sources of imaging data. What is further desired is a system for controlling the communication of medical imaging data that allows a user to easily and quickly select particular destinations for the medical imaging data. What is also desired is a system that allows a user to view the medical imaging data presently being routed. What is further desired is a system that allows a user to easily control the sources of the imaging data. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to immediately view the available sources of medical imaging data and select a particular source therefrom without engaging in any preliminary activity. It is a further object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to immediately view the available destinations of medical imaging data and select particular destinations therefrom without engaging in any preliminary activity. It is yet another object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to view medical images generated from medical imaging data from a presently selected source without engaging in any preliminary activity. It is still another object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to control a presently selected source of medical imaging data without engaging in any preliminary activity. It is yet a further object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to access various utilities available for use with the medical imaging data from a presently selected source without engaging in any preliminary activity. It is still a further object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to access other functions of the system without engaging in any preliminary activity. In order to overcome the deficiencies of the prior art and to achieve at least some of the objects and advantages listed, the invention comprises a system for controlling the communication of medical imaging data, including a computer, a plurality of sources of medical imaging data in communication with the computer, a plurality of destinations for the medical imaging data in communication with the computer, and a touchscreen controlled by the computer for simultaneously displaying a plurality of source icons and a plurality of destination icons, wherein the plurality of source icons correspond to the plurality of sources in order to allow a user of the system to select a particular source of medical imaging data, and the plurality of destination icons correspond to the plurality of destinations in order to allow the user to select at least one particular destination to receive the medical imaging data supplied by the selected source. In some embodiments, the invention comprises a touchscreen that further includes a display window for displaying medical images generated from the medical imaging data supplied by the selected source. In some of these embodiments, the display window is located between the plurality of source icons and the plurality of destination icons. In some embodiments, the invention comprises a touchscreen that further includes a source indicator located adjacent the display window, wherein the source indicator corresponds to the selected source. In some embodiments, the invention comprises a touchscreen that further includes a set of controls associated with the selected source. In some of these embodiments, the set of controls is located below the display window. In another embodiment, the invention comprises a system for controlling the communication of medical imaging data, including a computer, a plurality of sources of medical imaging data in communication with the computer, a plurality of destinations for the medical imaging data in communication with the computer, a touchscreen controlled by the computer, software executing on the computer for displaying on the touchscreen a plurality of source icons corresponding to the plurality of sources of medical imaging data in order to allow a user of the system to select a particular source of medical imaging data, and software executing on the computer for displaying on the touchscreen a plurality of destination icons corresponding to the plurality of destinations in order to allow the user to select at least one particular destination to receive the medical imaging data supplied by the selected source. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a system for controlling the communication of medical imaging data in accordance with the invention. FIG. 2 is a screenshot of the touchscreen of the system of FIG. 1 when a linear tape deck is the selected source. FIG. 3 is a screenshot of the touchscreen of the system of FIG. 1 when a boom camera is the selected source. FIG. 4 is a screenshot of the touchscreen of the system of FIG. 1 when a room camera is the selected source. FIG. 5 is a screenshot of the touchscreen of the system of FIG. 1 when a light camera is the selected source. FIG. 6 is a screenshot of the touchscreen of the system of FIG. 1 when an endoscopic camera is the selected source. FIG. 7 is a screenshot of the touchscreen of the system of FIG. 1 when an image capture device is the selected source. FIG. 8 is a screenshot of the touchscreen of the system of FIG. 1 when a control options icon has been pressed. FIG. 9 is a screenshot of the touchscreen of the system of FIG. 1 when an additional sources icon has been pressed. FIG. 10 is a screenshot of the touchscreen of the system of FIG. 1 when a source selection icon has been pressed. FIG. 11 is a screenshot of the touchscreen of the system of FIG. 1 when an external feeds icon has been pressed. FIG. 12 is a screenshot of the touchscreen of the system of FIG. 1 when an remote destination has been selected. FIG. 13 is a screenshot of the touchscreen of the system of FIG. 1 during telestration. FIG. 14 is a screenshot of the touchscreen of the system of FIG. 1 when a screen splitter is the selected source and the screen splitter is in quad image mode. FIG. 15 is a screenshot of the touchscreen of the system of FIG. 1 when a screen splitter is the selected source and the screen splitter is in dual image mode. FIG. 16 is a screenshot of the touchscreen of the system of FIG. 1 when a screen splitter is the selected source and the screen splitter is in picture-in-picture mode. FIG. 17 is a screenshot of the touchscreen of the system of FIG. 1 during a videoconference. FIG. 18 is a screenshot of the touchscreen of the system of FIG. 1 when a lighting icon has been pressed. FIG. 19 is a screenshot of the touchscreen of the system of FIG. 1 when a speakerphone icon has been pressed. FIG. 20 is a screenshot of the touchscreen of the system of FIG. 1 when a CD icon has been pressed. FIG. 21 is a screenshot of the touchscreen of the system of FIG. 1 when a preset icon has been pressed. FIG. 22 is a screenshot of the touchscreen of the system of FIG. 1 when a preset store icon has been pressed. FIG. 23 is a screenshot of the touchscreen of the system of FIG. 1 when a preset overview has been activated. FIG. 24 is a screenshot of the touchscreen of the system of FIG. 1 when a system off icon has been pressed. DETAILED DESCRIPTION OF THE DRAWINGS The basic components of one embodiment of a system for controlling the communication of medical imaging data in accordance with the invention are illustrated in FIG. 1. As used in the description, the terms “top,” “bottom,” “above,” “below,” “over,” “under,” “above,” “beneath,” “on top,” “underneath,” “up,” “down,” “upper,” “lower,” “front,” “rear,” “back,” “forward” and “backward” refer to the objects referenced when in the orientation illustrated in the drawings, which orientation is not necessary for achieving the objects of the invention. The system 10 includes a computer 20, a touchscreen 22 controlled by the computer 20, a plurality of sources 24 of medical imaging data connected to the computer 20, and a plurality of destinations 26 for the medical imaging data connected to the computer 20. The sources 24 of medical imaging data connected to the computer 20 may include any devices, systems, or networks that generate, acquire, store, monitor, or control imaging data for use in generating medical images, such as still images or video. For example, the sources 24 may include image acquisition devices, such as endoscopic cameras, video endoscopes, room cameras, light cameras, and boom cameras. Likewise, the sources 24 may include any recording, storage, and/or archival devices or systems, such as traditional video cassette recorders or digital video recording devices (such as a linear tape deck or DVD recording device), image capture devices, a PACS (Picture Archiving and Communication System) computer, or a Hospital Information System. Finally, the sources 24 may include other devices from which medical imaging data may be received, such as a patient monitor or a central computer for controlling various devices, or may simply be auxiliary inputs for connecting external devices that may supply medical imaging data to the system. Additionally, a source 24 may be a source of medical imaging data that receives medical imaging data from yet another source 24. For example, a source 24 may be a linear tape deck that is recording live video as it supplies the video to the computer 20. The linear tape deck, in turn, may receive the live video from an endoscopic camera presently being used on a patient, as is further described below. As another example, a source 24 may be a processor for routing images from multiple other sources 24 to the computer 20 (i.e., a screen splitter), such as a quad image processor, as is also further discussed below. The destinations 26 for the medical imaging data supplied by the sources 24 may include any devices, systems, or networks that display medical images generated from the medical imaging data, or otherwise communicate the medical imaging data to viewers, or store the imaging data. For example, the destinations 26 may include any of various displays, such as, for example, a flat panel display, a plasma screen, or a computer monitor. Additionally, the destinations 26 may include a recording device or storage device, as described above. As illustrated in FIGS. 1-2, the computer 20 includes software that cause the touchscreen 22 to simultaneously display a plurality of source icons 34 and a plurality of destination icons 36. The icons 34, 36 are sensitive to the touch of the user, such that the user can select particular sources and destinations 24, 26 by pressing the touchscreen 22 at the locations of the icons 34, 36, respectively. Accordingly, at any time, the user can simply choose a source 24 from among the plurality of sources represented by the source icons 34, and select the desired source by pressing the corresponding source icon 34. Similarly, the user can select a particular destination 26 for the medical imaging data being supplied by the selected source 24 by simply pressing the corresponding destination icon 36. If the user would like to choose an available source not presently displayed on the touchscreen, or the user would like to choose a destination that is remote (i.e., not in the surgical suite), the user may easily display palettes containing these additional sources and destinations, as is described further below. In certain advantageous embodiments, at least some of the icons 34, 36 are virtual buttons, such that user gets the impression he or she is pressing a three dimensional object. In some embodiments, certain icons 34 include a graphic representing the corresponding source 24, such as a graphical representation of the corresponding source 24 or a logo representing the corresponding source 24. In some embodiments, certain icons 34 may include both a graphical representation of the source 24 and a logo representative thereof, while certain icons 34 may simply identify the corresponding source 24 with text or a symbol. In certain advantageous embodiments, the destination icons 36 include a source indicator 38 that corresponds to the particular source 24 selected for that particular destination 26. In these embodiments, the source indicator 38 is the same graphic, text, and/or other indicia 39 that is present on the source icon 34 for the selected source 24. The touchscreen 22 also includes a display window 40, which displays medical images generated from the medical imaging data supplied by the presently selected source 24. In this way, the user can preview the images being routed to at least one of the destinations 26. When used with a screen splitter, as further described below, the user can preview images from multiple sources 24 at once. In certain advantageous embodiments, the user can also manipulate or alter the images being displayed in the window 40 in order to affect the images ultimately being communicated to the destinations 26. In some embodiments, the display window 40 is located between the source icons 34 and the destination icons 36. In certain advantageous embodiments, a source indicator 42 is displayed adjacent the window 40. The source indicator 42 identifies the source 24 of the medical imaging data that is being used to generate the images presently displayed in the window 40. The indicator 42 may include a graphic, such as a graphical representation of, or a logo corresponding to, the presently selected source 24. In certain embodiments, text 44 identifying the source 24 is also displayed next to the source indicator 42. In some embodiments, the source indicator 42 and/or text 44 is located above the window 42. The touchscreen 22 also includes a set of controls 50 associated with the selected source 24, allowing the user to actively control the selected source 24 based on the images the user is viewing in the display window 40. In certain advantageous embodiments, the controls are virtual buttons, thereby providing the user with the illusion that he or she is pressing a three dimensional control. In some embodiments, the set of controls 50 is located below the window 40. As illustrated in FIGS. 2-7, the set of controls 50 includes controls that are specific to the source 24 that has been selected by the user. Therefore, as shown in FIG. 2, if the presently selected source 24 is a tape deck, the controls may include play, stop, rewind, fast forward, and record buttons. On the other hand, referring to FIGS. 3-5, if the presently selected source 24 is a boom camera, a room camera, or a light camera, the controls may include panning buttons 52 for changing the field of view of the camera, zoom buttons 54 for zooming in and out, rotation buttons 56 for rotating the camera, or iris buttons 58 for controlling the opening and closing of an iris. Referring to FIG. 6, if the presently selected source 24 is an endoscopic camera, the set of controls 50 may instead include a button 60 for starting and stopping the live video in order to temporarily view frozen images, as well as a capture button 62 for saving certain frozen images. Similarly, as shown in FIG. 7, if the presently selected source 24 is an image capture device (which is, in turn, receiving imaging data from an endoscopic camera), the set of controls may include a button 64 for starting and stopping the recording of video, as well as a button 66 for storing individual still images. In certain advantageous embodiments, the controls 50 may also include a control for customizing the controls 50 themselves. For example, as illustrated in FIGS. 6 and 8, the user may press a control option button 61, which displays a control selection palette 65. From the palette 65, the user can select a particular function for button 60. For example, FIG. 6 shows button 60 as a “start/stop” button for starting and stopping the recording of video by an AIDA recording device. By pressing the control option button 61, and then, on the palette 65 that is displayed, pressing the AIDA still capture button 68, the button 60 will change into a “capture” button (presently shown under ACC 2), thereby allowing the user to use button 60 to capture still images to the AIDA device. In this way, the user can simulate real buttons on the source 24 itself that can be utilized for different functions, such as programmable buttons on an endoscopic camera head. Additionally, as illustrated in FIGS. 2 and 7, if the presently selected source 24 is a recording device, the set of controls 50 includes a source selection icon 70 for selecting a source from which the presently selected source 24 receives medical imaging data prior to communicating that data to the computer 20, as is further described below. The operation of the system 10 will now be described primarily with reference to FIGS. 1-2, as well as other individual figures as specifically identified. The user typically begins by touching the touchscreen 22, which may or may not initially display an introductory screen displaying the manufacturer's logo or the like (not shown), which then displays to the user a screen similar to that illustrated in FIG. 2, including source icons 34, destination icons 36, display window 40, and a set of controls 50. The user chooses a particular source 24 of medical imaging data that he or she would like to route to at least one destination 26, and reviews the plurality of source icons 34 displayed on the touchscreen 22. If the user does not see an icon 34 corresponding to the particular source 24 that he wants to route, the user can press an additional sources icon 80 located at the bottom of the touchscreen 22. As illustrated in FIG. 9, pressing icon 80 displays a palette 82 of additional source icons 84. The icons 84 correspond to additional sources, and the user may select one of these additional sources by simply pressing the corresponding icon 84. In some embodiments, the palette 82 is superimposed over the sources icons 34 and, after a predetermined period of time (e.g., five seconds), will disappear. When the user presses a source icon 34 (or additional source icon 84), thereby selecting a particular source, the images appearing in the display window 40 will change to images generated from the imaging data supplied from the newly selected source, the set of controls 50 will change to controls associated with the newly selected source, and the source indicator 42 and/or identifying text 44 will change to reflect the newly selected source 24. If the newly selected source 24 is a recording device, the user may choose another source, from which the newly selected source 24 receives medical imaging data, by pressing the source selection icon 70. As shown in FIG. 10, when the user presses icon 70, the touchscreen 22 displays a palette 90 of icons 94. The icons 94 correspond to available sources from which the presently selected source 24 can receive medical imaging data prior to communicating that data to computer 20. When an icon 94 is pressed, and the corresponding source of medical imaging data for the presently selected source 24 is thereby selected, a source indicator 92, which represents the other source from which the presently selected source 24 is receiving medical imaging data, appears in the source selection icon 70. Accordingly, the user always knows which other source is supplying the imaging data to the presently selected source 24. Once a source 24 of medical imaging data (and possibly, a source for that source) has been selected, the user may then select a particular destination 26 from among the plurality of available destinations 26 to receive the medical imaging data from the presently selected source 24 by pressing any of the destination icons 36. In this way, the user may select one, some, or all of the destinations 26 to receive the medical imaging data being supplied from the presently selected source 24. As each destination icon 36 is pressed, the medical imaging data being supplied by the presently selected source 24 and producing the images presently being viewed in the display window 40 is communicated to the corresponding destination 26, and a source indicator 38, which represents the presently selected source 24 from which that destination is receiving medical imaging data, appears in the destination icon 36. Accordingly, the user always knows which source is supplying the data for the medical images presently being viewed at any particular destination 26. If the user desires to send the medical imaging data to a remote destination 108, the user can press an external feeds icon 100 located at the bottom of the touchscreen 22. As shown in FIG. 11, pressing icon 100 displays a palette 102 of remote destination icons 106. The icons 106 correspond to remote destinations 108 (FIG. 1) to which the medical imaging data can be communicated, and the user may select one of these remote destinations 108 by simply pressing the corresponding icon 106. In some embodiments, the palette 102 is superimposed over the destination icons 36 and, after a predetermined period of time (e.g., five seconds), will disappear. As illustrated in FIG. 12, in certain advantageous embodiments, a caution indicator 110 will appear to remind the user that medical imaging data is being communicated to remote destinations 108, which has important implications with respect to patient privacy. The indicator 110 may, for example, be a red blinking caution symbol, and in some embodiments, is also an active button that, when pressed, again displays the palette 102. Additionally, the palette 102 includes a termination icon 112, enabling the user to terminate the communication of medical imaging data to all remote destinations 108 with a single press. If the user wants to make marks on the images, such as circling particular areas of interest, or otherwise annotate the images, the user can press a telestration icon 114 located at the bottom of the touchscreen 22. As shown in FIG. 13, the user will then be able to mark the images being routed from the presently selected source 24 by drawing on the images appearing in the display window 40 with the user's finger. Alternatively, the user may enter the telestration utility by selecting it as a source. As previously explained with reference to FIG. 10, when the presently selected source 24 is a recording device, an additional source may be selected to supply medical imaging data to that source. In the example shown in FIG. 10, a linear tape deck (DVCAM) has been selected as the source 24, and an endoscopic camera (Image 1) has, in turn, been selected as the source for the linear tape deck. Accordingly, video flows from the endoscopic camera, through the tape deck (where it can be recorded), and is displayed in the window 40. The user can press the source selection icon 70 to display the palette 90, and can then press a telestration button thereon. As a result, the user will be able to telestrate over the images coming from the endoscopic camera, through the tape deck, and displayed in the window 40. Accessing the telestration utility in this manner allows the user to record the telestration on the tape deck, in contrast to the use of the button 114, which simply displays the telestration in the window 40 and sends it to the selected destinations 26, but does not record it on the tape deck. If the user desires to view medical images generated from multiple sources 24 simultaneously, the user can select a screen splitter, such as a quad image processor, as the source of medical imaging data by pressing the corresponding icon 34. As illustrated in FIG. 14, upon selecting the screen splitter as the source (i.e., pressing the screen splitter icon 84 in FIG. 9), the display window 40 divides into a plurality of sections 120 for separately displaying medical images generated from medical imaging data supplied by a plurality of other sources 24. At the same time, the set of controls 50 changes to controls associated with the screen splitter. These controls include a source selection panel 122 having a plurality of sections 124 corresponding to the plurality of sections 120 in the display window 40. Accordingly, in order to make medical images generated from a particular source 24 appear in a particular section 120, the user presses the corresponding section 124 in panel 122, and then presses the source of medical images desired for that particular section 120. As illustrated in FIGS. 14-16, in certain advantageous embodiments, the set of controls 50 includes mode selectors 126, which allow the user to select one of a plurality of alternate modes, and thereby switch between different control panels 130, 132, 134 corresponding to the different modes. For example, the different modes may include quad image (FIG. 14), dual image (FIG. 15), or picture-in-picture (FIG. 16). When in picture-in-picture mode, the display window 40 includes a large section 140 for displaying a large image, and a smaller section 142 within the larger section 140 for displaying a smaller image. In some of these embodiments, the control panel 134 includes a size icon 136 for changing the size of the smaller section 142, and in some embodiments, the panel 134 includes a position icon 138 for changing the location of the smaller section 142 within the larger section 140. If the user wants to communicate images to a remote individual during a videoconference, the user can press a videoconference icon 150. As illustrated in FIG. 17, when icon 150 is pressed, a videoconferencing interface 152 is displayed on the touchscreen 22. The interface 152 includes source icons 156, which correspond to the selectable sources from which medical imaging data can be communicated to the remote user. The interface 152 also includes a display window 160 for displaying medical images generated from the imaging data supplied by the selected source. Additionally, the interface 152 includes a set of controls 162 associated with the selected source, as well as a set of controls 164 associated with video conferencing. In certain embodiments, the set of controls 162 are part of a control panel 166 that is movable around the interface 152. In certain advantageous embodiments, when the selected source is a recording device, video conferencing may alternatively be selected as a source, as similarly described previously for telestration. Referring to FIG. 10, the plurality of source icons 94 includes a video conferencing icon. As with telestration, by pressing the source selection icon 70 to display the palette 90, and then pressing the video conference button on palette 90, the video conference itself can be recorded by the presently selected source 24 (e.g., linear tape deck). In addition to selecting and controlling various sources and destinations of medical imaging data, and routing, altering, recording, and viewing that data, the user can also control several other items from the touchscreen 22. For example, the user can press a lighting icon 170 (FIG. 2) to display a palette 172 of lighting controls, as illustrated in FIG. 18. The palette 172 may, for example, include buttons 174 for adjusting light intensity or buttons 176 for adjusting color. Similarly, as illustrated in FIG. 19, the user can press a speakerphone icon 178 to display various controls associated with a speakerphone, such as speed dial buttons 180 for storing phone numbers, a number pad 182 for entering the numbers, and buttons 184 for controlling volume. Likewise, the system may include a CD player and, as illustrated in FIG. 20, the user can press a CD icon 186 for displaying a control panel 188 containing controls associated with the CD player. If the user desires to save the current setup of the system, the user can press a presets icon 190 located at the bottom of the touchscreen 22 to enter a presets utility. As illustrated in FIG. 21, pressing icon 190 displays a preset window 191 that allows a number of operators of the system to store and name various sets of configurations, which may include the current routing setup for sources and destinations, the light settings, room camera positioning and zoom, and various other configurable items. In certain advantageous embodiments, by pressing a store button 192, the user can display a window 193 containing icons for naming and storing the particular set of configurations under a name of his or her choosing, as shown in FIG. 22. At a later time, the user can then automatically set up the system 10 according to this previously stored set of configurations by simply pressing the corresponding preset button 189 and pressing a recall button 194. In other embodiments, the user can display a configurable screen of system 10, such as, for example by continuing to press the preset button 189 for a few seconds. As a result, the user not only receives the window 193 for naming and storing the presets, but the user is also able to first change the configurations of the various devices of the system 10 prior to naming and storing them, as illustrated in FIG. 23. When a user decides to exit the system, the user can press a system off icon 196 located at the bottom of the touchscreen 22. As shown in FIG. 24, when the icon 196 is pressed, a query 198 is displayed, which asks the user if they really want to cease use of the system in order to prevent accidental exit therefrom. It should be understood that the foregoing is illustrative and not limiting, and that obvious modifications may be made by those skilled in the art without departing from the spirit of the invention. Accordingly, reference should be made primarily to the accompanying claims, rather than the foregoing specification, to determine the scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>Today, a wide variety of medical imaging systems are known for performing diagnostic and surgical procedures. Specifically, systems have been developed to increase a surgeon's ability to perform surgery on a patient by providing the surgeon with intra-operative images of anatomical structures within a patient's body. Accordingly, during various types of minimally invasive surgeries-such as endoscopic, arthroscopic, and laparoscopic procedures-a surgeon is able to visually examine the interior of an organ or joint while the surgeon is conducting the surgery. These systems typically include the use of some specialized form of camera or medical endoscope. Additionally, recent developments have resulted in systems incorporating various audiovisual devices to allow both the surgeon, as well as others in the surgical suite or located remotely therefrom who may be assisting or observing, to better monitor the procedure. Accordingly, both still images and live video being acquired during the surgery can be output to various different screens or recording devices. Additionally, various devices have been incorporated into these systems to allow the surgeon, or other individuals assisting or observing, to utilize the imaging capabilities of the system in different ways, simultaneously or at different times, for a variety of different objectives. For example, a surgeon may wish to view a live video feed, and freeze and capture images as he does so, and then compare those frozen images with other images of the same patient that were stored during a previous procedure. As another example, a doctor may wish to record a clean copy of video on a linear tape deck, yet also annotate or telestrate on that video and then digitally record this marked video as well. As yet another example, an observer may wish to view the surgical suite and the doctor's movements, while simultaneously viewing the results of those movements taking place inside the patient's body. In light of the many capabilities that have emerged with respect to medical imaging, and the many devices (and interconnection of those devices) necessary to realize those capabilities, many surgical suites have become fairly complex just with respect to the imaging aspect of the procedure alone. Though certain systems presently exist for centrally controlling various medical devices in an operating room, there is presently a need to provide a way of interfacing with all of the imaging devices available for the procedure that is simpler to use and permits quicker execution than present systems for controlling devices, which may entail detailed command inputs, such as by a keyboard, or hierarchies of menus and sub-menus. As a result, there is a need to provide users with a system for interfacing with many imaging devices potentially useful in a medical procedure that allows the user to easily and quickly select particular devices and route imaging data from various devices to various other devices. Additionally, there is a need to allow the user to easily control the devices that are presently selected. Finally, there is a need to allow a user to easily preview or alter the images that are being routed to the other individuals to whom the images are ultimately being communicated. What is desired, therefore, is a system for controlling the communication of medical imaging data that allows a user to easily and quickly select sources of imaging data. What is further desired is a system for controlling the communication of medical imaging data that allows a user to easily and quickly select particular destinations for the medical imaging data. What is also desired is a system that allows a user to view the medical imaging data presently being routed. What is further desired is a system that allows a user to easily control the sources of the imaging data. | <SOH> SUMMARY OF THE INVENTION <EOH>Accordingly, it is an object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to immediately view the available sources of medical imaging data and select a particular source therefrom without engaging in any preliminary activity. It is a further object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to immediately view the available destinations of medical imaging data and select particular destinations therefrom without engaging in any preliminary activity. It is yet another object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to view medical images generated from medical imaging data from a presently selected source without engaging in any preliminary activity. It is still another object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to control a presently selected source of medical imaging data without engaging in any preliminary activity. It is yet a further object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to access various utilities available for use with the medical imaging data from a presently selected source without engaging in any preliminary activity. It is still a further object of the present invention to provide a system for controlling the communication of medical imaging data that enables the user to access other functions of the system without engaging in any preliminary activity. In order to overcome the deficiencies of the prior art and to achieve at least some of the objects and advantages listed, the invention comprises a system for controlling the communication of medical imaging data, including a computer, a plurality of sources of medical imaging data in communication with the computer, a plurality of destinations for the medical imaging data in communication with the computer, and a touchscreen controlled by the computer for simultaneously displaying a plurality of source icons and a plurality of destination icons, wherein the plurality of source icons correspond to the plurality of sources in order to allow a user of the system to select a particular source of medical imaging data, and the plurality of destination icons correspond to the plurality of destinations in order to allow the user to select at least one particular destination to receive the medical imaging data supplied by the selected source. In some embodiments, the invention comprises a touchscreen that further includes a display window for displaying medical images generated from the medical imaging data supplied by the selected source. In some of these embodiments, the display window is located between the plurality of source icons and the plurality of destination icons. In some embodiments, the invention comprises a touchscreen that further includes a source indicator located adjacent the display window, wherein the source indicator corresponds to the selected source. In some embodiments, the invention comprises a touchscreen that further includes a set of controls associated with the selected source. In some of these embodiments, the set of controls is located below the display window. In another embodiment, the invention comprises a system for controlling the communication of medical imaging data, including a computer, a plurality of sources of medical imaging data in communication with the computer, a plurality of destinations for the medical imaging data in communication with the computer, a touchscreen controlled by the computer, software executing on the computer for displaying on the touchscreen a plurality of source icons corresponding to the plurality of sources of medical imaging data in order to allow a user of the system to select a particular source of medical imaging data, and software executing on the computer for displaying on the touchscreen a plurality of destination icons corresponding to the plurality of destinations in order to allow the user to select at least one particular destination to receive the medical imaging data supplied by the selected source. | 20041229 | 20111129 | 20060713 | 65722.0 | G06F1300 | 2 | PILLAI, NAMITHA | SYSTEM FOR CONTROLLING THE COMMUNICATION OF MEDICAL IMAGING DATA | UNDISCOUNTED | 0 | ACCEPTED | G06F | 2,004 |
|
11,025,763 | ACCEPTED | System and method for controlling the delivery of medication to a patient | A care management system in which the management of the administration of care for patients is automated. Hospital information systems are monitored and the information from those systems is used in verifying the administrations of care to patients. The care management system monitors ongoing administrations for progress and automatically updates records and provides alarms when necessary. The care management system is modular in nature but is fully integrated among its modules. Particular lists of data, such as the termination times of all ongoing infusions, provide hospital staff current information for increased accuracy and efficiency in planning. Features include the automatic provision of infusion parameters to pumps for accurate and efficient configuration of the pump, and providing an alarm when an unscheduled suspension of an infusion exceeds a predetermined length of time. A passive recognition system for identifying patients and care givers is provided. | 1-12. (canceled) 13. A system for programming a clinical device to deliver medication to a patient comprising: a first processor having a memory in which is stored identification data and clinical device operation parameters for programming the clinical device to deliver the medication to the patient; means for detecting an identity of the patient comprising a passive identification system capable of detecting the patient's identity independent of any action by the patient or a care-giver, the means for detecting in communication with the first processor for input of identification data to the first processor; a second processor in communication with the clinical device and the first processor, the second processor configured to receive clinical device operating parameters from the first processor and download those clinical device operating parameters to the clinical device to program the clinical device to deliver the medication to the patient in accordance with the downloaded clinical device operating parameters in response to an acceptable comparison of the detected identification data communicated to the first processor and the identification data stored in the memory of the first processor. 14. The system of claim 13, wherein the passive identification system comprises an RF transponder. 15. The system of claim 14 further comprising an identification device located on an individual; wherein the RF transponder interacts with the identification device to provide a signal to the first processor representing the identity of the individual. 16. The system of claim 15 wherein the identification device comprises an electrical circuit. 17. A system for programming a clinical device to deliver medication to a patient comprising: a first processor having a memory in which is stored identification data and clinical device operation parameters for programming the clinical device to deliver the medication to the patient; a sensor in communication with the first processor, the sensor including circuit means for transmitting a query signal and for receiving identification data communicated to the sensor in response thereto, wherein the received identification data is communicated to the first processor; a passive identification device located on a patient including means responsive to the query signal to communicate identification data representative of an identity of the patient to the sensor; a second processor in communication with the clinical device and the first processor, the second processor configured to receive clinical device operating parameters from the first processor and download those clinical device operating parameters to the clinical device to program the clinical device to deliver the medication to the patient in accordance with the downloaded clinical device operating parameters in response to an acceptable comparison of the received identification data communicated to the first processor and the identification data stored in the memory of the first processor. 18. A system for programming a clinical device to deliver medication to a patient comprising: a first processor having a memory in which is stored patient identification data and clinical device operation parameters for programming the clinical device to deliver the medication to the patient; a second processor in communication with the clinical device and the first processor, the second processor configured to receive from the first processor stored identification data and clinical device operating parameters from the first processor and capable of downloading the clinical device operating parameters to the clinical device to program the clinical device to deliver the medication to the patient; an identification device located on the patient, the identification device including patient identification data representative of an identity of the patient, wherein the identification device is a passive device configured to provide patient identification data upon being queried by a sensor in communication with the second processor configured to detect the identification device and retrieve the patient identification data from the passive device and provide the identification data to the second processor without interaction by the patient or a care-giver; wherein the second processor compares the detected patient identification data from the sensor to the stored identification data; and wherein the second processor downloads the clinical device operating parameters associated with the patient treatment data to the clinical device to program the clinical device in accordance with the downloaded operating parameters in response to an acceptable comparison of the stored identification data to the detected identification data by the second processor. | CROSS REFERENCE TO RELATED APPLICATIONS This is a continuation-in-part of application Ser. No. 08/440,625, filed on May 15, 1995. BACKGROUND OF THE INVENTION The invention relates generally to systems for managing patient care in a health care facility, and more particularly, to systems for collecting data and controlling the delivery of patient care. Medical institutions are faced with a competitive environment in which they must constantly maintain or improve profitability and yet simultaneously improve patient care. Several factors contribute to the ever increasing costs of health care, whether it is delivered to the patient in a hospital or out-patient clinic setting. Health care deliverers face increased complexity in the types of treatment and services available, but also must provide these complex treatments and services efficiently, placing a premium on the institution's ability to provide complex treatment while maintaining complete and detailed medical records for each patient. It is also advantageous to have a care management system that combines all of the various services and units of a health care institution into an interrelated automated system to provide “just-in-time” delivery of therapeutic and other drugs to the patient. Such a system would prevent administering an inappropriate medication to a patient by checking the medication against a database of known allergic reactions and/or side-effects of the drug against the patent's medical history. The interrelated system should also provide doctors, nurses and other care-givers with updated patient information at the bedside, notify the institution's pharmacy when an additional drug is required, or when a scheduled treatment is running behind schedule, and automatically update the institution's accounting database each time a medication or other care is given. Inaccurate recording of the administration of drugs and usage of supplies involved in a patient's treatment results in decreasing revenues to the institution by failing to fully capture billing opportunities of these actual costs. Inadequate management also results in a failure to provide an accurate report of all costs involved in treating a particular illness. In many hospitals and clinical laboratories, a bracelet device having a patient's name printed thereon is permanently affixed to a patient upon admittance to the institution in order to identify the patient during his or her entire stay. Despite this safeguard, opportunities arise for patient identification error. For example, when a blood sample is taken from a patient, the blood sample must be identified by manually transcribing the patient's name and other information from the patient's identification bracelet. In transferring the patient's name, a nurse or technician may miscopy the name or may rely on memory or a different data source, rather than actually reading the patient's bracelet. Moreover, manually transferring other information, such as the parameters for configuring an infusion pump to dispense medication may result in errors that reduce the accuracy and/or effectiveness of drug administration and patient care. This may result in an increased duration of treatment with an attendant increase in costs. Hospitals and other institutions must continuously strive to provide quality patient care. Medical errors, such as where the wrong patient receives the wrong drug at the wrong time, in the wrong dosage or even where the wrong surgery is performed, are a significant problem for all health care facilities. Many prescription drugs and injections are identified merely by slips of paper on which the patient's name and identification number have been handwritten by a nurse or technician who is to administer the treatment. For a variety of reasons, such as the transfer of patients to different beds and errors in marking the slips of paper, the possibility arises that a patient may be given an incorrect treatment. This results in increased expense for the patient and hospital that could be prevented using an automated system to verify that the patient is receiving the correct care. Various solutions to these problems have been proposed, such as systems that use bar codes to identify patients and medications, or systems allowing the bedside entry of patient data. While these systems have advanced the art significantly, even more comprehensive systems could prove to be of greater value. What has been needed, and heretofore unavailable, is an integrated, modular system for tracking and controlling patient care and for integrating the patient care information with other institutional databases to achieve a reliable, efficient, cost-effective delivery of health care to patients. The invention fulfills these needs and others. SUMMARY OF THE INVENTION Briefly and in general terms, the present invention provides a new and improved patient management system capable of monitoring, controlling and tracking the administration of care in a health care institution. Generally, the patient management system comprises a number of CPUs having a variety of input and output devices for receiving patient data and for generating or displaying reports. A system of software programs operates on the CPUs to record, process, and produce reports from a database whose data is representative of the care a patient receives in the institution. The CPUs are connected together, along with at least one dedicated file server, to form a network. Patient data is input by users of the personal computers, and is stored in a data storage device connected to the file server. More specifically, in a more detailed aspect by way of example and not necessarily of limitation, the patient management system includes a pharmacy computer, a nursing station CPU including a video display and printer and bedside CPUs connected to various clinical devices such as infusion pumps for providing medication to a patient and a barcode reader for reading barcode labels either affixed to the patient's identification bracelet or a label on a medication container. In operation, the patient management system verifies that the right medication is being dispensed to the right patient in the right dosage via the right delivery route at the right time by maintaining a database of information relating to the patient, the patient's condition, and the course of treatment prescribed to treat the patient's illness. The patient wears an identification device that includes a barcode that can be read by a barcode reader connected to the bedside CPU. Medication to be administered to the patient in the course of the patient's treatment is identified with a label that is printed by a barcode printer in the pharmacy or by the manufacturer's supplied barcodes on unit dose packaging. When the medication is administered to the patient by a care-giver, the care-giver uses the barcode reader connected to the bedside CPU to read the barcode on the patient's identification device and the barcode on the label identifying the medication to be dispensed. The patient management system compares the patient's identity with the medication and verifies that it is the correct medication for the patient. Additionally, the caregiver may also have an identification device that bears a barcode with the caregiver's name and other information. Using the barcode reader, the care giver's identity can thus be stored in the database and linked to the treatment given to the patient to ensure complete and accurate tracking of all treatment given to the patient. In another aspect, an identification system is provided that is passive in nature. That is, the system operates to automatically detect and identify an individual, such as a patient and/or caregiver without any particular action being required on the part of the individual. In a further aspect, an RF transponder is mounted at a patient's room or treatment area and automatically detects an identification device, such as a wrist band, on the individual to identify the individual. The identification device may comprise an electrical circuit. In a further aspect, the patient management system also includes the capability of recording the present location of each clinical device in the institution, and maintains a history of the device usage in a device usage and event database. This database may also include a history of a device's maintenance and calibration. In another aspect, the patient management system includes the ability to track usage of consumable supplies within the various units of the health care institution. This assists in managing the inventory of consumable supplies to ensure that supplies are always available. A further advantage is that it enables the institution's administration to project supply usage and thus purchase supplies in quantities that ensure cost discounts without incurring excessive inventory carrying costs. In yet another aspect, the patient management system employs RF (radio frequency) transmitters and receivers to connect the various hardware elements of the system together into a local area network. This aspect is advantageous in that it provides increased flexibility in positioning of the hardware elements of the network while eliminating the need for costly network wiring throughout the institution. These and other advantages of the invention will become apparent from the following more detailed description when taken in conjunction with the accompanying drawings of illustrative embodiments. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graphic representation of a care management system incorporating principles of the present invention and illustrating details of the hardware elements and local area network; FIG. 2 is a functional block diagram of the care system of FIG. 1 additionally showing an interface with other institutional information management systems; FIG. 3 is a functional block diagram of the software modules that comprise the care system of FIGS. 1 and 2; FIG. 4 is a graphic representation of a patient identification bracelet including a barcode that can be read by a barcode reader; FIG. 5 is a drawing of a barcode label affixed to a medication container that can be read by a barcode reader; FIG. 5A is a drawing showing a barcode label affixed to a caregiver identity badge; FIG. 6 is a drawing showing a sheet of barcode labels that can be affixed to various containers or devices; FIG. 7 is a graphical representation of a display on an infusion pump showing the name of a drug being infused along with other information relating to the infusion; FIG. 8 presents a computer screen listing of the infusions in progress showing the drug being administered, the time remaining, and the patient's name; FIG. 9 shows a patient IMAR (integrated medication administration record) showing scheduled medications and windows around the scheduled times; FIG. 10 shows a computer screen task list for a partial floor of a hospital in which times for administration in a certain time period are set out along with the patient name and drug to be administered; FIG. 11 shows a computer screen used for rescheduling the administration of an order; FIG. 12 presents a computer screen containing an overview of a partial floor of a hospital in which various patients' rooms are shown with the names of the patient; FIG. 13 is a graphical representation of another embodiment of the care management system showing the clinical devices connected to the local area network through a bedside data concentrator; FIG. 14 is a graphical representation of still another embodiment of the care management system showing the clinical devices transmitting and receiving information from the local area network through RF transmitting/receiving equipment; FIG. 15 is a graphical representation of another embodiment of the care management system of FIG. 9 where all of the hardware elements of the local area network communicate with each other using RF transmitting/receiving equipment; and FIG. 16 presents a view of a patient having an identification device located on his arm that interacts with a transmitter/receiver located in the frame of the entry/exit of the room in which the patient is located. The identification device and transmitter/receiver form a passive identification system in accordance with an aspect of the invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings, and more particularly to FIG. 1, there is shown generally an integrated hospital-wide information and care management system 30 including one embodiment of the point-of-care management system 30 of the present invention. The care management system embodiment shown in FIG. 1 is depicted as being configured as a local area network with a file server 45 to which are connected a pharmacy computer 60, a nursing station 70, and bedside CPUs 80. The file server 45 stores programs and data input and collected by the various computers in the local area network. Various application modules of the patient management system may be resident in each of the computers in the network and will be discussed in more detail below. Ethernet cabling of a local area network 50 is used to connect various CPUs to the file server. The file server 45 also has both local and network hard disk storage for storing programs as well as data gathered on the network. Referring now to both FIGS. 1 and 2, a functional block diagram of the patient care management system 30 of FIG. 1 is shown in FIG. 2 interfaced with and connected to other hospital information management systems to form an integrated information and care management system. This information and care management system is integrated with a combination of individual hospital systems, such as the pharmacy information system 20, and the hospital administration system 40 which are interconnected via a network 5 and appropriate interfaces 10. Each of the various systems 20, 30 and 40 generally comprise a combination of hardware such as digital computers which may include one or more central processing units, high speed instruction and data storage, on-line mass storage of operating software and short term storage of data, off-line long-term storage of data, such as removable disk drive platters, CD ROMs, or magnetic tape, and a variety of communication ports for connecting to modems, local or wide area networks, such as the network 5, and printers for generating reports. Such systems may also include remote terminals including video displays and keyboards, touch screens, printers and interfaces to a variety of clinical devices. The operating systems and specific software applications will be described in more detail below. The care management system 30 of FIGS. 1 and 2 includes a file server 45, such as an IBM or IBM compatible personal computer having sufficient mass storage 46, such as local hard drives, CD ROM, magnetic tape, or other media, and appropriate communication interface capabilities to interconnect with other hardware comprising the point of care management system. Although many configurations are possible, in one embodiment the file server would include hardware such as a data communication router, a large hard drive to store data for the entire network, and communication hardware for communicating with the hospital network. Additionally, a separate computer (CPU) is used to communicate with, control and provide an interface gateway 27 to the hospital network 5. A local area network 50, comprising a thin net, or ethernet cabling is used to connect the central file server 45 to the hardware that comprises the care management system. In the present embodiment, the file server 45 of the care management system is connected by a local area network (LAN) 50 to computers and other peripheral equipment located in the institution's pharmacy, at nursing stations located throughout the institution, and at the patient's bedside. In the embodiment shown, the module located in the pharmacy comprises a central processing unit 60 to which is attached a video display 64 and a keyboard 62 for entry and display of patient information and drug parameters. Also attached to the pharmacy CPU is a bar code reader 68 which is adapted to read barcode labels that may be attached to drug containers, equipment, or caregiver identification badges as will be more fully discussed below. Also connected to the pharmacy CPU 60 is a bar code printer 69 and a printer 66 used for generating reports containing information about patient history and/or patient treatment. The printer 66 may also be used to print barcode labels generated by the pharmacy CPU 60 after patient or drug data is input by a technician or pharmacist into the pharmacy computer 60 using the keyboard 62 or other means. Another computer, herein referred to as the nursing CPU 70, is located at a nursing station. Nursing stations are typically located in various sections and/or floors of a hospital or clinic and typically provide a central location for record storage and monitoring for a number of patient beds. The nursing CPU 70 located at the nurse station typically includes a video display 74 for displaying patient or other information pertaining to the operation of the particular unit of the institution, and a keyboard 72, mouse, touch screen 73, or other means for entering patient data or specific commands instructing the nursing CPU 70 to generate reports relating to either the patient's medical history or the course and progress of treatment for an individual patient on the attached printer 76 or on the video display 74. As will be discussed more fully below, the nursing station CPU 70 may also generate other reports such as, for example, a printout of drugs scheduled to be administered to patients, productivity measurements such as, for example, the amount of time a nurse spends with a patient or other reports useful for assisting in the efficient operation of the particular unit or the hospital. For example, a report listing the actual times of administration versus the scheduled times for administration may be prepared to assist in evaluation of staffing requirements. Each care unit associated with the nursing station typically comprises one of more patient beds located in private rooms, shared rooms, or open or semi-open wards that contain multiple beds. In accordance with an embodiment of the present invention, each private room, semi-private room, or ward area has at least one bedside CPU 80 for monitoring and treating one or more patients. Each bedside CPU 80 has a video display 84 and a keyboard 82, mouse, touch screen 83, or other device. The bedside CPU 80 can be used by a nurse, physician or technician to access a variety of institutional databases to display a variety of information about a particular patient. This information can include an on-line, real-time, graphical patient medication administration record (MAR) that is derived from the patient's medication profile maintained by the hospital's pharmacy information system 20. The bedside CPU 80 also allows remote access to a patient's records stored by the file server 45 to display medication history for the patient. This medication history includes a listing of all drug or other treatments including past, present and future deliveries to the patient. Additionally, access to administration records of the hospital's administration system 40 is available through the network 5. Each bedside CPU 80 can be connected through an appropriate interface to a variety of peripheral equipment. For example, a barcode reader 90 capable of reading barcodes on a patient's wristband or medication container; an infusion pump 92 for delivering medication to the patient in a predetermined, controlled manner; or various sensors 94 that can automatically monitor a patient's vital signs and send signals representative of these vital signs to the computer through an appropriate interface for storage and later retrieval by a selected software application to provide a graphic display of the patient's vital signs during the course of treatment. A plurality of bedside CPUs are shown in the drawing; however, more or fewer may exist depending on the particular system and hospital requirements. Referring now to FIG. 3, a block diagram illustrating the various application software modules comprising the care management system 30 is shown. The care management system's 30 application software is modular in construction to allow installation and operation of the system with only one or more of the application software groups present. This provides flexibility in meeting the widely varying needs of individual institutions where cost and complexity may be an issue or where the full system is not needed. Each of the modular applications, however, is fully integratible into the system. The programs of the care management system 30 control alarms or alerts generated by one of the modular applications. Alarms are routed automatically to the appropriate video display. For example, an occlusion alarm generated by a pump 92 may remain local for a predetermined period. After that period the patient's bedside computer 80 may then broadcast the alarm by causing the alarm to be communicated over the LAN 50 to alert other hospital staff of a potential problem or to cause a particular person responsible for the care of a patient, such as, for example, a physician or nurse, to be paged. Each of the modular applications will now be described in detail. The operation of each of these modular applications in a clinical setting will be discussed more fully below. The medical administration management module 110 integrates medical order information, infusion pump monitoring, and barcode technology to support the real-time verification and charting of medications being administered to a patient. The medical administration management module 110 creates and maintains an on-line, real-time, patient-specific medication administration record (“MAR”) or integrated medication administration record (“IMAR”) for each patient. This medication administration module 110 contains all of the information generated in the institution regarding the care provided to the patient. The medication administration management module 110 gathers information from the various nursing and bedside CPU's 70, 80 (FIG. 1) comprising the peripheral hardware of the care management system 30 that is distributed throughout the institution. For example, when a physician attending a patient diagnoses an illness and determines an appropriate course of treatment for the patient, the physician may prepare a handwritten medical order specifying the desired therapeutic treatment as well as any appropriate parameters such as dosage and/or period of administration. The written prescription is sent through the institutional mail system to the pharmacy where it is then entered into the pharmacy information system 20 through a dedicated terminal, or other means, and is then entered into the care management system 30. In another embodiment, the physician accesses the pharmacy management system 20 through a dedicated terminal or through the care management system 30 via the network 5 using either a nursing CPU 70 or a bedside CPU 80. Alternatively, the treatment order may be entered by a nurse or other qualified caregiver into either the pharmacy management system 20 or the care management system 30. Referring now to FIGS. 4-6, a variety of implementations of the barcode identification system of the present invention are shown. FIG. 4, for example, shows a patient identification bracelet 170 of the kind typically used in hospitals and other institutional settings to ensure that each patient is able to be identified even if the patient is unconscious or other-wise unable to respond to questioning. A barcode 175 is printed on a label that is attached to the patient identification bracelet 170 and has encoded within its sequence of bars the information necessary to identify the patient. This barcode may be read using a computerized barcode reader 68, 90, such as those shown connected to the pharmacy CPU 60 and the bedside CPUs 80 (FIG. 1). The barcode reader comprise a light emitting and receiving wand 95 that is scanned across the barcode. The light emitted by the wand 95 is reflected by the sequence of dark and light lines comprising the barcode into the receiving lens of the wand 95. A sensor in the wand 95 converts the received light into a signal that is then transmitted to the CPU. A software application program running on the CPU then decodes the signal into the data represented by the barcode in a manner well known to one skilled in the art. Using appropriate software programs, this data may then be automatically entered into a database stored in the CPU's memory or disk storage. While a barcode has been described for purposes of illustration, those skilled in the art will immediately understand that other systems, such as magnetic stripes, or programmed punched holes may also be used to represent data stored on each label, care giver badge or patient wrist band. Barcode systems are extremely flexible and the amount of information that can be represented by the barcode, while limited, can be used in a variety of ways. For example, as depicted in FIG. 5, a drug container 185 is identified by a label 180 having a barcode 182 printed thereon. This barcode 182 can represent the patient identification and the medical order number, and any other information the institution finds helpful in dispensing the drug and tracking the treatment. The barcode 182 may also be read using a barcode reader, and, using suitable application software such as that included within the medical administration management module 110, discussed below, can be used to link the drug container and its contents with the patient identification bracelet 170 affixed to a patient to ensure the right drug is delivered to the right patient at the right time in the right manner. The use of barcodes is not limited to the implementations discussed above. A sheet 190 of barcode labels 177 having barcodes 175 is shown in FIG. 6. Such labels can be printed by a printer connected to the pharmacy CPU 60 of the care management system 30 or, alternatively, by any other printer connected to any other hospital information system that can be programmed to produce barcodes bearing the information in a form that can be read by the barcode readers connected to the various CPUs of the care management system 30. These barcode labels 177 may then be affixed to clinical devices, patient belongings, or other items where positive identification is needed. One of the key advantages of the medical administration management module 110 (FIG. 3) is that the module works in concert with the barcode labels described above. When the medication administration management module 110 is implemented using the hardware system described above comprising a pharmacy CPU 60, barcode reader 68, and printer 66, together with a bedside CPU 80 with a connected barcode reader 90, the care management system 30 ensures that medication is administered to the right patient, in the right dose, along the right route and at the right time. When the medication to be administered is of the type that is typically delivered to the patient using an infusion pump, the medical administration management module 110 automatically records the start time of the infusion, queries the pump periodically throughout the infusion and maintaining a continuous log of the infusion, and records the end time of the infusion and the volume infused in a patient's MAR. If the infusion pump connected to the bedside CPU has a programmable display, the name of the drug, as well as other important information concerning the progress of the infusion can be displayed on the infusion pump throughout the infusion to provide a visual display of the status for the infusion. One such pump is shown in FIG. 7. The particular infusion pump depicted in FIG. 8 has three pumping channels. Two of the channels are displaying the name of the drug being infused. Because the medication administration management module 110 maintains an on-line, real-time, patient specific graphical medication administration record that includes both past, present and future scheduled medications, a nurse may select a scheduled dosage on the MAR and indicate that it will not be administered for specified reasons selected from a list of options that are dependant upon the health status of the patient at a particular time. This system also allows a nurse to select a scheduled dose on the MAR, and record notes and observations about the dose selected from a list of options. The medical administration management module 110 also provides on-line, real-time help screens that can be accessed by a nurse or other caregiver to display specific information about selected medication and dose to be dispensed. The medication administration management module 110 provides a list of on-going infusions that can be displayed on the video display of the pharmacy CPU 60 such as is shown in FIG. 8. Drug administrations that will terminate within a preselected time period may be distinguished from other administrations by color highlighting or other means. The time remaining, drug, and patient name are presented as well as buttons for program control. The medication administration module 110 records and maintains in a stored file a log of alerts that are generated when any discrepancy is identified, for example, during the verification process which will be discussed more fully below. The medication administration module 110 also allows the nurse to acknowledge and correct the discrepancy in real-time, or override the alert by entering the appropriate command. Even where the nurse is allowed to override the alert, the medication administration application module 110 prompts the nurse for a reason for each alert override and then automatically enters the reason into the MAR for the patient. The medication administration management module 110 assists the nurse or other health care professional in efficiently delivering care to the patients by providing the ability to perform on-line queries of the patient's MARs and produce reports designed to assist the nurse in planning medication administration and in scheduling the workload of dispensing the medication to the many patients for which a nursing unit is typically responsible. For example, the video display may be color coded to indicate the status and schedule of each drug administration, such as the patient's IMAR shown in FIG. 9. A drug delivery window extending from thirty minutes prior and thirty minutes after the scheduled administration time may be indicated by a yellow band on the display. Other reports such as the FIG. 10 task list may, for example, include scheduling of drug administrations to ensure proper medication of the patient while distributing the workload over a period of time to ensure that all medication is given promptly. The system may also display either visuals alerts on the nurse station video display 74 or produce a printed report on the printer 76 to provide a permanent record of any medication administration that is running late or has been rescheduled. The medication administration module 110 may be programmed to operate in an automatic fashion, automatically providing standard reports at the nursing station at predetermined intervals, such as, for example, every 30 minutes, as determined by the needs of the particular nursing unit and institution. The clinical monitoring and event history module 130 shown in FIG. 3 is designed to monitor a variety of clinical devices attached to the network in a real-time manner and provides information about those devices to monitoring stations located elsewhere on the network. For example, the clinical monitoring and event history module 130 can be configured to monitor a plurality of clinical devices that are in use to deliver medication to patients in the private rooms, semi-private rooms or ward areas in a nursing unit. The clinical monitoring and event history module 130 retrieves real-time data from each device, and displays a visual representation of each device including all significant data related to its status and settings on the video display 74 connected to the Nursing CPU 70 (FIGS. 1 and 2). For example, in the case where the clinical monitoring and event history module 130 is monitoring an infusion pump 92, a nurse at the nursing station can access the status for that pump wherein the display 74 attached to the nurse CPU 70 then displays information regarding the status of the infusion being performed at that time. For example, information can include the name of the drug being infused, the patient's name, the scheduled start, the actual start of infusion, the scheduled end of infusion, the projected end of infusion, the amount of drug infused, the amount of drug remaining to be infused and any alert or discrepancy conditions that may need attention by the nurse. Because the care management system 30 is a fully integrated system, the medical administration management module 110 works in concert with the clinical monitoring and event history module 130 so that a nurse, doctor or technician may, after evaluating the status of the infusion displayed on either the video display 74 at the nursing CPU 70 or on the video display 84 at the bedside CPU 80 may, by using the touch screen 73, 83 of the computer, adjust the infusion regimen accordingly using, for example, a screen displayed on the video display 74, 84 as shown in FIG. 11. The clinical monitoring event history module 130 may also be programmed to immediately display alarm conditions on remote monitoring screens, such as the video display 74 attached to the nursing CPU 70, as the alarm occurs. For example, the status of each patient's infusion can be represented on a video display at the nursing station as shown by the OVERVIEW computer screen in FIG. 12. When an alert occurs, the box representing the patient' room flashes red to attract attention to the alert. Displaying the alarm condition in this manner allows a nurse to quickly and easily identify the patient from the nursing station and take appropriate action to address the condition causing the alarm. The system may also be programmed to display certain alarms that have been identified as particularly important events at other video displays located throughout the institution, such as the video display 64 attached to the pharmacy CPU 60 located in the institution's pharmacy. The manner of overview display in FIG. 12 also facilitates record update. For example, when patients move rooms, clicking on the patient's name, dragging that patient to the new room, and unclicking will cause the records to reflect the patient's move and the display will now show the patient in that room. The clinical device tracking and reporting module 120 shown in FIG. 3 is used to maintain a record of the location of each clinical device and the history of its use in the institution. This system maintains a record of the current or last known location within the institution of each clinical device used in the institution, such as an infusion pump or vital sign sensor. Thus, the appropriate equipment can be easily located by a nurse or a technician for a given therapy regimen or vital sign measurement. This is particularly useful in a large hospital or clinic having many patient rooms, patient beds, or treatment areas where equipment may be temporarily misplaced. This system is also useful in those particular instances where an emergency occurs where treatment requires a particular piece of equipment. The status of that equipment can be easily ascertained from a remote video terminal, such as the video display 74 connected to the nursing CPU 70. The clinical device tracking and reporting module 120 also maintains a record containing the usage history of each clinical device, including information about the patient it was used to treat, its location, the date, time, duration of use, any alarms that occurred and what medications were dispensed. This history may also contain the maintenance and calibration records for a clinical device. Such information can be queried on-line by technicians, nurses or other hospital administration personnel to generate reports to assist in locating the clinical device, report on the historical usage of the device, and to provide a log of preventative maintenance and equipment calibration. The efficient calibration of complex and sensitive clinical devices is particularly important in a heath care institution to maintain accuracy and quality of therapeutic treatment delivery. Maintaining a history of the usage of the device is also helpful to justify purchasing additional clinical devices when needed, or where the record indicates that a particular clinical device has become obsolete and needs to be replaced by a newer model of the device. The care management system 30 also includes a consumable tracking module 140 that maintains a record of all consumable item usage for treatment of each patient. This record ensures that appropriate supplies are ordered and delivered to the nursing unit in a timely and cost-efficient manner to prevent outages of necessary supplies. Such information may also be used by the hospital inventory systems through an appropriate interface or other management system to ensure that the supply purchasing is done as cost-effectively as possible. The consumable tracking module 140 provides on-line queries and report generation summarizing consumable uses for a particular patient, a particular nursing unit, or a variety of other purposes. The unit management tool module 150 assists nurses in sharing information related to patients and automates routine transactions within the nursing unit. The unit management tool module 150 allows a nurse to record the allergies, handicaps, and special care needs of the patient which, cooperating with the medication administration record module 110 and the clinical monitoring and event history module 130, displays that information prominently on all appropriate display screens, either at the pharmacy video display 64, the nursing video display 74 or at the bedside video display 84 (FIG. 1). The unit management tools module 150 also allows a nurse to record patient transfers and the times when the patient is out of the room or off the floor, such as, for example, when the patient is transferred to surgery or to a different part of the institution for a particular kind of treatment such as rehabilitative therapy. This system may also be programmed to signal an alarm when a patient has been disconnected from the system longer than scheduled, for example, when the patient disconnects from the infusion to attend to personal hygiene. This function ensures that an alarm or alert is sounded and that appropriate personnel are notified of any potential problems and can take the necessary actions to alleviate the alert condition. The knowledge resource tools module 160 provides a framework for information sharing among the various units in the hospital and also supports an assortment of everyday tools to used by the nurses, physicians and technicians involved in the delivery of health care within the institution. This module allows or assists in integrating external information sources into the care system 30 to improve the effectiveness of the care management team in treating the patients in the institution. For example, the knowledge resource tools module 160 provides a variety of on-line tools including, for example, a calculator, a dose rate calculator for calculating the appropriate dosage and infusion rate for a particular drug to be infused into a patient, a standard measurement conversion calculator for converting between units of measurement, a skin surface area calculator, and a timer and stopwatch. These resources may be displayed on the video displays 64, 74, 84 at appropriate points within the system, and are available from any CPU either in the pharmacy, at the nursing station or at the bedside. These application tools can be programmed to appear on the video display 64, 74, 84 either automatically, such as, for example, when an infusion pump is configured at the start of an infusion to assist in the calculation of a dose rate. These resources may also be available upon entry of the appropriate command by a nurse, physician or technician. Referring once again to FIG. 2, a device management subsystem 192 is shown and comprises a microcomputer. The subsystem monitors the status of the clinical devices, such as the pumps. Alternately, the subsystem 192 may be included in another microcomputer, such as a bedside CPU 80. The background monitoring system 195 may also be disposed in a stand-alone microcomputer or may be incorporated in an existing microcomputer. The subsystem performs background tasks such as monitoring the status of the interface gateway 27. As depicted in FIG. 2, the care management system 30 is connected to other systems in the institution via an interface 10. This interface may support standard health level 7 (HL7) interfaces to the hospital's other information systems and can also support custom interfaces to systems or devices that do not support the HL7 standard. The system interfaces may be either real-time or batch mode, although a real-time interface to a hospital's pharmacy system is required to support the on-line medical administration records keeping function of the medical administration management module 110. The care management system software can be written to operate on a variety of operating systems to suit the needs of a variety of institutions. In a present embodiment, the software is written to interface with the nurses and physicians using the Windows environment (Windows is a trademark of Microsoft, Inc.) on IBM compatible micro-computers. The Windows environment is well-known by those skilled in the art and will not be described in detail herein. The care management system software, when implemented using the Windows system, is particularly useful in that the Windows operating system provides the ability to load several programs at once. Multitasking programs, allowing several application programs to run simultaneously yet providing immediate access to the various software modules of the care management system 30 may also be used. One particular mode of operation of the care management system will now be described. As described above, a patient entering a hospital or other care-giving institution is provided with a wristband necklace, ankle band or other identifier that is affixed to the patient in a manner so that the patient can be identified even if the patient is unconscious or otherwise unresponsive. Such a wristband 170 is depicted in FIG. 4. In one embodiment, the wristband 170 barcode represents the name of the patient and other information that the institute has determined is important and also includes a barcode 175. The information printed upon the band, such as name, age, allergies or other vital information is encoded into the barcode 175. After the patient is admitted and situated in a bed within the institution, the patient is typically evaluated by a physician and a course of treatment is prescribed. The physician prescribes the course of treatment by preparing an order, which may request a series of laboratory tests or administration of a particular medication to the patient. The physician typically prepares the order by filling in a form or writing the order on a slip of paper to be entered into the hospital's system for providing care. If the order is for administration of a particular medication regimen, the order will be transmitted to the institution's pharmacy. The order will arrive in written form at the pharmacy, will be evaluated by the pharmacy and processed. The pharmacy then prepares the medication according to the requirements of the physician. The pharmacy packages the medication in a container, such as the container 185 shown in FIG. 5. Normally, a copy of the order, or at a minimum, the patient's name, the drug name, and the appropriate treatment parameters are represented on a label that is then affixed to the drug container 185. According to one embodiment of the present invention, this information is represented by a barcode 182, that is then printed on a label 180. This barcode label 182 may be automatically generated using a printer capable of printing barcodes, such as, for example, a printer 69 attached to the hospital's pharmacy information system 20. The existence of this medication order is made available by the hospital's pharmacy information system 20 and is stored by the file server 45. Generally, the medication is then delivered to the appropriate caregiving unit for administering to the patient. A nurse or technician carries the drug container 185 to the appropriate patient. In accordance with one embodiment of the present invention, the nurse or technician first read the barcode 175 on the patient ID bracelet 170 using the barcode reader 90 connected to the bedside CPU 80. The nurse or technician would then read the barcode 182 on the label 180 affixed to the drug container by swiping the barcode wand 95 across the barcode 182 printed on the label 180 of the drug container 185. Additionally, a record of the identity of the caregiver dispensing the medication may be obtained by reading the barcode 205 printed on an identity badge 200 (FIG. 5A) typically worn by all institution personnel. For certain drugs, the care-giver is prompted to enter data descriptive of a selected patient parameter or parameters, such a laboratory value or a current vital sign, before completing the verification process. For example, the care-giver may be prompted to measure and enter a value for a patient's blood pressure before administering certain selected drugs. The system may include ranges of acceptable values for the parameters. If the system detects an out-of-range value for the parameter, the system causes an alarm to be provided. In an alternative embodiment, the parameters could be monitored and entered into the system automatically, eliminating the need for manual entry by the care-giver. The data obtained then is analyzed by the medication administration management module 110 which records the therapeutic regimen information in the patient's MAR, and verifies that the right medication is being given to the right patient in the right dose by the right route and at the right time. If the medication administration management module 110 detects a discrepancy between the barcoded information printed on the patient bracelet 170 and the barcoded information on the label 180 affixed to the medication container 185, an alert is sounded and the appropriate information is displayed on the video display 84 attached to the bedside CPU 80. The nurse or technician then either corrects the discrepancy by either re-reading the barcode 175 on the patient's bracelet 170 and the barcode 182 on the medication container 185 or, alternatively, by entering the appropriate information into the bedside CPU 80 using the keyboard 82 or touch screen 83, mouse, or other device. In the event that the nurse or technician determines that the discrepancy cannot be automatically corrected by re-reading the barcodes and that the discrepancy is minor and will not affect the accuracy or safety of the delivery of the medication, the nurse or technician may override the alert. In an embodiment of the present invention, where the medication is to be delivered using an infusion pump, such as the infusion pumps 92 attached to the bedside CPU 80, the care management system automatically downloads information consisting of the appropriate configuration parameters for the infusion from the pharmacy CPU 60 through the local area network 50 into the bedside CPU 80 and then into the infusion pump 92 when the verification function of the medical administration management module 110 is complete. This is particularly advantageous in that one potential source of inaccuracy is eliminated by automatically configuring the pump, thus eliminating the need for the nurse or technician to manually enter the parameters necessary to configure the infusion pump 92. In one embodiment, the infusion pumps 92 comprise IVAC Corporation Model 570 volumetric pumps. In an embodiment where the pumps cannot be automatically configured by downloading parameters from the network, the care management system 30 only verifies that the right treatment is being administered to the right patient. The pump must then be manually configured by the physician, nurse or technician. Once the infusion pump is configured, the technician then starts the infusion by pressing the appropriate control on the infusion pump 92. Starting pump that is capable of being monitored automatically by the care management system 30 causes a signal to be transmitted from the pump to the bedside CPU 80 which is then logged by the clinical monitoring and event history module 130 and entered by the medical administration management module 110 into the patient's MAR. In the case where the institution is using a pump that is not capable of being configured by downloading parameters from the network, the nurse or other caregiver logs the start of the infusion using the touch screen device, mouse or other device connected to the bedside CPU 80. In this case, the video displays of the care management system 30 that display information about the status of the infusion will not display real-time data. Rather, the care management system 30 will project what the status of the infusion should be given the infusion parameters, the time elapsed since the infusion began, and any other events that were manually logged by the caregiver that may have affected the progress of the infusion. The care management system 30, utilizing the application modules described above, monitors the infusion process in a real-time manner, providing alerts on the appropriate video display screens located throughout the institution and allows intervention by nurses or other caregivers at remote locations if necessary. If the pharmacy management system 20 is directly linked to the care management system 30, the care management system 30 may also provide a scheduling report to the pharmacy in determining the status of ongoing infusions, as well as in scheduling the preparing of medications for future infusions. In another embodiment, the present invention includes a “Code Mode” that allows a care-giver to bypass the system to immediately cause a list of drugs that have been preselected by the institution to be used in an emergency situation. The initiation of the “Code Mode” causes a time-stamp to be placed in the patient's MAR along with the identity of the drug selected from the displayed list of drugs to be used to treat the emergency. This feature ensures that the emergency, and the treatment used to address the emergency, are accurately recorded in the patient's MAR. While one particular embodiment of the present invention has been described above, alternative configurations of the care management system network are possible. For example, one alternative embodiment of the care management system 30 is depicted in FIG. 13. In this configuration, clinical devices 210 are connected by means of appropriate interfaces and cabling 215 to a bedside data concentrator 220 which would typically be located outside of a private room, semi-private room or ward area. In this configuration, there is no bedside CPU 80 as described previously. Instead, the bedside data concentrator 220 is connected through an appropriate interface and cabling to the local area network 50, where the data gathered from the clinical devices 210 is then available for processing by the care management system 30 and display at the various monitoring stations, such as either in the pharmacy or at the nurse station 70. In this embodiment, there is no bedside CPU 80 having a keyboard 82 for data entry or a video display 84 for display of either clinical device information or patient information. A further embodiment of the care management system 30 local area network is depicted in FIG. 14. In this embodiment, the file server and monitoring stations are connected using appropriate interfaces and ethernet cabling to an RF data concentrator 225. At the bedside locations in the private rooms, semi-private rooms or ward areas of the institution, the clinical devices 210 and barcode reader 90 at the bedside are connected to an RF transmitter/receiver 230. This RF transmitter/receiver 230 transmits the information gathered from the clinical devices 210 and the barcode reader 90 to the RF data concentrator 225 attached to the local area network 50. Thus, expensive cabling is not required to connect every patient treatment area. Additionally, flexibility in locating the clinical devices 210 and barcode reader 90 is obtained as well as allowing the ability to reconfigure the patient treatment area without costly rewiring of the ethernet cabling. Yet another embodiment of the care management system 30 local area network 50 configuration is shown in FIG. 15. In this configuration, the ethernet cabling connecting the pharmacy CPU, the nurse station nursing CPU 70 and bedside. CPUs and clinical devices is eliminated entirely. Each hardware element, comprising the file server, nursing CPU 70, pharmacy CPU 60 and bedside CPUs 80 and clinical devices and/or barcode readers is connected to an RF transmitter/receiver 230. In this manner, all of the information is transmitted throughout the local area network 50 by way of radio transmission rather than by using costly network cabling. Such a system would additionally allow for the use of portable computers 235 having RF transmitter/receivers 230 that could then be carried with physicians, nurses or technicians as they circulate through the institution. With this configuration, caregiving personnel could access the care management system either spontaneously or upon notification of an alert no matter where they were in the institution at any given time. Such a system would be particularly useful in a large institution where caregiving personnel are likely to be responsible for many hospital beds or when personnel are out of the area or off the floor. Another embodiment of the care management system 30 is shown in FIG. 16. In this embodiment, the patient 245 and/or caregiver have badges or wrist bands 240 that may also include electronic circuitry that is responsive to signals from a transmitter/receiver 230 located in each patient room or treatment area to automatically provide the care management system 30 (FIG. 1) with the identity of, and possibly other selected information about, the occupants of the patient room or treatment area, eliminating the need to use a bar-code reader to read the bar-codes on the patient and/or caregiver badges or wrist bands. Such a system may be described as a passive recognition system in that neither the patient nor the caregiver need take any active steps to inform the care management system 30 of their location within the institution. One example of such a system incorporates an intelligent RF computer chip into the caregiver or patient badge or wristband 240 that provides a unique, or programmed response with a passive RF transponder 230 located within a patient room or treatment area, such as in the frame 231 of the entry or exit of the room or treatment area, or mounted on a wall or ceiling. Each badge or wrist band 240 interacts with signals of the transponder 230 in a unique way, the unique interaction representing an assigned code for the badge or wristband 240. Utilizing this technology would remove manual steps and some of the “human factor” from the process of identifying the patient and caregiver. When an individual 245 wearing a badge or wristband 240 having such a circuit enters a room or area where a transmitter/receiver 230 is located, the electronic circuit in the badge or wristband 240 interacts with signals emitted by the transmitter without any positive action on the part of the caregiver or the patient. This interaction may be sensed by the receiver, which may be capable of determining the identity of the badge or wristband 240 from the interaction of the electronic circuit with the emitted signals. Alternatively, the receiver may simply sense the interaction and provide a signal representative of the sensed interaction to a computer or other processor which has been programmed or otherwise configured to determine the identity of the individual associated with that particular badge or wristband 240. Although the preceding paragraphs describe a passive recognition system using electrical circuitry, other approaches may also be used. For example, it can be envisioned that the patient and/or caregiver may have magnetically-encoded devices that can be automatically read by an appropriate detector located in the patient room or treatment area. Such a system is advantageous in that it can also be used to track the location of patients and caregivers in an institution. This information would be useful to monitor patient movements, especially in the case of patients with reduced mental capacity who may be prone to wandering about the institution. It would also be useful to know the location of the caregivers within an institution so that in the event of an emergency, the caregiver could be quickly located. While several forms of the invention have been illustrated and described, it will also be apparent that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the application be limited, except by the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>The invention relates generally to systems for managing patient care in a health care facility, and more particularly, to systems for collecting data and controlling the delivery of patient care. Medical institutions are faced with a competitive environment in which they must constantly maintain or improve profitability and yet simultaneously improve patient care. Several factors contribute to the ever increasing costs of health care, whether it is delivered to the patient in a hospital or out-patient clinic setting. Health care deliverers face increased complexity in the types of treatment and services available, but also must provide these complex treatments and services efficiently, placing a premium on the institution's ability to provide complex treatment while maintaining complete and detailed medical records for each patient. It is also advantageous to have a care management system that combines all of the various services and units of a health care institution into an interrelated automated system to provide “just-in-time” delivery of therapeutic and other drugs to the patient. Such a system would prevent administering an inappropriate medication to a patient by checking the medication against a database of known allergic reactions and/or side-effects of the drug against the patent's medical history. The interrelated system should also provide doctors, nurses and other care-givers with updated patient information at the bedside, notify the institution's pharmacy when an additional drug is required, or when a scheduled treatment is running behind schedule, and automatically update the institution's accounting database each time a medication or other care is given. Inaccurate recording of the administration of drugs and usage of supplies involved in a patient's treatment results in decreasing revenues to the institution by failing to fully capture billing opportunities of these actual costs. Inadequate management also results in a failure to provide an accurate report of all costs involved in treating a particular illness. In many hospitals and clinical laboratories, a bracelet device having a patient's name printed thereon is permanently affixed to a patient upon admittance to the institution in order to identify the patient during his or her entire stay. Despite this safeguard, opportunities arise for patient identification error. For example, when a blood sample is taken from a patient, the blood sample must be identified by manually transcribing the patient's name and other information from the patient's identification bracelet. In transferring the patient's name, a nurse or technician may miscopy the name or may rely on memory or a different data source, rather than actually reading the patient's bracelet. Moreover, manually transferring other information, such as the parameters for configuring an infusion pump to dispense medication may result in errors that reduce the accuracy and/or effectiveness of drug administration and patient care. This may result in an increased duration of treatment with an attendant increase in costs. Hospitals and other institutions must continuously strive to provide quality patient care. Medical errors, such as where the wrong patient receives the wrong drug at the wrong time, in the wrong dosage or even where the wrong surgery is performed, are a significant problem for all health care facilities. Many prescription drugs and injections are identified merely by slips of paper on which the patient's name and identification number have been handwritten by a nurse or technician who is to administer the treatment. For a variety of reasons, such as the transfer of patients to different beds and errors in marking the slips of paper, the possibility arises that a patient may be given an incorrect treatment. This results in increased expense for the patient and hospital that could be prevented using an automated system to verify that the patient is receiving the correct care. Various solutions to these problems have been proposed, such as systems that use bar codes to identify patients and medications, or systems allowing the bedside entry of patient data. While these systems have advanced the art significantly, even more comprehensive systems could prove to be of greater value. What has been needed, and heretofore unavailable, is an integrated, modular system for tracking and controlling patient care and for integrating the patient care information with other institutional databases to achieve a reliable, efficient, cost-effective delivery of health care to patients. The invention fulfills these needs and others. | <SOH> SUMMARY OF THE INVENTION <EOH>Briefly and in general terms, the present invention provides a new and improved patient management system capable of monitoring, controlling and tracking the administration of care in a health care institution. Generally, the patient management system comprises a number of CPUs having a variety of input and output devices for receiving patient data and for generating or displaying reports. A system of software programs operates on the CPUs to record, process, and produce reports from a database whose data is representative of the care a patient receives in the institution. The CPUs are connected together, along with at least one dedicated file server, to form a network. Patient data is input by users of the personal computers, and is stored in a data storage device connected to the file server. More specifically, in a more detailed aspect by way of example and not necessarily of limitation, the patient management system includes a pharmacy computer, a nursing station CPU including a video display and printer and bedside CPUs connected to various clinical devices such as infusion pumps for providing medication to a patient and a barcode reader for reading barcode labels either affixed to the patient's identification bracelet or a label on a medication container. In operation, the patient management system verifies that the right medication is being dispensed to the right patient in the right dosage via the right delivery route at the right time by maintaining a database of information relating to the patient, the patient's condition, and the course of treatment prescribed to treat the patient's illness. The patient wears an identification device that includes a barcode that can be read by a barcode reader connected to the bedside CPU. Medication to be administered to the patient in the course of the patient's treatment is identified with a label that is printed by a barcode printer in the pharmacy or by the manufacturer's supplied barcodes on unit dose packaging. When the medication is administered to the patient by a care-giver, the care-giver uses the barcode reader connected to the bedside CPU to read the barcode on the patient's identification device and the barcode on the label identifying the medication to be dispensed. The patient management system compares the patient's identity with the medication and verifies that it is the correct medication for the patient. Additionally, the caregiver may also have an identification device that bears a barcode with the caregiver's name and other information. Using the barcode reader, the care giver's identity can thus be stored in the database and linked to the treatment given to the patient to ensure complete and accurate tracking of all treatment given to the patient. In another aspect, an identification system is provided that is passive in nature. That is, the system operates to automatically detect and identify an individual, such as a patient and/or caregiver without any particular action being required on the part of the individual. In a further aspect, an RF transponder is mounted at a patient's room or treatment area and automatically detects an identification device, such as a wrist band, on the individual to identify the individual. The identification device may comprise an electrical circuit. In a further aspect, the patient management system also includes the capability of recording the present location of each clinical device in the institution, and maintains a history of the device usage in a device usage and event database. This database may also include a history of a device's maintenance and calibration. In another aspect, the patient management system includes the ability to track usage of consumable supplies within the various units of the health care institution. This assists in managing the inventory of consumable supplies to ensure that supplies are always available. A further advantage is that it enables the institution's administration to project supply usage and thus purchase supplies in quantities that ensure cost discounts without incurring excessive inventory carrying costs. In yet another aspect, the patient management system employs RF (radio frequency) transmitters and receivers to connect the various hardware elements of the system together into a local area network. This aspect is advantageous in that it provides increased flexibility in positioning of the hardware elements of the network while eliminating the need for costly network wiring throughout the institution. These and other advantages of the invention will become apparent from the following more detailed description when taken in conjunction with the accompanying drawings of illustrative embodiments. | 20041228 | 20070130 | 20050519 | 63793.0 | 2 | HARTMAN JR, RONALD D | SYSTEM AND METHOD FOR CONTROLLING THE DELIVERY OF MEDICATION TO A PATIENT | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,025,918 | ACCEPTED | Backlight module | A backlight module is provided. The backlight module includes a frame, a reflector and a holding structure for holding the reflector on the frame. The frame has a first through hole and the reflector has a second through hole. The reflector is disposed on the frame. The holding structure includes a first clamp portion, a second clamp portion and a shaft portion. The shaft portion is used for connecting the first clamp portion and the second clamp portion. The first clamp portion and the second clamp portion are used for clamping the reflector and the frame when the shaft portion is inserted into the first through hole and the second through hole. | 1. A backlight module, comprising: a frame having a first through hole; a reflector having a second through hole on the frame; and a holding structure for holding the reflector on the frame, comprising: a first clamp portion and a second clamp portion; and a shaft portion for connecting the first clamp portion and the second clamp portion, wherein the first clamp portion and the second portion are exposed out of the reflector and the frame when the shaft portion is inserted into the first through hole and the second through hole, so that the first clamp portion and the second clamp portion clamp the reflector and the frame. 2. The backlight module according to claim 1, wherein the first clamp portion, the second portion, and the shaft portion are integrally formed. 3. The backlight module according to claim 2, wherein the first clamp portion and the second clamp portion have a first surface and a second surface respectively, wherein the first surface and the second surface contact part of the surface of the reflector and the frame, respectively, when the shaft portion is inserted into the first through hole and the second through hole. 4. The backlight module according to claim 3, wherein the shaft portion and the first clamp portion have a hollow. 5. The backlight module according to claim 4, wherein the first clamp portion is a hook structure that bends to the outside of the opening of the hollow. 6. The backlight module according to claim 1, wherein the holding structure includes poly methyl methacrylate (PMMA) or a white material. 7. The backlight module according to claim 1, wherein the holding structure further comprises: a washer having a third through hole disposed between the first clamp portion and the frame, wherein the shaft portion is inserted into the first through hole, the second through hole and the third through hole. 8. The backlight module according to claim 1, wherein the holding structure further comprises: a washer having a third through hole disposed between the first clamp portion and the reflector, wherein the shaft portion is inserted into the first through hole, the second through hole and the third through hole. 9. A backlight module, comprising: a frame having a first through hole; a reflector having a second through hole on the frame; and a holding structure for holding the reflector on the frame, comprising: a first clamp structure, comprising: a first clamp portion; and a pin portion disposed on the first clamp portion; and a second clamp structure, comprising: a second clamp portion; and a shaft portion having a fixing hole formed on the second clamp portion, wherein the first clamp structure is adapted to combine with the second clamp structure, and the pin portion is inserted into the fixing hole when the shaft portion is inserted into the first through hole and the second through hole, so that the first clamp portion and the second clamp portion are exposed out of and clamp the reflector and the frame to clamp the reflector and the frame. 10. The backlight module according to claim 9, wherein the first clamp portion and the pin portion are integrally formed. 11. The backlight module according to claim 9, wherein the second clamp portion and the shaft portion are integrally formed. 12. The backlight module according to claim 9, wherein the holding structure includes poly methyl methacrylate (PMMA) or a white material. 13. A backlight module, comprising: a frame having a first top surface; a reflector having a first through hole, a second top surface and a bottom surface on the frame, wherein the bottom surface faces the first top surface; and a holding structure for holding the reflector on the frame, comprising: a shaft portion having an external side surface disposed on the first top surface and being adapted for inserting into the second through hole; and a clamp portion disposed on the top of the shaft portion, wherein the clamp portion has a clamp surface facing the first top surface and connecting to the first top surface via the external side surface, wherein the clamp portion are exposed out of the second top surface and contacts part of the second top surface when the shaft portion is inserted into the first through hole, so that the clamp portion and the frame clamp the reflector. 14. The backlight module according to claim 13, wherein the clamp portion and the shaft portion are integrally formed. 15. The backlight module according to claim 14, wherein the shaft portion and the clamp portion has a second through hole. 16. The backlight module according to claim 15, wherein the clamp portion is a hook structure that bends to the outside of the opening of the second through hole. 17. The backlight module according to claim 15, further comprising: a cover disposed on the clamp portion to cap one end of the second through hole. 18. The backlight module according to claim 17, wherein the cover includes poly methyl methacrylate (PMMA) or a white material. 19. The backlight module according to claim 13, wherein the holding structure includes poly methyl methacrylate (PMMA) or a white material. 20. The backlight module according to claim 13, wherein the holding structure further comprises: a washer having a second through hole disposed between the clamp portion and the reflector, wherein the shaft portion is inserted into the first through hole and the second through hole. | This application claims the benefit of Taiwan application Serial No. 93121059, filed Jul. 14, 2004, the subject matter of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates in general to a backlight module, and more particularly to a backlight module having a holding structure for holding a reflector on a frame. 2. Description of the Related Art With advanced technologies and fast development, liquid crystal displays (LCDs), with advantages of thin size, electricity economy, and no radiation, have been popularly applied to various electrical products such as personal digital assistant (PDA), notebooks, digital camera, digital video recorder, cellular phones, computer displays and LCD TV, and so on. Because display panels in LCDs are non-emissive, it is necessary to use backlight modules as a light resource. Referring to FIG. 1A, it is a cross-sectional view of a conventional liquid crystal display. In FIG. 1A, a liquid crystal display 9 mainly includes a display panel 8a and a backlight module 8b. The backlight module 8b includes a frame 2, a reflector 3, a resource module having several fluorescent lamps 4, and an optical film module including a diffusing plate 5, a diffuser 7, and a prism film 6. As shown in FIG. 1B, the frame 2 has a container 2a, and the reflector 3 is attached to the bottom 2b and two side 2c of the container 2a via an adhesive 8c. The fluorescent lamps 4 are arranged in the container 2a and positioned on the reflector 3. The diffusing plate 5 is disposed on the fluorescent lamps 4 and the prism film 6 is disposed on the diffusing plate 5. The diffuser 7 is disposed on the prism film 6, and the display panel 8a is disposed on the diffuser 7. Light emitted by the fluorescent lamps 4 is reflected by the reflector 3 into the diffusing plate 5, and then is guided through the diffusing plate 5, the prism film 6, and diffuser 7 onto the display panel 8a. However, due to a trend of big size of LCDs, the sizes of display panels, reflectors, and frames are enlarged, and the procedure of attaching the reflectors onto the frames becomes more difficult. Once the sizes of reflectors and frames are enlarged, it easily brings roughness and unevenness in reflector's surface when the reflector is attached onto the surface of frame. Therefore, the displaying quality of LCDs is greatly affected and the “mura” may be easily shown on the LCDs' screen. SUMMARY OF THE INVENTION It is therefore an object of the invention to provide a backlight module having a holding structure for holding a reflector on a frame, instead of using an adhesive attaching the reflector onto the frame conventionally, not only to omit the procedure of applying the adhesive, but also to prevent roughness and unevenness in reflector's surface when the reflector is attached onto the surface of frame. Therefore, the holding structure of the backlight module of the present invention can prevent the “mura” being shown on LCDs' screen and improve the displaying quality of LCDs. The invention achieves the above-identified object by providing a backlight module. The backlight module includes a frame, a reflector and a holding structure for holding the reflector on the frame. The frame has a first through hole, and the reflector has a second through hole. The reflector is formed on the frame. The holding structure includes a first clamp portion, a second clamp portion and a shaft portion. The shaft portion is used for connecting the first clamp portion and the second clamp portion. When the reflector contacts the frame and the first through hole corresponds to the second through hole, the shaft portion is inserted into the first through hole and the second through hole, and thereby the first clamp portion and the second clamp portion inwardly clamp the reflector and the frame. Also, the invention achieves the above-identified object by providing a backlight module. The backlight module includes a frame, a reflector and a holding structure for holding the reflector on the frame. The frame has a first through hole, and the reflector has a second through hole. The holding structure includes a first clamp structure and a second clamp structure. The first clamp structure includes a first clamp portion and a pin portion disposed on the first clamp portion. The second clamp structure includes a second clamp portion and a shaft portion disposed on the second clamp portion. The shaft portion has a fixing hole. The first clamp structure is adapted to combine with the second clamp structure and the pin portion is inserted into the fixing hole when the shaft portion is inserted into the first through hole and the second through hole, so that the first clamp portion and the second clamp portion are exposed out of and clamp the reflector and the frame to clamp the reflector and the frame. Further, the invention achieves the above-identified object by providing a backlight module. The backlight module includes a frame, a reflector and a holding structure for holding the reflector on the frame. The frame has a first top surface. The reflector has a through hole, a second top surface and a bottom surface. The holding structure includes a shaft portion and a clamp portion. The shaft portion having an external side surface is disposed on the first surface, and is adapted for inserting in the through hole. The clamp portion is disposed on a top of the shaft portion. The clamp portion has a surface facing the first top surface and connecting to the first top surface via the external side surface. When the shaft portion is inserted into the through hole, the clamp portion is exposed out of the second top surface and contacts part of the second top surface, so that the clamp portion and the frame inwardly clamp the reflector. Other objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A (Prior Art) is a cross-sectional view of a conventional liquid crystal display. FIG. 1B (Prior Art) is a cross-sectional view showing the reflector, the adhesive and the frame of the backlight module in FIG. 1A. FIG. 2A is an exploded cross-sectional view showing a backlight module according to the first example of the preferred embodiment of the invention. FIG. 2B is a combined cross-sectional view showing the backlight module according to the first example of the preferred embodiment of the invention. FIG. 3 is a cross-sectional view showing a holding structure of the backlight module according to the second example of the preferred embodiment of the invention. FIG. 4 is a cross-sectional view showing a holding structure of the backlight module according to the third example of the preferred embodiment of the invention. FIG. 5A is a combined cross-sectional view showing a backlight module according to the fourth example of the preferred embodiment of the invention. FIG. 5B is another combined cross-sectional view showing a backlight module according to the fourth example of the preferred embodiment of the invention. FIG. 6A is an exploded cross-sectional view showing a backlight module according to the fifth example of the preferred embodiment of the invention. FIG. 6B is a combined cross-sectional view showing the backlight module according to the fifth example of the preferred embodiment of the invention. FIG. 7A is an exploded cross-sectional view showing a backlight module according to the sixth example of the preferred embodiment of the invention. FIG. 7B is a combined cross-sectional view showing the backlight module according to the sixth example of the preferred embodiment of the invention. FIG. 8 is a combined cross-sectional view showing the backlight module according to the seventh example of the preferred embodiment of the invention. DETAILED DESCRIPTION OF THE INVENTION First Example Referring both to FIG. 2A and FIG. 2B, FIG. 2A is an exploded cross-sectional view showing a backlight module according to the first example of the preferred embodiment of the invention, and FIG. 2B is a combined cross-sectional view showing the backlight module according to the first example of the preferred embodiment of the invention. A backlight module 10 includes a frame 11, a reflector 12 and a holding structure 10 of a backlight module for holding the reflector 11 on the frame 12, instead of using an adhesive attaching the reflector onto the frame conventionally. The reflector 11 has a top surface 11a, an opposite bottom surface 11b, and a through hole 11c which penetrates the top surface 11a and the bottom surface 11b. The frame 12 has a top surface 12a, an opposite bottom surface 12b, and a through hole 12c which penetrates the top surface 12a and the bottom surface 12b. The size of the through hole 11c is corresponding to that of the through hole 12c. The holding structure 10 of the backlight module includes a first clamp portion 15, a second clamp portion 13 and a shaft portion 14. The shaft portion 14 is used for connecting the first clamp portion 15 and the second clamp portion 13. The first clamp portion 15 has a first surface 15a. The second clamp portion 13 has a second surface 13a facing the first surface 15a. The shaft portion 14 has an external side surface 14a for connecting the first surface 15a and the second surface 13a. Further, the shaft portion 14 and the first clamp portion 15 have a hollow 16. The hollow 16 does not penetrate the second clamp portion 13. The first clamp portion 15 is preferably a hook structure that bens to the outside of the hollow 16. Because the shaft portion 14 and the first clamp portion 15 have the hollow 16, the shaft portion 14 and the first clamp portion 15 can be pressed inwardly to allow the shaft portion 14 and the first clamp portion 15 to be inserted into the through holes 11c and 12c. As shown in FIG. 2A, when a user wants to hold the reflector 11 on the frame 12, the user makes the through hole 11c correspond to the through hole 12c and let the bottom surface 11b contact the top surface 12a. Then, the user inserts the shaft portion 14 and the first clamp portion 15 into the through holes 11c and 12c along the direction of arrow 20 in FIG. 2A. Because the hollow 16 provides a buffering space for enabling the shaft portion 14 and the first clamp portion 15 to wind inwardly into the center of the opening of the hollow 16, so that the user easily inserts the shaft portion 14 and the first clamp portion 15 into the through holes 11c and 12c. As shown in FIG. 2B, when the first clamp portion 15 passes through the through holes 11c and 12c, and then the shaft portion 14 is inserted into the through holes 11c and 12c, the first clamp portion 15 and the second clamp portion 13 are exposed out of the bottom surface 12b and the top surface 11a respectively. Also, the first surface 15a and the second surface 13a contact part of the bottom surface 12 band the top surface 11a respectively. So that, the first clamp portion 15 and the second portion 13 inwardly clamp the reflector 11 and the frame 12, and the reflector 11 is fixed onto the frame 12. However, any skilled in the art knows that the present invention is not limited thereto. For example, the first clamp portion 15, the second portion 13, and the shaft portion 14 can be integrally formed as a bone-shaped or an I-shaped structure. Also, the material of the holding structure 10 of backlight module includes poly methyl methacrylate (PMMA) or a white material. Further, the height H1 of the shaft portion 14 is equal or little less than the sum of the thickness H2 of the reflector 11 and the thickness H3 of the frame 12. The external shape of the cross section of the shaft portion 14 along the direction of the arrow 20 is corresponding to the shape of the through holes 11c and 12c. For example, when the shapes of the through holes 11c and 12c are round, the external shape of the cross section of the shaft portion 14 along the direction of the arrow 20 is also round. In the first example, the second clamp portion 13 further has a top surface 13b opposite to the second surface 13a and connected therewith. The top surface 13b is a bowl-shaped or a hemisphere-shaped whose opening faces the second surface 13a. That is to say, the second clamp portion 13 can be considered as an inverted bowl shape or a hemisphere shape structure. Second Example Referring to FIG. 3, it is a cross-sectional view showing a holding structure of the backlight module according to the second example of the preferred embodiment of the invention. Most components of the holding structure 30 of the second example are similar to those of the holding structure 20 of the first example except for the second clamp portion 33, so that the symbols used in most components are the same. In FIG. 3, the second clamp portion 33 includes a second surface 13a, a top surface 33b and an external side surface 33c for connecting with the second surface 13a and the top surface 33b. In the second example, the top surface 33b is a flat surface, which means that the second clamp portion 33 can be considered as a cylinder shape structure. Also, the first clamp portion 15, the second portion 33, and the shaft portion 14 can be integrally formed as a bone-shaped or a I-shaped structure, and the material of the holding structure 30 of backlight module includes poly methyl methacrylate (PMMA) or a white material. Third Example Referring to FIG. 4, it is a cross-sectional view showing a holding structure of the backlight module according to the third example of the preferred embodiment of the invention. Most components of the holding structure 40 of the third example are similar to those of the holding structure 30 of the second example except for the holding structure 40 further having a cover 43, so that the symbols used in most components are the same. In FIG. 4, the cover 43 has a bottom surface 43a and a top surface 43b, which is connected to the bottom surface 43a. The cover 43 is disposed on the second clamp portion 33 when the bottom surface 43a faces the top surface 43a. The top surface 43b is a bowl-shaped or a hemisphere-shaped structure whose opening faces the bottom surface 43a. That is to say, cover 43 can be considered as an inverted bowl shape or a hemisphere shape structure. Also, the first clamp portion 15, the second portion 33, the cover 43, and the shaft portion 14 can be integrally formed as a bone-shaped or an I-shaped structure. Also, the material of the holding structure 40 of backlight module includes poly methyl methacrylate (PMMA) or a white material. When the cover 43 is a white structure, the other components of the holding structure 40 of the backlight module are not necessary to be chosen a white or a transparent material because the cover 43 covers other components of the holding structure 40 of the backlight module. Fourth Example Referring to FIG. 5A, it is a combined cross-sectional view showing a backlight module according to the fourth example of the preferred embodiment of the invention. In FIG. 5A, a backlight module 100 includes a frame 51, a reflector 52 and a holding structure 50 for holding the reflector 51 on the frame 52 instead of using an adhesive conventionally. The reflector 51 has a top surface 51a, an opposite bottom surface 51b, and a through hole 51c which penetrates the top surface 51a and the bottom surface 51b. The frame has a top surface 52a, an opposite bottom surface 52b, and a through hole 52c which penetrates the top surface 52a and the bottom surface 52b. The size of the through hole 51c is corresponding to that of the through hole 52c. In addition, the sum H4 of the thickness of the reflector 51 and the frame 52 is less than the height H1 of the shaft portion 14. Most components of the holding structure 50 of the fourth example are similar to those of the holding structure 40 of the third example except for the holding structure 50 further having a washer 58, so that the symbols used in most components are the same. The washer 58 includes a top surface 58a, a bottom surface 58b and an external side surface 58c which connects the top surface 58a and the bottom surface 58b. The top surface 58a contacts part of the bottom surfaces 52b and the bottom surface 58b contacts the first surface 15a. Further, the washer 58 has an through hole 58d penetrating through the top surface 58a and the bottom surface 58b for allowing the shaft portion 14 and the first clamp portion 15 to insert therein. Besides, the thickness H5 of the washer 58 is equal or larger than the difference value of H1 and H4. Also, the size of the through hole 58d is corresponding to that of the through holes 51c and 52c. When the first clamp portion 15 passes through the through hole 51c, the through hole 52c, and the through hole 58d, and the shaft portion 14 is inserted into the through holes 51c, 52c and 58d, the first clamp portion 15 and the second clamp portion 33 are respectively exposed out of the bottom surface 58 band the top surface 51a. Also, the first surface 15a and the second surface 33a respectively contact part of the bottom surface 58 band the top surface 51a. So that, the first clamp portion 15 and the second portion 33 inwardly clamp the reflector 51 and the frame 52, and the reflector 51 is fixed onto the frame 52. However, any skilled in the art knows that the present invention is not limited thereto. Referring to FIG. 5B, the washer 58 can be disposed between the second clamp portion 33 and the reflector 51, so that the top surface 58a contacts the second surface 13a and the bottom surface 58b contacts part of the top surface 51a. Fifth Example Referring to FIG. 6A˜6B, FIG. 6A is an exploded cross-sectional view showing a backlight module according to the fifth example of the preferred embodiment of the invention, and FIG. 6B is a combined cross-sectional view showing the backlight module according to the fifth example of the preferred embodiment of the invention. In FIG. 6A˜6B, a backlight module 200 includes a frame 11, a reflector 12 and a holding structure 60 for holding the reflector 11 on the frame 12 instead of using an adhesive conventionally. The holding structure 60 of the backlight module a first clamp structure 61 and a second clamp structure 62. The first clamp structure 61 includes a first clamp portion 65 and a pin portion 65b disposed on the first clamp portion 65. The second clamp structure 62 includes a second clamp portion 63 and a shaft portion 64 disposed on the second clamp portion 63. The first clamp portion 65 and the pin portion 65b are integrally formed. The second clamp portion 63 and the shaft portion 64 are integrally formed. The second clamp portion 63 includes a second surface 63a. The shaft portion 64 has an external side surface 64a and a bottom surface 64b. The external side surface 64a connects with the second surface 63a and the bottom surface 64b. The bottom surface 64b has a fixing hole 64c for accommodating the pin portion 65b. The pin portion 65b is disposed on the first surface 65a and is used for inserting into the fixing hole 64c so as to movably combine the first clamp structure 61 and the second clamp structure 62. As shown in FIG. 6A, when a user want to fix the reflector 11 on the frame 12, the user make the bottom surface 11b contact the top surface 12a and the through hole 11c correspond to the through hole 12c. Then, the user inserts the shaft portion 64 and the first clamp portion 65 into the through holes 11c and 12c from the top surface 11a. When the shaft portion 64 is inserted into the through holes 12c and 11c, the user inserts the pin portion 65b into the fixing hole 64c. The other part of the first surface 65a which doesn't contact to the bottom surface 64b and the second surface 63a respectively contact part of the bottom surface 12b and the top surface 11a. So that, the first clamp portion 65 and the second clamp portion 63 inwardly clamp the reflector 11, and the reflector 11 is fixed onto the frame 12. However, any skilled in the art knows that the present invention is not limited thereto. For example, the material of the holding structure 60 of backlight module is poly methyl methacrylate (PMMA) or a white material. Additionally, considering the first clamp portion 61 and the second clamp portion 62 have to be combined together after the pin portion 65b being inserted in the fixing hole 64c, once the sum of the thickness of the reflector and the frame is less than the height of the shaft portion 64, a washer can be further disposed between the first clamp portion 65 and the frame 12, or between the second clamp portion 63 and the reflector 11 to compensate the difference between the height of the shaft portion 64 and the sum of the thickness of the reflector and the frame. Sixth Example Referring to FIG. 7A˜7B, FIG. 7A is an exploded cross-sectional view showing a backlight module according to the sixth example of the preferred embodiment of the invention, and FIG. 7B is a combined cross-sectional view showing the backlight module according to the sixth example of the preferred embodiment of the invention. In FIG. 7A˜7B, a backlight module 300 includes a frame 71, a reflector 72 and a holding structure 70 for holding the reflector 71 on the frame 72. The reflector 71 has a top surface 71a, an opposite bottom surface 71b, and a through hole 71c which penetrates the top surface 71a and the bottom surface 71b. The frame 72 has a top surface 72a and an opposite bottom surface 72b. The holding structure 70 at least includes a shaft portion 74 and a clamp portion 75. The shaft portion 74 has an external side surface 74a and is vertically disposed on the top surface 72a of the frame 72. The shafte portion 74 is adapted for inserting into the through hole 71c of the reflector 71. The clamp portion 75 is disposed on the top of the shaft portion 74 and has a clamp surface 75a which is opposite to the top surface 72a and faces the top surface 72a. The external side surface 74a connects the clamp surface 75a and the top surface 72a. Further, the shaft portion 74 and the clamp portion 75 have a through hole 76. The clamp portion 75 is preferably a hook structure that bends to the outside of the opening of the through hole 76. In the sixth example, the holding structure 70 of backlight module further includes a cover 78 on the clamp portion 75 for capping one end of the through hole 76. The material of the cover 78 is poly methyl methacrylate (PMMA) or a white material. As shown in FIG. 7A, when a user wants to fix the reflector 71 on the frame 72, the user presses the reflector 71 on the frame 72 along the direction of arrow 80 in FIG. 7A when the through hole 71c corresponds to the clamp portion 75 and the shaft portion 74. Then the shaft portion 74 and the clamp portion 75 are inserted into the through hole 71c. When the clamp portion 75 passes through the through hole 71c and the shaft portion 74 is inserted into the through hole 71c, the clamp portion 75 is exposed out of the top surface 71a and the clamp surface 75a contacts part of the top surface 71a. So that, the clamp portion 75 and the frame 72 inwardly clamp the reflector 71, and the reflector 71 is fixed onto the frame 72. And then, the users put the cover 78 on the clamp portion 75 for closing one end of the through hole 76. However, any skilled in the art knows that the present invention is not limited thereto. For example, the clamp portion 75 and the shaft portion 14 can be integrally formed. The frame 72, the clamp portion 75 and the shaft portion 74 can be integrally formed. Also, the material of the holding structure 70 of backlight module includes poly methyl methacrylate (PMMA) or a white material. Seventh Example Referring to FIG. 8, it is an exploded cross-sectional view showing a backlight module according to the seventh example of the preferred embodiment of the invention. The difference between the backlight module 400 and 300 is the reflector 81 and the washer 82. In FIG. 8, the reflector 81 is thinner than the reflector 71 of the backlight module 300. The reflector 81 is disposed on the top surface 72a of the frame 72. The washer 82 has a through hole 82a. When the shaft portion 74 is inserted into the through hole 82a, the washer 82 is disposed between the clamp portion 75 and the reflector 81 to compensate the difference between the height of the shaft portion 74 and the thickness of the reflector 81. So that, the clamp portion 75 and the frame 72 inwardly clamp the washer 82 and the reflector 81. Instead of using an adhesive connecting the reflector onto the frame conventionally, the holding structure of the backlight module disclosed in the present invention not only omits the procedure of applying the adhesive, but also prevents roughness and unevenness in surface between the reflector and the frame. As a result, “mura” showing on screen can be prevented and the displaying quality of LCDs can be improved. While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The invention relates in general to a backlight module, and more particularly to a backlight module having a holding structure for holding a reflector on a frame. 2. Description of the Related Art With advanced technologies and fast development, liquid crystal displays (LCDs), with advantages of thin size, electricity economy, and no radiation, have been popularly applied to various electrical products such as personal digital assistant (PDA), notebooks, digital camera, digital video recorder, cellular phones, computer displays and LCD TV, and so on. Because display panels in LCDs are non-emissive, it is necessary to use backlight modules as a light resource. Referring to FIG. 1A , it is a cross-sectional view of a conventional liquid crystal display. In FIG. 1A , a liquid crystal display 9 mainly includes a display panel 8 a and a backlight module 8 b . The backlight module 8 b includes a frame 2 , a reflector 3 , a resource module having several fluorescent lamps 4 , and an optical film module including a diffusing plate 5 , a diffuser 7 , and a prism film 6 . As shown in FIG. 1B , the frame 2 has a container 2 a , and the reflector 3 is attached to the bottom 2 b and two side 2 c of the container 2 a via an adhesive 8 c . The fluorescent lamps 4 are arranged in the container 2 a and positioned on the reflector 3 . The diffusing plate 5 is disposed on the fluorescent lamps 4 and the prism film 6 is disposed on the diffusing plate 5 . The diffuser 7 is disposed on the prism film 6 , and the display panel 8 a is disposed on the diffuser 7 . Light emitted by the fluorescent lamps 4 is reflected by the reflector 3 into the diffusing plate 5 , and then is guided through the diffusing plate 5 , the prism film 6 , and diffuser 7 onto the display panel 8 a. However, due to a trend of big size of LCDs, the sizes of display panels, reflectors, and frames are enlarged, and the procedure of attaching the reflectors onto the frames becomes more difficult. Once the sizes of reflectors and frames are enlarged, it easily brings roughness and unevenness in reflector's surface when the reflector is attached onto the surface of frame. Therefore, the displaying quality of LCDs is greatly affected and the “mura” may be easily shown on the LCDs' screen. | <SOH> SUMMARY OF THE INVENTION <EOH>It is therefore an object of the invention to provide a backlight module having a holding structure for holding a reflector on a frame, instead of using an adhesive attaching the reflector onto the frame conventionally, not only to omit the procedure of applying the adhesive, but also to prevent roughness and unevenness in reflector's surface when the reflector is attached onto the surface of frame. Therefore, the holding structure of the backlight module of the present invention can prevent the “mura” being shown on LCDs' screen and improve the displaying quality of LCDs. The invention achieves the above-identified object by providing a backlight module. The backlight module includes a frame, a reflector and a holding structure for holding the reflector on the frame. The frame has a first through hole, and the reflector has a second through hole. The reflector is formed on the frame. The holding structure includes a first clamp portion, a second clamp portion and a shaft portion. The shaft portion is used for connecting the first clamp portion and the second clamp portion. When the reflector contacts the frame and the first through hole corresponds to the second through hole, the shaft portion is inserted into the first through hole and the second through hole, and thereby the first clamp portion and the second clamp portion inwardly clamp the reflector and the frame. Also, the invention achieves the above-identified object by providing a backlight module. The backlight module includes a frame, a reflector and a holding structure for holding the reflector on the frame. The frame has a first through hole, and the reflector has a second through hole. The holding structure includes a first clamp structure and a second clamp structure. The first clamp structure includes a first clamp portion and a pin portion disposed on the first clamp portion. The second clamp structure includes a second clamp portion and a shaft portion disposed on the second clamp portion. The shaft portion has a fixing hole. The first clamp structure is adapted to combine with the second clamp structure and the pin portion is inserted into the fixing hole when the shaft portion is inserted into the first through hole and the second through hole, so that the first clamp portion and the second clamp portion are exposed out of and clamp the reflector and the frame to clamp the reflector and the frame. Further, the invention achieves the above-identified object by providing a backlight module. The backlight module includes a frame, a reflector and a holding structure for holding the reflector on the frame. The frame has a first top surface. The reflector has a through hole, a second top surface and a bottom surface. The holding structure includes a shaft portion and a clamp portion. The shaft portion having an external side surface is disposed on the first surface, and is adapted for inserting in the through hole. The clamp portion is disposed on a top of the shaft portion. The clamp portion has a surface facing the first top surface and connecting to the first top surface via the external side surface. When the shaft portion is inserted into the through hole, the clamp portion is exposed out of the second top surface and contacts part of the second top surface, so that the clamp portion and the frame inwardly clamp the reflector. Other objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings. | 20050103 | 20070206 | 20060119 | 81859.0 | F21V1700 | 2 | TSO, LAURA K | BACKLIGHT MODULE | UNDISCOUNTED | 0 | ACCEPTED | F21V | 2,005 |
|
11,025,975 | ACCEPTED | Optical probe and optical pick-up apparatus | Disclosed is an optical probe for obtaining a micro spot light, comprising a rod-like glass body having a rectangular cross section as a core for propagating an light wave. The distal end portion of the glass body is gradually diminished toward the distal end so as to form a micro distal end face having a small diameter. The side surface of the distal end portion of the glass body in a direction perpendicular to the polarized direction of the light wave is coated with a light absorber formed of a metal film. | 1-20. (canceled) 21. An optical pick-up apparatus for picking up data from a medium with a predetermined optical component, comprising: a light source configured to generate a light wave having the predetermined optical component; an optical probe configured to guide a light wave in a predetermined propagating direction and output the predetermined optical component of the light wave to the medium, the optical probe being located in an atmosphere, and the light wave being polarized in a first direction perpendicular to the predetermined propagating direction, said optical probe comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion and an end portion having an end face and first and second opposed surfaces, the end portion being gradually diminished from the base portion to the end face, the first opposed surfaces inclining to the first direction and extending along a second direction perpendicular to the first direction and propagating direction, and the second opposed surface being inclining to the second direction and extending along the first direction; and a light absorbing layer formed on the first opposed surfaces of the core, the second opposed surfaces being exposed to the atmosphere, the light wave guided in the core being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, the predetermined optical component penetrating the end face to the medium, and the predetermined optical component being reflected from the medium and guided into the optical probe through the end face of the core; and a sensing section configured to sense the guided predetermined optical component. 22. The optical pick-up apparatus optical probe according to claim 21, wherein the light absorbing layer is formed of a metal. 23. The optical pick-up apparatus according to claim 21, wherein the core is formed of a dielectric material or semiconductor. 24. An optical pick-up apparatus for picking up data from a medium with a predetermined optical component, comprising: a light source configured to generate a light wave having the predetermined optical component; an optical probe configured to guide a light wave in a predetermined propagating direction and output the predetermined optical component of the light wave to the medium, the optical probe being located in an atmosphere, said optical probe including: a core configured to transmit the light wave, having a first refractive index, comprising a base portion and an end portion having an end face and first and second pairs of opposed surfaces, the end portion being gradually diminished from the base portion to the end face, the first and second pairs of opposed surfaces being extended from the base portion to the end face, the first pair of the opposed surfaces being inclined to each other, and spaced apart in a first direction perpendicular to the predetermined propagating direction, and the second pair of the opposed surfaces being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating directions; a light absorbing layer formed on the first pair of the opposed surfaces, the second pair of the opposed surfaces being exposed to the atmosphere, the light wave being confined in the end portion, a part of the light wave being absorbed in the absorbing layer, and the predetermined optical component penetrating the end face to the medium, and the predetermined optical component being reflected from the medium and guided into the optical probe through the end face of the core; and a sensing section configured to sense the guided predetermined optical component. 25. The optical pick-up apparatus according to claim 24, wherein the light absorbing layer is formed of a metal. 26. The optical pick-up apparatus according to claim 24, wherein the core is formed of a dielectric material or semiconductor. 27. The optical pick-up apparatus according to claim 24, wherein the light wave has a polarized direction and the first direction corresponds to the polarized direction. 28. An optical pick-up apparatus for picking up data from a medium with a predetermined optical component, comprising: a light source configured to generate a light wave having the predetermined optical component; an optical probe configured to guide a light wave in a predetermined propagating direction and output the predetermined optical component of the light wave to the medium, the light wave being polarized in a first direction perpendicular to the predetermined propagating direction, said optical probe including: a core configured to transmit the light wave, having a first refractive index, comprising a base portion and an end portion having an end face and first and second opposed surfaces, the end portion being gradually diminished from the base portion to the end face, the first and second opposed surfaces being extended from the base portion to the end face, the first opposed surfaces being inclined to the first direction and extended along the second direction perpendicular to the first direction and the propagating direction, and the second opposed surfaces being inclined to the second direction and extended along the first direction; a light absorbing layer formed on the first opposed surfaces of the core; and a cladding layer having a second refractive index lower than the first refractive index of the core, and formed on the second opposed surface of the core, the light wave being confined in the end portion, a part of the light wave guided in the core being absorbed in the light absorbing layer, the predetermined optical component penetrating the end face to the medium, and the predetermined optical component being reflected from the medium and guided into the optical probe through the end face of the core; and a sensing section configured to sense the predetermined guided optical component. 29. The optical pick-up apparatus according to claim 28, wherein the light absorbing layer is formed of a metal. 30. The optical pick-up apparatus according to claim 28, wherein the core is formed of a dielectric material or semiconductor. 31. An optical pick-up apparatus for picking up data from a medium with a predetermined optical component, comprising: a light source configured to generate a light wave having the predetermined optical component; an optical probe configured to guide a light wave in a predetermined propagating direction and output the predetermined optical component of the light wave to the medium, said optical probe including: a core configured to transmit the light wave, having a first refractive index, comprising a base portion and an end portion having an end face and first and second pairs of opposed surfaces, the end portion being gradually diminished from the base portion to the end face, the first pair of opposed surfaces being inclined to each other, spaced apart in a first direction perpendicular to the predetermined propagating direction and the second pair of opposed surfaces being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating directions; a light absorbing layer formed on the first pair of opposed surfaces; and a cladding layer having a second refractive index lower than the first refractive index of the core, and formed on the second pair of the opposed surfaces, the light wave guided in the core being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined optical component being reflected from the medium and guided into the optical probe through the end face of the core; and a sensing section configured to sense the predetermined guided optical component. 32. The optical pick-up apparatus according to claim 31, wherein the light absorbing layer is formed of a metal. 33. The optical pick-up apparatus according to claim 31, wherein the core is formed of a dielectric material or semiconductor. 34. The optical pick-up apparatus according to claim 31, wherein the light wave has a polarized direction and the first direction corresponds to the polarized direction. | CROSS-REFERENCE TO RELATED APPLICATIONS This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2000-277109, filed Sep. 12, 2000, the entire contents of which are incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical probe for obtaining a micro light spot and an optical pick-up apparatus using said optical probe. 2. Description of the Related Art In recent years, an optical probe utilizing an optical near field is used for recording information in an optical disk with a resolution not higher than the diffraction-limited of light or for observing the surface of an object to be measured, as disclosed in, for example, publication 1 (S. Mononobe et al.: “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics”, Appl. Opt., Vol. 36, No. 8 (11997) pp. 1496-1500) and publication 2 (Y. Kim et al.; “Fabrication of micro-pyramidal probe array with aperture for near-field optical memory applications”, Jpn. J. Appl. Phys., Vol. 39, No. 3B (2000) pp. 1538-1541). In this optical probe, the distal end side of an optical fiber is sharpened and the side surface the distal end portion is coated with a metal so as to confine the light wave in a micro region so as to obtain a micro spot. However, the optical probe of this kind gives rise to the problem that, because of the absorption by the metal coated on the side surface, the light throughput efficiency is very low. It is certainly possible to avoid the absorption loss, if the metal coating is not applied to the side surface. In this case, however, the oozing of the light wave from the sharpened distal end portion of the optical fiber is increased, resulting in failure to obtain a micro spot. As described above, the conventional optical probe having a metal coating applied to the side surface of the sharpened distal end portion of an optical fiber gives rise to the problems that the throughput efficiency of the light passing through the probe is very low and that it is impossible to obtain a desired micro spot unless the metal coating is not applied to the side surface. BRIEF SUMMARY OF THE INVENTION An object of the present invention is to provide an optical probe capable of confining the light wave to a core portion so as to make the spot diameter very small and capable of sufficiently increasing the throughput efficiency of the light wave passing through the core portion. Another object of the present invention is to provide an optical pick-up apparatus for performing the recording in an optical disk and for observing the surface of a target to be observed by using the optical probe referred to above. According to a first aspect of the present invention, there is provided an optical probe for guiding an light wave in a predetermined propagating direction and outputting a predetermined component of the light wave, the optical prove being located in the atmosphere, comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second side surfaces, the end portion being gradually diminished from the base portion to the end face, the first side surface being inclined to a first direction perpendicular to the predetermined propagating direction and the second side surface being inclined to a second direction perpendicular to the first direction and the predetermined propagating direction; and a light absorbing layer formed on the first side surface of the core, the second side surface being exposed to the atmosphere, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face. According to a second aspect of the present invention, there is provided an optical probe for guiding an light wave in a predetermined propagating direction and outputting a predetermined component of the light wave, the optical prove being located in the atmosphere, comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second pairs of opposing side surfaces, the end portion being gradually diminished from the base portion to the end face, the opposing side surface of the first pair being inclined to each other and spaced apart in a first direction perpendicular to the predetermined propagating direction, and the opposing side surface of the second pair being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the opposing side surface of the first pair, the opposing side surface of the second pair being exposed to the atmosphere, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face. According to a third aspect of the present invention, there is provided an optical probe for guiding an light wave in a predetermined propagating direction and outputting a predetermined component of the light wave, comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second side surfaces, the end portion being gradually diminished from the base portion to the end face, the first side surface being inclined to a first direction perpendicular to the predetermined direction and the second side surface being inclined to a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the first side surface of the core; and a transparent cladding layer having a second refractive index lower than the first refractive index of the core, and formed on the second side surface of the core, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face. According to a fourth aspect of the present invention, there is provided an optical probe for guiding an light wave in a predetermined propagating direction and outputting a predetermined component of the light wave, comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second pairs of opposing side surfaces, the end portion being gradually diminished from the base portion to the end face, the opposing side surface of the first pair being inclined to each other and spaced apart in a first direction perpendicular to the predetermined direction, and the opposing side surface of the second pair being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the opposing side surface of the first pair; and a transparent cladding layer having a second refractive index lower than the first refractive index of the core, and formed on the opposing side surface of the second pair, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face. In an embodiment of the present invention, it is desirable for the optical probe to be constructed as follows: (1) The light absorber should be formed of a metal film. (2) The core should be formed of a dielectric material. (3) The core should be formed of a semiconductor material. (4) The core should be prepared by processing the distal end portion of a rod-like optical guide such that the cross section of the distal end portion is gradually diminished toward the distal end from a base portion of the optical guide to form a pyramidal configuration, and the inclined side surface of the pyramidal distal end portion is coated with the light absorber. (5) The end face of the distal end portion of the core should be shaped rectangular. The end face have first and second pairs of opposing sides, wherein the opposing sides being of the first pair are substantially parallel in the polarized direction of the light wave, the opposing sides of the second pair are substantially perpendicular to the polarized direction of the light wave, and a first width of the first side is shorter than a second width of the second side. According to a fifth aspect of the present invention, there is provided an optical pick-up apparatus for searching a target with a predetermined optical component, comprising: a light source configured to generate an light wave having the predetermined optical component; an optical probe configured to guide an light wave in a predetermined propagating direction and outputting the predetermined component of the light wave to the target, the optical prove being located in the atmosphere, including: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second pairs of opposing side surfaces, the end portion being gradually diminished from the base portion to the end face, the opposing side surface of the first pair being inclined to each other and spaced apart in a first direction perpendicular to the predetermined propagating direction, and the opposing side surface of the second pair being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the opposing side surface of the first pair, the opposing side surface of the second pair being exposed to the atmosphere, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face to the target, and the predetermined component being reflected from the target and guided into the optical probe through the end face of the core; and a sensing section configured to sense the predetermined component emerged from the probe. According to a sixth aspect of the present invention, there is provided an optical pick-up apparatus for searching a target with a predetermined optical component, comprising: a light source configured to generate an light wave having the predetermined optical component; an optical probe configured to guide an light wave in a predetermined propagating direction and outputting the predetermined component of the light wave to the target, including: a core configured to transmit the light wave, having a first refractive index, comprising a base portion and a end portion having a end face and first and second pairs of opposing side surfaces, the end portion being gradually diminished from the base portion to the end face, the opposing side surface of the first pair being inclined to each other and spaced apart in a first direction perpendicular to the predetermined direction, and the opposing side surface of the second pair being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the opposing side surface of the first pair; and a transparent cladding layer having a second refractive index lower than the first refractive index of the core, and formed on the opposing side surface of the second pair, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face to the target, and the predetermined component being reflected from the target and guided into the optical probe through the end face of the core; and a sensing section configured to sense the predetermined component emerged from the probe. The optical pick-up apparatus is constructed such that a lens and a half mirror are arranged on the side of the proximal end of the optical probe. The light wave emitted from the light source is reflected by the half mirror so as to be collected through the lens on the optical probe on the side of the proximal end. Also, the light wave emitted from the proximal end of the optical probe passes through the lens and the half mirror so as to be collected on the light receiving section. According to the present invention, a light absorbing film is formed on that side surface of the core which is substantially perpendicular to the polarized direction of the light wave propagated through the core so as to eliminate the oozing of the light wave in the particular direction, thereby obtaining a micro spot light. Further, a transparent clad region is formed on that side surface of the core, which is parallel to the polarized direction of the light wave propagated through the core so as to increase the light throughput efficiency. In addition, the object of the present invention can be effectively achieved by effectively utilizing the construction that the TM mode and the TE mode differ from each other in the propagation loss relative to the presence of the light absorbing film and in the size of the spot diameter. It follows that it is possible to make the spot diameter very small and to increase the throughput efficiency of the light wave passing through the core. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING FIG. 1 is an oblique view schematically showing the construction of an optical probe according to a first embodiment of the present invention; FIG. 2 is a graph exemplifying the calculation of the propagation loss caused by a glass/Au light waveguide; FIG. 3 is a graph exemplifying the calculation of the spot diameter in the glass/Au light waveguide; FIG. 4 is a graph exemplifying the calculation of the spot diameter in the glass/air light waveguide; FIG. 5 is an oblique view schematically showing the construction of an optical probe according to a second embodiment of the present invention; FIG. 6 is a graph exemplifying the calculation of the propagation loss in the glass/Al light waveguide; FIG. 7 is a graph exemplifying the calculation of the spot diameter in the GaP/Al light waveguide; FIG. 8 is a graph exemplifying the calculation of the spot diameter in the GaP/air light waveguide; FIG. 9 schematically shows the construction of a pick-up apparatus according to a third embodiment of the present invention; and FIG. 10 is an oblique view schematically showing the construction of an optical probe according to a modified embodiment of FIG. 1. DETAILED DESCRIPTION OF THE INVENTION Some embodiments of the present invention in respect of an optical probe and an optical pick-up apparatus using the optical probe will now be described in detail with reference to the accompanying drawings. FIG. 1 is an oblique view schematically showing the construction of an optical probe according to a first embodiment of the present invention. A reference numeral 10 shown in FIG. 1 represents a rod-like glass core rectangular in cross section, in which a light wave is guided. The distal end portion of the glass core 10 is worked pyramidal such that the distal end portion is gradually diminished from a rectangular base portion 14 of the core 10. The core 10 has a micro distal end face section 11 which is a rectangular shape. The micro distal end face section 11 has a first pair of opposing sides extending in the polarized direction I of the light wave propagated through the core 10 and also has a second pair of opposing sides extending in a direction perpendicular to the polarized direction of the light wave. The opposing sides of the first pair have a first width W1 which is not larger than half the wavelength λ/2 of the light wave or within a range between the half the wavelength λ/2 and the wavelength λ, for example of 50 nm, and the opposing sides of the second pair have a second width W2, for example of 200 nm. The pyramidal distal end portion of the glass core 10 has four side surfaces 12A to 12D. The two side surfaces 12A and 12B having a same shape and same size, are inclined to each other and spaced apart in the polarized direction I of the light wave propagated through the core 10. Each of the side surfaces 12A and 12B is coated with a light absorbing film 13 formed of a metal film. The other two side surfaces 12C and 12D having a same size and shape, are also inclined to each other and are spaced apart in a direction perpendicular to the polarized direction of the light wave. The side surfaces 12C and 12D are not coated with the light absorbing film and are contacted to transparent clad regions, respectively. In the glass core 10 shown in FIG. 1, the side surfaces 12C and 12D are exposed to an atmosphere such as an air, a gas or an oil. In other words, formed is a clad of the air layer, the oil layer or the gas layer having a refractive index lower than that of the glass core 10. In the optical probe as shown in FIG. 1, an light wave is transferred in the core 10 and guided in the pyramidal distal end portion of the glass core 10. Thus, the light wave is confined in the distal end portion of the core 10 and a part of the light wave is absorbed in the absorbing film 13 so that a predetermined component of the light wave penetrates the end face section 11 to form a micro spot on a target (not shown), for example, an optical disk. In manufacturing the optical probe of the construction described above, the pyramidal distal end portion of the glass core 10 can be formed by etching or polishing the distal end portion of a glass rod having a rectangular cross section. Also, an optical fiber available on the market can be used as the glass rod. In the optical probe shown in FIG. 1, the light absorbing films are formed on only the side surfaces inclined to the polarized direction of the light wave propagated through the glass core 10. The particular construction permits markedly diminishing the loss of the light wave passing through the optical probe. The principle of the particular effect will now be described. FIG. 2 is a graph exemplifying the calculation of the propagation loss α (cm−1) of the planar light waveguide formed of a glass core 10 and a metal clad 13. The graph covers the case where gold (Au) is used as the metal forming the light absorption film 13. As apparent from FIG. 2, if the wavelength within the core 10, i.e., the core 10 width W (nm), is rendered not larger than the half wavelength λ/(2n), where n represents a refractive index, which is 1.5 (n=1.5) in the case of glass, the propagation loss of the TE mode is rapidly increased. This is because the ratio of the oozing of the light waveguide mode into the metal is rendered large, with the result that the influence given by the absorption by the metal is increased. In this region, the light wave is scarcely propagated in the TE mode. On the other hand, the propagation loss in the TM mode is not appreciably increased even if the core 10 width is not larger than the half wavelength. As a result, the increase in the loss for the TM mode is not prominent even if a metal is present. FIG. 3 is a graph exemplifying the calculation of the spot diameter of the propagated light wave in respect of the light waveguide constructed as shown in FIG. 2. What should be noted is that the spot diameter of the TE mode is increased in the region where the core width is not larger than 50 nm, whereas, the spot diameter of the TM mode is not increased. FIGS. 2 and 3 support that, in the region of the micro core width, the spot diameter of the TM mode is small, and the propagation loss is small. In the first embodiment shown in FIG. 1, which utilizes the characteristics noted above, a metal coating 13 is applied to only the side surfaces 12A, 12B inclined to the polarized direction of the light wave so as to suppress the increase in the absorption loss in this configuration in which the light wave is guided in the TM mode. Since a metal coating 13 is not applied to the side surfaces 12C, 12D inclined to a direction perpendicular to the polarized direction of the light wave so as to suppress the increase in the absorption loss in this configuration in which the light wave is guided in the TM mode. Incidentally, it is impossible to obtain a sufficiently small spot in the direction of the TE mode. However, it is possible to obtain a spot diameter of 400 nm by, for example, setting the micro distal end face section 11 at about 200 nm. FIG. 4 is a graph exemplifying the calculation of the spot diameter relative to a planar light waveguide of a glass core/air clad structure. Where the air forms the clad, it is possible to obtain the minimum spot of 400 nm with the core width of 200 nm in respect of the TE mode, as described above. Also, in the case of a metal clad, it is possible to obtain a spot diameter substantially equal to the core width in respect of the TM mode as shown in FIG. 3. It follows that, if the width in this direction is set at 50 nm, it is possible to obtain a spot of 50 nm×400 nm with an optical probe having a distal end shape of 50 nm×200 nm. In addition, it is possible to realize a probe small in loss. As described above, when it come to the optical probe according to the first embodiment of the present invention, the distal end portion of the glass core 10 is processed pyramidal to form four inclined distal end side surfaces 12A to 12D. In the first embodiment of the present invention, two of the four inclined distal end side surfaces 12A to 12D, i.e., the side surfaces 12A and 12B, which are inclined to the polarized direction of the light wave propagated through the core 10, are coated with the light absorption films 12 formed of metal films so as to eliminate the oozing of the light wave in the direction perpendicular to the polarized direction noted above, thereby making it possible to obtain a micro spot. Also, the light absorption films 12 are not formed on the other two side surfaces 12C and 12D, which are inclined in the polarized direction of the light wave propagated through the core 10, and these side surfaces 12C and 12D are in contact with the transparent layer. It follows that it is possible to increase the light wave throughput efficiency in the polarized direction of the light wave. Under the circumstances, it is possible to obtain a micro spot light of 50 nm×400 nm by setting the shape of the distal end face section 11 at 50 nm in the direction perpendicular to the polarized direction of the light wave propagated through the core 10 and at 200 nm in the direction parallel to the polarized direction noted above. In addition, it is possible to increase sufficiently the throughput efficiency of the light wave passing through the core 10. An optical probe according to a second embodiment of the present invention will now be described. Specifically, FIG. 5 is an oblique view schematically showing the construction of the optical probe according to the second embodiment of the present invention. A reference numeral 20 shown in FIG. 5 represents a GaP substrate. A pyramidal projection 24 is arranged as a core in the central portion of the substrate 20. A micro face section 21 at the distal end of the projection (core) 24 is formed rectangular, with the result that four inclined side surfaces 22A to 22D are formed in the distal end portion of the projection (core) 24. The two side surfaces 22A and 22B of the four side surfaces 22A to 22D are positioned to cross the polarized direction I of the light wave propagated through the projection (core) 24. It should be noted that these two side surfaces 22A and 22B and the upper surfaces 26A and 26B of the substrate 20 contiguous to the side surfaces 22A and 22B are coated with light absorption films 28 formed of metal films. In the embodiment shown in FIG. 5, the light absorption film 28 is formed of aluminum (Al). On the other hand, the other inclined side surfaces 22C and 22D, which are parallel to the polarized direction of the light wave, are not coated with the light absorption film 28 and are in contact with a transparent clad. In this case, the air layer corresponds to the clad. In other words, the clad is formed of the air layer having a refractive index smaller than that of the core 24. FIG. 6 is a graph exemplifying the calculation of the propagation loss of a planar light waveguide consisting of the GaP core and the Al clad. The loss of the TE mode is rapidly increased, and the loss of the TM mode is not appreciably increased in the micro core width region, in this case, too. FIG. 7 is a graph exemplifying the calculation of the spot diameter of the propagated light wave in respect of the construction of a planar light waveguide consisting of the GaP core and the Al clad. Also, FIG. 8 is a graph exemplifying the calculation of the spot diameter of the propagated light wave in respect of the construction of a planar light waveguide consisting of a GaP core and the air clad. As apparent from FIGS. 7 and 8, the metal clad makes it possible to obtain a spot diameter substantially equal to the core width in respect of the TM mode, and the air clad makes it possible to obtain a spot diameter of about 130 nm relative to the core width of 60 nm in respect of the TE mode. It follows that it is possible to obtain a micro spot light of 50 nm×130 nm by, for example, setting the shape of the micro distal end face section 22 at a width W1 of 50 nm in the direction parallel to the polarized direction of the light wave propagated through the projection (core) 24 and at a width W2 of 60 nm in the direction perpendicular to the polarized direction noted above. As a result, it is possible to realize an optical probe small in loss. An optical pick-up apparatus according to a third embodiment of the present invention will now be described. Specifically, FIG. 9 schematically shows the construction of the optical pick-up apparatus according to the third embodiment of the present invention. A reference numeral 30 shown in FIG. 9 represents the optical probe according to the second embodiment of the present invention, which is shown in FIG. 5. As shown in the drawing, the optical pick-up apparatus according to the third embodiment of the present invention comprises a laser diode (LD) 31 used as a light source, a photodiode (PD) 32 used as a light receiving element, a half mirror 33, a projection 34, a collimate lens 35, and a light collecting lens 36 in addition to the optical probe 30. A reference numeral 38 shown in FIG. 9 represents a target to be inspected. The laser beam emitted from the LD 31 is collimated by the collimate lens 35 and, then, reflected by the half mirror 33 so as to be directed to the projection lens 34. The projection lens 34 serves to converge the collimated laser beam so as to irradiate the optical probe 30 on the side of the proximal end with the converged laser beam. The converged laser beam incident on the optical probe 30 is guided into the inside of the probe 30 so as to have its diameter miniaturized and, then, emitted from the distal end for irradiation of the surface of the target 38. A part of the laser beam reflected from the surface of the target 38 is incident on the distal end of the optical probe 30 so as to be guided within the probe 30 and, then, emitted to the outside from the proximal end of the optical probe 30. The laser beam emitted from the proximal end of the optical probe 30 passes through the half mirror 33 and, then, is converged by the convergent lens 36 so as to form an image on the photodiode (PD) 32. The signal detected by the photodiode (PD) 32 contains information on the irradiated surface region on the target 38 and is changed in accordance with the surface state of the target 38. It follows that it is possible to observe the surface state of the target 38 on the basis of the signal detected by the PD 32 by relatively moving in parallel the optical probe 30 and the target 38. The polarized direction of the laser beam emitted from the LD 31 is in the up-down direction on the paper, and the polarized direction of the laser beam reflected by the half mirror 33 is in the right-left direction on the paper. It follows that the side surfaces of the optical probe 30, which are coated with a light absorber 28, are the two inclined side surfaces 22A and 22B inclined to the polarized direction I of the laser beam propagated through the projection (core) 24, with the result that it is possible to converge the light wave into a micro spot. In the apparatus shown in FIG. 9, the laser beam emitted from the LD 31 is polarized in the up-down direction on the paper, and the light absorber 28 of the optical probe 30 is arranged on the left side surface and the right side surface of the projection (core) 24. Where the polarized direction of the light wave emitted from the LD 31 is perpendicular to the paper, the light absorber 28 should be formed on the front side surface and the back side surface of the projection 24. As described above, the optical probe 30 equal to that described in conjunction with the second embodiment of the present invention is used in the optical pick-up apparatus according to the third embodiment of the present invention. In addition, the optical pick-up apparatus is provided with a mechanism (31, 33, 34, 25) for introducing the light wave into the optical probe 30 and another mechanism (32, 33, 34, 36) for guiding the light wave out of the optical probe 30. The particular construction of the optical pick-up apparatus makes it possible to converge the light wave irradiating the target 38 into a micro spot and to detect the light wave from the microscopic region on the surface of the target 38. It follows that it is. possible to perform the recording with a resolution not larger than the diffraction-limited of the light wave and to measure the surface state of target with a high accuracy. The present invention is not limited to each of the embodiments described above. In the embodiments described above, the cross section of the core portion (the entire core portion in the first embodiment, and the projecting portion of the core in the second embodiment) is shaped rectangular. However, it is possible for the cross section of the core portion to be shaped circular or elliptical. Where the cross section of the core portion is shaped circular or elliptical, the metal film coating the side surface of the core portion should be formed in a region facing the polarized direction of the light wave, i.e., the surface within a range of 90±45° relative to the polarized direction. Also, the material of the light absorbing film is not limited to gold and aluminum. It is possible to use another metal as far as the light wave can be absorbed. It is also possible to use a material other than the metal. Also, it is not absolutely necessary for the surface other than the surface on which is formed the light absorbing film to be in contact with the air. It is possible for the particular side surfaces 12A and 12B to be coated with a transparent film 15C and 15D having a refractive index smaller than that of the core, as shown in FIG. 10. In this construction as shown in FIG. 10, the rectangular base 14 of the core 10 is also coated with a transparent film 15 having the refractive index smaller than that of the core. Further, the material of the core is not limited to glass and a semiconductor as far as the core material sufficiently transmits the light wave. For example, it is possible to use GaN with respect to the wavelength shorter than that in the embodiments described above. Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the present invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to an optical probe for obtaining a micro light spot and an optical pick-up apparatus using said optical probe. 2. Description of the Related Art In recent years, an optical probe utilizing an optical near field is used for recording information in an optical disk with a resolution not higher than the diffraction-limited of light or for observing the surface of an object to be measured, as disclosed in, for example, publication 1 (S. Mononobe et al.: “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics”, Appl. Opt., Vol. 36, No. 8 (11997) pp. 1496-1500) and publication 2 (Y. Kim et al.; “Fabrication of micro-pyramidal probe array with aperture for near-field optical memory applications”, Jpn. J. Appl. Phys., Vol. 39, No. 3B (2000) pp. 1538-1541). In this optical probe, the distal end side of an optical fiber is sharpened and the side surface the distal end portion is coated with a metal so as to confine the light wave in a micro region so as to obtain a micro spot. However, the optical probe of this kind gives rise to the problem that, because of the absorption by the metal coated on the side surface, the light throughput efficiency is very low. It is certainly possible to avoid the absorption loss, if the metal coating is not applied to the side surface. In this case, however, the oozing of the light wave from the sharpened distal end portion of the optical fiber is increased, resulting in failure to obtain a micro spot. As described above, the conventional optical probe having a metal coating applied to the side surface of the sharpened distal end portion of an optical fiber gives rise to the problems that the throughput efficiency of the light passing through the probe is very low and that it is impossible to obtain a desired micro spot unless the metal coating is not applied to the side surface. | <SOH> BRIEF SUMMARY OF THE INVENTION <EOH>An object of the present invention is to provide an optical probe capable of confining the light wave to a core portion so as to make the spot diameter very small and capable of sufficiently increasing the throughput efficiency of the light wave passing through the core portion. Another object of the present invention is to provide an optical pick-up apparatus for performing the recording in an optical disk and for observing the surface of a target to be observed by using the optical probe referred to above. According to a first aspect of the present invention, there is provided an optical probe for guiding an light wave in a predetermined propagating direction and outputting a predetermined component of the light wave, the optical prove being located in the atmosphere, comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second side surfaces, the end portion being gradually diminished from the base portion to the end face, the first side surface being inclined to a first direction perpendicular to the predetermined propagating direction and the second side surface being inclined to a second direction perpendicular to the first direction and the predetermined propagating direction; and a light absorbing layer formed on the first side surface of the core, the second side surface being exposed to the atmosphere, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face. According to a second aspect of the present invention, there is provided an optical probe for guiding an light wave in a predetermined propagating direction and outputting a predetermined component of the light wave, the optical prove being located in the atmosphere, comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second pairs of opposing side surfaces, the end portion being gradually diminished from the base portion to the end face, the opposing side surface of the first pair being inclined to each other and spaced apart in a first direction perpendicular to the predetermined propagating direction, and the opposing side surface of the second pair being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the opposing side surface of the first pair, the opposing side surface of the second pair being exposed to the atmosphere, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face. According to a third aspect of the present invention, there is provided an optical probe for guiding an light wave in a predetermined propagating direction and outputting a predetermined component of the light wave, comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second side surfaces, the end portion being gradually diminished from the base portion to the end face, the first side surface being inclined to a first direction perpendicular to the predetermined direction and the second side surface being inclined to a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the first side surface of the core; and a transparent cladding layer having a second refractive index lower than the first refractive index of the core, and formed on the second side surface of the core, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face. According to a fourth aspect of the present invention, there is provided an optical probe for guiding an light wave in a predetermined propagating direction and outputting a predetermined component of the light wave, comprising: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second pairs of opposing side surfaces, the end portion being gradually diminished from the base portion to the end face, the opposing side surface of the first pair being inclined to each other and spaced apart in a first direction perpendicular to the predetermined direction, and the opposing side surface of the second pair being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the opposing side surface of the first pair; and a transparent cladding layer having a second refractive index lower than the first refractive index of the core, and formed on the opposing side surface of the second pair, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face. In an embodiment of the present invention, it is desirable for the optical probe to be constructed as follows: (1) The light absorber should be formed of a metal film. (2) The core should be formed of a dielectric material. (3) The core should be formed of a semiconductor material. (4) The core should be prepared by processing the distal end portion of a rod-like optical guide such that the cross section of the distal end portion is gradually diminished toward the distal end from a base portion of the optical guide to form a pyramidal configuration, and the inclined side surface of the pyramidal distal end portion is coated with the light absorber. (5) The end face of the distal end portion of the core should be shaped rectangular. The end face have first and second pairs of opposing sides, wherein the opposing sides being of the first pair are substantially parallel in the polarized direction of the light wave, the opposing sides of the second pair are substantially perpendicular to the polarized direction of the light wave, and a first width of the first side is shorter than a second width of the second side. According to a fifth aspect of the present invention, there is provided an optical pick-up apparatus for searching a target with a predetermined optical component, comprising: a light source configured to generate an light wave having the predetermined optical component; an optical probe configured to guide an light wave in a predetermined propagating direction and outputting the predetermined component of the light wave to the target, the optical prove being located in the atmosphere, including: a core configured to transmit the light wave, having a first refractive index, comprising a base portion, and a end portion having a end face and first and second pairs of opposing side surfaces, the end portion being gradually diminished from the base portion to the end face, the opposing side surface of the first pair being inclined to each other and spaced apart in a first direction perpendicular to the predetermined propagating direction, and the opposing side surface of the second pair being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the opposing side surface of the first pair, the opposing side surface of the second pair being exposed to the atmosphere, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face to the target, and the predetermined component being reflected from the target and guided into the optical probe through the end face of the core; and a sensing section configured to sense the predetermined component emerged from the probe. According to a sixth aspect of the present invention, there is provided an optical pick-up apparatus for searching a target with a predetermined optical component, comprising: a light source configured to generate an light wave having the predetermined optical component; an optical probe configured to guide an light wave in a predetermined propagating direction and outputting the predetermined component of the light wave to the target, including: a core configured to transmit the light wave, having a first refractive index, comprising a base portion and a end portion having a end face and first and second pairs of opposing side surfaces, the end portion being gradually diminished from the base portion to the end face, the opposing side surface of the first pair being inclined to each other and spaced apart in a first direction perpendicular to the predetermined direction, and the opposing side surface of the second pair being inclined to each other and spaced apart in a second direction perpendicular to the first direction and the predetermined propagating direction; a light absorbing layer formed on the opposing side surface of the first pair; and a transparent cladding layer having a second refractive index lower than the first refractive index of the core, and formed on the opposing side surface of the second pair, the light wave being confined in the end portion, a part of the light wave being absorbed in the light absorbing layer, and the predetermined component penetrating the end face to the target, and the predetermined component being reflected from the target and guided into the optical probe through the end face of the core; and a sensing section configured to sense the predetermined component emerged from the probe. The optical pick-up apparatus is constructed such that a lens and a half mirror are arranged on the side of the proximal end of the optical probe. The light wave emitted from the light source is reflected by the half mirror so as to be collected through the lens on the optical probe on the side of the proximal end. Also, the light wave emitted from the proximal end of the optical probe passes through the lens and the half mirror so as to be collected on the light receiving section. According to the present invention, a light absorbing film is formed on that side surface of the core which is substantially perpendicular to the polarized direction of the light wave propagated through the core so as to eliminate the oozing of the light wave in the particular direction, thereby obtaining a micro spot light. Further, a transparent clad region is formed on that side surface of the core, which is parallel to the polarized direction of the light wave propagated through the core so as to increase the light throughput efficiency. In addition, the object of the present invention can be effectively achieved by effectively utilizing the construction that the TM mode and the TE mode differ from each other in the propagation loss relative to the presence of the light absorbing film and in the size of the spot diameter. It follows that it is possible to make the spot diameter very small and to increase the throughput efficiency of the light wave passing through the core. | 20050103 | 20060627 | 20050609 | 98532.0 | 0 | WOOD, KEVIN S | OPTICAL PROBE AND OPTICAL PICK-UP APPARATUS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,025,991 | ACCEPTED | Image display apparatus, disassembly processing method therefor, and component recovery method | To reuse glass used in a flat panel display, processing suitable for global environment such as processing of separating a lead component must be realized. A disassembly processing method for a flat panel display having a structure in which a face plate and rear plate mainly containing glass are airtightly joined via a frame with frit glass is characterized by including the step of separating the face plate and rear plate joined with the frit glass. The separation step is characterized by separating the face plate and rear plate by cutting, dissolution, or melting. | 1-33. (canceled) 34. A method of recovering fluorescent substances from a display apparatus in which fluorescent substances are applied to a substrate, and caused to emit light, thereby obtaining display, comprising the step of: recovering the fluorescent substances applied to the substrate by both a brush and a suction unit. 35. A method of recovering fluorescent substances from a display apparatus according to claim 34, characterized in that the substrate from which the fluorescent substances are recovered includes a face plate separated and recovered from a flat display apparatus constituted by the face plate, a frame portion, and a rear plate. 36. A method of recovering fluorescent substances from a display apparatus according to claim 35, characterized in that a spacer is interposed between the face plate and the rear plate. 37. A method of recovering fluorescent substances from a display apparatus according to claim 34, characterized in that the substrate from which the fluorescent substances are recovered includes a panel separated and recovered from a CRT constituted by a face plate and a funnel. 38. A method of recovering fluorescent substances from a display apparatus according to any one of claims 34 to 37, characterized in that the brush includes a rotating brush, and a surface of the substrate coated with the fluorescent substances is smoothed using the rotating brush. 39. A display apparatus manufacturing method comprising the step of reusing for a display apparatus a substrate from which fluorescent substances are removed by the method of recovering fluorescent substances from a display apparatus defined in claims 34 to 37. 40. An image display apparatus comprising display means for displaying an image, an airtight container, and means for gradually changing an interior of said airtight container close to a pressure outside said airtight container as needed. 41. An image display apparatus according to claim 40, characterized in that said apparatus further comprises an exhaust device, and said means for changing the interior of said airtight container close to the pressure outside said airtight container is arranged at a different position on said airtight container from means connected to said exhaust device. 42. An image display apparatus according to claim 40 or 41, characterized in that said means for changing the interior of said airtight container close to the pressure outside said airtight container comprises a necessary filter. 43. An image display apparatus according to claim 40, wherein said airtight container incorporates an atmospheric pressure-resistant structure member, and the atmospheric pressure-resistant structure member includes a spacer. 44. An image display apparatus according to claim 40 or 41, characterized in that said means for changing the interior of said airtight container close to the pressure outside said airtight container includes any one of use of a slow leak valve, arrangement of a long thin pipe corresponding to a specification, and use of a porous material. 45. An image display apparatus characterized by comprising display means for displaying an image, an airtight container for maintaining an external pressure, an atmospheric pressure-resistant structure member in said airtight container, means connected to an exhaust device for evacuating an interior of said airtight container, and means for gradually changing the interior of said airtight container close to a pressure outside said airtight container as needed. 46. A flat display having at least a rear plate with a plurality of electron-emitting elements, a face plate which is arranged to face the rear plate and has an image display portion, a support frame, and a spacer for holding an interval between the rear plate and the face plate, the rear plate, the face plate, the support frame, and the spacer being welded with frit glass, wherein joining of the rear plate and the support frame, and joining of the face plate and the support frame use frit glasses having different softening temperatures, and joining of the spacer and the substrate uses a frit glass having a softening temperature not less than a higher softening temperature of the frit glass among the two types of frit glasses. 47. A flat display according to claim 46, characterized in that the spacer is joined to either one of the rear plate and the face plate. 48. A flat display according to claim 46, characterized in that each of the plurality of frit glasses with different softening temperatures has a softening temperature different by at least 20° C. from the softening temperatures of the remaining frit glasses. 49. A flat display disassembly method characterized by comprising: in disassembling the flat display defined in any one of claims 46 to 48, heating the flat display panel to not less than a softening temperature of a frit glass having the lowest softening temperature among the frit glasses in use, and to not more than the softening temperatures of the remaining frit glasses, melting the frit glass having the lowest softening temperature to selectively separate only a joint portion joined with the frit glass, and repeating the same procedures to sequentially separate the flat display panel from a joint portion using a frit glass having a lower softening temperature. 50. A flat display disassembly method according to claim 49, characterized in that a method of separating a joint portion joined with the frit glass having the highest softening temperature includes a method of heating the frit glass to not less than the softening temperature to melt the frit glass, thereby separating the joint portion. 51. A flat display disassembly method according to claim 49, characterized in that a method of separating a joint portion joined with the frit glass having the highest softening temperature includes a method of dissolving the frit glass with a proper solvent to separate the joint portion. 52. A flat display disassembly method according to claim 51, characterized in that the frit glass contains lead oxide. 53. A flat display disassembly method according to claim 51, characterized in that the solvent of the frit glass includes nitric acid. 54. A flat display having an airtight container storing at least a substrate with a plurality of electron-emitting elements, and a substrate which is arranged to face the substrate and has an image display portion, wherein joint portions between the substrates and the airtight container are joined with frit glasses having different softening temperatures corresponding to a disassembly order. 55. A flat display having as constituent members at least a rear plate with a plurality of electron-emitting elements, a face plate which is arranged to face the rear plate and has an image display portion, and a support frame for supporting the substrates, the constituent members being welded with frit glass, wherein joining of the rear plate and the support frame, and joining of the face plate and the support frame use frit glasses having different softening temperatures. 56. A flat display having an envelope storing an electron-emitting element, wherein a joint portion between a rear plate and a support frame constituting the envelope, and a joint portion between a face plate and the support frame use two types of frit glasses having different softening temperatures, and a joint portion between a spacer for supporting an interval between the substrates and at least one of the substrates is joined using a frit glass having a softening temperature higher than the softening temperatures of the two types of frit glass or equal to the softening temperature of either type of frit glasses. 57. A flat display disassembly method comprising the steps of: in disassembling the flat display defined in claim 56, heating the flat display stepwise, and sequentially melting and separating the flat display from a joint portion using frit glass having a lower softening temperature, thereby disassembling the flat display. 58. A residual hazardous metal amount inspection apparatus for inspecting an amount of hazardous metal such as lead contained in an inspection target object such as a member or a waste disassembled and fractionated for recycling, comprising: first elution means having, in a bath for dipping the inspection target object, an acid solution for eluting a hazardous metal contained in the inspection target object; cleaning means for cleaning the inspection target object after elution by said first elution means; second elution means having an acid solution for eluting a hazardous metal left on the inspection target object, in a bath for dipping the inspection target object cleaned by said cleaning means; and quantitative detection means for quantitatively detecting a hazardous metal amount eluted in the acid solution of said second elution means. 59. A residual hazardous metal amount inspection apparatus according to claim 58, characterized in that said quantitative detection means includes quantitative detection means for quantitatively detecting the hazardous metal amount by an absorbance method. 60. A residual hazardous metal amount inspection apparatus according to claim 58, characterized in that said quantitative detection means includes quantitative detection means for quantitatively detecting the hazardous metal amount by a plasma emission spectroscopic analysis method. 61. A residual hazardous metal amount inspection apparatus according to any one of claims 58 to 60, characterized in that the inspection target object includes a glass member constituting a flat panel display or the like. 62. A residual hazardous metal amount inspection apparatus according to claim 58, characterized in that the hazardous metal quantitatively detected by said quantitative detection means includes lead. 63. A residual hazardous metal amount inspection apparatus according to claim 58, characterized in that the acid solution used by said first elution means or said second elution means includes a nitric acid solution. 64. A residual hazardous metal amount inspection apparatus according to claim 59, characterized in that the absorbance method comprises adding an iodide to lead ions in a nitric acid solution to develop a color, and then measuring an absorbance to obtain a lead ion concentration from an absorbance value. 65. A residual hazardous metal amount inspection apparatus according to claim 60, characterized in that the plasma emission spectroscopic analysis method comprises obtaining a lead ion concentration in a nitric acid solution. 66. A flat panel display disassembly apparatus for disassembling and recycling a flat panel display in which a frame member is interposed between a rear plate and a face plate to constitute a flat vacuum container, and a spacer for holding a gap between the plates against an atmospheric pressure is fixed to both or either one of the plates, and further comprising: first support means for applying a pull-up force to a plate fixed to the spacer to support the plate in order to perform the step of separating the frame member from the vacuum container, second support means for receiving and supporting an edge of the plate fixed to the spacer after the frame member is separated, and spacer recovery means for separating the spacer from the plate received and supported by said second support member. 67. A flat panel display disassembly apparatus according to claim 66, characterized in that said first support means includes evacuation means for supporting the plate by generating a pull-up force from an evacuation force of an evacuation device. 68. A flat panel display disassembly apparatus according to claim 66, characterized in that said first support means includes suction means for supporting the plate by generating a pull-up force from a suction force of a vacuum. 69. A flat panel display disassembly apparatus according to any one of claims 66 to 68, characterized in that said spacer recovery means includes an acid solution dipping bath for separating the spacer from the received/supported plate by dipping said second support means in an acid solution. 70. A flat panel display disassembly apparatus according to any one of claims 66 to 68, characterized in that said spacer recovery means includes a heating furnace for separating the spacer from the received/supported plate by heating said second support means. 71. A flat panel display disassembly apparatus according to claim 66, further comprising convey means for, after the step of separating the frame member from the vacuum vessel, receiving the supported plate from said first support means, receiving and supporting an edge of the plate, and conveying the plate to said second support means. 72. A flat panel display disassembly apparatus according to claim 71, characterized in that said convey means has a structure which prevents a load of the plate fixed to the spacer from being applied to the spacer. 73-79. (canceled) 80. A flat panel body fixing apparatus for fixing a flat panel body constituted by joining a pair of panels facing each other via a frame, comprising: a fixing jig disposed to be retractable with respect to the flat panel body so as to surround the flat panel body placed on a base, wherein said fixing jig swings and comes into contact with the flat panel body from around the flat panel body, thereby fixing the flat panel body. 81. A flat panel body fixing apparatus according to claim 80, characterized in that said apparatus further comprises: a driving mechanism for moving back and forth said fixing jig with respect to the flat panel body; position detection means for detecting a position of said fixing jig on the basis of a moving amount of said fixing jig; and a controller capable of controlling said driving mechanism; and a size of the flat panel body is detected from positional information of said fixing jig obtained by said position detection means. 82. A flat panel body fixing apparatus according to claim 80 or 81, characterized by further comprising chuck means for chucking and fixing the flat panel body via a chucking hole formed in the base. 83. A flat panel display fluorescent substance recovery apparatus for recovering fluorescent substances in a flat panel display which includes a face plate, a rear plate, and a frame, and emits light by irradiating the fluorescent substances applied to the face plate with electrons, comprising: said fixing apparatus defined in claim 80 or 81, the face plate being fixed by said fixing jig from four directions. 84. A flat panel display fluorescent substance recovery apparatus according to claim 81, characterized in that said apparatus comprises a plurality of processing means for recovering the fluorescent substances from the face plate by said fixing apparatus, and said processing means are driven by said controller on the basis of the positional information obtained by said position detection means. 85. A flat panel display fluorescent substance recovery apparatus according to claim 84, characterized in that said processing means include cutting means for separating the face plate and the rear plate, and recovery means for sweeping and sucking the fluorescent substances of the face plate. 86. A flat panel display fluorescent substance recovery apparatus according to claim 85, characterized in that processing work operations by a cutter of said cutting means and a recovery brush of said recovery means are controlled by said controller so as to be performed within predetermined work ranges. 87. A flat panel display fluorescent substance recovery apparatus according to claim 85 or 86, characterized in that said apparatus further comprises fluorescent substance detection means for detecting an amount of fluorescent substances left on the face plate, and actuation of said recovery means is controlled based on fluorescent substance amount information obtained by said fluorescent substance detection means. 88. A flat panel display fluorescent substance recovery apparatus according to claim 87, characterized in that the fluorescent substance amount information is defined by a transmittance or an absorbance of visible light transmitting through the face plate. 89. A flat panel display fluorescent substance recovery apparatus according to claim 87, characterized in that the fluorescent substance amount information is defined by a fluorescent intensity generated by irradiating an inner surface of the face plate with an ultraviolet ray or visible light. 90. A flat panel display fluorescent substance recovery apparatus according to claim 87, characterized in that said fluorescent substance detection means moves following the work range of the recovery brush of said recovery means. 91. A flat panel display fluorescent substance recovery method of recovering fluorescent substances in a flat panel display which includes a face plate, a rear plate, and a frame, and emits light by irradiating the fluorescent substances applied to the face plate with electrons, comprising: the step of swinging a fixing jig and fixing the flat panel display from four directions of the flat panel display placed on a base; the step of separating the face plate and the rear plate of the fixed flat panel display; and the recovery step of sweeping and sucking the fluorescent substances of the face plate. 92. A flat panel display fluorescent substance recovery method according to claim 91, characterized by further comprising the step of detecting a position of the fixing jig on the basis of a moving amount of the fixing jig for fixing the flat panel display. 93. A flat panel display fluorescent substance recovery method according to claim 91 or 92, characterized by further comprising the step of chucking and fixing the flat panel display via a chucking hole formed in a base. 94. A flat panel display fluorescent substance recovery method according to claim 91, characterized in that cutting work by a cutter is controlled to match a size of the face plate on the basis of positional information of the fixing jig in separating the face plate and the rear plate. 95. A flat panel display fluorescent substance recovery method according to claim 91, characterized in that recovery work by a recovery brush is controlled to match a size of the face plate on the basis of positional information of the fixing jig in recovering the fluorescent substances of the face plate. 96. A flat panel display fluorescent substance recovery method according to claim 95, characterized in that the method further comprises the step of detecting an amount of fluorescent substances left on the face plate, and the work of the recovery brush is controlled based on detected fluorescent substance amount information. 97. A flat panel display fluorescent substance recovery method according to claim 95, characterized by further comprising the step of controlling the recovery brush so as to move following a work range of the recovery brush. 98. A substrate processing method of disassembling a substrate mainly constituted by a pair of glass substrates airtightly joined via a frame, comprising: the step of separating the pair of joined substrates; the step of holding a plurality of separated substrates in parallel with each other at a predetermined gap; and the step of conveying the plurality of held substrates at once, and performing predetermined processing. 99. A substrate processing method according to claim 98, characterized in that the substrates are held to cause surfaces of the substrates to stand substantially vertically. 100. A substrate processing method according to claim 98 or 99, characterized in that the substrates are supported by linearly contacting predetermined portions of the substrates. 101. A substrate processing apparatus for disassembling a substrate mainly constituted by a pair of glass substrates airtightly joined via a frame, characterized by comprising: a plurality of support members disposed in parallel with each other at a predetermined gap, separated substrates being held between said support members so as to stand substantially vertically. 102. A substrate processing apparatus according to claim 101, characterized in that at least portions of said support members in contact with the substances are round or arcuated. 103. A flat panel display disassembly processing method for a flat panel display having a structure in which a face plate and a rear plate formed from a pair of substrates mainly containing glass are airtightly joined via a frame with lead-containing frit glass, comprising the step of: in conveying the glass substrates extracted from the flat panel display to be disassembled and performing submergence processing, processing the face plate or the rear plate by the substrate processing method defined in claim 98 or 99. 104. A flat panel display disassembly processing method according to claim 103, characterized in that the substrate processing apparatus defined in claim 101 or 102 is used. 105. A glass substrate processing method of detecting a surface state of a glass substrate and processing a substrate surface in accordance with a detection result, comprising: the detection step of irradiating the glass substrate surface with a primary X-ray, and detecting a generated fluorescent X-ray to detect an element present on the glass substrate surface; and the removal step of removing an element other than a glass constituent element from the glass substrate surface in accordance with a detection result of the detection step. 106. A glass substrate processing method according to claim 105, characterized in that the detection step of detecting an element present on the glass substrate surface comprises changing relative positions of the glass substrate and a fluorescent X-ray detector in accordance with a size of the glass substrate. 107. A glass substrate processing method according to claim 105, characterized in that a fluorescent X-ray detector irradiates with the primary X-ray a region wider than a region in which a fluorescent X-ray can be detected. 108. A glass substrate processing method according to claim 105, characterized in that an incident angle when the primary X-ray is incident on the glass substrate is not more than a critical angle of the primary X-ray. 109. A glass substrate processing method according to claim 105, characterized in that the removal step for the glass substrate surface is performed by polishing the glass substrate surface. 110. A glass substrate processing method according to any one of claims 105 to 109, characterized in that the detection step and the removal step for the glass substrate surface are repetitively performed. 111. A glass substrate recycling processing method in a flat display including a rear plate having a plurality of electron-emitting elements formed on a glass substrate, a face plate having an image display portion formed on a glass substrate, and a support frame which joins the plates so as to face each other, wherein the processing method defined in any one of claims 105 to 109 is applied to a substrate surface of the rear plate or the face plate after the rear plate and the face plate are separated and extracted. 112. A glass substrate recycling processing method in a flat display according to claim 111, characterized in that a wiring line mainly containing Ag is formed on the glass substrate of the rear plate. 113. A glass substrate recycling processing method in a flat display according to claim 111, characterized in that a thin film containing an element other than a glass constituent element is formed on the glass substrate surface constituting the rear plate. 114. A glass substrate recycling processing method according to claim 111, characterized in that frit glass for joining the rear plate, the face plate, and the frame is dissolved to separate the rear plate, the face plate, and the frame. 115. A glass substrate recycling processing apparatus in a flat display including a rear plate having a plurality of electron-emitting elements formed on a glass substrate, a face plate having an image display portion formed on a glass substrate, and a support frame which joins the plates so as to face each other, comprising: a mechanism of irradiating with an X-ray a surface of the glass substrate constituting the separated/extracted rear plate or face plate, and detecting a generated fluorescent X-ray to detect an element present on the glass substrate surface; and a mechanism of removing an element other than a glass constituent from the glass substrate surface. | This application is a continuation of International Application No. PCT/JP99/04866, filed Sep. 8, 1999, which claims the benefit of Japanese Patent Application as follows. 1) 10-255171 filed on Sep. 9, 1998 2) 10-263033 filed on Sep. 17, 1998 3) 10-263034 filed on Sep. 17, 1998 4) 10-268151 filed on Sep. 22, 1998 5) 11-004575 filed on Jan. 11, 1999 6) 11-032142 filed on Feb. 10, 1999 7) 11-032143 filed on Feb. 10, 1999 8) 11-033855 filed on Feb. 12, 1999 9) 11-045372 filed on Feb. 23, 1999 10) 11-047086 filed on Feb. 24, 1999 11) 11-047087 filed on Feb. 24, 1999 12) 11-047088 filed on Feb. 24, 1999 13) 11-047166 filed on Feb. 24, 1999 14) 11-248061 filed on Sep. 1, 1999 TECHNICAL FIELD The present invention relates to, in order to protect the global environment, a method of disassembling for scraping a flat panel display constituted by airtightly joining via a frame with frit glass or the like two substrates, i.e., a face plate (front glass substrate) and rear plate (rear glass substrate) mainly containing glass, a method of reusing a flat panel display, separating and recovering lead as a hazardous metal element among metal elements used for the flat panel display, and effectively reusing other noble metal elements and rare-earth elements, a method of dismantling an image forming apparatus welded with frit glass and recycling its face plate and rear plate, a method of recovering and reusing a spacer, a method of recovering fluorescent substances from a flat display apparatus or CRT (Cathode Ray Tube) for emitting light by irradiating a fluorescent substance-coated portion with an electron beam or ultraviolet ray, a display apparatus manufacturing method, an image display apparatus suitable for dismantling, disassembly, and reuse, a residual hazardous metal amount inspection apparatus for inspecting a hazardous metal amount contained in a waste or the like, and a fluorescent substance recovery method and apparatus in a flat display panel. BACKGROUND ART Conventionally, most of scrapped home appliances are shredded, valuables such as metals are recovered, and the remainders are disposed of as industrial wastes to a “least controlled landfill site” where the wastes are merely buried in a dug hole. In recent years, a shortage of the capacity of disposal sites poses a serious problem, and environmental pollution by hazardous substances also poses a serious problem. For example, the cathode ray tube of a television uses a large amount of lead-containing glass. According to trial calculation by the Environment Agency, lead contained in scrapped cathode ray tubes amounts to 20,000 t every year, and most of lead is buried in least controlled landfill sites. However, rainwater naturally permeates in least controlled landfill sites, and these sites are not equipped with any drainage facility. It is being recognized that lead as a hazardous substance may diffuse. Under these circumstances, conventional processing methods must be reconsidered. As for the cathode ray tube of a television, studies of shredding cathode ray tube glass into cullets (small glass pieces) and reusing them for cathode ray tubes have been made by Association for Electric Home Appliances. Of these studies, a system of extracting a cathode ray tube from a television main body and shredding the cathode ray tube into glass cullets has been developed (see, e.g., “Electrotechnology”, January, 1997). A method of recovering glass as cullets is disclosed in, e.g., Japanese Laid-Open Patent Application No. 61-50688. There is also known a method of shredding cathode ray tube glass into cullets (small glass pieces) and reusing them for cathode ray tubes (e.g., Japanese Laid-Open Patent Application No. 9-193762). A method of separating a cathode ray tube into a face plate and funnel in accordance with materials, and shredding them into cullets is disclosed in, e.g., Japanese Laid-Open Patent Application No. 05-185064. Further, a method of separating a cathode ray tube into a face plate and funnel, peeling fluorescent substances and a black mask from the face plate, and recycling the face place is disclosed in Japanese Laid-Open Patent Application No. 7-037509. To reuse cathode ray tube glass, the glass must be separated into panel glass and lead-containing funnel glass. This is because, if lead is mixed in panel glass by a predetermined amount or more, a browning phenomenon occurs, and the lead-containing glass cannot be reused as a raw material of the panel glass. For this reason, a cathode ray tube is separated into a panel and funnel. For this purpose, there are proposed a method of defining a position to cut a cathode ray tube (Japanese Laid-Open Patent Application No. 9-115449), and a method of melting frit glass which joins a panel and funnel, thereby separating the panel and funnel (Japanese Laid-Open Patent Application No. 7-45198). As a technique of separating a funnel and panel welded with frit glass, a technique of separating a funnel and panel using thermal distortion in heat treatment is known as disclosed in, e.g., Japanese Laid-Open Patent Application Nos. 5-151898, 7-029496, 9-200654, and 9-200657. In recent years, studies for applying cold cathode elements have enthusiastically been done. Known examples of the cold cathode elements are surface-conduction type electron-emitting elements, field emission type electron-emitting elements, metal/insulator/metal type electron-emitting elements. Compared to a thermionic cathode element, the cold cathode element can emit electrons at a low temperature. The cold cathode element does not require any heater, is simpler in structure than the thermionic cathode element, and can form a small element. Even if many elements are arranged on a substrate at a high density, problems such as thermal melting of the substrate hardly arise. In addition, the response speed of the thermionic cathode element is low because it operates upon heating by a heater, whereas the response speed of the cold cathode element is high. Of cold cathode elements, surface-conduction type electron-emitting elements have a simple structure, can be easily manufactured, and allow forming many elements in a wide area. As disclosed in Japanese Laid-Open Patent Application No. 64-31332 filed by the present applicant, a method of arranging and driving many elements has been studied. As applications of surface-conduction type electron-emitting elements, e.g., image forming apparatuses such as an image display apparatus and image recording apparatus, charge beam sources, and the like have been studied. Particularly as applications to image display apparatuses, as disclosed in U.S. Pat. No. 5,066,883 and Japanese Laid-Open Patent Application Nos. 2-257551 and 4-28137, an image display apparatus using a combination of a surface-conduction type electron-emitting element and a fluorescent substance which is irradiated with an electron beam to emit light has been studied. The image display apparatus using a combination of a surface-conduction type electron-emitting element and fluorescent substance is expected to exhibit more excellent characteristics than other conventional types of image display apparatuses. For example, this image display apparatus is superior to a recent popular liquid crystal display apparatus in that the image display apparatus does not require any backlight because of self-emission type and that the view angle is wide. A method of driving many field emission type electron-emitting elements arranged side by side is disclosed in, e.g., U.S. Pat. No. 4,904,895. A known application of FE type electron-emitting elements to an image display apparatus is a flat display reported by R. Meyer et al. [R. Meyer: Recent Development on Micro-tips Display at LETI”, Tech. Digest of 4th Int. Vacuum Micro-electronics Conf., Nagahama, pp. 6-9 (1991)]. An application of many metal/insulator/metal type electron-emitting elements arranged side by side to an image display apparatus is disclosed in Japanese Laid-Open Patent Application No. 3-55738. Of these image forming apparatuses using electron-emitting elements, a thin flat display is space-saving and lightweight, and receives a great deal of attention as a substitute for a cathode ray tube type image display apparatus. The interior of the airtight container in the image forming apparatus is kept at a vacuum of about 10−6 Torr. As the display area of the image display apparatus increases, the airtight container requires a means for preventing a rear plate and face plate from being deformed or destructed by the difference between internal and external pressures of the airtight container. If the rear plate and face plate are made thick, this increases the weight of the image display apparatus, and generates distortion and disparity of an image when viewed diagonally. Thus, the airtight container generally employs spacers each of which is made of a relatively thin glass plate whose surface is covered with an antistatic conductive film. Flat displays including a vacuum fluorescent display (VFD), plasma display (PDP), and surface-conduction type electron source display (SED) in addition to the field-emission type electron source display (FED) and MIM type display described above are space-saving and lightweight, and receive a great deal of attention as substitutes for cathode ray tube type display apparatuses. Many flat displays have been studied and developed. For example, the present applicant offers several proposals for an electron source constituted by arraying on a substrate many surface-conduction type electron-emitting elements as one type of cold cathode type electron-emitting elements, and an image display apparatus using this electron source. The structure of the surface-conduction type electron-emitting element, the structure of the image display apparatus using this, and the like are disclosed in detail in, e.g., Japanese Laid-Open Patent Application No. 7-235255, and will be described briefly. FIGS. 68A and 68B show a structure of a surface-conduction type electron-emitting element. Reference numeral 411 denotes a substrate; 412 and 413, a pair of element electrodes; and 414, a conductive film which partially has an electron-emitting portion 415. The substrate 411, element electrodes 412 and 413, conductive film 414, and electron-emitting portion 415 constitute an electron-emitting element 416. As a method of forming the electron-emitting portion 415, a voltage is applied between the pair of element electrodes 412 and 413 to deform, change of properties, or destruct part of the conductive film, thereby increasing the resistance. This is called “electrification forming processing”. To form an electron-emitting portion having good electron emission characteristics by this method, the conductive film is preferably made of fine conductive particles. An example of the material is fine PdO particles. The voltage applied in electrification forming processing is preferably a pulse voltage. This processing can adopt either one of a method of applying pulses having a predetermined peak value, as shown in FIG. 69A, and a method of applying pulses whose peak value gradually increases, as shown in FIG. 69B. To form a fine conductive particle film, fine conductive particles may be directly deposited by gas deposition. Instead, a method of applying the solution of a compound (e.g., organic metal compound) containing the constituent element of the conductive film and annealing the coating into a desired conductive film is desirable because no vacuum device is required, the manufacturing cost is low, and a large electron source can be formed. As a method of applying the organic metal compound solution, a method of applying the solution to only a necessary portion using an ink-jet apparatus is desirable because the method does not require any extra step for patterning of the conductive film. After the electron-emitting portion is formed, a pulse voltage is applied between the element electrodes in a proper atmosphere containing an organic substance (this will be called “activation processing”). Then, a deposition film mainly containing carbon is formed at the electron-emitting portion and its vicinity to increase a current flowing through the element and improve electron emission characteristics. After that, a step called “stabilization processing” is preferably performed. In this processing, while a vacuum container and electron-emitting element are heated, the vacuum container is kept evacuated to sufficiently remove an organic substance and the like, thereby stabilizing the characteristics of the electron-emitting element. A method of forming the conductive film of an electron source using a surface-conduction type electron-emitting element by an ink-jet apparatus is disclosed in, e.g., Japanese Laid-Open Patent Application No. 8-273529. The ink-jet apparatus will be explained briefly. Methods of discharging ink from the ink-jet apparatus are roughly classified into two types. According to the first method, a liquid is discharged as droplets using the contraction pressure of a piezoelectric element disposed at a nozzle. This method is called a piezo-jet method. In this method, a conductive thin film material is stored in an ink reservoir, and a predetermined voltage is applied to an electrical signal input terminal to contract the cylindrical piezoelectric element, thereby discharging a liquid as droplets. According to the second method, a liquid is heated and bubbled by a heating resistor to discharge droplets. This method is called a bubble-jet method. In a bubble-jet type ink-jet apparatus, the heating resistor generates heat to bubble a liquid, thereby discharging droplets from a nozzle. By using this ink-jet apparatus, an organic metal compound solution is applied as droplets to only a predetermined position. After the solution is dried, the organic metal compound is thermally decomposed by heating processing to form a conductive film from small particles of a metal or metal oxide. FIG. 1 shows a structure of an image display apparatus. In FIG. 1, reference numeral 1 denotes a rear plate; 2, a face plate having a fluorescent film 2b, metal back 2c, and the like formed on the inner surface of a substrate 2a; and 3, a support frame. The rear plate 1, support frame 3, and face plate 2 are joined and tightly sealed with frit glass to constitute an image display apparatus 15. Flat panel displays having this structure are expected to abruptly increase in size and production. In these flat panel displays, frit glass used for sealing contains lead. The fluorescent substance 2b serving as an image forming member, a spacer 4, and the like are high-cost members. Similar to cathode ray tube glass, establishment of a recovery system becomes an important subject in terms of “non-hazardous processing”, “volume reduction”, and “recycling”. DISCLOSURE OF INVENTION Problems to be solved by the present invention will be described in the following order, and examples for respective solving means and embodiments will be explained in this order. [Problem 1] The FPD has a different structure from that of a cathode ray tube, and requires another processing method. That is, the FPD is constituted by airtightly joining two substrates, i.e., a face plate and rear plate mainly containing glass via a frame with frit glass. In general, frit glass containing a large amount of lead component so as to enable low-temperature baking is used. For the same reason as a cathode ray tube, the FPD must be separated into glass not containing any lead and glass containing lead in order to reuse glass. In reusing members other than glass, lead must be removed. The present invention has been made to solve the above problem, and has as its object to provide a processing method of easily reusing a scrapped FPD. [Problem 2] It is another object of the present invention to provide a disassembly processing method including a separation/recovery method for lead as a hazardous metal, and a recovery/reuse method for rare elements such as noble metal elements and rare-earth elements. [Problem 3] When a flat display is scrapped owing to generation of defects during the manufacture or upon the lapse of a service life, the entire display is shredded and scrapped, which increases the scrap amount. Recently, social demands arise for minimizing generation of wastes along with industrial activities, and reuse of members is becoming an imminent subject. When a constituent material contains a hazardous element or the like, the hazardous element must be separated. A rear plate having electron-emitting elements that determines the performance of an image display apparatus often uses a high-cost substrate in order to obtain uniform element characteristics. Particularly, an element electrode which is first formed on a rear plate substrate is often made of a strong material which can resist subsequent steps. The present invention has been made to solve this problem, and has as its object to provide a disassembly method of easily reusing a rear plate as an important constituent component of a scrapped image display apparatus, to provide a separation/recovery method for an element such as lead contained in a constituent material, and to efficiently form conductive films including the electron-emitting portions of a plurality of electron-emitting elements to be formed. [Problem 4] When a flat display is scrapped owing to generation of defects during the manufacture or upon the lapse of a service life, the entire display is shredded and scrapped, which is economically undesirable because the constituent material contains a relatively high-cost material. Especially, the panel uses many spacers, and the manufacture of spacers requires a high manufacturing cost and long time because glass must be formed into thin pieces and conductive films must be formed. Even when a display is scrapped due to any reason, the cause is rarely a defective spacer, and spacers can often be reused without any problem. For this reason, in scraping a flat display, spacers are desirably separated from other members, recovered, and reused. As described above, the spacer is a thin plate and formed from a glass substrate, and may be damaged while a display is dismantled. Thus, development of a method capable of recovering spacers without any damage is desired. [Problem 5] Conventionally, rare-earth elements have hardly been recovered from a display apparatus scrapped after use. This is because (1) the amount of rare-earth elements used per display apparatus is very small, and the recovery is difficult, (2) rare-earth elements are used not as single substances but as compounds or alloys, and the separation cost is high, and (3) relatively low-cost imported rare-earth elements can be acquired at lower cost under the influence of the strong yen. However, the recycling of these materials is desirably promoted in terms of environmental conservation and stably supply of rare-earth element resources. A method of recovering rare-earth elements from industrial products is an important subject. Note that rare-earth elements are mainly contained in fluorescent substances. Fluorescent substances also contain chromium and sulfur elements, and these elements are also desirably recovered in terms of environmental conservation. On the other hand, a face plate from which fluorescent substances are recovered loses almost all the smoothness of the inner surface. For this reason, such a face plate is conventionally shredded into cullets, buried in a least controlled landfill site, or reused as a glass material. In recent years, there are proposed a method of renewing the smoothness of the inner surface again by acid treatment and reusing the face plate, instead of shredding the face plate into cullets. However, this method is no longer effective because least controlled landfill sites are being saturated. Moreover, acid treatment is wet treatment, and is not preferable in terms of the cost and work environment. The present invention has been made in consideration of the above situation, and has as its object to provide a method of efficiently recovering fluorescent substances contained in a display apparatus, and recovering and reusing a face plate while maintaining or renewing the smoothness of the inner surface. [Problem 6] To dismantle, disassemble, and reuse an image display apparatus having an airtight container kept at a pressure lower than the atmospheric pressure, the interior of the airtight container must be returned to the atmospheric pressure. In returning to the atmospheric pressure, as the pressure difference from the internal pressure of the airtight container is larger, a larger amount of gas such as air often abruptly flows into the airtight container to damage the interior of the airtight container or destruct the airtight container. This may unexpectedly destruct the airtight container to scatter fragments, which is not preferable in terms of safety. This does not pose a serious problem when a CRT is shredded into cullets and reused as a glass material. However, to maximally reuse each member of an image display apparatus, the destruction not only increases wastes such as garbage in terms of resource conservation, but also wastes energy and labor. Particularly in an FPD, the container incorporates many atmospheric pressure-resistant constituent members such as spacers. The destruction greatly damages the atmospheric pressure-resistant constituent members, and the destructed members damage and destruct the interior of the airtight container of the image display apparatus to inhibit reuse of these members. A spacer requires a higher cost than other members because the shape of the side surface is made uniform or the spacer is uniformly coated with a film having a conductivity corresponding to the specifications of an image display apparatus in order to prevent distortion of an image. The present invention has been made to solve the above problem, and has as its object to reuse a member in dismantling and disassembly by smoothly returning the interior of an evacuated airtight container of an image display apparatus to an external pressure. [Problem 7] When a flat display is scrapped owing to generation of defects during the manufacture or upon the lapse of a service life, the entire display is shredded and scrapped, which poses an environmental problem, and is not economically preferable because the constituent material of an element includes a relatively high-cost material. For example, a panel uses many spacers. The spacers require a high manufacturing cost and long time because glass must be shredded into thin pieces and conductive films must be formed. Further, a rear plate, face plate, and support frame can be reused after portions which need to be repaired in accordance with the situation are appropriately processed. For this reason, demands arise for recovering and reusing members without any damage and efficiently recovering resources in disassembling a flat display due to generation of defects during the manufacture or upon the lapse of a service life. It is still another object of the present invention to provide a method of safely, easily dismantling a flat display into constituent members, and a flat display panel suitable for this disassembly. [Problem 8] In disassembling and fractionating a cathode ray tube, flat panel display, and the like, the hazardous metal amount must be quantitatively detected for wastes left after fractionated members for reuse are recovered, and whether the residual amount is an allowance or less must be checked and confirmed to prevent environmental pollution/destruction. As for fractionated members for reuse, the residual amount of lead (hazardous metal) is wanted to be quantitatively detected for fractionation depending on the presence/absence of lead. To detect lead in a member, an inspection method using a fluorescent X-ray or the like is known. This method, however, must scan the entire surface of a member to be inspected, and becomes cumbersome for many targets to be inspected such as glass cullets. Inspection target objects are limited, quantitative detection is impossible, and the method is difficult to apply. The present invention has been made to solve the conventional problem, and has as its object to provide a residual hazardous metal amount inspection apparatus capable of quantitatively detecting the amount of hazardous metal such as lead left in an inspection target object such as a fractionated glass member or waste, inspecting various members without particularly limiting inspection target objects, and easily quantitatively detecting the hazardous metal amount without any cumbersome operation in disassembling and fractionating a flat display panel or the like. [Problem 9] A technique of disassembly processing for recycling a flat display panel is being developed, and conventional related arts cannot be directly adopted. For example, if the technique of cathode ray tube glass disassembly processing disclosed in Japanese Laid-Open Patent Application No. 9-193762 or the like is employed, the weight of a rear plate or face plate is applied to a spacer 4 to destruct it in separating the spacer 4. This technique cannot be applied to disassembly of a flat display panel. The present invention has been made to solve the conventional problem, and has as its object to provide a flat panel display disassembly apparatus capable of performing disassembly processing by proper steps, recovering a directly reusable constituent member such as a spacer without any damage, and preferably recycling the recovered member. [Problem 10] An FPD has a different structure from that of a cathode ray tube, and requires another processing method. The FPD is constituted by airtightly joining two substrates, i.e., a face plate and rear plate mainly containing glass via a frame with frit glass. In general, frit glass containing a large amount of lead component so as to enable low-temperature baking is used. In some cases, the material of a wiring line and the constituent material of a face plate contain lead in addition to frit glass. For the same reason as a cathode ray tube, the FPD must be separated into glass not containing any lead and glass containing lead in order to reuse glass. Also in reusing members other than glass, lead must be removed. To remove lead, a method of selectively dissolving and separating a lead component using an aqueous acid or alkaline solution is effective. However, practicing this method on a large scale requires a large amount of aqueous solution for dissolving lead and a large amount of water for the subsequent cleaning step. To heat and flow a solution., large energy must be applied. This increases the processing cost. The present invention has been made to solve the above problem, and has as its object to provide a method of processing a scrapped FPD at low cost. [Problem 11] Rare-earth elements have hardly been recovered from a display scrapped after use. This is because (1) the amount of rare-earth elements used per display is very small, and the recovery is difficult and has not been automated, (2) rare-earth elements are used not as single substances but as compounds or alloys, and the separation cost is high, and (3) relatively low-cost imported rare-earth elements can be acquired at lower cost under the influence of the strong yen. However, the recycling of these materials must be promoted in terms of environmental conservation and stable supply of rare-earth element resources. A method of recovering rare-earth elements from industrial products is becoming an important subject. Some home appliance manufacturers start recovery business for CRTs, whereas demands arise for immediately promoting the recycling of flat panel displays. The present invention has been made in consideration of the above situation, and has as its object to provide a fluorescent substance recovery method and apparatus capable of efficiently, easily dismantling a flat display panel, and effectively recovering particularly fluorescent substances. [Problem 12] An FPD (Flat Panel Display) has a different structure from that of a cathode ray tube, and requires another processing method. The FPD is constituted by airtightly joining two substrates, i.e., a face plate 2 and rear plate 1 mainly containing glass via a frame with frit glass. In general, frit glass containing a large amount of lead component so as to enable low-temperature baking is used. In some cases, the material of a wiring line and the constituent material of a face plate contain lead in addition to frit glass. For the same reason as a cathode ray tube, the FPD must be separated into glass not containing any lead and glass containing lead in order to reuse glass. In reusing members other than glass, lead must be removed. To remove lead, a method (submergence processing) of selectively dissolving and separating a lead component using an aqueous acid or alkaline solution is effective. However, practicing this method on a large scale requires a large amount of aqueous solution for dissolving lead and a large amount of water for the subsequent cleaning step must be prepared. Further, to heat and flow a solution, large energy must be applied. To suppress the cost and complete processing within a short time, many glass plates obtained by disassembling a scrapped FPD must be processed by putting them into a submergence processing bath at once. In addition, quickly conveying glass plates between processing baths requires a convey mechanism for conveying many glass plates at once. The present invention has been made in consideration of the above situation, and has as its object to provide a substrate processing method and apparatus of realizing efficient and appropriate submergence processing. [Problem 13] In reusing substrate glass, a rear plate 1 and face plate 2 are separated from other members. Wiring lines, elements, and the like formed on the substrate are removed to obtain a single glass member. The glass member can be reused as a substrate, or can be shredded into cullets and newly reused as a glass substrate or the material of another product. When, however, wiring lines, electron-emitting elements, frit glass, and the like are formed on a glass substrate, and soda-lime glass is used as the substrate, a thin film may be formed on the surface in advance. Some of the materials may be in tight contact with the glass substrate, or some of the elements may gradually diffuse into the glass substrate. Thus, the thin film may be difficult to completely separate from substrate glass. In shredding used glass into cullets and reusing them, if an element other than a constituent element is mixed in glass cullets, the mixed element influences the physical properties and color of glass. Impurity element-containing glass may not be reused. Even when glass is reused as a substrate, the glass is desirably restored to an initial glass substrate state as much as possible. The present invention has been made in consideration of the above situation, and has as its object to provide a glass substrate processing method of realizing effective and efficient reuse of substrate glass. Means for solving the problems of the present invention will be explained in an order corresponding to the problems to be solved by the above-described inventions. [Solving Means 1] To achieve the above object, according to the present invention, a disassembly processing method for an FPD having a structure in which two substrates, i.e., face plate and rear plate mainly containing glass are airtightly joined via a frame with frit glass is characterized by separating a portion of the frame joined with frit glass from remaining portions. According to the present invention, a disassembly processing method for an FPD which incorporates a spacer and has a fluorescent screen on the inner surface of a face plate is characterized by comprising leaving the spacer and the fluorescent screen at remaining portions in separating a portion of the frame joined with frit glass. The present invention is characterized by cutting part of the face plate and the rear plate to separate a portion of the frame joined with frit glass from remaining portions. In the present invention, means for determining a cutting position includes means (video camera) for detecting a position of the frame joined with frit glass. [Solving Means 2] To achieve the above object, according to the present invention, an FPD having a structure in which two substrates, i.e., face plate and rear plate mainly containing glass are airtightly joined via a frame with frit glass is characterized by comprising dissolving a joint portion with nitric acid to peel the face plate and the rear plate. In the present invention, the FPD may incorporate a spacer joined with frit glass. As a method of dissolving frit glass with nitric acid, a method of dipping a joint portion in nitric acid is safe and easy because nitric acid must penetrate deep into the frit joint portion. The present invention adopts this method, but a method of, e.g., spraying nitric acid from a nozzle to joint portions is also available. The frit joint portion to be dissolved with nitric acid can employ (1) a method of dipping all joint portions in nitric acid to dissolve and peel them, and separating, scraping, and reusing respective portions, and (2) a method of leaving a portion to be reused without eroding it with an acid, dipping remaining portions in nitric acid to dissolve, peel, and scrap them. Either method can separate only a hazardous lead component among metal components dissolved with nitric acid, and can reuse and recycle the remaining elements. [Solving Means 3] To achieve the above object, according to the present invention, a rear plate recycling method comprises the step of dipping a welded portion in a nitric acid solution to dissolve frit glass, and the step of forming a conductive film by an ink-jet method, in scraping an image display apparatus constituted by at least a rear plate having a plurality of electron-emitting elements each formed from a pair of element electrodes and a conductive film, a face plate having an image forming member on which an image is formed upon collision of electrons emitted by the electron-emitting elements, and a support frame which connects the rear plate and face plate and maintains the internal pressure, the rear plate, face plate, and support frame being welded with frit glass. According to the present invention, the rear plate is dismantled by chemically dissolving frit glass without mechanical cutting or the like. Thus, the rear plate can be recovered and reused without damaging the rear plate substrate and element electrode. Wastes can be decreased, resources can be effectively used, and the cost can be reduced. Elements such as Pb are eluted in a dipping nitric acid solution, so that they can be easily recovered. In recycling the rear plate, a conductive film is formed by an ink-jet method. Since the conductive film formation material is used for only a necessary portion, the amount of conductive film material can be minimized. Even when a defect is found after the conductive film is formed, only the defective portion can be formed again. [Solving Means 4] The present invention has been made in consideration of the above situation. According to the present invention, there is provided a spacer recovery method in a flat display which has at least a rear plate with a plurality of electron-emitting elements, a face plate that is arranged to face the rear plate and has an image display portion, a frame, and spacers for holding an interval between the rear plate and the face plate against an atmospheric pressure, the rear plate, the face plate, the frame, and the spacers being welded with frit glass, characterized in that a spacer recovery jig for avoiding contact between the spacers or between the spacers and a peripheral member is used in dipping welded portions between the spacers and the rear plate or the face plate in a nitric acid solution to dissolve frit glass. The spacer recovery jig used in an aspect of the present invention includes a flat plate having one or a plurality of recesses capable of storing the spacers. The spacer recovery jig in another aspect includes a jig having distal ends capable of pinching and holding the respective spacers, and an arm capable of moving the distal ends in an arbitrary direction. According to the present invention, since spacers can be recovered with almost no damage in dismantling a flat display, they can be easily reused, resources can be effectively used, and the cost can be reduced. In addition, since the recovery step does not require any fine manual work, spacers can be safely recovered. [Solving Means 5] According to the present invention, a method of recovering fluorescent substances from a display apparatus in which fluorescent substances are applied to a substrate, and caused to emit light, thereby obtaining display, characterized in that the fluorescent substances applied to the substrate are recovered by both a brush and a suction unit. A display apparatus manufacturing method according to the present invention is characterized by reusing for a display apparatus a substrate from which fluorescent substances are removed by the method of recovering fluorescent substances from a display apparatus according to the present invention. The present invention is effective for recovery of fluorescent substances and a substrate such as a face plate from a display apparatus such as a CRT or flat display apparatus in which fluorescent substances are applied to a substrate such as a face plate, and caused to emit light by irradiation of an electron beam or an ultraviolet ray. A substrate surface coated with fluorescent substances is swept with a brush to brush off fluorescent substances, or fluorescent substances and a black matrix component. When the smoothness of the substrate surface is held or impaired, the substrate is reformed, and the fluorescent substances and black matrix component are swept and sucked by a suction device. The fluorescent substances and black matrix are further transferred to the fluorescent substances separation process. The substrate such as a face plate is unloaded from the step while the smoothness of the surface is held or kept unimpaired, and then the substrate is directly reused as a substrate such as a face plate. As a flat display apparatus for performing display by causing fluorescent substances to emit light, a type of apparatus for irradiating fluorescent substances with an electron beam includes a display apparatus using an electron-emitting element (to be described later) and a vacuum fluorescent display tube for emitting light by a low-speed electron beam. A type of apparatus using an ultraviolet ray includes a plasma display apparatus. When fluorescent substances are irradiated from a back surface with an electron beam or ultraviolet ray, and emit visible light from a front surface, the fluorescent substances are applied to the face plate of the flat display apparatus. When visible light is emitted from a surface on which fluorescent substances are irradiated with a low-speed electron beam, like a vacuum fluorescent tube, the fluorescent substances are applied to the rear plate. [Solving Means 6] According to the present invention, in order to achieve the above object, an image display apparatus is characterized by comprising display means for displaying an image, an airtight container, and means for gradually changing an interior of the airtight container close to a pressure outside the airtight container as needed. The present invention is characterized in that the image display apparatus further comprises an exhaust device, and the means for changing the interior of the airtight container close to the pressure outside the airtight container is arranged at a different position on the airtight container from means connected to the exhaust device. The means for changing the interior of the airtight container close to the pressure outside the airtight container is characterized by comprising a necessary filter. The present invention is characterized by comprising display means for displaying an image, an airtight container for maintaining an external pressure, an atmospheric pressure-resistant structure member in the airtight container, means connected to an exhaust device for evacuating an interior of the airtight container, and means for gradually changing the interior of the airtight container close to a pressure outside the airtight container as needed. Since the image display apparatus having this arrangement has the means for gradually changing the interior of the airtight container close to the atmospheric pressure, the internal member of the airtight container is almost free from any stress caused by a change in pressure in dismantling and disassembly. Thus, the member is hardly destructed, and secondary damage by pieces of the destructed member can be prevented. [Solving Means 7] According to the present invention, a flat display having at least a rear plate with a plurality of electron-emitting elements, a face plate which is arranged to face the rear plate and has an image display portion, a support frame, and a spacer for holding an interval between the rear plate and the face plate against an atmospheric pressure, the rear plate, the face plate, the support frame, and the spacer being welded with frit glass is characterized in that joining of the rear plate and the support frame, and joining of the face plate and the support frame use frit glasses having different softening temperatures, and joining of the spacer and the substrate uses a frit glass having a softening temperature not less than a higher softening temperature of the frit glass among the two types of frit glasses. Each of the plurality of frit glasses is characterized to have a softening temperature different by at least 20° C. from the softening temperatures of the remaining frit glasses. The spacer in the present invention is characterized to be joined to either one of the rear plate and the face plate. A flat display disassembly method according to the present invention is characterized by comprising heating the flat display panel to not less than a softening temperature of a frit glass having the lowest softening temperature, and to not more than the softening temperatures of the remaining frit glasses, melting only the frit glass having the lowest softening temperature to selectively separate only a joint portion joined with the frit glass, and repeating the same procedures to sequentially separate the flat display panel from a joint portion using a frit glass having a lower softening temperature. A method of separating a joint portion joined with the frit glass having the highest softening temperature may include a method of heating the frit glass to not less than the softening temperature to melt the frit glass, thereby separating the joint portion, or may include a method of dissolving the frit glass with a proper solvent to separate the joint portion. A flat display having an airtight container storing at least a substrate with a plurality of electron-emitting elements, and a substrate which is arranged to face the substrate and has an image display portion may be characterized in that joint portions between the substrates and the airtight container are joined with frit glasses having different softening temperatures corresponding to a disassembly order. A flat display having as constituent members at least a rear plate with a plurality of electron-emitting elements, a face plate which is arranged to face the rear plate and has an image display portion, and a support frame for supporting the substrates, the constituent members being welded with frit glass, may be characterized in that joining of the rear plate and the support frame, and joining of the face plate and the support frame use frit glasses having different softening temperatures. A flat display having an envelope storing an electron-emitting element may be characterized in that a joint portion between a rear plate and a support frame constituting the envelope, and a joint portion between a face plate and the support frame use two types of frit glasses having different softening temperatures, and a joint portion between a spacer for supporting an interval between the substrates and at least one of the substrates is joined using a frit glass having a softening temperature higher than the softening temperatures of the two types of frit glasses or equal to the softening temperature of either type of frit glass. A flat display disassembly method is characterized by comprising, in disassembling the flat display, heating the flat display stepwise, and sequentially melting and separating the flat display from a joint portion using frit gas having a lower frit gas, thereby disassembling the flat display. In the flat display according to the present invention, members forming an envelope can be sequentially separated, so that the members can be recovered by a safe and simple method without damaging the envelope and the internal members during the disassembly process. The members can, therefore, be recovered as reusable ones, resources can be effectively used, and the cost can be reduced. [Solving Means 8] To achieve the above object, a residual hazardous metal amount inspection apparatus for inspecting an amount of hazardous metal such as lead contained in an inspection target object such as a member or a waste disassembled and fractionated for recycling comprises first elution means having, in a bath for dipping the inspection target object, an acid solution for eluting a hazardous metal contained in the inspection target object; cleaning means for cleaning the inspection target object after elution by the first elution means; second elution means having an acid solution for eluting a hazardous metal left on the inspection target object, in a bath for dipping the inspection target object cleaned by the cleaning means; and quantitative detection means for quantitatively detecting a hazardous metal amount eluted in the acid solution of the second elution means. In the residual hazardous metal amount inspection apparatus of the present invention, an inspection target object is dipped in the bath of the first elution means to elute a hazardous metal contained in the inspection target object with an acid solution in the bath. The inspection target object is transferred to the cleaning means where the object is cleaned. Then, the inspection target object is dipped in the bath of the second elusion means to elute a hazardous metal left on the inspection target object with an acid solution in the bath. This elution solution is supplied to the quantitative detection means, which quantitatively detects a hazardous metal amount contained in the elusion solution. Hence, in disassembling and fractionating a flat panel display or the like, the amount of hazardous metal such as lead left on an inspection target object such as a fractionated glass member or waste can be quantitatively detected. [Solving Means 9] According to the present invention, a flat panel display disassembly apparatus for disassembling and recycling a flat panel display in which a frame member is interposed between a rear plate and a face plate to constitute a flat vacuum container, and a spacer for holding a gap between the plates against an atmospheric pressure is fixed to both or either one of the plates comprises first support means for applying a pull-up force to a plate fixed to the spacer to support the plate in order to perform the step of separating the frame member from the vacuum container, second support means for receiving and supporting an edge of the plate fixed to the spacer after the frame member is separated, and spacer recovery means for performing the step of separating the spacer from the plate received and supported by the second support member. The flat panel display disassembly apparatus according to the present invention further comprises convey means for, after the step of separating the frame member from the vacuum vessel, receiving the supported plate from the first support means, receiving and supporting an edge of the plate, and conveying the plate to the second support means. In the flat panel display disassembly apparatus according to the present invention, the convey means has a structure which prevents a load of the plate fixed to the spacer from being applied to the spacer. In the flat panel display disassembly apparatus of the present invention having this arrangement, the first support means supports a plate fixed to spacers by applying a pull-up force in the step of separating a frame member from a vacuum container. The spacers are suspended and are free from the weight of the fixed plate, and the frame member can be separated without applying any load to the spacers. After the frame is separated, the second support means receives and supports the edge of the plate fixed to the spacers. At this time, the spacers are suspended and are free from the weight of the fixed plate. The step of separating the spacers from the plate received and supported by the second support means is executed by the spacer recovery means while the plate is kept received and supported. Also in the spacer separation/recovery step, the spacers are free from any extra weight, and can be prevented from being damaged. [Solving Means 10] According to the present invention, a flat panel display disassembly processing method for a flat panel display having a structure in which two substrates, i.e., face plate and rear plate mainly containing glass are airtightly joined via a frame with lead-containing frit glass is characterized by comprising the step of separating and extracting a portion including the face plate and a portion including the rear plate from the flat panel display to be scrapped, and the step of separately collecting pluralities of extracted portions including face plates and extracted portions including rear plates, separately charging the portions in processing baths at once, and executing submergence processing. The present invention further includes, as characteristic features, that “the submergence processing includes processing using an aqueous acid or alkaline solution;” “the submergence processing includes processing using an aqueous acid or alkaline solution, and subsequent cleaning processing using water or an organic solvent;” “the submergence processing is performed by flowing a processing solution in the processing bath;” “the submergence processing is performed by circulating a processing solution between the processing bath and an outside;” “the submergence processing is performed by heating a processing solution;” and “the submergence processing is performed by propagating a vibration or an acoustic wave to an object to be processed.” [Solving Means 11] According to the present invention, a flat panel body fixing apparatus for fixing a flat panel body constituted by joining a pair of panels facing each other via a frame comprises a fixing jig disposed to be retractable with respect to the fiat panel body so as to surround the flat panel body placed on a base, wherein the fixing jig swings and comes into contact with the flat panel body from around the flat panel body, thereby fixing the flat panel body. The flat panel body fixing apparatus according to the present invention is characterized in that the apparatus further comprises a driving mechanism for moving back and forth the fixing jig with respect to the flat panel body, position detection means for detecting a position of the fixing jig on the basis of a moving amount of the fixing jig, and a controller capable of controlling the driving mechanism, and a size of the flat panel body is detected from positional information of the fixing jig obtained by the position detection means. The flat panel body fixing apparatus according to the present invention is characterized by further comprising chuck means for chucking and fixing the flat panel body via a chucking hole formed in the base. According to the present invention, a flat panel display fluorescent substance recovery apparatus for recovering fluorescent substances in a flat panel display which includes a face plate, a rear plate, and a frame, and emits light by irradiating the fluorescent substances applied to the face plate with electrons is characterized by comprising the above-described fixing apparatus, the face plate being fixed by the fixing jig from four directions. The flat panel display fluorescent substance recovery apparatus according to the present invention is characterized in that the apparatus comprises a plurality of processing means for recovering the fluorescent substances from the face plate fixed by the fixing apparatus, and the processing means are driven by the controller on the basis of the positional information obtained by the position detection means. The flat panel display fluorescent substance recovery apparatus according to the present invention is characterized in that the processing means include cutting means for separating the face plate and the rear plate, and recovery means for sweeping and sucking the fluorescent substances of the face plate. The flat panel display fluorescent substance recovery apparatus according to the present invention is characterized in that processing work operations by a cutter of the cutting means and a recovery brush of the recovery means are controlled by the controller so as to be performed within predetermined work ranges. The flat panel display fluorescent substance recovery apparatus according to the present invention is characterized in that the apparatus further comprises fluorescent substance detection means for detecting an amount of fluorescent substances left on the face plate, and actuation of the recovery means is controlled based on fluorescent substance amount information obtained by the fluorescent substance detection means. The flat panel display fluorescent substance recovery apparatus according to the present invention is characterized in that the fluorescent substance amount information is defined by a transmittance or an absorbance of visible light transmitting through the face plate. The flat panel display fluorescent substance recovery apparatus according to the present invention is characterized in that the fluorescent substance amount information is defined by a fluorescent intensity generated by irradiating an inner surface of the face plate with an ultraviolet ray or visible light. The flat panel display fluorescent substance recovery apparatus according to the present invention is characterized in that the fluorescent substance detection means moves following the work range of the recovery brush of the recovery means. According to the present invention, a flat panel display fluorescent substance recovery method of recovering fluorescent substances in a flat panel display which includes a face plate, a rear plate, and a frame, and emits light by irradiating the fluorescent substances applied to the face plate with electrons is characterized by comprising the step of swinging a fixing jig and fixing the flat panel display from four directions of the flat panel display placed on a base, the step of separating the face plate and the rear plate of the fixed flat panel display, and the recovery step of sweeping and sucking the fluorescent substances of the face plate. The flat panel display fluorescent substance recovery method according to the present invention is characterized by further comprising the step of detecting a position of the fixing jig on the basis of a moving amount of the fixing jig for fixing the flat panel display. The flat panel display fluorescent substance recovery method according to the present invention is characterized by further comprising the step of chucking and fixing the flat panel display via a chucking hole formed in a base. The flat panel display fluorescent substance recovery method according to the present invention is characterized in that cutting work by a cutter is controlled to match a size of the face plate on the basis of positional information of the fixing jig in separating the face plate and the rear plate. The flat panel display fluorescent substance recovery method according to the present invention is characterized in that recovery work by a recovery brush is controlled to match a size of the face plate on the basis of positional information of the fixing jig in recovering the fluorescent substances of the face plate. The flat panel display fluorescent substance recovery method according to the present invention is characterized in that the method further comprises the step of detecting an amount of fluorescent substances left on the face plate, and the work of the recovery brush is controlled based on detected fluorescent substance amount information. The flat panel display fluorescent substance recovery method according to the present invention is characterized by further comprising the step of controlling the recovery brush so as to move following a work range of the recovery brush. According to the present invention, a flat panel display placed on the base is fixed by the fixing jig by swinging the fixing jig from the four directions of the flat panel display. At this time, the position of the fixing jig is detected based on the moving amount of the fixing jig, and this positional information is effectively used for the subsequent processing step. That is, in driving a cutter for separating a face plate and rear plate, and a recovery brush for sweeping and sucking the fluorescent substances of the face plate, the work ranges of the cutter and recovery brush are controlled using positional information of the fixing jig. As a result, the fluorescent substances of the face plate can be efficiently, reliably recovered. The fixing jig can effectively cope with a change in the panel size of the flat panel display, and is very practical. [Solving Means 12] According to the present invention, a substrate processing method of disassembling a substrate mainly constituted by a pair of glass substrates airtightly joined via a frame is characterized by comprising the step of separating the pair of joined substrates, the step of holding a plurality of separated substrates in parallel with each other at a predetermined gap, and the step of conveying the plurality of held substrates at once, and performing predetermined processing. The substrate processing method according to the present invention is characterized in that the substrates are held to cause surfaces of the substrates to stand substantially vertically. The substrate processing method according to the present invention is characterized in that the substrates are supported by linearly contacting predetermined portions of the substrates. According to the present invention, a substrate processing apparatus for disassembling a substrate mainly constituted by a pair of glass substrates airtightly joined via a frame is characterized by comprising a plurality of support members disposed in parallel with each other at a predetermined gap, separated substrates being held between the support members so as to stand substantially vertically. The substrate processing apparatus according to the present invention is characterized in that at least portions of the support members in contact with the substrates are round or arcuated. According to the present invention, a flat panel display disassembly processing method for a flat panel display having a structure in which a face plate and a rear plate formed from a pair of substrates mainly containing glass are airtightly joined via a frame with lead-containing frit glass is characterized by comprising, in conveying the glass substrates extracted from the flat panel display to be disassembled and performing submergence processing, processing the face plate or the rear plate by any one of the substrate processing methods described above. The flat panel display disassembly processing method according to the present invention is characterized by comprising using the above substrate processing apparatus. The present invention comprises the means for holding glass plates in order to convey at once many glass plates obtained by disassembling scrapped FPDs and perform submergence processing. Since many substrates are preferably held at once, the present invention can realize a method of processing scrapped FPDs at low cost. [Solving Means 13] According to the present invention, a glass substrate processing method of detecting a surface state of a glass substrate and processing a substrate surface in accordance with a detection result is characterized by comprising the detection step of irradiating the glass substrate surface with a primary X-ray, and detecting a generated fluorescent X-ray to detect an element present on the glass substrate surface, and the removal step of removing an element other than a glass constituent element from the glass substrate surface in accordance with a detection result of the detection step. The glass substrate processing method according to the present invention is characterized in that the detection step of detecting an element present on the glass substrate surface comprises changing relative positions of the glass substrate and a fluorescent X-ray detector in accordance with a size of the glass substrate. The glass substrate processing method according to the present invention is characterized in that a fluorescent X-ray detector irradiates with the primary X-ray a region wider than a region in which a fluorescent X-ray can be detected. The glass substrate processing method according to the present invention is characterized in that an incident angle when the primary X-ray is incident on the glass substrate is not more than a critical angle of the primary X-ray. In addition, the glass substrate processing method according to the present invention is characterized in that the removal step for the glass substrate surface is performed by polishing the glass substrate surface. The glass substrate processing method according to the present invention is characterized in that the detection step and the removal step for the glass substrate surface are repetitively performed. According to the present invention, a glass substrate recycling processing method in a flat display including a rear plate having a plurality of electron-emitting elements formed on a glass substrate, a face plate having an image display portion formed on a glass substrate, and a support frame which joins the plates so as to face each other is characterized by comprising applying the above processing method to a substrate surface of the rear plate or the face plate after the rear plate and the face plate are separated and extracted. The glass substrate recycling processing method in a flat display according to the present invention is characterized in that a wiring line mainly containing Ag is formed on the glass substrate of the rear plate. The glass substrate recycling processing method in a flat display according to the present invention is characterized in that a thin film containing an element other than a glass constituent element is formed on the glass substrate surface constituting the rear plate. The glass substrate recycling processing method according to the present invention is characterized in that frit glass for joining the rear plate, the face plate, and the frame is melted to separate the rear plate, the face plate, and the frame. According to the present invention, a glass substrate recycling processing apparatus in a flat display including a rear plate having a plurality of electron-emitting elements formed on a glass substrate, a face plate having an image display portion formed on a glass substrate, and a support frame which joins the plates so as to face each other is characterized by comprising a mechanism of irradiating with an X-ray a surface of the glass substrate constituting the separated/extracted rear plate or face plate, and detecting a generated fluorescent X-ray to detect an element present on the glass substrate surface, and a mechanism of removing an element other than a glass constituent element from the glass substrate surface. According to the present invention, residues on a glass substrate surface can be detected by a simple method, and all the elements other than a glass constituent element can be removed in the step of processing used substrate glass. Consequently, glass can be efficiently reused without any wastes. BRIEF DESCRIPTION OF DRAWINGS FIG. 1A is a partially cutaway perspective view showing an example of a flat panel display processed by a disassembly processing method according to the present invention; FIG. 1B is a sectional view of the flat panel display shown in FIG. 1A; FIG. 2 is a schematic view showing a surface-conduction type electron source display among flat panel displays according to the present invention; FIG. 3A is a plan view showing a flat panel cutting position in a flat panel display disassembly processing method according to the present invention; FIG. 3B is a sectional view of the flat panel shown in FIG. 3A; FIG. 4 is a flow chart showing an FPD disassembly processing method according to the present invention; FIG. 5 is a flow chart showing the steps of a scrapped flat panel display disassembly method according to the present invention; FIG. 6A is an explanatory view showing a state in which the whole panel is simultaneously disassembled by the method of the present invention; FIG. 6B is a view showing a state in which respective portions of the panel in FIG. 6A are separated; FIG. 7A is a view showing a method of disassembling a panel while leaving part of it in the method of the present invention; FIG. 7B is a view showing a state in which a face plate equipped with a spacer in FIG. 7A is pulled up; FIG. 8A is a view showing a method of disassembling a panel while leaving part of it in the method of the present invention; FIG. 8B is a view showing a state in which a rear plate in FIG. 8A is pulled up; FIG. 9 is a perspective view schematically showing a surface-conduction type electron source display (SED) as an FPD to be disassembled by the method of the present invention; FIG. 10 is a partially cutaway perspective view showing an example of an image display apparatus having a rear plate to be recycled by the present invention; FIG. 11A is an explanatory view showing the steps of a rear plate recovery/recycling method according to the present invention; FIG. 11B is a view showing a state in which the rear plate in FIG. 11A is peeled; FIG. 12 is a perspective view showing an example of a rear plate substrate cleaned by the recycling method of the present invention; FIGS. 13A, 13B, 13C, 13D, and 13E are schematic views for explaining the steps in forming an electron-emitting element on a rear plate; FIG. 14 is a perspective view showing another example of the rear plate substrate cleaned by the recycling method of the present invention; FIG. 15 is a view showing an embodiment of a spacer recovery method according to the present invention; FIG. 16A is a plan view showing a spacer recovery container used in the method of the present invention; FIG. 16B is a sectional view showing the spacer recovery container in FIG. 16A; FIG. 17A is a plan view showing another spacer recovery container used in the present invention; FIG. 17B is a sectional view showing the spacer recovery container in FIG. 17A; FIG. 18 is a view showing another embodiment of the spacer recovery method according to the present invention; FIGS. 19A and 19B are views showing a spacer in the present invention; FIGS. 20A, 20B, 20C, 20D, and 20E are views showing an example of the steps in recovering a spacer according to the present invention; FIG. 21 is a view showing a flat display panel cutting method according to the present invention; FIGS. 22A, 22B, 22C, and 22D are views showing another example of the steps in recovering a spacer according to the present invention; FIGS. 23A, 23B, 23C, 23D, and 23E are views showing still another example of the steps in recovering a spacer according to the present invention; FIGS. 24A, 24B, and 24C are views showing still another example of the steps in recovering a spacer according to the present invention; FIG. 25 is a flow chart showing the steps in recovering fluorescent substances from a display apparatus according to the present invention; FIG. 26 is a view showing the operation of a revolutionary motion type brush; FIG. 27 is a view showing the operation of a pestling motion type brush; FIGS. 28A and 28B are views, respectively, showing different structures of a brush and suction unit; FIG. 29 is a perspective view showing a display apparatus using a spacer; FIG. 30 is a schematic view showing the structure of an image display apparatus according to the present invention; FIG. 31 is a perspective view showing an FPD as an example of the image display apparatus according to the present invention; FIG. 32 is a perspective view showing an SED as another example of the image display apparatus according to the present invention; FIGS. 33A and 33B are a sectional view and plan view, respectively, showing an embodiment of a flat display according to the present invention; FIGS. 34A, 34B, 34C, and 34D are views showing an embodiment of a flat display disassembly method according to the present invention; FIGS. 35A, 35B, and 35C are views showing another embodiment of the flat display disassembly method according to the present invention; FIGS. 36A, 36B, 36C, 36D, and 36E are views showing still another embodiment of the flat display disassembly method according to the present invention; FIG. 37A is a view showing an example of an electron-emitting element according to the present invention; FIG. 37B is a sectional view showing the electron beam-emitting element in FIG. 37A; FIGS. 38A, 38B, and 38C are views showing an embodiment of a flat display manufacturing method according to the present invention; FIGS. 39A, 39B, and 39C are views showing another embodiment of a flat display disassembly method according to the present invention; FIGS. 40A, 40B, and 40C are views showing still another embodiment of the flat display disassembly method according to the present invention; FIG. 41 is a view showing the arrangement of a residual hazardous metal amount inspection apparatus according to an embodiment of the present invention; FIG. 42 is a flow chart for sequentially explaining inspection processing by the residual hazardous metal amount inspection apparatus shown in FIG. 41; FIG. 43A is a partially cutaway perspective view showing a flat panel display; FIG. 43B is a sectional view showing the flat panel display in FIG. 43A; FIG. 44A is a perspective view showing the arrangement of a flat panel display disassembly apparatus according to the first embodiment of the present invention; FIG. 44B is a plan view 44 showing the apparatus to be bought in FIG. 44A; FIG. 45 is a side view showing a table and support means in FIGS. 44A and 44B; FIG. 46A is a front view showing a convey means in FIG. 44; FIG. 46B is a side view showing the convey means in FIG. 44; FIG. 47A is a front view showing another example of the convey means in FIGS. 44A and 44B; FIG. 47B is a side view showing the convey means in FIGS. 44A and 44B; FIG. 48 is a side view showing a spacer recovery jig in FIGS. 44A and 44B; FIG. 49 is a side view showing another example of the spacer recovery jig in FIGS. 44A and 44B; FIG. 50 is a flow chart for sequentially explaining the disassembly step by the flat panel display disassembly apparatus shown in FIGS. 44A and 44B; FIG. 51A is a perspective view showing the arrangement of a flat panel display disassembly apparatus according to the second embodiment of the present invention; FIG. 51B is a plan view showing the disassembly apparatus in FIG. 51A; FIG. 52 is a schematic view showing an arrangement of a liquid processing bath in an FPD disassembly processing method according to the present invention; FIG. 53 is a flow chart for explaining an FPD disassembly processing method according to the present invention; FIG. 54 is a flow chart showing the basic steps of fluorescent substance recovery processing according to the present invention; FIG. 55A is a plan view showing an arrangement of a movable stop type fixing jig according to the present invention; FIG. 55B is a side view showing the movable stop type jig in FIG. 55A; FIG. 56 is a perspective view showing the separation step for a face plate and rear plate according to the present invention; FIG. 57 is a view showing the structure and operation of a recovery brush according to the present invention; FIG. 58 is a view showing the steps of recovering fluorescent substances from a flat panel display according to the present invention; FIG. 59 shows views for explaining a glass plate holding mechanism according to an FPD disassembly processing method of the present invention; FIG. 60 is a schematic view showing the arrangement of a liquid processing bath according to the FPD disassembly processing method of the present invention; FIG. 61 is a flow chart showing an example of the steps of the FPD disassembly processing method of the present invention; FIG. 62 is a flow chart showing the flat display disassembly processing step according to the present invention; FIG. 63 is a schematic view showing a fluorescent X-ray analysis apparatus for detecting an element present on a glass substrate surface according to the present invention; FIGS. 64A and 64B are schematic views showing a state in which the relative positions of a sample surface and detector are changed in a total reflection type fluorescent X-ray analysis apparatus according to the present invention; FIG. 65 is a schematic view showing the irradiation region of a primary X-ray in the total reflection type fluorescent X-ray analysis apparatus according to the present invention; FIGS. 66A and 66B are schematic views each showing the detection region of a fluorescent X-ray in the total reflection type fluorescent X-ray analysis apparatus according to the present invention; FIG. 67 is a schematic view showing a glass substrate surface polishing device according to the present invention; FIG. 68A is a plan view showing an electron-emitting element which can be used for the present invention; FIG. 68B is a sectional view showing the electron-emitting element in FIG. 68A; and FIGS. 69A and 69B are waveform charts each showing the application voltage in forming the electron-emitting element used in the present invention. DISCLOSURE OF INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The numbers of respective embodiments and examples correspond to those of the above-described problems and solving means. Embodiment 1 Embodiment 1 of the present invention will be described in detail below with reference to the accompanying drawings. This embodiment will exemplify disassembly processing for an FPD which incorporates spacers and has a fluorescent screen on the inner surface of a face plate, as shown in FIGS. 1A, 1B, and 2. In FIGS. 1A and 1B, reference numeral 1 denotes a rear plate; 2, a face plate; 3, a frame; and 4, spacers. Lead-containing frit glass 5 is used at each joint portion between the rear plate 1, the face plate, and the frame 3 that is shown in black in FIGS. 1A and 1B. The spacers 4 are bonded to either one of the face plate side and rear plate side, or the two sides with frit glass or the like. In this embodiment, the spacers 4 are bonded to only the face plate side. Examples of the materials of the rear plate, face plate, and frame are silica glass, glass containing a small amount of impurity such as Na, soda-lime glass, and glass prepared by stacking a silica layer on soda-lime glass. On the face plate, a fluorescent film 2b is formed on the inner surface of a glass substrate 2a, and a metal back 2c containing Al is formed on the inner surface of the fluorescent film. The spacer is basically made of glass. The surface of the spacer may be coated with an antistatic conductive film. In addition, an exhaust pipe (not shown) for evacuating the FPD is generally attached to the FPD. In general, the exhaust pipe is formed from low-melting glass containing lead. FIG. 2 shows a surface-conduction type electron source display (SED) of matrix driving scheme as an example of the FPD. In FIG. 2, surface-conduction type electron sources 11, and wiring lines 12 and 13 for driving the electron sources are formed on the rear plate 1. The wiring lines 12 and 13 are X-direction (Dox1, Dox2, . . . , Doxm) and Y-direction (Doy1, Doy2, . . . , Doyn) element wiring lines, and are made of Ag, Pd, or the like. The X-direction wiring lines and Y-direction wiring lines are insulated by an insulating layer at least at their intersections. The insulating layer is made of glass containing a large amount of lead. As described above, various portions of the FPD use lead-containing materials. Of these portions, frit glass at the frame contains a large amount of lead. The characteristic feature of the present invention is to process the frame separately from the remaining portions. That is, as shown in FIGS. 3A and 3B, according to the FPD disassembly processing method of the present invention, the FPD is cut at cutting lines A-A, A′-A′, B-B, and B′-B′. FIG. 4 is a flow chart showing the steps of an FPD device disassembly processing method for explaining the embodiment of the present invention. Steps (1) to (3) as the former half of this method are pre-processing steps, and include the step of extracting an FPD from the housing of an FPD device, and removing accessory wiring lines and terminals. In steps (4) to (6), the vacuum in the FPD is canceled by a proper method, and then the exhaust pipe is detached. Since the exhaust pipe contains lead, it is processed and reused as lead-containing glass. In step (7), the FPD is measured to acquire information about area of a region where the frame is sealed with frit glass, and cutting positions are determined. In general, frit glass is black, and its presence can be optically detected via a glass substrate. More specifically, the area of the region where the frame is sealed with frit glass can be measured by image-sensing the FPD with a video camera and executing image analysis for the obtained video image. In this case, cutting lines are set inside the region where the frame is sealed with frit glass. When the position and width of the frame are known to fall within a predetermined range, the edges of the FPD are simply detected, and lines apart from the edges by a predetermined distance are set as cutting lines. Step (8) is the separation step for the frame and remaining portions. The frame is cut along the cutting lines set in step (7). The cutting method can be a general method of cutting glass. This method includes (1) a method of scratching glass with a hard metal roller and applying thermal stress to the scratched portion, (2) a diamond cutting saw, (3) a diamond wheel, (4) laser processing, and (5) ultrasonic processing. By this step, the scrapped FPD is separated into three parts, i.e., a frame (9), an inner panel member (11), a face plate (13), and a rear plate (20). Processing methods for the respective members will be described. The frame (9) is shredded and reused as lead-containing glass (10). If a spacer (made of glass), grid (made of a metal), and the like exist as inner panel members in step (11), they are recovered and reused (step (12)). As for the face plate in step (13), fluorescent substances are removed in step (14), and recovered in step (15). Step (16) is the step of removing residual frit glass. After lead in the residual frit glass is recovered in this step, the glass substrate is shredded into glass cullets in step (18). Step (19) makes it possible to reuse these glass cullets as face plate and rear plate substrates. As for the rear plate in step (20), wiring lines are removed in step (21), a metal (Ag, Pb, or the like) contained in the wiring lines is recovered, and the glass substrate is shredded into glass cullets in step (23). Step (24) makes it possible to reuse these glass cullets as face plate and rear plate substrates. EXAMPLE 1 The present invention will be described in detail by way of Example 1 with reference to FIGS. 1A and 1B to 4. EXAMPLE 1-1 A surface-conduction type electron source display (SED) of matrix driving scheme as shown in FIG. 2 was disassembled. This SED has a panel structure containing spacers as shown in FIG. 1. In accordance with the flow chart of disassembly processing for an FPD device in FIG. 4, the SED was extracted from the housing of the SED device, and accessory wiring lines and terminals were removed. Then, the vacuum in the SED was canceled, and the exhaust pipe was detached. The exhaust pipe was processed and reused as lead-containing glass. The SED was image-sensed with a video camera, and its image was captured by an image processing apparatus. A region of the image where frit glass was applied can be recognized as a darker region than the remaining portions. The image was binarized to measure the area of the region where frit glass was applied. Disassembly pre-processing steps (1) to (5) were executed. The flat panel display was removed from the housing of the flat panel display apparatus, and the resultant flat panel display apparatus was charged [steps (1) and (2)]. Accessory wiring lines and terminals were removed [step (3)]. The vacuum in the vacuum container was canceled by proper processing of, e.g., unsealing the attaching portion of the exhaust pipe. The interior of the vacuum container was returned to the atmospheric pressure [step (4)]. Then, the exhaust pipe was detached [step (5)]. The exhaust pipe was recovered and reused [step (6)]. The size of the flat panel display was measured, and its cutting positions were determined [step (7)]. After that, a frame member 3 was separated from a flat panel display 20 [step (8)]. This separation adopts an appropriate method of press-inserting a wedged-edge tool into the joint portion between the frame member 3 and two plates 1 and 2 to separate them, or spraying a nitric acid solution. The frame member 3 separated in step (7) [step (9)] was shredded and reused as a recycled new glass material [step (10)]. Spacers 4 were recovered [step (11)]. At this time, the spacers 4 were separated and recovered [step 12]. After the spacers 4 were recovered, if the plate member was the face plate 2 [step (13)], fluorescent substances 2b were recovered from the face plate 2 [step (14)], and the face plate 2 was shredded. At the same time, a lead component was removed, and the face plate 2 was reused as a recycled new glass material [step (15)]. After that, the residual frit glass was removed [step (16)]. The glass substrate was shredded [step (18)] and reused as substrate glass [step (19)]. If the plate member is the rear plate 1 [step (20)], wiring lines are removed from the rear plate 1 [step (21)]. The rear plate 1 was shredded [step (23)] and reused as a recycled new glass material [step (24)]. From the measurement results, cutting lines A-A, A′-A′, B-B, and B′-B′ were set inside a region where the frame was sealed with frit glass. The SED was cut along the cutting lines with a diamond cutting saw while a grinding solution was applied. By cutting, the SED was divided into the frame portion 3, face plate 2, and rear plate 1. Some of the spacers 4 came off in cutting, and some of the spacers 4 were kept bonded to the face plate 2. All the spacers 4 were manually recovered, and recyclable spacers 4 were screened and reused. The frame portion 3 was shredded and reused as a lead-containing glass material. After fluorescent substances were removed from the face plate 2, and the residual frit glass was removed with nitric acid, the glass substrate was shredded and reused. After wiring lines were removed from the rear plate 1, the glass substrate was shredded and reused. EXAMPLE 1-2 A surface-conduction type electron source display (SED) of matrix driving scheme as shown in FIG. 2 was disassembled. Steps up to the step of setting the cutting lines A-A, A′-A′, B-B, and B′-B′ are the same as in Example 1. The SED was scratched with a hard metal roller along the SED cutting lines. Subsequently, the scratched portions were sequentially heated with a gas burner in which oxygen was added to city gas. As a result, the glass was cut along the cutting lines, and the SED was divided into a frame portion 3, face plate 2, and rear plate 1. The subsequent steps were the same as in Example 1-1. Since Example 1-2 does not use any grinding solution, members can be easily recovered and reused. Embodiment 2 Embodiment 2 of the present invention will be explained in detail below with reference to the accompanying drawings. FIG. 5 is a flow chart showing an FPD disassembly processing method according to this embodiment of the present invention. This embodiment will exemplify disassembly processing for an FPD having spacers, as shown in FIG. 1. In FIG. 1, reference numeral 1 denotes a rear plate; 2, a face plate; 3, a frame; and 4, spacers. Lead-containing frit glass 5 is used at each joint portion shown in black in FIGS. 1A, 1B, and 2. The spacers 4 are bonded to either one of the face plate 2 and rear plate 1 or both of them. In this embodiment, the spacers 4 are bonded to only the face plate 1. Examples of the materials of the rear plate 1, face plate 2, and frame 3 are silica glass, glass containing a small amount of impurity such as Na, soda-lime glass, and glass prepared by depositing SiO2 on soda-lime glass by, e.g., sputtering. On the face plate 2, a fluorescent film 2b containing fluorescent substances including a rare-earth element such as Y is formed on the inner surface of a glass substrate 2a, and a metal back 2c is formed on the inner surface of the fluorescent film. The spacer 4 is basically made of glass. The surface of the spacer is coated with an antistatic conductive film. Examples of the material of the conductive film are oxides of metals such as Cr, Ni, and Cu, a nitride of Al and a transition metal alloy, and carbon. As the material of the frit glass 5, frit glass containing a large amount of lead component so as to enable low-temperature baking is used, and mainly contains PbO. According to the present invention, lead (Pb) in the frit glass 5 used at joint portions is dissolved in nitric acid, and respective members are peeled at the joint portions to disassemble the display. The nitric acid concentration applied to the present invention falls within the range of 0.1 N (Normal) to several N, and preferably the range of 0.1 N to 2 N. The dipping time falls within the range of several h to several ten h, and preferably the range of 10 h to 24 h. The disassembly method will be explained in detail with reference to FIG. 6 in accordance with the flow chart of FIG. 5. (1) A housing is dismounted, the external terminals of the container are detached, and only the display is extracted (S1 to S3). (2) For the vacuum system, the vacuum is leaked (S4). (3) The entire display is dipped in a bath filled with nitric acid (S5). At this time, to prevent glass from being scratched, a meshed cage 21 made of a Teflon resin is sunk in a bath 22, and a display 50 is sunk in the meshed cage 21 (FIG. 6A). (4) The meshed cage 21 is pulled up to recover members peeled from the frit joint portions (S6 and S7). The members are transferred to a cleaning bath of pure water 25 (S8), and then classified into reusable members and scrapped members (FIG. 6B) (S9 and S10). (5) The nitric acid solution is filtered (S11) to separate it into a filtrate and insolubles (S12 and S13). At this time, the insolubles are ones which do not dissolve in nitric acid among nitric acid insolubles of a frit component and a spacer coat component. In the filtrate (S13), lead, a noble metal element, and a rare-earth element are dissolved (S14 and S16). (6) Metals in the filtrate are separated into lead and other metals by the electrolytic method. At this time, lead is deposited as PbO2 on the cathode, whereas other metals containing a noble metal are deposited on the anode. (7) PbO2 deposited on the cathode is recovered and undergoes hazardous waste disposal (S15). (8) The noble metal and the like are deposited on the anode, recovered, and reused (S16). (9) If a rear-earth metal is mixed (S19), the solution is adjusted to pH=0, and oxalic acid is added to precipitate it as oxalate. The solution is filtered to recover oxalate. According to this method, a noble metal element is also recovered. As another method, sulfuric acid ions are added to the filtrate (6) to produce the precipitate (PbSO4) of a lead component, thereby fractionated lead. In this case, a noble metal element also precipitates, and is difficult to recover. This method is simple and convenient when a noble metal element is small in amount and need not be recovered, or is not contained. According to the above method, the entire panel is dipped in nitric acid. A method of leaving a member to be reused and dipping only the remaining members in nitric acid is also basically based on this method. The steps of partially dipping the panel in nitric acid and processing it will be described with reference to FIGS. 7A, 7B, 8A, and 8B. FIGS. 7A, 7B, 8A, and 8B show a method of dipping only the rear plate 1 and face plate 2 in nitric acid (FIGS. 7A and 8A), and pulling up and reusing the face plate 2 with the frame and the rear plate 1 with the frame 3 (FIGS. 7B and 8B). The nitric acid solution is processed similarly to the method of dipping the entire display. In this case, a position at which a member is dipped in nitric acid must be precisely controlled. This method can be experimentally confirmed. At this time, it is convenient to place a Teflon table 31. In a display having spacers, when the spacers are to be reused, the method of dipping the entire display, and the method of dipping only frit joint portions can be used, and are basically the same as the above methods. EXAMPLE 2 The present invention will be described in detail by exemplifying Example 2. EXAMPLE 2-1 Method of Dipping Entire Display in Nitric Acid Example 2-1 will be described with reference to FIGS. 5, 6A, 6B, and 9. FIG. 9 is a schematic view showing an FPD used in Example 2-1. The same reference numerals as in FIG. 1 denote the same parts. This display is a surface-conduction type electron source display (SED) having electrodes, wiring lines, insulating layer, electron-emitting elements, and the like on a glass rear plate. A rear plate 1 is coated with SiO2 on soda-lime glass. Element electrodes formed to face each other on the SiO2 coat are made of Pt, and electron-emitting elements 11 each formed between two electrodes are made of Pd. Further, upper wiring lines 13 and lower wiring lines 12 made of Ag, Pb, B, or the like, and a PbO insulating layer for insulating these wiring lines are formed. A frame 3 is also made of soda-lime glass. Reference symbols Dx01 to Dx0m, and Dy01 to Dy0n denote external terminals of the container. On a face plate 2, a fluorescent film 2b formed from black stripes and fluorescent substances is formed on the inner surface of a soda-lime glass substrate 2a, and an Al metal back 2c is formed on the inner surface of the fluorescent film. The black stripes are made of PbO and C (Carbon), whereas the fluorescent substances are made of ZnS and YS. Spacers 4 are bonded to the inner surface of the display with glass frit. The spacers 4 are made from a glass substrate whose surface is coated with conductive ceramics. This panel was disassembled as follows. (1) The display was extracted from the housing, and the external terminals of the container were detached. (2) The vacuum in the display was leaked and returned to the atmospheric pressure. (3) The entire display was dipped in a 1.2 N nitric acid bath for 24 h. At this time, to prevent glass from being scratched, a meshed cage 21 made of a Teflon resin was sunk in the nitric acid bath, and the display was in the meshed cage 21 (FIG. 6A). (4) The rear plate, face plate, frame, and spacers peeled from frit joint portions were pulled up from the nitric acid solution, transferred to a cleaning bath of pure water, and then classified into recyclable members and scrapped members (FIG. 6B). (5) The nitric acid solution after the members were pulled up was filtered to separate it into a filtrate and insolubles. (6) Part of Pd of the electron-emitting element film, part of Ag of the wiring lines, and the like were dissolved in this filtrate in addition to a lead component of frit glass. To separate and recover these metals, electrolytic processing was performed as follows. The filtrate was set to a potential of +1.4 to 1.7 V with reference to a silver/silver chloride standard electrode. Pd and Ag deposited on the cathode were recovered and reused. An oxide deposited as PbO2 on the anode was recovered and undergone hazardous waste disposal. (7) Since Y (Yttrium) used for fluorescent substances was dissolved in the filtrate, the filtrate was adjusted to pH=0 in order to recover Y. Then, oxalic acid was added to precipitate and recover Y as Y2(C2O4)3. EXAMPLE 2-2 Method of Dipping Display in Nitric Acid Except For Face Plate (with Frame and Spacer) Example 2-2 will be explained with reference to FIGS. 5, 7A, and 7B. An FPD identical to that in Example 2-1 was disassembled as follows. (1) The same processes as (1) and (2) in Example 2-1 were executed. (2) The frame of the display was marked at two portions in parallel with the liquid level of nitric acid. The display was placed on a Teflon table 31, and adjusted to set the liquid level below the marks of the face plate side so as to dip only the joint portions between the frame and the rear plate in nitric acid. In this state, the display was dipped in a 1.2 N nitric acid bath for 24 h (FIG. 7A). (3) The face plate with the frame and spacers was pulled up, transferred to a cleaning bath of pure water to clean the portions dipped in nitric acid, and reused (FIG. 7B). (4) The nitric acid solution was processed similarly to (5) and (6) in Example 2-1. EXAMPLE 2-3 Method of Dipping Display in Nitric Acid Except For Rear Plate (with Frame) Example 3 will be explained with reference to FIGS. 5, 8A, and 8B. An FPD identical to that in Example 2-1 was disassembled as follows. (1) The same processes as (1) and (2) in Example 2-1 were executed. (2) The frame was marked similarly to Example 2-2. Similar to Example 2-2, the display was dipped in a 1.2 N nitric acid bath 22 for 24 h so as to dip only the joint portions between the frame and the rear plate in nitric acid (FIG. 8A). (3) Similar to Example 2-2, the rear plate with the frame was pulled up, cleaned, and reused (FIG. 8B). (4) The nitric acid solution was filtered, and sulfuric acid was added in the filtrate to produce the precipitate of PbSO4. This precipitate was separated by filtering, and undergone hazardous waste disposal. (5) Since the nitric acid solution contained Y of fluorescent substances the solution was adjusted to pH=O. Oxalic acid was added to precipitate and recover Y as Y2((C2O4)3. COMPARATIVE EXAMPLE 2 To scrap or reuse an FPD identical to that in Example 2-1, a frit glass portion was melted and peeled by heating as a method of peeling a member from a joint portion. However, to melt PbO as a frit glass component, the melting point must be set as high as about 900° C. or more. When the frit joint portion was partially set to such a high temperature, the glass substrate distorted or cracked under some conditions. It was difficult to set conditions for reusing a substrate. Embodiment 3 The present invention will be described in detail by exemplifying more preferable another embodiment. More specifically, a method of recycling the rear plate of an image display apparatus in order to recover and reuse a rear plate 1 in disposal of the image display apparatus constituted by the rear plate 1 having a plurality of electron-emitting elements each made up of a pair of element electrodes of the electron-emitting element and a conductive film that is connected to the pair of element electrodes and has an electron-emitting portion at part of the conductive film, a face plate 2 having an image forming member which forms an image upon collision with electrons emitted by the electron-emitting elements, and a support frame 3 which connects the rear plate and face plate and maintains the internal pressure, the rear plate 1, face plate 2, and frame 3 being welded with frit glass 5 comprises the step of dipping welded portions in a nitric acid solution to dissolve the frit glass 5, and the step of forming the conductive film by an ink-jet method. FIG. 10 is a view showing the structure of an image display apparatus. In FIG. 10, the rear plate 1 comprises a plurality of electron-emitting elements 11. The face plate 2 comprises an image forming member which forms an image upon collision with electrons emitted by the electron-emitting elements 11. The support frame 3 connects the rear plate 1 and face plate 2, and maintains the internal pressure. Reference numeral 4 denotes frit for sealing the rear plate 1, face plate 2, and support frame 3. These constituent elements constitute an image display apparatus 5. As shown in FIG. 11, the image display apparatus 5 from which the external terminals of the container and the like are detached is leaked when the internal pressure is low. Then, the image display apparatus 5 is dipped in a nitric acid solution bath 6 filled with nitric acid (FIG. 11A). In some cases, the image display apparatus 5 incorporates spacers as atmospheric pressure-resistant support members. In dipping in nitric acid, the amount of nitric acid solution is adjusted as needed, so as to easily peel the rear plate 1, and a table (not show) is set in the nitric acid solution bath 6 to extract the rear plate 1 from the image display apparatus 5 (FIG. 11B). In this case, the frit 4 applied to the vicinity of the rear plate is dissolved. Alternatively, the entire image display apparatus 15 can be dipped in the nitric acid solution bath 6 filled with nitric acid to separate the apparatus 15 into respective constituent components, thereby extracting the rear plate 1. The nitric acid concentration at this time falls within the range of 0.1 N (Normal) to several N, and preferably the range of 0.1 to 2 N. The dipping time falls preferably within the range of several h to several ten h, and more preferably within the range of 10 h to 24 h. The extracted rear plate 1 is transferred to a cleaning bath of pure water, cleaned, and dried. To prevent nonuniformity in drying, the rear plate 1 may be cleaned with a solvent such as ketones or alcoholes, as needed. The rear plate 1 may be cleaned with a solvent of conductive film formation droplets (to be described later) to facilitate formation of a conductive film in recycling. The rear plate 1 extracted and cleaned in this manner is shown in FIG. 12. Reference numeral 41 denotes a rear plate substrate; and 42 and 43, element electrodes. After cleaning, conductive films and printed wiring lines are removed, and the element electrodes 42 and 43 remain on the rear plate substrate 41. Examples of the material of the substrate 41 for the rear plate 1 are silica glass, glass containing a small amount of impurity such as Na, soda-lime glass, a glass substrate prepared by depositing SiO2 on soda-lime glass by sputtering, CVD, or liquid phase epitaxy, and a glass substrate on which P-doped SiO2 is deposited. The electrode material of the element electrode is not particularly limited as far as the material is conductive. When the element electrode is formed from a noble metal such as Pt or Au whose properties do not change in the nitric acid solution, the element electrode remains on the cleaned rear plate substrate, and can be reused. When the element electrode is formed from a material whose properties change in the nitric acid solution, the element electrode dissolves in the nitric acid solution, and thus only the rear plate substrate is reused. In FIG. 12, upper wiring lines and lower wiring lines electrically connected to the element electrodes 42 and 43 to drive them are dissolved in the nitric acid solution. However, since one of the element electrodes and the lower wiring line can be simultaneously formed from the same material, the lower wiring including the element electrode may remain on the rear plate substrate. As the frit glass used at joint portions, frit glass containing a large amount of lead component so as to enable low-temperature baking is used, and mainly contains PbO. The lead component in frit glass dissolves in the nitric acid solution, and can be recovered by deposition by the electrolytic method or as a precipitate upon acid/alkaline reaction. The rear plate 1 is manufactured using the rear plate substrate 41 having the element electrodes 42 and 43. For example, a Y-direction wiring line 13 is formed on the element electrode 42, a notch 46 is formed, and an X-direction wiring line 12 is formed. The wiring lines and interlevel insulating layer can be formed by printing or the like. Then, a film serving as the precursor of a conductive film is formed by an ink-jet apparatus for discharging a conductive solution by an ink-jet method. After the solvent is dried, the resultant structure is heat-treated to form a conductive film 49. In this fashion, the rear plate 1 of the image display apparatus 15 can be recycled. EXAMPLE 3 The present invention will be described in more detail by way of Example 3. EXAMPLE 3-1 Example 3-1 will be explained with reference to FIGS. 10 to 13E. FIG. 10 shows the structure of an image display apparatus according to Example 3-1. In FIG. 10, reference numeral 1 denotes a rear plate; 2, a face plate having a fluorescent film 2b, metal back 2c, and the like on the inner surface of a substrate 2a; and 3, a support frame. The rear plate 1, support frame 3, and face plate 2 are sealed with frit glass to constitute an image display apparatus 5. Reference symbols Dox1, Dox2, . . . , Dox(m-1), Doxm, Doy1, Doy2, . . . , Doy(n-1), and Doyn denote external terminals of the container. In FIG. 10, reference numeral 11 denotes a surface-conduction type electron-emitting element. In FIG. 12, reference numerals 42 and 43 denote a Y-direction wiring line 13 and X-direction wiring line 12 connected to a pair of element electrodes of a surface-conduction type electron-emitting element in FIGS. 13A to 13E. A rear plate substrate 41 is coated with SiO2 on soda-lime glass. The element electrodes 42 and 43 are made of Pt. The Y-direction wiring line 13 and X-direction wiring line 12 are made of Ag paste; an interlevel insulating layer 45, PbO glass paste; and a conductive film 49, Pd. FIGS. 11A and 11B are explanatory views showing a rear plate recovery/recycling method according to the present invention. In FIGS. 11A and 11B, reference numeral 1 denotes the rear plate having a plurality of electron-emitting elements 11; 2, the face plate having an image forming member which forms an image upon collision with electrons emitted by the electron-emitting elements 11; 3, the support frame which connects the rear plate 1 and face plate 2, and maintains the internal pressure; 4, frit glass for sealing the rear plate 1, face plate 2, and support frame 3. These constituent elements constitute the image display apparatus 15. The image display apparatus 15 from which the external terminals of the container and the like were detached was leaked because of a low internal pressure, and dipped in a nitric acid solution bath 6 filled with 1.2 N nitric acid. This state is shown in FIG. 11A. In dipping in nitric acid, the amount of nitric acid solution was adjusted to easily peel the rear plate 1, and the rear plate 1 was extracted from the image display apparatus 15 (FIG. 11B). The extracted rear plate 1 was transferred to a cleaning bath of pure water to clean the rear plate 1, and cleaned and dried with acetone or isopropanol. The rear plate extracted and cleaned in this way is shown in FIG. 12. Reference numeral 41 denotes the rear plate substrate; and 42 and 43, the element electrodes. After cleaning, conductive films and printed wiring lines were removed, and the element electrodes 42 and 43 remain on the rear plate substrate 41. The nitric acid solution was filtered, and the filtrate was electrolyzed as follows. The filtrate was set to a potential of +1.4 to 1.7 V with reference to a silver/silver chloride standard electrode. Then, Pd and Ag were deposited on the cathode, and PbO2 was deposited on the cathode. These metals were recovered. Pd and Ag were reused, and PbO2 underwent waste disposal. The rear plate 1 was manufactured using the rear plate substrate 41 having the element electrodes 42 and 43. FIGS. 13A to 13E are views showing the steps in manufacturing the rear plate 1. Ag paste was screen-printed into a predetermined shape on the rear plate substrate 41 (FIG. 13A) having the element electrodes 42 and 43, and heated and baked to form a Y-direction wiring line 13. Note that the Y-direction wiring line had a thickness of about 20 μm and a width of 100 μm (FIG. 13B). Glass paste was printed into a predetermined shape, and heated and baked to form an interlevel insulating layer 45. At this time, a notch 46 was formed not to cover the element electrode 43. The interlevel insulating layer had a width of about 250 μm, and a thickness of about 20 μm at a portion at which the interlevel insulating layer overlapped the Y-direction wiring line, and about 35 μm at the remaining portions (FIG. 13C). Subsequently, Ag paste was printed on the interlevel insulating layer 45, and heated and baked to form an X-direction wiring line 12. Note that the X-direction wiring line had a width of 200 μm and a thickness of about 15 μm (FIG. 13D). A piezo-jet type ink-jet apparatus applied droplets of a solution of an organic palladium-ethanolamine complex, thereby forming a film serving as the precursor of a conductive film. After the solvent was dried, heat treatment was performed at 300° C. for 10 min to change the precursor film into a conductive film 49 made of fine PdO particles. The conductive film had an almost cylindrical shape with a diameter of 40 μm and a film thickness of 15 nm (FIG. 13E). In this way, the rear plate 1 was recycled. The rear plate 1 was welded to a face plate and support frame with frit glass. The container was satisfactorily evacuated, and subjected to forming processing and activation processing to constitute an image display apparatus 15 shown in FIG. 10. The manufactured image display apparatus was free from any conspicuous defects or luminance variations on an image. EXAMPLE 3-2 Example 3-2 relates to the same recycling method as in Example 3-1 except for the following point. In Example 3-1, the Y-direction wiring line 13 is a printed electrode. To the contrary, in Example 3-2, a Y-direction wiring line 13 is made of Pt connected to an element electrode 42 formed at the same time as element electrodes 42 and 43. As shown in FIG. 14, the element electrodes and the Y-direction wiring line 13 connected to one of the element electrodes remain on a rear plate after dipping in a nitric acid solution and cleaning. The ink-jet apparatus used to apply droplets in Example 3-1 is of piezo-jet type. Instead of this, Example 3-2 used a bubble-jet type apparatus. With this apparatus, a rear plate 1 for an image display apparatus 15 can be recycled. Embodiment 4 The present invention will be described in more detail. The characteristic feature of the present invention is to reuse spacers by recovering them by a simple method without any damage in dismantling a flat display. According to a spacer recovery method in the present invention, portions at which spacers and a flat panel or substrate are welded with frit glass are dipped in a nitric acid solution to dissolve the welded portions, thereby separating only the spacers. At this time, a jig for storing or holding the spacers is used to avoid any damage caused by contact with other spacers or peripheral members. FIG. 15 is a schematic view showing an embodiment of a spacer recovery method and recovery apparatus according to the present invention. In FIG. 15, reference numeral 151 denotes a nitric acid solution bath; 152, a nitric acid solution; 153, a rear plate or face plate; 154, spacers; 155, a spacer container; 156, a support for the rear plate or face plate; and 157, frit. The spacers 154 may be welded to the face plate, rear plate, or two plates. In this case, the spacers 154 are welded to the face plate. The rear plate, face plate, and frame are separated while the face plate and spacers are kept welded with frit. A method of separating the rear plate, face plate, and frame includes a cutting method, a method of dissolving frit by spraying a nitric acid solution to frit portions at which respective members are welded, or dipping the frit portions in the nitric acid solution, and a method of dissolving frit by heating. A desirable method is dissolution with nitric acid because it does not damage spacers. Then, the spacers and face plate are dipped in a nitric acid solution. The spacers and face plate are dipped while the face plate 153 is supported by the support 156 and the spacers 154 face down, as shown in FIG. 15. The frit 157 between the spacers 154 and the face plate 153 are dissolved to separate them. At this time, the container 155 as shown in FIGS. 16A and 16B is used to prevent the spacers 157 from falling into the nitric acid solution layer 151, coming into contact with other spacers or peripheral members, and being damaged. The container 155 is almost equal in size to the face plate 153, and has recesses 148 in accordance with the layout of the spacers 154. The container 155 is made of a material, e.g., fluoroplastic which is stable with respect to nitric acid, and does not damage the spacers. To prevent the solution from staying in the recesses, the entire container or the bottoms of the recesses may be meshed. The container 155 is set below the spacers 154 to store the spacers 154 separated from the face plate 153 in the recesses 148, thereby preventing contact between the spacers 154. After the face plate 153 is removed, the container 155 is pulled up from the nitric acid solution layer 151. The spacers can undergo the subsequent cleaning step and drying step while being stored in the container. Note that the shape of the spacer container 155 is not limited to the above one. The shape shown in FIGS. 16A and 16B is merely an example of the container shape. As shown in FIG. 17, many recessed containers 149 each slightly larger than the spacer 154 can be employed and arranged below the spacers to store the spacer 154 separated from the face plate 153. When this method is adopted, the containers 149 pulled up from the nitric acid solution layer 151 can be gathered within a narrow range. Thus, a subsequent cleaning bath and drying bath can be downsized. FIG. 18 is a schematic view showing another embodiment of a spacer recovery method and recovery apparatus according to the present invention. In FIG. 18, reference numeral 151 denotes a nitric acid solution bath; 152, a nitric acid solution; 153, a rear plate or face plate; 154, spacers; 157, frit; 158, a table for the rear plate or face plate; 159, spacer support arms; and 160, distal ends of the arms. The rear plate, face plate, and frame are separated, and disassembled to a state in which the spacers 154 are kept welded to the rear plate or face plate with frit. Then, the spacers 154 are dipped in the nitric acid solution bath 151. The spacers 154 may be welded to the face plate, substrate, or two plates. Although the present invention can be applied to any case, the spacers 154 are assumed to be welded to the face plate. According to a dipping method, the face plate 153 is placed on the table 158 with the spacers 154 facing up. Then, the distal ends of the respective spacers 154 are clamped with the distal ends 160 of the corresponding arms 159. The table 158 is moved down to dip the face plate 153 and welded portions 157 in the nitric acid solution 152. Since the spacers 154 are fixed in advance so as to prevent the spacers 154 separated from the face plate 153 from falling. This can prevent the spacers 154 from being damaged. Note that the arm 159 and its distal end 160 must be formed from a material, e.g., a fluorine-based compound which is stable with respect to nitric acid. The spacers 154 can undergo the subsequent cleaning step and drying step while being fixed by the distal ends 160. In the cleaning step, the frit glass 157 left on the spacers 154 is dissolved, and reattached substances dissolved from the face plate 153 and substrate are removed. The cleaning step is generally performed in a new nitric acid solution bath. Thereafter, the spacers 154 are transferred to a pure water bath where the spacers 154 are finally cleaned. The drying step may adopt any method as far as pure water evaporates. For example, the spacers 154 can be dried with warm air. In reusing the dried spacers, whether they are not damaged must be inspected. An appropriate inspection method may be employed. For example, a method of visually confirming the presence/absence of defects, or a method of checking the presence/absence of cracks by heating can be used. FIGS. 19A and 19B are schematic views showing the spacer 154. In general, the spacer 154 has a thin plate-like shape with a length and width of about several ten mm and a thickness of 300 μm or less, and is constituted by forming an antistatic conductive film 162 on the surface of an insulating substrate 161. A number of spacers 154 necessary for the purpose are arranged at a necessary interval, and fixed to the inner surface of the face plate 153 or the surface of the substrate with glass frit. When the spacers 154 are fixed to the rear plate, they are processed in the same manner as in the case wherein the spacers 154 are fixed to the face plate. Examples of the material of the conductive film are oxides of metals such as chromium, nickel, and copper, a nitride of aluminum and a transition metal alloy, and carbon. Examples of the material of the insulating substrate 161 of the spacer 154 are silica glass, glass containing a small amount of impurity such as Na, soda-lime glass, and a substrate prepared by stacking an SiO2 insulating layer on each of various substrates described above. As described above, the conductive film 162 is formed on the surface of the spacer. Depending on the material, the conductive film 162 may be stable with respect to nitric acid or may dissolve. When the conductive film 162 is formed from a material which is stable with respect to nitric acid, the spacer can be reused after the cleaning, drying, and inspection steps. When the conductive film 162 is formed from a material which dissolves in the nitric acid solution, the spacer can be reused after the film is sufficiently dissolved in the nitric acid solution, the cleaning, drying, and inspection steps are done, and a conductive film is newly formed. EXAMPLE 4 The present invention will be described in detail by way of Example 4. EXAMPLE 4-1 Spacers were recovered using the spacer recovery apparatus according to the present invention shown in FIG. 15. The apparatus in FIG. 15 dissolves frit glass 157 which joint portions a face plate 153 and spacers 154, and separates the face plate 153 and spacers 154. In FIG. 15, reference numeral 151 denotes a nitric acid solution bath; 152, a nitric acid solution; 153, the face plate; 154, the spacers; 155, a spacer container; 156, a face plate support; and 157, the frit glass. FIG. 20 schematically shows states in the respective steps of the spacer recovery method according to the present invention. FIG. 20A shows the step of separating a substrate, face plate, and frame, FIG. 20B shows the step of separating the face plate and spacers, FIGS. 20C and 20D show the spacer cleaning step, and FIG. 20E shows the spacer drying step. Example 4-1 used a display in which 25 spacers 154 were welded to a face plate 153 made of soda-lime glass with a size of 300 mm×250 mm×2.8 mm. Each spacer 154 was formed by forming aluminum nitride as a conductive film on a soda-lime glass substrate having a height of 2.8 mm, a thickness of 200 μm, and a length of 40 mm. Example 4-1 will be described in detail with reference to FIG. 15, 16A, 16B, and 20A to 20E. (1) The housing was dismantled to extract a unit made up of a rear plate 163, face plate 153, and frame 164 welded with the frit glass 157. (2) A 0.2-N nitric acid solution was sprayed to the welded portions to gradually dissolve them. When almost all the frit 157 was dissolved, the face plate 153 was pulled up by the support 156 and separated from the frame (FIG. 20A). (3) A container 155 for storing spacers was sunk in the nitric acid solution bath 151 with a length of 400 mm and a width of 350 mm which contained a 0.2-N nitric acid solution. As shown in FIG. 16, this container was 300 mm in length×250 mm in width×10 mm in height, and had 25 recesses (length: 50 mm, width: 5 mm, and depth: 4 mm) in accordance with the layout of the spacers. The container was formed from a fluoroplastic which was stable with respect to nitric acid and did not damage the spacers. The recesses were meshed not to store any solution. The face plate 153 to which the spacers 154 were welded was dipped in the nitric acid solution bath 151 with the spacers 154 facing down. The frit between the spacers 154 and the face plate 153 was dissolved to separate them. Each spacer 154 fell into a corresponding recess of the container 155. After the face plate 153 separated from the spacers 154 was removed, the container 155 was pulled up from the nitric acid solution bath (FIG. 20B). (4) The spacers 154 were sunk together with the container 155 in a cleaning nitric acid solution bath filled with a 0.2-N nitric acid solution. In this step, the frit glass 157 left on the spacers 154 was dissolved, and reattached substances dissolved from the face plate 153 and substrate were removed (FIG. 20C). (5) The spacers 154 were transferred together with the container 155 to a pure water bath where the spacers 154 were finally cleaned with pure water 165. Note that the nitric acid cleaning bath and pure water cleaning bath were equal in size to the nitric acid solution bath in FIG. 20B (FIG. 20D). (6) Warm air 166 was blown to the spacers 154 in the container 155 to dry them (FIG. 20E). (7) In reusing the spacers recovered in this way, the spacers 154 were inspected. As the inspection method, peeling of conductive films, and the presence/absence of scratches, deposits, and another dirt were checked with an optical microscope. Then, the presence/absence of cracks by heating was checked to exclude spacers having defective glass substrates. These inspections were done for the spacers while they were contained in the container or after the they were picked up one by one. As a result of inspection, about 10% of spacers was excluded as defectives, and most of spacers could be reused. Non-defective spacers were directly used to assemble a new display. EXAMPLE 4-2 Example 4-2 used a display having the same structure as in Example 4-1. Spacers were recovered by the same method as in Example 4-1 except that a frame, rear plate, and face plate separated from a housing were separated by cutting. As shown in FIG. 21, the frame, substrate, and face plate were cut to separate four welded portions and the surrounded region where spacers existed. The spacer recovery method after cutting was the same as steps (3) to (6) in Example 4-1. As a result of inspection, about 15% of spacers were excluded as defectives, and most of spacers could be reused. EXAMPLE 4-3 Example 4-3 used a display having the same structure as in Example 1. Spacers were recovered by the same method as in Example 4-1 except that a container shown in FIGS. 17A and 17B was used in separating a face plate and spacers. Example 4-3 will be explained with reference to FIGS. 15, 16A, 16B, 17A, 17B, and 22A to 22D. A face plate and frame were separated by the same method as steps (1) and (2) in Example 4-1. (3) 25 containers 167 for storing spacers 154, which were equal in number to the spacers, were fixed to a base 168, and sunk in a nitric acid solution bath filled with a 0.2-N nitric acid solution. Each container had a rectangular shape with a length of 60 mm, a width of 10 mm, and a height of 10 mm, as shown in FIGS. 17A and 17B. A recess with a length of 50 mm, a width of 5 mm, and a depth of 8 mm was formed in the top of the container. The recess was meshed not to store any solution, and formed from a fluoroplastic which was stable with respect to nitric acid and did not damage the spacers. These containers were fixed to the base so as to be set immediately below the respective spacers, and sunk in a nitric acid solution bath 151. A face plate 153 to which the spacers 154 were welded was dipped in the nitric acid solution bath 151 with the spacers 154 facing down. Frit glass 157 was dissolved to separate the face plate 153 and spacers 154. Each spacer 154 fell into the recess of a corresponding container. After the face plate 153 separated from the spacers 154 was moved, the containers 167 were pulled up from the nitric acid solution bath together with the base 168 (FIG. 22A). (4) After the containers were rearranged close to each other, the spacers were sunk together with the containers in a cleaning nitric acid solution bath filled with a 0.2-N nitric acid solution. In this step, the frit glass left on the spacers was dissolved, and reattached substances dissolved from the face plate and substrate were removed (FIG. 22B). (5) By the same method as in Example 4-1, the spacers were cleaned with pure water, dried, and inspected. Note that the cleaning bath used in Example 4-3 was smaller than that used in Example 4-1, and had a length of 200 mm and a width of 150 mm (FIGS. 22C and 22D). As a result of inspection, about 10% of spacers was excluded as defectives, and most of spacers could be reused. EXAMPLE 4-4 In Example 4-4, spacers were recovered using the same apparatus as in Example 4-1. Example 4-4 adopted a face plate identical to that in Example 4-1 to which 25 spacers were welded. Each spacer was prepared by forming a nickel oxide (NiO2) film as a conductive film on a silica glass substrate. The spacers were separated, cleaned, and dried by the same method as steps (1) to (6) in Example 4-1. The spacers recovered in this manner were inspected. As the inspection method, deposits, another dirt, scratches of conductive films, and film peeling were confirmed with an optical microscope. Then, the presence/absence of cracks by heating was checked to exclude defective spacers. As a result of inspection, about 10% of spacers was excluded as defectives, and most of spacers could be reused. Non-defective spacers were directly used to assemble a new display. EXAMPLE 4-5 Example 4-5 used a flat display having the same structure as in Example 4-1. As a spacer recovery apparatus, Example 4-5 employed an apparatus as shown in FIG. 18. In FIG. 18, reference numeral 151 denotes a nitric acid solution bath; 152, a nitric acid solution; 153, a face plate; 154, spacers; 157, frit; 158, a table for the face plate, 159, spacer support arms; 160, distal ends of the arms; and 150, elastic members made of a fluoroplastic for supporting the table. The table 158 and arms 159 were made of a fluoroplastic stable with respect to nitric acid, and the distal ends 160 were made of fluororubber which did not damage spacers. Example 4-5 will be explained with respect to FIGS. 18 and 23A to 23E. A face plate and frame were separated by the same method as in (1) and (2) of Example 4-1. (3) The face plate 153 was placed on the table 158 with the spacers facing up, and then the distal ends of the respective spacers 154 were clamped with the distal ends 160 of the support arms 159 (FIG. 23A). The table 158 was moved down to dip the face plate 153 and welded portions 157 in the nitric acid solution bath 151 containing a 0.2-N nitric acid solution. After it was confirmed that the frit glass 157 was dissolved to separate the spacers 154, the spacers 154 were pulled up from the nitric acid solution bath (FIG. 23B). (4) While the spacers were kept clamped with the support members, they were sunk in a cleaning nitric acid solution bath filled with a 0.2-N nitric acid solution. In this step, the frit glass left on the spacers was dissolved, and reattached substances dissolved from the face plate and substrate were removed (FIG. 23C). (5) The spacers were transferred to a pure water bath where they were finally cleaned (FIG. 23D). (6) The spacers were dried with warm air (FIG. 23E). (7) The recovered spacers were inspected by the same method as in Example 4-1 to find that about 10% of spacers was excluded as defectives, and most of spacers could be reused. EXAMPLE 4-6 Example 4-6 used a display having the same structure as in Example 4-1 except that spacers were welded to both a substrate and face plate. Example 4-6 will be explained with reference to FIGS. 15 and 24A to 24C. (1) A unit made up of a substrate 163, face plate 153, and frame 164 welded with frit glass 157 was extracted from a housing. (2) The welded portions between the frame, the substrate, and the face plate were cut by the same method as in Example 4-2 (FIG. 24A). (3) The unit was gradually dipped in a nitric acid solution bath 151 containing a 0.2-N nitric acid solution with the substrate facing down. When the welded portions between the substrate and the spacers were sunk in the solution, dipping the unit was stopped (FIG. 24B). In this manner, only frit between the substrate and the spacers was dissolved to separate them (FIG. 24C). (4) After the substrate was pulled up from the nitric acid solution bath, the spacers were separated and recovered from the face plate by the same method as in steps (3) to (7) in Example 4-1. After recovery by this method, about 15% of spacers was excluded as defectives, and most of spacers could be reused. Embodiment 5 FIG. 25 is a flow chart showing the steps of a method of recovering fluorescent substances from a display apparatus according to the present invention. The recovery steps will be explained with reference to FIG. 25. A processed/scrapped display apparatus (S20) is a type of display in which a face plate is coated with fluorescent substances and the fluorescent substances emit light by irradiation of an electron beam or ultraviolet ray. Examples of this display are some of general CRTs and flat displays in which face plates are coated with fluorescent substances. The model of the display apparatus is identified by a sensor before a CRT or flat display is separated from a cabinet. Data (e.g., size, display dismounting method, brush size suitable for the shape of the face plate, shape, and shape of the suction unit) used in the subsequent steps are read out from the database. In accordance with the data obtained in the identification step, the display is extracted from the cabinet, and the display is fixed onto a jig in order to easily dismount the face plate from the display. As the jig used at this time, a jig with an optimal shape is selected and used in accordance with the data obtained in the identification step. When plastic and metal members are attached to the display, they are detached as needed (S21). After a reduced-pressure state in the display fixed to the jig is canceled, the display is sent to the next step. In the face plate separation (dismantling) step (S22), the face plate is dismounted from the display along frit glass portions between the face plate and the funnel for a CRT or between the face plate and the frame for a flat display. As the dismounting method, a method of cutting the display between the face plate and the funnel, and a method of peeling, with a peeling solution, frit glass portions at which the face plate and funnel are sealed are available. As the CRT dismantling method, a method of cutting the CRT with a heating wire (Japanese Laid-Open Patent Application No. 07-029496), a method of causing thermal distortion to dismantle the CRT (Japanese Laid-Open Patent Application No. 05-151898), a method of applying ultrasonic vibrations at the same time as heating to dismantle the CRT, and a method using nitric acid as a peeling solution (Japanese Laid-Open Patent Application No. 07-045198) are available. Since a wet process of preventing generation of thermal distortion requires a long time and high cost, cutting with a wire saw or energy cutter is preferable. Glass dust generated at this time is sucked and removed by a suction unit. The funnel and rear plate are shredded into glass cullets. The dismounted face plate is fixed to a jig with the inner surface facing up, and sent to the brush sweep & suction step (S28). The brush sweep step may be completed by only one sweep operation if fluorescent substances are only recovered. To reuse the face plate, the brush sweep step can be repetitively performed until the inner surface satisfies the specifications. In this case, a brush for removing fluorescent substances can be replaced with a buff for mirror-polishing the inner surface. As the brush used in the brush sweep step of the present invention, a brush having a shape corresponding to R (radius of curvature) of the inner surface of the face plate is selected for a general CRT. For a flat CRT or flat display, a brush corresponding to a flat surface is selected. When pestling motion processing (to be described later) is adopted, a brush curved with R is used even in the processing step for a flat face plate in consideration of pestling motion (S32). The motion of the brush used in the present invention is not particularly limited, and includes simple rotating motion and reciprocal rotating motion on the surface of a face plate 2. If the motion of the brush employs a method of causing a brush 171 to simultaneously perform rotational motion and revolutionary motion (FIG. 26), or a motion (pestling motion) method of rotating the brush about a center line as its axis while rotating the axis about one point (FIG. 27), fluorescent substances are easily, quickly swept to planarize the inner surface. The nozzle shape and suction force of the suction unit used in the present invention are not limited as far as the suction unit can suck and recover fluorescent substances 2b and black stripes swept by the brush. The suction unit can be installed in the brush or can be set to surround the brush in order to prevent the fluorescent substances 2b from scattering. To satisfactorily suck fluorescent substances around the face plate, the suction unit is preferably installed in the brush. The fluorescent substances 2b and black stripes recovered by the present invention are separated and purified by a known method with an arbitrary means. For example, the recovered fluorescent substances may be processed with an aqueous solution containing NaOH, NaClO, and H2O2, and processed with weak acid (Japanese Laid-Open Patent Application No. 06-108047). Alternatively, the recovered fluorescent substances may be processed with weak acid to leach rare-earth elements, oxalic acid may be added to convert the rare-earth elements into oxalate, and oxalate may be baked to obtain rear-earth oxides (Japanese Laid-Open Patent Application No. 08-333641). As an example of the flat display, a structure of a flat display apparatus using surface-conduction type electron-emitting elements will be described. FIG. 29 is a perspective view showing a display apparatus using spacers, in which a panel is partially cut away in order to show the internal structure. In FIG. 29, reference numerals 11 denote electron-emitting elements; 1, a rear plate; 3, a side wall (frame); and 2, a face plate. The rear plate 1, side wall 3, and face plate 2 form an airtight container (envelope 15) for keeping the interior of the display panel in vacuum. Spacers 4 are arranged as needed, in order to prevent the envelope from being damaged and deformed by the atmospheric pressure. In assembling the airtight container, the respective members must be sealed to obtain a sufficient strength and maintain the airtight condition. For example, frit glass is applied to joint portions, and sintered at 400 to 500° C. for 10 min or more in air or a nitrogen atmosphere to seal the members. A substrate 41 is fixed to the rear plate 1, and N×M cold cathode type electron-emitting elements 11 are formed on the substrate 41 (N and M=positive integers equal to 2 or more, and properly set in accordance with the number of target display pixels. For example, in an image forming apparatus for high-resolution television display, N=3,000 or more and M=1,000 or more are desirably set.) The N×M cold cathode type electron-emitting elements 11 are arrayed in a simple matrix with M X-direction wiring lines 12 and N Y-direction wiring lines 13. In this embodiment, the substrate 41 of the multi-electron beam source is fixed to the rear plate 1 of the airtight container. If, however, the substrate 41 of the multi-electron beam source has a sufficient strength, the substrate 41 of the multi-electron beam source may be used as the rear plate 1 of the airtight container. A fluorescent film 2b is formed on the lower surface of the face plate 2. For a color display apparatus, the fluorescent film 2b is coated with fluorescent substances of red, green, and blue, i.e., three primary colors used in the CRT field. Black stripes are formed between the respective fluorescent substances. The purposes of forming the black stripes are to prevent misregistration of the display color even if the electron-beam irradiation position slightly shifts, and to prevent degradation of the display contrast by preventing reflection of external light. Note that when a monochrome display panel is formed, a single-color fluorescent material may be applied to the fluorescent film 2b, and black stripes may not always be used. A metal back 2c, which is well-known in the CRT field, is formed on a surface of the fluorescent film 2b on the rear plate side. The purposes of forming the metal back 2c are to improve the light utilization ratio by mirror-reflecting part of light emitted by the fluorescent film 2b, to protect the fluorescent film 2b from collision with negative ions, to use the metal back 2c as an electrode for applying an electron beam accelerating voltage, and to use the metal back 2c as a conductive path for electrons which excite the fluorescent film 2b. The metal back 2c is formed by forming the fluorescent film 2b on a face plate substrate 2a, smoothing the surface of the fluorescent film, and depositing Al on the smoothed surface by vacuum deposition. Note that when a fluorescent material for a low accelerating voltage is used for the fluorescent film 2b, the metal back 2c may not be used. To apply an accelerating voltage or improve the conductivity of the fluorescent film, a transparent electrode made of, e.g., ITO may be arranged between the face plate substrate 2a and the fluorescent film 2b. Reference symbols Dx1 to Dxm, Dy1 to Dyn, and Hv denote electric connection terminals for an airtight structure provided to electrically connect the display panel to an electric circuit (not shown). Dx1 to Dxm are electrically connected to the X-direction wiring lines of the multi-electron beam source; Dy1 to Dyn, to the Y-direction wiring lines of the multi-electron beam source; and Hv, to the metal back 2c of the face plate. EXAMPLE 5 This example of the present invention will be described in detail with reference to the accompanying drawings. EXAMPLE 5-1 A flat display apparatus which was constituted by a face plate, frame, and rear plate and used surface-conduction type electron-emitting elements was fixed to a jig with the face plate facing down, and a press tool having a rubber sucker was brought into tight contact with the rear plate to fix the display. The distal end of an exhaust pipe was broken to cancel the vacuum state in the display, and frit portions between the face plate and the frame were cut with an energy cutter to dismantle the display. The rear plate and frame were removed. While the inner surface of a face plate 2 was swept to sweep fluorescent substances 2b (about 20 min) with a rotating brush (see FIG. 27) which had a suction unit and performed pestling motion, the fluorescent substances 2b and black stripes were sucked and recovered from suction holes 172. After the fluorescent substances 2b were completely removed, the inner surface was polished for 30 min to mirror-finish it. Corrugations at black matrix portions and portions coated with the fluorescent substances 2b on the inner surface of the face plate were suppressed to 15 μm or less, and the face plate was confirmed to be directly used as a recycled face plate. COMPARATIVE EXAMPLE 5-1 Similar to Example 5-1, a dismantled face plate was dipped in an aqueous oxalic acid solution to remove fluorescent substances, and then black matrix was removed with high-pressure water. Corrugations of about 85 μm were observed at fluorescent substance-coated portions and black matrix-coated portions. EXAMPLE 5-2 An electron gun and deflection yoke were cut from a CRT separated from a cabinet. The CRT was fixed to a jig with the face plate facing down. A press tool having a rubber sucker was brought into tight contact with the funnel to fix the CRT. An explosion-proof band wound around the frit glass portions of the CRT was peeled, and an adhesive agent was removed by grinding operation. The CRT was divided with an energy cutter into the face plate and funnel. The funnel was removed, and the inner surface of the face plate was swept by a revolutionary motion brush (see FIGS. 26, 28A, and 28B) having a suction unit to sweep fluorescent substances (about 20 min), while the fluorescent substances and black matrix were sucked and recovered. After the fluorescent substances were completely removed, the rotating brush was replaced with a buff. The inner surface was polished for 30 min to mirror-finish it. Corrugations at black matrix portions and fluorescent substance-coated portions on the inner surface of the face plate were suppressed to 10 μm or less, and the face plate was confirmed to be directly used as a recycled face plate. FIGS. 28A and 28B are sectional views each showing the structure of the brush and suction unit. In FIG. 28A, suction holes are formed in a brush 171, and dust is sucked by a suction mechanism 173. In FIG. 28B, the brush 171 is covered with a suction unit 174 to suck dust. In addition, the flow of air by suction is changed into rotating motion by a turbine 175, and used as the driving force of the brush 171. Embodiment 6 Embodiment 6 of the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, in recovering a face plate, rear plate, frame, spacer, and the like, an airtight container in the FPD must be returned to a normal air pressure because the airtight container is at an air pressure as low as vacuum of about 10−5 Pa. In this case, if the FPD is processed by direct cutting, melting, or the like without returning the interior of the airtight container to a normal air pressure, parts cannot be efficiently recovered. As one step of a recyclable recovery method, a process of returning the vacuum airtight container to a normal air pressure will be explained. FIG. 30 is a schematic view showing an embodiment of an image display apparatus according to the present invention. In FIG. 30, reference numeral 201 denotes an image display; 202, an airtight container for maintaining the pressure of the image display apparatus; 203, an atmospheric pressure-resistant constituent member which is incorporated in the airtight container and keeps the airtight container stable; 204, a means connected to an exhaust device in order to obtain the pressure; and 205, a means for gradually returning the interior of the airtight container to the atmospheric pressure. FIG. 31 is a schematic view showing an FPD as an example of the embodiment of the image display apparatus according to the present invention. In FIG. 31, reference numeral 2 denotes a face plate which serves as an image display, and is made up of a glass substrate 2a, fluorescent screen 2b, and metal back 2c; 1, a rear plate; and 3, a frame. The face plate 2, rear plate 1, and frame 3 constitute the airtight container 202. The airtight container 202 comprises the means 204 connected to the exhaust device and the means 205 for returning the interior of the airtight container to the atmospheric pressure that are shown in FIG. 30. The airtight container 202 comprises spacers 4 as an example of the atmospheric pressure-resistant constituent member. An image display apparatus suitable for the present invention is a display apparatus for maintaining the interior at a pressure lower than the atmospheric pressure. Examples of this display apparatus are an image display apparatus such as a CRT, a plasma display panel (PDP), a flat image display apparatus including a surface-conduction type electron-emitting element, a flat image display apparatus including a field emission (FE) type electron-emitting element, a flat image display apparatus including a metal/insulator/metal (MIM) type electron-emitting element, a vacuum fluorescent display, a flat CRT, and a thin FPD. An image display 15 of the image display apparatus such as a CRT is kept at a pressure much lower than a normal atmospheric pressure, compared to a liquid crystal display apparatus and electroluminescent panel. This is because electrons irradiate fine fluorescent substances or the like to emit light, and the light is controlled to display image information. In other words, the orbit of electrons cannot be controlled unless the pressure is reduced to set an atmosphere in which substances as obstacles which collide against electrons are satisfactorily eliminated. The pressure at which the orbit of electrons can be controlled is optimally selected in accordance with the structure of the image display apparatus, and is preferably 10 Pa or less, and more preferably 1 Pa or less. As the material of the airtight container which maintains the internal pressure of the image display 15, the face plate 2a is made of materials, mainly various glass materials, which transmit visible light capable of externally displaying internal image information and is strong enough to maintain the internal pressure. The face plate 2a, frame 3, and rear plate 1 preferably are made of materials which have almost the same thermal expansion coefficient in order to airtightly maintain the interior and can be sealed with frit glass or the like having almost the same thermal expansion coefficient. When the internal pressure is greatly different from the external atmospheric pressure, an atmospheric pressure-resistant constituent member such as the spacer 4 is used to increase the strength of the airtight container 202 and prevent deformation of the airtight container 202. Particularly in a large-screen image display apparatus, if the airtight container 202 is made thick to increase the strength of the container, the weight of the image display apparatus increases, and the image display apparatus is difficult to use at home. To reduce the weight of the image display apparatus, an atmospheric pressure-resistant constituent member is used in addition to the outer wall of the airtight container 202. In a thin FPD, the interval between the face plate 2 and the rear plate 1 serving as the internal image display 1 of the panel constituting the airtight container 202 can be kept uniform to attain a uniform image across the entire surface of the image display apparatus. For this reason, many spacers 4 are arranged as atmospheric pressure-resistant constituent members to keep almost uniform the distance between the face plate 2 and the rear plate 1 in the panel serving as the airtight container 202. As the panel becomes larger, the spacers 4 must be used in a larger number of locations in the panel in order to suppress distortion between the face plate 2 and the rear plate 1. The shape, the number of spacers 4, and the like are appropriately determined in accordance with the sizes, strengths, and distances of the face plate 2 and rear plate 1, the strength of the frame 3, and the like. Since the airtight container 202 having the image display constituted in this manner has the means 204 connected to the exhaust device such as a vacuum pump, the internal pressure of the airtight container 202 can be decreased. After the airtight container 202 is evacuated to a sufficiently low pressure, the airtight container 202 can be sealed to maintain the interior of the airtight container 15 at a low pressure. Thereafter, the image display of the image display apparatus is driven. The airtight container 202 is connected to the means for gradually returning the interior of the airtight container 202 to the atmospheric pressure. In general, a quantity Q of gas flowing in leakage is given by Q=C(P1−P0) [Pa·m2/s] (1) where C: conductance [m2/s] P1: atmospheric pressure [Pa] P0: internal pressure of airtight container [Pa] P1-P0: difference between atmospheric pressure and internal pressure of airtight container [Pa] To prevent damage to the airtight container and internal constituent members, abrupt inflow of gas into the airtight container must be prevented. For this purpose, the quantity Q of gas is desirably suppressed to about 101 Pa·m2/s or less. From equation (1), a mechanism having a leakage means having a conductance C of about 10−4 m2/s or less is attached to the airtight container 202 as the means 205 for gradually returning the interior of the airtight container to the atmospheric pressure. As the means 205 for gradually returning the interior of the airtight container to the atmospheric pressure, the airtight container is provided with a slow leak valve, a long thin pipe corresponding to the specifications, or a porous material. The means 205 for gradually returning the interior of the airtight container to the atmospheric pressure is attached at a position where the means 205 connects the airtight container 202 to the outer air side. The means 205 is further connected to the exhaust device from the outer air side to seal the airtight container. With this structure, the airtight container 202 is also tightly closed from the outer air side when the airtight container 202 is kept at a low pressure. In leaking the interior of the airtight container in order to reuse the image display apparatus, seal connection on the outer air side is canceled to gradually return the internal pressure of the airtight container to the atmospheric pressure. In this embodiment, the means 205 for gradually returning the interior of the atmospheric pressure to the atmospheric pressure is attached to the side of the airtight container 202. However, the position of the means 205 is not limited to this, and the means 205 may be attached at a position, such as the corner, lower surface, or side surface of the airtight container 202, at which the means 205 does not interfere with the image display 1. As needed, a filter or the like can be arranged and connected to a mechanism for gradually introducing gas. When a used image display apparatus is to be reused, inert gas, nitrogen, air, air free from moisture, or the like is gradually introduced in accordance with subsequent processing. When a defect generated during the manufacture is to be repaired, an introduction gas is properly selected not to influence the subsequent manufacturing step, the airtight container 202 kept at a low pressure is gradually returned to the atmospheric pressure, and the image display is dismantled and repaired. EXAMPLE 6 The present invention will be described in detail by way of Example 6. EXAMPLE 6-1 Example 1 will be explained with reference to FIGS. 30 and 31. FIG. 30 is a plan view showing the structure of an image display apparatus according to the present invention. FIG. 31 shows an example of an FPD as the image display apparatus of the present invention. Spacers 214 serving as atmospheric pressure-resistant structures were arranged in an airtight container 202 serving as an image display made up of a face plate 2, rear plate 1, and frame 3. The airtight container 202 is connected to an exhaust connection means 204 connected to an exhaust device. After the interior is kept at a low pressure, the airtight container is sealed. In Example 6-1, the airtight container was sealed after being evacuated to about 5×10−2 Pa. The airtight container 202 is connected to an air pressure returning means 205 for gradually returning the interior of the airtight container to the atmospheric pressure. Example 6-1 employed a slow leak valve having a conductance C of about 10−7 m2/s. This slow leak valve is sealed after the air side is also evacuated to about 5×102 Pa. To dismantle the image display apparatus, the outer air side of the means 205 for gradually returning the interior of the airtight container to the atmospheric pressure was opened to leak the airtight container 202. The interior of the panel was confirmed after dismantling and disassembly to find that no spacers 4 were damaged and particularly no internal members of the airtight container 202 were scratched. For comparison, an exhaust connection means 204 connected to the exhaust device of an identical image display apparatus was opened to leak the gas from an airtight container 202. The interior of the panel was quickly opened to the atmospheric pressure. However, internal spacers 4 were damaged, and fragments generated many scratches on a face plate 2, rear plate 1, and frame 3. EXAMPLE 6-2 Example 6-2 will exemplify a surface-conduction type electron source display (SED) of matrix driving scheme as shown in FIG. 32 as an image display apparatus. Wiring lines 12 and 13 for driving electron sources 11 of surface-conduction type electron sources were formed on a rear plate 1. The wiring lines 12 and wiring lines 13 are X-direction (Dox1, Dox2, . . . , Doxm) and Y-direction (Doy1, Doy2, . . . , Doyn) element wiring lines, respectively. This SED has a structure including spacers 214 as shown in FIG. 31. Similar to Example 6-1, Example 6-2 also adopted an air pressure returning means 205 for gradually returning the interior of the airtight container to the atmospheric pressure. After the panel was substantially completed, it was driven to find that part of the panel was defective. Thus, the outer air side of the air pressure returning means 205 for gradually returning the interior of the airtight container to the atmospheric pressure was opened to leak the panel, and the defect was repaired. After that, the interior of the panel was evacuated and sealed again by the exhaust connection means 204 connected to the exhaust device. At the same time, the outer air side of the air pressure returning means 205 for gradually returning the interior of the airtight container to the atmospheric pressure was evacuated and sealed to complete the image display apparatus. When the image display apparatus was driven to display an image, it was found that the defect had been repaired and no defect was generated. Embodiment 7 Embodiment 7 of the present invention will be described with reference to the accompanying drawings. FIG. 33A is a sectional view schematically showing an embodiment of a flat display according to the present invention, and FIG. 33B is a partially cutaway plan view of the flat display shown in FIG. 33A. The flat display of the present invention comprises at least a rear plate 222 having many electron-emitting elements 221 arrayed on a glass substrate, a face plate 224 which is arranged to face the rear plate 222 and has image display portions 223, a support frame 225, and spacers 226 for holding the interval between the rear plate 222 and the face plate 224 against the atmospheric pressure. The rear plate 222, face plate 224, support frame 225, and spacers 226 are airtightly joined with frit glass 229 to constitute the flat display. The frit glass 229 is generally low-melting glass mainly containing lead oxide and the like. In joining the respective members, the spacers and substrate are joined with first frit glass 227, the rear plate and support frame are joined with second frit glass 228, and the face plate and support frame are joined with the third frit glass 229. Of the three types of frit glasses, the frit glasses 228 and 229 have different softening temperatures. The first frit glass 227 which joins the spacers 226 has a softening temperature equal to or higher than a higher softening temperature of either one of the second and third frit glasses 228 and 229. Any of the temperatures falls within the range of 350 to 470° C., and is preferably different by 20° C. or more from the temperatures of the remaining frit glasses. Of the plurality of frit glasses, either one of the second and third frit glasses 228 and 229 has a higher softening temperature, which is determined in terms of the process. The spacers 226 are joined to either one of the rear plate 222 and face plate 224, and the joined plate can be arbitrarily determined. In the manufacture process, the respective members are joined by coating joint portions with frit glass and heating the frit glass to its softening temperature or more. In actual operation, heating processing is done in air at about 300° C. to remove components called binders in the frit glass (this step is called calcination). Thereafter, heating processing is done in inert gas as Ar at 400° C. or more to weld joint portions. The procedures of joining the members are not particularly limited. The plurality of frit glasses may be simultaneously applied and heated to a temperature higher than the softening temperatures of all the frit glasses, thereby joining the members at once. A method of sequentially joining portions using frit having a higher softening temperature can be adopted. This method is preferable because the respective members can be sequentially joined at a temperature at which frit glass at previously joined portions does not melt. The softening temperature in the present invention corresponds to a frit glass viscosity of 107.65 dPa·s (Poise). The respective members can be joined by heating frit glass to a temperature (baking temperature) higher than the softening temperature. The spacer generally has a thin plate-like shape with a length and width of about several ten mm and a thickness of 300 μm or less, and is constituted by forming an antistatic conductive film on the surface of an insulating substrate. A number of spacers necessary for the purpose are arranged at a necessary interval. Examples of the insulating material of the spacer are silica glass, glass containing a small amount of impurity such as Na, soda-lime glass, and a substrate prepared by stacking an insulating layer of, e.g., SiO2 on each of various substrates described above. Examples of the material of the conductive film are oxides of metals such as chromium, nickel, and copper, a nitride of aluminum and a transition metal alloy, and carbon. The structure of the face plate 224 will be explained. In FIGS. 33A and 33B, the face plate 224 is constituted by forming a fluorescent film 230 and metal back 231 on a glass substrate. This portion serves as an image display region. For a monochrome image display apparatus, the fluorescent film 230 is made of only fluorescent substances. To display a color image, image forming portions (to be also referred to as pixels hereinafter) are formed from fluorescent substances of three primary colors, i.e., red, green, and blue, and the fluorescent substances are isolated with black conductive members. The black conductive members are called black stripes or black matrix depending on the shape. The metal back 231 is formed from a conductive thin film of Al or the like. The metal back 231 increases the luminance by reflecting to the glass substrate, of light generated by fluorescent substances, light traveling toward the electron source made up of the electron-emitting elements 221. At the same time, the metal back 231 prevents fluorescent substances from being damaged by bombardment of ions generated by ionizing gas left in the panel by an electron beam. The metal back 231 renders the image display region of the face plate 224 conductive to prevent accumulation of charges, and serves as an anode electrode with respect to the electron source. Note that the metal back 231 is electrically connected to a high-voltage terminal Hv, and can apply an external voltage via the high-voltage terminal Hv. A flat display disassembly method according to the present invention will be explained. FIGS. 34A to 34D are schematic views showing an embodiment of the disassembly method according to the present invention. In FIGS. 34A to 34D, reference numeral 222 denotes a rear plate; 224, a face plate; 225, a support frame; 226, spacers; 227, first frit glass; 228, second frit glass; and 229, third frit glass. In FIG. 34, the first, second, and third frit glasses used at respective joint portions are three types of frit glasses having different softening temperatures (FIG. 34A). For example, assume that the order of higher softening temperatures is the first frit glass 227>the second frit glass 228>the third frit glass 229. The disassembly procedures are as follows. A panel is loaded to a proper heating furnace. The panel is heated to a temperature that is equal to or higher than the softening temperature of the third frit glass 229 and is equal to or lower than the softening temperatures of the remaining frit glasses, thereby melting only the third frit glass 229. While the temperature is maintained, the face plate 224 is separated from the support frame 225 (FIG. 34B). The heating temperature is increased to a temperature that is equal to or higher than the softening temperature of the second frit glass 228 and is equal to or lower than the softening temperature of the first frit glass 227. When the second frit glass 228 melts, the support frame 225 and rear plate 222 are separated (FIG. 34C). The heating temperature is further increased to melt the first frit glass 227, thereby separating the spacers 226 and rear plate 222. The method of separating joint portions using the first frit glass 227 is not limited to the heating method. For example, as shown in FIG. 35, after the panel is separated to a state shown in FIG. 34C, the panel can be dipped in a frit dissolving solution 239 to dissolve the frit glass to separate the spacers 226 and rear plate 222. A preferable solution is a nitric acid solution. After separation, residual frit glass is removed with nitric acid or the like, and the cleaning step is executed to recover the respective members. The recovered members are transferred to the reuse step or more precise recovery step. FIG. 36 is a schematic view showing another embodiment of the disassembly method according to the present invention. Also in FIG. 36, three types of frit glasses having different softening temperatures are used at respective joint portions (FIG. 36A). For example, assume that the order of higher softening temperatures is the first frit glass 227>the third frit glass 229>the second frit glass 228. The disassembly procedures are as follows. A panel is loaded to a proper heating furnace. The panel is heated to a temperature that is equal to or higher than the softening temperature of the second frit glass 228 and is equal to or lower than the softening temperatures of the remaining frit glasses, thereby melting only the second frit glass 228. While the panel is heated, the panel is divided into the face plate 224, support frame 225, rear plate 222, and spacers 226 (FIG. 36B). For the former case, the heating temperature is increased to a temperature equal to or higher than the softening temperature of the second frit glass 228. Since the second frit glass 228 is melted, the support frame 225 and rear plate 222 are separated (FIG. 36C). Note that the rear plate 222 and spacers 226 can be separated by the same method as in the first embodiment. EXAMPLE 7 The present invention will be described in detail by way of Example 7. In Example 7, frit glasses were properly selected from frit glasses listed in Table 1: TABLE 1 Softening Type of Frit Glass Main Component Temperature I PbO.B2O3 365° C. II PbO.B2O3 390° C. III PbO.B2O3 410° C. EXAMPLE 7-1 FIG. 33A is a sectional view schematically showing an arrangement of a flat display according to the present invention, and FIG. 33B is a partially cutaway plan view of the flat display shown in FIG. 33A. The flat display of the present invention comprises at least a rear plate 222 having many electron-emitting elements 221 arrayed on a glass substrate, a face plate 224 which is arranged to face the rear plate 222 and has image display portions 223, a support frame 225, and spacers 226 for holding the interval between the rear plate 222 and the face plate 224 against the atmospheric pressure. The rear plate 222, face plate 224, support frame 225, and spacers 226 are airtightly joined with frit glass 229 to constitute the flat display. In Example 7-1, a display in which 25 spacers 226 were welded to a rear plate 222 formed from soda-lime glass 300 mm×250 mm×2.8 mm in size was manufactured. Each spacer was prepared by forming an aluminum nitride film as a conductive film having a thickness of about 100 nm on a soda-lime glass substrate having a height of 2.8 mm, a thickness of 200 μm, and a length of 40 mm. III (softening temperature: 410° C.) in Table 1 was used as frit glass 227 between the spacer 226 and the rear plate 222. II (softening temperature: 390° C.) in Table 1 was used as frit glass 228 between the rear plate 222 and the support frame 225. Frit glass 229 of I (softening temperature: 365° C.) in Table 1 was used as frit glass 229 between the face plate 224 and the support frame 225. As the electron-emitting element 221, a surface-conduction type electron-emitting element shown in FIGS. 37A and 37B was formed. A flat display manufacturing method according to Example 7-1 will be described with reference to FIGS. 33A, 33B, 37A, 37B, 38A, and 38B. (1) Soda-lime glass was used as a rear plate, and element electrodes 235 and 236 were formed using Pt on the substrate. At this time, an element electrode interval L1 was set to 10 μm; an element electrode width W1, 500 μm; and an element electrode thickness d, 100 nm. After an organic palladium-containing solution was applied to a desired position including the element electrodes, heating processing was done at 300° C. for 10 min to form a fine particle film 234 from fine palladium oxide (PdO) particles (average diameter: 7 nm). A plurality of electron-emitting elements 221 were formed on the substrate to obtain a rear plate 222. A face plate was prepared by applying fluorescent substances as image display members 223 on a glass substrate. (2) A seal method in Example 7-1 will be explained. Spacers 226 were welded to the rear plate 222 with frit glass III (softening temperature: 410° C.) (FIG. 38A). (3) Frit glass II (softening temperature: 390° C.) was applied to an outer edge (frit-coated portion 240 in FIG. 33B) on the rear plate 222. Further, frit glass I (softening temperature: 365° C.) was applied to a similar portion on the face plate 224. Then, the face plate 224, support frame 225, and rear plate 222 were overlapped while being precisely aligned (FIG. 38B). The face plate 224, support frame 225, and rear plate 222 were fixed with a jig so as not to move the face plate 224 and rear plate 222, and baked in a furnace at 400° C. for 10 min or more. In this manner, the face plate, rear plate, and support frame were joined (FIG. 38C). (4) To evacuate the interior of the container manufactured in the above step, the container was evacuated via an exhaust pipe (not shown) attached to the support frame 225 or the like after seal processing. After that, the exhaust pipe was sealed. EXAMPLE 7-2 In Example 7-2, a display having the same structure as in Example 7-1 was manufactured. In Example 7-2, spacers were joined to a rear plate with frit glass III (softening temperature: 410° C.). A rear plate 222 and support frame 225 were joined with frit glass I (softening temperature: 365° C.), and a face plate 224 and the support frame 225 were joined with frit glass II (softening temperature: 390° C.). The manufacture of the flat display in Example 7-2 adopted the same method as in Example 7-1. EXAMPLE 7-3 In Example 7-3, a display having the same structure as in Example 7-1 was manufactured. In Example 7-3, spacers 226 were joined to a rear plate 222 with frit glass IV (softening temperature: 450° C.). The rear plate 222 and a support frame 225 were joined with frit glass III (softening temperature: 410° C.), and a face plate 224 and the support frame 225 were joined with frit glass II (softening temperature: 390° C.). The manufacture of the rear plate 222 and face plate 224 of the flat display in Example 7-3 adopted the same method as (1) in Example 7-1. (2) A seal method in Example 7-3 will be explained. The spacers 226 were welded to the rear plate 222 with frit glass IV (softening temperature: 450° C.) (FIG. 38A). (3) Frit glass III (softening temperature: 410° C.) was applied to an outer edge (frit-coated portion 240 in FIG. 33B) on the rear plate 222. Further, frit glass II (softening temperature: 390° C.) was applied to a similar portion on the face plate 224. Then, the face plate 224 and support rear plate 222 were overlapped while being precisely aligned (FIG. 38B). The face plate 224 and rear plate 222 were fixed with a jig so as not to move them, and baked in a furnace at 420° C. for 10 min or more. As a result, the face plate 224, rear plate 222, and support frame 225 were joined (FIG. 38C). (4) To evacuate the interior of the container manufactured in the above step, the container was evacuated via an exhaust pipe (not shown) attached to the support frame 225 or the like after seal processing. Thereafter, the exhaust pipe was sealed. EXAMPLE 7-4 In Example 7-4, a display having the same structure as in Example 7-1 was manufactured. In Example 7-4, spacers 226 were joined to a face plate 224 with frit glass III (softening temperature: 410° C.). A rear plate 222 and support frame 225 were joined with frit glass II (softening temperature: 390° C.), and the face plate 224 and support frame 225 were joined with frit glass I (softening temperature: 365° C.). The manufacture of the rear plate 222 and face plate 224 of the flat display in Example 7-4 employed the same method as (1) in Example 7-1. (2) A seal method in Example 7-4 will be explained with reference to FIG. 39. The spacers 226 were welded to the face plate 224 with frit glass III (softening temperature: 410° C.) (FIG. 39A). (3) Frit glass II (softening temperature: 390° C.) was applied to an outer edge on the rear plate 222. Further, frit glass I (softening temperature: 365° C.) was applied to a similar portion on the face plate. The face plate 224, support frame 225, and rear plate 222 were overlapped while being precisely aligned (FIG. 39B). The face plate 224, support frame 225, and rear plate 222 were fixed with a jig so as not to move the face plate 224 and rear plate 222, and baked in a furnace at 420° C. for 10 min or more. In this fashion, the face plate 224, rear plate 222, and support frame 225 were joined (FIG. 39C). (4) To evacuate the interior of the container manufactured in the above step, the container was evacuated via an exhaust pipe (not shown) attached to the support frame 225 or the like after seal processing. Then, the exhaust pipe was sealed. EXAMPLE 7-5 In Example 7-5, a display having the same structure as in Example 7-1 was manufactured. In Example 7-5, spacers 226 were joined to a rear plate 222 with frit glass II (softening temperature: 390° C.). The rear plate 222 and a support frame 225 were also joined with frit glass II (softening temperature: 390° C.), and a face plate 224 and the support frame 225 were joined with frit glass I (softening temperature: 365° C.). The manufacture of the rear plate 222 and face plate 224 of the flat display in Example 7-5 used the same method as (1) in Example 7-1. (2) A seal method in Example 7-5 will be explained with reference to FIGS. 40A to 40C. The spacers 226 and support frame 225 were welded to the rear plate 222 with frit glass II (softening temperature: 390° C.) (FIG. 40A). (3) Frit glass I (softening temperature: 365° C.) was applied to an outer edge on the face plate 224. The face plate 224 and support frame 225 were overlapped while being precisely aligned (FIG. 40B). The face plate 224 and support frame were fixed with a jig so as not to move them, and baked in a furnace at 420° C. for 10 min or more. In this manner, the face plate 224 and support frame 225 were joined (FIG. 40C). (4) To evacuate the interior of the container manufactured in the above step, the container was evacuated via an exhaust pipe (not shown) attached to the support frame 225 or the like after seal processing. Then, the exhaust pipe was sealed. EXAMPLE 7-6 Example 7-6 relates to a method of disassembling the flat display described in Example 7-1. The disassembly method will be explained with reference to FIGS. 34A to 34D. (1) The sealed portion of the exhaust pipe was unsealed to introduce air, thereby canceling the vacuum in the container (not shown). (2) The display was loaded to a heating furnace, a rear plate 222 and face plate 224 were held with a proper jig, and then the display was heated to 380° C. When the heating temperature exceeded 365° C., frit glass I which joined the face plate 224 and a support frame 225 gradually melted. The jig holding the face plate 224 was pulled up to separate the face plate 224 and support frame 225 from each other (FIGS. 34A and 34B). (3) After the support frame 225 was held with a proper jig, the heating temperature was increased to 400° C. When the heating temperature exceeded 390° C., frit glass II which joined the rear plate 222 and support frame 225 gradually melted. The jig holding the support frame 225 was pulled up to separate the support frame 225 and rear plate 222 (FIG. 34C). (4) After spacers 226 were held with a proper jig, the heating temperature was increased to 450° C. When the heating temperature exceeded 410° C., frit glass III which joined the rear plate 222 and spacers 226 gradually melted. The jig holding the spacers 226 was pulled up to separate the rear plate 222 and spacers 226 from each other (FIG. 34D). Each of the recovered members was cleaned with a 0.2-N nitric acid solution to remove residual frit glass, and then the member was cleaned and dried. The spacers and support frame were screened through the inspection step, and non-defectives were sent to the reuse step. The rear plate and face plate were sent to the recovery step for resources formed on these substrates, the reuse step for the substrates themselves, and the like. In the flat display disassembled in accordance with Example 7-6, the face plate 222, rear plate 224, support frame, and spacers 226 were hardly damaged during the process. EXAMPLE 7-7 Example 7-7 relates to a method of disassembling the flat display described in Example 7-2. The disassembly method will be explained with reference to FIGS. 36A to 36E. (1) The sealed portion of the exhaust pipe was unsealed to introduce air, thereby canceling the vacuum in the container (not shown). (2) The display was loaded to a heating furnace, a rear plate 222 and face plate 224 were held with a proper jig, and then the display was heated to 380° C. When the heating temperature exceeded 365° C., frit glass I which joined the rear plate 222 and a support frame 225 gradually melted. The jig holding the face plate 224 was pulled up to separate the two parts, i.e., the face plate 224 and support frame 225 and the rear plate 222 and spacers 226 (FIGS. 36A, 36B, and 36C). (3) Of the two separated parts, the face plate 224 and support frame 225 were heated to 410° C. in the furnace to gradually melt frit glass II, and the jig holding the support frame 225 was pulled up to separate the face plate 224 and support frame 225, similar to the method as in Example 7-5 (FIG. 36E). (4) On the other hand, the rear plate 222 and spacers 226 were separated by the same method as (4) in Example 7-5 (FIG. 36D). Each of the recovered members was cleaned with a 0.2-N nitric acid solution to remove residual frit glass, and then the member was cleaned and dried. The spacers 226 and support frame were screened through the inspection step, and non-defectives were sent to the reuse step. The rear plate 222 and face plate 224 were sent to the recovery step for resources formed on these substrates, the reuse step for the substrates themselves, and the like. In the flat display disassembled in accordance with Example 7-7, the face plate, rear plate, support frame, and spacers were hardly damaged during the process. EXAMPLE 7-8 Example 7-8 is directed to a method of disassembling the flat display described in Example 7-3. The disassembly method will be explained with reference to FIGS. 34A to 34D and 35A to 35C. A face plate 224 and support frame 225 were separated from a display up to a state in FIG. 34C by steps (1) to (3) in Example 7-6. (4) The rear plate was held with a proper jig, and the joint portions between the rear plate 222 and spacers 226 were dipped in a solution bath 237 filled with a 0.2-N nitric acid solution 239 (FIG. 35A). The solution bath 237 incorporated a meshed Teflon container 238. When the joint portions were dipped in the nitric acid solution 239, frit glass IV dissolved, and the spacers 226 were recovered in the container 238. After all the spacers 226 were confirmed to be separated, the rear plate 222 was pulled up (FIG. 35B). The spacers 226 were also pulled up from the nitric acid solution 239 together with the container 238. Residual frit glass was removed from each of the recovered members, and the member was cleaned and dried. Each member was screened through the inspection step, and sent to the reuse step or more precise recovery step. In the flat display disassembled in accordance with Example 7-8, the face plate, rear plate, support frame, and spacers were hardly damaged during the process. EXAMPLE 7-9 Example 7-9 concerns a method of disassembling the flat display described in Example 7-4. By the same method as in (1) and (2) described in Example 7-7, the display was heated to 360° C. to separate two parts, i.e., a rear plate 222 and support frame 225, and a face plate 224 and spacers 226. Of the two separated parts, the rear plate 225 and support came 225 were separated by the same method as (3) in Example 7-7. The face plate 224 and spacers 226 were separated by the same method as (4) in Example 7-6. In the flat display disassembled in accordance with Example 7-9, the face plate 224, rear plate 222, support frame 225, and spacers 226 were hardly damaged during the process. EXAMPLE 7-10 Example 7-10 relates to a method of disassembling the flat display described in Example 7-5. A face plate 224 was separated from a display up to a state in FIG. 34B by the same method as (1) and (2) in Example 7-6. (3) After a support frame 225 and spacers 226 were simultaneously held with a proper jig, the heating temperature was increased to 410° C. When the heating temperature exceeded 390° C., frit glass II which joined a rear plate 222 and the support frame 225, and the rear plate 222 and the spacer 226 gradually melted. The jig holding the support frame 225 and spacers 226 was pulled up to separate the respective members. In the flat display disassembled in accordance with Example 7-10, the face plate 224, rear plate 222, support frame 225, and spacers 226 were hardly damaged during the process. COMPARATIVE EXAMPLE 7-1 A flat display disassembled in Comparative Example 7-1 was manufactured by the same method as in Example 7-1 except that spacers 226 and a rear plate 222, the rear plate 222 and a support frame 225, and a face plate 224 and the support frame 225 were joined with frit glass II (softening temperature: 390° C.). This flat display was disassembled as follows. After the container was evacuated, the display was loaded to a heating furnace. After the rear plate 222, face plate 224, and support frame 225 were held with a proper jig, the display was heated to 410° C. When the heating temperature exceeded 390° C., frit glass II started melting. Since the joint portions between the rear plate, frame, and face plate simultaneously melted, the holding state became unstable though the rear plate, frame, and face plate were held with the jig. In some cases, these members contacted each other or the jig contacted them to damage the members. In particular, many of the spacers having a thin plate shape were damaged. Embodiment 8 An embodiment of a residual hazardous metal amount inspection apparatus according to the present invention will be described below with reference to the accompanying drawings. FIG. 41 is a view showing a residual hazardous metal amount inspection apparatus according to the embodiment of the present invention. As shown in FIG. 41, this inspection apparatus inspects a hazardous metal amount of lead or the like contained in an inspection target object X such as a member, waste, or the like disassembled and fractionated for recycling. The inspection apparatus is mainly constituted by a lead elution/recovery section 130 for eluting and recovering lead, a cleaning section 131, a residual lead elusion section 132, and a residual lead quantity detection section 133. As the inspection target object X includes members or wastes obtained after a device mainly containing a glass member, such as a flat panel display made up of a rear plate 1, face plate 2, frame 3, and spacers 4 shown in FIGS. 43A and 43B, or a cathode ray tube, is disassembled and fractionated. As will be described later, this inspection apparatus elutes lead with a nitric acid solution. Hence, the apparatus can inspect insolubles to the nitric acid solution, and the inspection target object X is not limited to a glass member. In FIG. 41, the lead elution/recovery section 130 fills with an acid solution A a dipping bath 100 for dipping the inspection target object X, and elutes a hazardous metal (lead) contained in the inspection target object X. The dipping bath 100 is coupled to a recovery bath 102 via a pipe 101. A lead elution solution is supplied to the recovery bath 102 via an opening/closing valve 103 and solution convey pump 104 arranged midway along the pipe 101. The convey outlet of a conveyer 105 is set at the upper edge of the dipping bath 100, and the inspection target object X such as a fractionated member is loaded from a disassembly processing section (not shown). A meshed cage 106 is set in the dipping bath 100. The inspection target object X falls from the conveyer 105 into the meshed cage 106, and extracted upon the lapse of a predetermined elution time by pulling up the handle of the meshed cage 106. The cleaning section 131 fills with pure water B a cleaning bath 110 for dipping the inspection target object X, and cleans the inspection target object X after elution by the lead elution/recovery section 130. That is, the meshed cage 106 pulled up from the dipping bath 100 is set in the cleaning bath 110. The residual lead elusion section 132 fills with an acid solution C a dipping bath 120 for dipping the inspection target object X, and elutes lead left on the inspection target object X cleaned by the cleaning section 131. The dipping bath 120 is connected to an opening/closing valve 122, solution convey pump 123, and switching valve 124 via a pipe 121. A residual lead elution solution is supplied to the residual lead quantity detection section 133. An ultrasonic vibrator 125 is arranged below the dipping bath 120, and applies ultrasonic vibrations to the acid solution C in the dipping bath 120 to prompt elution. The other end of the switching valve 124 is connected to a pipe 126 extending to the dipping bath 100. The residue of the acid solution C filled in the dipping bath 120 is supplied to the dipping bath 100 where the residue is reused. The acid solution C and the acid solution A which reuses the acid solution C are, e.g., a nitric acid solution, and the concentration of the nitric acid solution preferably falls within the range of 0.1 N (Normal) to 1 N. The residual lead quantity detection section 133 adopts an appropriate arrangement for quantity detection (to be described later), and quantitatively detects lead from a received elution solution. Preferable examples of the material of the baths 100, 102, 110, and 120 are resins such as Teflon, and glass containing no lead, and must resist the acid solutions A and C which are stored and filled in these baths. Similarly, the material of the meshed cage 106 must resist the acid solutions A and C in which the meshed cage 106 is dipped, and preferable examples thereof are resins such as Teflon. More specifically, in this inspection apparatus, the inspection target object X is dipped in the acid solution A (nitric acid solution) of the dipping bath 100 to elute a lead component contained in the inspection target object X. Then, the inspection target object X is cleaned with the pure water B of the cleaning bath 110, and dipped in the acid solution C (new nitric acid solution) of the dipping bath 120 to elute residual lead. The lead amount is subjected to quantity detection by the residual lead quantity detection section 133 to inspect the residual lead amount. FIG. 42 is a flow chart for sequentially explaining inspection processing by the residual hazardous metal amount inspection apparatus shown in FIG. 41. A case wherein the flat panel display shown in FIG. 43 is disassembled will be described. Pre-processing steps (1) to (3) of disassembly are performed. Connections such as terminals are detached from the housing of the flat panel display apparatus [step (1)], and only the display main body is extracted [step (2)]. The vacuum in the airtight container constituting the display main body is canceled and returned to the atmospheric pressure [step (3)]. The display main body is disassembled with a proper means and fractionated. The fractionated members and remaining wastes serve as inspection target objects X. Such an inspection target object X is conveyed to the lead elution/recovery section 130 by the conveyer 105, and dipped in the acid solution A (nitric acid solution) of the dipping bath 100 [step (4)]. Upon the lapse of a predetermined time, the meshed cage 106 is pulled up to extract a member peeled from frit glass [step (5)]. The pulled meshed cage 106 is transferred to the cleaning section 131, and sunk in the cleaning bath 110 to clean with pure water the nitric acid solution attached to the inspection target object x [step (6)]. After cleaning, the meshed cage 106 is transferred to the residual lead elusion section 132, sunk in the dipping bath 120, and kept dipped in the acid solution C [step (7)]. At this time, the ultrasonic vibrator 125 is activated to apply vibrations to the dipping bath 120, thereby increasing the elution efficiency. After that, the opening/closing valve 122 is operated to supply the elution solution in the dipping bath 120 to the residual lead quantity detection section 133 where the supplied elution solution is extracted [step (8)]. The extraction amount suffices to be several ten cc. The residual lead quantity detection section 133 adds an iodide to the received elution solution to develop a color, and measures the absorbance [step (9)]. The measurement wavelength is preferably around 340 nm in order to attain a high analysis precision. The residual lead quantity detection section 133 obtains a lead ion concentration from the measured absorbance. The lead ion concentration is obtained such that the relationship (calibration curve) between the lead ion concentration of a standard sample and the absorbance is obtained in advance, and the calibration curve is referred to for an absorbance to obtain a lead ion concentration. At this time, the quantitative value of lead in a nitric acid solution in use is used for a blank value. Alternatively, the residual lead quantity detection section 133 may perform plasma emission spectroscopic analysis (ICP) for the received elution solution to detect a lead ion concentration. At this time, the measurement wavelength is preferably 220.4 nm in terms of the sensitivity. The lower limit of the lead amount by the absorbance method is about 1 ppm, whereas the lower limit of the lead amount by the ICP method is about 0.05 ppm. Note that, by operating the switching valve 124, the residual nitric acid solution of the elution solution extracted for inspection is supplied to the dipping bath 100 where the nitric acid solution is reused. This can preferably reduce wastes. If the lead ion concentration value obtained in the above manner is equal to or smaller than a predetermined allowance (e.g., several ten ppm), the inspection target object X is regarded to be free from any residual lead. For a lead ion concentration higher than the allowance, the processing returns to step (7) to dip the inspection target object X in a new nitric acid solution again, and steps (8) to (10) are repeated [step (10)]. In this case, the dipping bath 120 may be filled with a new nitric acid solution after all the nitric acid solution in step (8) is discharged, or a plurality of dipping baths 120 may be prepared for use. Since the lead ion concentration is a relative amount which changes depending on an increase/decrease in solution amount, a new nitric acid solution prepared for the dipping bath 120 must keep the solution amount and concentration value constant. On the other hand, after step (4), the nitric acid solution of the dipping bath 100 is supplied to the recovery bath 102 by operating the opening/closing valve 103 [step (11)]. Sulfuric acid ions are excessively added in the recovery bath 102 to cause lead in the nitric acid solution to react with the sulfuric acid ions, thereby precipitating lead as lead sulfate. The resultant solution is filtered, recovered, and subjected as a lead-containing hazardous substance to appropriate waste disposal. With the above arrangement, in the residual hazardous metal amount inspection apparatus of Embodiment 8, when the inspection target object X is dipped in the dipping bath 100 of the lead elution/recovery section 130, lead (hazardous metal) contained in the inspection target object X is eluted with the nitric acid solution (acid solution) of the dipping bath 100. The inspection target object X is supplied to the cleaning section 131 where the inspection target object X is cleaned. Then, the inspection target object X is dipped in the dipping bath 120 of the residual lead elusion section 132 to elute lead (hazardous metal) left on the inspection target object X with the nitric acid solution (acid solution C) of the dipping bath 120. The elution solution is supplied to the residual lead quantity detection section 133 which quantitatively detects a lead ion concentration (hazardous metal amount) contained in the elution solution. Hence, in disassembling and fractionating a flat panel display or the like, the amount of hazardous metal such as lead left on the inspection target object X such as a glass fractionated member or waste can be quantitatively detected. In this case, the inspection target object X is simply dipped in the dipping baths 100 and 120 filled with the acid solutions A and C, and thus the hazardous metal amount can be easily quantitatively detected without any cumbersome operation. As far as the inspection target object X does not dissolve in the acid solutions A and C, a hazardous metal such as lead can be eluted. The material, shape, and the like of the inspection target object X are not particularly limited, and various members can be inspected. Embodiment 9 An embodiment of a flat display panel disassembly apparatus according to the present invention will be explained below with reference to the accompanying drawings. Embodiment 9-1 FIGS. 44A, and 44B to 49 show the first embodiment of the present invention. FIG. 44A is a perspective view showing the arrangement of the flat panel display disassembly apparatus, and FIG. 44B is a plan view thereof. FIG. 45 is a side view showing a table and support means in FIGS. 44A and 44B. FIG. 46A is a plan view showing a convey means in FIGS. 44A and 44B, and FIG. 46B is a side view showing the convey means. FIG. 47A is a plan view showing another example of the convey means in FIGS. 44A and 44B, and FIG. 47B is a side view showing this convey means. FIG. 48 is a side view showing a spacer recovery jig in FIGS. 44A and 44B. FIG. 49 is a side view showing another example of the spacer recovery jig in FIGS. 44A and 44B. In FIGS. 44A and 44B, reference numeral 50 denotes a flat panel display; 57, a table for placing the flat panel display 50; 54, a support means for supporting the flat panel display 50 by applying a pull-up force to the upper surface of the flat panel display 50; 55, a controller for generating a pull-up force to the support means 54; 71 (72), a spacer recovery jig; and 300, a convey means. The flat panel display 50 to be disassembled has the above-described structure shown in FIG. 43. The flat panel display 50 is placed on the table 57 with a plate member fixed to spacers 4 facing up. The support means 54 is brought into contact with the upper surface of the flat panel display 50, and a predetermined pull-up force is applied to the flat panel display 50 to fix it. FIG. 45 shows an example in which the spacers 4 are fixed to at least a face plate 2. The table 57 can be vertically elevated while placing the flat panel display 50 on it. The support means 54 is connected to the controller 55. When the type of flat panel display 50 is input, the controller 55 causes the support means 54 to generate a predetermined pull-up force for supporting the weight of the upper surface. An arrangement of generating a pull-up force by the support means 54 adopts an arrangement such as an evacuation means for supporting the flat panel display 50 by generating a pull-up force from the evacuation force of an evacuation device, or an arrangement such as a suction means for supporting the flat panel display 50 by generating a pull-up force from the suction force of a sucker. Embodiment 8 adopts the arrangement of the evacuation means, and the support means 54 is connected to an evacuation device 56. Note that the pull-up force of the support means 54 is set not to a value capable of supporting the total weight of the flat panel display 50 placed on the table 57, but to a value enough to support a weight of the flat panel display 50 from which a frame member 3 is separated, i.e., enough to support a plate member fixed to the spacers 4. The pull-up force is preferably set larger than this weight by 1 kg. The convey means 300 conveys the plate member fixed to the spacers 4 to a spacer recovery unit 73 (74) after the frame member 3 is separated from the flat panel display 50. The convey means 300 moves along a guide rail 100 to convey the plate member. The arrangement shown in FIGS. 46A and 46B is for a display in which the spacers 4 are fixed to either one of two plates 1 and 2. The arrangement shown in FIGS. 47A and 47B is for a display in which the spacers 4 are fixed to the two plates 1 and 2. A column 61 of the convey means 300 can move back and forth, and right and left on a stage 60. The column 61 is equipped with an arm 63, and the level of the arm 63 can be adjusted. The arm 63 is equipped with a press jig 62. The press jig 62 holds the plate member fixed to the spacers 4 by clamping it from two sides. More specifically, pairs of right and left suspension bars 321R and 321L, and 322R and 322L are attached to the front and back of the arm 63. The suspension bars 321R 321L, 322R, and 322L have claws 321R1 and 321R2, 321L1 and 321L2, 322R1 and 322R2, and 322L1 and 322L2, each pair of which are apart at a vertical interval dl. The vertical interval dl is set large enough to mount the rear plate 1 or face plate 2. The horizontal opening angle and back/forth position of the press jig 62 attached to the arm 63 can be adjusted. The spacer recovery jig 71 (72) receives and supports the edge of the plate fixed to the spacers 4. The spacer recovery jig 71 having the arrangement shown in FIG. 48 is for a display in which the spacers 4 are fixed to either one of the two plates 1 and 2. The spacer recovery jig 72 having the arrangement shown in FIG. 49 is for a display in which the spacers 4 are fixed to the two plates 1 and 2. The spacer recovery jig 71 (72) which receives and supports a plate member is stored in the spacer recovery unit 73 (74) where the spacers 4 are separated and recovered. As for the spacer recovery jig 71, a groove depth d2 is set equal to or larger than the height of each spacer 4, a groove width d3 is set to a distance equal to or larger than the area of the spacers 4, and a reception opening d4 is set equal to or larger than the width of a plate member received and supported by the spacer recovery jig 71. For the spacer recovery jig 72, a lower groove depth d5 is set equal to or larger than the thickness of the plate member, and a rack thickness d6 is set equal to or smaller than the interval between the rear plate 1 and the face plate 2, i.e., the thickness of the frame member 3 separated in the previous step. A load avoiding jig 70 is arranged at the bottom of the groove of the spacer recovery jig 72 to prevent any load from being applied to the spacers 4 on the received/supported plate member. The spacer recovery unit 73 (74) stores the spacer recovery jig 71 (72) which receives and supports a plate member. In the spacer recovery unit 73 (74), the spacers 4 are separated and recovered. To separate and recover the spacers 4, the spacers 4 are dipped in an acid solution such as a nitric acid solution, or heated. In other words, the spacer recovery unit is implemented by an acid solution dipping bath 73. The spacer recovery jig 71 (72) is dipped in the acid solution to separate the spacers 4 from the received/supported plate member, and the spacers 4 gathered at the bottom of the groove are recovered. Moreover, the spacer recovery unit is implemented by a heating furnace 74. The spacer recovery jig 71 (72) is heated to separate the spacers 4 from the received/supported plate member. The spacer recovery jig 71 (72) is extracted to recover the spacers 4 gathered at the bottom of the groove. An example of the acid solution is a 0.2-N nitric acid solution. When the spacer recovery jig employs an arrangement of dipping spacers in an acid solution, the spacer recovery jig 71 (72) is made of an acid-resistant material such as a plastic. When the spacer recovery jig employs an arrangement of heating spacers, the spacer recovery jig 71 (72) is made of a heat-resistant material such as a metal. FIG. 50 is a flow chart for sequentially explaining a disassembly process by the flat panel display disassembly apparatus shown in FIGS. 44A and 44B. Pre-processing steps (1) to (5) of disassembly are performed. The flat panel display 50 is dismounted from the housing of the flat panel display apparatus [step (1)], and placed on the table 57 with a plate member fixed to the spacers 4 facing up [step (2)]. Accessory wiring lines and terminals are detached [step (3)]. Proper processing of, e.g., unsealing the attaching portion of an exhaust pipe is executed to cancel the vacuum in the vacuum container, thereby returning the interior of the vacuum container to the atmospheric pressure [step (4)]. Then, the exhaust pipe is detached [step (5)]. As shown in FIG. 45, the support means 54 is brought into contact with the upper surface of the flat panel display 50 on the table 57 to fix the flat panel display 50 by a predetermined pull-up force [step (6)]. Subsequently, the frame member 3 is separated from the flat panel display 50 [step (7)]. This separation adopts an appropriate method of simply cutting the flat panel display 50, press-inserting a wedged-edge tool into the joint portion between the frame member 3 and the two plates 1 and 2 to separate them, or spraying a nitric acid solution. The frame member 3 separated in step (7) [step (8)] is shredded. At the same time, a lead component is removed, and the resultant material is reused as a recycled new glass material [step (9)]. The plate member fixed to the spacers 4 is held by the convey means 300 shown in FIGS. 46A and 46B [step (10)], moved along the guide rail 100, and transferred to the spacer recovery jig 71 (72) [step (11)]. More specifically, while the opening angles of the suspension bars 321L, 321R, 322L, and 322R are adjusted, the plate member is clamped, suspended, and supported by the claws 321L1, 321L2, 321R1, 321R2, 322L1, 322L2, 322R1, and 322R2. The stage 60 is moved along the guide rail 100, and the plate member is transferred to the spacer recovery jig 71 (72) by procedures opposite to suspension/support procedures. Then, the spacers 4 are recovered [step (12)]. For this purpose, the spacer recovery jig 71 (72) which receives and supports the plate member fixed to the spacers 4 is stored in the spacer recovery unit 73 (74) where the spacers 4 are separated and recovered. After the spacers 4 are recovered, when the plate member is the face plate 2 [step (13)], fluorescent substances are recovered from the face plate 2 [step (14)]. The face plate 2 is shredded, a lead component is removed, and the resultant material is reused as a recycled new glass material [step (15)]. When the plate member is the rear plate 1 [step (16)], wiring lines are removed from the rear plate 1 [step (17)]. The rear plate 1 is shredded, a lead component is removed, and the resultant material is reused as a recycled new glass material [step (18)]. With the above arrangement, in the flat panel display disassembly apparatus of Embodiment 9, a plate member fixed to the spacers 4 is supported by applying a pull-up force from the support means 54 in separating the frame member 3 from the display main body (vacuum container). The spacers 4 are suspended without receiving the weight of the fixed plate member, and the frame member 3 can be separated without applying any load to the spacers 4. This can prevent any damage to the spacers 4. After the frame member 3 is separated, the spacer recovery jig 71 (72) receives and supports the edge of the plate fixed to the spacers 4. Also at this time, the spacers 4 are suspended without receiving the weight of the fixed plate member. The step of separating the spacers 4 from the plate member received and supported by the spacer recovery jig 71 (72) is performed while the spacer recovery unit 73 (74) keeps receiving and supporting the plate member. Also in the separating/recovery step for the spacers 4, the spacers 4 do not receive any extra weight, and can be prevented from being damaged. In other words, disassembly processing can be executed by proper steps, and directly reusable constituent members such as the spacers 4 can be recovered without any damage. As a result, constituent members can be preferably recycled. Embodiment 9-2 FIGS. 51A and 51B show Embodiment 9-2 of the present invention. FIG. 51A shows a perspective view showing the arrangement of a flat panel display disassembly apparatus, and FIG. 51B is a plan view thereof. In Embodiment 9-2, a support means for supporting a flat panel display 50 by applying a pull-up force to the upper surface of the flat panel display 50 is realized by a suction means 240 for supporting the flat panel display 50 by generating a pull-up force from the suction force of a sucker. A convey means 301 rotates an arm 63 attached to its upper portion about a column 61 as a rotating shaft. A table 57, spacer recovery unit 73 (74), and spacer recovery jig 71 (72) are arranged within the rotation range of the arm 63. Note that the same reference numerals as in Embodiment 9-1 denote the same parts, and a description thereof will be omitted. The disassembly process in this case is the same as in Embodiment 9-1. In each step, spacers 4 can be suspended. The spacers 4 can be separated and recovered without applying any weight, and can be prevented from being damaged. Respective members can be disassembled and reused as recycled new glass materials. That is, disassembly processing can be executed by proper steps, and constituent members can be preferably recycled. Embodiment 10 Embodiment 10 of the present invention will be described in detail below with reference to the accompanying drawings. Embodiment 10 will exemplify disassembly processing for an FPD which incorporates spacers and has a fluorescent screen on the inner surface of a face plate, as schematically shown in FIGS. 43A, 43B, and 32. FIG. 43A is a partially cutaway perspective view showing the FPD, and FIG. 43B is a sectional view. In FIGS. 43A and 43B, reference numeral 1 denotes a rear plate; 2, a face plate; 3, a frame; and 4, spacers. Lead-containing frit glass 5 is used at each joint portion represented in black in FIGS. 43A and 43B. Examples of the materials of the rear plate 1, face plate 2, and frame 3 are silica glass, glass containing a small amount of impurity such as Na, soda-lime glass, and glass prepared by stacking a silica layer on soda-lime glass. On the face plate 2, a fluorescent film 2b is formed on the inner surface of a glass substrate 2a, and a metal back 2c containing Al is formed on the inner surface of the fluorescent film 2b. The spacers 4 are bonded to either one of the face plate and rear plate or both of them. In this embodiment, the spacers 4 are bonded to only the face plate. The spacer 4 is basically made of glass, and the surface of the spacer 4 may be coated with an antistatic conductive film. In addition, an exhaust pipe (not shown) for evacuating the FPD is generally attached to the FPD. In general, the exhaust pipe is formed from low-melting glass containing lead. The FPD shown in FIG. 32 is an example of a surface-conduction type electron source display of matrix driving scheme. FIG. 32 is a partially cutaway view showing the FPD. In FIG. 32, surface-conduction type electron sources 11, and wiring lines 12 and 13 for driving the electron sources are formed on the rear plate 1. The wiring lines 12 and 13 are X-direction (Dox1, Dox2, . . . , Doxm) and Y-direction (Doy1, Doy2, . . . , Doyn) element wiring lines, and are made of Ag, Pd, or the like. The X-direction wiring lines 12 and Y-direction wiring lines 13 are insulated by an insulating layer (not shown) at least at their intersections. The insulating layer is made of glass containing a large amount of lead. As described above, various portions of the FPD use lead-containing materials. The gist of the present invention is to efficiently execute processing of removing lead and processing glass and the like into a reusable state by a method suitable for the shape of a member to be processed. FIG. 53 is a flow chart showing the steps of an FPD device disassembly processing method for explaining the embodiment of the present invention. Steps (1) to (3) as the former half of this method are pre-processing steps, and include the step of extracting an FPD from the housing of an FPD device, and removing accessory wiring lines and terminals. In steps (4) to (6), the vacuum in the FPD is canceled by a proper method, and then the exhaust pipe is detached. Since the exhaust pipe contains lead, it is processed and reused as lead-containing glass. In step (7), the panel is separated into respective members by cutting the frame. Alternatively, in step (8), frit glass at joint portions is melted to separate respective members. Through step (7) or (8), the scrapped FPD is separated into a frame, inner panel member, face plate, and rear plate. Processing methods for the respective members will be described. The frame portion is shredded and reused as lead-containing glass. If a spacer (made of glass), grid (made of a metal), and the like exist as inner panel members, they are recovered and reused (step (9)). As for the face plate, fluorescent substances are removed (step (10)), and recovered (step (11)). In step (12), the face plate is charged to a liquid processing bath in order to remove residual frit glass. FIG. 52 is a schematic view showing the arrangement of the processing bath used at this time. A processing bath 81 can simultaneously process a plurality of face plates 82. The face plates 82 are parallel-arranged at a predetermined interval in the processing bath 81 so as to prevent any contact of their surfaces by using a support frame (not shown). The face plates 82 are dipped in a liquid 83 (e.g., dilute nitric acid) which dissolves frit glass. Note that the processing bath 81 is made of a corrosion-resistant material such as stainless steel. To accelerate dissolution of frit glass, a proper means is adopted: (1) the liquid is flowed; (2) vibrations or acoustic waves are propagated to the face plates; or (3) the temperature of the liquid is increased by a heating mechanism. The processing solution in which frit glass is eluted is extracted from the processing bath 81 to a processing solution recycling means 86 where lead and eluted substances are recovered (step (13)). As a result, the processing solution is recycled and returned to the processing bath 81. By using the processing solution recycling/circulating mechanism, the internal environment of the processing bath can be kept almost constant, and processing of removing residual frit glass from the face plates 82 can be continuously performed. Arrows shown in FIG. 52 schematically represent the flow of the processing solution. Subsequently, the face plates are transferred from the processing bath to a cleaning bath where the face plates are cleaned (step (14)). In the cleaning step, a liquid (e.g., water) used for cleaning is used to remove the processing solution attached to the face plates. The structure and function of the cleaning bath are basically the same as those of the processing bath shown in FIG. 52. Glass having undergone the cleaning step can be reused as a face plate substrate through the shredding or re-fusing step. As for the rear plate, the rear plate is charged to the liquid processing bath shown in FIG. 52 in order to remove wiring lines in step (15). Similar to face plates, rear plates are parallel-arranged at a predetermined interval in the processing bath 81 so as to prevent any contact of their surfaces by using a support frame (not shown). The rear plates are dipped in the liquid 83 (e.g., dilute nitric acid) which dissolves a wiring line material, and a plurality of rear plates are simultaneously processed. The structure and function of the rear plate processing bath are basically the same as those of the face plate processing bath. After wiring lines are removed in the processing bath, metals (Ag, Pb, and the like) contained in the wiring lines are recovered (step (16)). Then, the rear plates are transferred from the processing bath to a cleaning bath where the rear plates are cleaned (step (17)). In the cleaning step, a liquid (e.g., water) used for cleaning is used to remove the processing solution attached to the rear plates. The structure and function of the cleaning bath are basically the same as those of the above-mentioned processing bath. Glass having undergone the cleaning step can be reused as a face plate substrate through the shredding or re-melting step. EXAMPLE 10 The present invention will be explained in detail by way of Example 10 with reference to FIGS. 32, 43A, 43B, 52, and 53. EXAMPLE 10-1 Method of Performing Bath Processing After Cutting and Separation Ten surface-conduction type electron source displays (SED) of matrix driving scheme as shown in FIG. 32 were disassembled. Each SED has a panel structure including spacers as shown in FIGS. 43A and 43B. In accordance with the flow chart of disassembly processing for an FPD device in FIG. 53, an SED was extracted from the housing of an SED device, and accessory wiring lines and terminals were removed. The vacuum in the SED was canceled, and the exhaust pipe was detached. The exhaust pipe was processed and reused as lead-containing glass. Cutting lines were set inside a region of the SED panel where frit glass was applied, and the SED was cut along the cutting lines with a diamond cutting saw while a grinding solution was applied. This operation was executed for the 10 SEDs. By cutting, each SED was divided into a frame, face plate, and rear plate. Some of spacers came off in cutting, and some of spacers were kept bonded to the face plate. All the spacers were manually recovered, and recyclable spacers were screened and reused. The frame portion was shredded and reused as a lead-containing glass material. After metal backs and fluorescent substances were removed, the 10 face plates were charged to a liquid processing bath at once. FIG. 52 is a schematic view showing the arrangement of the processing bath used at this time. A processing bath 81 was filled with 0.2-N nitric acid as a processing solution 83. Respective face plates 82 were parallel-arranged and dipped in the processing solution 83. The processing bath 81 incorporated a support frame (not shown) so as to parallel-arrange the face plates 82 at a predetermined interval. The processing solution 83 was flowed along the surfaces of the face plates 82 by a liquid flowing means 84. At the same time, while the processing solution 83 was heated to 50° C. by a heater 85, the face plates 82 were processed for 1 h. Meanwhile, the processing solution 83 was supplied to a processing solution recycling means 86 where the processing solution 83 was recycled and returned to the processing bath 81. The processing solution recycling means 86 removed a solid component with a filter, and a dissolved component was separated and recovered by the electrolytic method. The 10 face plates 82 were transferred at once from the processing bath 81 to a cleaning bath where they were cleaned. The structure of the cleaning bath is basically the same as that of the processing bath. Water was used as a cleaning solution, and the face plates were cleaned for 30 min. Glass having undergone the cleaning step was shredded or re-melted, and reused as a face plate substrate. Ten rear plates were charged to the liquid processing bath shown in FIG. 52 to remove residual frit glass and wiring lines. The processing solution was 0.2-N nitric acid. While the processing solution was heated to 50° C., and ultrasonic waves were applied by an ultrasonic wave application means 87, the rear plates were processed for 2 h. The 10 rear plates were transferred at once from the processing bath to a cleaning bath where they were cleaned. The structure of the cleaning bath is basically the same as that of the processing bath. Water was used as a cleaning solution, and the rear plates were cleaned for 30 min. Glass having undergone the cleaning step was shredded or re-melted, and reused as a rear plate substrate. EXAMPLE 10-2 Method of Performing Batch Processing After Dissolution and Separation In accordance with the flow chart of disassembly processing for an FPD device in FIG. 53, an SED was extracted from the housing of an SED device, and accessory wiring lines and terminals were removed. The vacuum in the SED was canceled, and the exhaust pipe was detached. The exhaust pipe was processed and reused as lead-containing glass. Each SED panel was dipped in a nitric acid solution to dissolve frit glass at the joint portions of the panel. As a result, each panel was divided into a frame, face plate, and rear plate. This operation was done for 10 SEDs. The processing is the same as in Example 10-1 up to the cleaning step for the face plate and rear plate. Glass having undergone the cleaning step was dried and reused as a face plate or rear plate substrate. Since a glass substrate is not cut in Example 10-2, a recovered glass substrate can be directly reused as an SED member. Embodiment 11 A preferred embodiment of a fluorescent substance recovery method and apparatus for a flat panel display according to the present invention will be described below with reference to the accompanying drawings. In Embodiment 11, a display to be processed is a flat panel display which is made up of a face plate, rear plate, and frame, and in which fluorescent substances are applied to the inner surface of the face plate and emit light by irradiation of an electron beam. The fluorescent substances recovery apparatus of the present invention uses a fixing device which has a fixing jig disposed to be retractable with respect to a flat panel display so as to surround the flat panel display placed on a base such as a work table or work belt, and which fixes the flat display panel by swinging the fixing jig and bringing it into contact with the flat panel display from the four directions of the flat panel display. FIG. 54 shows the basic steps of processing in the present invention. In FIG. 54, a display (S40) to be processed/scrapped is separated from a cabinet. In this case, the display is placed on a work table with the face plate of the display facing down. The periphery of the display is temporarily fixed with a movable stop type fixing jig according to the present invention. Further, a chuck attached to the work table is operated to completely fix the flat panel display. The position of the fixing jig in use is detected based on the moving distance, and size information of the flat panel display is detected from the positional information (S41). This information is sent to a control terminal (controller) which determines the moving range of a cutter (cutting means) used in cutting a frame (to be described later) or the work range of a subsequent fluorescent substance recovery brush (recovery means) (S41). A rubber or plastic seal is attached around the chucking port of the chuck in order to more tightly contact the face plate. A sucker is moved down to suck the upper rear plate, and the frame is cut in accordance with the information from the control terminal (S44). By a method of, e.g., thermally melting frit glass at the frame, the face plate, rear plate, and frame are separated (S45 and S49). The rear plate and frame (S45) are removed from the face plate (S46). After noble metal elements (S47) such as gold, silver, and palladium are removed, the rear plate and frame are transferred to the cullet formation step (S48). As for the face plate (S49), the fluorescent substance recovery brush with the chucking mechanism is moved down to the face plate a plurality of number of times, and reciprocated on the face plate a plurality of number of times (S50), thereby recovering fluorescent substances (S51). In this case, a fluorescent substance detection means for detecting the amount of fluorescent substances left on the face plate is used. The operation of the recovery brush serving as the recovery means is controlled based on fluorescent substance amount information obtained by the fluorescent substance detection means. As a method of determining the end of fluorescent substance recovery work using the fluorescent substance detection means according to the present invention, e.g., a means for emitting visible light and detecting the transmittance can be attached to the work table to determine the end of work. Alternatively, a fluorescent spectrometer detection unit may be arranged behind the recovery brush, and when the fluorescent intensity of the fluorescent substances becomes 0.5% or less or preferably 0.2% or less the initial value, may determine the end of work. Alternatively, the face plate may be reversed together with the jig after the rear plate and frame are separated, and the brush may be operated from below the face plate to drop and recover fluorescent substances. This method does not require any energy of brush chucking mechanism and layout of a recovery tube, and can realize more efficient work. The face plate from which most of fluorescent substances are removed is subjected to the cleaning step using distilled water or an aqueous solution such as an aqueous oxalic acid solution capable of easily dissolving fluorescent substances. As a result, fluorescent substances are completely recovered and removed. Considering the cost of the subsequent oxalic acid recovery step, it is desirable to satisfactorily brush fluorescent substances in the brushing step so as to clean the face plate with only distilled water (S52). The face plate having undergone the cleaning step is subjected to the drying step so as to reuse it as a face plate (S53), and sent to the face plate manufacturing step (S55). When the inner surface does not reach the face plate standard, the face plate is shredded into cullets, melted, and reused as general glass (S54), or reused as part of a face plate member. The recovered fluorescent substances are separated and purified by a known method. This means is not particularly limited. For example, the recovered fluorescent substances are processed with an aqueous solution containing NaOH, NaClO, and H2O2, and processed with a weak acid (Japanese Laid-Open Patent Application No. 6-108047). Alternatively, the recovered fluorescent substances may be processed with a weak acid to leach rare-earth elements, oxalic acid may be added to convert the rare-earth elements into oxalate, and oxalate may be baked to obtain rear-earth oxides (Japanese Laid-Open Patent Application No. 8-333641). In this case, the fixing device, cutter or brush, and the like included in the apparatus of the present invention are driven and controlled by the controller having a CPU in accordance with predetermined programs. That is, the controller controls processing work by issuing proper driving instructions to corresponding driving mechanisms for the moving amount and ON/OFF operation of a member such as the cutter or brush on the basis of positional information of the fixing jig and fluorescent substance amount information of the fluorescent substance detection means. EXAMPLE 11 Detailed examples of the present invention will be explained. EXAMPLE 11-1 FIG. 58 shows the steps in recovering fluorescent substances from a flat panel display according to Example 11-1. Peripheral panel components are dismounted from a flat panel display 260. Fastening screws at the periphery of the display are unscrewed with a screwdriver or the like to dismount a display casing. A power supply cable, high-voltage power supply unit, tuner, and flexible cable are detached, metals and plastics are separately stored, and only a panel is left. As shown in FIGS. 55A, 55B, and 56, the extracted panel (flat panel display 260) is placed on a work table 261 having a vacuum chuck 271 while a face plate 2 faces down. The flat panel display 260 is fixed with a movable stop type jig 270 connected to a control terminal. As shown in FIG. 55A, jigs 270a and 270b for fixing the upper and lower ends of the panel gradually move in the vertical direction until they contact the panel. At the same time, jigs 270c and 270d for fixing the left and right ends of the panel gradually move in the lateral direction until they contact the panel. That is, the jig 270 moves until it detects the upper and lower ends of the panel and the left and right ends of the panel. In practice, detection/movement of the upper and lower ends of the panel and detection/movement of the left and right ends of the panel are alternately performed. These operations are alternately done until any end is detected, and after an end is detected, detection/movement in a direction in which no end has been detected is continued. Movement of the jig 270 is observed such that the jig 270 fixes the panel while gradually decreasing the interval. Positional information of the jig 270 is sent to the control terminal which determines the moving range of a cutter (to be described later) and the work range of a brush with a chucking mechanism. The panel is completely fixed to the work table 261 by a chuck 262 via a chucking hole 262a formed in the work table 261. In this case, the chucking port of the chuck 262 and its vicinity are completely sealed with a seal 263. As shown in FIGS. 55A and 55B, a rear plate 1 is pressed with a sucker 270 made up of four surrounding members 270a, 270b, 270c, and 270d. As shown in FIG. 58, the panel is cut and separated between the face plate 2 and a frame 3 with a cutter 272 whose moving range is controlled by the control terminal. The rear plate 1 and frame 3 are moved away by the sucker, and fed to the recovery step for noble metals used for wiring lines. The rear plate is mainly stored as glass cullets. As for the face plate 2, fluorescent substances are brushed with a brush 273 as shown in FIG. 57, chucked, and recovered. In this case, the residual amount of fluorescent substances is confirmed by a fluorescent spectrometer (not shown) from above the face plate 2, and the information is processed by the control terminal to determine the work time of the brush 273. At this stage, 99.5% of fluorescent substances used in the manufacture could be removed, and 99.2% thereof could be recovered. The face plate 2 undergoes the cleaning step, and fluorescent substances left as power dust are recovered. At this stage, no detectable fluorescent substances existed on the face plate 2. In addition, 99.4% of fluorescent substances used in the manufacture could be recovered. Whether the face plate 2 can be used as a face plate is checked, and if the face plate 2 passes the test, it is reused. Otherwise, the face plate 2 is fed to the step of shredding it into glass cullets and reusing them as a glass resource. EXAMPLE 11-2 Example 11-2 will be described. In Example 11-2, fluorescent substances were recovered similarly to Example 11-1 except that a face plate 2 was reversed together with a jig after a rear plate 1 and frame 3 were separated. Similar to Example 11-1, no detectable fluorescent substances existed on the face plate 2. The recovery ratio of fluorescent substances was 99.6%. EXAMPLE 11-3 In Example 11-3, fluorescent substances were recovered similarly to Example 11-1 except that the transmittance of visible light was used as a fluorescent substance detection means. In this case, the brushing step was complete when the transmittance did not change. After the processing step, the residual fluorescent substance amount was measured with a fluorescent spectrometer to confirm that about 1% of fluorescent substances remained. The recovery ratio of fluorescent substances was 99.2%. Embodiment 12 A preferred embodiment of a substrate processing method and apparatus according to the present invention will be explained below with reference to the accompanying drawings. Embodiment 12 will exemplify disassembly processing for an FPD which incorporates spacers and has a fluorescent screen on the inner surface of a face plate, as shown in FIGS. 43A, 43B, and 32. In FIGS. 43A and 43B, reference numeral 1 denotes a rear plate; 2, a face plate; 3, a frame; and 4, spacers. Lead-containing frit glass 5 is used at each joint portion represented in black in FIGS. 43A and 43B. The spacers 4 are bonded to one or both of the face plate 2 and rear plate 1. In this embodiment, the spacers 4 are bonded to only the face plate 2. Examples of the materials of the rear plate 1, face plate 2, and frame 3 are silica glass, glass containing a small amount of impurity such as Na, soda-lime glass, and glass prepared by stacking a silica layer on soda-lime glass. On the face plate 2, a fluorescent film 2b is formed on the inner surface of a glass substrate 2a, and a metal back 2c containing Al is formed on the inner surface of the fluorescent film 2b. The spacer 4 is basically made of glass. In some cases, The surface of the spacer 4 may be coated with an antistatic conductive film. In addition to these constituent members, an exhaust pipe (not shown) for evacuating the FPD is generally attached to the FPD. In general, the exhaust pipe is formed from low-melting glass containing lead. As shown in FIG. 32, an example of the FPD is a surface-conduction type electron source display (SED) of matrix driving scheme. In FIG. 2, surface-conduction type electron sources 11, and wiring lines 12 and 13 for driving the electron sources are formed on the rear plate 1. In FIG. 32, the wiring lines 12 and 13 are X-direction (Dox1, Dox2, . . . , Doxm) and Y-direction (Dox1, Dox2, . . . , Doxm) element wiring lines, and are made of Ag, Pd, or the like. The X-direction wiring lines and Y-direction wiring lines are insulated by an insulating layer at least at their intersections. The insulating layer are made of glass containing a large amount of lead. As described above, various portions of the FPD use lead-containing materials. According to the present invention, efficient processing is executed by a method suitable for the shape of a member to be processed in order to remove lead and change glass and the like into a reusable state. FIG. 61 is a flow chart showing the steps of an FPD device disassembly processing method for explaining the embodiment of the present invention. Steps (1) to (3) as the former half of this method are pre-processing steps, and include the step of extracting an FPD from the housing of an FPD device, and removing accessory wiring lines and terminals. In steps (4) to (6), the vacuum in the FPD is canceled by a proper method, and then the exhaust pipe is detached. Since the exhaust pipe contains lead, it is processed and reused as lead-containing glass. In step (7), the panel is separated into respective members by cutting the frame. Alternatively, the panel is separated into respective members by step (8) of dissolving frit glass at joint portions. Through step (7) or (8), the scrapped FPD is separated into a frame portion (9), an inner panel member (11), a face plate (13), and a rear plate (20). Processing methods for the respective members will be described. The frame portion (9) is shredded and reused as lead-containing glass (step (10)). If a spacer (made of glass), grid (made of a metal), and the like exist as inner panel members (11), they are recovered and reused (step (12)). As for the face plate, fluorescent substances are removed in step (14), and recovered in step (15). A glass plate as the face plate substrate is stored in a glass plate holding apparatus serving as a substrate processing apparatus of the present invention, and charged to a liquid processing bath in order to remove residual frit glass (step (16)). FIGS. 59A and 59B are views for explaining the arrangement of the glass plate holding apparatus used at this time. The arrangement and function of the glass plate holding apparatus will be explained in detail with reference to FIGS. 59A and 59B. A plurality of glass plates 286 stored in this apparatus are held in parallel with each other at a predetermined gap. This can sufficiently flow a processing solution along the glass surface in the liquid processing bath. To satisfactorily remove a solution and minimize carry-over of the processing solution from the processing bath, the glass plate 286 is preferably held such that the surface of the glass plate 286 stands almost vertically. As represented by the chain line, the glass plate 286 may be held with a proper inclination. A support member 287 in contact with a corresponding glass plate 286 typically has a columnar shape. Since a portion of the support member 287 in contact with the substrate has a round or arcuated shape, the support member 287 comes into linear contact with the glass plate 286 to hold it. This structure can also reduce carry-over of the processing solution. In this glass plate holding apparatus, removal of the processing solution is improved by the shape of the support member 287 or the like, and in addition, the processing solution may be removed from the glass plate 286 with an air blow or the like. The glass plate holding apparatus can be applied both when a plurality of glass plates equal in size are held and when a plurality of glass plates different in size are held. The glass plate holding apparatus must rapidly move between liquid processing bathes while storing many glass plates 286. For this purpose, this apparatus must be strong as a whole. In addition, the apparatus must resist corrosion in order to cope with processing with acid and alkaline solutions. For example, the glass plate holding apparatus can be made of a material such as stainless steel, Teflon, or polypropylene. FIG. 60 is a schematic view showing the arrangement of the processing bath used at this time. Glass plates are parallel-arranged by the holding apparatus at a predetermined interval in the processing bath 81 so as to prevent any contact of their surfaces. The glass plates are dipped in a liquid (e.g., dilute nitric acid) processing solution 83 which dissolves frit glass. To accelerate dissolution of frit glass, a proper means is adopted: (1) the liquid of the processing solution 83 is flowed; (2) vibrations or acoustic waves are propagated to the glass plates; or (3) the temperature of the liquid is increased by a heating mechanism. The processing solution 83 in which frit glass is eluted is extracted from the processing bath 81, and lead and eluted substances are recovered in step (17) (see FIG. 61). As a result, the processing solution 83 is recycled and returned to the processing bath 81. By using the recycling/circulating mechanism for the processing solution 83, the internal environment of the processing bath 81 can be kept almost constant, and processing of removing residual frit glass from glass plates can be continuously performed. Arrows shown in FIG. 60 schematically represent the flow of the processing solution 83. Note that the processing bath 81 is made of a corrosion-resistant material such as stainless steel. While the glass plates as the face plates 2 are kept stored in the glass plate holding apparatus, they are transferred from the processing bath 81 to a cleaning bath where the glass plates are cleaned (step (18)). In the cleaning step, a liquid (e.g., water) used for cleaning is used to remove the processing solution 83. The structure and function of the cleaning bath are basically the same as those of the processing bath 81. Glass having undergone the cleaning step can be reused as a face plate substrate through the shredding or re-melting step (step (19)). In the rear plate 1 (20) in FIG. 61, a glass plate as the rear plate 1 is stored in a glass plate holding apparatus, and charged to a liquid processing bath in order to remove wiring lines (step (16)). The structure and function of the glass plate holding apparatus are basically the same as those of the apparatus used for the face plate. Glass plates are parallel-arranged by the glass plate holding apparatus at a predetermined interval in the processing bath 81 so as to prevent any contact of their surfaces. The glass plates are dipped in a liquid (e.g., dilute nitric acid) which dissolves a wiring line material. The structure and function of the rear plate processing bath are basically the same as those of the face plate processing bath. After wiring lines are removed in the processing bath in step (21), metals (Ag, Pb, and the like) contained in the wiring lines are recovered. While the glass plates as the rear plates 1 are kept stored in the glass plate holding apparatus, they are transferred from the processing bath to a cleaning bath where the glass plates are cleaned. In the cleaning step (23), a liquid (e.g., water) used for cleaning is used to remove the processing solution. The structure and function of the cleaning bath are basically the same as those of the above-mentioned processing bath. Glass having undergone the cleaning step can be reused as a face plate substrate through the shredding or re-fusing step (step (24)). EXAMPLE 12 Detailed examples of the present invention will be explained with reference to FIGS. 43A, 43B, 32, 59A, and 59B to 61. EXAMPLE 12-1 In Example 12-1 of the present invention, a plurality of glass plates 286 stored in the glass plate holding apparatus shown in FIGS. 59A and 59B are held in parallel with each other at a predetermined gap. Each glass plate is held such that the surface of the glass plate 286 stands almost vertically. In Example 12-1, 10 glass plates 286 each having a thickness of 3 mm can be stored. A support member 287 in contact with a corresponding glass plate 286 has a columnar shape, and comes into linear contact with the glass plate 286 to hold it. The member in contact with the glass plate 286 is made of Teflon. The glass plate holding apparatus of Example 12-1 is reinforced by many beams made of stainless steel so as to allow rapidly moving between liquid processing baths while storing 10 glass plates 286. These beams have a shape and layout which do not inhibit the flow of a processing solution in the liquid processing bath. The horizontal surface of each beam is suppressed small in order to minimize carry-over of the processing solution in pulling up the glass plate holding apparatus of Example 12-1 from the liquid processing bath. EXAMPLE 12-2 Example 12-2 will exemplify disassembly processing of 10 surface-conduction type electron source displays (SED) of matrix driving scheme as shown in FIG. 32. This SED has a panel structure including spacers as shown in FIGS. 43A and 43B. In accordance with the disassembly processing step for an FPD device in FIG. 61, an SED was extracted from the housing of an SED device, and accessory wiring lines and terminals were removed. The vacuum in the SED was canceled, and the exhaust pipe was detached. The exhaust pipe was processed and reused as lead-containing glass. Cutting lines were set inside a region of the SED panel where frit glass was applied, and the SED was cut along the cutting lines with a diamond cutting saw while a grinding solution was applied. This operation was executed for the 10 SEDs. By cutting, each SED was divided into a frame, face plate, and rear plate. Some of spacers came off in cutting, and some of spacers were kept bonded to the face plate. All the spacers were manually recovered, and recyclable spacers were screened and reused. The frame was shredded and reused as a lead-containing glass material. After metal backs and fluorescent substances were removed, the 10 face plates were stored in a glass plate holding apparatus 282 shown in FIGS. 59A and 59B. After metal backs and fluorescent substances were removed, the 10 face plates were stored in the glass plate holding apparatus 282 shown in FIGS. 59A and 59B. To remove a residual lead component, the glass plate holding apparatus 282 was loaded to a liquid processing bath. FIG. 60 is a schematic view showing the arrangement of the processing bath used at this time. The processing bath was filled with 0.2-N nitric acid as a processing solution. The processing solution was flowed along the surfaces of the face plates by a liquid flowing means 84. While the processing solution was heated to 50° C. by a heater 85, the face plates were processed for 1 h. Meanwhile, the processing solution was supplied to a processing solution recycling mechanism where the processing solution was recycled and returned to the processing bath. The processing solution recycling mechanism removed a solid component with a filter, and a dissolved component was separated and recovered by the electrolytic method. Subsequently, the glass plate holding apparatus 282 of Example 12-2 was transferred from the processing bath to a cleaning bath where they were cleaned. The structure of the cleaning bath is basically the same as that of the processing bath. Water was used as a cleaning solution, and the face plates were cleaned for 30 min. Glass having undergone the cleaning step was extracted from the glass plate holding apparatus 282, shredded or re-melted, and reused as a face plate substrate. Ten rear plates were stored in the glass plate holding apparatus 282 shown in FIGS. 59A and 59B. The glass plate holding apparatus 282 was charged to the liquid processing bath shown in FIG. 60 to remove residual frit glass and wiring lines. The processing solution was 0.2-N nitric acid. While the processing solution was heated to 50° C., and ultrasonic waves were applied by an ultrasonic wave application means 87, the rear plates were processed for 2 h. The glass plate holding apparatus 282 which stored the 10 rear plate substrates was transferred from the processing bath to a cleaning bath where they were cleaned. The structure of the cleaning bath is basically the same as that of the processing bath. Water was used as a cleaning solution, and the rear plates were cleaned for 30 min. Glass having undergone the cleaning step was extracted from the glass plate holding apparatus 282, shredded or re-melted, and reused as a rear plate substrate. A case wherein an electron source substrate having many surface-conduction type electron-emitting elements is formed on a glass substrate processed by the method of the present invention, and an image forming apparatus is manufactured using this electron source substrate will be described. Pt electrodes were formed in a matrix on a recycled glass substrate by vacuum film formation and photolithography. In this case, the interval between element electrodes was 20 μm; the width of each element electrode, 500 μm; the thickness, 100 nm; and the layout pitch of the element, 1 mm. Then, Ag wiring lines were formed in a matrix by printing. An aqueous palladium acetate monoethanolamine solution was applied between element electrodes by a spinner, and heated and baked at 270° C. for 10 min, thereby obtaining a thin film made of fine palladium oxide (PdO) particles. This film was processed into a 300-μm wide conductive thin film by photolithography and dry etching. A voltage was applied between element electrodes in vacuum to perform forming processing, thereby forming a fissure-like electron-emitting portion in the conductive thin film. The element having undergone electrification forming was subjected to activation processing. In this embodiment, ethylene gas was introduced into vacuum, and a pulse voltage having a peak value of 20 V was repetitively applied between element electrodes for 30 min. By this activation step, a compound mainly containing carbon was deposited to about 10 nm near the electron-emitting portion. The electron source substrate having many surface-conduction type electron-emitting elements was used as a rear plate, and this rear plate constituted an envelope together with a face plate and support frame. The interior of the envelope was evacuated and sealed to obtain an image forming apparatus having a display panel and a driving circuit for realizing television display. This image forming apparatus formed a high-quality image free from any non-emission portion (pixel defect). Embodiment 13 A preferred embodiment of the present invention will be described below with reference to the accompanying drawings. Embodiment 13 will exemplify disassembly processing for a flat panel display as shown in FIG. 29. FIG. 62 is a flow chart showing the steps of a disassembly processing method according to Embodiment 13. After wiring lines, terminals, and like are detached from a flat panel display (S61) extracted from a housing (S60), the vacuum in the flat panel display is canceled, and an exhaust pipe is detached (S62). The flat panel display is separated into constituent members, i.e., a face plate (S64), rear plate (S70), and frame or the like (S63). In general, frit glass which joins these members is made of low-melting glass mainly containing lead oxide. As the separation method, frit glass may be melted by heating or dissolved with a proper solvent. After fluorescent substances, black substances, and metal back are removed from the separated face plate (S64) by an appropriate method (S65), the face plate is cleaned with a solvent such as nitric acid and water in order to remove residual frit glass and clean the glass surface (S66). Also, the separated rear plate (S70) can be cleaned with a proper solvent and water (S71 and S72) to remove part or all of a constituent material formed on the substrate. Elements present on the surface of the glass substrate having undergone the removal step are detected. FIG. 63 is a schematic view showing a fluorescent X-ray analyzer according to the present invention for detecting elements present on the glass surface. In FIG. 63, reference numeral 301 denotes a table for a glass substrate 302; 302, the glass substrate serving as a sample; 303, an X-ray source; 304, a monochomater; 305, a primary X-ray; 306, a fluorescent X-ray; 307, a semiconductor detector; 308, a cooling device; 309, a pre-amplifier; 310, an amplifier; 311, a multichannel analyzer; and 312, a computer. Elements are detected by the following procedures. The primary X-ray 305 emitted by the X-ray source 303 is monochromatized by the monochomater 304, and incident on the surface of the glass substrate 302 on the table 301 at an angle θ. The X-ray source has energy large enough to excite elements present on the glass substrate 302. For example, a W-Lα ray, Au-Lα ray, Mo-Kα ray, or the like is used. The surface of the glass substrate 302 irradiated with the primary X-ray 305 generates a fluorescent X-ray, which is detected by the semiconductor detector 307 arranged above the glass substrate 302. As the detector, an Si (Li) semiconductor detector is used. A detection signal from the semiconductor detector 307 is processed by the computer 312 via the pre-amplifier 309, amplifier 310, and multichannel analyzer 311. The computer 312 obtains a signal strength corresponding to the type and concentration of element on the surface of the glass substrate 302. Note that the semiconductor detector 307 and pre-amplifier 309 are cooled with liquid nitrogen. If the incident angle θ of the primary X-ray 305 is set to an angle at which the X-ray is totally reflected, i.e., to a small angle equal to or smaller than the critical angle of total reflection, the X-ray enters the sample surface only by about several nm, and a fluorescent X-ray is efficiently generated. From this, sensitive element analysis can be executed at a lower detection limit of about 109 atoms/cm2 in a region from the sample surface by several nmnm or less. The critical angle of total reflection can be calculated by θc=1.64×105×ρ1/2×λ(ρ: substrate density (g/cm3), λ: wavelength of X-ray (cm)). A large glass substrate 302 in this embodiment has a side length of several ten cm. The gist of the present invention is to efficiently perform element analysis for such a wide area at low cost. To measure elements at high sensitivity by this method, the detector generally preferably comes as close as possible to the sample surface. In this case, the analysis region substantially depends on the diameter of the detector, and this diameter is generally about several ten mmφ. However, in measuring a wide area while the sample and detector are very close to each other, the sample must be scanned to obtain data at many points, or many detectors must be arranged. This results in a long time and high installation cost. To prevent this, the present invention adopts a method of changing the relative positions of the sample surface and detector in accordance with the size of the substrate in order to efficiently perform element analysis without decreasing the sensitivity. The method of changing the relative position in the present invention will be explained with reference to FIG. 64. In FIGS. 64A and 64B, reference numeral 301 denotes the table for the glass substrate 302; 302, the glass substrate serving as a sample; 307, the semiconductor detector; 314, a semiconductor element; 315, an X-ray transmission window; and 316, a collimator. The semiconductor detector 307 has an arrangement as shown in FIGS. 64A and 64B. The semiconductor element 314 can receive X-rays from a region represented by dotted lines, i.e., a region having an angle φ determined by the size of the X-ray transmission window 315, the relative position to the semiconductor element 314, and the like, and an area depending on a size I of the semiconductor element 314 itself. When the semiconductor detector 7 moves close to the sample surface, as shown in FIG. 64A, the analysis region becomes almost equal to the diameter of the X-ray transmission window 315. To the contrary, when the semiconductor detector 307 moves apart from the sample surface to a state shown in FIG. 64B, an X-ray intensity detectable from a unit area decreases, but the detectable region widens. Hence, when fluorescent X-rays are to be detected from the glass substrate 302 having a side length L, a distance d between the glass substrate 302 and the semiconductor detector 307 is set to obtain 2d·tan φL. While a primary X-ray irradiates the entire surface of the glass substrate 302, fluorescent X-rays are measured. As a result, X-rays can be received from the entire glass substrate 302 without decreasing the sensitivity. To irradiate a desired region with an X-ray, a beam diameter a of the primary X-ray is determined based on a W·sinθ from a region W to be irradiated and the incident angle θ of the primary X-ray, as shown in FIG. 65. Note that when the glass substrate 302 is too large, and a corresponding distance d is difficult to ensure in terms of mounting, the glass substrate 302 can be divided into a plurality of regions and repetitively measured. The X-ray transmission window 315 of the semiconductor detector 307 preferably has a rectangular shape similar to the shape of the glass substrate 302. For example, FIGS. 66A and 66B show the difference in the detection region of the fluorescent X-ray between a case wherein the X-ray transmission window 315 has a circular shape (FIG. 66A), and a case wherein the window 315 has a shape similar to the glass substrate 302 (FIG. 66B). In FIG. 66, reference numeral 302 denotes the glass substrate (plan view), and a dotted line or dotted portion represents an X-ray detection region. When the X-ray transmission window 315 is circular, its shape does not coincide with the glass substrate 302, and thus the detection efficiency is not always high. To the contrary, in FIG. 66B, an X-ray can be efficiently detected. Although the aspect ratio of the glass substrate 302 is not always constant, a proper transmission window shape is selected in accordance with the type of glass substrate and the number of glass substrates to be used, which can realize a more efficient detection step. By detecting fluorescent X-rays generated from the surface of the glass substrate 93 by this method, the presence/absence of residual elements on the substrate surface and elements diffused into the substrate and the presence/absence of a thin film formed on the substrate surface can be detected. When elements other than a glass constituent element are detected in the above step, the step of removing the detected elements is executed. Although various methods can be employed as the removal method, surface polishing of the glass substrate 302 is especially preferable. FIG. 67 is a schematic view showing an example of a polishing device in the present invention. In FIG. 67, reference numeral 327 denotes a table for a glass substrate 328; 328, the glass substrate; 329, a polishing tool; 330, a rotation support bar; 331, a support arm; 332, a motor; 333, a column; and 334, a polishing target surface. The glass substrate 328 to be polished is placed on the table 327 with the polishing target surface facing up. The polishing tool 329 is pressed against the polishing target surface. The motor 332 operates to rotate the rotation support bar 330 and polishing tool 329. At the same time, a slurry containing a polishing agent such as cerium oxide is supplied to the polishing target surface 334 to start polishing the glass surface 334. The polished glass substrate 328 is cleaned and subjected to the above-described element analysis again. Until no element other than the glass constituent element of the glass substrate 328 is detected, element detection and polishing on the polishing target surface 334 are repeated. The glass substrate 328 having undergone this step is shredded into cullets, and can be reused as a flat display substrate or a material for another product through the re-melting step. EXAMPLE 13 The present invention will be explained in more detail below by way of Example 13. Example 13 will describe disassembly processing of a surface-conduction type electron source display of matrix driving scheme as shown in FIG. 29. EXAMPLE 13-1 In Example 13-1, a face plate 2 and rear plate substrate are formed from silica glass substrates each having a size of 800 mm×800 mm×2.8 mm. The rear plate is constituted by forming, on a substrate, cold cathode elements 11 mainly containing Pd, wiring lines 12 mainly containing Ag, Pt electrodes, and the like. The face plate 2 is constituted by forming fluorescent substances 2b, black substances, a metal back 2c, and the like on a substrate. A disassembly processing method for the display having this arrangement will be described with reference to FIGS. 63, 64A, 64B, 67, and 29. (1) A housing was dismantled, and a unit made up of a rear plate 1, face plate 2, and frame 3 welded with frit glass was extracted. (2) The unit of the rear plate 1, face plate 2, and frame 3 was dipped in a 0.2-N nitric acid solution to gradually dissolve the welded portions, thereby separating the respective members. (3) After constituents formed on the rear plate 1 and face plate 2 were physically scrapped, the rear plate 1 and face plate 2 were dipped in a 0.2-N nitric acid solution again, and ultrasonic vibrations were applied to them. The rear plate 1 and face plate 2 were cleaned with pure water to remove frit glass left on the substrates and other dissolved substances. (4) Elements present on each substrate surface were detected by a fluorescent X-ray analyzer as shown in FIG. 63. An Au-Lα ray (λ=0.12764 nm) was used as an X-ray source, and the incident angle θ of an X-ray on the substrate was set to the critical angle of total reflection or more. To irradiate the entire surface of the glass substrate with an X-ray, an X-ray having a beam width of 0.15 mm or more and a depth of 80 mm or more shown in FIG. 65 irradiated the substrate. The X-ray transmission window had a square shape, and the distance d between the glass substrate and the detector shown in FIGS. 64A and 64B was set to 40 mm. With these settings, fluorescent X-rays generated from the entire surface of the glass substrate were received for 200 sec to measure elements. As a result, Pt and Ag were detected from the rear plate substrate in addition to Si as a substrate element, whereas no element except for Si was detected from the face plate substrate. (5) The surface of the rear plate substrate from which Pt and Ag were detected was polished by the polishing device shown in FIG. 67. A polishing tool 325 was pressed against the polishing target surface of the substrate. While the polishing tool was rotated, and a cerium oxide slurry having an average diameter of 10 μm was supplied, the whole substrate was polished for 5 min. (6) The polished rear plate substrate was cleaned with pure water, and subjected to element analysis again. As a result, it was confirmed that Pt and Ag were removed to the detection limit or less and all the residues on the substrate were removed. (7) The rear plate substrate having undergone the above steps could be reused as a substrate together with the face plate substrate not requiring the polishing step, without shredding the rear plate substrate into cullets. EXAMPLE 13-2 In Example 13-2, a face plate substrate is formed from a soda-lime glass substrate having a size of 80 mm×800 mm×2.8 mm, whereas a rear plate substrate is formed by stacking an SiO2 thin film to 100 nm on a soda-lime glass substrate equal in size to the rear plate substrate. The rear plate is constituted by forming, on a substrate, cold cathode elements 11 mainly containing Pd, wiring lines 12 and 13 mainly containing Ag, Pt electrodes, and the like. The face plate is constituted by forming fluorescent substances, black substances, a metal back, and the like on a substrate. A disassembly processing method for this display will be described. By the same method as steps (1) to (3) in Example 13-1, a rear plate, face plate, and frame were separated, and some of the constituent materials of elements formed on the substrates were removed. (4) Then, elements present on each substrate surface were detected. In Example 13-2, an Au-Lα ray (λ=0.12764 nm) was used as an X-ray source, and the incident angle θ of an X-ray on the substrate was set to 0.1° equal to or smaller than the critical angle of total reflection. To irradiate the entire surface of the glass substrate with an X-ray, an X-ray having a beam width of 0.15 mm or more and a depth of 80 mm or more shown in FIG. 65 irradiated the substrate. The X-ray transmission window had a square shape, and the distance d between the glass substrate and the detector shown in FIGS. 64A and 64B was set to 40 mm. With these settings, fluorescent X-rays generated from the entire surface of the glass substrate were received for 200 sec to perform element analysis. As a result, Pt, Ag, and Pb were detected from the rear plate substrate in addition to a substrate constituent element, and Pb was detected from the face plate substrate in addition to a substrate constituent element. (5) The surfaces of the rear plate and face plate substrates were polished by the polishing device shown in FIG. 67. A polishing tool 329 was pressed against the polishing target surface of each substrate. While the polishing tool was rotated, and a cerium oxide slurry having an average diameter of 10 μm was supplied, the whole substrate was polished for 5 min. (6) The polished rear plate substrate was cleaned with pure water, and subjected to element analysis again. As a result, Pt and Ag were removed to the detection limit or less, but Ag was still detected even with a low intensity, while no element other than a substrate constituent element was detected from the face plate substrate. (7) The surface of the rear plate substrate was polished again by the polishing device shown in FIG. 67. By the same method as step (5), the whole substrate was polished for 15 min. (8) The polished rear plate substrate was cleaned with pure water and subjected to element analysis again. As a result, it was confirmed that no element other than a substrate constituent element was detected and residues on the substrate and elements diffused into the substrate could be removed. (9) The rear plate substrate and face plate substrate having undergone these steps were shredded into cullets, subjected to the melting step, and reused as a flat display substrate. EXAMPLE 13-3 In Example 13-3, face plate and rear plate substrates are formed from silica glass substrates each having a size of 300 mm×250 mm×2.8 mm. A disassembly processing method for a flat display having the same arrangement as in Example 13-1 except for this will be described. By the same method as steps (1) to (3) in Example 13-1, a rear plate, face plate, and frame were separated, and some of the constituent materials of elements formed on the substrates were removed in a nitric acid solution. (4) Then, elements present on each substrate surface were detected by the total reflection type fluorescent X-ray analyzer as shown in FIG. 63. In Example 13-3, an Au-Lα ray (λ=0.12764 nm) was used as an X-ray source, and the incident angle θ of an X-ray on the substrate was set to 0.1°. To irradiate the entire surface of the glass substrate with an X-ray, an X-ray having a beam width of 0.6 mm or more and a depth of 300 mm or more shown in FIG. 65 irradiated the substrate. The X-ray transmission window had a square shape, and the distance d between the glass substrate and the detector shown in FIGS. 64A and 64B was set to 150 mm. With these settings, fluorescent X-rays generated from the entire surface of the glass substrate were received for 200 sec to perform element analysis. As a result, Pt and Ag were detected from the rear plate substrate in addition to Si as a substrate element. From the face plate substrate, no element other than Si element was detected. By the same method as steps (5) to (7) in Example 1, the glass surface was polished to remove all the residues on the substrate. The rear plate substrate having undergone the above steps could be reused as a substrate together with the face plate substrate not requiring the polishing step, without shredding the rear plate substrate into cullets. EXAMPLE 13-4 In Example 13-4, a rear plate substrate is formed by stacking a P-doped SiO2 thin film to 1 μm on a soda-lime glass substrate having a size of 300 mm×250 mm×2.8 mm. A disassembly processing method for a flat display having the same arrangement as in Example 13-1 except for this will be described. By the same method as steps (1) to (3) in Example 13-1, a rear plate, face plate, and frame were separated, and some of the constituent materials of elements formed on the substrates were removed in a nitric acid solution. (4) Then, elements present on each substrate surface were detected by the total reflection type fluorescent X-ray analyzer as shown in FIG. 63. In Example 13-4, an Mo-Kα ray (λ=0.07107 nm) was used as an X-ray source, and the incident angle θ of an X-ray on the substrate was set to 0.1°. To irradiate the entire surface of the glass substrate with an X-ray, an X-ray having a beam width of 0.6 mm or more and a depth of 300 mm or more shown in FIG. 65 irradiated the substrate. The X-ray transmission window had a square shape, and the distance d between the glass substrate and the detector shown in FIGS. 64A and 64B was set to 150 mm. With these settings, fluorescent X-rays generated from the entire surface of the glass substrate were received for 200 sec to perform element analysis. As a result, Si, P, Pt, Ag, and Pb were detected from the rear plate substrate, and Pb was detected from the face plate substrate in addition to a substrate constituent element. (5) The surfaces of the rear plate and face plate substrates were polished by the polishing device shown in FIG. 67. A polishing tool 329 was pressed against the polishing target surface of each substrate. While the polishing tool was rotated, and a cerium oxide slurry having an average diameter of 10 μm was supplied, the whole substrate was polished for 5 min. (6) The polished rear plate substrate was cleaned with pure water, and subjected to element analysis again. As a result, Pt, Ag, and Pb were removed to the detection limit or less, and only Si and P were still detected, while no element other than a substrate constituent element was detected from the face plate substrate. (7) The surface of the rear plate substrate was polished again by the polishing device shown in FIG. 67. By the same method as step (5), the whole substrate was polished for 10 min. (8) The polished rear plate substrate was cleaned with pure water and subjected to element analysis again. As a result, P was removed to the detection limit or less, but K, Ca, and the like as glass constituent elements were detected. From this, it was confirmed that the P-doped SiO2 layer was removed and all the residues on the substrate were removed. (9) The rear plate substrate and face plate substrate having undergone these steps were shredded into cullets, subjected to the melting step, and reused as a flat display substrate. A case wherein an electron source substrate having many surface-conduction type electron-emitting elements is formed on a glass substrate processed by the method of the present invention, and an image forming apparatus is manufactured using this electron source substrate will be described. Pt electrodes were formed in a matrix on a recycled glass substrate by vacuum film formation and photolithography. In this case, the interval between element electrodes was 20 μm; the width of each element electrode, 500 μm; the thickness, 100 nm; and the layout pitch of the element, 1 mm. Then, Ag wiring lines were formed in a matrix by printing. An aqueous palladium acetate monoethanolamine solution was applied between element electrodes by a spinner, and heated and baked at 270° C. for 10 min, thereby obtaining a thin film made of fine palladium oxide (PdO) particles. This film was processed into a 300-μm wide conductive thin film by photolithography and dry etching. A voltage was applied between element electrodes in vacuum to perform forming processing, thereby forming a fissure-like electron-emitting portion in the conductive thin film. The element having undergone electrification forming was subjected to activation processing. In this embodiment, ethylene gas was introduced into vacuum, and a pulse voltage having a peak value of 20 V was repetitively applied between element electrodes for 30 min. By this activation step, a compound mainly containing carbon was deposited to about 10 nm near the electron-emitting portion. The electron source substrate having many surface-conduction type electron-emitting elements was used as a rear plate, and this rear plate constituted an envelope together with a face plate and support frame. The interior of the envelope was evacuated and sealed to obtain an image forming apparatus having a display panel and a driving circuit for realizing television display. This image forming apparatus formed a high-quality image free from any non-emission portion (pixel defect). Industrial Applicability The effects of the present invention will be listed below along the numbers of the above-described embodiments and examples. [Effect 1 of the Invention] According to the present invention, a scrapped FPD can be separated into glass not containing any lead and glass containing lead in disassembly processing, which can facilitate disassembly processing and reuse. Further, environmental pollution by lead can be prevented. [Effect 2 of the Invention] The present invention can facilitate disassembly processing necessary for scrap and reuse of an FPD. Since lead as a hazardous metal which causes a serious problem can be separated and recovered, environmental load in scrap can be reduced. Since rare elements in use such as noble metal elements and rare-earth elements can be recovered and reused, resources can be effectively ensured. [Effect 3 of the Invention] According to the reuse method of the present invention, a rear plate as an important constituent component of a scrapped panel display can be reused to effectively use resources and reduce the cost. [Effect 4 of the Invention] According to the present invention, since spacers can be recovered and reused with almost no damage in dismantling a flat display, resources can be effectively used, and the cost can be reduced. In addition, since the recovery step does not require any fine manual work, spacers can be safely recovered. [Effect 5 of the Invention] The present invention can provide a method capable of efficiently recovering fluorescent substances from a CRT and flat display regardless of the type of device, and recovering a reusable face plate with almost no corrugations. [Effect 6 of the Invention] An image display apparatus according to the present invention comprises a means connected to an airtight container kept at a pressure lower than the atmospheric pressure and an exhaust device, and a means for gradually returning the interior of the container to the atmospheric pressure as needed. In returning the airtight container to the atmospheric pressure, an atmospheric pressure-resistant structure member and image display means in the container are hardly destructed and damaged. Thus, members after dismantling can be easily reused. Moreover, defects generated during the manufacture can be easily repaired. [Effect 7 of the Invention] In a flat display according to the present invention, members forming an envelope can be sequentially separated, so that the members can be safely recovered by a simple method without damaging the envelope and the internal members during the disassembly process. The members can, therefore, be recovered as reusable ones, resources can be effectively used, and the cost can be reduced. [Effect 8 of the Invention] A residual hazardous metal amount inspection apparatus according to the present invention exhibits the following excellent effects. In the residual hazardous metal amount inspection apparatus of the present invention, an inspection target object is dipped in the bath of a first elution means to elute a hazardous metal contained in the inspection target object with an acid solution in the bath. The inspection target object is transferred to a cleaning means where the object is cleaned. Then, the inspection target object is dipped in the bath of a second elusion means to elute a hazardous metal left on the inspection target object with an acid solution in the bath. This elution solution is supplied to a quantitative detection means, which quantitatively detects a hazardous metal amount contained in the elusion solution. Hence, in disassembling and fractionating a flat panel display or the like, the amount of hazardous metal such as lead left on an inspection target object such as a fractionated glass member or waste can be quantitatively detected. In this case, the inspection target object is simply dipped in the dipping bath filled with the acid solution, and thus the amount can be easily quantitatively detected without any cumbersome operation. As far as the inspection target object does not dissolve in the acid solution, a hazardous metal such as lead contained in the inspection target object can be eluted. The material, shape, and the like of the inspection target object are not particularly limited, and various members can be inspected. [Effect 9 of the Invention] A flat panel display disassembly apparatus according to the present invention exhibits the following excellent effects. (1) In the flat panel display disassembly apparatus of the present invention, a first support means supports a plate fixed to spacers by applying a pull-up force in the step of separating a frame member from a display main body (vacuum container). The spacers are suspended and are free from the weight of the fixed plate, and the frame member can be separated without applying any load to the spacers. This can prevent any damage to the spacers. After the frame is separated, a second support means receives and supports the edge of the plate fixed to the spacers. At this time, the spacers are suspended and are free from the weight of the fixed plate. The step of separating the spacers from the plate received and supported by the second support means is executed by a spacer recovery means while the plate is kept received and supported. Also in the spacer separation/recovery step, the spacers are free from any extra weight, and can be prevented from being damaged. That is, disassembly processing can be performed by proper steps, and directly reusable constituent members such as spacers can be recovered without any damage. As a result, constituent members can be preferably recycled. [Effect 10 of the Invention] The present invention can process many glass substrates at once in the step of separating a component such as lead from a glass substrate by submergence processing in disassembling a scrapped FPD. Accordingly, (1) the necessary amount of processing solution is small, (2) energy required for processing is small, and (3) many glasses can be processed within a short time. Consequently, the cost of processing a scrapped FPD can be greatly reduced. [Effect 11 of the Invention] The present invention improves a face plate fixing jig and fixing method in recovery work for fluorescent substances in recovering fluorescent substances from a flat panel display of this type. In addition, a brush used to recover fluorescent substances is driven based on positional information of the fixing jig. Fluorescent substances can be efficiently, reliably recovered. [Effect 12 of the Invention] The present invention can easily process many glass substrates at once in a liquid processing bath in the step of separating a component such as lead from a glass substrate by submergence processing in disassembling a scrapped FPD. The present invention can safely, rapidly convey many glass substrates, and can easily automate the process. Consequently, the cost of processing a scrapped FPD can be greatly reduced. [Effect 13 of the Invention] The present invention can detect, by a simple method, residues on a substrate surface and elements diffused into the substrate. At the same time, the present invention can remove all the elements other than a glass constituent element. Thus, glass can be efficiently reused without wastefully scraping it. | <SOH> BACKGROUND ART <EOH>Conventionally, most of scrapped home appliances are shredded, valuables such as metals are recovered, and the remainders are disposed of as industrial wastes to a “least controlled landfill site” where the wastes are merely buried in a dug hole. In recent years, a shortage of the capacity of disposal sites poses a serious problem, and environmental pollution by hazardous substances also poses a serious problem. For example, the cathode ray tube of a television uses a large amount of lead-containing glass. According to trial calculation by the Environment Agency, lead contained in scrapped cathode ray tubes amounts to 20,000 t every year, and most of lead is buried in least controlled landfill sites. However, rainwater naturally permeates in least controlled landfill sites, and these sites are not equipped with any drainage facility. It is being recognized that lead as a hazardous substance may diffuse. Under these circumstances, conventional processing methods must be reconsidered. As for the cathode ray tube of a television, studies of shredding cathode ray tube glass into cullets (small glass pieces) and reusing them for cathode ray tubes have been made by Association for Electric Home Appliances. Of these studies, a system of extracting a cathode ray tube from a television main body and shredding the cathode ray tube into glass cullets has been developed (see, e.g., “Electrotechnology”, January, 1997). A method of recovering glass as cullets is disclosed in, e.g., Japanese Laid-Open Patent Application No. 61-50688. There is also known a method of shredding cathode ray tube glass into cullets (small glass pieces) and reusing them for cathode ray tubes (e.g., Japanese Laid-Open Patent Application No. 9-193762). A method of separating a cathode ray tube into a face plate and funnel in accordance with materials, and shredding them into cullets is disclosed in, e.g., Japanese Laid-Open Patent Application No. 05-185064. Further, a method of separating a cathode ray tube into a face plate and funnel, peeling fluorescent substances and a black mask from the face plate, and recycling the face place is disclosed in Japanese Laid-Open Patent Application No. 7-037509. To reuse cathode ray tube glass, the glass must be separated into panel glass and lead-containing funnel glass. This is because, if lead is mixed in panel glass by a predetermined amount or more, a browning phenomenon occurs, and the lead-containing glass cannot be reused as a raw material of the panel glass. For this reason, a cathode ray tube is separated into a panel and funnel. For this purpose, there are proposed a method of defining a position to cut a cathode ray tube (Japanese Laid-Open Patent Application No. 9-115449), and a method of melting frit glass which joins a panel and funnel, thereby separating the panel and funnel (Japanese Laid-Open Patent Application No. 7-45198). As a technique of separating a funnel and panel welded with frit glass, a technique of separating a funnel and panel using thermal distortion in heat treatment is known as disclosed in, e.g., Japanese Laid-Open Patent Application Nos. 5-151898, 7-029496, 9-200654, and 9-200657. In recent years, studies for applying cold cathode elements have enthusiastically been done. Known examples of the cold cathode elements are surface-conduction type electron-emitting elements, field emission type electron-emitting elements, metal/insulator/metal type electron-emitting elements. Compared to a thermionic cathode element, the cold cathode element can emit electrons at a low temperature. The cold cathode element does not require any heater, is simpler in structure than the thermionic cathode element, and can form a small element. Even if many elements are arranged on a substrate at a high density, problems such as thermal melting of the substrate hardly arise. In addition, the response speed of the thermionic cathode element is low because it operates upon heating by a heater, whereas the response speed of the cold cathode element is high. Of cold cathode elements, surface-conduction type electron-emitting elements have a simple structure, can be easily manufactured, and allow forming many elements in a wide area. As disclosed in Japanese Laid-Open Patent Application No. 64-31332 filed by the present applicant, a method of arranging and driving many elements has been studied. As applications of surface-conduction type electron-emitting elements, e.g., image forming apparatuses such as an image display apparatus and image recording apparatus, charge beam sources, and the like have been studied. Particularly as applications to image display apparatuses, as disclosed in U.S. Pat. No. 5,066,883 and Japanese Laid-Open Patent Application Nos. 2-257551 and 4-28137, an image display apparatus using a combination of a surface-conduction type electron-emitting element and a fluorescent substance which is irradiated with an electron beam to emit light has been studied. The image display apparatus using a combination of a surface-conduction type electron-emitting element and fluorescent substance is expected to exhibit more excellent characteristics than other conventional types of image display apparatuses. For example, this image display apparatus is superior to a recent popular liquid crystal display apparatus in that the image display apparatus does not require any backlight because of self-emission type and that the view angle is wide. A method of driving many field emission type electron-emitting elements arranged side by side is disclosed in, e.g., U.S. Pat. No. 4,904,895. A known application of FE type electron-emitting elements to an image display apparatus is a flat display reported by R. Meyer et al. [R. Meyer: Recent Development on Micro-tips Display at LETI”, Tech. Digest of 4th Int. Vacuum Micro-electronics Conf., Nagahama, pp. 6-9 (1991)]. An application of many metal/insulator/metal type electron-emitting elements arranged side by side to an image display apparatus is disclosed in Japanese Laid-Open Patent Application No. 3-55738. Of these image forming apparatuses using electron-emitting elements, a thin flat display is space-saving and lightweight, and receives a great deal of attention as a substitute for a cathode ray tube type image display apparatus. The interior of the airtight container in the image forming apparatus is kept at a vacuum of about 10 −6 Torr. As the display area of the image display apparatus increases, the airtight container requires a means for preventing a rear plate and face plate from being deformed or destructed by the difference between internal and external pressures of the airtight container. If the rear plate and face plate are made thick, this increases the weight of the image display apparatus, and generates distortion and disparity of an image when viewed diagonally. Thus, the airtight container generally employs spacers each of which is made of a relatively thin glass plate whose surface is covered with an antistatic conductive film. Flat displays including a vacuum fluorescent display (VFD), plasma display (PDP), and surface-conduction type electron source display (SED) in addition to the field-emission type electron source display (FED) and MIM type display described above are space-saving and lightweight, and receive a great deal of attention as substitutes for cathode ray tube type display apparatuses. Many flat displays have been studied and developed. For example, the present applicant offers several proposals for an electron source constituted by arraying on a substrate many surface-conduction type electron-emitting elements as one type of cold cathode type electron-emitting elements, and an image display apparatus using this electron source. The structure of the surface-conduction type electron-emitting element, the structure of the image display apparatus using this, and the like are disclosed in detail in, e.g., Japanese Laid-Open Patent Application No. 7-235255, and will be described briefly. FIGS. 68A and 68B show a structure of a surface-conduction type electron-emitting element. Reference numeral 411 denotes a substrate; 412 and 413 , a pair of element electrodes; and 414 , a conductive film which partially has an electron-emitting portion 415 . The substrate 411 , element electrodes 412 and 413 , conductive film 414 , and electron-emitting portion 415 constitute an electron-emitting element 416 . As a method of forming the electron-emitting portion 415 , a voltage is applied between the pair of element electrodes 412 and 413 to deform, change of properties, or destruct part of the conductive film, thereby increasing the resistance. This is called “electrification forming processing”. To form an electron-emitting portion having good electron emission characteristics by this method, the conductive film is preferably made of fine conductive particles. An example of the material is fine PdO particles. The voltage applied in electrification forming processing is preferably a pulse voltage. This processing can adopt either one of a method of applying pulses having a predetermined peak value, as shown in FIG. 69A , and a method of applying pulses whose peak value gradually increases, as shown in FIG. 69B . To form a fine conductive particle film, fine conductive particles may be directly deposited by gas deposition. Instead, a method of applying the solution of a compound (e.g., organic metal compound) containing the constituent element of the conductive film and annealing the coating into a desired conductive film is desirable because no vacuum device is required, the manufacturing cost is low, and a large electron source can be formed. As a method of applying the organic metal compound solution, a method of applying the solution to only a necessary portion using an ink-jet apparatus is desirable because the method does not require any extra step for patterning of the conductive film. After the electron-emitting portion is formed, a pulse voltage is applied between the element electrodes in a proper atmosphere containing an organic substance (this will be called “activation processing”). Then, a deposition film mainly containing carbon is formed at the electron-emitting portion and its vicinity to increase a current flowing through the element and improve electron emission characteristics. After that, a step called “stabilization processing” is preferably performed. In this processing, while a vacuum container and electron-emitting element are heated, the vacuum container is kept evacuated to sufficiently remove an organic substance and the like, thereby stabilizing the characteristics of the electron-emitting element. A method of forming the conductive film of an electron source using a surface-conduction type electron-emitting element by an ink-jet apparatus is disclosed in, e.g., Japanese Laid-Open Patent Application No. 8-273529. The ink-jet apparatus will be explained briefly. Methods of discharging ink from the ink-jet apparatus are roughly classified into two types. According to the first method, a liquid is discharged as droplets using the contraction pressure of a piezoelectric element disposed at a nozzle. This method is called a piezo-jet method. In this method, a conductive thin film material is stored in an ink reservoir, and a predetermined voltage is applied to an electrical signal input terminal to contract the cylindrical piezoelectric element, thereby discharging a liquid as droplets. According to the second method, a liquid is heated and bubbled by a heating resistor to discharge droplets. This method is called a bubble-jet method. In a bubble-jet type ink-jet apparatus, the heating resistor generates heat to bubble a liquid, thereby discharging droplets from a nozzle. By using this ink-jet apparatus, an organic metal compound solution is applied as droplets to only a predetermined position. After the solution is dried, the organic metal compound is thermally decomposed by heating processing to form a conductive film from small particles of a metal or metal oxide. FIG. 1 shows a structure of an image display apparatus. In FIG. 1 , reference numeral 1 denotes a rear plate; 2 , a face plate having a fluorescent film 2 b , metal back 2 c , and the like formed on the inner surface of a substrate 2 a ; and 3 , a support frame. The rear plate 1 , support frame 3 , and face plate 2 are joined and tightly sealed with frit glass to constitute an image display apparatus 15 . Flat panel displays having this structure are expected to abruptly increase in size and production. In these flat panel displays, frit glass used for sealing contains lead. The fluorescent substance 2 b serving as an image forming member, a spacer 4 , and the like are high-cost members. Similar to cathode ray tube glass, establishment of a recovery system becomes an important subject in terms of “non-hazardous processing”, “volume reduction”, and “recycling”. | <SOH> BRIEF DESCRIPTION OF DRAWINGS <EOH>FIG. 1A is a partially cutaway perspective view showing an example of a flat panel display processed by a disassembly processing method according to the present invention; FIG. 1B is a sectional view of the flat panel display shown in FIG. 1A ; FIG. 2 is a schematic view showing a surface-conduction type electron source display among flat panel displays according to the present invention; FIG. 3A is a plan view showing a flat panel cutting position in a flat panel display disassembly processing method according to the present invention; FIG. 3B is a sectional view of the flat panel shown in FIG. 3A ; FIG. 4 is a flow chart showing an FPD disassembly processing method according to the present invention; FIG. 5 is a flow chart showing the steps of a scrapped flat panel display disassembly method according to the present invention; FIG. 6A is an explanatory view showing a state in which the whole panel is simultaneously disassembled by the method of the present invention; FIG. 6B is a view showing a state in which respective portions of the panel in FIG. 6A are separated; FIG. 7A is a view showing a method of disassembling a panel while leaving part of it in the method of the present invention; FIG. 7B is a view showing a state in which a face plate equipped with a spacer in FIG. 7A is pulled up; FIG. 8A is a view showing a method of disassembling a panel while leaving part of it in the method of the present invention; FIG. 8B is a view showing a state in which a rear plate in FIG. 8A is pulled up; FIG. 9 is a perspective view schematically showing a surface-conduction type electron source display (SED) as an FPD to be disassembled by the method of the present invention; FIG. 10 is a partially cutaway perspective view showing an example of an image display apparatus having a rear plate to be recycled by the present invention; FIG. 11A is an explanatory view showing the steps of a rear plate recovery/recycling method according to the present invention; FIG. 11B is a view showing a state in which the rear plate in FIG. 11A is peeled; FIG. 12 is a perspective view showing an example of a rear plate substrate cleaned by the recycling method of the present invention; FIGS. 13A, 13B , 13 C, 13 D, and 13 E are schematic views for explaining the steps in forming an electron-emitting element on a rear plate; FIG. 14 is a perspective view showing another example of the rear plate substrate cleaned by the recycling method of the present invention; FIG. 15 is a view showing an embodiment of a spacer recovery method according to the present invention; FIG. 16A is a plan view showing a spacer recovery container used in the method of the present invention; FIG. 16B is a sectional view showing the spacer recovery container in FIG. 16A ; FIG. 17A is a plan view showing another spacer recovery container used in the present invention; FIG. 17B is a sectional view showing the spacer recovery container in FIG. 17A ; FIG. 18 is a view showing another embodiment of the spacer recovery method according to the present invention; FIGS. 19A and 19B are views showing a spacer in the present invention; FIGS. 20A, 20B , 20 C, 20 D, and 20 E are views showing an example of the steps in recovering a spacer according to the present invention; FIG. 21 is a view showing a flat display panel cutting method according to the present invention; FIGS. 22A, 22B , 22 C, and 22 D are views showing another example of the steps in recovering a spacer according to the present invention; FIGS. 23A, 23B , 23 C, 23 D, and 23 E are views showing still another example of the steps in recovering a spacer according to the present invention; FIGS. 24A, 24B , and 24 C are views showing still another example of the steps in recovering a spacer according to the present invention; FIG. 25 is a flow chart showing the steps in recovering fluorescent substances from a display apparatus according to the present invention; FIG. 26 is a view showing the operation of a revolutionary motion type brush; FIG. 27 is a view showing the operation of a pestling motion type brush; FIGS. 28A and 28B are views, respectively, showing different structures of a brush and suction unit; FIG. 29 is a perspective view showing a display apparatus using a spacer; FIG. 30 is a schematic view showing the structure of an image display apparatus according to the present invention; FIG. 31 is a perspective view showing an FPD as an example of the image display apparatus according to the present invention; FIG. 32 is a perspective view showing an SED as another example of the image display apparatus according to the present invention; FIGS. 33A and 33B are a sectional view and plan view, respectively, showing an embodiment of a flat display according to the present invention; FIGS. 34A, 34B , 34 C, and 34 D are views showing an embodiment of a flat display disassembly method according to the present invention; FIGS. 35A, 35B , and 35 C are views showing another embodiment of the flat display disassembly method according to the present invention; FIGS. 36A, 36B , 36 C, 36 D, and 36 E are views showing still another embodiment of the flat display disassembly method according to the present invention; FIG. 37A is a view showing an example of an electron-emitting element according to the present invention; FIG. 37B is a sectional view showing the electron beam-emitting element in FIG. 37A ; FIGS. 38A, 38B , and 38 C are views showing an embodiment of a flat display manufacturing method according to the present invention; FIGS. 39A, 39B , and 39 C are views showing another embodiment of a flat display disassembly method according to the present invention; FIGS. 40A, 40B , and 40 C are views showing still another embodiment of the flat display disassembly method according to the present invention; FIG. 41 is a view showing the arrangement of a residual hazardous metal amount inspection apparatus according to an embodiment of the present invention; FIG. 42 is a flow chart for sequentially explaining inspection processing by the residual hazardous metal amount inspection apparatus shown in FIG. 41 ; FIG. 43A is a partially cutaway perspective view showing a flat panel display; FIG. 43B is a sectional view showing the flat panel display in FIG. 43A ; FIG. 44A is a perspective view showing the arrangement of a flat panel display disassembly apparatus according to the first embodiment of the present invention; FIG. 44B is a plan view 44 showing the apparatus to be bought in FIG. 44A ; FIG. 45 is a side view showing a table and support means in FIGS. 44A and 44B ; FIG. 46A is a front view showing a convey means in FIG. 44 ; FIG. 46B is a side view showing the convey means in FIG. 44 ; FIG. 47A is a front view showing another example of the convey means in FIGS. 44A and 44B ; FIG. 47B is a side view showing the convey means in FIGS. 44A and 44B ; FIG. 48 is a side view showing a spacer recovery jig in FIGS. 44A and 44B ; FIG. 49 is a side view showing another example of the spacer recovery jig in FIGS. 44A and 44B ; FIG. 50 is a flow chart for sequentially explaining the disassembly step by the flat panel display disassembly apparatus shown in FIGS. 44A and 44B ; FIG. 51A is a perspective view showing the arrangement of a flat panel display disassembly apparatus according to the second embodiment of the present invention; FIG. 51B is a plan view showing the disassembly apparatus in FIG. 51A ; FIG. 52 is a schematic view showing an arrangement of a liquid processing bath in an FPD disassembly processing method according to the present invention; FIG. 53 is a flow chart for explaining an FPD disassembly processing method according to the present invention; FIG. 54 is a flow chart showing the basic steps of fluorescent substance recovery processing according to the present invention; FIG. 55A is a plan view showing an arrangement of a movable stop type fixing jig according to the present invention; FIG. 55B is a side view showing the movable stop type jig in FIG. 55A ; FIG. 56 is a perspective view showing the separation step for a face plate and rear plate according to the present invention; FIG. 57 is a view showing the structure and operation of a recovery brush according to the present invention; FIG. 58 is a view showing the steps of recovering fluorescent substances from a flat panel display according to the present invention; FIG. 59 shows views for explaining a glass plate holding mechanism according to an FPD disassembly processing method of the present invention; FIG. 60 is a schematic view showing the arrangement of a liquid processing bath according to the FPD disassembly processing method of the present invention; FIG. 61 is a flow chart showing an example of the steps of the FPD disassembly processing method of the present invention; FIG. 62 is a flow chart showing the flat display disassembly processing step according to the present invention; FIG. 63 is a schematic view showing a fluorescent X-ray analysis apparatus for detecting an element present on a glass substrate surface according to the present invention; FIGS. 64A and 64B are schematic views showing a state in which the relative positions of a sample surface and detector are changed in a total reflection type fluorescent X-ray analysis apparatus according to the present invention; FIG. 65 is a schematic view showing the irradiation region of a primary X-ray in the total reflection type fluorescent X-ray analysis apparatus according to the present invention; FIGS. 66A and 66B are schematic views each showing the detection region of a fluorescent X-ray in the total reflection type fluorescent X-ray analysis apparatus according to the present invention; FIG. 67 is a schematic view showing a glass substrate surface polishing device according to the present invention; FIG. 68A is a plan view showing an electron-emitting element which can be used for the present invention; FIG. 68B is a sectional view showing the electron-emitting element in FIG. 68A ; and FIGS. 69A and 69B are waveform charts each showing the application voltage in forming the electron-emitting element used in the present invention. detailed-description description="Detailed Description" end="lead"? | 20050103 | 20080826 | 20050721 | 92907.0 | 0 | SANTIAGO, MARICELI | GLASS SUBSTRATE PROCESSING METHOD AND MATERIAL REMOVAL PROCESS USING X-RAY FLUORESCENCE | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,026,119 | ACCEPTED | Modular printhead assembly incorporating ink storage and distribution assemblies | A printhead assembly includes an elongate chassis. An elongate ink storage assembly is mounted on the chassis. Printhead modules are mounted along the ink storage assembly. Each printhead module includes an ink distribution assembly in fluid communication with the ink storage assembly. A printhead chip is mounted on each ink distribution assembly to receive ink from the assembly. An electrical signal connector is fast with the printhead chip to provide the printhead chip with data and power. | 1. A printhead assembly which comprises an elongate chassis; an elongate ink storage assembly mounted on the chassis; and printhead modules mounted along the ink storage assembly, each printhead module comprising an ink distribution assembly in fluid communication with the ink storage assembly; a printhead integrated circuit mounted on the ink distribution assembly to receive ink from the assembly; and an electrical signal connector fast with the printhead integrated circuit to provide the printhead integrated circuit with data and power. 2. A printhead assembly as claimed in claim 1, in which the ink storage assembly comprises a reservoir that defines channels connectable to respective ink supplies, the reservoir having ink connectors in fluid communication with each channel, each ink distribution assembly having corresponding connectors that are engageable with the ink connectors to receive ink from each channel. 3. A printhead assembly as claimed in claim 2, in which the reservoir comprises a reservoir molding having the ink connectors and a lid. 4. A printhead assembly as claimed in claim 3, in which each ink distribution assembly and the reservoir molding define complementary mounting formations configured to permit the ink distribution assemblies to be detachably mounted on the reservoir molding. 5. A printhead assembly as claimed in claim 2, in which each distribution assembly includes a micromolding that defines a support for the associated printhead integrated circuit and a cover molding, the micromolding being mounted in the cover molding to define ink chambers for retaining respective inks. 6. A printhead assembly as claimed in claim 5, in which each electrical signal connector is a tape automated bonding (TAB) film. 7. A printhead assembly as claimed in claim 6, in which each micromolding is configured to mate with the TAB film to define a floor of each ink chamber. | CROSS REFERENCES TO RELATED APPLICATIONS This application is a continuation application of U.S. application U.S. Ser. No. 10/913,342 filed Aug. 9, 2004 which is a Continuation Application of U.S. application U.S. Ser. No. 10/636,284 which is a Continuation Application of U.S. application Ser. No. 09/693,311 all of which are herein incorporated by reference. FIELD OF THE INVENTION This invention relates to an ink supply assembly. More particularly, the invention relates to an ink supply assembly for supplying ink to an elongate printhead. SUMMARY OF THE INVENTION According to a first aspect of the invention, there is provided an ink supply assembly for supplying ink to an elongate printhead that includes at least one printhead chip, the assembly comprising an ink reservoir that defines a number of channels, each channel being configured to contain an ink of a particular color, the ink reservoir having a number of sets of filling formations, each filling formation of each set being in fluid communication with a respective channel; and ink supply devices that each comprise a molding of a settable material, the molding being a two-shot molding having a first part of a first material and a second part of a second material, wherein the first part comprises a plurality of collars of a hydrophobic, elastomeric compound which are configured to be sealingly and releasably engageable with respective ink filling formations of each set of the filling formations of the ink reservoir, and the second part defines a number of ink chambers, each ink chamber being configured to contain ink of a particular color and being in fluid communication with a respective ink channel of one ink reservoir via one collar. The ink reservoir may be elongate to span a printing area. The ink supply devices may be configured to be positioned side-by-side along the ink reservoir, in a modular fashion. Each ink supply device may include a printhead chip and a tape automated bond (TAB) film connected to the printhead chip to drive the printhead chip. The printhead chip may be positioned so that, when the ink supply devices are positioned on the reservoir, the printhead chips define an array that spans the print area. According to a second aspect of the invention, there is provided an ink supply device for supplying ink to an elongate printhead that includes at least one printhead chip, from a reservoir, each reservoir defining a number of channels, each channel being configured to contain an ink of a particular color, and each ink reservoir having a number of sets of filling formations, each filling formation of each set being in fluid communication with a respective channel, the device comprising a molding of a settable material, the molding being a two-shot molding having a first part of a first material and a second part of a second material, wherein the first part comprises a plurality of collars of a hydrophobic, elastomeric compound which are configured to be sealingly and releasably engageable with respective ink filling formations of said ink reservoirs, and the second part defines a number of ink chambers, each ink chamber being configured to contain ink of a particular color and being in fluid communication with a respective ink channel of the ink reservoir via one collar. BRIEF DESCRIPTION OF THE DRAWINGS The invention is now described by way of example with reference to the accompanying drawings in which: FIG. 1 shows a three dimensional view, from above, of a printhead assembly that includes an ink supply assembly, in accordance with the invention; FIG. 2 shows a three-dimensional view, from below, of the assembly; FIG. 3 shows a three dimensional, exploded view of the assembly; FIG. 4 shows a bottom view of the assembly; FIG. 5 shows a three-dimensional view, from below, of the assembly with parts omitted; FIG. 6 shows, on an enlarged scale, an end view of the assembly; FIG. 7 shows, on the enlarged scale, a sectional end view of the assembly: FIG. 8 shows a three dimensional, exploded view of a printhead module of the assembly; FIG. 9 shows a bottom view of the module; FIG. 10 shows a plan view of the module; FIG. 11 shows a sectional end view of the module taken along line XI-XI in FIG. 10; FIG. 12 shows a three dimensional, exploded view of an ink reservoir of the assembly; FIG. 13 shows a three dimensional view of a flexible printed circuit board of the assembly; FIG. 14 shows a three dimensional, exploded view of a busbar arrangement of the assembly; FIG. 15 shows a three dimensional view of a multiple printhead assembly configuration; and FIG. 16 shows, on an enlarged scale, a sectional side view of the bonding of the printhead chip to the TAB film. DETAILED DESCRIPTION OF THE DRAWINGS A printhead assembly that includes an ink supply assembly, in accordance with the invention, is designated generally by the reference numeral 10. The assembly 10 uses a plurality of replaceable ink supply devices, also in accordance with the invention, or printhead modules 12. The advantage of this arrangement is the ability to easily remove and replace any defective modules 12 in the assembly 10. This eliminates having to scrap an entire printhead assembly 10 if only one module 12 is defective. The assembly 10 comprises a chassis 14 on which an ink reservoir 16 is secured. The printhead modules 12 are, in turn, attached to the reservoir 16. Each printhead module 12 is comprised of a micro-electromechanical (Memjet) chip 18 (shown most clearly in FIG. 8 of the drawings) bonded by adhesive 20 to a Tape Automated Bond (TAB) film 22, the TAB film 22 being electrically connected to the chip 18. The chip 18 and the TAB film 22 form a sub-assembly 24 which is attached to a micromolding 26. The micromolding 26 is, in turn, supported on a cover molding 28. Each module 12 forms a sealed unit with four independent ink chambers 30 defined in the cover molding 28, the ink chambers 30 supplying ink to the chip 18. Each printhead module 12 is plugged into a reservoir molding 32 (shown most clearly in FIGS. 3 and 7 of the drawings) of the ink reservoir 16 that supplies the ink. Ten modules 12 butt together into the reservoir 16 to form a complete 8-inch printhead assembly 10. The ink reservoirs 16 themselves are modular, so complete 8 inch printhead arrays can be configured to form a printhead assembly 10 of a desired width. The 8-inch modular printhead assembly 10, according to the invention, is designed for a print speed and inkflow rate that allows up to 160 pages per minute printing at 1600 dpi photographic quality. Additionally, a second printhead assembly, of the same construction, can be mounted in a printer on the opposite side for double-sided high-speed printing. As described above, and as illustrated most clearly in FIG. 8 of the drawings, at the heart of the printhead assembly 10 is the Memjet chip 18. The TAB film 22 is bonded on to the chip 18 and is sealed with the adhesive 20 around all edges of the chip 18 on both sides. This forms the core Memjet printhead chip sub-assembly 24. The sub-assembly 24 is bonded on to the micromolding 26. This molding 26 mates with the TAB film 22 which, together, form a floor 34 (FIG. 11) of the ink chambers 30 of the cover molding 28. The chambers 30 open in a flared manner in a top 36 of the cover molding 28 to define filling funnels 38. A soft elastomeric, hydrophobic collar 40 is arranged above each funnel 38. The collars 40 sealingly engage with complementary filling formations or nozzles 42 (FIG. 7) of the reservoir molding 32 of the ink reservoir 16 to duct ink to the chip 18. Snap details or clips 44 project from the top 36 of the cover molding 28 to clip the cover molding 28 releasably to the ink reservoir 16. The TAB film 22 extends up an angled side wall 46 of the cover molding 28 where it is also bonded in place. The side wall 46 of the cover molding 28 provides the TAB film 22 with a suitable bearing surface for data and power contact pads 48 (FIG. 8). The sub-assembly 24, the micromolding 26 and the cover molding 28 together form the Memjet printhead module 12. A plurality of these printhead modules 12 snap fit in angled, end-to-end relationship on to the ink reservoir 16. The reservoir 16 acts as a carrier for the modules 12 and provides ink ducts 52 (FIG. 7) for four ink colors, Cyan, Magenta, Yellow and black (CMYK). The four ink colors are channelled through the individual funnels 38 of the cover molding 28 into each printhead module 12. The printhead modules 12 butt up to one another in an overlapping angled fashion as illustrated most clearly in FIGS. 2 and 4 of the drawings. This is to allow the Memjet chips 18 to diagonally overlap in order to produce continuous printhead lengths from 0.8 inches to 72 inches (for wide format printers) and beyond. The Memjet chip 18 is 21.0 mm long×0.54 mm wide and 0.3 mm high. A protective silicon nozzle shield that is 0.3 mm high is bonded to the upper surface of the Memjet chip 18. Each Memjet nozzle includes a thermoelastic actuator that is attached to a moving nozzle assembly. The actuator has two structurally independent layers of titanium nitride (TiN) that are attached to an anchor on the silicon substrate at one end and a silicon nitride (nitride) lever arm/nozzle assembly at the other end. The top TiN or “heater” layer forms an electrical circuit which is isolated from the ink by nitride. The moving nozzle is positioned over an ink supply channel that extends through the silicon substrate. The ink supply channel is fluidically sealed around the substrate holes periphery by a TiN sealing rim. Ink ejection is prevented between the TiN rim and the nitride nozzle assembly by the action of surface tension over a 1-micron gap. A 1-microsecond 3V, 27 mA pulse (85 nanojoules) is applied to the terminals of the heater layer, increasing the heater temperature by Joule heating. The transient thermal field causes an expansion of the heater layer that is structurally relieved by an “out of plane” deflection caused by the presence of the other TiN layer. Deflection at the actuator tip is amplified by the lever arm and forces the nozzle assembly towards the silicon ink supply channel. The nozzle assembly's movement combines with the inertia and viscous drag of the ink in the supply channel to generate a positive pressure field that causes the ejection of a droplet. A transient thermal field causes Memjet actuation. The passive TiN layer only heats up by thermal conduction after droplet ejection. Thermal energy dissipates by thermal conduction into the substrate and the ink, causing the actuator to return to the ‘at rest’ position. Thermal energy is dissipated away from the printhead chip by ejected droplets. The drop ejection process takes around 5 microseconds. The nozzle refills and waste heat diffuses within 20 microseconds allowing a 50 KHz drop ejection rate. The Memjet chip 18 has 1600 nozzles per inch for each color. This allows true 1600 dpi color printing, resulting in full photographic image quality. A 21 mm CMYK chip 18 has 5280 nozzles. Each nozzle has a shift register, a transfer register, an enable gate, and a drive transistor. Sixteen data connections drive the chip 18. Some configurations of Memjet chips 18 require a nozzle shield. This nozzle shield is a micromachined silicon part which is wafer bonded to the front surface of the wafer. It protects the Memjet nozzles from foreign particles and contact with solid objects and allows the packaging operation to be high yield. The TAB film 22 is a standard single sided TAB film comprised of polyimide and copper layers. A slot accommodates the Memjet chip 18. The TAB film 22 includes gold plated contact pads 48 that connect with a flexible printed circuit board (PCB) 54 (FIG. 13) of the assembly 10 and busbar contacts 56 (FIG. 14) of busbars 58 and 60 of the assembly 10 to get data and power respectively to the chip 18. Protruding bond wires are gold bumped, then bonded to bond pads of the Memjet chip 18. The junction between the TAB film 22 and all the chip sidewalls has sealant applied to the front face in the first instance. The sub-assembly 24 is then turned over and sealant is applied to the rear junction. This is done to completely seal the chip 18 and the TAB film 22 together to protect electrical contact because the TAB film 22 forms the floor 34 of the ink chambers 30 in the printhead module 12. The flexible PCB 54 is a single sided component that supplies the TAB films 22 of each printhead module 12 with data connections through contact pads, which interface with corresponding contacts 48 on each TAB film 22. The flex PCB 54 is mounted in abutting relationship with the TAB film 22 along the angled sidewall 46 of the cover molding 28. The flex PCB 54 is maintained in electrical contact with the TAB film 22 of each printhead module 12 by means of a pressure pad 62 (FIG. 7). The PCB 54 wraps underneath and along a correspondingly angled sidewall 64 of the ink reservoir molding 32 of the ink reservoir 16. The part of the PCB 54 against the sidewall 64 carries a 62-pin connector 66. The sidewall 64 of the ink reservoir molding 32 of the ink reservoir 16 is angled to correspond with the sidewall 32 of the cover molding 16 so that, when the printhead module 12 is mated to the ink reservoir 16, the contacts 48 of the TAB film 22 wipe against those of the PCB 54. The angle also allows for easy removal of the module 12. The flex PCB 54 is ‘sprung’ by the action of the deformable pressure pad 62 which allows for positive pressure to be applied and maintained between the contacts of the flex PCB 54 and the TAB film 22. The micromolding 26 is a precision injection molding made of an Acetal type material. It accommodates the Memjet chip 18 (with the TAB film 22 already attached) and mates with the cover molding 28. Rib details 68 (FIG. 8) in the underside of the micromolding 26 provide support for the TAB film 22 when they are bonded together. The TAB film 22 forms the floor 34 of the printhead module 12, as there is enough structural integrity due to the pitch of the ribs 68 to support a flexible film. The edges of the TAB film 22 seal on the underside walls of the cover molding 28. The chip 18 is bonded on to 100-micron wide ribs 70 that run the length of the micromolding 26. A channel 72 is defined between the ribs 70 for providing the final ink feed into the nozzles of the Memjet chip 18. The design of the micromolding 26 allows for a physical overlap of the Memjet chips 18 when they are butted in a line. Because the Memjet chips 18 now form a continuous strip with a generous tolerance, they can be adjusted digitally to produce the required print pattern, rather than relying on very close tolerance moldings and exotic materials to perform the same function. The pitch of the modules 12 is 20.33 mm. The micromolding 26 fits inside the cover molding 28, the micromolding 26 bonding on to a set of vertical ribs 74 extending from the top 36 of the cover molding 28. The cover molding 28 is a two shot, precision injection molding that combines an injected hard plastic body (Acetal) with soft elastomeric features (synthetic rubber). This molding interfaces with the sub-assembly 24 bonded to the micromolding 26. When bonded into place the base sub-assembly, comprising the sub-assembly 24 and the micromolding 26, mates with the vertical ribs 74 of the cover molding 28 to form the sealed ink chambers 30. As indicated above, an opening of each chamber 30 is surrounded by one of the collars 40. These soft collars 40 are made of a hydrophobic, elastomeric compound that seals against the ink nozzles 42 of the ink reservoir 16. The snap fits 44 on the cover molding 28 locate the module 12 with respect to the ink reservoir 16. The ink reservoir 16 comprises the ink reservoir molding 32 and a lid molding 76 (FIG. 7). The molding 32 is a simple four-chamber injection molding with the lid molding 76 that is bonded on top to form a sealed environment for each color ink. Ink supply pipes 78 (FIG. 12) are arranged at one end of the lid molding 76 to communicate with ink channels 80 defined in the reservoir molding 32. Labyrinthine, hydrophobic air holes 82 are defined at an opposed end of the lid molding 76. The air holes 82 are included for bleeding the channels 80 during charging. These holes 82 are covered over with a self-adhesive film 84 after charging. The lid molding 76 has heat stakes 88, (pins that are designed to melt and hold the molding onto another part) which position and secure the ink reservoir 16 to the punched, sheet metal chassis 14. Additional heat stakes 90 are arranged along the reservoir molding 32. These stakes are shown after deformation in FIG. 1 of the drawings once the ink reservoir 16 has been secured to the chassis 14. Receiving formations 92 are defined along the sides of the reservoir molding 32 for releasably receiving the clips 44 of the printhead modules 12. As previously described, the sidewall 64 on the side of the reservoir molding 32 provides a mounting area for the flexible PCB 54 and data connector 66. The reservoir molding 32 also carries details for facilitating the accurate mounting of the V− and V+busbars 58 and 60, respectively. The metal chassis 14 is a precision punched, folded and plated metal chassis used to mount the printhead assembly 10 into various products. The ink reservoir 16 is heat staked to the chassis 14 via the heat stakes 88 and 90. The chassis 14 includes a return edge 94 for mechanical strength. The chassis 14 can be easily customized for printhead mounting and any further part additions. It can also be extended in length to provide multiple arrays of printhead assemblies 10 for wider format printers. Slots 97 are defined in the chassis 14 for enabling access to be gained to the clips 44 of the modules 12 to release the modules 12 from the ink reservoir 16 for enabling replacement of one or more of the modules 12. Thin finger strip metallic strip busbars 58 and 60 conduct V- and V+, respectively, to the TAB film 22 on each printhead module 12. The two busbars 58 and 60 are separated by an insulating strip 96 (FIG. 14). The flexible, finger-like contacts 56 are arranged along one side edge of each busbar 58, 60. The contacts 56 electrically engage the relevant contact pads 48 of the TAB film 22 of each module 12 for providing power to the module 12. The contacts 56 are separated by fine rib details on the underside of the ink reservoir molding 32. A busbar sub-assembly 98, comprising the busbars 58, 60 and the insulating strip 96 is mounted on the underside of the sidewall 64 of the reservoir molding 32 of the ink reservoir 16. The sub-assembly is held captive between that sidewall 64 and the sidewall 46 of the cover molding 28 by the pressure pad 62. A single spade connector 100 is fixed to a protrusion 102 on the busbar 58 for ground. Two spade connectors 104 are mounted on corresponding protrusions 106 on the busbar 60 for power. The arrangement is such that, when the sub-assembly 98 is assembled, the spade connectors 104 are arranged on opposite sides of the spade connector 100. In this way, the likelihood of reversing polarity of the power supply to the assembly 10, when the assembly 10 is installed, is reduced. During printhead module 12 installation or replacement, these are the first components to be disengaged, cutting power to the module 12. To assemble the printhead assembly 10, a Memjet chip 18 is dry tested in flight by a pick and place robot, which also dices the wafer and transports individual chips 18 to a TAB film bonding area. When a chip 18 has been accepted, a TAB film 22 is picked, bumped and applied to the chip 18. A slot in the TAB film 22 that accepts the chip 18 and has the adhesive 20, which also functions as a sealant, applied to the upper and lower surfaces around the chip 18 on all sides. This operation forms a complete seal with the side walls of the chip 18. The connecting wires are potted during this process. The Memjet chip 18 and TAB film 22 sub-assembly 24 is transported to another machine containing a stock of micromoldings 26 for placing and bonding. Adhesive is applied to the underside of the fine ribs 70 in the channel 72 of the micromolding 26 and the mating side of the underside ribs 68 that lie directly underneath the TAB film 22. The sub-assembly 24 is mated with the micromolding 26. The micromolding sub-assembly, comprising the micromolding 26 and the sub-assembly 24, is transported to a machine containing the cover moldings 28. When the micromolding sub-assembly and cover molding 28 are bonded together, the TAB film 22 is sealed on to the underside walls of the cover molding 28 to form a sealed unit. The TAB film 22 further wraps around and is glued to the sidewall 46 of the cover molding 28. The chip 18, TAB film 22, micromolding 26 and cover molding 28 assembly form a complete Memjet printhead module 12 with four sealed independent ink chambers 30 and ink inlets 38. The ink reservoir molding 32 and the cover molding 76 are bonded together to form a complete sealed unit. The sealing film 84 is placed partially over the air outlet holes 82 so as not to completely seal the holes 82. Upon completion of the charging of ink into the ink reservoir 16, the film 84 seals the holes 82. The ink reservoir 16 is then placed and heat staked on to the metal chassis 14. The full length flexible PCB 54 with a cushioned adhesive backing is bonded to the angled sidewall 64 of the ink reservoir 16. The flex PCB 54 terminates in the data connector 66, which is mounted on an external surface of the sidewall 64 of the ink reservoir 16. Actuator V− and V+connections are transmitted to each module 12 by the two identical metal finger strip busbars 58 and 60. The busbar sub-assembly 98 is mounted above the flex PCB 54 on the underside of the sidewall 64 of the ink reservoir molding 32. The busbars 58, 60 and the insulating strip 96 are located relative to the ink reservoir molding 32 via pins (not shown) projecting from the sidewall 64 of the ink reservoir molding 32, the pins being received through locating holes 108 in the busbars 58, 60 and the insulating strip 96. The Memjet printhead modules 12 are clipped into the overhead ink reservoir molding 32. Accurate alignment of the module 12 to the reservoir molding 32 is not necessary, as a complete printhead assembly 10 will undergo digital adjustment of each chip 18 during final QA testing. Each printhead module's TAB film 22 interfaces with the flex PCB 54 and busbars 58, 60 as it is clipped into the ink reservoir 16. To disengage a printhead module 12 from the reservoir 16, a custom tool is inserted through the appropriate slots 97 in the metal chassis 14 from above. The tool ‘fingers’ slide down the walls of the ink reservoir molding 32, where they contact the clips 44 of the cover molding 28. Further pressure acts to ramp the four clips 44 out of engagement with the receiving formations 92 and disengage the printhead module 12 from the ink reservoir 16. To charge the ink reservoir 16 with ink, hoses 110 (FIG. 3) are attached to the pipes 78 and filtered ink from a supply is charged into each channel 80. The openings 82 at the other end of the ink reservoir cover molding 76 are used to bleed off air during priming. The openings 82 have tortuous ink paths that run across the surface, which connect through to the internal ink channels 80. These ink paths are partially sealed by the bonded transparent plastic film 84 during charging. The film 84 serves to indicate when inks are in the ink channels 80, so they can be fully capped off when charging has been completed. For electrical connections and testing, power and data connections are made to the flexible PCB 54. Final testing then commences to calibrate the printhead modules 12. Upon successful completion of the testing, the Memjet printhead assembly 10 has a plastic sealing film applied over the underside that caps the printhead modules 12 and, more particularly, their chips 18, until product installation. It is to be noted that there is an overlap between adjacent modules 12. Part of the testing procedure determines which nozzles of the overlapping portions of the adjacent chips 18 are to be used. As shown in FIG. 15 of the drawings, the design of the modular Memjet printhead assemblies 10 allows them to be butted together in an end-to-end configuration. It is therefore possible to build a multiple printhead system 112 in, effectively, unlimited lengths. As long as each printhead assembly 10 is fed with ink, then it is entirely possible to consider printhead widths of several hundred feet. This means that the only width limit for a Memjet printer product is the maximum manufacturable size of the intended print media. FIG. 15 shows how a multiple Memjet printhead system 112 could be configured for wide format printers. Replaceable ink cartridges 114, one for each color, are inserted into an intermediate ink reservoir 116 that always has a supply of filtered ink. Hoses 118 exit from the underside of the reservoir 118 and connect up to the ink inlet pipes 78 of each printhead assembly 10. It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive. | <SOH> FIELD OF THE INVENTION <EOH>This invention relates to an ink supply assembly. More particularly, the invention relates to an ink supply assembly for supplying ink to an elongate printhead. | <SOH> SUMMARY OF THE INVENTION <EOH>According to a first aspect of the invention, there is provided an ink supply assembly for supplying ink to an elongate printhead that includes at least one printhead chip, the assembly comprising an ink reservoir that defines a number of channels, each channel being configured to contain an ink of a particular color, the ink reservoir having a number of sets of filling formations, each filling formation of each set being in fluid communication with a respective channel; and ink supply devices that each comprise a molding of a settable material, the molding being a two-shot molding having a first part of a first material and a second part of a second material, wherein the first part comprises a plurality of collars of a hydrophobic, elastomeric compound which are configured to be sealingly and releasably engageable with respective ink filling formations of each set of the filling formations of the ink reservoir, and the second part defines a number of ink chambers, each ink chamber being configured to contain ink of a particular color and being in fluid communication with a respective ink channel of one ink reservoir via one collar. The ink reservoir may be elongate to span a printing area. The ink supply devices may be configured to be positioned side-by-side along the ink reservoir, in a modular fashion. Each ink supply device may include a printhead chip and a tape automated bond (TAB) film connected to the printhead chip to drive the printhead chip. The printhead chip may be positioned so that, when the ink supply devices are positioned on the reservoir, the printhead chips define an array that spans the print area. According to a second aspect of the invention, there is provided an ink supply device for supplying ink to an elongate printhead that includes at least one printhead chip, from a reservoir, each reservoir defining a number of channels, each channel being configured to contain an ink of a particular color, and each ink reservoir having a number of sets of filling formations, each filling formation of each set being in fluid communication with a respective channel, the device comprising a molding of a settable material, the molding being a two-shot molding having a first part of a first material and a second part of a second material, wherein the first part comprises a plurality of collars of a hydrophobic, elastomeric compound which are configured to be sealingly and releasably engageable with respective ink filling formations of said ink reservoirs, and the second part defines a number of ink chambers, each ink chamber being configured to contain ink of a particular color and being in fluid communication with a respective ink channel of the ink reservoir via one collar. | 20050103 | 20060411 | 20050526 | 99890.0 | 0 | FEGGINS, KRISTAL J | MODULAR PRINTHEAD ASSEMBLY INCORPORATING INK STORAGE AND DISTRIBUTION ASSEMBLIES | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,026,128 | ACCEPTED | Printhead chip incorporating electro-magnetically operable ink ejection mechanisms | A printhead chip includes a substrate that incorporates drive circuitry. Nozzle chamber structures define nozzle chambers, ink inlets in fluid communication with the nozzle chambers and ink ejection ports in fluid communication with respective nozzle chambers. Ink ejecting members are positioned in respective nozzle chambers. The ink ejecting members are reciprocally displaceable with respect to the substrate to eject ink from the ink ejection ports and are responsive to a magnetic field of cyclically reversing polarity to be reciprocally displaced. | 1. A printhead chip which comprises a substrate that incorporates drive circuitry; nozzle chamber structures that define nozzle chambers, ink inlets in fluid communication with the nozzle chambers and ink ejection ports in fluid communication with respective nozzle chambers; and ink ejecting members positioned in respective nozzle chambers, reciprocally displaceable with respect to the substrate to eject ink from the ink ejection ports, and responsive to a magnetic field of cyclically reversing polarity to be reciprocally displaced. 2. A printhead chip as claimed in claim 1, in which the nozzle chamber structures are defined by the substrate, the ink inlets and the nozzle chambers being the result of an etching process carried out in the substrate from an inlet side of the substrate. 3. A printhead chip as claimed in claim 2, in which the substrate is a silicon wafer substrate and the respective ink ejection ports are defined in an etch stop layer positioned on an ink ejection side of the substrate. 4. A printhead chip as claimed in claim 1, in which each ink ejecting member is composed, at least in part, of a magnetic material. 5. A printhead chip as claimed in claim 1, which includes checking mechanisms operatively engageable with respective ink ejecting members selectively to check reciprocal displacement of the ink ejecting members, the checking mechanisms being connected to the drive circuitry to be operable on receipt of an electrical signal from the drive circuitry. 6. A printhead chip as claimed in claim 5, in which each ink ejecting member is pivotally mounted on one side to a sidewall of the respective nozzle chamber, with each checking mechanism being oppositely oriented on the sidewall selectively to check reciprocal pivotal displacement of the ink ejecting member. 7. A printhead chip as claimed in claim 6, in which the checking mechanisms have obstruction members positioned in respective sidewalls, the obstruction members being displaceable out of and back into the sidewalls on receipt of electrical signals from the drive circuitry, respectively to obstruct and permit pivotal movement of the ink ejecting members. | CROSS REFERENCES TO RELATED APPLICATIONS This application is a continuation application of U.S. application Ser. No. 10/882,775 filed Jul. 2, 2004 which is a Continuation Application of U.S. application Ser. No. 10/307,336 which is a Continuation of U.S. Ser. No. 09/900,159 which is a CIP of 09/112,778 all of which are herein incorporated by reference. REFERENCES TO U.S. APPLICATIONS This application is a continuation application of U.S. Ser. No. 09/900,159 now U.S. Pat. No. 6,488,359, and U.S. Pat. Nos. 6,557,977, 6,227,652, 6,213,589, 6,247,795, 6,394,581, 6,244,691, 6,257,704, 6,220,694, 6,234,610, 6,247,793, 6,264,306, 6,241,342, 6,254,220, 6,302,528, 6,239,821, and 6,247,796 are hereby incorporated by reference. FIELD OF THE INVENTION This invention relates to ink jet printheads. More particularly, this invention relates to an ink jet printhead that incorporates through-chip ink ejection nozzle arrangements. BACKGROUND TO THE INVENTION The Applicant has invented an ink jet printhead that is capable of generating text and images at a resolution of up to 1600 dpi. In order to achieve this, the Applicant has made extensive use of micro electro-mechanical systems technology. In particular, the Applicant has developed integrated circuit fabrication techniques suitable for the manufacture of such printheads. The Applicant has filed a large number of patent applications in this field, many of which have now been allowed. The printheads developed by the Applicant can include up to 84000 nozzle arrangements. Each nozzle arrangement has at least one moving component that serves to eject ink from a nozzle chamber. The components usually either act directly on the ink or act on a closure which serves to permit or inhibit the ejection of ink from the nozzle chamber. The moving components within the printheads are microscopically dimensioned. This is necessary, given the large number of nozzle arrangements per printhead. The Applicant has spent a substantial amount of time and effort developing configurations for such printheads. One of the reasons for this is that, as is known in the field of integrated circuit fabrication, cost of on-chip real estate is extremely high. Furthermore, it is important that levels of complexity are kept to a minimum since these significantly increase the cost of fabrication. Integrated circuit fabrication techniques involve what is generally a deposition and etching process. As a result, devices which are manufactured in accordance with such techniques are usually, of necessity, in a layered construction. Furthermore, it is important to develop a configuration where a high number of devices can be fabricated per unit area of chip surface. The present invention has been conceived by the Applicant to address the difficulties associated with achieving the high packing density of the nozzle arrangements and thereby to facilitate substantial cost saving in manufacture. SUMMARY OF THE INVENTION According to a first aspect of the invention, there is provided A closure member for each of the plurality of ink passages in an ink jet printhead chip, the chip comprising a wafer substrate with a front surface, a rear surface and the plurality of ink passages through the wafer substrate, each ink passage defining an inlet at the rear surface of the wafer substrate and an outlet at the front surface of the wafer substrate, each ink passage being in fluid communication with an ink supply at the rear surface of the wafer substrate, the closure member being positioned on or adjacent to the rear surface of the substrate and being displaceable between open and closed positions to control a flow of ink through a respective passage; and the closure member being operatively engaged with at least one actuator facilitating displacement of the closure member between the open and closed positions, when activated. According to another aspect of the invention, there is provided an ink jet printhead chip that is the product of an integrated circuit fabrication technique, the printhead chip comprising a wafer substrate having a front surface and a rear surface, a plurality of ink passages being defined through the wafer substrate, so that each ink passage defines an inlet at a rear surface of the wafer substrate and an outlet at a front surface of the wafer substrate, each ink passage being in fluid communication with an ink supply at the rear surface of the wafer substrate; and a plurality of actuators that are positioned on the rear surface of the wafer substrate and are operatively arranged with respect to the ink passages to generate an ink flow through each passage, from the rear surface to the front surface, when activated. Preferably the roof walls, side walls and floor walls are positioned on the rear surface of the wafer substrate to define a plurality of nozzle chambers, each roof wall defining an ink ejection port that is in fluid communication with a respective ink channel, an actuator being operatively arranged with respect to each nozzle chamber to eject ink from the nozzle chamber out of the ink ejection port and into the ink channel. Each actuator may include an ink displacement member that defines at least the floor wall of each nozzle chamber, the ink displacement member being movable towards and away from the roof wall of the nozzle chamber to eject ink from the ink ejection port. Each actuator may include an actuating device that is positioned on the rear side of the wafer substrate and is connected to the ink displacement member to move the ink displacement member towards and away from the ink ejection port. There may be a protective enclosure positioned on the rear surface of the wafer substrate, each actuating device being housed in the protective enclosure. Each actuating device maybe a thermal actuator, having a deformable body of expansion material that has a coefficient of thermal expansion which is such that expansion of the material on the application of heat can be harnessed to perform work, the body being connected to an ink displacement member so that deformation of the body on the application of heat results in movement of the ink displacement member towards the ink ejection port. The protective enclosure may include a fluidic seal, the ink displacement member being connected to the deformable member through the fluidic seal. According to a different aspect of the invention, there is provided an ink jet printhead chip that is the product of an integrated circuit fabrication technique, the ink jet printhead chip comprising a wafer substrate; a plurality of ink passages defined through the wafer substrate, so that each ink passage defines an inlet at a rear surface of the wafer substrate and an outlet at a front surface of the wafer substrate, each ink passage being in fluid communication with an ink supply at the rear surface of the wafer substrate; roof walls, side walls and floor walls that are positioned on the rear surface of the wafer substrate to define a plurality of nozzle chambers, each roof wall defining an ink ejection port that is in fluid communication with a respective ink passage; and a plurality of actuators that are positioned on the rear surface of the wafer substrate so that each actuator is operatively arranged with respect to each nozzle chamber to eject ink from the nozzle chamber and out of the ink ejection port. The invention is now described, by way of examples, with reference to the accompanying drawings. The specific nature of the following description is not to be construed as limiting the scope of the above summary, in any way. BRIEF DESCRIPTION OF THE DRAWINGS In the drawings, FIG. 1 shows a three dimensional view of a first embodiment of part of a printhead chip, in accordance with the invention; FIG. 2 shows a sectioned side view of the printhead chip of FIG. 1; FIG. 3 shows a sectioned side view of a second embodiment of a printhead chip, in accordance with the invention, with a nozzle arrangement of the printhead chip in a pre-operative condition; FIG. 4 shows the nozzle arrangement of FIG. 3, in a post-operative condition; FIG. 5 shows a side sectioned view of a third embodiment of a printhead chip, in accordance with the invention, with a nozzle arrangement of the printhead in a pre-operative condition; FIG. 6 shows a side sectioned view of the nozzle arrangement of FIG. 5, in a post-operative condition; and FIG. 7 shows a sectioned side view of a fourth embodiment of a printhead chip, in accordance with the invention. DETAILED DESCRIPTION OF THE DRAWINGS In the drawings, reference is made to a nozzle arrangement. It will be appreciated that the printhead chip of the invention comprises a plurality of the nozzle arrangements. Furthermore, as set out in the preamble, the printhead chips can incorporate an extremely high number of such nozzle arrangements. Accordingly, only one nozzle arrangement is shown in each of the drawings, for the sake of convenience and for ease of description. It will readily be appreciated that replicating each of the nozzle arrangements to a sufficiently high degree will provide a reader with a configuration of the printhead chip, in accordance with the invention. In FIGS. 1 and 2, reference numeral 10 generally indicates a nozzle arrangement of a printhead chip, in accordance with the invention. The nozzle arrangement 10 includes a substrate 12 forming part of the printhead chip of the invention. The substrate 12 includes a wafer substrate 14. An epitaxial layer 16 of boron doped silicon is deposited on a front surface of the wafer substrate 14. The epitaxial layer 16 thus defines an etch stop layer 18. The wafer substrate 14 is etched to define a nozzle chamber 20 so that the etch stop layer 18 defines a roof wall 22 of the nozzle chamber 20. The roof wall 22 is itself etched to define an ink ejection port 23. It follows that the nozzle chamber 20 and the ink ejection port 23 together define an ink passage through the wafer substrate 14. A drive circuitry layer 24 is positioned on a rear surface of the wafer substrate 14 and incorporates drive circuitry (not shown) for the nozzle arrangement 10. An ink passivation layer 26 of silicon nitride is deposited on the drive circuitry layer 24. In this particular embodiment, a shutter member or shutter 28 is positioned on the layer 26 and is displaceable between a closed position in which the shutter 28 covers an inlet 30 of the nozzle chamber 20 and an open position in which ink is permitted to flow into the nozzle chamber 20. The shutter 28 has a toothed edge 32. The nozzle arrangement 10 includes a micro electromechanical drive mechanism 34 to drive the shutter 28 between its closed and open positions. In particular, the drive mechanism 34 includes a series of gears 36, 38, 40 which engage the toothed edge 32 of the shutter 28. In particular, the gear 36 is driven by actuators 42. The gear 36 is engaged with the gear 38, which, in turn, is engaged with the gear 40. The gears 36, 38, 40 are configured to achieve a reduction effect on the gear 40. The gear 40 is engaged with the toothed edge 32. The actuators 42 are electrically connected to the drive circuitry layer 24 to be controlled via a suitable control system (not shown) which, in turn, is connected to the drive circuitry layer 24. The drive mechanism 34, the ink passivation layer 26 and the shutter 28 are all in fluid contact with an ink reservoir 44 (shown in FIGS. 3 to 6). In this embodiment, the ink within the ink reservoir 44 is repeatedly pressurized to an extent sufficient to facilitate the ejection of ink from the ink ejection port 23. Thus, by controlling operation of the shutter 28 via the drive circuitry layer 24 and the drive mechanism 34, selective ejection of ink from the ink ejection port 23 can be achieved. It will be appreciated that, in this embodiment, the ink is ejected through the wafer substrate 14 from the rear surface of the wafer substrate 14 towards the front surface of the wafer substrate 14. Details of the operation of the drive mechanism 34 and of the remainder of the nozzle arrangement 10 are set out in the above referenced U.S. applications. It follows that this detail will not be covered in this specification. In FIGS. 3 and 4, reference numeral 50 generally indicates a nozzle arrangement of a second embodiment of a printhead chip, in accordance with the invention. With reference to FIGS. 1 and 2, like reference numerals refer to like parts, unless otherwise specified. Instead of the shutter 28 used in combination with the repeatedly pressurized ink to achieve drop ejection, the nozzle arrangement 50 includes an actuator 52 which acts directly on ink 54 in the nozzle chamber 20. The actuator 52 includes a heater element 56 which is of a shape memory alloy. In this particular example, the shape memory alloy is a nickel titanium alloy. Details of the shape memory alloy are provided in the above referenced U.S. applications and are therefore not set out in this specification. The heater element 56 has a trained shape as shown in FIG. 4. A layer 58 of silicon nitride is deposited, under tension, on the heater element 56, with the heater element 56 in its martensitic phase. This causes the heater element 56, together with the layer 58, to bend away from the ink ejection port 23, as shown in FIG. 3. The heater element 56 is connected to the drive circuitry layer 24 with suitable vias 60. Furthermore, the heater element 56 is configured to be resistively or joule heated when a current from the drive circuitry layer 24 passes through the heater element 56. This heat is sufficient to raise the temperature of the heater element 56 above its transformation temperature. This results in the heater element 56 undergoing a crystalline change into its austenitic phase, thereby reverting to its trained shape as shown in FIG. 4. The resultant movement results in the generation of a drop 62 of ink. When the heater element 56 cools, the tension that has built up in the layer 58 results in the heater element 56, now in its martensitic phase, returning to the position shown in FIG. 3. This facilitates necking and separation of the drop 62. In FIGS. 5 and 6, reference numeral 70 generally indicates a nozzle arrangement of a third embodiment of a printhead chip, in accordance with the invention. With reference to FIGS. 1 to 4, like reference numerals refer to like parts, unless otherwise specified. The nozzle arrangement 70 includes an actuator 72 which also acts directly on the ink 54 within the nozzle chamber 20. However, in this case, the actuator 72 is hingedly connected to the substrate 12 to be hingedly displaceable between the pre-operative position shown in FIG. 5 and the post-operative position shown in FIG. 6. The actuator 72 has a magnetic core 74 which is susceptible to a magnetic field of cyclically reversing polarity applied to the printhead chip. The cyclically reversing magnetic field tends to cause the actuator 72 to oscillate between the positions shown in FIGS. 5 and 6. The magnetic core 74 is sufficiently sensitive and the magnetic field sufficiently strong so that this oscillation, if unchecked, results in the ejection of the drop 62 of the ink 54 from the ink ejection port 23. The nozzle arrangement 70 includes a checking or obstruction mechanism 78 which is positioned in a side wall 80 of the nozzle chamber 20. The obstruction mechanism 78 is connected to the drive circuitry layer 24 to be controlled with a suitable control system (not shown) also connected to the drive circuitry. The obstruction mechanism 78 is configured so that, when activated, an obstruction member 82 of the mechanism 78 extends from the side wall 80 into the nozzle chamber 20. As can be seen in FIG. 5, this serves to obstruct movement of the actuator 72 into the nozzle chamber 20. It will thus be appreciated that selective ejection of the ink 54 from the ink ejection port 23 can be achieved. As with the previous embodiments, detail of the working and structure of the nozzle arrangement 70 is set out in the above referenced US applications. The primary purpose of illustrating these examples is to indicate possible configurations which can be achieved when the ink is displaced from the rear surface of the wafer substrate 14 to the front surface, through the wafer substrate 14. In FIG. 7, reference numeral 90 generally indicates a nozzle arrangement of a fourth embodiment of a printhead chip, in accordance with the invention. With reference to FIGS. 1 to 6, like reference numerals refer to like parts, unless otherwise specified. In the nozzle arrangement 90, the wafer substrate 14 is etched to define an ink ejection channel 92. Furthermore, the nozzle chamber 20 is defined by an ink ejection paddle 94 positioned behind the ink passivation layer 26, side walls 96 extending from the ink passivation layer 26 and a roof wall 98 spanning an inlet 100 to the ink ejection channel 92. Thus, the ink ejection paddle 94 defines a floor wall of the nozzle chamber 20. The roof wall 98 defines an ink ejection port 102. It follows that the ink ejection port 102 and the ink ejection channel 92 together define an ink passage through the wafer substrate 14. The ink ejection paddle 94 is shaped to define an included volume 104 which forms part of the nozzle chamber 20. Furthermore, the ink ejection paddle 94 is partially received within the side walls 96. Thus, on displacement of the ink ejection paddle 94 towards the roof wall 98, a volume of the nozzle chamber 20 is reduced so that ink is ejected from the ink ejection port 102 to pass through the ink ejection channel 92 and on to the print medium. The direction of movement of the ink ejection paddle 94 is indicated by an arrow 106. The ink ejection paddle 94 is connected to a thermal actuating device 108. In order to protect the device 108, a silicon nitride enclosure 110 is positioned on the passivation layer 26 to enclose the device 108. The device 108 includes a deformable body 116 of expansion material having a coefficient of thermal expansion which is such that, upon heating, expansion of the material can be harnessed to perform work. The body has a proximal planar surface 120, closest to the wafer substrate 14, and an opposed distal planar surface 122. The device 108 includes a heater element 118 that is positioned in the body 116 to heat the body 116. As can be seen in FIG. 7, the heater element 118 is positioned closest to the distal surface 122. Thus, when the heater element 118 is activated, the expansion material in a region proximate the distal surface 122 expands to a greater extent than the remaining material. This results in the body 116 bending towards the substrate 14. The body 116 is elongate, with one end attached to a support post 124 to provide a bending anchor. An opposed end of the body 116 is free to move. The heater element is connected to the drive circuitry layer 24 with a suitable via 126 in the support post 124. An arm 112 interconnects the body 116 with the ink ejection paddle 94. In order to achieve this, the arm 112 extends through a fluidic seal 114 which is positioned in a wall 128 of the silicon nitride enclosure 110. The enclosure 110, the ink ejection paddle 94 and the side walls 96 are all positioned in an ink reservoir, indicated at 130. The paddle 94 and the side walls 96 are positioned so that ink is permitted to flow into the nozzle chamber 20 from the ink reservoir 130, subsequent to displacement of the paddle 94 away from the ink ejection port 102. A particular advantage of this configuration is that the ink is ejected from a point at the rear surface of the wafer substrate 14 to pass through the wafer substrate 14. As a result, special preparation of the front surface of the wafer substrate is not necessary. This simplifies the fabrication of the printhead chip with a resultant cost saving. | <SOH> BACKGROUND TO THE INVENTION <EOH>The Applicant has invented an ink jet printhead that is capable of generating text and images at a resolution of up to 1600 dpi. In order to achieve this, the Applicant has made extensive use of micro electro-mechanical systems technology. In particular, the Applicant has developed integrated circuit fabrication techniques suitable for the manufacture of such printheads. The Applicant has filed a large number of patent applications in this field, many of which have now been allowed. The printheads developed by the Applicant can include up to 84000 nozzle arrangements. Each nozzle arrangement has at least one moving component that serves to eject ink from a nozzle chamber. The components usually either act directly on the ink or act on a closure which serves to permit or inhibit the ejection of ink from the nozzle chamber. The moving components within the printheads are microscopically dimensioned. This is necessary, given the large number of nozzle arrangements per printhead. The Applicant has spent a substantial amount of time and effort developing configurations for such printheads. One of the reasons for this is that, as is known in the field of integrated circuit fabrication, cost of on-chip real estate is extremely high. Furthermore, it is important that levels of complexity are kept to a minimum since these significantly increase the cost of fabrication. Integrated circuit fabrication techniques involve what is generally a deposition and etching process. As a result, devices which are manufactured in accordance with such techniques are usually, of necessity, in a layered construction. Furthermore, it is important to develop a configuration where a high number of devices can be fabricated per unit area of chip surface. The present invention has been conceived by the Applicant to address the difficulties associated with achieving the high packing density of the nozzle arrangements and thereby to facilitate substantial cost saving in manufacture. | <SOH> SUMMARY OF THE INVENTION <EOH>According to a first aspect of the invention, there is provided A closure member for each of the plurality of ink passages in an ink jet printhead chip, the chip comprising a wafer substrate with a front surface, a rear surface and the plurality of ink passages through the wafer substrate, each ink passage defining an inlet at the rear surface of the wafer substrate and an outlet at the front surface of the wafer substrate, each ink passage being in fluid communication with an ink supply at the rear surface of the wafer substrate, the closure member being positioned on or adjacent to the rear surface of the substrate and being displaceable between open and closed positions to control a flow of ink through a respective passage; and the closure member being operatively engaged with at least one actuator facilitating displacement of the closure member between the open and closed positions, when activated. According to another aspect of the invention, there is provided an ink jet printhead chip that is the product of an integrated circuit fabrication technique, the printhead chip comprising a wafer substrate having a front surface and a rear surface, a plurality of ink passages being defined through the wafer substrate, so that each ink passage defines an inlet at a rear surface of the wafer substrate and an outlet at a front surface of the wafer substrate, each ink passage being in fluid communication with an ink supply at the rear surface of the wafer substrate; and a plurality of actuators that are positioned on the rear surface of the wafer substrate and are operatively arranged with respect to the ink passages to generate an ink flow through each passage, from the rear surface to the front surface, when activated. Preferably the roof walls, side walls and floor walls are positioned on the rear surface of the wafer substrate to define a plurality of nozzle chambers, each roof wall defining an ink ejection port that is in fluid communication with a respective ink channel, an actuator being operatively arranged with respect to each nozzle chamber to eject ink from the nozzle chamber out of the ink ejection port and into the ink channel. Each actuator may include an ink displacement member that defines at least the floor wall of each nozzle chamber, the ink displacement member being movable towards and away from the roof wall of the nozzle chamber to eject ink from the ink ejection port. Each actuator may include an actuating device that is positioned on the rear side of the wafer substrate and is connected to the ink displacement member to move the ink displacement member towards and away from the ink ejection port. There may be a protective enclosure positioned on the rear surface of the wafer substrate, each actuating device being housed in the protective enclosure. Each actuating device maybe a thermal actuator, having a deformable body of expansion material that has a coefficient of thermal expansion which is such that expansion of the material on the application of heat can be harnessed to perform work, the body being connected to an ink displacement member so that deformation of the body on the application of heat results in movement of the ink displacement member towards the ink ejection port. The protective enclosure may include a fluidic seal, the ink displacement member being connected to the deformable member through the fluidic seal. According to a different aspect of the invention, there is provided an ink jet printhead chip that is the product of an integrated circuit fabrication technique, the ink jet printhead chip comprising a wafer substrate; a plurality of ink passages defined through the wafer substrate, so that each ink passage defines an inlet at a rear surface of the wafer substrate and an outlet at a front surface of the wafer substrate, each ink passage being in fluid communication with an ink supply at the rear surface of the wafer substrate; roof walls, side walls and floor walls that are positioned on the rear surface of the wafer substrate to define a plurality of nozzle chambers, each roof wall defining an ink ejection port that is in fluid communication with a respective ink passage; and a plurality of actuators that are positioned on the rear surface of the wafer substrate so that each actuator is operatively arranged with respect to each nozzle chamber to eject ink from the nozzle chamber and out of the ink ejection port. The invention is now described, by way of examples, with reference to the accompanying drawings. The specific nature of the following description is not to be construed as limiting the scope of the above summary, in any way. | 20050103 | 20060829 | 20050526 | 99294.0 | 0 | DO, AN H | PRINTHEAD CHIP INCORPORATING ELECTRO-MAGNETICALLY OPERABLE INK EJECTION MECHANISMS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,026,132 | ACCEPTED | Generally linear effervescent oral fentanyl dosage form and methods of administering | Fentanyl containing dosage forms and methods using same are described. These dosage forms include substantially less fentanyl by weight than know oral formulation and have advantages in terms of cost and side effects. These dosage forms are intended for oral administration of fentanyl across the oral mucosa. | 1. A dosage form comprising: about 100 to about 800 micrograms of fentanyl, calculated as fentanyl free base or an equivalent amount of a salt thereof, an effervescent couple in an amount of about 5 to about 85% by weight of the dosage form, a pH adjusting substance in an amount of about 0.5 to about 25% by weight of the dosage form, and a starch glycolate in an amount of about 0.25 to about 20% by weight of the dosage form, said dosage form being suitable for delivery of said fentanyl across the oral mucosa of a patient by buccal, gingival or sublingual administration. 2. The dosage form of claim 1 wherein said pH adjusting substance is selected and provided in an amount capable of providing a change in localized pH of at least 0.5 pH units. 3. The dosage form of claim 2 wherein said pH adjusting substance is a carbonate or bicarbonate. 4. The dosage form of claim 1 further comprising a filler. 5. The dosage form of claim 4 wherein said filler is present in an amount of between about 10 and about 80% w/w. 6. The dosage form of claim 4 wherein said filler is mannitol. 7. The dosage form of claim 1 being a compressed tablet. 8. The dosage form of claim 1 having a Cmax which is comparable to that of an ACTIQ® dosage form having about 80% more fentanyl 9. The dosage form of claim 8 having a Cmax which is highly comparable to that of an ACTIQ® dosage form having about 80% more fentanyl. 10. The dosage form of claim 9 having a Cmax which is very highly comparable to that of an ACTIQ® dosage form having about 80% more fentanyl. 11. The dosage form of claim 1 having a linear relationship between dose and Cmax. 12. The dosage form of claim 1 wherein the ratio of Cmax to dose is between about 2.0 and about 4.0 picograms/mL/microgram. 13. The dosage form of claim 12 wherein the ratio of Cmax to dose is between about 2.5 and about 3.5 picograms/mL/microgram. 14. The dosage form of claim 13 wherein the ratio of Cmax to dose is between about 2.7 and about 3.5 picograms/mL/microgram. 15. A dosage form comprising: about 100 to about 800 micrograms of fentanyl, calculated as fentanyl free base or an equivalent amount of a salt thereof, an effervescent couple, a pH adjusting substance said adjusting substance selected and provided in an amount capable of providing a change in localized pH of at least 0.5 pH units, and a starch glycolate, said dosage form being suitable for delivery of said fentanyl across the oral mucosa of a patient by buccal, gingival or sublingual administration and providing a ratio of Cmax to dose is between about 2.0 and about 4.0 picograms/mL/microgram, a linear relationship between dose and Cmax, or a Cmax which is comparable to that of an ACTIQ® dosage form having about 80% more fentanyl. 16. The dosage form of claim 15 providing a ratio of Cmax to dose is between about 2.7 and about 3.5 picograms/mL/microgram. 17. The dosage form of claim 16 further providing a linear relationship between dose and Cmax. 18. The dosage form of claim 15 providing a Cmax which is comparable to that of an ACTIQ® dosage form having about 80% more fentanyl. 19. The dosage form of claim 18 further providing a linear relationship between dose and Cmax. 20. The dosage form of any one of claims 15, 17 and 19 wherein said effervescent couple is present in an amount of about 5 to about 85% by weight of said dosage form, said pH adjusting substance is present in an amount of about 0.5 to about 25% by weight of said dosage form, and said starch glycolate is present in an amount of about 0.25 to about 20% by weight of the dosage form. 21. The dosage form of claim 20 wherein said effervescent couple is present in an amount of about 15 to about 60% by weight of said dosage form, said pH adjusting substance is present in an amount of about 2 to about 20% by weight of said dosage form, and said starch glycolate is present in an amount of about 0.5 to about 15% by weight of the dosage form. 22. The dosage form of claim 20 further comprising a filler. 23. The dosage form of claim 22 wherein said filler is present in an amount of between about 10 and about 80% w/w. 24. The dosage form of claim 23 wherein said filler is mannitol. 25. The dosage form of claims 1 or 15 packaged in an F1 package. 26. A method of treating pain in a patient in need thereof comprising the steps of: placing a dosage form comprising about 100 to about 800 micrograms of fentanyl, calculated as fentanyl free base or an equivalent amount of a salt thereof, an effervescent couple, a pH adjusting substance said adjusting substance selected and provided in an amount capable of providing a change in localized pH of at least 0.5 pH units, and a starch glycolate, said dosage form being suitable for delivery of said fentanyl across the oral mucosa of a patient by buccal, gingival or sublingual administration and providing a ratio of Cmax to dose is between about 2.0 and about 4.0 picograms/mL/microgram, a linear relationship between dose and Cmax, or a Cmax which is comparable to that of an ACTIQ® dosage form having about 80% more fentanyl into the mouth of a patient in contact with said patient's oral mucosa, and maintaining said dosage form in intimate contact with said oral mucosa for a time sufficient to deliver a therapeutically effective amount of said fentanyl across said oral mucosa. 27. The method of claim 26 wherein said dosage form is held in contact with said oral mucosa for a period of between about 10 and about 30 minutes. 28. The method of claim 26 wherein said dosage form is held in contact with said oral mucosa for a period of time sufficient to provide absorption of at least about 75% of said fentanyl dose into the blood stream of said patient. 29. The method of claim 26 wherein said pain is selected from the group consisting of breakthrough cancer pain, back pain, neuropathic pain, surgical pain, or post operative pain. 30. A method of treating episodes of breakthrough cancer pain comprising the steps of providing an initial dose of about 100 micrograms of fentanyl calculated as a fentanyl free base or an equivalent amount of a salt thereof, in a dosage form comprising an effervescent couple in amount of about 5 to about 85% by weight of the dosage form, a pH adjusting substance in an amount of about 0.5 to about 25% by weight of the dosage form, and a starch glycolate in the amount of 0.25 to about 20% by weight of the dosage form, said dosage form being suitable for delivery of said fentanyl across the oral mucosa of a patient, and placing said dosage form in the mouth of said patient between the cheek and the upper or lower gum, for a time sufficient to deliver a therapeutically effective amount of said fentanyl across said oral mucosa. | CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of the filing date of U.S. Provisional Patent Application Nos. 60/533,619, filed Dec. 31, 2003, and 60/615,665, filed Oct. 4, 2004, the disclosures of which are hereby incorporated herein by reference. BACKGROUND OF THE INVENTION Fentanyl (CAS Registry No. 437-38-7) N-phenyl-N-[1-(2-phenyl-ethyl)-4-piperidinyl] propanamide and its salts, in particular its citrate salt (CAS Registry No. 990-73-8) are opiates, controlled substances, and extremely potent narcotic analgesics. Fentanyl and its citrate salt are currently marketed by a number of companies in a number of delivery formats. Fentanyl citrate, for example, is available as an injectable and an oral lozenge on a stick, the latter sold under the trade name ACTIQ. Three patents are identified in the FDA publication Approved Drug Products With Therapeutic Equivalence Evaluations (hereinafter “the Orange Book”) as relating to ACTIQ: U.S. Pat. Nos. 4,671,953, 4,863,737 and 5,785,989. A second form of ACTIQ may also be available. This form may be a compressed tablet on a stick. Like the original ACTIQ lozenge, this second form is believed to exhibit the same disintegration rate, Tmax, Cmax and AUC as the original lozenge. Accordingly, they will be discussed collectively, except where expressly stated otherwise or as the context dictates. A review of the package insert information for ACTIQ sold by Cephalon, Inc., 145 Brandy Wine Parkway West, Chester, Pa. 19380, available in the Physician's Desk Reference, 57th ed. 2003 at page 1184, brings instant perspective on the seriousness of the afflictions of the patients who take it. According to its label, ACTIQ “is indicated only for the management of break-through cancer pain in patients with malignancies who are already receiving and who are tolerant to opiate therapy for their underlying persistent cancer pain.” (Id., emphasis in original). The text of the ACTIQ label is hereby incorporated by reference. In clinical trials of ACTIQ, breakthrough cancer pain was defined as a transient flare of moderate-to-severe pain occurring in cancer patients experiencing persistent cancer pain otherwise controlled with maintenance doses of opiate medications, including at least 60 mg of morphine/day, 50 micrograms transdermal fentanyl/hour or equianalgesic dose of another opiate for a week or longer. Thus patients receiving ACTIQ are patients with suddenly intolerable pain, which flares up despite undergoing chronic analgesic treatment. Providing pain relief from such breakthrough pain is inexorably linked with the patient's immediate quality of life. And for such patients, providing breakthrough pain relief may be the only thing that medical science can offer. As with many things in medicine, there is always room for improvement. Fentanyl is an expensive drug, costing manufacturers as much as $100/gram or more. While cost is by no means an overriding issue, the cost of medication is an issue to be considered. A formulation that allows for a reduction in the amount of fentanyl could reduce the overall cost of a patient's care. Far more importantly, a reduction in dose of such a potent opiate while still achieving beneficial management of breakthrough pain in cancer patients, has very far reaching and desirable consequences in terms of patients overall care. Opiate mu-receptor agonists, including fentanyl, produce dose dependent respiratory depression. Serious or fatal respiratory depression can occur, even at recommended doses, in vulnerable individuals. As with other potent opiates, fentanyl has been associated with cases of serious and fatal respiratory depression in opiate non-tolerant individuals. Thus, the initial dose of ACTIQ used to treat episodes of breakthrough cancer patients should be 200 micrograms and each patient should be individually titrated to provide adequate analgesia while minimizing side effects. And the side effects, even those that are not life threatening, can be significant. In addition, fentanyl, as a mu-opiate agonist can produce drug dependence and tolerance. Drug dependence in and of itself is not necessarily a problem with these types of cancer patients. But, fentanyl can be used in the treatment of other types of pain as well. In such treatment protocols, dependence and tolerance may be significant issues. Moreover, cancer patients are generally undergoing heavy medication. The longer that a lower dose of medication can be provided, the better. U.S. Pat. No. 6,200,604, which issued Mar. 13, 2001 to CIMA LABS INC., 10000 Valley View Road, Eden Prairie, Minn. 55344, exemplifies two fentanyl formulations each containing 36% effervescence and 1.57 milligrams of fentanyl salt. See example I thereof, col. 5, ln. 60 through col. 6, ln. 30. The '604 patent describes the use of, amongst other things, effervescence as a penetration enhancer for influencing oral drug absorption. See also U.S. Pat. Nos. 6,759,059 and 6,680,071. See also Brendenberg, S., 2003 New Concepts in Administration of Drugs in Tablet Form: Formulation and Evaluation of a Sublingual Tablet for Rapid Absorption, and Presentation of an Individualized Dose Administration System, Acta Universitiatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 287, 83 pp. Uppsala ISBN 91-554-5600-6. If lower doses of fentanyl which nonetheless provide similar pain relief could be achieved, patients could obtain comparable benefit with much less drug at lower cost and with a reduced risk of side effects. Thus, improvement in the administration of fentanyl is still desirable. SUMMARY OF THE INVENTION The present invention relates to an orally disintegrable/dissolvable dosage form, methods of making such dosage forms methods of using such dosage forms to treat pain and uses for the manufacture of a medicament, wherein fentanyl, or one or more of its pharmaceutically acceptable salts (where “fentanyl” is recited herein, it should be assumed to include all pharmaceutically acceptable salts unless the context suggests otherwise) are administered orally at doses containing at least about 45% less fentanyl when compared to noneffervescent lollipop formulations (both lozenge and pressed tablets) currently available. Despite the lower dose, these orally disintegrable dosage forms of the invention should have a Cmax which is comparable to other dosage forms containing much more, e.g., about twice as much drug. “Comparable” in this context means that the Cmax of a dosage form of the present invention is at least about 75% that of ACTIQ having about twice as much fentanyl. Thus, if a 400 microgram tablet in accordance with the present invention was compared to a 400 microgram ACTIQ lollipop, and both were compared to an 800 microgram ACTIQ lollipop, the tablet in accordance with the present invention would have a Cmax which is at least about 75% to about 125% of the Cmax of the 800 microgram ACTIQ formulation. The 400 microgram ACTIQ formulation will have a much lower Cmax. This is true for doses of up to about 800 micrograms based on the weight of fentanyl in free form. Note that “about” in this context (doses) means ±10%. Thus, about 100 to about 800 μg is 90 to 880 μg. More preferably, “comparable” in the context of the invention may also mean that the Cmax of a dosage form of the present invention is between about 80 and about 120% that of ACTIQ having about twice as much fentanyl by weight. This can also be referred to as being “highly comparable.” Even more preferably, “comparable” in the context of the invention may also mean that the Cmax of a dosage form of the present invention is between about 85 and about 115% that of ACTIQ having about twice as much fentanyl by weight. This can also be referred to as being “very highly comparable”. “Oral dosage form” in the context of the invention preferably excludes lollipop-like lozenges like ACTIQ® and instead includes orally disintegrable dissolvable tablets, capsules, caplets, gels, creams, films and the like. Preferably, these dosage forms are effervescent tablets. In addition, they may include a pH adjusting substance and a disintegrant. Generally, these dosage forms are applied to or placed in a specific place in the oral cavity and they remain there while they disintegrate and/or dissolve, generally in a period of about 10 to 30 minutes. In another preferred aspect of the present invention, there is provided an orally disintegrable effervescent dosage form designed for the administration of fentanyl and/or pharmaceutically acceptable salts thereof through the oral cavity such as through buccal, gingival or sublingual administration routes, rather than being swallowed. This formulation preferably will not include a stick or other such device permitting it to be easily held in the hand of a patient or removed from the mouth once the dosage form has been wetted in the mouth. In addition, the dosage form will include at least about 45% less fentanyl (based on its weight calculated as a free base material) and more preferably between about 45% and about 55% less fentanyl when compared to the corresponding ACTIQ® product. Yet they will be comparable, preferably highly comparable and even more preferably very highly comparable in terms of Cmax, as well as generally equally efficacious. Thus, if 1600 micrograms of fentanyl is provided in an ACTIQ® formulation, the corresponding dosage form in accordance with the present invention would include approximately 880 micrograms of fentanyl or less. More preferably, it would include about 800 micrograms of fentanyl. Yet despite such a dramatic reduction in the amount of drug, at least one or more of the traditional pharmacokinetic properties measured for various drugs, such as Cmax, would be similar, if not superior. For example, in accordance with the present invention, formulations may have a shorter Tmax, the time at which the maximum concentration is reached and/or a comparable, if not superior, Cmax, the highest observed concentration in the blood of a patient after administration, when compared to the corresponding ACTIQ® product containing at least 80% more fentanyl by weight. AUC or areas under the curve will generally be linear for dosage forms of increasing fentanyl content over the dosage ranges contemplated. In a particularly preferred aspect of the present invention, it has been discovered that the formulations can be produced having a roughly linear relationship between dose of fentanyl (measured by weight as a free base) and Cmax, specifically, over dose ranges of about 100-800 micrograms per dose. “Linear” should be understood to mean that there will be no significant difference in the dose-normalized Cmax in the dose of 90 to 880 micrograms (more preferably 100-810 μg) using ANOVA within a p of 0.15 (p less than or equal to 0.15) when formulated as part of a series of at least three dosage forms with varying doses between 90 and 880 micrograms of fentyl. This is the preferred way of determining linearity in accordance with the invention. Stated another way, the slope of ln(Cmax) versus ln(dose) should be 1±15% (0.85-1.15). As noted in studies discussed herein, doses of 200, 500 and 810 μg were “linear” in accordance with the present invention. Doses of 1080 μg, while vastly superior to the prior art, were not “linear” as defined herein in terms of Cmax to dose compared to the other doses. The ratio of Cmax to dose in this dosage range is between about 2.0 and about 4.0 picograms/mL/microgram. That is picograms of fentanyl base per mL of serum or a proportionate amount if determined in blood or other fluid, normalized per microgram of the dose. “Between” in accordance with the present invention includes the endpoints. More preferably, the ratio is about 2.5 to about 3.5 and even more preferably between about 2.7 and about 3.5 picograms/mL/microgram. These ranges are based on mean data calculated for at least 10 patents in an appropriate clinical trial. In contrast, testing has established that ACTIQ provides a ratio of about 1.4 picograms/mL/microgram. Thus for dosage forms containing the same amount of fentanyl, the present invention can provide about twice the Cmax, if not more, up to doses of 880 micrograms, e.g., about 800 micrograms using the invention. In another embodiment, these dosage forms would also provide a linear relationship between dose and Cmax when formulated over a range of about 100 to about 800 micrograms of fentanyl (free base) or a proportionate amount of salt. Of course, for a single dose strength, this means that the ratio of dose and Cmax for that dose will have a linear relationship to a series produced by merely varying the same formulation to include more or less fentanyl over the described range. Also preferred as one aspect in accordance with the present invention are effervescent dosage forms of fentanyl designed to be administered buccally, gingivally or sublingually containing 880 micrograms or less of fentanyl, by weight, based on the weight of the free base material and having a Tmax of less than about 1.5 hours and most preferably less than about 1 hour. Yet these dosage forms will have a desirable Cmax as discussed above of between about 2.0 and about 4.0 picograms/mL/microgram. Methods of administering these dosage forms to treat pain are also contemplated. In a particularly preferred embodiment in accordance with the present invention, these formulations include effervescence to act as a penetration enhancer with or without, but preferably with an additional pH adjusting substance. Most preferably, the pH adjusting substance is something other than one of the components, compounds or molecules used to generate effervescence. Particularly preferred dosage forms also include a disintegrant which permits the dose reduction, linearity and/or ratio of Cmax and dose described herein. One particularly preferred example of a disintegrant is a starch glycolate. Also preferred are dosage forms including a filler which faciliates the same performance as the disintegrants just described. Most preferably the filler is mannitol. In a particularly preferred embodiment in accordance with the present invention, there is provided an oral dosage form suitable for buccal, sublingual or gingival administration containing up to one milligram, and more preferably 100, 200, 300, 400, 600 or 800 micrograms of fentanyl by weight measured as the free base and further including at least one effervescent couple, at least one pH adjusting substance and suitable excipients. Preferably such a formulation will be capable of providing a Tmax of 1.5 hours or less and/or a Cmax between about 2.0 and about 4.0 picograms/mL/microgram. Stated another way, the Cmax of the dosage forms of the present invention are comparable to the Cmax of an ACTIQ® formulation containing at least about 80 percent more fentanyl by weight. In another preferred embodiment, these dosage forms will have a Cmax that is within about 25% of that of ACTIQ® having at least about 80% more fentanyl free base by weight, preferably within about 20% and even more preferably within about 15% thereof. In another particularly preferred embodiment in accordance with the present invention, there is provided an orally disintegrable tablet suitable for buccal, sublingual or gingival administration containing about 100, 200, 300, 400, 600 or 800 micrograms of fentanyl, measured as a free base, at least one effervescent couple, and at least one pH adjusting substance, as well as suitable excipients, said dosage form being capable of providing a Tmax of about 1.5 hours or less and/or a Cmax of between about 2.7 and about 3.5 picograms/mL/microgram. In yet another embodiment in accordance with the present invention, any of the formulations previously mentioned herein may consist essentially of fentanyl, preferably in an amount of about 800 micrograms or less (i.e., up to 880 μg), an effervescent couple, at least one pH adjusting substance and suitable excipients which are capable of providing a Cmax of between about 2.0 and about 4.0 picograms/mL/microgram, more preferably between about 2.5 and about 3.5 picograms/mL/microgram, and most preferably between about 2.7 and about 3.5 picograms/mL/microgram and containing at least about 45% less fentanyl than an ACTIQ® dosage form providing comparable Cmax. In the present context, “consisting essentially of” is meant to exclude any excipient or combination of excipients or, as appropriate, any amount of any excipient or combination of excipients, as well as any pH adjusting substance or any amount of pH adjusting substance that would alter the basic and novel characteristics of the invention. Thus, a particular excipient or mixture of excipients that would increase the Tmax to 2.5 hours or greater would be excluded. Similarly, and again for exemplary purposes only, a combination of excipients provided in a specific amount which would alter Cmax to a level not contemplated would be excluded. A small amount of cross-linked PVP and/or lactose monohydrate, while generally undesirable, which would not significantly alter the Tmax or Cmax of the dosage forms of the invention could still be used. However, if used together and at levels of 5% and 20% respectively, they can alter the properties adversely. Thus, these amounts of these excipients, in combination, would be excluded. In a particularly preferred embodiment of this aspect of the present invention, there are provided dosage forms consisting essentially of: between 90 and 880 micrograms of fentanyl, calculated as fentanyl free base, or a salt thereof, sodium starch glycolate, mannitol, at least one pH adjusting substance and at least one effervescent couple. Preferably, these dosage forms provide a Tmax of about 1.5 hours or less, a ratio of Cmax to dose of between about 2.0 and about 4.0 picograms/mL/microgram, a linear Cmax with dose, and/or a Cmax that is comparable as defined herein, the dosage form being suitable for buccal, sublingual or gingival administration. More preferably, the amount of fentanyl measured as a free base is 100-800 micrograms. Also contemplated as another aspect of the invention are methods of administering fentanyl to patients experiencing pain in general including but not limited to: back pain, lower back pain, joint pain, any form of arthritic pain, pain from trauma or accidents, neuropathic pain, surgical or postoperative pain, pain from a disease or condition other than cancer, cancer pain and in particular, breakthrough pain as a result of cancer. A preferred method includes the steps of administering to a patient in need thereof any orally disintegrable effervescent tablet disclosed herein for buccal, gingival or sublingual administration, which includes a dose of fentanyl of between about 100-800 micrograms (measured as a free base), and holding the dosage form in the mouth of the patient for a time sufficient to allow transport of said dose (or a therapeutically significant and/or effective portion thereof) from the oral cavity to the blood stream. Preferably, the patient is instructed, trained or watched to ensure that the dose is not swallowed and instead to the extent practicable, the fentanyl enters the body through one or more of the surfaces within the mouth and oral cavity. The method also preferably includes the step of holding the dosage form in the mouth, substantially without moving it within the oral cavity. In another preferred aspect, the dose dissolves/disintegrates or has a mean dwell time of between 5 and 30 minutes. One such method is a method of treating episodes of breakthrough cancer pain comprising the steps of providing an initial dose of about 100 micrograms of fentanyl calculated as a fentanyl free base or an equivalent amount of a salt thereof, in a dosage form comprising an effervescent couple in amount of about 5 to about 85% by weight of the dosage form, a pH adjusting substance in an amount of about 0.5 to about 25% by weight of the dosage form, and a starch glycolate in the amount of 0.25 to about 20% by weight of the dosage form. The dosage form is suitable for delivery of said fentanyl across the oral mucosa of a patient. By “providing” it is understood that removing a dosage form from a package or having someone hand out or dispense such a dosage form are included. The method also includes placing the dosage form in the mouth of the patient between the cheek and the upper or lower gum, for a time sufficient to deliver a therapeutically effective amount of said fentanyl across said oral mucosa. The same method may be employed for the treatment of other types of pain including any type of back pain, surgical or postoperative pain and neuropathic pain. It would not have been expected that it would be possible to produce an orally disintegrable tablet designed for administration of fentanyl in the oral cavity which was capable of providing Tmax of 1.5 hours or less containing 880 micrograms of fentanyl or less, measured as free base, preferably having a desirable Cmax. While certain literature for the ACTIQ lozenge suggests a Tmax of about 45 minutes, testing has shown this to be more like two hours. It was not expected that it would be possible to produce an orally disintegrable dosage form designed for administration of fentanyl in the oral cavity through buccal, sublingual or gingival administration route which contained at least about 45% less fentanyl than the ACTIQ® dosage form which provided comparable Cmax data. It was also not expected that it would be possible to produce an orally disintegrable dosage form and use it to treat pain, and in particular the breakthrough pain experienced by cancer patients wherein a theraputically effective amount (an amount which can provide some measure of pain relief), generally more than 75%, more preferably more than 80% and most preferably 90% or more of the fentanyl dose is absorbed into the blood stream from the oral cavity across the oral mucosa. It was also not expected that the Cmax of dosage forms having so much less active drug compared to currently marketed products could be linear in terms of Cmax to dose, for example, ±15% confidence interval over a range of about 100 to about 800 μg (90-880 μg). In accordance with another aspect of the present invention, there is provided a method of making a buccal, gingival or sublingual, effervescent fentanyl dosage form capable of providing one or more of: a linear relationship between dose and Cmax over a range of about 100 to about 800 micrograms; a comparable Cmax at a dose of at least about 45% less fentanyl when compared to a non-effervescent formulation such as ACTIQ at the same dose; and a ratio of Cmax to dose of 2.0 to 4.0 picograms/mL/micrograms. This is accomplished by mixing an amount of fentanyl (based on the weight of the free base) of between about 100 to about 800 micrograms per dosage form with an effective amount of an effervescent couple, an effective amount of a pH adjusting substance capable of producing a change in the localized pH in the microenvironment at the surface contact area of the oral mucosa and the dosage form once placed in the mouth of a patient (“localized pH”), as measured as described herein, of at least 0.5 pH units when compared to an identical formulation without the pH adjusting substance, and a disintegrant which permits the dose reduction, linearity and ratio of Cmax and dose as described above. These are compressed into a tablet or otherwise formed into a dosage form using conventional techniques. Perferably this process is accomplished without granulation, although the individual materials used may be granulated before mixing. Thus, a wet granulated sugar could be used as a filler in an otherwise dry and direct compression process. More preferably, the method is used to make a dosage form, preferably a tablet, that produces a linear relationship between dose and Cmax over a range of about 100 to about 800 micrograms, a highly comparable Cmax at a dose of at least about 50% less fentanyl when compared to ACTIQ at the same dose and/or a ratio of Cmax to dose of between about 2.7 and about 3.5 picorgrams/mL/micrograms. This is accomplished by mixing an amount of fentanyl or a salt thereof appropriate to provide a predetermined number of dosage forms each having between about 100 and about 800 micrograms of fentanyl, an effervescent couple in an amount of about 5 to about 85% by weight of the finished dosage forms (w/w), a pH adjusting substance in an amount of between about 0.5 to about 25% w/w, a starch glycolate in an amount of between about 0.25 and about 20% w/w with or without mannitol, and compressing same into a tablet in a dry state. Preferably, the pH adjusting substance will provide a change in localized pH of at least about 1 pH unit when compared to an identical formulation without same. DETAILED DESCRIPTION Throughout the entire specification, including the claims, the word “comprise” and variations of the word, such as “comprising” and “comprises,” as well as “have,” “having,” “includes,” “include” and “including,” and variations thereof, means that the named steps, elements or materials to which it refers are essential, but other steps, elements or materials may be added and still form a construct with the scope of the claim or disclosure. When recited in describing the invention and in a claim, it means that the invention and what is claimed is considered to what follows and potentially more. These terms, particularly when applied to claims, are inclusive or open-ended and do not exclude additional, unrecited elements or methods steps. For purposes of the present invention, unless otherwise defined with respect to a specific property, characteristic or variable, the term “substantially” as applied to any criteria, such as a property, characteristic or variable, means to meet the stated criteria in such measure such that one skilled in the art would understand that the benefit to be achieved, or the condition or property value desired is met. The present invention includes, in one aspect, a dosage form comprising between about 100 and about 800 μg (micrograms) of fentanyl, calculated as fentanyl free base, or a salt thereof, suitable for buccal, sublingual or gingival administration. The dosage form, when properly administered by contacting it to the oral mucosa for a sufficient time, is capable of providing a Tmax of 1.5 hours or less. In addition, or instead, the ratio of Cmax to dose of between about 2.0 and about 4.0, more preferably between about 2.3 and about 3.5 and most preferably between about 2.7 and about 3.5 picograms/mL/microgram will be realized. Most preferably, the relationship between dose and Cmax is linear for dose of between about 100 and about 800 micrograms compared to other doses otherwise formulated in the same way. The dosage form preferably further comprises at least one pH adjusting substance and at least one effervescent couple. These are each provided in an amount that is sufficient to provide the desired Tmax and/or Cmax. The dosage form also preferably comprises at least one excipient that is selected and provided in an amount which, in combination with the at least one pH adjusting substance and the at least one effervescent couple, provide the desired Tmax and/or Cmax. A method of administering fentanyl to a patient experiencing pain is another aspect of the invention. This method can comprise the steps of contacting the oral mucosa of a patient in need thereof with an orally disintegrable, dosage form. The dosage form includes a dose of fentanyl of between about 100-800 (90-880) micrograms (measured as a free base), per dosage form, or a salt thereof. The dosage form is capable of providing a Tmax of 1.5 hours or less, and/or a ratio of Cmax to dose of between about 2.0 and about 4.0, more preferably between about 2.3 and about 3.5 and most preferably between about 2.7 and about 3.5 picograms/mL/microgram and/or a linear relationship between Cmax and dose, preferably for a dosage form that includes at least 45% less fentanyl than would otherwise be prescribed using commercially known delivery formats. The dosage form is held in contact with the oral mucosa of the patient for a time sufficient to allow transport of a therapeutically significant or effective portion of the fentanyl, preferably more than 75%, more preferably more than 80% and most preferably 90% or more of the dose, from the oral cavity to the blood stream across the oral mucosa. Another aspect of the invention provides a dosage form comprising: between about 100 and about 800 micrograms of fentanyl per dosage form, calculated as fentanyl free base. A fentanyl salt, when used, is used in an amount providing an equivalent amount of fentanyl free base by weight. The dosage form is suitable for buccal, sublingual or gingival administration. The dosage form, when properly administered by contacting it to the oral mucosa for a sufficient time, is capable of providing a Cmax which is at least about 75 to about 125%, more preferably between about 80 and about 120%, and most preferably between about 85% to about 115% that of an ACTIQ® formulation wherein the latter includes at least 80% more fentanyl by weight. Preferably, this dosage form also includes at least one pH adjusting substance and at least one effervescent couple in an amount which is sufficient to provide the stated Cmax. Even more preferably, the dosage form further comprises at least one excipient in an amount which, in combination with the at least one pH adjusting substance and/or at least one effervescent couple is sufficient to provide the desired Cmax. There is also contemplated a method of administering fentanyl to a patient experiencing pain comprising the steps of contacting the oral mucosa of a patient in need thereof with an orally disintegrable, dosage form which includes a dose of fentanyl of between about 100-800 micrograms (measured as a free base) per dosage form, or an equivalent amount of a salt thereof. The dosage form exhibits a Cmax which is at least about 75% to about 125%, more preferably between about 80 and about 120%, and most preferably between about 85% to about 115% that of an ACTIQ® formulation including at least 80% more fentanyl by weight. The dosage form is held in contact with the oral mucosa of the patient for a time sufficient to allow transport a therapeutically significant or effective portion of the fentanyl, preferably more than 75%, more preferably more than 80% and most preferably 90% or more of the dose, from the oral cavity to the blood stream across the oral mucosa. It has now been discovered that the use of effervescence and a pH adjusting substance, particularly when combined with a starch glycolate, can provide significant advantages particular in terms of the amount of fentanyl that is required for dosing. It has also been found that certain excipients in combination with effervescent couples and pH adjusting substances can provide even better, and very unexpected, results. Determining whether or not a particular formulation is capable of achieving the results described herein, one need only undertake a routine human clinical study of that formulation in at least 10 patients. The appropriate clinical study would use any of the traditional models. Examples of appropriate studies follow: Clinical Study Design and Conduct This study and Informed Consent Forms (ICF) were Institutional Review Board (IRB) approved. All subjects read and signed an IRB-approved ICF prior to study initiation. Signed and witnessed ICFs are on file. For the first two periods the study utilized a single-dose, randomized, open-label, 2-way crossover design of the designated test and reference products, and subjects were randomized to receive one of three additional test formulations during Period 3. All subjects were randomized and were in a fasted state following a 10-hour overnight fast. There was a 7-day washout interval between the three dose administrations. The subjects were confined to the clinic through 36 hours post-fentanyl administration. The subjects were screened within 21 days prior to study enrollment. The screening procedure included medical history, physical examination (height, weight, frame size, vital signs, and ECG), and clinical laboratory tests (hematology, serum chemistry, urinalysis, HIV antibody screen, hepatitis B surface antigen screen, hepatitis C antibody screen, serum pregnancy [females only]), and a screen for cannabinoids and opioids. All subjects enrolled in the study satisfied the inclusion/exclusion criteria as listed in the protocol. A total of 42 subjects, 17 males and 25 females, were enrolled in the study, and 39 subjects, 17 males and 22 females, completed the study. Subjects reported to the clinic on the morning prior to each dosing and received lunch 19 hours prior to dosing, dinner 14 hours prior to dosing, and a snack 11 hours prior to dosing. The subjects then observed a 10-hour overnight fast. On Day 1, a standardized meal schedule was initiated with lunch at 4.5 hours postdose, dinner at 9.5 hours postdose, and a snack at 13 hours postdose. On Day 2, breakfast was served at 24.5 hours postdose, lunch at 28.5 hours postdose, and dinner at 33 hours postdose. The subjects were not to consume any alcohol-, broccoli-, citrus-, caffeine-, or xanthine-containing foods or beverages for 48 hours prior to and during each period of confinement. Subjects were to be nicotine- and tobacco-free for at least 6 months prior to enrolling in the study. In addition, over-the-counter medications were prohibited 7 days prior to dosing and during the study. Prescription medications were not allowed 14 days prior to dosing and during the study (excluding hormonal contraceptives for females). During the study, the subjects were to remain seated for 4 hours after the fentanyl citrate was administered. Water was restricted from Hour 0 until 4 hours postdose. Food was restricted 10 hours predose until 4 hours postdose. During the study, the subjects were not allowed to engage in any strenuous activity. Subjects received naltrexone at each period as detailed below: Adm 1: ReVia® 50 mg (naltrexone hydrochloride tablets) Manufactured by Bristol-Myers Squibb Company Lot No.: 5C269A Expiration date: Apr 2004 Lot No.: TB1798 Expiration date: Mar 2005 Subjects assigned to Treatments A, B, C, and D received an oral dose of one 50 mg naltrexone tablet taken with 240 mL of water at 15 hours and 3 hours prior to and 12 hours following the fentanyl dose. Subjects assigned to Treatment E received an oral dose of one 50 mg naltrexone tablet taken with 240 mL of water at 15 hours and 3 hours prior to the fentanyl dose. Subjects received one of the following fentanyl treatments at each of 3 periods: A: OraVescent® Fentanyl Citrate Tablets 1080 μg (as fentanyl base) Manufactured by CIMA LABS INC Lot No.: 930502 Subjects randomized to Treatment A received a single oral dose of one 1080 μg fentanyl tablet placed between the upper gum and cheek above a molar tooth and allowed to disintegrate for 10 minutes. Note that “OraVescent®” indicates a formulation and dosage form in accordance with the invention. B: Actiq® (oral transmucosal fentanyl citrate) equivalent to 1600 μg Manufactured by Cephalon, Inc. or Anesta Lot No.: 02 689 W3 Subjects randomized to Treatment B received a single oral dose of one 1600 μg Actiq® unit placed between the cheek and lower gum. The unit was to be moved from side to side using the handle and allowed to dissolve for 15 minutes. C: OraVescent® Fentanyl Citrate Tablets 1300 μg (as fentanyl base) Manufactured by CIMA LABS INC Lot No.: 930503 Subjects randomized to Treatment C received a single oral dose of one 1300 μg fentanyl tablet placed between the upper gum and cheek above a molar tooth and allowed to disintegrate for 10 minutes. D: OraVescent® Fentanyl Citrate Tablets 810 μg (as fentanyl base) Manufactured by CIMA LABS INC Lot No.: 930501 Subjects randomized to Treatment D received a single oral dose of one 810 μg fentanyl tablet placed between the upper gum and cheek above a molar tooth and allowed to disintegrate for 10 minutes. E: OraVescent® Fentanyl Citrate Tablets 270 μg (as fentanyl base) Manufactured by CIMA LABS INC Lot No.: 930500 Subjects randomized to Treatment E received a single oral dose of one 270 μg fentanyl tablet placed between the upper gum and cheek above a molar tooth and allowed to disintegrate for 10 minutes. The composition of each of these fentanyl citrate tablets is described in Examples 1-4. Sitting vital signs (blood pressure, pulse, and respiration) were assessed each morning prior to dosing (Hour 0) and at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 5, 6, 8, 10, 24, and 36 hours postdose. Continuous pulse oximetry was conducted for the first 8 hours postdose. A 12-lead electrocardiogram, a clinical laboratory evaluation (hematology, serum chemistry, and urinalysis), and a physical examination with complete vital signs were performed at the completion of the study. Oral irritation assessments were conducted 4 hours postdose. Subjects were instructed to inform the study physician and/or nurses of any adverse events that occurred during the study. Blood samples (7 mL) were collected at the following times for subjects assigned to Treatments A-D: predose (Hour 0), and 10, 20, 30, and 45 minutes; and 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, and 36 hours postdose. Blood samples (7 mL) were collected at the following times for subjects assigned to Treatment E: predose (Hour 0), and 10, 20, 30, and 45 minutes; and 1, 2, 4, 6, 8, 9, 10, 11, 12, 14, 16, 20, and 24 hours postdose. A total of 54 blood samples (378 mL) were drawn during the study for drug analysis. Samples were collected and processed at room temperature under fluorescent lighting. Serum samples were allowed to clot, separated by centrifugation, frozen at −20° C., and kept frozen until assayed. Analytical Methods An LC-MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) of fentanyl in human serum. Pharmacokinetic and Statistical Methods The pharmacokinetic and statistical analysis was based on the Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Guidance for Industry issued January 2001 and entitled “Statistical Approaches to Establishing Bioequivalence,” and Guidance for Industry issued March 2003 and entitled “Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations.” The following noncompartmental pharmacokinetic parameters were computed from the fentanyl concentration-time data for each treatment using WinNonlin Standard Edition version 2.1. Actual (rather than nominal) sampling times were used in the analysis. AUC(0-t) Area under the fentanyl concentration-time curve calculated using linear trapezoidal summation from time zero to time t, where t is the time of the last measurable concentration (Ct). AUC(0-inf) Area under the fentanyl concentration-time curve from time zero to infinity, AUC(0-inf)=AUC(0-t)+Ct/Kel, where Kel is the terminal elimination rate constant. AUC(0-t)/ AUC(0-inf) Ratio of AUC(0-t) to AUC(0-inf). Also referred to as AUCR. AUC(0-tmax) The partial area from time 0 to the median Tmax of the reference formulation, calculated using linear trapezoidal summation. Kel Terminal elimination rate constant calculated by linear regression of the terminal linear portion of the log concentration vs. time curve, where Kel=−slope. The terminal linear portion was determined by visual inspection. T½ Elimination half-life calculated as ln(2)/Kel. Cmax Maximum observed fentanyl concentration. Tmax Time of the maximum fentanyl concentration (obtained without interpolation). This study was a single-dose, randomized, open-label, 2-way crossover of the designated test and reference products. (Treatment A and Treatment B, Periods 1 and 2) with subjects randomized to receive one of three additional test formulations (Treatment C, Treatment D, or Treatment E) during Period 3. Due to the larger number of subjects, the study was run in two groups. The primary comparison in this study was Treatment A versus Treatment B. For the analysis of variance comparing these two treatments, only two sequences (AB, BA), two periods (1, 2), and two treatments (A, B) were considered. A parametric (normal-theory) general linear model was applied to the log-transformed AUC(0-inf), AUC(0-t), and Cmax values from Treatments A and B.5-7 The full analysis of variance (ANOVA) model considered group in the model and included the following factors: group, period within group, treatment, sequence, sequence by group, subject within sequence by group, and treatment by group. Since the treatment by group interaction was not significant, the model was reduced to sequence, subject within sequence, period, and treatment. The sequence effect was tested using the subject within sequence mean square and all other main effects were tested using the residual error (error mean square). The two one-sided hypotheses were tested at the 5% level for AUC(0-t), AUC(0-inf), and Cmax by constructing 90% confidence intervals for the ratio of the test and reference means (Treatment A versus Treatment B). Differences in Tmax for Treatment A and Treatment B were evaluated using the Wilcoxon Signed Ranks Test (α=0.05). Serum fentanyl concentrations and pharmacokinetic parameters were also determined following Treatment C, Treatment D, and Treatment E (1300 μg, 810 μg, and 270 μg OraVescent® Fentanyl Citrate tablet, respectively). In order to evaluate dose proportionality of the OraVescent® Fentanyl Citrate formulation, a mixed linear model was applied to the dose-normalized Cmax and AUC parameters from Treatments A, C, D, and E.5-7 The full model considered group and included the following terms: group, period within group, treatment, sequence, sequence by group, subject within sequence by group, and treatment by group. The treatment by group interaction was not significant for 2 of the 3 parameters [Cmax and AUC(0-t)] and the model was reduced to a one-way ANOVA with the factor of treatment. If an overall treatment effect was found, pairwise comparisons were performed using Treatment A as the reference. The dwell time values (length of time the formulation was present in the oral cavity) were calculated by subtracting the treatment administration time from the time of perceived and documented disappearance of the formulation. These values were tabulated and summary statistics were presented. RESULTS Demographics and Disposition of Subjects A total of 42 subjects, 17 males and 25 females, were enrolled in the study, and 39 subjects, 17 males and 22 females, completed the study. Three subjects were discontinued/withdrawn from the study. One subject was dropped prior to Period 2 because the subject did not want to continue on the study. A second subject was dropped prior to Period 3 because the subject did not want to continue on the study. A third subject was dropped prior to Period 2 because subject took an antibiotic. The mean age of the subjects was 27 years (range 19-55 years), the mean height of the subjects was 68 inches (range 62-74 inches), and the mean weight of the subjects was 152.1 pounds (range 109.0-197.0 pounds). Protocol Deviations and Adverse Events The following protocol deviations occurred during the conduct of the study. According to the protocol, subjects were to have respirations taken at the 3.5-hour vital signs time point. Respirations were not taken at the 3.5-hour time point for one subject during Period 2. Vital sign recheck was not performed at the 3-hour time point of Period 2 for two subjects. Vital sign recheck was not performed at the 2.25-hour time point of Period 3 for one subject. The blood samples for these two subjects were not labeled properly at the 0.33-hour time point of Period 1 (Treatment A). These samples were not analyzed. According to the protocol, subjects were to have pulse taken at the 3.5-hour vital signs time point. Pulse was not taken at the 3.5-hour time point for one subject during Period 1. No one subject was exposed to more than one of the foregoing deviations. No serious adverse events were reported. A total of 15 batches were required to process the clinical samples from this study. Of these 15 batches, 14 were acceptable. Back-calculated standard concentrations for the 14 acceptable batches for human serum used in this study covered a range of 50.0 to 5000.0 pg/mL (picograms/mL) with a limit of quantitation of 50.0 pg/mL. Quality control samples analyzed with each acceptable batch had coefficients of variation less than or equal to 7.89%. Dwell Time The dwell time data are summarized in the table below. Summary of Tablet/Lozenge Dwell Time Treatment Treatment Treatment Treatment A B Treatment C D E Subject Time Time Time Time Time Number (Minutes) (Minutes) (Minutes) (Minutes) (Minutes Mean 21 34 19 25 22 SD 12 15 11 14 17 CV 58 44 56 57 75 SEM 2 2 3 4 4 N 40 42 12 13 14 Minimum 3 9 4 4 4 Maximum 48 77 33 50 62 Treatment A = 1 × 1080 mcg OraVescent Fentanyl Citrate Tablet: test Treatment B = 1 × 1600 mcg Oral Transmucosal Fentanyl Citrate (Actiq): reference Treatment C = 1 × 1300 mcg OraVescent Fentanyl Citrate Tablet: test Treatment D = 1 × 810 mcg OraVescent Fentanyl Citrate Tablet: test Treatment E = 1 × 270 mcg OraVescent Fentanyl Citrate Tablet: test SD = standard deviation; CV = coefficient of variance; SEM = standard error of the mean; N = number (of observations) One subject reported slight oral irritation (2 on a scale of 1 to 10) that occurred following Treatment C. The irritation was on the right side of the mouth following test product administration during Period 3. There was one report of redness upon visual inspection of the area by study personnel that occurred following Treatment E. The redness was on the right upper cheek following test product administration during Period 3. Of the 42 subjects enrolled, 40 subjects completed Periods 1 and 2 and were included in the summary statistics, ANOVA analysis, and mean figures for Treatments A and B. Thirty-nine subjects completed Periods 1, 2, and 3 and were included in the statistical analysis for dose proportionality. The arithmetic means and standard deviations of the serum fentanyl pharmacokinetic parameters and statistical comparisons following Treatment A and Treatment B are summarized in the following table. Summary of the Pharmacokinetic Parameters of Serum Fentanyl for Treatments A and B Serum Fentanyl Treatment A Treatment B Pharmacokinetic Arithmetic Arithmetic % Mean Parameters N Mean SD N Mean SD 90% CI* Ratio Cmax (pg/mL) 40 2704.3 877.6 40 2191.6 693.5 —-— — AUC(0-tmax) (pg * hr/mL) 40 3840.1 1266.2 40 2566.2 911.82 —-— — AUC(0-t) (pg * hr/mL) 40 16537 5464.6 40 16701 6530.1 —-— — AUC(0-inf) (pg * hr/mL) 35 17736 5424.3 39 18319 7118.5 —-— — T½(hr) 35 11.7 5.04 39 11.2 4.37 —-— — Kel(1/hr) 35 0.0701 0.0310 39 0.0695 0.0227 —-— — AUCR 35 0.918 0.0458 39 0.917 0.0335 —-— — ln(Cmax) 40 7.854 0.3132 40 7.640 0.3349 111.82-136.20 123.4 ln[AUC(0-t)] 40 9.662 0.3226 40 9.649 0.3945 94.42-108.86 101.4 ln[AUC(0-inf)] 35 9.739 0.3027 39 9.742 0.3941 93.60-109.23 101.1 *= Based on LS Means from Table 13. Treatment A = 1 × 1080 mcg OraVescent Fentanyl Citrate Tablet: test Treatment B = 1 × 1600 mcg oral Transmucosal Fentanyl Citrate (Actiq): reference Results of the Wilcoxon Signed Rank Test showed the median Tmax for Treatment A (0.998 hour) was significantly earlier (p<0.0001) compared to Treatment B (1.999 hours). The individual and mean serum fentanyl pharmacokinetic parameters for Treatments C, D, and E were calculated. There were 5 subjects in Treatment E for whom Kel could not be calculated. Thus, AUC(0-inf), AUCR, and T½ could not be calculated in these cases. The arithmetic mean and standard deviations of the serum fentanyl pharmacokinetic parameters following Treatments C, D, and E are summarized in the following table. Summary of the Pharmacokinetic Parameters of Serum Fentanyl for Treatments C, D, and E Serum Fentanyl Treatment C Treatment D Treatment E Pharmacokinetic Arithmetic Arithmetic Arithmetic Parameters N Mean SD N Mean SD N Mean SD Cmax(pg/mL) 12 2791.4 874.3 13 2646.9 778.7 14 797.9 312.9 AUC(0-tmax) (pg * hr/mL) 12 4008.3 1259.1 13 3694.8 971.89 14 1095.6 433.92 AUC(0-t) (pg * hr/mL) 12 18921 6470.2 13 15339 4260.4 14 4333.5 1597.9 AUC(0-inf) (pg * hr/mL) 12 21033 7346.3 13 16831 4449.8 9 4221.9 1747.8 T½(Hr) 12 13.2 7.67 13 11.7 4.66 9 6.62 3.17 Kel(1/hr) 12 0.0687 0.0354 13 0.0703 0.0352 9 0.126 0.0538 AUCR 12 0.907 0.0683 13 0.909 0.0376 9 0.865 0.0381 Treatment C = 1 × 1300 mcg OraVescent Fentanyl Citrate Tablet Treatment D = 1 × 810 mcg OraVescent Fentanyl Citrate Tablet Treatment E = 1 × 270 mcg OraVescent Fentanyl Citrate Tablet AUCR is ratio of AUC0-t/AUC0-∞ The dose proportionality assessment including p-values for Treatments A, C, D, and E are summarized in the following table. Summary of the Dose-Normalized Parameters of Serum Fentanyl for Treatments A, C, D and E Serum Fentanyl Treatment A Treatment C Treatment D Treatment E Pharmacokinetic Arithmetic Arithmetic Arithmetic Arithmetic Parameters P-Value Mean SD Mean SD Mean SD Mean SD Cmax/dose — 2.5 0.8 2.1 0.7 3.3 1.0 3.0 1.2 (pg/mL/mcg) AUC(0-t)/dose — 15.4743 5.01901 14.555 4.9771 18.937 5.2597 16.050 5.9180 (pg * hr/mL/mcg) AUC(0-inf)/dose — 16.5851 5.00318 16.179 5.6510 20.779 5.4935 15.637 6.4732 (pg * hr/mL/mcg ln(Cmax/dose) 0.0127 0.8788 0.3115 0.7190 0.3151 1.137 0.3356 1.011 0.3974 Ln[AUC(0-t)/dose] 0.1727 2.690 0.3170 2.625 0.3409 2.901 0.3032 2.706 0.4002 ln[AUC(0-inf)/ 0.0783 2.765 0.3003 2.725 0.3633 2.998 0.2894 2.691 0.3892 dose] Treatment A = 1 × 1080 mcg OraVescent Fentanyl Citrate Tablet Treatment C = 1 × 1300 mcg OraVescent Fentanyl Citrate Tablet Treatment D = 1 × 810 mcg OraVescent Fentanyl Citrate Tablet Treatment E = 1 × 270 mcg OraVescent Fentanyl Citrate Tablet The time intervals over Kel values were determined. The primary objective of this study was to assess the bioequivalence of a 1080 μg dose of CIMA LABS INC OraVescent® Fentanyl Citrate tablet (Treatment A, test) compared to a marketed 1600 μg oral transmucosal fentanyl citrate, Actiq® (Treatment B, reference) under fasted conditions. The study was a single-dose randomized, open-label, 2-way crossover design for Periods 1 and 2. All subjects also returned in Period 3 for administration of one of three OraVescent® Fentanyl Citrate test formulations: 1300 μg (Treatment C), 810 μg (Treatment D), or 270 μg (Treatment E). Dose-proportionality of the OraVescent® Fentanyl Citrate tablet formulation (Treatments A, C, D, and E) was evaluated. A total of 42 healthy subjects were initially enrolled in the study. 39 subjects completed all three periods of the study, and 40 subjects completed both Treatments A and B (Periods 1 and 2). Data from the 40 subjects completing Treatments A and B were included in the pharmacokinetic and statistical analysis. The ratios of geometric least square means (test/reference) for fentanyl Cmax, AUC(0-t), and AUC(0-inf) were 123.4%, 101.4%, and 101.1%, respectively, for Treatment A versus Treatment B. These data indicate that the average fentanyl exposure was similar but the peak exposure was higher for Treatment A compared to Treatment B. The Tmax for Treatment A (0.998 hour) occurred an hour earlier than Treatment B (2.00 hour) and Cmax was 23% higher, indicating that the rate of fentanyl absorption was significantly faster for Treatment A compared to Treatment B. The 90% confidence intervals for Cmax at 111.82%-1.36.20%, AUC(0-t) at 94.42%-108.86%, and AUC(0-inf) at 93.60%-109.23% indicated that Treatment A and Treatment B met the requirements for bioequivalence with respect to AUC but not with respect to Cmax. In fact, the Cmax of Treatment A indicates that a dose of about 30-35% less fentanyl by weight given using the OraVescent® formulation exemplified in Example 1 provided a statistically significantly higher Cmax when compared to a 1600 microgram Actiq® formulation. To obtain bioequivalent results in terms of Cmax, indeed to obtain comparable results, one would have to use an OraVescent® fentanyl formulation including at least about 45%, more preferably about 47.5% and even more preferably about 50% less fentanyl (calculated as free fentanyl by weight) than found in the comparator Actiq® tablet. In this instance, approximately 800-880 micrograms was compared to a 1600 microgram ACTIQ. Thus it was discovered that, using the present invention and for dosage forms of 1 milligram or less, one could obtain comparable Cmax with even less fentanyl than initially thought. Rapid Tmax was realized. This allowed a further reduction in the doses contemplated with the advantages described herein that come from a dose reduction that is not coupled with a reduction in efficacy. Fentanyl AUC increased proportionally (linearly as defined herein) to the dose in the range of 270 to 1300 μg following administration of the OraVescent® Fentanyl Citrate tablet formulation. There were no significant differences in dose-normalized AUC(0-t) or AUC(0-inf) among the 4 OraVescent® doses. A significant overall treatment effect was found for the comparison of dose-normalized Cmax. Pairwise comparisons were performed using Treatment A as the reference because all subjects received Treatment A. No pattern was observed with the pairwise comparisons. A significant difference between Treatment D (810 μg) and Treatment A (1080 μg) was found. The mean dwell time of the 1080 μg OraVescent® Fentanyl Citrate tablet (21 minutes) was 13 minutes shorter than for Actiq® (34 minutes). Mean dwell times for the other 3 doses of the OraVescent® Fentanyl Citrate tablet formulation (19, 25, and 22 minutes) were similar to 1080 μg OraVescent® formulation. One subject reported minor irritation to the oral mucosa, and one subject experienced redness following the OraVescent® Fentanyl Citrate tablet. There was no irritation or redness reported following Actiq®. Comparison of serum fentanyl pharmacokinetics following the administration of 1080 μg OraVescent® Fentanyl Citrate tablet and 1600 μg oral transmucosal fentanyl citrate (Actiq®) showed that the average fentanyl exposure was similar but the rate of absorption was different between the two products. The geometric least square (“LS”) mean ratios for AUC(0-t) and AUC(0-inf) were near 100%, and 90% confidence intervals were within 80% to 125%. Geometric mean Cmax was 23% higher for 1080 μg OraVescent® Fentanyl Citrate, and the upper limit of the 90% confidence interval for the treatment/reference ratio was greater than 125%, indicating that bioequivalence criteria were not met for this parameter. Thus even further dose reduction could be realized. The Tmax was significantly earlier (1 hour earlier) for the OraVescent® Fentanyl Citrate tablet. Fentanyl AUC increased proportionally to the dose, but not completely linearly over the whole dose range in the range of 270 to 1300 μg for the OraVescent® Fentanyl Citrate formulation. The mean dwell time for the 1080 μg OraVescent® Fentanyl Citrate tablet (21 minutes) was 13 minutes shorter than the mean dwell time for Actiq® (34 minutes). “Dwell time” in accordance with the invention is the amount of time between beginning of use of dosage form (insertion into the mouth) and disappearance of all visually identifiable dosage form. There were no serious or unexpected adverse events during the study. Both formulations were well tolerated by the oral mucosa. References 1. Physician's Desk Reference. 56th ed. Montvale, N.J.: Medical Economics Company, Inc.; 2002. Actiq®; p. 405-409. 2. Fentanyl. Micromedex [online] Vol. 107: Health Series Integrated Index; 2002 [Date Accessed: 2003/June/371. http://www.tomescps.com 3. Streisand Y B, et al. Dose Proportionality and Pharmacokinetics of Oral Transmucosal Fentanyl Citrate. Anesthesiology 88:305-309, 1998. 4. Naltrexone. Micromedex [online] Vol. 107: Health Series Integrated Index; 2002 [Date Accessed: 2003/June/I6]. http://www.tomescps.com 5. SAS Institute, Inc., SAS®/STAT User's guide, Ver. 6. 4th ed. Vol. 1. Cary, N.C.: SAS Institute; 1989. 6. SAS Institute, Inc., SAS®/STAT User's guide, Ver. 6, 4th ed. Vol. 2. Cary, N.C.: SAS Institute; 1989. 7. SAS Institute, Inc., SAS® Procedures guide, Ver. 6, 3rd ed. Cary, N.C.: SAS Institute; 1990. A second study was performed as well. This study demonstrated a generally linear relationship between dose and Cmax over the dose range of 100-800 micrograms. This study was conducted to evaluate the dose proportionality (AUC and Cmax) of fentanyl citrate formulated in tablets in accordance with the invention (referred to herein as OraVescent® tablets) over the range that may be used therapeutically, and to confirm the Cmax observations of the study just discussed. An Institutional Review Board (IRB) approved the protocol and the Informed Consent Form. All subjects read and signed an IRB-approved ICF prior to study initiation. This study had a single-dose, randomized, open-label, 4-treatment, 4-period, crossover design. The subjects were screened within 21 days prior to study enrollment. The screening procedure included medical history, physical examination (height, weight, frame size, vital signs, and electrocardiogram [ECG]), and clinical laboratory tests (hematology, serum chemistry, urinalysis, HIV antibody screen, hepatitis A antibody screen, hepatitis B surface antigen screen, hepatitis C antibody screen, and serum pregnancy [females only]), and a screen for cannabinoids and opiates. All subjects enrolled in the study satisfied the inclusion/exclusion criteria as listed in the protocol and the Principal Investigator reviewed medical histories, clinical laboratory evaluations, and performed physical examinations prior to subjects being enrolled in the study. A total of 28 subjects, 16 males and 12 females, were enrolled in the study, and 25 subjects, 14 males and 11 females, completed the study. Subjects reported to the clinic on the afternoon prior to dosing and received lunch at 1400, dinner at 1900, and a snack at 2200. The subjects then observed a 10-hour overnight fast. On Day 1, a standardized meal schedule was initiated with lunch at 1330, dinner at 1830, and a snack at 2200. On Day 2, a standardized meal schedule (including breakfast) was initiated. The subjects were not to consume any alcohol, broccoli, caffeine-, or xanthine-containing foods or beverages for 48 hours prior to and during each period of confinement. Grapefruit was restricted 10 days prior to dosing and throughout the study. Subjects were to be nicotine- and tobacco-free for at least 6 months prior to and throughout the completion of the study. In addition, over-the-counter medications (including herbal supplements) were prohibited 7 days prior to dosing and during the study. Prescription medications (including MAO inhibitors) were not allowed 14 days prior to dosing and during the study. During the study, subjects were to remain in an upright position, sitting, for 4 hours after the fentanyl citrate was administered. Water was restricted from the time of dosing until 4 hours postdose. Food was restricted 10 hours predose until 4 hours postdose. During the study, the subjects were not allowed to engage in any strenuous activity. Subjects were randomized to receive the following treatments: Adml: ReVia® (naltrexone hydrochloride tablets) 50 mg Manufactured by Duramed Pharmaceuticals, Inc. Lot No.: 402753001T Expiration date: June 2006 Subjects received an oral dose of one ReVia® 50 mg tablet taken with 240 mL of water 15 hours and 3 hours prior to dosing for Treatment A. Subjects received an oral dose of one ReVia® 50 mg tablet taken with 240 mL of water 15 hours and 3 hours prior to dosing, and 12.17 hours postdose for Treatment B, C, and D. A: Oravescent® Fentanyl Citrate 200 μg tablets Manufactured by CIMA LABS INC Lot No.: 930859 Subjects randomized to Treatment A received a single oral dose of one Oravescent® Fentanyl Citrate 200 μg tablet placed between the upper gum and cheek, above a molar tooth, and allowed to disintegrate for 10 minutes. B: Oravescent® Fentanyl Citrate 500 μg tablets Manufactured by CIMA LABS INC Lot No.: 930860 Subjects randomized to Treatment B received a single oral dose of one Oravescent® Fentanyl Citrate 500 μg tablet placed between the upper gum and cheek, above a molar tooth, and allowed to disintegrate for 10 minutes. C: Oravescent® Fentanyl Citrate 810 μg tablets Manufactured by CIMA LABS INC Lot No.: 930501 Subjects randomized to Treatment C received a single oral dose of one Oravescent® Fentanyl Citrate 810 jig tablet placed between the upper gum and cheek, above a molar tooth, and allowed to disintegrate for 10 minutes. D: Oravescent® Fentanyl Citrate 1080 μg tablets Manufactured by CIMA LABS INC Lot No.: 930502 Subjects randomized to Treatment D received a single oral dose of one Oravescent® Fentanyl Citrate 1080 jig tablet placed between the upper gum and cheek, above a molar tooth, and allowed to disintegrate for 10 minutes. Sitting vital signs (blood pressure, heart rate, and respiratory rate) were assessed each morning prior to dosing and at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 5, 6, 8, 10, 24, and 36 hours postdose. Continuous pulse oximetry was obtained for the first 8 hours postdose and whenever the subject attempted to sleep during the first 12 hours postdose. A 12-lead ECG, a clinical laboratory evaluation (hematology, serum chemistry, and urinalysis) and a brief physical examination with complete vital signs were performed at the completion of the study. Oral irritation assessments were conducted 4 hours postdose. At each check-in, the oral cavity was examined to ensure that the subjects did not have canker sores in the area of drug application. Subjects were instructed to inform the study physician or nurses of any adverse events that occurred during the study. Blood samples (7 mL) were collected at the following times for subjects assigned to Treatment A: Predose (Hour 0), 10, 20, 30, and 45 minutes; and 1, 2, 4, 6, 8, 9, 10, 11, 12, 14, 16, 20, and 24 hours postdose. Blood samples (7 mL) were collected at the following times for subjects assigned to Treatments B, C and D: Predose (Hour 0), 10, 20, 30, and 45 minutes; and 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, and 36 hours postdose. Human serum samples were analyzed for fentanyl concentrations by a sensitive and specific LC-MS/MS procedure. The following noncompartmental pharmacokinetic parameters were computed from the fentanyl concentration-time data for each treatment using WinNonlin Standard Edition version 2.1. Actual (rather than nominal) sampling times were used in the analysis. AUC(0-t) Area under the fentanyl concentration-time curve calculated using linear trapezoidal summation from time zero to time t, where t is the time of the last measurable concentration (Ct). AUC(0-inf) Area under the fentanyl concentration-time curve from time zero to infinity, AUC(0-inf)=AUC(0-t)±Ct/Kel, where Kel is the terminal elimination rate constant. AUC(0-t)/AUC(0-inf) Ratio of AUC(0-t) to AUC(0-inf). Also referred to as AUCR. Kel Terminal elimination rate constant calculated by linear regression of the terminal linear portion of the log concentration vs. time curve, where Kel=−slope. The terminal linear portion was determined by visual inspection. T½ Elimination half-life calculated as ln(2)/Kel. Cmax Maximum observed fentanyl concentration. Tmax Time of the maximum fentanyl concentration (obtained without interpolation). Plasma concentration values for fentanyl were listed and summarized by treatment and time point with descriptive statistics (mean, standard deviation [SD], coefficient of variation [CV], standard error of the mean [SEM], sample size, minimum, maximum, and median).9-11 Values below the lower limit of quantification (LOQ) were set to zero. Mean and individual concentration-time plots were presented. Fentanyl pharmacokinetic parameters and dose-normalized pharmacokinetic parameters were tabulated by treatment and summary statistics were calculated. Dose proportionality from 200 μg to 1080 μg was assessed using the methodology described by Smith et al.8 First, log-transformed parameters were analyzed using a mixed effects model including the log-transformation of dose as well as fixed and random effects for intercept. This model was fit using SAS Proc Mixed.9-11 A 90% confidence interval (CI) about the fixed effect for slope (β1) was calculated and compared to the range (0.8677, 1.1323), which is the appropriate critical range given the range of doses investigated in this study. Conclusions were based on the following: 1) If the 90% CI for β1 was entirely contained within the range (0.8677, 1.1323), dose proportionality was to be concluded. 2) If the 90% CI for β1 was completely outside this range, lack of dose proportionality was to be concluded. 3) If the 90% CI for β1 was partially in and partially outside this range, the results would be considered “inconclusive.” In this case, the value of β1 as the best estimate of deviation from ideal proportionality, and the lower and upper bounds of the 90% CI may be considered in the context of drug safety, efficacy, or pharmacological effect data.8 In the event that inconclusive results were observed, the maximal dose ratio such that the 90% CI for β1 lay entirely within the critical range and the dose ratio such that the 90% CI for β1 fell entirely outside the critical range were calculated. These dose ratios are referred to by Smith et al., as ρ1 and ρ2, respectively. ρ1=θH{circumflex over ( )}[1/max(1−L, U−1)], where θH=1.25, L=the lower limit of the 90% CI, U=the upper limit of the 90% CI. ρ2=θH{circumflex over ( )}[1/max(L−1, 1−U)], with θH, L, and U and defined as above. A secondary analysis to examine the difference in dose-normalized Cmax between the 3 lowest dose levels (200 μg, 500 μg, and 810 μg) was performed. A parametric (normal-theory) GLM was applied to the dose-normalized Cmax values from Treatments A, B, and C following log-transformation. The analysis of variance (ANOVA) model included the following factors: treatment, sequence, subject within sequence and period. A p-value less than 0.05 was considered statistically significant. The dwell time values (length of time the formulation was present in the oral cavity) were calculated by subtracting the medication administration time from the time of perceived and documented disappearance of the formulation. These values were tabulated and summary statistics were presented. Three subjects were discontinued/withdrawn from the study. Two were dropped prior to Period 3 because they did not want to continue on the study. One subject was dropped following dosing on Period 2 because of adverse events. The mean age of the subjects was 33 years (range 19-55 years), the mean height of the subjects was 68.6 inches (range 60-76 inches), and the mean weight of the subjects was 160.9 pounds (range 110-215 pounds). The following protocol deviations occurred during the conduct of the study. A vital sign recheck was not performed at Hour 0.5 of Period 2 for one subject. A vital sign recheck was not performed at Hour 2.5 of Period 3 for one subject. One subject did not have her serum pregnancy test result available prior to the −15-hour naltrexone dosing on Period 3. The result was made available prior to the 31 3-hour naltrexone dose. The ECG for Hour 36 of Period 4 was misplaced for one subject. One subject did not have early termination procedures completed. This subject is considered lost to follow-up. And, for all subjects during Period 3, an oral irritation assessment was to have been conducted at 3.83 hours postdose. The nurse responsible for the event recalled performing the assessments but stated that the oral irritation assessment forms were not completed at the time of the event. Therefore, the assessment information cannot be verified and should be considered not done. The dwell time data are summarized in the table below. Treatment A Treatment B Treatment C Treatment D Subject Time Time Time Time Number (Minutes) (Minutes) (Minutes) (Minutes) MEAN 14 14 17 15 SD 8 6 10 11 CV 59 45 57 72 SEM 2 1 2 2 N 25 26 27 27 Minimum 4 6 5 4 Maximum 37 33 41 60 Treatment A = 200 μg Treatment B = 500 μg Treatment C = 810 μg Treatment D = 1080 μg During the check-in oral cavity assessments it was noted that one subject had a canker sore on the lower right inner cheek at the beginning of Period 4, however, the test product administration during Period 3 occurred on the upper right cheek. The Principal Investigator identified this canker sore as not an apthous ulcer and approved the subject to dose during Period 4. Two subjects reported slight oral irritation (2 and 3 on a scale of 1 to 10) that occurred following Treatment A. The irritation was on the left side of the mouth following test product administration during Period 2 for both subjects; one of these subjects also exhibited redness upon visual inspection of the area by study personnel. One additional subject reported pain in the upper left buccal area at the gum line 11 minutes following Treatment C. No serious or unexpected adverse events were reported. Of the 28 subjects enrolled, 25 subjects completed Treatment A, 26 subjects completed Treatment B, and 27 subjects completed Treatments C and D. Statistical analysis was performed on the pharmacokinetic data for all subjects. The elimination rate constant could not be calculated in one subject in Treatment A because there were limited data points in the terminal phase. Thus, AUC(0-inf), AUCR, and T½ could not be calculated for this subject. The arithmetic means and standard deviations of the serum fentanyl pharmacokinetic parameters following all treatments are summarized in the following table. Summary of the Phamacokinetic Parameters of Serum Fentanyl SERUM FENTANYL Treatment A Treatment B Treatment C Treatment D Pharmacokinetic Arithmetic Arithmetic Arithmetic Arithmetic Parameters N Mean SD N Mean SD N Mean SD N Mean SD Cmax (pg/mL) 25 617.8 236.7 26 1546.2 621.4 27 2280.1 968.9 27 2682.3 1106.0 *Tmax (hr) 25 0.76 0.33-4.0 26 0.75 0.33-4.0 27 0.99 0.33-4.0 27 0.75 0.33-4.0 AUC(0-t) (pg * hr/mL) 25 2876.3 1107.7 26 8501.2 3346.2 27 13301 4069.1 27 16813 5232.2 AUC(0-inf) (pg * hr/mL) 24 3543.9 1304.5 26 9701.9 2651.5 27 14962 4709.6 27 18664 6266.0 T½(hr) 24 6.48 3.69 26 12.0 8.18 27 12.8 4.08 27 11.4 4.34 Kel (1/hr) 24 0.143 0.0802 26 0.0746 0.0377 27 0.0592 0.0167 27 0.0679 0.0216 AUCR 24 0.843 0.0604 26 0.875 0.0929 27 0.893 0.0589 27 0.909 0.0602 Cmax/dose (pg/mL/mcg) 25 3.09 1.18 26 3.09 1.24 27 2.81 1.20 27 2.48 1.02 AUC(0-t) (pg * hr/mL/mcg) 25 14.4 5.54 26 17.0 6.69 27 16.4 5.02 27 15.6 4.84 AUC(0-inf) (pg * hr/mL/mcg) 24 17.7 6.52 26 19.4 7.30 27 18.5 5.81 27 17.3 5.80 ln(Cmax/dose) 25 1.06 0.383 26 1.05 0.426 27 0.945 0.439 27 0.836 0.386 ln[AUC(0-t)/dose] 25 2.59 0.424 26 2.75 0.441 27 2.75 0.324 27 2.69 0.356 ln[AUC(0-int)/dose] 24 2.81 0.369 26 2.89 0.413 27 2.87 0.329 27 2.79 0.372 *Median and min-max are reported for Tmax. Treatment A = 1 × 200 mcg OraVescent Fentanyl Citrate Tablet Treatment B = 1 × 500 mcg OraVescent Fentanyl Citrate Tablet Treatment C = 1 × 810 mcg OraVescent Fentanyl Citrate Tablet Treatment D = 1 × 1080 mcg OraVescent Fentanyl Citrate Tablet The slopes of ln [AUC(0-t)] versus ln(dose) and ln [AUC(0-inf)I versus ln(dose), at 1.0574 and 0.9983, respectively, 1, and the 90% CI for each parameter was completely contained within the critical range required for dose proportionality from 200 μg to 1080 μg. The slope of ln(Cmax) versus ln(dose), 0.8746, was less than 1 and the 90% CI (0.8145-0.9347) was not completely contained within the critical range required for the conclusion of dose proportionality. The maximal dose ratio such that the 90% CI for β1 lay entirely within the critical range was 3.33. The maximal dose ratio such that the 90% CI for β1 fell entirely outside the critical range was 30.48. The results of the ANOVA of dose-normalized Cmax for Treatments A, B, and C indicate that there was no statistically significant difference in dose-normalized Cmax in the dose range of 200 μg to 810 μg (p=0.13). The primary objective of this study was to evaluate the extent to which dose proportionality exists for fentanyl AUC and Cmax following fentanyl doses of 200 μg (Treatment A), 500 μg (Treatment B), 810 μg (Treatment C), and 1080 μg (Treatment D) as OraVescent® Fentanyl Citrate tablets. In addition, this study was conducted to confirm previous observations relating to Cmax following the administration of 810 μg and 1080 μg doses of OraVescent® Fentanyl Citrate tablets. This study was a single-dose, randomized, open-label, 4-period crossover design. Of the 28 subjects enrolled, 25 subjects completed Treatment A, 26 subjects completed Treatment B, and 27 subjects completed Treatments C and D. Statistical analysis was performed on the pharmacokinetic data for all subjects. The slopes of ln [AUC(0-t)] versus ln(dose) and ln [AUC(0-inf)] versus ln(dose), at 1.0574 and 0.9983, respectively, were close to 1, and the 90% CI for each parameter was completely contained within the critical range required for dose proportionality. These results indicate that fentanyl AUC increased proportionally with each increasing dose level of OraVescent® Fentanyl Citrate tablets between the study doses of 200 μg to 1080 μg. The slope of ln(Cmax) versus ln(dose), 0.8746, was less than 1, indicating that fentanyl Cmax increased less than proportionally to dose. The 90% CI (0.8145-0.9347) was not entirely contained within the critical range. The less than proportional increase was observed at the highest dose (1080 μg) and, to a lesser extent (±11% confidence interval), at the second to highest dose (810 μg). Cmax increased proportionally from 200 μg to 500 μg. The value for ρ1 (maximal dose ratio such that the 90% CI for β1 lay entirely within the critical range) was 3.33, whereas the ratio of 810 μg:200 μg is 4.05. This indicates that the formulation is linear in accordance with the invention, up to about 800 micrograms in dose. A secondary analysis using ANOVA to compare dose-normalized Cmax from the 200 μg, 500 μg, and 810 μg doses indicated no statistically significant difference (p=0.13) between these dose levels. The LS means for ln(Cmax/dose) were 1.06 (200 μg), 1.06 (500 μg), and 0.94 (810 μg), showing no difference between the 200 and 500 μg doses and a minimal (less than 15%) difference in the 810 μg dose compared to the lower doses. The lack of significant differences from the ANOVA in conjunction with the small magnitude in the difference between the 810 μg dose and the 2 lower doses indicates that there is not a clinically important deviation in dose proportionality in Cmax from 200 μg to 810 μg. Thus, they are “linear” as defined herein. The mean dwell time for the 200 μg, 500 μg, 810 μg, and 1080 μg OraVescent® Fentanyl Citrate tablets were similar, at 14 minutes, 14 minutes, 17 minutes, and 15 minutes, respectively. There were 2 subjects who reported minor irritation to the oral mucosa and 1 subject who experienced redness following the OraVescent® Fentanyl Citrate tablet. Fentanyl AUC increased proportionally with increasing dose in the range of 200 μg to 1080 μg. Fentanyl Cmax increased less than proportionally to dose at the two highest dose levels. The increase was, however, linear as defined herein in all but the dose greater than 1 milligram. Mean ln(Cmax/dose) for the 810 μg dose was 10 to 11% lower than the 200 μg and 500 μg doses. Mean ln(Cmax/dose) for the 1080 μg dose was 20 to 21% lower than the 200 μg and 500 μg. There was not a clinically important deviation in dose proportionality in Cmax from 200 μg to 810 μg. The mean dwell time for the 200 μg, 500 μg, 810 μg, and 1080 μg OraVescent® Fentanyl Citrate tablets were similar, at 14 minutes, 14 minutes, 17 minutes, and 15 minutes, respectively. There were no serious or unexpected adverse events during the study. Each OraVescent® formulation was well tolerated by the oral mucosa. References 8. Smith B P, et al. Confidence Interval Criteria for Assessment of Dose Proportionality. Pharmaceutical Research 17:1278-1283, 2000. 9. SAS Institute, Inc., SAS®/STAT User's guide, Ver. 6. 4th ed. Vol. 1. Cary, N.C.: SAS Institute; 1989. 10. SAS Institute, Inc., SAS®/STAT Users guide, Ver. 6, 4th ed. Vol. 2. Cary, N.C.: SAS Institute; 1989. 11. SAS Institute, Inc., SAS® Procedures guide, Ver. 6, 3rd ed. Cary, N.C.: SAS Institute; 1990. 12. Summary Basis of Approval NDA 20-747 (Actiq®). Approval date Nov. 4, 1998, Clinical Pharmacology and Biopharmaceutics Review pp 6. Any formulation which contains sufficient effervescent material and pH adjusting substance, preferably with a suitable disintegrant, which is capable of providing a dosage form useful in buccal, gingival, or sublingual administration of fentanyl at dose levels which are contemplated herein and providing for the dose reductions and/or dose to Cmax relationships disclosed herein may be used. Most preferably, for dosage forms containing about 100-800 micrograms of fentanyl (calculated as free base) any effervescent couple and/or pH adjusting substance which can be provided in an amount that produces a dosage form having a Tmax of 1.5 hours or less and/or provides a Cmax to dose of between about 2.0 and about 4.0 picograms/mL/micrograms, more preferably between about 2.5 and about 3.5, and even more preferably between about 2.7 and about 3.5 picograms/mL/micrograms may be used. Preferably, the dosage forms will also exhibit a linear relationship between Cmax and dose as described herein. This means that the Cmax to dose ratio will fall along the line (p≦0.15) generated by a series of at least three different doses between 100 and 800 micrograms of fentanyl of the invention having the same composition but for the amount of fentanyl. Similarly, any amount of effervescent couple and pH adjusting substance which provides a dosage form having comparable Cmax when compared to an ACTIQ formulation having at least about 80% more fentanyl is contemplated. That is it has a Cmax of at least 75% to 125% of the Cmax of such an ACTIQ formulation, more preferably between about 80% and about 125% (p less than or equal to 0.15) and most preferably between about 85% and about 115% of an ACTIQ formulation, despite having at least 45% less fentanyl (calculated as a freebase). In a particularly preferred embodiment, these formulations will not include a significant amount of any disintegrant or excipient or combination of excipients which will interfere with such performance characteristics. Spray dried mannitol is a preferred filler. Another preferred excipient is a distintegrant which is starch glycolate and in particular sodium starch glycolate. The former is typically characterized as a filler and the latter a disintegrant. However, such characterizations are not controlling. Formulations in the '604 patent which included lactose monohydrate in an amount of greater than 20% and/or microcrystalline cellulose in an amount of at least about 20% and cross-linked PVP in an amount of 5% or more are believed to be unable to provide formulations having the desirable linear behavior of dose and Cmax of the levels discussed herein, despite the presence of a pH adjusting substance and an effervescent couple. The formulations in the '604 patent also have more than 880 μg of fentanyl. A preferred effervescent, orally disintegrable dosage form in accordance with the present invention is one that includes, based on the weight of the free base material, between about 100 and 800 micrograms of fentanyl (90 to 880), or a proportionate weight of one of its pharmaceutically acceptable salts. In addition, these numbers are meant to include normal processing variabilities such as content uniformity, etc. Particularly preferred doses are about 100 micrograms, about 200 micrograms, about 300 micrograms, about 400 micrograms, about 600 micrograms and about 800 micrograms, respectively. It is preferred that the mean particle size as determined by a laser diffraction technique of fentanyl used in the present formulation range from between about 0.2 to about 150 microns, more preferably from between about 0.5 to about 100 and most preferably from between about 1 to about 20 microns. As an effervescent agent or effervescent couple, any known combination may be used. These include those described in U.S. Pat. Nos. 5,178,878 and 5,503,846, the texts of which are hereby incorporated by reference to the extent they discuss various effervescent couples and constructions of same. Effervescent couples generally are water- or saliva-activated materials usually kept in an anhydrous state with little or no absorbed moisture or in a stable hydrated form. Typically these involve at least one acid source and at least one source of a reactive base, usually a carbonate or bicarbonate. Each of the components of the effervescent couple may be any which are safe for human consumption. The acids generally include food acids, acid anhydrides and acid salts. Food acids include citric acid, tartaric acid, malic acid, fumeric acid, adipic acid, ascorbic acid and succinic acid. Acid anhydrides or salts of these acids may be used. Salts in this context may include any known salt but in particular, sodium, dihydrogen phosphate, disodium dihydrogen phosphate, acid citrate salts and sodium acid sulfate. Bases useful in accordance with the invention typically include sodium bicarbonate, potassium bicarbonate and the like. Sodium carbonate, potassium carbonate, magnesium carbonate and the like may also be used to the extent they are used as part of an effervescent couple. However, they are more preferably used as a pH adjusting substance. Preferably, stoichiometric equivalent amounts of acid, acid anhydride or acid salt and base are used. It is possible, however, that some excess of acid or base be used. However, care should be exercised when so formulating a formulation, particularly in view of the overall pH adjusting effect of such components, if any. An excess could affect absorption. The amount of effervescent material useful in accordance with the present invention is an effective amount and is determined based on properties other than those which would be necessary to achieve disintegration of the tablet in the mouth. Instead, effervescence is used as a basis for enhancing transmission of the fentanyl across mucosal membranes via buccal, gingival or sublingual administration in the oral cavity. Accordingly, the amount of effervescent couple should range from between about 5 to about 85 percent, more preferably between about 15 to 60 percent, even more preferably between about 30 and 45 percent and most preferably between about 35 to about 40 percent, based on the weight of the total formulation. Of course, the relative proportion of acid base will depend upon the specific ingredients (for example, whether the acid monoprotic, diprotic or triprotic) relative molecular weights, etc. However, preferably, a stoichiometric amount of each is provided although, of course, excesses are acceptable. Preferably, formulations in accordance with the present invention include at least one pH adjusting substance. Without wishing to be bound by any particular theory, this permits a drug which is susceptible to changes in ionization state can be administered by ensuring the proper conditions for its dissolution as well as transmission across one or more of the membranes or tissues within the oral cavity such as across the oral mucosa. If the ideal conditions for transmission of a particular drug are basic, the addition of a sufficient excess of suitably strong acid as part of the manufacture of an effervescent couple or as a pH adjusting substance may not be indicated. The selection of another pH adjusting substance such as, for example, anhydrous sodium carbonate which operates separate and apart from the effervescent agents would be preferred. pH adjusting substances in accordance with the present invention can be used to provide further permeation enhancement. The selection of the appropriate pH adjusting substance will depend on the drug to be administered and, in particular, to the pH at which it is ionized or unionized, and whether the ionized or unionized form facilitates transmission across the oral mucosa. With regard to fentanyl and its salts, a basic substance is preferred for the delivery of fentanyl. pH adjusting substances in accordance with the present invention can include, without limitation, any substance capable of adjusting the localized pH to promote transport across the membranes in the oral cavity in amounts which will result in a pH's generally ranging from between about 3 to 10 and more preferably between about 4 to about 9. The pH is the “localized pH” at the microenvironment in the mouth of a patient at the surface contact area of the oral mucosa and the dosage form or any portion thereof (such as when it disintegrates). For purposes of this invention, the localized pH can, be determined as follows: to characterize the dynamic pH changes displayed by the tablets in question, an in vitro pH measurement was used. The method consists of using 0.5-10 mL of phosphate buffered saline in an appropriately sized test tube or similar vessel. The amount of media is dependent on the tablet size and dosage. For example, when measuring the pH profile for fentanyl tablets, a volume of 1 mL was used for tablets which weighed 100 mg. Immediately upon tablet contact with the media, the pH profile of the solution is monitored as a function of time, using a micro-combination pH electrode. Preferably, the materials which can be used as pH adjusting substances in accordance with the present invention include carbonates such as sodium, potassium or calcium carbonate or a phosphate such as calcium or sodium phosphate. Most preferred is sodium carbonate. The amount of pH adjusting substance useful in accordance with the present invention can vary with the type of pH adjusting substance used, the amount of any excess acid or base from the effervescent couple, the nature of the remaining ingredients and, of course, the drug which, in this case, is fentanyl. Most preferably the amount of pH adjusting substance will range from between about 0.5 to about 25 percent, more preferably between about 2 to about 20 percent, even more preferably between about 5 to about 15 percent and most preferably between about 7 to about 12 percent by weight based on the weight of the total formulation. The most preferred pH adjusting substance is a carbonate, bicarbonate, or phosphate. Also preferred are those pH adjusting substances which, when provided in a suitable amount, can provide a change in the localized pH of at least about 0.5 pH units, more preferably about 1.0 pH units and even more preferably about 2.0 pH units when compared to an otherwise identical formulation without the pH adjusting substance. Any filler or any amount of a filler may be used as long as the resulting dosage forms achieve the results described herein. Most preferred amongst the fillers are sugar and sugar alcohols and these may include non-direct compression and direct compression fillers. Non-direct compression fillers generally, at least when formulated, have flow and/or compression characteristics which make them impractical for use in high speed tableting process without augmentation or adjustment. For example, a formulation may not flow sufficiently well and therefore, a glidant such as, for example, silicon dioxide may need to be added. Direct compression fillers, by contrast, do not require similar allowances. They generally have compressibility and flowability characteristics which allow them to be used directly. It is noted that, depending upon the method by which formulations are made, non-direct compression fillers may be imparted with the properties of direct compression fillers. The reverse is also true. As a general matter, non-direct compression fillers tend to have a relatively smaller particle size when compared to direct compression fillers. However, certain fillers such as spray dried mannitol have relatively smaller particle sizes and yet are often directly compressible, depending upon how they are further processed. There are also relatively large nondirect compression fillers as well. Fillers that are preferred in accordance with the present invention include mannitol, lactose, sorbitol, dextrose, sucrose, xylitol and glucose, to the extent their use can provide the results described herein. More preferably in accordance with the present invention, the filler is not lactose monohydrate used in an amount of 20% or more based on the weight of the formulation and even more preferably no lactose monohydrate is used. Most preferred in accordance with the present invention, spray dried mannitol is used. The amount of filler can range from 10 to about 80% and more preferably about 25 to about 80%, most preferably 35 to about 60% by weight of the formulation. Disintegrants may also be used in accordance with the present invention so long as they permit or even facilitate the dose reductions, linearity and/or ratio of Cmax and dose as described herein. These may also include binders that have disintegrating properties. Disintegrants in accordance with the present invention can include microcrystalline cellulose, cross-linked polyvinyl pyrrolidone (PVP-XL), sodium starch glycolate, croscarmellose sodium, cross-linked hydroxypropyl cellulose and the like. Of course, the selection of the disintegrant depends upon whether or not, in a given system, the results described herein may be obtained. More preferably, the formulation will be free of more than about 20% microcrystalline cellulose and cross-linked polyvinyl pyrrolidone in an amount of about 5% or more, especially in a formulation that includes in additional 20% lactose monohydrate. Most preferred for use as a disintegrant is a starch glycolate and in particular sodium starch glycolate. Indeed, it has been found that the use of sodium starch glycolate in the formulations of the present invention can provide significant improvement in the degree of dose reduction, while still providing a comparable Cmax, when compared to effervescent formulations which include pH adjusting substances and other disintegrants. A particularly useful sodium starch glycolate is GLYCOLYS® (standard grade) available from Roquette of Lestrem France. Indeed, it is even more preferred that the formulation include neither microcrystalline cellulose nor cross-linked PVP. The amount of disintegrant will vary with known factors such as, the size of the dosage form, the nature and amounts of the other ingredients used, etc. However, in general the amount should range from between about 0.25 to about 20% by weight of the final formulation, more preferably between about 0.5 to about 15% w/w, even more preferably 0.5 to about 10% w/w and even more preferably between about one and about eight percent by weight. This is again based on the weight of the finished formulation. Also generally useful in accordance with the present invention is a tableting or ejection lubricant. The most common known lubricant is magnesium stearate and the use of magnesium stearate is preferred. Generally, the conventional wisdom behind tableting lubricants is that less is more. It is preferred in most circumstances that less than about one percent of a tableting lubricant be used. Typically, the amount should be half a percent or less. However, the amount of magnesium stearate used can be greater than 1.0%. Indeed, it is preferably greater than about 1.5% and most preferably between about 1.5% and about 3%. Most preferred is the use of about 2% magnesium stearate. Other conventional tableting lubricants such as, for example, stearic acid, calcium stearate and the like may also be used in place of some or all of the magnesium stearate. Effervescent tablets in accordance with the present invention can be relatively soft or robust. They can, for example, be manufactured in accordance with the methods described in U.S. Pat. No. 5,178,878 and will have a hardness of generally less than about 15 Newtons. Unlike the formulations described in the '878 patent, the active ingredient here will not necessarily be coated with a protective material. Indeed, preferentially, the fentanyl active will not be coated. When tablets as soft and pliable/friable as these are produced, they may be advantageously packaged in a blister package such as found in U.S. Pat. No. 6,155,423. They may also be robust with a hardness of greater than about 15 newtons, manufactured in accordance with the procedures set forth in U.S. Pat. No. 6,024,981. In a preferred embodiment, the fentanyl dosage forms of the invention are provided in a blister package which is child resistant. See for example U.S. Pat. No. 6,155,423 to Katzner et al., issued Dec. 5, 2000 and assigned to CIMA LABS INC., the text of which is hereby incorporated by reference. Most preferably, the package meets the standards set forth in 16 U.S.C. §1700.15 and .20 (2003). Packages also preferred include those commonly referred to in the industry as so-called “F1” and “F2” packages. “F1” packages are most preferred. Tablets in accordance with the present invention may be designed slightly differently for buccal, gingival, or sublingual administration. In each instance, however, the in mouth disintegration time/dissolution (dwell time) achieved by the formulations is preferably less than about 30 minutes and most preferably, about 20 minutes or less. It is usually more than five minutes, most often 10 minutes or more. This is a subjective determination based on the response of the patient. In accordance with a particularly preferred embodiment of the present invention, there is provided an effervescent orally disintegrable tablet designed for buccal, sublingual or gingival administration of fentanyl, or pharmaceutically acceptable salt thereof, comprising between about 100 and about 800 micrograms of fentanyl (by weight based on the weight of the free base), an effective amount of an effervescent couple and an effective amount of a pH adjusting substance and a starch glycolate. The formulation may further include mannitol. In a particularly preferred aspect of this embodiment of the present invention, the formulations described above do not include an amount of lactose monohydrate and/or cross-linked PVP which render it incapable of obtaining a dose reduction relative to ACTIQ® of at least about 45% fentanyl by weight. In particular, it is preferred that no more than about 10% by weight of the formulation be lactose monohydrate or microcrystalline cellulose and no more than about 4% crosslinked PVP. More preferably, the formulation is free from all but incidental amounts of these excipients. Most preferred in accordance with the present invention are the use of sodium starch glycolate as a disintegrant and mannitol as a filler. Most preferred filler includes spray dried mannitol. The formulations in accordance with the present invention can include other conventional excipients in generally known amounts to the extent they do not detract from the advantages described herein. These can include without limitation binders, sweeteners, coloring components, flavors, glidants, lubricants, preservatives, disintegrants, and the like. Tablets, a preferred dosage form in accordance with the present invention, can be made by any known tableting technique. However, preferably, the materials used are dry blended and directly compressed. While the tablets may result from granulation, this is not preferred. Of course, particular excipients and materials used in formulations in accordance with the present invention may be wet or dry granulated. For example, granulated mannitol could be used as a filler. It may also be desirable to granulate or pre-mix some portion of the formulation prior to final blending and compression. The materials in question are preselected to provide the right dose and content uniformity and the dose reduction, Cmax/dose ratio and/or dose linearity described herein. Thus, an appropriate amount of an effervescent couple, a suitable and appropriate pH adjusting substance and an appropriate disintegrant are selected, provided in predetermined amounts and formulated to dosage forms, preferably tablets. The preferred pH adjusting substances are carbonates, bicarbonates, or phosphates, the preferred disintegrant is a starch glycolate. The amounts used of each are described elsewhere herein. However, preferably, the disintegrant is selected and provided in an amount which can provide a further dose reduction in the amount of fentanyl used when compared to an otherwise identical formulation containing an effervescent couple and a pH adjusting substance without the disintegrant. The pH adjusting substance preferably is selected and provided in an amount sufficient which is capable of providing a change in localized pH of at least 0.5 pH units, more preferably 1.0 pH unit and most preferably about 2.0 pH units or more. While tablets may be compressed to any hardness and/or friability, same must be accomplished without adversely affecting dwell times and drug release and transmission across the oral mucosa. Where possible, it is desirable to provide fentanyl dosage forms as compressed tablets having a hardness of between about 5 and about 100 Newtons, more preferably between about 10 and about 50 Newtons. The dosage forms in accordance with the present invention may be used to treat any type of pain and in particular pain for which opiates are commonly prescribed. As with all opiates, fentanyl products and particularly those of the present invention should always be taken in consultation with a doctor and under a physician's strict care and supervision. The general directions for the use of the ACTIQ product as found in the previously mentioned label found in the Physician's Desk Reference and the warnings and contraindications therein are broadly applicable to the use of dosage forms in accordance with the present invention. This includes generally titrating patients with lower doses before dose escalation. The dosage forms in accordance with the present invention are administered by being placed in the mouth of a patient, preferably under the tongue or in between the cheek and gum, where they remain until their dissolution/disintegration is substantially complete and they cease to be recognizable as a dosage form. Preferably, swallowing is minimized to assist in facilitating the maximum transfer of the fentanyl across the adjacent oral mucosa. Additional doses are taken as needed. As previously noted, a single dose such as, for example, 800 micrograms of fentanyl, can be taken in a single dosage form in accordance with the present invention or can be taken in a plurality of dosage forms such as, for example, two dosage forms of the present invention each containing 400 micrograms of fentanyl or four dosage forms in accordance with the present invention each containing approximately 200 micrograms of fentanyl. Preferably such multiple dosage form dosing will involve all of the dosage forms being administered within an hour, more preferably roughly contemporaneously if not simultaneously. In particular, one method of making a tablet in accordance with the present invention useful for buccal, gingeval, or sublingual administration comprises providing fentanyl or a salt thereof in an amount of between about 100 and about 800 micrograms per dose (measured as fentanyl base), or an equivalent amount of salt thereof. Also provided are an effervescent couple in an amount of 5 to about 85% by weight of the dosage form, at least one pH adjusting substance in an amount of between about 0.5 and about 25% by weight of the dosage form and at least one disintegrant, preferably a starch glycolate, provided in an amount between about 0.25 to about 20% by weight of the dosage form. These are blended and compressed into tablets. In a preferred embodiment, the filler is used as well. In a particular preferred embodiment, a portion of the filler may be preblended with the fentanyl or another excipient such as, for example, a coloring agent. In addition, one of the excipients often used in accordance with the present invention is a lubricant such as magnesium sterate. Generally this is added toward the end of the blending period. Blending is often interrupted and then magnesium sterate is added before blending resumes for few additional minutes. In a preferred embodiment, a blister package containing a dosage from and in accordance with the present invention should be opened immediately prior to the product's use. The patient should place the dosage form in his or her mouth, preferably between the cheek and the upper or lower gum. The dosage form should not be sucked or chewed. Fentanyl, as with many opiates, is preferably titrated with the initial dose being a relatively low dose. The initial dose for dosage forms for fentanyl formulations in accordance with the present invention, especially those used to treat episodes of breakthrough cancer pain, should be 100 micrograms. The patient should be provided with a limited initial titration supply of 100 microgram dosage forms, thus limiting the number of units in the home during titration. Thereafter, doses may be escalated under a doctor's care. EXAMPLES Method of Manufacture In each case for examples 1-7 and 9-11, materials were screened prior to use, charged into a V-blender, or can be blended in any other appropriate low shear blender, and blended for an appropriate time. After discharge from the blender, the materials were compressed on a standard rotary tablet press to a target hardness of 13 Newtons and a target weight of 100 or 200 mg as described in each example. Example 1 Form A OraVescent® Fentanyl, 1080 mcg, 5/16″ Tablet, Red QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 1.688 Mannitol, USP* 95.312 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, USP/NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Red Ferric Oxide, NF 1.000 TOTAL 200.000 *spray dried (Mannogem EX by SPI Pharma) Example 2 Form C OraVescent® Fentanyl, 1300 mcg, 5/16″ Tablet, Red QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 2.042 Mannitol, USP* 94.958 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, USP/NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Red Ferric Oxide, NF 1.000 TOTAL 200.000 *spray dried Example 3 Form D OraVescent® Fentanyl, 810 mcg, 5/16″ Tablet, Yellow QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 1.266 Mannitol, USP* 95.734 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, USP/NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 1.000 TOTAL 200.000 *spray dried Example 4 Form E OraVescent® Fentanyl, 270 mcg, 5/16″ Tablet, White QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 0.422 Mannitol, USP* 97.578 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, USP/NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 TOTAL 200.000 *spray dried Example 5 OraVescent® Fentanyl, 500 mcg, 5/16″ Tablet, Orange QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 0.786 Mannitol, USP* 96.214 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 0.600 Red Ferric Oxide, NF 0.400 TOTAL 200.000 *spray dried Example 6 OraVescent® Fentanyl, 200 mcg, 5/16″ Tablet, White QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 0.315 Mannitol, USP* 97.685 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 TOTAL 200.000 *spray dried Example 7 OraVescent® Fentanyl, 100 mcg, ¼″ Tablet, White QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 0.157 Mannitol, USP* 48.843 Sodium Bicarbonate, USP/EP/JP 21.000 Citric Acid, USP/EP/JP 15.000 Sodium Carbonate, NF 10.000 Sodium Starch Glycolate, NF/EP 3.000 Magnesium Stearate, NF/EP/JP 2.000 TOTAL 100.000 *spray dried Example 8 The materials may be screened prior to use, charged into a V-blender or other appropriate low shear blender, and blended for an appropriate time. After discharge from the blender, the materials may be compressed on a standard rotary tablet press to a target hardness of 13 Newtons and a target weight of 200 mg/tablet. OraVescent® Fentanyl, 300 mcg, 5/16″ Tablet, Light Yellow QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 0.472 Mannitol, USP* 97.328 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 0.200 TOTAL 200.000 *spray dried Example 9 OraVescent® Fentanyl, 400 mcg, 5/16″ Tablet, Pink QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 0.629 Mannitol, USP* 97.171 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Red Ferric Oxide, NF 0.200 TOTAL 200.000 *spray dried Example 10 OraVescent® Fentanyl, 600 mcg, 5/16″ Tablet, Orange QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 0.943 Mannitol, USP* 96.057 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 0.600 Red Ferric Oxide, NF 0.400 TOTAL 200.000 *spray dried Example 11 OraVescent® Fentanyl, 800 mcg, 5/16″ Tablet, Yellow QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 1.257 Mannitol, USP* 95.743 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 1.000 TOTAL 200.000 *spray dried Example 12 The following materials are weighed and screened. Qty./Tablet Qty./Batch # Description (% w/w) (kg) 1 Fentanyl Citrate 0.6285 502.8 g* 2a. Mannitol EZ 23.875 19.1 2b. Mannitol EZ 24.014 19.2 3. Sodium Bicarbonate, No. 1 21.0000 16.8 4. Citric Acid, Anhydrous, 15.0000 12.0 Fine Granular 5. Sodium Carbonate, 10.0000 8.000 Anhydrous 6. Sodium Starch Glycolate 3.0000 2.400 7. Yellow 10 Iron Oxide 0.5000 0.400 8. Magnesium Stearate, Non- 2.0000 1.600 Bovine Total 100.0000 80.0 Transfer Mannitol EZ (2a.) and Yellow 10 Iron Oxide to V-blender and blend for 30 minutes. Discharge and mill preblend. Add the total quantity of preblend, fentanyl citrate, sodium bicarbonate, citric acid, sodium carbonate and sodium starch glycolate to V-blender and blend for 30 minutes. Charge Mannitol (2b) into V-blender and blend for 13 minutes. Charge magnesium stearate into V-blender and blend for 5 minutes. Compress tablets from this final blend. These tablets are ¼″ round, flat faced, white with a beveled edge. They are compressed to an average hardness of 13 Newtons on a 36 station Fette tablet press fully tooled. | <SOH> BACKGROUND OF THE INVENTION <EOH>Fentanyl (CAS Registry No. 437-38-7) N-phenyl-N-[1-(2-phenyl-ethyl)-4-piperidinyl] propanamide and its salts, in particular its citrate salt (CAS Registry No. 990-73-8) are opiates, controlled substances, and extremely potent narcotic analgesics. Fentanyl and its citrate salt are currently marketed by a number of companies in a number of delivery formats. Fentanyl citrate, for example, is available as an injectable and an oral lozenge on a stick, the latter sold under the trade name ACTIQ. Three patents are identified in the FDA publication Approved Drug Products With Therapeutic Equivalence Evaluations (hereinafter “the Orange Book”) as relating to ACTIQ: U.S. Pat. Nos. 4,671,953, 4,863,737 and 5,785,989. A second form of ACTIQ may also be available. This form may be a compressed tablet on a stick. Like the original ACTIQ lozenge, this second form is believed to exhibit the same disintegration rate, T max , C max and AUC as the original lozenge. Accordingly, they will be discussed collectively, except where expressly stated otherwise or as the context dictates. A review of the package insert information for ACTIQ sold by Cephalon, Inc., 145 Brandy Wine Parkway West, Chester, Pa. 19380, available in the Physician's Desk Reference, 57th ed. 2003 at page 1184, brings instant perspective on the seriousness of the afflictions of the patients who take it. According to its label, ACTIQ “is indicated only for the management of break-through cancer pain in patients with malignancies who are already receiving and who are tolerant to opiate therapy for their underlying persistent cancer pain.” (Id., emphasis in original). The text of the ACTIQ label is hereby incorporated by reference. In clinical trials of ACTIQ, breakthrough cancer pain was defined as a transient flare of moderate-to-severe pain occurring in cancer patients experiencing persistent cancer pain otherwise controlled with maintenance doses of opiate medications, including at least 60 mg of morphine/day, 50 micrograms transdermal fentanyl/hour or equianalgesic dose of another opiate for a week or longer. Thus patients receiving ACTIQ are patients with suddenly intolerable pain, which flares up despite undergoing chronic analgesic treatment. Providing pain relief from such breakthrough pain is inexorably linked with the patient's immediate quality of life. And for such patients, providing breakthrough pain relief may be the only thing that medical science can offer. As with many things in medicine, there is always room for improvement. Fentanyl is an expensive drug, costing manufacturers as much as $100/gram or more. While cost is by no means an overriding issue, the cost of medication is an issue to be considered. A formulation that allows for a reduction in the amount of fentanyl could reduce the overall cost of a patient's care. Far more importantly, a reduction in dose of such a potent opiate while still achieving beneficial management of breakthrough pain in cancer patients, has very far reaching and desirable consequences in terms of patients overall care. Opiate mu-receptor agonists, including fentanyl, produce dose dependent respiratory depression. Serious or fatal respiratory depression can occur, even at recommended doses, in vulnerable individuals. As with other potent opiates, fentanyl has been associated with cases of serious and fatal respiratory depression in opiate non-tolerant individuals. Thus, the initial dose of ACTIQ used to treat episodes of breakthrough cancer patients should be 200 micrograms and each patient should be individually titrated to provide adequate analgesia while minimizing side effects. And the side effects, even those that are not life threatening, can be significant. In addition, fentanyl, as a mu-opiate agonist can produce drug dependence and tolerance. Drug dependence in and of itself is not necessarily a problem with these types of cancer patients. But, fentanyl can be used in the treatment of other types of pain as well. In such treatment protocols, dependence and tolerance may be significant issues. Moreover, cancer patients are generally undergoing heavy medication. The longer that a lower dose of medication can be provided, the better. U.S. Pat. No. 6,200,604, which issued Mar. 13, 2001 to CIMA LABS INC., 10000 Valley View Road, Eden Prairie, Minn. 55344, exemplifies two fentanyl formulations each containing 36% effervescence and 1.57 milligrams of fentanyl salt. See example I thereof, col. 5, ln. 60 through col. 6, ln. 30. The '604 patent describes the use of, amongst other things, effervescence as a penetration enhancer for influencing oral drug absorption. See also U.S. Pat. Nos. 6,759,059 and 6,680,071. See also Brendenberg, S., 2003 New Concepts in Administration of Drugs in Tablet Form: Formulation and Evaluation of a Sublingual Tablet for Rapid Absorption, and Presentation of an Individualized Dose Administration System, Acta Universitiatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 287, 83 pp. Uppsala ISBN 91-554-5600-6. If lower doses of fentanyl which nonetheless provide similar pain relief could be achieved, patients could obtain comparable benefit with much less drug at lower cost and with a reduced risk of side effects. Thus, improvement in the administration of fentanyl is still desirable. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention relates to an orally disintegrable/dissolvable dosage form, methods of making such dosage forms methods of using such dosage forms to treat pain and uses for the manufacture of a medicament, wherein fentanyl, or one or more of its pharmaceutically acceptable salts (where “fentanyl” is recited herein, it should be assumed to include all pharmaceutically acceptable salts unless the context suggests otherwise) are administered orally at doses containing at least about 45% less fentanyl when compared to noneffervescent lollipop formulations (both lozenge and pressed tablets) currently available. Despite the lower dose, these orally disintegrable dosage forms of the invention should have a C max which is comparable to other dosage forms containing much more, e.g., about twice as much drug. “Comparable” in this context means that the C max of a dosage form of the present invention is at least about 75% that of ACTIQ having about twice as much fentanyl. Thus, if a 400 microgram tablet in accordance with the present invention was compared to a 400 microgram ACTIQ lollipop, and both were compared to an 800 microgram ACTIQ lollipop, the tablet in accordance with the present invention would have a C max which is at least about 75% to about 125% of the C max of the 800 microgram ACTIQ formulation. The 400 microgram ACTIQ formulation will have a much lower C max . This is true for doses of up to about 800 micrograms based on the weight of fentanyl in free form. Note that “about” in this context (doses) means ±10%. Thus, about 100 to about 800 μg is 90 to 880 μg. More preferably, “comparable” in the context of the invention may also mean that the C max of a dosage form of the present invention is between about 80 and about 120% that of ACTIQ having about twice as much fentanyl by weight. This can also be referred to as being “highly comparable.” Even more preferably, “comparable” in the context of the invention may also mean that the C max of a dosage form of the present invention is between about 85 and about 115% that of ACTIQ having about twice as much fentanyl by weight. This can also be referred to as being “very highly comparable”. “Oral dosage form” in the context of the invention preferably excludes lollipop-like lozenges like ACTIQ® and instead includes orally disintegrable dissolvable tablets, capsules, caplets, gels, creams, films and the like. Preferably, these dosage forms are effervescent tablets. In addition, they may include a pH adjusting substance and a disintegrant. Generally, these dosage forms are applied to or placed in a specific place in the oral cavity and they remain there while they disintegrate and/or dissolve, generally in a period of about 10 to 30 minutes. In another preferred aspect of the present invention, there is provided an orally disintegrable effervescent dosage form designed for the administration of fentanyl and/or pharmaceutically acceptable salts thereof through the oral cavity such as through buccal, gingival or sublingual administration routes, rather than being swallowed. This formulation preferably will not include a stick or other such device permitting it to be easily held in the hand of a patient or removed from the mouth once the dosage form has been wetted in the mouth. In addition, the dosage form will include at least about 45% less fentanyl (based on its weight calculated as a free base material) and more preferably between about 45% and about 55% less fentanyl when compared to the corresponding ACTIQ® product. Yet they will be comparable, preferably highly comparable and even more preferably very highly comparable in terms of C max , as well as generally equally efficacious. Thus, if 1600 micrograms of fentanyl is provided in an ACTIQ® formulation, the corresponding dosage form in accordance with the present invention would include approximately 880 micrograms of fentanyl or less. More preferably, it would include about 800 micrograms of fentanyl. Yet despite such a dramatic reduction in the amount of drug, at least one or more of the traditional pharmacokinetic properties measured for various drugs, such as C max , would be similar, if not superior. For example, in accordance with the present invention, formulations may have a shorter T max , the time at which the maximum concentration is reached and/or a comparable, if not superior, C max , the highest observed concentration in the blood of a patient after administration, when compared to the corresponding ACTIQ® product containing at least 80% more fentanyl by weight. AUC or areas under the curve will generally be linear for dosage forms of increasing fentanyl content over the dosage ranges contemplated. In a particularly preferred aspect of the present invention, it has been discovered that the formulations can be produced having a roughly linear relationship between dose of fentanyl (measured by weight as a free base) and C max , specifically, over dose ranges of about 100-800 micrograms per dose. “Linear” should be understood to mean that there will be no significant difference in the dose-normalized C max in the dose of 90 to 880 micrograms (more preferably 100-810 μg) using ANOVA within a p of 0.15 (p less than or equal to 0.15) when formulated as part of a series of at least three dosage forms with varying doses between 90 and 880 micrograms of fentyl. This is the preferred way of determining linearity in accordance with the invention. Stated another way, the slope of ln(C max ) versus ln(dose) should be 1±15% (0.85-1.15). As noted in studies discussed herein, doses of 200, 500 and 810 μg were “linear” in accordance with the present invention. Doses of 1080 μg, while vastly superior to the prior art, were not “linear” as defined herein in terms of C max to dose compared to the other doses. The ratio of C max to dose in this dosage range is between about 2.0 and about 4.0 picograms/mL/microgram. That is picograms of fentanyl base per mL of serum or a proportionate amount if determined in blood or other fluid, normalized per microgram of the dose. “Between” in accordance with the present invention includes the endpoints. More preferably, the ratio is about 2.5 to about 3.5 and even more preferably between about 2.7 and about 3.5 picograms/mL/microgram. These ranges are based on mean data calculated for at least 10 patents in an appropriate clinical trial. In contrast, testing has established that ACTIQ provides a ratio of about 1.4 picograms/mL/microgram. Thus for dosage forms containing the same amount of fentanyl, the present invention can provide about twice the C max , if not more, up to doses of 880 micrograms, e.g., about 800 micrograms using the invention. In another embodiment, these dosage forms would also provide a linear relationship between dose and C max when formulated over a range of about 100 to about 800 micrograms of fentanyl (free base) or a proportionate amount of salt. Of course, for a single dose strength, this means that the ratio of dose and C max for that dose will have a linear relationship to a series produced by merely varying the same formulation to include more or less fentanyl over the described range. Also preferred as one aspect in accordance with the present invention are effervescent dosage forms of fentanyl designed to be administered buccally, gingivally or sublingually containing 880 micrograms or less of fentanyl, by weight, based on the weight of the free base material and having a T max of less than about 1.5 hours and most preferably less than about 1 hour. Yet these dosage forms will have a desirable C max as discussed above of between about 2.0 and about 4.0 picograms/mL/microgram. Methods of administering these dosage forms to treat pain are also contemplated. In a particularly preferred embodiment in accordance with the present invention, these formulations include effervescence to act as a penetration enhancer with or without, but preferably with an additional pH adjusting substance. Most preferably, the pH adjusting substance is something other than one of the components, compounds or molecules used to generate effervescence. Particularly preferred dosage forms also include a disintegrant which permits the dose reduction, linearity and/or ratio of C max and dose described herein. One particularly preferred example of a disintegrant is a starch glycolate. Also preferred are dosage forms including a filler which faciliates the same performance as the disintegrants just described. Most preferably the filler is mannitol. In a particularly preferred embodiment in accordance with the present invention, there is provided an oral dosage form suitable for buccal, sublingual or gingival administration containing up to one milligram, and more preferably 100, 200, 300, 400, 600 or 800 micrograms of fentanyl by weight measured as the free base and further including at least one effervescent couple, at least one pH adjusting substance and suitable excipients. Preferably such a formulation will be capable of providing a T max of 1.5 hours or less and/or a C max between about 2.0 and about 4.0 picograms/mL/microgram. Stated another way, the C max of the dosage forms of the present invention are comparable to the C max of an ACTIQ® formulation containing at least about 80 percent more fentanyl by weight. In another preferred embodiment, these dosage forms will have a C max that is within about 25% of that of ACTIQ® having at least about 80% more fentanyl free base by weight, preferably within about 20% and even more preferably within about 15% thereof. In another particularly preferred embodiment in accordance with the present invention, there is provided an orally disintegrable tablet suitable for buccal, sublingual or gingival administration containing about 100, 200, 300, 400, 600 or 800 micrograms of fentanyl, measured as a free base, at least one effervescent couple, and at least one pH adjusting substance, as well as suitable excipients, said dosage form being capable of providing a T max of about 1.5 hours or less and/or a C max of between about 2.7 and about 3.5 picograms/mL/microgram. In yet another embodiment in accordance with the present invention, any of the formulations previously mentioned herein may consist essentially of fentanyl, preferably in an amount of about 800 micrograms or less (i.e., up to 880 μg), an effervescent couple, at least one pH adjusting substance and suitable excipients which are capable of providing a C max of between about 2.0 and about 4.0 picograms/mL/microgram, more preferably between about 2.5 and about 3.5 picograms/mL/microgram, and most preferably between about 2.7 and about 3.5 picograms/mL/microgram and containing at least about 45% less fentanyl than an ACTIQ® dosage form providing comparable C max . In the present context, “consisting essentially of” is meant to exclude any excipient or combination of excipients or, as appropriate, any amount of any excipient or combination of excipients, as well as any pH adjusting substance or any amount of pH adjusting substance that would alter the basic and novel characteristics of the invention. Thus, a particular excipient or mixture of excipients that would increase the T max to 2.5 hours or greater would be excluded. Similarly, and again for exemplary purposes only, a combination of excipients provided in a specific amount which would alter C max to a level not contemplated would be excluded. A small amount of cross-linked PVP and/or lactose monohydrate, while generally undesirable, which would not significantly alter the T max or C max of the dosage forms of the invention could still be used. However, if used together and at levels of 5% and 20% respectively, they can alter the properties adversely. Thus, these amounts of these excipients, in combination, would be excluded. In a particularly preferred embodiment of this aspect of the present invention, there are provided dosage forms consisting essentially of: between 90 and 880 micrograms of fentanyl, calculated as fentanyl free base, or a salt thereof, sodium starch glycolate, mannitol, at least one pH adjusting substance and at least one effervescent couple. Preferably, these dosage forms provide a T max of about 1.5 hours or less, a ratio of C max to dose of between about 2.0 and about 4.0 picograms/mL/microgram, a linear C max with dose, and/or a C max that is comparable as defined herein, the dosage form being suitable for buccal, sublingual or gingival administration. More preferably, the amount of fentanyl measured as a free base is 100-800 micrograms. Also contemplated as another aspect of the invention are methods of administering fentanyl to patients experiencing pain in general including but not limited to: back pain, lower back pain, joint pain, any form of arthritic pain, pain from trauma or accidents, neuropathic pain, surgical or postoperative pain, pain from a disease or condition other than cancer, cancer pain and in particular, breakthrough pain as a result of cancer. A preferred method includes the steps of administering to a patient in need thereof any orally disintegrable effervescent tablet disclosed herein for buccal, gingival or sublingual administration, which includes a dose of fentanyl of between about 100-800 micrograms (measured as a free base), and holding the dosage form in the mouth of the patient for a time sufficient to allow transport of said dose (or a therapeutically significant and/or effective portion thereof) from the oral cavity to the blood stream. Preferably, the patient is instructed, trained or watched to ensure that the dose is not swallowed and instead to the extent practicable, the fentanyl enters the body through one or more of the surfaces within the mouth and oral cavity. The method also preferably includes the step of holding the dosage form in the mouth, substantially without moving it within the oral cavity. In another preferred aspect, the dose dissolves/disintegrates or has a mean dwell time of between 5 and 30 minutes. One such method is a method of treating episodes of breakthrough cancer pain comprising the steps of providing an initial dose of about 100 micrograms of fentanyl calculated as a fentanyl free base or an equivalent amount of a salt thereof, in a dosage form comprising an effervescent couple in amount of about 5 to about 85% by weight of the dosage form, a pH adjusting substance in an amount of about 0.5 to about 25% by weight of the dosage form, and a starch glycolate in the amount of 0.25 to about 20% by weight of the dosage form. The dosage form is suitable for delivery of said fentanyl across the oral mucosa of a patient. By “providing” it is understood that removing a dosage form from a package or having someone hand out or dispense such a dosage form are included. The method also includes placing the dosage form in the mouth of the patient between the cheek and the upper or lower gum, for a time sufficient to deliver a therapeutically effective amount of said fentanyl across said oral mucosa. The same method may be employed for the treatment of other types of pain including any type of back pain, surgical or postoperative pain and neuropathic pain. It would not have been expected that it would be possible to produce an orally disintegrable tablet designed for administration of fentanyl in the oral cavity which was capable of providing T max of 1.5 hours or less containing 880 micrograms of fentanyl or less, measured as free base, preferably having a desirable C max . While certain literature for the ACTIQ lozenge suggests a T max of about 45 minutes, testing has shown this to be more like two hours. It was not expected that it would be possible to produce an orally disintegrable dosage form designed for administration of fentanyl in the oral cavity through buccal, sublingual or gingival administration route which contained at least about 45% less fentanyl than the ACTIQ® dosage form which provided comparable C max data. It was also not expected that it would be possible to produce an orally disintegrable dosage form and use it to treat pain, and in particular the breakthrough pain experienced by cancer patients wherein a theraputically effective amount (an amount which can provide some measure of pain relief), generally more than 75%, more preferably more than 80% and most preferably 90% or more of the fentanyl dose is absorbed into the blood stream from the oral cavity across the oral mucosa. It was also not expected that the C max of dosage forms having so much less active drug compared to currently marketed products could be linear in terms of C max to dose, for example, ±15% confidence interval over a range of about 100 to about 800 μg (90-880 μg). In accordance with another aspect of the present invention, there is provided a method of making a buccal, gingival or sublingual, effervescent fentanyl dosage form capable of providing one or more of: a linear relationship between dose and Cmax over a range of about 100 to about 800 micrograms; a comparable Cmax at a dose of at least about 45% less fentanyl when compared to a non-effervescent formulation such as ACTIQ at the same dose; and a ratio of Cmax to dose of 2.0 to 4.0 picograms/mL/micrograms. This is accomplished by mixing an amount of fentanyl (based on the weight of the free base) of between about 100 to about 800 micrograms per dosage form with an effective amount of an effervescent couple, an effective amount of a pH adjusting substance capable of producing a change in the localized pH in the microenvironment at the surface contact area of the oral mucosa and the dosage form once placed in the mouth of a patient (“localized pH”), as measured as described herein, of at least 0.5 pH units when compared to an identical formulation without the pH adjusting substance, and a disintegrant which permits the dose reduction, linearity and ratio of Cmax and dose as described above. These are compressed into a tablet or otherwise formed into a dosage form using conventional techniques. Perferably this process is accomplished without granulation, although the individual materials used may be granulated before mixing. Thus, a wet granulated sugar could be used as a filler in an otherwise dry and direct compression process. More preferably, the method is used to make a dosage form, preferably a tablet, that produces a linear relationship between dose and Cmax over a range of about 100 to about 800 micrograms, a highly comparable Cmax at a dose of at least about 50% less fentanyl when compared to ACTIQ at the same dose and/or a ratio of Cmax to dose of between about 2.7 and about 3.5 picorgrams/mL/micrograms. This is accomplished by mixing an amount of fentanyl or a salt thereof appropriate to provide a predetermined number of dosage forms each having between about 100 and about 800 micrograms of fentanyl, an effervescent couple in an amount of about 5 to about 85% by weight of the finished dosage forms (w/w), a pH adjusting substance in an amount of between about 0.5 to about 25% w/w, a starch glycolate in an amount of between about 0.25 and about 20% w/w with or without mannitol, and compressing same into a tablet in a dry state. Preferably, the pH adjusting substance will provide a change in localized pH of at least about 1 pH unit when compared to an identical formulation without same. detailed-description description="Detailed Description" end="lead"? | 20041230 | 20110104 | 20050804 | 62168.0 | 6 | SHEIKH, HUMERA N | GENERALLY LINEAR EFFERVESCENT ORAL FENTANYL DOSAGE FORM AND METHODS OF ADMINISTERING | UNDISCOUNTED | 0 | ACCEPTED | 2,004 |
|||
11,026,146 | ACCEPTED | Method and system for a failure recovery framework for interfacing with network-based auctions | A method of failure recovery is provided that includes providing an automatic failure recovery transaction in an auction application interacting with a network-based auction service. The network-based auction service has a forward-only process that is adapted to prevent roll-back to a process state at a time of a failure. If the failure occurs within the forward-only process, the method includes automatically conducting a roll-back to a beginning of the forward-only process by the auction application. A computer readable medium is provided that includes instructions adapted to execute a method for failure recovery. | 1. A method of failure recovery, comprising: providing an automatic failure recovery transaction in an auction application interacting with a network-based auction service, the network-based auction service having a forward-only process that is adapted to prevent roll-back to a process state at a time of a failure; and if the failure occurs within the forward-only process, automatically conducting a roll-back to a beginning of the forward-only process by the auction application. 2. The method of claim 1, wherein at least one roll-back period corresponds to a defined discrete process transaction through an auction process. 3. The method of claim 2, wherein the at least one roll-back period comprises at least one of a reservation creation, a publishing operation, a receiving of a winner notification, a linking of a winner information to a backend, and an order creation operation. 4. The method of claim 1, wherein the auction application interacts with a backend business information system. 5. A computer readable medium including instructions adapted to execute a method for failure recovery, the method comprising: providing an automatic failure recovery transaction in an auction application interacting with a network-based auction service, the network-based auction service having a forward-only process that is adapted to prevent roll-back to a process state at a time of a failure; and if the failure occurs within the forward-only process, automatically conducting a roll-back to a beginning of the forward-only process by the auction application. | COPYRIGHT NOTICE A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure as it appears in the Patent and Trademark Office, patent file or records, but otherwise reserves all copyright rights whatsoever. BACKGROUND The present invention relates to a method and system for implementing enhanced network-based auctions and postings-for-sale. In one embodiment of the present invention, the enhanced auctions and postings-for-sale are implemented over the Internet. Businesses have traditionally been limited in their opportunity to dispose of their old inventory and used assets. Oftentimes, businesses have scrapped these items, generating no revenue return, or have relied on brokers to dispose of them in a manner generating revenue for the business. In turn, these brokers often use auctions as one means of disposing these assets or inventory while attempting to maximize the revenues that can be generated. These broker auctions may be limited to specific customers for particular types of items or the auctions may be open to all potential bidders. In the first case, a broker may want to limit the auction where the potential pool of actual customers is limited or where allowing an open auction may, in some manner, hinder the auction process. In the latter case, where the auction is open to all potential bidders, it is often beneficial to maximize the number of people participating in the auction in order to extract the greatest price for the asset being auctioned. The problem in this latter case has been in attracting a large enough auction audience to facilitate a maximization of the return on the disposing of the asset. The advent of the Internet along with the accompanying revolution in computer and network technology has created new auction paradigms, including several forms of network-based auctions. The Internet provides the ability to aggregate large numbers of bidders in all types of auctions, such as, for example, ascending bid auctions, reverse auctions, and Dutch auctions. Priceline.com® is an example of a traditional reverse auction process made available over the Internet. In another example, eBay® provides a traditional ascending bid auction service over the Internet. An eBay® type ascending bid auction is ideally suited for the broker auction process discussed above. Since its founding in 1995, eBay® has become the world's largest online marketplace providing a powerful platform for the sale of goods and services among a passionate community of individuals and businesses. Everyday, millions of items across thousands of categories are available on eBay®, for sale by auction and for a fixed price, enabling trade on a local, national, and international basis with customized Internet Web sites in markets around the world. Businesses have typically kept their information, including information regarding the assets and inventory they wish to sell or auction off, in database systems that are part of their corporate information systems. For example, SAP® A.G. of Germany provides data management tools such as their SAP® (R/3® and my SAP™ Customer Relationship Management (CRM) system that can manage this type of information. Conventional systems do not provide the automatic linking between these business information management systems and online Web auction services, such as eBay®, and, therefore, manual involvement with the Web auction service is required for each auction or sales posting conducted. Providing a system linking business information management systems with a Web auction service and automating the auction submission, tracking, and post-auction processing will considerably improve the ability of businesses to sell or auction off assets, such as current or old inventory, in a manner allowing greater price maximization, and thereby increasing business revenue. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1a is a diagram illustrating the high level architecture of the enhanced network-based auction service according to one embodiment of the present invention. FIG. 1b is a diagram further illustrating the architecture of the auction application according to one embodiment of the present invention. FIG. 1c is a diagram further illustrating the architecture of the auction application according to one embodiment of the present invention. FIG. 2 is a diagram illustrating a top-level abstraction of the enhanced network-based auction process according to one embodiment of the present invention. FIG. 3a is a diagram illustrating the product identification process according to one embodiment of the present invention. FIG. 3b is a diagram illustrating a computer graphical user interface (GUI) for creating a listing according to one embodiment of the present invention. FIG. 3c is a diagram illustrating the specification of listing information in the seller interface of the auction application according to one embodiment of the present invention. FIG. 3d is a diagram illustrating a listing published on a Web auction service according to one embodiment of the present invention. FIG. 3e is a diagram further illustrating a listing published on a Web auction service using seller provided information from the auction application according to one embodiment of the present invention. FIG. 3f is a diagram illustrating the incorporation of shipping and payment information in a listing from a seller-defined shipping profile according to one embodiment of the present invention. FIG. 4a is a diagram illustrating how forms of payment may be specified in a listing and how selection of one form of payment links a winning bidder/buyer to an appropriate payment site according to one embodiment of the present invention. FIG. 4b is a diagram illustrating a sample checkout Web page for a seller site (auction application) run checkout process according to one embodiment of the present invention. FIG. 4c is a diagram illustrating a listing in the process of checkout in a sample listing management screen as part of the seller interface according to one embodiment of the present invention. FIG. 5a is a diagram illustrating a seller interface display allowing a seller to monitor his/her listings according to one embodiment of the present invention. FIG. 5b is a diagram illustrating a seller interface display allowing a seller to search his/her listings as part of the monitoring process according to one embodiment of the present invention. FIG. 5c is a diagram illustrating the advanced search designation screen of the seller interface according to one embodiment of the present invention. FIG. 5d is a diagram illustrating the viewing of bidding information for an auction listing according to one embodiment of the present invention. FIG. 6 is a flowchart illustrating an exemplary method according to one embodiment of the present invention. DETAILED DESCRIPTION A method of failure recovery is provided that includes providing an automatic failure recovery transaction in an auction application interacting with a network-based auction service. The network-based auction service has a forward-only process that is adapted to prevent roll-back to a process state at a time of a failure. If the failure occurs within the forward-only process, the method includes automatically conducting a roll-back to a beginning of the forward-only process by the auction application. The at least one roll-back period may correspond to a defined discrete process transaction through an auction process. The at least one roll-back period may include a reservation creation, a publishing operation, a receiving of a winner notification, a linking of a winner information to a backend, and/or an order creation operation. The auction application may interact with a backend business information system. A computer readable medium is provided that includes instructions adapted to execute a method for failure recovery. The method includes providing an automatic failure recovery transaction in an auction application interacting with a network-based auction service. The network-based auction service has a forward-only process that is adapted to prevent roll-back to a process state at a time of a failure. If the failure occurs within the forward-only process, the method includes automatically conducting a roll-back to a beginning of the forward-only process by the auction application. According to one embodiment of the present invention, a method and system for integrating a business information management system with a Web auction service is provided through an auction application. The auction application allows a seller to generate listings (e.g., auctions and postings-for-sale), allows for the execution of listings on a Web auction service, processes winning bidder/buyers, and monitors existing listings leveraging the power of a seller's business information management system. The auction application serves as the bridge between on the one-hand the seller and the seller's business information management system and on the other hand the Web auction service and the winning bidders/buyers. Architecture: According to an embodiment of the present invention, an application for the enhanced network-based auction services (“auction application”) links an existing business information management system with a network-based auction service (hereinafter also referred to as a Web auction service). In this embodiment, the auction application is a component-based multi-tier application developed according to the Java™ 2 platform, enterprise edition standard (J2EE™) and running on top of the SAP® Web Application Server (SAP® Web AS). The auction application is linked to a business information management system, such as, for example, SAP® R/3®, using business information management system plug-ins to tie the auction application to the business information management system backend functions. The auction application is also linked to a Web auction service using communication protocols such as, for example, HTTP, secure HTTP, and SOAP protocols. FIG. 1a is a diagram illustrating the high level architecture of the enhanced network-based auction service according to one embodiment of the present invention. The auction application 100 in this embodiment is deployed as a J2EE™ web application running on top of the SAP® Web AS. The auction application 100 allows users (e.g., sellers, bidders/buyers, and administrators) to communicate with it through a user interface layer 101. In FIG. 1a, three user interfaces are shown: an administrator user interface 102; a seller user interface 103; and a bidder/buyer user interface 104. The administrator user interface 102 allows administrator level—not seller specific—functionality for the auction application 100 primarily relating to auction application configuration and user authorizations. The seller interface 103 provides functionality to a seller 106 for managing its network-based auctions and postings-for-sale (i.e., listings). For example, a seller 106 may generate and manage listings through the seller interface 103. A seller 106 may also monitor listings through the seller interface 103. Other functions that may be available through the seller interface 103 may include, for example, the generation and maintenance of a product catalog, scheduling and tracking the publishing of listings on the Web auction service 108, the generation of feedback relating to the listings, and setting seller preferences. The bidder/buyer user interface 104 provides functionality to allow a winning bidder/buyer 105 to interact with the seller 106 and auction application 100 to make necessary arrangements for finalizing the execution of the winning bid or purchase made on the Web auction service 108. In the embodiment depicted in FIG. 1a, the user interface layer 101 uses HTML to implement the user interfaces 102-104. In particular for the seller user interface 103 and administrator user interface 102, a protocol such as the SAP® secure HTML for Java™ may be used to implement HTML with Web controls using comprehensive tags. In addition Struts, an open-source tool, may be used to segregate the business data and logic from the user interfaces while implementing complex user interfaces using, for example, Java™ servlets, JavaBeans™, and Enterprise JavaBeans™. The backend layer (BLS) 110 is the part of the auction application 100 that handles the communication with the business information management system 120. In the embodiment depicted in FIG. 1a, the business information management system 120 is an SAP® R/3® application release 4.0 or higher. The backend layer 110 uses the SAP® Java™ Connector (JCo) component 111 in this embodiment to provide the communication between the J2EE™ auction application environment and the business information management system 120. The services layer 112 includes functional components for process management of the enhanced network-based auction process as depicted in FIG. 1a. In particular, the services layer 112 handles the interface with a database 117 used by the auction application 100 to store, for example, product and listing information. The services layer 112 may use Java™ Data Objects (JDO) 115 for information sent to or retrieved from the database 117, in this example an SAP® DB database. In this embodiment, OpenSQL 116 is used as the query language for interaction with the database 117. In addition, the services layer 112 may provide specialized functional service components such as the Web auction service communicator 113 (referred to in FIG. 1a as the Communicator) discussed later. Web auction service communicator 113 may be a communicator adapted to be used with one or more network-based auction services, and/or may include different pluggable components for different network-based auction services. Other functional service components may include a scheduler for the scheduling of tasks by the auction application 100. For example, a task may be an object with an executable block of program code enclosed with timing information inside a job. The scheduler may run as a service in J2EE™ handling the execution and management of jobs and task by the auction application 100. Some scheduled tasks may involve interfacing with the Web auction service 108. For example, a listing creation task may be used to create a listing in the Web auction service 108 at a scheduled time. In another example, a winner poll task may be used to synchronize information about listings that have been won or postings-for-sale that have successfully been responded to. A bid synchronization task may synchronize information about bids for a listing maintained by the auction application 100 with the bid information maintained by the Web auction service 108. A category synchronization task may be used to synchronize the descriptive and search categories used by the Web auction service 108 with categories used by the auction application 100. A feedback task may synchronize feedback information for a listing or seller 106 provided by Web auction service bidders 105 with the auction application 100. The above example tasks specifically refer to the transfer and synchronization of information between the Web auction service 108 and the auction application 100. Other tasks may be internal to the auction application 100 or may involve synchronization with the business information management system 120. For example, a product catalog synchronization task may update product details for a listing in the auction application 100 (and eventually the Web auction service 108) with the product details in the business information management system 120. Another functional service component may include an internal recovery manager to manage failures in network-based communications and transactions between the auction application 100 and the Web auction service 108. A persistence manager is another example of a functional service component that can be used to ensure data persistence between the data used in the auction application 100 and data in the database 117. Specifically in FIG. 1a, the persistence manager may handle data persistence between the business objects used by the auction application 100 and the Java™ data objects 115. The Java™ data objects 115 map to the database 117 through OpenSQL 116 as provided for in the SAP® Web AS. An embodiment of auction application 100 provides a method and system to recover information and/or recover from a system failure. For example, the auction application 100 may enable a user (e.g., seller 106 and/or administrator 107) to recall steps in a listing initiation process. Conventionally, when a user attempts to publish a listing in Web auction service 108, various steps may be performed, sometimes in multiple systems. These steps may validate the listing with the Web auction service 108 and the Web auction service 108 may send information to a backend system such as the business information management system 120. Conventionally, a Web auction service 108 may prevent a user from going back a step, perhaps allowing only forward movement through screen prompts. Limiting the direction of the progress through screen prompts may be due to the involvement of multiple systems in the process. Therefore, in case of a failure of some sort, for example a screen freeze, a keyboard lockup, system crash, network communication error, network or power outage, etc., it may be useful to provide a system that returns a user to the most recent step on which the user was working. One embodiment of the present invention may record steps in the auction listing process and thereby provide a method for returning to the previous screen or prompt, or to any previous screen or prompt. This embodiment of the present invention may be useful in any multi-phase application that provides a series of screens or prompts to a user in which the system limits the ability of the user to return to a previous screen and/or prompt. In this embodiment, a process may return to an initial screen/prompt and then functionally input a recording of entries and/or responses until the previous screen/prompt before the lockup, system failure, etc. or to a previous point determined by a user. Conventional systems may not allow the release of a reservation of a quantity of a product in a listing after a predetermined period of time passes (the entry may have a certain life span). Therefore, it may be useful to recover a transaction to prevent the system from duplicating reservations for product quantities. For example, a user may create a listing and begin to publish the listing before an electricity failure. The auction application 100 may have reserved the quantity of the product in the listing in the business information management system 120 but not published the listing to the Web auction service 108. In this situation, a user may re-attempt publishing the listing and thereby avoid creating a new reservation for the quantity of the product in the listing. In an embodiment of the present invention may enable a user to resume the listing publishing process at a step saved in the database. In a system that operates in conjunction with two or more non-compatible systems, a user may be prevented from returning to an initial prompt or screen. In this situation, an alternative embodiment of the present invention may enable the user to return to an intermediate state and/or a beginning of a last-good state. The intermediate state or last-good state may represent, for example, a beginning or end of any of the following functions: creation, reservation, publication, create customer, create order, check payment, release delivery block, and/or deliver product. According to one embodiment of the present invention, the auction application 100 may incorporate milestones in particular transactions/processes at which point the transaction state information is saved and at which point a transaction can be recovered. Alternatively, the user may. define milestones in the system to facilitate the return to an intermediate step. For example, the user may configure transaction milestones relating to the creation of a customer, publication, or any other appropriate milestone. If the auction application 100 or another system utilizing this exemplary method fails to respond and/or locks-up at the same point in the process, the user may know that the error is caused by the screen and/or the system accessed by the screen when the lock-up reoccurred. According to one embodiment of the present invention, a failure recovery manager models each of the processes as a series of steps with each execution of a process treated as a process instance. For example, a process to publish a listing may include four steps: 1) save listing; 2) create quotation/reservation; 3) publish to Web auction service; and 4) save listing again. Each time a publish listing process is executed according to this embodiment, it is assigned a unique identifier (e.g., listing identifier) and treated as a single instance of the process having a state holder used by the failure recovery manager to track the execution of the process. The failure recover manager tracks how far a process instance has successfully executed and maintains and updates state information before and after the execution of each step in the process. If the execution of a process instance fails at any intermediate step, the execution of the process instance terminates but the failure recovery manager may use the state holder information to resume the process instance from the last successfully completed step. The Web auction service communicator 113 provides the interface between the Web auction service 108 and the auction application 100. The Web auction service communicator 113 translates auction application 100 actions to Web auction service 108 API calls. For example, an auction application 100 action to create or publish a listing may be translated into a Web auction service 108 API call such as “AddItem.” Using eBay®, as an example, the AddItem call sends a request to the eBay® platform to post a listing and includes arguments such as, for example, a definition of the item being sold, payment methods the seller is willing to accept, and global regions the seller will and will not ship the item to. The Web auction service communicator 113 translates the “create listing” auction application activity into the “AddItem” Web auction service 108 API call. The API call may be placed in an XML packet using the SAP® Java™ XML binding toolkit 114, which allows the mapping of Java™ objects to XML documents. The XML packet may include specific information including packet header data. For example, the XML packet may include an Identifier including the seller 106 user ID and password for the Web auction service 108, an API call identifier for the Web auction service 108 API call, and call parameters such as the API call arguments. The XML packet may be transmitted between the auction application 100 and the Web auction service 108 by means of an HTTP request. Information received from the Web auction service 108 may be received as an HTTP request and its content may be mapped to Java™ objects also by using the SAP® Java™ XML binding toolkit 114. One aspect of the auction application 100 is the business object layer 118 (also referred to as the business logic layer 118 in FIG. 1a). The business object layer 118 may communicate with the user interface layer 101 using JavaBeans™ to transfer data. Data is transferred in either direction by generating and transferring the appropriate JavaBeans™. At the business object layer 118, processing and interaction of data between the users and user interface layer 101, the business information management system 120, the Web auction service 108, and the service layer 112 with its component services (including data from the database 117) occurs. The business object layer 118 may be implemented using a commercial architecture such as, for example, the SAP® Internet Sales Architecture (ISA) framework as part of the SAP® Web Application Server. In one embodiment of the present invention, the ISA framework is used throughout the auction application 10 including in the communication between the winning bidders/buyers 105 and the business information management system 120 through the use of plug-ins to allow the ISA framework to link to, for example, the SAP® R/3® backend 120. FIG. 1b is a diagram further illustrating the architecture of the auction application according to one embodiment of the present invention. In the embodiment depicted in FIG. 1b, the business object layer 118 (also referred to as the business logic layer) includes the backend layer (BLS) 110 and services layer 112 (also referred to as the service provider layer) that were shown separately in the embodiment in FIG. 1a. Business objects 135-137 include, for example, an auction manager 135, bid manager 136, and winner manager 137 which communicate with the user interface layer 101 by means of JavaBeans™ 139. The backend layer 110 may include objects that communicate with the user interface layer 101. For example, an order manager 140 may allow a buyer 105 to communicate with the business information management system 120 backend through communication between user interface layer 101 objects and backend layer system 110 objects using JavaBeans™ 139. The backend layer system 110 may also communicate with business object layer 118 business objects 135-137. For example, a backend user-mapping object 142 in the BLS 110 may allow business objects in the BOL 118 to access data in the business information management system 120. As previously discussed, the service layer 112 may include a number of functional service components including a persistence manager 131, a scheduler 132, a Web auction service communicator 134, and a Java™ object-to-XML data binding service 133. The SAP® Internet Sales Application (ISA) framework for the SAP® R/3® system is used according to one embodiment of the present invention. In an alternative embodiment other frameworks may be used, for example, to integrate an SAP® CRM backend with the auction application instead of an SAP® R/3® backend. The business objects in the business object layer 118 are functional components providing a number of services according to the embodiment depicted in FIG. 1b. For example, the listing manager 135 may include codes for a number of functions such as: create listing, create listing template, copy listing, modify listing, view listing details, publish listing, publish listing by schedule, activate listing, cancel listing, close listing, and search listings. The “create listing” function allows a seller 106 to create a new listing for an auction or a posting-for-sale. A listing may be created in a number a ways including by selection from a product catalog, database query, database report, manual entry, using a listing template, and in loading an external file. The listing manager 135 allows the seller 106 to provide listing specific information and may validate that the requirements of the Web auction service 108 for the listing are met. For example, a Web auction service 108 may require that particular information is included when a listing is created. The “create listing” function may then validate that the seller 106 included the information and otherwise prompts the seller 106 for this information. The “create listing template” function allows a seller 106 to create a template for use with future listings. The information provided by the seller 106 for the template is automatically used when the seller 106 selects the template during the “create listing” function discussed above. The seller 106 may then modify template information or add information omitted from the template to complete the new listing. A listing template facilitates the generation of multiple listings particularly when similar listings are going to be scheduled at multiple times. The “copy listing” function allows a seller 106 to copy the information from an existing or stored prior listing into a new listing-the seller 106 creates a new listing from an existing or old listing. The seller 106 finds the existing or old listing to be copied, selects the “copy listing” function and then edits the listing information to generate a new listing. The “modify listing” function allows a seller 106 to modify the attributes of an existing listing to the extent allowed by the Web auction service 108. For example, a Web auction service 108 may allow a listing to be modified until it becomes active at which time the listing is locked and no further changes to its attributes can be made during the execution of the listing. A Web auction service 108 may also allow changes to particular listing attributes during the execution of the listing. For example, a seller 106 may be allowed to change the reserve price during the execution of an auction. The Web auction service 108 requirements need to be accounted for by the “modify listing” function to avoid conflicts between the auction application 100 and the Web auction service 108. The “view listing details” function allows a seller 106 to view the details of a listing and may include information about an active listing that is being executed. For example, the “view listing details” function may retrieve bidding information for an active auction listing that is being executed (i.e., the auction is in progress). The “view listing details” function may be divided into two functions: one for viewing the listing details and a second for viewing details regarding the execution of the listing on the Web auction service 108. For example, the “view listing details” function may provide information regarding the listing itself while a “view bid history” function may provide listing execution information from the Web auction service 108. The “publish listing” function allows a seller 106 to submit a created listing for publication by a Web auction service 108. The “publish listing by schedule” function allows a seller 106 to schedule the publication of a listing already created or based on a listing template. For example, a listing template may be used to schedule a similar listing to be published every week, day, month, etc. The “activate listing” function allows a seller 106 to activate a listing before the submitted start time of the listing provided that the Web auction service 108 allows the manual activation of a listing. Under some circumstances, the manual activation of a listing may be necessary if a Web auction service 108 does not require a start date for a listing and one is not provided. The “close listing” function allows a seller 106 to close a listing before the submitted end date and time of the listing provided that the Web auction service 108 allows changing the conclusion date of the listing. The “cancel listing” function allows a seller 106 to cancel a listing before it becomes active with a Web auction service 108. It is unlikely that a Web auction service 108 will allow the canceling of an active listing but if this is allowed, the “cancel listing” function may allow the canceling of an active listing as well. The “search listings” function may allow a seller 106 different ways to search through listings. For example, the searching may occur only for seller 106 created listings stored by the auction application 100 in its own database 117 or in the business management information system 120. The “search listings” function may also allow a seller 106 to search through listing on the Web auction service 108. The “search listings” function may also incorporate different ways to conduct the search to include, for example, searching by product, start date, end date, listing status, description, category, etc. Other examples of listing manager 135 component functions may include a “bidder/buyer feedback” function to display to the seller 106 bidder/buyer feedback provided to Web auction service 108 regarding the listing and seller and a “listing finalization” function to trigger post-auction/sale processing including the retrieval of winning bidder/buyer information and creating an order in the business information management system 120. In another example of a business object layer 118 object, the bid manager 136 may include code for viewing the bid history or sale history of a listing. Though previously described as part of the “view listing details” function of the listing manager 135, this function may additionally or alternatively be included in the bid manager 136. As previously stated, the “view bid history” function may allow a seller 106 to view all the bids with associated information (e.g., date and time) for a listing and may allow the viewing of a bid history for listings that are active or closed. The winner manager 137 may include code to allow a winning bidder/buyer 105 to communicate with a seller 106 in order to handle and process payments and to direct shipping of the listing product(s). The winner manager 137 may include functions used to trigger post-auction/sale processing including the retrieval of winning bidder/buyer information and creating an order in the business information management system 120 in the same manner as the potential “list finalization” function discussed within the listing manager 135. The backend layer (BLS) 110 objects are also functional components providing additional services for the auction application 100 according to one embodiment of the present invention. The BLS layer 110 handles communications with the backend system, the business information management system 120, with which the auction application 100 integrates. In the diagrams depicted in FIGS. 1a and 1b, the backend system 120 is the SAP® R/3® system. In other embodiments, other business information management systems can be used as the backend to the auction application 100. For example, SAP® CRM may serve as an alternative backend. One example of a BLS 110 object is the order manager 140, which may include code for a number of functions such as: creating an order in the backend system 120, viewing the order in the backend system 120, and searching the backend system orders. The winner manager 137 as discussed above may trigger the execution of the order manager 140. The “create order” function allows the auction application 100 to create an order in the backend system 120 for a winning bidder/buyer 105 of a listing as part of the checkout process. The order is created using listing execution information (e.g., winning bidder/buyer and associated information, price, quantity, etc.) obtained from the Web auction service 108. The order in the backend 120 may be associated with the listing through adding (at least one) order identifier to the listing information in the auction application 100 and by adding a listing identifier to the order in the backend 120. The order may include shipping details and payment information for the winning bidder/buyer 105. The “view order” function allows a seller 106 to retrieve information through the user interface layer 101 about the order and its status from the backend system 120. The “search orders” function allows a seller 106, through the user interface layer 101, to search for information about multiple orders in the backend system 120. The “search orders” function may allow a seller 106 to use different parameters to conduct the search in order to sort, aggregate, and/or limit orders in the results. The product catalog API object 141 is another backend layer (BLS) 110 functional component allowing retrieval and searching of data in the product catalog of the business information management system 120 as well as quantity reservation of products included in a listing. A “view product catalog” function allows a seller 106 to view products available in a product catalog maintained by the backend, business information management system 120. As previously discussed, a seller 106 can use this product catalog to select products for inclusion in a listing. The “view product catalog” function may incorporate filtering to filter out products based on particular attributes. This filtering may be performed by the backend system 120 or by the “view product catalog” function in the Java™ runtime environment in order to display only listing-actionable products to a seller 106. The auction application 100, in this embodiment, operates in a J2EE™ runtime environment and interacts with the product catalog of the backend system 120 through a Java™-based API called PCATAPI which is the means of interaction between the product catalog API object 141 and the product catalog according to this embodiment. The “search product catalog” function also uses PCATAPI which allows SAP® TREX-based searching of the product catalog. The “search product catalog” function may allow a seller 106 a variety of possible search parameters for finding a desired product. The “quantity reservation” function may be triggered during the listing creation process or at a later time in order to prevent the quantity of the product included in the listing from being otherwise disposed. For example, when a listing is first generated and a quantity “x” of a product is included in the listing, the “quantity reservation” function may be executed to reserve “x” quantity in the product catalog so that it remains available for the winning bidder/buyer 105. Alternatively, the “quantity reservation” function may be executed after the listing is created such as, for example, when a listing is published or activated on a Web auction service 108 or when a winning bidder/buyer 105 is determined. The service layer 112 objects are also functional components providing services for the auction application 100 according to one embodiment of the present invention. The service layer 112 objects are system level components that do not directly communicate with the user interface layer 101 and the backend system 120. The persistence manager 131 is a service layer 112 object that ensures data persistency and object relational persistency for the auction application 100. The persistence manager 131 also handles any data redundancy requirements during database 117 changes or queries to ensure the integrity of the data. The scheduler 132 is another example of a service layer 112 object that handles the scheduling of background jobs and tasks as previously discussed. The scheduler 132 primarily handles the scheduling of jobs (i.e., communicating tasks) with the Web auction service 108. The XML data binder 133 is a service layer 112 object responsible for the mapping in both directions of Java™ objects and XML documents necessary for the communication between the auction application 100 and the Web auction service 108 according to this embodiment of the present invention. The Web auction service communicator 134 is an example of a service layer 112 object that handles the communication between the auction application 100 and the Web auction service 108. The Web auction service communicator 134 may communicate with the Web auction service 108 by using HTRP and secure HTTP communication by means of post and get requests. Communication with the Web auction service 108 needs to conform to the Web auction service 108 API and the Web auction service communicator 134 is designed to generate requests using the Web auction service 108 API calls. The Web auction service communicator 134 may place the Web auction service 108 API calls inside an XML packet (i.e., an XML document) which is sent in the HTTP request. According to one embodiment, the XML packet includes: user attributes such as a seller ID and a seller password to authenticate the seller 106 to the Web auction service 108; license attributes providing a developer license key where necessary; call identifier for the Web auction service 108 API call (i.e., the API function call name); call parameters corresponding to the API call parameters; and error attributes for returning errors from the Web auction service 108 to the auction application 100. Using eBay® as an example, the following table includes samples of Web auction service 108 API function calls, a brief description of their purpose, and an auction application 100 component that may initiate the API call: Corresponding Auction ebay ® API Description Application Object GetAPIVersion Returns the API version called Internal API on ebay server AddItem Publishes an Auction to ebay AuctionManager.createAuction ReviseItem Modifies an existing Auction on AuctionManager.modifyAuction ebay RelistItem Relists an earlier listed Auction Auction Manager.modifyStatus which closed without winners VerifyAddItem Verifies the Listing and return AuctionManager.verifyAuction the Auction Fee but does not publish the Auction on ebay EndItem Prematurely close an Auction on AuctionManager.closeAuction ebay GetItem Retrieves the Auction data from AuctionManager.getAuction ebay GetCategories Retrieves the huge Category CategoryManager.getCategories Tree on ebay GetCategory2CS Retrieves the Category Sets CategoryManager.getCategorySets GetAttributesCS Retrieves the attributes of a CategoryManager.getAttributes( ) category set GetSellerTransactions Retrieves the Transactions done CategoryManager.getTransactions on ebay for a Seller between a certain time window GetItemTransactions Retrieves the Transactions on TransactionManager.getTransactions ebay for an Auction between a certain time window GetSellerEvents Retrieves the ebay Events for a Internal API Seller between a certain time window GetAPIAccessRules Retrieves the API Access Rules Internal API on ebay Server GetHighBidders Retrieves the list of highest BidManager.getHighBidders bidders for an Auction LeaveFeedback Leaves feedback for a buyer by FeedbackManager.provideFeedback Seller on ebay RetrieveFeedback Retrieves the feedback for a FeedbackManager.retrieveFeedback Seller between a certain time window GetEBayUser Retrieves the data for a Buyer UserMapper.getUser from ebay The Web auction service communicator 134 is specific or unique to a particular Web auction service 108 allowing the remainder of the auction application 100 to be general and relate to any Web auction service 108 according to one embodiment of the present invention. According to this embodiment, the communicator 134 code is modular and can be replaced and or augmented allowing the auction application 100 to work with a plurality of Web auction services 108 as long as the appropriate communicator 134 is present. For example, the Web auction service communicator 134 may be stored in a plug-in or servlet used by the auction application 100 that can easily substituted with the appropriate plug-in or servlet for another Web auction service 100 if and when needed. FIG. 1c is a diagram further illustrating the architecture of the auction application according to one embodiment of the present invention. According to this embodiment, the auction application 100 includes a J2EE™ application environment container 155 containing the user interface layer 101 and business object layer 118 communicating using JavaBeans™ 139 as already discussed. The business object layer 118 in this embodiment includes the backend layer 110 but the services layer 112 is separate. A Java™ connector is still used by the backend layer 110 in communicating with the business information management system 120. The auction application 100 additionally includes further services 150 that fall outside the J2EE™ container 155. This embodiment is only one further example of the many possible architectures for the auction application that may be employed in various embodiments of the present invention. Different embodiments of the present invention can be implemented using different architectures, products, and services other than in the example embodiments described herein. The present invention is not intended to be limited to the products, environments and standards described herein and may be implemented in different ways in other embodiments of the present invention. Deploying The Auction Application: According to the example embodiment of the present invention, the auction application 100 is developed using the J2EE®-based SAP® Web application server. The current release of SAP® Web AS only includes by default functionality for digital signatures and not the encryption necessary to implement Secure Sockets Layer (SSL) protocol. For example, by default SAP® Web AS may allow the auction application 100 to, as part of securing communication, use public key technology to send and receive encrypted message digests in order to validate the other party to the communication—what is commonly known as using digital signatures. However, the complete version of the SAP® Java™ Cryptographic Toolkit may have to be loaded when deploying the auction application 100 in some circumstances according to this embodiment. The SAP® Java™ cryptographic toolkit provides support for certificates, symmetric cryptographic algorithms, and message authentication code (MAC) values (e.g., using MD5) necessary for Secure Sockets Layer (SSL) protocol-based secure communication over the Internet—in particular the HTTP request-based communication between the auction application 100 and the Web auction service 108. If necessary, loading the complete cryptographic toolkit may be described in the technical documentation provided by SAP® and may in addition be available from SAP® technical support personnel. This additional step may only be relevant regarding the example embodiment discussed above which is based on an early version of SAP® Web AS. In other embodiments of the present invention, this issue may be irrelevant. In the example embodiment of the present invention, the auction application 100 is not specific to any one Web auction service 108. Instead, the auction application 100 may be used with many possible Web auction services 108. Using the auction application 100 with a specific Web auction service 108 may entail the use of an appropriate Web auction service communicator 113, 134 specific to the Web auction application 108. The specific details of the communication and interaction between the auction application 100 components (objects) and the Web auction service 108 may be hard-coded into this specific Web auction service communicator 113, 134. According to this embodiment, the Web auction service-specific interfacing is done through the Web auction service communicator 113, 134. Enhanced Network-Based Auction Process: FIG. 2 is a diagram illustrating a top-level abstraction of the enhanced network-based auction process according to one embodiment of the present invention. The enhanced network-based auction process 200 is divided into four process steps: product identification & preparation 201, the listing process 202, post-listing processing 203, and monitoring and analyzing listings 204. The product identification & preparation step 201, the listing process step 202, and the post-listing processing step 203 are performed sequentially for each listing (i.e., auction or posting-for-sale) conducted by a seller (e.g., a business entity). The monitoring and analyzing listings step 204 may be performed continually throughout the entire process and does not need to be performed in a sequence relative to the other process steps. The first step in the enhanced network-based auction process is the product identification & preparation step 201 according to this embodiment of the present invention. During this step, two actions in particular may occur: 1) identifying the product(s) to be auctioned or posted-for-sale; and 2) gathering information about the product(s). The identification of products by a seller (e.g., a business) 106 can occur in a number a ways using a business information management system 120 according to one embodiment of the present invention. For example, a seller 106 may manually compile a list by directly entering the information into the auction application. In another example, a seller 106 may manually retrieve data from a database or legacy software application, such as, for example, a Microsoft® Excel spreadsheet. According to this example, the product information is extracted from the legacy software (e.g., Microsoft® Excel) by exporting the selected data into a file and loading the file into the auction application 100. In another example, a seller 106 may execute a report or query on the backend business information management system 120 returning a listing of products from which the seller 106 may make a selection. The report or query may be generated using whatever selection parameters are available to limit the results and assist the seller 106 in identifying the desired product(s) in an expeditious manner. The fields or columns available in the business information management system 120 database tables may determine these selection parameters. For example, if a field or table allows storing information on inventory location, then inventory location is a potential parameter that may be used in generating the report or in forming the query from which an identification of the product(s) to be auctioned or posted-for-sale can be made. The selection parameters may also be determined using calculated values derived from stored information in the tables of a business information management system 120. For example, if a field or table stores information regarding when a product was received or otherwise became part of the inventory, a calculation using the current information can be made to determine the number of days the product has been carried as inventory. Therefore, for example, the number of days a product has been a part of the inventory may be a selection parameter used in generating the report or in forming the query from which an identification of the product(s) to be auctioned or posted-for-sale can be made. In the example embodiment shown in FIG. 1a, the SAP® R/3® system is the business information management system 120 from whose databases a report or query can be executed and used in the product identification process. Another example of a business information management system 120 including a database system from which a report or query can be executed is the SAP® CRM system. For example, the product may exist in the mySAP™ Customer Relation Management (mySAP™ CRM) system as a product master or may exist in the SAP® R/3® system in the Material Management (MM) module. In other embodiments of the present invention, idle assets may exist in the Asset Management (AM) module of the SAP® R/3® system and equipment may exist in the Plant Maintenance (PM) module of the SAP® R/3® system. In conjunction with SAP® R/3®, other tools can be used in generating the reports and queries from which product identification can be made, including: SAP® Business Information Warehouse (BW) (reports), SAP® ABAP™ (reports and queries); SAP® R/3® modules such as the Sales Information System (SIS); and third party reporting and query systems. Regardless of the tools used, the product identification and preparation process 201 can take advantage of product information already maintained by the seller's business information management system 120. FIG. 3a is a diagram illustrating the product identification process according to one embodiment of the present invention. A report, query, or legacy software application 300 can be used as the source of the product information. The information from the source is extracted 301 into a file 302 such as, for example, a file in CSV (comma-separated value) format (i.e., a Microsoft® Excel recognizable format). The file 302 is loaded into the auction application 304 using an auction application configuration management (XCM) 303 setting that specifies the location of the file 302. As an alternative to this embodiment, product information may also be entered manually through the seller interface 103. In another embodiment, a product catalog may be used in the product identification process 201. For example, a product catalog maintained by the business information management system 120 and available through the ISA framework may also be used to identify the product(s) for a listing. In addition to identifying the product(s) to be auctioned or posted-for-sale, the first step 201 in the enhanced network-based auction process may further involve the gathering of information about the product(s)—the staging of the product(s). According to one embodiment of the present invention, information regarding the product(s) is gathered in a staging area, which serves as the virtual repository of the product information. The staging area may be a memory-based area from which a seller 106 may organize listings or it may be part of a database 117 in the auction application 100 where additional product information may be stored. The additional product information may also be provided as either part of the product identification process discussed above or separately using the same means: 1) manual entry, 2) loading from an external file, and/or 3) from information available in the business information management system 120 such as, for example, from a product catalog. The product information may, in one example, include a product ID, quantity, description, plant, storage location, and shipping point in order to fully identify the specific product so that it can be reserved (discussed later). Less information may be used where only a quantity of a product at a location needs to be reserved but not the specific product or where a product location is not used. Listing Processing: The listing processing itself is the second step 202 in the enhanced network-based auction process according to one embodiment of the present invention. From a sales perspective, all the products and materials (“products”) identified for auctioning or posting-for-sale are conceptually or electronically gathered in the staging area as previously discussed (e.g., in an auction application 100 database 117). These products can now be grouped into listings that will be published on and executed by the Web auction service 108. Each grouping may be termed a “listing” and each listing may be for an auction or a direct offer for sale (a posting-for-sale). The listing information is taken from the product information gathered in the staging area as previously discussed and may be augmented with additional listing-specific information provided by the seller 106. For example, a quantity of the product to the offered, an auction start price, an auction reserve price, and a sale price for a posting-for-sale are all examples of listing-specific information that may be provided by the seller 106. Alternatively, this information may be generated or automatically determined based on prior sales history and other information available in/to the business information management system 120. The seller 106 may create one or more listings and he/she determines which products are included in each listing. Products may be listed individually or as a group and, therefore, multiple different products may be included in a single listing if the seller 106 chooses. In addition to the product information, the seller 106 may need to provide information required by the Web auction service 108 in order to place (i.e., publish) the listing. The Web auction service 108 may require or allow the specification of additional information that may not be necessary but may facilitate finding bidders/buyers 105 for the listing and the seller 106 may also include this information. For example, category information for the listing may not be necessary but may help a bidder/buyer 105 find the listing on the Web auction service 108 and therefore would be advantageous for the seller 106 to include in the listing. FIG. 3b is a diagram illustrating a computer graphical user interface (GUI) for creating a listing in a Web auction service according to one embodiment of the present invention. In the embodiment depicted in FIG. 3b, the auction application 100 seller interface 103 includes a “create listing” screen 310 allowing a seller 106 to create a listing. This screen may be provided as part of the create listing function of the listing manager 135 in the business object layer 118. This screen shows multiple potential listings 311 that can each be identified by the listing type 312. For example, an auction listing may be of the default type “listing” 313 as shown in FIG. 3b. In addition, a listing name 314 may be provided along with a listing description 315 that may be used by the seller 106 and the Web auction service 108 to help identify and categorize the listing. Additional examples of listing information include a start price 316, a reserve price 317, sale or “Buy It Now” price (for an offer directly for sale) 318, quantity 319, and closing date or listing duration 320. In addition to the general listing details, additional listing information may be provided. FIG. 3c is a diagram illustrating the specification of listing information in the seller interface of the auction application according to one embodiment of the present invention. An image of the product(s) may also be included in the listing according to this embodiment and is specified by the full path and file name of the image 330 in the seller interface 103. A Web auction service 108 may also use categories to help bidder/buyers find listings. In the embodiment depicted in FIG. 3c, the seller interface 103 allows the seller 106 to specify a primary category 331 and a secondary category 332 for the listing. A description template 334 allows the seller 106 to include a description template 335 for the product which can be included in the listing on the Web auction service 108. A marketing profile 337 is used by a seller 106 to improve the visibility of the listing. A shipping profile 336 may provide shipping details (e.g., shipping instructions and/or cost of shipping) for the listing. Several of the fields in the create listing form lend themselves to the use of templates (either for the field itself or for the listing as a whole) which can be stored and reused in future listings. This facilitates the listing process for the seller 106. Information specific to the product, such as its location, may also be provided to facilitate the reservation of the product quantity and to assist in order generation. The quotation/reservation specific information does not need to be sent to the Web auction service 108 though it may be stored by the auction application 100 in a database 117 and used to generate the order in the business information management system 120. The created listings may be stored in a database 117 in or linked to the auction application 100. The products in the listing may also be linked to a product catalog or other descriptive information in one or more databases of the business information management system 120. The seller 106 may then transfer the listings, once created, to the Web auction service 108. The auction application 100 communicates with the Web auction service 108 (e.g., transferring listings) by sending Web auction service 108 API calls through the Web auction service communicator 113, 134 as previously described. The publication of a listing may occur immediately or may be scheduled for a particular time by the seller 106. For example, a seller 106 may specify as a default that all listings are immediately published to the Web auction service 108 upon successfully creating the listing. The seller 106 may rely on this default or may by exception schedule a listing for a future publication date on the Web auction service 108. Additionally, a seller may specify parameters regarding the re-posting of a listing should the listing unsuccessfully conclude. FIG. 3d is a diagram illustrating a listing published on a Web auction service according to one embodiment of the present invention. The information provided by the seller 106 is used to generate the published listing as it appears on the Web auction service 108 by sending the Web auction service 108 API calls through the Web auction service communicator 113, 134. For example, the title of the listing 315, category for the listing 331, starting bid 316, duration of the listing 320, “Buy It Now” sale price 318, and location of the product may all be included in the published listing from information provided by the seller 106 and shown in FIGS. 3b and 3c. FIG. 3e is a diagram further illustrating a listing published on a Web auction service using seller provided information from the auction application according to one embodiment of the present invention. The product image 330 specified by the seller 106 and the description from the description template 335 provide potential bidders/buyers 105 with detailed product information. Using this information as a template allows a seller 106 to rapidly generate further listings for similar products. FIG. 3f is a diagram illustrating the incorporation of shipping and payment information in a listing from a seller-defined shipping profile according to one embodiment of the present invention. A shipping profile 336 is like a template in generating default shipping and payment details. The auction application 100 may allow a seller 106 to generate several different profiles from which a seller may select one or the seller rely upon a default profile when generating listings. In addition to creating a listing as discussed above, a seller 106 may also save the listing, in its entirety or partially, as a listing template which can be used in the future to create new listings. A seller 106 can then decide whether to create a new listing from scratch, use a current or prior listing, or use an existing listing template. If the seller 106 uses a listing template, all the information in the listing template is used to populate the listing fields with the seller 106 still capable of editing the information therein before publishing the listing. A listing may also be created by copying an existing or old listing. For example, a seller 106 may search through existing (i.e., currently in progress or waiting to be scheduled) listings and/or old listings (i.e., listings that have already closed) and select a listing to copy. The information from the copied listing is then used to populate the listing fields for the new listing with the seller 106 still capable of editing the information therein before publishing the new listing. Copying a listing is similar to creating a listing from a template except that an already specified listing rather than a template is used. Once a listing is created, it can be scheduled for publication or sent to the Web auction service 108 for immediate publication. Before this occurs, the business information management system 120 is queried to validate if the product(s) are available. If the products are not available, the seller 106 is presented with an error message in the seller interface 103. Otherwise, the product(s) are reserved by, for example, generating a reservation for the product(s) in the business information management system 120—also referred to as generating a quotation for the product(s). The reservation is not complete but is used as a placeholder along with the listing information in order to prevent the product(s) from being otherwise disposed. The plant and location information for the product(s) gathered in the staging area may be used to implement the reservation or quotation for the product(s) where the product location matters. The product(s) may be reserved at any time during the listing process but most likely will be reserved when the listing is first created or when the listing is published to the Web auction service. Alternatively, product(s) may be reserved when a listing is activated on the Web auction service 108 (provided the Web auction service allows inactive listings) or when the information for the product(s) is first brought into the staging area. Alternatively, products may never be reserved. The Web auction service 108 handles the execution of the listing and the taking and validating of bids and offers according to the example embodiment though, alternatively, a portion of this process may be handled by the auction application 100. Post-Listing Processing: Post-listing processing 203 is the third step in the enhanced network-based auction process and occurs after the listing processing 202 as a result of the conclusion of an auction or posting-for-sale (i.e., a listing). Information may be pulled (i.e., retrieved) from the Web auction service. 108 by the auction application 100 as one method of retrieving winner or other listing information. A Web auction service 108 may also push (i.e., send on its own accord) listing information to the auction application 100. A listing may be concluded automatically through the completion of the listing processing or manually through the early termination of the listing by the seller 106. A seller 106 may manually terminate an auction, for example, when he/she determines there is insufficient interest for the product(s) or when he/she receives a desirable offer and no longer wants to wait for a later planned conclusion to the auction or posting-for-sale. A seller 106 may manually terminate a listing for a number of reasons with the manual termination generally representing a departure from the planned closing conditions. The automatic conclusion for a posting-for-sale may occur by a particular date and time (i.e., an offer end date) or when the product(s) are purchased. On the other hand, the automatic conclusion of an auction generally occurs at particular date and time advertised by the Web auction service 108 for the auction. However, an auction may be closed under other circumstances. For example, an auction may conclude when a particular price target is met. A posting-for-sale generally concludes when an order is placed for the specified price or when a conclusion date is reached. In one embodiment of the present invention, the conclusion of the auction or posting-for-sale is only successful if a target price (i.e., reserve price) is met, where specified. For example, if product A is being auctioned with a reserve price of $10.00, a successful closing to the auction only occurs if a valid bid of $10.00 or more is made on the Web auction service 108 by the closing date. As previously discussed, an auction or posting-for-sale may include multiple quantities of a product or set of products. Under these circumstances, the auction or posting-for-sale may be only partially successful when it closes if only a portion of the offered quantity is sold. The Web auction service 108 generally receives and validates the bids and offers and determines successful auction winners or buyers of a posting-for-sale. In alternative embodiments of the present invention, the seller 106 may determine successful auction winners or successful purchases using information provided by the Web auction service 108. The closing of a listing whether manually terminated or closed or automatically closed may also need to conform to the requirements of the Web auction service 108 and may limit the closing options available to the seller 106. According to the example embodiment of the present invention, a successful conclusion of a listing (e.g., an auction or posting-for-sale) results in the initiation of the checkout process (the winning bidder/buyer finalization process) 203—the post listing processing 203. The checkout process is used to verify the winning bidder/buyer information and to generate the necessary order(s) in the business information management system 120 serving as the backend to the auction application 100. During the checkout process, the winning bidder/buyer 105 (i.e., the customer) verifies the purchase of the item on the Web auction service 108 and the customer 105 may also verify and update delivery and payment information. The checkout process may be conducted through the Web auction service 108 or directly between the winning bidder/buyer 105 and the auction application 100 (the seller 106). In one embodiment of the present invention, the checkout process is conducted through the Web auction service 108. This embodiment may be used when, for example, the seller 106 wants to leverage the Web auction service 108 infrastructure or when the seller 106 wants to remain anonymous. For example, if a seller 106 has limited network-based (e.g., Internet-based) presence and capability to handle the transaction, the seller 106 may want to leverage the infrastructure provided by the Web auction service 108. In another example, if the seller 106 is a brand-name manufacturer disposing of excess inventory, the seller 106 may not want bidders/buyers 105 to know that its name-brand products can be purchased on the Web auction service 108 at a potentially discounted price. Notification is the first step in the Web auction service-based checkout process. A winning bidder 105 may receive an email notification from the Web auction service 108 informing him/her that he/she has won the auction listing. For a posting-for-sale, the buyer 105 may be immediately informed that he/she has successfully executed a purchase when the buyer 105 is online. In either case, the Web auction service 108 may calculate the total checkout amount for the winning bidder/buyer 105 based on the information provided by the seller 106 (e.g., shipping costs) and using the winning bid/purchase price provided by the winning bidder/buyer 105. The seller 106 may also be notified of the winning bidder/buyer 105 by the Web auction service 108. The payment method selected by the winning bidder/buyer 105 must conform to acceptable forms of payment 336 identified by the seller 105 and this form of payment dictates the following steps in the checkout process 203. FIG. 4a is a diagram illustrating how forms of payment may be specified in a listing and how selection of one form of payment links a winning bidder/buyer 105 to an appropriate payment site according to one embodiment of the present invention. The payment details 401 may be included in the listing 400 on the Web auction service 108. The form of payment may be linked to an appropriate payment page for the Web auction service 108 or other third party payment provider. For example, selecting PayPal® 402 as the third party payment provider brings the winning bidder/buyer 105 to the PayPal® Web site 405 from which a payment can be made and the checkout process 203 continued. Once the winning bidder/buyer 105 makes the appropriate payment on the PayPal® Web site 405, PayPal® sends an Instant Payment Notification (IPN) message to the seller 106 (to the auction application 100) in the form of an HTTP post message confirming that the winning bidder/buyer 105 has made a payment as part of the checkout process 203. PayPal® is only one example of a third party payment provider and may itself be limited to offering services in only a few countries. Other third party payment providers may also be used. For example, in Germany (where PayPal® is not available), an Iloxx powered Treuhandservice may be used for payment transfers. The winning bidder/buyer 105 makes the necessary payment to Iloxx, which confirms the payment and notifies the seller 106. The Web auction service 108 may also provide its own payment system that may be used by the winning bidder/buyer 105 to make payment as part of the checkout process 203. Under these circumstances, the Web auction service 108 on receipt of payment from the winning bidder/buyer 105 may confirm the payment and send an appropriate notification to the seller 106. The winning bidder/buyer 105 may also make payment arrangements directly with the seller 106 when the seller 106 offers this option. In this scenario, the winning bidder/buyer 105 makes arrangements for the payment and the seller 106 processes the payment on receipt from the winning bidder/buyer 105. In all the cases discussed above, the payment step is generally the second step following notification in the checkout process 203. Regardless of the form of financial service provider handling the payment for the winner (e.g., a third party payment provider or the Web auction service itself), the payment confirmation may be retrieved (i.e., pulled) by the auction application 100 from the financial service provider through a communication API with the financial service provider and/or the confirmation may be sent (i.e., pushed) from the financial service provider to the auction application 100. Once the confirmation is received, the auction application 100 may make a calculation to determine that the payment made (the actual payment) equals the expected payment from the listing. If there is a mismatch because of either an underpayment or an overpayment, the checkout process is incomplete and a resolution procedure may need to be executed. This resolution procedure may involve a manual resolution to the overpayment/underpayment. In another embodiment of the present invention, the checkout process 203 is conducted between the winning bidder/buyer 105 and the seller 106 through the auction application 100. This embodiment may be used when a seller 166 wants to leverage its own network-based (e.g., Internet-based) sales architecture and/or when the seller 106 wants to drive traffic to his/her own network-based (e.g., Web) site to potentially generate additional sales. The notification step differs slightly in that in addition to the notification by the Web auction service 108, the seller 106 may send a notification message (e.g., an email) to the winning bidder/buyer 105 referencing the checkout process for the listing. The seller 106 provided notification may expedite the checkout process 203 by including a URL with a secure ID for a checkout Web page (or other network-based site) that is particular to the listing and the winning bidder/buyer 105. For example, if the winning bidder/buyer 105 is not already a customer of the seller 106 and is not registered with the seller 106, a random secure ID may be used as part of the URL linking the winning bidder/buyer 105 with either a registration Web page (if the winning bidder/buyer 105 information is to be stored for future use) or to a checkout Web page (where the winning bidder/buyer 105 information will be used for a one-time transaction). The fields of the checkout Web page may be pre-populated with information from the listing and the Web auction service 108. If the winning bidder/buyer 105 is already a registered customer of the seller 106, a login page may be presented separately or a login required as part of a checkout Web page where fields are pre-populated as discussed above. FIG. 4b is a diagram illustrating a sample checkout Web page for a seller site (auction application) run checkout process according to one embodiment of the present invention. The checkout Web page 410 shown already assumes a winning bidder/buyer 105 has already logged in and can log off 411 at any time. A description of the listing 412 and details of the products in the listing 413 are shown along with a total cost 414 computed for the winning bidder/buyer 105 by the auction application 100 (i.e., the seller site). In addition, the winning bidder/buyer-specified billing information 416 and shipping information (not shown) along with payment information 415 is presented allowing the winning bidder/buyer 105 to review this information before providing it to the seller 106. FIG. 4c is a diagram illustrating a listing in the process of checkout in a sample listing management screen as part of the seller interface 103 according to one embodiment of the present invention. The listing management screen 420 may allow a seller 106 the ability to track information regarding all his/her finalized listings 421. Finalized listings 421 are shown in the listing management screen 420 with order information 423 specific to a selected listing shown in a tab 422 of the bottom pane of the screen 420. The payment information for the order 424 indicates that a payment by credit card 425 has been made and that it is still being processed 426. The payment step is handled by the auction application 100 (i.e., the seller site) according to this embodiment of the present invention. The auction application 100 may allow for direct payments or may use third party payment providers such as PayPal® and the Treuhandservice by Iloxx as discussed above. The auction application 100 may be configured to directly accept credit card payments requiring credit card processing to be provided in the auction application 100 or through the backend business information management system 120 either of which may need to communicate with an external clearinghouse to process the transactions. The auction application 100 may also allow cash or cash equivalent payments to be made in any technically feasible form. For example, the winning bidder/buyer 105 may authorize a wire or electronic cash transaction by providing his/her bank account and bank routing information to the seller 106 along with any necessary transaction authorization allowing the auction application 100 to generate an electronic transfer for the winning bidder's/buyer's credit. In another example, the auction application 100 may prompt (e.g., online or by sending a bill or invoice either electronically and/or by hardcopy) the winning bidder/buyer 105 to submit a check or money order in response to a winning bidder's/buyer's 105 request to make a cash payment. In one embodiment of the present invention, the auction application 100 may be configured to add the winning bidder/buyer 105 as a new customer (i.e., business partner) in the business information management system 120. For example, the winning bidder/buyer 105 and his/her associated information are added to the appropriate customer and other associated tables of the backend business information management system 120 creating a new customer master record. In particular, a unique customer (business partner) identifier is assigned to the new customer and it is linked (i.e., mapped) to a Web auction service identifier for the customer (e.g., in a lookup table or using associated key fields in a table) in the business information management system 120. According to this embodiment, the auction application 100 compares the winning bidder/buyer information with existing customer information in the business information management system 120. For example, the business information management system 120 is searched using the Web auction service identifier for the winning bidder/buyer 105. If the customer entry already exists, customer specific information may be retrieved and presented during the checkout process 203. For example, a winning bidder/buyer 105 may be presented with shipping address, payment information, etc. based on the information stored in the business information management system 120. The winning bidder/buyer 105 may then continue with this default information or may edit the appropriate entries and submit the necessary information. If the customer entry does not already exist, customer information may be added to the business information management system 120 as part of the checkout process 203. The mapping of a customer identifier to the Web auction service customer identifier in the business information management system 120 allows rapid searching for existing customers and prevents duplicating entries for the same customer. In an alternative embodiment of the present invention, the checkout process 203 is executed without saving the customer information in the business information management system 203—without creating a new customer entry or new customer master record. The customer information is still necessary as part of the checkout process 203, however, the customer information is not stored in a manner allowing it to be reused in further checkout processes. In this situation, one-time customer data may be stored in the information for the order but is not used to generate specific customer information separate from the order. Regardless of whether a new customer entry is created in the business information management system 120 (i.e., a new customer master record is created), an order needs to be created for each winning bidder/buyer 105 of a listing. The order is created primarily using the original listing information with additional information provide by the Web auction service 108 (e.g., winning bid or purchase price). A reservation may already have been created when the listing was first generated or published as part of a quotation of the quantity in the listing and, in this case, additional details may need to be added for the reservation. The pricing information for the order may include an overall price or may be broken down by product in multi-product listings. In addition, tax and shipping fees along with other fees may also need to be calculated and included in the order. This additional information may be provided by the Web auction service 108, calculated by the auction application 100, or may need to be generated or manually entered for the order. Shipping costs are normally included in the listing by: including a flat fee for shipping regardless of shipping destination within the region the seller 106 will ship to; the use of a Web auction service 108 shipping calculator to estimate shipping costs; or by not specifying the cost in the listing but specifying the shipping cost based on a selected delivery method during the checkout process (i.e., allowing the winning bidder/buyer 105 to select one of several shipping options during the checkout process 203). In any case, the order may need to allow for automatic and/or manual determination of shipping costs to handle the various possibilities. Tax costs may need to allow for the inclusion of U.S. sales taxes along with foreign value added taxes (VAT) such as the German Mehrwertsteuer (VAT). The auction application 100 and/or the business information management system 120 may include the integration of external tax packages such as those of Vertex, Inc. and Taxware to support these tax calculations. The total costs of the order are presented to the winning bidder/buyer 105 as previously discussed prior to the payment step in the checkout process 203. A delivery block (i.e., blocking the delivery of the product(s)) may be placed on the order until proper payment is received. The delivery step generally occurs after payment is made (the payment step) regardless of whether checkout occurs on the Web auction service 108 or through the auction application 100 (i.e., the seller site) according to the example embodiment. The product(s) are generally reserved when the listing is either first created, published, or activated on the Web auction service 108. The reservation of the product(s) may include the specification of the product(s) by location through the use of location specific fields such as plant, storage location, and/or shipping point in a warehousing or plant specific module of the business information management system 120. For example, the Warehouse Management (WM) module of the SAP® R/3® system may be used. After any delivery blocks are removed when payments are received, the product(s) are shipped according to the shipping method and to the shipping address as verified during the checkout process 203. A winning bidder/buyer 105 may be able, through the winning bidder/buyer interface 104, to check on the status of the order to include the shipping status if carrier tracking is provided by the business information management system 120. For example, SAP® Express Carrier configuration in the SAP® Internet Sales Architecture running on R/3® can provide detailed tracking of an order by handling units. In an alternative embodiment, delivery may be made before payment is received such as during payment processing or when selling on credit (i.e., an internal seller credit) to a winning bidder/buyer. Other steps in the checkout process 203 may include updating general accounting and financial information for the seller 106 based on a delivered and paid order. Additionally, the payment of fees to other external service providers may be necessary and may also need to be calculated and paid. For example, the Web auction service 108 will typically charge a fee for the listing which the seller 106 will need to pay if not already paid in advance. Additionally, the use of an external clearing house for a credit card order, PayPal®, and the Iloxx run Treuhandservice may also need to be paid for by the seller 106 as appropriate. The billing of these fees may or may not be automated and may occur outside the immediate checkout process between the winning bidder/buyer 105 and the seller 106. Alternatively, the payment of these fees may be required in conjunction with the checkout process 203. For example, the Web auction service 108 fee may need to be paid as part of the checkout process 203. Feedback: A Web auction service 108 may allow a winning bidder/buyer 105 to leave feedback regarding a seller 106 and for a seller 106 to leave feedback regarding the winning bidder/buyer 105 on the Web auction service 108. The auction application 100 as part of its scheduled processes may retrieve feedback left by winning bidders/buyers 105 regarding the seller 106. This information may then become available to the seller as part of the monitoring and analyzing process 204 discussed below. In addition, the seller 106 may generate and leave feedback with the Web auction service 108 regarding the winning bidder/buyer 105. This feedback may also be stored by the auction application 100 either in a database 117 or in the business information management system 120 along with the customer information so that it is available for future use. The seller feedback available on the Web auction service 108 may be used by other bidders/buyers 105 when deciding whether to bid on or to make a purchase from a seller's listings. In a similar manner, bidder/buyer feedback available on the Web auction service 108 may be used by other sellers in determining what forms of payment to accept and whether to accept the bids/offers of a bidder/buyer 105. Monitoring And Analyzing Listings: The fourth step in the enhanced network-based auction process is the monitoring and analyzing of listings 204 according to one embodiment of the present invention. The monitoring and analyzing of listings 204 may occur in parallel throughout the entire process and is not sequentially dependent on any of the other steps in the process as outlined. As the name implies, the monitoring and analyzing step 204 allows a seller to both monitor listings and perform analysis on the listings through the seller interface 103 of the auction application 100. The seller interface 103 may allow the seller 106 the ability to monitor listings according to a number of parameters. For example, the seller 106 may view all his/her listings, only published listings, closed listings, etc. FIG. 5a is a diagram illustrating a seller interface display allowing a seller to monitor his/her listings according to one embodiment of the present invention. The monitoring screen 500 allows the seller 106 to view particular types of listings 501, in this case “failed to publish” listings. The seller 106 may also conduct a search 502 and may specify the field 503 by which the listings are sorted or displayed. In this case, the listings are those that have “failed to publish” 501 and are organized by listing name 504. A listing title 505 and scheduled publication date 506 are also included along with the listing status 507—in this case “Errors” for the listings that have failed to publish. Clicking on the error field 507 (i.e., the status field) allows the seller 106 to display details 508 about the listing that have caused the particular status. Regarding the selected listing shown, the error causing the failure to publish the listing is the inability to reserve the product selected for the listing. As previously stated, reserving the product or creating a quotation may occur to ensure that the product isn't otherwise disposed of, as this case shown in FIG. 5a indicates. Additional listing information may also be available through the monitoring display. For example, other listing details, highest bidder information, and bidder information may also be available from information in the auction application 100, database 117, or downloaded (retrieved) from the Web auction service 108 through a scheduled process as previously discussed. As shown in FIG. 5a, a seller 106 may be able to conduct a search of his/her listings limiting the information displayed and facilitating the monitoring process. FIG. 5b is a diagram illustrating a seller interface display allowing a seller to search his/her listings as part of the monitoring process according to one embodiment of the present invention. The display screen 510 shows a basic search returning a group of listings organized and sorted by listing name 504. The basic search field 511 allows a seller 106 to view open listings, active listings, finalized listings, and closed listings according the example depicted in FIG. 5b but does not have to be limited in this manner. The listings are also sorted by name 512 as they were in FIG. 5a. In addition, a search term “Laptop1” 513 is used to limit the returned listings to those containing a “Laptop1” product. In addition to the listing description 505 and status 507, the start date 515 and end date 517 for the listings are also displayed. Selecting a. listing by clicking on the name 504 may result in the display of the product details 517 for the listing according the example depicted in FIG. 5b. A seller 106 may also be provided the option to conduct an advanced search 514 if the basic search is not sufficient. FIG. 5c is a diagram illustrating the advanced search designation screen of the seller interface according to one embodiment of the present invention. The advanced search screen 520 allows the seller 106 to specify more detailed search parameters including a listing name 521 and a product name 524 for which wild cards may be used in the name specification. A start date range 522 and an end date range 523 for the listing search may also be specified as well as selecting listings by those for which a reserve price 525 and those with an automatic bid increment 526 are included. FIG. 5c is only one example and different and/or more detailed advanced searching options may be presented to the seller 106. In addition to searching listings and viewing their status, current listing information may also be viewed by the seller 106 as part of the monitoring process 204. FIG. 5d is a diagram illustrating the viewing of bidding information for an auction listing according to one embodiment of the present invention. For a selected listing in the search screen, bidding information 531 can be viewed by selecting a “Bids Placed” tab 532 according to example depicted in FIG. 5d. The bids specify the bidder 533 but are organized by the latest bid placed according to the time of the bid 534 and include the bid amount 535. Other listing information may also be displayed including, for example, a start price 537, a specified reserve price 536, and a bid increment 538 if one is specified. FIG. 5d is an example of the Web auction service 108 data that can be periodically retrieved by scheduled process, copied to the auction application 100, and made available to the seller 106 as part of the monitoring and analyzing process 204. In addition to the monitoring functions described above, the seller interface 103 may also provide analysis such as tracking statistics based on a listing history of the seller. A seller may be provided an interface to generate reports based on seller specified listing parameters with the reports generated using data from the seller's listing history. These reports can determine, for example, overall profitability of listings, listing success rates, product demand, demand-to-price analyses, and location based demand analyses. According to one embodiment of the present invention, the analytical reporting available through the seller interface 103 of the auction application 100 may be provided using the SAP® BW reporting tool. Examples of analytical statistics that may be collected/tracked and made available to a seller may include the top n successfully/unsuccessfully closed listings based on either revenue generated and/or time period. According to this example, analytical information regarding the amount of revenue generated or revenue that could have been earned (but failed to earn due to unsuccessful listings) over a certain period of time may be provided. The presentation or selection of this information may be further refined according to a seller's business unit/department/division or other such grouping categories. In addition to listing revenues and listings over time, other examples of analytical information may include information for relistings (reposted listings), the most listed categories and/or products, the most failed listings by category and/or product, the number of relistings by category and/or product, the return on investment per listing, etc. The above examples make apparent that a wide variety of analytical information and statistics may be tracked and made available to a seller according to this embodiment of the present invention. Alternative embodiments of the present invention may provide additional or alternative features to those described above. In an alternative embodiment, the seller interface 103 may include a personalized homepage that may have a different login for each user and/or role. When a user (for instance seller 106) logs in, information may be provided showing tasks and listing status for the seller. The personalized homepage may be viewed and/or accessed from the SAP® R/3® or CRM seller side or elsewhere, and may provide information by default such as, for example, current listings, listings scheduled to be published, and recently closed listings. Prior listings may also be republished using the personalized homepage. The personalized homepage may allow for customized name searches, and may be used with a system such as an SAP® ERP (Enterprise Resource Planning) system or SAP® R/3®. The personalized homepage may provide the user with highlights of the listing information and may grab information (in particular, user-requested information) from a backend system such as the business information management system 120. For example, if a holiday is approaching, a seller may schedule now (in advance) to publish to the Web auction service 108 on the holiday. When the seller logs in, a list of what will be published and what has been published may be displayed, as well as any problems with either of the published listings or the yet-to-be published listings. This information may be displayed in a predefined field or, alternatively, may be time-dependent information. For time-dependent information, specific criteria may be defined and set-up. A user may create a login script or scenario including as many fields as may be included in a query, which may run each time the user logs in. The user may also name particular searches and save a set of searches accessible from the personalized homepage. A user may edit the personalized homepage to show only what they wish to view, for example, a list of auction items sold. One example method for performing the personalization process may include making an advanced query with different fields. The different fields may include product name, status of listing, publication status (including closed and checked out), and published in a certain date range. The backend system (e.g., SAP® R/3® or other ERP system) may receive the queries though hyperlinks which a seller may click on in the personalized homepage causing a query to execute on the backend system with the query results being displayed to the user. These queries may be saved to the system (as part of the hyperlink or otherwise) and may be executed when the user logs in. Clicking a hyperlink may result in the display of specific information relating to the listings satisfying the query. Queries may be named to allow the user to execute any number of queries. The queries results may include more detailed information on the products in the listing as well. The personalized homepage may be set up using the business information management system 120, for instance an SAP® R/3® system or SAP® ERP system, or other backed system. The quantity of a product and the number of products that the seller wants to place in the listing may identified in the business information management system 120 (e.g., marking a field) which may then be used in a query in the personalized homepage of the auction application 100. For example, a business warehouse system (for instance, the BW system from SAP®) search may provide such saved information in response to a personalized homepage query. According to this embodiment queries may be predefined or customized by the seller or user in the personalized homepage. An alert system may also be included using the queries in order to alert the seller as to which products are ready for listing. The resulting query may display the product and other selected listings on a screen before a new listing is generated. The information may be stored in the backend system (e.g., an ERP system, SAP® R/3®, or SAP® BW). When a user logs into a system, a query may be executed based on a predefined query (which may have been created by the user) with respect to an application status. For example, the query may communicate with a database in the backend of an ERP system. The query may use links or hyperlinks to communicate with a database for information. This query system may provide a flexible system for a user setting-up a homepage. Listing Themes: A seller 106 may also define a listing theme providing a distinct look and feel to the listing of a seller 106 during the listing creation and publishing in the listing processing 202 step in the enhanced network-based auction model. This may help promote brand identity or seller identity by ensuring a consistent look and feel for seller listings on the Web auction service 108. Listing themes may consist of standard HTML with links to images and embedded styles included for the customization in the presentation of a seller's listings. Using embedded links in the HTML requires that the linked images and styles also be available to the Web auction service 108 so that the listing theme can be displayed properly with all its components available. Listing themes may only be implemented where a Web auction service 108 allows seller specified theme information to be displayed. A listing theme is generally first created in a display language such as HTML using a specific editor (e.g., an HTML editor) or a text editor. This function may be available through the seller interface 103 or the seller may import a document (e.g., an HTML document) created outside the auction application 100. A listing theme may be created in the auction application 100 according to one embodiment of the present invention or, alternatively, may be directly sent to the Web auction service 108, where the Web auction service 108 provides support for such themes. Placeholder sections inside the HTML document indicate areas where substitute text for the listing will be included—listing information will be copied into the placeholder area. Listing themes are composed conceptually as an entire body of HTML, within which various sections of relevant listing information, such as listing description, shipping information, or payment details, reside. Certain sections of the listing information, such as listing description, may vary constantly depending on the product, while others such as shipping information, return policies, and payment information may be relatively static. Conceptually, themes can consist of various static and dynamic page sections that in aggregate compose the actual listing theme. Currently these sections may include the header, sales policy, shipping policy additional information as shown below. THEME HEADER PRODUCT DESCRIPTION SALESPOLICY SHIPPING POLICY ADDITIONAL INFORMATION A listing theme layout generally conforms to the following visual representation according to this embodiment. Listing themes may be stored either as a full HTML document or as an HTML document fragment. A full HTML document would be demarcated with the requisite HTML start and end tags as well as the attending head and body tags. An HTML document fragment would need only the start and end tags of the whole of the fragment to match. The document fragment start and end tags should preferably also be designated block level tags such as table, div or p. An optional embedded style section can also be inserted to the beginning of the document fragment if the seller 106 intends to employ styles for customizing the display. The examples below display both an HTML document and document fragment: <!-- BEGIN HTML DOCUMENT --> <html> <head> <style type=”text/css”> a.link { text-decoration: none !important} a.hover { text-decoration: underline !important} </style> </head> <body> <table> <tr> <td><a href”...”>...</a></td> </tr> </table> </body> </html> <!-- END HTML DOCUMENT --> <!-- BEGIN DOCUMENT FRAGMENT --> <style type=”text/css”> a.link { text-decoration: none !important} a.hover { text-decoration: underline !important} </style> <table> <tr> <td><a href”...”>...</a></td> </tr> </table> <!-- END DOCUMENT FRAGMENT --> Although the Web auction service 108 may accept both full HTML documents and document fragments, the preferred method is to use document fragments according to this embodiment. Inserting themes as document fragments into a Web auction service 108 listing page normally results in valid HTML. When entire HTML documents are inserted, the result may be a non-valid HTML page because there would be more than one start and end html tags. Depending on how sensitive the bidder/buyer 105 browser is to HTML errors, the effect may lead to an unintentional or undesirable display. Special tags may be used within listing themes to demarcate placeholders within the HTML, which the auction application 100 or Web auction service 108 will substitute with corresponding field values pertinent to the listing. The format of the placeholder will standardize on syntax derived from the current JSP specification and/or the HTMLb tag service. The placeholder uses a general XML namespace: tag name format. For example, the placeholder for the listing product title may be written as follows: <h1><sap:product_title/></h1> In this example, SAP® is the XML namespace and product_title denotes the tagname. Both monikers taken together as the tag represent a placeholder that the auction application 100 or Web auction service 108 will remove and replace with the stored value corresponding to the product title. Other placeholders for the remaining fields will work in a similar manner. The actual listing theme may be composed using a document fragment consisting of an HTML table, the contents of which constitute the theme that will be displayed as part of the listing on the Web auction service 108. Providing a further example, valid HTML code for a listing theme can appear as the following: <!-- START LIST THEME --> <table cellpadding=”0” cellspacing=”0”> <tr> <td> <h1><sap:product_title/></h1> </td> </tr> <tr> <td> <h1><sap:product_description/></h1> </td> </tr> </table> <!-- END LIST THEME --> This fragment can be inserted into the Web auction service 108 listing page when the listing is published. The fragment may contain links to images and other resources outside of the Web auction service 108. If this is the case, these linked images and other resources must be made externally available to the Web auction service 108 in order for the listing theme to display correctly. It may be the responsibility of the seller 106 to ensure this occurs as the auction application 100 may not be able to determine these components if the listing themes are not generated in the auction application 100. Note that the starting and ending HTML comments are optional, but desirable for formatting and development purposes. The following is an example of a user-defined tag and template implementation of a listing theme: <!-- BEGIN USER-DEFINED TAG --> <style type=”text/css”> a.link { text-decoration: none !important} a.hover { text-decoration: underline !important} </style> <table> <tr> <td><sap:include value=”productImage2”/></td> </tr> </table> <!-- END USER-DEFINED TAG --> <!-- BEGIN EXAMPLE OF USER-DEFINED TEMPLATE --> <sap:include value=”defaultStyleFragment”/> <table> <tr> <td><sap:include value=”productImage2”/></td> </tr> </table> <!-- END EXAMPLE OF USER-DEFINED TEMPLATE --> Persistence: In one example, the SAP® database (DB) 117 is a software application that works with the J2EE™-based SAP® Web application server used in the example embodiment depicted if FIGS. 1a, 1b, and 1c. SAP® DB may serve as the persistence database for the auction application 100 according to one embodiment of the present invention. In other words, data entries are made to the SAP® DB database 117 in order to ensure the persistence of the data received from and transferred to either the Web auction service 108 or the backend business information management system 120. Method Flowchart: FIG. 6 is a flowchart illustrating an exemplary method according to one embodiment of the present invention. The flow in FIG. 6 begins in start circle 60 and proceeds to action 61, which indicates to provide a network-based auction service that has a forward-only process that is adapted to prevent roll-back to a process state at a time of a failure. From action 61, the flow proceeds to action 62, which indicates to provide an automatic failure recovery transaction in an auction application interacting with a network-based auction service. From action 62, the flow proceeds to action 63, which indicates to automatically conduct a roll-back to a beginning of the forward-only process by the auction application if the failure occurs within the forward-only process. From action 63, the flow proceeds to end circle 64. | <SOH> BACKGROUND <EOH>The present invention relates to a method and system for implementing enhanced network-based auctions and postings-for-sale. In one embodiment of the present invention, the enhanced auctions and postings-for-sale are implemented over the Internet. Businesses have traditionally been limited in their opportunity to dispose of their old inventory and used assets. Oftentimes, businesses have scrapped these items, generating no revenue return, or have relied on brokers to dispose of them in a manner generating revenue for the business. In turn, these brokers often use auctions as one means of disposing these assets or inventory while attempting to maximize the revenues that can be generated. These broker auctions may be limited to specific customers for particular types of items or the auctions may be open to all potential bidders. In the first case, a broker may want to limit the auction where the potential pool of actual customers is limited or where allowing an open auction may, in some manner, hinder the auction process. In the latter case, where the auction is open to all potential bidders, it is often beneficial to maximize the number of people participating in the auction in order to extract the greatest price for the asset being auctioned. The problem in this latter case has been in attracting a large enough auction audience to facilitate a maximization of the return on the disposing of the asset. The advent of the Internet along with the accompanying revolution in computer and network technology has created new auction paradigms, including several forms of network-based auctions. The Internet provides the ability to aggregate large numbers of bidders in all types of auctions, such as, for example, ascending bid auctions, reverse auctions, and Dutch auctions. Priceline.com® is an example of a traditional reverse auction process made available over the Internet. In another example, eBay® provides a traditional ascending bid auction service over the Internet. An eBay® type ascending bid auction is ideally suited for the broker auction process discussed above. Since its founding in 1995, eBay® has become the world's largest online marketplace providing a powerful platform for the sale of goods and services among a passionate community of individuals and businesses. Everyday, millions of items across thousands of categories are available on eBay®, for sale by auction and for a fixed price, enabling trade on a local, national, and international basis with customized Internet Web sites in markets around the world. Businesses have typically kept their information, including information regarding the assets and inventory they wish to sell or auction off, in database systems that are part of their corporate information systems. For example, SAP® A.G. of Germany provides data management tools such as their SAP® (R/3® and my SAP™ Customer Relationship Management (CRM) system that can manage this type of information. Conventional systems do not provide the automatic linking between these business information management systems and online Web auction services, such as eBay®, and, therefore, manual involvement with the Web auction service is required for each auction or sales posting conducted. Providing a system linking business information management systems with a Web auction service and automating the auction submission, tracking, and post-auction processing will considerably improve the ability of businesses to sell or auction off assets, such as current or old inventory, in a manner allowing greater price maximization, and thereby increasing business revenue. | <SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>FIG. 1 a is a diagram illustrating the high level architecture of the enhanced network-based auction service according to one embodiment of the present invention. FIG. 1 b is a diagram further illustrating the architecture of the auction application according to one embodiment of the present invention. FIG. 1 c is a diagram further illustrating the architecture of the auction application according to one embodiment of the present invention. FIG. 2 is a diagram illustrating a top-level abstraction of the enhanced network-based auction process according to one embodiment of the present invention. FIG. 3 a is a diagram illustrating the product identification process according to one embodiment of the present invention. FIG. 3 b is a diagram illustrating a computer graphical user interface (GUI) for creating a listing according to one embodiment of the present invention. FIG. 3 c is a diagram illustrating the specification of listing information in the seller interface of the auction application according to one embodiment of the present invention. FIG. 3 d is a diagram illustrating a listing published on a Web auction service according to one embodiment of the present invention. FIG. 3 e is a diagram further illustrating a listing published on a Web auction service using seller provided information from the auction application according to one embodiment of the present invention. FIG. 3 f is a diagram illustrating the incorporation of shipping and payment information in a listing from a seller-defined shipping profile according to one embodiment of the present invention. FIG. 4 a is a diagram illustrating how forms of payment may be specified in a listing and how selection of one form of payment links a winning bidder/buyer to an appropriate payment site according to one embodiment of the present invention. FIG. 4 b is a diagram illustrating a sample checkout Web page for a seller site (auction application) run checkout process according to one embodiment of the present invention. FIG. 4 c is a diagram illustrating a listing in the process of checkout in a sample listing management screen as part of the seller interface according to one embodiment of the present invention. FIG. 5 a is a diagram illustrating a seller interface display allowing a seller to monitor his/her listings according to one embodiment of the present invention. FIG. 5 b is a diagram illustrating a seller interface display allowing a seller to search his/her listings as part of the monitoring process according to one embodiment of the present invention. FIG. 5 c is a diagram illustrating the advanced search designation screen of the seller interface according to one embodiment of the present invention. FIG. 5 d is a diagram illustrating the viewing of bidding information for an auction listing according to one embodiment of the present invention. FIG. 6 is a flowchart illustrating an exemplary method according to one embodiment of the present invention. detailed-description description="Detailed Description" end="lead"? | 20050103 | 20110125 | 20060105 | 96681.0 | G06F1760 | 0 | SHAIKH, MOHAMMAD Z | METHOD AND SYSTEM FOR A FAILURE RECOVERY FRAMEWORK FOR INTERFACING WITH NETWORK-BASED AUCTIONS | UNDISCOUNTED | 0 | ACCEPTED | G06F | 2,005 |
|
11,026,363 | ACCEPTED | Accumulation table | An accumulation table is disclosed. The accumulation table includes a frame, a first conveyor, a second conveyor, and an adjustable discharge chute. Each conveyor has a U-shaped product carrying section on the top of the frame and an arcuate return section located on the bottom of the frame. Some embodiments further include non-linear tracks located between two conveyor chains to direct one of the conveyor chains towards the adjustable discharge chute. | 1. An accumulation table comprising: a. a frame having a top and a bottom; b. a plurality of track rows, each of said said plurality of track rows including a plurality of spacers mounted to said top of said frame, a plurality of track sections mounted to said plurality of spacers, and a corresponding plurality of wear strips connected to said plurality of track sections; c. a first conveyor having a first straight section, a second straight section, a C-shaped product carrying section located on said top of said frame, and a C-shaped return section located on said bottom of said frame, said first conveyor including a plurality of conveyor chains in sliding contact with at least two of said plurality of track rows; d. a second conveyor having a third straight section, a fourth straight section, a C-shaped product carrying section located on said top of said frame, and a C-shaped return section located on said bottom of said frame, said fourth straight section of said second conveyor located adjacent to said first straight section of said first conveyor, said second conveyor having a plurality of conveyor chains in sliding contact with at least two of said plurality of track rows; e. an adjustable discharge chute connected to said frame, said adjustable discharge chute including a first guide and an adjustment member movable relative to said first guide; and f. said plurality of track rows including at least two parallel non-linear track sections, said at least two parallel non-linear track sections adapted to direct one of said conveyor chains towards said adjustable discharge chute. 2. The accumulation table according to claim 1, wherein said first conveyor and said second conveyor operate at different speeds. 3. The accumulation table according to claim 1, further comprising a guide rail mounted to said frame. 4. The accumulation table according to claim 1, further comprising a return shoe operatively connected to said bottom of said frame and in sliding engagement with said C-shaped return section of said first conveyor or said second conveyor. 5. The accumulation table according to claim 1, further comprising at least one sprocket adapted to drive said first conveyor or said second conveyor, said at least one sprocket located where said product carrying section meets said return section. 6. The accumulation table according to claim 1, an upstream conveyor adjacent one of said first conveyor or said second conveyor. 7. The accumulation table according to claim 1, a downstream conveyor adjacent one of said first conveyor or said second conveyor. 8. The accumulation table according to claim 1, an upstream conveyor in-line with one of said straight sections. 9. The accumulation table according to claim 1, a downstream conveyor in-line with one of said straight sections. 10. The accumulation table according to claim 1, further comprising a clamp for securing said adjustment member. 11. The accumulation table according to claim 10, wherein said clamp is comprised of a hand knob and threaded rod. 12. The accumulation table according to claim 1, wherein said at least two parallel non-linear track sections creates a gap between two of said conveyor chains. 13. The accumulation table according to claim 12, further comprising a component mounted to said frame at said gap. 14. The accumulation table according to claim 13, wherein said component is selected from the group consisting of a guide rail, a gate, and said adjustable discharge chute. 15. The accumulation table according to claim 12, further comprising a plug for insertion into said gap. 16. The accumulation table according to claim 15, further comprising a component operatively connected to said plug. 17. The accumulation table according to claim 16, wherein said component is selected from the group consisting of a guide rail, a gate, and said adjustable discharge chute. 18. The accumulation table according to claim 1, further comprising a gate mounted to said frame and adapted to block said adjustable discharge chute. 19. The accumulation table according to claim 18, wherein said gate has a first sliding member and a second sliding member. 20. The accumulation table according to claim 19, further comprising a first actuator connected to said first sliding member and a second actuator connected to said second sliding member. 21. The accumulation table according to claim 20, wherein said first actuator and said second actuator are pneumatic. 22. The accumulation table according to claim 20, wherein said first actuator and said second actuator are hydraulic. 23. The accumulation table according to claim 20, wherein said first actuator and said second actuator are electro-mechanical. 24. The accumulation table according to claim 20, further comprising a gate controller connected to first actuator and said second actuator. 25. An accumulation table comprising: a. a frame having a top and a bottom; b. a first conveyor comprised of a first set of conveyor paths and a corresponding first set of a plurality of conveyor chains, said plurality of conveyor chains providing a U-shaped product carrying section on said top of said frame and an arcuate return section on said bottom of said frame; c. a second conveyor comprised of a second set of conveyor paths and a corresponding second set of a plurality of conveyor chains, said plurality of conveyor chains providing a U-shaped product carrying section on said top of said frame and an arcuate return section on said bottom of said frame; d. an adjustable discharge chute connected to said frame, said adjustable discharge chute including a first guide and an adjustment member movable relative to said first guide; e. said first set of conveyor paths or said second set of conveyor paths being formed by at least two parallel non-linear track sections, said at least two parallel non-linear track sections adapted to direct one of said conveyor chains towards said adjustable discharge chute; and f. a gate mounted to said frame and adapted to block said adjustable discharge chute, said gate having a first sliding member and a second sliding member interconnected with said first sliding member, and wherein said second sliding member slides in a direction opposite of said first sliding member. 26. The accumulation table according to claim 25, wherein said first conveyor and said second conveyor operate at different speeds. 27. A modular accumulation table comprising: a. a first section having a first end and a second end opposite said first end, said first section having a straight frame portion, said straight frame portion having a top and a bottom, a plurality of spacers mounted on said top of said straight frame portion, and a plurality of tracks mounted to said plurality of spacers; b. a second section comprising an arcuate frame portion, said second section mounted to said first section at said first end, said arcuate frame portion having a top and a bottom, a plurality of spacers mounted to said top of said arcuate frame portion, and a plurality of arcuate tracks mounted to said plurality of spacers; and c. a third section comprising an arcuate frame portion, said third section mounted to said first section at said second end, said arcuate frame portion having a top and a bottom, a plurality of spacers mounted to said top of said arcuate frame portion, and a plurality of arcuate tracks mounted to said plurality of spacers. 28. The modular accumulation table according to claim 27, further comprising at least one other section adapted for mounting intermediate said first section and said third section. 29. A method of assembling an accumulation table, the method comprising the steps of: a. providing a frame having a top and a bottom; b. connecting a plurality of spacers to said top of said frame; c. connecting a plurality of track sections to said plurality of spacers; d. connecting a plurality of wear strips to said plurality of track sections; e. longitudinally connecting a plurality of non-linear tracks to said plurality of track sections; f. placing a plurality of conveyor chains in sliding contact with said plurality of wear strips to form a first conveyor, said first conveyor having a first straight section, a second straight section, a C-shaped product carrying section located on said top of said frame, and a C-shaped return section located on said bottom of said frame; g. placing a plurality of conveyor chains in sliding contact with said plurality of wear strips to form a second conveyor, said second conveyor having a third straight section, a fourth straight section, a C-shaped product carrying section located on said top of said frame, and a C-shaped return section located on said bottom of said frame, said fourth straight section of said second conveyor located adjacent to said first straight section of said first conveyor; and h. connecting an adjustable discharge chute to said frame, said adjustable discharge chute including a first guide and an adjustment member movable relative to said first guide. 30. The method according to claim 29, further comprising the steps of: a. locating a plug located intermediate at least two conveyor chains and proximate to at least one of said plurality of non-linear tracks; and b. mounting said plug to at least one of said plurality of track sections. | CROSS-REFERENCE TO RELATED APPLICATIONS Not Applicable. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to accumulation tables and, more particularly, to dynamic accumulation tables. 2. Related Art A production line, such as a packaging line, is a series of machines. If the production line is designed without accumulation, the entire system would stop each time any piece of equipment stops. For example, if a machine is stopped for maintenance, then a production line without accumulation would require a complete shutdown of the entire line. Further, one machine may operate at a different speed from another. Without a means to compensate for the difference in operating speeds, machines would have to be turned on and off to adjust for the difference in cycle times. Therefore, accumulation greatly increases system efficiency and profitability. Accumulation in the packaging industry is defined as having a reserve of containers between consecutive machines or a reserve of space to accumulate containers to provide for the inevitable machine stops. Accumulation is generally achieved with conveyors or with accumulation tables. The population, or density, of containers upstream and downstream of any machine, combined with the speed of each machine determines the amount of accumulation required. In general, dynamic accumulation is accomplished through conveyors located between machines. Usually, a specified number of conveyors having a preconfigured width and speed are used for a given population rate. This approach requires large amounts of floor space and care must be used to control line pressure as the containers accumulate on the conveyors. Line pressure as understood in the packaging industry means the pressure placed on each container on the conveyor resulting from a large number of containers being forced together in a small area. If the number of containers entering the conveyor increases without simultaneously increasing the number of containers exiting the conveyor, line pressure results as the containers are forced against one another. Excessive line pressure can lead to scuffing of container labels and even breakage of some containers. Another accumulation device is the bi-flow table. A bi-flow table has conveyor chains that run in opposite directions to re-circulate the containers. This approach has its limitations due to the noise and label damage generated by container-to-container contact during the re-circulating process. Lastly, a loop system utilizes conveyors arranged in a loop configuration to re-circulate the containers and provide accumulation. In this system the containers that are not required by the downstream machine are sent on the re-circulating loop and merge again with the flow of incoming containers. A particular drawback of the loop system is that it is not easily reconfigured. For example, if greater accumulation is required, the loop system cannot easily be expanded. Further, most loop systems utilize a single continuous looped conveyor chain. Because there is only a single conveyor chain, containers must enter and leave the loop system at the same speed. In other words, containers maintain a constant speed on the loop system. Because the containers maintain a constant speed, it is not possible to have containers exit the loop system faster than containers enter, or vice versa. Most loop systems have a gate adjacent the discharge area. The gate is used to prevent discharge and force the containers into an accumulation area. A problem associated with typical gates is that usually one or more containers in transit within the discharge area of the table when the gate begins to close. Therefore, most conventional systems will encounter some jams from time to time due to having a container stuck between a flow separator and the gate. The common solution to this problem is to move the gate rapidly and attempt to close the gate between two containers. However, this can cause containers to become unstable and fall, thus causing even more jams. Accumulation tables offer a more efficient alternative in terms of floor space utilization. However, typical accumulation tables have the same constraints as the conveyor systems with regards to line pressure, the inability to handle tapered containers, and a requirement to single-file the containers separately from the accumulation device. Further, most accumulation tables utilize custom components which increases costs of production and maintenance. Further, most accumulation tables and the majority of loop systems lack adequate space to clean underneath the product conveying chains. As such, chain conveyor wear strips are difficult, if not impossible, to adequately clean. Additionally, most accumulation tables lack a mounting space for the gate. Typically, a complex structure is attached to the sides or bottom of the accumulation table for mounting the gate above the conveyor chains of the accumulation table. In other words, the gate must be hung above the conveyor chains. This type of mounting is inherently weak and expensive. There remains a need in the art for an accumulation table that provides for low pressure dynamic accumulation. Further, there remains a need in the art for an accumulation table that is scalable and which may operate at different container entry and exit speeds. Additionally, there remains a need in the art for an accumulation table that provides clearance for cleaning the conveyor chains, track sections, and associated wear strips. Finally, there remains a continuing need in the art to reduce the costs associated with the production and maintenance of accumulation tables. SUMMARY OF THE INVENTION The invention is an accumulation table having two independent conveyors. The accumulation table is used to move and accumulate containers. Each conveyor has a U-shaped product carrying section. The U-shaped product carrying sections are nested together such that the straight sections of each “U” are contiguous with one another. Further, adjacent portions of the U-shaped product carrying sections are capable of carrying containers in the same direction. In this manner, the U-shaped product carrying sections cooperate to move the containers. With the assistance of guide rails, the two independent conveyors can move containers from a feed side to a discharge side or accumulate containers for later discharge. The speed of each conveyor is independently adjustable. As such, the conveyors may move containers at the same speed or one conveyor may move containers at a faster rate than the other. This is significant because the difference in speeds allows for “catching up” the production line. For example, if a machine on the discharge side is down temporarily for maintenance, containers will accumulate on the accumulation table. Once the machine is again placed in operation, the conveyor on the discharge side of the accumulation table can be accelerated such that containers are discharged faster than containers are fed onto the accumulation table. As such, the production line can be “caught up” without stopping a machine on the feed side of the accumulation table. Each conveyor is formed by parallel track sections and conveyor chains that ride between adjacent track sections. The track sections are mounted to a frame of the accumulation table. Spacers may be used to mount the track sections at a height above the frame. Further, removeable wear strips may be placed between the track sections and the conveyor chains. The wear strip is used to prevent wear to the track section or the conveyor chain. Generally, the track sections conform to the shape of the frame. As examples, the track sections may be straight to correspond to a straight portion of the frame, or the track sections can be arcuate to correspond to an arcuate section of the frame. However, the track sections also can be designed to “split” apart the conveyor chains. Put another way, the track sections can be designed such that adjacent conveyor chains are directed away from one another. Splitting the conveyor chains provides two functions. First, splitting the conveyor chains create spaces or gaps between the conveyor chains. The gaps can be used for mounting items to the top of the accumulation table. As examples, a guide rail, a discharge chute, or a gate may be mounted to the top of the bed frame at the gaps. In some embodiments, a plug is inserted into the gap to maintain a plane of the first conveyor or the second conveyor. Additionally, items may be mounted to the plug. Second, splitting the conveyor chains slightly redirects the conveyor chains such that containers on the accumulation table are separated. For example, two containers traveling next to one another on adjacent conveyor chains will separate as the containers encounter the “split” area next to the discharge chute. The separation between the two containers is used to direct one container towards a re-circulation area and the other container towards the discharge chute. As such, one conveyor chain carries one of the containers into the discharge chute while the other conveyor chain carries the other container to the re-circulation area. By changing the direction of the moving container, but not the speed, an incredibly stable transfer from the accumulation area to the discharge area is achieved. The accumulation table is modular. The accumulation table is formed by assembling at least three modules. A first module provides the center of the accumulation table and the straight sections of the “U.” A second module which is arcuate, or C-shaped, connects to a first end of the first module. A third module which is arcuate, or C-shaped, is attached to a second end of the first module and opposite the second module. Because the accumulation table is modular, it can easily be broken down for shipping. Moreover, the modular accumulation table may easily be expanded. In other words, the accumulation table is scalable. For example, if a production line requires greater accumulation of containers, the present invention can easily be modified to expand its capacity. To expand the accumulation table, one or more straight modules similar to the first module are inserted between the first module and the second module or the first module and the third module. Inserting additional modules will extend the length of the accumulation. The greater the length of the accumulation table, the greater its capacity to accumulate containers. In this manner, an existing accumulation table may be expanded without significant expense or effort. The accumulation table includes an adjustable discharge chute. Containers are discharged through the discharge chute. The needs of a production line may vary, and production lines do not always manipulate the same containers. Sometimes the production lines have runs of differently sized product containers. Therefore, the accumulation table has an adjustable discharge chute to accommodate runs of differently sized containers. In general, a worker will adjust the width of the discharge chute for a particular container before a run begins. When the run is completed and before a new run begins, the worker will readjust the width of the discharge chute, if necessary. The adjustable discharge chute has a sliding member which is moved to adjust the width of the discharge chute. The sliding member has several preconfigured slots. The sliding member slides along the slots to maintain a proper orientation. The worker loosens a clamp, slides the sliding member to the appropriate width for a particular container, and re-locks the clamp. As an example, the clamp may be a hand knob mounted on a threaded rod. The accumulation table also includes a dual member gate for each discharge chute. If the containers have to be re-circulated due to a downstream stop, the first gate member is closed. The movement of the first gate member follows the direction of travel of the containers and travels essentially at the same speed as the containers. In this manner, the containers are gently diverted onto the re-circulation area of the accumulation table. After the first gate member has been closed, a second gate member is activated and slides in a direction opposite of the first gate member. Once the second gate member is in place, the first gate member is retracted. The containers continue to be re-circulated so long as the second gate member is in place. Once the downstream operation is back in production, the second gate member is opened. The movement of the second gate member follows the direction of travel of the containers and travels essentially at the same speed as the containers. As such, the containers in contact with the second gate member continue onto the re-circulation area of the accumulation table and the following containers will be free to enter the discharge path without causing container instability or down containers. Finally, the accumulation table allows for end discharge and end feeding in addition to side discharging or feeding. The configuration of the two independent conveyors conveniently provides for the possibility of end discharging, end feeding, side discharging, side feeding, or some combination thereof. Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein: FIG. 1 is a top view of the accumulation table; FIG. 2 is a top view of the downstream conveyor in an alternative configuration; FIG. 3 is a perspective view of the partially assembled accumulation table; FIG. 4 is a detailed perspective view of the frame of the accumulation table; FIG. 5 is a sectional view illustrating the conveyor chain; FIG. 6 is a top view of an alternate embodiment of the accumulation table; FIG. 7 is a bottom view of the accumulation table; FIG. 8 is a perspective view illustrating the conveyor chain path; FIG. 9 is a detailed view of the plug; FIG. 10 is a detailed view illustrating an alternate embodiment of the plug; FIG. 11 is a top view of the discharge chute; FIG. 12 is a perspective view of the discharge chute guide; FIG. 13 is a top view of the gate; FIG. 14 is a sectional view of the gate members; FIG. 15 is a schematic illustrating the controller; and FIG. 16 is a flowchart illustrating the steps of the control program. DETAILED DESCRIPTION OF THE PREFEREED EMBODIMENTS The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. FIG. 1 illustrates an accumulation table 10. In the depicted embodiment, the accumulation table 10 is connected to an upstream machine 100 and a downstream machine 200. A container C, such as a bottle, moves from the upstream machine 100 on an upstream conveyor 110 onto the accumulation table 10. The accumulation table 10 has a top, or product carrying side, T and a bottom, or return side, B (best seen in FIG. 7) opposite of the top T. The containers C move along the top of the accumulation table 10. The containers C can have any number of shapes, sizes, and rigidity. As examples, the container C may be a metal can, a glass bottle, a plastic bottle, or a non-round container. The container C moves around the accumulation table 10 and is discharged through a discharge chute 38 onto a downstream conveyor 210 to the downstream machine 200. While in the depicted embodiment only one discharge chute 38 is shown, those skilled in the art would understand that the accumulation table 10 may have multiple discharge chutes. Further, while in the depicted embodiments only one conveyor feeds the accumulation table 10, those skilled in the art would understand that the accumulation table 10 may have multiple feed conveyors. As such, the accumulation table 10 may have both multiple feed conveyors and multiple discharge chutes. The accumulation table 10 acts as a buffer. In other words, the accumulation table 10 allows for the continuous operation of the upstream machine 100 and the downstream machine 200 even if one of the machines 100, 200 is malfunctioning or has temporarily ceased operation, such as for maintenance. For example, if the downstream machine 200 is inoperative, the upstream machine 100 may continue to operate and the containers C will merely accumulate, or re-circulate, on the accumulation table 10. The accumulation table 10 includes a first conveyor 40 and a second conveyor 42. The first conveyor 40 and the second conveyor 42 are nested together. The configuration of the first conveyor 40 and the second conveyor 42 provide continuous movement of the containers C. Each conveyor 40, 42 has two straight sections 41, an arcuate product carrying section 43 on the product carrying side, and an arcuate return section 44 (best seen in FIG. 6) which is located underneath on the bottom side of the accumulation table 10. As an example, the product carrying section 43 and the return section 44 may be C-shaped. Because the arcuate return sections 44 are located on the bottom B of the accumulation table 10, the conveyors 40, 42 appear U-shaped when viewed from above. Therefore, it may be said that each conveyor 40, 42 has a U-shaped product carrying section comprised of the straight sections 41 and the arcuate section 43. Contiguous straight sections 41 of each conveyor 40, 42 carry containers C in the same direction. As an example, one set of straight sections 41 may travel in a first direction DR1, while the other set of straight sections 41 travel in a second direction DR2. In this manner, the U-shaped product carrying sections cooperate to move the containers C. With the assistance of guide rails 80-94, the two independent conveyors 40, 42 can move containers C from the upstream conveyor 110 to the downstream conveyor 210 or accumulate containers C for later discharge. In the depicted embodiment of FIG. 1, the upstream conveyor 110 feeds containers C along a first side 39 of the first conveyor 40, whereas containers C are discharged at an end section 45 into the downstream conveyor 210. Note that the downstream conveyor 210 is directly in-line with one of the straight sections 41 of the second conveyor 42. While the embodiment depicted in FIG. 1 utilizes side feeding and end discharging, other configurations are possible. For example, containers C may be fed on the accumulation table 10 or discharged therefrom on the side or at an end section. Further, as best illustrated in FIG. 5, containers C may be both fed and discharged on the same side. Alternatively, containers C may be both fed and discharged at end sections. The speed of each conveyor 40, 42 is independently adjustable. As such, the conveyors 40, 42 may move containers C at the same speed or one conveyor may move containers C at a faster rate than the other. This is significant because the difference in speeds allows for “catching up” the production line. For example, if the downstream machine 200 is down temporarily for maintenance, containers C will accumulate or re-circulate on the accumulation table 10. Once the downstream machine 200 is again placed in operation, the second conveyor 42 on the discharge side of the accumulation table 10 can be accelerated such that containers C are discharged faster than containers C are fed onto the accumulation table 10. As such, the production line can be “caught up” without stopping the upstream 100 on the feed side of the accumulation table 10. During normal operation, however, the first conveyor 40 travels at the same speed as the upstream conveyor 110, and the second conveyor 42 travels at the same speed as the downstream conveyor 210. The accumulation table 10 further includes guide rails 80-94. The guide rails 80-94 direct the containers C. The guide rails 80-94 must be configured for the particular arrangement of the accumulation table 10 and may change depending upon the requirements of the production line. In the embodiment depicted in FIG. 1, there is a first guide rail 80, a second guide rail 82, a third guide rail 84, a fourth guide rail 86, a fifth guide rail 88, a sixth guide rail 90, a seventh guide rail 92, and an eighth guide rail 94. The first guide rail 80 directs containers C from the upstream conveyor 110 onto the first conveyor 40. The second guide rail 82 directs containers C from the first conveyor 40 to the second conveyor 42. The third guide rail 84 is along an exterior edge of the arcuate product carrying section 43 of the second conveyor 42. The fourth guide rail 86 is along an interior edge of the arcuate product carrying section 43 of the second conveyor 42. The fifth guide rail 88 extends from the third guide rail 84 along the straight section 41 of the second conveyor 42 and to the discharge chute 38. The sixth guide rail 90 is along an exterior edge of the arcuate product carrying section 43 of the first conveyor 40. The seventh guide rail 92 is along an interior edge of the arcuate product carrying section 43 of the first conveyor 40. The eighth guide rail 94 extends between the fourth guide rail 86 and the seventh guide rail 92 to split the accumulation table 10. FIG. 2 illustrates an alternative configuration of the discharge chute 38 and the downstream conveyor 210. In the embodiment depicted in FIG. 2, the discharge chute 38 is longitudinally aligned with the conveyors 30 of the straight section 41. One of the conveyor chains 30 and the discharge chute 38 are extended slightly beyond the end section 45. The downstream conveyor 210 is aligned next to the discharge chute 38. As such, containers C may travel on the straight section 41, enter the discharge chute 38, and make a side transfer onto the downstream conveyor 210. Thereafter, the downstream conveyor 210 carries the containers C to the downstream machine 200. FIG. 3 illustrates a modular design of the accumulation table 10. In the depicted embodiment, the accumulation table 10 is formed by assembling four modules. However, those skilled in the art will understand that a greater or lesser number of modules may be used. First modules 50 provide a center section of the accumulation table 10 and the straight sections 41 of the first conveyor 40 and the second conveyor 42. A second module 52 which is arcuate, or C-shaped, connects to an end 51 of the first module 50. A third module 53 which is arcuate, or C-shaped, is attached to an end 51 of the first module 50 and opposite the second module 52. Because the accumulation table 10 is modular, it can easily be broken down for shipping. Moreover, the modular accumulation table 10 may easily be expanded. In other words, the accumulation table 10 is scalable. For example, if a production line requires greater accumulation of containers C, the present invention can easily be modified to expand its capacity. To expand the accumulation table 10, one or more first modules 50 are inserted between the first module 50 and the second module 52 or the first module 50 and the third module 53. Inserting additional modules will extend the length of the accumulation table 10. The greater the length of the accumulation table 10, the greater its capacity to accumulate containers C. However, a longer accumulation table 10 will require additional floor space. In this manner, an existing accumulation table may be expanded without significant expense or effort. FIG. 4 illustrates a frame 12 of the accumulation table 10. The frame 12 includes a bed 14. In the depicted embodiment, the bed 14 is six inches (152 mm) deep. A plurality of legs 16 are connected to the bed 14. The height of the accumulation table depends upon the length of the legs 16. Generally, the legs 16 are sized according to the accompanying machines of the production line. In the depicted embodiment, the legs 16 are approximately three feet in length. Cross members 18 interconnect legs 16 to provide additional stability. In the depicted embodiment, adjustable feet 20 are connected to the legs 16. The adjustable feet 20 may be vertically adjusted to level the accumulation table 10 or to provide a discrete height adjustment for the accumulation table 10. A plurality of spacers 24 are connected to the top of the bed 14. The spacers 24 vary in height from approximately one-half of an inch (12 mm) to approximately one and one-half inches (38 mm). In the depicted embodiments, the spacers 24 are ⅝ of an inch (16 mm). The spacers 24 may have any of various shapes but in the depicted embodiment the spacers 24 are cylindrical. As best seen in FIG. 5, a track section 22 is mounted on the spacers 24. A wear plate or strip 26 is mounted to the track 22. In some embodiments, the wear strip 26 has lips 25 on each side of the track 22 to prevent lateral movement of the wear strip 26. As its name implies, the wear strip 26 is subject to wear and may be removed and replaced as necessary. The spacers 24 space the track 22 above the bed 14 such that it is possible to clean underneath the conveyors 40, 42. Because the accumulation table 10 is often used in the food and beverage industry, the bed 14, the legs 16, the cross members 18, the spacers 24, and the track 22 are all preferably made of stainless steel. Moreover, the wear strip 26 is made from Ultra-High Molecular Weight (UHMW) Plastic. A conveyor chain 30 rides on the wear strip 26 and in between adjacent parallel tracks 22. The track 22 and the wear strips 26 are sized according to the size of the conveyor chain 30. The width of the track 22 ranges from approximately one-half of an inch (12 mm) to approximately one and one-half inches (38 mm). The width of the wear strip 26 ranges from approximately one inch (25 mm) to approximately two and one-half inches (64 mm). As examples, if the conveying chain 30 is three and one-quarter inches (83 mm) wide, then the track 22 is three-fourths of an inch (19 mm) wide and the wear strip 26 is one and one-half inches (38 mm) wide, but if the conveying chain 30 is four and on-half inches (114 mm) wide, then the track 22 is one inch (25 mm) wide and the wear strip 26 is 2 and one-eighth inches (54 mm) wide. Referring once again to FIG. 3, each modular section 50, 52, 53 may have the tracks 22, the spacers 24, and the wear strips 26 installed prior to assembly of the modules. In that case, the modules 50, 52, 53 would be placed in their respective positions and adjusted such that the tracks 22/wear strips 26 are aligned with one another. Then, the modules 50, 52, 53 would be assembled together, such as by fastening. Note that the track sections 22 generally conform to the shape of the frame 12. As examples, the track sections may be straight to correspond to a straight portion of the frame, or the track sections can be arcuate to correspond to an arcuate section of the frame. FIG. 6 illustrates an alternative configuration of the upstream conveyor 110 and the downstream conveyor 210. In the embodiment depicted in FIG. 6, the upstream conveyor 110 is connected to the side 39 of the first conveyor 40, and the downstream conveyor 210 is also connected to the side 39 of the first conveyor 40. In contrast to the embodiment depicted in FIG. 1, this embodiment utilizes a side feed and a side discharge. Those skilled in the art will understand that the accumulation table 10 may have an end feed, an end discharge, a side feed, a side discharge, or some combination thereof. Each conveyor 40, 42 includes several rows of conveyor chains 30. In the depicted embodiment, each conveyor 40, 42 has eleven rows of conveyor chains 30. However, those skilled in the art will understand that a greater or lesser number of conveyor chains could be used. For example, each conveyor 40, 42 may have as few as two conveyor chains or as many as sixteen conveyor chains. As such, the width of the accumulation table 10 may be varied by increasing or decreasing the total number of conveyor chains 30. Obviously, the greater the number of conveyor chains 30, the wider the accumulation table 10 will be and the more containers C the accumulation table 10 can accumulate and carry. However, the amount of floor space required for the accumulation table 10 is proportional to its width. The conveyor chains 30 are standard items that available from many suppliers. As an example, the conveyor chains 30 may be purchased from Rexnord Industries, Inc., 4701 Greenfield Ave., Milwaukee, Wis. The conveyor chains 30 come in standard sizes. As examples, the conveyor chains 30 may be three and one-quarter inches (83 mm) wide or four and on-half inches (114 mm) wide. The conveyor chains 30 are driven by drive sprockets 34 (best seen in FIG. 7) which are driven by a motor 32. In the depicted embodiment, there are three motors 32. One of the motors 32 drives the upstream conveyor 110, one of the motors 32 drives the second conveyor 42, and the other motor 32 drives both the first conveyor 41 and the downstream conveyor 210. As depicted in FIG. 6, each conveyor 40, 42, 110, 210 may have its own motor 32 to rotate the associated sprockets 34, or the motor 32 may simultaneously drive two or more conveyors. FIG. 7 illustrates the bottom B of the accumulation table 10. As noted above, each conveyor 40, 42 has the return section 44. The return section 44 completes the loop of the conveyor 40, 42 on the bottom B of the accumulation table 10. The return section 44 is supported by track sections 22 attached to the bottom B of the frame 12. The track sections 22 are spaced below the bottom B using spacers 24, and wear strips 26 are mounted on the track sections 22 in-between the conveyor chains 30. Because mounting the spacers 24, the track 22, and the wear strips 26 to the bottom B may be cumbersome, some embodiments instead may utilize a single track component having the same physical dimensions of all three components but made of UHMW plastic. In this manner, the parallel rows of the single track component provide the conveyor path for the conveyor chains 30. The drive sprocket 34 drives each conveyor chain 30. An idler 36 cooperates with the drive sprocket 34. There is one drive sprocket 34 and one idler 36 for each row of conveyor chain 30. In the depicted embodiment, there are eleven drive sprockets 34 and eleven idlers 36. The drive sprockets 34 and the idlers 36 are mounted where the straight sections 41 of each conveyor 40, 42 meets the return section 44. The drive sprockets 34 are mounted on a first shaft 33, and the idlers 36 are mounted on a second shaft 35. The motor 32 rotates the drive sprockets 34 via the first shaft 33. The drive sprockets 34 are affixed to the first shaft 33 and rotate therewith. In some embodiments, the idlers 36 rotate about the second shaft 35. In the depicted embodiment, the idlers 36 are affixed to the second shaft and rotate therewith. The first shaft 33 is rotatably connected to the bed 14. In some embodiments, the second shaft 35 is rotatably connected to the bed 14 but is rigidly connected to the bed 14 in other embodiments. In the depicted embodiment, plates 37 are used to connect the shafts 33, 35 to the bed 14. Return shoes 46 extends from the frame 12 by hangers 48. The return shoes 46 cooperate with the drive sprockets 34 and the idlers 36 to prevent jamming of the return section 44. As noted above, the track sections 22 generally conform to the shape of the frame 12. However, as best seen in FIG. 8, the track sections 22 can be designed to “split” apart the conveyor chains 30. Splitting the conveyor chains 30 provides two functions. First, splitting the conveyor chains 30 create spaces or gaps 58 (best seen in FIG. 9) between the conveyor chains 30. The gaps 58 can be used for mounting items to the top T of the accumulation table 10. As examples, a guide rail, a discharge chute, or a gate may be mounted to the top T of the bed 14 or the tracks 22 at the gaps 58. Second, splitting the conveyor chains 30 slightly redirects the conveyor chains 30 such that containers C on the accumulation table 10 are separated. For example, two containers traveling next to one another on adjacent conveyor chains will separate as the containers encounter the “split” area next to the discharge chute 38. The separation between the two containers is used to direct one container towards a re-circulation area and the other container towards the discharge chute 38. As such, one conveyor chain carries one of the containers into the discharge chute 38 while the other conveyor chain carries the other container to the re-circulation area. By changing the direction of the moving container, but not the speed, an incredibly stable transfer from the accumulation area to the discharge chute 38 is achieved. Moreover, because the conveyor chain 30 within the discharge chute 38 maintains the distance between adjacent containers C, line pressure is significantly reduced or even eliminated. A conveyor path 21 is provided by mounting rows of parallel track sections 22 to the top T of the bed 14. The conveyor chain 30 rides in the conveyor path 21 between adjacent track sections 22. In this manner, the conveyor path 21 follows the course provided by the parallel track sections 22. The width of the conveyor path 21 depends upon the size of the conveyor 30. In general, the width between adjacent track sections 22 ranges from approximately one inch (25 mm) to approximately three and one-half inches (89 mm). In the depicted embodiment, the width of the conveyor path 21 is one and three-fourths inches (44 mm) apart as measured from wear strip-to-wear strip. Splitting the conveyor chains 30 is achieved by placing parallel non-linear tracks 23 in between longitudinally extending track sections 22. The non-linear track sections 23 are generally installed in pairs to alter the path of the conveyor chains 30. In the embodiment depicted in FIG. 8, the non-linear track sections 23 are S-shaped to provide an S-shaped conveyor path 21′. The non-linear track sections 23 are mounted to the spacers 24 in the same manner as the track sections 22. In some embodiments, a plug 28 is inserted into the gap 58 to maintain a plane of the first conveyor 40 or the second conveyor 42. The plug 28 is secured to the track section 22 or the bed 14. The plug 28 is used to maintain an even conveying surface, which is necessary to prevent containers C from tipping over. In other words, without the plug 28, the container C would encounter the gap 58 and likely tip over. The plugs 28 may be made of UHMW plastic or stainless steel. In the case of UHMW plastic, some embodiments may include a stainless steel backing plate for extra rigidity. The thickness of the plug 28 is dependant on the size of the container C. The plug 28 has a thickness in the range of approximately one-eighth of an inch (3 mm) to approximately three-quarters of an inch (19 mm). In the depicted embodiment, the plugs 28 have a thickness of one-quarter of an inch (6 mm). Further, items may be mounted to the plug 28. Because the plug 28 is located next to the discharge chute and in-between conveyor chains the plug 28 provides a convenient mounting surface 49. As examples, a guide rail, a discharge chute, or a gate may be mounted to the plug 28. FIG. 9 illustrates a detailed view of the plug 28. The plug 28 has an initial portion 27, a middle portion 31, and a tail end portion 29. In the depicted embodiment, the initial portion 27 and the tail portion 29 have a symmetrical taper. However, other shapes may be used. For example, the initial portion 27 may be straight while the tail portion 29 is arcuate, or vice versa. FIG. 10 illustrates an alternative embodiment having an arcuate initial portion 27. FIG. 11 illustrates a top view of the adjustable discharge chute 38. The discharge chute 38 is adjustable to accommodate differently sized containers C. Thus, as part of the initial set up of the accumulation table 10 a worker or user will place the container C in the discharge chute 38 and adjust the discharge chute 38 according to the size of the container C as part of the set up routine. The discharge chute 38 includes a first guide 60 and adjustment member 62. The adjustment member 62, also referred to as a sliding member, is moved to adjust the width of the discharge chute 38. In general, the profile of the adjustment member 62 follows the layout of the conveyor chain 30. The adjustment member 62 has several preconfigured adjustment holes 64. In the depicted embodiment, the preconfigured adjustment holes 64 are slots; however, those skilled in the art will understand that a series of holes could equally be used. The adjustment member 62 slides along the slots 64 to maintain a proper orientation. The worker loosens a clamp 66, slides the adjustment member 62 to the appropriate width for a particular container, and re-locks the clamp 66. As an example, the clamp 66 may be a hand knob mounted on a threaded rod mounted on the bed 14. The discharge chute 38 is formed by the first guide 60, the adjustment member 62, a second guide 68 and a third guide 70. The third guide 70 is mounted directly over the second guide 68. In the depicted embodiment, the discharge guides are made of UHMW plastic; however, other materials, such as stainless steel, may be used. Further, in some embodiments, the first guide 60, the second guide 68, and the third guide 70 may each have a stainless steel backing plate. The second guide 68 and the third guide 70 each have a first face 69 and a second face 71. The first face 69 and the second face 71 converge to an edge 73. Containers C travel on the conveyor chains 30. When the containers C reach the edge 73, the containers C diverge and either travel along the first face 69 or the second face 71, depending upon which conveyor chain 30 the container C is riding along. For example, the container C may travel along the first face 69 and down the discharge chute 38, or the container C may travel along the second face 71 back to the accumulation area. FIG. 12 illustrates a mounting of the second guide 68. In the depicted embodiment, the plug 28 is inserted in the gap 58 between the conveyor chains 30. A spacer mount 72 is mounted directly on top of the plug 28. The second guide 68 is mounted to the spacer mount 72. A bracket 74 is mounted to the second guide 68. The bracket 74 provides a mounting surface for a first actuator 76. The second guide 68 and the third guide 70 include matching grooves 78, which are explained in greater detail below. FIG. 13 illustrates a gate 55 which is located adjacent to the discharge chute 38. The gate 55 opens and closes depending upon the status of the downstream conveyor 210. For example, if the downstream conveyor 210 is full and containers C are not moving on the downstream conveyor 210, then the gate is closed, but if the downstream conveyor 210 is carrying containers C then the gate remains open. The gate 55 has two portions: a first sliding member 54 and a second siding member 56. The first and second sliding members 54, 56 overlap one another to close the gate and prevent containers C from traveling through the discharge chute 38. In the depicted embodiment, the first actuator 76 operates the first sliding gate 54 and a second actuator 77 operates the second sliding gate 56. The first and second actuators 54, 56 may be pneumatic, hydraulic, or electro-mechanical. In the depicted embodiments, the actuators 54, 56 are pneumatic. The first and second sliding members 54, 56 are angled relative to the path of the chains. In the depicted embodiment, the first and second sliding members 54, 56 are angled at about 15 degrees, which is also the angle of the guides 60, 68, 70 in this area. If the containers C have to be re-circulated due to a downstream stop, the first sliding member 54 is closed. Movement of the first sliding member 54 follows the direction of travel of the containers C and travels essentially at the same speed as the containers C. In this manner, the containers C are gently diverted onto the re-circulation area of the accumulation table 10. After the first sliding member 54 has closed, the second sliding member 56 is activated and slides in a direction opposite that of the first sliding member 54. Once the second sliding member 56 is in place, the first sliding member 54 is retracted. The containers C continue to be re-circulated by the second sliding member 56. Once the downstream machine 200 is back in production, the second sliding member 56 is opened. The second sliding member 56 is used to open the discharge chute 38 in the same way it was closed, i.e. by following the direction of travel of the containers C. Movement of the second sliding member 56 follows the direction of travel of the containers C and travels essentially at the same speed as the containers C. As such, the containers C in contact with the second sliding member 56 continue onto the re-circulation area of the accumulation table 10 and thereafter containers C are free to enter the discharge chute 38 without causing container instability. The stability ensured by the dual member gate 55 significantly reduces the chance of containers C falling over and jamming the discharge chute 38. Referring once again to FIG. 11, the slots 64 are constructed and arranged to provide a proper orientation of the adjustment member 62 relative to the gate 55. In other words, the adjustment member 62 may be moved and adjusted to provide the appropriate width of the discharge chute 38 while at the same time maintaining a proper spacing along the gate 55. FIG. 14 illustrates the first sliding member 54 and the second sliding member 56 relative to one another. As noted above, the first sliding member 54 and the second sliding member 56 are moved by actuators 76, 77 to form the gate 55. In the depicted embodiment, the second sliding member 56 moves in and out of the grooves 78 (best seen in FIG. 12). The first sliding member 54 and the second sliding member 56 slide next to one another. In some embodiments, the first sliding member 54 may interconnect with the second sliding member 56 to ensure a smooth operation of the gate 55 upon engagement of one of the actuators 76, 77. For example, the sliding members 54, 56 may have a tongue-and-groove arrangement 79 such that the sliding members 54, 56 lock together yet slide relative to one another. FIG. 15 illustrates schematically a controller 400. The controller 400 is operatively connected to a first sensor 410 and a second sensor 420. As an example, the first sensor 410 and the second sensor 420 may be light sensors. The sensors 410, 420 respectively sense the upstream conveyor 110 and the downstream conveyor 210. For example, the second sensor 420 may detect whether or not containers C are moving on the downstream conveyor 210. The sensors 410, 420 send a signal back to the controller 400. In response to this signal, the controller 400 may engage or disengage the first actuator 76 or the second actuator 77. FIG. 16 illustrates the steps involved in operating the gate 55 of the discharge chute 38. The steps began at a start position, also known as an initial position, 300. There is a first decision 310 in which a controller 400 inquires whether containers C are moving on the downstream conveyor 210. If the containers C are moving, the controller 400 goes back to the start position 300. If the containers C are not moving on the downstream conveyor 210, for example if the downstream machine 200 is inoperative, then the controller 400 engages the first actuator 76 to close the first sliding member 54 in the first step 320. After the sliding member 54 is moved into position, then no more containers C will travel through the discharge chute 38. In the second step 330, the controller 400 engages the second actuator 77 to close the second sliding member 56. In a decision 340, the controller 400 again inquires whether containers C are moving on the downstream conveyor 210. If the containers C are still not moving then the controller 400 takes no action. However, if the containers C are moving in step 350 the controller 400 disengages the first actuator 76 to open the first sliding member 54. In some embodiments, the controller 400 will perform step 350 prior to step 340 so that all will be necessary is to actuate the second actuator 77 in a subsequent step upon an affirmative decision in step 340. In a subsequent step 360, the controller 400 engages the second actuator 77 to open the second sliding member 56. Thereafter, the controller 400 returns to the start position 300 to begin the process again. The process repeats until the accumulation table 10 is powered down. Referring once again to FIG. 1, in operation, containers C travel on the upstream conveyor 110. The containers C are transferred from the upstream conveyor 110 to the first conveyor 40 by the first guide 80. The containers C travel on the first conveyor 40 in a first direction DR1. The containers C are transferred from the first conveyor 40 to the second conveyor 42 by the second guide 82. The containers C continue to travel in the first direction DR1. The containers C travel around the arcuate section 43 of the second conveyor 42. The third guide 84 ensures that the containers C do not fall off the second conveyor 42. The containers C travel along the second conveyor 42 in a second direction DR2 until reaching the fourth guide 88. If the containers C are near the discharge chute 38 and if the gate 55 is open, containers C traveling along the fourth guide 88 enter the discharge chute 38. Once in the discharge chute 38, the containers are transferred onto the down stream conveyor 210. However, if the containers C are not near the discharge chute 38 or if the gate 55 is closed, then the containers C are transferred onto the first conveyor 40. The containers C continue to travel in the second direction DR2. Thereafter, the containers C re-circulate by traveling around the arcuate section 43 of the second conveyor 42 and begin the process again. A method of assembling the accumulation table is also provided. The method includes the steps of: providing a frame having a top and a bottom; connecting several spacers to the top of the frame; connecting several track sections to the spacers; connecting several wear strips to the track sections; longitudinally connecting several non-linear tracks to the track sections; placing several conveyor chains in sliding contact with the wear strips to form a first conveyor, the first conveyor having a first straight section, a second straight section, a C-shaped product carrying section located on the top of the frame, and a C-shaped return section located on the bottom of the frame; placing several conveyor chains in sliding contact with the wear strips to form a second conveyor, the second conveyor having a third straight section, a fourth straight section, a C-shaped product carrying section located on the top of the frame, and a C-shaped return section located on the bottom of the frame, the fourth straight section of the second conveyor located adjacent to the first straight section of the first conveyor; and connecting an adjustable discharge chute to the frame, the adjustable discharge chute including a first guide and an adjustment member movable relative to the first guide. An optional step may include locating a plug intermediate at least two conveyor chains and proximate to the non-linear tracks. A further optional step may include mounting the plug to the track section. As various modifications could be made to the exemplary embodiments, as described above with reference to the corresponding illustrations, without departing from the scope of the invention, it is intended that all matter contained in the foregoing description and shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary described embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to accumulation tables and, more particularly, to dynamic accumulation tables. 2. Related Art A production line, such as a packaging line, is a series of machines. If the production line is designed without accumulation, the entire system would stop each time any piece of equipment stops. For example, if a machine is stopped for maintenance, then a production line without accumulation would require a complete shutdown of the entire line. Further, one machine may operate at a different speed from another. Without a means to compensate for the difference in operating speeds, machines would have to be turned on and off to adjust for the difference in cycle times. Therefore, accumulation greatly increases system efficiency and profitability. Accumulation in the packaging industry is defined as having a reserve of containers between consecutive machines or a reserve of space to accumulate containers to provide for the inevitable machine stops. Accumulation is generally achieved with conveyors or with accumulation tables. The population, or density, of containers upstream and downstream of any machine, combined with the speed of each machine determines the amount of accumulation required. In general, dynamic accumulation is accomplished through conveyors located between machines. Usually, a specified number of conveyors having a preconfigured width and speed are used for a given population rate. This approach requires large amounts of floor space and care must be used to control line pressure as the containers accumulate on the conveyors. Line pressure as understood in the packaging industry means the pressure placed on each container on the conveyor resulting from a large number of containers being forced together in a small area. If the number of containers entering the conveyor increases without simultaneously increasing the number of containers exiting the conveyor, line pressure results as the containers are forced against one another. Excessive line pressure can lead to scuffing of container labels and even breakage of some containers. Another accumulation device is the bi-flow table. A bi-flow table has conveyor chains that run in opposite directions to re-circulate the containers. This approach has its limitations due to the noise and label damage generated by container-to-container contact during the re-circulating process. Lastly, a loop system utilizes conveyors arranged in a loop configuration to re-circulate the containers and provide accumulation. In this system the containers that are not required by the downstream machine are sent on the re-circulating loop and merge again with the flow of incoming containers. A particular drawback of the loop system is that it is not easily reconfigured. For example, if greater accumulation is required, the loop system cannot easily be expanded. Further, most loop systems utilize a single continuous looped conveyor chain. Because there is only a single conveyor chain, containers must enter and leave the loop system at the same speed. In other words, containers maintain a constant speed on the loop system. Because the containers maintain a constant speed, it is not possible to have containers exit the loop system faster than containers enter, or vice versa. Most loop systems have a gate adjacent the discharge area. The gate is used to prevent discharge and force the containers into an accumulation area. A problem associated with typical gates is that usually one or more containers in transit within the discharge area of the table when the gate begins to close. Therefore, most conventional systems will encounter some jams from time to time due to having a container stuck between a flow separator and the gate. The common solution to this problem is to move the gate rapidly and attempt to close the gate between two containers. However, this can cause containers to become unstable and fall, thus causing even more jams. Accumulation tables offer a more efficient alternative in terms of floor space utilization. However, typical accumulation tables have the same constraints as the conveyor systems with regards to line pressure, the inability to handle tapered containers, and a requirement to single-file the containers separately from the accumulation device. Further, most accumulation tables utilize custom components which increases costs of production and maintenance. Further, most accumulation tables and the majority of loop systems lack adequate space to clean underneath the product conveying chains. As such, chain conveyor wear strips are difficult, if not impossible, to adequately clean. Additionally, most accumulation tables lack a mounting space for the gate. Typically, a complex structure is attached to the sides or bottom of the accumulation table for mounting the gate above the conveyor chains of the accumulation table. In other words, the gate must be hung above the conveyor chains. This type of mounting is inherently weak and expensive. There remains a need in the art for an accumulation table that provides for low pressure dynamic accumulation. Further, there remains a need in the art for an accumulation table that is scalable and which may operate at different container entry and exit speeds. Additionally, there remains a need in the art for an accumulation table that provides clearance for cleaning the conveyor chains, track sections, and associated wear strips. Finally, there remains a continuing need in the art to reduce the costs associated with the production and maintenance of accumulation tables. | <SOH> SUMMARY OF THE INVENTION <EOH>The invention is an accumulation table having two independent conveyors. The accumulation table is used to move and accumulate containers. Each conveyor has a U-shaped product carrying section. The U-shaped product carrying sections are nested together such that the straight sections of each “U” are contiguous with one another. Further, adjacent portions of the U-shaped product carrying sections are capable of carrying containers in the same direction. In this manner, the U-shaped product carrying sections cooperate to move the containers. With the assistance of guide rails, the two independent conveyors can move containers from a feed side to a discharge side or accumulate containers for later discharge. The speed of each conveyor is independently adjustable. As such, the conveyors may move containers at the same speed or one conveyor may move containers at a faster rate than the other. This is significant because the difference in speeds allows for “catching up” the production line. For example, if a machine on the discharge side is down temporarily for maintenance, containers will accumulate on the accumulation table. Once the machine is again placed in operation, the conveyor on the discharge side of the accumulation table can be accelerated such that containers are discharged faster than containers are fed onto the accumulation table. As such, the production line can be “caught up” without stopping a machine on the feed side of the accumulation table. Each conveyor is formed by parallel track sections and conveyor chains that ride between adjacent track sections. The track sections are mounted to a frame of the accumulation table. Spacers may be used to mount the track sections at a height above the frame. Further, removeable wear strips may be placed between the track sections and the conveyor chains. The wear strip is used to prevent wear to the track section or the conveyor chain. Generally, the track sections conform to the shape of the frame. As examples, the track sections may be straight to correspond to a straight portion of the frame, or the track sections can be arcuate to correspond to an arcuate section of the frame. However, the track sections also can be designed to “split” apart the conveyor chains. Put another way, the track sections can be designed such that adjacent conveyor chains are directed away from one another. Splitting the conveyor chains provides two functions. First, splitting the conveyor chains create spaces or gaps between the conveyor chains. The gaps can be used for mounting items to the top of the accumulation table. As examples, a guide rail, a discharge chute, or a gate may be mounted to the top of the bed frame at the gaps. In some embodiments, a plug is inserted into the gap to maintain a plane of the first conveyor or the second conveyor. Additionally, items may be mounted to the plug. Second, splitting the conveyor chains slightly redirects the conveyor chains such that containers on the accumulation table are separated. For example, two containers traveling next to one another on adjacent conveyor chains will separate as the containers encounter the “split” area next to the discharge chute. The separation between the two containers is used to direct one container towards a re-circulation area and the other container towards the discharge chute. As such, one conveyor chain carries one of the containers into the discharge chute while the other conveyor chain carries the other container to the re-circulation area. By changing the direction of the moving container, but not the speed, an incredibly stable transfer from the accumulation area to the discharge area is achieved. The accumulation table is modular. The accumulation table is formed by assembling at least three modules. A first module provides the center of the accumulation table and the straight sections of the “U.” A second module which is arcuate, or C-shaped, connects to a first end of the first module. A third module which is arcuate, or C-shaped, is attached to a second end of the first module and opposite the second module. Because the accumulation table is modular, it can easily be broken down for shipping. Moreover, the modular accumulation table may easily be expanded. In other words, the accumulation table is scalable. For example, if a production line requires greater accumulation of containers, the present invention can easily be modified to expand its capacity. To expand the accumulation table, one or more straight modules similar to the first module are inserted between the first module and the second module or the first module and the third module. Inserting additional modules will extend the length of the accumulation. The greater the length of the accumulation table, the greater its capacity to accumulate containers. In this manner, an existing accumulation table may be expanded without significant expense or effort. The accumulation table includes an adjustable discharge chute. Containers are discharged through the discharge chute. The needs of a production line may vary, and production lines do not always manipulate the same containers. Sometimes the production lines have runs of differently sized product containers. Therefore, the accumulation table has an adjustable discharge chute to accommodate runs of differently sized containers. In general, a worker will adjust the width of the discharge chute for a particular container before a run begins. When the run is completed and before a new run begins, the worker will readjust the width of the discharge chute, if necessary. The adjustable discharge chute has a sliding member which is moved to adjust the width of the discharge chute. The sliding member has several preconfigured slots. The sliding member slides along the slots to maintain a proper orientation. The worker loosens a clamp, slides the sliding member to the appropriate width for a particular container, and re-locks the clamp. As an example, the clamp may be a hand knob mounted on a threaded rod. The accumulation table also includes a dual member gate for each discharge chute. If the containers have to be re-circulated due to a downstream stop, the first gate member is closed. The movement of the first gate member follows the direction of travel of the containers and travels essentially at the same speed as the containers. In this manner, the containers are gently diverted onto the re-circulation area of the accumulation table. After the first gate member has been closed, a second gate member is activated and slides in a direction opposite of the first gate member. Once the second gate member is in place, the first gate member is retracted. The containers continue to be re-circulated so long as the second gate member is in place. Once the downstream operation is back in production, the second gate member is opened. The movement of the second gate member follows the direction of travel of the containers and travels essentially at the same speed as the containers. As such, the containers in contact with the second gate member continue onto the re-circulation area of the accumulation table and the following containers will be free to enter the discharge path without causing container instability or down containers. Finally, the accumulation table allows for end discharge and end feeding in addition to side discharging or feeding. The configuration of the two independent conveyors conveniently provides for the possibility of end discharging, end feeding, side discharging, side feeding, or some combination thereof. Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention. | 20041229 | 20070807 | 20060713 | 60100.0 | B65G4712 | 0 | DEUBLE, MARK A | ACCUMULATION TABLE | SMALL | 0 | ACCEPTED | B65G | 2,004 |
|
11,026,394 | ACCEPTED | Macroblock level adaptive frame/field coding for digital video content | A method and system of encoding and decoding digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the smaller blocks in each picture in said stream of pictures in either frame mode or in field mode. | 1. A method of encoding a picture in an image sequence, comprising: dividing said picture into a plurality of smaller portions; and selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode, wherein said encoding is applied to a pair of blocks or a group of blocks, wherein said encoding is performed in a horizontal scanning path or a vertical scanning path. 2. The method of claim 1, wherein said pair of blocks is a pair of macroblocks. 3. An apparatus for encoding a picture in an image sequence, comprising: means for dividing said picture into a plurality of smaller portions; and means for selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of blocks in field coding mode, wherein said encoding is applied to a pair of blocks, or a group of blocks, wherein said encoding is performed in a horizontal scanning path or a vertical scanning path. 4. The apparatus of claim 3 wherein said pair of blocks is a pair of macroblocks. 5. A computer-readable medium having stored thereon a plurality of instructions, the plurality of instructions including instructions which, when executed by a processor, cause the processor to perform the steps of a method for encoding a picture in an image sequence, comprising of: dividing said picture into a plurality of blocks; and selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode, wherein said encoding is applied to a pair of blocks, or a group of blocks, wherein said encoding is performed in a horizontal scanning path or a vertical scanning path. 6. A method of decoding an encoded picture having a plurality of smaller portions from a bitstream, comprising: decoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode, wherein said decoding is applied to a pair of blocks, or a group of blocks, wherein said decoding is performed in a horizontal scanning path or a vertical scanning path; and using said plurality of decoded smaller portions to construct a decoded picture. 7. The method of claim 6, wherein said pair of blocks is a pair of macroblocks. 8. The method of claim 6, wherein said decoding is applied to a group of at least four blocks. 9. The method of claim 8, further comprising: joining said group of at least four blocks into a top field block and a bottom field block when said group of at least four blocks is decoded in said field coding mode. 10. An apparatus for decoding an encoded picture from a bitstream, comprising: means for decoding at least one of a plurality of smaller portions from said encoded picture that is encoded in frame coding mode and at least one of said plurality of smaller portions that is encoded in field coding mode, wherein said decoding is applied to a pair of blocks, or a group of blocks, wherein said decoding is performed in a horizontal scanning path or a vertical scanning path; and means for using said plurality of decoded smaller portions to construct a decoded picture. 11. The apparatus of claim 10, wherein said pair of blocks is a pair of macroblocks. 12. The apparatus of claim 10, wherein said decoding is applied to a group of at least four blocks. 13. The apparatus of claim 12, further comprising: means for joining said group of at least four blocks into a top field block and a bottom field block when said group of at least four blocks is decoded in said field coding mode. 14. A computer-readable medium having stored thereon a plurality of instructions, the plurality of instructions including instructions which, when executed by a processor, cause the processor to perform the steps of a method for decoding an encoded picture from a bitstream, comprising of: decoding at least one of a plurality of smaller portions from said encoded picture that is encoded in frame coding mode and at least one of said plurality of smaller portions that is encoded in field coding mode, wherein said decoding is applied to a pair of blocks, or a group of blocks, wherein said decoding is performed in a horizontal scanning path or a vertical scanning path; and using said plurality of decoded smaller portions to construct a decoded picture. 15. A bitstream comprising: a picture that has been divided into a plurality of smaller portions, wherein at least one of said plurality of smaller portions from said picture is encoded in frame coding mode and at least one of said plurality of smaller portions is encoded in field coding mode, wherein said encoding is performed in a horizontal scanning path or a vertical scanning path. | The present application claims priority under 35 U.S.C. §119(e) from the following previously filed Provisional patent applications: Ser. No. 60/333,921, filed Nov. 27, 2001; Ser. No. 60/395,734, filed Jul. 12, 2002; Ser. No. 60/398,161, filed Jul. 23, 2002; all of which are herein incorporated by reference. This application is also a Divisional of U.S. patent application Ser. No. 10/301,290 filed on Nov. 20, 2002, which is herein incorporated by reference. TECHNICAL FIELD The present invention relates to encoding and decoding of digital video content. More specifically, the present invention relates to frame mode and field mode encoding of digital video content at a macroblock level as used in the MPEG-4 Part 10 AVC/H.264 standard video coding standard. BACKGROUND Video compression is used in many current and emerging products. It is at the heart of digital television set-top boxes (STBs), digital satellite systems (DSSs), high definition television (HDTV) decoders, digital versatile disk (DVD) players, video conferencing, Internet video and multimedia content, and other digital video applications. Without video compression, digital video content can be extremely large, making it difficult or even impossible for the digital video content to be efficiently stored, transmitted, or viewed. The digital video content comprises a stream of pictures that can be displayed as an image on a television receiver, computer monitor, or some other electronic device capable of displaying digital video content. A picture that is displayed in time before a particular picture is in the “backward direction” in relation to the particular picture. Likewise, a picture that is displayed in time after a particular picture is in the “forward direction” in relation to the particular picture. Video compression is accomplished in a video encoding, or coding, process in which each picture is encoded as either a frame or as two fields. Each frame comprises a number of lines of spatial information. For example, a typical frame contains 480 horizontal lines. Each field contains half the number of lines in the frame. For example, if the frame comprises 480 horizontal lines, each field comprises 240 horizontal lines. In a typical configuration, one of the fields comprises the odd numbered lines in the frame and the other field comprises the even numbered lines in the frame. The field that comprises the odd numbered lines will be referred to as the “top” field hereafter and in the appended claims, unless otherwise specifically denoted. Likewise, the field that comprises the even numbered lines will be referred to as the “bottom” field hereafter and in the appended claims, unless otherwise specifically denoted. The two fields can be interlaced together to form an interlaced frame. The general idea behind video coding is to remove data from the digital video content that is “non-essential.” The decreased amount of data then requires less bandwidth for broadcast or transmission. After the compressed video data has been transmitted, it must be decoded, or decompressed. In this process, the transmitted video data is processed to generate approximation data that is substituted into the video data to replace the “non-essential” data that was removed in the coding process. Video coding transforms the digital video content into a compressed form that can be stored using less space and transmitted using less bandwidth than uncompressed digital video content. It does so by taking advantage of temporal and spatial redundancies in the pictures of the video content. The digital video content can be stored in a storage medium such as a hard drive, DVD, or some other non-volatile storage unit. There are numerous video coding methods that compress the digital video content. Consequently, video coding standards have been developed to standardize the various video coding methods so that the compressed digital video content is rendered in formats that a majority of video encoders and decoders can recognize. For example, the Motion Picture Experts Group (MPEG) and International Telecommunication Union (ITU-T) have developed video coding standards that are in wide use. Examples of these standards include the MPEG-1, MPEG-2, MPEG-4, ITU-T H261, and ITU-T H263 standards. Most modern video coding standards, such as those developed by MPEG and ITU-T, are based in part on a temporal prediction with motion compensation (MC) algorithm. Temporal prediction with motion compensation is used to remove temporal redundancy between successive pictures in a digital video broadcast. The temporal prediction with motion compensation algorithm typically utilizes one or two reference pictures to encode a particular picture. A reference picture is a picture that has already been encoded. By comparing the particular picture that is to be encoded with one of the reference pictures, the temporal prediction with motion compensation algorithm can take advantage of the temporal redundancy that exists between the reference picture and the particular picture that is to be encoded and encode the picture with a higher amount of compression than if the picture were encoded without using the temporal prediction with motion compensation algorithm. One of the reference pictures may be in the backward direction in relation to the particular picture that is to be encoded. The other reference picture is in the forward direction in relation to the particular picture that is to be encoded. However, as the demand for higher resolutions, more complex graphical content, and faster transmission time increases, so does the need for better video compression methods. To this end, a new video coding standard is currently being developed jointly by ISO and ITU-T. This new video coding standard is called the MPEG-4 Advanced Video Coding (AVC)/H.264 standard. SUMMARY OF THE INVENTION In one of many possible embodiments, the present invention provides a method of encoding, decoding, and bitstream generation of digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the macroblocks in each picture in said stream of pictures in either frame mode or in field mode. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate various embodiments of the present invention and are a part of the specification. Together with the following description, the drawings demonstrate and explain the principles of the present invention. The illustrated embodiments are examples of the present invention and do not limit the scope of the invention. FIG. 1 illustrates an exemplary sequence of three types of pictures that can be used to implement the present invention, as defined by an exemplary video coding standard such as the MPEG-4 Part 10 AVC/H.264 standard. FIG. 2 shows that each picture is preferably divided into slices containing macroblocks according to an embodiment of the present invention. FIG. 3a shows that a macroblock can be further divided into a block size of 16 by 8 pixels according to an embodiment of the present invention. FIG. 3b shows that a macroblock can be further divided into a block size of 8 by 16 pixels according to an embodiment of the present invention. FIG. 3c shows that a macroblock can be further divided into a block size of 8 by 8 pixels according to an embodiment of the present invention. FIG. 3d shows that a macroblock can be further divided into a block size of 8 by 4 pixels according to an embodiment of the present invention. FIG. 3e shows that a macroblock can be further divided into a block size of 4 by 8 pixels according to an embodiment of the present invention. FIG. 3f shows that a macroblock can be further divided into a block size of 4 by 4 pixels according to an embodiment of the present invention. FIG. 4 shows a picture construction example using temporal prediction with motion compensation that illustrates an embodiment of the present invention. FIG. 5 shows that a macroblock is split into a top field and a bottom field if it is to be encoded in field mode. FIG. 6a shows that a macroblock that is encoded in field mode can be divided into a block with a size of 16 by 8 pixels according to an embodiment of the present invention. FIG. 6b shows that a macroblock that is encoded in field mode can be divided into a block with a size of 8 by 8 pixels according to an embodiment of the present invention. FIG. 6c shows that a macroblock that is encoded in field mode can be divided into a block with a size of 4 by 8 pixels according to an embodiment of the present invention. FIG. 6d shows that a macroblock that is encoded in field mode can be divided into a block with a size of 4 by 4 pixels according to an embodiment of the present invention. FIG. 7 illustrates an exemplary pair of macroblocks that can be used in AFF coding on a pair of macroblocks according to an embodiment of the present invention. FIG. 8 shows that a pair of macroblocks that is to be encoded in field mode is first split into one top field 16 by 16 pixel block and one bottom field 16 by 16 pixel block. FIG. 9 shows two possible scanning paths in AFF coding of pairs of macroblocks. FIG. 10 illustrates another embodiment of the present invention which extends the concept of AFF coding on a pair of macroblocks to AFF coding to a group of four or more neighboring macroblocks. FIG. 11 shows some of the information included in the bitstream which contains information pertinent to each macroblock within a stream. FIG. 12 shows a block that is to be encoded and its neighboring blocks and will be used to explain various preferable methods of calculating the PMV of a block in a macroblock. FIG. 13 shows an alternate definition of neighboring blocks if the scanning path is a vertical scanning path. FIG. 14 shows that each pixel value is predicted from neighboring blocks' pixel values according to an embodiment of the present invention. FIG. 15 shows different prediction directions for intra—4×4 coding. FIGS. 16a-b illustrate that the chosen intra-prediction mode (intra_pred_mode) of a 4 by 4 pixel block is highly correlated with the prediction modes of adjacent blocks. FIGS. 17a-d show neighboring blocks definitions in relation to a current macroblock pair that is to be encoded. Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION The present invention provides a method of adaptive frame/field (AFF) coding of digital video content comprising a stream of pictures or slices of a picture at a macroblock level. The present invention extends the concept of picture level AFF to macroblocks. In AFF coding at a picture level, each picture in a stream of pictures that is to be encoded is encoded in either frame mode or in field mode, regardless of the frame or field coding mode of other pictures that are to be coded. If a picture is encoded in frame mode, the two fields that make up an interlaced frame are coded jointly. Conversely, if a picture is encoded in field mode, the two fields that make up an interlaced frame are coded separately. The encoder determines which type of coding, frame mode coding or field mode coding, is more advantageous for each picture and chooses that type of encoding for the picture. The exact method of choosing between frame mode and field mode is not critical to the present invention and will not be detailed herein. As noted above, the MPEG-4 Part 10 AVC/H.264 standard is a new standard for encoding and compressing digital video content. The documents establishing the MPEG-4 Part 10 AVC/H.264 standard are hereby incorporated by reference, including “Joint Final Committee Draft (JFCD) of Joint Video Specification” issued by the Joint Video Team (JVT) on Aug. 10, 2002. (ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC). The JVT consists of experts from ISO or MPEG and ITU-T. Due to the public nature of the MPEG-4 Part 10 AVC/H.264 standard, the present specification will not attempt to document all the existing aspects of MPEG-4 Part 10 AVC/H.264 video coding, relying instead on the incorporated specifications of the standard. Although this method of AFF encoding is compatible with and will be explained using the MPEG-4 Part 10 AVC/H.264 standard guidelines, it can be modified and used as best serves a particular standard or application. Using the drawings, the preferred embodiments of the present invention will now be explained. FIG. 1 illustrates an exemplary sequence of three types of pictures that can be used to implement the present invention, as defined by an exemplary video coding standard such as the MPEG-4 Part 10 AVC/H.264 standard. As previously mentioned, the encoder encodes the pictures and the decoder decodes the pictures. The encoder or decoder can be a processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), coder/decoder (CODEC), digital signal processor (DSP), or some other electronic device that is capable of encoding the stream of pictures. However, as used hereafter and in the appended claims, unless otherwise specifically denoted, the term “encoder” will be used to refer expansively to all electronic devices that encode digital video content comprising a stream of pictures. The term “decoder” will be used to refer expansively to all electronic devices that decode digital video content comprising a stream of pictures. As shown in FIG. 1, there are preferably three types of pictures that can be used in the video coding method. Three types of pictures are defined to support random access to stored digital video content while exploring the maximum redundancy reduction using temporal prediction with motion compensation. The three types of pictures are intra (I) pictures (100), predicted (P) pictures (102a,b), and bi-predicted (B) pictures (101a-d). An I picture (100) provides an access point for random access to stored digital video content and can be encoded only with slight compression. Intra pictures (100) are encoded without referring to reference pictures. A predicted picture (102a,b) is encoded using an I, P, or B picture that has already been encoded as a reference picture. The reference picture can be in either the forward or backward temporal direction in relation to the P picture that is being encoded. The predicted pictures (102a,b) can be encoded with more compression than the intra pictures (100). A bi-predicted picture (101a-d) is encoded using two temporal reference pictures: a forward reference picture and a backward reference picture. The forward reference picture is sometimes called a past reference picture and the backward reference picture is sometimes called a future reference picture. An embodiment of the present invention is that the forward reference picture and backward reference picture can be in the same temporal direction in relation to the B picture that is being encoded. Bi-predicted pictures (101a-d) can be encoded with the most compression out of the three picture types. Reference relationships (103) between the three picture types are illustrated in FIG. 1. For example, the P picture (102a) can be encoded using the encoded I picture (100) as its reference picture. The B pictures (101a-d) can be encoded using the encoded I picture (100) or the encoded P picture (102a) as its reference pictures, as shown in FIG. 1. Under the principles of an embodiment of the present invention, encoded B pictures (101a-d) can also be used as reference pictures for other B pictures that are to be encoded. For example, the B picture (101c) of FIG. 1 is shown with two other B pictures (101b and 101d) as its reference pictures. The number and particular order of the I (100), B (101a-d), and P (102a,b) pictures shown in FIG. 1 are given as an exemplary configuration of pictures, but are not necessary to implement the present invention. Any number of I, B, and P pictures can be used in any order to best serve a particular application. The MPEG-4 Part 10 AVC/H.264 standard does not impose any limit to the number of B pictures between two reference pictures nor does it limit the number of pictures between two I pictures. FIG. 2 shows that each picture (200) is preferably divided into slices (202). A slice (202) comprises a group of macroblocks (201). A macroblock (201) is a rectangular group of pixels. As shown in FIG. 2, a preferable macroblock (201) size is 16 by 16 pixels. FIGS. 3a-f show that a macroblock can be further divided into smaller sized blocks. For example, as shown in FIGS. 3a-f, a macroblock can be further divided into block sizes of 16 by 8 pixels (FIG. 3a; 300), 8 by 16 pixels (FIG. 3b; 301), 8 by 8 pixels (FIG. 3c; 302), 8 by 4 pixels (FIG. 3d; 303), 4 by 8 pixels (FIG. 3e; 304), or 4 by 4 pixels (FIG. 3f; 305). These smaller block sizes are preferable in some applications that use the temporal prediction with motion compensation algorithm. FIG. 4 shows a picture construction example using temporal prediction with motion compensation that illustrates an embodiment of the present invention. Temporal prediction with motion compensation assumes that a current picture, picture N (400), can be locally modeled as a translation of another picture, picture N-1 (401). The picture N-1 (401) is the reference picture for the encoding of picture N (400) and can be in the forward or backwards temporal direction in relation to picture N (400). As shown in FIG. 4, each picture is preferably divided into slices containing macroblocks (201a,b). The picture N-1 (401) contains an image (403) that is to be shown in picture N (400). The image (403) will be in a different temporal position in picture N (402) than it is in picture N-1 (401), as shown in FIG. 4. The image content of each macroblock (201b) of picture N (400) is predicted from the image content of each corresponding macroblock (201a) of picture N-1 (401) by estimating the required amount of temporal motion of the image content of each macroblock (201a) of picture N-1 (401) for the image (403) to move to its new temporal position (402) in picture N (400). Instead of the original image (402) being encoded, the difference (404) between the image (402) and its prediction (403) is actually encoded and transmitted. For each image (402) in picture N (400), the temporal prediction can often be described by motion vectors that represent the amount of temporal motion required for the image (403) to move to a new temporal position in the picture N (402). The motion vectors (406) used for the temporal prediction with motion compensation need to be encoded and transmitted. FIG. 4 shows that the image (402) in picture N (400) can be represented by the difference (404) between the image and its prediction and the associated motion vectors (406). The exact method of encoding using the motion vectors can vary as best serves a particular application and can be easily implemented by someone who is skilled in the art. To understand macroblock level AFF coding, a brief overview of picture level AFF coding of a stream of pictures will now be given. A frame of an interlaced sequence contains two fields, the top field and the bottom field, which are interleaved and separated in time by a field period. The field period is half the time of a frame period. In picture level AFF coding, the two fields of an interlaced frame can be coded jointly or separately. If they are coded jointly, frame mode coding is used. Conversely, if the two fields are coded separately, field mode coding is used. Fixed frame/field coding, on the other hand, codes all the pictures in a stream of pictures in one mode only. That mode can be frame mode or it can be field mode. Picture level AFF is preferable to fixed frame/field coding in many applications because it allows the encoder to chose which mode, frame mode or field mode, to encode each picture in the stream of pictures based on the contents of the digital video material. AFF coding results in better compression than does fixed frame/field coding in many applications. An embodiment of the present invention is that AFF coding can be performed on smaller portions of a picture. This small portion can be a macroblock, a pair of macroblocks, or a group of macroblocks. Each macroblock, pair of macroblocks, or group of macroblocks or slice is encoded in frame mode or in field mode, regardless of how the other macroblocks in the picture are encoded. AFF coding in each of the three cases will be described in detail below. In the first case, AFF coding is performed on a single macroblock. If the macroblock is to be encoded in frame mode, the two fields in the macroblock are encoded jointly. Once encoded as a frame, the macroblock can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if the macroblock is to be encoded in field mode, the macroblock (500) is split into a top field (501) and a bottom field (502), as shown in FIG. 5. The two fields are then coded separately. In FIG. 5, the macroblock has M rows of pixels and N columns of pixels. A preferable value of N and M is 16, making the macroblock (500) a 16 by 16 pixel macroblock. As shown in FIG. 5, every other row of pixels is shaded. The shaded areas represent the rows of pixels in the top field of the macroblock (500) and the unshaded areas represent the rows of pixels in the bottom field of the macroblock (500). As shown in FIGS. 6a-d, a macroblock that is encoded in field mode can be divided into four additional blocks. A block is required to have a single parity. The single parity requirement is that a block cannot comprise both top and bottom fields. Rather, it must contain a single parity of field. Thus, as shown in FIGS. 6a-d, a field mode macroblock can be divided into blocks of 16 by 8 pixels (FIG. 6a; 600), 8 by 8 pixels (FIG. 6b; 601), 4 by 8 pixels (FIG. 6c; 602), and 4 by 4 pixels (FIG. 6d; 603). FIGS. 6a-d shows that each block contains fields of a single parity. AFF coding on macroblock pairs will now be explained. AFF coding on macroblock pairs will be occasionally referred to as pair based AFF coding. A comparison of the block sizes in FIGS. 6a-d and in FIGS. 3a-f show that a macroblock encoded in field mode can be divided into fewer block patterns than can a macroblock encoded in frame mode. The block sizes of 16 by 16 pixels, 8 by 16 pixels, and 8 by 4 pixels are not available for a macroblock encoded in field mode because of the single parity requirement. This implies that the performance of single macroblock based AFF may not be good for some sequences or applications that strongly favor field mode coding. In order to guarantee the performance of field mode macroblock coding, it is preferable in some applications for macroblocks that are coded in field mode to have the same block sizes as macroblocks that are coded in frame mode. This can be achieved by performing AFF coding on macroblock pairs instead of on single macroblocks. FIG. 7 illustrates an exemplary pair of macroblocks (700) that can be used in AFF coding on a pair of macroblocks according to an embodiment of the present invention. If the pair of macroblocks (700) is to be encoded in frame mode, the pair is coded as two frame-based macroblocks. In each macroblock, the two fields in each of the macroblocks are encoded jointly. Once encoded as frames, the macroblocks can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if the pair of macroblocks (700) is to be encoded in field mode, it is first split into one top field 16 by 16 pixel block (800) and one bottom field 16 by 16 pixel block (801), as shown in FIG. 8. The two fields are then coded separately. In FIG. 8, each macroblock in the pair of macroblocks (700) has N=16 columns of pixels and M=16 rows of pixels. Thus, the dimensions of the pair of macroblocks (700) is 16 by 32 pixels. As shown in FIG. 8, every other row of pixels is shaded. The shaded areas represent the rows of pixels in the top field of the macroblocks and the unshaded areas represent the rows of pixels in the bottom field of the macroblocks. The top field block (800) and the bottom field block (801) can now be divided into one of the possible block sizes of FIGS. 3a-f. According to an embodiment of the present invention, in the AFF coding of pairs of macroblocks (700), there are two possible scanning paths. A scanning path determines the order in which the pairs of macroblocks of a picture are encoded. FIG. 9 shows the two possible scanning paths in AFF coding of pairs of macroblocks (700). One of the scanning paths is a horizontal scanning path (900). In the horizontal scanning path (900), the macroblock pairs (700) of a picture (200) are coded from left to right and from top to bottom, as shown in FIG. 9. The other scanning path is a vertical scanning path (901). In the vertical scanning path (901), the macroblock pairs (700) of a picture (200) are coded from top to bottom and from left to right, as shown in FIG. 9. For frame mode coding, the top macroblock of a macroblock pair (700) is coded first, followed by the bottom macroblock. For field mode coding, the top field macroblock of a macroblock pair is coded first followed by the bottom field macroblock. Another embodiment of the present invention extends the concept of AFF coding on a pair of macroblocks to AFF coding on a group of four or more neighboring macroblocks (902), as shown in FIG. 10. AFF coding on a group of macroblocks will be occasionally referred to as group based AFF coding. The same scanning paths, horizontal (900) and vertical (901), as are used in the scanning of macroblock pairs are used in the scanning of groups of neighboring macroblocks (902). Although the example shown in FIG. 10 shows a group of four macroblocks, the group can be more than four macroblocks. If the group of macroblocks (902) is to be encoded in frame mode, the group coded as four frame-based macroblocks. In each macroblock, the two fields in each of the macroblocks are encoded jointly. Once encoded as frames, the macroblocks can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if a group of four macroblocks (902), for example, is to be encoded in field mode, it is first split into one top field 32 by 16 pixel block and one bottom field 32 by 16 pixel block. The two fields are then coded separately. The top field block and the bottom field block can now be divided into macroblocks. Each macroblock is further divided into one of the possible block sizes of FIGS. 3a-f. Because this process is similar to that of FIG. 8, a separate figure is not provided to illustrate this embodiment. In AFF coding at the macroblock level, a frame/field flag bit is preferably included in a picture's bitstream to indicate which mode, frame mode or field mode, is used in the encoding of each macroblock. The bitstream includes information pertinent to each macroblock within a stream, as shown in FIG. 11. For example, the bitstream can include a picture header (110), run information (111), and macroblock type (113) information. The frame/field flag (112) is preferably included before each macroblock in the bitstream if AFF is performed on each individual macroblock. If the AFF is performed on pairs of macroblocks, the frame/field flag (112) is preferably included before each pair of macroblock in the bitstream. Finally, if the AFF is performed on a group of macroblocks, the frame/field flag (112) is preferably included before each group of macroblocks in the bitstream. One embodiment is that the frame/field flag (112) bit is a 0 if frame mode is to be used and a 1 if field coding is to be used. Another embodiment is that the frame/field flag (112) bit is a 1 if frame mode is to be used and a 0 if field coding is to be used. Another embodiment of the present invention entails a method of determining the size of blocks into which the encoder divides a macroblock in macroblock level AFF. A preferable, but not exclusive, method for determining the ideal block size is sum absolute difference (SAD) with or without bias or rate distortion (RD) basis. For example, SAD checks the performance of the possible block sizes and chooses the ideal block size based on its results. The exact method of using SAD with or without bias or RD basis can be easily be performed by someone skilled in the art. According to an embodiment of the present invention, each frame and field based macroblock in macroblock level AFF can be intra coded or inter coded. In intra coding, the macroblock is encoded without temporally referring to other macroblocks. On the other hand, in inter coding, temporal prediction with motion compensation is used to code the macroblocks. If inter coding is used, a block with a size of 16 by 16 pixels, 16 by 8 pixels, 8 by 16 pixels, or 8 by 8 pixels can have its own reference pictures. The block can either be a frame or field based macroblock. The MPEG-4 Part 10 AVC/H.264 standard allows multiple reference pictures instead of just two reference pictures. The use of multiple reference pictures improves the performance of the temporal prediction with motion compensation algorithm by allowing the encoder to find a block in the reference picture that most closely matches the block that is to be encoded. By using the block in the reference picture in the coding process that most closely matches the block that is to be encoded, the greatest amount of compression is possible in the encoding of the picture. The reference pictures are stored in frame and field buffers and are assigned reference frame numbers and reference field numbers based on the temporal distance they are away from the current picture that is being encoded. The closer the reference picture is to the current picture that is being stored, the more likely the reference picture will be selected. For field mode coding, the reference pictures for a block can be any top or bottom field of any of the reference pictures in the reference frame or field buffers. Each block in a frame or field based macroblock can have its own motion vectors. The motion vectors are spatially predictive coded. According to an embodiment of the present invention, in inter coding, prediction motion vectors (PMV) are also calculated for each block. The algebraic difference between a block's PMVs and its associated motion vectors is then calculated and encoded. This generates the compressed bits for motion vectors. FIG. 12 will be used to explain various preferable methods of calculating the PMV of a block in a macroblock. A current block, E, in FIG. 12 is to be inter coded as well as its neighboring blocks A, B, C, and D. E will refer hereafter to a current block and A, B, C, and D will refer hereafter to E's neighboring blocks, unless otherwise denoted. Block E's PMV is derived from the motion vectors of its neighboring blocks. These neighboring blocks in the example of FIG. 12 are A, B, C, and D. One preferable method of calculating the PMV for block E is to calculate either the median of the motion vectors of blocks A, B, C, and D, the average of these motion vectors, or the weighted average of these motion vectors. Each of the blocks A through E can be in either frame or field mode. Another preferable method of calculating the PMV for block E is to use a yes/no method. Under the principles of the yes/no method, a block has to be in the same frame or field coding mode as block E in order to have its motion vector included in the calculation of the PMV for E. For example, if block E in FIG. 12 is in frame mode, block A must also be in frame mode to have its motion vector included in the calculation of the PMV for block E. If one of E's neighboring blocks does not have the same coding mode as does block E, its motion vectors are not used in the calculation of block E's PMV. The “always method” can also be used to calculate the PMV for block E. In the always method, blocks A, B, C, and D are always used in calculating the PMV for block E, regardless of their frame or field coding mode. If E is in frame mode and a neighboring block is in field mode, the vertical component of the neighboring block is multiplied by 2 before being included in the PMV calculation for block E. If E is in field mode and a neighboring block is in frame mode, the vertical component of the neighboring block is divided by 2 before being included in the PMV calculation for block E. The “selective method” can also be used to calculate the PMV for block E if the macroblock has been encoded using pair based AFF encoding or group based AFF encoding. In the selective method, a frame-based block has a frame-based motion vector pointing to a reference frame. The block is also assigned a field-based motion vector pointing to a reference field. The field-based motion vector is the frame-based motion vector of the block with the vertical motion vector component divided by two. The reference field number is the reference frame number multiplied by two. A field-based block has a field-based motion vector pointing to a reference field. The block is also assigned a frame-based motion vector pointing to a reference frame. The frame-based motion vector is the field-based motion vector of the block with the vertical motion vector component multiplied by two. The reference frame number is the reference field number divided by two. The derivation of a block's PMV using the selective method will now be explained using FIG. 12 as a reference. In macroblock pair based AFF, each block in a macroblock is associated with a companion block that resides in the same geometric location within the second macroblock of the macroblock pair. In FIG. 12, each of block E's neighboring blocks (A, B, C, and D) may or may not be in the same frame or field coding mode as block E. Hence, the following rules apply: If E is in frame mode and a neighboring block is in frame mode, the true frame-based motion vector of the neighboring block is used for E's PMV. If E is in frame mode and a neighboring block is in field mode, the following rules apply in calculating E's PMV. If the neighboring block (e.g.; block A) and its companion field-based block have the same reference field, the average of the assigned field-based motion vectors of the two blocks is used for the calculation of E's PMV. The reference frame number used for the PMV calculation is the reference field number of the neighboring block divided by two. However, if the neighboring block and its companion field block have different reference fields, then the neighboring block cannot be used in the calculation of E's PMV. If E is in field mode and a neighboring block is in frame mode, the following rules apply in calculating E's PMV. If the neighboring block (e.g.; block A) and its companion frame-based block have the same reference frame, the average of the assigned field-based motion vectors of the two blocks is used for the calculation of E's PMV. The reference field number used for the PMV calculation is the reference frame number of the neighboring block multiplied by two. However, if the neighboring block and its companion field block have different reference frames, then the neighboring block cannot be used in the calculation of E's PMV. If E is in field mode and a neighboring block is in field mode, the true field-based motion vector of the neighboring block is used in the calculation of E's PMV. An alternate preferable option can be used in the selective method to calculate a block's PMV. In FIG. 12, each of block E's neighboring blocks (A, B, C, and D) may or may not be in the same frame or field coding mode as block E. Hence, the following rules apply for this alternate preferable option of the selective method: If E is in frame mode and a neighboring block is in frame mode, the true frame-based motion vector of the neighboring block is used for E's PMV. If E is in frame mode and a neighboring block is in field mode, the weighted average of the assigned field-based motion vectors of the neighboring block and its companion field-based block is used for the calculation of E's PMV. The weighting factors are based upon the reference field numbers of the neighboring block and its companion block. If E is in field mode, and a neighboring block is in frame mode, the weighted average of the assigned field-based motion vectors of the neighboring block and its companion frame-based block is used for the calculation of E's PMV. The weighting factors are based upon the reference frame numbers of the neighboring block and its companion block. If E is in field mode and a neighboring block is in field mode, the true field-based motion vector of the neighboring block is used in the calculation of E's PMV. Another preferable method of computing a block's PMV is the “alt selective method.” This method can be used in single macroblock AFF coding, pair based macroblock AFF coding, or group based AFF coding. In this method, each block is assigned a horizontal and a vertical index number, which represents the horizontal and vertical coordinates of the block. Each block is also assigned a horizontal and vertical field coordinate. A block's horizontal field coordinate is same as its horizontal coordinate. For a block in a top field macroblock, the vertical field coordinate is half of vertical coordinate of the block and is assigned top field polarity. For a block in the bottom field macroblock, the vertical field coordinate of the block is obtained by subtracting 4 from the vertical coordinate of the block and dividing the result by 2. The block is also assigned bottom field polarity. The result of assigning different field polarities to two blocks is that there are now two blocks with the same horizontal and vertical field coordinates but with differing field polarities. Thus, given the coordinates of a block, the field coordinates and its field polarity can be computed and vice versa. The alt selective method will now be explained in detail using FIG. 12 as a reference. The PMV of block E is to be computed. Let bx represent the horizontal size of block E divided by 4, which is the size of a block in this example. The PMVs for E are obtained as follows depending on whether E is in frame/field mode. Let block E be in frame mode and let (x,y) represent the horizontal and vertical coordinates respectively of E. The neighboring blocks of E are defined in the following manner. A is the block whose coordinates are (x-1,y). B is the block whose coordinates are (x,y-1). D is the block whose coordinates are (x-1,y-1). C is the block whose coordinates are (x+bx+1,y-1). If either A, B, C or D is in field mode then its vertical motion vector is divided by 2 before being used for prediction and its reference frame number is computed by dividing its reference field by 2. Now, let block E be in top or bottom field mode and let (xf,yf) represent the horizontal and vertical field coordinates respectively of E. In this case, the neighbors of E are defined as follows. A is the block whose field coordinates are (xf-1,yf) and has same polarity as E. B is the block whose field coordinates are (xf,yf-1) and has same polarity as E. D is the block whose field coordinates are (xf-1,yf-1) and has same polarity as E. C is the block whose field coordinates are (xf+bx+1,yf) and has same polarity as E. If either A,B,C or D is in frame mode then its vertical motion vector is multiplied by 2 before being used for prediction and its reference field is computed by multiplying its reference frame by 2. In all of the above methods for determining the PMV of a block, a horizontal scanning path was assumed. However, the scanning path can also be a vertical scanning path. In this case, the neighboring blocks of the current block, E, are defined as shown in FIG. 13. A vertical scanning path is preferable in some applications because the information on all the neighboring blocks is available for the calculation of the PMV for the current block E. Another embodiment of the present invention is directional segmentation prediction. In directional segmentation prediction, 16 by 8 pixel blocks and 8 by 16 pixel blocks have rules that apply to their PMV calculations only. These rules apply in all PMV calculation methods for these block sizes. The rules will now be explained in detail in connection with FIG. 12. In each of these rules, a current block E is to have its PMV calculated. First, a 16 by 8 pixel block consists of an upper block and a lower block. The upper block contains the top 8 rows of pixels. The lower block contains the bottom 8 rows of pixels. In the following description, blocks A-E of FIG. 12 are 16 by 8 pixel blocks. For the upper block in a 16 by 8 pixel block, block B is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. For the lower block in a 16 by 8 pixel block, block A is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. An 8 by 16 pixel block is divided into a right and left block. Both right and left blocks are 8 by 16 pixels. In the following description, blocks A-E of FIG. 12 are 8 by 16 pixel blocks. For the left block, block A is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. For the right block, block C is used to predict block E's PMV if it has the same referenced picture as block E. Otherwise median prediction is used to predict block E's PMV. For both 16 by 8 pixel blocks and 8 by 16 blocks, A, B, or C can be in different encoding modes (frame or field) than the current block E. The following rules apply for both block sizes. If E is in frame mode, and A, B, or C is in field mode, the reference frame number of A, B, or C is computed by dividing its reference field by 2. If E is in field mode, and A, B, or C is in frame mode, the reference field number of A, B, or C is computed by multiplying its reference frame by 2. According to another embodiment of the present invention, a macroblock in a P picture can be skipped in AFF coding. If a macroblock is skipped, its data is not transmitted in the encoding of the picture. A skipped macroblock in a P picture is reconstructed by copying the co-located macroblock in the most recently coded reference picture. The co-located macroblock is defined as the one with motion compensation using PMV as defined above or without motion vectors. The following rules apply for skipped macroblocks in a P picture. If AFF coding is performed per macroblock, a skipped macroblock is in frame mode. If AFF coding is performed on macroblock pairs and if both macroblocks are skipped, then they are in frame mode. However, if only one of the macroblocks in a macroblock pair is skipped, its frame or field coding mode is the same as the non-skipped macroblock in the same macroblock pair. If AFF coding is performed on a group of macroblocks and if the entire group of macroblocks is skipped, then all the macroblocks are in frame mode. If there is at least one macroblock that is not skipped, then the skipped macroblocks in the same group are in the same frame or field coding mode as the non-skipped macroblock. An alternate method for skipped macroblocks is as follows. If a macroblock pair is skipped, its frame and field coding mode follows its neighboring macroblock pair to the left. If the left neighboring macroblock pair is not available, its coding mode follows its neighboring macroblock pair to the top. If neither the left nor top neighboring macroblock pairs are available, the skipped macroblock is set to frame mode. Another embodiment of the present invention is direct mode macroblock coding for B pictures. In direct mode coding, a B picture has two motion vectors, forward and backward motion vectors. Each motion vector points to a reference picture. Both the forward and backward motion vectors can point in the same temporal direction. For direct mode macroblock coding in B pictures, the forward and backward motion vectors of a block are calculated from the co-located block in the backward reference picture. The co-located block in the backward reference picture can be frame mode or field mode coded. The following rules apply in direct mode macroblock coding for B picture. If the co-located block is in frame mode and if the current direct mode macroblock is also in frame mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block. The forward reference frame is the one used by the co-located block. The backward reference frame is the same frame where the co-located block resides. If the co-located block is in frame mode and if the current direct mode macroblock is in field mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block's motion vector with vertical component divided by two. The forward reference field is the same parity field of the reference frame used by the co-located block. The backward reference field is the same parity field of the backward reference frame where the co-located block resides. If the co-located block is in field mode and if the current direct mode macroblock is also in field mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block of the same field parity. The forward reference field is the field used by the co-located block. The backward reference field is the same field where the co-located block resides. If the co-located block is in field mode and if the current direct mode macroblock is in frame mode, the two associated motion vectors of the block in the direct mode macroblock are calculated from the co-located block's motion vector with vertical component multiplied by two. The forward reference frame is the frame one of whose fields is used by the co-located block. The backward reference field is the frame in one of whose fields the co-located block resides. An alternate option is to force the direct mode block to be in the same frame or field coding mode as the co-located block. In this case, if the co-located block for a direct mode block is in frame mode, the direct mode block is in frame mode as well. The two frame-based motion vectors of the direct mode block are derived from the frame-based forward motion vector of the co-located block. The forward reference frame is used by the co-located block. The backward reference frame is where the co-located block resides. However, if the co-located block for a block in direct mode is in field mode, the direct mode block is also in field mode. The two field-based motion vectors of the direct mode block are derived from the field-based forward motion vector of the co-located block. The forward reference field is used by the co-located block. The backward reference field is where the co-located block resides. A macroblock in a B picture can also be skipped in AFF coding according to another embodiment of the present invention. A skipped macroblock in a B picture is reconstructed as a regular direct mode macroblock without any coded transform coefficient information. For skipped macroblocks in a B picture, the following rules apply. If AFF coding is performed per macroblock, a skipped macroblock is either in frame mode or in the frame or field coding mode of the co-located block in its backward reference picture. If AFF coding is performed on macroblock pairs and if both macroblocks are skipped, then they are in frame mode or in the frame or field coding mode of the co-located macroblock pair in the its backward reference picture. However, if only one of the macroblocks in a macroblock pair is skipped, its frame or field coding mode is the same as the non-skipped macroblock of the same macroblock pair. If AFF coding is performed on a group of macroblocks and if the entire group of macroblocks is skipped, then all the macroblocks are in frame mode or in the frame or field coding mode of the co-located group of macroblocks in the backward reference picture. If there is at least one macroblock that is not skipped, then the skipped macroblock in the same group are in the same frame or field coding mode as the non-skipped macroblock. As previously mentioned, a block can be intra coded. Intra blocks are spatially predictive coded. There are two possible intra coding modes for a macroblock in macroblock level AFF coding. The first is intra—4×4 mode and the second is intra—16×16 mode. In both, each pixel's value is predicted using the real reconstructed pixel values from neighboring blocks. By predicting pixel values, more compression can be achieved. The intra—4×4 mode and the intra—16×16 modes will each be explained in more detail below. For intra—4×4 mode, the predictions of the pixels in a 4 by 4 pixel block, as shown in FIG. 14, are derived form its left and above pixels. In FIG. 14, the 16 pixels in the 4 by 4 pixel block are labeled a through p. Also shown in FIG. 14 are the neighboring pixels A through P. The neighboring pixels are in capital letters. As shown in FIG. 15, there are nine different prediction directions for intra—4×4 coding. They are vertical (0), horizontal (1), DC prediction (mode 2), diagonal down/left (3), diagonal down/right (4), vertical-left (5), horizontal-down (6), vertical-right (7), and horizontal-up (8). DC prediction averages all the neighboring pixels together to predict a particular pixel value. However, for intra—16×16 mode, there are four different prediction directions. Prediction directions are also referred to as prediction modes. These prediction directions are vertical prediction (0), horizontal prediction (1), DC prediction, and plane prediction. Plane prediction will not be explained. An intra block and its neighboring blocks may be coded in frame or field mode. Intra prediction is performed on the reconstructed blocks. A reconstructed block can be represented in both frame and field mode, regardless of the actual frame or field coding mode of the block. Since only the pixels of the reconstructed blocks are used for intra prediction, the following rules apply. If a block of 4 by 4 pixels or 16 by 16 pixels is in frame mode, the neighboring pixels used in calculating the pixel value predictions of the block are in the frame structure. If a block of 4 by 4 pixels or 16 by 16 pixels is in field mode, the neighboring pixels used in calculating the pixel value prediction of the block are in field mode of the same field parity. The chosen intra-prediction mode (intra_pred_mode) of a 4 by 4 pixel block is highly correlated with the prediction modes of adjacent blocks. This is illustrated in FIG. 16a. FIG. 16a shows that A and B are adjacent blocks to C. Block C's prediction mode is to be established. FIG. 16b shows the order of intra prediction information in the bitstream. When the prediction modes of A and B are known (including the case that A or B or both are outside the slice) the most probable prediction mode (most_probable_mode) of C is given. If one of the blocks A or B is “outside” the most_probable prediction mode is equal DC prediction (mode 2). Otherwise it is equal to the minimum of prediction modes used for blocks A and B. When an adjacent block is coded by 16×16 intra mode, prediction mode is DC prediction mode. When an adjacent block is coded a non-intra macroblock, prediction mode is “mode 2: DC prediction” in the usual case and “outside” in the case of constrained intra update. To signal a prediction mode number for a 4 by 4 block first parameter use_most_probable_mode is transmitted. This parameter is represented by 1 bit codeword and can take values 0 or 1. If use_most_probable_mode is equal to 1 the most probable mode is used. Otherwise an additional parameter remaining_mode_selector, which can take value from 0 to 7 is sent as 3 bit codeword. The codeword is a binary representation of remaining_mode_selector value. The prediction mode number is calculated as: if (remaining_mode_selector<most_probable mode) intra_pred_mode=remainingmode_selector; else intra_pred_mode=remaining_mode_selector+1; The ordering of prediction modes assigned to blocks C is therefore the most probable mode followed by the remaining modes in the ascending order. An embodiment of the present invention includes the following rules that apply to intra mode prediction for an intra-prediction mode of a 4 by 4 pixel block or an intra-prediction mode of a 16 by 16 pixel block. Block C and its neighboring blocks A and B can be in frame or field mode. One of the following rules shall apply. FIGS. 16a-b will be used in the following explanations of the rules. Rule 1: A or B is used as the neighboring block of C only if A or B is in the same frame/field mode as C. Otherwise, A or B is considered as outside. Rule 2: A and B are used as the neighboring blocks of C, regardless of their frame/field coding mode. Rule 3: If C is coded in frame mode and has co-ordinates (x,y), then A is the block with co-ordinates (x,y-1) and B is the block with co-ordinates (x-1,y). Otherwise, if C is coded as field and has field co-ordinates (xf,yf) then A is the block whose field co-ordinates are (xf,yf-1) and has same field polarity as C and B is the block whose field co-ordinates are (xf-1,yf) and has same field polarity as C. Rule 4: This rule applies to macroblock pairs only. In the case of decoding the prediction modes of blocks numbered 3, 6, 7, 9, 12, 13, 11, 14 and 15 of FIG. 16b, the above and the left neighboring blocks are in the same macroblock as the current block. However, in the case of decoding the prediction modes of blocks numbered 1, 4, and 5, the top block (block A) is in a different macroblock pair than the current macroblock pair. In the case of decoding the prediction mode of blocks numbered 2, 8, and 10, the left block (block B) is in a different macroblock pair. In the case of decoding the prediction mode of the block numbered 0, both the left and the above blocks are in different macroblock pairs. For a macroblock in field decoding mode the neighboring blocks of the blocks numbered 0, 1, 4, 5, 2, 8, and 10 shall be defined as follows: If the above macroblock pair (170) is decoded in field mode, then for blocks number 0, 1, 4 and 5 in the top-field macroblock (173), blocks numbered 10, 11, 14 and 15 respectively in the top-field macroblock (173) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171) as shown in FIG. 17a. For blocks number 0, 1, 4 and 5 in the bottom-field macroblock (174), blocks numbered 10, 11, 14 and 15 respectively in the bottom-field MB of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown in FIG. 17a. However, if the above macroblock pair (170) is decoded in frame mode then for blocks number 0, 1, 4 and 5 in the top-field macroblock (173), blocks numbered 10, 11, 14 and 15 respectively in the bottom-frame macroblock (176) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown in FIG. 17b. For blocks number 0, 1, 4 and 5 in the bottom-field macroblock (174), blocks numbered 10, 11, 14 and 15 respectively in the bottom-frame macroblock (176) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown inn FIG. 17b. If the left macroblock pair (172) is decoded in field mode, then for blocks number 0, 2, 8 and 10 in the top-field macroblock (173), blocks numbered 5, 7, 13 and 15 respectively in the top-field macroblock (173) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171) as shown in FIG. 17c. For blocks number 0, 2, 8 and 10 in the bottom-field macroblock (174), blocks numbered 5, 7, 13 and 15 respectively in the bottom-field macroblock (174) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17c. If the left macroblock pair (172) is decoded in frame mode, then for blocks number 0, 2, 8 and 10 in the top-field macroblock (173), the blocks numbered 5, 7, 13 and 15 respectively in the top-frame macroblock (175) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17d. For blocks number 0, 2, 8 and 10 in the bottom-field macroblock (174), blocks numbered 5, 7, 13 and 15 respectively in the bottom-frame macroblock (176) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17d. For macroblock pairs on the upper boundary of a slice, if the left macroblock pair (172) is in frame decoding mode, then the intra mode prediction value used to predict a field macroblock shall be set to DC prediction. The preceding descriptions of intra coding and intra mode prediction can be extended to adaptive block transforms. Another embodiment of the present invention is that loop filtering is performed on the reconstructed blocks. A reconstructed block can be represented in either frame or field structure, regardless of the frame/filed coding mode of the block. Loop (deblock) filtering is a process of weighted averaging of the pixels of the neighboring blocks. FIG. 12 will be used to explain loop filtering. Assume E of FIG. 12 is a reconstructed block, and A, B, C and D are its neighboring reconstructed blocks, as shown in FIG. 12, and they are all represented in frame structure. Since A, B, C, D and E can be either frame- or field-coded, the following rules apply: Rule 1: If E is frame-coded, loop filtering is performed over the pixels of E and its neighboring blocks A B, C and D. Rule 2: If E is field-coded, loop filtering is performed over the top-field and bottom-field pixels of E and its neighboring blocks A B, C and D, separately. Another embodiment of the present invention is that padding is performed on the reconstructed frame by repeating the boundary pixels. Since the boundary blocks may be coded in frame or field mode, the following rules apply: Rule 1: The pixels on the left or right vertical line of a boundary block are repeated, if necessary. Rule 2: If a boundary block is in frame coding, the pixels on the top or bottom horizontal line of the boundary block are repeated. Rule 3: if a boundary block is in field coding, the pixels on the two top or two bottom horizontal (two field) lines of the boundary block are repeated alternatively. Another embodiment of the present invention is that two-dimensional transform coefficients are converted into one-dimensional series of coefficients before entropy coding. The scan path can be either zigzag or non-zigzag. The zigzag scanner is preferably for progressive sequences, but it may be also used for interlace sequences with slow motions. The non-zigzag scanners are preferably for interlace sequences. For macroblock AFF coding, the following options may be used: Option 1: The zigzag scan is used for macroblocks in frame mode while the non-zigzag scanners are used for macroblocks in field coding. Option 2: The zigzag scan is used for macroblocks in both frame and field modes. Option 3: The non-zigzag scan is used for macroblocks in both frame and field modes. The preceding description has been presented only to illustrate and describe embodiments of invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. The foregoing embodiments were chosen and described in order to illustrate principles of the invention and some practical applications. The preceding description enables others skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims. | <SOH> BACKGROUND <EOH>Video compression is used in many current and emerging products. It is at the heart of digital television set-top boxes (STBs), digital satellite systems (DSSs), high definition television (HDTV) decoders, digital versatile disk (DVD) players, video conferencing, Internet video and multimedia content, and other digital video applications. Without video compression, digital video content can be extremely large, making it difficult or even impossible for the digital video content to be efficiently stored, transmitted, or viewed. The digital video content comprises a stream of pictures that can be displayed as an image on a television receiver, computer monitor, or some other electronic device capable of displaying digital video content. A picture that is displayed in time before a particular picture is in the “backward direction” in relation to the particular picture. Likewise, a picture that is displayed in time after a particular picture is in the “forward direction” in relation to the particular picture. Video compression is accomplished in a video encoding, or coding, process in which each picture is encoded as either a frame or as two fields. Each frame comprises a number of lines of spatial information. For example, a typical frame contains 480 horizontal lines. Each field contains half the number of lines in the frame. For example, if the frame comprises 480 horizontal lines, each field comprises 240 horizontal lines. In a typical configuration, one of the fields comprises the odd numbered lines in the frame and the other field comprises the even numbered lines in the frame. The field that comprises the odd numbered lines will be referred to as the “top” field hereafter and in the appended claims, unless otherwise specifically denoted. Likewise, the field that comprises the even numbered lines will be referred to as the “bottom” field hereafter and in the appended claims, unless otherwise specifically denoted. The two fields can be interlaced together to form an interlaced frame. The general idea behind video coding is to remove data from the digital video content that is “non-essential.” The decreased amount of data then requires less bandwidth for broadcast or transmission. After the compressed video data has been transmitted, it must be decoded, or decompressed. In this process, the transmitted video data is processed to generate approximation data that is substituted into the video data to replace the “non-essential” data that was removed in the coding process. Video coding transforms the digital video content into a compressed form that can be stored using less space and transmitted using less bandwidth than uncompressed digital video content. It does so by taking advantage of temporal and spatial redundancies in the pictures of the video content. The digital video content can be stored in a storage medium such as a hard drive, DVD, or some other non-volatile storage unit. There are numerous video coding methods that compress the digital video content. Consequently, video coding standards have been developed to standardize the various video coding methods so that the compressed digital video content is rendered in formats that a majority of video encoders and decoders can recognize. For example, the Motion Picture Experts Group (MPEG) and International Telecommunication Union (ITU-T) have developed video coding standards that are in wide use. Examples of these standards include the MPEG- 1 , MPEG- 2 , MPEG-4, ITU-T H261, and ITU-T H263 standards. Most modern video coding standards, such as those developed by MPEG and ITU-T, are based in part on a temporal prediction with motion compensation (MC) algorithm. Temporal prediction with motion compensation is used to remove temporal redundancy between successive pictures in a digital video broadcast. The temporal prediction with motion compensation algorithm typically utilizes one or two reference pictures to encode a particular picture. A reference picture is a picture that has already been encoded. By comparing the particular picture that is to be encoded with one of the reference pictures, the temporal prediction with motion compensation algorithm can take advantage of the temporal redundancy that exists between the reference picture and the particular picture that is to be encoded and encode the picture with a higher amount of compression than if the picture were encoded without using the temporal prediction with motion compensation algorithm. One of the reference pictures may be in the backward direction in relation to the particular picture that is to be encoded. The other reference picture is in the forward direction in relation to the particular picture that is to be encoded. However, as the demand for higher resolutions, more complex graphical content, and faster transmission time increases, so does the need for better video compression methods. To this end, a new video coding standard is currently being developed jointly by ISO and ITU-T. This new video coding standard is called the MPEG-4 Advanced Video Coding (AVC)/H.264 standard. | <SOH> SUMMARY OF THE INVENTION <EOH>In one of many possible embodiments, the present invention provides a method of encoding, decoding, and bitstream generation of digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the macroblocks in each picture in said stream of pictures in either frame mode or in field mode. | 20041230 | 20071218 | 20050609 | 87028.0 | 2 | AN, SHAWN S | MACROBLOCK LEVEL ADAPTIVE FRAME/FIELD CODING FOR DIGITAL VIDEO CONTENT | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,026,582 | ACCEPTED | Method and apparatus for controlling charge transfer in CMOS sensors with a transfer gate work function | An improved CMOS sensor integrated circuit is disclosed, along with methods of making the circuit and computer readable descriptions of the circuit. | 1. An image sensor integrated circuit, comprising: a plurality of photodetectors generating electrons excited by incident photons; a plurality of nodes, wherein each of the plurality of photodetectors has a corresponding node of the plurality of nodes; a plurality of transfer devices controlling a transfer of the electrons from said each of the plurality of photodetectors to the corresponding node, each of the plurality of transfer devices including: a first terminal coupled to one of the plurality of photodetectors; a second terminal coupled to one of the plurality of nodes; and a body between the first terminal and the second terminal; and a control terminal electrically coupled to the body, wherein the transfer of the electrons occurs through the body between the first terminal and the second terminal in response to a control voltage of sufficient value applied to the control terminal, and in an absence of the control voltage the control terminal creates an electric field tending to repel the electrons from a portion of the body by the control terminal; a plurality of reset devices, wherein each of the plurality of nodes has a corresponding reset device of the plurality of reset devices, and said each of the plurality of nodes is reset when the corresponding reset device is active; row and column circuitry; and a plurality of signal devices coupling the plurality of nodes to the row and column circuitry. 2. The circuit of claim 1, wherein the control terminal is made of p-type polysilicon. 3. The circuit of claim 1, wherein the body has a first Fermi level, the control terminal has a second Fermi level, and a difference between the first Fermi level and the second Fermi level causes the electric field. 4. The circuit of claim 1, wherein the control terminal is made of metal. 5. The circuit of claim 1, wherein a doping of the control terminal is graded in a direction along a channel length in the body. 6. The circuit of claim 1, wherein the electric field reduces dark current in the portion of the body by the control terminal. 7. The circuit of claim 1, further comprising: a plurality of p-type regions isolating neighboring photodetectors from each other. 8. The circuit of claim 1, wherein each of the plurality of transfer devices includes a dielectric between the control terminal and the body, the dielectric satisfying a lifetime specification of the image sensor integrated circuit when the control signal is applied with the channel formed, the dielectric failing the lifetime specification of the image sensor integrated circuit if the control signal is applied with at least one of the first terminal and the second terminal at a ground voltage of the image sensor integrated circuit. 9. The circuit of claim 1, wherein the plurality of signal devices includes a plurality of row select transistors coupled to the row and column circuitry and a plurality of source follower transistors coupled to the plurality of nodes. 10. The circuit of claim 1, wherein the plurality of photodetectors is a plurality of photodiodes. 11. The circuit of claim 1, wherein each measurement of the total of the photons is corrected by correlated multiple sampling with a prior measurement of the total of the photons. 12. A method of fabricating an image sensor integrated circuit having a plurality of photodetectors using energy of photons reaching the plurality of photodetectors to excite electrons; a plurality of nodes, each of the plurality of photodetectors having a corresponding node of the plurality of nodes; a plurality of transfer devices each with a first terminal coupled to one of the plurality of photodetectors, a second terminal coupled to the corresponding node, a body between the first terminal and the second terminal, and a control terminal; a plurality of reset devices, each of the plurality of nodes having a corresponding reset device of the plurality of reset devices, and said each of the plurality of nodes is reset when the corresponding reset device is active; and a plurality of signal devices coupling the plurality of nodes to row and column circuitry; the method comprising: implanting an n-type region for each of the plurality of photodetectors, the n-type region receiving the electrons excited by the energy of the photons; depositing the control terminal for each of the plurality of transfer devices wherein the transfer of the electrons occurs through the body between the first terminal and the second terminal in response to a control voltage of sufficient value applied to the control terminal, and in an absence of the control voltage the control terminal creates an electric field tending to repel the electrons from a portion of the body by the control terminal; implanting the plurality of nodes, wherein each of the plurality of photodetectors has a corresponding node of the plurality of nodes where the electrons are measured prior to removal; and implanting at least one n+terminal for each of the plurality of transfer devices, wherein said method forms row and column circuitry on the image sensor integrated circuit accessing the plurality of nodes. 13. The method of claim 12, further comprising: implanting a plurality of p-type regions isolating neighboring photodetectors from each other. 14. The method of claim 12, further comprising: implanting a plurality of p-type regions in which the plurality of reset devices, and the plurality of signal devices are formed. 15. The method of claim 12, wherein said depositing the control terminal for the plurality of transfer devices includes depositing the control terminal for the plurality of reset devices and the plurality of signal devices. 16. The method of claim 12, wherein said implanting at least one n+ terminal includes implanting the n+ terminals of the plurality of signal devices, and the plurality of reset devices. 17. The method of claim 12, wherein the control terminal is made of p-type polysilicon. 18. The method of claim 12, wherein the body has a first Fermi level, the control terminal has a second Fermi level, and a difference between the first Fermi level and the second Fermi level causes the electric field. 19. The method of claim 12, wherein the control terminal is made of metal. 20. The method of claim 12, wherein a doping of the control terminal is graded in a direction along a channel length in the body. 21. The method of claim 12, wherein the electric field reduces dark current in the portion of the body by the control terminal. 22. The method of claim 12, wherein each of the plurality of transfer devices includes a dielectric between the control terminal and the body, the dielectric satisfying a lifetime specification of the image sensor integrated circuit when the control signal is applied with the channel formed, the dielectric failing the lifetime specification of the image sensor integrated circuit if the control signal is applied with at least one of the first terminal and the second terminal at a ground voltage of the image sensor integrated circuit. 23. The method of claim 12, wherein the plurality of signal devices includes a plurality of row select transistors coupled to the row and column circuitry and a plurality of source follower transistors coupled to the plurality of nodes. 24. The method of claim 12, wherein the plurality of photodetectors is a plurality of photodiodes. 25. The method of claim 12, wherein each measurement of the total of the photons is corrected by correlated multiple sampling with a prior measurement of the total of the photons. 26. A computer readable description of an image sensor integrated circuit comprising: a plurality of photodetectors generating electrons excited by incident photons; a plurality of nodes, wherein each of the plurality of photodetectors has a corresponding node of the plurality of nodes; a plurality of transfer devices controlling a transfer of the electrons from said each of the plurality of photodetectors to the corresponding node, each of the plurality of transfer devices including: a first terminal coupled to one of the plurality of photodetectors; a second terminal coupled to one of the plurality of nodes; and a body between the first terminal and the second terminal; and a control terminal electrically coupled to the body, wherein the transfer of the electrons occurs through the body between the first terminal and the second terminal in response to a control voltage of sufficient value applied to the control terminal, and in an absence of the control voltage the control terminal creates an electric field tending to repel the electrons from a portion of the body by the control terminal; a plurality of reset devices, wherein each of the plurality of nodes has a corresponding reset device of the plurality of reset devices, and said each of the plurality of nodes is reset when the corresponding reset device is active; row and column circuitry; and a plurality of signal devices coupling the plurality of nodes to the row and column circuitry. | REFERENCE TO RELATED APPLICATION This application is related to the commonly owned U.S. patent applications Ser. No. 10/______, (HBES 1012-1), entitled “Method and Apparatus for Varying a CMOS Sensor Control Voltage”, by inventors Zeynep Toros, Richard Mann, Selim Bencuya, Sergi Lin and Jiafu Luo; to Ser. No. 10/______, (HBES 1013-1), entitled “Method and Apparatus for Removing Electrons from CMOS Sensor Photodetectors”, by inventors Zeynep Toros, Richard Mann and Selim Bencuya; to Ser. No. 10/______, (HBES 1014-1), entitled “Method and Apparatus for Controlling Charge Transfer in CMOS Sensors with an Implant by the Transfer Gate”, by inventors Toros et al.; to Ser. No. 10/______, (HBES 1016-1), entitled “Method and Apparatus for Controlling Charge Transfer in CMOS Sensors with a Graded Transfer Gate Work Function”, by inventors Toros et al.; to Ser. No. 10/______, (HBES 1017-1), entitled “Method for Designing a CMOS Sensor”, by inventors Toros et al.; and to Ser. No. 10/______, (HBES 1050-1), entitled “Method and Apparatus for Proximate CMOS Pixels”, by inventors Toros et al.; all of said applications filed on the same day as this application and all incorporated by reference as if fully set forth herein. BACKGROUND OF THE INVENTION 1. Field of the Invention Embodiments are related to image sensors, computer readable descriptions of image sensors, and methods for making mage sensors, and more particularly to such embodiments of CMOS image sensors. 2. Description of Related Art The active pixel sensor is used in CMOS based imager arrays for a variety of applications. The sensor consists of an array of pixels (rows×columns) with the associated active circuitry on the same chip. Each pixel contains a photosensitive device that senses the incoming light and generates a ΔV difference on a floating node. The readout is accomplished by selecting a row of pixels and reading out each column, either column by column or all columns at the same time. The XY addressable APS is designed for CMOS technology with minor modifications to the process for the pixel while maintaining low-power and lower cost features compared to the CCD technology. Another main advantage of using CMOS process is to have the pixel array with the associated active circuitry on the same chip and save area and cost. Despite all of the benefits of using the CMOS process, the picture quality of the CCD image sensors is still superior to the picture quality of the CMOS APS. One of the main reasons for this difference is that the CMOS process is not suitable to designing a good pixel element, unlike the CCD process which is designed specifically to build pixel elements that result in a high quality picture. Another limitation of the CMOS process is that the operating voltages are low and not flexible as in the CCD technology. SUMMARY OF THE INVENTION This innovation describes the process methods and process integration of an active pixel sensor that combines the advantages of both CCD and CMOS technologies. The low noise advantages of a true correlated multiple sampling pixel (e.g., Correlated Double Sample pixel) are created in a CMOS process with low cost and high performance with minimum impact on existing features and capabilities of the CMOS technology. Disclosed embodiments cover 4T pixel designs, although other protected embodiments cover 5T and other pixel designs. In a CMOS sensor, if the region controlled by the transfer transistor generates dark current, the number of electrons transferred between the photodetector and the sense node will be contaminated by dark current noise. Another problem besides dark current associated with the transfer transistor is that it must reliably prevent electrons from moving between the photodetector and the sense node when it is nominally off. A transfer gate of appropriate material, such as p-type polysilicon, has a work function which addresses both problems, generating an electric field which accumulates holes to eliminate dark current and reliably keeping the transfer transistor off. One embodiment of the image sensor integrated circuit includes photodetectors such as photodiodes, nodes such as floating diffusions, and transfer devices such as transfer gates that control a transfer of the electrons between a photodetector and a corresponding floating diffusion. Each transfer device has a first terminal coupled to a photodetector, a second terminal coupled to a node (e.g., floating diffusion), a body between the first terminal and the second terminal, and a control terminal (e.g., gate). In the absence of a control voltage applied to the control terminal, the control terminal creates an electric field that repels electrons from the body by the control terminal. The circuit also includes reset devices such as reset transistors. Each floating diffusion node has a corresponding reset device which resets the node. The circuit also includes row and column circuitry such as row and column decoders, and signal devices such as source follower and row selector transistors. Other embodiments include a method for fabricating the circuit and a computer readable description of the circuit, such as a layout or tapeout. BRIEF DESCRIPTION OF THE DRAWINGS The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. FIG. 1 shows a schematic of a pixel with improved performance. FIG. 2 shows a schematic of pixels with improved performance that share circuitry. FIG. 3 shows a sketch of the potential profile in the charge collection and transfer region. FIG. 4 shows a sketch of charge leakage resulting from a weak barrier when the transfer gate is off. FIG. 5 shows a sketch of blooming control, where the off voltage of the transfer gate is adjustable to the desired level. FIG. 6 shows a sketch of the transfer gate is turning on. FIG. 7 shows a sketch of charge trapping where the transfer gate is on. FIG. 8 shows a sketch showing that by raising the transfer gate voltage, the barrier is removed, allowing the charge to flow. FIG. 9 shows a timing diagram of the RST operation to reset the floating diffusion voltage with a positive delay time. FIG. 10 shows a timing diagram of the RST operation to reset the floating diffusion voltage with a negative delay time. FIG. 11 shows a timing diagram of the RO (readout) operation to read out the charge, where the SEL (select) signal is turned low after the RST (reset) level is sampled, and the SEL signal is turned high again to sample the signal level. FIG. 12 shows a timing diagram of the RO operation to read out the charge, where the SEL signal is kept high until the transfer gate voltage is turned low. FIG. 13 is a cross-sectional schematic of a pixel with a separation between a typical p-well and the transfer device barrier boron p-well. FIG. 14 is a cross-sectional schematic of a pixel with a separation between the transfer device barrier implant and the reset transistor p-well implant (in this example, with a separation of about 0.3 um-0.5 um), and an overlap of the transfer device barrier implant with the transfer gate (in this example, with an overlap of about 0.2 um). FIG. 15 is a plan view schematic of a pixel with a separation between the transfer device barrier implant and the reset transistor p-well implant, and an overlap of the transfer device barrier implant with the transfer gate. FIG. 16 is a plan view schematic of a pixel with an n-type diode ring implant and showing the cross-section for the 2D simulation. FIG. 17 illustrates part of a pixel fabrication process and shows a cross-sectional view of a pixel with shallow trench isolation. FIG. 18 illustrates part of a pixel fabrication process and shows the patterning and implantation of the transfer device barrier implant. FIG. 19 illustrates part of a pixel fabrication process and shows the transfer device barrier implant. FIG. 20 illustrates part of a pixel fabrication process and shows the patterning and implantation of a typical p-well implant. FIG. 21 illustrates part of a pixel fabrication process and shows the p-well implant for the signal and reset transistors and isolation of neighboring photodiodes. FIG. 22 illustrates part of a pixel fabrication process and shows the patterning and implantation of the photodiode ring implant. FIG. 23 illustrates part of a pixel fabrication process and shows the photodiode ring implant. FIG. 24 illustrates part of a pixel fabrication process and shows the patterning and implantation of the photodiode deep implant. FIG. 25 illustrates part of a pixel fabrication process and shows the photodiode deep implant. FIG. 26 illustrates part of a pixel fabrication process and shows the patterning and growth of the gate oxide and patterning and deposition of the polysilicon gates. FIG. 27 illustrates part of a pixel fabrication process and shows the patterning and implantation of the nldd, or floating node. FIG. 28 illustrates part of a pixel fabrication process and shows the patterning and implantation of the pldd, or pinning implant. FIG. 29 illustrates part of a pixel fabrication process and shows annealing and the growth of the transistor spacers. FIG. 30 illustrates part of a pixel fabrication process and shows the patterning and implantation of the sources and drains of the transistors. FIG. 31 illustrates part of a pixel fabrication process and shows the annealing. FIG. 32 shows a simulation of a cross-section a pixel with the reset transistor, transfer gate, and photodiode. FIG. 33 is a cross-sectional schematic of a pixel with a p-type polysilicon gate for the transfer gate. FIG. 34 is a cross-sectional schematic of a photodetector of a pixel showing the p+ epitaxial layer. FIG. 35 is an example layout of several pixels that share circuitry such as the floating node, reset transistor, and signal transistors. FIG. 36 is an exemplary computer apparatus and computer code medium. DETAILED DESCRIPTION The pixel as illustrated in FIG. 1 is designed to overcome limitations of the CMOS process and achieve good picture quality levels that are comparable to CCD sensors. The pixel consists of a pinned photodiode (PD) 210 as light sensing element, a transfer gate (TG) 220, a floating diffusion 240 (and associated capacitance 241), a MOSFET as reset transistor 230, a second MOSFET as source follower 260, and a third MOSFET as row select transistor 270. The devices which have undergone modified fabrication 130 according to some embodiments include the pinned photodiode (PD) 210, the transfer gate (TG) 220, and the floating diffusion 240. The pixel is designed to be built with the CMOS process with additional implantation steps to improve the performance. Only modest positive biasing voltages are required which can easily be provided by a CMOS process without the need for special high voltage devices. The process modifications are in the pixel array and therefore the rest of the on-chip active circuitry need not be affected. Since the pixel uses the same operating voltages, the readout operation, timing, digital control block and the analog signal chain remain the same. The pixel is a 3 MOSFET+1 transfer gate pixel with a pinned photodiode as the light sensing element. Charge remaining in the PD from the previous frame is called lag. Lag is usually caused by incomplete charge transfer. Incomplete charge transfer occurs mostly due to one or more of: 1) Charge is trapped in the PD because of too large of a barrier between the ON gate and the PD, and 2) In charge injection devices (such as CID imagers), the charge reset occurs by turning the gates off and injecting the charge to the substrate. But, when the gates turn on again, some of this charge may return to the potential well before recombining, resulting in image lag. The latter cause “2)” is not the case for pixels which do not use the substrate for the charge reset. The PD and transfer region should be designed very carefully to avoid the former cause “1)”. Two effects of lag are that charge is lost from the original frame signal (distorting the current image), and charge is added to the next frame (distorting the next image). Therefore, image lag should be eliminated completely or at least as much as possible. To eliminate the image lag completely, the CMOS process flow is modified in the pixel area. FIG. 14 illustrates the cross-sectional view of the charge transfer in the pixel that is separated from the adjacent pixel by shallow trench isolation (STI) 702. The transfer gate 717 is a true gate structure that is placed between the pinned photodiode 712, 715 and the n-type floating diffusion 720. The purpose of the transfer gate 717 is: a) to keep the integrated charge in the PD 712, 715 separated from the floating diffusion 720 during charge integration period, b) to perform complete charge transfer during charge readout by turning transfer gate 717 on, and c) global reset; electronically resetting the pixels by turning both the transfer gate 717 and reset gate 716 on. Additional Implants Help to Perform a Complete Charge Transfer: 1) An additional p-type implant 705, such as a lighter boron doping implant (also called “transfer device barrier Boron implant”). 2) A deep n-type photodiode implant 715 (e.g., low dose) 3) A shallow n-type photodiode implant 712 (e.g., ring shaped and high dose). A fourth implant can also be used to improve performance by adjusting the work function of the transfer device gate 717 to be “graded” from n-type where it overlaps the sense node 720 drain to more p-type where it overlaps the n-type photodiode 712, 715. The high performance and low cost of this pixel innovation is also realized through the optimum use and placement of process layers and implants in the baseline CMOS process. Specifically, the p-well for formation of NMOS devices in a CMOS process is employed to provide isolation between pixels. In addition, the p-well provides isolation from the traps and surface states associated with the STI which is used in submicron CMOS. This isolation is used for the integrated photodiode to achieve low dark currents more typical of a CCD device. The PLDD implant is employed to provide junction isolation for dark current reduction from the surface states in the diode. The transfer device Boron implant (TDBI) helps the TG turn on more easily, and therefore improves the charge transfer. The deep n-implant and n-type ring implant in the PD are both used to adjust the PD capacitance as well as charge transfer operation by introducing a potential gradient that helps the charge move towards the floating diffusion when the TG is turned ON. By optimizing the pixel as described above, the amount of the charge than can be transferred completely is maximized. Since the floating diffusion potential can be read out before and after charge transfer, the noise level can be reduced by correlated double sampling. Therefore, the dynamic range improves significantly, and image-lag is eliminated. The pixel described in this innovation is comparable to CCD pixels and will result in good picture quality comparable to CCD sensors. Advantages: 1) Reduced dark current noise: Dark current is one of the important contributors to the output noise. The significant component of the dark current is generated at silicon/silicon dioxide interface. Pinned photodiode will reduce the dark current generation significantly by keeping the surface accumulated with holes. A transfer gate with an appropriate work function, such as p-type polysilicon, reduces dark current under the transfer gate and attracts holes to the region by the transfer gate. 2) Reduced kTC noise: The design of the pixel with the transfer gate enables true correlated double sampling at the output. Therefore the noise that is generated at the output amplifier can be eliminated. The output amplifier becomes very much like a CCD sensor output. 3) Higher signal level: The additional n-type photodiode implants are intended to maximize the capacitance of the PD, and still perform complete charge transfer during readout. The pixel ring implant even increases capacitance in the region between the deep implant and the nearby STI region which has been implanted with p-type dopants. 4) Increased dynamic range: Optimizing the PD capacitance and reducing the output amplifier noise maximizes the dynamic range. 5) The same pixel can be used in shared architecture. (FIG. 2.) Sharing the SF 260, RG 230 and Row_Sel 270 transistors increases the fill factor of the pixel. Higher dynamic range and signal-to-noise ratio are achieved. 6) A CMOS pixel sensor is designed to achieve good picture quality associated with CCD image sensors while maintaining a) low-power b) low-cost and c) On chip active circuitry integration features of the CMOS technology. However, these advantages are accompanied by the addition of extra implant steps to the CMOS process to build the charge transfer device to achieve complete charge transfer. FIG. 3-8 show the behavior of the transfer gate. The phi symbol indicates potential increasing in the downward direction of the arrow. Ideally, when the TG 220 is OFF, charge should be collected in the pinned PD 210. The difference between the full diode potential 212 and empty diode potential 211 determines the charge collection capacity of the pixel. FIG. 3 also shows the collected charge 214, the barrier height 213 between the collected charge 214 and the transfer gate off potential 226. This value can be optimized by varying the n-type PD implant, and the TDBI implant. If the TDBI concentration is too low, then the OFF TG 226 cannot provide enough of a barrier for electrons 214 collected in the PD 210 resulting in a constant leakage into the floating diffusion region 240. The potential profile of the charge leakage is shown in FIG. 4. Constant leakage is not desirable and should be avoided. The TG 220 becomes useless and cannot isolate the charge 214 from the FD region 240 during charge integration. The pixel becomes like a 3 transistor pixel. Therefore, the TDBI dose and energy should be selected very carefully to avoid constant charge leakage from the PD 210 to the FD 240 to make sure that the pixel does have enough charge capacity. The dynamic range and signal to noise ratio depend on this signal. In case of a very bright light, the PD can get saturated and excess charge is going to flow over the OFF TG (FIG. 5). This is not the same as charge leakage. The TG 220 acts like a blooming control device. The OFF gate voltage can be set to an intermediate value (shown as multiple values 226) during charge integration for blooming control. Excess charge 242 is drained to the FD, and removed by turning the RG on. Setting the TG OFF voltage to an intermediate value (somewhere between OFF and ON states) essentially controls the signal capacity of the pixel. The highest capacity is obtained with the most negative TG voltage. Intermediate levels reduce the signal, and therefore can be used as blooming control. The TDBI concentration should be optimized such that while the TG is OFF, the barrier under the TG should provide enough barrier for the charge integrated in the PD. On the other hand, when the TG turns ON, this barrier should disappear completely so that the charge can be transferred. FIGS. 6 and 7 show the 2D potential profile of the charge transfer area with the TG turning ON 225. Because of the overly strong TDBI concentration, there is some charge trapped 214 in the PD 210, as shown in FIG. 7. This charge causes image lag and is not desired. The pixel should be designed so that no charge gets trapped in the PD after charge transfer is finished. The need to manage the charge transfer barrier at the proper level is the most difficult aspect of the robust design of the charge transfer device. It is classically difficult to insure a high barrier with no leakage in the off 226 or NO TRANSFER state while assuring the complete transfer of a large amount of charge in the on 225 or transfer state. In our innovation, the manufacturing and performance window of operation of the pixel is increased by using elevated voltages on the transfer gate. Thus even if there is some residual charge in the PD, by raising the TG voltage even further, this charge can be transferred from the PD to the FD (FIG. 8). Since the channel potential rises under the transfer gate, the maximum absolute voltage of the transfer gate can be safely increased without creating a high electric field across the gate oxide dielectric materials. The use of higher voltages on the transfer gate is anticipated in the device design, resulting in a strong barrier to charge transfer in the off state which is forced down by a larger voltage on the transfer gate during transfer. In this manner the effective threshold of the transfer device is sufficient to block unwanted charge transfer in the off state. The threshold of the device will vary in manufacture and thus the minimum gate voltage to assure adequate charge transfer will have process variation. Use of a transfer gate voltage which is above the maximum required will insure that the transfer is always complete. The charge pump should be designed to provide at least one VT above the supply voltage. Higher TG voltage is safe to use since this gate operates with strong backbias. In our innovation an adjustable voltage pulse is provided to the transfer gate in which the maximum applied voltage and the rise and fall times of the transfer gate voltage pulse can be adjusted. On chip adjustment through a DAC is provided to allow testing of the charge transfer properties at a range of voltages. In this manner the needed manufacturing margin for complete charge transfer in product operation can be verified. After carefully optimizing the TG structure to obtain complete charge transfer, and the PD to achieve desired signal level, the switching time of the TG should also be considered. When the TG switches from ON to OFF, charge can spill back into the PD especially if this gate is turned OFF too quickly. Therefore, enough time should be allowed for this gate to turn off. This time can be in the range of 50 ns to 150 ns. While the deep n-type diode implant mainly determines the collection depth of the electrons, and the PD capacity, the shallower n-type ring implant in the PD is used to increase the capacity around the edges of the PD. The main purpose of the shallow implant other than contributing to the PD capacity, is to provide a potential gradient toward the TG for the electrons when this gate is turned ON. The three sides of the ring structure neighboring the STI utilize the edges and improve the signal capacity. The side that is adjacent to the poly-gate shifts the potential maximum towards the FD when the TG is turned on and introduces a potential gradient from the center of the PD towards the TG edge of the PD, and acting like a channel for the electrons to flow from the PD over to the FD region. Otherwise, it is much more difficult to transfer the integrated charge completely to the PD, and avoid image lag. The potential gradient also helps the transfer time. Because of this gradient, the electrons move faster to the floating diffusion node, and the time for the charge transfer is reduced significantly. Sample ring implant dose and energy are 8e11, 150 keV. The TDBI does not extend under the TG completely. Rather, the TDBI extends, for example, by about 0.2 um. These three implants—TDBI, deep n-type diode implant, and the shallow ring-implant—and the TG length are optimized and laid out so that whole range of the supply voltage can be used to store and transfer the charge. The threshold voltage of this gate is reduced so that the charge transfer occurs under this gate very close to the surface. When the gate is turned on, the charge flows from the deep n-diode region to the surface where the shallow n-region is. The TDBI barrier disappears completely under the TG and the charge flows from the shallow n-region into the FD. Even though charge transfer occurs under the TG at the p-well edge very close to the surface, charge integration takes place in the PD with this gate turned OFF. The collection depth is determined by the deep n-type implant. As more charge gets collected in the PD, the potential maximum in the silicon moves closer to silicon/dioxide interface. The deeper the n-implant goes, the more the PD capacity. Deeper implants also provide a more favorable electric field implant for the collection of red light. The tail of the potential profile is also important. If the junction is too abrupt, the collection of the electrons due to red light becomes more difficult. Therefore, the junction depth is adjusted, for example, to about 1.5 um for this structure. While the shallow n-type ring implant better utilizes edges of the PD, and provides a potential gradient for the charge to transfer close to the silicon surface, the deep n-type implant is used to have enough PD capacity and charge collection depth. The implant dose and energy in one embodiment are about 1e12 and 300 keV for this design. Red light collection and overall pixel capacity are also optimized by building the device on an epitaxial substrate. An P epi layer of, for example, about 5E14 concentration with a thickness of 4 to 5 microns is optimal in one case. The electric field from the P+ substrates concentration of boron helps to reflect photoelectrons towards the surface for collection by the photodiode. For this structure, the parameters are boron with dose and energy in the range of 1.75e12, 50 keV and 1.2e13, 200 keV. The best doping levels can be optimized based upon consideration of additional process details such as starting material doping level and the exact thermal cycles of the process. Timing: The Pixel Operation Consists of the Basic Three Functions: 1) Resetting the floating diffusion voltage (RST) FIGS. 9 and 10. 2) Charge integration in the photodiode (INT) 3) Charge readout (RO) FIGS. 11 and 12. Both RG and TG are turned ON to reset the PD node, and reset the PD. This ensures to remove all the residual charge from the PD (if any). FIGS. 9 and 10. Reset is followed by charge integration. Both gates are kept at low voltages while charge is integrated in the PD. At the end of the charge integration, charge readout period starts. This is illustrated in FIGS. 11 and 12. First, the RG is turned on and the reset level is sampled by turning the Row_sel transistor ON. Then the TG is turned on to transfer the charge to the FD. The Row_sel can be either kept at ON state, or turned ON again to sample the signal level. This operation is repeated every frame time. Design Methodology: The pixel layout and implants in this innovation are optimized by a simulation methodology that insures a near optimal solution. An description of this device design flow is provided below: Step 1: Choose a diode pinning implant. We suggest an implant similar or identical to PLDD as the PD pinning implant. Pldd implant can be used to pin the surface of the PD with holes to the most negative potential. This insures low dark current and a surface electric field favorable to collection of blue light. Pldd is not the only solution as pinning implant. It is preferred since it comes free with the CMOS process and works well as the pinning implant of the PD. In this innovation the choice of the exact dose and energy for the pinning implant are less critical because the pinning implant position greatly reduces the effect of the electrical barrier to charge transfer. The pinning implant is self aligned to the transfer gate edge like a PLDD which reduces variation due to errors in dimensions and alignment of the mask. Step 2: Select a TG length depending on the pixel size, layout and architecture. And select starting dose and energy implants for the Ntype Deep and N-type shallow ring implants for the photodiode. Obtain the Following by Steady-State Analysis: 3) Determine the empty PD potential by adjusting the n-type deep and n-type shallow ring implants to obtain a desired amount of signal capacity with the TG off. If it is too high, charge transfer will suffer. If it is too low, the signal level will be too low. And Then Obtain the Following by Transient Analysis: 4) Adjust the TDBI concentration to isolate the charge from the floating diffusion while the TG is OFF. If there is too much leakage, increase the TDBI doping. 5) Find the maximum signal level by overfilling the PD and reaching a steady state over time with the TG turned OFF. 6) Transfer the charge from the PD to floating diffusion by switching the TG ON and OFF. If charge is trapped, raise the TG ON voltage. Adjust the ring implant dose, energy and location to achieve a potential gradient towards the FD during charge transfer. The maximum transfer gate voltage applied in the analysis is based upon the ability to generate and manage an elevated potential in the CMOS process. An example is the use of a 5.5 volt maximum transfer gate voltage for a 3.3 volt CMOS process. (a 3.3 volt CMOS process is a process for which a 3.3 volt potential can be applied across the gate dielectric while maintaining acceptable long term reliability). The goal of the device design is to insure that complete charge transfer occurs below the target maximum voltage to insure margin for manufacture. 7) If the charge cannot be transferred completely or if there is not enough diode capacity after the step, go back to the beginning and repeat the steps, typically starting from 1) to optimize the pixel. Optimization of the pixel is an iterative process. The convergence to the desired solution is faster if the starting point is not very far off. Therefore, the first guess is important. A good guess based on previous experience makes a good starting point. After a desired signal capacity is achieved and the pixel operation is verified by simulations, continue with the following analysis: Color Cross-Talk: 8) If there is no residual charge in the PD after charge transfer, and the desired signal level is achieved, the color cross-talk should be determined. For this purpose, light at different wavelengths (blue, green, and red) should be shined onto the pixel while extracting the amount of charge collected in the adjacent PD. The p-well provides very good isolation between pixels. The TDBI function as an isolation barrier between pixels should be verified. 9) If the cross-talk is higher than tolerable amount, go back to earlier steps, typically from step 1), a. adjust the depth of charge collection by changing the n-type PD implant energy and/or b. use p-well as oppose to the TDBI for STI, and/or c. make the PD to PD distance larger in the layout. Sensitivity to the Misalignment of Mask Layers: 10) Move mask layers around to verify the critical dimensions. The pixel operation may be very sensitive to some of the drawn locations of the mask layer. Determine the most crucial layers, and the degree of the failure if the mask is misaligned. Find more robust solutions. A clear advantage of this innovation of the relative insensitivity of the device operation to normal variation in the size and placement of the implant masks. Embodiments of the TDBI implant cover the left edge of the transfer gate device to provide an adequate barrier and isolation between the floating node (or sense node) and the photodiode. The TDBI concentration is targeted so that the TDBI boron under the gate can be inverted to form an N type channel. This inversion is made facile by the ability to pump the transfer gate to an elevated voltage to continue the charge transfer process as the channel and photodiode potential become more positive. The TDBI implant and the deep phosphorous diode implant overlap. This insures that the right portion of the transfer gate device is electrically coupled to the photodiode. Features for Device Performance in Integration into CMOS: 1) Use of n-Type MOS Device in the Pixel: reduces cost and assures predictable performance p-well implant for CMOS n-type FET provides effective energy barrier for electron cross-talk between pixels. TDBI also provides a good barrier between the adjacent pixels. Depending on the layout, both standard and lighter TDBI can be used for isolation. TDBI can also be used for reset transistor. The threshold voltage of this transistor is reduced and the RG cam be laid out in the same TDBI as the TG. FIG. 13 sows that if the reset transistor is designed with the p-well, the layout is optimized to integrate with the transfer gate implant 705 insuring optimum separation 160 (˜0.3 microns to 0.5 microns) between the higher doped NMOS p-well Edge 708 and the lower doped TDBI 705. Thus separation refers to the implantation areas. After thermal processing steps, the implanted dopants diffuse closer, shrinking or eliminating the gap. In our innovation adjustable voltages of increased absolute potential are also provided for the gate of the reset transistor. This insures that the sense node potential can be reset to the power supply voltage of the chip to insure maximum pixel capacity. These two different devices with different functions and required doping profiles of silicon impurities are integrated to be in very close proximity to support pixel scaling. However, in shared pixel designs this approach affords room to use a more conventional NMOS p-well for the transfer gate device. There is sufficient room for the NMOS device p-well edge to be separated from the Right edge of the Transfer device. The high concentration of the p-well for NMOS transistors has decreased to within ½ order (about a factor of 3.2) of the wafer background doping before reaching regions of TDBI doping. 2) Transfer Device Barrier Control Boron Implant Boron implant for control of barrier potential for charge transfer from floating diffusion node/reset node with the following features: Implant is not centered on the channel formed by the intersection of the transfer gate poly and active but is moved away from the n-type photodiode region. The shift is determined by the charge transfer operation. For one embodiment, the TDBI overlaps with the TG by 0.2 um. (FIG. 14). The top view of the layout for the non-shared embodiment of the pixel is shown in FIG. 15. Charge transfer occurs at the floating node edge of the transfer gate, very close to the silicon surface. This shift insures the best barrier properties to transfer the charge. TDBI doping is process dependent, for example boron with dose and energy in the range of 1e12, 40 keV to 5e13, 250 keV. The Doping level for the barrier is optimized in concert with the implants for the photodiode n type region to insure optimum capacity, built in anti-blooming control, and full charge transfer to insure true CDS and low noise. 3) Ring and Core Implants for n-Type Photo Collection Region. (Photodiode Area) The capacity and charge transfer and noise are optimized in CMOS integration through the use of two implants to define the n-type area and ensure optimum integration into CMOS. A low dose phosphorous implant with dose in the range of 1e12 to 1e13 and energy in the range of 200 keV to 37 keV. This phosphorous implant provides optimum depth for the photodiode electric field to ensure low cross talk and high collection of red light. A second ring-shaped phosphorous implant (FIG. 16) is placed around the perimeter of the device and in intimate contact with the transfer channel implant to maximize the capacity of the pixel in a CMOS context while providing a favorable electric field. This concept is used in conjunction with the TDBI and p-well isolation in CMOS with STI. The width of this implant is determined in one embodiment as about 0.5 um. The effect of this implant starts to disappear as it becomes narrower. The misalignment and control of the width also become more difficult. If it is laid out wider, the maximum of the potential becomes flatter and shifts towards the PD center. Best dose and energy for the phosphorous ring implant is in the range of 5e11 to 1e13 and 50 keV to 250 keV. The optimum dose and energy for the Phosphorous implant is determined by process and device simulations as explained in the design methodology. Cross-sectional view is shown in FIG. 32. The fabrication process is shown in FIGS. 17-31. 4) Work Function Control of Transfer Device Gate The barrier of the transfer gate is optimized by using a polycrystalline silicon gate with a more p-type work function, resulting in improved properties. This increase in barrier properties allows improved overall performance when combined with a voltage boost on the transfer gate during the on state. The higher work function makes the off state more “OFF” without the use of higher doping levels and attracts holes to the silicon surface under the TG (pinning), reducing dark current via electron-hole recombination. The increased barrier can then be easily overcome by a controlled voltage applied to the transfer gate during the on or charge transfer state. There is also a significant reduction of the dark current by using a pinned PD rather than a normal pn diode. The pinned PD keeps the surface accumulated by holes, and therefore any electron that becomes free due to surface interface states recombines with the hole immediately, and the dark current is eliminated. The silicon under the TG area with the existing structure remains depleted during operation. This area still contributes to dark current generation which can be eliminated by changing the poly doping to p-type. The TG in some embodiments uses an n-type poly. With typical operating voltages of the CMOS process, the area under the TG remains depleted and generates dark current. There are other solutions to this problem such as applying a negative voltage to the TG and attracting holes to the surface while the gate is OFF. This requires additional negative bias voltage which is more complex to create and manage. Using p-type poly gate instead of n-type poly gate for the TG: The work-function difference between the p-type poly to the substrate acts like negative biasing and attracts holes to the surface. By making the TG polycrystalline silicon p-type, the dark current generation under the TG is eliminated during the charge collection period. The work function of the gate can also be sloped to be non-constant with the work function over the n-type area being more p-type than the work function over/near the sense node. A charge transfer device with a more p-type work function is achieved by: blocking n-type doping normally applied to NMOS type devices, and/or applying p-type doping which is also used for surface pinning, and/or adding additional p-type implants such as a special o-type implant, PLDD or p+ implant. One embodiment for small pixels dopes the poly p-type with a special mask after polycrystalline silicon deposition and before patterning. Suitable polycrystalline silicon etch should be obtained with the p-type doping present in the CMOS process baseline. FIG. 33 illustrates the p-type poly TG 717 and the silicon under the gate while it is on OFF state. The charge integration period is usually much longer than the charge transfer period. Thus, pinning the silicon under TG will eliminate the dark current generation in this region almost completely. This region will be in depletion only for a short period of time during charge transfer. The dark current generation during this time is negligible. 5) Adaptive Circuitry—Blooming Control—Incomplete Charge Transfer Blooming Control during charge integration: Because the transfer gate's voltage is variable, it can be used for blooming control during charge integration. If there is excessively bright light, there will be excess charge in the PD. This excess charge should rather be drained to the floating diffusion node of the same pixel rather than cause blooming to occur in the neighboring pixels. If the light level is so high that there will be blooming in the adjacent pixels, the TG voltage should be lowered, to enable the excess charge to flow to the floating diffusion node easily. This voltage is variable and can be adjusted to the desired level by the on-chip adaptive circuitry. (FIG. 5) Charge Transfer: The same gate voltage is used differently, in the case of incomplete charge transfer from the PD to the floating diffusion during the charge transfer period. The TG voltage should be increased by an on-chip charge pump. The charge pump provides voltages at least a threshold voltage of the n-type MOS transistor (VT) above the supply voltage or higher. This gate operates under a strong backbias condition. Therefore, it can handle relatively high voltages. This feature provides extra margin for the charge transfer. (FIG. 8). 6) Optimization of Starting Material Optimum integration of the advanced pixel occurs when the CMOS starting material is chosen to be low doped p on p+ epi. The use of p+ epi eliminates latch up concerns that might otherwise arise from any significant change in the substrate concentration. The doping level should be as low as practical with acceptable control in the manufacturing process and is recommended to be in the range of 2E14 to a maximum of 1E15. This low doping allows the best optimization of the charge transfer and allows the electric fields for charge collection to extend as deeply as possible into the silicon. One embodiment has about 4E14 Boron doping. The thickness of the lightly doped surface layer should be optimized to allow the best possible light collection. The choice of a thick epi layer improves light collection for the red but increases cross talk and increases the potential for latch up. Use of a thin layer will interfere with CMOS n-well and p-well doping and results in reduced light collection in the red. The optimum EPI thickness is in the range of 4 to 7 microns. (FIG. 34). 7) Pixel Layout Contacts to polysilicon that are over the active channel are shown in FIG. 35. The placement of contacts over the pixel channel allows the pixel layout to be smaller with a higher fill factor and better performance. 8) Dark Current Reduction Through use of PLDD Implant to Isolate the Photodiode from the Surface States. The use of the PLDD implant as the p-type surface pinning implant saves one mask and works well. This implant pins the surface to the most negative voltage in the device and keeps the surface accumulated by holes. In addition, as explained above, the region under the TG can be pinned by doping this gate p-type. This region is depleted only during charge transfer period, which is typically much shorter than the charge integration period. Thus, the PD surface is pinned, and the dark current generation is eliminated. 9) Correlated Double Sampling (CDS) and Very Low Noise Improve Low-Light performance. Due to surface pinning in the PD, the dark current shot noise becomes very low. The other major noise component is the kTC noise in the pixel. With the 3 transistor pixels, a true CDS cannot be done. Embodiments of the pixel design enable a true CDS by holding the charge isolated in the PD region. The FD potential is sampled twice, before and after the charge transfer. The difference of these levels is due to the signal integrated in the PD. Subtracting the signal level from reset level eliminates the kTC noise. As the noise level is reduced the low-light performance of the imager is improved. This is very important for the digital still camera applications. 10) Shared Pixel Architecture The shared pixel schematic is shown in FIG. 2, and the layout in FIG. 35. This pixel works fine in a single pixel architecture. However, it is also very suitable for a shared architecture because the transfer gates can be laid out very symmetrically and be surrounded by the TDBI, while the reset gate, source-follower and row-select transistors are laid out in the p-well next to the photodiodes. It becomes also very simple to lay out the deep PD n-implant and p+-pinning implant to cover all 4 PDs at once. When the charge integration period is over, the TGs turn ON one by one, transferring the charge from the PD to the floating diffusion node. The charge transfer occurs in the vertical direction for all the PDs and is very symmetrical. The TGs are laid out as very simple gate structures to avoid 3D effects, especially caused by corners. The accumulated charge does not need to turn any corners and change direction with this layout, and flows vertically in one dimension. The four PDs in the shared architecture are surrounded by the TDBI for isolation. The TDBI is also used as a barrier layer between them. The active devices (Reset transistor, Source Follower and Row-select transistors) are laid out in the p-well. The layout becomes more efficient by putting all the PDs together and isolating them with the TDBI, and sharing the active transistors that are laid out in the p-well. About 30% . . . 40% higher fill factor is achieved compared to single pixel architecture. FIG. 36 is a simplified block diagram of a computer system 3610 suitable for use with embodiments of the present invention. Computer system 3610 typically includes at least one processor 3614 which communicates with a number of peripheral devices via bus subsystem 3612. These peripheral devices may include a storage subsystem 3624, comprising a memory subsystem 3626 and a file storage subsystem 3628, user interface input devices 3622, user interface output devices 3620, and a network interface subsystem 3616. The input and output devices allow user interaction with computer system 3610. Network interface subsystem 3616 provides an interface to outside networks, including an interface to communication network 3618, and is coupled via communication network 3618 to corresponding interface devices in other computer systems. Communication network 3618 may comprise many interconnected computer systems and communication links. These communication links may be wireline links, optical links, wireless links, or any other mechanisms for communication of information. While in one embodiment, communication network 3618 is the Internet, in other embodiments, communication network 3618 may be any suitable computer network. User interface input devices 3622 may include a keyboard, pointing devices such as a mouse, trackball, touchpad, or graphics tablet, a scanner, a touchscreen incorporated into the display, audio input devices such as voice recognition systems, microphones, and other types of input devices. In general, use of the term “input device” is intended to include all possible types of devices and ways to input information into computer system 3610 or onto computer network 3618. User interface output devices 3620 may include a display subsystem, a printer, a fax machine, or non-visual displays such as audio output devices. The display subsystem may include a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), a projection device, or some other mechanism for creating a visible image. The display subsystem may also provide non-visual display such as via audio output devices. In general, use of the term “output device” is intended to include all possible types of devices and ways to output information from computer system 3610 to the user or to another machine or computer system. Storage subsystem 3624 stores the basic programming and data constructs that provide the functionality of certain embodiments of the present invention. For example, the various modules implementing the functionality of certain embodiments of the invention may be stored in storage subsystem 3624. These software modules are generally executed by processor 3614. Memory subsystem 3626 typically includes a number of memories including a main random access memory (RAM) 3630 for storage of instructions and data during program execution and a read only memory (ROM) 3632 in which fixed instructions are stored. File storage subsystem 3628 provides persistent storage for program and data files, and may include a hard disk drive, a floppy disk drive along with associated removable media, a CD-ROM drive, an optical drive, or removable media cartridges. The databases and modules implementing the functionality of certain embodiments of the invention may be stored by file storage subsystem 3628. Bus subsystem 3612 provides a mechanism for letting the various components and subsystems of computer system 3610 communicate with each other as intended. Although bus subsystem 3612 is shown schematically as a single bus, alternative embodiments of the bus subsystem may use multiple busses. Computer program medium 3640 can be a medium associated with file storage subsystem 3628, and/or with network interface 3616. The computer program medium can be an optical, magnetic, and/or electric medium that stores circuit data such as a layout, a tapeout, or other design data. Computer system 3610 itself can be of varying types including a personal computer, a portable computer, a workstation, a computer terminal, a network computer, a television, a mainframe, or any other data processing system or user device. Due to the ever-changing nature of computers and networks, the description of computer system 3610 depicted in FIG. 36 is intended only as a specific example for purposes of illustrating the preferred embodiments of the present invention. Many other configurations of computer system 3610 are possible having more or less components than the computer system depicted in FIG. 36. While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention Embodiments are related to image sensors, computer readable descriptions of image sensors, and methods for making mage sensors, and more particularly to such embodiments of CMOS image sensors. 2. Description of Related Art The active pixel sensor is used in CMOS based imager arrays for a variety of applications. The sensor consists of an array of pixels (rows×columns) with the associated active circuitry on the same chip. Each pixel contains a photosensitive device that senses the incoming light and generates a ΔV difference on a floating node. The readout is accomplished by selecting a row of pixels and reading out each column, either column by column or all columns at the same time. The XY addressable APS is designed for CMOS technology with minor modifications to the process for the pixel while maintaining low-power and lower cost features compared to the CCD technology. Another main advantage of using CMOS process is to have the pixel array with the associated active circuitry on the same chip and save area and cost. Despite all of the benefits of using the CMOS process, the picture quality of the CCD image sensors is still superior to the picture quality of the CMOS APS. One of the main reasons for this difference is that the CMOS process is not suitable to designing a good pixel element, unlike the CCD process which is designed specifically to build pixel elements that result in a high quality picture. Another limitation of the CMOS process is that the operating voltages are low and not flexible as in the CCD technology. | <SOH> SUMMARY OF THE INVENTION <EOH>This innovation describes the process methods and process integration of an active pixel sensor that combines the advantages of both CCD and CMOS technologies. The low noise advantages of a true correlated multiple sampling pixel (e.g., Correlated Double Sample pixel) are created in a CMOS process with low cost and high performance with minimum impact on existing features and capabilities of the CMOS technology. Disclosed embodiments cover 4T pixel designs, although other protected embodiments cover 5T and other pixel designs. In a CMOS sensor, if the region controlled by the transfer transistor generates dark current, the number of electrons transferred between the photodetector and the sense node will be contaminated by dark current noise. Another problem besides dark current associated with the transfer transistor is that it must reliably prevent electrons from moving between the photodetector and the sense node when it is nominally off. A transfer gate of appropriate material, such as p-type polysilicon, has a work function which addresses both problems, generating an electric field which accumulates holes to eliminate dark current and reliably keeping the transfer transistor off. One embodiment of the image sensor integrated circuit includes photodetectors such as photodiodes, nodes such as floating diffusions, and transfer devices such as transfer gates that control a transfer of the electrons between a photodetector and a corresponding floating diffusion. Each transfer device has a first terminal coupled to a photodetector, a second terminal coupled to a node (e.g., floating diffusion), a body between the first terminal and the second terminal, and a control terminal (e.g., gate). In the absence of a control voltage applied to the control terminal, the control terminal creates an electric field that repels electrons from the body by the control terminal. The circuit also includes reset devices such as reset transistors. Each floating diffusion node has a corresponding reset device which resets the node. The circuit also includes row and column circuitry such as row and column decoders, and signal devices such as source follower and row selector transistors. Other embodiments include a method for fabricating the circuit and a computer readable description of the circuit, such as a layout or tapeout. | 20041230 | 20100921 | 20060706 | 63418.0 | H04N5335 | 1 | PIZARRO CRESPO, MARCOS D | METHOD AND APPARATUS FOR CONTROLLING CHARGE TRANSFER IN CMOS SENSORS WITH A TRANSFER GATE WORK FUNCTION | UNDISCOUNTED | 0 | ACCEPTED | H04N | 2,004 |
|
11,026,759 | ACCEPTED | Effervescent oral opiate dosage forms and methods of administering opiates | Opiate containing dosage forms and methods using same are described. These dosage forms include substantially less opiates by weight than known oral formulations. These dosage forms are intended for oral administration across the oral mucosa. | 1. A dosage form comprising between about 20 to about 200,000 micrograms of an opiate, between about 0.5 and about 25% w/w of a pH adjusting substance appropriate for said opiate, between about 5 and about 85% w/w of an effervescent material, and a starch glycolate, said dosage form being designed for the administration of said opiate across the oral mucosa through buccal, gingival or sublingual administration routes. 2. The dosage form of claim 1 having a Cmax when administered by buccal, gingival or sublingual administration routes, which is comparable to that of an otherwise identical formulation without said starch glycolate, said effervescent couple and said pH adjusting substance, at a dose of 20% less opiate. 3. The dosage form of claims 1 or 2, wherein said pH adjusting substance provides a localized pH of between 3 and 10. 4. The dosage form of claim 3, wherein said pH adjusting substance can change the localized pH by at least 0.5 pH units. 5. The dosage form at claim 4 wherein said pH adjusting substance can change the localized pH by at least 1.0 pH units. 6. The dosage form of claims 1 or 2, wherein said pH adjusting substance is a carbonate or bicarbonate. 7. The dosage form of claims 1 or 2, wherein said starch glycolate is provided in an amount of between about 0.25 and about 20% w/w. 8. The dosage form of claim 7, wherein said starch glycolate is provided in an amount of between about 0.5 and about 15% w/w. 9. The dosage form of claims 1 or 2 further comprising a filler. 10. The dosage form of claim 9 wherein said filler is a mannitol. 11. The dosage form of claim 9, wherein said filler is provided in an amount of between about 10 and about 80% w/w. 12. The dosage form of claim 10, wherein said mannitol is provided in an amount of between about 25 and about 80% w/w. 13. The dosage form of claims 1 or 2 having a mean dwell time in the mouth of a patient of between about 5 and about 30 minutes when administered by buccal, gingival or sublingual routes, with minimum manipulation in the mouth. 14. The dosage form of claims 1 or 2 further comprising a binder, a sweetener, a coloring component, a flavor, a glident, a lubricant, a preservative, a filler and a disintegrant. 15. The dosage forms of claims 1 or 2 packed in an F1 or F2 blister package. 16. A method of treating pain in a patient in need thereof comprising administering to said patient a dose of an opiate contained in at least one dosage form comprising between about 20 to about 200,000 micrograms of an opiate, between about 0.5 and about 25% w/w of a pH adjusting substance appropriate for said opiate, between about 5 and about 85% w/w of an effervescent material, and a starch glycolate, said dosage form being designed for the administration of said opiate across the oral mucosa through buccal, gingival or sublingual administration routes by placing said dosage form in intimate contact with the oral mucosa of said patient, and retaining said dosage form in intimate contact with said oral mucosa for a time sufficient to allow transport of at least a therapeutically significant portion of said dose across said oral mucosa. 17. The method of claim 16, wherein at least substantially all of said dose is transported across said oral mucosa. 18. The method of claim 16, wherein said dosage form is maintained in contact with said oral mucosa, with a minimum of movement, for between about 5 and about 30 minutes. 19. The method of claim 16, wherein said dosage from achieves a comparable Cmax to a formulation without said starch glycolate, said pH adjusting substance and said effervescent couple and yet has 20% less opiate than said formulation. 20. The method of claim 16, wherein said pain is breathrough pain from cancer. 21. The method of claim 16, wherein said pain is back pain. 22. The method of claim 16, wherein said pain in surgical or postoperative pain. 23. The method of claim 16, wherein said pain is neuropathic pain. | CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of the filing date of U.S. Provisional Patent Application Nos. 60/533,619, filed Dec. 31, 2003, 60/615,665, filed Oct. 4, 2004, and 60/615,785, filed Oct. 4, 2004, the disclosures of which are hereby incorporated herein by reference. BACKGROUND OF THE INVENTION Fentanyl (CAS Registry No. 437-38-7) N-phenyl-N-[1-(2-phenyl-ethyl)-4-piperidinyl] propanamide and its salts, in particular its citrate salt (CAS Registry No. 990-73-8) are opiates, controlled substances, and extremely potent narcotic analgesics. Fentanyl and its citrate salt are currently marketed by a number of companies in a number of delivery formats. Fentanyl citrate, for example, is available as an injectable and an oral lozenge on a stick, the latter sold under the trade name ACTIQ. Three patents are identified in the FDA publication Approved Drug Products With Therapeutic Equivalence Evaluations (hereinafter “the Orange Book”) as relating to ACTIQ: U.S. Pat. Nos. 4,671,953, 4,863,737 and 5,785,989. A review of the package insert information for ACTIQ sold by Cephalon, Inc., 145 Brandy Wine Parkway West, Chester, Pa. 19380, available in the Physician's Desk Reference, 57th ed. 2003 at page 1184, brings instant perspective on the seriousness of the afflictions of the patients who take it. According to its label, ACTIQ “is indicated only for the management of break-through cancer pain in patients with malignancies who are already receiving and who are tolerant to opiate therapy for their underlying persistent cancer pain.” (Id., emphasis in original). The text of the ACTIQ label is hereby incorporated by reference. Providing pain relief from such breakthrough pain is inexorably linked with the patient's immediate quality of life. And for such patients, providing breakthrough pain relief may be the only thing that medical science can offer. Fentanyl is but one of a family of drugs known as opiates. Legal opiates are all prescription drugs and include alfentanil, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, codeine phosphate, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydrocodeinone enol acetate, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, fentanyl, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levorphanol, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, morphine hydrochloride, morphine sulfate, myrophine, nalbuphine, narceien, nicomorphine, norlevorphanol, normethadone, normorphine, norpipanone, opium, oxycodone, oxymorphone, papveretum, pentazocine, phenadoxone, phenazocine, phenoperidine, piminodine, piritramide, proheptazine, promedol, propirm, propoxyphene, remifentanil, sufentanil and tilidine. The class of compounds generally known as opiates also includes illicit drugs such as heroin and cocaine. Opiates in accordance with the present invention include those identified above as well as any listed as controlled substances pursuant to 21 C.F.R. § 1308.12. Opiates are given to patients for a variety of reasons, most frequently for pain mitigation of one type or another. While the side effects profile is not always the same as that of fentanyl, the class is characterized by very strong drugs, which are both additive and can have lethal side effects, depending upon the dose. Thus far, fentanyl is unique in opiates in that it has been formulated in an orally disintegrable dosage form. U.S. Pat. No. 6,200,604 (“the '604 patent”), which issued Mar. 13, 2001 to CIMA LABS INC., 10000 Valley View Road, Eden Prairie, Minn. 55344, exemplifies two fentanyl formulations each containing 36% effervescents and 1.57 milligrams of fentanyl citrate. See example I thereof, col. 5, ln. 60 through col. 6, ln. 30. The '604 patent describes the use of, amongst other things, effervescence as a penetration enhancer for influencing oral drug absorption. See also U.S. Pat. Nos. 6,759,059 and 6,680,071. See also Brendenberg, S., 2003 New Concepts in Administration of Drugs in Tablet Form: Formulation and Evaluation of a Sublingual Tablet for Rapid Absorption, and Presentation of an Individualized Dose Administration System, Acta Universitiatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 287, 83 pp. Uppsala ISBN 91-554-5600-6. As with many things in medicine, there is always room for improvement. Opiates are expensive drugs. Fentanyl, for example, costs manufacturers as much as $100/gram or more. While cost is by no means an overriding issue, the cost of medication is an issue to be considered. A formulation that allows for a reduction in the amount of opiate could reduce the overall cost of a patient's care. Far more importantly, a reduction in dose of such a potent opiates while still achieving beneficial management of breakthrough pain in, for example, cancer patients or patients with chronic back pain, has very far reaching and desirable consequences in terms of patients overall care. Opiate mu-receptor agonists, including fentanyl, produce dose dependent respiratory depression. Serious or fatal respiratory depression can occur, even at recommended doses, in vulnerable individuals. As with other potent opiates, fentanyl has been associated with cases of serious and fatal respiratory depression in opiate non-tolerant individuals. And the side effects, even those that are not life threatening, can be significant. In addition, mu-opiate agonists can produce drug dependence and tolerance. Drug dependence in and of itself is not necessarily a problem with certain types of cancer patients. But, opiates can be used in the treatment of other types of pain as well. In such treatment protocols, dependence and tolerance may be significant issues. Moreover, cancer patients are generally undergoing heavy medication. The longer that a lower dose of medication can be provided, the better. If lower doses of opiates which nonetheless provide similar pain relief could be achieved, patients could obtain comparable benefit with less drug at lower cost and with a reduced risk of side effects. Thus, improvement in the administration of opiates is still desirable. SUMMARY OF THE INVENTION The present invention relates to orally disintegrable/dissolvable effervescent opiate containing dosage forms, methods of using such dosage forms to treat pain and uses thereof for the manufacture of a medicament. In a preferred embodiment, the opiate, or one or more of its pharmaceutically acceptable salts, are administered orally at doses containing less opiate than would be needed in other delivery formations, including the examples in U.S. Pat. No. 6,200,604, to provide a comparable Cmax. “Oral” dosage form in the context of the invention includes orally disintegrable and/or dissolvable tablets, capsules, caplets, gels, creams, films and the like. Generally, these dosage forms are applied to or placed in a specific place in the oral cavity and they remain there undisturbed while they disintegrate and/or dissolve. The dosage forms of the present invention are preferably designed for buccal, gingival and/or sublingual administration. Dissolution/disintegration, also referred to herein as dwell time, is on average, between about 5 and about 30 minutes, more preferably 10-30 minutes, even more preferably 12-30 minutes. Note that while disintegration and dissolution are distinct concepts, they are used generally interchangeably herein as the time it takes the tablet to cease to exist as an identifiable unit delivery vehicle. In another preferred aspect of the present invention, there is provided an orally disintegrable/dissolvable effervescent dosage form, which comprises an effervescent couple, a pH adjusting substance and specific disintigrants, the dosage form being designed for the administration of an opiate and/or pharmaceutically acceptable salts thereof, through the oral cavity such as through buccal, gingival or sublingual administration routes. Without wishing to be bound by a particular theory of operation, it is believed that effervescence acts as a penetration enhancer. The pH adjusting substance is preferably something other than one of the molecules used to generate effervescence and preferably provides a pH difference or change in the microenvironment at the surface contact area if the oral mucosa and the dosage form or any part thereof at of at least about 0.5 pH units when compared to a comparable dosage form without pH adjusting substances. One such embodiment of the invention comprises between about 20 to about 200,000 micrograms of an opiate, between about 0.5 and about 25% by weight of the dosage form (“w/w”) of a pH adjusting substance appropriate for said opiate, between about 5 and about 85% w/w of an effervescent couple or material, a starch glycolate and preferably a filler such as mannitol, the dosage form being designed for the administration of the opiate across the oral mucosa through buccal, gingival or sublingual administration routes. In another particularly preferred embodiment of the present invention, there is provided dosage form consisting essentially of an effective amount of an opiate, calculated as opiate free base, or a proportional amount of a salt thereof, a starch glycolate, at least one pH adjusting substance and at least one effervescent couple. These are all provided in amounts that are effective to form a well-formed, orally disintegrable or dissolvable dosage form and, in an even more preferred embodiment, enable the administration of less opiate to achieve a “comparable” Cmax. Preferably, the mean disintegration time or dwell time will be between 10 and 30 minutes. These mean dwell times are based on multiple dosings of 10 or more patients. These dosage forms are sized, shaped and designed for buccal, sublingual or gingival administration. Also contemplated as another aspect of the invention are methods of administering an opiate to patients experiencing pain in general including but not limited to: back pain, lower back pain, joint pain, any form of arthritic pain, pain from trauma or accidents, neuropathic pain, surgical or postoperative pain, pain from a disease or condition other than cancer, cancer pain and in particular, breakthrough pain as a result of cancer. A preferred method includes the steps of administering to a patient in need thereof any orally disintegrable dosage form disclosed herein for buccal, gingival or sublingual administration, which includes an effective amount of an opiate and holding the dosage form in the mouth of the patient for a time sufficient to allow transport of said dose (or a therapeutically significant portion thereof, e.g., enough to reduce a patient's pain) from the oral cavity to the blood stream across the oral mucosa. Preferably, the patient is instructed, trained or watched to ensure that the dose is not swallowed and instead to the extent practicable, the opiate enters the body through one or more of the surfaces within the mouth and oral cavity. The method also preferably includes the step of holding the dosage form in the mouth, substantially without moving it within the oral cavity. In another preferred aspect, the dose dissolves on average in about 30 minutes or less, preferably about 20 minutes or less, and generally 10 minutes or longer. In still another preferred embodiment, the dosage form administered contains less of the same opiate than would normally be given to achieve the intended therapeutic response (intended level of pain relief) based on a dosage form that does not include the effervescent couple, pH adjusting substance and starch glycolate of the invention. In one embodiment, the dosage form achieves comparable Cmax (80-120%) when compared to an otherwise identical formulation without both said pH adjusting substance and effervescent couple at a dose of opiate which is at least about 20% less w/w. DETAILED DESCRIPTION Throughout the entire specification, including the claims, the word “comprise” and variations of the word, such as “comprising” and “comprises,” as well as “have,” “having,” “includes,” “include” and “including,” and variations thereof, means that the named steps, elements or materials to which it refers are essential, but other steps, elements or materials may be added and still form a construct with the scope of the claim or disclosure. When recited in describing the invention and in a claim, it means that the invention and what is claimed is considered to what follows and potentially more. These terms, particularly when applied to claims, are inclusive or open-ended and do not exclude additional, unrecited elements or methods steps. “Between” includes the endpoints of a range unless specified elsewhere. “Comparable” in the present invention means that the Cmax of a dosage form in accordance with the invention will be 80-120% that of an identical dosage form without an effervescent couple, a pH adjusting substance and a starch glycolate. For purposes of the present invention, unless otherwise defined with respect to a specific property, characteristic or variable, the term “substantially” as applied to any criteria, such as a property, characteristic or variable, means to meet the stated criteria in such measure such that one skilled in the art would understand that the benefit to be achieved, or the condition or property value desired is met. A method of administering an opiate to a patient experiencing pain is one aspect of the invention. This method can comprise the steps of contacting the oral mucosa of a patient in need thereof with an orally disintegrable, dosage form. The dosage form includes a single dose of an effective amount of an opiate, generally between about 20 and 200,000 micrograms (measured as a free base), and in another embodiment, between about 50 and about 160,000 micrograms and most preferably between about 50 and about 100,000 micrograms or a proportional amount of a salt thereof. While preferably, the dose is delivered in a single dosage form, it may be spread or divided among two or more dosage forms administered at roughly the same time (e.g., within one hour of each other). These doses may be repeated up to several times a day as instructed by a treating physician. In one embodiment, the dosage form is held in contact with the oral mucosa of the patient for a time sufficient to allow transport of a therapeutically significant portion of the opiate, preferably more than 50%, more preferably more than 60% and most preferably 75% or more of the dose, from the oral cavity to the blood stream across the oral mucosa. In another embodiment, the dosage forms of the invention will have an average dwell time in the mouth of between 5 and 30, preferably 10 and 30, more preferably 12 and 30 minutes. This is based on repetitive testing with at least 10 patients. It has now been discovered that, in certain embodiments, the use of effervescence and a pH adjusting substance, along with specific disintegrants, can provide, in certain embodiments, significant advantages, particularly in terms of the amount of opiate that is required for dosing when compared to similar formulations using different substitutents. It has also been found that certain excipients in combination with effervescent couples and pH adjusting substances can provide very unexpected results. Particularly preferred are effervescent formulations that include a pH adjusting substance and, in addition, starch glycolate. Even more preferred are those that include a mannitol as a filler. Determining whether or not a particular formulation is capable of achieving the results described herein, one need only undertake a routine human clinical study of that formulation. The appropriate clinical study would use any of the traditional models. Examples of appropriate studies are as follows: Clinical Study Design and Conduct This study and Informed Consent Forms (ICF) were Institutional Review Board (IRB) approved. All subjects read and signed an IRB-approved ICF prior to study initiation. Signed and witnessed ICFs are on file. For the first two periods the study utilized a single-dose, randomized, open-label, 2-way crossover design of the designated test and reference products, and subjects were randomized to receive one of three additional test formulations during Period 3. All subjects were randomized and were in a fasted state following a 10-hour overnight fast. There was a 7-day washout interval between the three dose administrations. The subjects were confined to the clinic through 36 hours post-fentanyl administration. The subjects were screened within 21 days prior to study enrollment. The screening procedure included medical history, physical examination (height, weight, frame size, vital signs, and ECG), and clinical laboratory tests (hematology, serum chemistry, urinalysis, HIV antibody screen, hepatitis B surface antigen screen, hepatitis C antibody screen, serum pregnancy [females only]), and a screen for cannabinoids and opioids. All subjects enrolled in the study satisfied the inclusion/exclusion criteria as listed in the protocol. A total of 42 subjects, 17 males and 25 females, were enrolled in the study, and 39 subjects, 17 males and 22 females, completed the study. Subjects reported to the clinic on the morning prior to each dosing and received lunch 19 hours prior to dosing, dinner 14 hours prior to dosing, and a snack 11 hours prior to dosing. The subjects then observed a 10-hour overnight fast. On Day 1, a standardized meal schedule was initiated with lunch at 4.5 hours postdose, dinner at 9.5 hours postdose, and a snack at 13 hours postdose. On Day 2, breakfast was served at 24.5 hours postdose, lunch at 28.5 hours postdose, and dinner at 33 hours postdose. The subjects were not to consume any alcohol-, broccoli-, citrus-, caffeine-, or xanthine-containing foods or beverages for 48 hours prior to and during each period of confinement. Subjects were to be nicotine- and tobacco-free for at least 6 months prior to enrolling in the study. In addition, over-the-counter medications were prohibited 7 days prior to dosing and during the study. Prescription medications were not allowed 14 days prior to dosing and during the study (excluding hormonal contraceptives for females). During the study, the subjects were to remain seated for 4 hours after the fentanyl citrate was administered. Water was restricted from Hour 0 until 4 hours postdose. Food was restricted 10 hours predose until 4 hours postdose. During the study, the subjects were not allowed to engage in any strenuous activity. Subjects received naltrexone at each period as detailed below: Adm 1: ReVia® 50 mg (naltrexone hydrochloride tablets) Manufactured by Bristol-Myers Squibb Company Lot No.: 5C269A Expiration date: April 2004 Lot No.: TB1798 Expiration date: March 2005 Subjects assigned to Treatments A, B, C, and D received an oral dose of one 50 mg naltrexone tablet taken with 240 mL of water at 15 hours and 3 hours prior to and 12 hours following the fentanyl dose. Subjects assigned to Treatment E received an oral dose of one 50 mg naltrexone tablet taken with 240 mL of water at 15 hours and 3 hours prior to the fentanyl dose. Subjects received one of the following fentanyl treatments at each of 3 periods: A: OraVescent® Fentanyl Citrate Tablets 1080 μg (as fentanyl base) Manufactured by CIMA LABS INC Lot No.: 930502 Subjects randomized to Treatment A received a single oral dose of one 1080 μg fentanyl tablet placed between the upper gum and cheek above a molar tooth and allowed to disintegrate for 10 minutes. Note that “OraVescent” indicates a formulation and dosage form in accordance with the present invention. B: Actiq® (oral transmucosal fentanyl citrate) equivalent to 1600 μg Manufactured by Cephalon, Inc. or Anesta Lot No.: 02 689 W3 Subjects randomized to Treatment B received a single oral dose of one 1600 μg Actiq® unit placed between the cheek and lower gum. The unit was to be moved from side to side using the handle and allowed to dissolve for 15 minutes. C: OraVescent® Fentanyl Citrate Tablets 1300 μg (as fentanyl base) Manufactured by CIMA LABS INC Lot No.: 930503 Subjects randomized to Treatment C received a single oral dose of one 1300 μg fentanyl tablet placed between the upper gum and cheek above a molar tooth and allowed to disintegrate for 10 minutes. D: OraVescent® Fentanyl Citrate Tablets 810 μg (as fentanyl base) Manufactured by CIMA LABS INC Lot No.: 930501 Subjects randomized to Treatment D received a single oral dose of one 810 μg fentanyl tablet placed between the upper gum and cheek above a molar tooth and allowed to disintegrate for 10 minutes. E: OraVescent® Fentanyl Citrate Tablets 270 μg (as fentanyl base) Manufactured by CIMA LABS INC Lot No.: 930500 Subjects randomized to Treatment E received a single oral dose of one 270 μg fentanyl tablet placed between the upper gum and cheek above a molar tooth and allowed to disintegrate for 10 minutes. The composition of each of these fentanyl citrate tablets is described in Examples 1-4. Sitting vital signs (blood pressure, pulse, and respiration) were assessed each morning prior to dosing (Hour 0) and at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 5, 6, 8, 10, 24, and 36 hours postdose. Continuous pulse oximetry was conducted for the first 8 hours postdose. A 12-lead electrocardiogram, a clinical laboratory evaluation (hematology, serum chemistry, and urinalysis), and a physical examination with complete vital signs were performed at the completion of the study. Oral irritation assessments were conducted 4 hours postdose. Subjects were instructed to inform the study physician and/or nurses of any adverse events that occurred during the study. Blood samples (7 mL) were collected at the following times for subjects assigned to Treatments A-D: predose (Hour 0), and 10, 20, 30, and 45 minutes; and 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, and 36 hours postdose. Blood samples (7 mL) were collected at the following times for subjects assigned to Treatment E: predose (Hour 0), and 10, 20, 30, and 45 minutes; and 1, 2, 4, 6, 8, 9, 10, 11, 12, 14, 16, 20, and 24 hours postdose. A total of 54 blood samples (378 mL) were drawn during the study for drug analysis. Samples were collected and processed at room temperature under fluorescent lighting. Serum samples were allowed to clot, separated by centrifugation, frozen at −20° C., and kept frozen until assayed. Analytical Methods An LC-MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) of fentanyl in human serum. Pharmacokinetic and Statistical Methods The pharmacokinetic and statistical analysis was based on the Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Guidance for Industry issued January 2001 and entitled “Statistical Approaches to Establishing Bioequivalence,” and Guidance for Industry issued March 2003 and entitled “Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations.” The following noncompartmental pharmacokinetic parameters were computed from the fentanyl concentration-time data for each treatment using WinNonlin Standard Edition version 2.1. Actual (rather than nominal) sampling times were used in the analysis. AUC(0-t) Area under the fentanyl concentration- time curve calculated using linear trapezoidal summation from time zero to time t, where t is the time of the last measurable concentration (Ct). AUC(0-inf) Area under the fentanyl concentration- time curve from time zero to infinity, AUC(0-inf)=AUC(0-t)+Ct/Kel, where Kel is the terminal elimination rate constant. AUC(0-t)/AUC(0-inf) Ratio of AUC(0-t) to AUC(0-inf). Also referred to as AUCR. AUC(0-tmax) The partial area from time 0 to the median Tmax of the reference formulation, calculated using linear trapezoidal summation. Kel Terminal elimination rate constant calculated by linear regression of the terminal linear portion of the log concentration vs. time curve, where Kel =−slope. The terminal linear portion was determined by visual inspection. T1/2 Elimination half-life calculated as ln(2)/Kel. Cmax Maximum observed fentanyl concentration. Tmax Time of the maximum fentanyl concentration (obtained without interpolation). This study was a single-dose, randomized, open-label, 2-way crossover of the designated test and reference products. (Treatment A and Treatment B, Periods 1 and 2) with subjects randomized to receive one of three additional test formulations (Treatment C, Treatment D, or Treatment E) during Period 3. Due to the larger number of subjects, the study was run in two groups. The primary comparison in this study was Treatment A versus Treatment B. For the analysis of variance comparing these two treatments, only two sequences (AB, BA), two periods (1, 2), and two treatments (A, B) were considered. A parametric (normal-theory) general linear model was applied to the log-transformed AUC(0-inf), AUC(0-t), and Cmax values from Treatments A and B. 5-7 The full analysis of variance (ANOVA) model considered group in the model and included the following factors: group, period within group, treatment, sequence, sequence by group, subject within sequence by group, and treatment by group. Since the treatment by group interaction was not significant, the model was reduced to sequence, subject within sequence, period, and treatment. The sequence effect was tested using the subject within sequence mean square and all other main effects were tested using the residual error (error mean square). The two one-sided hypotheses were tested at the 5% level for AUC(0-t), AUC(0-inf), and Cmax by constructing 90% confidence intervals for the ratio of the test and reference means (Treatment A versus Treatment B). Differences in Tmax for Treatment A and Treatment B were evaluated using the Wilcoxon Signed Ranks Test (α=0.05). Serum fentanyl concentrations and pharmacokinetic parameters were also determined following Treatment C, Treatment D, and Treatment E (1300 μg, 810 μg, and 270 μg OraVescent® Fentanyl Citrate tablet, respectively). In order to evaluate dose proportionality of the OraVescent® Fentanyl Citrate formulation, a mixed linear model was applied to the dose-normalized Cmax and AUC parameters from Treatments A, C, D, and E. 5-7 The full model considered group and included the following terms: group, period within group, treatment, sequence, sequence by group, subject within sequence by group, and treatment by group. The treatment by group interaction was not significant for 2 of the 3 parameters [Cmax and AUC(0-t)] and the model was reduced to a one-way ANOVA with the factor of treatment. If an overall treatment effect was found, pairwise comparisons were performed using Treatment A as the reference. The dwell time values (length of time the formulation was present in the oral cavity) were calculated by subtracting the treatment administration time from the time of perceived and documented disappearance of the formulation. These values were tabulated and summary statistics were presented. Results Demographics and Disposition of Subjects A total of 42 subjects, 17 males and 25 females, were enrolled in the study, and 39 subjects, 17 males and 22 females, completed the study. Three subjects were discontinued/withdrawn from the study. One subject was dropped prior to Period 2 because the subject did not want to continue on the study. A second subject was dropped prior to Period 3 because the subject did not want to continue on the study. A third subject was dropped prior to Period 2 because subject took an antibiotic. The mean age of the subjects was 27 years (range 19-55 years), the mean height of the subjects was 68 inches (range 62-74 inches), and the mean weight of the subjects was 152.1 pounds (range 109.0-197.0 pounds). Protocol Deviations and Adverse Events The following protocol deviations occurred during the conduct of the study. According to the protocol, subjects were to have respirations taken at the 3.5-hour vital signs time point. Respirations were not taken at the 3.5-hour time point for one subject during Period 2. Vital sign recheck was not performed at the 3-hour time point of Period 2 for two subjects. Vital sign recheck was not performed at the 2.25-hour time point of Period 3 for one subject. The blood samples for these two subjects were not labeled properly at the 0.33-hour time point of Period 1 (Treatment A). These samples were not analyzed. According to the protocol, subjects were to have pulse taken at the 3.5-hour vital signs time point. Pulse was not taken at the 3.5-hour time point for one subject during Period 1. No one subject was exposed to more than one of the foregoing deviations. No serious adverse events were reported. A total of 15 batches were required to process the clinical samples from this study. Of these 15 batches, 14 were acceptable. Back-calculated standard concentrations for the 14 acceptable batches for human serum used in this study covered a range of 50.0 to 5000.0 (pecograms/mL) pg/mL with a limit of quantitation of 50.0 pg/mL. Quality control samples analyzed with each acceptable batch had coefficients of variation less than or equal to 7.89%. Dwell Time The dwell time data are summarized in the table below. Summary of Tablet/Lozenge Dwell Time Treatment A Treatment B Treatment C Treatment D Treatment E Subject Time Time Time Time Time Number (Minutes) (Minutes) (Minutes) (Minutes) (Minutes Mean 21 34 19 25 22 SD 12 15 11 14 17 CV 58 44 56 57 75 SEM 2 2 3 4 4 N 40 42 12 13 14 Minimum 3 9 4 4 4 Maximum 48 77 33 50 62 Treatment A = 1 × 1080 mcg OraVescent Fentanyl Citrate Tablet: test Treatment B = 1 × 1600 mcg Oral Transmucosal Fentanyl Citrate (Actiq): reference Treatment C = 1 × 1300 mcg OraVescent Fentanyl Citrate Tablet: test Treatment D = 1 × 810 mcg OraVescent Fentanyl Citrate Tablet: test Treatment E = 1 × 270 mcg OraVescent Fentanyl Citrate Tablet: test SD = standard deviation; CV = coefficient of variance; SEM = standard error of the mean; N = number (of observations) One subject reported slight oral irritation (2 on a scale of 1 to 10) that occurred following Treatment C. The irritation was on the right side of the mouth following test product administration during Period 3. There was one report of redness upon visual inspection of the area by study personnel that occurred following Treatment E. The redness was on the right upper cheek following test product administration during Period 3. Of the 42 subjects enrolled, 40 subjects completed Periods 1 and 2 and were included in the summary statistics, ANOVA analysis, and mean figures for Treatments A and B. Thirty-nine subjects completed Periods 1, 2, and 3 and were included in the statistical analysis for dose proportionality. The arithmetic means and standard deviations of the serum fentanyl pharmacokinetic parameters and statistical comparisons following Treatment A and Treatment B are summarized in the following table. Summary of the Pharmacokinetic Parameters of Serum Fentanyl for Treatments A and B Serum Fentanyl Treatment A Treatment B Pharmacokinetic Arithmetic Arithmetic % Mean Parameters N Mean SD N Mean SD 90% CI* Ratio Cmax (pg/mL) 40 2704.3 877.6 40 2191.6 693.5 — — AUC(0-tmax) (pg*hr/mL) 40 3840.1 1266.2 40 2566.2 911.82 — — AUC(0-t) (pg*hr/mL) 40 16537 5464.6 40 16701 6530.1 — — AUC(0-inf) (pg*hr/mL) 35 17736 5424.3 39 18319 7118.5 — — T½(hr) 35 11.7 5.04 39 11.2 4.37 — — Kel(1/hr) 35 0.0701 0.0310 39 0.0695 0.0227 — — AUCR 35 0.918 0.0458 39 0.917 0.0335 — — 1n(Cmax) 40 7.854 0.3132 40 7.640 0.3349 111.82-136.20 123.4 ln[AUC(0-t)] 40 9.662 0.3226 40 9.649 0.3945 94.42-108.86 101.4 ln[AUC(0-inf)] 35 9.739 0.3027 39 9.742 0.3941 93.60-109.23 101.1 Treatment A = 1 × 1080 mcg OraVescent Fentanyl Citrate Tablet: test Treatment B = 1 × 1600 mcg oral Transmucosal Fentanyl Citrate (Actiq): reference Results of the Wilcoxon Signed Rank Test showed the median Tmax for Treatment A (0.998 hour) was significantly earlier (p<0.0001) compared to Treatment B (1.999 hours). The individual and mean serum fentanyl pharmacokinetic parameters for Treatments C, D, and E were calculated. There were 5 subjects in Treatment E for whom Kel could not be calculated. Thus, AUC(0-inf), AUCR, and Tl/2 could not be calculated in these cases. The arithmetic mean and standard deviations of the serum fentanyl pharmacokinetic parameters following Treatments C, D, and E are summarized in the following table. Summary of the Pharmacokinetic Parameters of Serum Fentanyl for Treatments C, D, and E Serum Fentanyl Treatment C Treatment D Treatment E Pharmacokinetic Arithmetic Arithmetic Arithmetic Parameters N Mean SD N Mean SD N Mean SD Cmax(pg/mL) 12 2791.4 874.3 13 2646.9 778.7 14 797.9 312.9 AUC(0-tmax) (pg*hr/mL) 12 4008.3 1259.1 13 3694.8 971.89 14 1095.6 433.92 AUC(0-t) (pg*hr/mL) 12 18921 6470.2 13 15339 4260.4 14 4333.5 1597.9 AUC(0-inf) (pg*hr/mL) 12 21033 7346.3 13 16831 4449.8 9 4221.9 1747.8 T½(Hr) 12 13.2 7.67 13 11.7 4.66 9 6.62 3.17 Kel(1/hr) 12 0.0687 0.0354 13 0.0703 0.0352 9 0.126 0.0538 AUCR 12 0.907 0.0683 13 0.909 0.0376 9 0.865 0.0381 Treatment C = 1 × 1300 mcg OraVescent Fentanyl Citrate Tablet Treatment D = 1 × 810 mcg OraVescent Fentanyl Citrate Tablet Treatment E = 1 × 270 mcg OraVescent Fentanyl Citrate Tablet AUCR is ratio of AUCo-t/AUCo-infinity The dose proportionality assessment including p-values for Treatments A, C, D, and E are summarized in the following table. Summary of the Dose-Normalized Parameters of Serum Fentanyl for Treatments A, C, D and E Serum Fentanyl Treatment A Treatment C Treatment D Treatment E Pharmacokinetic Arithmetic Arithmetic Arithmetic Arithmetic Parameters P-Value Mean SD Mean SD Mean SD Mean SD Cmax/dose — 2.5 0.8 2.1 0.7 3.3 1.0 3.0 1.2 (pg/mL/mcg) AUC(0-t)/dose — 15.4743 5.01901 14.555 4.9771 18.937 5.2597 16.050 5.9180 (pg*hr/mL/mcg) AUC(0-inf)/dose — 16.5851 5.00318 16.179 5.6510 20.779 5.4935 15.637 6.4732 (pg*hr/mL/mcg ln(Cmax/dose) 0.0127 0.8788 0.3115 0.7190 0.3151 1.137 0.3356 1.011 0.3974 Ln[AUC(0-t)/dose] 0.1727 2.690 0.3170 2.625 0.3409 2.901 0.3032 2.706 0.4002 ln[AUC(0-inf)/dose] 0.0783 2.765 0.3003 2.725 0.3633 2.998 0.2894 2.691 0.3892 Treatment A = 1 × 1080 mcg OraVescent Fentanyl Citrate Tablet Treatment C = 1 × 1300 mcg OraVescent Fentanyl Citrate Tablet Treatment D = 1 × 810 mcg OraVescent Fentanyl Citrate Tablet Treatment E = 1 × 270 mcg OraVescent Fentanyl Citrate Tablet The time intervals over Kel values were determined. The primary objective of this study was to assess the bioequivalence of a 1080 μg dose of CIMA LABS INC OraVescent® Fentanyl Citrate tablet (Treatment A, test) compared to a marketed 1600 μg oral transmucosal fentanyl citrate, Actiq® (Treatment B, reference) under fasted conditions. The study was a single-dose randomized, open-label, 2-way crossover design for Periods 1 and 2. All subjects also returned in Period 3 for administration of one of three OraVescent® Fentanyl Citrate test formulations: 1300 μg (Treatment C), 810 μg (Treatment D), or 270 μg (Treatment E). Dose-proportionality of the OraVescent® Fentanyl Citrate tablet formulation (Treatments A, C, D, and E) was evaluated. A total of 42 healthy subjects were initially enrolled in the study. 39 subjects completed all three periods of the study, and 40 subjects completed both Treatments A and B (Periods 1 and 2). Data from the 40 subjects completing Treatments A and B were included in the pharmacokinetic and statistical analysis. The ratios of geometric least square means (test/reference) for fentanyl Cmax, AUC(0-t), and AUC(0-inf) were 123.4%, 101.4%, and 101.1%, respectively, for Treatment A versus Treatment B. These data indicate that the average fentanyl exposure was similar but the peak exposure was higher for Treatment A compared to Treatment B. The Tmax for Treatment A (0.998 hour) occurred an hour earlier than Treatment B (2.00 hour) and Cmax was 23% higher, indicating that the rate of fentanyl absorption was significantly faster for Treatment A compared to Treatment B. The 90% confidence intervals for Cmax at 111.82%-136.20%, AUC(0-t) at 94.42%-108.86%, and AUC(0-inf) at 93.60%-109.23% indicated that Treatment A and Treatment B met the requirements for bioequivalence with respect to AUC but not with respect to Cmax. In fact, the Cmax of Treatment A indicates that a dose of about 30-35% less fentanyl by weight given using the OraVescent® formulation exemplified in Example 1 provided a statistically significantly higher Cmax when compared to a 1600 microgram Actiq® formulation. To obtain bioequivalent results in terms of Cmax, indeed to obtain comparable results, one would have to use an OraVescent® fentanyl formulation including at least about 45%, more preferably about 47.5% and even more preferably about 50% less fentanyl (calculated as free fentanyl by weight) than found in the comparator Actiq® tablet. In this instance, approximately 800-880 micrograms was comparable to a 1600 microgram ACTIQ. Thus it was discovered that, using the present invention and for dosage forms of 1 milligram or less, one could obtain comparable Cmax with even less fentanyl than initially thought. Rapid Tmax was also realized. This allowed a further reduction in the doses contemplated with the advantages described previously herein that come from a dose reduction that is not coupled with a reduction in efficacy. Fentanyl AUC increased proportionally to the dose in the range of 270 to 1300 μg following administration of the OraVescent® Fentanyl Citrate tablet formulation. There were no significant differences in dose-normalized AUC(0-t) or AUC(0-inf) among the 4 OraVescent® doses. A significant overall treatment effect was found for the comparison of dose- normalized Cmax. Pairwise comparisons were performed using Treatment A as the reference because all subjects received Treatment A. No pattern was observed with the pairwise comparisons. A significant difference between Treatment D (810 μg) and Treatment A (1080 μg) was found. The mean dwell time of the 1080 μg OraVescent® Fentanyl Citrate tablet (21 minutes) was 13 minutes shorter than for Actiq® (34 minutes). Mean dwell times for the other 3 doses of the OraVescent® Fentanyl Citrate tablet formulation (19, 25, and 22 minutes) were similar to 1080 μg OraVescent® formulation. One subject reported minor irritation to the oral mucosa, and one subject experienced redness following the OraVescent® Fentanyl Citrate tablet. There was no irritation or redness reported following Actiq®. Comparison of serum fentanyl pharmacokinetics following the administration of 1080 μg OraVescent® Fentanyl Citrate tablet and 1600 μg oral transmucosal fentanyl citrate (Actiq®) showed that the average fentanyl exposure was similar but the rate of absorption was different between the two products. The geometric least squared (LS) mean ratios for AUC(0-t) and AUC(0-inf) were near 100%, and 90% confidence intervals were within 80% to 125%. Geometric LS mean Cmax was 23% higher for 1080 μg OraVescent® Fentanyl Citrate, and the upper limit of the 90% confidence interval for the treatment/reference ratio was greater than 125%, indicating that bioequivalence criteria were not met for this parameter. Thus even further dose reduction could be realized. The Tmax was significantly earlier (1 hour earlier) for the OraVescent® Fentanyl Citrate tablet. Fentanyl AUC increased proportionally to the dose in the range of 270 to 1300 μg for the OraVescent® Fentanyl Citrate formulation. The mean dwell time for the 1080 μg OraVescent® Fentanyl Citrate tablet (21 minutes) was 13 minutes shorter than the mean dwell time for Actiq® (34 minutes). There were no serious or unexpected adverse events during the study. Both formulations were well tolerated by the oral mucosa. REFERENCES 1. Physician's Desk Reference. 56th ed. Montvale, N.J.: Medical Economics Company, Inc.; 2002. Actiq®; p. 405-409. 2. Fentanyl. Micromedex [online] Vol. 107: Health Series Integrated Index; 2002 (Date Accessed: 2003/Jun/371. http://www.tomescps.com 3. Streisand Y B, et al. Dose Proportionality and Pharmacokinetics of Oral Transmucosal Fentanyl Citrate. Anesthesiology 88: 305-309, 1998. 4. Naltrexone. Micromedex [online] Vol. 107: Health Series Integrated Index; 2002 [Date Accessed: 2003/JunI6]. http://www.tomescps.com 5. SAS Institute, Inc., SAS®/STAT User's guide, Ver. 6. 4th ed. Vol. 1. Cary, N C: SAS Institute; 1989. 6. SAS Institute, Inc., SAS®/STAT User's guide, Ver, 6, 4th ed. Vol. 2. Cary, N C: SAS Institute; 1989. 7. SAS Institute, Inc., SAS® Procedures guide, Ver. 6, 3rd ed. Cary, N C: SAS Institute; 1990. A second study was performed as well. This study was conducted to evaluate the extent to which dose proportionality (AUC and Cmax) exists for fentanyl citrate formulated in tablets in accordance with the invention (referred to herein as OraVescent® tablets) over the range that may be used therapeutically, and to confirm the Cmax observations of the study just discussed. An Institutional Review Board (IRB) approved the protocol and the Informed Consent Form. All subjects read and signed an IRB-approved ICF prior to study initiation. This study had a single-dose, randomized, open-label, 4-treatment, 4-period, crossover design. The subjects were screened within 21 days prior to study enrollment. The screening procedure included medical history, physical examination (height, weight, frame size, vital signs, and electrocardiogram [ECG]), and clinical laboratory tests (hematology, serum chemistry, urinalysis, HIV antibody screen, hepatitis A antibody screen, hepatitis B surface antigen screen, hepatitis C antibody screen, and serum pregnancy [females only]), and a screen for cannabinoids and opiates. All subjects enrolled in the study satisfied the inclusion/exclusion criteria as listed in the protocol and the Principal Investigator reviewed medical histories, clinical laboratory evaluations, and performed physical examinations prior to subjects being enrolled in the study. A total of 28 subjects, 16 males and 12 females, were enrolled in the study, and 25 subjects, 14 males and 11 females, completed the study. Subjects reported to the clinic on the afternoon prior to dosing and received lunch at 1400, dinner at 1900, and a snack at 2200. The subjects then observed a 10-hour overnight fast. On Day 1, a standardized meal schedule was initiated with lunch at 1330, dinner at 1830, and a snack at 2200. On Day 2, a standardized meal schedule (including breakfast) was initiated. The subjects were not to consume any alcohol, broccoli, caffeine-, or xanthine-containing foods or beverages for 48 hours prior to and during each period of confinement. Grapefruit was restricted 10 days prior to dosing and throughout the study. Subjects were to be nicotine- and tobacco-free for at least 6 months prior to and throughout the completion of the study. In addition, over-the-counter medications (including herbal supplements) were prohibited 7 days prior to dosing and during the study. Prescription medications (including MAO inhibitors) were not allowed 14 days prior to dosing and during the study. During the study, subjects were to remain in an upright position, sitting, for 4 hours after the fentanyl citrate was administered. Water was restricted from the time of dosing until 4 hours postdose. Food was restricted 10 hours predose until 4 hours postdose. During the study, the subjects were not allowed to engage in any strenuous activity. Subjects were randomized to receive the following treatments: Adml: ReVia® (naltrexone hydrochloride tablets) 50 mg Manufactured by Duramed Pharmaceuticals, Inc. Lot No.: 402753001T Expiration date: June 2006 Subjects received an oral dose of one ReVia® 50 mg tablet taken with 240 mL of water 15 hours and 3 hours prior to dosing for Treatment A. Subjects received an oral dose of one ReVia® 50 mg tablet taken with 240 ml. of water 15 hours and 3 hours prior to dosing, and 12.17 hours postdose for Treatment B, C, and D. A: Oravescent® Fentanyl Citrate 200 μg tablets Manufactured by CIMA LABS INC Lot No.: 930859 Subjects randomized to Treatment A received a single oral dose of one Oravescent® Fentanyl Citrate 200 μg tablet placed between the upper gum and cheek, above a molar tooth, and allowed to disintegrate for 10 minutes. B: Oravescent® Fentanyl Citrate 500 μg tablets Manufactured by CIMA LABS INC Lot No.: 930860 Subjects randomized to Treatment B received a single oral dose of one Oravescent® Fentanyl Citrate 500 μg tablet placed between the upper gum and cheek, above a molar tooth, and allowed to disintegrate for 10 minutes. C: Oravescent® Fentanyl Citrate 810 μg tablets Manufactured by CIMA LABS INC Lot No.: 930501 Subjects randomized to Treatment C received a single oral dose of one Oravescent® Fentanyl Citrate 810 jig tablet placed between the upper gum and cheek, above a molar tooth, and allowed to disintegrate for 10 minutes. D: Oravescent® Fentanyl Citrate 1080 μg tablets Manufactured by CIMA LABS INC Lot No.: 930502 Subjects randomized to Treatment D received a single oral dose of one Oravescent® Fentanyl Citrate 1080 jig tablet placed between the upper gum and cheek, above a molar tooth, and allowed to disintegrate for 10 minutes. Sitting vital signs (blood pressure, heart rate, and respiratory rate) were assessed each morning prior to dosing and at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 5, 6, 8, 10, 24, and 36 hours postdose. Continuous pulse oximetry was obtained for the first 8 hours postdose and whenever the subject attempted to sleep during the first 12 hours postdose. A 12-lead ECG, a clinical laboratory evaluation (hematology, serum chemistry, and urinalysis) and a brief physical examination with complete vital signs were performed at the completion of the study. Oral irritation assessments were conducted 4 hours postdose. At each check-in, the oral cavity was examined to ensure that the subjects did not have canker sores in the area of drug application. Subjects were instructed to inform the study physician or nurses of any adverse events that occurred during the study. Blood samples (7 mL) were collected at the following times for subjects assigned to Treatment A: Predose (Hour 0), 10, 20, 30, and 45 minutes; and 1, 2, 4, 6, 8, 9, 10, 11, 12, 14, 16, 20, and 24 hours postdose. Blood samples (7 mL) were collected at the following times for subjects assigned to Treatments B, C and D: Predose (Hour 0), 10, 20, 30, and 45 minutes; and 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32; and 36 hours postdose. Human serum samples were analyzed for fentanyl concentrations by a sensitive and specific LC-MS/MS procedure. The following noncompartmental pharmacokinetic parameters were computed from the fentanyl concentration-time data for each treatment using WinNonlin Standard Edition version 2.1. Actual (rather than nominal) sampling times were used in the analysis. AUC(0-t) Area under the fentanyl concentration-time curve calculated using linear trapezoidal summation from time zero to time t, where t is the time of the last measurable concentration (Ct). AUC(0-inf) Area under the fentanyl concentration-time curve from time zero to infinity, AUC(0-inf)=AUC(0-t)±Ct/Kel, where Kel is the terminal elimination rate constant. AUC(0-t)/AUC(0-inf) Ratio of AUC(0-t) to AUC(0-inf). Also referred to as AUCR. Kel Terminal elimination rate constant calculated by linear regression of the terminal linear portion of the (log concentration vs. time curve, where Kel =−slope. The terminal linear portion was determined by visual inspection. Tl/2 Elimination half-life calculated as ln(2)/Kel. Cmax Maximum observed fentanyl concentration. Tmax Time of the maximum fentanyl concentration (obtained without interpolation). Plasma concentration values for fentanyl were listed and summarized by treatment and time point with descriptive statistics (mean, standard deviation [SD], coefficient of variation [CV], standard error of the mean [SEM], sample size, minimum, maximum, and median).9-11 Values below the lower limit of quantification (LOQ) were set to zero. Mean and individual concentration-time plots were presented. Fentanyl pharmacokinetic parameters and dose-normalized pharmacokinetic parameters were tabulated by treatment and summary statistics were calculated. Dose proportionality from 200 μg to 1080 μg was assessed using the methodology described by Smith et al.8 First, log-transformed parameters were analyzed using a mixed effects model including the log-transformation of dose as well as fixed and random effects for intercept. This model was fit using SAS Proc Mixed.9-11 A 90% confidence interval (CI) about the fixed effect for slope (β1) was calculated and compared to the range (0.8677, 1.1323), which is the appropriate critical range given the range of doses investigated in this study. Conclusions were based on the following: 1) If the 90% CI for β1 was entirely contained within the range (0.8677, 1.1323), dose proportionality was to be concluded. 2) If the 90% CI for β1 was completely outside this range, lack of dose proportionality was to be concluded. 3) If the 90% CI for β1 was partially in and partially outside this range, the results would be considered “inconclusive.” In this case, the value of β1 as the best estimate of deviation from ideal proportionality, and the lower and upper bounds of the 90% CI may be considered in the context of drug safety, efficacy, or pharmacological effect data.8 In the event that inconclusive results were observed, the maximal dose ratio such that the 90% CI for β1 lay entirely within the critical range and the dose ratio such that the 90% CI for β1 fell entirely outside the critical range were calculated. These dose ratios are referred to by Smith et al., as ρ1 and ρ2, respectively. ρ1=θH{circumflex over ( )}[l/max(l-L,U-l)], where θH=1.25, L=the lower limit of the 90% CI, U=the upper limit of the 90% CI. ρ2=θH{circumflex over ( )}[l/max(L-l, 1-U)], with θH, L, and U and defined as above. A secondary analysis to examine the difference in dose-normalized Cmax between the 3 lowest dose levels (200 μg, 500 μg, and 810 μg) was performed. A parametric (normal- theory) GLM was applied to the dose-normalized Cmax values from Treatments A, B, and C following log-transformation. The analysis of variance (ANOVA) model included the following factors: treatment, sequence, subject within sequence and period. A p-value less than 0.05 was considered statistically significant. The dwell time values (length of time the formulation was present in the oral cavity) were calculated by subtracting the medication administration time from the time of perceived and documented disappearance of the formulation. These values were tabulated and summary statistics were presented. Three subjects were discontinued/withdrawn from the study. Two were dropped prior to Period 3 because they did not want to continue on the study. One subject was dropped following dosing on Period 2 because of adverse events. The mean age of the subjects was 33 years (range 19-55 years), the mean height of the subjects was 68.6 inches (range 60-76 inches), and the mean weight of the subjects was 160.9 pounds (range 110-215 pounds). The following protocol deviations occurred during the conduct of the study. A vital sign recheck was not performed at Hour 0.5 of Period 2 for one subject. A vital sign recheck was not performed at Hour 2.5 of Period 3 for one subject. One subject did not have her serum pregnancy test result available prior to the −15-hour naltrexone dosing on Period 3. The result was made available prior to the −3-hour naltrexone dose. The ECG for Hour 36 of Period 4 was misplaced for one subject. One subject did not have early termination procedures completed. This subject is considered lost to follow-up. And, for all subjects during Period 3, an oral irritation assessment was to have been conducted at 3.83 hours postdose. The nurse responsible for the event recalled performing the assessments but stated that the oral irritation assessment forms were not completed at the time of the event. Therefore, the assessment information cannot be verified and should be considered not done. The dwell time data are summarized in the table below. Treatment A Treatment B Treatment C Treatment D Subject Time Time Time Time Number (Minutes) (Minutes) (Minutes) (Minutes) MEAN 14 14 17 15 SD 8 6 10 11 CV 59 45 57 72 SEM 2 1 2 2 N 25 26 27 27 Minimum 4 6 5 4 Maximum 37 33 41 60 Treatment A = 200 μg Treatment B = 500 μg Treatment C = 810 μg Treatment D = 1080 μg During the check-in oral cavity assessments it was noted that one subject had a canker sore on the lower right inner cheek at the beginning of Period 4, however, the test product administration during Period 3 occurred on the upper right cheek. The Principal Investigator identified this canker sore as not an apthous ulcer and approved the subject to dose during Period 4. Two subjects reported slight oral irritation (2 and 3 on a scale of 1 to 10) that occurred following Treatment A. The irritation was on the left side of the mouth following test product administration during Period 2 for both subjects; one of these subjects also exhibited redness upon visual inspection of the area by study personnel. One additional subject reported pain in the upper left buccal area at the gum line 11 minutes following Treatment C. No serious or unexpected adverse events were reported. Of the 28 subjects enrolled, 25 subjects completed Treatment A, 26 subjects completed Treatment B, and 27 subjects completed Treatments C and D. Statistical analysis was performed on the pharmacokinetic data for all subjects. The elimination rate constant could not be calculated in one subject in Treatment A because there were limited data points in the terminal phase. Thus, AUC(0-inf), AUCR, and T1/2 could not be calculated for this subject. The arithmetic means and standard deviations of the serum fentanyl pharmacokinetic parameters following all treatments are summarized in the following table. Summary of the Phamacokinetic Parameters of Serum Fentanyl Summary of the Phamacokinetic Parameters of Serum Fentanyl SERUM FENTANYL Pharmacokinetic Arithmetic Arithmetic Parameters N Mean SD N Mean SD Treatment A Treatment B Cmax (pg/mL) 25 617.8 236.7 26 1546.2 621.4 *Tmax (hr) 25 0.76 0.33-4.0 26 0.75 0.33-4.0 AUC(0-t) (pg*hr/mL) 25 2876.3 1107.7 26 8501.2 3346.2 AUC(0-inf) (pg*hr/mL) 24 3543.9 1304.5 26 9701.9 2651.5 T½(hr) 24 6.48 3.69 26 12.0 8.18 Kel(1/hr) 24 0.143 0.0802 26 0.0746 0.0377 AUCR 24 0.843 0.0604 26 0.875 0.0929 Cmax/dose (pg/mL/mcg) 25 3.09 1.18 26 3.09 1.24 AUC(0-t) (pg*hr/mL/mcg) 25 14.4 5.54 26 17.0 6.69 AUC(0-inf) (pg*hr/mL/mcg) 24 17.7 6.52 26 19.4 7.30 ln(Cmax/dose) 25 1.06 0.383 26 1.05 0.426 ln[AUC(0-t)/dose] 25 2.59 0.424 26 2.75 0.441 ln[AUC(0-inf)/dose] 24 2.81 0.369 26 2.89 0.413 Treatment C Treatment D Cmax (pg/mL) 27 2280.1 968.9 27 2682.3 1106.0 *Tmax (hr) 27 0.99 0.33-4.0 27 0.75 0.33-4.0 AUC(0-t) (pg*hr/mL) 27 13301 4069.1 27 16813 5232.2 AUC(0-inf) (pg*hr/mL) 27 14962 4709.6 27 18664 6266.0 T½(hr) 27 12.8 4.08 27 11.4 4.34 Kel(1/hr) 27 0.0592 0.0167 27 0.0679 0.0216 AUCR 27 0.893 0.0589 27 0.909 0.0602 Cmax/dose (pg/mL/mcg) 27 2.81 1.20 27 2.48 1.02 AUC(0-t) (pg*hr/mL/mcg) 27 16.4 5.02 27 15.6 4.84 AUC(0-inf) (pg*hr/mL/mcg) 27 18.5 5.81 27 17.3 5.80 ln(Cmax/dose) 27 0.945 0.439 27 0.836 0.386 ln[AUC(0-t)/dose] 27 2.75 0.324 27 2.69 0.356 ln[AUC(0-inf)/dose] 27 2.87 0.329 27 2.79 0.372 *Median and min-max are reported for Tmax. Treatment A = 1 × 200 mcg OraVescent Fentanyl Citrate Tablet Treatment B = 1 × 500 mcg OraVescent Fentanyl Citrate Tablet Treatment C = 1 × 810 mcg OraVescent Fentanyl Citrate Tablet Treatment D = 1 × 1080 mcg OraVescent Fentanyl Citrate Tablet The slopes of ln[AUC(0-t)] versus ln (dose) and ln(AUC(0-inf)I versus ln(dose), at 1.0574 and 0.9983, respectively, 1, and the 90% CI for each parameter was completely contained within the critical range required for dose proportionality from 200 μg to 1080 μg. The slope of ln(Cmax) versus ln(dose), 0.8746, was less than 1 and the 90% CI (0.8145-0.9347) was not completely contained within the critical range required for the conclusion of dose proportionality. The maximal dose ratio such that the 90% CI for β11 lay entirely within the critical range was 3.33. The maximal dose ratio such that the 90% CI for β1 fell entirely outside the critical range was 30.48. The results of the ANOVA of dose-normalized Cmax for Treatments A, B, and C indicate that there was no statistically significant difference in dose-normalized Cmax in the dose range of 200 μg to 810 μg (p=0.13). The primary objective of this study was to evaluate the extent to which dose proportionality exists for fentanyl AUC and Cmax following fentanyl doses of 200 μg (Treatment A), 500 μg (Treatment B), 810 μg (Treatment C), and 1080 μg (Treatment D) as OraVescent® Fentanyl Citrate tablets. In addition, this study was conducted to confirm previous observations relating to Cmax following the administration of 810 μg and 1080 μg doses of OraVescent® Fentanyl Citrate tablets. This study was a single-dose, randomized, open-label, 4-period crossover design. Of the 28 subjects enrolled, 25 subjects completed Treatment A, 26 subjects completed Treatment B, and 27 subjects completed Treatments C and D. Statistical analysis was performed on the pharmacokinetic data for all subjects. The slopes of ln[AUC(0-t)] versus ln(dose) and in[AUC(0-inf)] versus ln(dose), at 1.0574 and 0.9983, respectively, were close to 1, and the 90% CI for each parameter was completely contained within the critical range required for dose proportionality. These results indicate that fentanyl AUC increased proportionally with each increasing dose level of OraVescent® Fentanyl Citrate tablets between the study doses of 200 μg to 1080 μg. The slope of ln(Cmax) versus ln(dose), 0.8746, was less than 1, indicating that fentanyl Cmax increased less than proportionally to dose. The 90% CI (0.8145-0.9347) was not entirely contained within the critical range. The less than proportional increase was observed at the highest dose (1080 μg) and, to a lesser extent, at the second to highest dose (810 μg). Cmax increased proportionally from 200 μg to 500 μg. The increase in Cmax with dose was “linear” up to and including about 800 μg of fentanyl. The value for ρ1 (maximal dose ratio such that the 90% CI for β1 lay entirely within the critical range) was 3.33, whereas the ratio of 810 μg:200 μg is 4.05. This indicates that the formulation is close to meeting the criteria for proportionality from the range of 200 μg to 810 μg according to this method. A secondary analysis using ANOVA to compare dose-normalized Cmax from the 200 μg, 500 μg, and 810 μg doses indicated no statistically significant difference (p=0.13) between these dose levels. The least square (“LS”) means for ln(Cmax/dose) were 1.06 (200 μg), 1.06 (500 μg), and 0.94 (810 μg), showing no difference between the 200 and 500 μg doses and a minimal (10%) difference in the 810 μg dose compared to the lower doses. The lack of significant result from the ANOVA in conjunction with the small magnitude in the difference between the 810 μg dose and the 2 lower doses indicates that there is not a clinically important deviation in dose proportionality (linearity) in Cmax from 200 μg to 810 μg. The mean dwell time for the 200 μg, 500 μg, 810 μg, and 1080 μg OraVescent® Fentanyl Citrate tablets were similar, at 14 minutes, 14 minutes, 17 minutes, and 15 minutes, respectively. There were 2 subjects who reported minor irritation to the oral mucosa and 1 subject who experienced redness following the OraVescent® Fentanyl Citrate tablet. Fentanyl AUC increased proportionally with increasing dose in the range of 200 μg to 1080 μg. Fentanyl Cmax increased less than proportionally to dose at the two highest dose levels. Mean ln(Cmax/dose) for the 810 μg dose was 10 to 11% lower than the 200 μg and 500 μg doses. This is linear as defined herein. Mean ln(Cmax/dose) for the 1080 μg dose was 20 to 21% lower than the 200 μg and 500 μg. There was not a clinically important deviation in dose proportionality in Cmax from 200 μg to 810 μg. The mean dwell time for the 200 μg, 500 μg, 810 μg, and 1080 μg OraVescent® Fentanyl Citrate tablets were similar, at 14 minutes, 14 minutes, 17 minutes, and 15 minutes, respectively. There were no serious or unexpected adverse events during the study. Both formulations were well tolerated by the oral mucosa. REFERENCES 8. Smith B P, et al. Confidence Interval Criteria for Assessment of Dose Proportionality. Pharmaceutical Research 17: 1278-1283, 2000. 9. SAS Institute, Inc., SAS®/STAT User's guide, Ver. 6. 4th ed. Vol. 1. Cary, N C: SAS Institute; 1989. 10. SAS Institute, Inc., SAS®/STAT Users guide, Ver. 6, 4th ed. Vol. 2. Cary, N C: SAS Institute; 1989. 11. SAS Institute, Inc., SAS® Procedures guide, Ver. 6, 3rd ed. Cary, N C: SAS Institute; 1990. 12. Summary Basis of Approval NDA 20-747 (Actiq®). Approval date Nov. 4, 1998, Clinical Pharmacology and Biopharmaceutics Review pp 6. Formulations in the '604 patent which included lactose monohydrate in an amount of greater than 20% and/or both microcrystalline cellulose in an amount of at least about 20% and cross-linked PVP in an amount of 5% or more are believed to be unable to provide fentanyl formulations having the desirable properties of the invention despite the presence of a pH adjusting substance and an effervescent couple. That is, a greater dose of the opiate would be required to provide a comparable Cmax. Indeed, a 20% dose reduction, or more, can be achieved by use of the present invention. Fentanyl, for example, formulated in the dosage forms of the present invention will have a higher Cmax at a given dose when compared to those like those in the '604 patent. Thus, to achieve comparable Cmax, less opiate will be necessary. Other opiates should behave in a similar manner. A dosage form which consists essentially of certain fillers in certain amounts would exclude the foregoing as they were not able to achieve the desired comparable Cmax at the appropriate dose reduction. The dosage forms in accordance with the present invention will provide effective amounts of opiates that will vary from opiate to opiate and from indication to indication. For fentanyl, for example, an effective amount is an amount between about 100 and about 2000 μg per dose based on the free base form of fentanyl. For demerol the range can go up to as much as 150 mg per dose. Proportionate amounts of a salt, such as a citrate, may also be used. For oxycodone, the normal daily dose can range from between about 5 to about 160 milligrams. Daily doses of hydromorphone can range from 4 to 45 mg and morphine ranges from 10 to 120 mg. Generally, the dose of active, to be delivered in one or more dosage forms in accordance with the invention, (per dose, not necessarily per day) will range from between about 20 to about 200,000 micrograms, preferably between about 50 to about 160,000 micrograms, most preferably between about 50 to about 100,000 micrograms. As an effervescent agent or effervescent couple, any known combination may be used. These include those described in U.S. Pat. No. 5,178,878 and U.S. Pat. No. 5,503,846, the texts of which are hereby incorporated by reference to the extent they discuss various effervescent couples and constructions of same. Effervescent couples generally are water or saliva activated materials usually kept in an anhydrous state with little or no absorbed moisture or in a stable hydrated form. Typically these couples are made of an acid source and a source of a reactive base, usually a carbonate or bicarbonate. Both may be any which are safe for human consumption. The acids generally include food acids, acid anhydrides and acid salts. Food acids include citric acid, tartaric acid, malic acid, fumeric acid, adipic acid, ascorbic acid and succinic acid. Acid anhydrides or salts of these acids may be used. Salts in this context may include any known salt but in particular, sodium, dihydrogen phosphate, disodium dihydrogen phosphate, acid citrate salts and sodium acid sulfate. Bases useful in accordance with the invention typically include sodium bicarbonate, potassium bicarbonate and the like. Sodium carbonate, potassium carbonate, magnesium carbonate and the like may also be used to the extent they are used as part of an effervescent couple. However, they are more preferably used as a pH adjusting substance. Preferably, stoichiometric equivalent amounts of acid and base are used. It is possible, however, that some excess of acid or base be used. However, care should be exercised when so formulating a formulation. An excess could affect absorption. The amount of effervescent material or couple useful in accordance with the present invention is an effective amount and is determined based on properties other than that which would be necessary to achieve disintegration of the tablet in the mouth. Instead, effervescence is used as a basis for enhancing transmission of the opiate across mucosal membranes via buccal, gingival or sublingual administration in the oral cavity. This can be measured by comparing the blood levels of the opiate from a formulation of the invention as compared to an identical formulation without the effervescent couple. Accordingly, the amount of effervescent couple should range from between about 5 to about 85 percent, more preferably between about 15 to 60 percent, even more preferably between about 30 and 45 percent and most preferably between about 35 to about 40 percent, based on the weight of the total formulation (“w/w”). Of course, the relative proportion of acid base will depend upon the specific ingredients (for example, is the acid monoprotic, dipotic or tripotic) relative molecular weights, etc. However, preferably, a stoichiometric amount of each is provided although, of course, excesses may be acceptable. Preferably, formulations in accordance with the present invention include a pH adjusting substance. Without wishing to be bound by any particular theory of operation, this ensures that a drug which is susceptible to changes in ionization state can be administered by ensuring the proper conditions for its dissolution as well as transmission across one or more of the membranes or tissues within the oral cavity. If the ideal conditions for transmission are basic, the addition of a sufficient excess of suitably strong acid as part of the manufacture of an effervescent couple or as a pH adjusting substance may not be appropriate. The selection of another pH adjusting substance such as, for example, anhydrous sodium carbonate which operates separate and apart from the effervescent agents, are appropriate and preferred. pH adjusting substances in accordance with the present invention can be used to provide further permeation enhancement. The selection of the appropriate permeation enhancer will depend on the drug to be administered and in particular to the pH at which it is ionized or unionized. A basic substance is “appropriate” for the delivery of fentanyl. Acids may be appropriate for other opiates. pH adjusting substances in accordance with the present invention can include, without limitation, any substance capable of adjusting the localized pH to promote transport across the membranes in the oral cavity in amounts which will result in pH's generally ranging from between about 3 to 10 and more preferably between about 3 to about 9 in the microenvironment at the surface contact area of the oral mucosa and the dosage form or any portion thereof (Also referred to herein as the “localized pH.”). To characterize the dynamic pH changes displayed by the tablets in question, an in vitro pH measurement was used. The method consists of using 0.5-10 mL of phosphate buffered saline in an appropriately sized test tube or similar vessel. The amount of media is dependent on the tablet size and dosage. For example, when measuring the pH profile for fentanyl tablets, a volume of 1 mL was used for tablets which weighed 100 mg. Immediately upon tablet contact with the media, the pH profile of the solution is monitored as a function of time, using a micro-combination pH electrode. Depending on the molecule in question, the combination of effervescence and pH adjusting substance can provide a localized pH ranging from 3-10, and more preferably, it is selected and provided in an amount capable of providing a change in pH of at least 0.5 pH units. Preferably, the materials which can be used for pH adjusting substances in accordance with the present invention include carbonates such as sodium, potassium or calcium carbonate or a phosphate such as calcium or sodium phosphate. Most preferred is sodium carbonate. The amount of pH adjusting substance useful in accordance with the present invention can vary with the type of pH adjusting substance used, the amount of any excess acid or base from the effervescent couple, the nature of the remaining ingredients and, of course, the drug which, in this case, is fentanyl. An effective amount of a pH adjusting substance is an amount which is sufficient to change the pH in the localized microenvironment (localized pH) (raise the pH in the case of fentanyl), when dissolved in the mouth, to a pH at which effervescence can enhance the penetration across mucosal membrane in the orally cavity. The effective amount will be capable of providing a pH of between about 3 and about 10. Any pH adjusting substance capable of providing these conditions is contemplated. Preferably, the pH adjusting substance provides a localized pH of 3-10 and more preferably, it is selected and provided in an amount capable of providing a change in localized pH of at least 0.5 pH units. More preferably, an appropriate pH adjusting substance will change the localized pH at the microenvironment by 1 or more pH units, and more preferably 2 or more pH units. Most preferably the amount of pH adjusting substance will range from between about 0.5 to about 25 percent, more preferably between about 2 to about 20 percent, even more preferably between about 5 to about 15 percent and most preferably between about 7 to about 12 percent by weight based on the weight of the total formulation. The most preferred pH adjusting substance is a carbonate, bicarbonate and the like. Any filler or any amount of a filler may be used as long as the resulting dosage forms achieve the results described herein. Most preferred amongst the fillers are sugar and sugar alcohols and these may include non-direct compression and direct compression fillers. Non-direct compression fillers generally, at least when formulated, have flow and/or compression characteristics which make them impractical for use in high speed tableting process without some sort of augmentation or adjustment. For example, a formulation may not flow sufficiently well and therefore, a glidant such as, for example, silicon dioxide may need to be added. Typically, these materials could be granulated or spray dried to improve their properties as well. Direct compression fillers, by contrast, do not require similar allowances. They generally have compressibility and flowability characteristics which allow them to be used directly. It is noted that, depending upon the method by which formulations are made, non-direct compression fillers may be imparted with the properties of direct compression fillers. The reverse is also true. As a general matter, non-direct compression fillers tend to have a relatively smaller particle size when compared to direct compression fillers. However, certain fillers such as spray dried mannitol have relatively smaller particle sizes and yet are often directly compressible, depending upon how they are further processed. There are also relatively large non-direct compression fillers as well. Mixtures of direct and non- direct compression fillers are also contemplated. Most preferred in accordance with the present invention is mannitol, and in particular, spray dried mannitol. Generally, the amount of filler may range from about 10 to about 80% w/w and more preferably 25 to 80%. Even more preferably, the amount of filler will range from 35 to about 60% by weight of the dosage form or formulation. Disintegrants may also be used in accordance with the present invention as long as they can provide the results described herein. These may also include binders that have disintegrating properties. Most preferred for use as a disintegrant is a starch glycolate such as sodium starch glycolate. One sodium starch glycolate useful in accordance with the present invention is GLYCOLYS® (standard grade) from Roquette of Lestrem, France. The amount of disintegrant will vary with known factors such as, the size of the dosage form, the nature and amounts of the other ingredients used, and the degree of dose reduction sought, etc. However, in general the amount should range from between about 0.25 to about 20% by weight of the final formulation, more preferably between about 0.5 to about 15%, more preferably 0.5 to about 10% w/w, and even more preferably between about one and about eight percent by weight. This is again based on the weight of the finished formulation (dosage form). Also generally useful in accordance with the present invention is a tableting or ejection lubricant. The most common known lubricant is magnesium stearate and the use of magnesium stearate is preferred. Generally, the conventional wisdom behind tableting lubricants is that less is more. It is preferred in most circumstances that less than one percent of a tableting lubricant be used. Typically, the amount should be half a percent or less. However, the amount of magnesium stearate used can be greater than 1.0%. Indeed, it is preferably greater than 1.5% and most preferably between about 1.5% and about 3%. Most preferred is the use of about 2% magnesium stearate. Other conventional tableting lubricants such as, for example, stearic acid, calcium stearate and the like may also be used in place of some or all of the magnesium stearate. Effervescent tablets in accordance with the present invention can be relatively soft or robust. They can, for example, be manufactured in accordance with the methods described in U.S. Pat. No. 5,178,878 and will have a hardness of generally less than 15 Newtons. Unlike the formulations described in the '878 patent, the active ingredient here will not necessarily be coated with a protective material. Indeed, preferentially, the opiate active will not be coated. When tablets as soft and pliable/friable as these are produced, they may be advantageously packaged in a blister package such as found in U.S. Pat. No. 6,155,423. They may also be robust with a hardness of greater than 15 Newtons and a hardness of 2% friability or less, manufactured in accordance with the procedures set forth in U.S. Pat. No. 6,024,981. In a preferred embodiment, the dosage forms of the invention are provided in a blister package which is child resistant. See for example U.S. Pat. No. 6,155,423 to Katzner et al., issued Dec. 5, 2000 and assigned to CIMA LABS INC., the text of which is hereby incorporated by reference. Most preferably, the package meets the standards set forth in 16 U.S.C. § 1700.15 and 0.20 (2003). Packages also preferred include those commonly referred to in the industry as so-called “F1” and “F2” packages. “F1” packages are most preferred. Tablets in accordance with the present invention may be designed slightly differently for buccal, gingival, or sublingual administration. In each instance, however, the in mouth disintegration time (mean dwell time) achieved by the formulations is preferably less than 30 minutes. These tablets will generally exhibit a mean dwell time of between 5 and 30 minutes, more preferably 10 to 30 minutes, most preferably 12 to 30 minutes. In accordance with a particularly preferred embodiment of the present invention, there is provided an effervescent orally disintegrable tablet designed for buccal, sublingual or gingival administration of an opiate, or pharmaceutically acceptable salt thereof, comprising or consisting essentially of an opiate (by weight based on the weight of the free base), an effective amount of an effervescent couple and an effective amount of a pH adjusting substance. The formulation will further include one or more excipients. In one preferred embodiment, the excipients include mannitol and sodium starch glycolate. In a particularly preferred embodiment, these formulations do not include amounts of lactose monohydrate or both MCC and PVP XL in amounts which significantly reduce the advantages of the invention. The formulations in accordance with the present invention can include other conventional excipients in generally known amounts to the extent they do not detract from the advantages realized. These can include without limitation binders, sweeteners, coloring components, flavors, glidants, lubricants, preservatives, disintegrants, and the like. EXAMPLES Method of Manufacture In each case for the examples 1-7 and 9-11, materials were screened prior to use, charged into a V- blender, or can be blended in any other appropriate low shear blender, and blended for an appropriate time. After discharge from the blender, the materials were compressed on a standard rotary tablet press to a target hardness of 13 Newtons and a target weight as described in each example. Example 1 Form A of the First Study OraVescent® Fentanyl, 1080 mcg, {fraction (5/16)}″ Tablet, Red COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 1.688 Mannitol, USP* 95.312 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, USP/NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Red Ferric Oxide, NF 1.000 TOTAL 200.000 *spray dried (mannogem EZ by SPI Pharma) Example 2 Form C of the First Study OraVescent® Fentanyl, 1300 mcg, {fraction (5/16)}″ Tablet, Red QUANTITY COMPONENT NAME (mg/tab) Fentanyl Citrate, USP 2.042 Mannitol, USP* 94.958 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, USP/NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Red Ferric Oxide, NE 1.000 TOTAL 200.000 *spray dried Example 3 Form D of the First Study OraVescent® Fentanyl, 810 mcg, {fraction (5/16)}″ Tablet, Yellow COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 1.266 Mannitol, USP* 95.734 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, USP/NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 1.000 TOTAL 200.000 *spray dried Example 4 Form E of the First Study OraVescent® Fentanyl, 270 mcg, {fraction (5/16)}″ Tablet, White COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 0.422 Mannitol, USP* 97.578 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, USP/NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 TOTAL 200.000 *spray dried Example 5 OraVescent® Fentanyl, 500 mcg, {fraction (5/16)}″ Tablet, Orange COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 0.786 Mannitol, USP* 96.214 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 0.600 Red Ferric Oxide, NF 0.400 TOTAL 200.000 *spray dried Example 6 OraVescent® Fentanyl, 200 mcg, {fraction (5/16)}″ Tablet, White COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 0.315 Mannitol, USP* 97.685 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 TOTAL 200.000 *spray dried Example 7 OraVescent® Fentanyl, 100 mcg, ¼″ Tablet, White COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 0.157 Mannitol, USP* 48.843 Sodium Bicarbonate, USP/EP/JP 21.000 Citric Acid, USP/EP/JP 15.000 Sodium Carbonate, NF 10.000 Sodium Starch Glycolate, NF/EP 3.000 Magnesium Stearate, NF/EP/JP 2.000 TOTAL 100.000 *spray dried Example 8 The materials may be screened prior to use, charged into a V-blender or other appropirate low shear blender, and blended for an appropriate time. After discharge from the blender, the materials may be compressed on a standard rotary tablet press to a target hardness of 13 Newtons and a target weight of 200 mg/tablet. OraVescent® Fentanyl, 300 mcg, {fraction (5/16)}″ Tablet, Light Yellow COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 0.472 Mannitol, USP* 97.328 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 0.200 TOTAL 200.000 *spray dried Example 9 OraVescent® Fentanyl, 400 mcg, {fraction (5/16)}″ Tablet, Pink COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 0.629 Mannitol, USP* 97.171 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Red Ferric Oxide, NF 0.200 TOTAL 200.000 *spray dried Example 10 OraVescent® Fentanyl, 600 mcg, {fraction (5/16)}″ Tablet, Orange COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 0.943 Mannitol, USP* 96.057 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 0.600 Red Ferric Oxide, NF 0.400 TOTAL 200.000 *spray dried Example 11 OraVescent® Fentanyl, 800 mcg, {fraction (5/16)}″ Tablet, Yellow COMPONENT NAME QUANTITY (mg/tab) Fentanyl Citrate, USP 1.257 Mannitol, USP* 95.743 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 1.000 TOTAL 200.000 *spray dried Example 12 The materials may be screened prior to use, charged into a V-blender or other appropirate low shear blender, and blended for an appropriate time. After discharge from the blender, the materials may be compressed on a standard rotary tablet press to a target hardness of 13 Newtons and a target weight of 200 mg/tablet. OraVescent® Oxycodone, 5 mg, {fraction (5/16)}″ Tablet, White COMPONENT NAME QUANTITY (mg/tab) Oxycodone hydrochloride, USP 5.000 Mannitol, USP* 93.000 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 TOTAL 200.000 *spray dried Example 13 The materials may be screened prior to use, charged into a V-blender or other appropirate low shear blender, and blended for an appropriate time. After discharge from the blender, the materials may be compressed on a standard rotary tablet press to a target hardness of 13 Newtons and a target weight of 200 mg/tablet. OraVescent® Hydromorphone, 2 mg, {fraction (5/16)}″ Tablet, Light Yellow COMPONENT NAME QUANTITY (mg/tab) Hydromorphone hydrochloride, USP 2.000 Mannitol, USP* 95.80 Sodium Bicarbonate, USP/EP/JP 42.000 Citric Acid, USP/EP/JP 30.000 Sodium Carbonate, NF 20.000 Sodium Starch Glycolate, NF/EP 6.000 Magnesium Stearate, NF/EP/JP 4.000 Yellow Ferric Oxide, NF 0.200 TOTAL 200.000 *spray dried Example 14 The following materials are weighed and screened. Qty./Tablet Qty./Batch # Description (% w/w) (kg) 1 Fentanyl Citrate 0.6285 502.8 g* 2a. Mannitol EZ 23.875 19.1 2b. Mannitol EZ 24.014 19.2 3. Sodium Bicarbonate, No. 1 21.0000 16.8 4. Citric Acid, Anhydrous, 15.0000 12.0 Fine Granular 5. Sodium Carbonate, 10.0000 8.000 Anhydrous 6. Sodium Starch Glycolate 3.0000 2.400 7. Yellow 10 Iron Oxide 0.5000 0.400 8. Magnesium Stearate, 2.0000 1.600 Non-Bovine Total 100.0000 80.0 Transfer Mannitol EZ (2a.) and Yellow 10 Iron Oxide to V-blender and blend for 30 minutes. Discharge and mill preblend. Add the total quantity of preblend, fentanyl citrate, sodium bicarbonate, citric acid, sodium carbonate and sodium starch glycolate to V-blender and blend for 30 minutes. Charge Mannitol (2b) into V-blender and blend for 13 minutes. Charge magnesium stearate into V-blender and blend for 5 minutes. Compress tablets from this final blend. These tablets are ¼″ round, flat faced, white with a beveled edge. They are compressed to an average hardness of 13 Newtons on a 36 station Fette tablet press fully tooled. | <SOH> BACKGROUND OF THE INVENTION <EOH>Fentanyl (CAS Registry No. 437-38-7) N-phenyl-N-[1-(2-phenyl-ethyl)-4-piperidinyl] propanamide and its salts, in particular its citrate salt (CAS Registry No. 990-73-8) are opiates, controlled substances, and extremely potent narcotic analgesics. Fentanyl and its citrate salt are currently marketed by a number of companies in a number of delivery formats. Fentanyl citrate, for example, is available as an injectable and an oral lozenge on a stick, the latter sold under the trade name ACTIQ. Three patents are identified in the FDA publication Approved Drug Products With Therapeutic Equivalence Evaluations (hereinafter “the Orange Book”) as relating to ACTIQ: U.S. Pat. Nos. 4,671,953, 4,863,737 and 5,785,989. A review of the package insert information for ACTIQ sold by Cephalon, Inc., 145 Brandy Wine Parkway West, Chester, Pa. 19380, available in the Physician's Desk Reference, 57th ed. 2003 at page 1184, brings instant perspective on the seriousness of the afflictions of the patients who take it. According to its label, ACTIQ “is indicated only for the management of break-through cancer pain in patients with malignancies who are already receiving and who are tolerant to opiate therapy for their underlying persistent cancer pain.” (Id., emphasis in original). The text of the ACTIQ label is hereby incorporated by reference. Providing pain relief from such breakthrough pain is inexorably linked with the patient's immediate quality of life. And for such patients, providing breakthrough pain relief may be the only thing that medical science can offer. Fentanyl is but one of a family of drugs known as opiates. Legal opiates are all prescription drugs and include alfentanil, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, codeine phosphate, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydrocodeinone enol acetate, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, fentanyl, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levorphanol, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, morphine hydrochloride, morphine sulfate, myrophine, nalbuphine, narceien, nicomorphine, norlevorphanol, normethadone, normorphine, norpipanone, opium, oxycodone, oxymorphone, papveretum, pentazocine, phenadoxone, phenazocine, phenoperidine, piminodine, piritramide, proheptazine, promedol, propirm, propoxyphene, remifentanil, sufentanil and tilidine. The class of compounds generally known as opiates also includes illicit drugs such as heroin and cocaine. Opiates in accordance with the present invention include those identified above as well as any listed as controlled substances pursuant to 21 C.F.R. § 1308.12. Opiates are given to patients for a variety of reasons, most frequently for pain mitigation of one type or another. While the side effects profile is not always the same as that of fentanyl, the class is characterized by very strong drugs, which are both additive and can have lethal side effects, depending upon the dose. Thus far, fentanyl is unique in opiates in that it has been formulated in an orally disintegrable dosage form. U.S. Pat. No. 6,200,604 (“the '604 patent”), which issued Mar. 13, 2001 to CIMA LABS INC., 10000 Valley View Road, Eden Prairie, Minn. 55344, exemplifies two fentanyl formulations each containing 36% effervescents and 1.57 milligrams of fentanyl citrate. See example I thereof, col. 5, ln. 60 through col. 6, ln. 30. The '604 patent describes the use of, amongst other things, effervescence as a penetration enhancer for influencing oral drug absorption. See also U.S. Pat. Nos. 6,759,059 and 6,680,071. See also Brendenberg, S., 2003 New Concepts in Administration of Drugs in Tablet Form: Formulation and Evaluation of a Sublingual Tablet for Rapid Absorption, and Presentation of an Individualized Dose Administration System, Acta Universitiatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 287, 83 pp. Uppsala ISBN 91-554-5600-6. As with many things in medicine, there is always room for improvement. Opiates are expensive drugs. Fentanyl, for example, costs manufacturers as much as $100/gram or more. While cost is by no means an overriding issue, the cost of medication is an issue to be considered. A formulation that allows for a reduction in the amount of opiate could reduce the overall cost of a patient's care. Far more importantly, a reduction in dose of such a potent opiates while still achieving beneficial management of breakthrough pain in, for example, cancer patients or patients with chronic back pain, has very far reaching and desirable consequences in terms of patients overall care. Opiate mu-receptor agonists, including fentanyl, produce dose dependent respiratory depression. Serious or fatal respiratory depression can occur, even at recommended doses, in vulnerable individuals. As with other potent opiates, fentanyl has been associated with cases of serious and fatal respiratory depression in opiate non-tolerant individuals. And the side effects, even those that are not life threatening, can be significant. In addition, mu-opiate agonists can produce drug dependence and tolerance. Drug dependence in and of itself is not necessarily a problem with certain types of cancer patients. But, opiates can be used in the treatment of other types of pain as well. In such treatment protocols, dependence and tolerance may be significant issues. Moreover, cancer patients are generally undergoing heavy medication. The longer that a lower dose of medication can be provided, the better. If lower doses of opiates which nonetheless provide similar pain relief could be achieved, patients could obtain comparable benefit with less drug at lower cost and with a reduced risk of side effects. Thus, improvement in the administration of opiates is still desirable. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention relates to orally disintegrable/dissolvable effervescent opiate containing dosage forms, methods of using such dosage forms to treat pain and uses thereof for the manufacture of a medicament. In a preferred embodiment, the opiate, or one or more of its pharmaceutically acceptable salts, are administered orally at doses containing less opiate than would be needed in other delivery formations, including the examples in U.S. Pat. No. 6,200,604, to provide a comparable C max . “Oral” dosage form in the context of the invention includes orally disintegrable and/or dissolvable tablets, capsules, caplets, gels, creams, films and the like. Generally, these dosage forms are applied to or placed in a specific place in the oral cavity and they remain there undisturbed while they disintegrate and/or dissolve. The dosage forms of the present invention are preferably designed for buccal, gingival and/or sublingual administration. Dissolution/disintegration, also referred to herein as dwell time, is on average, between about 5 and about 30 minutes, more preferably 10-30 minutes, even more preferably 12-30 minutes. Note that while disintegration and dissolution are distinct concepts, they are used generally interchangeably herein as the time it takes the tablet to cease to exist as an identifiable unit delivery vehicle. In another preferred aspect of the present invention, there is provided an orally disintegrable/dissolvable effervescent dosage form, which comprises an effervescent couple, a pH adjusting substance and specific disintigrants, the dosage form being designed for the administration of an opiate and/or pharmaceutically acceptable salts thereof, through the oral cavity such as through buccal, gingival or sublingual administration routes. Without wishing to be bound by a particular theory of operation, it is believed that effervescence acts as a penetration enhancer. The pH adjusting substance is preferably something other than one of the molecules used to generate effervescence and preferably provides a pH difference or change in the microenvironment at the surface contact area if the oral mucosa and the dosage form or any part thereof at of at least about 0.5 pH units when compared to a comparable dosage form without pH adjusting substances. One such embodiment of the invention comprises between about 20 to about 200,000 micrograms of an opiate, between about 0.5 and about 25% by weight of the dosage form (“w/w”) of a pH adjusting substance appropriate for said opiate, between about 5 and about 85% w/w of an effervescent couple or material, a starch glycolate and preferably a filler such as mannitol, the dosage form being designed for the administration of the opiate across the oral mucosa through buccal, gingival or sublingual administration routes. In another particularly preferred embodiment of the present invention, there is provided dosage form consisting essentially of an effective amount of an opiate, calculated as opiate free base, or a proportional amount of a salt thereof, a starch glycolate, at least one pH adjusting substance and at least one effervescent couple. These are all provided in amounts that are effective to form a well-formed, orally disintegrable or dissolvable dosage form and, in an even more preferred embodiment, enable the administration of less opiate to achieve a “comparable” C max . Preferably, the mean disintegration time or dwell time will be between 10 and 30 minutes. These mean dwell times are based on multiple dosings of 10 or more patients. These dosage forms are sized, shaped and designed for buccal, sublingual or gingival administration. Also contemplated as another aspect of the invention are methods of administering an opiate to patients experiencing pain in general including but not limited to: back pain, lower back pain, joint pain, any form of arthritic pain, pain from trauma or accidents, neuropathic pain, surgical or postoperative pain, pain from a disease or condition other than cancer, cancer pain and in particular, breakthrough pain as a result of cancer. A preferred method includes the steps of administering to a patient in need thereof any orally disintegrable dosage form disclosed herein for buccal, gingival or sublingual administration, which includes an effective amount of an opiate and holding the dosage form in the mouth of the patient for a time sufficient to allow transport of said dose (or a therapeutically significant portion thereof, e.g., enough to reduce a patient's pain) from the oral cavity to the blood stream across the oral mucosa. Preferably, the patient is instructed, trained or watched to ensure that the dose is not swallowed and instead to the extent practicable, the opiate enters the body through one or more of the surfaces within the mouth and oral cavity. The method also preferably includes the step of holding the dosage form in the mouth, substantially without moving it within the oral cavity. In another preferred aspect, the dose dissolves on average in about 30 minutes or less, preferably about 20 minutes or less, and generally 10 minutes or longer. In still another preferred embodiment, the dosage form administered contains less of the same opiate than would normally be given to achieve the intended therapeutic response (intended level of pain relief) based on a dosage form that does not include the effervescent couple, pH adjusting substance and starch glycolate of the invention. In one embodiment, the dosage form achieves comparable C max (80-120%) when compared to an otherwise identical formulation without both said pH adjusting substance and effervescent couple at a dose of opiate which is at least about 20% less w/w. detailed-description description="Detailed Description" end="lead"? | 20041230 | 20110104 | 20050728 | 62168.0 | 7 | SHEIKH, HUMERA N | EFFERVESCENT ORAL OPIATE DOSAGE FORMS AND METHODS OF ADMINISTERING OPIATES | UNDISCOUNTED | 0 | ACCEPTED | 2,004 |
|||
11,026,783 | ACCEPTED | Computer networked game system utilizing subscription based membership and alternative methods of entry | A computer networked, multi-user game system utilizing subscription based membership and alternative methods of entry, as well as the award of prizes of immediate value to the winner is described. A game tournament is hosted by a game server computer coupled to client computers operated by participating players. The games offered are games that involve elements of both skill and chance and require active player participation and decision making. A subscription-based membership is established for each player by charging a fee for a pre-determined membership time period. An alternative method of entry is provided to allow non-subscription players to participate in the tournament without payment of the fee. The non-subscribing players receive equal access to the games and at least the same chance of winning as the subscribing players, but are limited to a single entry per game or tournament. The game server hosts at least one game or tournament within the period, and players are potentially eliminated until a winning player and any runner-up players are determined. A prize pool is disbursed to the winning players in the form of cash, cash-equivalent notes, or prizes that have inherent and immediate value. | 1. A computer-implemented method of allowing a plurality of players to play a game over a computer network, the method comprising the steps of: establishing a subscription-based membership for each player of the plurality of players by charging each player a fee for a pre-determined membership time period; hosting at least one game tournament for subscription-based players for a game that has elements of both chance and skill during the membership time period, the tournament consisting of at least one game round, each game round potentially eliminating one or more participant players until a winning player and one or more runner-up players are determined, wherein each player is required to make playing choices throughout the game; establishing a prize pool for the tournament; providing a means for allowing a non-subscription player to participate in the tournament without payment of the fee by submitting information relating to the non-subscription player prior to the hosting of the tournament, wherein the non-subscription player is limited to one entry per tournament; and disbursing the prize pool to the winning player and any eligible runner-up players in the form of prizes that have immediate value, subsequent to completion of the tournament. 2. The method of claim 1 wherein the game tournament is managed by a game administrator operating a game server computer coupled to one or more client computers operated by the participating players. 3. The method of claim 2 wherein the computer network comprises the Internet. 4. The method of claim 1 wherein the game comprises a card game. 5. A computer-implemented method of allowing a plurality of players to play a game over a computer network, the method comprising the steps of: establishing a subscription-based membership for each player of the plurality of players by charging each player a fee for a pre-determined membership time period; hosting at least one game tournament for subscription-based players for a game that has elements of both chance and skill during the membership time period, the tournament consisting of at least one game round, each game round potentially eliminating one or more participant players until a winning player and one or more runner-up players are determined, wherein each player is required to make playing choices throughout the game; establishing a prize pool for the tournament; distributing a fixed number of tokens to each player participating in the tournament for betting in the tournament, the fixed number not dependent upon any consideration provided by the player; providing a means for allowing a non-subscription player to participate in the tournament without payment of the fee by submitting information relating to the non-subscription player prior to the hosting of the tournament, wherein the non-subscription player is limited to one entry per tournament; distributing at least the same number of tokens to each non-subscription player participating in the tournament as each subscription player participating in the tournament, for betting in the tournament; and disbursing the prize pool to the winning player and any eligible runner-up players in the form of prizes that have immediate value, subsequent to completion of the tournament. 6. The method of claim 5 wherein the game tournament is managed by a game administrator operating a game server computer coupled to one or more client computers operated by the participating players. 7. The method of claim 6 wherein the computer network comprises the Internet. 8. The method of claim 5 wherein the game is a card game. 9. The method of claim 8 wherein the card game comprises poker. | FIELD OF THE INVENTION The present invention relates generally to computerized game systems, and more specifically, to a networked system that supports multi-user game play on a game server computer from a plurality of client computers. BACKGROUND OF THE INVENTION The popularity of casino games, and particularly poker, has increased dramatically in the United States within the past several years. The proliferation of casinos and the increased exposure of television programs featuring poker and similar card games has given rise to a significant gaming industry. In the U.S. alone, it is estimated that 50-80 million people play poker regularly. The advent of secure network communications and efficient client/server computer applications has led to the viability of on-line platforms for hosting poker tournaments and similar games. Indeed, some estimates place the online poker market alone to consist of 20-40 million regular players. Significantly, this market is growing rapidly, having approximately tripled in the last year alone to $1.2 to $1.5 billion in annual revenue. Despite the growing industry potential for online game sites, U.S. gaming laws generally prohibit the operation of gaming sites that provide a platform for gambling, as defined by the elements of consideration, chance, and prize awards. Due to these restrictive gaming laws, many online game and casino web sites are operated overseas. Although many online computer sites presently exist that allow players to participate in various types of games, these sites typically feature disadvantages that present potential legal issues or undue risk to participating players, or do not offer the possibility of a significant prize winning potential. Online poker sites that allow players to wager their own money mimic actual casino card rooms. However, such sites must operate overseas to skirt U.S. laws, and thus present a high risk to U.S. players. Legal game sites include sites that allow players to compete in skill based games. These types of games, however, typically appeal to only a narrow group of players and not casual players seeking to win money or prizes through simple games involving both skill and chance. Play for fim sites are generally legal sites that focus on casino players who want to play without risking any money. Since no prize money is awarded to winners, such sites are not considered gambling sites. However, their appeal is limited since players are only allowed to play for fin without the chance of winning a prize. The online poker, or similar game, industry is thus suffering from a lack of sites that provide players with a legal forum for participating in online game tournaments with no financial risk and no legal risk, while providing true competition and the opportunity to win meaningful prizes. It is thus desirable to provide a legal, subscription-based online game system located in the United States that offers the possibility for players to win significant cash or cash equivalent prizes with no risk. SUMMARY OF THE INVENTION A computer networked, multi-user game system utilizing subscription based membership and alternative methods of entry, as well as the award of prizes of immediate value to the winner is described. A game tournament is hosted by a game server computer coupled to one or more client computers operated by participating players. The game hosted by the game server is typically a game that has elements of both skill and chance, and requires active player participation and decision making. A subscription-based membership is established for each player by charging each player a fee for a pre-determined membership time period. Each player selects a game or tournament to be played against other players over the computer network and registers to play that game or tournament. A number of tokens are distributed to each member player participating in the online game or tournament for betting in the game or tournament. For games that do not require token or chip based betting, registration allows entry to the game. An alternative method of entry is provided to allow non-subscription players to participate in the online game or tournament without payment of the subscription fee. Non-subscribing players are only allowed a single entry per game or tournament. For token-based games, non-subscribing players receive at least as many starting tokens as the subscribing players for betting in the game or tournament. The game server hosts at least one game or tournament during the membership time period, the online game or tournament consisting of at least one game round, with each game round potentially eliminating one or more participant players until a winning player and one or more runner-up players are determined. After completion of the game or tournament, the prize pool is disbursed to the winning player and any eligible runner-up players in the form of cash, cash-equivalent notes, or prizes that have inherent and immediate value. Other objects, features, and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description that follows below. BRIEF DESCRIPTION OF THE DRAWINGS The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements, and in which: FIG. 1 illustrates a network for implementing an online game accessible to a number of client/server coupled users, according to one embodiment of the present invention; FIG. 2 is a flowchart that illustrates the general steps of administering an online game system, according to one embodiment of the present invention; FIG. 3 is a table that lists an illustrative prize pool for a hypothetical monthly tournament; FIG. 4 illustrates a screen display for a login page of a registration server computer, according to one embodiment of the present invention; FIG. 5 illustrates a screen display for a player registration and account creation screen, according to one embodiment of the present invention; FIG. 6 is an illustration of a main web page of a game server web site, according to one embodiment of the present invention; FIG. 7 illustrates a download software web page, according to one embodiment of the present invention; and FIG. 8 illustrates an exemplary game room hosted on a game server, according to one embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A computer networked, subscription-based multi-player game system for games involving elements of both skill and chance is described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one of ordinary skill in the art, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form to facilitate explanation. The description of preferred embodiments is not intended to limit the scope of the claims appended hereto. Aspects of the present invention may be implemented on one or more computers executing software instructions. According to one embodiment of the present invention, server and client computer systems transmit and receive data over a computer network or a fiber or copper-based telecommunications network. The steps of accessing, downloading, and manipulating the data, as well as other aspects of the present invention are implemented by central processing units (CPU) in the server and client computers executing sequences of instructions stored in a memory. The memory may be a random access memory (RAM), read-only memory (ROM), a persistent store, such as a mass storage device, or any combination of these devices. Execution of the sequences of instructions causes the CPU to perform steps according to embodiments of the present invention. The instructions may be loaded into the memory of the server or client computers from a storage device or from one or more other computer systems over a network connection. For example, a client computer may transmit a sequence of instructions to the server computer in response to a message transmitted to the client over a network by the server. As the server receives the instructions over the network connection, it stores the instructions in memory. The server may store the instructions for later execution, or it may execute the instructions as they arrive over the network connection. In some cases, the downloaded instructions may be directly supported by the CPU. In other cases, the instructions may not be directly executable by the CPU, and may instead be executed by an interpreter that interprets the instructions. In other embodiments, hardwired circuitry may be used in place of, or in combination with, software instructions to implement the present invention. Thus, the present invention is not limited to any specific combination of hardware circuitry and software, nor to any particular source for the instructions executed by the server or client computers. In some instances, the client and server functionality may be implemented on a single computer platform. Aspects of the present invention can be used in a distributed electronic commerce application that includes a client/server network system that links one or more server computers to one or more client computers, as well as server computers to other server computers and client computers to other client computers. The client and server computers may be implemented as desktop personal computers, workstation computers, mobile computers, portable computing devices, personal digital assistant (PDA) devices, cellular telephones, game playing devices, digital audio or video playback devices, or any other similar type of computing device. For purposes of the following description, the terms “computer network” and “online” may be used interchangeably and do not imply a particular network embodiment or topography. In general, any type of network (e.g., LAN, WAN, or Internet) may be used to implement the online or computer networked implementation of the game software. FIG. 1 illustrates an exemplary network system that includes distributed client/server computers for the administration and execution platform of an on-line, multi-player poker game, or similar game involving elements of both skill and chance. In system 100 one or more client computer users 102 and 104 access a game server computer 127 over a network 110 through a web server 125. Each client computer is typically operated by a single player, thus, as shown in FIG. 1, client computer 102 is operated by “player 1” and client computer 104 is operated by “player 2”. The game server 127 serves as the game platform by maintaining all game play for all tournaments and daily games that are accessed and played on the game server. The game software can include one or more client modules that are executed on each of the client computers, as well as server modules that are executed on the game server computer. Alternatively, all necessary game program modules may be executed on the game server computer 127 with minimal processing executed on the client computers 102 and 104. In one embodiment of the present invention, all players must be registered (subscribed) with the game server in order to participate in games hosted by the game server 127. A registration server 130 manages the tasks related to registering users and maintaining user accounts and registrations. If players maintain personalized home pages, the registration server manages the information relating to the individual players. The player profiles, registration information, and all data relating to the games and tournaments is stored in a database 131 maintained by a database server 129. The database 131 may be stored in a separate memory device coupled to database server 129, as shown, or it may be stored in memory resident within server 129 or any other server. The various server computers 125, 127, 129, and 130 that comprise the game platform are functionally interfaced to one another over bi-directional links, as shown in FIG. 1. Each server computer can be a separate networked computer, as shown. Alternatively, one or more of the server functions performed by servers 125, 127, 129, and 130 can be embodied within a single server computer. Thus, the web server, registration, and database management functions can be integrated within the same server computer that executes the game server program modules, or they can be provided by one or more separate server computers coupled to the game server computer. For a network embodiment in which the client and server computers communicate over the World Wide Web portion of the Internet, each client computer 102 and 104 typically accesses the network through one or more Internet Service Providers (ISP) 107 and execute resident web browser programs 112 and 114 to display web content through web pages. In one embodiment, the web browser program for each client computer is implemented using Microsoft® Internet Explorer™ browser software, but other similar web browsers may also be used. Thus, as shown, network 110 couples the client computers 102 and 104 to game server computer 127, which can execute a web server process locally or through a separate web server 125 that serves web content in the form of web pages to the client computers. The game programs are executed on the game server computer 127 and each player accesses the game program through interface modules executed on their respective client computers 102 and 104. Depending upon the implementation of the game playing software, portions of the game programs may also be provided in client side software routines that are executed directly on the client computers. In the disclosed online, multiplayer game system, players register to participate in tournament rounds or single games of games such as poker, other card games, or similar casino games that involve both skill and chance. In one embodiment, customers register with the game administrator by providing user identification information and paying a registration or subscription fee to access the game site maintained by the game server. This will enable them to participate in both regular tournaments that occur during their registration period as well as in regular “ring” games that may be held throughout the period. Tournament winners will be determined through an elimination process based on their play. Tournament winners and runner-ups will receive rewards, such as cash prizes based on their performance. In one embodiment of the present invention, non-subscribing or non-registered members will have the ability to participate in tournaments or ring games by utilizing an alternative method of entry (AMOE). This alternative method of entry may require the submission of identifying information, but will require no consideration, such as the payment of a registration fee or game entry fee to participate. FIG. 2 is a flowchart that illustrates the steps of implementing an on-line game site, according to one embodiment of the present invention. The process illustrated in FIG. 2 represents an embodiment in which the user client computers access the registration and game server computers over the Internet through a web-based interface. In step 202, the player accesses the website hosted by the game server. In general, only registered players are allowed to participate in tournament or game play, thus in step 204 it is determined whether the player is registered with the game site. In the event that the player is not already a member player, he or she will need to go through a registration process executed on the registration server, step 206. The registration process generally includes obtaining all relevant personal information from the user (name, address, etc.) as well as credit card information, age verification, postal address verification, e-mail address verification, and screen name information (for further use of the site). This registration step 206 also generally requires the payment of a subscription fee. In general, a player who has paid the registration or subscription fee is referred to as a “subscription player.” A player who has registered with the game site without paying, such as through an AMOE, step 220, is generally referred to as a “non-subscription” player. Both subscription and non-subscription players are required to provide personal or identifying information with the game server and may then be considered “member” players. After a user registers by subscribing with the game server, the new user will need to download the game client portion of the software in order to be able to play on the game site, step 208. The client side version of the game software may consist of actual programming code that is designed to work with the server side modules executed on the game server, or it may consist simply of validation or access modules that allow the client computer to access the game server. The client side software is made available for download to each client computer from the game server. The download page served by the game server includes instructions on how to download and install the software on the client computer. Once a player has registered or subscribed with the game server, he or she is eligible to participate in any of the ring games or tournaments that are held during the valid registration period. Each player must then register for the individual games or tournaments that he or she wishes to participate in, step 209. Once a player registers for a game or tournament, the player logs in to the game server to play that game, step 210. If, in step 204 it is determined that the player is already a subscribed member, the player skips the game server registration page and proceeds to the game/tournament registration step 209 and logs in through the login page to gain access to the game server, step 210. If the player is a new player who has just registered, he or she will also need to log in to the system in order to access the game software. In step 212, the game server determines the games that the user is eligible to play and displays the selection to the user. A wide variety of different online games can be made available. The games can be strict games of chance (e.g., as lottery games), games of skill (e.g., chess), or games that mix elements of skill and chance, such as poker. The eligibility of each individual user to play a game can depend on a number of different factors, such as user preferences, game playing history, and so on. The user selects a game from the displayed menu, step 214, and the game server manages the game and/or tournament play for the user, step 216. This typically involves causing the display of a virtual game room on each participating client computer, and automatically applying the rules of the game for the participating players. After a game or tournament is concluded, the appropriate prizes are distributed to the qualifying winners, step 218. In one embodiment, the prizes are distributed in the form of immediately negotiable or redeemable instruments, such as cash or cash-equivalent notes, or prizes that have immediate value. In general, players participating in games or tournaments hosted by the game server will pay a registration fee to have access to the game server website. In one embodiment, the registration fee is a periodic fee that is paid on a recurring basis and establishes a registration period. In another embodiment, the fee is a fee that is paid on a per game or per tournament basis. The registration process enables a player to participate in both regular game tournaments that occur during the registration period, as well as in regular “ring” games held throughout the period. In a typical implementation, registered players or “subscribers” will pay a fee per period, such as $19.95 per month, which will give them unlimited ability to play in daily, weekly, and monthly online game tournaments (as well as ongoing “ring” play) that are hosted by the system. Registration terms can be flexible and provide incentives for commitment to longer periods. For example, discounted pricing can be offered to subscribers who are willing to commit to a fixed term contract. Various different pricing packages can be offered, such as a per month payment (e.g., $19.95) with no monthly commitment, or a lower monthly payment for a longer commitment (e.g., $15.95 per month for a 6 month commitment or $12.95 per month for a 12 month commitment). In one embodiment, subscribers register with the game site through the website maintained by the game administrator. Payment options can include credit cards, checks, electronic funds transfer or debit cards, or other valid methods of payment. Subscribers will be required to provide information for age verification (only players who are 18 years and over will be permitted to play), a valid e-mail address, a valid mailing address, and an agreement to abide by the stated terms and conditions of the game administrator and/or website administrator(s). As illustrated in FIG. 2, the principal model for player participation in the games hosted by the game site is through the registration process in which each player establishes an account and typically pays a registration fee to maintain this account. The system also allows non-registered users to participate in a game or tournament through an alternative method of entry, step 220. The AMOE player enters the system as a non-registered player by providing suitable identifying information and complying with certain restrictions regarding their participation, and then logs in and downloads the game software in the same manner as a registered player. The system initially checks to see whether the AMOE player is already a member in step 204, and then the process proceeds through the game registration and game hosting steps 206-218, as shown. In one embodiment, AMOE customers will be required to download an AMOE form from the game administrator website, which they must fill in and mail to the company in an appropriate envelope. The AMOE form will require the customer to provide their name, a valid mailing address, a valid e-mail address, a valid credit card (for age verification) and a listing of the games or tournament they wish to participate in, as well as any other required information. Each tournament or individual ring game entry will require a separate entry form for each AMOE customer to be submitted, and only one AMOE entry is allowed per person per game or tournament. Certain restrictions, such as that forms must be received a certain number of business days prior to the start of a tournament to be valid, and that AMOE customers must register (without payment) to confirm their attendance at a tournament within a set number of hours before the start of the tournament, may also be imposed. During the game or tournament, AMOE customers are treated with equal dignity in that they are given an equal chance to win a particular game or tournament and are treated the same as registered players during each game. The game server 127 hosts a number of different on-line games during the registration periods for subscribing and AMOE players. These games can include a wide variety of card games, such as poker, as well as on-line versions of non-card games that involve both skill and chance, such as backgammon, mahjong, and so on. In general, the games hosted by the server are games that require active player participation and decision making processes during the course of game play. This excludes games or betting systems in which play and game outcome are automatically determined through the computer software, or through predetermined playing commands or rules. In a preferred embodiment, the game server will host a number of different on-line poker games, such as Texas Hold'em, 7-card stud, and Omaha. Many other popular types of poker games, non-poker card games (such as 21, baccarat, or hearts), and even non-card games can also be hosted. It should be noted that certain jurisdictions in the United States consider poker a game of skill, while others consider it a game of chance. For purposes of this disclosure, poker is assumed encompass a class of card games that combine elements of skill and chance. In general, two types of play will be provided, i.e., “ring” game play, and tournament play. Ring games are ongoing games that participants can join at any time, similar to those offered in an actual casino. In the online embodiment, players can enter a website that displays a virtual lobby, they then “sit” down at the table of their choice and play against other networked players for play chips. Each day, participants can register for a set number (e.g., 1000) of play chips to be used in ring games. At the end of a set period, such as every week, cash prizes will be awarded to the ring game players with the most play chips. Prize pools are established for ring game winners. For example, an initial weekly prize pool for ring games can be set at a certain amount (e.g., $4500) which will be shared equally among a set number (e.g., 300) of winning players. Winners will have the option of receiving a cash prize (paid as a check or account payment, such as Paypal® or bank transfer) or applying their winnings to future months subscription fees. Other prizes, such as objects that have immediate value, can also be awarded to the winners. Tournament play entails a fixed number of players competing for prizes in a fixed period of time. Tournaments can be held on a daily, weekly and monthly basis with various different initial prize pools based on the tournament duration. For example, prize pools can be for daily, weekly, and monthly tournaments, and can be set at $750, $5000, and $25,000 respectively. For tournament play comprising a series of games, certain restrictions may be imposed to facilitate game administration. For example, participants may be required to register for tournaments by filling out an online form within a preset time frame (e.g., two to five days) before the start of the tournament. Tournaments can also be capped in terms of a maximum number of participants based on a “first come first served” basis. In general, tournament winners will be determined through an elimination process based on their play. The criteria for winning generally depend on the rules and mechanics of the game being played. Entry to each game, game round, or tournament is provided in the form of game tokens or chips, similar to that of a real casino game. In one embodiment of the present invention, each tournament participant will receive the same number of starting chips or tokens at the beginning of each tournament, and players will play until one player has accumulated all of the chips. Tournament duration will be controlled through a combination of continually increasing minimum ante amounts as well as time-based elimination and cuts. Players will be eliminated when they have lost all of their chips. Players may also be eliminated as part of a time-based “cut.” This mechanism functions like a golf tournament, in which the bottom performing players are eliminated part-way through the tournament based on their score. Upon registration for a game or tournament in step 209, a participating player in either a ring game or tournament will be “given” a number of tokens (or chips). These chips allow the player to participate in the game and use the chips as betting tokens for the jackpot established for each game or hand. The chips are not related to the subscription fee or AMOE mechanism, and each player receives the same number of chips per game. The number of chips assigned to each player, or currently owned by each player during play of the game is displayed along with the player icon in the virtual game room. The number of chips owned by a player at any time is stored in the database 131 and may be accessed through a user profile page served by the game server. Certain games hosted by the game server may not require the use of chips or tokens as the means of establishing a pot. Such games may use a point system (e.g., hearts) to establish a winner. For these games, each participating player is assigned an initial number of points. During game play, points are accumulated or deducted from each players total until a winner is determined. In one embodiment of the present invention, tournament winners and runner-ups will receive prizes based on their performance. The prizes will comprise cash, cash-equivalent payments, or prizes that have immediate intrinsic value. Each participant in a tournament will have a ranking based on past performance in tournaments. Various different ranking schemes can be used. For example, a common ranking scheme will assign three ranks—gold, silver, and bronze (this nomenclature is for illustrative purposes only). In the first tournament for a player, he or she will be given a bronze ranking by default. As the player progresses through series of tournaments, his or her ranking will improve depending upon results, until the player reaches gold, which is the highest ranking. Various different prize pools can be established and distributed. The prize pools can vary depending upon the type of game, length of tournament, number of players, size of the pot, and so on. FIG. 3 is a table that lists an illustrative prize pool for a hypothetical monthly tournament. Table 300 lists the various categories of winners, the number of winners per category, the prizes per winning category and the total cost of the prize distributions. Daily and weekly tournaments can follow similar distributions, with overall top players as well as top players within a ranking category winning prizes. The prize distribution scheme shown in FIG. 3 is intended to serve only as an example. Many different type of prize pools can be established depending upon the organization of the game system. The prize pools can be funded through a variety of different funding sources. For example, the registration fees paid by the member players can go toward funding the prizes, as can advertising revenue from advertisers who sponsor the game site or display ad messages on the web pages hosted by the game server. The use of a prize pool provides a mechanism that prevents participating players from wagering their own money in the game. Risk for each player is eliminated, as a player can enter none or many games during their membership period, or through an AMOE for each game. Payment of the registration fee or entry through the AMOE route provides the player with the ability to register for a certain number of “chips” or tokens that the player uses to wager in the games. These chips to do not represent a player's own cash, and it is generally not possible for a player to amass more chips for a tournament by paying more registration fees for the period. Each player in a tournament receives the same number of starting chips. In one embodiment of the present invention, as illustrated in FIG. 1, the interface between the game server computer and the user client computers is implemented through web-based Internet connections. The game server 127 hosts a game site through one or more web pages accessible through a web server 125. Client side portions of the game software are downloaded and executed on the client computers 102 and 104, and the users access the game site web pages through local web browser programs 112 and 114. As illustrated in the flowchart of FIG. 2, players log into the game server prior to entering a game or tournament. FIG. 4 illustrates a screen display for a login page, according to one embodiment of the present invention. The login page 400 includes user input fields 402 that allow a user to enter his or her identifier (e.g., e-mail address) and password. New players can register and create their user account by using command 404. If a player is a first time user who needs to register with the registration server, as shown in step 206 of FIG. 2, the player selects command 404 in the login screen 400. This causes the display of an account creation screen, such as that illustrated in FIG. 5. The account creation screen contains several user input fields for the entry of user information. The user enters his or her identifying information in the “Player Details” area 502. This information includes specific information relating to the user, such as name, address, phone, and other similar items of information. The user also enters information relating to the created account in the “Login Information” section 504. This information identifies the user within the registration server 130. Users who have subscribed or entered a valid AMOE entry form can also access the website of the game server. For games or tournaments in which players are given a number of chips or tokens to bet, the non-paying AMOE members are given at least the same number of chips as registered paying members. In general, the AMOE members are given the same number of starting chips as registered players, but in some instances an AMOE member may be given one or more chips greater than the registered players. In either case, each AMOE member is only allowed one AMOE entry per tournament. FIG. 6 is an illustration of an exemplary main page, referred to as the “main lobby” of the game server web site. Web page 600 is the page that everyone will reach if they access the website of the game server. This page contains a description of the game site and links to further description of various aspects of the game system and individual games in much greater detail for new users. For returning users, the main lobby web page contains features such as personal tournament history, daily game ranking, lists of winners, lists of future tournaments available, tournaments already registered for, and so on. For the exemplary main lobby web page illustrated in FIG. 6, web page 600 includes a download command button 602 that allows the user to download the client side programs for the game software, a tournament section 604 that allows access to pages describing or providing access to current tournaments, and an online game section 606 that provides access to individual games or ring games, as well as a description and list of rules for each of the possible games that are supported on the game site. If the player selects the download game option, a download software web page, such as that illustrated in FIG. 7 is displayed. The download page 700 has a display area 702 that allows a user to download the software, and conduct other registration business, such as open an account or make a payment. The download and install section 704 provides instructions and commands to actually download and install the client side programs on the user's client computer. A link section 706 provides access to other areas of the game site, such as an events listing, monthly promotions, news, and so on. The main lobby screen of FIG. 6 displays or provides links to a display area that shows a listing of all the games currently running. Each player, once logged in, will be able to choose from all games they are eligible to play. Once a player selects a game to be played, he or she enters a virtual game room (assuming there are still seats available) and is able to “sit” at a table and play the selected game. FIG. 8 illustrates an exemplary game room hosted on the game server, according to one embodiment of the present invention. The game room illustrated in web page 800 shows a poker room where the actual games and tournaments are played for a particular game of poker. The main table 802 serves as the region around which the players and dealer are seated. Each participating player is represented as a labeled seat icon or other similar avatar. The cards will be dealt in the middle of the table and all bets will be calculated by the game software. Depending upon the game being played, various game mechanics are managed by the game software, such as the current size of the pot and bet status, as well as any necessary timers limiting the period of time allowed for each player to check, raise, call or fold on a hand. Particular events in a game are recorded and displayed in a display area 804. Other display areas, such as advertising displays 806 can also be provided. Option buttons, such as command button 808 provide navigation access to other pages within the game site. The above-described system and method provides a platform for players to enter an online poker tournament or similar computerized game rounds and compete against one another to win actual cash or cash equivalent prizes. Players register with the game administrator and pay a periodic fee in exchange for free access to the games or tournaments that are hosted for the appropriate registration period. The provision for alternative methods of entry allows non-paying members access to the game. Although specific programming languages and application programs have been cited for use in conjunction with embodiments of the present invention, it should be noted that variations known by those of ordinary skill in the art can be used instead of, or in combination with the specifically cited structures and methods. In the foregoing, a system has been described for an online, multi-user game system utilizing subscription based membership and alternative methods of access. Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention as set forth in the claims. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. | <SOH> BACKGROUND OF THE INVENTION <EOH>The popularity of casino games, and particularly poker, has increased dramatically in the United States within the past several years. The proliferation of casinos and the increased exposure of television programs featuring poker and similar card games has given rise to a significant gaming industry. In the U.S. alone, it is estimated that 50-80 million people play poker regularly. The advent of secure network communications and efficient client/server computer applications has led to the viability of on-line platforms for hosting poker tournaments and similar games. Indeed, some estimates place the online poker market alone to consist of 20-40 million regular players. Significantly, this market is growing rapidly, having approximately tripled in the last year alone to $1.2 to $1.5 billion in annual revenue. Despite the growing industry potential for online game sites, U.S. gaming laws generally prohibit the operation of gaming sites that provide a platform for gambling, as defined by the elements of consideration, chance, and prize awards. Due to these restrictive gaming laws, many online game and casino web sites are operated overseas. Although many online computer sites presently exist that allow players to participate in various types of games, these sites typically feature disadvantages that present potential legal issues or undue risk to participating players, or do not offer the possibility of a significant prize winning potential. Online poker sites that allow players to wager their own money mimic actual casino card rooms. However, such sites must operate overseas to skirt U.S. laws, and thus present a high risk to U.S. players. Legal game sites include sites that allow players to compete in skill based games. These types of games, however, typically appeal to only a narrow group of players and not casual players seeking to win money or prizes through simple games involving both skill and chance. Play for fim sites are generally legal sites that focus on casino players who want to play without risking any money. Since no prize money is awarded to winners, such sites are not considered gambling sites. However, their appeal is limited since players are only allowed to play for fin without the chance of winning a prize. The online poker, or similar game, industry is thus suffering from a lack of sites that provide players with a legal forum for participating in online game tournaments with no financial risk and no legal risk, while providing true competition and the opportunity to win meaningful prizes. It is thus desirable to provide a legal, subscription-based online game system located in the United States that offers the possibility for players to win significant cash or cash equivalent prizes with no risk. | <SOH> SUMMARY OF THE INVENTION <EOH>A computer networked, multi-user game system utilizing subscription based membership and alternative methods of entry, as well as the award of prizes of immediate value to the winner is described. A game tournament is hosted by a game server computer coupled to one or more client computers operated by participating players. The game hosted by the game server is typically a game that has elements of both skill and chance, and requires active player participation and decision making. A subscription-based membership is established for each player by charging each player a fee for a pre-determined membership time period. Each player selects a game or tournament to be played against other players over the computer network and registers to play that game or tournament. A number of tokens are distributed to each member player participating in the online game or tournament for betting in the game or tournament. For games that do not require token or chip based betting, registration allows entry to the game. An alternative method of entry is provided to allow non-subscription players to participate in the online game or tournament without payment of the subscription fee. Non-subscribing players are only allowed a single entry per game or tournament. For token-based games, non-subscribing players receive at least as many starting tokens as the subscribing players for betting in the game or tournament. The game server hosts at least one game or tournament during the membership time period, the online game or tournament consisting of at least one game round, with each game round potentially eliminating one or more participant players until a winning player and one or more runner-up players are determined. After completion of the game or tournament, the prize pool is disbursed to the winning player and any eligible runner-up players in the form of cash, cash-equivalent notes, or prizes that have inherent and immediate value. Other objects, features, and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description that follows below. | 20041230 | 20060822 | 20060706 | 76747.0 | G06F1900 | 1 | SAGER, MARK ALAN | COMPUTER NETWORKED GAME SYSTEM UTILIZING SUBSCRIPTION BASED MEMBERSHIP AND ALTERNATIVE METHODS OF ENTRY | SMALL | 0 | ACCEPTED | G06F | 2,004 |
|
11,026,991 | ACCEPTED | Polymer lined sealing member for a container | A seal and method of manufacture is provided for sealing containers such as bottles, jars and the like. The seal (closure) can be formed with a lower sheetlike structure having a foam layer thereon. The lower structure can include foil and have a polymer layer, such as a PET layer thereunder A sealant layer can be provided under the bottom surface of the PET layer to bond the seal to a container opening. The polymer foam is advantageously polyethylene foam. Seals in accordance with preferred embodiments of the invention also include a top portion, which can be only partially bonded (directly or indirectly) to the bottom portion, so as to leave a tab portion extended therefrom. The top portion is advantageously bonded from periphery to periphery of the bottom portion and at or slightly offset from the diameter (middle) of the bottom portion. The top portion is advantageously formed with polymer material, such as an ethylene vinyl acetate (EVA) layer, having a layer of PET bonded on the top thereof. A release strip, which can have a release layer coated on the bottom thereof can be adhered to the top or bottom structures and used to prevent the tab from adhering to the lower structure. | 1. A pull-tab sealing member, having a top side and a bottom side constructed to be secured to a lip around an opening of a container, to close the container, the pull-tab sealing member comprising: a bottom member comprising a support layer having a bottom surface for facing a container, a top surface on the opposite side thereof and a polymer foam layer having a top surface, the polymer foam layer disposed over the top surface of the support layer, wherein the support layer comprises a metal foil, wherein the support layer includes a lower polymer layer disposed on the bottom surface of the support layer, and wherein the lower polymer layer includes a single sealant or adhesive coating for securing the bottom member to the container, the sealant or adhesive being heat-activated; a top member comprising a top surface and bottom surface, and a portion of the top member comprising a tab portion having a top and a bottom surfaces, the bottom surface of the tab portion not secured to the top surface of the polymer foam layer of the bottom member, a portion of the bottom surface of the top member directly secured to the top surface of the polymer foam layer of the bottom member, wherein the top member is secured to the bottom member in a sufficiently strong manner, so that when the sealant or adhesive coating at the bottom surface of the bottom member is secured to a container, the bottom member can be is removed by pulling on the tab portion. 2. (canceled) 3. The seal of claim 1, wherein the polymer foam comprises polyethylene foam. 4. The seal of claim 3, wherein the polyethylene foam layer is at least about 3 mil thick. 5. The seal of claim 1, wherein a tabbing member is disposed at the bottom surface of the tab portion, positioned to face a portion of the surface of the bottom member and constructed to help prevent the tab portion from becoming affixed to the bottom member. 6. The seal of claim 5, wherein the tabbing member comprises PET. 7. The seal of claim 6, wherein the tabbing member has a layer of release material coated on the bottom surface thereof, the release material having less of a characteristic to adhere to the polymer foam layer than the PET layer. 8. The seal of claim 1, wherein the top member comprises a layer of EVA. 9. The seal of claim 1, wherein the top member comprises a layer of PET and a layer of EVA under the PET layer. 10. The seal of claim 1, wherein the polymer foam comprises polypropylene. 11. The seal of claim 1, wherein the polymer foam comprises propylene-ethylene copolymer. 12-17. (canceled) | BACKGROUND OF THE INVENTION The invention relates generally to a sealing member for a container having an easy to grab tab on the top thereof for closing the mouth of a container. It is often desirable to seal a bottle, jar or other container with a closure to maintain freshness of the contents thereof or to indicate whether the container has been tampered with. However, it is also desirable that the closure be easy to remove by the user. For example, U.S. Pat. No. 5,433,992, the contents of which are incorporated herein by reference, describes a top-tabbed closure for a container which has a membrane for sealing the container and a sheet which is bonded to the top of the membrane, in a manner which leaves a tab portion of the sheet free. A user seeking to gain access to the contents of the container simply grips the tab with their fingers and by pulling on the tab, which is connected to the sheet, can remove the entire closure and access the contents of the container in a relatively convenient manner. Referring generally to FIG. 1, a conventional top-tabbed closure is shown generally at the top of a bottle 10 as container seal 100. A cross sectional view of seal 100, taken along line 2-2 of FIG. 1 which is not drawn to scale, is shown in FIG. 2. Seal 100 includes a lower section 101, comprising a lower layer 110, which is formed of an adhesive, such as a hot melt adhesive or other sealants, for securing seal 100 to the top of bottle 10. Lower section 101 also includes a foil layer 120 and a PET layer 130 between foil layer 120 and sealant 110. Seal 100 also includes an upper section 102. Upper section 102 includes an ethylene vinyl acetate (EVA) layer 170 having a PET top layer 180 disposed thereon. A bottom surface 150 of EVA layer 170 is surface treated and bonded to foil layer 120. Lower surface 150 also bonds a paper release layer 140 to EVA layer 170. Thus, release layer 140 prevents EVA layer 170 from being completely bonded to foil layer 120 at lower surface 150. Lower surface 150 only bonds EVA layer 170 to foil 120 up to a boundary line 160 so as to permit a tab portion 200 to be graspable. However, this bond between upper section 102 and lower section 101 is strong enough, so that pulling tab portion 200 can remove all of seal 100 in one piece. Conventional container seals can exhibit disadvantages. For example, a paper release or information layer can be sensitive to exposure to moisture. Use of PET release layers alone do not provide a fully satisfactory seal. Corrosion of foil layers can also present a problem. Also, conventional closures typically require containers to have smooth surfaces to insure proper bonding and release. Uneven heating during heat sealing steps has also occurred. Many closures will not separate from the container satisfactorily when the tab is pulled and tearing and unsatisfactorily incomplete removal has occurred. Accordingly, it is desirable to provide an improved container seal which overcomes drawbacks and provides advantages compared to conventional container seals. SUMMARY OF THE INVENTION Generally speaking, in accordance with the invention, a seal and method of manufacture is provided for sealing containers such as bottles, jars and the like. The seal (closure) can be formed with a lower sheetlike structure having a foam layer thereon. The lower structure can include foil and have a polymer layer, such as a PET film thereunder A sealant layer can be provided under the bottom surface of the PET layer to bond the seal to a container opening. Depending on the container being sealed, the PET film may be coated with a suitable material that will bond to various container types. The polymer foam is advantageously a polyolefin foam. Seals in accordance with preferred embodiments of the invention also include a top portion, which can be only partially bonded (directly or indirectly) to the bottom portion, so as to leave a tab portion extended therefrom. The top portion is advantageously bonded from periphery to periphery of the bottom portion and at or slightly offset from the diameter (middle) of the bottom portion. The top portion is advantageously formed with polymer material, such as an ethylene vinyl acetate (EVA) layer, having a layer of PET bonded on the top thereof. A release strip, which can have a release layer coated on the bottom thereof can be adhered to the top structures and used to prevent the tab from adhering to the lower structure. The release layer can be formed of PET or silicone release coated PET, paper, nylon or polypropylene. To form seals in accordance with the invention, a first laminated sheet of bottom section material is laminated to a sheet of top section material after interposing tabbing strips therebetween. The tabbing strips can be bonded to the top section material and can be printed with written material or instructions. The bottom of the tabbing strips can be coated with a release promoting substance, so as to prevent the top sheet from bonding to the bottom sheet at the location of the tabbing strips. Seals, such as those in the shape of a disc, can then be die cut from the sheets. Each disc has approximately half of its area in plan view comprising a tabbing strip. The result is a seal with adhesive on a bottom side surface and a gripping tab on the top, bonded to half the seal. Such seals can be bonded to the top of containers to seal the contents thereof. Accordingly, it is an object of the invention to provide an improved container seal. Another object of the invention is to provide a container seal with increased strength and durability. Another object of the invention is to provide a container seal which is more convenient to use. Another object of the invention is to provide an improved method of making containers seals. The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the article possessing the features, properties, and the relation of elements, which are exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims. BRIEF DESCRIPTION OF THE DRAWINGS For a fuller understanding of the invention, reference is had to the following description taken in connection with the accompanying drawings, in which: FIG. 1 is a perspective view of a conventional closure disposed over the mouth of a bottle; FIG. 2 is a cross sectional view of the closure of FIG. 1 taken along line 2-2; FIG. 3 is a side cross sectional view of a seal in accordance with a preferred embodiment of the invention; FIG. 4 is a top plan view of a sheet used to form seals in accordance with a preferred embodiment of the invention; FIG. 5 is a cross sectional view of the sheet of FIG. 4 taken along line 5-5, and FIG. 6 is a demonstrative perspective view of an apparatus constructing sheets for forming container seals in accordance with a preferred embodiment of the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A seal (closure) for a container constructed in accordance with a preferred embodiment of the invention is shown generally in FIG. 3 as seal 300. The relative thicknesses of the layers shown in FIG. 3 are not to scale, for purposes of illustration. Furthermore, the construction shown is provided for purposes of illustration only, and is not intended to be construed in a limiting sense. Seal 300 is constructed from a bottom laminate sheet 301 and a top laminate sheet 302. Bottom sheet 301 includes a support layer 310 having a lower polymer layer 320 on the underside thereof and a polymer foam layer 330 on the top surface thereof. Support layer 310 is advantageously formed of a moisture proof material such as metal foil, preferably aluminum foil. Support layer 310 is advantageously about 0.0005 to 0.0020 inches thick. Lower polymer layer 320 is advantageously formed of polyethylene terephthalate (PET), preferably to a thickness ranging from about 0.0004 to 0.0015 inches. Other suitable materials include nylon, PEN and polypropylene. The bottom surface of lower sheet 301 is advantageously coated with a sealant or adhesive 340, preferably a heat activated adhesive (sealant). The type of adhesive is based in part on the characteristics of the container. Suitable adhesives (as used herein, the term sealant will include adhesives suitable for adhering a container seal in accordance with invention, to a container) include polyester coatings, ethylene vinyl acetate, polypropylene, ethylene-acrylic acid copolymers, surlyn and other materials known in the industry. The top surface of bottom sheet 301 (layer 330) is advantageously coated with a polymer foam 330, preferably a polyethylene foam. Other suitable polymer foams include polypropylene or propylene-ethylene copolymers. Polyethylene foam is preferred because of desired bonding behavior and bond strength. The thickness of foam layer 330 is advantageously at least 0.003 inches, more preferably at least 0.005 inches. If the thickness is too thin the heat from the induction sealing process can melt the foam. Also, the desired bond strength might not be achieved. Furthermore, if the foam is too thin, it will provide less compression and the container seals can become less reliable. When the foam is thicker than about 0.010 or even 0.008 inches, the benefits begin to stop and material's cost and bulkiness can present problems. Top laminate sheet 302 is advantageously formed with a polymer support 350, advantageously including a polymer layer 360 on a bottom surface thereof. Support 350 is preferably formed from a strong heat resistant sheet-like material, which can maintain its strength at small thicknesses and which has high pull strength. A preferred material is PET and other suitable materials include PEN and nylon. Polymer layer 360 is advantageously formed of EVA foam and is advantageously from 0.001 to 0.003 inches thick. EVA is preferred because of its thermal bonding characteristics, such that it readily bonds to foam layer 330. If layer 330 is too thick, it becomes difficult to achieve satisfactory bonds. If it is too thin, bond strength can be inadequate. Other suitable materials include low density polyethylene, ethylene-acrylic acid copolymers and ethylene methacrylate copolymers. Top sheet 302 also includes a tab portion 303. Tab portion 303 is not adhered to bottom sheet 301 and can be folded up and away from bottom sheet 301 to provide a gripping tab for removing seal 300 from the top of the container. Top sheet 302 also includes a joining portion 304 which is adhered to bottom sheet 301. A boundary 305 exists at the interface between tab portion 303 and joining portion 304. Boundary 305 advantageously extends in a straight line from edge to edge of seal 300. Boundary 305 is advantageously at or near the middle of seal 300. The underside of tab 303 advantageously includes a release strip (tabbing strip) 370, preferably having a coat of release material 371 on the underside thereof. Release strip 370 and release coat 371 help prevent tab portions 303 from adhering to the top of bottom sheet 301. Release strip 370 is preferably formed of PET, such as white PET and advantageously includes written material, pictures other information thereon. Other suitable materials include nylon and polypropylene. Release layer 370 is advantageously 0.00045 to 0.0010 inches thick and preferably occupies the entire underside of tab portion 303, substantially up to boundary 305. Suitable materials for release coat 371 include various known heat resistant coatings preferably silicone release coatings. Bottom sheet 301 can be formed by adhering polymer layer 320 to support layer 310 with adhesive. Polyethylene foam layer 330 can also be adhered to support layer 310 with adhesive. Suitable adhesives include ethylene acrylic acid copolymers, curable two part urethane adhesives and epoxy adhesives. A preferred adhesive is Morton Adcote 522 or Novacote 250. As used herein, the term adhesive will include curable adhesives, heat activated adhesives and thermoplastics. Top support layer 350 can also be adhered to polymer foam layer 360 with adhesive. An apparatus in accordance with a preferred embodiment of the invention for forming a laminated sheet from which seals in accordance with a preferred embodiment of the invention can be obtained is shown generally as apparatus 600 in FIG. 6. A bottom sheet 301′ including a support layer 310′ with a top layer of polymer foam 330′ and a bottom polymer coat 320′, having sealant 340′ on the bottom thereof is fed to the nip where a pressure roll 610 meets a hot roll 620. A top sheet 302′ is also fed into the nip between pressure roll 610 and hot roll 620. Top sheet 302′ includes a support film 350′ and a polymer layer 360′ on support film 350. Top sheet 302′ is fed into the nip between rolls 610 and 620 so that polymer layer 360′ faces polymer foam layer 330′. Tabbing strips (release strips) 370′ are combined with and inserted between top sheet 302′ and bottom sheet 301′ in a parallel spaced arrangement. After heat from hot roll 620 joins top sheet 302′, tabbing strips 370′ and bottom sheet 301′, a laminate sheet 400 results. Laminate sheet 400 is shown in plan view in FIG. 4 and in cross section in FIG. 5. The relative size of the layers are not shown to scale and top sheet 302′ bottom sheet 301′ and tabbing strips 370′ are not shown in a fully laminated joined structure. Also, adhesive between the layers has not been shown. However, those of ordinary skill in the art would understand how to adhere these multiple layers. To form seals in accordance with preferred embodiments of the invention, circular (or other appropriately shaped) portions 410 are die cut from sheet 400. As can be see in FIG. 4, a boundary 305′ is established at the edge of each tabbing strip 370′. Because the bottom of tabbing strip 370′ does not adhere to the top surface of foam layer 330′, a tab portion will extend from foam layer 330′ for gripping. The following example is provided for purposes of illustration only and is not intended to be construed in a limiting sense. A 0.7 mil aluminum foil sheet was adhered to a 0.5 mil PET film with adhesive. A 1.5 mil sealant film was then adhesive laminated to the PET surface of the foil/PET laminate. The three ply laminate was then adhered to a 4.5 mil thick PE foam layer with urethane adhesive to form a bottom sheet. The top sheet was adhered to the bottom sheet with a thermal bonding process after 0.5 mil PET tabbing strips were inserted therebetween. The bottom side of the tabbing strips was coated with a silicone release coating, to insure that they did not adhere to the polyethylene foam top layer of the bottom sheet. Circular seals, approximately 1.5 inches in diameter, were die cut from the strips, with the edge of the tabbing sheet extending approximately down the midpoint of the circle, to yield tabs having a base running down the middle of the seals, from edge to edge. One advantageous method of attaching container seals in accordance with the invention to the tops of containers is with heat activated adhesive. The adhesive can be heated through induction heating, by utilizing a metal foil support in the bottom sheet of the seal, such as an aluminum foil support sheet. Tabs formed in accordance with the invention, in which the tabbing strip is formed of PET and the foam layer is included on the foil layer at the interface with the top layer, have been shown to result in substantially more even heating and improved sealing, compared to container seals in which the tabbing strip is formed of paper and without the foam layer. Container seals in accordance with preferred embodiments of the invention were found to bond well to the top surface of a container, without the need to oversize the seal and have portions of the seal extend beyond the top edge of the container, providing a neater appearance. Container seals in accordance with the invention were also found to provide adequate sealing even when the top surface of the container was not substantially smooth, such as in the case of containers having mold lines or other imperfections on the top surface thereof. Container seals in accordance with the invention were also shown to exhibit substantially improved water resistance compared to container seals in which paper is exposed or in which a metal foil surface is either exposed or covered with only paper. Thus, container seals in accordance with the invention were shown to exhibit reduced corrosion from exposure to water or juices. The top foam layer was also found to provide heat insulation to isolate and prevent deterioration to the tab portion of the seal, when the sealant is heat activated to adhere the container seal to a container. It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in carrying out the above method and in the articles set forth, without departing from the spirit and scope of the invention, is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language, might be said to fall there between. Particularly, it is to be understood that in said claims, ingredients or components recited in the singular are intended to include compatible mixtures of such ingredients wherever the sense permits. | <SOH> BACKGROUND OF THE INVENTION <EOH>The invention relates generally to a sealing member for a container having an easy to grab tab on the top thereof for closing the mouth of a container. It is often desirable to seal a bottle, jar or other container with a closure to maintain freshness of the contents thereof or to indicate whether the container has been tampered with. However, it is also desirable that the closure be easy to remove by the user. For example, U.S. Pat. No. 5,433,992, the contents of which are incorporated herein by reference, describes a top-tabbed closure for a container which has a membrane for sealing the container and a sheet which is bonded to the top of the membrane, in a manner which leaves a tab portion of the sheet free. A user seeking to gain access to the contents of the container simply grips the tab with their fingers and by pulling on the tab, which is connected to the sheet, can remove the entire closure and access the contents of the container in a relatively convenient manner. Referring generally to FIG. 1 , a conventional top-tabbed closure is shown generally at the top of a bottle 10 as container seal 100 . A cross sectional view of seal 100 , taken along line 2 - 2 of FIG. 1 which is not drawn to scale, is shown in FIG. 2 . Seal 100 includes a lower section 101 , comprising a lower layer 110 , which is formed of an adhesive, such as a hot melt adhesive or other sealants, for securing seal 100 to the top of bottle 10 . Lower section 101 also includes a foil layer 120 and a PET layer 130 between foil layer 120 and sealant 110 . Seal 100 also includes an upper section 102 . Upper section 102 includes an ethylene vinyl acetate (EVA) layer 170 having a PET top layer 180 disposed thereon. A bottom surface 150 of EVA layer 170 is surface treated and bonded to foil layer 120 . Lower surface 150 also bonds a paper release layer 140 to EVA layer 170 . Thus, release layer 140 prevents EVA layer 170 from being completely bonded to foil layer 120 at lower surface 150 . Lower surface 150 only bonds EVA layer 170 to foil 120 up to a boundary line 160 so as to permit a tab portion 200 to be graspable. However, this bond between upper section 102 and lower section 101 is strong enough, so that pulling tab portion 200 can remove all of seal 100 in one piece. Conventional container seals can exhibit disadvantages. For example, a paper release or information layer can be sensitive to exposure to moisture. Use of PET release layers alone do not provide a fully satisfactory seal. Corrosion of foil layers can also present a problem. Also, conventional closures typically require containers to have smooth surfaces to insure proper bonding and release. Uneven heating during heat sealing steps has also occurred. Many closures will not separate from the container satisfactorily when the tab is pulled and tearing and unsatisfactorily incomplete removal has occurred. Accordingly, it is desirable to provide an improved container seal which overcomes drawbacks and provides advantages compared to conventional container seals. | <SOH> SUMMARY OF THE INVENTION <EOH>Generally speaking, in accordance with the invention, a seal and method of manufacture is provided for sealing containers such as bottles, jars and the like. The seal (closure) can be formed with a lower sheetlike structure having a foam layer thereon. The lower structure can include foil and have a polymer layer, such as a PET film thereunder A sealant layer can be provided under the bottom surface of the PET layer to bond the seal to a container opening. Depending on the container being sealed, the PET film may be coated with a suitable material that will bond to various container types. The polymer foam is advantageously a polyolefin foam. Seals in accordance with preferred embodiments of the invention also include a top portion, which can be only partially bonded (directly or indirectly) to the bottom portion, so as to leave a tab portion extended therefrom. The top portion is advantageously bonded from periphery to periphery of the bottom portion and at or slightly offset from the diameter (middle) of the bottom portion. The top portion is advantageously formed with polymer material, such as an ethylene vinyl acetate (EVA) layer, having a layer of PET bonded on the top thereof. A release strip, which can have a release layer coated on the bottom thereof can be adhered to the top structures and used to prevent the tab from adhering to the lower structure. The release layer can be formed of PET or silicone release coated PET, paper, nylon or polypropylene. To form seals in accordance with the invention, a first laminated sheet of bottom section material is laminated to a sheet of top section material after interposing tabbing strips therebetween. The tabbing strips can be bonded to the top section material and can be printed with written material or instructions. The bottom of the tabbing strips can be coated with a release promoting substance, so as to prevent the top sheet from bonding to the bottom sheet at the location of the tabbing strips. Seals, such as those in the shape of a disc, can then be die cut from the sheets. Each disc has approximately half of its area in plan view comprising a tabbing strip. The result is a seal with adhesive on a bottom side surface and a gripping tab on the top, bonded to half the seal. Such seals can be bonded to the top of containers to seal the contents thereof. Accordingly, it is an object of the invention to provide an improved container seal. Another object of the invention is to provide a container seal with increased strength and durability. Another object of the invention is to provide a container seal which is more convenient to use. Another object of the invention is to provide an improved method of making containers seals. The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the article possessing the features, properties, and the relation of elements, which are exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims. | 20041230 | 20070515 | 20050609 | 78193.0 | 1 | VO, HAI | POLYMER LINED SEALING MEMBER FOR A CONTAINER | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,027,026 | ACCEPTED | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions | A system and method for ameliorating spinal column anomalies, such as scoliosis, includes bone screws which are to be implanted in the pedicle region(s) of individual to-be-derotated vertebrae and in vertebrae to which balancing forces must be applied as the spinal column is manipulated en mass to achieve an over-all correction of the condition. A pedicle screw cluster derotation tool simultaneously engages multiple pedicle screws and transmits manipulative forces to multiple vertebrae to effect a whole-spine correction. Pre-contoured spinal rods are engaged post-derotation to secure the correction. | 1. A system for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions comprising: a first set of pedicle screws, said pedicle screws each having a threaded shank segment and a head segment; and a first pedicle screw cluster derotation tool, said first pedicle screw cluster derotation tool having first handle means and a first group of pedicle screw engagement members which are mechanically linked with said first handle means, each said pedicle screw engagement member being configured for engaging with, and transmitting manipulative forces applied to said first handle means to said head segments of one of said pedicle screws of said first set of pedicle screws, 2. The system of claim 1 further comprising a spinal rod member; and wherein one or more of said pedicle screws each includes: a spinal rod conduit formed substantially transverse of the length of each said pedicle screw and sized and shaped for receiving passage of said spinal rod member therethrough; and spinal rod engagement means for securing each said pedicle screw and said spinal rod, when extending through said spinal rod conduit, in a substantially fixed relative position and orientation. 3. A method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions comprising the steps of: selecting a first set of pedicle screws, said pedicle screws each having a threaded shank segment and a head segment; selecting a first pedicle screw cluster derotation tool, said first pedicle screw cluster derotation tool having first handle means and a first group of pedicle screw engagement members which are mechanically linked with said first handle means, each said pedicle screw engagement member being configured for engaging with, and transmitting manipulative forces applied to said first handle means to said head segments of one of said pedicle screws of said first set of pedicle screws, implanting a said pedicle screw in a pedicle region of each of a first group of vertebrae of a spinal column which exhibits an aberrant spinal column deviation condition; engaging a said pedicle screw engagement member respectively with said head segment of each of said pedicle screws of said first set of pedicle screws; and applying manipulative force to said first handle means in a manner for simultaneously rotating said vertebrae of said first group of vertebrae in which said pedicle screws are implanted to achieve an amelioration of an aberrant spinal column deviation condition. 4. The method of claim 3 further comprising the steps of: selecting a first length of a spinal rod member; and wherein one or more of said pedicle screws of said first set of pedicle screws each includes: a spinal rod conduit formed substantially transverse of the length of each said pedicle screw and sized and shaped for receiving passage of said spinal rod member therethrough; and spinal rod engagement means for securing said pedicle screw and said spinal rod, when extending through said spinal rod conduit, in a substantially fixed relative position and orientation; extending said first length of said spinal rod through said spinal rod conduits of one or more of said pedicle screws of said first set of pedicle screws; and after said applying manipulative force to said first handle means, actuating said spinal rod engagement means to secure said vertebrae of said first group of vertebrae in their respective and relative positions and orientations as achieved through application of said manipulative force thereto. 5. The method of claim 3 further comprising the steps of: selecting a second set of pedicle screws; selecting a second pedicle screw cluster derotation tool, said second pedicle screw cluster derotation tool having second handle means and a second group of pedicle screw engagement members which are mechanically linked with said second handle means, each said pedicle screw engagement member being configured for engaging with, and transmitting manipulative forces applied to said second handle means to said head segments of one of said pedicle screws of said second set of pedicle screws, implanting a said pedicle screw in a pedicle region of each of a second group of vertebrae of a spinal column which exhibits an aberrant spinal column deviation condition; engaging a said pedicle screw engagement member respectively with said head segment of each of said pedicle screws of said second set of pedicle screws; and applying manipulative force to said second handle means in a manner for simultaneously rotating said vertebrae of said second group of vertebrae in which said pedicle screws are implanted to achieve an amelioration of an aberrant spinal column deviation condition. 6. The method of claim 4 further comprising the steps of: selecting a second set of pedicle screws; selecting a second pedicle screw cluster derotation tool, said second pedicle screw cluster derotation tool having second handle means and a second group of pedicle screw engagement members which are mechanically linked with said second handle means, each said pedicle screw engagement member being configured for engaging with, and transmitting manipulative forces applied to said second handle means to said head segments of one of said pedicle screws of said second set of pedicle screws, implanting a said pedicle screw in a pedicle region of each of a second group of vertebrae of a spinal column which exhibits an aberrant spinal column deviation condition; engaging a said pedicle screw engagement member respectively with said head segment of each of said pedicle screws of said second set of pedicle screws; and applying manipulative force to said second handle means in a manner for simultaneously rotating said vertebrae of said second group of vertebrae in which said pedicle screws are implanted to achieve an amelioration of an aberrant spinal column deviation condition. 7. The method of claim 6 further comprising the steps of: selecting a second length of a spinal rod member; and wherein one or more of said pedicle screws of said second set of pedicle screws each includes: a spinal rod conduit formed substantially transverse of the length of each said pedicle screw and sized and shaped for receiving passage of said spinal rod member therethrough; and spinal rod engagement means for securing said pedicle screw and said second spinal rod, when extending through said spinal rod conduit, in a substantially fixed relative position and orientation; extending said second length of said spinal rod through said spinal rod conduits of one or more of said pedicle screws of said second set of pedicle screws; and after said applying manipulative force to said second handle means, actuating said spinal rod engagement means to secure said vertebrae of said second group of vertebrae in their respective and relative positions and orientations as achieved through application of said manipulative force thereto. 8. The method of claim 5 wherein the steps of applying manipulative force to said first handle means and applying manipulative force to said second handle means are carried out substantially simultaneously to cooperatively achieve an amelioration of an aberrant spinal column deviation condition. 9. The method of claim 6 wherein the steps of applying manipulative force to said first handle means and applying manipulative force to said second handle means are carried out substantially simultaneously to cooperatively achieve an amelioration of an aberrant spinal column deviation condition. 10. The method of claim 7 wherein the steps of applying manipulative force to said first handle means and applying manipulative force to said second handle means are carried out substantially simultaneously to cooperatively achieve an amelioration of an aberrant spinal column deviation condition. | BACKGROUND OF THE INVENTION 1. Field of The Invention The present invention relates to methods and apparatus for management and correction of spinal deformities, such as scoliosis. 2. Background Information A serious deficiency presently exists with respect to conventional treatment and instrumentation for treating spinal deviation anomalies, such as scoliosis. This circumstance presents a serious medical challenge, because scoliosis, other than mild to moderate cases, is a well-recognized health risk. If scoliosis curvature exceeds 70 degrees, severe twisting of the spine occurs. This can cause the ribs to press against the lungs, restrict breathing, and reduce oxygen levels. The distortions may also affect the heart and possibly cause dangerous changes. Eventually, if the curve reaches more than 100 degrees, both the lungs and the heart can be injured. Patients with this degree of severity are susceptible to lung infections and pneumonia. Curves greater than 100 degrees are associated with elevated mortality rates. Present treatment regimens for scoliosis carry their own risks and side effects, which include: Spinal fusion disease. Patients who are surgically treated with fusion techniques lose flexibility and may experience weakness in back muscles due to injuries during surgery. Disk degeneration and low back pain. With disk degeneration, the disks between the vertebrae may become weakened and may rupture. Height loss. Lumbar flatback. This condition is most often the result of a scoliosis surgical procedure called the Harrington technique, used to eliminate lordosis (exaggeration of the inward curve in the lower back). Adult patients with flatback syndrome tend to stoop forward. They may experience fatigue and back pain and even neck pain. Rotational trunk shift (uneven shoulders and hips). In some patients, years after the original surgery (particularly with the first generation of Harrington rods), the weight of the instrumentation can cause disk and joint degeneration severe enough to require surgery. Treatment may involve removal of the old instrumentation and extension of the fusion into the lower back. Left untreated, or ineffectively treated, scoliosis carries long-term consequences. Pain in adult-onset or untreated childhood scoliosis often develops because of posture problems that cause uneven stresses on the back, hips, shoulders, necks, and legs. Studies report, however, that patients with childhood scoliosis have the same incidence of back pain as the general population, which is very high (60% to 80%). In one study conducted 20 years after growth had stopped, two-thirds of adults who had lived with curvatures of 20 to 55 degrees reported back pain. In this study, most cases were mild, although other studies have reported that adults with a history of scoliosis tend to have chronic and more back pain than the general population. Nearly all individuals with untreated scoliosis at some point develop spondylosis, an arthritic condition in the spine. The joints become inflamed, the cartilage that cushions the disks may thin, and bone spurs may develop. If the disk degenerates or the curvature progresses to the point that the spinal vertebrae begin pressing on the nerves, pain can be very severe and may require surgery. Even surgically treated patients are at risk for spondylosis if inflammation occurs in vertebrae around the fusion site. The consequences of scoliosis are limited to the physical realm. The emotional impact of scoliosis, particularly on young girls or boys during their most vulnerable years, should not be underestimated. Adults who have had scoliosis and its treatments often recall significant social isolation and physical pain. Follow-up studies of children with scoliosis who did not have strong family and professional support often report significant behavioral problems. Older people with a history of scoliosis, even those whose conditions were corrected, should realize that some negative emotional events in adulthood may possibly have their roots in their early experiences with scoliosis. Many studies have reported that patients who were treated for scoliosis have limited social activities and a poorer body image in adulthood. Some patients with a history of scoliosis have reported a slight negative effect on their sexual life. Pain appears to be only a minor reason for such limitation. An early Scandinavian study reported that adults with scoliosis had fewer job opportunities and a lower marriage rate than the general population. It is clear, then, that scoliosis treatment options are presently lacking, and untreated scoliosis (except for mild to lower-moderate cases) is not an acceptable alternative. There are many apparatus which are designed for attachment to, and positioning adjacent the spinal column, and in many instances, these apparatus are designed for use in treating spinal column anomalies, such as scoliosis. However, all known systems are limited by their design and known implementation modes on either arresting further deleterious rotation of the involved vertebrae, or fixing individual vertebrae once, by some means, they are brought to approximate a desired orientation and position. Significant correction of severe scoliotic curvature to the point of approximating normal spinal configuration, particularly by a single process, is simply unknown in the art. This is, it is believed, the result of focus in the field on the positioning substantially seriatim of affected vertebrae. Applying derotational force to a vertebrae in this manner cannot effect en mass spinal reconfiguration without risking vertebral fracture at the point of spinal instrumentation fixation, particularly when using conventional instrumentation. Scoliosis has classically been regarded as principally a two dimensional deformity. Early methods of surgical correction have thus focused on two dimensional straightening of the classic S-shaped deformity. Over the last decade or so, more focus has been placed on the true three dimensional deformity. The third dimension is axial plane vertebral rotational deviation maximally affecting the apex of the scoliotic curve. A complete three dimensional correction has become the perceived goal of spine surgeons. There are no existing methods which consistently and reproducibly achieve this goal. Furthermore, significant, focused force applied to any individual vertebra risks spinal cord and related injury. Thus, only force which is inadequate to effect substantial correction to the entire spinal column is thus far ever applied, and correction of scoliotic curvatures are substantially limited. It has become clear to the present inventor that desired levels of correction of spinal column anomalies, such as scoliosis, can only be achieved if the spinal column (or an affected segment thereof) is manipulated (or “derotated”) substantially as a whole into a desired configuration. To achieve such an objective, force must be applied safely to all to-be-derotated vertebrae, and the forces necessary to reconfigure all, or at least a substantial portion of the spinal column must be dispersed throughout the affected spinal segments or regions. Nothing in the prior art satisfies these requirements, either individually or in combination. SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide an improved system of spinal instrumentation for use in ameliorating aberrant spinal column deviation conditions, such as scoliosis. It is another object of the present invention to provide an improved method for ameliorating aberrant spinal column deviation conditions, such as scoliosis. It is another object of the present invention to provide an improved system of spinal instrumentation, and a method for the use thereof, for ameliorating aberrant spinal column deviation conditions, such as scoliosis, which system and method facilitates the application of significant derotational forces to individual vertebra, with substantially reduced risk for fracture thereof upon application of such forces. It is another object of the present invention to provide an improved system of spinal instrumentation, and associated method for use thereof, in ameliorating aberrant spinal column deviation conditions, such as scoliosis, which system and method facilitates the application of forces to vertebrae of affected spinal column segments en bloc, thereby distributing otherwise potentially injurious forces in a manner for safely achieving over-all spinal column correction or derotation. Applicant's present invention provides a system and method for use of such system which satisfy each of these objectives. Applicant's system includes bone screws which are to be implanted in the pedicle region(s) of individual to-be-derotated vertebrae. In the preferred mode of the present invention, such bone screws are also to be implanted in vertebrae to which balancing forces must be applied as the spinal column is manipulated en mass to achieve an over-all correction of the condition. The pedicle implantation provides a stable foundation for the application of significant derotational forces, but without undue risk of vertebral fracture. The system includes a pedicle screw cluster derotation tool. This tool, in the presently preferred embodiment includes shafts, extending from a common handle or linked handle array, which are oriented and configured to extend to and engage the heads of a number of implanted pedicle screws which will have been implanted in adjacent vertebrae to which derotational or balancing forces are to be applied during a spinal column derotation and alignment. The engagement between the pedicle screw cluster derotation tool and the individual pedicle screws is such that, as manipulative forces are applied to the handle means of pedicle screw cluster derotation tool, forces are transferred and dispersed simultaneously among the engaged vertebrae. Therefore, a practitioner may, in a single motion, simultaneously and safely derotate multiple vertebrae of an affected spinal segment (as well as likewise apply balancing forces to other group(s) of vertebrae which are contiguous to the effected segment(s). The effect of practice of the present invention is three-dimensional correction which provides, not only spinal correction to near normal configuration, but corrects “rib humps.” The system of the present also includes, in its preferred embodiment, pedicle screws which allow for interfacing with, and fixation relative to pre-contoured spinal rods after a satisfactory derotation. The present inventor's approach to the problems described above is certainly simple, when viewed in hindsight, but it is equally unobvious. In investigative procedures, the presently proposed system and method has achieved measure of correction of scoliotic curvature never before seen in orthopaedic practice. BRIEF DESCRIPTION OF THE DRAWINGS The present invention may be more easily understood with reference to figures, which are as follow: FIG. 1 is a perspective view of an anatomical model of a human spinal column, with components of the system of the present invention shown engaged therewith. The event depicted is that stage of the proposed method after which derotational and balancing forces have been applied to substantially correct a scoliotic curvature. FIG. 2 is a top plan view of the event depicted in FIG. 1. FIG. 3 is an elevational dorsal view of the anatomical model of a human spinal column depicted in FIG. 1, but with an unobstructed view of already-implanted pedicle screws, and configured as if preceding the derotation step of the proposed method. FIG. 4 is an elevational side view of the anatomical model of a human spinal column depicted in FIGS. 1 and 3, with an unobstructed view of already-implanted pedicle screws and adjacent, pre-contoured spinal rods which will be engaged with the pedicle screws through practice of the proposed method. FIG. 5 is an example of a pedicle screw which may be used in the system of the present invention. FIG. 6 is a depiction of the complimentary forces applied to multiple spinal column segments to achieve an over-all spinal column correction. FIG. 7 is a four frame x-ray view showing “before and after” views of a scoliosis patient who was treated in an investigational procedure using the system and method of the present invention. The curvature correction was substantially to normal, and lumbar motion was preserved notwithstanding. Reducing the number of lumbar discs included in the fusion is another advantage of this method over others. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT With reference to FIG. 1-5, the spinal deviation correction system of the present invention includes a number of pedicle screws 10, each implanted in respective vertebrae to which rotative forces will be applied in a spinal anomaly correction. Pedicle screws 10 may be of a variety of designs, such as, for example, are generally depicted in U.S. Pat. No. 6,743,237 (Gray, et al), U.S. Pat. No. 6,827,719 (Ralph, et al), U.S. Pat. No. 6,652,526 (Arafiles), U.S. Pat. No. 6,375,657 (Doubler, et al), the disclosures of which are incorporated herein by reference. With particular reference to FIG. 5, pedicle screws 10 will include a threaded shank segment 12 and a head segment 14. Head segment will be configured with a spinal rod conduit (or channel) 16 or interfacing with a spinal rod 18 (shown in FIG. 4). Spinal rod engagement means 20 serve to fix pedicle screw 10 and spinal rod 18 in relative position and orientation, once a spinal column derotation is complete. Referring again, generally to FIGS. 1-5, the system of the present invention further includes a pedicle screw cluster derotation tool 30. As depicted in FIGS. 1 and 2, each pedicle screw cluster derotation tool 30 is configured from a grouping of pedicle screw wrenches 32, joined together to act in unison during use (movement to effect a derotation, or application of balancing forces being left to right, or vice versa, as viewed in FIGS. 1 and 2). Ordinarily, two tools 30 will be involved on either side of the spinal column, with two pedicle screws 10 being implanted in each vertebrae, as shown. A cross-tool linkage member 31 is used to coordinate forces applied to screw clusters on either side of the spinal column. Each pedicle screw wrench 32 includes a handle 34, a shaft 36, and a distal end 38 which is configured to reversibly engage the head segment 14 of a pedicle screw 10 such that, as shaft 36 is moved while shaft distal end 38 is engaged with head segment 14, manipulative forces are transferred to the pedicle screw 10 and, in turn, to the vertebra in which such pedicle screw 10 is implanted. Significant variations of pedicle screw cluster derotation tool 30 are contemplated by the present invention. For example, the linked, multiple wrenches 32 depicted in FIGS. 1 and 2 may be replaced by a single handle member from which extend the functional equivalent of the multiple shafts 36 and shaft distal ends 38 for simultaneously engaging multiple pedicle screws 10, as depicted. However configured, the object and design of pedicle screw cluster derotation tool 30 is to facilitate simultaneous application of manipulative forces to multiple pedicle screws 10 which are implanted in a like number of vertebra (a “cluster”). This has the effect of permitting the gross, en bloc application of sufficient derotative forces to affected segments of the spinal column in a sufficiently dispersed manner as to avoid injury to any one vertebra or isolated spinal column segment. This, in turn, facilitates a successful entire-spine, 3D derotation of a scoliosis patient to near normal parameters. With reference to FIGS. 1-4 and 6, the preferred mode of the present method usually involves, to achieve an over-all spinal column correction, application of forces to multiple spinal column segments with pedicle screw clusters being accordingly implanted. For example, as depicted in FIG. 6, in the case of a single curvature case of scoliosis, both derotative forces (illustrated by the central force vector arrow of FIG. 6) to vertebrae involved in scoliotic curvatures, as well as of balancing, or offsetting forces to contiguous spinal segments cephalad and caudad (illustrated by the lateral arrows of FIG. 6) are applied. The preferred mode of the present method involves pre-contouring spinal rods 18, as shown in FIG. 4. The spinal rod(s) 18 are engaged with pedicle screws 10, and, after the manipulative forces are applied to pedicle screw cluster derotation tool(s) 30, the spinal rod engagement means 20 is tightened to fix pedicle screw 10 and spinal rod 18 in relative position and orientation to secure the corrected spinal column configuration. Spinal rod engagement means 20 of pedicle screws 10 are tightened, using an anti-torque feature of wrenches 32 (or of their equivalent in an alternative embodiment). This feature, as is well known in the art, allows tightening of nuts and the like, without imparting undue torque to the underlying apparatus or structure. As shown in FIG. 7, investigative practice of the present method achieves efficacy never before seen in the orthopaedic field. The “before picture” are the left hand two images of FIG. 7, and the two remaining images are sagittal and dorsal views of the corrected spinal column. Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limited sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the inventions will become apparent to persons skilled in the art upon reference to the description of the invention. It is, therefore, contemplated that the appended claims will cover such modifications that fall within the scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of The Invention The present invention relates to methods and apparatus for management and correction of spinal deformities, such as scoliosis. 2. Background Information A serious deficiency presently exists with respect to conventional treatment and instrumentation for treating spinal deviation anomalies, such as scoliosis. This circumstance presents a serious medical challenge, because scoliosis, other than mild to moderate cases, is a well-recognized health risk. If scoliosis curvature exceeds 70 degrees, severe twisting of the spine occurs. This can cause the ribs to press against the lungs, restrict breathing, and reduce oxygen levels. The distortions may also affect the heart and possibly cause dangerous changes. Eventually, if the curve reaches more than 100 degrees, both the lungs and the heart can be injured. Patients with this degree of severity are susceptible to lung infections and pneumonia. Curves greater than 100 degrees are associated with elevated mortality rates. Present treatment regimens for scoliosis carry their own risks and side effects, which include: Spinal fusion disease. Patients who are surgically treated with fusion techniques lose flexibility and may experience weakness in back muscles due to injuries during surgery. Disk degeneration and low back pain. With disk degeneration, the disks between the vertebrae may become weakened and may rupture. Height loss. Lumbar flatback. This condition is most often the result of a scoliosis surgical procedure called the Harrington technique, used to eliminate lordosis (exaggeration of the inward curve in the lower back). Adult patients with flatback syndrome tend to stoop forward. They may experience fatigue and back pain and even neck pain. Rotational trunk shift (uneven shoulders and hips). In some patients, years after the original surgery (particularly with the first generation of Harrington rods), the weight of the instrumentation can cause disk and joint degeneration severe enough to require surgery. Treatment may involve removal of the old instrumentation and extension of the fusion into the lower back. Left untreated, or ineffectively treated, scoliosis carries long-term consequences. Pain in adult-onset or untreated childhood scoliosis often develops because of posture problems that cause uneven stresses on the back, hips, shoulders, necks, and legs. Studies report, however, that patients with childhood scoliosis have the same incidence of back pain as the general population, which is very high (60% to 80%). In one study conducted 20 years after growth had stopped, two-thirds of adults who had lived with curvatures of 20 to 55 degrees reported back pain. In this study, most cases were mild, although other studies have reported that adults with a history of scoliosis tend to have chronic and more back pain than the general population. Nearly all individuals with untreated scoliosis at some point develop spondylosis, an arthritic condition in the spine. The joints become inflamed, the cartilage that cushions the disks may thin, and bone spurs may develop. If the disk degenerates or the curvature progresses to the point that the spinal vertebrae begin pressing on the nerves, pain can be very severe and may require surgery. Even surgically treated patients are at risk for spondylosis if inflammation occurs in vertebrae around the fusion site. The consequences of scoliosis are limited to the physical realm. The emotional impact of scoliosis, particularly on young girls or boys during their most vulnerable years, should not be underestimated. Adults who have had scoliosis and its treatments often recall significant social isolation and physical pain. Follow-up studies of children with scoliosis who did not have strong family and professional support often report significant behavioral problems. Older people with a history of scoliosis, even those whose conditions were corrected, should realize that some negative emotional events in adulthood may possibly have their roots in their early experiences with scoliosis. Many studies have reported that patients who were treated for scoliosis have limited social activities and a poorer body image in adulthood. Some patients with a history of scoliosis have reported a slight negative effect on their sexual life. Pain appears to be only a minor reason for such limitation. An early Scandinavian study reported that adults with scoliosis had fewer job opportunities and a lower marriage rate than the general population. It is clear, then, that scoliosis treatment options are presently lacking, and untreated scoliosis (except for mild to lower-moderate cases) is not an acceptable alternative. There are many apparatus which are designed for attachment to, and positioning adjacent the spinal column, and in many instances, these apparatus are designed for use in treating spinal column anomalies, such as scoliosis. However, all known systems are limited by their design and known implementation modes on either arresting further deleterious rotation of the involved vertebrae, or fixing individual vertebrae once, by some means, they are brought to approximate a desired orientation and position. Significant correction of severe scoliotic curvature to the point of approximating normal spinal configuration, particularly by a single process, is simply unknown in the art. This is, it is believed, the result of focus in the field on the positioning substantially seriatim of affected vertebrae. Applying derotational force to a vertebrae in this manner cannot effect en mass spinal reconfiguration without risking vertebral fracture at the point of spinal instrumentation fixation, particularly when using conventional instrumentation. Scoliosis has classically been regarded as principally a two dimensional deformity. Early methods of surgical correction have thus focused on two dimensional straightening of the classic S-shaped deformity. Over the last decade or so, more focus has been placed on the true three dimensional deformity. The third dimension is axial plane vertebral rotational deviation maximally affecting the apex of the scoliotic curve. A complete three dimensional correction has become the perceived goal of spine surgeons. There are no existing methods which consistently and reproducibly achieve this goal. Furthermore, significant, focused force applied to any individual vertebra risks spinal cord and related injury. Thus, only force which is inadequate to effect substantial correction to the entire spinal column is thus far ever applied, and correction of scoliotic curvatures are substantially limited. It has become clear to the present inventor that desired levels of correction of spinal column anomalies, such as scoliosis, can only be achieved if the spinal column (or an affected segment thereof) is manipulated (or “derotated”) substantially as a whole into a desired configuration. To achieve such an objective, force must be applied safely to all to-be-derotated vertebrae, and the forces necessary to reconfigure all, or at least a substantial portion of the spinal column must be dispersed throughout the affected spinal segments or regions. Nothing in the prior art satisfies these requirements, either individually or in combination. | <SOH> SUMMARY OF THE INVENTION <EOH>In view of the foregoing, it is an object of the present invention to provide an improved system of spinal instrumentation for use in ameliorating aberrant spinal column deviation conditions, such as scoliosis. It is another object of the present invention to provide an improved method for ameliorating aberrant spinal column deviation conditions, such as scoliosis. It is another object of the present invention to provide an improved system of spinal instrumentation, and a method for the use thereof, for ameliorating aberrant spinal column deviation conditions, such as scoliosis, which system and method facilitates the application of significant derotational forces to individual vertebra, with substantially reduced risk for fracture thereof upon application of such forces. It is another object of the present invention to provide an improved system of spinal instrumentation, and associated method for use thereof, in ameliorating aberrant spinal column deviation conditions, such as scoliosis, which system and method facilitates the application of forces to vertebrae of affected spinal column segments en bloc, thereby distributing otherwise potentially injurious forces in a manner for safely achieving over-all spinal column correction or derotation. Applicant's present invention provides a system and method for use of such system which satisfy each of these objectives. Applicant's system includes bone screws which are to be implanted in the pedicle region(s) of individual to-be-derotated vertebrae. In the preferred mode of the present invention, such bone screws are also to be implanted in vertebrae to which balancing forces must be applied as the spinal column is manipulated en mass to achieve an over-all correction of the condition. The pedicle implantation provides a stable foundation for the application of significant derotational forces, but without undue risk of vertebral fracture. The system includes a pedicle screw cluster derotation tool. This tool, in the presently preferred embodiment includes shafts, extending from a common handle or linked handle array, which are oriented and configured to extend to and engage the heads of a number of implanted pedicle screws which will have been implanted in adjacent vertebrae to which derotational or balancing forces are to be applied during a spinal column derotation and alignment. The engagement between the pedicle screw cluster derotation tool and the individual pedicle screws is such that, as manipulative forces are applied to the handle means of pedicle screw cluster derotation tool, forces are transferred and dispersed simultaneously among the engaged vertebrae. Therefore, a practitioner may, in a single motion, simultaneously and safely derotate multiple vertebrae of an affected spinal segment (as well as likewise apply balancing forces to other group(s) of vertebrae which are contiguous to the effected segment(s). The effect of practice of the present invention is three-dimensional correction which provides, not only spinal correction to near normal configuration, but corrects “rib humps.” The system of the present also includes, in its preferred embodiment, pedicle screws which allow for interfacing with, and fixation relative to pre-contoured spinal rods after a satisfactory derotation. The present inventor's approach to the problems described above is certainly simple, when viewed in hindsight, but it is equally unobvious. In investigative procedures, the presently proposed system and method has achieved measure of correction of scoliotic curvature never before seen in orthopaedic practice. | 20041230 | 20100302 | 20060706 | 61493.0 | A61F230 | 7 | FISHER, ELANA BETH | SYSTEM AND METHOD FOR ALIGNING VERTEBRAE IN THE AMELIORATION OF ABERRANT SPINAL COLUMN DEVIATION CONDITIONS | UNDISCOUNTED | 0 | ACCEPTED | A61F | 2,004 |
|
11,027,052 | ACCEPTED | Hardware debugging in a hardware description language | Techniques and systems for analysis, diagnosis and debugging fabricated hardware designs at a Hardware Description Language (HDL) level are described. Although the hardware designs (which were designed in HDL) have been fabricated in integrated circuit products with limited input/output pins, the techniques and systems enable the hardware designs within the integrated circuit products to be comprehensively analyzed, diagnosed, and debugged at the HDL level at speed. The ability to debug hardware designs at the HDL level facilitates correction or adjustment of the HDL description of the hardware designs. | 1. A hardware debugging system for debugging a fabricated integrated circuit containing an electronic circuit design, said hardware debugging system comprising: an instrumentor configured to receive a high level HDL description of the electronic circuit design, to determine aspects of the electronic circuit design to be examined or modified during debugging, to determine additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and to produce a modified high level HDL description of the electronic circuit design by incorporating an HDL description of the additional circuitry into the high level HDL description of the electronic circuit design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the modified high level HDL description or the high level HDL description; and a HDL-based hardware debugger configured to debug the fabricated integrated circuit fabricated in accordance with the modified high level HDL description by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the modified high level HDL description or the high level HDL description. 2. A hardware debugging system as recited in claim 1, wherein while debugging the fabricated integrated circuit, the fabricated integrated circuit is operating in its target environment and running at its target speed. 3. A hardware debugging system as recited in claim 2, wherein the target environment includes real-time characteristics. 4. A hardware debugging system as recited in claim 1, wherein while debugging the fabricated integrated circuit, the fabricated integrated circuit is operating in its target environment without interruption. 5. A hardware debugging system as recited in claim 1, wherein said hardware debugging system does not require a testbench. 6. A hardware debugging system as recited in claim 1, wherein at least a portion of the debug information is related back to the high level HDL description for the electronic circuit design. 7. A hardware debugging system as recited in claim 1, wherein the information about the additional circuitry stored in said design instrumentation database further includes at least one or more trigger conditions 8. A hardware debugging system as recited in claim 1, wherein the information about the additional circuitry stored in said design instrumentation database further includes at least one or more of design control information, design visibility information and design patch information. 9. A hardware debugging system as recited in claim 1, wherein said instrumentor comprises: an aspect selection processor configured to enable a user to determine the aspects of the electronic circuit design to be examined or modified during debugging through interactive selection. 10. A hardware debugging system as recited in claim 1, wherein the fabricated integrated circuit is part of an electronic system that also includes software, and wherein said hardware debugging system further comprises: a software debugger operatively connected to said HDL-based hardware debugger, said software debugger operates to debug the software. 11. A hardware debugging system as recited in claim 10, wherein the fabricated integrated circuit includes a processor, and wherein the software is executed by said processor. 12. A hardware debugging system as recited in claim 10, wherein said HDL-based hardware debugger and said software debugger are synchronized during debugging of the fabricated integrated circuit. 13. A hardware debugging system as recited in claim 12, wherein while said HDL-based hardware debugger operates to debug the fabricated integrated circuit, the fabricated integrated circuit is operating in its target environment and running at its target speed. 14. A hardware debugging system as recited in claim 13, wherein the target environment includes real-time characteristics. 15. A hardware debugging system as recited in claim 13, wherein said hardware debugging system does not require a testbench. 16. A hardware debugging system as recited in claim 1, wherein said instrumentor operates to customize the additional circuitry for use with at least a portion of the electronic circuit design. 17. A hardware debugging system as recited in claim 1, wherein the HDL description contains a hierarchical structure of HDL building blocks. 18. A hardware debugging system as recited in claim 17, wherein the aspects of the electronic circuit design to be examined or modified during debugging are determined in different ones of the HDL building blocks of the hierarchical structure. 19. A hardware debugging system as recited in claim 1, wherein the electronic circuit design includes both analog and digital aspects. 20. A hardware debugging system as recited in claim 1, wherein said instrumentor operates to permit alteration of the additional circuitry to trade-off debugging coverage versus area cost. 21. A hardware debugging system as recited in claim 1, wherein the electronic circuit design includes at least one pre-designed block of circuitry having instrumentation circuitry. 22. A hardware debugging system for debugging an electronic system containing an electronic circuit design, the electronic circuit design being described by a high level HDL description, said hardware debugging system comprising: an instrumentor configured to receive the high level HDL description of the electronic circuit design or a description derived therefrom, to determine aspects of the electronic circuit design to be examined or modified during debugging, to determine additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and to incorporate the additional circuitry into the electronic circuit design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the high level HDL description; and a HDL-based hardware debugger configured to debug the electronic system by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the high level HDL description. 23. A hardware debugging system as recited in claim 22, wherein said HDL-based hardware debugger operates to identify functional failures that result from not only design errors but also tool errors or manufacturing faults. 24. A hardware debugging system as recited in claim 22, wherein said HDL-based hardware debugger further operates to identify functional failures that result from specification errors. 25. A hardware debugging system as recited in claim 22, wherein while said HDL-based hardware debugger operates to debug the electronic system, the electronic system is operating in its target environment and running at its target speed. 26. A hardware debugging system as recited in claim 25, wherein the target environment includes real-time characteristics. 27. A hardware debugging system as recited in claim 25, wherein said hardware debugging system does not require a testbench. 28. A hardware debugging system as recited in claim 22, wherein said instrumentor operates to customize the additional circuitry for use with at least a portion of the electronic circuit design. 29. A hardware debugging system as recited in claim 22, wherein the HDL description contains a hierarchical structure of HDL building blocks 30. A hardware debugging system as recited in claim 29, wherein the aspects of the electronic circuit design to be examined or modified during debugging are determined in different ones of the HDL building blocks of the hierarchical structure. 31. A hardware debugging system as recited in claim 22, wherein the electronic circuit design includes both analog and digital aspects. 32. A hardware debugging system as recited in claim 22, wherein said instrumentor operates to permit alteration of the additional circuitry to trade-off debugging coverage versus area cost. 33. A hardware debugging system as recited in claim 22, wherein the electronic circuit design includes at least one pre-designed block of circuitry having internal circuitry. 34. A hardware debugging system as recited in claim 22, wherein said hardware debugging system further comprises at least one of a design layout, synthesis or simulation tool, and wherein said instrumentor is within said at least one of the design layout, synthesis or simulation tool. 35. A hardware debugging system as recited in claim 22, wherein the electronic system includes hardware and software, and wherein said hardware debugging system further comprises: a software debugger operatively connected to said HDL-based hardware debugger, said software debugger operates to debug the software of the electronic circuit design. 36. A hardware debugging system as recited in claim 35, wherein the electronic system includes a processor, and wherein the software is executed by said processor. 37. A hardware debugging system as recited in claim 35, wherein said HDL-based hardware debugger and said software debugger are synchronized during debugging of the electronic system. 38. A hardware debugging system as recited in claim 22, wherein the electronic system comprises an integrated circuit hardware product, the integrated circuit hardware product including at least a portion of the electronic circuit design. 39. A hardware debugging system as recited in claim 22, wherein the electronic system comprises a programmable integrated circuit, the programmable integrated circuit being programmed to include at least a portion of the electronic circuit design. 40. A hardware debugging system as recited in claim 22, wherein the electronic system comprises a printed circuit board with electronic components thereon, the printed circuit board including at least a portion of the electronic circuit design. 41. A hardware debugging system for debugging an electronic system containing an electronic circuit design, the electronic circuit design being described by a high level HDL description, said hardware debugging system comprising: instrumentation means for receiving the high level HDL description of the electronic circuit design or a description derived therefrom, determining additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and incorporating the additional circuitry into the electronic circuit design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the high level HDL description; and a HDL-based hardware debugger configured to debug the electronic system by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the high level HDL description. | CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of: (i) U.S. Provisional Patent Application No. 60/168,266, filed Nov. 30, 1999, and entitled “INTERACTIVE DEBUGGING OF HDL SOURCE CODE”, and which is hereby incorporated by reference herein; and (ii) U.S. Provisional Patent Application No. 60/230,068, filed Aug. 31, 2000, and entitled “HDL-BASED HARDWARE DEBUGGING”, and which is hereby incorporated by reference herein. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electronic systems and, more particularly, to debugging of electronic systems. 2. Description of the Related Art Electronic systems are designed by designers to operate in specific ways. Electronic systems are systems that contain digital and/or analog electronic components connected together to perform specific operations or functions. Besides the electronic components, electronic systems may also include software. Once designed, the electronic systems may need to be debugged. Debugging electronic systems is a process which involves detection, diagnosis, and correction of functional failures. In the detection step, the designer of the electronic system observes a functional failure. When the designer is able to gather enough information about the incorrect behavior of the electronic system, the designer of the electronic system can draw the necessary conclusions to diagnose the functional failure. For correction of the functional failure, a fix is applied and subsequently tested. When the design is provided in a Hardware Description Language (HDL), such a fix may be a textual change to the HDL description of the electronic system. In general, debugging has conventionally been performed by various different approaches. In particular, debugging has been performed by computer software debugging, hardware description language functional verification, hardware logic level analysis, or hardware behavioral source level emulation. These different approaches are discussed below. Computer software debugging is conventionally performed using a computer software debugger. A computer software debugger is a software tool that allows a software developer to control the execution of a running computer software program by setting break-points, sequentially single-stepping through the execution of the computer software program, and looking at the program's state by examining and displaying variables and expressions. One example of such a software debugging tool is the GNU Debugger (GDB), which can be obtained from Red Hat, Inc. in Sunnyvale, Calif. Software debuggers usually offer interactive debugging of software programs which are sequentially executed on computers. However, some software debuggers also support limited concurrency such as threaded program execution. Some software debuggers support debugging programs written at different levels of abstraction from high-level computer languages such as C++ down to assembler code and/or machine code. To assist with debugging of programs written in high-level computer languages, the software debugging system can add extra debug information (e.g., symbolic names and references to source code) to the compiled code during compilation of the computer software program. In combination with in-circuit emulators, software debuggers may provide a limited capability to analyze the underlying Central Processing Unit (CPU) of the computer executing the computer software program. A major disadvantage of software debuggers is, however, that they cannot be used for efficiently debugging general hardware of electronic systems. Hardware description language functional verification is used to verify that the parts of an electronic system which are described using HDL match their functional specification. Such functional verification can be achieved through functional simulation or formal verification. Functional simulation is performed by a functional simulator. A functional simulator is a software program that runs on a host computer and simulates the operation of an electronic system using its HDL description. Examples of functional simulators include VCS and VSS from Synopsys, Inc. in Mountain View, Calif., and ModelSim from Mentor Graphics Corp. in Wilsonville, Oreg. To increase simulation performance some functional simulators additionally make use of special purpose hardware which acts as a co-processor and accelerates the simulation. An example of a hardware-accelerated functional simulator is the Hammer system from Tharas Systems, Inc. in Santa Clara, Calif. Unfortunately, one major disadvantage of functional simulation is the need for simulation models. In order to be able to simulate, there must exist a simulation model with the proper functional behavior for each component of the HDL design for the electronic system. For some components such simulation models may not be readily available and must be generated. Additionally, the HDL design must be stimulated by a testbench. Since the ideal testbench must correctly and exhaustively match the behavior of the target environment, creation of a testbench can be very difficult and time consuming. On the other hand, a testbench that is too simple will not provide the necessary coverage to find all the design errors. Although functional simulation is useful, using functional simulation to debug design errors is too burdensome. Not only are the testbenches difficult to create, but also the more complex the HDL design is, the lower the performance of functional simulation. For state-of-the-art HDL designs simulation is now a million times slower than the fabricated hardware. Hardware-acceleration can typically speedup functional simulation by a factor on the order of one-hundred. Accordingly, its low performance makes it impractical to use functional simulation either to debug real-time applications or to concurrently debug hardware and software of complex electronic systems. Formal verification is performed by a formal verification tool. Formal verification can help with the problem of incomplete coverage in functional simulation due to testbench limitations. One approach checks the HDL description for properties. Such properties may be explicitly provided by the designer of the electronic system or implicitly extracted from the HDL description by the formal verification tool. An example of such a formal verification tool is Solidify from Averant, Inc. in Sunnyvale, Calif. One disadvantage of formal verification is that it is impractical to use to re-produce functional failures observed in a running electronic system. Both techniques, functional simulation and formal verification, have the major disadvantage that they do not operate on fabricated hardware. Instead, both techniques operate on a model of the electronic system and a model of the environment in which the electronic system runs, i.e., a testbench. Thus, their use is limited to debugging design errors. As such, neither technique is applicable for debugging manufacturing faults, environment errors, timing errors and/or tool errors. Also, inadequacies in the testbench have the potential to hide or introduce design errors in the HDL design during functional simulation which can later, when the HDL design is fabricated, show up as functional failures of the running electronic system. Hardware logic level analysis is a technique that works at the logic level of a fabricated electronic system. The logic level of abstraction is also referred to as gate-level. Since electronic systems have been designed at the logic level for many years (for example using schematic entry of logic gates and flip-flops), there exists a wide variety of different techniques for debugging at logic level, including: digital logic is analyzers, in-circuit emulators, Design-For-Test (DFT) techniques, and hardware emulation, each of these different techniques are discussed below. Digital logic analyzers operate to probe a limited number of digital signals and record their logic values. Probing is accomplished by physically connecting probes of the digital logic analyzer to exposed pins and/or circuitry on the fabricated design. Recording is controlled by trigger conditions, which are conditional expressions built upon the values of the recorded signals provided by the probes. The values for the recorded signals are stored in dedicated memory inside the digital logic analyzer so as to be available for subsequent display. Digital logic analyzers can be external devices or blocks embedded inside the digital circuits of an electronic system. An example of an external digital logic analyzer is the Agilent 16715A from Agilent Technologies, Inc. in Palo Alto, Calif. Examples of embedded logic analyzers are SignalTap from Altera Corporation in San Jose, Calif., or ChipScope from xilinx, Inc. in San Jose, Calif. Another example of an embedded logic analyzer was presented at the 1999 IEEE International Test Conference by Bulent Dervisoglu in “Design for Testability: It is time to deliver it for Time-to-Market”. Since embedded logic analyzers are added to the circuitry of the design, they can probe internal signals. Thus, embedded digital logic analyzers overcome the limited access to internal signals problem of external logic analyzers because access to the internal signals is not restricted by the pins of the fabricated circuits. An in-circuit emulator is a specialized piece of hardware that connects to a CPU for debugging the CPU and the software that runs on the CPU. An example of an in-circuit emulator is visionICE from Windriver in Alameda, Calif. However, since in-circuit emulators only work for the specific target CPU for which they were built, in-circuit emulators are inappropriate for debugging general digital circuits. DFT techniques, such as boundary scan and built-in self test, provide access to the internal registers of a running fabricated digital circuit. An example of such technique is described in the IEEE 1149.1 JTAG standard available from the Institute of Electrical and Electronic Engineers in Piscataway, N.J. DFT techniques are also described in “Digital Logic Testing and Simulation” by Alexander Miczo, published by Wiley, John and Sons Inc., 1985. DFT techniques were originally developed for and applied to testing of manufacturing faults and have the major disadvantage that they do not relate back to the HDL description. Hardware emulation systems map a synthesized HDL design onto special emulation hardware. Such emulation hardware comprises many re-programmable FPGA devices and/or special purpose processors. The emulation hardware then executes a model of the HDL design. Thus hardware emulation has the same disadvantage as functional simulation, namely, that it works on a model of the electronic system and not on the fabricated hardware. As a result, hardware emulation systems are limited to design error debugging, and cannot be used for diagnosing manufacturing faults, tool errors, timing errors, etc. An example of such a hardware emulation system is System Realizer from Quicktum Systems, in San Jose, Calif. Specially built prototyping systems comprising FPGAs/PLDs can also be seen as hardware emulation systems. Since hardware emulation is usually much faster than functional simulation, hardware emulation systems may enable use of the software that is supposed to run on the HDL design to be used as a testbench. Even so, hardware emulation typically runs at speeds below one MegaHertz (MHz) while the HDL design is supposed to run at many hundred MegaHertz. In some cases the emulator speed may allow the user to connect the HDL design to the target environment which makes the design of testbenches unnecessary. Even so, with the high speeds of state-of-the-art HDL designs, hardware emulation is not capable of debugging the majority of real-time applications. Another disadvantage is that the special synthesis, mapping, and multi-chip partitioning steps required to bring an HDL design into a hardware emulation system are very complicated and time consuming. A major drawback of all logic level debugging techniques is that they work at the logic level of abstraction. Since the HDL-based design methodology of electronic systems is much more efficient for todays complex designs, HDL designs have largely replaced logic level designs. Application of logic level debugging techniques to HDL design methodology is highly inefficient. Since logic level debugging does not-relate back to the HDL description, it normally would not provide the designer of the electronic system with sufficient information to correctly diagnose a functional failure. Hardware behavioral source level emulation provides hardware emulation of source level designs. One technique for debugging HDL designs described at the behavioral level HDL using hardware emulation is described in “Interaktives Debugging algorithmischer Hardware-Verhaltensbeschreibungen mit Emulation” by Gemot H. Koch, Shaker Verlag, Germany, 1998. Some of which is also described in Koch et al., “Breakpoints and Breakpoint Detection in Source Level Emulation,” ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, 1998. The therein described technique is referred to as Source Level Emulation (SLE) and offers an approach for emulating HDL designs, however only if such designs are described in behavioral VHDL. During behavioral synthesis a behavioral HDL design is enhanced for debugging by generating and adding additional circuitry for break-point detection. The behavioral synthesis tool writes out synthesized VHDL which contains a register transfer level description of the enhanced HDL design. The register transfer level description is then synthesized, mapped, and multi-chip partitioned into the emulation hardware. During hardware emulation with a hardware model of the HDL design, the user is able to examine particular variables in the behavioral HDL description. Control is provided via break-points which are detected using the additional circuitry inside the running hardware model. Break-points in SLE have a very specific meaning. In particular, such break-points are closely tied to behavioral operations in the data-flow of the behavioral HDL description, and are associated with particular states of a controller which is generated by the behavioral synthesis. Additionally, break-points can be made conditioned upon particular values of data-path registers. When a break-point is detected, the execution of the hardware model is stopped. This is done by halting some or all of the system clocks and prevents the registers from changing their current values. Once halted, internal registers can be read. These registers form a scan-chain such that their values can be read by an emulation debugging tool. Examination of variables in the behavioral HDL description is done in two ways. For variables which are mapped by the behavioral synthesis into registers in the hardware model, their values can be read and related back to HDL identifiers. This is done using map files which keep track of the transformations in behavioral synthesis, register transfer level synthesis, mapping, and multi-chip partitioning. For variables which have not been mapped to registers in the hardware model, their values are computed using a functional model of the behavioral HDL design. This functional model is created during behavioral synthesis and requires the existence of functional models of its components. The values, either read or computed, are then displayed in the behavioral HDL description. Optionally, by overwriting some or all of the registers of the hardware model while the hardware model is halted, the behavior of the HDL design can be modified once the execution of the hardware model is resumed. Although source level emulation provides a debugging method which works at the level of the HDL description (in this case behavioral VHDL), it has various drawbacks which limits its use in practice. Several of the drawbacks are as follows. First, enhancements for source level emulation must be done inside a behavioral synthesis tool, since it needs special information about the behavioral HDL design which is only available during the behavioral synthesis process. Second, source level emulation does not allow the designer to perform customization. For example, a designer is not able to select trade-offs between hardware overhead and debugging support. Third, source level emulation cannot handle HDL descriptions on levels of abstraction other than the one provided by behavioral VHDL. Explicitly, source level emulation is not applicable for the most commonly used levels of abstraction of RTL HDL and gate-level HDL. Fourth, source level emulation supports neither hierarchy nor re-use of pre-designed blocks. Fifth, there are various limitations and difficulties in relating registers back to behavioral HDL source code. Sixth, in order to examine the state of the hardware model, it is required that some or all of the system clocks be halted and the hardware stopped, which makes source level emulation inapplicable for debugging the majority of today's electronic systems which are not to be stopped. Thus, there is a need for efficient and effective approaches for debugging HDL-based electronic system designs. SUMMARY OF THE INVENTION Broadly speaking, the invention relates to techniques and systems for analysis, diagnosis and debugging fabricated hardware designs at a Hardware Description Language (HDL) level. Although the hardware designs (which were designed in HDL) have been fabricated in integrated circuit products with limited input/output pins, the invention enables the hardware designs within the integrated circuit products to be comprehensively analyzed, diagnosed, and debugged at the HDL level at speed. The ability to debug hardware designs at the HDL level facilitates correction or adjustment of the HDL description of the hardware designs. The invention can be implemented in numerous ways including, a method, system, device, and computer readable medium. Several embodiments of the invention are discussed below. As a hardware debugging system for debugging a fabricated integrated circuit containing an electronic circuit design, one embodiment of the invention includes at least: an instrumentor configured to receive a high level HDL description of the electronic circuit design, to determine aspects of the electronic circuit design to be examined or modified during debugging, to determine additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and to produce a modified high level HDL description of the electronic circuit design by incorporating an HDL description of the additional circuitry into the high level HDL description of the electronic circuit-design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the modified high level HDL description or the high level HDL description; and a HDL-based hardware debugger configured to debug the fabricated integrated circuit fabricated in accordance with the modified high level HDL description by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the modified high level HDL description or the high level HDL description. As a hardware debugging system for debugging an electronic system containing an electronic circuit design, the electronic circuit design being described by a high level HDL description, one embodiment of the invention includes at least: an instrurentor configured to receive the high level HDL description of the electronic circuit design or a description derived therefrom, to determine aspects of the electronic circuit design to be examined or modified during debugging, to determine additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and to incorporate the additional circuitry into the electronic circuit design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the high level HDL description; and a HDL-based hardware debugger configured to debug the electronic system by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the high level HDL description. As a hardware debugging system for debugging an electronic system containing an electronic circuit design, the electronic circuit design being described by a high level HDL description, another embodiment of the invention includes at least: instrumentation means for receiving the high level HDL description of the electronic circuit design or a description derived therefrom, determining additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and incorporating the additional circuitry into the electronic circuit design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the high level HDL description; and a HDL-based hardware debugger configured to debug the electronic system by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the high level HDL description. Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which: FIG. 1A is a block diagram of a hardware debugging system according to one embodiment of the invention; FIG. 1B is a block diagram of a hardware debugging system according to another embodiment of the invention; FIG. 2 is a flow diagram of basic instrumentation processing according to one embodiment of the invention; FIG. 3 is a block diagram of an instrumentation system according to one embodiment of the invention; FIGS. 4A and 4B are flow diagrams of detailed design instrumentation processing according to one embodiment of the invention; FIG. 5A is a flow diagram of selection processing according to one embodiment of the invention; FIG. 5B is a flow diagram of break-point processing according to one embodiment of the invention; FIG. 5C is a flow diagram of explicit trigger condition selection processing according to one embodiment of the invention; FIG. 5D is a flow diagram of sampling signal selection processing according to one embodiment of the invention; FIG. 6 is a diagram of a design instrumentation database according to one embodiment of the invention; FIG. 7A is a block diagram of an instrumentation system according to one embodiment of the invention; FIG. 7B is a diagram of a hard block resolution system according to one embodiment of the invention; FIG. 8 is a block diagram of a representative Design Instrumentation Circuit (DIC) according to one embodiment of the invention; FIG. 9 describes a representative generic configurable circuitry which can implement design sampling and design patching according to one embodiment of the invention; FIG. 10 illustrates a representative generic configurable trigger detection circuit according to one embodiment of the invention; FIG. 11 illustrates a representative state based Finite State Machine design control circuit according to one embodiment of the invention; FIG. 12 illustrates a representative transition based Finite State Machine design control circuit according to one embodiment of the invention; FIG. 13 illustrates a representative data-path register design control circuit according to one embodiment of the invention; FIG. 14 illustrates a representative part of the design control circuit according to one embodiment of the invention; FIG. 15 is a block diagram of a portion of an instrumentation system which includes a cross-reference analysis module and a cross-reference database according to one embodiment of the invention; FIG. 16 is a block diagram of a portion of an instrumentation system which includes a DFT analysis module according to one embodiment of the invention; FIG. 17 is a data flow diagram illustrating DIC creation processing according to one embodiment of the invention; FIG. 18 is a flow diagram of HDL-based hardware debugging processing according to one embodiment of the invention; FIG. 19 is a data flow diagram of a debugging process performed by a HDL-based hardware debugger according to one embodiment of the invention; FIG. 20 is a block diagram of a hardware/software co-debugging system according to one embodiment of the invention; and FIG. 21 is a block diagram of a hardware/software co-debugging system according to one embodiment of the invention. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to techniques and systems for analysis, diagnosis and debugging fabricated hardware designs at a Hardware Description Language (HDL) level. Although the hardware designs (which were designed in HDL) have been fabricated in integrated circuit products with limited input/output pins, the invention enables the hardware designs within the integrated circuit products to be comprehensively analyzed, diagnosed, and debugged at the HDL level at speed. The ability to debug hardware designs at the HDL level facilitates correction or adjustment to the HDL of the hardware designs. The following discussions will be made clearer by a brief review of the relevant terminology as it is typically (but not exclusively) used. Accordingly, to assist readers in understanding the terminology used herein, the following definitions are provided. “Software” is defined as but not limited to programming language content written using a programming language. Examples of programming languages include C, C++, Basic, assembly, and Java. “HDL” is a Hardware Description Language. A hardware description language is defined as any programming language that can describe the hardware portion of an electronic system. Examples of HDLs include VHDL which is described in the IEEE Standard VHDL Language Reference Manual available from the Institute of Electrical and Electronic Engineers in Piscataway, N. J., which is hereby incorporated by reference; Verilog HDL which is described in Hardware Modeling with Verilog HDL by Eliezer Stemnheim, Rajvir Singh, and Yatin Trivedi, published by Automata Publishing Company, Palo Alto, Calif., 1990, which is hereby incorporated by reference; and SystemC which stems from the Open SystemC Initiative (OSCI) originally started by Synopsys, Inc. of Mountain View, Calif. General purpose programming languages such as C++, C, and assembly languages may also be used as a HDL. A “high level HDL description” is a HDL description in which at least a portion of the description is at register transfer level (RTL) or higher. For VHDL this synthesizable, register transfer level subset is described in the IEEE 1076.6-1999 Standard for VHDL Register Transfer Level (RTL) Synthesis, available from the Institute of Electrical and Electronic Engineers in Piscataway, N. J., which is hereby incorporated by reference. The synthesizable register transfer level subset of the Verilog HDL is described in “Verilog HDL: A Guide to Digital Design and Synthesis” by Samir Palnitkar, SunSoft Press, 1996. A “RAM” is a Random Access Memory—defined as an electronic component capable of storing data. “ASIC” is an Application Specific Integrated Circuit. An ASIC device is an electronic component of a system. ASICs are custom devices created for a specific 5 purpose within the electronic system. ASIC devices are easier and faster to create with respect to a full custom semiconductor device. An ASIC may be described using HDL and implemented using synthesis. An “FPGA” is a Field Programmable Gate Array. FPGAs are electronic components that have a configurable function. These devices are able to change their 10 functionality via an information stream transferred to the device. These electronic components are available from a number of different suppliers in a wide range of sizes and speeds. One example of these devices are the Virtex FPGA devices from Xilinx, Inc. located in San Jose, Calif. An FPGA design may be described using HDL and implemented using synthesis. A “Central Processing Unit” or “CPU” is circuitry controlling the interpretation and execution of software programmed instructions, performs arithmetic and logical operations on data, and controls input/output functions. For the following descriptions the term CPU will be used to also denote other processing elements such as microprocessors, digital signal processors, microcontrollers, etc. A “register” is an element in digital circuitry which can store one or more bits. Examples for registers are the various types of flip-flops and latches. A “PLD” is an Programmable Logic Device. PLDs are electronic components that have a configurable function. These devices are able to change their functionality via an information stream transferred to the device. These electronic components are available from a number of different suppliers in a wide range of sizes and speeds. One example of these devices are the Apex PLD devices from Altera Corporation in San Jose, Calif. A PLD design may be described using HDL and implemented using synthesis. “Electronic Components” are defined as but not limited to, transistors, logic gates, integrated circuits, semi-custom integrated circuits, full custom integrated circuits, application specific integrated circuits (ASICs), gate arrays, programmable logic devices (PLDs), field prograrrmable gate arrays (FPGAs), CPUs, Random Access Memory (RAM), mixed signal integrated circuits, systems on a chip (SOC), and systems on a printed circuit board. An “Electronic System” is defined as a system that contains one or more digital and/or analog Electronic Components connected together to perform specific operations or functions. An Electronic System can be implemented entirely of hardware (Electronic Components) or consist of a mix of hardware and software (programming language content). “Mixed-signal designs” are defined as Electronic System designs which incorporate both digital and analog signals. The “HDL Design” is referred to as the portion of the electronic system which is described in HDL and implemented in hardware. It is also referred to as the “Design under Test” (DUT). An “SOC” is a System On Chip. A SOC is defined as a device large enough to contain an entire electronic system implementation. SOC devices can integrate a number of electronic devices into one device. An “HDL description” is the textual description of an HDL Design. “HDL source code” is referring to the text files which contain the HDL description. An “HDL identifier” is an object in an HDL description which represents a signal, a set of signals, a storage element, or a set of storage elements and which can take a value from a set of possible values. Each HDL identifier is associated with a particular scope defined by the syntax of the umderlying hardware description language. A “Technology Mapping Process” is defined as the process of transforming a particular representation of an electronic design into a design consisting entirely of primitive electronic elements from a design library for a target technology. The representation of said electronic design from which the Technology Mapping Process begins is dependent on the particular Technology Mapping Process being employed. However, said representation usually consists of simple boolean elements. For example, said representation may consist entirely of an interconnected set of 2-input/1-output logic elements with each said element performing the NAND function. An example of a tool that performs the Technology Mapping Process is Design Compiler from Synopsys in Mountain View, Calif. “Synthesis” is defined as the process of creating an electronic implementation from the functional description of a system. An example of a tool that performs this operation is Design Compiler from Synopsys in Mountain View, Calif. which reads electronic system descriptions written in a synthesizable subset of VHDL and Verilog and produces a technology mapped design as an output. “Behavioral HDL” is an HDL description at an algorithmic level of abstraction in which neither the timing behavior nor the structure of the HDL Design is explicitly described. “Behavioral synthesis” transforms a behavioral HDL description into a register transfer level (RTL) description where the timing behavior and the structure of the HDL Design is fixed. This RTL description is then processed in synthesis and technology mapping. An example of a tool that performs behavioral synthesis is Behavioral Compiler from Synopsys, Inc. of Mountain View, Calif. A “System Clock” is defined as a main timekeeping signal in a design. All operations that are relative to the System Clock will proceed when the System Clock becomes active. “Constraints” are defined as limits placed on parameters for the implementation of an electronic system. Parameters of an electronic system can include but are not limited to register to register propagation delay, system clock frequency, primitive element count, and power consumption. These constraints can be used by synthesis tools to guide the implementation of the electronic design. “Fabrication” is the process of transforming a synthesized and technology mapped design into one or more devices of the target technology. For example, the fabrication of ASICs involves manufacturing and the fabrication of FPGAs and PLDs involves device configuration. “DFT” is Design-for-test. DFT is defined as a process in which an electronic system designer will include structures in the electronic system that facilitates manufacturing testing. “Design Rule Check” (DRC) are checks performed before integrated circuit manufacturing to ensure that in the placed and routed technology mapped design none of the rules of the target technology process is violated. Examples for such DRC are checks for shorts, spacing violations, or other design-rule problems between logic cells. An example for a tool that does DRC is Dracula from Cadence Design Systems, Inc. in San Jose, Calif. A “Functional Specification” is defined as the documentation that describes the necessary features and operations of a system. A “functional failure” is a behavior of a design which does not meet the functional specification which was used in the creation of the design. Every step in the design process can potentially cause a functional failure. Functional failures can be classified depending on which step of the design process caused the functional failure. A “fault” is a specific type of functional failure. This type of failure is due to one or more manufacturing defects causing a functional failure in the fabricated design. A “design error” is a specific type of functional failure where the HDL description's behavior did not match the functional specification. A “tool error” is a specific type of functional failure which was introduced by design tools because the HDL description was not properly processed such that the functional specification is not met by the implementation. An “environment error” is a specific type of functional failure caused by a particular combination of environmental parameters such as temperature, humidity, pressure, etc. A “Functional Simulator” is a tool that mimics the functional behavior of a model of an electronic system which is described using HDL. A “Testbench” is defined as an electronic system description that presents stimulus to and/or gathers information from the target electronic system design to be verified. In some cases the testbench ignores the response from the target electronic system design. A testbench is used to mimic the behavior of the target environment in which the electronic system being developed will operate. A testbench may comprise both hardware and software. A “Target Environment” is the system the electronic system is specified to interact with and/or to run in. A target environment may comprise both hardware and software. The “Target Speed” of an electronic system is the speed and/or the speed range the electronic system is specified to run at. Examples for measures for the target speed and the speed range are clock frequency, response time, time to propagate, and cycle time. “Debugging” is the process of comparing the behavior of an implementation of the electronic system to the electronic system functional specification. The purpose of debugging is to find causes and remedies for functional failures. “Co-Debugging” or “hardware/software co-debugging” is defined as the process of debugging the software and hardware of an electronic system concurrently. A “FSM” is Finite State Machine—defined as an electronic system control structure. The design and implementation of FSM is described in great detail in Synthesis and Optimization of Digital Circuits, by Giovanni DeMicheli, McGraw Hill, 1994. A “HDL Building Block” is a functional unit of an HDL Design from which the HDL Design is constructed. A HDL Building Block (BB) performs calculations on the signals to which it is connected and communicates with other BBs in the design. The communication is through connecting internal signals of a BB to communication ports of the BB and/or connecting internal signals of the BB to communication ports of other BBs in the HDL Design. Examples of BBs are Entities in the VHDL language and Modules in the Verilog language. A “Hard Block” is an electronic system which has a pre-defined functionality and which can be incorporated into another electronic system. Commonly, the form of the Hard Block is such that the functionality of the Hard Block can not be altered. An example of a hard block is an HDL Design which implements a industry standard bus controller. A “Design State” is defined as the logical values taken by the storage elements of the design at a particular time, combined with the logical values taken by the inputs of the design taken at the same particular time. The “System State” or “State of the System” is a synonym for “Design State.” “Real-time” means a task, process or response occurs substantially immediately. The term is used to describe a number of different computer features. For example, real-time operating systems are systems that respond to input immediately. Real-time is also used for describing tasks in which the computer must react to a steady flow of new information without interruption. Real-time can also refer to events simulated by a computer at the same speed that they would occur in real life. Embodiments of this aspect of the invention are discussed below with reference to FIGS. 1-21. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. FIG. 1A is a block diagram of a hardware debugging system 100 according to one embodiment of the invention. The hardware debugging system 100 operates to debug a hardware product referred to herein as a Device Under Test (DUT) 102. The DUT 102 is typically part of a larger hardware product referred to as an electronic system 104. The DUT 102 can pertain to a single integrated circuit chip, multiple integrated circuit chips, a system on a chip, or a system on a printed circuit board. According to the invention, the DUT 102 includes Design Instrumentation Circuitry (DIC) 106. The DIC 106 is provided within the DUT 102 in order to facilitate debugging of the DUT 102. The DIC 106 can be provided within the DUT 106 in either a centralized or distributed manner. The hardware debugging system 100 operates to determine the DIC 106 that is provided within the DUT 102. In this regard, an original HDL description 108 of the electronic system 104 is received at an instrumentor 110. The instrumentor 110 modifies or alters the original HDL description 108 to produce an instrumented HDL description 112. The instrumented HDL description 112 represents not only the electronic system 104 with the DUT 102 provided therein, but also the DIC 106 that is provided within the DUT 102. The instrumentor 110 also stores DIC information to a design instrumentation database 114. By storing the DIC information in the design instrumentation database 114, the hardware-based debugging of the DUT 102 is facilitated. The hardware debugging system 100 also includes synthesis and place & route systems 116. The synthesis and place & route systems 116 receives the instrumented HDL description 112 and performs conventional synthesis as well as place & route operations in order to produce an instrumented design 118. Although not shown in FIG. 1A, other additional tools can be utilized to produce or enhance the instrumented design 118. Examples of additional tools include a Design-For-Test (DFT) tool or a Design Rule Check (DRC) tool. The instrumented design 118 represents a description (e.g., design files) of the electronic system 104 that would be thereafter fabricated. Hence, once the instrumented design 118 is available, fabrication 120 can be performed. The fabrication 120 produces the electronic system 104 having the DUT 102 with the DIC 106 provided therein. Fabrication is the process of transforming a synthesized and technology mapped design (e.g., the instrumented design .118) into one or more devices of the target technology. For example, if the target technology is Application Specific Integrated Circuits (ASICs) then the fabrication involves manufacturing, and if the target technology is Field Programmable Gate Arrays (FPGAs) or Programmable Logic Devices (PLDs) the fabrication involves device configuration. At this point, the electronic system 104 is a hardware product that has been produced. This hardware product can then be debugged using a HDL-based hardware debugger 122. More particularly, the HDL-based hardware debugger 122 couples to the DIC 106 so that it is able to communicate with the DIC 106 when debugging the DUT 102. The HDL-based hardware debugger 122 also couples to the design instrumentation database 114 so that access to the DIC information is available. As a result, the HDL-based hardware debugger 122 enables a user to debug the DUT 102 and/or hardware and/or software interacting with the DUT 102 in close relation to the original HDL description 108. Further, in one embodiment, debugging can be performed while the electronic system 104 and the DUT 102 operate in the target environment, at target speed. FIG. 1B is a block diagram of a hardware debugging system 150 according to another embodiment of the invention. The hardware debugging system 150 is similar to the hardware debugging system 100 and includes many of the same components. Hence, the hardware debugging system 150 enables a user of the HDL-based hardware debugger 122 to debug the DUT 102 of the electronic system 104 and/or hardware and/or software interacting with the DUT 102, as noted above. However, the hardware debugging system 150 includes a synthesis and place & route system 152 that includes an instrumentor 154. Hence, the original HDL description 108 is supplied to the synthesis and place & route system 152. The synthesis and place & route system 152 can then produce the instrumented design 118 while using not only synthesis and place & route tools but also the instrumentor 154. In this embodiment, the instrumentor 154 is able to be embedded within synthesis and place & route system 152. Here, the instrumentor 154 assists with producing the instrumented design 118 which represents the electronic system 104 having the DIC 106 provided within the DUT 102. However, with the hardware debugging system 150, the original HDL description 108 need not be modified to produce an instrumented HDL description. FIG. 2 is a flow diagram of basic instrumentation processing 200 according to one embodiment of the invention. The basic instrumentation processing 200 is, for example, performed by the instrumentor 110 illustrated in FIG. 1A or the instrumentor 154 illustrated in FIG. 1B. The basic instrumentation processing 200 initially receives 202 a HDL description for an electronic system. The HDL description is then analyzed 203 to understand the characteristics of the electronic system. Next, parts (or portions) of the electronic system that are to be examined and/or modified are determined 204. Typically, the parts of the electronic system to be examined and/or modified (e.g., instrumented) are within a DUT such as the DUT 102 illustrated in FIGS. 1A and 1B. Hence, the parts of the electronic system to be examined and/or modified represent various signals and/or components within the DUT. After the parts of the electronic system to be examined and/or modified have been determined 204, design instrumentation circuitry (DIC) is generated 206. Preferably, the DIC is determined 204 based on the parts of the electronic system to be examined and/or modified. In this regard, the DIC can be at least partially customized to the application such as the amount or degree of testing or debugging desired. Thereafter, the DIC is incorporated 208 into the electronic system. The DIC can be incorporated 208 into the electronic system (namely, the DUT) in various ways. In one embodiment, the DIC can be incorporated by adding HDL to the original HDL for the electronic system. In another embodiment, the DIC can be incorporated by modifying a netlist description for the electronic system. Following the operation 208, the basic instrumentation processing 200 is complete and ends. Design instrumentation (DI) is a process by which a HDL description of an electronic system is analyzed, and then a DIC computed. The DIC is thereafter incorporated (e.g., added) into the electronic system to facilitate debugging. The DIC can be added to the electronic system in a variety of ways. In one embodiment, DIC can be added to the electronic system by adding an HDL description of the DIC to the HDL description of the electronic system. In another embodiment, the DIC can be added to the electronic system during synthesis. The DIC provides mechanisms to control the examination and/or modification of a running electronic system. Thus, the DIC allows to analyze, diagnose, and/or debug the DUT by giving detailed and accurate information about its current state of operation, as well as the state history. FIG. 3 is a block diagram of an instrumentation system 300 according to one embodiment of the invention. The instrumentation system 300 operates to perform design instrumentation operations to produce an appropriate DIC. The instrumentation system 300 includes an instrumentor 302. The instrumentor 302 operates to determine the appropriate DIC for the electronic system (namely, the DUT) that is to be eventually hardware debugged. The instrumentor 302 receives an original HDL description 304 as well as instrumentation directives 306. The instrumentation directives 306 are instructions to the instrumentor 302 that inform the instrumentor 302 of the portions, parts or areas of the original HDL description 304 that are to be examined and/or modified. The instrumentation directives 306 can be predetermined or interactively provided by a user through a user interface. Additionally, the instrumentor 302 can further receive design constraints 308, Design For Test (DFT) information 310, instrumented pre-designed blocks 312 and DIC template(s) 314. The design constraints 308 are constraints on the particular design associated with the original HDL description 304. More particularly, design constraints are limits placed on parameters for an implementation of an electronic system. Some examples of the parameters that can be limited by design constraints include register-to-register propagation delay, system clock frequency, primitive element count, and power consumption. The constraints on the parameters are used by synthesis and place & route tools to guide the implementation of the electronic design. The DFT information 310 is information about features (e.g., structures) of the original HDL description 304 that pertain to testing. The DFT information is used to facilitate manufacturing testing. For example, the DFT information 310 can provide a description of a scan-chain provided within the original HDL description 304. The instrumentor 302 can utilize portions of the DFT information 310 to reduce the circuitry required for the DIC. The DIC can make use of previously instrumented pre-designed blocks 312. In case the electronic system contains pre-designed blocks which have been instrumented, the DIC can communicate with the previously instrumented pre-designed blocks 312 to facilitate their debugging. The DIC template(s) 314 provide one or more templates for the instrumentor 302 to utilize when producing the DIC. The instrumentor 302 outputs an instrumented description 316. In one embodiment, the instrumented description 316 can be represented as an instrumented HDL description in which the original HDL description 304 has been enhanced to include a HDL description of the DIC (see FIG. 1A). In another embodiment, the instrumented description 316 can represent an instrumented netlist (see FIG. 1B). The instrumentor 302 also produces an optional DIC HDL description 318. The DIC HDL description 318 can be utilized by a functional simulator or synthesis and place & route tools. The instrumentor 302 can also produce an optional DIC simulation model 322 that permits functional simulation of the instrumented description 316. Still further, the instrumentor 302 can output synthesis and place & route constraints 324 and modified DFT information 326. The synthesis and place & route constraints 324 can be utilized by the synthesis and place & route tools. The modified DFT information 326 can also be used by the synthesis and place & route tools, so that the resulting electronic system is able to be tested as originally designed. The instrumentation system 300 also includes a design instrumentation database 320 that stores instrumentation information. The instrumentation information includes information on the types of instrumentations that have been done, the DIC and other information as explained in greater detail below. As noted above, an HDL-based hardware debugger (e.g., debugger 122) eventually utilizes the DIC information stored in the design instrumentation database 320 when performing hardware debugging of the electronic system. Additional details on the design instrumentation database 320 are provided in FIG. 6 below. FIGS. 4A and 4B are flow diagrams of detailed design instrumentation processing 400 according to one embodiment of the invention. The detailed design instrumentation processing 400 is, for example, performed by the instrumentor 110 illustrated in FIG. 1A, the instrumentor 154 illustrated in FIG. 1B, or the instrumentor 302 illustrated in FIG. 3. The detailed design instrumentation processing 400 initially receives 402 a HDL description of an electronic system. The HDL description is then parsed and analyzed 404. The analysis 404 of the HDL description can identify portions that cannot be instrumented or that can only be instrumented in certain ways. The result of the analysis 404 can be used to determine whether particular instrumentation directives are valid, and thus can be followed by the instrumentor. Additionally, one or more of design constraints, DFT information, predetermined instrumentation directives, or pre-designed blocks may also optionally be received 406. Then, instrumentation directives are determined 408. Here, instrumentation directives can be predetermined and thus provided or can be determined through user interaction. FIGS. 5A-5D, discussed below, pertain to user interaction to produce instrumentation directives. After the instrumentation directives are determined 408, a customized DIC is produced 410 based on the HDL description and the instrumentation directives. Hence, the customized DIC is tailored to the particular HDL description and the particular instrumentation directives. By tailoring the DIC to the particular HDL description and the particular instrumentation directives, the customized DIC makes efficient use of its circuitry. Since the DIC consumes area (e.g., die space) on the hardware product (e.g., semiconductor chip), making the customized DIC efficient and compact is advantageous. In producing the customized DIC, the detailed design instrumentation processing 400 is able to reuse pre-designed blocks that have already been instrumented. In other words, the customized DIC can communicate with existing DICs of pre-designed blocks that represent other portions of the electronic system (or even external systems). Additionally, the DIC can be optimized 412 to reduce hardware overhead and/or maximize coverage. Here, the optimization 412 to the DIC enables the hardware overhead associated with the DIC to be reduced which is advantageous in producing or using integrated circuit products. For example, cost analysis can be performed during the optimization to explore the different structures in the context of a given implementation technology and given design constraints. Variations of the DIC can thus be explored in order to minimize the overhead of the DIC on the hardware in terms of area, delay, power consumption, routability, and/or testability. Variations of the DIC can be described via DIC templates. The optimization 412 can also try to increase the effects of the instrumentation with regards to the hardware overhead. For example, if some certain signals can be examined, some other signals may also be able to be examined without any or minimal hardware overhead. Next, a decision 414 determines whether design constraints have been provided. Typically, the design constraints are provided in a file which contains specifications for area, delay, power consumption, routability and testability. When the decision 414 determines that design constraints have been provided, then the DIC may be modified 416 in view of the design constraints. Also, modifications to the design constraints may be performed so that the overall design of the electronic system (including the DIC) complies with the intent of the original design constraints. For example, timing constraints may be changed to reflect the insertion of the DIC. In addition, additional design constraints might be generated, which, for example, may be used to guide synthesis and place & route tools in optimizing the DIC. Following operation 416, as well as following the decision 414 when design constraints are not provided, a decision 418 determines whether DFT information has been provided. When the decision 418 determines that DFT information has been provided, then the DFT information is complied with or reused 420. When complied with, the detailed design instrumentation processing 400 renders the customized DIC compatible or compliant with the DFT information (e.g., existing DFT structures in the design). For example, scan-chains or boundary-scans can be provided or modified to take into account the DIC. Alternatively, when the DFT information is reused, the customized DIC can make use of portions of the circuitry made available through the DFT information and thereby make use of existing circuitry. The modifications to the DFT information can reflect the ability of the DIC to utilize portions of the circuitry within the electronic system associated with the DFT information as well as with the ability to modify the DFT information to preserve the intent of the designer after the DIC is included within the electronic system. Following the operation 420, as well as following the decision 418 when the DFT information is not provided, a decision 422 determines whether instrumented, pre-designed blocks have been provided. When the decision 422 determines that instrumented, pre-determined blocks have been provided, then the DIC of each instrumented, pre-designed block is connected 424 to the current DIC. This facilitates debugging of the electronic system which contains pre-designed blocks. Following operation 424, as well as following the decision 422 when instrumented, pre-designed blocks are not provided, DIC information is stored 426 to a design instrumentation database. The DIC information includes a description of the DIC, the instrumentation directives, and DIC connectivity information. The DIC information can also include cross-reference data that relates elements in the design of the electronic system (i.e., hardware implementation) to and from the HDL description. Then, the customized DIC can then be added 428 to the electronic system. The customized DIC can be added 428 to the electronic system in a variety of different ways. For example, with respect to an embodiment such as illustrated in FIG. 1A, the customized DIC can be added 428 to the electronic system by producing the instrumented HDL description which describes the electronic system with the DIC included therein. Alternatively, with respect to an embodiment such as illustrated in FIG. 1B, the customized DIC can be added to the electronic system by modifying a netlist that defines the electronic system. Following operation 428 the detailed design instrumentation processing 400 operates to produce and output 430 the instrumented description, an optional DIC simulation model and an optional DIC HDL description. The DIC simulation model can be used by a simulator when functionally simulating the operation of the DUT. The DIC HDL description may for example also be used for simulation. Following the operation 430, the detailed design instrumentation processing 400 is complete and ends. As noted above, the instrumentation directives can be predetermined and thus provided or can be determined through user interaction. When the instrumentation directives are predetermined, they can be obtained from a design instrumentation file. In one embodiment, the instrumentation directives specify design visibility, design patching and design control criteria for particular portions of the design for the electronic system. Design Visibility (DV) is monitoring the entire or partial state of the DUT at, and relative to, predetermined events. An important aspect of DV is relating the states of operation back to identifiers in the original HDL description for examination during HDL-based hardware debugging. In one embodiment, DV is done by sampling the values of one or more signals of the DUT for a particular time interval determined by one or more predetermined events. The events are determined by Design Control which is described below. Design Visibility serves to monitor the state of operation of the DUT, but does not alter the DUT's behavior in any way. However, in some situations, it is advantageous to have a method to alter the behavior of the DUT after the hardware has been fabricated. Design Patching (DP) is to alter the behavior of the DUT to a predetermined particular desired state at predetermined events. The events are determined by Design Control which is described below. A particular desired state of a DUT is a particular setting of the values of all or a subset of all storage components in the DUT. Design Control (DC) provides the designer with a method to specify the events that control DV and DP. DC can be accomplished by one or more trigger conditions. A trigger condition is a conditional expression comprising HDL identifiers where the conditional expression denotes a combination comprising a particular state and/or state transition, and/or history of states and/or history of state transitions, the DUT, or a portion of it, can be in. Each time a particular trigger condition is met an associated trigger event is produced. One or more trigger events can be combined to issue a particular predetermined trigger action which may control the DV and DP and may control other functions related to HDL-based hardware debugging. A unique combination comprising one or more units of DV and/or DP all controlled by the same trigger action forms a trigger action group. A watch-point is a special case of a trigger condition which is explicitly defined using a predetermined conditional expression of HDL identifiers. A watch-point has no direct relationship with the HDL description other than its expression is made up with identifiers of the HDL description. A break-point is a special case of a trigger condition, where the trigger condition is implicitly specified by selecting a particular source code location in the HDL description. A source code location is a unique combination comprising a file name, a line number and a column position within a textual HDL description. An error trap is a special case of a watch-point where the trigger condition describes an erroneous or undesired state of the hardware. A property check is a special case of an error trap where the trigger condition is explicitly specified by a particular property of a portion of the hardware. In the event such property is not fulfilled the trigger condition is met. Properties to be checked can either be implicitly derived from the functionality of the hardware or explicitly given by the designer of the electronic system. FIG. 5A is a flow diagram of selection processing 500 according to one embodiment of the invention. The selection processing 500 pertains to user interaction with the HDL description to produce instrumentation directives. The selection processing 500 is, for example, performed by operation 406 illustrated in FIG. 4A when determining instrumentation directives. The selection processing 500 initially displays 502 a HDL description. The HDL description pertains to the electronic system. At this point, a user can interact with a graphical user interface to make a specific instrumentation directive with respect to the HDL description being displayed. Optionally, to guide a user in his selections, the results of an analysis of the original HDL description can be displayed as well (e.g., operation 404, FIG. 4A). Examples of the particular types of instrumentation directives include a selection of a trigger condition, a sampling signal or a patching signal. Hence, a decision 504 determines whether a trigger condition selection has been made. When the decision 504 determines that a trigger condition selection has been made, then trigger condition selection processing 506 is performed. Alternatively, when the decision 504 determines that a trigger condition selection has not been made, then a decision 508 determines whether a sampling signal selection has been made. When the decision 508 determines that a sampling signal selection has been made, then sampling signal selection processing 510 is performed. On the other hand, when the decision 508 determines that a sampling signal selection has not been made, then a decision 512 determines whether a patching signal selection has been made. When the decision 512 determines that a patching signal selection has been made, then patching signal selection processing 514 is performed. Following any of operations 506, 510 and 514, as well as following the decision 512 when a patching signal selection has not been made, instrumentation optimization can be performed 516. The instrumentation optimization operates to consolidate the various selections so that the DIC required to implement the various trigger conditions, sampling signals and patching signals can be efficiently implemented. Following the operation 516, a decision 518 determines whether more selections are to be made by the user. When the decision 518 determines that more selections are to be made, then the selection processing 500 returns to repeat the decision 504 and subsequent operations. Alternatively, once the decision 518 determines that no more selections are to be made, the selection processing 500 is complete and ends. The trigger condition selection processing 506 illustrated in FIG. 5A can be utilized to select or establish implicit trigger conditions or explicit trigger conditions. An example of an implicit trigger condition is a break-point, and an example of an explicit trigger condition is a watch-point, or an error trap, or a property check. FIG. 5B is a flow diagram of break-point processing 520 according to one embodiment of the invention. The break-point processing 520 represents an embodiment of the trigger condition selection processing 506 in the case in which an implicit trigger condition (namely, a break-point) is involved. The break-point processing 520 initially identifies 522 feasible break-point conditions and types. Typically, such information is obtained analyzing the original HDL description (e.g., operation 404, FIG. 4A). Next, the feasible break-point conditions and types are displayed 524. Here, the feasible break-point conditions and types can be displayed to a user by a user interface. At this point, a user is able to select a location within the HDL description of the electronic system where a break-point is to be set. In one embodiment, a user interface assists the user in making such a location selection with respect to the HDL description (i.e., HDL location). A decision 526 determines whether a HDL location has been selected. When the decision 526 determines that a HDL location selection has not yet been made, then the decision 526 causes the break-point processing 520 to await such a selection. Once the decision 526 determines that a HDL location has been selected, then a decision 528 determines whether the selected HDL location is permitted. In other words, the decision 528 determines whether it is valid to instrument the location within the HDL description of the electronic system with a break-point. When the decision 528 determines that the selected HDL location is not permitted, then an error message is displayed 530. On the other hand, when the decision 528 determines that the selected HDL location is permitted, then the status type of the selected break-point is updated 532. Next, break-point information is entered 534 into the trigger condition database for later processing. The break-point information comprises the IDL location of the selected break-point, and the current status type. According to one embodiment, the status type for a selected break-point is “selected”. FIG. 5C is a flow diagram of explicit trigger condition selection processing 540 according to one embodiment of the invention. As noted previously, one example of an explicit trigger condition is a watch-point. The explicit trigger condition selection processing 540 begins with a decision 542 that determines whether a trigger condition expression has been received. In one embodiment, a user interface assists the user in providing such information. The trigger condition expression defines the explicit trigger condition being set. When the trigger condition expression has not yet been received, the decision 542 causes the explicit trigger condition processing 540 to await receipt of such information (selections). When the decision 542 determines that a trigger condition expression has been received, the status type of the selected trigger condition is updated 544. For example, the status type for the selected (explicit) trigger condition is “selected”. Then trigger condition information is entered 546 into the trigger condition database. The trigger condition information includes the trigger condition expression, the HDL identifiers involved in building the trigger condition expression, and a status type. Although the break-point processing 520 and the explicit trigger condition processing 540 illustrated in FIGS. 5B and 5C pertain to selection and/or entry of trigger conditions, it should be noted that selections can also be made to de-select previously selected trigger conditions. Such processing is generally similar to the selection processing, with the major exception being that the status type of the selected trigger condition is updated to “non_selected”, meaning that no instrumentation shall be performed regarding to that portion of the HDL description. FIG. 5D is a flow diagram of sampling signal selection processing 560 according to one embodiment of the invention. The sampling signal selection processing 560 is, for example, one representative implementation of the sampling signal selection processing 510 illustrated in FIG. 5A. The sampling signal selection processing 560 begins with a decision 562 that determines whether a signal selection has been received. Here, a user is able to select signals by selection of an HDL identifier within the HDL description of the electronic system. In one embodiment, a user interface assists the user in making such a selection with respect to the HDL description. Hence, the decision 562 determines whether such a signal selection has occurred. When the decision 562 determines that a signal selection has not yet occurred, the sampling signal selection processing 560 awaits such a selection. Once the decision 562 determines that a signal selection has been received, then a decision 564 determines whether the selected signal is to be associated with an existing trigger action group of a prior signal selection or whether it becomes a member of a new trigger action group. When decision 564 determines that the signal selection is to be associated with an existing trigger action group, a decision 566 determines whether the user has selected an existing trigger action group. In one embodiment, a user interface assists the user in making such a selection. When the decision 566 determines that a trigger action group selection has not yet been received, the sampling signal selection processing 560 awaits such a selection. Once the decision 566 determines that a trigger action group has been selected, the selected signal is associated 568 with the selected trigger action group. On the other hand, when the decision 564 determines that the selected signal shall become a member of a new trigger action group, a new trigger action group is created 570 and the selected signal is associated 568 with that new trigger action group. Following operation 568, the status type of the selected signal is updated 572. The status type for a selected signal is updated 572 to “selected”, meaning that the selected signal is selected for instrumentation. Following operation 572 the selected signal is entered 570 into a signal database (see FIG. 6). Following the operation 570, the sampling signal selection processing 560 is complete and ends. Patching signal selection processing can also be performed in a similar manner as the sampling signal selection processing 560 illustrated in FIG. 5D. In other words, the patching signal selection processing 514 illustrated in FIG. 5A can also be represented by the processing 560 illustrated in FIG. 5D. Besides selection of sampling or patching signals in accordance with the processing illustrated in FIG. 5D, similar processing can also be performed to de-select sampling or patching signals, with the major exception that the status type of the selected signal would be updated to “non_selected”, meaning that no instrumentation shall be performed regarding that particular signal. Design instrumentation databases can be structured in a variety of ways. FIG. 6 is a diagram of a design instrumentation database 600 according to one embodiment of the invention. The design instrumentation database 600 is, for example, suitable for use as the design instrumentation database 114 illustrated in FIGS. 1A and 1B or the design instrumentation database 320 illustrated in FIG. 3. The design instrumentation database 600 includes a break-point database 602 that stores break-points. The design instrumentation database 600 also includes a signal value database 604 that stores signals within the electronic system that are to be sampled or patched. Hence, the break-points and the signal values, respectively stored in the break-point database 602 and the signal value database 604, represent instrumentation directives (e.g., design visibility, design patching and/or design control criteria) that govern the characteristics of the resulting DIC and its capabilities. Additionally, the design instrumentation database 600 includes a DIC database 606, a cross-reference database 612, and a Register-to-Physical (R2P) database 614. A representation of the resulting DIC that is produced by the instrumentor is stored in the DIC database 606. The cross-reference database 612 stores the associations of HDL identifiers (variables) within the HDL description to broaden the design visibility. The R2P database 614 stores translations from registers to physical addresses. The registers are, for example, registers of the DIC used to configure the DIC and hold the status of the DIC and the DUT during hardware debugging. Physical addresses are given for each register to access that register in its implementation inside the DIC. Further, the design instrumentation database 600 includes a text-to-netlist (T2N) database 608 and a netlist-to-text (N2T) database 610. The T2N database 608 and the N2T database 610 provide for each HDL identifier the associations between the HDL location and elements within the netlist (internal representation of the electronic system). FIG. 7A is a block diagram of an instrumentation system 700 according to one embodiment of the invention. The instrumentation system 700 represents a more detailed block diagram of an instrumentor together with a design instrumentation database. For example, the instrumentation system 700 can be a more detailed embodiment of the instrumentation system 300 illustrated in FIG. 3. The instrumentation system 700 receives a HDL description 702 of an electronic system. A Design Instrumentation (DI) graphical user interface 704 can display the HDL description on a display device. A user can interact with the graphical user interface 704 to make or enter instrumentation directives. A front-end module 706 receives the HDL description 702 and parses the HDL description 702 to form a parse-tree structure. The resulting parse-tree structure is stored in a parse-tree database 708. A code generation module 710 reads the parse-tree structure from the parse-tree database 708 and produces a hierarchical design representation associated with the electronic system. The hierarchical design representation provides a description of the designs behavior and structure, such as a hierarchical netlist. The hierarchical design representation is stored in a hierarchical design database 712. A DI optimization module 714 interacts with the information stored in the hierarchical design database 712. The information stored in the hierarchical design database 712 is also supplied to an analysis module 716. The analysis module 716 interacts with the parse-tree database 708 as well as the hierarchical design database 712 to analyze the HDL description of the electronic system design. The analysis includes control flow analysis which determines the feasible break-points which are stored in a trigger condition database 718. Control flow analysis is further described in “High-Level Synthesis” by Daniel D. Gajski et al., Kluwer Academic Publishers, 1992, which is hereby incorporated by reference. For each location in the HDL description which correlates to a control flow branch condition node, a unique combination of the HDL location and the trigger condition given by the control flow condition can be added as a feasible break-point into the trigger condition database 718. The purpose of control flow analysis is to reflect that break-points can be set at very particular locations in the HDL description which pertain to HDL control flow statements. The instrumentation system 700 also includes a location module 724 that interacts with the parse-tree database 708 and the hierarchical design database 712 to produce source code location information represented as T2N information for a T2N database 726 and N2T information for a N2T database 728. The T2N information provides a method to obtain all elements in the parse-tree database 708 or the hierarchical design database 712 which refer to an identifier at a given location in the HDL description. The N2T information provides a method to relate a given element of the parse-tree database 708 or the hierarchical design database 712 to the originating location in the HDL description. A location query manager 730 interacts with the T2N database 726 and the N2T database 728 to allow a DI manager 732 to relate a location within the HDL description 702 to an element within a netlist (i.e., the parse-tree and/or the hierarchical design representation) and vice versa. The DI manager 732 receives the instrumentation directives, processes them and adds them to the appropriate database (i.e., the trigger condition database 718 or the signal database 722). Instrumentation directives can be given using file-based DI criteria 734, interactively by the graphical user interface 704, or via pragmas in the HDL description. The use of instrumentation directives is explained in greater detail below. The DI manager 732 then interacts with the trigger condition database 718, the signal database 722, the location query manager 730, and the DI optimization module 714 to check each instrumentation directive for its validity. The information regarding the validity is available in the trigger condition database 718 and the signal database 722. The DI optimization module 714 receives trigger conditions from the trigger condition database 718 and also receives a DIC template from a DIC template database 720. Still further, the DI optimization module 714 interacts with a signal database 722 to receive-signals that are to be examined and/or modified. The DI optimization module 714 performs various optimizations regarding the instrumentation directives to reduce the hardware overhead and/or broaden the instrumentation coverage. Additional details on DI optimization are provided below. For the above-mentioned location determinations with respect to selections, the DI manager 732 queries the location query manager 730 to refer to identifiers in the HDL description 702, elements in the parse-tree database 708, and elements in the hierarchical design database 712. Selection status types are used to hold the selection information (i.e., the instrumentation directives) and exchange the selection information between the DI user interface 704, the DI manager 732 and the DI optimization module 714. The selection status types used for the selection of implicit trigger conditions, explicit trigger conditions, sampling selections and patching selections can comprise: feasible, selected, implied, and not_selected. The instrumentation directives can be provided in at least three ways, namely, user-based (interactive), file-based, and via pragmas in the HDL description. The user-based approach has been described above. In general, a user (e.g., an electronic system designer) makes design visibility, design patching, and design control selections. More particularly, the designer can select in the HDL description which break-points, watch-points, error-traps, and property checks will be available for activation during HDL-based hardware debugging. These selections are stored in the trigger condition database 718. The designer also selects in the HDL description which signals shall be available for examination during HDL-based hardware debugging. These selections are stored in the signal database 722. The designer selects in the HDL description which signals shall be available for patching during HDL-based hardware debugging. These selections are stored in the signal database 722. When instrumentation directives are provided in a file, the file-based DI criteria 734 is a human and/or computer readable rule set which describes which signals shall be made visible, which signals shall be made patchable, which break-points are enabled, and which trigger conditions shall be made detectable. The directives in the file-based DI criteria 734 may be expressed in any of the HDL languages that the system accepts as input or may be expressed in a specifically designed language. The directive to select an explicit trigger condition can, for example, comprise a keyword to denote that the selection is a trigger condition, and a conditional expression of HDL identifiers which must be met to issue a trigger event. Implicit trigger conditions, such as break-points, can, for example, be specified by a source code location in the HDL description. The directive to select a signal for sampling can, for example, comprise a keyword to denote that the selection is for a to-be-sampled signal, the unique HDL identifier of the selected signal, and an associated trigger action group. The directive to select a signal for patching can, for example, comprise a keyword to denote that the selection is for a to-be-patched signal, the unique HDL identifier of the selected signal, and an associated trigger action group. The file-based DI criteria 734 can be directly read by the DI manager 732 which stores selections of trigger conditions into the trigger condition database 718 and stores selections of signal values to be made visible and/or patchable into the signal database 722. As noted above, the instrumentation directives can be provided via pragmas in the HDL description of an electronic system. Pragmas are HDL code fragments which are inserted into the HDL description to define design visibility, design patching and design control. These pragmas are added to the HDL description such that the behavior of the design of the electronic system is not altered. One implementation adds pragmas to a HDL description as specially-marked HDL comments. By placing the pragmas in comments, other tools which read the HDL description containing the pragmas will be unaffected. However, the front-end module 706 can recognize and interpret these pragmas inside the comments. More particularly, providing instrumentation directives via pragmas can be accomplished by the front-end module 706 recognizing the pragmas enclosed within comments and placing the appropriate information into the parse-tree database 708. This information is read by the DI manager 732 which stores the necessary information in the trigger condition database 718 and the signal database 722. Several examples of pragmas are provided below. These pragmas are written in the form of a HDL comment with an indicator (e.g., “B2SI”) to differentiate them from other comments. In the following examples, following the identifier “B2SI”, the remainder of the pragma describes either a design control, or a design visibility, or a design patching directive. The exact form of the pragmas depend on the HDL language being used. The following are examples of pragmas written in Verilog HDL. The following example shows a comment including a pragma for design control. always @( a or b or c or d or e or f ) begin if( cond == 4′b1111 ) begin // B2SI trigger(“trigger_name”, (a == 2′b10) && (d * e < f + 5′b1100)); end end This pragma produces a trigger condition that is active if the expression (a==2′b10)&&(d*e<f+5′b1100) evaluates to true. The expression has the same meaning and variable scoping as it would were it a regular HDL expression. This trigger can also be placed in the control flow of the design so the trigger will not be active unless the control flow is active. In this example, (cond==4′b1111) must also be met to issue a trigger event. The trigger condition has a nane (“trigger name”) so that other pragmas may refer to this trigger condition. The following example shows a comment including a pragma for signal visibility. module mod1( in1, in2, in3, out ); input in1, in2; input in3; // B2SI visible output out; ... Here, the visibility pragma is being used to mark “in3” as visible. The following example shows a comment including a pragma for signal patching. module mod2( in1, in2, in3, out ); input in1, in2; input in3; output out; reg [1:0] aa; // B2SI patchable Here, the patching pragma is being used to mark “aa” as patchable. The trigger condition for the sampling and/or patching can be specified by associating it with a trigger action group (by referring to a trigger name, for example “trigger_name”), or during HDL-based hardware debugging. The optimization of the design instrumentation can enhance its effects and can reduce hardware costs of the DIC. One example of an optimization for enhancing the effects of the instrumentation is implication analysis. One example for an optimization which aims to reduce the hardware costs of the DIC is resource sharing. The selections of various trigger conditions and signals for sampling and/or patching may potentially imply other signal selections based on their controlability and observability dependencies. Controlability and observability are, for example, commonly used concepts in Automatic Test Pattern generation of combinational and sequential logic. See D. Bhattacharya and J. P. Hayes, “Hierarchical Modeling for VLSI Circuit Testing,” Boston: Kluwer, 1990, p. 159, which is hereby incorporated by reference. Implication analysis works as follows. Initially, the hierarchical design database 712 and the DI optimimization module 714 are consulted to determine whether a trigger condition with the status type ” “selected” implies certain other trigger conditions. If so, the implied trigger conditions can also be detected during HDL-based hardware debugging, have their status type set to “implied”, and be stored into the trigger condition database 718. Secondly, the hierarchical design database 712 and the DI optimization module 714 can be consulted to determine whether certain other signal values are implied by the selected signals. In particular, the implied signals can be derived from the selected signals plus some calculations during HDL-based hardware debugging. Each implied signal is then stored with its status type set to “implied” into the signal database 722. Resource sharing is a widely used optimization which is, for example, used in synthesis. Although resource sharing can be performed using many different approaches, in one approach to resource sharing, the DI optimization module 714 operates to share resources in the DIC as follows. First, by consulting the DIC template database 720, the DI optimization module 714 knows about the structure and the cost model of the DIC and can determine whether trigger conditions and signals to be sampled have commonalities which can be utilized for resource sharing. Second, the hierarchical design database 712 and the DIC template database 720 can be consulted by the DI optimization module 714 when determining whether other signals should instead be sampled, since such signals imply all the selected signals, but their sampling requires less hardware overhead or leads to additional signal visibility. Third, by consulting the DIC template database 720, the DI optimization module 714 knows about the structure and the cost model of the DIC and can determine whether trigger conditions and signals to be sampled have commonalities which can be utilized for resource sharing. Fourth, by consulting the DIC template database 720, the DI optimization module 714 knows about the structure and the cost model of the DIC and can determine whether signals to be patched have commonalities which can be utilized for resource sharing. Once the trigger conditions and the signals to be sampled and/or patched are determined, other portions of the HDL design can be integrated even if such portions are not described by a synthesizable HDL description but are available as synthesized and physically realized hard blocks, such as previously designed hard blocks. If the hard blocks are synthesized from instrumented HDL and include DIC, regardless whether the DIC is a complete or a partial, the previously inserted DIC can be re-used for debugging the hard blocks. The distinction between partial versus complete DIC is described in greater detail below. In order for a hard block to be re-used, it should have associated DI data stored in an associated design instrumentation database. FIG. 7B is a diagram of a hard block resolution system 750 according to one embodiment of the invention. The data needed are a hard block's DIC database 752, a hard block's trigger condition database 754, a hard block's signal database 756, and optionally HDL description 758. Often, vendors of hard blocks do not want to expose the internal workings of their design by showing its HDL description (e.g., source code). To accommodate this need, the HDL description is not required to describe the entire hard block's functionality. Some minimal HDL description providing just enough text to examine signals, to set watch-point expressions for the signals, and to set break-points at HDL locations which refer to implemented trigger detection circuitry is enough to enable HDL-based hardware debugging of the hard blocks. For example, a hard block implementing a simple controller might expose the controller state variable for sampling and for triggering on its value. It might also allow a user to set a break-point when the machine makes certain transitions or receives certain signals from the circuitry to which it is connected. A hierarchy and hard block resolver 760 processes the information from the hard block's DIC database 752, the hard block's trigger condition database 754, the hard block's signal database 756 and the optional HDL description 758, and merges same into the current HDL design's DIC database 736, the trigger condition database 718, the signal database 722, and the original HDL description 702. As a result, the resolved information will be available during HDL-based hardware debugging. The instrumentor 700 can also perform cross-reference analysis to gather and store data in the design instrumentation phase such that the HDL-based hardware debugger will be capable of examining signals in the HDL description. Additionally, if the design instrumentation optimization determines that other signals could be derived from the sampled signals, the HDL-based hardware debugger needs the HDL expressions to compute the derived signals “on the fly” from the sampled signals. The expressions are calculated during cross-reference analysis and stored in the cross-reference database 1504. FIG. 15 is a block diagram of a portion of an instrumentation system 1500 which includes a cross-reference analysis module 1502 and a cross-reference database 1504 according to one embodiment of the invention. The cross-reference analysis module 1502 can be provided within the instrumentation system 700, and the cross-reference database 1504 can be provided within the design instrumentation database 612 and utilized by the instrumentation system 700. The cross-reference analysis module 1502 can couple to the location query manager 730, the hierarchical design database 712 and the signal database 722. The cross-reference analysis module 1502 reads signal information from the signal database 722. Each entry in the signal database 722 corresponds to one signal that is either selected or implied to be made visible. Each entry in the signal database 722 also comprises information on whether the signal is to be sampled and/or patched in the DIC or whether the signal is derived from other to-be-sampled signals. In one embodiment, for each signal that is derived from other to-be-sampled signals, the following operations are performed. First, the cross-reference analysis module 1502 queries the HDL location information of the signal from the location query manager 730. The cross-reference analysis module 1502 looks up the signal in the hierarchical design database 712 and determines the proper HDL expression to compute the derived signal from the set of sampled signals. The cross-reference analysis module 1502 then writes the HDL expression into the cross-reference database 1504. The instrumentor 700 can also perform Design-for-Test (DFT) analysis. If the electronic system contains additional circuitry for testability such as scan-chains, boundary scan logic, JTAG tap-controllers or similar DFT features, and if such circuitry is described in the DFT information (file) 310, then the circuitry can be shared to reduce the hardware overhead of the DIC. Example formats of such a DFT information file is the Boundary-Scan Description Language (BSDL) or Hierarchical Scan Description Language (HSDL), both- defined by the IEEE 1149.1 JTAG standard available from the Institute of Electrical and Electronic Engineers (IEEE) in Piscataway, N.J., which is hereby incorporated by reference. FIG. 16 is a block diagram of a portion of an instrumentation system 1600 which includes a DFT analysis module 1602 according to one embodiment of the invention. The DFT analysis module 1602 receives information about the DFT information 310, the current implementation of the DIC as stored in the DIC database 736 and the hierarchical design database 712, and the register-to-physical (R2P) address translation information (e.g., table) provided in the R2P database 614. The result produced by the DFT analysis module 1602 is the modified DFT information 326, namely, altered register-to-physical address translation information (e.g., table), which is needed by post-processing DFT tools. The R2P database 614 needs to be updated each time DIC registers have been moved to different physical locations. FIG. 17 is a data flow diagram illustrating DIC creation processing 1700 according to one embodiment of the invention. The DIC and the instrumented design is created at the end of the design instrumentation process. The DIC is described by the DIC HDL description 318. The instrumented design is described by the instrumented HDL description 316. Additionally, various components of the design instrumentation database 600 are established, including the R2P database 614, the DIC database 736, the signal value database 604, and the break-point database 602. The DIC creation processing 1700 has a data flow described as follows. First, the trigger condition database 718 and the signal database 722 (which can result from the DI manager 732) are processed by a trigger condition code generation module 1706 and a signal code generation module 1708, respectively. Second, for each entry in the trigger condition database 718, the trigger condition code generation module 1706 generates the structures of the trigger detection circuitry for the DIC according to the DIC template database 720. Then, such structures are added to the hierarchical design database 712. In addition, proper DIC register configuration rules can be added to a DI rule database 1710. Third, for each signal designated as to-be-sampled in the signal database 722, the signal code generation module 1708 creates circuitry to sample such signal according to the structure in the DIC template database 720, and adds the structures to the hierarchical design database 712 and the proper DIC register configuration rules to the DI rules database 1710. Fourth, for each signal designated as to-be-patched in the signal database 722, the signal code generation module 1708 generates the circuitry to patch such signal according to the structure in the DIC template database 720, and adds such structures to the hierarchical design database 712 and the proper DIC register configuration rules to the DI rule database 1710. Fifth, a break-point analysis module 1712 then reads the trigger detection circuitry from the hierarchical design database 712 and the register configuration rules from the DI rule database 1710. Knowing the structure of the DIC from the DIC template database 720, the break-point analysis module 1712 creates the break-point database 602. The break-point database 602 comprises all the rules for which the location break-points are possible to be set. The break-point database 602 also comprises rules about mutual exclusivities between break-points due to hardware restrictions in the DIC. For example, a certain break-point may not be used with another break-point because both break-points require the same hardware resource in the DIC. Sixth, signal analysis module 1714 then reads the signal sampling/patching circuitry from the hierarchical design database 712 and the register configuration rules from the DI rule database 1710, and knowing the structure of the DIC from the DIC template database 720, the signal value database 604 is created. The signal value database 604 comprises all the rules about mutual exclusivities between signal values for sampling and/or patching due to hardware restrictions in the DIC. Seventh, the DIC generation module 1716 then reads the DI rule database 1710 and the DIC template database 720 and connects all trigger detection circuitry and all signal sampling/patching circuitry to a trigger processing unit (TPU)(see FIG. 8). Also, the configuration and the status registers, and the communication controller are added and connected. The complete structure of the DIC is then written to the hierarchical design database 712 and the entire and complete rule set to configure the registers of the DIC is written to the DIC database 736. Eighth, a DIC register-to-physical mapping module 1718 maps each register configuration and each status register in the DIC into an address space of physical memory in the design to produce the R2P database 614. For example, the physical memory could be implemented as a set of scan-chains, in which case the physical address of a configuration or status register would be given by the index of the scan-chain used and the bit position within the scan-chain. Ninth, a DIC writer module 1720 produces the synthesizable HDL description of the DIC (e.g., DIC HDL description 318), defined by the configuration and status information in the DIC database 736 and the DIC structure stored in the hierarchical design database 712. Tenth, the DIC writer module 1720 also reads in the original HDL description 304, annotates it with the information about the DIC from the hierarchical design database 712 and the DIC database 736, and writes out the instrumented HDL description 316 (e.g., annotated HDL source code) of the instrumented design for further processing by synthesis and place-and-route tools. Eleventh, to support regression testing of the instrumented design using functional simulation, the optional DIC simulation model 322, including the necessary HDL wrapper files, is written by a DIC simulation model generation module 1722. Twelfth, a design constraint analysis module 1724 reads the design constraint file 308 which holds all constraints created by the designer. The design constraint analysis module 1724 then adjusts the original set of constraints to produce the instrumented design constraint file 324 for the instrumented design.Design constraint analysis is described in greater detail below. Annotating the HDL description adds the HDL description of the DIC to the original HDL description and connects the DIC to the portions of the original HDL description for which design visibility, design patching, and design control has been selected. The annotation can be performed automatically. The result of the annotation is the instrumented HDL description. The instrumented HDL description is the original HDL description together with a small amount of HDL description added for the DIC. The annotations may be added to the hierarchical original HDL description in two ways: distributed or monolithic. Distributed annotations are added to each hierarchical element of the original HDL description. Monolithic annotations are added to the top-level element of the HDL design and then connect to other parts of the design. Since distributed annotations are more powerful and more complex than monolithic annotations, distributed annotations will be described in detail below. A HDL description can be composed of one or more HDL Building Blocks (BBs). Similarly, the DIC is composed of one or more specially-tailored HDL BBs, the DICBBs. One such DICBB can be inserted into each BB in the original HDL description. The BB in the original HDL design is termed the DICBB's host BB (HBB). An example provided below is a Verilog description of a simple building block which consists of some simple logic. module mod3( in1, in2, out ); input in1, in2; output out; assign out = ( in1 > in2 ); endmodule Another example provided below is a Verilog description of the Host Building Block (HBB) above following annotation (i.e., instrumented building block) to include one of the DICBBs with some simple building blocks which consist of one HBB and some simple logic. In the Verilog language the DICBB is an instantiation of a specially-tailored DIC Verilog module. module mod3( in1, in2, out ); input in1, in2; output out; assign out = ( in1 > in2 ); DIC_mod1 DIC_instance( in1, in2 ); endmodule module DIC_mod1( in1, in2 ); input in1, in2; // specially-tailored DIC goes here endmodule Each DICBB communicates with its associated HBB by connecting to the HBB's signals. Design visibility of a particular HDL identifier residing in a HBB can be accomplished by connecting the identifier to the associated DICBB. The internal circuitry of the DICBB is created using the knowledge of the signal connections. This mechanism allows design visibility, design patching, and design control to be supported by the DIC. The above example shows a DICBB connected to two HDL identifiers “in1” and “in2”. The circuitry inside DIC_mod1 can utilize the signals for the purpose of design visibility of one or both the signals and/or for creating watch-points which monitor one or both of the signals. If a symbolically-encoded HDL identifier is made visible, symbolic values can be displayed for it during HDL-based hardware debugging. To do this, each symbolic value needs to be associated with the actual binary code assigned to it during synthesis (116 in FIG. 1A.). Since it is desirable for the instrumentation to be independent of the synthesis, the HDL-based hardware debugger cannot rely on any information from the synthesis about the association between binary codes and symbolic values. Consequently, each of the symbolic values must be connected to the DICBB so that the circuitry inside the DICBB can explicitly know the binary codes assigned to each symbolic value. During HDL-based hardware debugging, the encoding information is obtained from the instrumented HDL design. Break-points are supported by adding signals to the HBB which are active when the control flow which the break-point is modeling is active, and are inactive otherwise. The added signals are then connected to the DIC associated with the HBB and are used when the circuitry of the DIC is created. The following example shows the Verilog HDL fragment of a HBB which has simple control flow logic. 1 module mod4( in1, in2, out ); 2 input in1, in2; 3 output out; 4 5 always@ ( in1 or in2 ) begin 6 if (( in1 == 1′b0 ) || ( in2 == 1′b1 )) begin 7 out = 1′b1; 8 end else begin 9 out = 1′b0; 10 end 11 end 12 13 endmodule Line numbers have been added to the above example for reference purposes, the line numbers are not part of the Verilog description. There are two lines, line 6 and line 8, which can have a break-point. These lines correspond to the two control flow branches which arise from the “if” conditional statement on line 6. The next example shows the Verilog HDL fragment of the above example annotated such that the added circuitry supports two break-points. module mod4( in1, in2, out ); input in1, in2; output out; reg bp1, bp2; // Added during instrumentation always@ ( in1 or in2 ) begin bp1 = 1′b0; bp2 = 1′b0; if (( in1 == 1′b0 ) || ( in2 == 1′b1 )) begin out = 1′b1; bp1 = 1′b1; end else begin out = 1′b0; bp2 = 1′b1; end end DIC_mod2 DIC_instance( bp1, bp2 ); endmodule module DIC_mod2( bp1, bp2 ); input bp1, bp2; // specially-tailored DIC goes here endmodule Note signals “bp1” and “bp2” have been added to the HBB. Each signal is active (set to logical 1) only when the control flow branch that the signal is modeling is active. The signals are connected to the associated DICBB DIC_mod2 and can be used by the circuitry inside the DICBB to create break-point circuitry. The DICBBs in the instrumented HDL design communicate with each other by connecting to identifiers that have been added to their respective HBBs and which are also connected to the HBB's ports. The following example shows the Verilog HDL fragment which consists of two BBs. BB mod6 is instantiated by BB. module mod5( in1, in2, in3, out ); input in1, in2, in3; output out; wire tmp_out; assign out = ( in1 > tmp_out ); mod6 instance( in2, in3, tmp_out ); endmodule module mod6( com1, com2, out ); input com1, com2; output out; assign out = com1 {circumflex over ( )} com2; endmodule The following example shows the Verilog HDL fragment of the above example after being annotated. module mod5( in1, in2, in3, out ); input in1, in2, in3; output out; wire tmp_out; wire DIC_com2; // Added during instrumentation assign out = ( in1 > tmp_out ); mod6 instance( in2, in3, tmp_out, DIC_com2 ); DIC_mod3 DIC_inst3 ( DIC_com2 ); endmodule module mod6( com1, com2, out, DIC_com1 ); input com1, com2; output out; inout DIC_com1; // Added during instrumentation assign out = com1 {circumflex over ( )} com2; DIC_mod4 DIC_inst4 ( DIC_com1 ); endmodule The annotation consists of: (1) DICBBs DIC_mod3 and DIC_mod4 which have been added to their respective HBBs mod5 and mod6. (2) Signal DIC_com1 which has been added to HBB mod6, added to the port list of HBB mod6, and connected to DIC_mod4. (3) Signal DIC_com2 which has been added to the HBB mod5 and connected to the DIC_com1 port of the DIC_mod4 DICBB and to the DIC_mod3 DICBB. Consequently, the DIC_mod4 DICBB communicates with the DIC_mod3 DICBB via the connection of DIC_mod4 to signal DIC_com1 which is connected through port DIC-com1 of mod6 to signal DIC_com2 of modS which is connected to DIC_mod3. An original design of the electronic system (e.g., original HDL description) can be instrumented with either a complete DIC or a partial DIC. A complete DIC comprises a communication controller and a trigger processing unit (TPU). While a complete DIC, such as shown in FIG. 8, includes a communication controller and a TPU, a partial DIC does not include these components. An original HDL design may be instrumented with a partial DIC if it is to be used inside another instrumented HDL design which has a complete DIC. For example, an original HDL description could be instrumented with a partial DIC if it were to be used as a hard block. Although an instrumented HDL design with a complete DIC can be used as a hard block if its communication controller and TPU are disabled, this wastes hardware and thus space. Instrumenting with a complete DIC can be accomplished by adding a special DICBB which is referred to as the “master” DICBB (MDICBB) which comprises a communication controller and a TPU. The MDICBB is placed into an HBB of the original HDL design which allows the MDICBB to communicate with the host communication controller. For example, in a Verilog design, the HBB of the MDICBB would be the Verilog module which is the top-level module in the design hierarchy—the HBB would be the one module in the design which is not instantiated in the Verilog design. The MDICBB is connected to the DICBB in the MDICBB's HBB. Consequently, the MDICBB can communicate with all other DICBBs in the instrumented HDL design so that said MDICBB can gather, process, and transmit to the host communication controller information from the other DICBBs. The following example shows the Verilog HDL fragment of an above example for a basic building block (re module mod3) after it has been annotated. module mod7( in1, in2, out, DIC_com3 ); input in1, in2; output out; inout DIC_com3; // Added during instrumentation assign out = ( in1 > in2 ); DIC_mod5 MDICBB_inst ( DIC_com3 ); endmodule Note that in this example, mod7 is the top-level module of the original HDL design and DIC_mod5 is the MDICBB. DIC_mod5 communicates to the environment by connecting with signal DIC_com3 which has also been made a port of the HBB mod7. In performing design constraint analysis, the design constraint analysis module 1724 reads the design constraint file 308 which holds all constraints that ensure the HDL design meets the area, delay, power consumption, routability, and/or testability specifications made by the designer of the electronic system. The design constraint analysis module 1724 then analyzes the instrumented HDL design stored in the hierarchical design database 712 and adjusts the original set of constraints to the inserted DIC and possibly adds additional constraints. Both sets of the constraints together can be written into the instrumented design constraint file 324 for the instrumented HDL design. The additional constraints attempt to minimize the impact of the DIC on the area, delay, power consumption, routability, and/or testability of the HDL design. FIG. 8 is a block diagram of a representative design instrumentation circuit (DIC) according to one embodiment of the invention. The representative DIC 800 includes a plurality of probe circuits, namely probe circuitry 802, probe circuitry 804 and probe circuitry 806. The probe circuitry 802-806 couple to a trigger processing unit 808. The trigger processing unit 808 is configurable circuitry which is used to process trigger events and issue corresponding trigger actions. Such correspondance between the trigger events and the trigger actions can be given as complex trigger conditions. A complex trigger condition can be a complex conditional expression between two or more trigger events. Propositional or temporal logic may be used to describe such expressions. The trigger processing unit 808 controls the ability of the DIC 800 to detect trigger conditions and to sample and/or patch signal values. The acts of detection, sampling and patching can be independent from each other. When trigger conditions are detected, the trigger processing unit 808 triggers sampling (visibility) or patching of signals within the DUT. In this regard, the probe circuitry 802-806 couple to electrical signals within the DUT. Each of the probe circuitry 802-806 is designed to perform a sampling of a signal, a modification to a signal, or a detection of a trigger condition. Typically, these signals or conditions are digital conditions. However, in the case in which the DUT includes analog and digital portions, the probe circuitry 802 can include an analog-to-digital (A/D) converter 810 so as to convert analog signals to digital signals prior to being received at the probe circuitry 802. The representative DIC 800 also includes status registers 812 and configuration registers 814. The status registers 812 store certain status information and the configuration registers 814 store certain configuration information. A communication controller 816 couples to the status registers 812 and the configuration registers 814. Hence, a HDL-based hardware debugger is able to communicate with the DIC via the communication controller 816. More particularly, the HDL-based hardware debugger can read and set registers within the status registers 812 as well as within the configuration registers 814. As a result, the communication controller 816 allows configuration data to be sent to the DIC 800 and status data to be retrieved from the DIC 800. The communication controller 816 can implement a method (i.e., run-time method) for externally reading and writing the configuration registers 814 which configure the DIC 800 and externally reading the status registers 812 (memory) which store the sample values. In one embodiment, the register values can be read or set using a standard connection defined by the IEEE 1149.1 JTAG standard, available from the Institute of Electrical and Electronic Engineers in Piscataway, N.J., which is hereby incorporated by reference. In order to maintain flexibility in HDL-based hardware debugging, the DIC is configurable at run-time. Externally configurable registers are used to change the detection of HDL-based trigger conditions and the selection of signals to be sampled and/or patched without the need to re-implement the design of the electronic system. There is also a general need for the DIC to communicate with components which are not instrumented. This external communication can be implemented by connecting signals between the DIC and the other components. One example would be an external signal that the DIC activates when any trigger condition is met. In another example, the DIC has external connections to notify and be notified about certain conditions which occur in an optional embedded processing unit (e.g., CPU) and thus support hardware/software co-debugging. Additional details concerning representative implementations for the trigger processing unit 808 and the probe circuitry 802-806 are provided below. This circuitry is added to the original design of the electronic system. For the purposes of the discussion below, it is assumed that the hardware debugging system 100 of FIG. 1A is being used. Hence, the circuitry for the DIC is added to the original HDL description as additional HDL by the instrumentor 110 in producing the instrumented HDL description 112. FIG. 9 describes a representative generic configurable circuitry 900 which can implement design sampling and design patching according to one embodiment of the invention. The circuitry 900 includes a register 902, a multiplexer 904, a tri-state register 906, and a storage 908. When the register 902 is to be sampled, a selector signal 910 selects a register input 912 to drive the register 902 via multiplexor 904. A sample enable signal 914 enables the tri-state buffer 906 to drive a register output 916 onto a data bus 918. The storage 908 couples to the data bus 918 and can thus store the value at the register output 916. For each successive sample, the value on an address bus 920 is incremented. Alternatively, when the circuitry 900 is to be patched, the address bus 920 selects the proper patch value from the storage 908. The multiplexor selector signal 910 selects the data bus 918 to drive the input to the register 902 via the multiplexor 904, and the selector signal 914 disables the tri-state buffer 906, thereby driving the value from the storage 908 into the register 902. Storage 908 can also be implemented by sampling circuitry. Sampling circuitry can use sets of registers or Random Access Memory (RAM) as storage for sampling predetermined signals. The sampled values can thereafter be read from the storage and communicated to the HDL-based hardware debugger. One implementation of storage 908 is a circular buffer of depth M which continuously samples predetermined signals. When a predetermined trigger action occurs, sampling is stopped. At which point the circular buffer contains the M last values of all sampled signals. To save circuitry, the sampling circuitry can be shared for many signals. For example, a configurable crossbar, implemented either as a full crossbar or as a multiplexor network, will allow many signals to share the same storage (e.g., circular buffer). Design patching can also be implemented by patching circuitry. According to one embodiment, the patching circuitry provides a method for patching predetermined internal signal registers. For each register in the design of the electronic system which is to be made patchable, the patching circuitry can include a companion register and simple control circuitry. The companion register holds the patch value(s) and is run-time configurable. The patching circuitry operates as follows: First, during configuration of the DIC, the companion storage is loaded with a desired value. Second, under the control of a particular trigger action, the patching circuitry forces the patched register to take some configured value from the companion storage. This patching circuitry thus allows patching to be used for many applications including, but not limited to, debugging and fixing previously fabricated hardware. Design visibility and design patching are controlled by particular trigger actions which are determined by design control circuitry. FIG. 10 illustrates a representative generic configurable trigger detection circuit 1000 according to one embodiment of the invention. The trigger detection circuit 1000 operates to detect trigger conditions and issue trigger events. The trigger detection circuit 1000 includes a configurable trigger register (TR) 1002 that stores a trigger value that is compared to a monitored signal (ISR) 1004 by a comparator 1006. The mode of the comparator 1006 can be controlled by a configurable trigger comparison register (TCR) 1008. Examples of different comparison modes are test for equivalence, test for smaller-than, etc. The ability to configure the trigger register (TR) 1002 and the trigger comparison register (TCR) 1008 allows the electronic system designer the flexability to check for a wide variety of trigger conditions during HDL-based hardware debugging. A configurable trigger enable register (TER) 1010 allows the trigger condition to be activated or disabled. If the trigger condition implemented by comparing the monitored signal (ISR) 1004 to the trigger register (TR) 1002 is met and the trigger enable register (TER) 1010 is enabled, a trigger condition signal 1012 becomes active to denote a trigger event. A trigger detected register (TDR) 1014 can be used to store such a trigger event, which can be subsequently read during HDL-based hardware debugging to determine whether a trigger event has occurred. While FIG. 10 illustrates the representative generic configurable trigger detection circuit 1000, for various more specific situations, specialized design control circuitry provides more efficient hardware. Examples of these specific situations, including state based Finite State Machines (FSMs), transition based FSMs, data-path registers, and temporal logic, are described below. State based FSM design control circuitry provides a configurable method to detect whether an FSM is in a particular state—a condition which depends on the value of the FSM's state register. For simplicity, a one-hot encoded state-machine is described herein. For other state encodings, the design control circuitry can be implemented similarly. FIG. 11 illustrates a representative state based FSM design control circuit 1100 according to one embodiment of the invention. For each FSM state register that is to be instrumented to detect particular states, the state based FSM design control circuit 1100 is added. A to-be-instrumented one-hot encoded FSM 1102 has a state register 1104 which is n bits wide and which is sensitive to the clock signal 1106. The state based FSM design control circuit 1100 that is added includes a trigger register 1110 which has the same bit-width n as the state register 1104 and which is sensitive to the same clock signal 1106. An output 1112 of the state register 1104 is compared to an output 1114 of the trigger register 1110 using a combinatorial network 1116. The combinatorial network 1116 implements a trigger condition signal 1118. The trigger condition signal 1118 produced by the state based FSM design control circuit 1100 can be a single bit output function and can be described in its behavior by the following Verilog code: module m1116 (n1112, n1114, n1118); parameter n = 32; input [n−1:0] n1112; input [n−1:0] n1112; output n1118; wire n1118 = | (n1112 & n1114); endmodule Thus to detect a particular current state in the one-hot encoded FSM 1102, one can set the corresponding bit in the trigger register 1110 to logical “1”. The trigger register 1110 can be configured with appropriate values through a connection (link) 1120. The trigger condition signal 1118 will then be logically “1” to denote the trigger event. Transition based FSM design control circuitry provides a configurable method to detect whether a FSM is undergoing a particular state transition—a condition which depends on the value of the state register and also on the activity and values of the input signals of the FSM. For simplicity, a one-hot encoded state-machine is described herein. For other state encodings, the design control circuitry can be implemented similarly. FIG. 12 illustrates a representative transition based FSM design control circuit 1200 according to one embodiment of the invention. For each FSM that is to be instrumented for detecting particular state transitions, the transition based FSM design control circuit 1200 is added. The to-be-instrumented one-hot encoded FSM 1202 has a state register 1204 which is n bits wide and which is sensitive to a clock signal 1206. The transition based FSM design control circuit 1200 that is added includes a trigger register 1208 which is sensitive to the clock signal 1206, and is o bits wide where o is the number of different state transitions of the FSM 1202. A combinatorial network 1210 performs a unique one-hot encoding of each different state transition into output 1212 and thus is connected to the n bit wide output 1214 of the state register 1204 as well as to the m bit wide input 1214 of the FSM 1202. A combinatorial network 1216 is connected to a o bit wide output 1218 of the trigger register 1208 and the o bit wide output 1212 of the combinatorial network 1210. A trigger condition signal 1220 is the single bit output of the combinatorial network 1216 and can be described in its behavior by the following Verilog code: module m1216 (n1218, n1212, n1220); parameter o = 32; input [o−1:0] n1218; input [o−1:0] n1212; output n1220; wire n1220 = | (n1218 & n1212); endmodule Thus to detect a particular state transition in the one-hot encoded FSM 1202, the bit in the trigger register 1208 corresponding to the one-hot code of the particular state transition must be set to logical “1”. A o bit wide connection 1222 can be used to configure the trigger register 1208 with appropriate values. The trigger condition signal 1220 becomes a logical “1” whenever a state transition is active, which denotes the trigger event. For data-path registers, data-path register design control circuitry provides a configurable method to detect whether a data-path register has a particular current value, whether a data-path register has a particular relationship to other values, or whether a data-path register has just changed its value. FIG. 13 illustrates a representative data-path register design control circuit 1300 according to one embodiment of the invention. The data-path register design control circuit 1300 is coupled to a data-path register 1302 which is sensitive to a clock signal 1304 and which latches the n bit wide input net 1306 into a n bit wide output net 1308. The data-path register design control circuit 1300 includes one or more of n+1 bit wide trigger registers 1310, 1312, 1314 which all are sensitive to the clock signal 1304. The n bit wide output 1308 of the data-path register 1302 and all the n+1 bit wide outputs 1316, 1318, 1320 of the trigger registers 1310, 1312, 1314 are then connected as inputs to a combinatorial network 1322. The combinatorial network 1322 provides configurable pair-wise checking relations between the current value of the data-path register 1302 and the n least significant bits of one of the trigger registers 1310, 1312, 1314. The relation being checked for can be the equality, non-equality, less than, greater than, etc., and such relation can be determined by the user. The most significant bit within each of the n+1 bit wide trigger registers 1310, 1312, 1314 is used for enabling (if the bit is set to “1”) or disabling (if the bit is set to “0”) the checking of the relation and can be described in its behavior by the following Verilog code: module m1322 (n1308, n1316, n1318, n1320, n1324); parameter n = 32; input [n−1:0] n1308; input [n :0] n1316; input [n :0] n1318; input [n :0] n1320; output n1324; wire check0 = n1316[n] & compare0(n12190, n1316[n−1:0]); wire check1 = n1318[n] & compare1(n12190, n1318[n−1:0]); wire check2 = n1320[n] & compare2(n12190, n1320[n−1:0]); wire n1324 = check0 | check1 | check2; endmodule If one of the relations is satisfied, the trigger condition signal 1324 becomes logical “1” to denote a trigger event. Temporal logic is an extension of conventional propositional logic which incorporates special operators that operate with time as a variable. Using temporal logic, one can specify how functions behave as time progresses. In particular, temporal logic statements can make assertions about values and relationships in the past, present, and the future. A subset of temporal logic can be used to describe interdependencies between trigger events over a certain time period relative to a given event, at one or more cycles, or for trigger events of the past. FIG. 14 illustrates a representative design control circuit 1400 according to one embodiment of the invention that can be used to implement temporal logic needed for relationships which include signals or trigger events from previous clock cycles. The trigger condition signal 1402 can be delayed by a configurable number of cycles of clock 1404 using delay registers 1406, 1408 and 1410. A multiplexor 1412, under the control of a trigger control register (TCR) 1414, selects which current or previous value of the signal 1402 is sent to output 1416. The output 1416 can be used as an input to temporal logic equations. The selection of the signal to drive the clock input 1404 of the delay registers 1406, 1408 and 1410 offers powerful functionality as follows. First, when one of the system clock signals is connected to the clock input 1404 of the delay registers 1406, 1408 and 1410, events can be delayed relative to the system clock. Second, when a particular trigger condition signal is connected to the clock input 1404 of the delay registers 1406, 1408 and 1410, the signal 1402 is delayed relative to the trigger condition signal. To implement the capability to control the processing of particular trigger events over relatively longer periods of time, counters can be used. The counters operate by loading a configured value, counting down from the loaded value to zero, and then issuing an event when zero is reached. The selection of the signal to drive the clock input of the counter offers powerful functionality. First, when one of the system clock signals is connected to the clock input of the counter, trigger events can be delayed relative to the system clock. Hence, trigger events can be made to depend on the system time. For example, trigger events might be enabled for a certain time period and become disabled otherwise, or become enabled after some time period. Second, when a particular trigger condition signal is connected to the clock input of the counter registers, the operation of the counter is dependent on the trigger condition signal. As noted previously, a DIC includes a trigger processing unit (TPU) to process all incoming trigger events and to issue appropriate outgoing trigger actions based on the incoming trigger events. The TPU provides a configurable method for calculating complex trigger combinations and other relationships between one or more of the trigger events to produce the trigger actions. The trigger events for processing by the TPU are the trigger condition signals of the design control circuitry of the DIC as described above or signals from circuitry external to the DIC. For example, in hardware/software co-debugging of embedded CPUs, such external signals may be the error signals of the CPUs. In another example, when multiple DICs are coupled (e.g., daisy-chained) to support debugging of multi-chip systems, another such trigger event could be the trigger action generated by the other DIC. In any case, trigger actions computed by the TPU can be used for (but not limited to) the following uses: (i) determine the beginning and/or the end of the sampling period of one or more sampled signals for design visibility; (ii) initiate the overwrite of one or more patch registers for design patching; (iii) provide a sampling clock in case none of the system clock signals shall be used; (iv) notify the communication controller within the DIC that one or more trigger events have occurred, thereby notifying the HDL-based hardware debugger; (v) communicate trigger events outside the electronic system to attached devices through externally connected signals; (vi) communicate with sub-systems inside the electronic system (e.g., during hardware/software co-debugging of embedded CPUs, trigger actions may be used as notification signals going into interrupt inputs of the CPUs); and (vii) connecting with the trigger event inputs of another DIC (e.g., when multiple DICs are daisy-chained to support debugging of multi-chip systems). A trigger action can also be used to trigger multiple components. A trigger action group is a unique combination which comprises one or more units of design visibility and/or design patching circuitry which is/are controlled by the same trigger action. The internal structure of the TPU can be (but is not limited to) the following: (i) A simple TPU can be used where each trigger event issues exactly one and only one trigger action. (ii) A TPU can include a configurable combinational network where all the trigger events are inputs to the combinational network and trigger actions are outputs of the combinational network. For example, the configurability can be provided by a Random Access Memory (RAM) which can be configured by the HDL-based hardware debugger and act as look-up tables to implement a wide range of different boolean combinational functions. (iii) A TPU can be a configurable finite state machine where trigger events are inputs to the state machine and trigger actions are outputs of the state machine. In one example, the configurability is provided by a set of registers or a Random Access Memory (RAM) which defines the behavior of the finite state machine and which can be configured by the HDL-based hardware debugger. (iv) A TPU can be a pipelined CPU. The trigger events to be processed can flow into the T?U as input data, the trigger actions to be issued can be represented as output data of the CPU, the instruction code of the CPU can implement complex relationships between the trigger events which produce the trigger actions. The trigger action computations may not be finished until a number of clock cycles after the the trigger events flow into the TPU. Consequently, the design visibility circuitry should have enough memory to store the data which corresponds to the latent trigger actions. Also, the HDL-based hardware debugger should understand the latency of the trigger actions to correctly associate non-latent sampling data to the latent trigger actions. Although the instrumentation techniques discussed above pertain to digitial signals, it should be understood that these same techniques can also apply to the digital portion of mixed-signal designs. Still further, with respect to the analog portion of mixed signal designs, an, analog signal can be made visible and also can be used to form trigger conditions. In one embodiment, the analog signal can be made visible by connecting it to an analog-to-digital converter (ADC) which has been added to the DIC. The digital outputs of the analog-to-digital converter can then be monitored using the design visibility techniques previously mentioned. A user interface can convert the digital data back to an analog representation for display to the designer. The analog signal can be used to form a trigger condition by expressing the trigger condition in terms of the digital outputs of the analog-to-digital converter. Additionally, a graphical user interface (e.g., the graphical user interface 704 of FIG. 7A) can convert an analog trigger threshold set by the electronic system designer to an appropriate set of digital values which can be used to configure the trigger condition. As noted above, the DIC can be provided within the DUT in either a centralized or distributed manner. More particularly, in order to minimize the impact of the DIC on the electronic system hardware, the DIC can be structured as a monolithic block or as distributed circuitry. The option to choose between these two structures allows the trade-off of area, delay, power consumption, routability, and/or testability of the hardware required for the DIC. As a monolithic block, all signals to be monitored for trigger detection or to be sampled and/or patched are physically routed from their source to the DIC region where the trigger condition detection and/or the signal value sampling/patching is physically placed. As a distributed DIC, the circuitry comprising the DIC is placed close to the signals used for triggering, sampling, and/or patching. For a monolithic DIC block, resource sharing to reduce the area and power consumption overhead becomes an option. These gains are offset by the increased delay and area needed for the long routes to the DIC block. A distributed DIC, however, will not offer any resource sharing, but promises short routes and therefore less impact on the delays and the routability. Moreover, the monolithic or the distributed structure for the trigger detection circuitry can be selected independently from the monolithic or the distributed structure for the signal value sampling, patching, and storing circuitry. A special case of DIC structure is a DIC with monolithic trigger detection circuitry and monolithic signal value sampling and/or patching circuitry. The trigger detection and signal value sampling and/or patching circuitry share the same signals. In such a structure, trigger conditions can only be expressed using signals which are also sampled. FIG. 18 is a flow diagram of HDL-based hardware debugging processing 1800 according to one embodiment of the invention. The hardware debugging processing 1800 is performed after the electronic system has been fabricated to include a customized DIC. The hardware debugging processing 1800 initially starts when the HDL-based hardware debugger is initiated 1802 on a host computer. The HDL-based hardware debugger is preferably a software program that operates on the host computer. Next, the host computer couples 1804 with the operating fabricated electronic system. For example, this coupling 1804 can occur through cables that couple the host computer to the communication controller 816 of the DIC 800. The DIC 800 can be considered part of the DUT or part of the electronic system. Thereafter, when debugging is to be performed, the DIC is configured 1806 for examination and/or modification of the fabricated electronic system. Here, for example, the configuration registers 814 of the DIC 800 can be configured 1806 to perform the appropriate examination and/or modification of the fabricated electronic system (namely, the DUT therein). Next, the fabricated electronic system is operated 1808 in the target environment and at speed. In other words, the fabricated electronic system is the actual hardware that is produced and then operated in its normal operating environment (target environment) and at its normal speed of operation. Hence, this facilitates debugging of the hardware (e.g., fabricated electronic system) in its actual environment and at its actual speed. Thereafter, HDL-based hardware debugging is performed 1810 on the operating fabricated electronic system. The HDL-based hardware debugging thus interacts with the user to reference lines or areas of the HDL description associated with the electronic system. As a result, users are able to analyze, diagnose, and debug functional failures of the electronic system at the HDL level, and users are able to interact with the electronic system at the HDL level to set trigger conditions and examine and/or modify the electronic systems behavior. Following the operation 1810, the hardware debugging processing 1800 is complete and ends. Once the electronic system 104 having the DUT 102 with the incorporated DIC 106 has been fabricated, the HDL-based hardware debugger 122 can operate to debug the DUT 102. The HDL-based hardware debugger 122 interacts with a user through one or more user interfaces and interacts with the DIC 106 through a host communication controller. The HDL-based hardware debugger. 122 can, for example, operate to support one or more of the following functions: (1) browsing the original HDL description for the HDL design; (2) activating particular trigger conditions out of the set of possible trigger conditions implemented in the DIC; (3) de-activating particular trigger conditions out of the set of activated trigger conditions; (4) temporarily disabling trigger conditions out of the set of previously activated trigger conditions; (5) enabling temporarily disabled trigger conditions; (6) activating signals to be sampled out of the set of possible signals in accordance with the implementation of the DIC; (7) de-activating signals out of the set of signals which were activated for sampling; (8) temporarily disabling signals out of the set of signals activated for sampling; (9) enabling temporarily disabled sampling signals; (10) activating signals to be patched out of the set of possible signals in accordance with the implementation of the DIC; (11) de-activating signals out of the set of to-be-patched signals; (12) temporarily disabling signals out of the set of signals activated for patching; (13) enabling temporarily disabled patching signals; (14) translating HDL-based trigger conditions given by the designer to the proper register configuration of the DIC; (15) associating trigger conditions with the clock/begin/end events of sampling and/or patching circuitry; (16) controlling execution of the DIC at run-time such as starting, stopping, single-stepping, running for a given number of cycles, resetting, etc.; (17) capturing the entire or the partial state of the HDL design, downloading it off the DIC, and storing it in the proper databases; (18) translating the DIC status registers and the sampled signal values back to the HDL source code; (19) displaying the DIC status in one or more formats, including the current data as well as data history; (20) displaying the signal sampling data in one or more formats, including the current data as well as data history; (21) interfacing with other debugging tools, such as functional simulators and software debuggers; (22) performing license checks to determine the legality of running the DIC; and (23) performing version checks of the DIC, and consistency checks of the DIC and the design instrumentation database. FIG. 19 is a data flow diagram of a debugging process 1900 performed by a HDL-based hardware debugger according to one embodiment of the invention. An activation user interface 1902 displays the original HDL description 304 and provides the designer with a method to activate and de-activate break-points and other trigger conditions and to activate and de-activate signals for sampling and/or patching. Once signals for sampling and/or patching are activated, the activations may be grouped together to form a unique trigger action group. Each trigger action group then gets one or more trigger condition associated therewith that control the trigger action group. These activations are used by the HDL-based hardware debugger to configure the DIC at run-time. Additional details on trigger condition activations are as follows. The structure of the DIC limits trigger conditions to the set of locations (for break-points) and explicit trigger condition expressions (for watch-points) in the HDL description 304 which were selected or implied during design instrumentation. Additional hardware restrictions of the DIC may also limit the activation of trigger conditions in certain cases. In accordance with the structure of the DIC, an active break-point database 1904 lists the status type of each trigger condition implemented in the DIC as one of: possible (i.e., the corresponding trigger condition can be activated); activated (i.e., designer has activated); and forbidden (i.e., the trigger condition cannot be activated due to a mutual exclusivity relationship with one or more currently activated trigger conditions. Initially, a break-point manager. 1906 copies over the set of trigger conditions from the break-point database 602 into the active break-point database 1904 and marks all entries as possible. To guide the designer in his activations, the user interface 1902 reads the active break-point database 1904 and displays the current status for each trigger condition listed. Whenever the designer activates a trigger condition out of the set of possible trigger conditions, the user interface 1902 marks the trigger condition as activated in the active break-point database 1904 and notifies the break-point manager 1906. Likewise, whenever the designer de-activates a trigger condition out of the set of activated trigger conditions, the user interface 1902 marks the trigger condition as de-activated in the active break-point database 1904 and notifies the break-point manager 1906. The break-point manager 1906 applies the rules in the break-point database 602 which describe the interdependencies of all trigger conditions and their mutual exclusivity to the current setting in the active break-point database 1904. Under such rules, any trigger condition which is mutually exclusive with the activated (or de-activated) trigger condition is marked as forbidden (or possible), as appropriate. Additional details on signal sampling and patching activation are as follows. To utilize the signal sampling and patching circuitry in the DIC, the designer activates signals for sampling and/or patching, groups these activations into one or more trigger action groups, and associates one or more trigger conditions by which each trigger action group is controlled. For patching, the designer also specifies one or more patch values and the trigger condition settings under which each patch value shall be applied. To reflect limitations of the DIC in the sharing of sampling and/or patching resources, a similar activation mechanism for signal values exists as for trigger conditions. An active signal value database 1908 lists the status type of each signal that has been made visible as one of: possible (i.e., the signal can be activated for sampling and/or patching); activated (designer has activated); and forbidden (i.e., the signal cannot be sampled/patched due to a mutual exclusivity relationship with one or more currently sampled/patched signals). Initially, a signal value manager 1910 copies over the set of all signals listed in the signal value database 604 into the active signal value database 1908 and marks them as possible. To guide the designer in making activations, the user interface 1902 reads the active signal value database 1908 and displays the current status for each signal listed. Whenever the designer activates a signal out of the set of possible signals, the user interface 1902 marks the signal as activated in the active signal value database 1908 and notifies the signal value manager 1910. Likewise, whenever the designer de-activates a signal out of the set of possible signals, the user interface 1902 marks the signal as de-activated in the active signal value database 1908 and notifies the signal value manager 1910. The signal value manager 1910 applies the rules in the signal value database 604 which describe the interdependencies of all signals and their mutual exclusivity to the current setting in the active signal value database 1908. Under these rules, any signal which is mutually exclusive with the activated or de-activated signal is marked as forbidden or possible, as appropriate. After the various activations have been made with respect to run-time configuration of the DIC, the designer notifies a run-time controller 1912 through a run-time user interface 1914 to configure the. DIC. Using the rules in the DIC database 736, a DIC configuration manager 1916 translates the information in the active break-point database 1904 and the active signal value database 1908 to the proper values for the DIC's configuration registers and writes a DIC configuration file to a DIC configuration database 1918. A register-to-physical address translator 1920 (R2P translator) then accesses the R2P database 614 (i.e., register-to-physical address translation table) and translates the DIC configuration file to the proper physical memory locations within the DIC and produces a raw configuration file 1922. The raw configuration file 1922 is then uploaded into the DIC by a host communication controller 1924 that communicates with the client communication controller 816 inside the DIC 800. This configures the DIC to detect the proper trigger conditions and to sample/patch the proper signals as specified by the designer. For efficiency, the host communication controller 1924 provides a method of handling incrementally the raw configuration file 1922 and uploads only changed data into the DIC 800. The host communication controller 1924 communicates with the client communication controller 816 by transmitting control signals, uploading data, receiving control signals, and downloading data via one or more connections (communication links). When at least one trigger condition is detected, the trigger processing unit 808 inside the DIC 800 informs the run-time controller 1912 via a communication link connected to the host communication controller 1924. The HDL-based hardware debugger also performs signal value examination. When the HDL-based hardware debugger has been notified that one or more trigger conditions have been detected, the host communication controller 1924 downloads data from the DIC and stores it in a raw status file 1926. This raw status data is then split by the R2P translator 1920 into data from the DIC status registers and data from the signal value sample memory. The data from the DIC status registers is stored in a DIC status database 1928. The DIC configuration manager 1916 accesses the DIC database 736 and the active break-point database 1904 and determines which of the activated trigger conditions were actually detected. The detected trigger conditions are then marked as triggered in the active break-point database 1904. The activation user interface 1902 thereafter displays the detected trigger conditions as marked. On the other hand, the data (values) of the sampled signals from the signal value sample memory are stored in a system state database 1930. A history manager 1932 picks up values of the sampled signals from the system state database 1930, analyzes the history based on the sample clock periods, and appends them to a signal value history database 1934. The signal value history database 1934 provides a method of storing sampled signals for particular sample times. A signal value resolver 1936 reads the signal value history database 1934, resolves the data back to HDL identifiers by applying the resolution rules of the cross-reference database 612, and writes the data into a global signal value database 1938. Any re-organization and/or transformation of the signal data to support HDL identifiers with complex values (for example multi-bit or symbolically encoded values) can also be performed by the signal value resolver 1936. Signals, whether selected or implied, which have not been directly sampled but which can be derived from sampled values, are calculated by the signal value resolver 1936 and stored in the global signal value database 1938. The global signal value database 1938 comprises the current value and the value history of all the signals, sampled and/or derived. The value history can be used for display to the designer or for further processing. A format translator 1942 accesses the global signal value database 1938 and translates the data into one or more different file formats. For example, the format translator 1942 can produce vector change dump files 1944, wave vector files 1946, or debug data files 1948 suitable for further processing by third party tools such as simulators. The display manager 1940 gets directions from a display user interface 1950 about which values to query for display from the global signal value database 1938. The display user interface 1950 uses the original HDL 304 to provide a method for HDL-based signal examination for the designer. When software debugging is also to be performed, the debugging process 1900 can include a software debugger interface 1960 and a software debugger 1962. Additional details on software debugging are provided below with respect to FIG. 20. Still further, the HDL-based hardware debugger can perform check-point processing. The system state of the HDL design including the DIC is represented by the values of the electronic system's registers and inputs. The HDL-based hardware debugger provides a method for saving and restoring the system state to the system state database 1930. Depending on whether all the registers and inputs are sampled, or only some of them, the system state can be saved in full or partially. Sometimes a partial system state is sufficient, sometimes the full system state is necessary. The capability to save and restore the electronic system's state can be used for many applications. As examples, one application can set the electronic system to a known state during HDL-based hardware debugging, and another application can integrate the present invention with functional simulators. HDL-based hardware debugging using the sampling and trigger detection methods described in the present invention still may not give every detail of every internal signal like an event-driven functional simulator may give. Thus, it may be desirable to combine both approaches and have one system, where the HDL-based hardware debugging techniques are used when there is a need for a high execution speed and/or real-time behavior, and where a functional simulator is used for time periods which are not speed-critical but where a great level of detail is needed. In order to combine both styles, the HDL-based hardware debugger described in FIG. 19 provides a way to exchange information about the system state with a functional simulator. Most functional simulators provide a method for saving the simulation state of a simulation model of the HDL design in a checkpoint file using a variety of different file formats. The file formats can be processed by a checkpoint manager 1952. For uploading the state of the simulation model into the HDL-based hardware debugger, a simulator checkpoint input file 1954 is translated by the checkpoint manager 1952 using the cross-reference database 612 and stored in the system state database 1930. To start the functional simulation from a given state of the HDL design, the checkpoint manager 1952, using the cross-reference database 612, can convert the contents of the system state database 1930 into a simulator checkpoint output file 1956 in a format suitable for a functional simulator. A checkpoint file 1958 can be used for storing and retrieving the system state of the DUT, for example, for subsequent runs of the HDL-based hardware debugger. Still further; the HDL-based hardware debugger can perform mismatch processing. The mismatches can occur between different runs of the DUT. In some situations it may be useful to find mismatches in the sampling data gained from running the same version of the DUT under different conditions. For example, this could be used for verifying that the functionality of an HDL design has not changed after the HDL design has been modified. In some other situations it may be useful to find mismatches in the sampling data gained from running two different versions of the same DUT under identical conditions. To make it easier for the designer to understand any mismatches found, the HDL-based hardware debugger can relate mismatches back to the original HDL description and display both sets of signal values. The mismatches can also occur between the HDL description and the DUT. In some situations it may be useful to compare the functional behavior of a fabricated electronic system with the functional behavior of the HDL description of the electronic system. A mismatch in the comparison means that some step in the design flow was incorrect. The electronic system need not be fully instrumented since some functional mismatches can be caught with partial instrumentation. A representative method for performing such a comparision is as follows: First, the HDL design is instrumented. The instrumentation is most useful when the design visibility covers the entire system state. Second, with the instrumentation enabled, run the DUT in an environment and at a speed for which it was targeted. Third, store all sample data gained from the operation of the DUT. Fourth, starting with the earliest clock cycle for which sample data is available, format the sample data so that it will be accepted by a functional 'simulator. Fifth, use the formatted data to set the initial state of the HDL design in a functional simulation of the HDL design. If the HDL design was partially instrumented, substitute the appropriate “UNKNOWN” simulation value for any un-instrumented inputs or storage elements in the circuit. Sixth, use the functional simulator to calculate the values of the storage elements in the next clock cycle given the initial state set above. Seventh, compare the calculated values of the storage elements with the sample data for the next clock cycle and note any mismatches. If the HDL Design was partially instrumented, any comparisons to an “UNKNOWN” value are NOT a mismatch. Eighth, take the sample data for the inputs and storage elements from the next cycle, format as appropriate, and use such to re-set the initial state of the functional simulator. Ninth, while there is more design visibility data left, return to the sixth operation. The mismatches found in the seventh operation are potential problems and should be investigated by the designer. To make it easier for the designer to understand any mismatches found, the HDL-based hardware debugger can relate the mismatches back to the original HDL description and display both sets of signal values. In the above representative method, mismatches are found by comparing the sampling data with the values calculated from the HDL description by a functional simulator. Obviously, the full power and generality of a functional simulator is not required here. Any method that can calculate delay-independent functional values from an HDL description can be used to find mismatches. For example, the cross-reference database can contain a representation of the necessary function of the HDL description and can be used to calculate the values directly. FIG. 20 is a block diagram of a hardware/software co-debugging system 2000 according to one embodiment of the invention. The hardware/software co-debugging system 2000 is generally similar to the hardware debugging system 100 of FIG. 1A or the hardware debugging system 150 of FIG. 1B, but the DUT 102 includes not only the DIC 106 but also a Central Processing Unit (CPU) 2002. The hardware/software co-debugging system 2000 thus permits debugging not only software that runs on the CPU 2002 but also debugging the DUT 102. For debugging the software that runs on the CPU 2002, a software debugger 2004 is used. The software debugger 2004 is a software program that runs on a host computer and controls and observes the execution of the computer software code which runs on the embedded CPU 2002. For example, the software debugger 2004 can be the software debugger 1962 illustrated in FIG. 19. The software debugger 2004 allows program break-points to be set. Those program break-points define the condition upon which the program execution is halted such that the designer can examine the operation of the software program. If the embedded system (CPU 2002) cannot be halted, the software debugger 2004 takes a snapshot of the software program's state for examination instead. FIG. 21 is a block diagram of a hardware/software co-debugging system 2100 according to one embodiment of the invention. The hardware/software co-debugging system 2100 is generally similar to the hardware/software co-debugging system 2000 of FIG. 20 with the addition of an In-Circuit Emulator (ICE) 2102. The ICE 2102 interfaces the software debugger 2004 with the CPU 2002. The ICE 2102 is, more generally, a debugger interface. An example of such a debugger interface is described in “The Nexus 5001 Forum Standardfor a Global Embedded Processor Debug Interface,” which is available by the IEEE-ISTO in Piscataway, N.J., and which is hereby incorporated by reference. It should also be noted that as shown in FIG. 21 the CPU 2002 may not be part of the DUT 102. In general, the software being debugged can execute on the CPU 2002. The CPU 2002 need not be within the DUT 102. In other words, the CPU 2002 can be part of the electronic system 104 or can even be external to the electronic system 104 if coupled thereto. Concurrent debugging of the HDL design and the CPU software deals with the following two cases: (i) a trigger condition set in the HDL-based hardware debugger and detected at run-time in the DIC; and (ii) a program break-point is set in the software debugger 2004 and detected in the CPU 2002 and/or the ICE 2102. The setting and detecting of at least one trigger condition in the DIC and examining the operation of the HDL design and/or the software program can be done in the following operations. First, a trigger condition is set in the HDL-based hardware debugger (HHD) 122. Second, the HHD 122 configures the DIC 106 via a communication link 2104. Third, if the trigger condition is met, one or more trigger actions are issued in the DIC 106. One trigger action in the DIC 106 notifies the HHD 122 via the communication link 2104. One trigger action in the DIC 106 notifies the CPU 2002 via a communication link 2106. On the CPU side, the communication link 2106 may be connected to an interrupt input. Fourth, the HHD 122 then downloads the DIC status and the sample values for processing and display. Fifth, the CPU 2002 then notifies the ICE 2102 via a communication link 2108. Sixth, the ICE 2102 then notifies the software debugger 2004 via the communication link 2110 that a trigger condition was detected. Alternatively, the HHD 122 can directly notify the software debugger 2004 via the software debugger interface 1960. Seventh, the software debugger 2004 then takes a snapshot of the current status of the software program and/or halts the program's execution. Eighth, the status and the history of the operation of the HDL design and the software program can then be examined in the user interface 2116. The setting and detecting of at least one trigger condition in the software debugger 2004 and examining the operation of the HDL design and/or the software program can be done in the following operations. First, a program break-point is set in the software debugger 2004. Second, the software debugger 2004 sets up the ICE 2102 via the communication link 2110. The ICE 2102 monitors some internal portions of the CPU 2002 (for example the instruction pointer counter) to determine whether the program break-point is reached. Third, if the program break-point is reached, the following actions are issued: (i) one action issued by the ICE 2102 notifies the software debugger 2004 via the communication link 2110; and (ii) another action issued by the CPU 2002 notifies the DIC 106 via the communication link 2106. On the DIC's side the communication link 2106 can be connected to an external trigger event input. Fourth, the software debugger 2004 then takes a snapshot of the current status of the software program and/or halts the program's execution. Fifth, the DIC 106 then processes the trigger event(s) and informs the HHD 122 via the communication link 2104. Sixth, the HHD 122 then downloads the DIC status and the sample values for processing and display. Seventh, the status and the history of the operation of the HDL design and the software program can then be examined in the user interface 2116. Depending on the debugging tools utilized, the user interface 2116 can be either integrated into the HHD 122 and/or into the software debugger 2004. The hardware debugging system according to the invention can have numerous features. The hardware-debugging system can, for example, be the hardware debugging system 100 illustrated in FIG. 1A or the hardware debugging system 150 illustrated in FIG. 1B. Exemplary features of the hardware debugging system might include one or more of those features examined below. One exemplary feature pertains to HDL-based hardware debugging. While debugging an electronic system, the values of numerous signals may be examined. Relating these values of numerous signals back to the HDL description of the electronic system allows a user (e.g., designer) to gain an understanding of the operation of the electronic system. This enables the debugging to be performed at the same level of abstraction and using the same text description that the designer of the electronic system used to design and implement the electronic system. During the design phase of an electronic system, there are many transformations made to the HDL description to produce the fabricated electronic system. While such transformations conventionally often make it very difficult to difficult to relate a signal in the fabricated electronic system to the HDL description, the invention is able to relate the signals automatically and thus provides an efficient and effective approach to debugging the electronic system. Another exemplary feature pertains to the ability to debug in a target environment at target speed. Performing HDL-based hardware debugging, while the electronic system is running in an environment and at a speed for which the HDL design is targeted, provides the following benefits: high processing bandwidth, real-time debugging, and no need for testbenches. During debugging, all operations may take the same time as in normal (non-debugging) operation which provides high processing bandwidth. For example, booting an operating system is a task which requires many clock cycles and is usually too time consuming to be done in functional simulation. In HDL-based hardware debugging, booting may take the same amount of time which it takes in normal (non-debugging) operation of the electronic system. Consequently, the designer can re-run the booting as often as necessary to fully debug the electronic system. Real-time debugging is useful for debugging electronic systems which have to maintain a specified real-time behavior in the sense that certain operations must be performed within a very well-defined time limit. Further, since a failure within the electronic system can be observed, analyzed and diagnosed within the target environment, there is no need to reproduce the failure in a model of the target environment, such as a testbench, for functional simulation or emulation. Another exemplary feature pertains to the ability to communicate with hardware not instrumented. In some cases it may be important for a DIC to communicate with other hardware that was not, or could not be, instrumented. Such communication can be done via dedicated ports of the DIC which can be connected to other devices in the electronic system, or to portions within the same device the DIC resides in. These ports can be uni-directional or bi-directional. One example use of such ports is to communicate one or more trigger actions to another part of the electronic system. Another example is to connect an interrupt signal from another device to the DIC. The interrupt signal can then be used as a trigger event inside the DIC. Still another exemplary feature pertains to the ability of the HDL-based hardware debugger to communicate with other systems. The HDL-based hardware debugger is a software system which can communicate with other software or hardware systems. The communications can allow transfer of information into, or out of, the HDL-based hardware debugger. For example, an electronic system may be able to execute a software program and in such case the HDL-based hardware debugger can communicate with a software tool which can debug the software program. The HDL-based hardware debugger may also communicate with hardware devices. For example, the HDL-based hardware debugger may send reset signals to hardware devices which connect to the DUT being debugged. In one embodiment, the connection to other hardware devices is used to form a JTAG daisy-chain. Yet another exemplary feature pertains to the ability to provide hardware and/or software debugging. Some electronic systems have the capability to execute a software program. Software tools exist to debug the programmable hardware. It is advantageous for the designer of the electronic system to have the capability to debug both the hardware and software aspects of the electronic system concurrently. The HDL-based hardware debugger can enable such a capability by debugging the hardware of the electronic system and interfacing with software debugging tools. Interfacing with the software debugging tools can be done by using communication methods previously described. The combined hardware and software debugging system allows the designer to concurrently debug an entire electronic system including both hardware and software aspects. The HDL-based hardware debugging can be used in many different applications. Different embodiments or implementations of the invention may be used in one or more of the following applications. Several example applications for the HDL-based hardware debugging are examined below. One exemplary application for the HDL-based hardware debugging is property checking at target speed. Functional simulation alone cannot guarantee that a HDL design meets a functional specification for the HDL design. Consequently, additional methods of gaining confidence in the correctness of the functionality of a HDL design are necessary. A designer can increase the level of confidence in the function of the HDL design by adding DIC which can detect when the HDL design is operating contrary to its functional specification. The DIC. can provide property checks to assist the designer with identifying various conditions. The designer might also build in property checks to handle anticipated difficulties. Typically, during HDL-based hardware debugging, the property checks are activated and the electronic system is allowed to run in an environment and at a speed for which it is targeted. If the electronic system operates in a manner that causes a property check to issue a trigger event, the designer has found a potential problem. Software tools exist that formally prove that certain property checks will never be triggered under any operating conditions of the design. Unfortunately, such tools may have tremendously long run-times since they must exhaustively analyze the design. The HDL-based hardware debugging approach does not have the problem of long run-times since all property checking is done in hardware that is running at target speed. Another exemplary application for the HDL-based hardware debugging is HDL-based hardware debugging of errors in functional specifications. Some of the hardest functional failures to diagnose are misunderstandings of the target environment the electronic system is designed to work in. Such misunderstandings may lead to mistakes in the functional specification of the electronic system. Hence, comparing the implementation of the electronic system with its specification will not reveal such functional failure. However, the functional failure will become apparent when the electronic system is run in its target environment. While conventional methods for debugging, such as logic analyzers, can connect to accessible pins to monitor the operation of the electronic system within its target environment, these conventional methods do so only at a very low level of abstraction. In contrast, the HDL-based hardware debugging system according to the invention supports analysis, diagnosis and debugging of functional failures due to mistakes in the functional specification. First, there is no need to reproduce the problem in a testbench because the hardware itself is tested in its target environment. The ability to observe the HDL design while it is running in its target environment at the targeted speed allows the designer to immediately gather information about the electronic system as well as the environment the system is running in. Second, the information gathered is related back to the HDL description, which is the highest level of abstraction. Another exemplary application for the HDL-based hardware debugging is HDL-based hardware debugging of design errors. Design errors stem from mismatches in the behavior of the HDL description written by the designer and the functional specification. Conventionally, such problems are normally debugged by reproducing the observed error in a testbench for a functional simulator. Though functional simulation gives information at a very detailed level, creating and enhancing a testbench to reproduce a functional failure is often a very tedious and difficult task. In contrast, with HDL-based hardware debugging provided by the invention, there is no need to reproduce the problem in a simulation model. By running the electronic system in the environment where the design error becomes apparent, sampling the desired portions of the system state, and analyzing the observed behavior which is related back to HDL identifiers, a functional failure can quickly be diagnosed. Having gained an understanding of the operation of the system, the designer then can use patching to apply a fix. Then, by re-running the patched HDL design in the target environment, the designer can check whether the problem is fixed. In addition, the HDL-based hardware debugger can write out the sampled information in a format suitable for a functional simulator tool (check-pointing) so that the designer can use their preferred analysis tools. The above-described check-pointing mechanism to forward the sampled information to functional simulation can additionally be used. Another exemplary application for the HDL-based hardware debugging is HDL-based hardware debugging of tool errors. Tool errors are functional failures which happen when, for example, a synthesis tool involved in HDL design process does not transform the HDL description into a correct fabricated design. Such errors manifest themselves as mismatches between the functional specification and the functionality of the fabricated design, therefore debug techniques which work on the HDL description cannot be used to debug such errors. However, since HDL-based hardware debugging works on the instrumented design which was produced by the erroneous tool, the symptoms are able to be displayed to the designer for diagnosis. Another exemplary application for the HDL-based hardware debugging is HDL-based hardware timing error analysis. Examples of timing errors in an HDL design are race conditions as well as setup and hold time violations in the hardware implementation. One symptom of a timing error is that some registers do not store the correct, expected values. This symptom is easily detected using the method of checking for mismatches between the functional simulation result and the values sampled by the DIC. When the designer examines the values of the circuitry that drive the erroneous register, the cause for the symptom can be quickly diagnosed. The impact of signal noise on the behavior of the electronic system can also be similarly analyzed and diagnosed. Another exemplary application for the HDL-based hardware debugging is HDL-based hardware fault analysis. Faults stem from manufacturing defects. When faults show up occasionally in a non-reproducible manner for one particular device or for only certain devices out of a batch of other devices, diagnosis becomes very difficult. The HDL-based hardware debugging can be used to diagnose faults, and relate them back to HDL identifiers to provide leads for the fault analysis. Detection of faults is identical to the detection of timing errors and is done by checking for mismatches between functional simulation results and values sampled by the DIC. The ability to relate sample values to the HDL description is a significant advantage since the designer can quickly identify the problem. Once the problem is located in the HDL description, the designer can trace the problem all the way to the layout level to determine the physical location of the defect or defects that caused the fault. The designer can then perform very precise design rule checks. The ability to limit the area for the design rule checks to the neighborhood of the defect location greatly reduces the effort. If the fault is caused by a design rule violation, it thus can be quickly found and fixed. Knowing the context of the fault may also help to improve the manufacturing test program and/or improve the manufacturing yield. Another exemplary application for the HDL-based hardware debugging is HDL-based critical-path analysis of hardware. To analyze the timing and identify critical paths in the HDL design, the following is one method that can be used. Initially, the HDL design is run at the target speed in the target environment and using some predetermined trigger conditions, some predetermined signals are sampled and the value history is stored. Then, iteratively, the frequency of one or more clock signals is step-wise increased, the HDL design is run at the increased clock speed/speeds while the HDL-based hardware debugger samples the very same signals under the very same trigger conditions as performed in the initial operation. For each iteration, the HDL-based hardware debugger checks for a mismatch between the current sampling values and the initial sampling values. If a mismatch is detected, the HDL-based hardware debugger informs the designer about the mismatch and the designer can then analyze the portion of the HDL design in which the mismatch occurred. The portion of the HDL design in which the mismatch occurred is likely to be a part of the critical path of the electronic system. Another exemplary application for the HDL-based hardware debugging is analysis, diagnosis and debugging-of environmental errors. Environmental factors such as temperature, pressure, radiation, electromagnetic fields, and aging effects may cause transient or permanent failures of the electronic system. Sometimes an electronic system works reliably in the field for years until aging and/or environmental factors cause functional failures. If parts of the electronic system have been instrumented, the invention can be used to diagnose the problem quickly by looking for mismatches between the function of the electronic system and sampled data taken from the fabricated design. If the electronic system has been instrumented with design patching, the electronic system might be patched to restore the proper behavior. Another exemplary application for the HDL-based hardware debugging is HDL-based hardware power analysis. Power analysis of the electronic system needs to know about the realistic stimuli and transitions in the electronic system to come up with an accurate estimation of the power consumption. In a hardware power analysis application according to the invention, the system state of the HDL design running in the target environment at target speed is sampled and stored by the HDL-based hardware debugger and transformed into the proper format for describing such stimuli and transitions which can be processed by tools which are specialized for power calculations. Another exemplary application for the HDL-based hardware debugging is HDL-based hardware regression testing. For regression testing of changes to the hardware design, the invention can be used as follows. An initial version of the instrumented HDL design, which itself has been tested and found correct, is run with some predetermined trigger conditions and some predetermined signals to be sampled. The sample values and their history are stored as a “golden” reference file. Each HDL design which includes a design change is then run again using the same trigger conditions and sampling the same signals at the same events. The HDL-based hardware debugger then checks for mismatches between the reference file and the current sampling data and issues warnings if mismatches are detected. Accordingly, the design change that introduced the mismatched behavior can be quickly isolated and fixed. Another exemplary application for the HDL-based hardware debugging is HDL-based testbench optimization. The reference file of the hardware regression testing application can be used as stimuli to create a new testbench for functional simulation, or optimize an existing testbench to more closely mimic the behavior of the target environment. Another exemplary application for the HDL-based hardware debugging is HDL-based hardware device driver debugging. The debugging of a particular device driver which interacts with the HDL design is similar to hardware/software co-debugging. The designer is thus able to see the effects of the device driver on the HDL design it interacts with immediately. In numerous applications of the invention, an electronic system shall be debugged after it has initially executed certain setup operations. Having the electronic system execute the operations for setup can be slow, tedious, and cumbersome. For example, an operating system may be booted and many other device drivers may be loaded before a particular device driver and the hardware used by it can be debugged. Now, if the designer has to iterate over the initialization many times, it is advantageous that the system state right after the initialization be saved and restored before each iteration (e.g., system state database 1930 of FIG. 19). The restoring will operate to bring the HDL design into exactly the same post-initialization state. Another exemplary application for the HDL-based hardware debugging is HDL-based software quality analysis in target hardware. The invention can also be used in regression testing and software quality assurance of the software that runs on the HDL design. If one or more software regression tests fail, the HDL-based hardware debugger can be used to quickly diagnose the failure. Another exemplary application for the HDL-based hardware debugging is HDL-based embedded systems debugging. Software that runs on an embedded CPU within the HDL design is able to be debugged by a software debugger. The software debugger can communicate with a HDL-based hardware debugger that debugs the hardware of the HDL design. Still another exemplary application for the HDL-based hardware debugging is in-field support. A common use of the HDL-based hardware debugging system is to instrument an electronic system and then use the HHD 122 to debug the system. After debugging and fabrication, copies of the fabricated electronic system can be distributed to the designer's customers. At this point, the DIC 106 can be used in an in-field mode. In the in-field mode, the DIC 106 is used to diagnose failures that occur while the electronic system is being used by customers. The DIC 106 still resides in the fabricated electronic system but the DIC's normal state is disabled. It will be enabled if there is a problem with the electronic system. In addition, a specially trained service personnel can be sent to the customer's site. The personnel can attach the instrumented electronic system to a portable host computer which runs the HHD 122, activate the DIC 106, and debug the HDL design in the customer's environment. If the instrumented electronic system has been designed with a telecommunications link between the DIC 106 and the HHD 122, remote debugging may avoid the need for service personnel to be sent to the customer's site. Yet another exemplary application for the HDL-based hardware debugging is hardware performance monitoring. Often it is important for a hardware system designer to monitor the performance of a hardware system in order to understand and optimize the system. This can be done by a software simulation of the system. Unfortunately, this has the drawback that it requires a model of both the electronic system and of the environment it operates in. By adding performance monitoring circuitry to the DIC 106 of the electronic system, the designer can monitor the performance of the fabricated electronic system operating in its target environment and at its target speed. The process of adding the monitoring circuitry begins with the instrumentor. The instrumentor displays the HDL description and enables the designer to add performance monitoring circuitry which relates to the HDL description. During debugging, the data from the performance monitoring circuitry is loaded from the DIC 106 to the HHD 122 after a specified number of clock cycles or in response to some trigger event. The HHD 122 then displays the data for the designer in the proper format. The circuit performance that can be monitored by this added circuitry is quite broad; for example, a circuit performance parameter in which there are events that can be counted—the number of times a First-In-First-Out (FIFO) queue overflows, a number of cache misses, etc. Further, average values, such as average stack depth, can also be monitored by using more complex circuitry. Portions of the invention are preferably implemented in software. Such portions of the invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can be thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, magnetic tape, optical data storage devices, carrier waves. The computer readable medium can also be distributed over a network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. The many features and advantages of the present invention are apparent from the written description and, thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to electronic systems and, more particularly, to debugging of electronic systems. 2. Description of the Related Art Electronic systems are designed by designers to operate in specific ways. Electronic systems are systems that contain digital and/or analog electronic components connected together to perform specific operations or functions. Besides the electronic components, electronic systems may also include software. Once designed, the electronic systems may need to be debugged. Debugging electronic systems is a process which involves detection, diagnosis, and correction of functional failures. In the detection step, the designer of the electronic system observes a functional failure. When the designer is able to gather enough information about the incorrect behavior of the electronic system, the designer of the electronic system can draw the necessary conclusions to diagnose the functional failure. For correction of the functional failure, a fix is applied and subsequently tested. When the design is provided in a Hardware Description Language (HDL), such a fix may be a textual change to the HDL description of the electronic system. In general, debugging has conventionally been performed by various different approaches. In particular, debugging has been performed by computer software debugging, hardware description language functional verification, hardware logic level analysis, or hardware behavioral source level emulation. These different approaches are discussed below. Computer software debugging is conventionally performed using a computer software debugger. A computer software debugger is a software tool that allows a software developer to control the execution of a running computer software program by setting break-points, sequentially single-stepping through the execution of the computer software program, and looking at the program's state by examining and displaying variables and expressions. One example of such a software debugging tool is the GNU Debugger (GDB), which can be obtained from Red Hat, Inc. in Sunnyvale, Calif. Software debuggers usually offer interactive debugging of software programs which are sequentially executed on computers. However, some software debuggers also support limited concurrency such as threaded program execution. Some software debuggers support debugging programs written at different levels of abstraction from high-level computer languages such as C++ down to assembler code and/or machine code. To assist with debugging of programs written in high-level computer languages, the software debugging system can add extra debug information (e.g., symbolic names and references to source code) to the compiled code during compilation of the computer software program. In combination with in-circuit emulators, software debuggers may provide a limited capability to analyze the underlying Central Processing Unit (CPU) of the computer executing the computer software program. A major disadvantage of software debuggers is, however, that they cannot be used for efficiently debugging general hardware of electronic systems. Hardware description language functional verification is used to verify that the parts of an electronic system which are described using HDL match their functional specification. Such functional verification can be achieved through functional simulation or formal verification. Functional simulation is performed by a functional simulator. A functional simulator is a software program that runs on a host computer and simulates the operation of an electronic system using its HDL description. Examples of functional simulators include VCS and VSS from Synopsys, Inc. in Mountain View, Calif., and ModelSim from Mentor Graphics Corp. in Wilsonville, Oreg. To increase simulation performance some functional simulators additionally make use of special purpose hardware which acts as a co-processor and accelerates the simulation. An example of a hardware-accelerated functional simulator is the Hammer system from Tharas Systems, Inc. in Santa Clara, Calif. Unfortunately, one major disadvantage of functional simulation is the need for simulation models. In order to be able to simulate, there must exist a simulation model with the proper functional behavior for each component of the HDL design for the electronic system. For some components such simulation models may not be readily available and must be generated. Additionally, the HDL design must be stimulated by a testbench. Since the ideal testbench must correctly and exhaustively match the behavior of the target environment, creation of a testbench can be very difficult and time consuming. On the other hand, a testbench that is too simple will not provide the necessary coverage to find all the design errors. Although functional simulation is useful, using functional simulation to debug design errors is too burdensome. Not only are the testbenches difficult to create, but also the more complex the HDL design is, the lower the performance of functional simulation. For state-of-the-art HDL designs simulation is now a million times slower than the fabricated hardware. Hardware-acceleration can typically speedup functional simulation by a factor on the order of one-hundred. Accordingly, its low performance makes it impractical to use functional simulation either to debug real-time applications or to concurrently debug hardware and software of complex electronic systems. Formal verification is performed by a formal verification tool. Formal verification can help with the problem of incomplete coverage in functional simulation due to testbench limitations. One approach checks the HDL description for properties. Such properties may be explicitly provided by the designer of the electronic system or implicitly extracted from the HDL description by the formal verification tool. An example of such a formal verification tool is Solidify from Averant, Inc. in Sunnyvale, Calif. One disadvantage of formal verification is that it is impractical to use to re-produce functional failures observed in a running electronic system. Both techniques, functional simulation and formal verification, have the major disadvantage that they do not operate on fabricated hardware. Instead, both techniques operate on a model of the electronic system and a model of the environment in which the electronic system runs, i.e., a testbench. Thus, their use is limited to debugging design errors. As such, neither technique is applicable for debugging manufacturing faults, environment errors, timing errors and/or tool errors. Also, inadequacies in the testbench have the potential to hide or introduce design errors in the HDL design during functional simulation which can later, when the HDL design is fabricated, show up as functional failures of the running electronic system. Hardware logic level analysis is a technique that works at the logic level of a fabricated electronic system. The logic level of abstraction is also referred to as gate-level. Since electronic systems have been designed at the logic level for many years (for example using schematic entry of logic gates and flip-flops), there exists a wide variety of different techniques for debugging at logic level, including: digital logic is analyzers, in-circuit emulators, Design-For-Test (DFT) techniques, and hardware emulation, each of these different techniques are discussed below. Digital logic analyzers operate to probe a limited number of digital signals and record their logic values. Probing is accomplished by physically connecting probes of the digital logic analyzer to exposed pins and/or circuitry on the fabricated design. Recording is controlled by trigger conditions, which are conditional expressions built upon the values of the recorded signals provided by the probes. The values for the recorded signals are stored in dedicated memory inside the digital logic analyzer so as to be available for subsequent display. Digital logic analyzers can be external devices or blocks embedded inside the digital circuits of an electronic system. An example of an external digital logic analyzer is the Agilent 16715A from Agilent Technologies, Inc. in Palo Alto, Calif. Examples of embedded logic analyzers are SignalTap from Altera Corporation in San Jose, Calif., or ChipScope from xilinx, Inc. in San Jose, Calif. Another example of an embedded logic analyzer was presented at the 1999 IEEE International Test Conference by Bulent Dervisoglu in “Design for Testability: It is time to deliver it for Time-to-Market”. Since embedded logic analyzers are added to the circuitry of the design, they can probe internal signals. Thus, embedded digital logic analyzers overcome the limited access to internal signals problem of external logic analyzers because access to the internal signals is not restricted by the pins of the fabricated circuits. An in-circuit emulator is a specialized piece of hardware that connects to a CPU for debugging the CPU and the software that runs on the CPU. An example of an in-circuit emulator is visionICE from Windriver in Alameda, Calif. However, since in-circuit emulators only work for the specific target CPU for which they were built, in-circuit emulators are inappropriate for debugging general digital circuits. DFT techniques, such as boundary scan and built-in self test, provide access to the internal registers of a running fabricated digital circuit. An example of such technique is described in the IEEE 1149.1 JTAG standard available from the Institute of Electrical and Electronic Engineers in Piscataway, N.J. DFT techniques are also described in “Digital Logic Testing and Simulation” by Alexander Miczo, published by Wiley, John and Sons Inc., 1985. DFT techniques were originally developed for and applied to testing of manufacturing faults and have the major disadvantage that they do not relate back to the HDL description. Hardware emulation systems map a synthesized HDL design onto special emulation hardware. Such emulation hardware comprises many re-programmable FPGA devices and/or special purpose processors. The emulation hardware then executes a model of the HDL design. Thus hardware emulation has the same disadvantage as functional simulation, namely, that it works on a model of the electronic system and not on the fabricated hardware. As a result, hardware emulation systems are limited to design error debugging, and cannot be used for diagnosing manufacturing faults, tool errors, timing errors, etc. An example of such a hardware emulation system is System Realizer from Quicktum Systems, in San Jose, Calif. Specially built prototyping systems comprising FPGAs/PLDs can also be seen as hardware emulation systems. Since hardware emulation is usually much faster than functional simulation, hardware emulation systems may enable use of the software that is supposed to run on the HDL design to be used as a testbench. Even so, hardware emulation typically runs at speeds below one MegaHertz (MHz) while the HDL design is supposed to run at many hundred MegaHertz. In some cases the emulator speed may allow the user to connect the HDL design to the target environment which makes the design of testbenches unnecessary. Even so, with the high speeds of state-of-the-art HDL designs, hardware emulation is not capable of debugging the majority of real-time applications. Another disadvantage is that the special synthesis, mapping, and multi-chip partitioning steps required to bring an HDL design into a hardware emulation system are very complicated and time consuming. A major drawback of all logic level debugging techniques is that they work at the logic level of abstraction. Since the HDL-based design methodology of electronic systems is much more efficient for todays complex designs, HDL designs have largely replaced logic level designs. Application of logic level debugging techniques to HDL design methodology is highly inefficient. Since logic level debugging does not-relate back to the HDL description, it normally would not provide the designer of the electronic system with sufficient information to correctly diagnose a functional failure. Hardware behavioral source level emulation provides hardware emulation of source level designs. One technique for debugging HDL designs described at the behavioral level HDL using hardware emulation is described in “Interaktives Debugging algorithmischer Hardware-Verhaltensbeschreibungen mit Emulation” by Gemot H. Koch, Shaker Verlag, Germany, 1998. Some of which is also described in Koch et al., “Breakpoints and Breakpoint Detection in Source Level Emulation,” ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, 1998. The therein described technique is referred to as Source Level Emulation (SLE) and offers an approach for emulating HDL designs, however only if such designs are described in behavioral VHDL. During behavioral synthesis a behavioral HDL design is enhanced for debugging by generating and adding additional circuitry for break-point detection. The behavioral synthesis tool writes out synthesized VHDL which contains a register transfer level description of the enhanced HDL design. The register transfer level description is then synthesized, mapped, and multi-chip partitioned into the emulation hardware. During hardware emulation with a hardware model of the HDL design, the user is able to examine particular variables in the behavioral HDL description. Control is provided via break-points which are detected using the additional circuitry inside the running hardware model. Break-points in SLE have a very specific meaning. In particular, such break-points are closely tied to behavioral operations in the data-flow of the behavioral HDL description, and are associated with particular states of a controller which is generated by the behavioral synthesis. Additionally, break-points can be made conditioned upon particular values of data-path registers. When a break-point is detected, the execution of the hardware model is stopped. This is done by halting some or all of the system clocks and prevents the registers from changing their current values. Once halted, internal registers can be read. These registers form a scan-chain such that their values can be read by an emulation debugging tool. Examination of variables in the behavioral HDL description is done in two ways. For variables which are mapped by the behavioral synthesis into registers in the hardware model, their values can be read and related back to HDL identifiers. This is done using map files which keep track of the transformations in behavioral synthesis, register transfer level synthesis, mapping, and multi-chip partitioning. For variables which have not been mapped to registers in the hardware model, their values are computed using a functional model of the behavioral HDL design. This functional model is created during behavioral synthesis and requires the existence of functional models of its components. The values, either read or computed, are then displayed in the behavioral HDL description. Optionally, by overwriting some or all of the registers of the hardware model while the hardware model is halted, the behavior of the HDL design can be modified once the execution of the hardware model is resumed. Although source level emulation provides a debugging method which works at the level of the HDL description (in this case behavioral VHDL), it has various drawbacks which limits its use in practice. Several of the drawbacks are as follows. First, enhancements for source level emulation must be done inside a behavioral synthesis tool, since it needs special information about the behavioral HDL design which is only available during the behavioral synthesis process. Second, source level emulation does not allow the designer to perform customization. For example, a designer is not able to select trade-offs between hardware overhead and debugging support. Third, source level emulation cannot handle HDL descriptions on levels of abstraction other than the one provided by behavioral VHDL. Explicitly, source level emulation is not applicable for the most commonly used levels of abstraction of RTL HDL and gate-level HDL. Fourth, source level emulation supports neither hierarchy nor re-use of pre-designed blocks. Fifth, there are various limitations and difficulties in relating registers back to behavioral HDL source code. Sixth, in order to examine the state of the hardware model, it is required that some or all of the system clocks be halted and the hardware stopped, which makes source level emulation inapplicable for debugging the majority of today's electronic systems which are not to be stopped. Thus, there is a need for efficient and effective approaches for debugging HDL-based electronic system designs. | <SOH> SUMMARY OF THE INVENTION <EOH>Broadly speaking, the invention relates to techniques and systems for analysis, diagnosis and debugging fabricated hardware designs at a Hardware Description Language (HDL) level. Although the hardware designs (which were designed in HDL) have been fabricated in integrated circuit products with limited input/output pins, the invention enables the hardware designs within the integrated circuit products to be comprehensively analyzed, diagnosed, and debugged at the HDL level at speed. The ability to debug hardware designs at the HDL level facilitates correction or adjustment of the HDL description of the hardware designs. The invention can be implemented in numerous ways including, a method, system, device, and computer readable medium. Several embodiments of the invention are discussed below. As a hardware debugging system for debugging a fabricated integrated circuit containing an electronic circuit design, one embodiment of the invention includes at least: an instrumentor configured to receive a high level HDL description of the electronic circuit design, to determine aspects of the electronic circuit design to be examined or modified during debugging, to determine additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and to produce a modified high level HDL description of the electronic circuit design by incorporating an HDL description of the additional circuitry into the high level HDL description of the electronic circuit-design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the modified high level HDL description or the high level HDL description; and a HDL-based hardware debugger configured to debug the fabricated integrated circuit fabricated in accordance with the modified high level HDL description by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the modified high level HDL description or the high level HDL description. As a hardware debugging system for debugging an electronic system containing an electronic circuit design, the electronic circuit design being described by a high level HDL description, one embodiment of the invention includes at least: an instrurentor configured to receive the high level HDL description of the electronic circuit design or a description derived therefrom, to determine aspects of the electronic circuit design to be examined or modified during debugging, to determine additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and to incorporate the additional circuitry into the electronic circuit design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the high level HDL description; and a HDL-based hardware debugger configured to debug the electronic system by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the high level HDL description. As a hardware debugging system for debugging an electronic system containing an electronic circuit design, the electronic circuit design being described by a high level HDL description, another embodiment of the invention includes at least: instrumentation means for receiving the high level HDL description of the electronic circuit design or a description derived therefrom, determining additional circuitry to be incorporated into the electronic circuit design to facilitate debugging, and incorporating the additional circuitry into the electronic circuit design; a design instrumentation database configured to store information about the additional circuitry including relationships between signals of the electronic circuit design and portions of the high level HDL description; and a HDL-based hardware debugger configured to debug the electronic system by interacting with the electronic circuit design using the additional circuitry and by operating to present debug information with respect to the high level HDL description. Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention. | 20041229 | 20060627 | 20050609 | 98137.0 | 3 | TAT, BINH C | HARDWARE DEBUGGING IN A HARDWARE DESCRIPTION LANGUAGE | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,027,126 | ACCEPTED | Utility tool device for an archery bow | A utility tool device for an archery bow. The device comprises one or more tools which are commonly used by archers for the proper maintenance, repair and operation of a bow. These tools include: a nock wrench, one or more Allen wrenches, a broadhead wrench, a shot counter and a sharpener. The device can be incorporated directly into the riser of a bow or attached to the bow riser in areas which will not interfere with the operation of the bow. | 1. An archery bow incorporating a utility tool device, the device comprising: a body for carrying or supporting at least one tool; and at least one tool selected from the group consisting of: a sharpener; a shot counter; a broadhead wrench; and a nock wrench, said tools being associated with the body and said body being formed as an integral component of a riser on the bow in an area where it will not interfere with the operation of the bow. 2. A device according to claim 1, wherein the body comprises a flat, rigid web-like tool supporting structure. 3. A device according to claim 2, wherein said riser includes an inner region and the body is positioned in said inner region of the riser. 4. A device according to claim 1, wherein the sharpener comprises two overlapping blades forming a v-shaped valley for sharpening a broadhead or knife. 5. A device according to claim 1, wherein the nock wrench is formed from an impression imbedded in the body. 6. A device according to claim 1, wherein the broadhead wrench is formed from an impression imbedded in the body. 7. A device according to claim 1, further comprising at least one Allen wrench releasably securable to the riser of the bow in an area where said at least one Allen wrench will not interfere with the operation of the bow. 8. A device according to claim 2, wherein the body has a thickness in the range of 1/16 to ⅛ of an inch. 9. A utility tool device for an archery bow, the device comprising: a body for carrying or supporting at least two tools; at least two tools selected from the group consisting of: a sharpener; a counter; a broadhead wrench; a nock wrench; and at least one individual Allen wrench; and a device for securely but releasably attaching the body to a portion of the riser or any other part of the bow where said body will not interfere with the operation of the bow. 10. A device according to claim 9, wherein the body comprises a flat, rigid plate-like tool supporting structure. 11. A device according to claim 10, wherein the body has a thickness in the range of 1/16 to ⅛ of an inch. 12. A device according to claim 9, wherein the sharpener comprises two overlapping blades forming a v-shaped valley for sharpening a broadhead. 13. A device according to claim 9, wherein the nock wrench is formed from an impression imbedded in the body. 14. A device according to claim 9, wherein the broadhead wrench is formed from an impression imbedded in the body. 15. A device according to claim 9, wherein the body further comprises at least one small hole extending sideways through said body to receive and store an individual Allen wrench. 16. A device according to claim 15, wherein said at least one hole is lined with a compression fitting material for releasably holding an Allen wrench. 17. A device according to claim 9, releasably attached to the archery bow, in a manner such that the device will not interfere with the operation of the bow. | FIELD OF THE INVENTION The present invention relates to a utility tool device for an archery bow which can be attached to a bow or incorporated directly into the riser of a bow. BACKGROUND OF THE INVENTION A wide variety of utility tools are required for the proper maintenance, repair and operation of an archery bow and its related accessories. Some of the more commonly used tools or implements are nock wrenches, broadhead wrenches, broadhead sharpeners and various types of Allen wrenches. These tools are generally stored in a toolbox and taken out when required. On occasion, such items may also be carried by an archer or transported in his or her pocket, since it is not always practical to carry a toolbox. These methods of storage and transportation are somewhat undesirable from an archer's perspective, as it can be cumbersome for an archer to transport a toolbox along with his or her bow and inconvenient to carry such items around by hand or store them in a pocket. Hand and pocket storage can often lead to tools being misplaced, lost or forgotten. In situations where it is not practical or desirable for an archer to carry a toolbox, or where tools have been forgotten or misplaced, it is not uncommon for archers to attempt to make certain adjustments manually, without any tools. Sometimes this can be a safety concern. For example, when hunting, an archer typically uses a broadhead, which consists of several razor sharp blades. The broadhead must be secured and tightened onto an arrow and this is normally accomplished with a broadhead wrench. However, in circumstances where such a wrench is not readily available, an archer may attempt to tighten the broadhead manually, which can sometimes result in the archer being cut or scraped unnecessarily. In addition to causing injury to an archer, attempts to manually adjust certain parts of a bow can also result in damage to the bow itself, since some components are not particularly strong or durable and are prone to damage if care is not taken. Not all archery tools and implements are sold individually. Some are incorporated into accessories that can be secured to a bow. An example of such an accessory is taught in U.S. Pat. No. 6,745,756 to Achkar, which discloses a bow carrying and support structure which can be adapted to include a broadhead wrench, a sling or an arrow rest. Although somewhat more convenient, not all archers prefer to have a bow carrying and support structure attached to their bow. Moreover, such accessories are generally not equipped to include many of the different types of utility tools that are required for proper maintenance and operation of the bow. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a utility tool device for an archery bow that contains one or more of the tools which are necessary for the proper operation, set-up, repair and/or maintenance of an archery bow. It is a further object of the present invention to provide a utility tool device which permits an archer to carry and store one or more archery tools in a convenient and less cumbersome manner. These and other objectives are accomplished by providing an archery bow incorporating a utility tool device consisting of a body for carrying or supporting one or more tools, and one or more tools selected from a sharpener, a shot counter, a broadhead wrench and a nock wrench. The tools are associated with the body and the body is formed as an integral component of a riser on the bow in an area where it will not interfere with the operation of the bow. The device may also optionally include one or more Allen wrenches. A further embodiment consists of a utility tool device for an archery bow, consisting of a body for carrying or supporting two or more tools selected from a sharpener, a counter, a broadhead wrench, a nock wrench; and one or more individual Allen wrenches, as well as a means for securely but releasably attaching the body to a portion of the riser or any other part of the bow, where it will not interfere with the operation of the bow. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of an archery bow incorporating the utility tool device according to the present invention; FIG. 2 is an enlarged partial side view of the riser of the bow of FIG. 1, incorporating the utility tool device of FIG. 1; FIG. 3 is a side view of an alternative embodiment of the utility tool device according to the present invention; and FIG. 4 is a side view of a further embodiment of the utility tool device according to the present invention. While the invention will be described in conjunction with illustrated embodiments, it will be understood that it is not intended to limit the invention to such embodiments. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. DETAILED DESCRIPTION OF THE DRAWINGS In the following description, similar features in the drawings have been given similar reference numerals. Turning to FIG. 1, there is illustrated a conventional archery bow 2 having a riser 4, integral carrying handle 5, and limbs 6 positioned on either side of the riser. The utility tool device 8 according to the present invention is shown incorporated into the riser of the bow. As shown in FIG. 2, the device consists of a tool supporting body 10 and one or more of the tools which are commonly used by archers to properly maintain, repair and operate their bow. In particular, the device may include a sharpener 12, a nock wrench 16, a shot counter 18 and/or a broadhead wrench 14. These tools are all positioned on a web-like tool supporting body 10 which is incorporated into the bow riser in such a manner that neither it, nor the tools will interfere with the operation of the bow. The body is formed of a flat, rigid material and is approximately 1/16 to ⅛ of and inch in thickness. The sharpener 12 ideally consists of two overlapping blades forming a v-shaped valley, suitable for sharpening a broadhead, which is a sharp implement consisting of one or more blades that is placed on the end of an arrow for hunting purposes. The sharpener may, however, also be used to sharpen a knife. The broadhead wrench 14, which is formed from an impression imbedded in the body, can be used to tighten the broadhead onto the arrow, once it has been sharpened. This is accomplished by inserting the blades of the broadhead into the corresponding slots in the broadhead wrench. The nock wrench 16, is also formed from an impression imbedded in the body and can be used to assist an archer in properly aligning the nock with the fletching. Similar to the broadhead wrench, this tool is utilized by inserting the nock components into the corresponding cut-outs forming the nock wrench on the body. Such a tool is particularly desirable to an archer, as manual alignment can often result in damage to the nock, which is quite often made out of plastic. The shot counter 18 is also a very useful archery tool. It is important for an archer to know how many shots have been taken, so that he or she can determine when string replacement is required. The counter may be selected from a variety of conventional counters, and, for example, be configured so as to respond to the vibrations generated by the bow when an arrow is shot and display a number representative of the total number of shots taken in a sequence. Alternatively, it may respond to a mechanical strike or be an electronic device using a motion or light sensor. Various Allen wrenches 20 may also optionally be incorporated into the riser 4 of the bow. Further embodiments of the present invention are shown in FIGS. 3 and 4. FIG. 3 shows the device 22 as an attachment. In addition to having a body 24 and two or more utility tools, the device also consists of apertures 26 to receive screws 28 through body 24 for securing it to the exterior of a bow riser 4. The device may include two or more utility tools selected from sharpener 12, shot counter 18, nock wrench 16, a broadhead wrench 14 and one or more individual Allen wrenches 20. The body 24 is equipped with at least one small hole extending side-ways therethrough, to receive and store the one or more Allen wrenches. This small hole(s) may be lined with a compression material for releasably securing the one or more wrenches. As shown in FIG. 3, the device can be attached to a bow riser on the side opposite from the bow string by using pre-existing apertures 26 which are normally intended for use in attaching a sight 30. Instead of using these holes to attach a sight, the device 22 can be attached to the holes 26 by using attachment means such as screws 28. The sight can then be attached to the opposite end of the device as illustrated, if desired. Alternatively, it may be incorporated into part of the sight frame. FIG. 4 shows a further embodiment of the present invention, wherein an attachment means such as a bolt 36 secures the body 24 to the bow riser on the side opposite from the bow string using a pre-existing hole which normally receives the stabilizer 32. The body is equipped with a receiving aperture 34, which permits the stabilizer to be attached thereto, rather than to the bow riser. Thus, it is apparent that there has been provided in accordance with the present invention a device for transporting and storing archery tools and implements on an archery bow that fully satisfies the objects, aims and advantages set forth above. For example, while the device has been illustrated as being attached to the riser of the bow, it may be attached to any other part of the archery bow so long as it does not interfere with the operation of the bow. While the invention has been described in conjunction with illustrated embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications and variations as fall within the spirit and broad scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>A wide variety of utility tools are required for the proper maintenance, repair and operation of an archery bow and its related accessories. Some of the more commonly used tools or implements are nock wrenches, broadhead wrenches, broadhead sharpeners and various types of Allen wrenches. These tools are generally stored in a toolbox and taken out when required. On occasion, such items may also be carried by an archer or transported in his or her pocket, since it is not always practical to carry a toolbox. These methods of storage and transportation are somewhat undesirable from an archer's perspective, as it can be cumbersome for an archer to transport a toolbox along with his or her bow and inconvenient to carry such items around by hand or store them in a pocket. Hand and pocket storage can often lead to tools being misplaced, lost or forgotten. In situations where it is not practical or desirable for an archer to carry a toolbox, or where tools have been forgotten or misplaced, it is not uncommon for archers to attempt to make certain adjustments manually, without any tools. Sometimes this can be a safety concern. For example, when hunting, an archer typically uses a broadhead, which consists of several razor sharp blades. The broadhead must be secured and tightened onto an arrow and this is normally accomplished with a broadhead wrench. However, in circumstances where such a wrench is not readily available, an archer may attempt to tighten the broadhead manually, which can sometimes result in the archer being cut or scraped unnecessarily. In addition to causing injury to an archer, attempts to manually adjust certain parts of a bow can also result in damage to the bow itself, since some components are not particularly strong or durable and are prone to damage if care is not taken. Not all archery tools and implements are sold individually. Some are incorporated into accessories that can be secured to a bow. An example of such an accessory is taught in U.S. Pat. No. 6,745,756 to Achkar, which discloses a bow carrying and support structure which can be adapted to include a broadhead wrench, a sling or an arrow rest. Although somewhat more convenient, not all archers prefer to have a bow carrying and support structure attached to their bow. Moreover, such accessories are generally not equipped to include many of the different types of utility tools that are required for proper maintenance and operation of the bow. | <SOH> SUMMARY OF THE INVENTION <EOH>Accordingly, it is an object of the present invention to provide a utility tool device for an archery bow that contains one or more of the tools which are necessary for the proper operation, set-up, repair and/or maintenance of an archery bow. It is a further object of the present invention to provide a utility tool device which permits an archer to carry and store one or more archery tools in a convenient and less cumbersome manner. These and other objectives are accomplished by providing an archery bow incorporating a utility tool device consisting of a body for carrying or supporting one or more tools, and one or more tools selected from a sharpener, a shot counter, a broadhead wrench and a nock wrench. The tools are associated with the body and the body is formed as an integral component of a riser on the bow in an area where it will not interfere with the operation of the bow. The device may also optionally include one or more Allen wrenches. A further embodiment consists of a utility tool device for an archery bow, consisting of a body for carrying or supporting two or more tools selected from a sharpener, a counter, a broadhead wrench, a nock wrench; and one or more individual Allen wrenches, as well as a means for securely but releasably attaching the body to a portion of the riser or any other part of the bow, where it will not interfere with the operation of the bow. | 20041231 | 20080115 | 20060706 | 63514.0 | F41B500 | 0 | RICCI, JOHN A | UTILITY TOOL DEVICE FOR AN ARCHERY BOW | SMALL | 0 | ACCEPTED | F41B | 2,004 |
|
11,027,252 | ACCEPTED | In-order fibre channel packet delivery | Methods and apparatus are provided for improving fibre channel packet delivery. Techniques are provided for the in-order delivery of packets by blocking incoming packets associated with a port channel change at a fibre channel switch and sending flush messages onto links associated with a port channel change. Upon receiving acknowledgments for the flush messages, incoming packets are unblocked. | 1. A method for providing in order delivery of fibre channel packets upon detecting a membership change at a port channel, the method comprising: blocking fibre channel packets associated with the port channel at a first fibre channel switch, the port channel including a plurality of links connecting the first fibre channel switch to a second fibre channel switch; transmitting a plurality of flush packets on the plurality of links; unblocking fibre channel packets associated with the port channel upon receiving acknowledgments for the plurality of flush packets from the second fibre channel switch. 2. The method of claim 1, wherein the membership change at the port channel comprises the addition or removal of a link. 3. The method of claim 1, wherein blocking fibre channel packets associated with the port channel comprises withholding credits from one or more input links providing the fibre channel packets. 4. The method of claim 3, wherein the packets are associated with a flow between a source and a destination. 5. The method of claim 4, wherein credits are withheld from links providing packets associated with the flow. 6. The method of claim 1, wherein the first switch includes a plurality of virtual output queues. 7. The method of claim 6, wherein virtual output queues associated with the port channel are blocked. 8. The method of claim 1, wherein unblocking fibre channel packets associated with the port channel comprises providing credits to one or more input links providing the fibre channel packets to the first fibre channel switch. 9. The method of claim 1, wherein the second switch flushes the packets associated with the plurality of links upon receiving the plurality of flush packets. 10. The method of claim 2, wherein flushing the packets comprises transmitting the packets at the second fibre channel switch. 11. A fibre channel switch for providing in order delivery of fibre channel packets upon detecting a membership change at a port channel, the fibre channel switch comprising: a processor configured to block fibre channel packets associated with the port channel, the port channel including a plurality of links connected to a neighboring fibre channel switch; an output interface configured to transmit a plurality of flush packets on the plurality of links; wherein the processor is further configured to unblock fibre channel packets associated with the port channel upon receiving acknowledgments for the plurality of flush packets from the neighboring fibre channel switch. 12. The fibre channel switch of claim 11, wherein the membership change at the port channel comprises the addition or removal of a link. 13. The fibre channel switch of claim 11, wherein blocking fibre channel packets associated with the port channel comprises withholding credits from one or more input links providing the fibre channel packets. 14. The fibre channel switch of claim 13, wherein the packets are associated with a flow between a source and a destination. 15. The fibre channel switch of claim 14, wherein credits are withheld from links providing packets associated with the flow. 16. The fibre channel switch of claim 11, wherein the fibre channel switch includes a plurality of virtual output queues. 17. The fibre channel switch of claim 16, wherein virtual output queues associated with the port channel are blocked. 18. The fibre channel switch of claim 11, wherein unblocking fibre channel packets associated with the port channel comprises providing credits to one or more input links providing the fibre channel packets to the fibre channel switch. 19. The fibre channel switch of claim 11, wherein the neighboring switch flushes the packets associated with the plurality of links upon receiving the plurality of flush packets. 20. The fibre channel switch of claim 12, wherein flushing the packets comprises transmitting the packets at the neighboring fibre channel switch. 21. A system for providing in order delivery of fibre channel packets upon detecting a membership change at a port channel, the system comprising: means for blocking fibre channel packets associated with the port channel at a first fibre channel switch, the port channel including a plurality of links connecting the first fibre channel switch to a second fibre channel switch; means for transmitting a plurality of flush packets on the plurality of links; means for unblocking fibre channel packets associated with the port channel upon receiving acknowledgments for the plurality of flush packets from the second fibre channel switch. 22. The system of claim 21, wherein the membership change at the port channel comprises the addition or removal of a link. 23. The system of claim 21, wherein blocking fibre channel packets associated with the port channel comprises withholding credits from one or more input links providing the fibre channel packets. 24. The system of claim 23, wherein the packets are associated with a flow between a source and a destination. 25. The system of claim 24, wherein credits are withheld from links providing packets associated with the flow. | CROSS-REFERENCE TO RELATED APPLICATIONS The present application is related to U.S. patent application Ser. No. 10/114,568 (Attorney Docket No. ANDIP008) by Maurilio Cometto and Scott S. Lee, filed on Apr. 1, 2002 and titled Methods And Apparatus For Fibre Channel Packet Delivery, the entirety of which is incorporated by reference for all purposes. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fibre channel networks. More specifically, the present invention relates to methods and apparatus for providing in order delivery of fibre channel packets in a fibre channel network upon detecting a change in a port channel. 2. Description of Related Art Many conventional network protocols allow the out of order delivery of a packet sequence. A network node in a TCP/IP based network can receive an out of order set of packets and reorder the packets upon receipt. Packets often arrive out of order if they travel along different paths or along different links within a path to reach a destination. However, some fibre channel applications and devices can not handle out of order packets. A port channel typically includes multiple links connecting two fibre channel entities. Multiple links seen as a single link between two fibre channel entities is referred to herein as a port channel. A change in port channel membership, also referred to herein as a port channel change, can lead to out of order delivery of packets in a fibre channel fabric. In some examples, a port channel change can result from the addition or removal of a link. Some mechanisms in existing networks call for the flushing of all packets in the network upon detecting a port channel change by waiting a certain worst-case period of time. In some examples, a 500 ms wait period is enforced. Waiting for all of the packets to be flushed can prevent out of order delivery when a port channel change is detected. However, waiting for all of the packets to be flushed can be very disruptive to network operation, as more packets are dropped than is necessary and network operation is at least temporarily halted. In many instances, applications in the storage area network do not efficiently handle 500 ms halts in network operation. It is therefore desirable to provide methods and apparatus for improving fibre channel packet delivery and providing in order delivery particularly during port channel changes. SUMMARY OF THE INVENTION Methods and apparatus are provided for improving fibre channel packet delivery. Techniques are provided for the in-order delivery of packets by blocking incoming packets associated with a port channel change at a fibre channel switch and sending flush messages onto links associated with a port channel change. Upon receiving acknowledgments for the flush messages, incoming packets are unblocked. In one embodiment, a method for providing in order delivery of fibre channel packets upon detecting a membership change at a port channel is provided. Fibre channel packets associated with the port channel at a first fibre channel switch are blocked. The port channel includes multiple links connecting the first fibre channel switch to a second fibre channel switch. Multiple flush packets are transmitted on the multiple links. Fibre channel packets associated with the port channel are unblocked upon receiving acknowledgments for the multiple flush packets from the second fibre channel switch. In another embodiment, a fibre channel switch for providing in order delivery of fibre channel packets upon detecting a membership change at a port channel is provided. The fibre channel switch includes a processor and an interface. The processor is configured to block fibre channel packets associated with the port channel. The port channel includes multiple links connected to a neighboring fibre channel switch. The output interface is configured to transmit multiple flush packets on the multiple links. The processor is further configured to unblock fibre channel packets associated with the port channel upon receiving acknowledgments for the multiple flush packets from the neighboring fibre channel switch. A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings. BRIEF DESCRIPTION OF THE DRAWINGS The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which are illustrative of specific embodiments of the present invention. FIG. 1 is a diagrammatic representation showing a fibre channel network that can use the techniques of the present invention. FIG. 2 is a diagrammatic representation showing two interconnected fibre channel switches. FIG. 3 is a diagrammatic representation showing two interconnected fibre channel switches with virtual output queues. FIG. 4 is a diagrammatic representation showing a flush packet. FIG. 5 is a flow process diagram showing one technique for forwarding packets in order. FIG. 6 is a flow process diagram showing one technique for handling flush packets. FIG. 7 is a diagrammatic representation showing one example of a fibre channel switch. DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS Reference will now be made in detail to some specific embodiments of the invention including the best modes contemplated by the inventors for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying drawings. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. For example, the techniques of the present invention will be described in the context of fibre channel networks. However, it should be noted that the techniques of the present invention can be applied to different variations and flavors of fibre channel. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention. Furthermore, techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments can include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise. For example, a processor is used in a variety of contexts. However, it will be appreciated that multiple processors can also be used while remaining within the scope of the present invention. FIG. 1 is a diagrammatic representation of one example of a network that can use the techniques of the present invention. FIG. 1 shows a storage area network implemented using fibre channel. A switch 101 is coupled to switches 103 and 105 as well as to a host 111 and storage 121. In one embodiment, host 111 is a server or client system while storage 121 is any storage subsystem such as a single disk or a redundant array of independent disks (RAID). Switch 105 is coupled to switch 107. Switch 107 is connected to host 113 and switch 103 is connected to storage 123. Switch 109 is connected to host 115, switch 107, host 153, and an external network 151 that may or may not use fibre channel. In order for a host 111 to access network 151, a path going through switch 105 can be used. It should be noted that any apparatus including a processor, memory, and a connection to a fibre channel fabric can be referred to as a fibre channel switch. Ports used to connect switches to each other in a fibre channel network are referred to herein as non fabric-port (non F-ports). Non fabric-ports include interswitch ports (E-ports). Ports used to connect a switch to a host a referred to herein as fabric-ports (F-ports). In one example, non F-ports are used to connect switch 105 to switch 107 while F-ports are used to connect switch 107 to host 113. Similarly, fabric loop-ports (FL-ports) are used to connect switch 103 to storage 123. Ports such as F-ports and FL-ports are herein referred to as edge ports. Other ports such as E-ports are referred to as non-edge ports. According to various embodiments, a packet transmitted from host 111 to a network 151 or to a storage device 153 includes parameters such as the exchange identifier, a sequence, and a sequence number. The exchange identifier can provide information on what exchange the packet belongs to. The sequence can provide information on what portion of the exchange the packet belongs to while the sequence number can provide information on how the packets should be ordered. Sequence numbers can be used to allow for in order delivery of fibre channel packets. Some fibre channel devices such as certain storage disks and disk arrays require that packets be received in the order in which they were transmitted. Conventional networks such as TCP/IP networks do not have such a requirement, as TCP/IP networks generally have mechanisms for reordering packets upon receipt. If packets with sequence numbers of 191, 192, and 193 are transmitted in order in a fibre channel network, a fibre channel device receiving the packets may expect that the packets are in the same order in which they were transmitted. A fibre channel device or associated applications may not be able to handle receiving the packets out of order. In a static fibre channel network, packets will typically be received in the order in which they were transmitted. However, several occurrences can lead to the out of order delivery of fibre channel packets. Port channel changes in particular can lead to out of order delivery. FIG. 2 is a diagrammatic representation showing a port channel between two fibre channel switches. Fibre channel switch 201 is coupled to fibre channel switch 203 through port channel 211. The port channel 211 includes multiple links that are provided for features such as load balancing and redundancy. The port channel 211 includes links 213, 215, 217, and 219. According to various embodiments, link 219 is a link being added to port channel 211. In typical implementations, packets associated with a particular flow are transmitted in order on a particular link, such as link 213. An abstraction identifying traffic with particular characteristics between two nodes is herein referred to as a flow. In one example, a flow is referenced by a source identifier, a destination identifier, a priority, a class, and an exchange identifier. Other characteristics are also possible. It should be noted, however, that a flow may also be referenced merely by a source and destination identifier. By transmitting all packets associated with a flow on a selected link, in order delivery from a fibre channel switch 201 to fibre channel switch 203 is assured. However, during port channel changes, such as the addition or removal of a link, packets associated with a flow may no longer be transmitted on the same link. For example, when a link 219 is added to a port channel 211, the traffic previously allocated to links 213, 215, and 217 may be reallocated amongst links 213, 215, 217, and 219. Consequently, packets in a flow previously transmitted on link 213 may now be transmitted on link 219. The first, second, and third packets may be transmitted on link 213 while the fourth, fifth, and sixth packets may be transmitted on link 219. However, for various reasons such as differences in link latency and buffer characteristics, the fourth packet may be received/transmitted at fibre channel switch 203 before the third packet is received/transmitted. Out of order packet delivery can not be handled by many fibre channel applications and devices. By contrast, many Telnet Control Protocol/Internet Protocol (TCP/IP) applications have mechanisms for reordering packets. Consequently, some mechanisms have been implemented in conventional systems to prevent out of order delivery in fibre channel networks. In one example, a fibre channel switch 201 detects a port channel change and immediately stops transmitting fibre channel packets. In this example, the fourth, fifth, and sixth packets in a sequence would not be transmitted and would remain in a buffer at switch 201. Fibre channel switch 201 would wait a period of time for the first, second, and third packets to be successfully forwarded from fibre channel switch 203. However, fibre channel switch 201 does not know exactly when the first, second, and third packets have been forwarded by fibre channel switch 203. Consequently, fibre channel switch 201 waits a worst case period of time, such as 500 ms before resuming transmissions. The worst case period of time may be ascertained by determining the length of time packets remain on the links and in the buffers of fibre channel switch 203. Any worst case period of time taken for the links and buffers to clear at an fibre channel switch at the receiving end of a port channel change is referred to herein as a link drain period. During the link drain period, additional packets such as the seventh and eighth packets associated with the flow may be received at fibre channel switch 201. At some point, buffers fill and packets are dropped. Dropping packets is also undesirable in fibre channel networks. Furthermore, the link drain period may cause a fibre channel application to stop receiving packets for a relatively long period of time. The fibre channel application may initiate some error recovery mechanism at a higher level which is also highly undesirable. According to various embodiments, the techniques of the present invention provide a mechanism for forwarding packets during port channel change that remains transparent to higher level applications. Packets are delivered in order while minimizing packet drops. According to various embodiments, a switch 201 blocks all incoming traffic associated with a port channel 211 when a port channel change is detected. In one example, a switch 201 blocks incoming traffic by withholding credits on input ports. As will be appreciated, packets are only transmitted across a link when a credit is provided by a receiver. If the receiver withholds credits, no additional packets are transmitted. Fibre channel provides an effective mechanism for blocking incoming traffic associated with a port channel change. This mechanism is not available in conventional IP networks. According to various embodiments, a fibre channel switch 201 proceeds to explicitly send flush messages to fibre channel switch 203 on the links associated with the port channel change. When the traffic on the links associated with the port channel change have either been forwarded or dropped at a fibre channel switch 203, the fibre channel switch 203 sends acknowledgments for each flush message back to fibre channel switch 201. After all of the acknowledgments associated with the flush messages are received at fibre channel switch 201, the input ports are unblocked and traffic can continue flowing without risk of out of order delivery. In typical instances, flush messages are received in a much shorter time period than a worst case link drain latency. Consequently, traffic is not stalled for as long at an fibre channel switch 201 and there is less risk of packet drops. One of the mechanisms that can impact the order in which fibre channel packets are delivered are the buffers within a fibre channel switch. A packet transmitted first from a switch 201 can remain in a buffer associated at a switch 203 while a packet transmitted later on a different link from a switch 201 can be delivered quickly through a switch 203 if flushing mechanisms are not used. FIG. 3 is a diagrammatic representation of buffers and/or queues that can be associated with a fibre channel switch, according to various embodiments. Although one particular type of queue will be described, it should be noted that a variety of different input and output queues associated with various input and output ports can be used to implement the techniques of the present invention. A switch 301 is connected to external nodes 351, 353, 355, and 357. The switch 301 includes a buffer 303 of shared memory associated with each switch port. A buffer 303 is associated with external node 351. Buffers associated with external nodes 353, 355, and 357 are not shown for purposes of clarity. The buffer 303 can hold traffic destined for external nodes 353, 355, 357, and loop back traffic to external node 351. In typical implementations, packets destined for the various external nodes are all placed in the same buffer 303. In one example, a port channel change occurs on the link to external node 353. If the switch 301 has to wait a long period of time for the packets associated with the port channel to flush out of external node 353, all ports may end up congested. For example, when a switch 301 receives a large volume of packets destined for external node 353, packets associated with external node 353 can use the entire buffer 303. According to various embodiments, the packets stored in buffer 303 are referenced by pointers in packet descriptor queues 311-447. Each packet descriptor can contain a pointer or reference identifying where the packet is stored in the buffer 303. Pointers or references to a shared buffer are herein referred to as descriptors. Descriptors can also identify other information such as packet priority. In one example, an arbitrator 305 selects packets using a round-robin methodology. In a first round, a packet destined for external node 353 is selected. In a second round, a packet destined for external node 355 is selected, etc. More particularly, the arbitrator 305 may first select a high priority packet associated with descriptor 311 destined for external node 353, then select a high priority packet associated with descriptor 321 destined for external node 355, then select a high priority packet associated with descriptor 331 destined for external node 357, etc. It should be noted that a variety of techniques for selecting a packet can be used, as will be appreciated by one of skill in the art. A queuing system having buffers apportioned based on destination is referred to herein as virtual output queuing (VOQ). VOQ is described further in Tamir Y., Frazier G.: “High Performance multi-queue buffers for VLSI communications switches”, Proc. Of 15th Ann. Symp. On Comp. Arch., pp. 343-354, June 1988, the entirety of which is incorporated by reference for all purposes. According to various embodiments, packets in a particular flow may be blocked because a buffer 303 is full. Consequently, it is desirable to stop transmission over a port channel after a port channel change is detected for as short a period of time as possible. Long delays can also adversely impact storage area network applications. The techniques of present invention provide various mechanisms for blocking traffic associated with a port channel change. In one example, only incoming traffic configured for output on the port channel being changed is blocked. In another example, all incoming traffic onto a fibre channel switch 301 is blocked. In another example, incoming traffic associated with affected flows are blocked by withholding credits on links associated with the affected flows. Data associated with nonaffected flows is left unblocked. For example, traffic destined for external nodes 355 and 357 can be allowed to continue flowing. Instead of waiting for a worst case link drain period, the techniques of the present invention contemplate actively transmitting flush messages to minimize the link drain period. FIG. 4 is a diagrammatic representation showing one example of a flush message. The flush message includes a port channel identifier 401 and a link number 403. The flush message can also include source and destination identifiers 405 and 407 associated with the switches coupled by the port channel. An optional timeout period 409 is also included. The optional timeout period 409 may be used to indicate how long switches should wait for various messages. FIG. 5 is a flow process diagram showing one technique for providing in order delivery of fibre channel messages. At 501, a change in port channel membership is detected at a fibre channel switch. Any change in a port channel that can lead to out of order delivery of fibre channel packets between two switches connected by the port channel is referred to herein as a port channel change. In some examples, a port channel change may include the addition or removal of a link. The port channel change can cause possible out of order delivery for affected flows being transmitted over the port channel. At 503, credits are withheld from links providing packets associated with the affected flows. In some examples, credits are withheld after buffers are full. Credits may be withheld on all links or only on certain links providing traffic associated with affected flows. At 505, flush messages or flush packets are generated for links in the affected port channel. At 507, flush packets are transmitted on the affected port channel links. At 511, the fibre channel switch waits until acknowledgments have been received on all links in the affected port channel. The wait period is typically substantially shorter than a worst case link drain period. At 513, the fibre channel switch continues providing credits on input links providing packets to port channel 513. At 515, packets associated with flows on links in the affected port channel are transmitted. FIG. 6 is a flow process diagram showing a technique for handling flush packets at a fibre channel switch receiving flush packets. At 601, a flush packet is received on a link associated with a port channel change. In some examples, a single flush packet is used to flush all of the links in a port channel. In this particular example, a flush packet is received for each link in a port channel. At 605, data received on the link but not yet forwarded is monitored. According to various embodiments, the switch monitors the data stored in line card buffers and queues to ensure that everything is forwarded before additional data associated with the flow is received. At 607, it is determined if all data associated with the link has been forwarded before a timeout. In some instances, the timeout may be preconfigured or may be provided in the flush packet itself. If all data has been forwarded, an acknowledgment is sent on the link associated with the flush packet at 611. If not all data has been forwarded, data is dropped at 613 and an acknowledgment is sent at 611. FIG. 7 is a diagrammatic representation of one example of a fibre channel switch that can be used to implement techniques of the present invention. Although one particular configuration will be described, it should be noted that a wide variety of switch and router configurations are available. The tunneling switch 701 may include one or more supervisors 711. According to various embodiments, the supervisor 711 has its own processor, memory, and storage resources. Line cards 703, 705, and 707 can communicate with an active supervisor 711 through interface circuitry 783, 785, and 787 and the backplane 715. According to various embodiments, each line card includes a plurality of ports that can act as either input ports or output ports for communication with external fibre channel network entities 751 and 753. The backplane 715 can provide a communications channel for all traffic between line cards and supervisors. Individual line cards 703 and 707 can also be coupled to external fibre channel network entities 751 and 753 through fibre channel ports 743 and 747. External fibre channel network entities 751 and 753 can be nodes such as other fibre channel switches, disks, RAIDS, tape libraries, or servers. The fibre channel switch can also include line cards 775 and 777 with IP ports 785 and 787. In one example, IP port 785 is coupled to an external IP network entity 755. The line cards 775 and 777 also have interfaces 795 and 797 to the backplane 715. It should be noted that the switch can support any number of line cards and supervisors. In the embodiment shown, only a single supervisor is connected to the backplane 715 and the single supervisor communicates with many different line cards. The active supervisor 711 may be configured or designed to run a plurality of applications such as routing, domain manager, system manager, and utility applications. According to one embodiment, the routing application is configured to provide credits to a sender upon recognizing that a packet has been forwarded to a next hop. A utility application can be configured to track the number of buffers and the number of credits used. A domain manager application can be used to assign domains in the fibre channel storage area network. Various supervisor applications may also be configured to provide functionality such as flow control, credit management, and quality of service (QoS) functionality for various fibre channel protocol layers. In addition, although an exemplary switch is described, the above-described embodiments may be implemented in a variety of network devices (e.g., servers) as well as in a variety of mediums. For instance, instructions and data for implementing the above-described invention may be stored on a disk drive, a hard drive, a floppy disk, a server computer, or a remotely networked computer. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims. While the invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that changes in the form and details of the disclosed embodiments may be made without departing from the spirit or scope of the invention. For example, embodiments of the present invention may be employed with a variety of network protocols and architectures. It is therefore intended that the invention be interpreted to include all variations and equivalents that fall within the true spirit and scope of the present invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to fibre channel networks. More specifically, the present invention relates to methods and apparatus for providing in order delivery of fibre channel packets in a fibre channel network upon detecting a change in a port channel. 2. Description of Related Art Many conventional network protocols allow the out of order delivery of a packet sequence. A network node in a TCP/IP based network can receive an out of order set of packets and reorder the packets upon receipt. Packets often arrive out of order if they travel along different paths or along different links within a path to reach a destination. However, some fibre channel applications and devices can not handle out of order packets. A port channel typically includes multiple links connecting two fibre channel entities. Multiple links seen as a single link between two fibre channel entities is referred to herein as a port channel. A change in port channel membership, also referred to herein as a port channel change, can lead to out of order delivery of packets in a fibre channel fabric. In some examples, a port channel change can result from the addition or removal of a link. Some mechanisms in existing networks call for the flushing of all packets in the network upon detecting a port channel change by waiting a certain worst-case period of time. In some examples, a 500 ms wait period is enforced. Waiting for all of the packets to be flushed can prevent out of order delivery when a port channel change is detected. However, waiting for all of the packets to be flushed can be very disruptive to network operation, as more packets are dropped than is necessary and network operation is at least temporarily halted. In many instances, applications in the storage area network do not efficiently handle 500 ms halts in network operation. It is therefore desirable to provide methods and apparatus for improving fibre channel packet delivery and providing in order delivery particularly during port channel changes. | <SOH> SUMMARY OF THE INVENTION <EOH>Methods and apparatus are provided for improving fibre channel packet delivery. Techniques are provided for the in-order delivery of packets by blocking incoming packets associated with a port channel change at a fibre channel switch and sending flush messages onto links associated with a port channel change. Upon receiving acknowledgments for the flush messages, incoming packets are unblocked. In one embodiment, a method for providing in order delivery of fibre channel packets upon detecting a membership change at a port channel is provided. Fibre channel packets associated with the port channel at a first fibre channel switch are blocked. The port channel includes multiple links connecting the first fibre channel switch to a second fibre channel switch. Multiple flush packets are transmitted on the multiple links. Fibre channel packets associated with the port channel are unblocked upon receiving acknowledgments for the multiple flush packets from the second fibre channel switch. In another embodiment, a fibre channel switch for providing in order delivery of fibre channel packets upon detecting a membership change at a port channel is provided. The fibre channel switch includes a processor and an interface. The processor is configured to block fibre channel packets associated with the port channel. The port channel includes multiple links connected to a neighboring fibre channel switch. The output interface is configured to transmit multiple flush packets on the multiple links. The processor is further configured to unblock fibre channel packets associated with the port channel upon receiving acknowledgments for the multiple flush packets from the neighboring fibre channel switch. A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings. | 20041229 | 20100119 | 20060713 | 90706.0 | H04L1256 | 2 | SAMUEL, DEWANDA A | IN-ORDER FIBRE CHANNEL PACKET DELIVERY | UNDISCOUNTED | 0 | ACCEPTED | H04L | 2,004 |
|
11,027,265 | ACCEPTED | Macroblock level adaptive frame/field coding for digital video content | A method and system of encoding and decoding digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the smaller blocks in each picture in said stream of pictures in either frame mode or in field mode. | 1. A method of encoding a picture in an image sequence, comprising: dividing said picture into a plurality of smaller portions, wherein each of said smaller portions has a size that is larger than one macroblock; selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of small portions in field coding mode; and selectively encoding at least one block within at least one of said plurality of smaller portions in inter coding mode. 2. The method of claim 1, wherein at least one motion vector is computed for said at least one block within at least one of said plurality of smaller portions. 3. The method of claim 2, wherein said at least one motion vector is spatially predictive coded for a current block of said plurality of smaller portions. 4. An apparatus of encoding a picture in an image sequence, comprising: means for dividing said picture into a plurality of smaller portions, wherein each of said smaller portions has a size that is larger than one macroblock; means for selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of small portions in field coding mode; and means for selectively encoding at least one block within at least one of said plurality of smaller portions in inter coding mode. 5. The apparatus of claim 4, wherein at least one motion vector is computed for said at least one block within at least one of said plurality of smaller portions. 6. The apparatus of claim 5, wherein said at least one motion vector is spatially predictive coded for a current block of said plurality of smaller portions. 7. A computer-readable medium having stored thereon a plurality of instructions, the plurality of instructions including instructions which, when executed by a processor, cause the processor to perform the steps of a method of encoding a picture in an image sequence, comprising of: dividing said picture into a plurality of smaller portions, wherein each of said smaller portions has a size that is larger than one macroblock; selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of small portions in field coding mode; and selectively encoding at least one block within at least one of said plurality of smaller portions in inter coding mode. 8. A method of decoding an encoded picture having a plurality of smaller portions from a bitstream, comprising: decoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode, wherein each of said smaller portions has a size that is larger than one macroblock, wherein at least one block within said at least one of said plurality of smaller portions is encoded in inter coding mode; and using said plurality of decoded smaller portions to construct a decoded picture. 9. The method of claim 8, wherein at least one motion vector is received for said at least one block within at least one of said plurality of smaller portions. 10. The method of claim 9, wherein said at least one motion vector is spatially predictive coded for a current block of said plurality of smaller portions. 11. The method of claim 10, wherein said at least one motion vector is spatially predictive coded from a plurality of motion vectors associated with a plurality of neighboring blocks relative to said current block. 12. The method of claim 11, wherein said motion vectors associated with said plurality of neighboring blocks relative to said current block are derived to generate at least one prediction motion vector (PMV), wherein said at least one prediction motion vector (PMV) and a difference value received in the bitstream are used to derive said at least one motion vector of said current block. 13. The method of claim 12, wherein said at least one PMV is calculated in accordance with directional segmentation prediction. 14. An apparatus for decoding an encoded picture from a bitstream, comprising: means for decoding at least one of a plurality of smaller portions of the encoded picture that is encoded in frame coding mode and at least one of said plurality of smaller portions of the encoded picture in field coding mode, wherein each of said smaller portions has a size that is larger than one macroblock, wherein at least one block within at least one of said plurality of smaller portions is encoded in inter coding mode; and means for using said plurality of decoded smaller portions to construct a decoded picture. 15. The apparatus of claim 14, wherein at least one motion vector is received for said at least one block within at least one of said plurality of smaller portions 16. The apparatus of claim 15, wherein said at least one motion vector is spatially predictive coded for a current block of said plurality of smaller portions. 17. The apparatus of claim 16, wherein said at least one motion vector is spatially predictive coded from a plurality of motion vectors associated with a plurality of neighboring blocks relative to said current block. 18. The apparatus of claim 17, wherein said motion vectors associated with said plurality of neighboring blocks relative to said current block are used to generate at least one prediction motion vector (PMV), where a difference between said at least one PMV and said at least one motion vector of said current block is calculated and encoded. 19. A bitstream comprising: a picture that has been divided into a plurality of smaller portions, wherein at least one of said plurality of smaller portions is encoded in frame coding mode and at least one of said plurality of smaller portions is encoded in field coding mode, wherein each of said smaller portions has a size that is larger than one macroblock, and wherein at least one block within at least one of said plurality of smaller portions is encoded in inter coding mode. | The present application claims priority under 35 U.S.C. §119(e) from the following previously filed Provisional Patent Applications: Ser. No. 60/333,921, filed Nov. 27, 2001; Ser. No. 60/395,734, filed Jul. 12, 2002; Ser. No. 60/398,161, filed Jul. 23, 2002; all of which are herein incorporated by reference. This application is also a Divisional of U.S. patent application Ser. No. 10/301,290 filed on Nov. 20, 2002, which is herein incorporated by reference. TECHNICAL FIELD The present invention relates to encoding and decoding of digital video content. More specifically, the present invention relates to frame mode and field mode encoding of digital video content at a macroblock level as used in the MPEG-4 Part 10 AVC/H.264 standard video coding standard. BACKGROUND Video compression is used in many current and emerging products. It is at the heart of digital television set-top boxes (STBs), digital satellite systems (DSSs), high definition television (HDTV) decoders, digital versatile disk (DVD) players, video conferencing, Internet video and multimedia content, and other digital video applications. Without video compression, digital video content can be extremely large, making it difficult or even impossible for the digital video content to be efficiently stored, transmitted, or viewed. The digital video content comprises a stream of pictures that can be displayed as an image on a television receiver, computer monitor, or some other electronic device capable of displaying digital video content. A picture that is displayed in time before a particular picture is in the “backward direction” in relation to the particular picture. Likewise, a picture that is displayed in time after a particular picture is in the “forward direction” in relation to the particular picture. Video compression is accomplished in a video encoding, or coding, process in which each picture is encoded as either a frame or as two fields. Each frame comprises a number of lines of spatial information. For example, a typical frame contains 480 horizontal lines. Each field contains half the number of lines in the frame. For example, if the frame comprises 480 horizontal lines, each field comprises 240 horizontal lines. In a typical configuration, one of the fields comprises the odd numbered lines in the frame and the other field comprises the even numbered lines in the frame. The field that comprises the odd numbered lines will be referred to as the “top” field hereafter and in the appended claims, unless otherwise specifically denoted. Likewise, the field that comprises the even numbered lines will be referred to as the “bottom” field hereafter and in the appended claims, unless otherwise specifically denoted. The two fields can be interlaced together to form an interlaced frame. The general idea behind video coding is to remove data from the digital video content that is “non-essential.” The decreased amount of data then requires less bandwidth for broadcast or transmission. After the compressed video data has been transmitted, it must be decoded, or decompressed. In this process, the transmitted video data is processed to generate approximation data that is substituted into the video data to replace the “non-essential” data that was removed in the coding process. Video coding transforms the digital video content into a compressed form that can be stored using less space and transmitted using less bandwidth than uncompressed digital video content. It does so by taking advantage of temporal and spatial redundancies in the pictures of the video content. The digital video content can be stored in a storage medium such as a hard drive, DVD, or some other non-volatile storage unit. There are numerous video coding methods that compress the digital video content. Consequently, video coding standards have been developed to standardize the various video coding methods so that the compressed digital video content is rendered in formats that a majority of video encoders and decoders can recognize. For example, the Motion Picture Experts Group (MPEG) and International Telecommunication Union (ITU-T) have developed video coding standards that are in wide use. Examples of these standards include the MPEG-1, MPEG-2, MPEG-4, ITU-T H261, and ITU-T H263 standards. Most modern video coding standards, such as those developed by MPEG and ITU-T, are based in part on a temporal prediction with motion compensation (MC) algorithm. Temporal prediction with motion compensation is used to remove temporal redundancy between successive pictures in a digital video broadcast. The temporal prediction with motion compensation algorithm typically utilizes one or two reference pictures to encode a particular picture. A reference picture is a picture that has already been encoded. By comparing the particular picture that is to be encoded with one of the reference pictures, the temporal prediction with motion compensation algorithm can take advantage of the temporal redundancy that exists between the reference picture and the particular picture that is to be encoded and encode the picture with a higher amount of compression than if the picture were encoded without using the temporal prediction with motion compensation algorithm. One of the reference pictures may be in the backward direction in relation to the particular picture that is to be encoded. The other reference picture is in the forward direction in relation to the particular picture that is to be encoded. However, as the demand for higher resolutions, more complex graphical content, and faster transmission time increases, so does the need for better video compression methods. To this end, a new video coding standard is currently being developed jointly by ISO and ITU-T. This new video coding standard is called the MPEG-4 Advanced Video Coding (AVC)/H.264 standard. SUMMARY OF THE INVENTION In one of many possible embodiments, the present invention provides a method of encoding, decoding, and bitstream generation of digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the macroblocks in each picture in said stream of pictures in either frame mode or in field mode. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate various embodiments of the present invention and are a part of the specification. Together with the following description, the drawings demonstrate and explain the principles of the present invention. The illustrated embodiments are examples of the present invention and do not limit the scope of the invention. FIG. 1 illustrates an exemplary sequence of three types of pictures that can be used to implement the present invention, as defined by an exemplary video coding standard such as the MPEG-4 Part 10 AVC/H.264 standard. FIG. 2 shows that each picture is preferably divided into slices containing macroblocks according to an embodiment of the present invention. FIG. 3a shows that a macroblock can be further divided into a block size of 16 by 8 pixels according to an embodiment of the present invention. FIG. 3b shows that a macroblock can be further divided into a block size of 8 by 16 pixels according to an embodiment of the present invention. FIG. 3c shows that a macroblock can be further divided into a block size of 8 by 8 pixels according to an embodiment of the present invention. FIG. 3d shows that a macroblock can be further divided into a block size of 8 by 4 pixels according to an embodiment of the present invention. FIG. 3e shows that a macroblock can be further divided into a block size of 4 by 8 pixels according to an embodiment of the present invention. FIG. 3f shows that a macroblock can be further divided into a block size of 4 by 4 pixels according to an embodiment of the present invention. FIG. 4 shows a picture construction example using temporal prediction with motion compensation that illustrates an embodiment of the present invention. FIG. 5 shows that a macroblock is split into a top field and a bottom field if it is to be encoded in field mode. FIG. 6a shows that a macroblock that is encoded in field mode can be divided into a block with a size of 16 by 8 pixels according to an embodiment of the present invention. FIG. 6b shows that a macroblock that is encoded in field mode can be divided into a block with a size of 8 by 8 pixels according to an embodiment of the present invention. FIG. 6c shows that a macroblock that is encoded in field mode can be divided into a block with a size of 4 by 8 pixels according to an embodiment of the present invention. FIG. 6d shows that a macroblock that is encoded in field mode can be divided into a block with a size of 4 by 4 pixels according to an embodiment of the present invention. FIG. 7 illustrates an exemplary pair of macroblocks that can be used in AFF coding on a pair of macroblocks according to an embodiment of the present invention. FIG. 8 shows that a pair of macroblocks that is to be encoded in field mode is first split into one top field 16 by 16 pixel block and one bottom field 16 by 16 pixel block. FIG. 9 shows two possible scanning paths in AFF coding of pairs of macroblocks. FIG. 10 illustrates another embodiment of the present invention which extends the concept of AFF coding on a pair of macroblocks to AFF coding to a group of four or more neighboring macroblocks. FIG. 11 shows some of the information included in the bitstream which contains information pertinent to each macroblock within a stream. FIG. 12 shows a block that is to be encoded and its neighboring blocks and will be used to explain various preferable methods of calculating the PMV of a block in a macroblock. FIG. 13 shows an alternate definition of neighboring blocks if the scanning path is a vertical scanning path. FIG. 14 shows that each pixel value is predicted from neighboring blocks' pixel values according to an embodiment of the present invention. FIG. 15 shows different prediction directions for intra—4×4 coding. FIGS. 16a-b illustrate that the chosen intra-prediction mode (intra_pred_mode) of a 4 by 4 pixel block is highly correlated with the prediction modes of adjacent blocks. FIGS. 17a-d show neighboring blocks definitions in relation to a current macroblock pair that is to be encoded. Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION The present invention provides a method of adaptive frame/field (AFF) coding of digital video content comprising a stream of pictures or slices of a picture at a macroblock level. The present invention extends the concept of picture level AFF to macroblocks. In AFF coding at a picture level, each picture in a stream of pictures that is to be encoded is encoded in either frame mode or in field mode, regardless of the frame or field coding mode of other pictures that are to be coded. If a picture is encoded in frame mode, the two fields that make up an interlaced frame are coded jointly. Conversely, if a picture is encoded in field mode, the two fields that make up an interlaced frame are coded separately. The encoder determines which type of coding, frame mode coding or field mode coding, is more advantageous for each picture and chooses that type of encoding for the picture. The exact method of choosing between frame mode and field mode is not critical to the present invention and will not be detailed herein. As noted above, the MPEG-4 Part 10 AVC/H.264 standard is a new standard for encoding and compressing digital video content. The documents establishing the MPEG-4 Part 10 AVC/H.264 standard are hereby incorporated by reference, including “Joint Final Committee Draft (JFCD) of Joint Video Specification” issued by the Joint Video Team (JVT) on Aug. 10, 2002. (ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC). The JVT consists of experts from ISO or MPEG and ITU-T. Due to the public nature of the MPEG-4 Part 10 AVC/H.264 standard, the present specification will not attempt to document all the existing aspects of MPEG-4 Part 10 AVC/H.264 video coding, relying instead on the incorporated specifications of the standard. Although this method of AFF encoding is compatible with and will be explained using the MPEG-4 Part 10 AVC/H.264 standard guidelines, it can be modified and used as best serves a particular standard or application. Using the drawings, the preferred embodiments of the present invention will now be explained. FIG. 1 illustrates an exemplary sequence of three types of pictures that can be used to implement the present invention, as defined by an exemplary video coding standard such as the MPEG-4 Part 10 AVC/H.264 standard. As previously mentioned, the encoder encodes the pictures and the decoder decodes the pictures. The encoder or decoder can be a processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), coder/decoder (CODEC), digital signal processor (DSP), or some other electronic device that is capable of encoding the stream of pictures. However, as used hereafter and in the appended claims, unless otherwise specifically denoted, the term “encoder” will be used to refer expansively to all electronic devices that encode digital video content comprising a stream of pictures. The term “decoder” will be used to refer expansively to all electronic devices that decode digital video content comprising a stream of pictures. As shown in FIG. 1, there are preferably three types of pictures that can be used in the video coding method. Three types of pictures are defined to support random access to stored digital video content while exploring the maximum redundancy reduction using temporal prediction with motion compensation. The three types of pictures are intra (I) pictures (100), predicted (P) pictures (102a,b), and bi-predicted (B) pictures (101a-d). An I picture (100) provides an access point for random access to stored digital video content and can be encoded only with slight compression. Intra pictures (100) are encoded without referring to reference pictures. A predicted picture (102a,b) is encoded using an I, P, or B picture that has already been encoded as a reference picture. The reference picture can be in either the forward or backward temporal direction in relation to the P picture that is being encoded. The predicted pictures (102a,b) can be encoded with more compression than the intra pictures (100). A bi-predicted picture (101a-d) is encoded using two temporal reference pictures: a forward reference picture and a backward reference picture. The forward reference picture is sometimes called a past reference picture and the backward reference picture is sometimes called a future reference picture. An embodiment of the present invention is that the forward reference picture and backward reference picture can be in the same temporal direction in relation to the B picture that is being encoded. Bi-predicted pictures (101a-d) can be encoded with the most compression out of the three picture types. Reference relationships (103) between the three picture types are illustrated in FIG. 1. For example, the P picture (102a) can be encoded using the encoded I picture (100) as its reference picture. The B pictures (101a-d) can be encoded using the encoded I picture (100) or the encoded P picture (102a) as its reference pictures, as shown in FIG. 1. Under the principles of an embodiment of the present invention, encoded B pictures (101a-d) can also be used as reference pictures for other B pictures that are to be encoded. For example, the B picture (10c) of FIG. 1 is shown with two other B pictures (101b and 101d) as its reference pictures. The number and particular order of the I (100), B (101a-d), and P (102a,b) pictures shown in FIG. 1 are given as an exemplary configuration of pictures, but are not necessary to implement the present invention. Any number of I, B, and P pictures can be used in any order to best serve a particular application. The MPEG-4 Part 10 AVC/H.264 standard does not impose any limit to the number of B pictures between two reference pictures nor does it limit the number of pictures between two I pictures. FIG. 2 shows that each picture (200) is preferably divided into slices (202). A slice (202) comprises a group of macroblocks (201). A macroblock (201) is a rectangular group of pixels. As shown in FIG. 2, a preferable macroblock (201) size is 16 by 16 pixels. FIGS. 3a-f show that a macroblock can be further divided into smaller sized blocks. For example, as shown in FIGS. 3a-f, a macroblock can be further divided into block sizes of 16 by 8 pixels (FIG. 3a; 300), 8 by 16 pixels (FIG. 3b; 301), 8 by 8 pixels (FIG. 3c; 302), 8 by 4 pixels (FIG. 3d; 303), 4 by 8 pixels (FIG. 3e; 304), or 4 by 4 pixels (FIG. 3f; 305). These smaller block sizes are preferable in some applications that use the temporal prediction with motion compensation algorithm. FIG. 4 shows a picture construction example using temporal prediction with motion compensation that illustrates an embodiment of the present invention. Temporal prediction with motion compensation assumes that a current picture, picture N (400), can be locally modeled as a translation of another picture, picture N−1 (401). The picture N−1 (401) is the reference picture for the encoding of picture N (400) and can be in the forward or backwards temporal direction in relation to picture N (400). As shown in FIG. 4, each picture is preferably divided into slices containing macroblocks (201a,b). The picture N−1 (401) contains an image (403) that is to be shown in picture N (400). The image (403) will be in a different temporal position in picture N (402) than it is in picture N−1 (401), as shown in FIG. 4. The image content of each macroblock (201b) of picture N (400) is predicted from the image content of each corresponding macroblock (201a) of picture N−1 (401) by estimating the required amount of temporal motion of the image content of each macroblock (201a) of picture N−1 (401) for the image (403) to move to its new temporal position (402) in picture N (400). Instead of the original image (402) being encoded, the difference (404) between the image (402) and its prediction (403) is actually encoded and transmitted. For each image (402) in picture N (400), the temporal prediction can often be described by motion vectors that represent the amount of temporal motion required for the image (403) to move to a new temporal position in the picture N (402). The motion vectors (406) used for the temporal prediction with motion compensation need to be encoded and transmitted. FIG. 4 shows that the image (402) in picture N (400) can be represented by the difference (404) between the image and its prediction and the associated motion vectors (406). The exact method of encoding using the motion vectors can vary as best serves a particular application and can be easily implemented by someone who is skilled in the art. To understand macroblock level AFF coding, a brief overview of picture level AFF coding of a stream of pictures will now be given. A frame of an interlaced sequence contains two fields, the top field and the bottom field, which are interleaved and separated in time by a field period. The field period is half the time of a frame period. In picture level AFF coding, the two fields of an interlaced frame can be coded jointly or separately. If they are coded jointly, frame mode coding is used. Conversely, if the two fields are coded separately, field mode coding is used. Fixed frame/field coding, on the other hand, codes all the pictures in a stream of pictures in one mode only. That mode can be frame mode or it can be field mode. Picture level AFF is preferable to fixed frame/field coding in many applications because it allows the encoder to chose which mode, frame mode or field mode, to encode each picture in the stream of pictures based on the contents of the digital video material. AFF coding results in better compression than does fixed frame/field coding in many applications. An embodiment of the present invention is that AFF coding can be performed on smaller portions of a picture. This small portion can be a macroblock, a pair of macroblocks, or a group of macroblocks. Each macroblock, pair of macroblocks, or group of macroblocks or slice is encoded in frame mode or in field mode, regardless of how the other macroblocks in the picture are encoded. AFF coding in each of the three cases will be described in detail below. In the first case, AFF coding is performed on a single macroblock. If the macroblock is to be encoded in frame mode, the two fields in the macroblock are encoded jointly. Once encoded as a frame, the macroblock can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if the macroblock is to be encoded in field mode, the macroblock (500) is split into a top field (501) and a bottom field (502), as shown in FIG. 5. The two fields are then coded separately. In FIG. 5, the macroblock has M rows of pixels and N columns of pixels. A preferable value of N and M is 16, making the macroblock (500) a 16 by 16 pixel macroblock. As shown in FIG. 5, every other row of pixels is shaded. The shaded areas represent the rows of pixels in the top field of the macroblock (500) and the unshaded areas represent the rows of pixels in the bottom field of the macroblock (500). As shown in FIGS. 6a-d, a macroblock that is encoded in field mode can be divided into four additional blocks. A block is required to have a single parity. The single parity requirement is that a block cannot comprise both top and bottom fields. Rather, it must contain a single parity of field. Thus, as shown in FIGS. 6a-d, a field mode macroblock can be divided into blocks of 16 by 8 pixels (FIG. 6a; 600), 8 by 8 pixels (FIG. 6b; 601), 4 by 8 pixels (FIG. 6c; 602), and 4 by 4 pixels (FIG. 6d; 603). FIGS. 6a-d shows that each block contains fields of a single parity. AFF coding on macroblock pairs will now be explained. AFF coding on macroblock pairs will be occasionally referred to as pair based AFF coding. A comparison of the block sizes in FIGS. 6a-d and in FIGS. 3a-f show that a macroblock encoded in field mode can be divided into fewer block patterns than can a macroblock encoded in frame mode. The block sizes of 16 by 16 pixels, 8 by 16 pixels, and 8 by 4 pixels are not available for a macroblock encoded in field mode because of the single parity requirement. This implies that the performance of single macroblock based AFF may not be good for some sequences or applications that strongly favor field mode coding. In order to guarantee the performance of field mode macroblock coding, it is preferable in some applications for macroblocks that are coded in field mode to have the same block sizes as macroblocks that are coded in frame mode. This can be achieved by performing AFF coding on macroblock pairs instead of on single macroblocks. FIG. 7 illustrates an exemplary pair of macroblocks (700) that can be used in AFF coding on a pair of macroblocks according to an embodiment of the present invention. If the pair of macroblocks (700) is to be encoded in frame mode, the pair is coded as two frame-based macroblocks. In each macroblock, the two fields in each of the macroblocks are encoded jointly. Once encoded as frames, the macroblocks can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if the pair of macroblocks (700) is to be encoded in field mode, it is first split into one top field 16 by 16 pixel block (800) and one bottom field 16 by 16 pixel block (801), as shown in FIG. 8. The two fields are then coded separately. In FIG. 8, each macroblock in the pair of macroblocks (700) has N=16 columns of pixels and M=16 rows of pixels. Thus, the dimensions of the pair of macroblocks (700) is 16 by 32 pixels. As shown in FIG. 8, every other row of pixels is shaded. The shaded areas represent the rows of pixels in the top field of the macroblocks and the unshaded areas represent the rows of pixels in the bottom field of the macroblocks. The top field block (800) and the bottom field block (801) can now be divided into one of the possible block sizes of FIGS. 3a-f. According to an embodiment of the present invention, in the AFF coding of pairs of macroblocks (700), there are two possible scanning paths. A scanning path determines the order in which the pairs of macroblocks of a picture are encoded. FIG. 9 shows the two possible scanning paths in AFF coding of pairs of macroblocks (700). One of the scanning paths is a horizontal scanning path (900). In the horizontal scanning path (900), the macroblock pairs (700) of a picture (200) are coded from left to right and from top to bottom, as shown in FIG. 9. The other scanning path is a vertical scanning path (901). In the vertical scanning path (901), the macroblock pairs (700) of a picture (200) are coded from top to bottom and from left to right, as shown in FIG. 9. For frame mode coding, the top macroblock of a macroblock pair (700) is coded first, followed by the bottom macroblock. For field mode coding, the top field macroblock of a macroblock pair is coded first followed by the bottom field macroblock. Another embodiment of the present invention extends the concept of AFF coding on a pair of macroblocks to AFF coding on a group of four or more neighboring macroblocks (902), as shown in FIG. 10. AFF coding on a group of macroblocks will be occasionally referred to as group based AFF coding. The same scanning paths, horizontal (900) and vertical (901), as are used in the scanning of macroblock pairs are used in the scanning of groups of neighboring macroblocks (902). Although the example shown in FIG. 10 shows a group of four macroblocks, the group can be more than four macroblocks. If the group of macroblocks (902) is to be encoded in frame mode, the group coded as four frame-based macroblocks. In each macroblock, the two fields in each of the macroblocks are encoded jointly. Once encoded as frames, the macroblocks can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if a group of four macroblocks (902), for example, is to be encoded in field mode, it is first split into one top field 32 by 16 pixel block and one bottom field 32 by 16 pixel block. The two fields are then coded separately. The top field block and the bottom field block can now be divided into macroblocks. Each macroblock is further divided into one of the possible block sizes of FIGS. 3a-f. Because this process is similar to that of FIG. 8, a separate figure is not provided to illustrate this embodiment. In AFF coding at the macroblock level, a frame/field flag bit is preferably included in a picture's bitstream to indicate which mode, frame mode or field mode, is used in the encoding of each macroblock. The bitstream includes information pertinent to each macroblock within a stream, as shown in FIG. 11. For example, the bitstream can include a picture header (110), run information (111), and macroblock type (113) information. The frame/field flag (112) is preferably included before each macroblock in the bitstream if AFF is performed on each individual macroblock. If the AFF is performed on pairs of macroblocks, the frame/field flag (112) is preferably included before each pair of macroblock in the bitstream. Finally, if the AFF is performed on a group of macroblocks, the frame/field flag (112) is preferably included before each group of macroblocks in the bitstream. One embodiment is that the frame/field flag (112) bit is a 0 if frame mode is to be used and a 1 if field coding is to be used. Another embodiment is that the frame/field flag (112) bit is a 1 if frame mode is to be used and a 0 if field coding is to be used. Another embodiment of the present invention entails a method of determining the size of blocks into which the encoder divides a macroblock in macroblock level AFF. A preferable, but not exclusive, method for determining the ideal block size is sum absolute difference (SAD) with or without bias or rate distortion (RD) basis. For example, SAD checks the performance of the possible block sizes and chooses the ideal block size based on its results. The exact method of using SAD with or without bias or RD basis can be easily be performed by someone skilled in the art. According to an embodiment of the present invention, each frame and field based macroblock in macroblock level AFF can be intra coded or inter coded. In intra coding, the macroblock is encoded without temporally referring to other macroblocks. On the other hand, in inter coding, temporal prediction with motion compensation is used to code the macroblocks. If inter coding is used, a block with a size of 16 by 16 pixels, 16 by 8 pixels, 8 by 16 pixels, or 8 by 8 pixels can have its own reference pictures. The block can either be a frame or field based macroblock. The MPEG-4 Part 10 AVC/H.264 standard allows multiple reference pictures instead of just two reference pictures. The use of multiple reference pictures improves the performance of the temporal prediction with motion compensation algorithm by allowing the encoder to find a block in the reference picture that most closely matches the block that is to be encoded. By using the block in the reference picture in the coding process that most closely matches the block that is to be encoded, the greatest amount of compression is possible in the encoding of the picture. The reference pictures are stored in frame and field buffers and are assigned reference frame numbers and reference field numbers based on the temporal distance they are away from the current picture that is being encoded. The closer the reference picture is to the current picture that is being stored, the more likely the reference picture will be selected. For field mode coding, the reference pictures for a block can be any top or bottom field of any of the reference pictures in the reference frame or field buffers. Each block in a frame or field based macroblock can have its own motion vectors. The motion vectors are spatially predictive coded. According to an embodiment of the present invention, in inter coding, prediction motion vectors (PMV) are also calculated for each block. The algebraic difference between a block's PMVs and its associated motion vectors is then calculated and encoded. This generates the compressed bits for motion vectors. FIG. 12 will be used to explain various preferable methods of calculating the PMV of a block in a macroblock. A current block, E, in FIG. 12 is to be inter coded as well as its neighboring blocks A, B, C, and D. E will refer hereafter to a current block and A, B, C, and D will refer hereafter to E's neighboring blocks, unless otherwise denoted. Block E's PMV is derived from the motion vectors of its neighboring blocks. These neighboring blocks in the example of FIG. 12 are A, B, C, and D. One preferable method of calculating the PMV for block E is to calculate either the median of the motion vectors of blocks A, B, C, and D, the average of these motion vectors, or the weighted average of these motion vectors. Each of the blocks A through E can be in either frame or field mode. Another preferable method of calculating the PMV for block E is to use a yes/no method. Under the principles of the yes/no method, a block has to be in the same frame or field coding mode as block E in order to have its motion vector included in the calculation of the PMV for E. For example, if block E in FIG. 12 is in frame mode, block A must also be in frame mode to have its motion vector included in the calculation of the PMV for block E. If one of E's neighboring blocks does not have the same coding mode as does block E, its motion vectors are not used in the calculation of block E's PMV. The “always method” can also be used to calculate the PMV for block E. In the always method, blocks A, B, C, and D are always used in calculating the PMV for block E, regardless of their frame or field coding mode. If E is in frame mode and a neighboring block is in field mode, the vertical component of the neighboring block is multiplied by 2 before being included in the PMV calculation for block E. If E is in field mode and a neighboring block is in frame mode, the vertical component of the neighboring block is divided by 2 before being included in the PMV calculation for block E. The “selective method” can also be used to calculate the PMV for block E if the macroblock has been encoded using pair based AFF encoding or group based AFF encoding. In the selective method, a frame-based block has a frame-based motion vector pointing to a reference frame. The block is also assigned a field-based motion vector pointing to a reference field. The field-based motion vector is the frame-based motion vector of the block with the vertical motion vector component divided by two. The reference field number is the reference frame number multiplied by two. A field-based block has a field-based motion vector pointing to a reference field. The block is also assigned a frame-based motion vector pointing to a reference frame. The frame-based motion vector is the field-based motion vector of the block with the vertical motion vector component multiplied by two. The reference frame number is the reference field number divided by two. The derivation of a block's PMV using the selective method will now be explained using FIG. 12 as a reference. In macroblock pair based AFF, each block in a macroblock is associated with a companion block that resides in the same geometric location within the second macroblock of the macroblock pair. In FIG. 12, each of block E's neighboring blocks (A, B, C, and D) may or may not be in the same frame or field coding mode as block E. Hence, the following rules apply: If E is in frame mode and a neighboring block is in frame mode, the true frame-based motion vector of the neighboring block is used for E's PMV. If E is in frame mode and a neighboring block is in field mode, the following rules apply in calculating E's PMV. If the neighboring block (e.g.; block A) and its companion field-based block have the same reference field, the average of the assigned field-based motion vectors of the two blocks is used for the calculation of E's PMV. The reference frame number used for the PMV calculation is the reference field number of the neighboring block divided by two. However, if the neighboring block and its companion field block have different reference fields, then the neighboring block cannot be used in the calculation of E's PMV. If E is in field mode and a neighboring block is in frame mode, the following rules apply in calculating E's PMV. If the neighboring block (e.g.; block A) and its companion frame-based block have the same reference frame, the average of the assigned field-based motion vectors of the two blocks is used for the calculation of E's PMV. The reference field number used for the PMV calculation is the reference frame number of the neighboring block multiplied by two. However, if the neighboring block and its companion field block have different reference frames, then the neighboring block cannot be used in the calculation of E's PMV. If E is in field mode and a neighboring block is in field mode, the true field-based motion vector of the neighboring block is used in the calculation of E's PMV. An alternate preferable option can be used in the selective method to calculate a block's PMV. In FIG. 12, each of block E's neighboring blocks (A, B, C, and D) may or may not be in the same frame or field coding mode as block E. Hence, the following rules apply for this alternate preferable option of the selective method: If E is in frame mode and a neighboring block is in frame mode, the true frame-based motion vector of the neighboring block is used for E's PMV. If E is in frame mode and a neighboring block is in field mode, the weighted average of the assigned field-based motion vectors of the neighboring block and its companion field-based block is used for the calculation of E's PMV. The weighting factors are based upon the reference field numbers of the neighboring block and its companion block. If E is in field mode, and a neighboring block is in frame mode, the weighted average of the assigned field-based motion vectors of the neighboring block and its companion frame-based block is used for the calculation of E's PMV. The weighting factors are based upon the reference frame numbers of the neighboring block and its companion block. If E is in field mode and a neighboring block is in field mode, the true field-based motion vector of the neighboring block is used in the calculation of E's PMV. Another preferable method of computing a block's PMV is the “alt selective method.” This method can be used in single macroblock AFF coding, pair based macroblock AFF coding, or group based AFF coding. In this method, each block is assigned a horizontal and a vertical index number, which represents the horizontal and vertical coordinates of the block. Each block is also assigned a horizontal and vertical field coordinate. A block's horizontal field coordinate is same as its horizontal coordinate. For a block in a top field macroblock, the vertical field coordinate is half of vertical coordinate of the block and is assigned top field polarity. For a block in the bottom field macroblock, the vertical field coordinate of the block is obtained by subtracting 4 from the vertical coordinate of the block and dividing the result by 2. The block is also assigned bottom field polarity. The result of assigning different field polarities to two blocks is that there are now two blocks with the same horizontal and vertical field coordinates but with differing field polarities. Thus, given the coordinates of a block, the field coordinates and its field polarity can be computed and vice versa. The alt selective method will now be explained in detail using FIG. 12 as a reference. The PMV of block E is to be computed. Let bx represent the horizontal size of block E divided by 4, which is the size of a block in this example. The PMVs for E are obtained as follows depending on whether E is in frame/field mode. Let block E be in frame mode and let (x,y) represent the horizontal and vertical coordinates respectively of E. The neighboring blocks of E are defined in the following manner. A is the block whose coordinates are (x−1,y). B is the block whose coordinates are (x,y−1). D is the block whose coordinates are (x−1,y−1). C is the block whose coordinates are (x+bx+1,y−1). If either A, B, C or D is in field mode then its vertical motion vector is divided by 2 before being used for prediction and its reference frame number is computed by dividing its reference field by 2. Now, let block E be in top or bottom field mode and let (xf,yf) represent the horizontal and vertical field coordinates respectively of E. In this case, the neighbors of E are defined as follows. A is the block whose field coordinates are (xf−1,yf) and has same polarity as E. B is the block whose field coordinates are (xf,yf−1) and has same polarity as E. D is the block whose field coordinates are (xf−1,yf−1) and has same polarity as E. C is the block whose field coordinates are (xf+bx+1,yf) and has same polarity as E. If either A, B, C or D is in frame mode then its vertical motion vector is multiplied by 2 before being used for prediction and its reference field is computed by multiplying its reference frame by 2. In all of the above methods for determining the PMV of a block, a horizontal scanning path was assumed. However, the scanning path can also be a vertical scanning path. In this case, the neighboring blocks of the current block, E, are defined as shown in FIG. 13. A vertical scanning path is preferable in some applications because the information on all the neighboring blocks is available for the calculation of the PMV for the current block E. Another embodiment of the present invention is directional segmentation prediction. In directional segmentation prediction, 16 by 8 pixel blocks and 8 by 16 pixel blocks have rules that apply to their PMV calculations only. These rules apply in all PMV calculation methods for these block sizes. The rules will now be explained in detail in connection with FIG. 12. In each of these rules, a current block E is to have its PMV calculated. First, a 16 by 8 pixel block consists of an upper block and a lower block. The upper block contains the top 8 rows of pixels. The lower block contains the bottom 8 rows of pixels. In the following description, blocks A-E of FIG. 12 are 16 by 8 pixel blocks. For the upper block in a 16 by 8 pixel block, block B is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. For the lower block in a 16 by 8 pixel block, block A is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. An 8 by 16 pixel block is divided into a right and left block. Both right and left blocks are 8 by 16 pixels. In the following description, blocks A-E of FIG. 12 are 8 by 16 pixel blocks. For the left block, block A is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. For the right block, block C is used to predict block E's PMV if it has the same referenced picture as block E. Otherwise median prediction is used to predict block E's PMV. For both 16 by 8 pixel blocks and 8 by 16 blocks, A, B, or C can be in different encoding modes (frame or field) than the current block E. The following rules apply for both block sizes. If E is in frame mode, and A, B, or C is in field mode, the reference frame number of A, B, or C is computed by dividing its reference field by 2. If E is in field mode, and A, B, or C is in frame mode, the reference field number of A, B, or C is computed by multiplying its reference frame by 2. According to another embodiment of the present invention, a macroblock in a P picture can be skipped in AFF coding. If a macroblock is skipped, its data is not transmitted in the encoding of the picture. A skipped macroblock in a P picture is reconstructed by copying the co-located macroblock in the most recently coded reference picture. The co-located macroblock is defined as the one with motion compensation using PMV as defined above or without motion vectors. The following rules apply for skipped macroblocks in a P picture. If AFF coding is performed per macroblock, a skipped macroblock is in frame mode. If AFF coding is performed on macroblock pairs and if both macroblocks are skipped, then they are in frame mode. However, if only one of the macroblocks in a macroblock pair is skipped, its frame or field coding mode is the same as the non-skipped macroblock in the same macroblock pair. If AFF coding is performed on a group of macroblocks and if the entire group of macroblocks is skipped, then all the macroblocks are in frame mode. If there is at least one macroblock that is not skipped, then the skipped macroblocks in the same group are in the same frame or field coding mode as the non-skipped macroblock. An alternate method for skipped macroblocks is as follows. If a macroblock pair is skipped, its frame and field coding mode follows its neighboring macroblock pair to the left. If the left neighboring macroblock pair is not available, its coding mode follows its neighboring macroblock pair to the top. If neither the left nor top neighboring macroblock pairs are available, the skipped macroblock is set to frame mode. Another embodiment of the present invention is direct mode macroblock coding for B pictures. In direct mode coding, a B picture has two motion vectors, forward and backward motion vectors. Each motion vector points to a reference picture. Both the forward and backward motion vectors can point in the same temporal direction. For direct mode macroblock coding in B pictures, the forward and backward motion vectors of a block are calculated from the co-located block in the backward reference picture. The co-located block in the backward reference picture can be frame mode or field mode coded. The following rules apply in direct mode macroblock coding for B picture. If the co-located block is in frame mode and if the current direct mode macroblock is also in frame mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block. The forward reference frame is the one used by the co-located block. The backward reference frame is the same frame where the co-located block resides. If the co-located block is in frame mode and if the current direct mode macroblock is in field mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block's motion vector with vertical component divided by two. The forward reference field is the same parity field of the reference frame used by the co-located block. The backward reference field is the same parity field of the backward reference frame where the co-located block resides. If the co-located block is in field mode and if the current direct mode macroblock is also in field mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block of the same field parity. The forward reference field is the field used by the co-located block. The backward reference field is the same field where the co-located block resides. If the co-located block is in field mode and if the current direct mode macroblock is in frame mode, the two associated motion vectors of the block in the direct mode macroblock are calculated from the co-located block's motion vector with vertical component multiplied by two. The forward reference frame is the frame one of whose fields is used by the co-located block. The backward reference field is the frame in one of whose fields the co-located block resides. An alternate option is to force the direct mode block to be in the same frame or field coding mode as the co-located block. In this case, if the co-located block for a direct mode block is in frame mode, the direct mode block is in frame mode as well. The two frame-based motion vectors of the direct mode block are derived from the frame-based forward motion vector of the co-located block. The forward reference frame is used by the co-located block. The backward reference frame is where the co-located block resides. However, if the co-located block for a block in direct mode is in field mode, the direct mode block is also in field mode. The two field-based motion vectors of the direct mode block are derived from the field-based forward motion vector of the co-located block. The forward reference field is used by the co-located block. The backward reference field is where the co-located block resides. A macroblock in a B picture can also be skipped in AFF coding according to another embodiment of the present invention. A skipped macroblock in a B picture is reconstructed as a regular direct mode macroblock without any coded transform coefficient information. For skipped macroblocks in a B picture, the following rules apply. If AFF coding is performed per macroblock, a skipped macroblock is either in frame mode or in the frame or field coding mode of the co-located block in its backward reference picture. If AFF coding is performed on macroblock pairs and if both macroblocks are skipped, then they are in frame mode or in the frame or field coding mode of the co-located macroblock pair in the its backward reference picture. However, if only one of the macroblocks in a macroblock pair is skipped, its frame or field coding mode is the same as the non-skipped macroblock of the same macroblock pair. If AFF coding is performed on a group of macroblocks and if the entire group of macroblocks is skipped, then all the macroblocks are in frame mode or in the frame or field coding mode of the co-located group of macroblocks in the backward reference picture. If there is at least one macroblock that is not skipped, then the skipped macroblock in the same group are in the same frame or field coding mode as the non-skipped macroblock. As previously mentioned, a block can be intra coded. Intra blocks are spatially predictive coded. There are two possible intra coding modes for a macroblock in macroblock level AFF coding. The first is intra—4×4 mode and the second is intra—16×16 mode. In both, each pixel's value is predicted using the real reconstructed pixel values from neighboring blocks. By predicting pixel values, more compression can be achieved. The intra—4×4 mode and the intra—16×16 modes will each be explained in more detail below. For intra—4×4 mode, the predictions of the pixels in a 4 by 4 pixel block, as shown in FIG. 14, are derived form its left and above pixels. In FIG. 14, the 16 pixels in the 4 by 4 pixel block are labeled a through p. Also shown in FIG. 14 are the neighboring pixels A through P. The neighboring pixels are in capital letters. As shown in FIG. 15, there are nine different prediction directions for intra—4×4 coding. They are vertical (0), horizontal (1), DC prediction (mode 2), diagonal down/left (3), diagonal down/right (4), vertical-left (5), horizontal-down (6), vertical-right (7), and horizontal-up (8). DC prediction averages all the neighboring pixels together to predict a particular pixel value. However, for intra—16×16 mode, there are four different prediction directions. Prediction directions are also referred to as prediction modes. These prediction directions are vertical prediction (0), horizontal prediction (1), DC prediction, and plane prediction. Plane prediction will not be explained. An intra block and its neighboring blocks may be coded in frame or field mode. Intra prediction is performed on the reconstructed blocks. A reconstructed block can be represented in both frame and field mode, regardless of the actual frame or field coding mode of the block. Since only the pixels of the reconstructed blocks are used for intra prediction, the following rules apply. If a block of 4 by 4 pixels or 16 by 16 pixels is in frame mode, the neighboring pixels used in calculating the pixel value predictions of the block are in the frame structure. If a block of 4 by 4 pixels or 16 by 16 pixels is in field mode, the neighboring pixels used in calculating the pixel value prediction of the block are in field mode of the same field parity. The chosen intra-prediction mode (intra_pred_mode) of a 4 by 4 pixel block is highly correlated with the prediction modes of adjacent blocks. This is illustrated in FIG. 16a. FIG. 16a shows that A and B are adjacent blocks to C. Block C's prediction mode is to be established. FIG. 16b shows the order of intra prediction information in the bitstream. When the prediction modes of A and B are known (including the case that A or B or both are outside the slice) the most probable prediction mode (most_probable_mode) of C is given. If one of the blocks A or B is “outside” the most probable prediction mode is equal DC prediction (mode 2). Otherwise it is equal to the minimum of prediction modes used for blocks A and B. When an adjacent block is coded by 16×16 intra mode, prediction mode is DC prediction mode. When an adjacent block is coded a non-intra macroblock, prediction mode is “mode 2: DC prediction” in the usual case and “outside” in the case of constrained intra update. To signal a prediction mode number for a 4 by 4 block first parameter use_most_probable_mode is transmitted. This parameter is represented by 1 bit codeword and can take values 0 or 1. If use_most_probable_mode is equal to 1 the most probable mode is used. Otherwise an additional parameter remaining_mode_selector, which can take value from 0 to 7 is sent as 3 bit codeword. The codeword is a binary representation of remaining_mode_selector value. The prediction mode number is calculated as: if (remaining_mode_selector<most_probable_mode) intra_pred_mode=remaining_mode_selector; else intra_pred_mode=remaining_mode_selector+1; The ordering of prediction modes assigned to blocks C is therefore the most probable mode followed by the remaining modes in the ascending order. An embodiment of the present invention includes the following rules that apply to intra mode prediction for an intra-prediction mode of a 4 by 4 pixel block or an intra-prediction mode of a 16 by 16 pixel block. Block C and its neighboring blocks A and B can be in frame or field mode. One of the following rules shall apply. FIGS. 16a-b will be used in the following explanations of the rules. Rule 1: A or B is used as the neighboring block of C only if A or B is in the same frame/field mode as C. Otherwise, A or B is considered as outside. Rule 2: A and B are used as the neighboring blocks of C, regardless of their frame/field coding mode. Rule 3: If C is coded in frame mode and has co-ordinates (x,y), then A is the block with co-ordinates (x,y−1) and B is the block with co-ordinates (x−1,y). Otherwise, if C is coded as field and has field co-ordinates (xf,yf) then A is the block whose field co-ordinates are (xf,yf−1) and has same field polarity as C and B is the block whose field co-ordinates are (xf−1,yf) and has same field polarity as C. Rule 4: This rule applies to macroblock pairs only. In the case of decoding the prediction modes of blocks numbered 3, 6, 7, 9, 12, 13, 11, 14 and 15 of FIG. 16b, the above and the left neighboring blocks are in the same macroblock as the current block. However, in the case of decoding the prediction modes of blocks numbered 1, 4, and 5, the top block (block A) is in a different macroblock pair than the current macroblock pair. In the case of decoding the prediction mode of blocks numbered 2, 8, and 10, the left block (block B) is in a different macroblock pair. In the case of decoding the prediction mode of the block numbered 0, both the left and the above blocks are in different macroblock pairs. For a macroblock in field decoding mode the neighboring blocks of the blocks numbered 0, 1, 4, 5, 2, 8, and 10 shall be defined as follows: If the above macroblock pair (170) is decoded in field mode, then for blocks number 0, 1, 4 and 5 in the top-field macroblock (173), blocks numbered 10, 11, 14 and 15 respectively in the top-field macroblock (173) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171) as shown in FIG. 17a. For blocks number 0, 1, 4 and 5 in the bottom-field macroblock (174), blocks numbered 10, 11, 14 and 15 respectively in the bottom-field MB of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown in FIG. 17a. However, if the above macroblock pair (170) is decoded in frame mode then for blocks number 0, 1, 4 and 5 in the top-field macroblock (173), blocks numbered 10, 11, 14 and 15 respectively in the bottom-frame macroblock (176) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown in FIG. 17b. For blocks number 0, 1, 4 and 5 in the bottom-field macroblock (174), blocks numbered 10, 11, 14 and 15 respectively in the bottom-frame macroblock (176) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown inn FIG. 17b. If the left macroblock pair (172) is decoded in field mode, then for blocks number 0, 2, 8 and 10 in the top-field macroblock (173), blocks numbered 5, 7, 13 and 15 respectively in the top-field macroblock (173) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171) as shown in FIG. 17c. For blocks number 0, 2, 8 and 10 in the bottom-field macroblock (174), blocks numbered 5, 7, 13 and 15 respectively in the bottom-field macroblock (174) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17c. If the left macroblock pair (172) is decoded in frame mode, then for blocks number 0, 2, 8 and 10 in the top-field macroblock (173), the blocks numbered 5, 7, 13 and 15 respectively in the top-frame macroblock (175) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17d. For blocks number 0, 2, 8 and 10 in the bottom-field macroblock (174), blocks numbered 5, 7, 13 and 15 respectively in the bottom-frame macroblock (176) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17d. For macroblock pairs on the upper boundary of a slice, if the left macroblock pair (172) is in frame decoding mode, then the intra mode prediction value used to predict a field macroblock shall be set to DC prediction. The preceding descriptions of intra coding and intra mode prediction can be extended to adaptive block transforms. Another embodiment of the present invention is that loop filtering is performed on the reconstructed blocks. A reconstructed block can be represented in either frame or field structure, regardless of the frame/filed coding mode of the block. Loop (deblock) filtering is a process of weighted averaging of the pixels of the neighboring blocks. FIG. 12 will be used to explain loop filtering. Assume E of FIG. 12 is a reconstructed block, and A, B, C and D are its neighboring reconstructed blocks, as shown in FIG. 12, and they are all represented in frame structure. Since A, B, C, D and E can be either frame- or field-coded, the following rules apply: Rule 1: If E is frame-coded, loop filtering is performed over the pixels of E and its neighboring blocks A B, C and D. Rule 2: If E is field-coded, loop filtering is performed over the top-field and bottom-field pixels of E and its neighboring blocks A B, C and D, separately. Another embodiment of the present invention is that padding is performed on the reconstructed frame by repeating the boundary pixels. Since the boundary blocks may be coded in frame or field mode, the following rules apply: Rule 1: The pixels on the left or right vertical line of a boundary block are repeated, if necessary. Rule 2: If a boundary block is in frame coding, the pixels on the top or bottom horizontal line of the boundary block are repeated. Rule 3: if a boundary block is in field coding, the pixels on the two top or two bottom horizontal (two field) lines of the boundary block are repeated alternatively. Another embodiment of the present invention is that two-dimensional transform coefficients are converted into one-dimensional series of coefficients before entropy coding. The scan path can be either zigzag or non-zigzag. The zigzag scanner is preferably for progressive sequences, but it may be also used for interlace sequences with slow motions. The non-zigzag scanners are preferably for interlace sequences. For macroblock AFF coding, the following options may be used: Option 1: The zigzag scan is used for macroblocks in frame mode while the non-zigzag scanners are used for macroblocks in field coding. Option 2: The zigzag scan is used for macroblocks in both frame and field modes. Option 3: The non-zigzag scan is used for macroblocks in both frame and field modes. The preceding description has been presented only to illustrate and describe embodiments of invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. The foregoing embodiments were chosen and described in order to illustrate principles of the invention and some practical applications. The preceding description enables others skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims. | <SOH> BACKGROUND <EOH>Video compression is used in many current and emerging products. It is at the heart of digital television set-top boxes (STBs), digital satellite systems (DSSs), high definition television (HDTV) decoders, digital versatile disk (DVD) players, video conferencing, Internet video and multimedia content, and other digital video applications. Without video compression, digital video content can be extremely large, making it difficult or even impossible for the digital video content to be efficiently stored, transmitted, or viewed. The digital video content comprises a stream of pictures that can be displayed as an image on a television receiver, computer monitor, or some other electronic device capable of displaying digital video content. A picture that is displayed in time before a particular picture is in the “backward direction” in relation to the particular picture. Likewise, a picture that is displayed in time after a particular picture is in the “forward direction” in relation to the particular picture. Video compression is accomplished in a video encoding, or coding, process in which each picture is encoded as either a frame or as two fields. Each frame comprises a number of lines of spatial information. For example, a typical frame contains 480 horizontal lines. Each field contains half the number of lines in the frame. For example, if the frame comprises 480 horizontal lines, each field comprises 240 horizontal lines. In a typical configuration, one of the fields comprises the odd numbered lines in the frame and the other field comprises the even numbered lines in the frame. The field that comprises the odd numbered lines will be referred to as the “top” field hereafter and in the appended claims, unless otherwise specifically denoted. Likewise, the field that comprises the even numbered lines will be referred to as the “bottom” field hereafter and in the appended claims, unless otherwise specifically denoted. The two fields can be interlaced together to form an interlaced frame. The general idea behind video coding is to remove data from the digital video content that is “non-essential.” The decreased amount of data then requires less bandwidth for broadcast or transmission. After the compressed video data has been transmitted, it must be decoded, or decompressed. In this process, the transmitted video data is processed to generate approximation data that is substituted into the video data to replace the “non-essential” data that was removed in the coding process. Video coding transforms the digital video content into a compressed form that can be stored using less space and transmitted using less bandwidth than uncompressed digital video content. It does so by taking advantage of temporal and spatial redundancies in the pictures of the video content. The digital video content can be stored in a storage medium such as a hard drive, DVD, or some other non-volatile storage unit. There are numerous video coding methods that compress the digital video content. Consequently, video coding standards have been developed to standardize the various video coding methods so that the compressed digital video content is rendered in formats that a majority of video encoders and decoders can recognize. For example, the Motion Picture Experts Group (MPEG) and International Telecommunication Union (ITU-T) have developed video coding standards that are in wide use. Examples of these standards include the MPEG-1, MPEG-2, MPEG-4, ITU-T H261, and ITU-T H263 standards. Most modern video coding standards, such as those developed by MPEG and ITU-T, are based in part on a temporal prediction with motion compensation (MC) algorithm. Temporal prediction with motion compensation is used to remove temporal redundancy between successive pictures in a digital video broadcast. The temporal prediction with motion compensation algorithm typically utilizes one or two reference pictures to encode a particular picture. A reference picture is a picture that has already been encoded. By comparing the particular picture that is to be encoded with one of the reference pictures, the temporal prediction with motion compensation algorithm can take advantage of the temporal redundancy that exists between the reference picture and the particular picture that is to be encoded and encode the picture with a higher amount of compression than if the picture were encoded without using the temporal prediction with motion compensation algorithm. One of the reference pictures may be in the backward direction in relation to the particular picture that is to be encoded. The other reference picture is in the forward direction in relation to the particular picture that is to be encoded. However, as the demand for higher resolutions, more complex graphical content, and faster transmission time increases, so does the need for better video compression methods. To this end, a new video coding standard is currently being developed jointly by ISO and ITU-T. This new video coding standard is called the MPEG-4 Advanced Video Coding (AVC)/H.264 standard. | <SOH> SUMMARY OF THE INVENTION <EOH>In one of many possible embodiments, the present invention provides a method of encoding, decoding, and bitstream generation of digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the macroblocks in each picture in said stream of pictures in either frame mode or in field mode. | 20041230 | 20071218 | 20050602 | 87028.0 | 2 | AN, SHAWN S | MACROBLOCK LEVEL ADAPTIVE FRAME/FIELD CODING FOR DIGITAL VIDEO CONTENT | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,027,550 | ACCEPTED | Ring binder mechanism spring biased to a locked position when ring members close | A ring binder mechanism that retains loose-leaf pages and has ring members that gently close and readily lock together. The mechanism comprises a housing that supports two hinge plates for loose pivoting motion, moving the ring members between an open position and a closed position. A control structure is movable by an actuating lever, which is pivotally mounted on the housing, between a first and second position. In the first position, pivoting motion of the hinge plates is blocked, and in the second position, the hinge plates can freely pivot. A spring is engageable with the lever for urging the lever to move the control structure toward the first position. | 1. A ring binder mechanism for retaining loose-leaf pages, the mechanism comprising: a housing; hinge plates supported by the housing for pivoting motion relative to the housing; rings for holding the loose-leaf pages, each ring including a first ring member and a second ring member, the first ring member being mounted on a first hinge plate and moveable with the pivoting motion of the first hinge plate relative to the second ring member between a closed position and an open position, in the closed position the two ring members form a substantially continuous, closed loop for allowing loose-leaf pages retained by the rings to be moved along the rings from one ring member to the other, and in the open position the two ring members form a discontinuous, open loop for adding or removing loose-leaf pages from the rings; a control structure supported by the housing and moveable relative to the housing between a first position and a second position for use in controlling the pivoting motion of the hinge plates, the control structure including an actuator connected to the housing for movement relative to the housing to cause movement of the control structure between said first and second positions; and a spring engageable with the control structure for urging the control structure toward said first position. 2. A ring binder mechanism as set forth in claim 1 wherein the spring is arranged relative to the actuator so that movement of the control structure from the first position to the second position deflects the spring and stores additional energy in the spring. 3. A ring binder mechanism as set forth in claim 2 wherein the spring includes a first free end and a second free end, the first free end of the spring being engageable with the actuator such that the first free end of the spring moves relative to the second free end of the spring when the actuator is moved to move the control structure toward said second position. 4. A ring binder mechanism as set forth in claim 3 wherein said movement of the first free end of the spring is toward the second free end of the spring. 5. A ring binder mechanism as set forth in claim 4 wherein the second free end of the spring is engageable with the housing. 6. A ring binder mechanism as set forth in claim 5 wherein the spring is a torsion spring. 7. A ring binder mechanism as set forth in claim 5 wherein the spring is a spring plate. 8. A ring binder mechanism as set forth in claim 5 wherein the spring is a rubber spring. 9. A ring binder mechanism as set forth in claim 3 further including a hinge pin connecting the spring to the housing. 10. A ring binder mechanism as set forth in claim 9 wherein the actuator comprises a lever and said hinge pin also pivotally connects the lever to the housing. 11. A ring binder mechanism as set forth in claim 10 wherein the second free end of the spring is engageable with the hinge plates. 12. A ring binder mechanism as set forth in claim 11 wherein said movement of the first free end of the spring is away from the second free end of the spring. 13. A ring binder mechanism as set forth in claim 12 wherein the spring is a torsion spring. 14. A ring binder mechanism as set forth in claim 1 wherein the actuator comprises a lever pivotally mounted on the housing and the control structure further comprises a travel bar operatively connected to the lever such that pivoting movement of the lever causes movement of the travel bar in translation relative to the housing from the first position in which the control structure locks the hinge plates in the closed position to the second position in which the hinge plates are free to pivot to the open position. 15. A ring binder mechanism as set forth in claim 1 in combination with a cover, the ring binder mechanism being mounted on the cover, the cover being movable to selectively cover and expose loose-leaf pages adapted to be retained on the rings. 16. A ring binder mechanism as set forth in claim 1 wherein the ring members are in the closed position when the control structure is in said first position. 17. A ring binder mechanism for retaining loose-leaf pages, the mechanism comprising; a housing; hinge plates supported by the housing for pivoting motion relative to the housing; rings for holding the loose-leaf pages, each ring including a first ring member mounted on a first hinge plate and moveable with the pivoting motion of the first hinge plate, each ring further including a second ring member, the first ring member being movable relative to the second ring member so that in a closed position the two ring members form a substantially continuous, closed loop for allowing loose-leaf pages retained by the rings to be moved along the rings from one ring member to the other, and in an open position the two ring members form a discontinuous, open loop for adding or removing loose-leaf pages from the rings; a lever for causing said pivoting motion of the hinge plates, the lever being pivotable between a first position in which the ring members are closed and a second position; and a spring engageable with the lever for urging the lever toward said first position. 18. A ring binder mechanism as set forth in claim 17 wherein the lever is connected to the housing. 19. A ring binder mechanism as set forth in claim 18 wherein the lever is mounted on the housing. 20. A ring binder mechanism for retaining loose-leaf pages, the mechanism comprising: a housing; hinge plates supported by the housing for pivoting motion relative to the housing; rings for holding the loose-leaf pages, each ring including a first ring member and a second ring member, the first ring member being mounted on a first hinge plate and moveable with the pivoting motion of the first hinge plate relative to the second ring member between a closed position and an open position, in the closed position the two ring members form a substantially continuous, closed loop for allowing loose-leaf pages retailed by the rings to be moved along the rings from one ring member to the other, and in the open position the two ring members form a is discontinuous, open loop for adding or removing loose-leaf pages from the rings; an actuator moveable relative to the housing for pivoting the hinge plates to move the ring members from the closed position to the open position, the actuator having a first position corresponding the closed position of the ring members and a second position corresponding to the open position of the ring members; and a spring engageable with the actuator for urging the control structure toward said first position. | BACKGROUND OF THE INVENTION This invention relates to a ring binder mechanism for retaining loose-leaf pages, and in particular to an improved mechanism for opening and closing ring members and for readily and securely locking closed ring members together. A ring binder mechanism retains loose-leaf pages, such as hole-punched pages, in a file or notebook. It has ring members for retaining the pages. The ring members may be selectively opened to add or remove pages or closed to retain pages while allowing them to be moved along the ring members. The ring members mount on two adjacent hinge plates that join together about a pivot axis for pivoting movement within an elongated housing. The housing loosely holds the hinge plates so they may pivot relative to the housing. The undeformed housing is slightly narrower than the joined hinge plates when the hinge plates are in a coplanar position (180°). So as the hinge plates pivot through this position, they deform the resilient housing and cause a spring force in the housing urging the hinge plates to pivot away from the coplanar position either opening or closing the ring members. Thus, when the ring members are closed the spring force resists hinge plate movement and clamps the ring members together. Similarly, when the ring members are open, the spring force holds them apart. An operator may typically overcome this force by manually pulling the ring members apart or pushing them together. Levers may also be provided on both ends of the binder for moving the ring members between the open and closed positions. One drawback to these typical ring binder mechanisms is that when the ring members close, the housing's spring force snaps them together rapidly and with a force that might cause fingers to be pinched between the ring members. The substantial spring force required to keep the ring members closed also makes pivoting the hinge plates through the coplanar position (180°) difficult so that it is hard to both open and close the ring members. Another drawback is that when the ring members are closed, they do not positively lock together. So if the mechanism is accidentally dropped, the ring members may unintentionally open. Still another drawback is that over time the housing may begin to permanently deform, reducing its ability to uniformly clamp the ring members together and possibly causing uneven movements or gaps between closed ring members. To address these concerns, some ring binder mechanisms include a control slide attached directly to the lever. These control slides have inclined cam surfaces that project through openings in the hinge plates for rigidly controlling the hinge plates' pivoting motion both when opening and closing the ring members. Examples of these types of mechanisms are shown in U.S. Pat. Nos. 4,566,817, 4,571,108, and 6,276,862 and in U.K. Pat. No. 2,292,343. Some of these cam surfaces have a stop for blocking the hinge plates' pivoting motion when the ring members are closed and for locking the closed ring members together. These mechanisms require the operator to move the lever to lock the rings closed. The operator must manually move the lever to move the control slide stops into position to block the hinge plates from pivoting. Failure to do this could result in the rings inadvertently opening and pages falling out. Any solution to this issue should be made so as to keep the construction simple and economic, and avoid causing the rings to snap closed. Accordingly, there is a need for an efficient ring binder mechanism that readily locks when ring members close for retaining loose-leaf pages and has ring members that easily open and close. SUMMARY OF THE INVENTION This invention relates generally to a ring binder mechanism for retaining loose-leaf pages. The mechanism comprises a housing and hinge plates supported by the housing for pivoting motion relative to the housing. The mechanism also includes rings for holding the loose-leaf pages, and each ring includes a first ring member and a second ring member. The first ring member is mounted on a first hinge plate and moveable with the pivoting motion of the first hinge plate relative to the second ring member between a closed and open position. In the closed position, the two ring members form a substantially continuous, closed loop for allowing loose-leaf pages retained by the rings to be moved along the rings from one ring member to the other. In the open position, the two ring members form a discontinuous, open loop for adding or removing loose-leaf pages from the rings. A control structure is supported by the housing and is moveable relative to the housing between a first position and a second position for use in controlling the pivoting motion of the hinge plates. The control structure includes an actuator connected to the housing for movement relative to the housing to cause movement of the control structure between the first and second positions. A spring is engageable with the actuator for urging the lever to move the control structure toward the first position. In another aspect, the ring binder mechanism comprises a housing, hinge plates, and rings. Each ring includes a first ring member mounted on a first hinge plate and moveable with the pivoting motion of the first hinge plate. Each ring further includes a second ring member. The first ring member is movable relative to the second ring member. In a closed position, the two ring members form a substantially continuous, closed loop for allowing loose-leaf pages retained by the rings to be moved along the rings from one ring member to the other. In an open position, the two ring members form a discontinuous, open loop for adding or removing loose-leaf pages from the rings. A lever is mounted on the housing for causing the pivoting motion of the hinge plates such that the lever is pivotable between a first position in which the ring members are closed and a second position. A spring is engageable with the lever for urging the lever toward the first position. Other features of the invention will be in part apparent and in part pointed out hereinafter. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective of a notebook incorporating a ring binder mechanism according to a first embodiment of the invention; FIG. 2 is a perspective of the ring binder mechanism shown in FIG. 1 at a closed and locked position; FIG. 3 is a perspective similar to FIG. 2 with the mechanism at an open position; FIG. 4 is an exploded perspective of the ring binder mechanism; FIG. 5 is an enlarged perspective of a carrier link of the mechanism; FIG. 6 is a bottom perspective of the mechanism at the closed and locked position; FIG. 7 is a perspective similar to FIG. 6 with the mechanism at the open position; FIG. 8A is an enlarged fragmentary perspective of the mechanism at the closed and locked position with a portion of a housing and lever along with a ring member removed to show internal construction; FIG. 8B is a side view of the mechanism of FIG. 8A with portions of lever hinge pins removed; FIG. 8C is a transverse section taken on line 8C-8C of FIG. 8B; FIG. 9A is a fragmentary perspective similar to FIG. 8A with the mechanism at the open position; FIG. 9B is a side view thereof with portions of lever hinge pins removed; FIG. 10 is an exploded perspective of a ring binder mechanism according to a second embodiment of the invention; FIG. 11A is a fragmentary longitudinal section of the mechanism of FIG. 10 at a closed and locked position and with hinge plates and ring members removed; FIG. 11B is a section similar to FIG. 11A with the mechanism at an open position; FIG. 12 is an exploded perspective of a ring binder mechanism according to a third embodiment of the invention; FIG. 13A is a fragmentary longitudinal section of the mechanism at a closed and locked position with hinge plates and ring members removed; FIG. 13B is a section similar to FIG. 13A with the mechanism at an open position; FIG. 14 is an exploded perspective of a ring binder mechanism according to a fourth embodiment of the invention; FIG. 15 is a bottom perspective of a travel bar of the mechanism; FIG. 16A is a perspective of the mechanism of FIG. 14 with a portion of a housing cut away and one ring member removed to show internal construction of the mechanism at a closed and locked position; FIG. 16B is an enlarged and fragmentary side elevation thereof; FIG. 17A is a perspective similar to FIG. 16A with the mechanism at an open position; FIG. 17B is an enlarged and fragmentary side elevation thereof; FIG. 18 is an exploded perspective of a ring binder mechanism according to a fifth embodiment of the invention; FIG. 19 is a perspective of the mechanism of FIG. 18 at a closed and locked position; FIG. 20 is an exploded perspective of a ring binder mechanism according to a sixth embodiment of the invention; FIG. 21 is an enlarged fragmentary perspective of the mechanism of FIG. 20 with a portion of a housing and a first ring member of a ring removed to show internal construction of the mechanism at a closed and locked position; FIG. 22 is an enlarged fragmentary longitudinal section of the mechanism with hinge plates and ring members removed; FIG. 23 is a view similar to FIG. 21 with the mechanism at an open position; FIG. 24 is a section similar to the section shown in FIG. 22 but with the mechanism at the open position; FIG. 25 is an exploded perspective of a ring binder mechanism according to a seventh embodiment of the invention; and FIG. 26 is an exploded perspective of a ring binder mechanism according to an eighth embodiment of the invention. Corresponding reference characters indicate corresponding parts throughout the views of the drawings. DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawings and in particular to FIG. 1, a ring binder mechanism according to a first embodiment of the invention for retaining loose-leaf pages (the pages are not shown in the drawings) is indicated generally at reference numeral 1. The mechanism 1 is shown mounted on a spine 3 of a notebook (the notebook being indicated generally at reference numeral 5) having a front cover 7 and a back cover 9 hingedly attached to the spine. The front and back covers 7 and 9 move to selectively cover or expose retained pages. Ring binder mechanisms mounted on surfaces other than a notebook, however, do not depart from the scope of this invention. As shown in FIGS. 2 and 3, the mechanism 1 includes an elongate plate, also termed a housing and indicated generally at reference numeral 11, supporting three rings, each indicated generally at reference numeral 13 (FIG. 2). A lever (broadly, “an actuator”), designated generally at reference numeral 15, is pivotally mounted on a first longitudinal end of the housing 11 for moving the rings 13 between a closed position (FIG. 2) in which loose-leaf pages are retained on the rings and an open position (FIG. 3) in which loose-leaf pages (the loose-leaf pages are not shown in the drawings) may be added or removed, as will be described in greater detail hereinafter. The lever 15 is also movable to lock the rings 13 in the closed position as will be described in greater detail hereinafter. In the illustrated mechanism 1, a second longitudinal end of the housing 11 has no actuating lever. But it is understood that a mechanism having an actuating lever at both ends of a housing does not depart from the scope of the invention. Moreover, actuators other than levers (e.g., a push button) could be used within the scope of the invention. Further, a mechanism with a different number of rings, greater or fewer than three, does not depart from the scope of this invention. Still further, the ring mechanism of the invention may be used by itself with supporting structure other than a notebook. As shown in FIGS. 4 and 8C, the housing 11 is shaped as an elongated rectangle with a uniform, generally arch-shaped elevated cross section having at its center a plateau 17. Two openings 19a and 19b are provided in the plateau 17 for receiving and attaching first and second mounting posts 21a and 21b to secure the mechanism 1 to the notebook 5 (see FIG. 1). The housing 11 also has a longitudinal axis 23, two generally opposite longitudinal edges, and the two opposite transverse ends of which the first (where the lever 15 is mounted) is generally open. A bent under rim 25 is formed along both longitudinal edges, and six holes (only three of which are visible), each designated by reference numeral 27, are positioned in the bent under rims along the longitudinal edges to receive the rings 13 through the rim. Mechanisms having housings of other shapes, including irregular shapes, or housings that are integral with a file or notebook do not depart from the scope of this invention. Two substantially similar hinge plates, designated by reference numerals 29a and 29b, are supported by the housing 11 for pivoting movement during operation, as will be described in greater detail hereinafter. Each hinge plate 29a and 29b is a thin, elongate sheet having inner and outer longitudinal edge margins and two longitudinal ends. Three pairs of aligned notches 31 are formed in the inner edge margins of the hinge plates 29a and 29b, and corresponding locating cutouts 33 are formed along the outer longitudinal edge margins, each serving a purpose that will be described hereinafter. Sill referring to FIG. 4, ring members 35 of each ring 13 are mounted on an underside of one of the two opposing hinge plates 29a and 29b. The ring members 35 are movable with the hinge plates 29a and 29b during operation between a closed position (FIGS. 1 and 2) wherein each ring member forms a continuous, D-shaped closed loop for retaining loose-leaf pages, and an open position (FIG. 3) wherein each ring member 35 forms a discontinuous, open loop suitable for adding or removing pages. The ring members 35 are formed from a conventional, cylindrical rod of a suitable material such as steel. Ring members having different cross-sections or ring members that form different shapes when closed (e.g., a circular loop as illustrated in later embodiments) do not depart from the scope of the invention. Although both ring members 35 of each ring 13 are movable in the illustrated embodiment, a mechanism in which each ring has a movable ring member and a fixed ring member does not depart from the scope of this invention (e.g., a mechanism in which only one of the ring members of each ring is mounted on a hinge plate with the other ring member mounted, for example, on a housing). A control structure of the invention, indicated generally at reference numeral 37, controls the pivoting movement of the hinge plates 29a and 29b that moves the ring members 35 between the closed and open positions. It also operates to lock the ring members 35 together when they are in the closed position. The control structure 37 includes the actuating lever 15, an intermediate connector 39, an elongate travel bar 41, and three connecting links 43, all of which are movable relative to the housing 11 and each of which are designated generally by their reference numeral. A mechanism having more or fewer than three connecting links does not depart from the scope of the invention. The actuating lever 15 is located at the first, open longitudinal end of the housing 11. It includes an enlarged head 53, which facilitates gripping and applying force to the lever 15, extending from a narrow body 55. The head 53 may be integral with the lever body 55 or attached separately thereto, and a mechanism having a lever shaped differently than illustrated does not depart from the scope of the invention. The intermediate connector 39 is located between the lever 15 and the travel bar 41 and is elongate and beam shaped. One end of the connector 39 is generally wider than the other end with the narrower end including an enlarged head 59 projecting therefrom. An elongate slot 61 formed in the intermediate connector 39 allows the connector to move while receiving the first mounting post 21a through the slot. The travel bar 41 extends away from the connector 39 generally lengthwise of the housing 11 and parallel to the longitudinal axis 23 of the housing. The travel bar 41 is generally flat and elongate, and one end is bent down to form a shoulder 63 having a slot 65 that is elongate in the lengthwise direction of the travel bar. Three sets of stops 69 and 71 are uniformly arranged along the travel bar 41 with portions of each stop being formed on opposite longitudinal sides of the travel bar. The stops 69 and 71 can be formed, for example, by punching and folding a portion of the travel bar downward (only portions of stops on one side of the travel bar 41 are visible in the drawings). A coiled torsion spring, or shank spring, 45 is located adjacent the lever 15 and interacts with the control structure 37 to urge it to a locked position when the ring members 35 are closed. In the illustrated embodiment, the torsion spring 45 includes a coiled body 47 and two free ends 49 and 51. Its interaction with the control structure 37 will be described in greater detail hereinafter. The three connecting links 43 are spaced uniformly apart at locations along the mechanism 1 closely adjacent respective pairs of ring members 35. As shown better in FIG. 5, each connecting link 43 has a tongue 73 projecting from a top center of the link at an angle relative to the link, as shown at line 75. An upper peripheral edge 77 of the tongue 73 is generally straight and flat. A pair of locating arms, each designated by reference numeral 79, extend laterally outward from opposite sides of the connecting link 43, and a tab 81 and two lugs, each lug being designated by reference numeral 83, depend from a lower center of the link. The tab 81 is located between the two lugs 83 and includes a retainer 85 angling outward from the tab in a direction generally opposite to the direction in which the tongue 73 extends. The retainer 85 is wider than the tab 81, the reason for which will be described in greater detail hereinafter. Referring now to the ring binder mechanism 1 in assembled form and in particular to FIGS. 6 and 7, the housing 11 loosely supports the hinge plates 29a and 29b in parallel arrangement such that the outer longitudinal edge margin of each hinge plate is received in the corresponding bent under rim 25 of the housing 11. The inner longitudinal edge margins of hinge plates 29a and 29b engage each other and form a hinge 87. In this arrangement, the outer edge margins are free to move within the rim 25 as the plates 29a and 29b pivot about the hinge 87. The hinge moves down (i.e., away from the housing 11 as shown in FIG. 6) when the plates 29a and 29b pivot to close the rings 13 (closed position), and it moves up (i.e., toward the housing 11 as shown in FIG. 7) when the hinge plates pivot to open the rings (open position). In the illustrated mechanism 1, the housing 11 provides a small spring force to bias the hinge plates 29a and 29b to pivot away from a co-planar position of the plates (i.e., to pivot toward either the closed position or the open position). However, the biasing force provided by the housing 11 is substantially smaller than on conventional ring binder mechanisms. Preferably, the housing 11 provides a force which is as small as it can be while still supporting the hinge plates 29a and 29b. Now referring to FIGS. 8A and 8B, it can be seen that the lever 15 is pivotally mounted on the first longitudinal end of the housing 11 by hinge pin 89 through holes 91 of the lever and holes 92 of the housing (holes 91 and 92 are shown in FIG. 4) in a position readily accessible for grasping the enlarged head 53 and pivoting the lever 15. As also seen, the travel bar 41 is disposed behind the plateau 17 of the housing 11 and is connected to the lever 15 by the intermediate connector 39. The wider end of the intermediate connector 39 is pivotally connected to the lever 15 by hinge pin 95 through holes 96 of the lever 15 and holes 97 of the connector 39 (see FIG. 4) at a location below where the lever is mounted on the housing 11 by pin 89. The enlarged head 59 of the narrower end of the connector 39 is received in the slot 65 in the shoulder 63 of the travel bar 41, allowing the intermediate connector to push against the shoulder of the travel bar while the enlarged head 59 is engageable with the other side of the shoulder 63. This allows the intermediate connector 39 to freely pivot up and down with respect to the travel bar 41, and the travel bar to freely move up and down without hindrance from the connector. The elongate slot 61 in the intermediate connector 39 is positioned around the first mounting post 21a so that the connector can move longitudinally while receiving the first mounting post through the slot. Force is therefore transmitted from the lever 15, around the post 21a, and to the travel bar 41 while keeping direction of the force along a centerline of the connector 39. Thus, the connector is able to transmit force from the lever 15 to the travel bar 41 such that application of force to the lever produces the translational movement of the travel bar. It should be understood that pivotal motion of a lever, such as that shown in the illustrated embodiments, provides for application of a lesser force by an operator when moving a travel bar than would be necessary to translate the bar directly as by pushing or pulling, and does so without the travel bar protruding from a housing. A mechanism in which a pivoting lever is directly connected to a travel bar does not depart from the scope of the invention. FIGS. 8A and 8B also illustrate orientation of the torsion spring 45 relative to the control structure 37. As can be seen, the torsion spring 45 is connected to the housing 11 by the hinge pin 89, which also mounts lever 15 on the housing, through the coiled body 47 of the torsion spring. The first free end 49 of the torsion spring 45 (FIG. 8B) engages the lever 15 while second free end 51 engages the housing 11 and intermediate connector 39. Thus, the torsion spring 45 is oriented to resist movement of the control structure 37 in a direction tending to open the ring members 35. In particular, the torsion spring 45 resists pivoting movement of the lever 15 outward and downward (i.e., movement of the first end 49 of the spring 45 toward the second end 51), which, as will be described in greater detail hereinafter, operates to open the ring members 35. Referring now to FIGS. 8A-8C, each connecting link 43 (only one connecting link is shown in the drawings) is positioned between the travel bar 41 and the hinge plates 29a and 29b, and together the three links pivotally support the travel bar above the plates, in effect operatively connecting the travel bar to the hinge plates. The tongue 73 of each link 43 is loosely and pivotally received between the stops 69 and 71 of the travel bar 41 such that the angle of the tongue is generally toward the lever 15. As best seen in FIG. 8B, the stops 69 and 71 are directionally configured for limiting angular pivotal motion of the connecting links 43 relative to the travel bar 41 during operation. The angle of stops 69 differs from the angle of the opposing stops 71 such that a maximum relative angle between the connecting links 43 and travel bar 41 may be greater in one longitudinal direction than in the opposite longitudinal direction (compare FIGS. 8B and 9B). This is described in greater detail hereinafter. Referring now particularly to FIG. 8C and the orientation of the connecting links 43, the lugs 83 of each link engage upper surfaces of the two hinge plates 29a and 29b adjacent the hinge 87 (see FIG. 8A) while the tab 81 loosely fits through opening 99 formed by the aligned notches 31 at the hinge 87. In this position, the tab retainer 85 is located under the hinge plates 29a and 29b. The retainer 85 is wider than the corresponding hinge plate opening 99 and thus prevents the tab 81 from being fully withdrawn from the opening during operation. The locating arms 79 of each link 43 extend through the corresponding locating cutouts 33 in the outer edge margins of the hinge plates 29a and 29b. The arms 79 are received sufficiently loosely in the locating cutouts 33 so as not to interfere with the pivoting motion of the connecting link 43. This helps attach the links 43 to the plates 29a and 29b and locate the links against canting movement (e.g., movement about a vertical axis 24 of the link 43 perpendicular to the longitudinal axis 23 of the housing 11). Accordingly, the connecting links 43, and thus the travel bar 41, are always in connection with the hinge plates 29a and 29b. The loose fit of the tab 81 and locator arms 79 with the hinge plates 29a and 29b allows the tab retainer 85 to move toward and away from the underside of the hinge plates while permitting the connecting link 43 to pivot with respect to the hinge plates. Thus, in operation the links 43 can pivot on the hinge plates 29a and 29b in an angular motion relative to both the hinge plates and the housing 11 when the travel bar 41 moves lengthwise; more specifically, the connecting links can pivot about an axis transverse to each the longitudinal axis 23 of the housing and the vertical axis 24 of the link 43. Operation of the mechanism 1 for moving ring members 35 between the open and closed positions will now be described with reference to FIGS. 8A-9B. As shown in FIGS. 8A-8C, when the ring members 35 are closed, the mechanism 1 is locked and the lever 15 is in an upright position with the hinge plates 29a and 29b hinged down and away from the housing 11. The connecting links 43 (only one is shown) are in an over center position, generally angling toward the lever 15. As best shown in FIG. 8B, a typical angle A1 of each connecting link 43 relative to the housing 11 is about 95° to about 100°. The lugs 83 firmly engage the hinge plates 29a and 29b and block pivoting motion of the plates. Any force tending to open the ring members 35 is firmly opposed by the three connecting links 43. To open the ring members 35, an operator applies force to the lever 15 and progressively pivots it outward and downward. This moves the first free end 49 of the torsion spring 45 toward the second free end 51 (compressing the torsion spring) and pushes the intermediate connector 39 and travel bar 41 away from the end of the housing 11 having the lever 15. The travel bar movement simultaneously and pivotally begins moving the connecting links 43 from their over center position, through a generally vertical position, and to a position angling away from the lever 15. The preset angle of each connecting link tongue 73 inhibits occurrence of the link 43 becoming stopped at a vertical position with little or no tendency to move away from that position. During this initial opening operation, the torsion spring 45 resists the pivoting movement of the lever 15. So if the lever is 15 is released before the ring members open, the torsion spring 45 immediately urges the lever back to the upright position, pulling the intermediate connector 39, travel bar 41, and connecting links 43 back to the locked position (FIG. 8B). As the operator continues to pivot the lever 15, the travel bar 41 continues to move away from the lever and further pivots each connecting link 43 generally away from lever 15. Pivoting movement of the links 43 positions the retainer 85 of each link in engagement with a bottom surface of the hinge plates 29a and 29b. So as the links 43 pivot, they pull the hinge plates 29a and 29b upward and through the co-planar position of the plates, opening the ring members 35 (FIGS. 9A and 9B). In this open position, a typical angle A5 of the links 43 relative to the housing 11 is about 30° to about 45° (FIG. 9B). The hinge plates 29a and 29b are in an upwardly hinged position and, under the spring force (clamping force) of the housing 11, hold the connecting links 43 in the position shown in FIGS. 9A and 9B against the force of the torsion spring 45 urging the lever 15 to the upright position and tending to close the ring members 35 (and move the control structure 37 to the locked position). The over center orientation of the connecting links 43 also helps to resist the urging force of the torsion spring 45. But this resistance is small, and alone is not sufficient to resist the spring's urge. Primary resistance to the urging force of the torsion spring 45 is from the housing 11. To close the open ring members 35 and return the mechanism 1 to the locked position, the operator may either pivot the lever 15 upward and inward or manually push the ring members 35 together. Pivoting the lever 15 pulls the intermediate connector 39 and travel bar 41 toward the lever. This correspondingly pivots the connecting links 43 generally back toward lever 15. The connecting link lugs 83 push down on the hinge plates 29a and 29b, causing them to pivot downward and through the co-planar position. As soon as the hinge plates 29a and 29bpass through the co-planar position (and the housing spring force biases them fully downward to their closed position), the ring members 35 close and the torsion spring 45 automatically urges the lever 15 to pivot toward its upright position. This lever movement pulls the travel bar 41 which pivots the connecting links 43 back to their over center position toward lever 15, blocking pivoting motion of the hinge plates that opens the ring members 35 (FIGS. 8A-8C). The preset angle of each connecting link tongue 73, combined with the bias form the torsion spring 45, inhibits occurrence of the link 43 becoming stopped at a vertical position with little or no tendency to move away from that position during this closing and locking operation. A mechanism with connecting links forming different angles A1 and A5 than described and illustrated herein does not depart from the scope of the invention. The several benefits of the ring binder mechanism 1 of the invention should now be apparent. For example, the torsion spring 45 directly acts on the actuating lever 15 when urging it to move the control structure 37 to the locked position. More specifically, the spring 45 is mounted generally adjacent a pivot axis of the lever 15 and is oriented to urge the lever to pivot to move the control structure 37. Accordingly, the spring 45 utilizes the mechanical advantage associated with the pivoting lever 15 to automatically lock the mechanism 1. Another advantage of the mechanism 1 of the invention is that torsion spring 45 can be mounted on the housing 11 in an operable position adjacent the lever using the hinge pin 89 used to mount the lever 15. Additional parts are not necessary to accommodate the spring 45 in the mechanism, which may reduce manufacturing costs for the mechanism. Furthermore, parts of the mechanism 1 do not need to be specially formed to accommodate the spring 45 (e.g., no additional openings need be formed in the travel bar 41 or hinge plates 29a and 29b). This may also reduce manufacturing costs. These advantages generally apply to each embodiment described herein. A second embodiment of the ring binder mechanism of the invention is shown generally at reference numeral 101 in FIGS. 10-11B. Parts of this embodiment corresponding to parts of the mechanism 1 of the first embodiment are designated by the same reference numerals, plus “100”. The mechanism 101 of this embodiment is substantially similar to the mechanism 1 of the first embodiment except that a spring plate 144 is used for urging control structure 137 (through lever 115) toward a locked position when ring members 135 are moved to a closed position. The spring plate 144 is a generally elongate, flat piece of metal that is bent into a general L-shape. A mounded channel, the purpose of which will become apparent shortly, is formed along a width of the plate 144 adjacent the bend. First and second free ends 146 and 148, respectively, are located on opposite sides of the mounded channel and are relatively oriented at about 90°. As best shown in FIG. 11A, the spring plate 144 is mounted on the housing 111 by hinge pin 189, which also mounts the lever 115 on the housing. The mounded channel of the plate 144 is received on the pin 189 and the first free end 146 of the spring plate engages lever 115 while the second free end 148 engages the housing 111 under plateau 117. Pivoting movement of the lever 115 outward and downward (FIG. 11B) tending to open the ring members pivots the spring plate 144 about the hinge pin 189 and moves the two ends 146 and 148 of the spring plate closer together. This creates a tension in the spring plate 144 that tends to urge the lever 115 back to the full, upright, and locked position, similar to the urging force provided by the previously described torsion spring 45 of the first embodiment. A third embodiment of the ring binder mechanism of the invention is shown generally at reference numeral 201 in FIGS. 12-13B. Parts of this embodiment corresponding to parts of the mechanism 1 of the first embodiment are designated by the same reference numerals, plus “200”. The mechanism 201 of this embodiment is again substantially similar to the mechanism 1 of the first embodiment except that a rubber spring 250 is used for urging control structure 237 (through lever 215) toward a locked position when ring members 235 are moved to a closed position. The rubber spring 250 is generally a solid mass of plastic or rubber, or other bendable elastic material, formed into an L-shape. First and second free ends 252 and 254, respectively, of the spring 250 are relatively oriented at about 90°, and a ridge extends widthwise across the spring 250 between the two ends 252 and 254. An opening is located in the ridge passing through the rubber spring 250, the reason for which will be shortly described. As shown in FIG. 13A, the rubber spring 250 is mounted on housing 211 by hinge pin 289, which also mounts lever 215 on the housing, through the opening in the spring's ridge. The first free end 252 of the rubber spring 250 engages lever 215 on the travel bar side of the lever while the second free end 254 engages the housing 211 under plateau 217. As with the previous embodiments, pivoting movement of the lever 215 outward and downward (FIG. 13B) opens the ring members 235. This pivoting movement also pivots the rubber spring 250 about hinge pin 289, compressing the material of the rubber spring and moving the two ends 252 and 254 of the spring closer together. A tension is formed in the spring 250 that tends to urge the lever 215 to pivot and move the control structure 237 back to the locked position in similar fashion to the springs of the previously described embodiments. It should be understood that the tension in the rubber spring 250 results both from moving the ends of the spring closer together and from compressing the material of the spring. FIGS. 14-17B show a forth embodiment of the ring binder mechanism generally at reference numeral 301. The mechanism of this embodiment is again similar to the mechanism 1 of the first embodiment, and parts of this mechanism 301 corresponding to parts of the mechanism of the first embodiment are designated by the same reference numerals, plus “300”. As shown in FIG. 14, housing 311 of this embodiment includes two additional openings 318a and 318b in plateau 317, located relatively inward from openings 319a and 319b, respectively, for receiving and attaching grooved mounting rivets 320a and 320b to the housing 311, the purpose of which will be explained hereinafter. Also in this embodiment, hinge plates 329a and 329b include four pairs of aligned cutouts along their inner edge margins; cutouts of three pairs are indicated by reference numeral 322 and cutouts of one pair by reference numeral 326, each pair of cutouts serving a purpose that will become apparent hereinafter. Outer edge margins of the hinge plates 329a and 329b are free of cutouts, and in the illustrated embodiment, ring members 335 of each ring 313 mount on upper surfaces of the hinge plates. Control structure 337 of this embodiment is also shown in FIG. 14 and is modified compared to that of the previous embodiments to include three blocking elements, each designated generally by reference numeral 328. In addition, lever 315 of the control structure 337 is bowed generally away from the housing 311 and includes a closing arm 330 and an opening arm 332. The closing arms and opening arm extend away from the lever 315 and are generally vertically opposed to one another. The arms 330 and 332 may be integral with the lever 315 or may be attached separately, and a mechanism having a lever shaped differently than illustrated does not depart from the scope of the invention. As also seen in FIG. 14, the intermediate connector 339 is located between the lever 315 and travel bar 341 and is illustrated as a wire bent into an elongate, rectangular form. One end 339a of the connector 339 is open and the other end includes an elongate, rectangular extension 338 protruding therefrom that is narrower than the connector itself. The travel bar 341 extends away from the intermediate connector 339 lengthwise of the housing 311 and in line with longitudinal axis 323 of the housing. The travel bar 341 is relatively flat and elongate and includes a channel 340 in its upper surface at one longitudinal end. Two elongate openings 342a and 342b are formed at recessed positions in the travel bar 341. The elongate openings 342a and 342b slidably receive the grooved mounting rivets 320a and 320b therethrough. Mounts 356 in the top of the travel bar 341 are formed when making the travel bar. The illustrated travel bar 341 is formed by an injection mold process. But it could be formed by a different process without departing from the scope of the invention. Still referring to FIG. 14, a coiled torsion spring 358 is included in this embodiment adjacent the lever 315. The spring 358 is similar to the torsion spring 45 of the first embodiment, but is located toward a bottom of the lever 315, near the closing and opening arms 330 and 332 and toward one side of the lever. It includes a coiled body 360 and two arms 362 and 364, and its interaction with the control structure 337 will be described in further detail hereinafter. Referring now to FIG. 15, the three blocking elements 328 can be seen uniformly spaced along the bottom of the travel bar 341. The blocking elements 328 are formed as one piece with the travel bar 341, but could be formed separately without departing from the scope of the invention. Surfaces 366 of the blocking elements 328, facing away from the travel bar channel 340, are angled, the reason for which will be described in greater detail hereinafter. Blocking elements shaped differently than illustrated do not depart from the scope of the invention. Referring now to the ring binder mechanism 301 in assembled form, and in particular that illustrated in FIGS. 16A and 16B, the lever 315 is pivotally mounted on the housing 311 by hinge pins 389a and 389b (only pin 389b is visible) through holes 391a and 391b of the lever (see FIG. 14, only hole 391b is visible) and holes 392a and 392b of the housing (again see FIG. 14, only hole 392b is visible). As best shown in FIG. 16B, fingers 368 of the hinge plates 329a and 329b fit between the closing and opening arms 330 and 332 of the lever 315, while the open end 339a of the intermediate connector 339 is received in apertures 396 in the closing arm 330 of the lever 315. The extension 338 of the connector 339 is received in the travel bar channel 340 (FIG. 16A). Referring now particularly to FIG. 16A, the grooved mounting rivets 320a and 320b slidably connect the travel bar 341 to the housing 311 through the recessed slots 342a and 342b of the travel bar and the additional openings 318a and 318b in the housing plateau 317. The blocking elements 328 face the hinge plates 329a and 329b and are generally aligned with the hinge 387 of the interconnected plates at locations adjacent openings formed by cutouts 322 and adjacent ring members 335. A first mounting post 321a passes through the hinge plates 329a and 329b and intermediate connector 339 at an opening formed by cutouts 326 near the lever 315. This mounting post 321a, along with mounting post 321b, acts to secure the mechanism 301 to a cover of a binder (not shown). FIGS. 16A and 16B also illustrate orientation of the torsion spring 358 relative to the control structure 337. As can be seen, the torsion spring 358 is connected to the housing 311 by hinge pin 389b, which also mounts lever 315 on housing 311, through the coiled body 360 of the spring. The first free end 362 of the torsion spring 358 engages an outer side of the lever 315 while the second free end 364 engages the underside of hinge plate 329b. The torsion spring 358 is oriented to resist movement of the lever 315 tending to move the control structure 337 to open the ring members 335. In particular, the torsion spring 358 resists pivoting movement of the lever 315 outward and downward (i.e., movement of the first end 362 of the spring counterclockwise away from the second end 364), which, as will be described in greater detail hereinafter, operates to open the ring members 335. Operation of the mechanism 301 of this embodiment can be seen with reference to FIGS. 16A-17B. As in the previous embodiments, the control structure 337 selectively moves the ring members 335 between the closed and open positions. When the ring members are in the closed position as shown in FIGS. 16A and 16B, the mechanism 301 is locked and the blocking elements 328 are positioned between the hinge plates 329a and 329b and travel bar 341, substantially out of registration with the hinge plate cutout openings 322. The blocking elements 328 are in contact with an upper surface of the hinge plates and, together with travel bar 341, effectively block pivoting motion of the hinge plates tending to open the ring members 335. To move the ring members 335 to the open position shown in FIGS. 17A and 17B, an operator progressively pivots the lever 315 outward and downward. This pulls the intermediate connector 339 and travel bar 341 toward the lever 315. The blocking elements 328 move out of their position blocking pivoting motion of the hinge plates 329a and 329b and into registration with the hinge plate cutout openings 322. The first free end 362 of the torsion spring 358 moves with the lever 315 away from the second free end 364 of the spring (producing tension in the spring) and the opening arm 332 of the lever engages the underside of the hinge plates 329a and 329b. During this initial opening operation, torsion spring 358 tends to resists the lever movement and, if the lever is released before the ring members 335 open (i.e., before the hinge plates pivot upward through the co-planar position and overcome the spring force of the housing), the spring will automatically urge the lever 315 back to the upright position, pushing the intermediate connector 339, travel bar 341, and blocking elements 328 back to the locked position (FIGS. 16A and 16B). As the operator continues to pivot the lever 315, the opening arm 332 biases the hinge plates 329a and 329b to pivot upward toward the housing 311, and through the co-planar position of the plates (overcoming the housing spring force holding the plates in the closed position). The hinge plate cutout openings 322 pass over the corresponding blocking elements 328 and the ring members 335 open. In this open position, the torsion spring 358 still tends to urge the lever 315 to pivot upward and inward for closing the ring members 335 and moving the travel bar 341 and blocking elements 328 toward the locked position. This lever movement is resisted, though, by the hinge plates 329a and 329b being held in their upwardly hinged position by the spring force of the housing 311. Specifically, the closing arm 320 of the lever 315 engages fingers 368 of the hinge plates 329a and 329b, which hold the lever against further pivoting movement by the torsion spring 358 (FIG. 17B). In addition, a portion of the angled surface 366 of each blocking element 328 frictionally engages a portion of the hinge plates 29a and 29b at the respective hinge plate cutout opening 332, helping to hold the lever against further pivoting movement (FIG. 17B). To close the ring members 335 and return the mechanism 301 to the locked position (FIG. 16A and 16B), the operator may either pivot the lever 315 upward and inward or manually push the ring members 335 together. Either action requires overcoming the spring force of the housing 311 holding the ring members open. If the operator pivots the lever 315, the closing arm 330 engages the upper surfaces of hinge plates 329a and 329b and pivots them downward, through the co-planar position, and over blocking elements 328. As soon as the hinge plates 329a and 329b pass through the co-planar position and the angled surfaces 366 of the blocking elements 328 clear the forward edges of the cutout openings 322, the torsion spring 358 immediately contracts and automatically urges the lever 315 to pivot toward its upright position. This pushes the travel bar 341 and blocking elements 328 away from the lever 315 back to the locked position. Similarly, if the ring members 335 are manually pushed together, the hinge plates 329a and 329b directly pivot downward and through the co-planar position, pushing the opening arm 332 downward and moving the cutout openings 322 over the corresponding blocking elements 328. The torsion spring 358 immediately contracts and automatically urges the lever 315 to pivot toward its upright position, pushing the travel bar 341 and blocking elements 328 back to the locked position. FIGS. 18 and 19 illustrate a ring binder mechanism according to a fifth embodiment of the invention shown generally at reference numeral 401. This mechanism is substantially the same as the mechanism 301 of the fourth embodiment, and parts of the mechanism 401 of this embodiment corresponding to parts of the mechanism 301 of the fourth embodiment are designated by the same reference numerals, plus “100”. In this mechanism 401, lever 415 is mounted on housing 411 by a lever mount, designated generally by reference numeral 470, formed as a separate piece from the housing. As can be seen in FIG. 19, the lever mount 470 is connected to the housing 411 by rivets 472 so that arms 474a and 474b of the mount fit in slots 476a and 476b of the housing. In all other aspects, the mechanism 401 is the same as the mechanism 301 of the fourth embodiment. A sixth embodiment of the ring binder mechanism of the invention is shown in FIGS. 20-24 generally at reference numeral 501. The mechanism of this embodiment is similar to the mechanism 301 of the fourth embodiment, and parts of this mechanism 501 corresponding to parts of the mechanism 301 of the fourth embodiment are designated by the same reference numerals, plus “200”. As shown in FIG. 20, in this mechanism 501 housing 511 includes one additional opening 518b in housing plateau 517, located relatively inward from opening 519b for receiving and attaching grooved mounting rivet 520b to the housing 511 to support movement of travel bar 541 lengthwise of the housing. In addition, the housing 511 includes a slit 578 adjacent lever 515, the purpose for which will be described in further detail hereinafter. As also shown in FIG. 20, ring members 535 of each ring 513 mount on an underside of hinge plates 529a and 529b and are shaped to form a generally D-shape when in the closed position (not shown). The actuating lever 515 of this mechanism 501 is also illustrated in FIG. 20 and includes an enlarged head 553 extending from a narrow body 555. A flat opening arm 532 is located toward a bottom of the lever body 555, extending away from the body, and may be integral with the lever body 555 or may be attached to the lever body. A mechanism having a lever or opening arm shaped differently than illustrated does not depart from the scope of the invention. Also in this mechanism 501, the intermediate connector 539 located between the lever 515 and travel bar 541 is bent downward at the open end 539a, while the travel bar, which extends away from the connector 539, includes one elongate opening 542b recessed into its top and bottom surfaces generally at a location corresponding to the location of the additional opening 518b in the housing plateau 517. In addition, a spring plate, designated generally at reference numeral 544, and a core 580 interact with the lever 515 for urging it to move control structure 537 to the closed and locked position. The spring plate 544 is substantially similar to the spring plate 144 described for the mechanism 101 of the second embodiment, while the core 580 is generally a solid mass of plastic or hard rubber, or other similar generally rigid material capable of supporting the spring plate for pivoting movement. Referring now to the assembled ring binder mechanism 501 fragmentally shown in FIGS. 21-24, the lever 515 is pivotally mounted on the housing 511 by hinge pin 589 through holes 591 of the lever and holes 592 of the housing (see FIG. 20). As best seen in FIG. 21, the opening arm 532 is positioned under the hinge plates 529a and 529b, and the open end 539a of the intermediate connector 539 is received in lower openings 596 of the lever 515 (only one opening 596 is visible). The opposite, narrow extension 538 of the connector 539 is received in the square-shaped channel 540 of the travel bar 541. The blocking elements 528 are below the travel bar 541, generally facing the hinge plates 529a and 529b, and are aligned with the hinge 587 of the interconnected plates at locations along the hinge adjacent cutout openings 522 and generally adjacent the ring members 535. The angled surfaces 566 of the blocking elements 528 face the lever 515. The core 580 is connected to the housing 311 by hinge pin 589 through an opening in the core. A forward notch in the core 580 fits over upper plateau 517 of the housing 511 for providing additional support to the core. The spring plate 544 mounts on the core 580 for operation with the first free end 546 of the spring plate engaging the lever body 555 and the second free end 548 fitting through the slit 578 in the housing plateau 517 for retention thereunder. Operation of the mechanism 501 can be seen also with reference to FIGS. 21-24 and is substantially the same as operation of the mechanism 301 of the fourth embodiment. An important distinction is use of the core 580 and spring plate 544 to urge the lever 515 to pivot and move the control structure 537 to a locked position. In addition, when an operator pivots the lever 515 to open the ring members 535 and unlock the mechanism 501, the intermediate connector 539, travel bar 541, and blocking elements 528 move away from the lever 515. Opening arm 532 of lever 515 engages an underside of hinge plates 529a and 529b and initiates pivoting movement of the plates upward and through the co-planar position (i.e., to open the ring members 535). During this opening operation, the spring plate 544 pivots about core 580 which acts as a pivot support for the spring plate. The first free end 546 of the spring plate 544 moves with the lever 515 in a direction generally toward the second free end 548 of the spring plate. The ring members 535 open when the hinge plates 529a and 529b pass through the co-planar position, similar to opening operation of the fourth embodiment. If the lever is released before the ring members open (and before the hinge plates move upward through the co-planar position), the spring plate 544 urges the lever to pivot and move the control structure 537 back to the locked position. Once the ring members 535 of this mechanism 501 are in the open position, tension in the spring plate 544 tends to urge the lever 515 to pivot for moving the control structure 537 to close the ring members and lock the mechanism. But this is resisted by the hinge plates 529a and 529b, which are held in an upwardly hinged position by the spring force of the housing 511. In particular, a portion of angled surface 566 of each blocking element 528 engages a portion of hinge plates 529a and 529b at each corresponding cutout opening 522 of the plates. The hinge plates 529a and 529b, under the spring force of the housing 511, resist the cam force of the angled surfaces 566 of the blocking elements 528 and thus resist the urging force of the spring plate 544 to further pivot the lever. To close the ring members 535 and lock the mechanism 501, the operator may pivot the lever 515 upward and inward or may manually push the ring members 535 together. Pivoting the lever 515 pulls the intermediate connector 539 and travel bar 541 toward the lever and causes the angled surfaces 566 of the blocking elements 528 to cam the hinge plates 529a and 529b downward and through the co-planar position (overcoming the spring force of the housing). As soon as the hinge plates 529a and 529b pass though the co-planar position and the blocking elements 528 clear the forward edges of the cutout openings of the plates, the spring plate 544 immediately expands and automatically pivots the lever 515 to its upright position, which in turn pushes the travel bar 541 and blocking elements 528 back to the locked position. A seventh embodiment of the ring binder mechanism of the invention is shown generally at reference numeral 601 in FIG. 25. This mechanism is substantially similar in operation and structure to the mechanism 501 of the sixth embodiment, and parts of the mechanism 601 of this embodiment corresponding to parts of the mechanism of the sixth embodiment are designated by the same reference numerals, plus “100”. In addition in this mechanism 601, a torsion spring 645 substantially identical to that of the first embodiment is connected to the housing 611 by hinge pin 689 through openings 692 in the housing for urging the control structure 637 to the closed and locked position. The first free end 649 of the torsion spring 645 engages the lever 615 while the second free end 651 engages the housing 611 at its plateau 617. Pivoting movement of the lever 615 outward and downward moves the two ends 649 and 651 of the torsion spring 645 closer together and creates a tension in the spring tending to urge the lever back to the full, upright, and locked position. An eighth embodiment of the ring binder mechanism of the invention is shown generally at reference numeral 701 in FIG. 26. This mechanism is substantially similar in operation and structure to the mechanism 501 of the sixth embodiment, and parts of the mechanism 701 of this embodiment corresponding to parts of the mechanism of the sixth embodiment are designated by the same reference numerals, plus “200”. Blocking elements 728 are used to bias hinge plates 729a and 729b to pivot to move ring members 735 from an open position to a closed position and to block pivoting motion of the plates tending to open the ring members after they are closed. In addition in this mechanism 701, a rubber spring 750 substantially similar to that of the mechanism 201 of the third embodiment is used for urging the control structure 737 to the closed and locked position. As in the third embodiment, the rubber spring 750 is connected to the housing 711 by hinge pin 789. A first free end 752 of the rubber spring 750 engages the lever 715 while a second free end 754 engages the housing 711 at the plateau 717. Pivoting movement of the lever 715 outward and downward compresses the rubber spring 750 and moves the two ends 752 and 754 of the spring closer together. This creates a tension in the spring tending to urge the lever 715 back to the full, upright, and locked position. The embodiments described herein are given by way of example and in no way limit the scope of the invention. For example, a torsion spring, a spring plate, and a rubber spring have been described for urging an actuating lever of a ring binder mechanism to a position in which the mechanism is locked. Other spring forms may be used without departing from the scope of the invention. It is to be understood that the components of the ring binder mechanisms of the invention are made of a suitable rigid material, such as a metal (e.g., steel). Mechanisms with components made of non-metallic materials, specifically including a plastic, do not depart from the scope of this invention. When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Moreover, the use of “up” and “down” and variations of these terms is made for convenience, but does not require any particular orientation of the components. As various changes could be made in the above without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. | <SOH> BACKGROUND OF THE INVENTION <EOH>This invention relates to a ring binder mechanism for retaining loose-leaf pages, and in particular to an improved mechanism for opening and closing ring members and for readily and securely locking closed ring members together. A ring binder mechanism retains loose-leaf pages, such as hole-punched pages, in a file or notebook. It has ring members for retaining the pages. The ring members may be selectively opened to add or remove pages or closed to retain pages while allowing them to be moved along the ring members. The ring members mount on two adjacent hinge plates that join together about a pivot axis for pivoting movement within an elongated housing. The housing loosely holds the hinge plates so they may pivot relative to the housing. The undeformed housing is slightly narrower than the joined hinge plates when the hinge plates are in a coplanar position (180°). So as the hinge plates pivot through this position, they deform the resilient housing and cause a spring force in the housing urging the hinge plates to pivot away from the coplanar position either opening or closing the ring members. Thus, when the ring members are closed the spring force resists hinge plate movement and clamps the ring members together. Similarly, when the ring members are open, the spring force holds them apart. An operator may typically overcome this force by manually pulling the ring members apart or pushing them together. Levers may also be provided on both ends of the binder for moving the ring members between the open and closed positions. One drawback to these typical ring binder mechanisms is that when the ring members close, the housing's spring force snaps them together rapidly and with a force that might cause fingers to be pinched between the ring members. The substantial spring force required to keep the ring members closed also makes pivoting the hinge plates through the coplanar position (180°) difficult so that it is hard to both open and close the ring members. Another drawback is that when the ring members are closed, they do not positively lock together. So if the mechanism is accidentally dropped, the ring members may unintentionally open. Still another drawback is that over time the housing may begin to permanently deform, reducing its ability to uniformly clamp the ring members together and possibly causing uneven movements or gaps between closed ring members. To address these concerns, some ring binder mechanisms include a control slide attached directly to the lever. These control slides have inclined cam surfaces that project through openings in the hinge plates for rigidly controlling the hinge plates' pivoting motion both when opening and closing the ring members. Examples of these types of mechanisms are shown in U.S. Pat. Nos. 4,566,817, 4,571,108, and 6,276,862 and in U.K. Pat. No. 2,292,343. Some of these cam surfaces have a stop for blocking the hinge plates' pivoting motion when the ring members are closed and for locking the closed ring members together. These mechanisms require the operator to move the lever to lock the rings closed. The operator must manually move the lever to move the control slide stops into position to block the hinge plates from pivoting. Failure to do this could result in the rings inadvertently opening and pages falling out. Any solution to this issue should be made so as to keep the construction simple and economic, and avoid causing the rings to snap closed. Accordingly, there is a need for an efficient ring binder mechanism that readily locks when ring members close for retaining loose-leaf pages and has ring members that easily open and close. | <SOH> SUMMARY OF THE INVENTION <EOH>This invention relates generally to a ring binder mechanism for retaining loose-leaf pages. The mechanism comprises a housing and hinge plates supported by the housing for pivoting motion relative to the housing. The mechanism also includes rings for holding the loose-leaf pages, and each ring includes a first ring member and a second ring member. The first ring member is mounted on a first hinge plate and moveable with the pivoting motion of the first hinge plate relative to the second ring member between a closed and open position. In the closed position, the two ring members form a substantially continuous, closed loop for allowing loose-leaf pages retained by the rings to be moved along the rings from one ring member to the other. In the open position, the two ring members form a discontinuous, open loop for adding or removing loose-leaf pages from the rings. A control structure is supported by the housing and is moveable relative to the housing between a first position and a second position for use in controlling the pivoting motion of the hinge plates. The control structure includes an actuator connected to the housing for movement relative to the housing to cause movement of the control structure between the first and second positions. A spring is engageable with the actuator for urging the lever to move the control structure toward the first position. In another aspect, the ring binder mechanism comprises a housing, hinge plates, and rings. Each ring includes a first ring member mounted on a first hinge plate and moveable with the pivoting motion of the first hinge plate. Each ring further includes a second ring member. The first ring member is movable relative to the second ring member. In a closed position, the two ring members form a substantially continuous, closed loop for allowing loose-leaf pages retained by the rings to be moved along the rings from one ring member to the other. In an open position, the two ring members form a discontinuous, open loop for adding or removing loose-leaf pages from the rings. A lever is mounted on the housing for causing the pivoting motion of the hinge plates such that the lever is pivotable between a first position in which the ring members are closed and a second position. A spring is engageable with the lever for urging the lever toward the first position. Other features of the invention will be in part apparent and in part pointed out hereinafter. | 20041230 | 20080729 | 20060706 | 69732.0 | B42F1320 | 1 | WILLIAMS, JAMILA O | RING BINDER MECHANISM SPRING BIASED TO A LOCKED POSITION WHEN RING MEMBERS CLOSE | UNDISCOUNTED | 0 | ACCEPTED | B42F | 2,004 |
|
11,027,626 | ACCEPTED | Macroblock level adaptive frame/field coding for digital video content | A method and system of encoding and decoding digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the smaller blocks in each picture in said stream of pictures in either frame mode or in field mode. | 1. A method of encoding a picture in an image sequence, comprising: dividing-said picture into a plurality of smaller portions, wherein each of said smaller portions has a size that is larger than one macroblock; selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode; and selectively encoding at least one block within said at least one of said plurality of smaller portions in intra coding mode. 2. The method of claim 1, wherein said intra coding mode employs spatially predictive coding for a current block in accordance with a plurality of neighboring blocks to said current block. 3. An apparatus of encoding a picture in an image sequence, comprising: means for dividing said picture into a plurality of smaller portions, wherein each of said smaller portions has a size that is larger than one macroblock; and means for selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode; and means for selectively encoding at least one block within at least one of said plurality of smaller portions in intra coding mode. 4. The apparatus of claim 3, wherein said intra coding mode employs spatially predictive coding for a current block in accordance with a plurality of neighboring blocks to said current block. 5. A computer-readable medium having stored thereon a plurality of instructions, the plurality of instructions including instructions which, when executed by a processor, cause the processor to perform the steps of-a method of encoding a picture in an image sequence, comprising of: dividing said picture into a plurality of smaller portions, wherein each of said smaller portions has a size that is larger than one macroblock; selectively encoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode; and selectively encoding at least one block within at least one of said plurality of smaller portions in intra coding mode. 6. A method of decoding an encoded picture having a plurality of smaller portions from a bitstream, comprising: selectively decoding at least one of a plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode, wherein each of said smaller portions has a size that is larger than one macroblock, wherein at least one block within said at least one of said plurality of smaller portions is encoded in intra coding mode; and using said plurality of decoded smaller portions to construct a decoded picture. 7. The method of claim 6, wherein said intra coding mode employs spatially predictive coding for a current block in accordance with a plurality of neighboring blocks to said current block. 8. The method claim 6, wherein a size of said current block is selected in accordance with any block size defined in adaptive block transforms. 9. The method of claim 7, wherein for said current block, said neighboring blocks comprises at least one of a neighboring block that is left of said current block to be encoded and a neighboring block that is above said current block to be encoded. 10. The method of claim 9, wherein one of a plurality of prediction directions is deemed to be a most probable mode for said current block. 11. The method of claim 10, further comprising: receiving at least one codeword in said bitstream, wherein said at least one codeword indicates if said most probable prediction coding mode is used. 12. The method of claim 10, wherein said most probable prediction mode for a current block is selected in accordance with a neighboring block that is left of said current block to be encoded and a neighboring block that is above said current block to be encoded, wherein if one of said neighboring blocks is outside a slice, then said most probable prediction mode for said current block is DC prediction, and wherein if both of said neighboring blocks are inside said slice, then said most probable prediction mode for said current block is selected in accordance with a minimum of prediction modes used for said left neighboring block and said above neighboring block. 13. An apparatus for decoding an encoded picture from a bitstream, comprising: means for selectively decoding at least one of a plurality of smaller portions of the encoded picture that is encoded in frame coding mode and at least one of said plurality of smaller portions of the encoded picture in field coding mode, wherein each of said smaller portions has a size that is larger than one macroblock, wherein at least one block within at least one of said plurality of smaller portions is encoded in intra coding mode; and means for using said plurality of decoded smaller portions to construct a decoded picture. 14. The apparatus of claim 13, wherein said intra coding mode employs spatially predictive coding for a current block in accordance with a plurality of neighboring blocks to said current block. 15. The apparatus claim 14, wherein a size of said current block is selected in accordance with any block size defined in adaptive block transforms. 16. The apparatus of claim 14, wherein for said current block, said neighboring blocks comprises at least one of a neighboring block that is left of said current block to be encoded and a neighboring block that is above said current block to be encoded. 17. A computer-readable medium having stored thereon a plurality of instructions, the plurality of instructions including instructions which, when executed by a processor, cause the processor to perform the steps of a method for decoding an encoded picture having a plurality of smaller portions from a bitstream, comprising of: selectively decoding at least one of said plurality of smaller portions in frame coding mode and at least one of said plurality of smaller portions in field coding mode, wherein each of said smaller portions has a size that is larger than one macroblock, wherein at least one block within said at least one of said plurality of smaller portions is encoded in intra coding mode; and using said plurality of decoded smaller portions to construct a decoded picture. 18. A bitstream comprising: a picture that has been divided into a plurality of smaller portions, wherein at least one of said plurality of smaller portions is encoded in frame coding mode and at least one of said plurality of smaller portions is encoded in field coding mode, wherein each of said smaller portions has a size that is larger than one macroblock, and wherein at least one block within at least one of said plurality of smaller portions is encoded in intra coding mode. | The present application claims priority under 35 U.S.C. §119(e) from the following previously filed Provisional Patent Applications: Ser. No. 60/333,921, filed Nov. 27, 2001; Ser. No. 60/395,734, filed Jul. 12, 2002; Ser. No. 60/398,161, filed Jul. 23, 2002; all of which are herein incorporated by reference. This application is also a Divisional of U.S. patent application Ser. No. 10/301,290 filed on Nov. 20, 2002, which is herein incorporated by reference. TECHNICAL FIELD The present invention relates to encoding and decoding of digital video content. More specifically, the present invention relates to frame mode and field mode encoding of digital video content at a macroblock level as used in the MPEG-4 Part 10 AVC/H.264 standard video coding standard. BACKGROUND Video compression is used in many current and emerging products. It is at the heart of digital television set-top boxes (STBs), digital satellite systems (DSSs), high definition television (HDTV) decoders, digital versatile disk (DVD) players, video conferencing, Internet video and multimedia content, and other digital video applications. Without video compression, digital video content can be extremely large, making it difficult or even impossible for the digital video content to be efficiently stored, transmitted, or viewed. The digital video content comprises a stream of pictures that can be displayed as an image on a television receiver, computer monitor, or some other electronic device capable of displaying digital video content. A picture that is displayed in time before a particular picture is in the “backward direction” in relation to the particular picture. Likewise, a picture that is displayed in time after a particular picture is in the “forward direction” in relation to the particular picture. Video compression is accomplished in a video encoding, or coding, process in which each picture is encoded as either a frame or as two fields. Each frame comprises a number of lines of spatial information. For example, a typical frame contains 480 horizontal lines. Each field contains half the number of lines in the frame. For example, if the frame comprises 480 horizontal lines, each field comprises 240 horizontal lines. In a typical configuration, one of the fields comprises the odd numbered lines in the frame and the other field comprises the even numbered lines in the frame. The field that comprises the odd numbered lines will be referred to as the “top” field hereafter and in the appended claims, unless otherwise specifically denoted. Likewise, the field that comprises the even numbered lines will be referred to as the “bottom” field hereafter and in the appended claims, unless otherwise specifically denoted. The two fields can be interlaced together to form an interlaced frame. The general idea behind video coding is to remove data from the digital video content that is “non-essential.” The decreased amount of data then requires less bandwidth for broadcast or transmission. After the compressed video data has been transmitted, it must be decoded, or decompressed. In this process, the transmitted video data is processed to generate approximation data that is substituted into the video data to replace the “non-essential” data that was removed in the coding process. Video coding transforms the digital video content into a compressed form that can be stored using less space and transmitted using less bandwidth than uncompressed digital video content. It does so by taking advantage of temporal and spatial redundancies in the pictures of the video content. The digital video content can be stored in a storage medium such as a hard drive, DVD, or some other non-volatile storage unit. There are numerous video coding methods that compress the digital video content. Consequently, video coding standards have been developed to standardize the various video coding methods so that the compressed digital video content is rendered in formats that a majority of video encoders and decoders can recognize. For example, the Motion Picture Experts Group (MPEG) and International Telecommunication Union (ITU-T) have developed video coding standards that are in wide use. Examples of these standards include-the MPEG-1, MPEG-2, MPEG-4, ITU-T H261, and ITU-T H263 standards. Most modern video coding standards, such as those developed by MPEG and ITU-T, are based in part on a temporal prediction with motion compensation (MC) algorithm. Temporal prediction with motion compensation is used to remove temporal redundancy between successive pictures in a digital video broadcast. The temporal prediction with motion compensation algorithm typically utilizes one or two reference pictures to encode a particular picture. A reference picture is a picture that has already been encoded. By comparing the particular picture that is to be encoded with one of the reference pictures, the temporal prediction with motion compensation algorithm can take advantage of the temporal redundancy that exists between the reference picture and the particular picture that is to be encoded and encode the picture with a higher amount of compression than if the picture were encoded without using the temporal prediction with motion compensation algorithm. One of the reference pictures may be in the backward direction in relation to the particular picture that is to be encoded. The other reference picture is in the forward direction in relation to the particular picture that is to be encoded. However, as the demand for higher resolutions, more complex graphical content, and faster transmission time increases, so does the need for better video compression methods. To this end, a new video coding standard is currently being developed jointly by ISO and ITU-T. This new video coding standard is called the MPEG-4 Advanced Video Coding (AVC)/H.264 standard. SUMMARY OF THE INVENTION In one of many possible embodiments, the present invention provides a method of encoding, decoding, and bitstream generation of digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the macroblocks in each picture in said stream of pictures in either frame mode or in field mode. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate various embodiments of the present invention and are a part of the specification. Together with the following description, the drawings demonstrate and explain the principles of the present invention. The illustrated embodiments are examples of the present invention and do not limit the scope of the invention. FIG. 1 illustrates an exemplary sequence of three types of pictures that can be used to implement the present invention, as defined by an exemplary video coding standard such as the MPEG-4 Part 10 AVC/H.264 standard. FIG. 2 shows that each picture is preferably divided into slices containing macroblocks according to an embodiment of the present invention. FIG. 3a shows that a macroblock can be further divided into a block size of 16 by 8 pixels according to an embodiment of the present invention. FIG. 3b shows that a macroblock can be further divided into a block size of 8 by 16 pixels according to an embodiment of the present invention. FIG. 3c shows that a macroblock can be further divided into a block size of 8 by 8 pixels according to an embodiment of the present invention. FIG. 3d shows that a macroblock can be further divided into a block size of 8 by 4 pixels according to an embodiment of the present invention. FIG. 3e shows that a macroblock can be further divided into a block size of 4 by 8 pixels according to an embodiment of the present invention. FIG. 3f shows that a macroblock can be further divided into a block size of 4 by 4 pixels according to an embodiment of the present invention. FIG. 4 shows a picture construction example using temporal prediction with motion compensation that illustrates an embodiment of the present invention. FIG. 5 shows that a macroblock is split into a top field and a bottom field if it is to be encoded in field mode. FIG. 6a shows that a macroblock that is encoded in field mode can be divided into a block with a size of 16 by 8 pixels according to an embodiment of the present invention. FIG. 6b shows that a macroblock that is encoded in field mode can be divided into a block with a size of 8 by 8 pixels according to an embodiment of the present invention. FIG. 6c shows that a macroblock that is encoded in field mode can be divided into a block with a size of 4 by 8 pixels according to an embodiment of the present invention. FIG. 6d shows that a macroblock that is encoded in field mode can be divided into a block with a size of 4 by 4 pixels according to an embodiment of the present invention. FIG. 7 illustrates an exemplary pair of macroblocks that can be used in AFF coding on a pair of macroblocks according to an embodiment of the present invention. FIG. 8 shows that a pair of macroblocks that is to be encoded in field mode is first split into one top field 16 by 16 pixel block and one bottom field 16 by 16 pixel block. FIG. 9 shows two possible scanning paths in AFF coding of pairs of macroblocks. FIG. 10 illustrates another embodiment of the present invention which extends the concept of AFF coding on a pair of macroblocks to AFF coding to a group of four or more neighboring macroblocks. FIG. 11 shows some of the information included in the bitstream which contains information pertinent to each macroblock within a stream. FIG. 12 shows a block that is to be encoded and its neighboring blocks and will be used to explain various preferable methods of calculating the PMV of a block in a macroblock. FIG. 13 shows an alternate definition of neighboring blocks if the scanning path is a vertical scanning path. FIG. 14 shows that each pixel value is predicted from neighboring blocks pixel values according to an embodiment of the present invention. FIG. 15 shows different prediction directions for intra—4×4 coding. FIGS. 16a-b illustrate that the chosen intra-prediction mode (intra_pred_mode) of a 4 by 4 pixel block is highly correlated with the prediction modes of adjacent blocks. FIGS. 17a-d show neighboring blocks definitions in relation to a current macroblock pair that is to be encoded. Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION The present invention provides a method of adaptive frame/field (AFF) coding of digital video content comprising a stream of pictures or slices of a picture at a macroblock level. The present invention extends the concept of picture level AFF to macroblocks. In AFF coding at a picture level, each picture in a stream of pictures that is to be encoded is encoded in either frame mode or in field mode, regardless of the frame or field coding mode of other pictures that are to be coded. If a picture is encoded in frame mode, the two fields that make up an interlaced frame are coded jointly. Conversely, if a picture is encoded in field mode, the two fields that make up an interlaced frame are coded separately. The encoder determines which type of coding, frame mode coding or field mode coding, is more advantageous for each picture and chooses that type of encoding for the picture. The exact method of choosing between frame mode and field mode is not critical to the present invention and will not be detailed herein. As noted above, the MPEG-4 Part 10 AVC/H.264 standard is a new standard for encoding and compressing digital video content. The documents establishing the MPEG-4 Part 10 AVC/H.264 standard are hereby incorporated by reference, including “Joint Final Committee Draft (JFCD) of Joint Video Specification” issued by the Joint Video Team (JVT) on Aug. 10, 2002. (ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC). The JVT consists of experts from ISO or MPEG and ITU-T. Due to the public nature of the MPEG-4 Part 10 AVC/H.264 standard, the present specification will not attempt to document all the existing aspects of MPEG-4 Part 10 AVC/H.264 video coding, relying instead on the incorporated specifications of the standard. Although this method of AFF encoding is compatible with and will be explained using the MPEG-4 Part 10 AVC/H.264 standard guidelines, it can be modified and used as best serves a particular standard or application. Using the drawings, the preferred embodiments of the present invention will now be explained. FIG. 1 illustrates an exemplary sequence of three types of pictures that can be used to implement the present invention, as defined by an exemplary video coding standard such as the MPEG-4 Part 10 AVC/H.264 standard. As previously mentioned, the encoder encodes the pictures and the decoder decodes the pictures. The encoder or decoder can be a processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), coder/decoder (CODEC), digital signal processor (DSP), or some other electronic device that is capable of encoding the stream of pictures. However, as used hereafter and in the appended claims, unless otherwise specifically denoted, the term “encoder” will be used to refer expansively to all electronic devices that encode digital video content comprising a stream of pictures. The term “decoder” will be used to refer expansively to all electronic devices that decode digital video content comprising a stream of pictures. As shown in FIG. 1, there are preferably three types of pictures that can be used in the video coding method. Three types of pictures are defined to support random access to stored digital video content while exploring the maximum redundancy reduction using temporal prediction with motion compensation. The three types of pictures are intra (I) pictures (100), predicted (P) pictures (102a,b), and bi-predicted (B) pictures (101a-d). An I picture (100) provides an access point for random access to stored digital video content and can be encoded only-with slight compression. Intra pictures (100) are encoded without referring to reference pictures. A predicted picture (102a,b) is encoded using an I, P, or B picture that has already been encoded as a reference picture. The reference picture can be in either the forward or backward temporal direction in relation to the P picture that is being encoded. The predicted pictures (102a,b) can be encoded with more compression than the intra pictures (100). A bi-predicted picture (101a-d) is encoded using two temporal reference pictures: a forward reference picture and a backward reference picture. The forward reference picture is sometimes called a past reference picture and the backward reference picture is sometimes called a future reference picture. An embodiment of the present invention is that the forward reference picture and backward reference picture can be in the same temporal direction in relation to the B picture that is being encoded. Bi-predicted pictures (101a-d) can be encoded with the most compression out of the three picture types. 100481 Reference relationships (103) between the three picture types are illustrated in FIG. 1. For example, the P picture (102a) can be encoded using the encoded I picture (100) as its reference picture. The B pictures (101a-d) can be encoded using the encoded I picture (100) or the encoded P picture (102a) as its reference pictures, as shown in FIG. 1. Under the principles of an embodiment of the present invention, encoded B pictures (101a-d) can also be used as reference pictures for other B pictures that are to be encoded. For example, the B picture (101c) of FIG. 1 is shown with two other B pictures (101b and 101d) as its reference pictures. The number and particular order of the I (100), B (101a-d), and P (102a,b) pictures shown in FIG. 1 are given as an exemplary configuration of pictures, but are not necessary to implement the present invention. Any number of I, B, and P pictures can be used in any order to best serve a particular application. The MPEG-4 Part 10 AVC/H.264 standard does not impose any limit to the number of B pictures between two reference pictures nor does it limit the number of pictures between two I pictures. FIG. 2 shows that each picture (200) is preferably divided into slices (202). A slice (202) comprises a group of macroblocks (201). A macroblock (201) is a rectangular group of pixels. As shown in FIG. 2, a preferable macroblock (201) size is 16 by 16 pixels. FIGS. 3a-f show that a macroblock can be further divided into smaller sized blocks. For example, as shown in FIGS. 3a-f, a macroblock can be further divided into block sizes of 16 by 8 pixels (FIG. 3a; 300), 8 by 16 pixels (FIG. 3b; 301), 8 by 8 pixels (FIG. 3c; 302), 8 by 4 pixels (FIG. 3d; 303), 4 by 8 pixels (FIG. 3e; 304), or 4 by 4 pixels (FIG. 3f; 305). These smaller block sizes are preferable in some applications that use the temporal prediction with motion compensation algorithm. FIG. 4 shows a picture construction example using temporal prediction with motion compensation that illustrates an embodiment of the present invention. Temporal prediction with motion compensation assumes that a current picture, picture N (400), can be locally modeled as a translation of another picture, picture N-1 (401). The picture N-1 (401) is the reference picture for the encoding of picture N (400) and can be in the forward or backwards temporal direction in relation to picture N (400). As shown in FIG. 4, each picture is preferably divided into slices containing macroblocks (201a,b). The picture N-1 (401) contains an image (403) that is to be shown in picture N (400). The image (403) will be in a different temporal position in picture N (402) than it is in picture N-1 (401), as shown in FIG. 4. The image content of each macroblock (201b) of picture N (400) is predicted from the image content of each corresponding macroblock (201a) of picture N-1 (401) by estimating the required amount of temporal motion of the image content of each macroblock (201a) of picture N-1 (401) for the image (403) to move to its new temporal position (402) in picture N (400). Instead of the original image (402) being encoded, the difference (404) between the image (402) and its prediction (403) is actually encoded and transmitted. For each image (402) in picture N (400), the temporal prediction can often be described by motion vectors that represent the amount of temporal motion required for the image (403) to move to a new temporal position in the picture N (402). The motion vectors (406) used for the temporal prediction with motion compensation need to be encoded and transmitted. FIG. 4 shows that the image (402) in picture N (400) can be represented by the difference (404) between the image and its prediction and the associated motion vectors (406). The exact method of encoding using the motion vectors can vary as best serves a particular application and can be easily implemented by someone who is skilled in the art. To understand macroblock level AFF coding, a brief overview of picture level AFF coding of a stream of pictures will now be given. A frame of an interlaced sequence contains two fields, the top field and the bottom field, which are interleaved and separated in time by a field period. The field period is half the time of a frame period. In picture level AFF coding, the two fields of an interlaced frame can be coded jointly or separately. If they are coded jointly, frame mode coding is used. Conversely, if the two fields are coded separately, field mode coding is used. Fixed frame/field coding, on the other hand, codes all the pictures in a stream of pictures in one mode only. That mode can be frame mode or it can be field mode. Picture level AFF is preferable to fixed frame/field coding in many applications because it allows the encoder to chose which mode, frame mode or field mode, to encode each picture in the stream of pictures based on the contents of the digital video material. AFF coding results in better compression than does fixed frame/field coding in many applications. An embodiment of the present invention is that AFF coding can be performed on smaller portions of a picture. This small portion can be a macroblock, a pair of macroblocks, or a group of macroblocks. Each macroblock, pair of macroblocks, or group of macroblocks or slice is encoded in frame mode or in field mode, regardless of how the other macroblocks in the picture are encoded. AFF coding in each of the three cases will be described in detail below. In the first case, AFF coding is performed on a single macroblock. If the macroblock is to be encoded in frame mode, the two fields in the macroblock are encoded jointly. Once encoded as a frame, the macroblock can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if the macroblock is to be encoded in field mode, the macroblock (500) is split into a top field (501) and a bottom field (502), as shown in FIG. 5. The two fields are then coded separately. In FIG. 5, the macroblock has M rows of pixels and N columns of pixels. A preferable value of N and M is 16, making the macroblock (500) a 16 by 16 pixel macroblock. As shown in FIG. 5, every other row of pixels is shaded. The shaded areas represent the rows of pixels in the top field of the macroblock (500) and the unshaded areas represent the rows of pixels in the bottom field of the macroblock (500). As shown in FIGS. 6a-d, a macroblock that is encoded in field mode can be divided into four additional blocks. A block is required to have a single parity. The single parity requirement is that a block cannot comprise both top and bottom fields. Rather, it must contain a single parity of field. Thus, as shown in FIGS. 6a-d, a field mode macroblock can be divided into blocks of 16 by 8 pixels (FIG. 6a; 600), 8 by 8 pixels (FIG. 6b; 601), 4 by 8 pixels (FIG. 6c; 602), and 4 by 4 pixels (FIG. 6d; 603). FIGS. 6a-d shows that each block contains fields of a single parity. AFF coding on macroblock pairs will now be explained. AFF coding on macroblock pairs will be occasionally referred to as pair based AFF coding. A comparison of the block sizes in FIGS. 6a-d and in FIGS. 3a-f show that a macroblock encoded in field mode can be divided into fewer block patterns than can a macroblock encoded in frame mode. The block sizes of 16 by 16 pixels, 8 by 16 pixels, and 8 by 4 pixels are not available for a macroblock encoded in field mode because of the single parity requirement. This implies that the performance of single macroblock based AFF may not be good for some sequences or applications that strongly favor field mode coding. In order to guarantee the performance of field mode macroblock coding, it is preferable in some applications for macroblocks that are coded in field mode to have the same block sizes as macroblocks that are coded in frame mode. This can be achieved by performing AFF coding on macroblock pairs instead of on single macroblocks. FIG. 7 illustrates an exemplary pair of macroblocks (700) that can be used in AFF coding on a pair of macroblocks according to an embodiment of the present invention. If the pair of macroblocks (700) is to be encoded in frame mode, the pair is coded as two frame-based macroblocks. In each macroblock, the two fields in each of the macroblocks are encoded jointly. Once encoded as frames, the macroblocks can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if the pair of macroblocks (700) is to be encoded in field mode, it is first split into one top field 16 by 16 pixel block (800) and one bottom field 16 by 16 pixel block (801), as shown in FIG. 8. The two fields are then coded separately. In FIG. 8, each macroblock in the pair of macroblocks (700) has N=16 columns of pixels and M=16 rows of pixels. Thus, the dimensions-of the pair of macroblocks (700) is 16 by 32 pixels. As shown in FIG. 8, every other row of pixels is shaded. The shaded areas represent the rows of pixels in the top field of the macroblocks and the unshaded areas represent the rows of pixels in the bottom field of the macroblocks. The top field block (800) and the bottom field block (801) can now be divided into one of the possible block sizes of FIGS. 3a-f. According to an embodiment of the present invention, in the AFF coding of pairs of macroblocks (700), there are two possible scanning paths. A scanning path determines the order in which the pairs of macroblocks of a picture are encoded. FIG. 9 shows the two possible scanning paths in AFF coding of pairs of macroblocks (700). One of the scanning paths is a horizontal scanning path (900). In the horizontal scanning path (900), the macroblock pairs (700) of a picture (200) are coded from left to right and from top to bottom, as shown in FIG. 9. The other scanning path is a vertical scanning path (901). In the vertical scanning path (901), the macroblock pairs (700) of a picture (200) are coded from top to bottom and from left to right, as shown in FIG. 9. For frame mode coding, the top macroblock of a macroblock pair (700) is coded first, followed by the bottom macroblock. For field mode coding, the top field macroblock of a macroblock pair is coded first followed by the bottom field macroblock. Another embodiment of the present invention extends the concept of AFF coding on a pair of macroblocks to AFF coding on a group of four or more neighboring macroblocks (902), as shown in FIG. 10. AFF coding on a group of macroblocks will be occasionally referred to as group based AFF coding. The same scanning paths, horizontal (900) and vertical (901), as are used in the scanning of macroblock pairs are used in the scanning of groups of neighboring macroblocks (902). Although the example shown in FIG. 10 shows a group of four macroblocks, the group can be more than four macroblocks. If the group of macroblocks (902) is to be encoded in frame mode, the group coded as four frame-based macroblocks. In each macroblock, the two fields in each of the macroblocks are encoded jointly. Once encoded as frames, the macroblocks can be further divided into the smaller blocks of FIGS. 3a-f for use in the temporal prediction with motion compensation algorithm. However, if a group of four macroblocks (902), for example, is to be encoded in field mode, it is first split into one top field 32 by 16 pixel block and one bottom field 32 by 16 pixel block. The two fields are then coded separately. The top field block and the bottom field block can now be divided into macroblocks. Each macroblock is further divided into one of the possible block sizes of FIGS. 3a-f. Because this process is similar to that of FIG. 8, a separate figure is not provided to illustrate this embodiment. In AFF coding at the macroblock level, a frame/field flag bit is preferably included in a picture's bitstream to indicate which mode, frame mode or field mode, is used in the encoding of each macroblock. The bitstream includes information pertinent to each macroblock within a stream, as shown in FIG. 11. For example, the bitstream can include a picture header (110), run information (111), and macroblock type (113) information. The frame/field flag (112) is preferably included before each macroblock in the bitstream if AFF is performed on each individual macroblock. If the AFF is performed on pairs of macroblocks, the frame/field flag (112) is preferably included before each pair of macroblock in the bitstream. Finally, if the AFF is performed on a group of macroblocks, the frame/field flag (112) is preferably included before each group of macroblocks in the bitstream. One embodiment is that the frame/field flag (112) bit is a 0 if frame mode is to be used and a 1 if field coding is to be used. Another embodiment is that the frame/field flag (112) bit is a 1 if frame mode is to be used and a 0 if field coding is to be used. Another embodiment of the present invention entails a method of determining the size of blocks into which the encoder divides a macroblock in macroblock level AFF. A preferable, but not exclusive, method for determining the ideal block size is sum absolute difference (SAD) with or without bias or rate distortion (RD) basis. For example, SAD checks the performance of the possible block sizes and chooses the ideal block size based on its results. The exact method of using SAD with or without bias or RD basis can be easily be performed by someone skilled in the art. According to an embodiment of the present invention, each frame and field based macroblock in macroblock level AFF can be intra coded or inter coded. In intra coding, the macroblock is encoded without temporally referring to other macroblocks. On the other hand, in inter coding, temporal prediction with motion compensation is used to code the macroblocks. If inter coding is used, a block with a size of 16 by 16 pixels, 16 by 8 pixels, 8 by 16 pixels, or 8 by 8 pixels can have its own reference pictures. The block can either be a frame or field based macroblock. The MPEG-4 Part 10 AVC/H.264 standard allows multiple reference pictures instead of just two reference pictures. The use of multiple reference pictures improves the performance of the temporal prediction with motion compensation algorithm by allowing the encoder to find a block in the reference picture that most closely matches the block that is to be encoded. By using the block in the reference picture in the coding process that most closely matches the block that is to be encoded, the greatest amount of compression is possible in the encoding of the picture. The reference pictures are stored in frame and field buffers and are assigned reference frame numbers and reference field numbers based on the temporal distance they are away from the current picture that is being encoded. The closer the reference picture is to the current picture that is being stored, the more likely the reference picture will be selected. For field mode coding, the reference pictures for a block can be any top or bottom field of any of the reference pictures in the reference frame or field buffers. Each block in a frame or field based macroblock can have its own motion vectors. The motion vectors are spatially predictive coded. According to an embodiment of the present invention, in inter coding, prediction motion vectors (PMV) are also calculated for each block. The algebraic difference between a block's PMVs and its associated motion vectors is then calculated and encoded. This generates the compressed bits for motion vectors. FIG. 12 will be used to explain various preferable methods of calculating the PMV of a block in a macroblock. A current block, E, in FIG. 12 is to be inter coded as well as its neighboring blocks A, B, C, and D. E will refer hereafter to a current block and A, B, C, and D will refer hereafter to E's neighboring blocks, unless otherwise denoted. Block E's PMV is derived from the motion vectors of its neighboring blocks. These neighboring blocks in the example of FIG. 12 are A, B, C, and D. One preferable method of calculating the PMV for block E is to calculate either the median of the motion vectors of blocks A, B, C, and D, the average of these motion vectors, or the weighted average of these motion vectors. Each of the blocks A through E can be in either frame or field mode. Another preferable method of calculating the PMV for block E is to use a yes/no method. Under the principles of the yes/no method, a block has to be in the same frame or field coding mode as block E in order to have its motion vector included in the calculation of the PMV for E. For example, if block E in FIG. 12 is in frame mode, block A must also be in frame mode to have its motion vector included in the calculation of the PMV for block E. If one of E's neighboring blocks does not have the same coding mode as does block E, its motion vectors are not used in the calculation of block E's PMV. The “always method” can also be used to calculate the PMV for block E. In the always method, blocks A, B, C, and D are always used in calculating the PMV for block E, regardless of their frame or field coding mode. If E is in frame mode and a neighboring block is in field mode, the vertical component of the neighboring block is multiplied by 2 before being included in the PMV calculation for block E. If E is in field mode and a neighboring block is in frame mode, the vertical component of the neighboring block is divided by 2 before being included in the PMV calculation for block E. 100771 The “selective method” can also be used to calculate the PMV for block E if the macroblock has been encoded using pair based AFF encoding or group based AFF encoding. In the selective method, a frame-based block has a frame-based motion vector pointing to a reference frame. The block is also assigned a field-based motion vector pointing to a reference field. The field-based motion vector is the frame-based motion vector of the block with the vertical motion vector component divided by two. The reference field number is the reference frame number multiplied by two. A field-based block has a field-based motion vector pointing to a reference field. The block is also assigned a frame-based motion vector pointing to a reference frame. The frame-based motion vector is the field-based motion vector of the block with the vertical motion vector component multiplied by two. The reference frame number is the reference field number divided by two. The derivation of a block's PMV using the selective method will now be explained using FIG. 12 as a reference. In macroblock pair based AFF, each block in a macroblock is associated with a companion block that resides in the same geometric location within the second macroblock of the macroblock pair. In FIG. 12, each of block E's neighboring blocks (A, B, C, and D) may or may not be in the same frame or field coding mode as block E. Hence, the following rules apply: If E is in frame mode and a neighboring block is in frame mode, the true frame-based motion vector of the neighboring block is used for E's PMV. 10080] If E is in frame mode and a neighboring block is in field mode, the following rules apply in calculating E's PMV. If the neighboring block (e.g.; block A) and its companion field-based block have the same reference field, the average of the assigned field-based motion vectors of the two blocks is used for the calculation of E's PMV. The reference frame number used for the PMV calculation is the reference field number of the neighboring block divided by two. However, if the neighboring block and its companion field block have different reference fields, then the neighboring block cannot be used in the calculation of E's PMV. If E is in field mode and a neighboring block is in frame mode, the following rules apply in calculating E's PMV. If the neighboring block (e.g.; block A) and its companion frame-based block have the same reference frame, the average of the assigned field-based motion vectors of the two blocks is used for the calculation of E's PMV. The reference field number used for the PMV calculation is the reference frame number of the neighboring block multiplied by two. However, if the neighboring block and its companion field block have different reference frames, then the neighboring block cannot be used in the calculation of E's PMV. If E is in field mode and a neighboring block is in field mode, the true field-based motion vector of the neighboring block is used in the calculation of E's PMV. An alternate preferable option can be used in the selective method to calculate a block's PMV. In FIG. 12, each of block E's neighboring blocks (A, B, C, and D) may or may not be in the same frame or field coding mode as block E. Hence, the following rules apply for this alternate preferable option of the selective method: If E is in frame mode and a neighboring block is in frame mode, the true frame-based motion vector of the neighboring block is used for E's PMV. If E is in frame mode and a neighboring block is in field mode, the weighted average of the assigned field-based motion vectors of the neighboring block and its companion field-based block is used for the calculation of E's PMV. The weighting factors are based upon the reference field numbers of the neighboring block and its companion block. If E is in field mode, and a neighboring block is in frame mode, the weighted average of the assigned field-based motion vectors of the neighboring block and its companion frame-based block is used for the calculation of E's PMV. The weighting factors are based upon the reference frame numbers of the neighboring block and its companion block. If E is in field mode and a neighboring block is in field mode, the true field-based motion vector of the neighboring block is used in the calculation of E's PMV. Another preferable method of computing a block's PMV is the “alt selective method.” This method can be used in single macroblock AFF coding, pair based macroblock AFF coding, or group based AFF coding. In this method, each block is assigned a horizontal and a vertical index number, which represents the horizontal and vertical coordinates of the block. Each block is also assigned a horizontal and vertical field coordinate. A block's horizontal field coordinate is same as its horizontal coordinate. For a block in a top field macroblock, the vertical field coordinate is half of vertical coordinate of the block and is assigned top field polarity. For a block in the bottom field macroblock, the vertical field coordinate of the block is obtained by subtracting 4 from the vertical coordinate of the block and dividing the result by 2. The block is also assigned bottom field polarity. The result of assigning different field polarities to two blocks is that there are now two blocks with the same horizontal and vertical field coordinates but with differing field polarities. Thus, given the coordinates of a block, the field coordinates and its field polarity can be computed and vice versa. The alt selective method will now be explained in detail using FIG. 12 as a reference. The PMV of block E is to be computed. Let bx represent the horizontal size of block E divided by 4, which is the size of a block in this example. The PMVs for E are obtained as follows depending on whether E is in frame/field mode. Let block E be in frame mode and let (x,y) represent the horizontal and vertical coordinates respectively of E. The neighboring blocks of E are defined in the following manner. A is the block whose coordinates are (x−1,y). B is the block whose coordinates are (x,y−1). D is the block whose coordinates are (x−1,y−1). C is the block whose coordinates are (x+bx+1,y−1). If either A, B, C or D is in field mode then its vertical motion vector is divided by 2 before being used for prediction and its reference frame number is computed by dividing its reference field by 2. Now, let block E be in top or bottom field mode and let (xf,yf) represent the horizontal and vertical field coordinates respectively of E. In this case, the neighbors of E are defined as follows. A is the block whose field coordinates are (xf−1,yf) and has same polarity as E. B is the block whose field coordinates are (xf,yf−1) and has same polarity as E. D is the block whose field coordinates are (xf−1,yf−1) and has same polarity as E. C is the block whose field coordinates are (xf+bx+1,yf) and has same polarity as E. If either A,B,C or D is in frame mode then its vertical motion vector is multiplied by 2 before being used for prediction and its reference field is computed by multiplying its reference frame by 2. In all of the above methods for determining the PMV of a block, a horizontal scanning path was assumed. However, the scanning path can also be a vertical scanning path. In this case, the neighboring blocks of the current block, E, are defined as shown in FIG. 13. A vertical scanning path is preferable in some applications because the information on all the neighboring blocks is available for the calculation of the PMV for the current block E. Another embodiment of the present invention is directional segmentation prediction. In directional segmentation prediction, 16 by 8 pixel blocks and 8 by 16 pixel blocks have rules that apply to their PMV calculations only. These rules apply in all PMV calculation methods for these block sizes. The rules will now be explained in detail in connection with FIG. 12. In each of these rules, a current block E is to have its PMV calculated. First, a 16 by 8 pixel block consists of an upper block and a lower block. The upper block contains the top 8 rows of pixels. The lower block contains the bottom 8 rows of pixels. In the following description, blocks A-E of FIG. 12 are 16 by 8 pixel blocks. For the upper block in a 16 by 8 pixel block, block B is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. For the lower block in a 16 by 8 pixel block, block A is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. An 8 by 16 pixel block is divided into a right and left block. Both right and left blocks are 8 by 16 pixels. In the following description, blocks A-E of FIG. 12 are 8 by 16 pixel blocks. For the left block, block A is used to predict block E's PMV if it has the same reference picture as block E. Otherwise, median prediction is used to predict block E's PMV. For the right block, block C is used to predict block E's PMV if it has the same referenced picture as block E. Otherwise median prediction is used to predict block E's PMV. For both 16 by 8 pixel blocks and 8 by 16 blocks, A, B, or C can be in different encoding modes (frame or field) than the current block E. The following rules apply for both block sizes. If E is in frame mode, and A, B, or C is in field mode, the reference frame number of A, B, or C is computed by dividing its reference field by 2. If E is in field mode, and A, B, or C is in frame mode, the reference field number of A, B, or C is computed by multiplying its reference frame by 2. According to another embodiment of the present invention, a macroblock in a P picture can be skipped in AFF coding. If a macroblock is skipped, its data is not transmitted in the encoding of the picture. A skipped macroblock in a P picture is reconstructed by copying the co-located macroblock in the most recently coded reference picture. The co-located macroblock is defined as the one with motion compensation using PMV as defined above or without motion vectors. The following rules apply for skipped macroblocks in a P picture. If AFF coding is performed per macroblock, a skipped macroblock is in frame mode. If AFF coding is performed on macroblock pairs and if both macroblocks are skipped, then they are in frame mode. However, if only one of the macroblocks in a macroblock pair is skipped, its frame or field coding mode is the same as the non-skipped macroblock in the same macroblock pair. If AFF coding is performed on a group of macroblocks and if the entire group of macroblocks is skipped, then all the macroblocks are in frame mode. If there is at least one macroblock that is not skipped, then the skipped macroblocks in the same group are in the same frame or field coding mode as the non-skipped macroblock. An alternate method for skipped macroblocks is as follows. If a macroblock pair is skipped, its frame and field coding mode follows its neighboring macroblock pair to the left. If the left neighboring macroblock pair is not available, its coding mode follows its neighboring macroblock pair to the top. If neither the left nor top neighboring macroblock pairs are available, the skipped macroblock is set to frame mode. Another embodiment of the present invention is direct mode macroblock coding for B pictures. In direct mode coding, a B picture has two motion vectors, forward and backward motion vectors. Each motion vector points to a reference picture. Both the forward and backward motion vectors can point in the same temporal direction. For direct mode macroblock coding in B pictures, the forward and backward motion vectors of a block are calculated from the co-located block in the backward reference picture. The co-located block in the backward reference picture can be frame mode or field mode coded. The following rules apply in direct mode macroblock coding for B picture. If the co-located block is in frame mode and if the current direct mode macroblock is also in frame mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block. The forward reference frame is the one used by the co-located block. The backward reference frame is the same frame where the co-located block resides. If the co-located block is in frame mode and if the current direct mode macroblock is in field mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block's motion vector with vertical component divided by two. The forward reference field is the same parity field of the reference frame used by the co-located block. The backward reference field is the same parity field of the backward reference frame where the co-located block resides. If the co-located block is in field mode and if the current direct mode macroblock is also in field mode, the two associated motion vectors of a block in the direct mode macroblock are calculated from the co-located block of the same field parity. The forward reference field is the field used by the co-located block. The backward reference field is the same field where the co-located block resides. If the co-located block is in field mode and if the current direct mode macroblock is in frame mode, the two associated motion vectors of the block in the direct mode macroblock are calculated from the co-located block's motion vector with vertical component multiplied by two. The forward reference frame is the frame one of whose fields is used by the co-located block. The backward reference field is the frame in one of whose fields the co-located block resides. An alternate option is to force the direct mode block to be in the same frame or field coding mode as the co-located block. In this case, if the co-located block for a direct mode block is in frame mode, the direct mode block is in frame mode as well. The two frame-based motion vectors of the direct mode block are derived from the frame-based forward motion vector of the co-located block. The forward reference frame is used by the co-located block. The backward reference frame is where the co-located block resides. However, if the co-located block for a block in direct mode is in field mode, the direct mode block is also in field mode. The two field-based motion vectors of the direct mode block are derived from the field-based forward motion vector of the co-located block. The forward reference field is used by the co-located block. The backward reference field is where the co-located block resides. A macroblock in a B picture can also be skipped in AFF coding according to another embodiment of the present invention. A skipped macroblock in a B picture is reconstructed as a regular direct mode macroblock without any coded transform coefficient information. For skipped macroblocks in a B picture, the following rules apply. If AFF coding is performed per macroblock, a skipped macroblock is either in frame mode or in the frame or field coding mode of the co-located block in its backward reference picture. If AFF coding is performed on macroblock pairs and if both macroblocks are skipped, then they are in frame mode or in the frame or field coding mode of the co-located macroblock pair in the its backward reference picture. However, if only one of the macroblocks in a macroblock pair is skipped, its frame or field coding mode is the same as the non-skipped macroblock of the same macroblock pair. If AFF coding is performed on a group of macroblocks and if the entire group of macroblocks is skipped, then all the macroblocks are in frame mode or in the frame or field coding mode of the co-located group of macroblocks in the backward reference picture. If there is at least one macroblock that is not skipped, then the skipped macroblock in the same group are in the same frame or field coding mode as the non-skipped macroblock. As previously mentioned, a block can be intra coded. Intra blocks are spatially predictive coded. There are two possible intra coding modes for a macroblock in macroblock level AFF coding. The first is intra—4×4 mode and the second is intra—16×16 mode. In both, each pixel's value is predicted using the real reconstructed pixel values from neighboring blocks. By predicting pixel values, more compression can be achieved. The intra—4×4 mode and the intra—16×16 modes will each be explained in more detail below. For intra—4×4 mode, the predictions of the pixels in a 4 by 4 pixel block, as shown in FIG. 14, are derived form its left and above pixels. In FIG. 14, the 16 pixels in the 4 by 4 pixel block are labeled a through p. Also shown in FIG. 14 are the neighboring pixels A through P. The neighboring pixels are in capital letters. As shown in FIG. 15, there are nine different prediction directions for intra—4×4 coding. They are vertical (0), horizontal (1), DC prediction (mode 2), diagonal down/left (3), diagonal down/right (4), vertical-left (5), horizontal-down (6), vertical-right (7), and horizontal-up (8). DC prediction averages all the neighboring pixels together to predict a particular pixel value. However, for intra—16×16 mode, there are four different prediction directions. Prediction directions are also referred to as prediction modes. These prediction directions are vertical prediction (0), horizontal prediction (1), DC prediction, and plane prediction. Plane prediction will not be explained. An intra block and its neighboring blocks may be coded in frame or field mode. Intra prediction is performed on the reconstructed blocks. A reconstructed block can be represented in both frame and field mode, regardless of the actual frame or field coding mode of the block. Since only the pixels of the reconstructed blocks are used for intra prediction, the following rules apply. If a block of 4 by 4 pixels or 16 by 16 pixels is in frame mode, the neighboring pixels used in calculating the pixel value predictions of the block are in the frame structure. If a block of 4 by 4 pixels or 16 by 16 pixels is in field mode, the neighboring pixels used in calculating the pixel value prediction of the block are in field mode of the same field parity. The chosen intra-prediction mode (intra_pred_mode) of a 4 by 4 pixel block is highly correlated with the prediction modes of adjacent blocks. This is illustrated in FIGS. 16a. FIG. 16a shows that A and B are adjacent blocks to C. Block C's prediction mode is to be established. FIG. 16b shows the order of intra prediction information in the bitstream. When the prediction modes of A and B are known (including the case that A or B or both are outside the slice) the most probable prediction mode (most_probable_mode) of C is given. If one of the blocks A or B is “outside” the most probable prediction mode is equal DC prediction (mode 2). Otherwise it is equal to the minimum of prediction modes used for blocks A and B. When an adjacent block is coded by 16×16 intra mode, prediction mode is DC prediction mode. When an adjacent block is coded a non-intra macroblock, prediction mode is “mode 2: DC prediction” in the usual case and “outside” in the case of constrained intra update. To signal a prediction mode number for a 4 by 4 block first parameter use_most_probable_mode is transmitted. This parameter is represented by 1 bit codeword and can take values 0 or 1. If use_most_probable_mode is equal to 1 the most probable mode is used. Otherwise an additional parameter remaining_mode_selector, which can take value from 0 to 7 is sent as 3 bit codeword. The codeword is a binary representation of remaining_mode_selector value. The prediction mode number is calculated as: if (remaining_mode_selector<most_probable_mode) intra_pred_mode=remaining_mode_selector; else intrapred_mode=remaining_mode_selector+1; The ordering of prediction modes assigned to blocks C is therefore the most probable mode followed by the remaining modes in the ascending order. An embodiment of the present invention includes the following rules that apply to intra mode prediction for an intra-prediction mode of a 4 by 4 pixel block or an intra-prediction mode of a 16 by 16 pixel block. Block C and its neighboring blocks A and B can be in frame or field mode. One of the following rules shall apply. FIGS. 16a-b will be used in the following explanations of the rules. Rule 1: A or B is used as the neighboring block of C only if A or B is in the same frame/field mode as C. Otherwise, A or B is considered as outside. Rule 2: A and B are used as the neighboring blocks of C, regardless of their frame/field coding mode. Rule 3: If C is coded in frame mode and has co-ordinates (x,y), then A is the block with co-ordinates (x,y−1) and B is the block with co-ordinates (x−1,y). Otherwise, if C is coded as field and has field co-ordinates (xf,yf) then A is the block whose field co-ordinates are (xf,yf−1) and has same field polarity as C and B is the block whose field co-ordinates are (xf−1,yf) and has same field polarity as C. Rule 4: This rule applies to macroblock pairs only. In the case of decoding the prediction modes of blocks numbered 3, 6, 7, 9, 12, 13, 11, 14 and 15 of FIG. 16b, the above and the left neighboring blocks are in the same macroblock as the current block. However, in the case of decoding the prediction modes of blocks numbered 1, 4, and 5, the top block (block A) is in a different macroblock pair than the current macroblock pair. In the case of decoding the prediction mode of blocks numbered 2, 8, and 10, the left block (block B) is in a different macroblock pair. In the case of decoding the prediction mode of the block numbered 0, both the left and the above blocks are in different macroblock pairs. For a macroblock in field decoding mode the neighboring blocks of the blocks numbered 0, 1, 4, 5, 2, 8, and 10 shall be defined as follows: If the above macroblock pair (170) is decoded in field mode, then for blocks number 0, 1, 4 and 5 in the top-field macroblock (173), blocks numbered 10, 11, 14 and 15 respectively in the top-field macroblock (173) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171) as shown in FIG. 17a. For blocks number 0, 1, 4 and 5 in the bottom-field macroblock (174), blocks numbered 10, 11, 14 and 15 respectively in the bottom-field MB of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown in FIG. 17a. However, if the above macroblock pair (170) is decoded in frame mode then for blocks number 0, 1, 4 and 5 in the top-field macroblock (173), blocks numbered 10, 11, 14 and 15 respectively in the bottom-frame macroblock (176) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown in FIG. 17b. For blocks number 0, 1, 4 and 5 in the bottom-field macroblock (174), blocks numbered 10, 11, 14 and 15 respectively in the bottom-frame macroblock (176) of the above macroblock pair (170) shall be considered as the above neighboring blocks to the current macroblock pair (171), as shown inn FIG. 17b. If the left macroblock pair (172) is decoded in field mode, then for blocks number 0, 2, 8 and 10 in the top-field macroblock (173), blocks numbered 5, 7, 13 and 15 respectively in the top-field macroblock (173) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171) as shown in FIG. 17c. For blocks number 0, 2, 8 and 10 in the bottom-field macroblock (174), blocks numbered 5, 7, 13 and 15 respectively in the bottom-field macroblock (174) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17c. If the left macroblock pair (172) is decoded in frame mode, then for blocks number 0, 2, 8 and 10 in the top-field macroblock (173), the blocks numbered 5, 7, 13 and 15 respectively in the top-frame macroblock (175) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17d. For blocks number 0, 2, 8 and 10 in the bottom-field macroblock (174), blocks numbered 5, 7, 13 and 15 respectively in the bottom-frame macroblock (176) of the left macroblock pair (172) shall be considered as the left neighboring blocks to the current macroblock pair (171), as shown in FIG. 17d. For macroblock pairs on the upper boundary of a slice, if the left macroblock pair (172) is in frame decoding mode, then the intra mode prediction value used to predict a field macroblock shall be set to DC prediction. The preceding descriptions of intra coding and intra mode prediction can be extended to adaptive block transforms. Another embodiment of the present invention is that loop filtering is performed on the reconstructed blocks. A reconstructed block can be represented in either frame or field structure, regardless of the frame/filed coding mode of the block. Loop (deblock) filtering is a process of weighted averaging of the pixels of the neighboring blocks. FIG. 12 will be used to explain loop filtering. Assume E of FIG. 12 is a reconstructed block, and A, B, C and D are its neighboring reconstructed blocks, as shown in FIG. 12, and they are all represented in frame structure. Since A, B, C, D and E can be either frame- or field-coded, the following rules apply: Rule 1: If E is frame-coded, loop filtering is performed over the pixels of E and its neighboring blocks A B, C and D. Rule 2: If E is field-coded, loop filtering is performed over the top-field and bottom-field pixels of E and its neighboring blocks A B, C and D, separately. Another embodiment of the present invention is that padding is performed on the reconstructed frame by repeating the boundary pixels. Since the boundary blocks may be coded in frame or field mode, the following rules apply: Rule 1: The pixels on the left or right vertical line of a boundary block are repeated, if necessary. Rule 2: If a boundary block is in frame coding, the pixels on the top or bottom horizontal line of the boundary block are repeated. Rule 3: if a boundary block is in field coding, the pixels on the two top or two bottom horizontal (two field) lines of the boundary block are repeated alternatively. Another embodiment of the present invention is that two-dimensional transform coefficients are converted into one-dimensional series of coefficients before entropy coding. The scan path can be either zigzag or non-zigzag. The zigzag scanner is preferably for progressive sequences, but it may be also used for interlace sequences with slow motions. The non-zigzag scanners are preferably for interlace sequences. For macroblock AFF coding, the following options may be used: Option 1: The zigzag scan is used for macroblocks in frame mode while the non-zigzag scanners are used for macroblocks in field coding. Option 2: The zigzag scan is used for macroblocks in both frame and field modes. Option 3: The non-zigzag scan is used for macroblocks in both frame and field modes. The preceding description has been presented only to illustrate and describe embodiments of invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. The foregoing embodiments were chosen and described in order to illustrate principles of the invention and some practical applications. The preceding description enables others skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims. | <SOH> BACKGROUND <EOH>Video compression is used in many current and emerging products. It is at the heart of digital television set-top boxes (STBs), digital satellite systems (DSSs), high definition television (HDTV) decoders, digital versatile disk (DVD) players, video conferencing, Internet video and multimedia content, and other digital video applications. Without video compression, digital video content can be extremely large, making it difficult or even impossible for the digital video content to be efficiently stored, transmitted, or viewed. The digital video content comprises a stream of pictures that can be displayed as an image on a television receiver, computer monitor, or some other electronic device capable of displaying digital video content. A picture that is displayed in time before a particular picture is in the “backward direction” in relation to the particular picture. Likewise, a picture that is displayed in time after a particular picture is in the “forward direction” in relation to the particular picture. Video compression is accomplished in a video encoding, or coding, process in which each picture is encoded as either a frame or as two fields. Each frame comprises a number of lines of spatial information. For example, a typical frame contains 480 horizontal lines. Each field contains half the number of lines in the frame. For example, if the frame comprises 480 horizontal lines, each field comprises 240 horizontal lines. In a typical configuration, one of the fields comprises the odd numbered lines in the frame and the other field comprises the even numbered lines in the frame. The field that comprises the odd numbered lines will be referred to as the “top” field hereafter and in the appended claims, unless otherwise specifically denoted. Likewise, the field that comprises the even numbered lines will be referred to as the “bottom” field hereafter and in the appended claims, unless otherwise specifically denoted. The two fields can be interlaced together to form an interlaced frame. The general idea behind video coding is to remove data from the digital video content that is “non-essential.” The decreased amount of data then requires less bandwidth for broadcast or transmission. After the compressed video data has been transmitted, it must be decoded, or decompressed. In this process, the transmitted video data is processed to generate approximation data that is substituted into the video data to replace the “non-essential” data that was removed in the coding process. Video coding transforms the digital video content into a compressed form that can be stored using less space and transmitted using less bandwidth than uncompressed digital video content. It does so by taking advantage of temporal and spatial redundancies in the pictures of the video content. The digital video content can be stored in a storage medium such as a hard drive, DVD, or some other non-volatile storage unit. There are numerous video coding methods that compress the digital video content. Consequently, video coding standards have been developed to standardize the various video coding methods so that the compressed digital video content is rendered in formats that a majority of video encoders and decoders can recognize. For example, the Motion Picture Experts Group (MPEG) and International Telecommunication Union (ITU-T) have developed video coding standards that are in wide use. Examples of these standards include-the MPEG-1, MPEG-2, MPEG-4, ITU-T H261, and ITU-T H263 standards. Most modern video coding standards, such as those developed by MPEG and ITU-T, are based in part on a temporal prediction with motion compensation (MC) algorithm. Temporal prediction with motion compensation is used to remove temporal redundancy between successive pictures in a digital video broadcast. The temporal prediction with motion compensation algorithm typically utilizes one or two reference pictures to encode a particular picture. A reference picture is a picture that has already been encoded. By comparing the particular picture that is to be encoded with one of the reference pictures, the temporal prediction with motion compensation algorithm can take advantage of the temporal redundancy that exists between the reference picture and the particular picture that is to be encoded and encode the picture with a higher amount of compression than if the picture were encoded without using the temporal prediction with motion compensation algorithm. One of the reference pictures may be in the backward direction in relation to the particular picture that is to be encoded. The other reference picture is in the forward direction in relation to the particular picture that is to be encoded. However, as the demand for higher resolutions, more complex graphical content, and faster transmission time increases, so does the need for better video compression methods. To this end, a new video coding standard is currently being developed jointly by ISO and ITU-T. This new video coding standard is called the MPEG-4 Advanced Video Coding (AVC)/H.264 standard. | <SOH> SUMMARY OF THE INVENTION <EOH>In one of many possible embodiments, the present invention provides a method of encoding, decoding, and bitstream generation of digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the macroblocks in each picture in said stream of pictures in either frame mode or in field mode. | 20041230 | 20071218 | 20050526 | 87028.0 | 2 | AN, SHAWN S | MACROBLOCK LEVEL ADAPTIVE FRAME/FIELD CODING FOR DIGITAL VIDEO CONTENT | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,004 |
|||
11,027,863 | ACCEPTED | Methods and systems for displaying an enlarged image | A method and system for displaying an enlarged image on a display. The display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The method can include providing a first image, providing an enlarged version of the first image, and displaying the first image at a first location on the display. The method can also include determining a position of a cursor and, if the position of the cursor overlaps with the location of the first image, determining a portion of the enlarged version of the first image, where the portion of the enlarged version of the first image is determined based on the position of the cursor. The method can further include displaying the portion of the enlarged version of the first image at a second location on the display. | 1. A method of displaying an enlarged image on a display, the display configured to be connected to a device that generates a user interface in which a user may control a position of a cursor, the method comprising: providing a first image; providing an enlarged version of the first image; displaying the first image at a first location on the display; determining a position of a cursor; if the position of the cursor overlaps with the location of the first image, determining a portion of the enlarged version of the first image, where the portion of the enlarged version of the first image is determined based on the position of the cursor; and displaying the portion of the enlarged version of the first image at a second location on the display. 2. A method as claimed in claim 1, further comprising displaying a different portion of the enlarged version of the first image whenever the position of the cursor changes. 3. A method as claimed in claim 1, further comprising displaying the first image at the first location while displaying the portion of the enlarged version of the first image at the second location. 4. A method as claimed in claim 1, further comprising not displaying the portion of the enlarged version of the first image if the position of the cursor does not overlap with the first location of the first image. 5. A method as claimed in claim 1, further comprising displaying an indication on the first image that indicates a portion of the first image that corresponds to the displayed portion of the enlarged version of the first image. 6. A method as claimed in claim 1, wherein displaying the portion of the enlarged version of the first image at a second location on the display includes displaying the portion of the enlarged version of the first image at a second location based on the position of the cursor. 7. A method as claimed in claim 1, wherein providing a first image includes generating the first image based on the enlarged version of the first image. 8. A method as claimed in claim 1, further comprising providing an enlargement selector. 9. A method as claimed in claim 8, further comprising selecting an enlargement level with the zoom selector. 10. A method as claimed in claim 9, further comprising selecting an enlarged version of the first image based on the enlargement level. 11. A method as claimed in claim 1, further comprising providing an enlargement on/off toggle. 12. A computer-readable medium including instructions for displaying an enlarged image on a display, the display configured to be connected to a device that generates a user interface in which a user may control a position of a cursor, the computer-readable medium comprising instructions for: displaying a first image at a first location on the display; determining a position of a cursor; if the position of the cursor overlaps with the location of the first image, determining a portion of an enlarged version of the first image, where the portion of the enlarged version of the first image is determined based on the position of the cursor; and displaying the portion of the enlarged version of the first image at a second location on the display. 13. A computer-readable medium as claimed in claim 12, further comprising instructions for displaying a different portion of the enlarged version of the first image whenever the position of the cursor changes. 14. A computer-readable medium as claimed in claim 12, further comprising instructions for displaying the first image at the first location while displaying the portion of the enlarged version of the first image at the second location. 15. A computer-readable medium as claimed in claim 12, further comprising instructions for not displaying the portion of the enlarged version of the first image if the position of the cursor does not overlap with the first location of the first image. 16. A computer-readable medium as claimed in claim 12, further comprising instructions for displaying an indication on the first image that indicates a portion of the first image that corresponds to the displayed portion of the enlarged version of the first image. 17. A system for displaying an enlarged image on a display, the display configured to be connected to a device that generates a user interface in which a user may control a position of a cursor, the system comprising: a first image; an enlarged version of the first image; and an application configured to display the first image at a first location on the display; to determine a position of a cursor; if the position of the cursor overlaps with the location of the first image, to determine a portion of the enlarged version of the first image, where the portion of the enlarged version of the first image is determined based on the position of the cursor; and to display the portion of the enlarged version of the first image at a second location on the display. 18. A system as claimed in claim 17, wherein the application is further configured to generate the first image from the enlarged version of the first image. 19. A system as claimed in claim 17, wherein the application is further configured to display a different portion of the enlarged version of the first image whenever the position of the cursor changes. 20. A system as claimed in claim 17, wherein the application is further configured to display the first image at the first location while displaying the portion of the enlarged version of the first image at the second location. 21. A system as claimed in claim 17, wherein the application is further configured to not display the portion of the enlarged version of the first image if the position of the cursor does not overlap with the first location of the first image. 22. A system as claimed in claim 17, wherein the application is further configured to display an indication on the first image that indicates a portion of the first image that corresponds to the displayed portion of the enlarged version of the first image. 23. A system for displaying an enlarged image on a display, the display configured to be connected to a device that generates a user interface in which a user may control a position of a cursor, the system comprising: a memory configured to store a first image, an enlarged version of the first image, and an enlargement application, the enlargement application configured to display the first image at a first location on the display; to determine a position of a cursor; if the position of the cursor overlaps with the location of the first image, to determine a portion of the enlarged version of the first image, where the portion of the enlarged version of the first image is determined based on the position of the cursor; and to display the portion of the enlarged version of the first image at a second location on the display; and a processor configured to retrieve the application from the memory and to execute the application. 24. A system as claimed in claim 23, wherein the application is further configured to generate the first image from the enlarged version of the first image. 25. A system as claimed in claim 23, wherein the application is further configured to display a different portion of the enlarged version of the first image whenever the position of the cursor changes. 26. A system as claimed in claim 23, wherein the application is further configured to display the first image at the first location while displaying the portion of the enlarged version of the first image at the second location. 27. A system as claimed in claim 23, wherein the application is further configured to not display the portion of the enlarged version of the first image if the position of the cursor does not overlap with the first location of the first image. 28. A system as claimed in claim 23, wherein the application is further configured to display an indication on the first image that indicates a portion of the first image that corresponds to the displayed portion of the enlarged version of the first image. | BACKGROUND OF THE INVENTION Embodiments of the invention relate to methods and systems for displaying a portion of an enlarged version of an image. In particular, embodiments of the invention relate to methods and systems for displaying a portion of an enlarged version of an image based on the position of a cursor. Users of the Internet or other networks such as a local area network (“LAN”) or a wide area network (WAN) often obtain and view images on a workstation. In some situations, a user may want to view an enlarged version of an image. Viewing a magnified or enlarged image can allow a user to view details and features of an image that may otherwise be difficult to see. An enlarged version of an image can be used to display texture, color, workmanship detail, and the like, and are often used by sellers to provide additional information to potential customers. Although some web sites or web pages provide enlarged versions of images, users typically do not have control over how an enlarged image is displayed. For example, an image displayed on a web page may include two features and the web page may only provide an enlarged version of the image displaying only one of the two features. Users are generally not provided with tools to specify a particular portion of an image to view as an enlarged image. SUMMARY OF THE INVENTION Accordingly, embodiments of the invention provide a method of displaying an enlarged image on a display. In one embodiment, the display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The method includes providing a first image, providing an enlarged version of the first image, and displaying the first image at a first location on the display. The method also includes determining a position of the cursor and, if the position of the cursor overlaps with the location of the first image, determining a portion of the enlarged version of the first image. The portion of the enlarged version of the first image is determined based on the position of the cursor. The method further includes displaying the portion of the enlarged version of the first image at a second location on the display. Another embodiment provides a computer-readable medium including instructions for displaying an enlarged image on a display. The display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The computer-readable medium includes instructions for providing a first image, providing an enlarged version of the first image, and displaying the first image at a first location on the display. The computer-readable medium also includes instructions for determining a position of a cursor and, if the position of the cursor overlaps with the location of the first image, determining a portion of the enlarged version of the first image. The portion of the enlarged version of the first image is determined based on the position of the cursor. The computer-readable medium further includes instructions for displaying the portion of the enlarged version of the first image at a second location on the display. Additional embodiments provide a system for displaying an enlarged image on a display. The display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The system includes a first image, an enlarged version of the first image, and an application. The application is configured to display the first image at a first location on the display. The application is also configured to determine a position of the cursor and, if the position of the cursor overlaps with the first location of the first image, to determine a portion of the enlarged version of the first image based on the position of the cursor. Furthermore, the application is configured to display the portion of the enlarged version of the first image at a second location on the display. Yet another embodiment provides a system for displaying an enlarged image on a display. The display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The system includes a memory configured to store a first image, an enlarged version of the first image, and an enlargement application. The system also includes a processor configured to execute the enlargement application. The enlargement application is configured to display the first image at a first location on the display. The enlargement application is also configured to determine a position of a cursor and, if the position of the cursor overlaps with the location of the first image, to determine a portion of the enlarged version of the first image. Furthermore, the enlargement application is configured to determine the portion of the enlarged version of the first image based on the position of the cursor and to display the portion of the enlarged version of the first image at a second location on the display. Other features and advantages of embodiments of the invention will become apparent to those skilled in the art upon review of the following detailed description and drawings. BRIEF DESCRIPTION OF THE DRAWINGS In the drawings: FIG. 1 illustrates a user using a workstation to view an image. FIG. 2 is a schematic diagram of exemplary hardware inside the workstation of FIG. 1. FIG. 3 is a diagram of non-volatile memory, which can be part of the memory module of the workstation illustrated in FIG. 2. FIG. 4 is a flow chart illustrating an exemplary process of displaying a portion of an enlarged version of an image. FIG. 5 illustrates an exemplary screen shot displaying a first image. FIG. 6 illustrates an exemplary screen shot displaying the first image of FIG. 5 and a portion of an enlarged version of the first image of FIG. 5. FIG. 7 illustrates another exemplary screen shot displaying the first image of FIG. 5 and a portion of an enlarged version of the first image of FIG. 5. It is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings. DETAILED DESCRIPTION FIG. 1 illustrates a user 10 using a workstation 20. The workstation 20 includes a monitor or display 22, a keyboard 24, and a cursor control device 26 illustrated in the form of a mouse. In some embodiments, the workstation 20 is configured to generate a user interface 27 and present the user interface 27 on the display 22. The user 10 can use the keyboard 24 and/or the cursor control device 26 to position a cursor 28 on the user interface 27. In some embodiments, the user 10 uses the keyboard 24 and/or the cursor control device 26 to position the cursor 28 on a first image 30 or a second image 32 displayed as part of the user interface 27. It should be understood that the workstation 20 can include additional input peripherals in addition to or in place of the input peripherals (i.e., the keyboard 24 and the cursor control device 26) illustrated in FIG. 1 to control the position of the cursor 28. These devices can include a touch screen, a joystick, a trackball, arrow buttons or keys, a user-movement tracking device (e.g., an eye-movement tracking device or a virtual reality glove), and/or a microphone. As should also be apparent, the workstation 20 can include multiple displays and cursor control devices. The workstation 20 can also include additional peripherals such as a printer, a scanner, and the like. The workstation 20 can also be connected to a network such as the Internet or a local area network (“LAN”). In some embodiments, the workstation is connected to a modem, router, or switch configured to provide a network connection that allows the workstation 20 to send and receive data from other devices also connected to a network. It should be understood that in place of the workstation 20 the user 10 can also use a television, a cellular phone, a digital versatile disc (“DVD”) player, a personal digital assistant (“PDA”), a video game device, and the like, to view a user interface. FIG. 2 illustrates exemplary hardware that can be included in the workstation 20. As illustrated in FIG. 2, the workstation 20 includes a processor 40, a memory module 42, and an input/output module 44. The processor 40, the memory module 42, and the input/output module 44 are connected with a connection or bus 46. The processor 40 of the workstation 20 can include a microprocessor, an application specific integrated circuit (“ASIC”), or a combination thereof. In some embodiments, the processor 40 can be configured to fetch instructions and/or data from the memory module 42 via the bus 46 and execute the instructions to process the data. The memory module 42 can include non-volatile memory such as one or more forms of ROM, one or more disk drives, RAM, other memory, or combinations of the foregoing. FIG. 3 represents a diagram of a portion of the memory module 42 of the workstation 20. As illustrated in FIG. 3, the memory module 42 stores an enlargement application 50, a first image 52, and an enlarged version of the first image 54 (hereafter “second image”). In some embodiments, the second image 54 can include the first image 52 magnified or enlarged by a predetermined factor. For example, if the first image 52 is 350 pixels wide by 200 pixels high, the second image 54 can include the first image enlarged four times such that the second image 54 is 1400 pixels wide by 800 pixels high. In some embodiments, first image 52 is pre-generated from the second image 54. As described above, the first image 52 can include a subset of the pixels of the second image 54. For example, the first image 52 can include every fourth pixel of the second image 54. The first image 52 can also include average pixels of the second image 54, such as an average pixel for every four pixels of the second image 54. In some embodiments, the first image 52 can also be dynamically generated based on the second image 54 stored in the memory module 42. The processor 40 can be configured to retrieve the enlargement application 50, the first image 52, and the second image 54 from the memory module 42. In some embodiments, the processor 40 executes the enlargement application 50 to display the first image 52 and a portion of the second image 54 on the display 22. In the embodiment shown, the input/output module 44 is configured to receive and transmit data to peripherals (e.g., the display 22, the keyboard 24, and the cursor control device 26) connected to the workstation 20. The input/output module 44 transmits data to the display 22 to present the user interface 27 to the user 10. In some embodiments, the input/output module 44 transmits the first image 50 and a portion of the second image 54 as part of the user interface 27. The input/output module 44 also receives data from input peripherals, such as the keyboard 24 and/or the cursor control device 26. The data received from the input peripherals is used to position the cursor 28 displayed on the user interface 27. As previously described, the user 10 can use the input peripherals to indicate a desired position of the cursor 28. The input/output module 44 provides the received data to the processor 40 and/or the memory module 42. In some embodiments, the input/output module 44 receives and transmits data on a network (not shown) such as the Internet or a local area network (“LAN”). In some embodiments, the user 10, operating the workstation 20, generates a request to view the first image 52. The input/output module 44 transmits the request with the network to another device (e.g., a web server) connected to the network. The device receives the request and services the request by transmitting the first image 52 and the second image 54 to the workstation 20. In some embodiments, the device also transmits the enlargement application 50 to the workstation 20. The enlargement application 50 can include a hypertext mark-up language (“HTML”) page or file. The HTML file can include scripts or programs (e.g., JavaScript functions) that, when executed by the workstation 20 or a browser application executing on the workstation 20, displays the first image 52 and a portion of the second image 54 on the display 22 of the workstation 20. The enlargement application 50, or portions of the enlargement application 50 can also be previously stored to the memory module 42 of the workstation 20. The first image 52 and the second image 54 can also be previously stored to the memory module 42. Upon receiving the first image 52 and the second image 54, the input/output module 44 forwards the first image 52 and the second image 54 to the processor 40. The input/output module 44 can also forward the enlargement application 50, if received, to the processor 40. As previously described, the processor can execute the enlargement application 50 to display the first image 52 and a portion of the second image 54 on the display 22. The input/output module 44 can also forward the first image 52, the second image 54, and the enlargement application 50, if received, to the memory module 42. As described above, the processor 40 can fetch the enlargement application 50, the first image 52, and the second image 54 from the memory module 42. FIG. 4 illustrates an exemplary process of displaying the first image 52 and a portion of the second image 54 on the display 22. In some embodiments, the display process illustrated in FIG. 4 is performed with the workstation 20 executing the enlargement application 50. It should be understood that the process steps illustrated in FIG. 4 are exemplary in order and content, and the display process can be accomplished with a subset of the depicted steps or additional and alternative steps. As illustrated in FIG. 4, the process begins at start block 100. At block 105, the workstation 20 displays the user interface 27 on the display 22. The user interface 27 includes the first image 52 displayed at a first location on the user interface 27. The user interface 27 can also include the cursor 28. As noted above, the workstation 20 may execute the enlargement application 50 to generate and display the user interface 27. In some embodiments, the workstation 20 displays multiple versions of the first image 52. For example, each version of the first image 52 can represent an object from a particular angle, in a particular environment, and the like. The workstation 20 displays one or more of the versions of the first image 52 at the same time on the user interface 27. In some embodiments, the workstation 20 also swaps or changes the version of the first image 52 displayed with the user interface 27 based on the position of the cursor 28. The workstation 20 also displays a first version of the first image 52 for a predetermined amount of time before replacing the first version of the first image 52 with a second version. In some embodiments, the memory module 42 stores multiple pre-generated versions of the first image 52. The workstation 20 also dynamically generates multiple versions of the first image 52 based on one or more second images 54 stored in the memory module 42. At block 110, the workstation 20 determines a position of the cursor 28 displayed on the display 22. As previously described, the user 10 may use the keyboard 24, the cursor control device 26, and/or other input peripherals to indicate a position of the cursor 28. The keyboard 24, cursor control device 26, and/or other input peripherals receives input provided by the user 10 and transmits the input to the input/output module 44 of the workstation 20. The input/output module 44 forwards the input to the processor 40, and the processor 40 analyzes the input to determine a position of the cursor 28. Capturing and analyzing mouse and keyboard events are well-known functions and procedures and, therefore, are not discussed in further detail. After the workstation 20 determines a position of the cursor 28, the workstation 20 determines if the determined position of the cursor 28 overlaps with the first location of the first image 52 (block 115). In some embodiments, the first location of the first image 52 includes multiple positions on the user interface 27, and if the position of the cursor 28 is the same as a position included in the first location, then the position of the cursor 28 overlaps with the first location of the first image 52. If the workstation 20 determines that the position of the cursor 28 overlaps with the first location of the first image 52, the workstation 20 determines a portion of the second image 54 based on the position of the cursor 28 (block 120). As previously described, the second image 54 can include the first image 52 multiplied by a predetermined factor. The workstation 10 multiplies the position of the first image 52 that overlaps with the position of the cursor 28 by the predetermined factor to find a corresponding position of the second image 54. The portion determined by the workstation 20 can include a clipping or cropped portion of the second image 54 centered at the corresponding position of the second image 54. In some embodiments, the portion of the second image 54 can include a predetermined amount of pixels of the second image 54. For example, the portion can include 40,000 pixels (i.e., 200 pixels wide and 200 pixels high) of the pixels of the second image 54 centered at the corresponding position of the enlarged version of the first image 54. In some embodiments, the user interface 27 also provides an enlargement selector 122 (see FIG. 5). The user 10 operates the enlargement selector 122 to select a magnification or enlargement level for the second image 54. In some embodiments, the memory module 42 stores multiple enlarged versions of the first image 52 and the workstation 20 selects one of the enlarged versions based on an enlargement level indicated by the user 10 with the enlargement selector 122. For example, the memory module 42 can store enlarged versions of a first image that represent a first image multiplied or enlarged by a factor of 2, a factor of 4, and a factor of 8. After the workstation 20 determines a portion of the second image 54, the workstation 20 displays the portion of the second image 54 at a second location of the user interface 27 (block 125). In some embodiments, the second location does not overlap with the first location such that the first image 52 and the portion of the second image 54 do not overlap. However, the second location can overlap with the first location. In some embodiments, the second location of the portion of the second image 54 is based on the position of the cursor 28. For example, if the position of the cursor 28 is near a top portion of the first image 54, the portion of the second image 54 is displayed near a bottom portion of the first image 54 and vice versa. The portion of the second image 54 can also be displayed next to the position of the cursor 28 such that the second location of the portion of the second image 54 changes as the position of the cursor 28 changes. The workstation 20 can also determine and display multiple portions of the second image 54 or other enlarged versions of the first image 52. For example, the memory module 42 can store multiple enlarged versions of a first image. The multiple enlarged versions can represent an object viewed from a particular angle, in a particular environment, and the like. As described above, the multiple enlarged versions of a first image can also represent versions of the first image magnified or enlarged by various predetermined factors. In some embodiments, the workstation 20 determines multiple portions from multiple enlarged versions of a first image and displays the multiple portions at the same time on the user interface 27. The workstation 20 also determines multiple portions and displays one or more of the multiple portions depending on the position of the cursor 28. Furthermore, the workstation 20 can determine multiple portions and can display a first portion for a predetermined amount of time before replacing the first portion with a second portion. In some embodiments, the workstation 20 also displays an indication on the first image 52 at block 130 if the position of the cursor 28 overlaps with the first location of the first image 52. The indication specifies a portion of the first image 52 corresponding to the displayed portion of the second image 54. The indication can include a border or a shape that overlays the first image 52 and marks a portion or clipping of the first image 52 that corresponds to the magnified or enlarged portion displayed at the second location. In some embodiments, the indication is transparent such that the portion of the first image 52 under the indication can still be generally seen. In some embodiments, additional functionality is provided if the position of the cursor 28 overlaps with the first location of the first image 52. For example, parts of the user interface 27 are hidden such that they do not interfere with the portion of the second image 54 displayed at the second location. Parts of the user interface 27 can also disabled such that they cannot be used or activated while the portion of the second image 54 is displayed. Specific functionality can also be provided based on a particular position of the cursor 28. For example, the position of the cursor 28 can specify where one or more portions of the second image 54 should be displayed. The position of the cursor 28 can also specify characteristics of one or more enlargement regions or portions to display. For example, a particular position of the cursor 28 can cause a portion of a particular size to be displayed. After displaying the portion of the second image 54 and the indication, the workstation 20 returns to block 110 to determine a subsequent position of the cursor 28. In some embodiments, the workstation 20 determines a position of the cursor 28 whenever the position of the cursor 28 changes, and consequently, every change of position of the cursor 28 that overlaps with the first location also causes the workstation 20 to determine a different portion of the second image 54 to replace the previously displayed portion based on the new position of the cursor 28. If, however, after determining a position of the cursor 28, the workstation 20 determines that the position of the cursor 28 does not overlap with the first location of the first image 52, the workstation 20 then determines if a portion of the second image 54 is currently displayed on the user interface 27 (block 135). In some embodiments, a portion of the second image 54 should only be displayed when the position of the cursor 28 overlaps with the first location of the first image 52. If the previous position of the cursor 28 did overlap with the first location of the first image 52 but the current position of the cursor 28 does not overlap with the first location of the first image 52, the previously-determined portion of the second image is currently displayed. If the previously determined portion of the second image 54 is currently displayed, the workstation 20 hides the previously determined portion of the second image 54 such that no portion of the second image 54 is displayed (block 140). The workstation 20 also hides the corresponding indication on the first image 52 (at block 145) if the previously determined portion is displayed. After hiding the previously determined portion of the second image 54 and the corresponding indication on the first image 52, the workstation 20 returns to block 110 to determine a subsequent position of the cursor. In some embodiments, the workstation 20 may performs additional functionality if the position of the cursor 28 no longer overlaps with the first location. For example, the workstation 20 can unhide or reactivate parts of the user interface 27 that were previously hidden or deactivated when the position of the cursor 28 did overlap with the first location. Alternatively, if the position of the cursor 28 does not overlap with the first location of the first image 52, and the workstation 20 determines that a portion of the second image 54 is not currently displayed (block 135) (i.e., the previous position of the cursor also did not overlap with the first location of the first image 52), the workstation 20 returns to block 110 to determine a subsequent position of the cursor. In some embodiments, the user interface 27 includes an enlargement on/off toggle 150 (see FIG. 5). The user 10 operates the enlargement on/off toggle 150 to specify whether the workstation 20 should display a portion of an enlarged version of a first image as described above. For example, when the enlargement on/off toggle 150 is set to “OFF,” a portion of an enlarged version of a first image is not displayed on the user interface 127 regardless of the position of the cursor 28. In some embodiments, the setting of the enlargement on/off toggle 150 relates to all images displayed with the user interface 27. The enlargement on/off toggle 150 can also be related to a single image, and a separate enlargement on/off toggle 150 can be supplied for each image displayed with the user interface 27. FIG. 5 illustrates an exemplary screen shot 200 of the user interface 27 displayed on the display 22. The screen shot 200 illustrates the first image 52 displayed at a first location of the user interface 27. The screen shot 200 also illustrates the cursor 28. FIG. 5 illustrates a state of the user interface 27 where the position of the cursor 28 does not overlap with the location of the first image 52 and a portion of the second image 54 is not displayed. FIG. 5 also illustrates an exemplary enlargement selector 122 and an exemplary enlargement on/off toggle 150. FIG. 6 illustrates another exemplary screen shot 210 of the user interface 27. The screen shot 210 also illustrates the first image 52 displayed at a first location and the cursor 28. In some embodiments, as illustrated in FIG. 6, the shape and/or size of the cursor 28 changes when the position of the cursor 28 overlaps with the first location of the first image 52. For example, the cursor 28 can take the form of a point to decrease the amount of the first image 52 that is blocked by the cursor 28. In contrast to screen shot 200 of FIG. 5, however, the screen 210 illustrates a state of the user interface 27 where the position of the cursor 28 overlaps with the first location of the first image 52 and a portion 212 of the second image 54 is displayed. The screen shot 210 also illustrates an indication 214 (in the form of a square grid) displayed on the first image 52. As described above, the indication 214 specifies or defines a portion of the first image 52 that is magnified or enlarged and displayed with the portion 212. FIG. 7 illustrates another exemplary screen shot 220 of the user interface 27. Similar to the screen shots 200 and 210, the screen shot 220 illustrates the first image 52 displayed at a first location and the cursor 28. The screen shot 220 also illustrates a state of the user interface 27 where the position of the cursor 28 overlaps with the first location of the first image. The position of the cursor 28 illustrated in FIG. 7, however, is different from the position of the cursor 28 illustrated in FIG. 6, and, subsequently, the screen shot 220 illustrates a different portion 222 of the second image 54 displayed at a second location. As previously described, the portion 222 differs from the portion 212 illustrated in FIG. 6 since the portion to be displayed by the workstation 20 depends on the position of the cursor 28. The center point or position of the portion 212 corresponds to the position of the cursor 28 on the first image 52, which is on the heel of one of the boots, as illustrated in FIG. 6. Likewise, the center point or position of the portion 222 corresponds to the position of the cursor 28 on the first image, which is on the top of the zipper of one of the boots, as illustrated in FIG. 7. The screen shot 220 also illustrates an indication 224 that specifies a portion of the first image 52 that corresponds to the displayed portion 222. Various features and advantages of the invention are set forth in the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>Embodiments of the invention relate to methods and systems for displaying a portion of an enlarged version of an image. In particular, embodiments of the invention relate to methods and systems for displaying a portion of an enlarged version of an image based on the position of a cursor. Users of the Internet or other networks such as a local area network (“LAN”) or a wide area network (WAN) often obtain and view images on a workstation. In some situations, a user may want to view an enlarged version of an image. Viewing a magnified or enlarged image can allow a user to view details and features of an image that may otherwise be difficult to see. An enlarged version of an image can be used to display texture, color, workmanship detail, and the like, and are often used by sellers to provide additional information to potential customers. Although some web sites or web pages provide enlarged versions of images, users typically do not have control over how an enlarged image is displayed. For example, an image displayed on a web page may include two features and the web page may only provide an enlarged version of the image displaying only one of the two features. Users are generally not provided with tools to specify a particular portion of an image to view as an enlarged image. | <SOH> SUMMARY OF THE INVENTION <EOH>Accordingly, embodiments of the invention provide a method of displaying an enlarged image on a display. In one embodiment, the display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The method includes providing a first image, providing an enlarged version of the first image, and displaying the first image at a first location on the display. The method also includes determining a position of the cursor and, if the position of the cursor overlaps with the location of the first image, determining a portion of the enlarged version of the first image. The portion of the enlarged version of the first image is determined based on the position of the cursor. The method further includes displaying the portion of the enlarged version of the first image at a second location on the display. Another embodiment provides a computer-readable medium including instructions for displaying an enlarged image on a display. The display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The computer-readable medium includes instructions for providing a first image, providing an enlarged version of the first image, and displaying the first image at a first location on the display. The computer-readable medium also includes instructions for determining a position of a cursor and, if the position of the cursor overlaps with the location of the first image, determining a portion of the enlarged version of the first image. The portion of the enlarged version of the first image is determined based on the position of the cursor. The computer-readable medium further includes instructions for displaying the portion of the enlarged version of the first image at a second location on the display. Additional embodiments provide a system for displaying an enlarged image on a display. The display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The system includes a first image, an enlarged version of the first image, and an application. The application is configured to display the first image at a first location on the display. The application is also configured to determine a position of the cursor and, if the position of the cursor overlaps with the first location of the first image, to determine a portion of the enlarged version of the first image based on the position of the cursor. Furthermore, the application is configured to display the portion of the enlarged version of the first image at a second location on the display. Yet another embodiment provides a system for displaying an enlarged image on a display. The display is configured to be connected to a device that generates a user interface in which a user may control a position of a cursor. The system includes a memory configured to store a first image, an enlarged version of the first image, and an enlargement application. The system also includes a processor configured to execute the enlargement application. The enlargement application is configured to display the first image at a first location on the display. The enlargement application is also configured to determine a position of a cursor and, if the position of the cursor overlaps with the location of the first image, to determine a portion of the enlarged version of the first image. Furthermore, the enlargement application is configured to determine the portion of the enlarged version of the first image based on the position of the cursor and to display the portion of the enlarged version of the first image at a second location on the display. Other features and advantages of embodiments of the invention will become apparent to those skilled in the art upon review of the following detailed description and drawings. | 20041231 | 20100810 | 20060706 | 63098.0 | G06F900 | 9 | CHAUDHURI, ANITA | METHODS AND SYSTEMS FOR DISPLAYING AN ENLARGED IMAGE | SMALL | 0 | ACCEPTED | G06F | 2,004 |
|
11,027,991 | ACCEPTED | Light deflector and rear-projection screen | The presented invention relates to a light deflector. The light deflector defining a light-incident side and a light-exiting side, the deflector comprising a plurality of reflector (42) arranged side-by-side in a predetermined orientation, each reflector having, a first reflection face (42A), provided on the deflector light-incident side, for reflecting incident light so as to focus the light, and a second reflection face (42B), provided on the deflector light-exiting side, for reflecting light reflected by the first reflection face of an adjacent reflection means (42). In accordance with the present invention, light utilization efficiency can be raised. | 1. A light deflector defining a light-incident side and a light-exiting side, the deflector comprising: a plurality of reflector arranged side-by-side in a predetermined orientation, each reflector having a first reflection face, provided on the deflector light-incident side, for reflecting incident light so as to focus the light, and a second reflection face, provided on the deflector light-exiting side, for reflecting light reflected by the first reflection face of an adjacent reflector, the plurality of reflector being arranged so that incident light reflected by the first reflection face of one of the plural reflector is reflected by the second reflection face of another reflector adjacent to the one of the reflector. 2. A light deflector as recited in claim 1, wherein in each reflector a component on which the first reflection face is provided and a component on which the second reflection face is provided are integrally composed. 3. A light deflector as recited in claim 2, wherein the first reflection face and the second reflection face on each reflector are in a front/back relationship. 4. A light deflector as recited in claims 1, wherein: the shape of each first reflection face, in cross-section through the deflector along the predetermined orientation is a portion of a quadratic curve having a focal point, and the peak of the quadratic curve is directed towards the light-exiting side. 5. A light deflector as recited in claim 4, wherein: the shape of each second reflection face, in cross-section through the deflector along the predetermined orientation is a portion of a quadratic curve having a focal point, and the peak of the quadratic curve is directed towards the light-incident side, and the focal point of the quadratic curve corresponding to each second reflection face lies at the same point as the focal point of the quadratic curve corresponding to its adjacent first reflection face. 6. A light deflector as recited in claim 5, wherein the cross-sectional shape that the first reflection face has, or the cross-sectional shape that the second reflection face has is a portion of a parabolic curve. 7. A light deflector as recited in claim 5, wherein the cross-sectional shape that the first reflection face has, or the cross-sectional shape that the second reflection face has is a portion of an elliptic curve. 8. A rear-projection screen comprising: a light deflector as recited in claims 1; and a light transmitter, having a face that is approximately perpendicular to the optical axis of incident light, for selectively transmitting the incident light through the face. 9. A rear-projection screen comprising: a plurality of light deflectors as recited in claims 1, in which pluralities of the reflector are present extending along a direction perpendicular to the predetermined orientation, wherein: the light deflectors in the plurality are adjacently arranged so that the light-exiting side of one light deflector and the light-incident side of another light deflector face onto each other, and the one light deflector is arranged in such a way that the focal line defined by the focal points of the first or second reflection faces of each reflector in that light deflector is rotated relative to the focal line of the other light deflector by a predetermined angle around an axis parallel to the orientation in which light-exiting and light-incident sides face on each other. 10. A rear-projection screen as recited in claim 9, wherein said plurality of light deflectors numbers two, and the predetermined angle is 90 degrees. 11. A rear-projection screen as recited in claim 9, wherein the rear-projection screen has, on the incident-light side of the one light deflector, a face approximately perpendicular to the optical axis of light incident into every point on the screen, and a light transmitter selectively transmitting the incident light through the face. | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to light deflectors that change the traveling direction of light projected from behind, and to rear-projection screens. 2. Description of the Related Art A conventional rear-projection screen is configured in such a way that the light exiting face of a Fresnel lens sheet provided with circular Fresnel lenses and the light incident face of a lenticular lens sheet straightly and vertically provided with cylindrical lenses (the vertical orientation along the screen) are faced closely each other (for example, Patent Document 1). Another conventional rear-projection screen, which includes three lens sheets, that is, a lenticular lens sheet having cylindrical lenses that are straightly and vertically provided on both the light incident and light exiting face sides, a linear Fresnel lens sheet having Fresnel lenses that is straightly and horizontally provided (the horizontal orientation along a screen) on its light exiting face, and a circular Fresnel lens sheet having circular Fresnel lenses on its light exiting face, is configured in such a way that the lenticular lens sheet, the linear Fresnel lens sheet, and the circular Fresnel lens sheet are arranged in this order from a viewer side (for example, Patent Document 2). Moreover, another conventional rear-projection screen, in order to reduce light losses, is composed of a set of, a prism piece in which a part of an incident light beam through one of its lens faces exits after having fully reflected on another lens faces, and a prism piece in which an incident light beam through its lens face exits after refracting; two kinds of these prism pieces are arranged so as to be alternately placed over the entire sheet (for example, Patent Document 3). Moreover, another conventional rear-projection screen is, in order to reduce light losses in lenticular lenses, composed of a lens sheet having, a lens layer in which a plurality of unit lenses that can emits light from their light exit portions after a part of incident light being fully reflected by their fully reflecting portions are arranged one-dimensionally or two-dimensionally on the light exit portion, and a reflection reducing layer, in which light beams from its light incident portion are reflected and light beams from its light exit portion are reduced, provided on the fully reflecting portions for example, Patent Document 4). Furthermore, in another conventional rear-projection screen, a light absorber is formed, which has a function for reducing light from outside and ghost light that travel obliquely in the screen (for example, Patent Document 5). [Patent Document 1] Japanese Laid-Open Patent Publication 196,422/2002 (on page 6, FIG. 2) [Patent Document 2] Japanese Laid-Open Patent Publication 64,189/1995 (on page 11, FIG. 2) [Patent Document 3] Japanese Laid-Open Patent Publication 52,601/1986 (on page 5, FIG. 4) [Patent Document 4] Japanese Laid-Open Patent Publication 311,211/2002 (on page 9, FIG. 3) [Patent Document 5] U.S. Pat. No. 5,254,388 (Sheet 1 of 2, FIG. 1) SUMMARY OF THE INVENTION However, in the Fresnel lens and cylindrical lens of the rear-projection screen as described above, because a light traveling direction is changed using their refraction, the chromatic aberration due to the refractive index or wave-length dispersion of the materials that compose the lens occurs. Therefore, a problem has been that, when images projected through the rear-projection screen are viewed, the color of the images varies depending on positions (angles) where a viewer views the images. In the refraction faces of the Fresnel lens and cylindrical lens, because reflected light as well as the refracted light are necessarily generated, light passing through the rear-projection screen is reduced. Therefore, a problem has occurred in which clearness of the images is lost by ghost light or stray light generated due to the reflected light, and thereby the projected images become dark. Moreover, in a case in which the Fresnel lens is composed of a refraction prism, when the angle between the light projected direction by a projecting means and the direction perpendicular to the projection face of the screen (hereinafter referred to as a projection angle or a projected angle) is equal to or smaller than 40 degrees, the screen transmittance for the projected light can be maintained at more than 85%; however, when the projection angle exceeds 40 degrees, because the projected light reflected on the refraction face increases, and the transmitted light-beam intensity decreases in accordance with the screen transmittance decreasing, images especially in the perimeter portion of the screen become dark, and the clearness of the projected images is also lost due to the stray light reflected on the refraction face increasing. Furthermore, in a case in which the Fresnel lens is composed of a fully reflecting prism, although light losses on the refraction face are reduced, it can be used only under the condition that the projection light is projected at as a sharp angle as 45 degrees or over. Therefore, it has been difficult to design the light projection means. In addition, because incident faces of prism patterns of the fully reflecting prism are refractive, on the refraction faces, stray light and ghost light have sometimes occurred. If the lenticular lens sheet is composed of a reflection prism provided on the exiting face side and a transparent sheet, light must not return from the exiting face to the incident face side. However, in order to allow the light not to return to the incident face side, the shape of the reflection prism adopted is limited; therefore, it has been difficult to obtain diffusion characteristics needed for the lenticular lens sheet. Moreover, in order to prevent the ghost light, if a blind-type light absorbing sheet is used, light losses, due to a thickness effect thereof, occur; consequently, there has been a problem in that the entire screen becomes dark. Accordingly, an objective of the present invention, which has been made to solve the foregoing problem, is to provide a light deflector and a rear-projection screen that can display clear images over the entire screen by light utilization efficiency being raised through a simple structure, and an effect of ghost light or stray light being prevented. A light deflector according to the present invention includes: a plurality of reflection means arranged side-by-side in a predetermined orientation having a first reflection face, provided on the light-incident side, for reflecting light so as to focus the light, and a second reflection face, provided on the exiting side, for reflecting light reflected by the first reflection face, the plurality of reflection means being arranged so that light reflected by the first reflection face of one of the plural reflection means is reflected by the second reflection face of another reflection means adjacent to the one of the reflection means. As described above, according to the light deflector and the rear-projection screen of the present invention, because reflected light is generated extremely less than that in conventional rear-projection screens, light utilization efficiency can be raised; consequently, clear images can be displayed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view illustrating a rear-projection screen according to Embodiment 1 of the present invention; FIG. 2 is an explanatory view for explaining a case in which the rear-projection screen according to Embodiment 1 of the present invention is viewed from a light projection means side; FIG. 3 is a magnified cross-sectional view illustratively magnifying a cross-section along the Y-axis of the rear-projection screen according to Embodiment 1 of the present invention is viewed; FIG. 4 is an explanatory view for explaining in detail the constitution of a light deflector in the rear-projection screen according to Embodiment 1 of the present invention; FIG. 5 is an explanatory view for explaining a manufacturing method for the light deflector in the rear-projection screen according to Embodiment 1 of the present invention; FIG. 6 is a side view illustrating a rear-projection screen according to Embodiment 2 of the present invention; FIG. 7 is an explanatory view for explaining a first lens sheet and a second lens sheet that compose the rear-projection screen according to Embodiment 2 of the present invention; FIG. 8 is a magnified cross-sectional view illustratively magnifying a part of a cross-section of the first lens sheet that composes the rear-projection screen according to Embodiment 2 of the present invention; FIG. 9 is a magnified cross-sectional view magnifying and illustrating a cross-section of a part of the second lens sheet that composes the rear-projection screen according to Embodiment 2 of the present invention; FIG. 10 is a side view illustrating a rear-projection screen according to Embodiment 3 of the present invention; FIG. 11 is an explanatory view for explaining a case in which a first lens sheet, a second lens sheet, and a Fresnel lens sheet that compose the rear-projection screen according to Embodiment 3 of the present invention are viewed from the viewer side; FIG. 12 is a magnified cross-sectional view illustratively magnifying a cross-section of a part of the rear-projection screen according to Embodiment 3 of the present invention; FIG. 13 is an explanatory view for explaining incident positions of incident light in the rear-projection screen according to Embodiment 3 of the present invention; FIG. 14 is an explanatory view for explaining light traveling directions before and after the light is incident at a light incident position on the rear-projection screen according to Embodiment 3 of the present invention; and FIG. 15 is an explanatory view for explaining light incident angles and light traveling angles after the light is incident on the rear-projection screen according to Embodiment 3 of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a side view illustrating a rear-projection screen 2 according to Embodiment 1. In FIG. 1, light projected from a light projection means 1 (hereinafter referred to as projected light) spreadingly travels toward the rear-projection screen 2 along the light traveling direction (L1 in FIG. 1). Thereby, an image projected by the light projection means 1 is enlarged and projected onto the rear-projection screen 2. The rear-projection screen 2 is composed of a light deflector 4 and a lenticular lens sheet 3; thus, the light projected from the light projection means 1 is at first incident on the light deflector 4. Here, in the following explanation, light being incident on elements such as the light deflector 4 and the lenticular lens sheet 3 that compose the rear-projection screen 2 is referred to as incident light, while light exiting from the elements is referred to as exiting light. A face on which the incident light is incident is referred to as an incident face, while a face from which the light exits is referred to as an exiting face. Moreover, explanations will be made, providing the light projection means 1 and the rear-projection screen 2 are placed in air. The light deflector 4 changes the traveling direction of the incident light, and emits from the exiting face the exiting light that travels approximately in parallel with the normal direction. Then, the light exiting from the exiting face of the light deflector 4 is incident on the lenticular lens sheet 3. The incident light that has been incident on the lenticular lens sheet 3, to which horizontal and vertical directivities suited for its application such as a projection type TV are given, exits from the exiting face of the lenticular lens sheet 3 as exiting light. A viewer (not illustrated) views the exiting light from the exiting face of the lenticular lens sheet 3; as a result, the viewer can view the image projected by the light projection means 1. FIG. 2 is an explanatory view for explaining the rear-projection screen 2 viewed from the side of the light projection means 1. As illustrated in FIG. 2, when the rear-projection screen 2 is viewed from the side of the light projection means 1, the light deflector 4 is seen in the viewer side. In the light deflector 4, a reflection means (a reflection means 42 described later) for deflecting the incident light is formed along concentric circles M1 in FIG. 2. That is, the concentric circles M1 represent extending orientations of the cylindrical reflection means provided in the light deflector 4. Here, a plurality of the concentric circles illustrated in FIG. 2 each is denoted as symbol M1 in the following explanation. Moreover, the repeating period of the reflection means 42 in the light deflector 4, that is, the interval of symbol M1, is made sufficiently short. Specifically, it must be set shorter than a pixel size on the screen. For example, in XGA (extended graphics array), because the number of the pixels in the screen vertical orientation is 768 pixels, when the height of the screen is 1 m, the vertical length per pixel becomes approximately 1.3 mm. Therefore, in this case, the interval must be shorter than at least 1.3 mm; practically, the interval of the symbol M1 is preferably made approximately from 0.05 mm to 0.5 mm. FIG. 3 illustrates a magnified cross-sectional view in which a cross-section along the Y-axis of the light deflector 4 is viewed from the X-axis direction. In FIG. 3, the incident light that is incident from the Z-axis direction at a predetermined angle θV with respect to the Z-axis illustrated in FIG. 3, is deflected, after having passed through a transparent sheet, by being reflected on the reflection means 42, and passes through the light deflector 4. Here, symbols L1-L5 in FIG. 3 represent light traveling directions on the path until the incident light exits from the light deflector 4 as exiting light. Specifically explaining, symbol L1 denotes a light traveling direction of the projected light (incident light), symbol L2 denotes a light traveling direction traveling in the transparent sheet 41, symbol L3 denotes a traveling direction of light reflected by the reflection means 42, symbol L4 denotes a light traveling direction in which the light reflected by the reflection means 42 is re-reflected by the other reflection means 42 that is placed adjacent to one another, and symbol L5 denotes a light traveling direction of the exiting light. Here, because symbol L3 differs depending on which position on the reflection means 42 the traveling light along symbol L2 has been reflected, a plurality of symbols L3 practically exists; however, in FIG. 3, one of the plurality of symbols L3 is represented as an example. Here, the configuration of the light deflector 4 is explained. In the light deflector 4, the transparent sheet 41 is formed on the incident face, and a light deflecting portion 40 is formed on the transparent sheet 41. In the light deflecting portion 40, a plurality of the reflection means 42 is provided along the Y-axis in FIG. 3, and a space between the adjacent reflection means 42 is filled with transparent material 43. Moreover, the reflection means 42 are arranged along the concentric circles M1 in FIG. 2. Here, as the transparent sheet 41, any transparent material may be used as far as the incident light can pass therethrough, and the thickness of the sheet is not especially limited. For example, in a case in which an acrylate or a PET (poly(ethylene terephthalate)) film having thickness from 100 μm to 300 μm is used, because a flexible film can be obtained, the rear-projection screen 2 that is lightweight, safe and crack-proof can be obtained. Moreover, for example, acrylic sheet material having thickness approximately from 1 mm to 3 mm may be used; in this case, because the rigidity of the light deflector 4 can be increased, a screen that is easy-to-maintain its planarity without giving any tension can be obtained. As described above, the thickness of the transparent sheet 41 may be suitably selected in accordance with a method for supporting the rear-projection screen 2. Here, the incident angle θV at which the incident light is incident on the light deflector 4 becomes different values depending on the radii of the concentric circles M1, because the angle of the projected light traveling direction L1 with respect to the Z-axis in the figure distributes in a specified range determined by the optical design of the light projection means. FIG. 1 represents an example when the incident angle θV is in the range from 20 degrees to 70 degrees. Here, if the projected light traveling direction, that is, the direction L1 differs, the traveling direction L2 of the light having passed through the transparent sheet 41 also differs. FIG. 4 represents a magnified cross-section view in which the view in FIG. 3 is further magnified, and an explanatory view for explaining in detail the configuration of the light deflector 4. Symbols (a) and (b) in FIG. 4 represent cases in which the incident angles θV are different, that is, each of the cross-sectional shapes of the reflection means 42 provided at different positions on the light deflector 4 in the Y-axis of FIG. 3 is illustrated. Here, arrows R in the figure represent, by tracing light rays, light traveling paths in the light deflector 4. FIG. 4(a) represents a magnified cross sectional view of the light deflector 4 at the position on which the incident light corresponding to an incident angle of θV=30 degrees is incident in the light deflector 4. The reflection means 42 is composed of a first reflection face 42A and a second reflection face 42B, and the reflection faces 42A and 42B become different reflection faces, being divided by an imaginary boundary B. Specifically explaining, the first reflection face 42A is provided in the left side of the imaginary boundary B (hereinafter referred to as a light incident side, or an incident face side), and its cross-sectional shape is a part of a first parabola with a first axis that is approximately in parallel with L2. Meanwhile, the second reflection face 42B is provided in the right side of the imaginary boundary B (hereinafter referred to as a light exiting side, or an exiting face side), and its cross-section shape is a part of a second parabola with a second axis that is approximately in parallel with the normal direction of the exiting face. Furthermore, both the focal point of the first parabola corresponding to the first reflection face 42A and the focal point of the second parabola corresponding to the second reflection face 42B lie at F1 in FIG. 4. Here, in the following explanation, symbol F1 is referred to as a focal point F1. In Embodiment 1, although an example is explained, in which the cross-sectional shape of the first reflection face 42A and the cross-sectional shape of the second reflection face 42B each are a part of a parabola, the cross-sectional shape of each of the reflection faces 42A and 42B needs only to be a part of any quadratic curve having a focal point; therefore an ellipse, hyperbola, etc., other than a parabola may be also adopted. Moreover, the quadratic curve corresponding to the first reflection face 42A and the secondary curve corresponding to the second reflection face 42B does not need to be the same secondary curve. Here, because the focal point F1 is formed in such a way that the reflection means 42 lies along the concentric circles M1, the focal point F1 lies at a position on a focal line in parallel with the concentric circles M1. Moreover, the shape of the first reflection face 42A and the shape of the second reflection face 42B, which lie extendedly along the concentric circles M1, are a part of a paraboloid having the focal line. In FIG. 4(a), the front of the incident face is in air, and the incident face of the light deflector 4 is made of acrylic material, etc., so that the refractive index differs between the front and back of the boundary face (incident face); therefore, the incident light on the light deflector 4 along L1, when it is incident on the light deflector 4, refracts according to Snell's law. Consequently, the traveling direction of the incident light, when it is incident on the light deflector 4, changes from L1 to L2. The light having been refracted to the L2 direction is incident on the transparent material 43 in the light deflecting portion 40 through the transparent sheet 41. Here, as described above, the transparent sheet 41 is made of a resin film such as an acrylate or PET film, and the refractive index is approximately 1.5; therefore, the light refractivity at the boundary face between the transparent sheet 41 and the transparent material 43 can be decreased by the transparent material 43 being made of a transparent material such as UV-curable resin having a refractivity of approximately 1.5. Thus, the light having exited from the transparent sheet 41 is incident on the transparent material 43 being refracted little. The light having passed through the transparent material 43 travels along L2 that is approximately in parallel with the first axis, and is reflected by the reflection face 42A in the reflection means 42. Because the light reached the first reflection face 42A is light from L2 that is approximately in parallel with the first axis, and the cross-sectional shape of the first reflection face 42A is the parabola whose axis is the first axis, the light reflected by the first reflection face 42A travels while focusing towards the focal point F1. Then, the light having passed through the focal point F1 is reflected by the second reflection face 42B of another means 42 that is placed adjacent to each other in the light deflecting portion 40, and exits from the exiting face to the direction that is approximately in parallel with L5. On the other hand, FIG. 4(b) illustrates a magnified view of a cross section of the light deflector 4 at the position on which the incident light corresponding to an incident angle of θV=60 degrees is incident in the light deflector 4. The gradient, shape, and interval etc. of the reflection means 42 in the light deflector 4 are varied in accordance with the incident angle θV. Specifically explaining, in a case in which the first reflection face 42A in FIG. 4(b) is formed using the same parabola as the first parabola in FIG. 4(a), the shape of the first reflection face 42A becomes a part of a parabola in which the first parabola is rotated anti-clockwise centering the focal point F1 in such a way that the angle between the first axis corresponding to the first parabola and the Z-axis in the figure becomes 60 degrees. Here, the focal point of the first parabola and the focal point of the second parabola, independent from the value of the incident angle θV, are made to come to the same position. In FIG. 4(b), incident light on the light deflector 4 along the L1 direction, whose incident angle with respect to the Z-axis is made at 60 degrees, which is approximately the same angle as the incident angle θV, is refracted on the incident face as with the case represented in FIG. 4(a), and travels in the transparent sheet 41 and the transparent material 43 along the L2 direction. The light having traveled in the transparent material 43 reaches the second reflection face 42B of another adjacent reflection means 42, while it is being focused by the reflection by the first reflection face 42A in the reflection means 42. The light having reached the second reflection face 42B is reflected by the second reflection face 42B and then travels in the transparent material 43 along the L4 direction. Then, the light having traveled in the transparent material 43 along the L4 direction exits in the L5 direction that is approximately in parallel with the L4 direction, that is, approximately the same direction as the normal direction of the exiting face of the light deflector 4. As explained above, the light that is incident at different incident angles θV on the light deflector 4, being deflected in the light deflecting portion 40 of the light deflector 4, exits from the exiting face in the direction approximately in parallel with the normal of the exiting face, and then is incident on the lenticular lens sheet 3. The lenticular lens sheet 3 using cylindrical lenses, etc. used in a conventional rear-projection screen expands the directivity of the exiting light in the right/left and top/bottom orientations over the entire screen, by changing the traveling direction of the incident light on the lenticular lens sheet 3 utilizing light refractivity, diffusion, etc. In a Fresnel lens sheet, using a refractive prism, which is used in a conventional rear-projection screen, when the (incident) light having an incident angle of θV=60 degrees is incident, the transmittance in which the incident light is transmitted through the Fresnel lens sheet is approximately 70%. Moreover, in a Fresnel lens sheet using a fully reflecting prism, when incident light having an incident angle of θV=30 degrees is incident, the transmittance is approximately 55%. Therefore, in the above described conventional Fresnel lens sheet, when light is obliquely projected in such a way that the incident light having an incident angle of θV is incident, the light losses are increased or decreased in response to the change in the incident angle θV of the incident light. Therefore, it is difficult that the entire screen is displayed with uniform brightness. However, according to the light deflector 4 in Embodiment 1, although reflection occurs on the incident face, because any refractive face does not exist in other portions thereof unnecessary refraction or reflection does not occur. Therefore, it is possible to make the transmittance approximately from 85% to 90% regardless of the incident angle θV. Therefore, image can be displayed with uniform brightness over the entire screen. Here, the incident angle θV may be in the proximity of zero degree, or equal to or more than 60 degrees. That is, the incident angle θV may be arbitrarily determined within an appropriate range, according to the optical design of the light projection means 1, and cabinet constitution and the like of equipment such as a projection type TV, etc. In the light deflector 4 according to Embodiment 1, although a part provided with the first reflection face 42A and a part provided with the second reflection face 42B, which compose the reflection means 42, are unified, that is, provided on a unified member, as far as the first parabola focal point and the second parabola focal point that correspond to the reflection faces 42A and 42B, respectively stay at the same position, both the reflection faces do not need to be provided on the unified member, and they can be separated astride the boundary B. Moreover, the reflection means 42 may be formed using reflective materials such as a metal thin film made of aluminum, gold, silver, etc. Then, when a metal thin film is used for the reflection means 42, both the front and back faces of the metal thin film function as not only reflecting mirrors but also blinds for shielding the light so that light does not penetrate from the adjacent regions. Here, because the thickness of the metal thin film constituting the reflection means 42 may be made so that the reflectivity becomes sufficiently high (specifically, the thickness may be not less than 50 nm or not more than 1 μm), light losses at the edges of the light absorbing portion according to the conventional rear-projection screen are decreased. Moreover, by making the repeating intervals of the reflection means 42 shorter than a pixel size displayed, adjacent pixels are prevented from being mixedly displayed. In the light deflector 4 according to the present invention, refractive faces do not substantially exist except for the incident face as described above. Therefore, any ghost light cannot occur, which is caused by reflected light generated on a refractive face, as in a conventional Fresnel lens sheet, and travels into the adjacent region. As described above, according to the light deflector 4 in Embodiment 1, because the refractive faces do not substantially exist except for the incident face, light losses can be significantly reduced. Moreover, light penetrated from the adjacent regions can be shielded by the reflection means 42. Therefore, any ghost light cannot occur, which is caused by reflected light on a refractive face, as in a conventional Fresnel lens sheet, and travels into the adjacent region; and because the projected image is blur free, etc., the clear image can be displayed over the entire screen. FIG. 5 is an explanatory view for explaining an example of manufacturing method for the light deflector 4 according to Embodiment 1. FIG. 5(a) and FIG. 5(b) are explanatory views for explaining a process of the manufacturing method for the light deflector 4. In the steps of manufacturing the light deflector 4, transparent sections 431 having a shape as represented in FIG. 5(a) are firstly formed on the transparent sheet 41 using a transfer die (not illustrated), etc. Next, metal such as aluminum, gold, or silver (not illustrated) is heated by a heater H, and metal atoms A are selectively emitted through a slit S onto a face 430 on the transparent section 431; then, a metal thin film (reflection means) 42 having a thickness of equal to or more than 50 nm is formed on the face 430 of the transparent section 431. Here, the metal thin film can be formed by an evaporation method, a sputtering method, etc. Then, as represented in FIG. 5(b), transparent material such as UV-curable resin is cast so as to fill the spaces between transparent sections 431 and metal thin films 42 formed on faces 430 of the transparent sections 431, and the transparent material is cured so that the exiting faces are formed approximately in parallel with the incident faces; thus, transparent sections 432 are formed. Moreover, by making the refractive index of the transparent section 431 approximately equal to the refractive index of the transparent section 432, and also maintaining the surface (interface) of the transparent section 431 clean during the manufacturing processes, unified transparent sections 43 including the reflection means 42 can be practically formed eliminating the effect of broken line in the figure. Moreover, in a case in which the reflection means 42 is formed by the metal thin film, reflectivity deterioration due to scratching or oxidation in the metal thin film can be prevented by the face of the reflection means 42 being covered with the transparent material 43. Embodiment 2 FIG. 6 is a side view illustrating a rear-projection screen according to Embodiment 2. In FIG. 6, light projected from the light projection means 1 travels spreadingly along the light traveling direction (L1 in FIG. 6) towards a rear-projection screen 22. Here, in this embodiment, the same numerals are given to elements that are included in the same configurations as those explained in Embodiment 1, and their explanations will be omitted. The rear-projection screen 22 according to Embodiment 2 is configured in such a way that a first lens sheet 5 and a second lens sheet 6 are adjacently arranged and supported by a screen supporting frame (not illustrated), etc. The light projected from the light projection means 1 is at first incident on the second lens sheet 6. The rear-projection screen 22 gives uniform directivity over the entire screen in response to the light projected from the light projection means 1 onto the rear-projection screen 22, and emits light as exiting light. FIG. 7 is an explanatory view for explaining the first lens sheet 5 and the second lens sheet 6 that compose the rear-projection screen 22. FIG. 7(a) is an explanation view for explaining a case in which the first lens sheet 5 is viewed from the Z-axis, that is, from the viewer side; FIG. 7(b) is an explanation view for explaining a case in which the second lens sheet 6 is viewed from the viewer side; and FIG. 7(c) is an explanation view for explaining the center line of the horizontal orientation (X-axis) in the first lens sheet 5, and the center line of the vertical orientation (Y-axis) in the second lens sheet 6. In the first lens sheet 5 illustrated in FIG. 7(a), a plurality of lines M2 in parallel with the X-axis represents the longitudinal orientation (extending orientation) of a cylindrical reflection means (reflection means 52 described later) that is provided on the first lens sheet 5. Similarly, in FIG. 7(b), a plurality of lines M3 in parallel with the Y-axis represents the longitudinal orientation (extending orientation) of a cylindrical reflection means (reflection means 62 described later) that is provided on the second lens sheet 6. Here, both intervals between M2 lines and between M3 lines may be made shorter than a pixel size on the screen, similarly to those in the light deflector 4 in Embodiment 1. FIG. 8 is a magnified cross-sectional view illustratively magnifying a case in which cross sections in parallel with the Y-axis at a position P3 and a position P4 on the first lens sheet 5 illustrated in FIG. 7(a) each are viewed from the X-axis direction. FIG. 8(a) illustrates the cross section in parallel with the Y-axis at the position P3, while FIG. 8(b) illustrates the cross section in parallel with the Y-axis at the position P4. Moreover, in FIG. 8, the incident light is incident from the direction opposite to the Z-axis, that is, from the left side, and exits towards the Z-axis direction (the right side). At the position P3, as illustrated in FIG. 8(a), the incident light is incident on the first lens sheet 5, at an angle of 30 degrees with respect to the Z-axis. Here, FIG. 8(a) represents a case in which a shape of the reflection means 52 in the first lens sheet 5 is set, according to light beam tracing, so that a spreading angle ΦV of the exiting light emitted from the first lens sheet 5 becomes approximately 40 degrees. In the first lens sheet 5, light-emitted from the second lens sheet 6 that is adjacently arranged is incident, as incident light, along L51. Here, the incident light is the projected light, from the projection means 1, that diffuses only in the horizontal orientation (along the X-axis) in the second lens sheet 6, and does not diffuse in the vertical orientation (along the Y-axis). The incident light is refracted when being incident on a transparent sheet 51, and travels along L61 in the transparent sheet 51. Similarly, as explained in Embodiment 1, the light traveling along L61, by the refractivities of the transparent sheet 51 and transparent material 53 being made approximately the same, travels in the transparent material 53 without being refracted at their boundary, and is reflected by a first reflection face 52A in the reflection means 52. The light having been reflected by the first reflection face 52A travels along L71, being focused at the focal point F1, and reaches a second reflection face 52B on another adjacent reflection means 52. The light having been reached the second reflection face 52B is reflected by the second reflection face 52B, and exits from a slit between black stripes 54. Here, because the light traveling directions L71 reflected by the first reflection face 52A vary due to at what position on the first reflection face 52A the light has been reflected, a plurality of L71s is practically existent; however, in FIG. 8(a), as the examples, symbols L71_1 and L71_2 are represented. Moreover, the black stripes 54 are light absorber. The reflection means 52 is composed of the first reflection face 52A and the second reflection face 52B, and the reflection faces 52A and 52B become different reflection faces separated by the imaginary boundary line B. Specifically explaining, the first reflection face 52A is provided on the incident face side, and its cross-sectional shape is a part of a parabolic curve whose axis corresponds to an axis approximately in parallel with L51. On the other hand, the second reflection face 52B, provided on the exiting face side, is shaped into a curved face or a planer face in such a way that the vertical directivity can be obtained, which is needed for light traveling in parallel with L91 that is a direction approximately in parallel with the main axis of exiting light. Here, the shape of the second reflection face 52B may be a planer mirror or a parabolic face mirror in a case in which the directivity for the exiting light is sufficient enough. Moreover, in a case in which wider exiting light directivity is needed, when the light reflected by the first reflection face 52A is focused, the light traveling along L71 may be reflected using the second reflection face 52B shaped into a concave mirror, meanwhile, when the light reflected by the first reflection face 52A is spreading, the light traveling along L71 may be reflected using the second reflection face 52B shaped into a convex mirror. On the other hand, at the position P4, as illustrated in FIG. 8(b), the light is incident on the first lens sheet 5 approximately in parallel with the Z-axis, that is, in the proximity of the incident angle θV=0 degree. Here, FIG. 8(b) represents a case in which a shape of the reflection means 52 in the first lens sheet 5 is set according to light beam tracing so that the spreading angle ΦV of the light exiting from the first lens sheet 5 becomes approximately 40 degrees, as in FIG. 8(a). Moreover, in the case represented in FIG. 8(b), even if the entire cross-sectional of the reflection means 52 is shaped into a parabolic face, the directivity needed for the exiting light can be obtained. At the center (the position corresponding to CH in FIG. 7(c)) of the first lens sheet 5, the reflection means 52 and a reflection means 52R are provided so as to be symmetrical each other with respect to the center line of the sheet illustrated in FIG. 8(b). Here, the lower side from the reflection means 52R (opposite to the Y-axis direction) corresponds to the lower side of the first lens sheet 5. In the first lens sheet 5, on a place in which the reflection means 52 and the reflection means 52R are adjacent to each other, that is, on the center of the first lens sheet 5, a portion of the light, for example, the light being incident along R43 does not exit from the exiting face, but is reflected towards the incident face side. The light reflected by the reflection means 52 and 52R provided on the center of the first lens sheet as described above is absorbed by black stripes 54C and 55, so as not to be interfering light that can cause stray light or ghost light. Here, by the intervals between each of the adjacent reflection means 52 in the first lens sheet 5 being made to be an integral fraction of the pixel size on the screen, image quality deterioration due to the exiting light not exiting from the center of the first lens sheet 5 can be prevented. Although an example is explained in a case in which the light being incident on the first lens sheet 5 has an angle θV of 0 degree or 30 degrees with respect to the Z-axis, the incident angle θV may be from 0 degree to 30 degrees, or may be at an angle wider than that angle; that is, by the reflection means 52 being suitably shaped, exiting light whose optical axis is perpendicular to the exiting face and whose directivity has a full field angle of 40 degrees can be made to exit. FIG. 9 illustrates magnified cross-sectional views in which cross-sections in parallel with the X-axis at the position P5 and the position P6 on the second lens sheet 6 illustrated in FIG. 7(b) each are viewed from the Y-axis direction; and FIG. 9(a) illustrates the cross-section at the position P5, meanwhile FIG. 9(b) illustrates the cross-section at the position P6. In addition, in FIG. 9, the light is also incident on the incident face of the second lens sheet 6 from the opposite direction to the Z-axis (the left side), and exits from the exiting face of the second lens sheet 6 towards the Z-axis direction (the right side). At the position P5, as represented in FIG. 9(a), the light having an incident angle θH of 45 degrees with respect to the Z-axis is incident on the second lens sheet 6. Here, FIG. 9(a) illustrates a case in which the reflection means 62 in the second lens sheet 6 is shaped, according to light beam tracing, so that a spreading angle ΦH of the exiting light emitted from the second lens sheet 6 becomes a full field angle of approximately 80 degrees. The incident light refracts when being incident on a transparent sheet 61, and travels towards L21 in the transparent sheet 61. The light having traveled along L21, by the refractive index of the transparent sheet 61 and the refractive index of transparent material 63 being made approximately the same, travels towards approximately the same direction as L21 in the transparent material 63 without refracting at the boundary therebetween, and then is reflected by a first reflection face 62A of the reflection means 62. The light having been reflected by the first reflection face 62A travels, being focused at the focal point F1, and then reaches a second reflection face 62B of another adjacent reflection means 62. The light having reached the second reflection face 62B is reflected by the second reflection face 62B, and then exits from a slit between black stripes 64. Here, because traveling direction L31 of the light reflected by the first reflection face 62A differs depending on at what position on the first reflection face 62A the light has been reflected, symbols L31_1 and L31_2, as the example, are represented in FIG. 9(a). The reflection means 62 is composed of the first reflection face 62A and the second reflection face 62B, similarly to the reflection means 52 of the first lens sheet 5, and the reflection faces 62A and 62B become differently shaped reflection faces separated by an imaginary boundary line B3. That is, the first reflection face 62A is provided on the incident face side, and the cross-sectional shape is a part of a parabolic curve whose axis corresponds to an axis approximately in parallel with L21. Meanwhile, the second reflection face 62B is provided on the exiting face side, and shaped into a curved face or a planer face so that the face has characteristics in which the horizontal directivity needed for the light traveling in parallel with L51, which is a direction approximately parallel with the main axis of the exiting light, is obtained. Here, the shape of the second reflection face 62B may be a planer mirror or a parabolic face when the directivity of the exiting light is sufficient enough. Moreover, in a case in which the directivity of the exiting light need to further be made wide, when the light reflected by the first reflection face 62A is focused, the light traveling along L31 may be reflected by the second reflection face 62B being a concave mirror; meanwhile, when the light reflected by the first reflection face 62A is spreading, the light traveling along L31 may be reflected by the second reflection face 62B being a convex mirror. On the other hand, at the position P6, the incident light is incident on the second lens sheet 6 approximately in parallel with the Z-axis, that is, at an incident angle θH of approximately 0 degree as represented in FIG. 9(b). Here, FIG. 9(b), similarly to FIG. 9(a), illustrates a case in which the reflection means 62 in the second lens sheet 6 is shaped, according to light beam tracing, so that a spreading angle ΦH of the exiting light emitted from the second lens sheet 6 is made to be approximately 80 degrees. Moreover, in the case illustrated in FIG. 9(b), similarly to FIG. 8(b), even if the entire cross-section of the reflection means 62 is shaped into a parabolic face, the directivity needed for the exiting light can also be obtained. At the center (the position corresponding to Cv in FIG. 7(c)) of the second lens sheet 6, similarly to the first lens sheet 5, the reflection means 62 and the reflection means 62R are provided so as to have a symmetrical cross-sectional shape each other with respect to the sheet center line represented in FIG. 9(b); consequently, in the second lens sheet 6, at a position in which the reflection means 62 and the reflection means 62R are adjacent to each other, that is, at the center of the second lens sheet 6, a portion of the incident light, such as the light being incident along R63 is not emitted from the exiting face, but reflected to the incident face side. Here, in the second lens sheet 6, the reflection means 62 is provided on the left side, viewed from a viewer, of the second lens sheet 6, while the reflection means 62R is provided on the right side. That is, the second lens sheet 6 is symmetrical, in the left/right orientation, with respect to the center of the sheet. As described above, the light reflected by the reflection means 62 and 62R at the center of the second lens sheet 6 is absorbed by black stripes 64C and 65 so as not to be interfering light that can cause stray light or ghost light. Here, similarly to the first lens sheet 5, by the intervals of the reflection means 62 provided in parallel with each other in the second lens sheet 6 being made to be an integral fraction of the pixel size on the screen, image quality deterioration due to the exiting light not exiting from the center of the second lens sheet 6 can be prevented. Although an example is explained in a case in which the light being incident on the second lens sheet 6 has angles θV of 0 degree and 45 degrees with respect to the Z-axis, the incident angle θV may be from 0 degree to 45 degrees, or may be further wide angle; that is, by the reflection means 62 being suitably shaped, exiting light that has an optical axis perpendicular to the exiting face and the directivity having a full field angle of 80 degrees can be emitted. As explained above, in the rear-projection screen 22 according to Embodiment 2, by passing the projection light that is projected from the projection means 1 and travels spreadingly in up/down and right/left orientations, through the second lens sheet 6 at first, the horizontal directivity of a full field angle of 80 degrees is given to the horizontal direction (the X-axis direction) over the entire screen. Then, by subsequently passing the exiting light emitted from the second lens sheet 6 through the first lens sheet 5, the vertical directivity of a full field angle of 40 degrees is given to the perpendicular direction (the Y-axis direction) for the entire screen. Therefore, exiting light with uniform brightness over the entire screen is finally emitted from the rear-projection screen 22. Therefore, according to the rear-projection screen 22 in Embodiment 2, because the rear-projection screen 22 is composed of the lens sheets 5 and 6 using the reflection means 52 and 62, respectively, without using any refraction prism, the optical-axis tilting in the screen perimeter portion, due to reflection by a linear Fresnel lens as in a conventional rear-projection screen, does not occur. Consequently, images projected from the light projection means 1 can be displayed clearly over the entire screen with excellent image quality. Here, the horizontal and vertical directivities given to light by each of the lens sheets 5 and 6 are not limited to the above described angles but can be arbitrarily determined according to system specifications. In addition, the directivity may be suitably controlled, using a method in which any of dispersants (ceramic powder, resin powder, etc.) are mixed and applied to the transparent materials 52 and 63, in accordance with the directivity needed for a system in which the rear-projection screen 22 is installed. Moreover, by the black stripes 54 and 64 being provided, it can be prevented that light reflected on each exiting face of the first lens sheet 5 and the second lens sheet 6 reflects multiple times, and it can be also prevented that any external light is incident on the interior of the lens sheets 5 and 6. Therefore, projected images are clear over the entire screen, and high-contrast images can be also obtained even in a bright room. Moreover, the first lens sheet 5 and the second lens sheet 6 that compose the rear-projection screen 22 according to Embodiment 2 substantially have no refracting face except for the incident face and the exiting face. Therefore, any coloring phenomenon due to wave-length-dependent-refractivity dispersion and ghost light occurrence due to the reflection on the boundary face can be prevented, which have been problems in the conventional rear-projection screen using a lenticular lens sheet having cylindrical lenses. In addition, clear images can be displayed without being colored and smeared. Furthermore, the rear-projection screen may be composed of the first lens sheet 5 and the second lens sheet 6 by adhesion using an adhesive agent (not illustrated); in such a case, because the boundary face becomes thin, optical losses can be reduced by approximately 8%. A reflection preventing means may be provided on both or either of the incident face of the second sheet 6 or the exiting face of the first lens sheet 5. For example, single or double layered optical thin films that are designed based on the optical-thin-film design method may be provided; in this case, the reflection losses on the incident face or the reflection face can be made equal to or less than 50%. In addition, anti-reflection coating may be applied. The first lens sheet 5 or the second lens sheet 6 may be adhered to another transparent planer material (not illustrated) using an adhesive agent, etc. (not illustrated). For example, by a transparent protecting board being provided on the viewer-side face of the rear-projection screen 22, the protecting board being adhered to the first lens sheet 5, and then the first lens sheet 5 further being adhered to the second lens sheet 6, not only high-planarity of the rear-projection screen 22 can be assured over the entire screen, but also breakage of the lens sheets 5 and 6 can be prevented. Moreover, the first lens sheet 5 and the second lens sheet 6 can be produced by a continuous extrusion-producing method, etc. using dies (not illustrated) corresponding to each cross-sectional shape of the lens sheets 5 and 6. A continuous producing method including also aluminum evaporation processing is disclosed, for example, in Patent Document 4 (FIG. 6, on page 6); through such continuous production, production efficiency and yield can be raised, resultantly a low-cost lens sheet can be obtained. Embodiment 3 FIG. 10 is a side view illustrating a rear-projection screen 23 in Embodiment 3 viewed from the X-axis direction. In this figure, light projected from the light projection means 1 spreadingly travels along the light traveling direction L1 towards the rear-projection screen 23. Then, images projected by the light projection means 1, by the projected light reaching the rear-projection screen 23, are magnified and projected onto the rear-projection screen 23. The rear-projection screen 23 is composed of a first lens sheet 7, a second lens sheet 8, and a Fresnel lens sheet 9, so as to be unified and held adjacent to each other. Here, the Fresnel lens sheet 9 is a lens sheet having no (nil-) focusing function, and provided on the incident face of the rear-projection screen 23. FIG. 11 is an explanatory view for explaining three lens sheets that compose the rear-projection screen 23. FIG. 11(a) is a front view when the first lens sheet 7 is viewed from the viewer side; while, in the first lens sheet 7, reflection means (reflection means 73 described later) extend along the X-axis, that is, along M2, and are arranged side-by-side in the Y-axis direction. FIG. 11(b) is a front view when the second lens sheet 8 is viewed from the viewer side; while, in the second lens sheet 8, reflection means (reflection means 83 described later) extend along the Y-axis, that is, along M3, and are arranged side-by-side in the X-axis direction. Moreover, FIG. 11(c) is a front view when the Fresnel lens sheet 9 is viewed from the viewer side; while, in the Fresnel lens sheet 9, Fresnel lens patterns extend along concentric circles FL1. Here, similarly to the light deflector 4 and the lens sheets 5 and 6 explained in Embodiment 1 or 2, each interval of the M2, M3, and FL1 lines may be made smaller than a pixel size of an image displayed on the rear-projection screen 23, for example, made to be 50 μm-500 μm. The ratio between the positional interval of each reflection means in the lens sheets 7 and 8 and the positional interval of the Fresnel lens patterns is made not to be integral multiple in order to prevent moiré patterns. FIG. 12 is magnified cross-sectional views in which a cross-section, at a position P7 in FIG. 11, of the rear-projection screen 23 is illustratively magnified, meanwhile, FIG. 12(a) is a magnified view in which the cross-section, at the position P7, along the Y-axis direction is illustratively magnified when the cross-section is viewed from the X-axis direction, and FIG. 12(b) is a magnified view in which the cross-section, at the position P7, along the X-axis direction is illustratively magnified when the cross-section is viewed from the Y-axis direction. Here, practically, a plurality of reflection means 73 in a vertical-diffuser 72 for diffusing light having been incident on the first lens sheet 7 in the Y-axis direction in the figure, and a plurality of reflection means 83 in a horizontal-diffuser 82 for diffusing light having been incident on the second lens sheet 8 in the X-axis direction in the figure are arranged side-by-side in the Y-axis direction and the X-axis direction, respectively; however, only the main components used in the following explanation are illustrated in FIG. 12. Moreover, the reflection means 73 and the reflection means 83, corresponding to the incident angles, ΦV and ΦH, may be constituted similarly to the reflection means provided on the first lens sheet 5 and second lens sheet 6 in Embodiment 2. In FIG. 12(a), light projected from the light projection means 1 travels along L1 in the figure, and is incident on a Fresnel lens portion 92 (Fresnel lens patterns) in the Fresnel lens sheet 9. Incident faces of the Fresnel lens portion 92 are configured so as to be approximately orthogonal to the incident-light traveling direction L1. Therefore, the incident light, in which the traveling direction does not vary according to the refraction, etc., travels along L22, which is approximately the same direction as L1. Moreover, the incident light straightly travels along L22, passes through a transparent sheet 91, and is incident on the second lens sheet 8. The light having been incident on the second lens sheet 8 also travels along L32, which is approximately the same direction as L22 in the second lens sheet 8, and exits from the second lens sheet 8 after having passed through the transparent sheet 81 and the horizontal-diffuser 82 that compose the second lens sheet 8. The light having exited from the second lens sheet 8 is incident as incident light on the first lens sheet 7, then passes through the transparent sheet 71, and is incident on the vertical-diffuser 72. Then, the incident light is reflected by a first reflection face in a reflection means 73 provided on the vertical-diffuser 72, reflected, with the light being focused at a focal point F2, by a second reflection face in another reflection means 73 that is provided adjacent to means 73, exits, along L52 that is approximately the same direction as a normal direction of the exiting face of the first lens sheet 7, from the exiting face, with the directivity being spread at half angle ΦV, and travels towards a viewer. Here, ΦV is set at approximately from 20 degrees to 40 degrees. Moreover, the shape of the reflection means 73 and the forming method are similar to the case of the reflection means 52 in Embodiment 2 except for the incident angle of the light; therefore, the explanation is omitted. On the other hand, in FIG. 12(b), light projected from the light projection means 1 travels along L1 in the figure, similarly to the case in FIG. 12(a), and is incident on the Fresnel lens portion 92. The light having passed through the Fresnel lens sheet 9 is reflected by a first reflection face of the reflection means 83 provided on the horizontal-diffuser 82 of the second lens sheet 8, reflected, with the light being focused at a focal point F3, by a second reflection face in another reflection means 73 that is provided adjacent means 73, and travels along L32 in the horizontal-diffuser 82. Thus, the light having traveled along L32 exits in which the main axis is L42 being approximately the same direction as the normal direction of the exiting face of the second lens sheet 8, from the exiting face, with the directivity being spread at half angle ΦH. Then, the light emitted from the second lens sheet 8 passes through the first lens sheet 7, and travels towards the viewer. Here, ΦH is set at approximately from 40 degrees to 90 degrees. Moreover, the shape of the reflection means 83 and the forming method are similar to the case of the reflection means 62 in Embodiment 2 except for the incident angle of the light; therefore, the explanation is omitted. In addition, although each of L32, L42, and L52 has a certain angle spread, only representative directions in the angle spread are illustrated in FIG. 12. Here, the Fresnel lens sheet 9 is explained in detail. In FIG. 12(a), although incident light that is incident on the position P7 in FIG. 11, in which the image height in the vertical orientation becomes relatively high, while the image width in the horizontal orientation becomes relatively narrow is explained, when the Fresnel lens sheet 9 is used, for example, light being incident on a position P8 in FIG. 11, in which the image height in both the vertical orientation and the horizontal orientation becomes larger, can be also traveled along the same direction as L22, which is the light traveling direction at the position P7. Thus, by only the light that has passed through the Fresnel lens sheet 9, being made to be incident on the second lens sheet 8 and the first lens sheet 7, the light traveling path can be corrected, while maintaining the optical axis of the incident light, and needed directivity can be also given. Therefore, the uniform diffusion directivity can be given to the light, over the entire screen. Here, because the Fresnel lens sheet 9 whose focusing function is nil as described above can prevent the effect of refraction on the incident face, it is particularly effective, when the incident angle of the incident light is relatively large. That is, when the Fresnel lens sheet 9 is used, because the light projection means 1 and the rear-projection screen 23 can be arranged proximate to each other, the installation space can be substantially reduced. Moreover, efficiency in which the light projected from the light projection means 1 is incident on the second lens sheet 8 can be increased. FIG. 13 is a front view in which the rear-projection screen 23 is viewed from the side of the light projection means 1. In FIG. 13, as an example, optical paths of the light that is incident on the position P7 and the position P8 are illustrated. In addition, θD is an angle between a line obtained by a line in parallel with the projection light being projected onto the X-Y plane and the X-axis. That is, θD corresponding to projected light traveling towards the position P7 that lies at the upper center of the rear-projection screen 23 becomes 90 degrees, meanwhile θD corresponding to projected light traveling towards the position P8 that lies proximately at the corner portion of the rear-projection screen 23 has a predetermined angle. However, in the following explanation, a case in which θD corresponding to light being incident at the position P8 is 45 degrees is explained. FIG. 14 is a view illustrating light traveling paths before and after the light is incident on a position where the light is incident on the rear-projection screen 23. Here, in FIG. 14, θin denotes an angle between the incident light traveling direction L1 and the Z-axis, θH denotes an angle between the direction in which the incident light traveling direction L1 is projected onto the X-Z plane and the Z-axis, and θV denotes an angle between the direction in which the incident light traveling direction L1 is projected onto the Y-Z plane and the Z-axis. In addition, θSC denotes the angle between the light traveling direction L2 in the rear-projection screen 23 and the Z-axis, θHSC denotes the angle between the direction in which the light traveling direction L2 is projected onto the X-Z plane and the Z-axis, and θVSC denotes an angle between the direction in which L2 is projected onto the Y-Z plane and the Z-axis. Moreover, in the Z-axis direction, the range of Z<0 corresponds to the space outside the rear-projection screen 23 (the side of the light projection means 1), the range of Z>0 corresponds to the interior of the rear-projection screen 23, and the position of Z=0 corresponds to the incident face of the rear-projection screen 23. Here, in FIG. 14, detailed constitution, etc. of the rear-projection screen 23 are omitted as a matter of convenience. Here, θin and θSC according to the refraction law are determined in such a way that a local face-normal-line (a face-normal-line of the Fresnel lens portion 92) is determined with respect to the reference that corresponds to a tilt of a local incident-face of the screen (a tilt of the Fresnel lens portion 92 in the Fresnel lens sheet 9), and other angles are determined with respect to the Z-axis as the reference, which is in the same orientation as the normal line of the incident face on the rear-projection screen 23. In addition, the relative positional relationship between the light projection means 1 and the rear-projection screen 23 is assumed to be fixed. Accordingly by an arbitrary position such as the position P7 or the position P8 on the screen being made to be the coordinate-axis origin P, a unique incident angle θin of the incident light beam is determined with respect to the position. In FIG. 15, θD, θH, θV, θin, θSC, θHSC, and θVSC are represented at the position P7 and the position P8. Moreover, columns 141 in FIG. 15 represent each value of θD, θH, θV, θin, θSC, θHSC, and θVSC at the position P7 and the position P8 in the rear-projection screen 23 according to Embodiment 3; meanwhile, a columns 142 represent each value of θD, θH θV, θin, θSC, θHSC, and θVSC in a case in which the Fresnel lens sheet 9 in the rear-projection screen 23 in Embodiment 3 is not provided, that is, in a case in which the rear-projection screen is composed only of the first lens sheet 7 and the second lens sheet 8. Here, given that the refractive index of air is N1, and the refractive index of material forming the rear-projection screen is N2, according to the Snell's law, N1×sin(θin)=N2×sin(θSC) is satisfied. On the incident face of the rear-projection screen 23 according to Embodiment 3, the Fresnel lens sheet 9 is provided, and the incident face is, from a local viewpoint, perpendicular to the incident light traveling direction. Therefore, the values θin and θSC on the columns 141 in FIG. 15 become nil. This means that the incident light straightly travels into the inner portion of the Fresnel lens 9, when the light is incident on the Fresnel lens 9. Then, in this case, the values of θHSC and θVSC become the same values as those of θH and θV, respectively. As a result, the traveling angles θVSC in the perpendicular direction at both the position P7 and the position P8 coincide to be 45 degrees. On the other hand, in a case in which the Fresnel lens sheet 9 is not provided on the rear-projection screen, because the incident face is planer (the X-Y plane), θin, from a geometrical calculation, becomes 45 degrees at the position P7, while θin becomes 54.7 degrees at the position P8. As a result, θSC, according to the Snell's law, becomes 28.1 degrees at the position P7, and 33.0 degrees at the position P8. Moreover, θVSC in the rear-projection screen, according to the geometrical calculation, becomes 28.1 degrees at the position P7, and 24.6 degrees at the position P8; consequently, the difference of 3.5 degrees between the position P7 and the position P8 occurs. This angle difference occurs, due to non-linear optical path bending caused by refracting characteristics in relation to the incident angle increase when light is incident on the rear-projection screen, by the optical axis of the exiting light varying in accordance with the image height difference in the screen. If the light traveling angles θVSC thus differ from each other in the interior of the rear-projection screen, because the directivity centers of exiting light differ from position to position on the screen, the entire screen cannot be uniformly seen. However, as explained above, according to the rear-projection screen 23 in Embodiment 3, because any light refraction does not occur except for the exiting face of the first lens sheet 7 in the rear-projection screen 23, even when the incident angle of projected light is relatively large, uniform directivity can be obtained over the entire screen. Therefore, the entire images projected by the light projection means 1 can be displayed with uniform brightness as well as excellent image quality. Moreover, according to the rear-projection screen 23 in Embodiment 3, because the Fresnel lens sheet 9 selectively passes the projected light therethrough, light losses due to the incident light reflecting on the incident face of the rear-projection screen can be prevented. Therefore, because uniform brightness can be obtained over the entire screen, easy-to-view images with relatively high contrast can be displayed even in bright surroundings. Here, in the rear-projection screen 23 according to Embodiment 3, the shapes, tilts, and slits of the reflection means 73 and the reflection means 83 can be determined so that the light directivity passing through the rear-projection screen 23 becomes uniform over the entire screen, that is, the values of ΦV and ΦH become equal. Moreover, even if the shape, tilt, and gap of the reflection means 73 are varied, the needed ΦV is obtained without affecting ΦH meanwhile, even if the shape, tilt, and gap of the reflection means 83 are varied, the needed ΦH is obtained without affecting ΦV. In addition, in the Fresnel lens sheet, because the incident face (the Fresnel lens portion 92) is approximately perpendicular to the traveling direction L1 of the projected light, there is little effect by the refraction. Therefore, even if the image height varies, the traveling direction of the incident light beam in the screen interior does not vary. In the rear-projection screen 23 according to Embodiment 3, black stripes may be provided on the exiting face of either the first lens sheet 8 or the second lens sheet 9; in these cases, because any external light or stray light can be absorbed, further clear and high-contrast images can be displayed. Moreover, by the Fresnel lens sheet 9 in Embodiment 3 being provided on the incident face side of the light deflector 4 explained in Embodiment 1, a rear-projection screen can also be constituted. Furthermore, although in Embodiments 1-3, cases in which the cross-sectional shapes of the reflection means 42, 52, and 62 are a parabolic curve (face) are explained, the cross-sectional shapes of the reflection means 42, 52, and 62 may be a part of an elliptic curve (face), a hyperbolic curve (face), etc. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to light deflectors that change the traveling direction of light projected from behind, and to rear-projection screens. 2. Description of the Related Art A conventional rear-projection screen is configured in such a way that the light exiting face of a Fresnel lens sheet provided with circular Fresnel lenses and the light incident face of a lenticular lens sheet straightly and vertically provided with cylindrical lenses (the vertical orientation along the screen) are faced closely each other (for example, Patent Document 1). Another conventional rear-projection screen, which includes three lens sheets, that is, a lenticular lens sheet having cylindrical lenses that are straightly and vertically provided on both the light incident and light exiting face sides, a linear Fresnel lens sheet having Fresnel lenses that is straightly and horizontally provided (the horizontal orientation along a screen) on its light exiting face, and a circular Fresnel lens sheet having circular Fresnel lenses on its light exiting face, is configured in such a way that the lenticular lens sheet, the linear Fresnel lens sheet, and the circular Fresnel lens sheet are arranged in this order from a viewer side (for example, Patent Document 2). Moreover, another conventional rear-projection screen, in order to reduce light losses, is composed of a set of, a prism piece in which a part of an incident light beam through one of its lens faces exits after having fully reflected on another lens faces, and a prism piece in which an incident light beam through its lens face exits after refracting; two kinds of these prism pieces are arranged so as to be alternately placed over the entire sheet (for example, Patent Document 3). Moreover, another conventional rear-projection screen is, in order to reduce light losses in lenticular lenses, composed of a lens sheet having, a lens layer in which a plurality of unit lenses that can emits light from their light exit portions after a part of incident light being fully reflected by their fully reflecting portions are arranged one-dimensionally or two-dimensionally on the light exit portion, and a reflection reducing layer, in which light beams from its light incident portion are reflected and light beams from its light exit portion are reduced, provided on the fully reflecting portions for example, Patent Document 4). Furthermore, in another conventional rear-projection screen, a light absorber is formed, which has a function for reducing light from outside and ghost light that travel obliquely in the screen (for example, Patent Document 5). [Patent Document 1] Japanese Laid-Open Patent Publication 196,422/2002 (on page 6, FIG. 2 ) [Patent Document 2] Japanese Laid-Open Patent Publication 64,189/1995 (on page 11, FIG. 2 ) [Patent Document 3] Japanese Laid-Open Patent Publication 52,601/1986 (on page 5, FIG. 4 ) [Patent Document 4] Japanese Laid-Open Patent Publication 311,211/2002 (on page 9, FIG. 3 ) [Patent Document 5] U.S. Pat. No. 5,254,388 (Sheet 1 of 2, FIG. 1 ) | <SOH> SUMMARY OF THE INVENTION <EOH>However, in the Fresnel lens and cylindrical lens of the rear-projection screen as described above, because a light traveling direction is changed using their refraction, the chromatic aberration due to the refractive index or wave-length dispersion of the materials that compose the lens occurs. Therefore, a problem has been that, when images projected through the rear-projection screen are viewed, the color of the images varies depending on positions (angles) where a viewer views the images. In the refraction faces of the Fresnel lens and cylindrical lens, because reflected light as well as the refracted light are necessarily generated, light passing through the rear-projection screen is reduced. Therefore, a problem has occurred in which clearness of the images is lost by ghost light or stray light generated due to the reflected light, and thereby the projected images become dark. Moreover, in a case in which the Fresnel lens is composed of a refraction prism, when the angle between the light projected direction by a projecting means and the direction perpendicular to the projection face of the screen (hereinafter referred to as a projection angle or a projected angle) is equal to or smaller than 40 degrees, the screen transmittance for the projected light can be maintained at more than 85%; however, when the projection angle exceeds 40 degrees, because the projected light reflected on the refraction face increases, and the transmitted light-beam intensity decreases in accordance with the screen transmittance decreasing, images especially in the perimeter portion of the screen become dark, and the clearness of the projected images is also lost due to the stray light reflected on the refraction face increasing. Furthermore, in a case in which the Fresnel lens is composed of a fully reflecting prism, although light losses on the refraction face are reduced, it can be used only under the condition that the projection light is projected at as a sharp angle as 45 degrees or over. Therefore, it has been difficult to design the light projection means. In addition, because incident faces of prism patterns of the fully reflecting prism are refractive, on the refraction faces, stray light and ghost light have sometimes occurred. If the lenticular lens sheet is composed of a reflection prism provided on the exiting face side and a transparent sheet, light must not return from the exiting face to the incident face side. However, in order to allow the light not to return to the incident face side, the shape of the reflection prism adopted is limited; therefore, it has been difficult to obtain diffusion characteristics needed for the lenticular lens sheet. Moreover, in order to prevent the ghost light, if a blind-type light absorbing sheet is used, light losses, due to a thickness effect thereof, occur; consequently, there has been a problem in that the entire screen becomes dark. Accordingly, an objective of the present invention, which has been made to solve the foregoing problem, is to provide a light deflector and a rear-projection screen that can display clear images over the entire screen by light utilization efficiency being raised through a simple structure, and an effect of ghost light or stray light being prevented. A light deflector according to the present invention includes: a plurality of reflection means arranged side-by-side in a predetermined orientation having a first reflection face, provided on the light-incident side, for reflecting light so as to focus the light, and a second reflection face, provided on the exiting side, for reflecting light reflected by the first reflection face, the plurality of reflection means being arranged so that light reflected by the first reflection face of one of the plural reflection means is reflected by the second reflection face of another reflection means adjacent to the one of the reflection means. As described above, according to the light deflector and the rear-projection screen of the present invention, because reflected light is generated extremely less than that in conventional rear-projection screens, light utilization efficiency can be raised; consequently, clear images can be displayed. | 20050104 | 20071030 | 20050707 | 95684.0 | 0 | MAY, ROBERT J | LIGHT DEFLECTOR AND REAR-PROJECTION SCREEN | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,028,144 | ACCEPTED | Methods for delivering a drug to a patient while restricting access to the drug by patients for whom the drug may be contraindicated | Methods for delivering a drug to a patients in need of the drug, while restricting access to the drug by patients for whom the drug may be contraindicated are disclosed. The methods are of the type in which prescriptions for the drug are filled by a pharmacy only after a computer readable storage medium has been consulted to retrieve a prescription approval code. Embodiments are provided wherein the patients are assigned to risk groups based upon the risk that taking the drug will lead to an adverse side effect, and certain additional information, such as periodic surveys and diagnostic tests probative of the ongoing risk of the side effect developing are obtained before prescriptions for the drug are approved. | 1-19. (canceled) 20. A method for treating a patient having a disease or condition which is responsive to thalidomide while restricting access to thalidomide for patients for whom thalidomide may be contraindicated, the method comprising permitting prescriptions for thalidomide to be filled by a pharmacy only after the pharmacy has become aware of the generation of a prescription approval code for thalidomide for the patient from a computer readable storage medium, the generation of said prescription approval code comprising the following steps: a. defining a plurality of patient risk groups based upon a predefined set of risk parameters for thalidomide; b. defining a set of information to be obtained from the patient, said set of information comprising the ability of the patient to become pregnant and further comprising a determination that the patient is either (1) not currently pregnant or (2) currently pregnant; c. in response to said information set, assigning the patient to at least one of said risk groups and entering the patient, the information and the patient's risk group assignment into the medium; d. based upon the information and the risk group assignment, determining whether the risk that the adverse side effect is likely to occur is acceptable; and e. upon a determination that the risk is acceptable, generating the prescription approval code before the prescription is filled. 21. A method according to claim 20 further comprising registering in the medium the physician who prescribed the drug. 22. A method according to claim 20 further comprising registering the pharmacy in the medium. 23. The method of claim 20 further comprising counseling the patient as to the risks of taking the drug and advising the patient as to risk avoidance measures, in response to the risk group assignment. 24. The method of claim 23 wherein the counseling comprises full disclosure of the risks. 25. The method of claim 24 wherein the prescription is filled only following said full disclosure. 26. The method of claim 25 wherein the fact of said full disclosure is registered in the computer readable storage medium prior to generation of the prescription approval code. 27. The method of claim 26 wherein the risk group assignment and the fact of said full disclosure is transmitted to the computer readable storage medium by facsimile and interpreted by optical character recognition software. 28. The method of claim 20 further comprising: f. defining for each risk group a second set of information to be collected from the patient at periodic intervals; g. obtaining the second set of information from the patient; and h. entering the second set of information in the medium. | CROSS-REFERENCE TO RELATED APPLICATIONS This application is continuation of U.S. application Ser. No. 10/383,275, filed Mar. 7, 2003, which is a continuation of U.S. application Ser. No. 09/965,155, filed Sep. 27, 2001, now U.S. Pat. No. 6,561,977, which is a continuation of U.S. application Ser. No. 09/694,217, filed Oct. 23, 2000, now U.S. Pat. No. 6,315,720, the entirety of each of which is incorporated herein by reference. FIELD OF THE INVENTION The present invention relates to improved methods for delivering a drug to a patient. More particularly, the present invention relates to novel methods for delivering a teratogenic or other potentially hazardous drug to a patient in need of the drug, while avoiding the occurrence of known or suspected side effects of the drug. The novel methods permit the distribution to patients of drugs, particularly teratogenic drugs, in ways wherein such distribution can be carefully monitored and controlled. BACKGROUND OF THE INVENTION Many beneficial drugs are known or suspected of producing adverse side effects in certain individuals. These side effects may be manifest in the patient taking the drug, in a foetus (i.e. fetus) carried by the patient, or in a recipient (or foetus carried by a recipient) of the bodily fluids of the patient. In some cases, administration of the drug may be acceptable in some patients, but absolutely contraindicated in other patients. For example, drugs known or suspected of causing birth defects if taken by a pregnant woman (i.e. teratogenic drugs), may nonetheless be beneficial for treating certain conditions. However, because of the teratogenic properties of the drug, administration to pregnant women must be avoided. Other drugs are known which may be beneficially employed in the general population, but must be avoided by individuals having a certain preexisting condition, or those concurrently taking certain other medication(s), due to adverse side effects which may develop in those individuals. One such drug which is known to produce adverse side effects, but which may nevertheless be beneficially employed in certain patients is thalidomide. Thalidomide is a drug which was first synthesized in Germany in 1957. Beginning in 1958, it was marketed in many countries for use as a sedative, although it was never approved for use in the United States. After reports of serious birth defects, thalidomide was withdrawn from all markets by 1962. However, during the years it was used, it was found to be effective in treating erythema nodosum leprosum (ENL), a condition of leprosy, and the U.S. Food and Drug Administration (FDA) has made the drug available for this specific use via a program of the Public Health Service. More recently, investigators have found that thalidomide may be effective in treating AIDS wasting and aphthous ulcers occurring in AIDS patients. In addition, treatments for other diseases, such as a number of neoplastic diseases including cancers, rheumatoid arthritis, and macular degeneration, are also believed to be possible. The FDA has recently approved an application by Celgene Corporation, which is the assignee of the present patent application, to market thalidomide for the treatment of ENL. The medical community anticipates that thalidomide will be used for treatment of additional conditions and diseases, including those set forth above. However, due to the severe teratogenic risk of thalidomide, methods are needed to control the distribution of this drug so as to preclude administration to foetuses. In this regard, U.S. Pat. No. 6,045,501, to Elsayed et al., provides methods for delivering a drug to a patient while preventing the exposure of a foetus or other contraindicated individual to the drug. According to the methods of this patent, prescriptions for the drug are filled only after a computer readable storage medium has been consulted to assure that the prescriber is registered in the medium and qualified to prescribe the drug, that the pharmacy is registered in the medium and qualified to fill the prescription for the drug, and the patient is registered in the medium and approved to receive the drug. Improvements to this method may be useful, however, to minimize and simplify the demands on the pharmacy, thereby improving compliance with the system of distribution, and reducing the risk that the drug will be dispensed to a contraindicated individual. Methods for monitoring and educating patients to whom a drug is distributed have been developed in connection with Accutane (isotretinoin). Accutane, which is a known teratogen, is a uniquely effective drug for the treatment of severe, recalcitrant, nodular acne. A pregnancy prevention program was developed, and the Slone Epidemiology Unit of Boston University designed and implemented a survey to evaluate these efforts. The survey identified relatively low rates of pregnancy during Accutane treatment, which suggests that such a program can be effective. With more than about 325,000 women enrolled to date in the Accutane survey, it is also clear that such a large-scale study can be conducted. Enrollment in the Accutane survey is voluntary, however. Accordingly, assessing the representativeness of the women who have been enrolled in the survey has been problematic, and it has been difficult to determine whether the survey results can be generalized to all female Accutane users. Thus, an improved survey is needed which would be representative of all users of a particular drug, such as thalidomide, who obtain the drug through legal distribution channels. There are also no mechanisms provided to assure compliance with the program or to limit distribution of the drug to participants in the survey. Because drug sharing may frequently occur among AIDS patients, which may result in placing a foetus at risk, a program is needed which can be used to educate men and women about the risk of teratogenic drugs, such as thalidomide. In addition, a system is needed for the controlled distribution of a drug, in which of all users of the drug, including prescribers, pharmacies, and patients, may be accountable for their compliance with methods that may be established to minimize the risk that a contraindicated individual will be exposed to the drug. The present invention is directed to these, as well as other important ends. SUMMARY OF THE INVENTION The present invention is directed to improved methods for delivering a drug to a patient in need of the drug, while avoiding the occurrence of an adverse side effect known or suspected of being caused by the drug, of the type in which prescriptions for the drug are filled only after a computer readable storage medium has been consulted to assure that the prescriber is registered in the medium and qualified to prescribe the drug, that the pharmacy is registered in the medium and qualified to fill the prescription for the drug, and the patient is registered in the medium and approved to receive the drug. In one embodiment of the invention, there are provided improved methods comprising the steps of: a. defining a plurality of patient risk groups based upon a predefined set of risk parameters for the drug; b. defining a set of information to be obtained from the patient, which information is probative of the risk that such adverse side effect is likely to occur if the drug is taken by the patient; c. in response to the information set, assigning the patient to at least one of the risk groups; and d. entering the risk group assignment in the medium before the patient is approved to receive the drug. The improved methods described herein provide advantageous and effective means for monitoring, controlling and authorizing the distribution to patients of drugs known or suspected of causing adverse side effects. The methods of the present invention include a variety of checks and balances which serve to limit unauthorized and possibly inappropriate distribution of the drug. These methods are particularly applicable to distribution of teratogenic drugs, in which case the checks and balances may be particularly advantageous for preventing distribution of the drug to patients whose use of the drug may pose an unacceptable risk that a foetus carried by the patient or a recipient of the bodily fluids of the patient will be exposed to such drugs. Accordingly, the present methods may be advantageously used to avoid exposure of foetuses to teratogenic drugs, thereby avoiding the terrible birth defects which may result from such exposure. The invention is not limited to the distribution of teratogenic drugs; other potentially hazardous drugs may also be distributed in accordance with embodiments of this invention and such drugs may be distributed in such a fashion that persons for whom such drugs are contraindicated will not receive them. These and other aspects of the invention will become more apparent from the present description and claims. DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS The present invention is directed generally to methods for the delivery of drugs known or suspected of causing an adverse side effect, especially teratogenic drugs, to patients. The term “drug,” as used herein, refers to any substance which is intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease, or to affect the structure or function of the body. The term “side effect” refers to any abnormality, defect, mutation, lesion, degeneration or injury which may be caused by taking the drug. The side effect may be one which is likely to arise in the patient or in a foetus (i.e., fetus) carried by the patient. The side effect may also be one which is likely to arise in a recipient of the bodily fluid of the patient, or foetus carried by such recipient. The term “likely to arise” means that the side effect known or suspected of being caused by the drug may be expected to occur at a higher incidence rate in a particular individual or group of individuals. Generally speaking, the methods of the present invention may be desirably and advantageously used to educate and reinforce the actions and behaviors of patients who are taking a drug, as well as prescribers who prescribe the drug and pharmacies which dispense the drug. As used herein, the term “prescriber” refers to any individual who is capable of prescribing drugs, including, for example, a medical doctor. Such education and reinforcement of actions and behavior are often necessary to ensure proper prescribing and dispensing of the drug, as well as patient compliance with taking the drug. A wide variety of educational materials may be employed to ensure proper prescribing, dispensing and patient compliance according to the methods described herein, including, for example, a variety of literature and other materials, such as, for example, product information, educational brochures, continuing education monographs, videotapes and the like which may describe the risks and benefits associated with taking the particular drug and measures which may be taken to avoid those risks. The methods described herein may be advantageously employed to avoid delivery of one or more drugs known or suspected of causing an adverse side effect to a patient for whom the drugs may be contraindicated. As used herein, the term “contraindicated” refers to any condition in a patient which renders a particular line of treatment, including the administration of one or more drugs, undesirable or improper. This condition may be preexisting, or may develop while the patient is taking the drugs, including conditions which may result directly or indirectly from treatment with the drugs. Thus, contraindicated drugs include, for example, teratogenic drugs whose administration, for example, to pregnant patients is importantly avoided due to the risks to the foetus. Drugs may also be considered “contraindicated,” as the term is used herein, if use of a drug by patients who are also taking another drug is known or suspected of producing an adverse side effect in those patients, or in a foetus carried by such patients. The methods of the present invention are especially advantageously employed for the delivery to a patient of a teratogenic drug. The delivery of a teratogenic drug to a patient may be advantageously achieved with the present methods while substantially (including completely) avoiding the delivery of the drug to a foetus. The term “substantially,” as used in reference to avoiding the delivery of a teratogenic drug to a foetus, generally means that there is an avoidance rate of delivering the drug to a foetus of greater than about 50%. Preferably, the avoidance rate is greater than about 55%, with an avoidance rate of greater than about 60% being more preferred. Even more preferably, the avoidance rate is greater than about 65%, with an avoidance rate of greater than about 70% being still more preferred. Yet more preferably, the avoidance rate is greater than about 75%, with an avoidance rate of greater than about 80% being still more preferred. In even more preferred embodiments, the avoidance rate is greater than about 85%, with an avoidance rate of greater than about 90% being yet more preferred. Still more preferably, the avoidance rate is greater than about 95%. In particularly preferred embodiments, a teratogenic drug may be delivered to patients with completely no delivery to foetuses (i.e., 100% avoidance rate). The drug delivery methods of the present invention preferably involve, inter alia, registering in a computer readable storage medium prescribers who are qualified to prescribe the involved drug, including, for example, teratogenic drugs. Once registered in the computer readable storage medium, the prescriber may be eligible to prescribe the drug to patients in need of the drug. Generally speaking, in order to become registered in the computer readable storage medium, the prescriber may be required to comply with various aspects of the methods described herein including, for example, providing patient education and counseling, and the like, as described in detail below. The registration of the prescriber in the computer readable storage medium may be achieved by providing the prescriber, for example, by mail, facsimile transmission, or on-line transmission, with a registration card or form, preferably together with appropriate educational materials concerning, for example, the particular drug for which the prescriber is being registered to prescribe, as well as suitable methods for delivering the drug to the patient, including the drug delivery methods described herein. The prescriber will preferably complete the registration card or form by providing information requested therein, and the registration card or form will preferably be returned to the manufacturer or distributor of the drug, or other authorized recipient of the registration materials, for example, by mail, facsimile transmission or on-line transmission. Information which may be requested of the prescriber in the registration card or form may include, for example, the prescriber's name, address, and affiliation, if any, with one or more health care institutions. The prescriber's information in the registration card or form is then entered into the computer readable storage medium. It is contemplated that the registration of the prescriber into the computer readable storage medium may also be achieved, for example, by telephone, and/or through the use of an integrated voice response system. Suitable computer readable storage media which may be employed for registration of the prescribers (as well as the pharmacies and patients, as discussed below) will be apparent to one of ordinary skill in the art, once armed with the teachings of the present application. In accordance with the methods described herein, pharmacies who are qualified to fill prescriptions for the particular drug being prescribed including, for example, teratogenic drugs, are also preferably registered in a computer readable storage medium. The computer readable storage medium in which the pharmacies are registered may be the same as, or different from the computer readable storage medium in which the prescribers are registered. Once registered in the computer readable storage medium, the pharmacies may be eligible to dispense the involved drug to patients who are in need of the drug. Generally speaking, in order to become registered in the computer readable storage medium, the pharmacy may be required to comply with various aspects of the methods described herein including, for example, registering the patient (preferably also in a computer readable storage medium), ensuring that the patient complies with certain aspects of the drug delivery methods, as well as other aspects of the present methods, as described in detail below. As with the registration of the prescriber in the computer readable storage medium, the registration of the pharmacy may be achieved by providing the pharmacy, for example, by mail, facsimile transmission, or on-line transmission, with a registration card or form, preferably together with appropriate educational materials concerning, for example, the particular drug for which the pharmacy is being registered to dispense, as well as suitable methods for delivering the drug to the patient, including the drug delivery methods described herein. The pharmacy may then have the registration card or form completed by providing the information requested therein, which thereafter may be returned to the manufacturer or distributor of the drug, or other authorized recipient of the registration card or form, for example, by mail, facsimile transmission or on-line transmission. Information which may be requested of the pharmacy in the registration card or form may include, for example, the pharmacy's name, address, and affiliation, if any, with any health care institution such as, for example, a hospital, health care organization, and the like. The pharmacy's information in the registration card or form is then preferably entered into the computer readable storage medium. It is contemplated that the registration of the pharmacy into the computer readable storage medium may also be achieved, for example, by telephone and/or through the use of an integrated voice response system. As noted above, the drug delivery methods described herein also preferably involve the registration of the patient in a computer readable storage medium. The computer readable storage medium in which the patients are registered may be the same as, or different from the computer readable storage medium in which the prescriber and/or pharmacy is registered. Generally speaking, in order to become registered in the computer readable storage medium, the patient may be required to comply with various aspects of the methods described herein. The registration of the patient may be carried out by the registered pharmacy, for example at the time of the patient's initial visit to the pharmacy. It has been found, however, that it may be more efficient, and better compliance with the methods of the present invention may be provided, if registration of the patient is carried out by the registered prescriber of the drug at the time the initial prescription is generated. In preferred form, the prescriber will typically have a registration card or form filled out for the patient, which includes information on the patient, such as the patient's name, sex, mailing address, date of birth, and the like. Information on the prescribing prescriber and dispensing pharmacy, such as the information described above for the registration thereof, may also be desirably entered on the patient registration card or form. The completed card or form may then be forwarded to the manufacturer or distributor of the drug, or other authorized recipient of the registration form, for example, by mail, facsimile transmission or on-line transmission. Where registration is by mail or facsimile, entry of the registration into the computer readable storage medium may preferably include the use of optical character recognition (OCR) software. It is also possible that the registration of the patient into the computer readable storage medium may also be achieved, for example, by telephone and/or through the use of an integrated voice response system. Preferably, information will also be collected from the patient that may be probative of the risk that a known or suspected side effect will occur if the drug is taken by the patient. This information may then be compared with a predefined set of risk parameters for the drug, which in turn define a plurality of risk groups, so that analysis of the information will permit assignment of the patient to at least one of the risk groups. Preferably, this risk group assignment is then also entered into the computer readable storage medium. This assignment may be performed by the prescriber, who may then include the risk group assignment on the patient's registration card or form, or may be performed by another individual, such as a nurse, technician, or office personnel, who preferably interprets the information and assigns the patient to one of the risk groups, accordingly. As discussed above, it is preferable that a plurality of risk groups, each based upon a predefined set of risk parameters, be established for the drug which is to be administered. As will be evident to those of skill in the art, the risk parameters to be considered and the risk groups defined by those parameters, will be based upon factors which influence the risk that a known or suspected adverse side effect will occur if the patient receives the drug, and will vary depending upon the drug in question. Where the drug is a teratogenic drug, for example, such risk parameters may include elements which would impact the risk of a foetus being exposed to the drug, such as the age, sex and reproductive status of the patient. For example, a first risk group may comprise female patients of child bearing potential; a second risk group may comprise female patients of non-child bearing potential; a third risk group may comprise sexually active male patients; and a fourth risk group may comprise sexually inactive male patients. Additionally, there may be a risk group established for patients to whom administration of the drug may be strictly contraindicated, and patients assigned to such a group will not be approved to receive the drug. For other drugs, different factors, such as those influencing the likelihood that certain preexisting conditions may exist, or the likelihood of certain other drugs being used concomitantly with the prescribed drug, may define the relevant risk parameters. By assigning each patient to a risk group, the steps that will be taken to minimize the chance that the drug is dispensed to a contraindicated patient, and to minimize the risk that a known or suspected adverse side effect will occur, can be tailored to suit the circumstances of that particular patient. For example, depending upon which risk group a patient is assigned to, additional information may be collected from the patient. As discussed more fully below, such additional information may be in the form, for example, of a patient survey. Such additional information may also include the results of certain diagnostic tests which have been performed. Based upon the additional information, the patient's risk group assignment may then remain the same, or the patient may be assigned to a different risk group, which may in turn require that further additional information be collected from the patient. In accordance with the present invention, the monitoring of two, three or more drugs either administered to or proposed for administration to a patient may also be accomplished in order to avoid or diminish the likelihood of the occurrence of one or more side effects. Thus, combinations of drugs which, when administered to an individual patient, may give rise to an increased likelihood of side effects, may be registered in a computer readable storage medium, and the patient's risk group assignment may be reflective of this increased risk. A physician is registered to prescribe at least one of the drugs for a patient and a pharmacy is registered to fill such prescription. In this way, through assignment of such patient to one or more risk groups, the avoidance of harmful drug interactions may be attained. It is preferred that for any given risk group, there may be defined a predetermined additional set of information which is to be collected from the patient. This additional set of information may be obtained prior to the initial dispensation of the drug to the patient and/or may be obtained from the patient on a periodic basis. This information may include information not previously obtained from the patient, or may simply reiterate previously asked questions, and repeat diagnostic tests which were conducted previously. The information may relate to the patient's conduct, or may relate to the patient's past or ongoing medical treatment, such as other procedures or medication which the patient may have received or is still receiving. For example, the additional set of information may be in the form of a survey or questionnaire regarding the patient's behavior and compliance with risk avoidance measures and may thus be probative of whether the risk of occurrence of an adverse side effect has increased, decreased or remained the same. Based upon the responses by the patient, the patient's risk group assignment may, if appropriate, be changed accordingly. Alternatively, where side effects which are known or suspected of being caused by a combination of drugs, the questions asked of the patient may be probative of the likelihood that the patient may take such a combination of drugs. Similarly, where sharing of drugs by the patient may be a matter of concern, the survey may be probative of the risk that the patient may be sharing the hazardous drug with another, and hence increase the risk that a contraindicated individual may receive the drug. The additional information may also include the results of certain diagnostic tests which have been performed on the patient. Such diagnostic tests may be probative, for example, of the risk of exposure of a foetus to a teratogenic drug, may test for the presence of a risk factor for the adverse side effect of concern, or may be probative of the onset of that side effect. Where the use of combinations of more than one drug are known or suspected of causing an increased risk of the occurrence of a side effect, the diagnostic testing may include testing for the presence of one or more of those drugs, or evidence of the use by the patient of such other drugs. Additionally, diagnostic tests may be probative of the concentration of one or more drugs, including the prescribed drug or drugs, to assure that appropriate dosing is maintained. Such diagnostic testing may be conducted on any bodily fluid or waste product of the patient, including the blood, serum, plasma, saliva, semen or urine, as well as the feces. Diagnostic testing may also be performed on a biopsy of any tissue of the patient or may include genetic testing, which may be indicative of a genetic predisposition to a particular adverse side effect. Other forms of diagnostic testing, such as diagnostic imaging, or tests which may be probative of the proper functioning of any tissue, organ or system are also contemplated. Preferably, the additional information and/or diagnostic test results are obtained and entered in the computer readable storage medium before the patient is approved to receive the drug. Additionally, where the information indicates that the risk of the adverse side effect occurring outweighs the potential benefit of the drug, the patient may be assigned to a risk group that will preclude approval of dispensation of the drug to that patient. In accordance with the methods of the present invention, therefore, the delivery of the drug to the patient may involve the following steps. As a prelude to prescribing and dispensing the drug to the patient, the prescriber and the pharmacy are registered in one or more appropriate computer readable storage media, as described above. If the prescriber is not registered in the computer readable storage medium, the prescriber will be ineligible to prescribe the drug. Similarly, if the pharmacy is not registered in the computer readable storage medium, the pharmacy will be ineligible to dispense the drug. In the course of an examination of a patient, including patients suffering from one or more diseases and/or disorders such as, for example, erythema nodosum leprosum (ENL), the prescriber may determine that the patient's condition would be improved by the administration of a drug such as, for example, a teratogenic drug, including thalidomide. Prior to prescribing the drug, the prescriber preferably counsels the patient, for example, on the various risks and benefits associated with the drug. For example, the prescriber preferably discusses the benefits associated with taking the drug, while also advising the patient on the various side effects associated therewith. In embodiments of the invention wherein the prescriber assigns the patient to a specific risk group, the disclosure is preferably tailored to that risk group assignment. Thus, a patient who may acquire or impart a condition or disease for which the drug is contraindicated is preferably counseled by the prescriber on the dangers associated therewith and advised as to risk avoidance measures which may be instituted. Preferably the patient is provided full disclosure of all the known and suspected risks associated with taking the drug. For example, in the case of teratogenic drugs, the prescriber preferably counsels the patient on the dangers of exposing a foetus, either one which may be carried by the patient or one carried by a recipient of the bodily fluids of the patient, to the teratogenic drug. Such counsel may be provided verbally, as well as in written form. In preferred embodiments, the prescriber provides the patient with literature materials on the drug for which a prescription is contemplated, such as product information, educational brochures, continuing education monographs, and the like. Thus, in the case of methods involving teratogenic drugs, the prescriber preferably provides patients with literature information, for example, in the form of the aforesaid product information, educational brochures, continuing education monographs, and the like, warning the patient of the effects of the drug on foetuses. In the case of other drugs which are known or suspected of causing an adverse side effect, the patient is counseled as to the dangers of taking the drugs, and of steps which may be taken to avoid those risks. For example, if the concomitant use of the drug and another drug, for example alcohol, is to be avoided, the prescriber advises the patient of the risks of drinking alcohol while taking the drug. With particular reference to counseling provided in connection with teratogenic drugs, the prescriber preferably counsels female patients that such drugs must never be used by pregnant women. If the patient is a female of child-bearing potential (i.e., a woman who is capable of becoming pregnant), the prescriber preferably counsels the patient that even a single dosage of certain teratogenic drugs, such as thalidomide, may cause birth defects. Accordingly, the patient is preferably counseled to avoid sexual intercourse entirely, or if sexually active, to use appropriate forms of contraception or birth control. For both male and female patients, the prescriber preferably provides counsel on the importance of using at least two forms of effective birth control methods, with one form preferably being a highly effective hormonal method, and the other form preferably being an effective barrier method. The patients are preferably counseled to use the birth control methods for a period of time prior to and during treatment with the teratogenic drug, as well as for a period of time after treatment with the drug has been terminated. In preferred embodiments, the patient is counseled to use at least two forms of birth control for at least about 4 weeks prior to initiation of treatment, during treatment, and for at least about 4 weeks after treatment has been terminated. It may be desirable for the prescriber to personally provide female patients who are capable of becoming pregnant with one or more contraceptive devices or formulations. Male patients who are being prescribed a teratogenic drug are preferably counseled to use condoms every time they engage in sexual relations, since many teratogenic drugs may be found in semen. Male patients are also preferably counseled to contact their prescriber if they have sexual intercourse without a condom, and/or if it is believed that they may have caused a pregnancy. As with female patients, it may be desirable for the prescriber to provide male patients who are capable of impregnating female patients with a contraceptive device or formulation. Other advice relative to birth control that the prescriber may provide to the patient would be apparent to one skilled in the art, once armed with the teachings of the present application. If the prescriber who is prescribing the teratogenic drug is unaware of certain aspects of the available forms of birth control and the advantages and disadvantages associated therewith, the patient should be referred to a prescriber who is knowledgeable on such matters, prior to be being prescribed the involved drug. Generally speaking, as discussed below, counseling on teratogenecity, birth control, and the like is preferably given only to female patients who are capable of becoming pregnant, or to male patients who are capable of having sexual relations with partners who are or can become pregnant. In this manner, unnecessary counseling, for example, to women who are no longer of child-bearing age or men who are incapable of sexual relations with such women, may be avoided. With further reference to methods involving teratogenic drugs, it is also preferred that the prescriber advise the patient to not share the drug with anyone else, and particularly that the drug should be kept out of the reach of children as well as women of child-bearing potential. In the case of female patients, particularly female patients of child-bearing potential, the prescriber should give the patient a pregnancy test, preferably a serum pregnancy test, prior to and during treatment with the teratogenic drug. To begin receiving the teratogenic drug and to continue taking the drug, female patients of child-bearing potential should continue to have negative pregnancy tests. The patient is also preferably counseled by the prescriber to discard or return to the prescriber, pharmacy, manufacturer or distributor any unused portion of the prescribed drug. As would be apparent to one of ordinary skill in the art, once armed with the teachings of the present application, one or more aspects of the counseling described above may be applicable, in certain circumstances, for drugs other than teratogenic drugs. In addition to receiving counseling on the drug being prescribed, including counseling, for example, on birth control, and prior to receiving a prescription for the drug, the methods of the present invention preferably involve requiring the patient to fill out an informed consent form which is signed by the prescriber, as well as the patient. The prescriber should retain a copy of the informed consent form for his/her records. Verification that the patient has given his/her informed consent may also be registered in the computer readable storage medium. Preferably, this verification is provided by the prescriber, and may be included, for example, with the patient registration information and risk group assignment. It has surprisingly been found that by having the prescriber, rather than the pharmacy, verify the patient's informed consent, the methods of the present invention may operate more efficiently, leading to better compliance, and hence decreased risk that the adverse side effect will occur, may be achieved. By filling out and signing an informed consent form, the patient acknowledges that he/she understands the risks associated with taking the drug. In the informed consent form, the patient preferably agrees to comply with the risk avoidance measures provided, and to behave in a manner which is consistent with the prescriber's counsel. For example, in cases involving, for example, teratogenic drugs, the patient may agree to use at least one form of birth control, with female patients agreeing to use at least two forms of birth control. In preferred embodiments, where the patient's risk group assignment so dictates, the patient will agree to undergo periodic diagnostic testing relevant to the risk that the adverse side effect to be avoided may occur or be occurring. In preferred embodiments involving teratogenic drugs, female patients preferably agree also to undergo pregnancy testing, preferably serum pregnancy testing, before, during and after treatment with the teratogenic drug. Female patients preferably will also acknowledge that, at the time they are being prescribed the drug, especially teratogenic drugs, they are not pregnant, they will immediately stop taking the drug if they become pregnant, and they will not try to become pregnant for at least 4 weeks after treatment with the drug is terminated. Female patients, especially female patients for whom a teratogenic drug will be administered, preferably further agree to contact their prescriber if they wish to change one or more of the birth control methods being used and to have an additional pregnancy test if a menstrual period is missed. Female patients, especially female patients to be treated with teratogenic drugs, will preferably agree also to not breast-feed while being treated with the drug. Male patients who are being prescribed the drugs according to the methods described herein, especially teratogenic drugs, will preferably agree to avoid having unprotected sexual relations with a woman, particularly a woman of child-bearing potential during treatment with the drug. In doing so, male patients will preferably further agree to use a condom during sexual relations with a woman, with latex condoms being preferred. Both male and female patients will also preferably agree to not share the drug with anyone, and to acknowledge that they cannot donate blood while taking the drug, with male patients agreeing also to not donate sperm while taking the drug. In addition, the patients will preferably agree to take part in a confidential patient survey, for example, before, during and after treatment with the drug. The patient survey provides information, for example, to the prescriber, manufacturer and/or distributor of the drug, as well as any group or body which may be established to generally provide oversight on the distribution of the drug, on information regarding the general lifestyle of the patient, including detailed information on the patient's sexual behavior. In this manner, the survey may assist in identifying patients who engage in risky behavior, as well as patients who are non-compliant with the methods described herein. Such risky behavior and/or non-compliance may lead to a suspension or intervention of the patient's treatment with the drug, with re-education being provided to the patient. The information obtained from the survey is preferably also entered into the computer readable storage medium. Once entered into the computer readable storage medium, the prescriber, manufacturer and/or distributor of the drug may be able to glean therefrom information regarding the level of risk associated with the administration of the involved drug to the various patients. Accordingly, it may be possible to identify, from among the entire population of registered patients, one or more subpopulations of patients for which the involved drug may be more likely to be contraindicated. For example, it may be possible to identify a subpopulation of female patients who are capable of becoming pregnant and/or a subpopulation of male patients who are capable of impregnating female patients. Preferably, the counseling information discussed above relating to exposure of a foetus to a teratogenic drug may then be addressed primarily to this subpopulation of patients. If the risk is considered to be acceptable, the patient may continue to receive the drug, using the methods described herein. If the risk is considered to be unacceptable, additional counseling may be provided to the patient or, if necessary, treatment of the patient with the involved drug may be terminated, with alternate treatment modalities being provided. In preferred embodiments, female patients will agree to complete a patient survey at least once every month, with male patients agreeing to complete a patient survey at least once every three to six months. The survey may be conducted by mail, facsimile transmission, on-line transmission or by telephone. Preferably, the survey is conducted by telephone through the use of an integrated voice response system (IVR). After the patient has received counseling as described above, and has also filled out and signed an informed consent form, and it is determined that the drug which is to be prescribed is not contraindicated for the patient (such as, for example, a negative pregnancy test in the case of female patients for whom a prescription is desired for a teratogenic drug), the prescriber may prescribe the drug to the patient. In preferred embodiments of the present invention, the amount of the drug which is prescribed to the patient is for a limited amount, preferably no more than about 28 days. Refills for the drug will not be permitted without a renewal prescription from the prescriber, as discussed in detail below. In order to have the prescription filled, the patient preferably presents the prescription and the informed consent form to a pharmacy who has been registered, as discussed above. It is contemplated that the patient may bring the prescription to an unregistered pharmacy. If so, the pharmacy may take steps to become registered, for example, by immediately contacting the manufacturer of the drug. Once registration of the pharmacy is completed, the distribution procedure described herein may resume, per the discussion hereinafter. Of course, this may introduce a delay into the prescription process, and the patient may desire to take the prescription for the drug to an alternate, registered pharmacy. If the patient does not present a completed informed consent form to the pharmacy, or if verification of such informed consent has not previously been registered in the computer readable storage medium, the prescription may not be filled. In this case, pharmacy may contact the prescribing prescriber to have an informed consent form filled out for the patient. The drug is preferably supplied to the pharmacy (as well as the patient) in packaging, such as individual blister packs, which includes warnings regarding the risks associated with the drug, as well as the importance of various aspects of the present methods such as, for example, pregnancy testing and the use of contraception (in the case of teratogenic drugs), and the dangers associated with sharing the drug with others, among other aspects. As noted above, the drug is preferably prescribed and dispensed to the patient in a limited amount, with a prescription amount of no more than about 28 days being preferred, and preferably with no refills being permitted. Thus, for the patient to obtain an additional prescription, it is generally necessary for the patient to have a follow-up visit with the prescriber. Such a follow-up visit preferably takes place at least each time the patient requires a renewal of the prescription, and possibly more often if the patient requires, for example, additional counseling. At the follow-up visit, the patient will preferably receive additional counseling regarding the risks and benefits associated with taking the drug, as well as further counseling on birth control (if applicable). The patient will also preferably complete an additional patient survey to provide current information regarding their lifestyle, including their sexual behavior and, if female of childbearing potential, be administered a new pregnancy test. After receiving the counseling and completing the patient survey, and if the pregnancy tests for female patients are negative, the prescriber may fill out a new prescription for the drug. As with the original prescription, the renewal prescription is preferably for a limited period of time, with no more than about 28 days being more preferred. In certain embodiments, the prescriber may also receive reminders, for example, via mail, facsimile, or on-line transmission, from the manufacturer, distributor or other group or body providing oversight on drug distribution, that the prescriber has prescribed a hazardous drug to patients which may be contraindicated, and that the involved patients may require additional counseling and diagnostic testing. Such reminders may preferably be delivered to the prescriber, for example, from about 14 to about 21 days after the previous prescription was filled. As with the original prescription from the prescriber, the patient should present all renewal prescriptions to a registered pharmacy. Prior to filling out the prescription and dispensing the drug, the pharmacy preferably confirms, for example, via a standard on-line transmission or via telephone via IVR that the patient has been registered and is eligible to receive the drug. When patient eligibility has been confirmed, the pharmacy may dispense the drug to the patient. If the patient is ineligible, the pharmacy generally may not dispense the drug to the patient. The pharmacy may then contact, for example, the prescribing prescriber or the manufacturer of the drug to initiate patient registration. In preferred form, the pharmacy will be precluded from dispensing the drug if the patient has more than about 7 days of drug supply from the previous prescription, and/or if the new prescription was written more than about 14 days before the date the patient visits the pharmacy to have it filled. The registration into one or more computer readable storage media of the prescriber, pharmacy and patient, according to the methods described herein, provide a means to monitor and authorize distribution of contraindicated drugs, including teratogenic drugs. Thus, the computer readable storage media may serve to deny access to, dispensing of, or prescriptions for contraindicated drugs, including teratogenic drugs, to patients, pharmacies or prescribers who fail to abide by the methods of the present invention. As noted above, prescribers who are not registered in a computer readable storage medium generally may not prescribe the drug, and pharmacys who are not registered generally may not dispense the drug. Similarly, the drugs generally may not be prescribed and/or dispensed to patients who are not registered in a computer readable storage medium. In addition, patients may be required to present an informed consent form to the pharmacy. Unless such a form is presented to the pharmacy, or verification of such informed consent has been provided by the prescriber and registered in the computer readable media, the patient generally may not receive the prescription for the drug. As noted above, only limited amounts of the drug may be prescribed to the patient, with no refill prescriptions being permitted. In certain embodiments of the invention, the methods may require that the registered pharmacy consult the computer readable medium to retrieve a prescription approval code before dispensing the drug to the patient. This approval code is preferably not provided unless the prescriber, the pharmacy, the patient, the patient's risk group and the patient's informed consent have been properly registered in the storage medium. Additionally, depending upon the risk group assignment, generation of the prescription approval code may further require the registration in the storage medium of the additional set of information, including periodic surveys and the results of diagnostic tests, as have been defined as being relevant to the risk group assignment. Thus, to comply with the present methods and receive approval to dispense the drug as prescribed, the registered pharmacy need only retrieve the approval code. If the prescription approval code is not forthcoming, the patient may be directed to complete the necessary survey, for example, by telephone, or may be directed back to the prescriber for completion of necessary diagnostic tests. In this manner, the effort required by the pharmacy is minimized, and greater compliance with the present methods may efficiently and advantageously be achieved. Additionally, the embodiments described herein may provide greater assurance that all required further information, as is appropriate to the patient's risk group assignment, has been obtained before the drug is dispensed to the patient, and thereby minimize the risk that an adverse side effect will occur. While the delivery of teratogenic drugs is an aspect of the present invention which has clearly apparent benefit, other types of drugs may also beneficially be prescribed and delivered in accordance with one or more embodiments hereof and all are contemplated hereby. For example, the methods of the present invention may be used for delivery of a drug which is known or suspected of causing liver damage in many patients who take the drug. One such drug is isoniazid, a widely known treatment for tuburculosis (TB). In following a method of the present invention, a registered physician may wish to prescribe isoniazid to a patient who has tested positive for TB. The physician may register the patient in a computer readable storage medium, along with certain information regarding the patient's age, medical condition, and so on. If the patient is a young adult, for example, and presents with no other complicating risk factors, the patient may be assigned to a risk group that is designated to receive counseling regarding certain behavior, such as the concomitant use of alcohol, that is to be avoided. The patient may be fully informed of the risks of liver damage that may result from taking isoniazid, and is preferably counseled to avoid drinking any alcoholic beverages while undergoing treatment with the drug. Preferably, the patient signs an informed consent form, and the prescribing physician transmits verification of the informed consent, along with the patient's registration form and risk group assignment to the computer readable storage medium. The physician then provides the patient with a prescription for the isoniazid. Upon presentation of the prescription to a registered pharmacy, the computer readable storage medium is consulted to verify that the patient and prescriber are registered therein, and that the patient's risk group assignment and informed consent have been provided. If the patient's risk group assignment so indicates, certain diagnostic tests may additionally be required, so that baseline data may be obtained, before the prescription will be approved for filling. The patient's risk group may indicate, for example, that serum liver enzymes should be evaluated on a monthly basis. Under these circumstances, the prescription will preferably be filled for no more than about 30 days. The patient will also preferably be advised that completion of a monthly survey will be required. This survey may include a questionnaire which is probative of the patient's alcohol consumption over the past month. The survey may also include questions which are probative of certain symptoms which may be indicative of the early onset of liver damage or other side effects known or suspected of being caused by isoniazid. Additionally, questions regarding the patient's concomitant use of other drugs which are known to be hazardous when taken in combination with isoniazid, may be asked. Preferably, this survey is conducted telephonically, using an integrated voice response system, and the responses are entered in the storage medium. Based upon the patient's responses, the patient's risk group assignment is adjusted or left the same, as may be appropriate. The patient is preferably further instructed that periodic diagnostic testing may also be necessary for continued approval of a prescription. Preferably, the diagnostic testing will include an assay of the patient's serum liver enzyme levels, to screen for early signs of liver damage. Additionally, the diagnostic testing may include screens for the presence of other drugs known to also cause liver damage, or to be hazardous if taken in combination with isoniazid. A prescription approval code generally will not be generated for subsequent prescriptions or refills until such periodic tests have been performed and satisfactory results entered into the computer readable storage medium. If a prescription approval code is not received by the pharmacy, the patient is directed to complete the requisite survey or tests, or to return to the doctor for further consultation. If the test results or survey indicate that the risk of liver damage has increased, the patient's risk group assignment may be changed, or the patient will be directed to consult with the prescriber before any further isoniazid may be dispensed. In this way, the development of the adverse side effect of concern may be monitored. For example, if the tests indicate that some liver enzymes are marginally elevated, the patient's risk group status may be changed from a first risk group to a second risk group. As a member of this second risk group, the patient may be required to undergo additional diagnostic testing before approval will be given to receive the drug. Such testing may include, for example, liver function tests, to further diagnose the level of cellular damage potentially being caused by the isoniazid, or the combination of isoniazid and other drugs, such as alcohol. In more extreme cases, a diagnostic ultrasound of the liver, or even a liver biopsy may even be indicated. Ultimately, if the risk of continued administration becomes so great that it outweighs the possible benefits of continued treatment with isoniazid, the patient may be assigned to a risk group which indicates that the drug may no longer be dispensed to that patient. The methods of the present invention may similarly be employed, for example, where the patient is undergoing treatment for infection with the Human Immunodeficiency Virus (HIV). Patients who test positive for HIV may be treated with one or more drugs to combat the onset of the Acquired Immune Deficiency Syndrome (AIDS). Frequently, HIV positive patients are administered an “AIDS cocktail” of several drugs including, for example, a combination of one or more inhibitors of viral protease and reverse transcriptase. By following the methods of the present invention, the patient may continue to receive the combination of drugs, while the risk of adverse side effects from administration of the drugs may be minimized. Additionally, the methods of the present invention may be desirably and advantageously used to educate and reinforce the actions and behaviors of patients who are taking a drug, as well as prescribers who prescribe the drug and pharmacies which dispense the drug. As with methods of the invention previously described, when a patient has tested positive for HIV, a registered prescriber may obtain background information on the patient and see that a registration form is completed so that the patient may be registered in the computer readable storage medium. The prescriber may prescribe one or more drugs to the patient, including drugs which may be known or suspected of causing adverse side effects, either alone or in combination with each other or with other drugs. Depending upon the drugs prescribed, and also upon information which the prescriber will preferably obtain regarding the patient's medical history, physical condition and lifestyle, the patient will preferably be assigned to at least one risk group. Based upon this risk group assignment, the patient will preferably receive educational materials and counseling regarding the risks associated with the prescribed drugs, and be advised of the importance of the treatment regimen. The patient will also preferably receive counseling regarding the risk of spreading the disease to others, including a foetus which may be carried by the patient and any recipient of a bodily fluid of the patient. Thus, the patient may be counseled regarding the preferential use of one or more methods of birth control, and may also be provided with a contraceptive device by the prescriber. Additionally, the patient will preferably be counseled not to share any of the drugs with others, and to avoid taking any medications not prescribed. In this way, the patient will preferably be counseled both as to methods for minimizing the spread of the disease, as well as to methods for avoiding the occurrence of one or more side effects which may result from the taking of the medication. Preferably, upon full disclosure of all risks inherent in the treatment regimen, the prescriber will obtain and register in the computer readable storage medium the informed consent of the patient to receive the medication and to comply with the methods described herein for avoiding the occurrence of one or more side effects which may result from taking the drug or drugs prescribed. To facilitate compliance with the methods of the present invention, and to minimize the likelihood of the occurrence of a known or suspected adverse side effect from treatment with the prescribed drug or drugs, it is preferable that when prescriptions for the drug are presented to a registered pharmacy, the computer readable storage medium is consulted to retrieve a prescription approval code before the drug is dispensed to the patient. In order for a prescription approval code to be generated, and based upon the patient's risk group assignment, the patient may be required to provide additional information, which may then be entered in the storage medium before approval of the prescription may be provided. For example, the patient may be required to undergo certain diagnostic tests. In a patient with HIV, for example, testing for viral load may be required, both initially and on a periodic basis, so that dosing of the medication may be adjusted, as necessary. The patient may also be required to complete a survey which asks questions probative of the likelihood that the patient is taking other medications, or beginning to exhibit symptoms which may be of importance to the selection and implementation of a therapeutic regimen. Such additional information may be required both before the initiation of treatment and on a periodic basis during treatment, as new prescriptions and prescription refills are generated. Based upon the information provided by the patient, and the results of any diagnostic tests which have been performed, the patient's risk group assignment may stay the same, or may be changed, as indicated. The patient's risk group assignment may also be changed based upon the length of time the patient has been receiving a given drug or medication. A periodic patient survey may serve both to remind the patient of the requirements of the drug distribution program, and to obtain information which may be probative of the risk that an adverse side effect may occur. For example, the survey may include questions probative of the patient's behavior as it relates to the sharing of medication with other HIV positive individuals, and the patient's compliance with measures for avoiding the spread of the disease. Additionally, the survey may include questions regarding other drugs, medications or treatments which the patient might be availing themselves of, which would impact the risk of an adverse side effect occurring. The survey may also contain questions which are probative of the onset of certain symptoms which may be indicative of the need for changes in the patient's treatment regimen. For example, some questions may be probative of the onset of depression in the patient, a common occurrence amongst AIDS sufferers. Answers to questions in the survey that are indicative of depression, for example, may cause the patient's risk group assignment to change such that the patient is directed to return to the prescriber for determination of whether treatment with an anti-depressant drug is indicated. Similarly, certain drugs, such as protease inhibitors, for example, may lead to abnormal redistribution of fat in certain patients. This symptom may be seen in conjunction with certain metabolic defects and may in turn be symptomatic of conditions such as high blood sugar and high cholesterol. Questions relating to this abnormality may be included on the survey, and answers which indicate that the patient has noticed such physical changes may lead to the assignment of the patient to a risk group in which diagnostic tests probative of the metabolic abnormalities are required before further access to the drug in question is permitted. As with the survey, the diagnostic testing which the patient may be required to undergo may vary with, and preferably is appropriate to, the patient's risk group assignment. In addition to testing for the patient's viral load, periodic diagnostic testing may be appropriate, for example, to evaluate the level of one or more medications in the patient. Dosage of reverse transcriptase inhibitors, for example, may be critical to the risk of occurrence of an adverse side effect. At the same time, various drugs which are often used in combination may share similar metabolic pathways, so that the addition of a second drug to the treatment regimen may greatly affect the pharmacokinetics of the first drug, thereby necessitating an adjustment in the dose of the first drug. In the case of treatment with an “AIDS cocktail” containing, for example, the use of ritonavir, a well-known protease inhibitor, may greatly impact the bioavailability of other protease inhibitors, requiring that the dose of the other protease inhibitors be reduced. Accordingly, the inclusion of ritonavir in the patient's treatment regimen may initiate a change in risk-group assignment, which in turn requires that diagnostic testing to evaluate the blood levels of other concomitantly administered protease inhibitors be done on a periodic basis. Similarly, the addition of other drugs to the treatment regimen, either by the prescribing physician, or by another physician whom the patient might visit, may interfere with the initial treatment regimen prescribed by the registered prescriber. For example, AIDS patients often develop mycobacterial infections such as tuberculosis. An infectious disease specialist may prescribe one of a class of drugs known as rifamycins, such as rifampin or rifabutin, to treat such infections. Rifamycins are known to accelerate the metabolism of many protease inhibitors, however, so that upon initiation of treatment with a rifamycin, the effectiveness of the protease inhibitors may be greatly reduced, unless the dosage of those drugs is adjusted appropriately. Thus, when the patient is being treated with a protease inhibitor, the survey may include, for example, questions regarding the possible concurrent use of a rifamycin. If the survey results indicate that the two types of drugs are being used concurrently, the patient's risk group assignment is changed, such that the patient may be referred back to the prescriber for an adjustment in dosage, or the patient may be directed to undergo diagnostic testing to assure that a sufficient level of the protease inhibitor is still being maintained. Similarly, where the registered prescriber adds a prescription for a rifamycin to the treatment regimen of a registered patient who is also receiving a protease inhibitor, entry of the prescription into the computer readable storage medium may trigger an automatic change in risk group assignment, such that approval of the prescription will not be generated without further modification of the dosage of the protease inhibitor. In this way, the methods of the present invention may be advantageously utilized to maintain the proper dosing of one or more drugs, to minimize the likelihood of the occurrence of an adverse side effect from the concomitant use of such drugs, or the addition of other drugs to a treatment regimen, to encourage proper disclosure of the risks associated with the taking of one or more drugs, to minimize the risk that a contraindicated individual will be exposed to the potentially hazardous drugs, and to assist in generating patient compliance with treatment protocols and avoidance of behavior known to increase the risk that the disease will be spread to others. Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>Many beneficial drugs are known or suspected of producing adverse side effects in certain individuals. These side effects may be manifest in the patient taking the drug, in a foetus (i.e. fetus) carried by the patient, or in a recipient (or foetus carried by a recipient) of the bodily fluids of the patient. In some cases, administration of the drug may be acceptable in some patients, but absolutely contraindicated in other patients. For example, drugs known or suspected of causing birth defects if taken by a pregnant woman (i.e. teratogenic drugs), may nonetheless be beneficial for treating certain conditions. However, because of the teratogenic properties of the drug, administration to pregnant women must be avoided. Other drugs are known which may be beneficially employed in the general population, but must be avoided by individuals having a certain preexisting condition, or those concurrently taking certain other medication(s), due to adverse side effects which may develop in those individuals. One such drug which is known to produce adverse side effects, but which may nevertheless be beneficially employed in certain patients is thalidomide. Thalidomide is a drug which was first synthesized in Germany in 1957. Beginning in 1958, it was marketed in many countries for use as a sedative, although it was never approved for use in the United States. After reports of serious birth defects, thalidomide was withdrawn from all markets by 1962. However, during the years it was used, it was found to be effective in treating erythema nodosum leprosum (ENL), a condition of leprosy, and the U.S. Food and Drug Administration (FDA) has made the drug available for this specific use via a program of the Public Health Service. More recently, investigators have found that thalidomide may be effective in treating AIDS wasting and aphthous ulcers occurring in AIDS patients. In addition, treatments for other diseases, such as a number of neoplastic diseases including cancers, rheumatoid arthritis, and macular degeneration, are also believed to be possible. The FDA has recently approved an application by Celgene Corporation, which is the assignee of the present patent application, to market thalidomide for the treatment of ENL. The medical community anticipates that thalidomide will be used for treatment of additional conditions and diseases, including those set forth above. However, due to the severe teratogenic risk of thalidomide, methods are needed to control the distribution of this drug so as to preclude administration to foetuses. In this regard, U.S. Pat. No. 6,045,501, to Elsayed et al., provides methods for delivering a drug to a patient while preventing the exposure of a foetus or other contraindicated individual to the drug. According to the methods of this patent, prescriptions for the drug are filled only after a computer readable storage medium has been consulted to assure that the prescriber is registered in the medium and qualified to prescribe the drug, that the pharmacy is registered in the medium and qualified to fill the prescription for the drug, and the patient is registered in the medium and approved to receive the drug. Improvements to this method may be useful, however, to minimize and simplify the demands on the pharmacy, thereby improving compliance with the system of distribution, and reducing the risk that the drug will be dispensed to a contraindicated individual. Methods for monitoring and educating patients to whom a drug is distributed have been developed in connection with Accutane (isotretinoin). Accutane, which is a known teratogen, is a uniquely effective drug for the treatment of severe, recalcitrant, nodular acne. A pregnancy prevention program was developed, and the Slone Epidemiology Unit of Boston University designed and implemented a survey to evaluate these efforts. The survey identified relatively low rates of pregnancy during Accutane treatment, which suggests that such a program can be effective. With more than about 325,000 women enrolled to date in the Accutane survey, it is also clear that such a large-scale study can be conducted. Enrollment in the Accutane survey is voluntary, however. Accordingly, assessing the representativeness of the women who have been enrolled in the survey has been problematic, and it has been difficult to determine whether the survey results can be generalized to all female Accutane users. Thus, an improved survey is needed which would be representative of all users of a particular drug, such as thalidomide, who obtain the drug through legal distribution channels. There are also no mechanisms provided to assure compliance with the program or to limit distribution of the drug to participants in the survey. Because drug sharing may frequently occur among AIDS patients, which may result in placing a foetus at risk, a program is needed which can be used to educate men and women about the risk of teratogenic drugs, such as thalidomide. In addition, a system is needed for the controlled distribution of a drug, in which of all users of the drug, including prescribers, pharmacies, and patients, may be accountable for their compliance with methods that may be established to minimize the risk that a contraindicated individual will be exposed to the drug. The present invention is directed to these, as well as other important ends. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention is directed to improved methods for delivering a drug to a patient in need of the drug, while avoiding the occurrence of an adverse side effect known or suspected of being caused by the drug, of the type in which prescriptions for the drug are filled only after a computer readable storage medium has been consulted to assure that the prescriber is registered in the medium and qualified to prescribe the drug, that the pharmacy is registered in the medium and qualified to fill the prescription for the drug, and the patient is registered in the medium and approved to receive the drug. In one embodiment of the invention, there are provided improved methods comprising the steps of: a. defining a plurality of patient risk groups based upon a predefined set of risk parameters for the drug; b. defining a set of information to be obtained from the patient, which information is probative of the risk that such adverse side effect is likely to occur if the drug is taken by the patient; c. in response to the information set, assigning the patient to at least one of the risk groups; and d. entering the risk group assignment in the medium before the patient is approved to receive the drug. The improved methods described herein provide advantageous and effective means for monitoring, controlling and authorizing the distribution to patients of drugs known or suspected of causing adverse side effects. The methods of the present invention include a variety of checks and balances which serve to limit unauthorized and possibly inappropriate distribution of the drug. These methods are particularly applicable to distribution of teratogenic drugs, in which case the checks and balances may be particularly advantageous for preventing distribution of the drug to patients whose use of the drug may pose an unacceptable risk that a foetus carried by the patient or a recipient of the bodily fluids of the patient will be exposed to such drugs. Accordingly, the present methods may be advantageously used to avoid exposure of foetuses to teratogenic drugs, thereby avoiding the terrible birth defects which may result from such exposure. The invention is not limited to the distribution of teratogenic drugs; other potentially hazardous drugs may also be distributed in accordance with embodiments of this invention and such drugs may be distributed in such a fashion that persons for whom such drugs are contraindicated will not receive them. These and other aspects of the invention will become more apparent from the present description and claims. detailed-description description="Detailed Description" end="lead"? | 20050103 | 20061128 | 20050811 | 65459.0 | 5 | ASTORINO, MICHAEL C | METHODS FOR DELIVERING A DRUG TO A PATIENT WHILE RESTRICTING ACCESS TO THE DRUG BY PATIENTS FOR WHOM THE DRUG MAY BE CONTRAINDICATED | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,028,184 | ACCEPTED | Image forming system, image forming apparatus, control method thereof, image forming method, and storage medium | In a system that plural apparatuses mutually perform data communication, it enables to prevent decrease in productivity and to smoothly operate the entire system. In the system, when data received from an image data generation apparatus through a data communication medium is image data, acceptance from other image data generation apparatus is invalidated, and a printing process for the image data from the image data generation apparatus is performed. According as the data received from the image data generation apparatus through the data communication medium is first information output when an error occurs in the image data generation apparatus and representing this error, the invalidation of the acceptance from the other image data generation apparatus is released. | 1-25. (canceled) 26. A printing system including plural printing devices, wherein each of the plural printing devices includes an input unit adapted to input data, a storage unit adapted to store a plurality of data, and printer unit adapted to perform a printing operation of data stored in the storage unit, said system comprising: an acceptor adapted to accept a request for an allotted processing according to which the printing operation of the data which is input by the input unit of one printing device of the plural printing devices is allotted among the plural printing devices; and a controller adapted to control so as to perform a printing operation for the allotted processing in each of the plural printing devices, when the printing operation for the allotted processing is able to be performed in the printing device which has the input unit for inputting data for the allotted processing, wherein said controller controls to allow an execution of another printing operation, different from the printing operation for the allotted processing in each of the plural printing devices, when the printing operation for the allotted processing is not able to perform in the printing device which has the input unit for inputting data for the allotted processing. 27. A printing device comprising: an input unit adapted to input data; a memory unit adapted to store a plurality of data including data inputted by said input unit; a printer unit adapted to print data stored in said memory unit; a transmitter adapted to transmit data stored in said memory unit to another printing device; an acceptor adapted to accept a request concerning an allotted processing that a printing operation of data which is input by said input unit is allotted with said printing device and the other printing device; and a controller adapted to cause said printer unit to perform a printing operation for the allotted processing, and cause said transmitter to transmit data necessary for the allotted processing to the other printing device, when the printing operation for the allotted processing is able to perform in said printing device, wherein said controller causes said printer unit to perform another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in said printing device. 28. A printing device comprising: an input unit adapted to input data; a memory unit adapted to store a plurality of data including data inputted by said input unit; a printer unit adapted to print data stored in said memory unit; a transmitter adapted to transmit data stored in said memory unit to another printing device; an acceptor adapted to accept a request concerning an allotted processing that a printing operation of data which is input by said input unit is allotted with said printing device and the other printing device; and a controller adapted to cause said printer unit to start a printing operation for the allotted processing, and cause said transmitter to transmit data necessary for the allotted processing to the other printing device, when the printing operation for the allotted processing is able to perform in said printing device, wherein said controller causes said printer unit to stop the printing operation for the allotted processing, and then causes said printer unit to perform another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in said printing device. 29. A printing device comprising: an input unit adapted to input data; a memory unit adapted to store a plurality of data including data inputted by said input unit; a printer unit adapted to print data stored in said memory unit; a transmitter adapted to transmit data stored in said memory unit to another printing device; an acceptor adapted to accept a request concerning an allotted processing that a printing operation of data which is input by the input unit is allotted with said printing device and the other printing device; and a controller adapted to cause said printer unit to start a printing operation for the allotted processing, and cause said transmitter to transmit data necessary for the allotted processing to the other printing device, when the printing operation for the allotted processing is able to perform in said printing device, wherein said controller causes said printer unit to stop the printing operation for the allotted processing, and then causes said printer unit to start another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in said printing device, and wherein said controller causes said printer unit to restart the printing operation for the allotted processing, after the other printing operation is ended in said printing device, when the printing operation for the allotted processing is again able to perform in said printing device. 30. A device according to claim 27, wherein: said controller causes said printer unit to perform the printing operation for the allotted processing and causes said transmitter to transmit data necessary for the allotted processing to the other printing device, when an error occurs that relates to the allotted processing of having not occurred in said printing device; and said controller causes said printer unit to perform the other printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in said printing device due to the error that relates to the allotted processing of having occurred in said printing device. 31. A device according to claim 30, wherein the error includes at least one of an input error in the input unit and a memory error in the memory unit. 32. A device according to claim 27, wherein: said controller causes said printer unit to perform the printing operation for the allotted processing and causes said transmitter to transmit data necessary for the allotted processing to the other printing device, when a predetermined instruction that relates to the allotted processing from a user is not input in said printing device; and said controller causes said printer unit to perform the other printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in said printing device due to the predetermined instruction is input in said printing device. 33. A device according to claim 32, wherein the predetermined instruction from the user, which is input in said printing device, includes at least one of a cancel instruction for canceling the allotted processing and a stop instruction for stopping the allotted processing. 34. A device according to claim 27, wherein the other printing operation, different from the printing operation for the allotted processing, includes at least a printing operation for printing external data from an external device which includes at least one of a remote scanner and a remote computer and another printing device. 35. A printing device comprising: a receiver adapted to receive data from another printing device; a memory unit adapted to store a plurality of data including data from the other printing device; a printer unit adapted to print data stored in said memory unit; an acceptor adapted to accept a request concerning an allotted processing that a printing operation of data which is input in the other printing device is allotted with the other printing device and said printing device; and a controller adapted to cause said printer unit to perform a printing operation of data received from the other printing device for the allotted processing, when the printing operation for the allotted processing is able to perform in the other printing device, wherein said controller causes said printer unit to perform another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the another printing device. 36. A printing device comprising: a receiver adapted to receive data from another printing device; a memory unit adapted to store a plurality of data including data from the other printing device; a printer unit adapted to print data stored in said memory unit; an acceptor adapted to accept a request concerning an allotted processing that a printing operation of data which is input in the other printing device is allotted with the other printing device and said printing device; a controller adapted to cause said printer unit to start a printing operation of data received from the other printing device for the allotted processing, when the printing operation for the allotted processing is able to perform in the other printing device, wherein said controller causes said printer unit to stop the printing operation for the allotted processing, and then causes said printer unit to perform another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the other printing device. 37. A printing device comprising: a receiver adapted to receive data from another printing device; a memory unit adapted to store a plurality of data including data from the other printing device; a printer unit adapted to print data stored in said memory unit; an acceptor adapted to accept a request concerning an allotted processing that a printing operation of data which is input in the other printing device is allotted with the other printing device and said printing device; and a controller adapted to cause said printer unit to start a printing operation of data received from the other printing device for the allotted processing, when the printing operation for the allotted processing is able to perform in the other printing device, wherein said controller causes said printer unit to stop the printing operation for the allotted processing, and then causes said printer unit to start another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the other printing device, and said controller causes said printer unit to restart the printing operation for the allotted processing, after the other printing operation is ended in said printing device, when the printing operation for the allotted processing is again able to perform in the other printing device. 38. A device according to claim 35, wherein: said controller causes said printer unit to perform the printing operation of data received from the other printing device for the allotted processing, when an error occurs that relates to the allotted processing of having not occurred in the other printing device; and said controller causes said printer unit to perform the other printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the other printing device due to the error that relates to the allotted processing of having occurred in the other printing device. 39. A device according to claim 38, wherein the error in the other printing device includes at least one of an input error in the other printing device and a memory error in the other printing device. 40. A device according to claim 35, wherein: said controller causes said printer unit to perform the printing operation of data received from the other printing device for the allotted processing, when a predetermined instruction that relates to the allotted processing from an user is not input in the other printing device, and said controller causes the printer unit to perform the other printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the other printing device due to the predetermined instruction input in the other printing device. 41. A device according to claim 40, wherein the predetermined instruction from the user, which is input in the other printing device, includes at least one of a cancel instruction for canceling the allotted processing and a stop instruction for stopping the allotted processing. 42. A device according to claim 35, wherein the other printing operation, different from the printing operation for the allotted processing, includes at least a printing operation for printing external data from an external device which includes at least one of a remote scanner and a remote computer and another printing device. 43. A method in a printing system includes plural printing devices, wherein each of the plural printing devices includes an input unit adapted to input data, a storage unit adapted to store a plurality of data, and a printer unit adapted to perform a printing operation of data stored in the storage unit, said method comprising the steps of: accepting a request for an allotted processing that a printing operation of the data which is input by the input unit of one printing device of the plural printing devices is allotted with the plural printing devices; controlling so as to perform a printing operation for the allotted processing in each of the plural printing devices, when the printing operation for the allotted processing is able to perform in the printing device which has the input unit for inputting data for the allotted processing; and controlling so as to allow an execution of another printing operation different from the printing operation for the allotted processing in each of the plural printing devices, when the printing operation for the allotted processing is not able to perform in the printing device which has the input unit for inputting data for the allotted processing. 44. A method for a printing device which includes an input unit adapted to input data, memory unit that can store a plurality of data including data from the input unit, and a printer unit adapted to print data of the memory unit and includes a transmitter that can transmit data stored the memory unit to another printing device, said method comprising the steps of: accepting a request concerning an allotted processing that a printing operation of data which is input by the input unit is allotted with the printing device and the other printing device; causing the printer unit to perform a printing operation for the allotted processing, and causing the transmitter to transmit data necessary for the allotted processing to the other printing device, when the printing operation for the allotted processing is able to perform in the printing device; and causing the printer unit to perform another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the printing device. 45. A method for a printing device which includes an input unit adapted to input data, a memory unit adapted to store a plurality of data including data from the input unit, and a printer unit adapted to print data of the memory unit and includes transmitter adapted to transmit data stored in the memory unit to another printing device, said method comprising the steps of: accepting a request concerning an allotted processing that a printing operation of data which is input by the input unit is allotted with the printing device and the other printing device; causing the printer unit to start a printing operation for the allotted processing, and causing the transmitter to transmit data necessary for the allotted processing to the other printing device, when the printing operation for the allotted processing is able to perform in the printing device; and causing the printer unit to stop the printing operation for the allotted processing and then causing the printer unit to perform another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the printing device. 46. A method for a printing device which includes an input unit adapted to input data, a memory unit adapted to store a plurality of data including data from the input unit, and a printer unit that can print data of the memory unit and includes a transmitter that can transmit data stored in the memory unit to another printing device, said method comprising the steps of: accepting a request concerning an allotted processing that a printing operation of data which is input by the input unit is allotted with the printing device and the other printing device; causing the printer unit to start a printing operation for the allotted processing, and causing the transmitter to transmit data necessary for the allotted processing to the other printing device, when the printing operation for the allotted processing is able to perform in the printing device; causing the printer unit to stop the printing operation for the allotted processing and then causing the printer unit to start another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the printing device; and causing the printer unit to restart the printing operation for the allotted processing, after the other printing operation is ended in the printing device, when the printing operation for the allotted processing is again able to perform in the printing device. 47. A method for a printing device which includes a receiver adapted to receive data from another printing device, a memory unit adapted to store a plurality of data including data from the other printing device, and a printer unit adapted to print data of the memory unit, said method comprising the steps of: accepting a request concerning an allotted processing that a printing operation of data which is input in the other printing device is allotted with the other printing device and the printing device; causing the printer unit to perform a printing operation of data received from the other printing device for the allotted processing, when the printing operation for the allotted processing is able to perform in the other printing device; and causing the printer unit to perform another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the other printing device. 48. A method for a printing device which includes a receiver adapted to receive data from another printing device, a memory unit adapted to store a plurality of data including data from the other printing device, and a printer unit adapted to print data stored in the memory unit, said method comprising the steps of: accepting a request concerning an allotted processing that a printing operation of data which is input in the other printing device is allotted with the other printing device and the printing device; causing the printer unit to start a printing operation of data received from the other printing device for the allotted processing, when the printing operation for the allotted processing is able to perform in the other printing device; and causing the printer unit to stop the printing operation for the allotted processing, and then causing the printer unit to perform another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the other printing device. 49. A method for a printing device which includes a receiver adapted to receive data from another printing device, a memory unit adapted to store a plurality of data including data from the other printing device, and a printer unit that can print data stored in the memory unit, said method comprising the steps of: accepting a request concerning an allotted processing that a printing operation of data which is input in the other printing device is allotted with the other printing device and the printing device; causing the printer unit to start a printing operation of data received from the other printing device for the allotted processing, when the printing operation for the allotted processing is able to perform in the other printing device; causing the printer unit to stop the printing operation for the allotted processing, and then causing the printer unit to start another printing operation, different from the printing operation for the allotted processing, when the printing operation for the allotted processing is not able to perform in the other printing device; and causing the printer unit to restart the printing operation for the allotted processing, after the other printing operation is ended in the printing device, when the printing operation for the allotted processing is again able to perform in the other printing device. | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus capable of performing data communication with other apparatus, an image forming system, a control method thereof, an image forming method, and a storage medium. 2. Related Background Art Recently, it has been proposed an image forming system in which plural image data generation apparatuses and plural image forming apparatuses remotely located mutually perform data communication through a transmission medium. Especially, the image forming system called a remote copying system in which the image data generation apparatus such as a scanner or the like and the image forming apparatus such as a printer or the like are connected by the transmission medium has been thought. However, in this remote copying system, when the image data generation apparatus side starts the data communication to the image forming apparatus and then some error occurs on the image data generation apparatus side, there is a possibility for the image forming apparatus to be on standby until the error is released. Thus, when it enters once such a state, output jobs transmitted from other scanner, computer and the like can not be accepted, the standby state for execution of such the jobs continues, whereby it is anticipated that productivity of the entire system decreases. SUMMARY OF THE INVENTION An object of the present invention is to provide an image forming system which solves such a problem as described above, an image forming apparatus, a control method thereof, an image forming method, and a recording medium. Another object of the present invention is to provide an image forming system in which plural apparatuses perform data communication mutually, decrease in productivity can be prevented, and a smooth operation can be achieved, an image forming apparatus, a control method thereof, an image forming method, and a recording medium. Other objects and features of the present invention will become apparent from the following detailed description and the attached drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an entire structure of an image forming system to which the present invention is applicable; FIG. 2 is a block diagram showing an image controller in the image forming system to which the present invention is applicable; FIG. 3 is a diagram showing an appearance of an image input apparatus in the image forming system to which the present invention is applicable; FIG. 4 is a diagram showing an appearance of an image output apparatus in the image forming system to which the present invention is applicable; FIG. 5 is a block diagram showing an image processing unit of the image input apparatus (a scanner) in the image forming system to which the present invention is applicable; FIG. 6 is a block diagram showing an image processing unit of the image output apparatus (a printer) in the image forming system to which the present invention is applicable; FIG. 7 is a block diagram showing an image compression unit in the image forming system to which the present invention is applicable; FIG. 8 is a block diagram showing an image rotation unit in the image forming system to which the present invention is applicable; FIG. 9 is a diagram (part one) for explaining image rotation by the image rotation unit in the image forming system to which the present invention is applicable; FIG. 10 is a diagram (part two) for explaining image rotation by the image rotation unit in the image forming system to which the present invention is applicable; FIG. 11 is a block diagram showing a device interface (I/F) unit in the image forming system to which the present invention is applicable; FIG. 12 is a flow chart showing an example of output control according to the present invention; and FIG. 13 is a flow chart showing an example of output control according to the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the embodiments of the present invention will be explained with reference to the attached drawings. FIG. 1 shows an entire structure of an image forming system according to the present invention. The image forming system includes a black and white (B/W) scanner 100 which acts as an image data generation apparatus and can read a black and white (B/W) original, a color scanner 200 which can read a color original, a server computer 800 which has a large-capacity storage, and a personal computer (PC) 900 which is used by an individual user and also has a large-capacity storage. Further, the image forming system includes, as image forming apparatuses, a low-speed (20 opm (operations per minute)) B/W printer 300, an intermediate-speed (40 opm) B/W printer 400, a high-speed (60 opm) B/W printer 500 capable of performing two-faced copying, and a color printer 600. Further, the image forming system includes an off-line finisher 700 which can performs off-line a postprocess to printed sheets. These apparatuses can mutually perform data communication through a data communication medium such as an Ethernet 1000 or the like. It should be noted that, although it is not shown in FIG. 1, the apparatuses in this system can perform data communication with other apparatus (e.g., a fax machine or the like) through a data communication medium (e.g., a telephone line). In the embodiment, such components as above which are mutually connected by the Ethernet 1000 acting as the transmission means in the network structure constitute a LAN (local area network). Hereafter, the Ethernet 1000 is described also as the LAN 1000. Further, the B/W scanner 100 and the low-speed B/W printer 300 are connected to each other through a B/W-dedicated video bus 1100, and the color scanner 200 and the color printer 600 are connected to each other through a color-dedicated video bus 1200. It is assumed that the basic structures of the scanners 100 and 200 are the same. Further, an image controller 2000 for performing image reading control and image transfer control is connected to each of the scanners 100 and 200 through a dedicated bus (not shown). It is assumed that the basic structures of the image forming apparatuses 300, 400, 500 and 600 are the same, and an on-line finisher capable of performing on-line a postprocess (i.e., a sort process, a stapling process, or the like) to printed sheets is connected to each of these apparatuses. However, the detailed explanation of this finisher will be omitted. Hereinafter, the details of the image controller 2000, the B/W scanner 100 and the intermediate-speed B/W printer 400 will be explained by way of example. It should be noted that the B/W scanner 100 and the B/W printer 400 can be used as a single-unit apparatus such as a multifunctional peripheral (MFP) on which various functions (a copying function, a fax function, a printer function, a scanner function, etc.) are installed, or can be used separately. The embodiment of the present invention is applicable to either case. (Image Controller) FIG. 2 is a block diagram showing the structure of the image controller 2000. The image controller 2000 is connected to the B/W scanner 100 acting as the image data generation apparatus and the B/W printer 400 acting as the image forming apparatus, and equally connected to the LAN 1000 and a public line or a wide area network (WAN) 1500, whereby input and output of image information and device information are controlled. The image controller 2000 can be connected to other data generation apparatus and image forming apparatus through the LAN 1000 or the WAN 1500. In the image controller 2000, a controller CPU 2001 controls the controller 2000 as a whole, and a RAM 2002 which temporarily stores image data acts as a system working memory used when the controller CPU 2001 operates. A ROM 2003 which is a boot ROM stores a system boot program, and a hard disk drive (HDD) 2004 stores system software and various image data. Concretely, information which concerns image output speed, setting positions and the like of nodes connected on the network (LAN 1000) has been stored for each address in the HDD 2004. An operation unit interface (I/F) 2006 which interfaces with an operation unit (a user interface (UI)) 2100 outputs image data to be displayed to the operation unit 2100. Further, the operation unit I/F 2006 functions to transfer to the controller CPU 2001 the information (e.g., execution instructions for user's desired modes such as a network scan mode, a local copying mode, a remote copying mode, etc. and information of an operation mode and the like) which is input from the operation unit 2100 by a user of this system. A network unit 2010 which is connected to the LAN 1000 inputs and outputs various information, and also a modem 2050 which is connected to the WAN 1500 inputs and outputs various information. Such devices as above are disposed on a system bus 2007. An image bus interface (I/F) 2005 which is a bus bridge connects the system bus 2007 to an image bus 2008 which transfers image data at high speed, whereby the data structure is converted. The image bus 2008 is the high-speed bus such as a 32-bit width PCI (peripheral component interconnect) bus or the like. On the image bus 2008, a raster image processor (RIP) 2960, a device interface (I/F) 2900, a scanner image processing unit 2500, a printer image processing unit 2600, an image rotation unit 2800, and an image compression unit 2700 are disposed. The RIP 2960 expands a PDL (page description language) code to a bit map image. The device I/F 2900 connects the B/W scanner 100 (image input apparatus) and the B/W printer 400 (image output apparatus) to the image controller 2000, and performs synchronous and asynchronous conversion to image data as described later. The scanner image processing unit 2500 corrects, processes and edits input image data as described later. The printer image processing unit 2600 performs printer correction, resolution conversion and the like to print output image data. The image rotation unit 2800 performs rotation of image data as described later. The image compression unit 2700 performs compression and decompression processes of JPEG (joint photographic experts group) method to multivalue image data, and performs compression and decompression processes of JBIG (joint bi-level image experts group) method, MMR (modified modified READ coding) method and MH (modified Huffman coding) method to binary image data, as described later. (Image Input Apparatus (Scanner)) FIG. 3 is a block diagram showing the structure of the image input apparatus. The B/W scanner 100 which acts as the image input apparatus illuminates an image on a sheet being an original, relatively moves a CCD line sensor (not shown) to the original to scan it, and then converts the scanned and read image into an electrical signal as raster image data. When the original is set to an original stacking device 103 of an automatic document feeder (ADF) 102 and an instruction to start the reading is input by the user from the operation unit 2100, the controller CPU 2001 instructs the B/W scanner 100 to cause the ADF 102 to feed the original one by one for the original image reading. (Image Output Apparatus (Printer)) FIG. 4 is a block diagram showing the structure of the image output apparatus. The B/W printer 400 which acts as the image output apparatus converts the electrical signal being the raster image data into an image and then records the obtained image on a sheet. As a printing method, it is possible to apply any of an electrophotographic method which uses a photosensitive drum or a photosensitive belt, an inkjet method which emits ink from a micronozzle array to directly print an image on a sheet, and the like. The printing operation is started based on an instruction from the controller CPU 2001. The B/W printer 400 provides plural stages to be able to select different sheet sizes and directions, and sheet cassettes 401, 402, 403 and 404 corresponding to the respective stages are provided. The sheet subjected to the printing is discharged on a sheet discharge tray 411. (Scanner Image Processing Unit) FIG. 5 is a block diagram showing the structure of the scanner image processing unit 2500. An image bus interface (I/F) controller 2501 which is connected to the image bus 2008 has a function to control its bus access sequence, control each device in the scanner image processing unit 2500, and generate timing of each device. A filtering processing unit 2502 has a function to perform a convolution operation by using a spatial filter. An editing unit 2503 recognizes a closed area surrounded by a marker pen in input image data, and performs an image process such as shadow, shading, highlight or the like to the image data in the closed area. When a resolution of a read image is changed, a magnification change processing unit 2504 performs an interpolation operation to the main scan direction of a raster image and performs size enlargement and reduction. The magnification in the sub scan direction is changed by changing movement speed of an image read line sensor (not shown). A table 2505 is used to table conversion for converting read image data (luminance data) into density data. A binarization processing unit 2505 binarizes multivalue gray scale image data in an error diffusion process and a screening process. The image data which was processed by the scanner image processing unit 2500 is again transferred to the image bus 2008 through the image bus I/F controller 2501. (Printer Image Processing Unit) FIG. 6 is a block diagram showing the structure of the printer image processing unit 2600. An image bus interface (I/F) controller 2601 which is connected to the image bus 2008 has a function to control its bus access sequence, control each device in the printer image processing unit 2600, and generate timing of each device. A resolution conversion unit 2602 has a function to perform resolution conversion to image data sent from the network unit 2010 or the WAN 1500 to obtain the resolution of the B/W printer 400. A smoothing processing unit 2603 performs a process to smooth a jaggy of the image data (image roughness appearing at, e.g., an oblique B/W boundary) after the resolution conversion. (Image Compression Unit) FIG. 7 is a block diagram showing the structure of the image compression unit 2700. An image bus interface (I/F) controller 2701 which is connected to the image bus 2008 has a function to control its bus access sequence, control timing to exchange data between an input buffer 2702 and an output buffer 2705, and control mode setting to a compression processing unit 2703. Hereinafter, a processing procedure of the image compression unit 2700 will be explained. The controller CPU 2001 performs setting for image compression control to the image bus I/F controller 2701, through the image bus 2008. By this setting, the image bus I/F controller 2701 performs setting of, e.g., MMR compression, JBIG decompression and the like necessary for the image compression to the compression processing unit 2703. After then, the controller CPU 2001 again permits the image bus I/F controller 2701 to transfer the image data. In accordance with such transfer permission, the image bus I/F controller 2701 starts the image data transfer from the RAM 2002 or each device on the image bus 2008. The received image data is temporarily stored in the input buffer 2702 and then transferred at certain speed according to an image data request of the compression processing unit 2703. At this time, it is judged at the input buffer 2702 whether or not the image data can be transferred between the image bus I/F controller 2701 and the compression processing unit 2703. Then, if judged that the image data reading from the image bus 2008 and the image writing to the compression processing unit 2703 can not be performed, it is controlled not to perform the data transfer (hereinafter, such control is called “handshaking”). The compression processing unit 2703 once stores the received image data in a RAM 2704. This is because data of plural lines are necessary according to a kind of image compression process, and the image compression for initial one line can not be performed if the image data of the plural lines are not prepared. The image data subjected to the image compression is immediately transferred to the output buffer 2705. In the output buffer 2705, the handshaking between the image bus I/F controller 2701 and the compression processing unit 2703 is performed, and the image data is then transferred to the image bus I/F controller 2701. In the image bus I/F controller 2701, the compressed (or decompressed) image data transferred is further transferred to the RAM 2002 or each device on the image bus 2008. Such a series of the processes in the image compression unit 2700 is repeated until a processing request from the controller CPU 2001 ends (i.e., the processes of necessary pages end) or a stop request is issued from the compression processing unit 2703 (i.e., an error in the compression or decompression occurs). (Image Rotation Unit) FIG. 8 is a block diagram showing the structure of the image rotation unit 2800. An image bus interface (I/F) controller 2801 which is connected to the image bus 2008 has a function to control its bus access sequence, control mode setting or the like to a rotation processing unit 2802, and control timing to transfer image data to the rotation processing unit 2802. Hereinafter, a processing procedure of the rotation processing unit 2802 will be explained. The setting to control the image rotation is performed by the controller CPU 2001 to the image bus I/F controller 2801 through the image bus 2008. By this setting, the image bus I/F controller 2801 performs the setting of, e.g., an image size, a rotation direction, an angle and the like necessary for the image rotation to the rotation processing unit 2802. After then, the controller CPU 2001 again permits the image bus I/F controller 2801 to transfer the image data. In accordance with such transfer permission, the image bus I/F controller 2801 starts the image data transfer from the RAM 2002 or each device on the image bus 2008. Here, it is assumed that the size of the data to be transferred is 32 bits, the image size for the rotation is 32×32 (bits), the image data is transferred on the image bus 2008 in the unit of 32 bits, and the image to be managed here is represented by binary data. As above, in order to obtain the image of 32×32 (bits), it is necessary to perform the unitary data transfer 32 times, and transfer the image data from discontinuous addresses. For example, as shown in FIG. 9, it is thought that a part 9000 represents the image data of the unit of 32×32 (bits). In this unit image data 9000, addresses of the first line are “100000” to “100031”, and addresses of the second line are “101000” to “101031”. As for other lines, it is similar. Namely, the addresses of the unit image data 9000 are discontinuous for each line. The image data 9000 which was transferred by the discontinuous addressing is written at certain addresses on a RAM 2803 such that the image is rotated by a desired angle when the image data is read. For example, when the image is rotated counterclockwise by 90°, 32-bit image data 9001 first transferred is written in the Y direction as shown in FIG. 10. Then, image data 9002 and 9003 are sequentially written in the Y direction in the read order, whereby the image data 9000 is rotated counterclockwise by 90°. After the rotation (i.e., the writing in the RAM 2803) of the unit image data 9000 of 32×32 (bits) ends, the rotation processing unit 2802 reads the image data from the RAM 2803 in the above-described reading manner and transfers the read image data to the image bus I/F controller 2801. The image bus I/F controller 2801 which received the rotation-processed image data 9000 transfers the data to the RAM 2002 or each device on the image bus 2008 by continuous addressing. Such a series of the processes in the image rotation unit 2800 is repeated for each unit image data until a processing request from the controller CPU 2001 ends (i.e., the processes of necessary pages end). (Device I/F Unit) FIG. 11 is a block diagram showing the structure of the device I/F unit 2900. An image bus interface (I/F) controller 2901 which is connected to the image bus 2008 has a function to control its bus access sequence, control each device in the device I/F unit 2900, and generate timing of each device. Further, the image bus I/F controller 2901 generates a control signal to the external B/W scanner 100 and B/W printer 400. A scan buffer 2902 temporarily stores the image data transferred from the B/W scanner 100, and outputs image data in synchronism with the image bus 2008. A serial-to-parallel/parallel-to-serial (SP/PS) conversion unit 2903 ranges in due order or decomposes the image data temporarily stored in the scan buffer 2902 to convert its data width into the data width capable of being transferred to the image bus 2008. A parallel-to-serial/serial-to-parallel (PS/SP) conversion unit 2904 decomposes or ranges in due order the image data transferred from the image bus 2008 to convert its data width into the data width capable of being stored in a print buffer 2905. The print buffer 2905 temporarily stores the image data transferred from the image bus 2008, and outputs the image data in synchronism with the B/W printer 400. Hereinafter, a processing procedure at the image scan will be explained. The image data transferred from the B/W scanner 100 is temporarily stored in the scan buffer 2902 in synchronism with a timing signal from the B/W scanner 100. Then, in the case where the image bus 2008 is the PCI bus, when the image data equal to or more than 32 bits is stored in the scan buffer 2902, the image data of 32 bits is read from the scan buffer 2902 and transferred to the SP/PS conversion unit 2903 in FIFO (first-in first-out) manner. Then, the image data is converted into the 32-bit image data and transferred to the image bus 2008 through the image bus I/F controller 2901. In a case where the image bus 2008 is an IEEE1394 (Institute of Electrical and Electronics Engineers standard 1394) bus, the image data in the scan buffer 2902 is read and transferred to the SP/PS conversion unit 2903 in the FIFO manner. Then, the transferred image data is converted into serial image data and further transferred to the image bus 2008 through the image bus I/F controller 2901. Hereinafter, a processing procedure at the image printing will be explained. In the case where the image bus 2008 is the PCI bus, the image data of 32 bits transferred from the image bus 2008 is received by the image bus I/F controller 2901, transferred to the PS/SP conversion unit 2904, decomposed into the image data of input data bit number of the B/W printer 400, and temporarily stored in the print buffer 2905. In the case where the image bus 2008 is the IEEE1394 bus, the serial image data transferred from the image bus 2008 is received by the image bus I/F controller 2901, transferred to the PS/SP conversion unit 2904, decomposed into the image data of input data bit number of the B/W printer 400, and temporarily stored in the print buffer 2905. Then, in synchronism with a timing signal from the B/W printer 400, the image data in the print buffer 2905 is transferred to the B/W printer 400 in FIFO manner. [One Preferred Embodiment of Present Invention] Next, one preferred embodiment concerning the image forming system, method and storage medium according to the present embodiment will be concretely explained with reference to FIGS. 12 and 13. A process for once stopping the operation of the image forming apparatus and enabling to accept other job when an error occurs in the image data generation apparatus will be explained with reference to the flow charts shown in FIGS. 12 and 13. The control shown in FIG. 12 is directed to the process on the image input apparatus side being the image data generation apparatus, and the control shown in FIG. 13 is directed to the process on the image forming apparatus side. In the present embodiment, it is assumed that the image data of the original read by the ADF of the B/W scanner 100 is transmitted to other remote-located apparatus such as the B/W printer 500 through the Ethernet 1000, and that the user setting concerning remote copying from the scanner to the printer (e.g., setting of data transmission destination selection, setting of operation mode, etc.) is performed at the operation unit 2100 of the B/W scanner 100 to cause the B/W printer 500 to print the transmitted image data. Further, for example, when the MFP integrally containing the B/W scanner 100 and the B/W printer 400 is used, programs representing the flow charts of FIGS. 12 and 13 have been stored in the memory of the image controller 2000 in this MFP. Thus, either one of these programs according to a user's instruction is read and executed by the CPU 2001. Further, in the present embodiment, it is possible to select a mode (called a clustering mode) in which the image data output from one image data generation apparatus is printed by the plural image forming apparatuses. For example, when an original of 100 pages is read by the B/W scanner 100, the read image data of the first to 50th pages can be printed by the B/W printer 300, and the read image data of the 51st to 100th pages can be printed by the B/W printer 400. Further, for example, when 100 copies of an original of ten pages read by the B/W scanner 100 are output, the 50 copies can be printed by the B/W printer 300, and the remaining 50 copies can be printed by the B/W printer 400. In any case, when such the clustering mode is executed, an output destination candidate is designated on the operation unit 2001 by the operator. Further, it is set which image forming apparatus should print how many pages (from what page to what page) of the original, or which image forming apparatus should print how many copies of the original. The image controller 2000 transmits the necessary information together with the image data to each image forming apparatus, in accordance with the user's instruction. On the operation unit 2100 shown in FIG. 2, a start key (not shown) is provided to start the image reading. Here, the error detection of the image input apparatus on the image input apparatus side will be explained with reference to FIG. 12. It is judged in a step S1 whether or not there is a key input. If judged that there is the key input, then the flow advances to a step S2 to judged whether or not the start key is depressed. If judged that the start key is not depressed, the flow returns to the step S1 to wait for the key input. Conversely, if judged that the start key is depressed, then the flow advances to a step S3. In the step S3, when an image feed apparatus such as the ADF or the like is provided, the original is fed. It should be noted that, in the present embodiment, a head page processing mode to sequentially feed and read the originals of one sheaf from its head page in due order is executed. Next, in a step S4, it is judged based on a sheet detection result from a not-shown sensor inside the ADF whether or not a feeder jam occurs. If judged in the step S4 that the feeder jam occurs, then error information representing that the feeder jam occurs is set as the data to be transmitted to the apparatus to which the image data should be transmitted, and this error information is actually transmitted to such the apparatus at the data transmission destination (the B/W printer 500 in this example) through the Ethernet 1000 (step S10). In the case where the above clustering mode has been selected on the operation unit 2001, the error information is transmitted through the Ethernet 1000 to each of the plural image forming apparatuses selected based on the operator's setting on the operation unit 2001. Then, the flow waits for the release of error (e.g., elimination of the jammed original by the operator, resetting of the original on the ADF, or the like) (step S12). When the error is released, the flow returns to the step S3 to restart the job. On the other hand, if judged in the step S4 that the feeder jam does not occur, then a flow advances to a step S5 to judge whether or not sheet feed ends. Then, if judged in the step S5 that the sheet feed does not end, the flow returns to the step S4. Conversely, if judged in the step S5 that the sheet feed ends, the flow advances to a step S6 to perform the original reading process. After the original is read in the step S6, it is then judged in a step S7 whether or not the memory provided in the image input apparatus and capable of storing the image data is full of the stored data. If judged in the step S7 that the memory is full of the data, then error information representing that the memory full occurs is set as the data to be transmitted to the apparatus to which the image data should be transmitted, and this error information is actually transmitted to such the apparatus at the data transmission destination (the B/W printer 500 in this example) through the Ethernet 1000 (step S11). In the case where the above clustering mode has been selected on the operation unit 2001, the error information is transmitted through the Ethernet 1000 to each of the plural image forming apparatuses selected based on the operator's setting on the operation unit 2001. Then, the flow waits for the release of error (step S12). When the error is released, the flow returns to the step S3 to restart the job. On the other hand, if judged in the step S7 that the memory full does not occur, then a flow advances to a step S8. In the step S8, the image data which was read in the step S6 is transmitted, as the data to be transmitted to the partner, to the data forming apparatus (the B/W printer 500 in this example) being the data transmission object through the Ethernet 1000 together with a job start instruction, the data indicating the operation mode and the like. Next, in a step S9, it is judged whether or not the fed original is the final original. If judged that the fed original is not the final original, the flow returns to the step S3 to continue the original feed. On the other hand, if judged in the step S9 that the fed original is the final original, end notification information representing that the image data to be transmitted has been transmitted completely is set as the information to be notified to the partner, and this information is actually transmitted to the apparatus at the data transmission destination (the B/W printer 500 in this example) through the Ethernet 1000. Then, the flow returns to the step S1 to wait for a next key input. As apparent from a series of the processes from the step S3 to again the step S3 through the steps S6, S8 and S9, in the present embodiment, it is controlled to transmit the image data to the image forming apparatus side every time the original of the predetermined unit (e.g., one page) is read from the sheaf of the originals including the plural pages. Thus, it is possible to reduce the load of the image input apparatus and achieve a real-time process. Next, the process on the image output apparatus side (the B/W printer 500 in this example) will be explained with reference to FIG. 13. In the case where the above clustering mode has been selected on the operation unit 2001 at the image data generation apparatus side, the following process of FIG. 13 is performed independently for each of the plural image forming apparatuses selected based on the operator's setting from the operation unit 2001. First, in a step S20, it is judged whether or not there is data acceptance (i.e., remote acceptance) from the external apparatus such as the image input apparatus (the B/W scanner 100 in this example) or the like, on the basis of judgment whether or not the data or the like is received from the external apparatus through the Ethernet 1000. If judged in the step S20 that there is the data acceptance, the flow advances to a step S21 to check the content of the received data. Thus, it is judged whether or not the data or the like received from the external apparatus represents an image (e.g., whether the image information or the error information). If judged in the step S21 that the data received from the external apparatus represents the image, the flow advances to a step S26 to disable other job acceptance. Concretely, for example, on the basis of the judged result in the step S20, the image data generation apparatus (the B/W scanner 100 in this example) on the output request origin being the remote acceptance object is set to be able to occupy the B/W printer 500. Further, the job acceptance from the image data generation apparatus other than the above image data generation apparatus (the B/W scanner 100) is invalidated (i.e., the image from such the apparatus is set not to be printed). Here, the image data generation apparatus such as the color scanner 200, the server computer 800, the PC 900 or the like corresponds to the image data generation apparatus other than the above image data generation apparatus (the B/W scanner 100). When a fax mode is provided, a fax machine not shown in FIG. 1 capable of communicating with the image forming apparatus is included in such the image data generation apparatus other than the above image data generation apparatus. Subsequent to the step S26, the image is received (step S27). Then, the image data transferred from the image data generation apparatus on the output request origin is printed on a sheet based on operation mode data also received in correspondence with this image data (step S28). Then, the flow advances to a step S29 to judge whether or not the image data to be output is printed completely, on the basis of the judgment whether or not an end notification output in the step S9 of FIG. 12 is received (step S29). If judged in the step S29 that the image data to be output is not printed completely, the flow returns to the step S21. Conversely, if judged in the step S29 that the image data to be output is printed completely, it enables other job acceptance. For example, the invalidation of the job acceptance from the image data generation apparatus other than the above image data generation apparatus (the B/W scanner 100) is released to enable the printing. Here, the image data generation apparatus such as the color scanner 200, the server computer 800, the PC 900 or the like corresponds to this image data generation apparatus other than the above image data generation apparatus (the B/W scanner 100). When the fax mode is provided, a fax machine not shown in FIG. 1 capable of communicating with the image forming apparatus is included in this image data generation apparatus other than the above image data generation apparatus. On the other hand, if judged in the step S21 that the data received from the external apparatus does not represent the data (image data) to be formed on the sheet, the flow advances to a step S22 to cope with the error on the image data generation apparatus side on the output request origin. In the step S22, it is judged in the image input apparatus (the B/W scanner 100 in this example) to which the remote process is requested whether or not the feeder jam (feeder jam reception) occurs, according as the data received in the step S20 is the error information which is output from the image data generation apparatus side in the step S10 of FIG. 12 and represents that the feeder jam occurs. If judged in the step S22 that the feeder jam occurs, the flow advances to a step S24 to enable the other job acceptance. For example, the invalidation of the job acceptance from the image data generation apparatus other than the above image data generation apparatus (the B/W scanner 100) is released to set a useful or efficient state, such that the image sent from the apparatus other than the image data generation apparatus in which the error occurred can be printed. Here, the image data generation apparatus such as the color scanner 200, the server computer 800, the PC 900 or the like corresponds to this image data generation apparatus other than the above image data generation apparatus (the B/W scanner 100). When the fax mode is provided, a fax machine capable of communicating with the image forming apparatus is included in this image data generation apparatus other than the above image data generation apparatus. In this case, although the image data transmitted from the image data generation apparatus in which the error occurred is not printed completely, the image printing process instructed by such the image data generation apparatus ends. After the error is eliminated in the step S12 of FIG. 12, it is controlled to restart this job which ended on the way. When other job is accepted and executed on the image formation apparatus side during the period from interruption of that job to restart thereof, it is scheduled to execute the once-interrupted job after the currently executed job ends. On the other hand, if judged in the step S22 that the feeder jam does not occur, the flow advances to a step S23. In the step S23, it is judged whether or not memory full of the image input apparatus (the B/W scanner 100 in this case) from which the remote process is requested is received (i.e., whether or not memory-full reception is performed). Such judgment is performed by judging whether or not the data received in the step S20 is the error information output from the image data generation apparatus side in the step S11 of FIG. 12 and representing that the memory full occurs. If judged in the step S23 that the memory full is received, the flow advances to the step S24 to enable the other job acceptance, and then the flow returns to the step S20. Conversely, if judged in the step S23 that the memory full is not received, the flow directly returns to the step S20. On the other hand, if judged in the step S20 that there is no data acceptance, the flow advances to a step S25 to judge whether or not other job (e.g., a local copying job, a printing job in a printing standby state or the like when the B/W printer 500 is the MFP) is accepted from the apparatus other than the image input apparatus. If judged in the step S25 that other job is not accepted, the flow returns to the step S20, while if judged that other job is accepted, the flow advances to a step S30 to judge whether or not other job is acceptable. If judged that other job is not acceptable, the flow returns to the step S20, while if judged that other job is acceptable, the flow advances to a step S31 to print other job. Then, the flow advances to a step S32 to wait for printing end. When the printing ends, the flow returns to the step S20. In the above embodiment, the case where the error occurred on the image data generation apparatus side is the feeder jam and the case where the memory full occurs were explained. However, it is apparent that same method as above is applicable to all errors in the apparatuses. Further, it may be controlled that, on the image data generation apparatus side from which the remote process is requested, according as an operator's cancel instruction or stop instruction is input from the operation unit 2100, information representing the input of such the instruction is output from the image data generation apparatus to the image forming apparatus through the Ethernet 1000, and on the image forming apparatus side an acceptance inhibition state for other job is released according to reception of such the information. Other Embodiments As described above, the present invention is applicable to a system structured by plural apparatuses (e.g., a host computer, an interface device, a reader, a printer, etc.). The present invention includes a case where a program code of software to achieve the function of the above embodiment is supplied to a computer in an apparatus or a system connected to various devices to achieve the function of the above embodiment, and the computer (CPU or MPU) in the apparatus or the system actually operates the various devices in accordance with the stored program. In this case, the program code itself achieves the function of the above embodiment, whereby the program code itself and a means to supply the program code to the computer (e.g., a storage medium storing the program code) constitute the present invention. As the storage medium for storing such the program code, e.g., a floppy disk, a hard disk, an optical disk, a magnetooptical disk, a CD-ROM, a magnetic tape, a non-volatile memory card, a ROM, or the like can be used. Further, it is needless to say that the embodiment of the present invention includes the program code not only when the computer executes the supplied program code to achieve the function of the above embodiment, but also when the program code cooperates with an OS (operating system) running on the computer or other application software to achieve the function of the above embodiment. Further, the present invention includes a case where the supplied program code is once stored in a memory provided in a function expansion board of the computer or a function expansion unit connected to the computer, and a CPU or the like provided in the function expansion board or the function expansion unit executes all or a part of the actual process according to an instruction of the program code, whereby the function of the above embodiment is achieved by such the process. As explained above, according to the present embodiment, in the system that the plural apparatuses remotely located mutually can perform the data communication through the transmission medium, it is possible to prevent the drawback that, e.g., while the job accepted from one image data generation apparatus is being printed by one image forming apparatus, when an error occurs in this image data generation apparatus, this image forming apparatus keeps being occupied by this error-occurred image data generation apparatus, whereby other jobs can not be accepted, and thus other users can not use this image forming apparatus, traffic increases, and the like. Thus, it is possible to increase productivity of the entire system, smoothly operate the system, and the like. Further, in the case where the above error-occurred image data generation apparatus has selected the clustering mode, it is possible to prevent the drawback that the plural image forming apparatuses keep being occupied by the single image data generation apparatus. Thus, in this case, the above significant effects further rise. Although the present invention has been explained with the preferred embodiments, the present invention is not limited to these embodiments. Namely, it is obvious that various modifications and changes are possible in the present invention without departing from the spirit and scope of the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to an image forming apparatus capable of performing data communication with other apparatus, an image forming system, a control method thereof, an image forming method, and a storage medium. 2. Related Background Art Recently, it has been proposed an image forming system in which plural image data generation apparatuses and plural image forming apparatuses remotely located mutually perform data communication through a transmission medium. Especially, the image forming system called a remote copying system in which the image data generation apparatus such as a scanner or the like and the image forming apparatus such as a printer or the like are connected by the transmission medium has been thought. However, in this remote copying system, when the image data generation apparatus side starts the data communication to the image forming apparatus and then some error occurs on the image data generation apparatus side, there is a possibility for the image forming apparatus to be on standby until the error is released. Thus, when it enters once such a state, output jobs transmitted from other scanner, computer and the like can not be accepted, the standby state for execution of such the jobs continues, whereby it is anticipated that productivity of the entire system decreases. | <SOH> SUMMARY OF THE INVENTION <EOH>An object of the present invention is to provide an image forming system which solves such a problem as described above, an image forming apparatus, a control method thereof, an image forming method, and a recording medium. Another object of the present invention is to provide an image forming system in which plural apparatuses perform data communication mutually, decrease in productivity can be prevented, and a smooth operation can be achieved, an image forming apparatus, a control method thereof, an image forming method, and a recording medium. Other objects and features of the present invention will become apparent from the following detailed description and the attached drawings. | 20050104 | 20080805 | 20050526 | 94991.0 | 0 | EBRAHIMI DEHKORDY, SAEID | IMAGE FORMING SYSTEM, IMAGE FORMING APPARATUS, CONTROL METHOD THEREOF, IMAGE FORMING METHOD, AND STORAGE MEDIUM | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,028,250 | ACCEPTED | Apparatus for enhancing exercises and methods of using same | The present invention relates to an apparatus for enhancing isometric and/or isotonic exercises and methods of using same. In particular, the apparatus for enhancing isometric exercises includes a substantially rigid annular exercising assembly which is placed in a user's mouth and held in place by the user's lips and more particularly between the user's lips in such a manner that the user's upper and lower teeth are not in a substantially engaged position. The substantially rigid annular exercising assembly has an exterior and an interior wall which connect and thereby form a trough. The anterior, medial and posterior surfaces of the user's lips fit within the trough thereby providing the mechanism for holding the substantially rigid annular exercising assembly within the user's mouth during exercise. In this manner, the substantially rigid annular exercising assembly is essentially freestanding and does not require the user to grind their teeth, or tense or strain the jaw or Templar-Mandibular Joint. When in place, the substantially rigid annular exercising assembly increases isometric resistance during exercise, weight training, or facial toning. When used as an isotonic exercising aid, the apparatus would be substantially flexible or semi-flexible to thereby allow some movement of a user's jaw and other facial muscles. | 1. A resistance apparatus, comprising: an annular exercising assembly sized and shaped so as to fit in a user's mouth between an upper lip area and a lower lip area and in front of an outside surface of the user's teeth, the annular exercising assembly having an exterior member, an interior member having an exterior side, and a trough formed by the connection of the exterior member to the interior member, the trough being sized and shaped to accept the user's lips therein, and wherein when the user's lips are inserted in the trough, the user's upper and lower teeth are kept in a substantially non-engaged position, and the exterior side of the interior member is adjacent the outside surface of the user's teeth, the annular exercising assembly further having a passageway extending from the exterior member to the interior member with the passageway allowing for unimpeded breathing of the user; and an airway protection assembly positioned in relation to the passageway of the annular exercising assembly for allowing the passage of air and preventing the entry of foreign objects into the user's airway. 2. The apparatus of claim 1, wherein the airway protection assembly is positioned within the passageway of the annular exercising assembly. 3. The apparatus of claim 1 wherein the airway protection assembly is positioned about the passageway of the annular exercising assembly. 4. A method for enhancing isometric or isotonic resistance during exercise, comprising the steps of: providing an annular exercising assembly sized and shaped so as to fit in a user's mouth between an upper lip area and a lower lip area and in front of an outside surface of the user's teeth, the annular exercising assembly having an exterior member, an interior member having an exterior side, and a trough formed by the connection of the exterior member to the interior member, the trough being sized and shaped to accept the user's lips therein, and wherein when the user's lips are inserted in the trough, the user's upper and lower teeth are kept in a substantially non-engaged position, and the exterior side of the interior member is adjacent the outside surface of the user's teeth, and the annular exercising assembly further having a passageway extending from the exterior member to the interior member with the passageway allowing for unimpeded breathing of the user; positioning an airway protection assembly in relation to the passageway of the annular exercising assembly for allowing the passage of air and preventing the entry of foreign objects into the user's airway; placing the annular exercising assembly in the user's mouth between the upper lip area and the lower lip area; compressing the annular exercising assembly between the upper lip area and the lower lip area; and performing a predetermined exercise while the annular exercising assembly is compressed between the upper lip area and the lower lip area. 5. The method of claim 4, wherein in the step of providing an annular exercising assembly, the interior member has an interior peripheral edge substantially adjacent an inside surface of the user's upper and lower lip portions and wherein the exterior member has an exterior peripheral edge substantially adjacent an outside surface of a user's upper and lower lip. 6. The method of claim 5, wherein in the step of providing an annular exercising assembly, the annular exercising assembly is fabricated from a plastic or plastic laminate or combinations thereof. 7. A method for enhancing isometric or isotonic resistance during exercise, comprising the steps of: providing an annular exercising assembly sized and shaped so as to fit in a user's mouth between an upper lip area and a lower lip area and in front of an outside surface of the user's teeth, the annular exercising assembly having an exterior member, an interior member having an exterior side, and a trough formed by the connection of the exterior member to the interior member, the trough being sized and shaped to accept the user's lips therein, and wherein when the user's lips are inserted in the trough, the user's upper and lower teeth are kept in a substantially non-engaged position, and the exterior side of the interior member is adjacent the outside surface of the user's teeth, the annular exercising assembly further having a passageway extending from the exterior member to the interior member with the passageway allowing for unimpeded breathing of the user; and the annular exercising assembly further having an airway protection assembly in relation to the passageway of the annular exercising assembly for allowing the passage of air and preventing the entry of foreign objects into the user's airway; placing the annular exercising assembly in the user's mouth between the upper lip area and the lower lip area; compressing the annular exercising assembly between the upper lip area and the lower lip area; and performing a predetermined exercise while the annular exercising assembly is compressed between the upper lip area and the lower lip area. 8. The method of claim 7, wherein in the step of providing an annular exercising assembly, the interior member has an interior peripheral edge substantially adjacent an inside surface of the user's upper and lower lip portions and wherein the exterior member has an exterior peripheral edge substantially adjacent an outside surface of a user's upper and lower lip. 9. The method of claim 8, wherein in the step of providing an annular exercising assembly, the annular exercising assembly is fabricated from a plastic or plastic laminate or combinations thereof. | CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of copending U.S. Ser. No. 10/407,987, filed Apr. 4, 2003, entitled “APPARATUS FOR ENHANCING EXERCISES AND METHODS OF USING SAME”; which is a continuation-in-part of copending U.S. Ser. No. 10/301,334, filed Nov. 20, 2002, entitled “APPARATUS FOR ENHANCING ISOMETRIC EXERCISES AND METHODS OF USING SAME;” which is a continuation of U.S. Ser. No. 09/835,187, filed Apr. 12, 2001, entitled “APPARATUS FOR ENHANCING ISOMETRIC AND METHODS OF USING SAME,” now U.S. Pat. No. 6,514,176, the contents of all of which are hereby expressly incorporated herein in their entirety by reference. BACKGROUND OF THE INVENTION FIELD OF THE INVENTION The present invention relates to an apparatus for enhancing isometric and/or isotonic exercises and methods of using same. In particular, the apparatus for enhancing isometric exercises includes a substantially rigid annular exercising assembly which is placed in a user's mouth and held in place by the user's lips and more particularly between the user's lips in such a manner that the user's upper and lower teeth are not in a substantially engaged position. The substantially rigid annular exercising assembly has an exterior and an interior wall which connect and thereby form a trough. The anterior, medial and posterior surfaces of the user's lips fit within the trough thereby providing the mechanism for holding the substantially rigid annular exercising assembly within the user's mouth during exercise. In this manner, the substantially rigid annular exercising assembly is essentially freestanding and does not require the user to grind their teeth, or tense, or strain the jaw or Templar-Mandibular Joint. When in place, the substantially rigid annular exercising assembly increases isometric resistance during exercise, weight training, or facial toning. When used as an isotonic exercising aid, the apparatus would be substantially flexible or semi-flexible to thereby allowing some movement of a user's jaw and other facial muscles. SUMMARY OF THE PRIOR ART AND HISTORICAL BACKGROUND During exercise, everyday lifting of heavy objects, childbearing and/or during defecation, muscles which surround the larynx are tensed thereby resulting in a bracing of the larynx, through such isolation and straining of the larynx muscle, fatigue and discomfort is encouraged. Thus, it becomes apparent that the muscle groups integral to the larynx are important to weight lifting and other day to day tasks. When used in such a manner, the larynx acts as a focal bracing point which allows for the straining individual to use the respective muscle groups in order to achieve any of the enumerated tasks. Individuals who have had larnygectomies are typically hindered in their efforts to accomplish such tasks. Further, through isolation and use of the larynx muscle groups, an individual is capable of greater feats of strength than the mere use of muscles of the arms, legs, and/or body along. Indeed, through isolation and tensing of the larynx during exertions of physical strength, other muscle groups are tensed in a “chain reaction” mechanism. Thus, the larynx and the muscle groups surrounding the larynx are important components in aiding activities in which muscle groups must be tensed and/or strained. Prior art muscle toning apparatuses include U.S. Pat. No. 5,556,357 to Hanna; U.S. Pat. No. 3,014,286 to Hricak; U.S. Pat. No. 3,547,433 to Robins; and U.S. Pat. No. 4,280,696 to Ramon. All of these patents have a fatal and potentially dangerous flaw—each describes an apparatus which requires the tensing and clinching of the jaw as well as a sustained force which is placed upon the teeth that are in contact with the apparatus. For example, in the Hanna '357 patent it is the user's teeth which rest upon the apparatus to exert opposite opposing force against one another. Also, as shown in the Hricak '286 patent, the apparatuses oftentimes placed the user's tongue in an unnatural position and places the jaw in a clinched and tensed position. Prolonged use of these types of devices may lead to jaw joint pain (Templar-Mandibular Joint'“TMJ” problems), incorrect positioning of the tongue resulting in suffocation and speech difficulties, as well as the degradation of the user's teeth which may also result in speech and eating difficulties. Clearly, the use of these prior art devices was at the user's own peril. Through use of the present invention, the muscles surrounding the larynx are “hyper” tensed—through such “hyper” tension, increased levels of tone and strength is found throughout the above-enumerated muscle groups. Also, if the present invention is used during isometric or isotonic exercises in conjunction with external stimulation, or alone, the same isolation and tensing of the musculature occurs. Thus, the present invention enhances isometric or isotonic exercise thereby increasing the effectiveness of the exercise—less time is required, better body/muscle tone is achieved, healthier tissue is promoted surrounding the joints, and better posture and overall health is achieved. The present invention, therefore, discloses an apparatus for enhancing isometric or isotonic exercises as well as methods of using same. The apparatus disclosed and claimed herein does not suffer from the same problems as the prior art devices. Indeed, the present invention maintains the jaw in a substantially relaxed position whereby the user's teeth are not in contact with one another. SUMMARY OF THE INVENTION The present invention is directed to an isometric or isotonic resistance apparatus. The isometric or isotonic resistance apparatus includes a substantially rigid annular exercising assembly in one embodiment and a substantially flexible or semi-flexible annular exercising assembly in another embodiment either of which is sized and shaped so as to fit between the user's lips. The annular exercising assembly is further characterized as having an exterior wall and an interior wall and a trough formed by the connection of the exterior wall to the interior wall, wherein the trough is sized and shaped to accept the user's lips therein. When the user's lips are inserted in the trough, the user's upper and lower teeth are kept in a substantially non-engaged position. In one embodiment the interior wall has an exterior surface substantially adjacent an exterior peripheral surface of the user's teeth and wherein the exterior wall has an interior surface which is substantially adjacent an exterior peripheral surface of a user's mouth. The apparatus may also be fabricated from a plastic or from plastic laminates or other composite materials which are moldable and capable of being fitted and fine-tuned to fit the size and shape of a user's individual mouth. Any material which allows for either isometric or isotonic exercise and which is also suitable for hygienic use in a user's mouth is considered for use in the present invention. The present invention also includes methods for enhancing isometric or isotonic resistance during exercise. One such method includes the steps of providing a substantially rigid annular exercising assembly or a substantially flexible or semi-flexible annular exercising assembly which is sized and shaped so as to fit in a user's mouth between an upper lip area and a lower lip area. The substantially rigid annular exercising assembly has an exterior wall and an interior wall and a trough formed by the connection of the exterior wall to the interior wall. The trough is sized and shaped to accept the user's lips therein, and when the user's lips are inserted in the trough, the user's upper and lower teeth are kept in a substantially non-engaged position. A second or additional step includes placing the substantially rigid annular exercising assembly in the user's mouth between the upper lip area and the lower lip area. Finally, the user compresses the substantially rigid annular exercising assembly between the upper lip area and the lower lip area and performs a predetermined exercise while the substantially annular exercising assembly is compressed between the upper lip area and the lower lip area. In a preferred embodiment, during the step of providing a substantially rigid annular exercising assembly, the interior wall has an exterior surface substantially adjacent an exterior peripheral surface of the user's teeth and wherein the exterior wall has an interior surface which is substantially adjacent an exterior peripheral surface of a user's mouth. Also, the substantially rigid annular exercising assembly may be fabricated from a plastic or plastic laminate or other composite moldable materials. Any material which allows for either isometric or isotonic exercise and which is also suitable for hygienic use in a user's mouth is considered for use in the present invention. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS FIG. 1 is a side pictorial view of the annular exercising assembly of the present invention. FIG. 2 is a front pictorial view of the annular exercising assembly of the present invention. FIG. 3 is a side pictorial view of the annular exercising assembly of the present invention in use. FIG. 4 is a front plan view of the annular exercising assembly of the present invention. FIG. 5 is a top plan view of the annular exercising assembly of the present invention. FIG. 6 is a side plan view of the annular exercising assembly of the present invention. FIG. 7 is a top perspective view of an alternate embodiment of the annular exercising assembly of the present invention. FIG. 8 is a top plan view of the alternate embodiment of the annular exercising assembly shown in FIG. 7. FIG. 9 is a frontal pictorial view of the annular exercising assembly shown in FIG. 2 provided with an airway protection assembly. FIG. 10 is another embodiment of the annular exercising assembly shown in FIG. 9. FIG. 11 is an alternative embodiment of the annular exercising assembly shown in FIG. 2. FIG. 11a is a frontal view of an airway protection assembly. FIG. 12 is an alternative embodiment of the annular exercising assembly shown in FIG. 9. DETAILED DESCRIPTION OF THE INVENTION Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for purpose of description and should not be regarded as limiting. The present invention encompasses an annular exercising (either isometric or isotonic exercises) assembly for use within a user's mouth, and more particularly, between the user's lips in such a manner that the user's upper and lower teeth are not in a substantially engaged position. The annular exercising assembly is shown generally in the side pictorial view of FIG. 1, the front pictorial view of FIG. 2, and the front, top, and side plan views of FIGS. 4, 5, and 6 respectively, and referenced by numeral 10. Annular exercising assembly 10 is generally defined as having-an exterior member 12 and an interior member 14. The exterior member 12 is kept in a spaced apart relationship to the interior member 14. Exterior member 12 also has an exterior peripheral edge 20, and the interior member 14 has an interior peripheral edge 30. The exterior peripheral edge 20 has an exterior side 21 and an interior side 22 and the interior peripheral edge 30 has an interior side 31 and an exterior side 32. A trough shaped area 40 is generally defined by the area between the exterior peripheral edge 20 and the interior peripheral edge 30 and the bottom of the trough shaped area 40 is generally defined as the intersection of the exterior peripheral edge 20 and the interior peripheral edge 30. The annular exercising assembly 10 has a passageway 50 extending there-through extending from the exterior side 21 of the exterior peripheral edge 20 to the exterior side 32 of the interior peripheral edge 30. The annular exercising assembly 10 also has a passageway 50 extending from the exterior side 21 of the exterior peripheral edge 20 to the exterior side 32 of the interior peripheral edge 30. The passageway 50 can be more easily seen in the front pictorial view of FIG. 2 which shows a frontal view of the annular exercising assembly 10. The passageway 50 can be of any shape so long as it permits visual inspection of the inside of the mouth during use. Such visualization is important to ensure that the teeth are kept in a centric position, thereby maintaining (1) the TMJ joint in a relaxed state and (2) an unobstructed airway. Indeed the unobstructed airway allows a user to keep an appropriate and necessary means of air intake and CO2 exhalation from the user during exercise thereby allowing for unimpeded respiration. The annular exercising assembly 10 is generally sized and shaped to fit an individual user's mouth and lip structure. Thus, it will be appreciated that the annular exercising assembly 10 is preferably custom fitted and/or fabricated to each user's unique mouth/lip structure. Although such customization is desirous, one may make a general adaptation of the annular exercising assembly 10 which would fit the size and shape of a broad range of user's mouths and/or lip structures. For example, if the user's mouth is small and narrow, (and hence the lip structure would also be narrow) the annular exercising assembly 10 would be sized and shaped to fit the small and narrow opening created by the user when the user's (1) mouth and lips are barely open and (2) the upper and lower teeth are almost touching. Furthermore, since the annular exercising assembly 10 is “free standing”—i.e. held in place solely by the lip and gum tissue of the user—sizing and shaping the annular exercising assembly 10 to each unique and individual user is preferred. Such a “free standing” configuration is ideally suited to most isometric or isotonic exercises where the user's hands are often needed for balance and/or gripping. The annular exercising assembly 10 is fabricated from any shape-sustaining or shape-retaining material which can be molded to fit a general form and/or custom fitted to a specific user. Examples of appropriate shape-sustaining or shape-retaining materials which can be used in the present invention include nontoxic plastics, plastic laminates, or acrylics such as dental acrylic. One of ordinary skill in the art will appreciate that the annular exercising assembly 10 of the present invention can be fabricated from a multitude of materials and such range of materials that are useful in the present invention is only limited by the need to have a material that is substantially rigid, substantially flexible, or semi-flexible and that is also shape-sustaining or shape-retaining. Placement of the user's lips in the annular exercising assembly 10 is shown in the cross-sectional side pictorial view of FIG. 3. A user 55 places the annular exercising assembly 10 between the user's 55 lips. An upper lip portion 60 of the user 55 and a lower lip portion 70 of the user 55 are placed into the trough shaped area 40. The upper lip portion 60 has an outside surface 61 and an inside surface 62, while the lower lip portion 70 has an outside surface 71 as well as an inside surface 72. Thus, and is shown in FIG. 3, when in place in the user's 55 mouth, the exterior member 12 of the annular exercising assembly 10 is outside the user's 55 mouth, while the interior member 14 of the annular exercising assembly 10 is inside the user's 55 mouth. In this manner, the annular exercising assembly 10 is held in place in the user's 55 mouth. More particularly, when the annular exercising assembly 10 is placed between the user's 55 lips the interior side 22 of the exterior peripheral edge 20 is adjacent the outside surface 61 of the upper lip portion 60 as well as the outside surface 71 of the lower lip portion 70, and the interior side 31 of the interior peripheral edge 30 is adjacent the inside surface 62 of the upper lip portion 60 as well as the inside surface 72 of the lower lip portion 70. In the same manner, when the annular exercising assembly 10 is placed between the user's 55 lips and more particularly the exterior side 32 of the interior peripheral edge 30 is adjacent an outside surface 81 of the user's 55 teeth 80. In using the annular exercising assembly 10, the user 55 places the annular exercising assembly 10 between their lips also more particularly as outlined herein above. Once the annular exercising assembly 10 is in place, the user 55 brings the upper lip portion 60 toward the lower lip portion 70. By bringing the upper lip portion 60 toward the lower lip portion 70 while using the annular exercising assembly 10, the user 55 is able to contract, stain, and/or tense the muscles surrounding the larynx thereby increasing the isometric or isotonic resistance and/or effect of the a particular exercise being undertaken. Alternatively or in combination with bringing the upper lip portion 60 toward the lower lip portion 70, the user 55 may contract and bring a right corner lip portion 65 toward a left corner lip portion 75. In this manner, all the muscle groups surrounding the lips face, neck and larynx can be exercised in a sequential fashion. FIG. 4 is a frontal view of the annular exercising assembly 10 in a user's 55 mouth. As can be appreciated from FIG. 4, when the annular exercising assembly 10 is placed in the user's 55 mouth, and the upper lip portion 60 is brought toward the lower lip portion 70, the user's 55 teeth 80 are in a relaxed position—i.e. an upper set 82 of the teeth 80 do not engage a lower set 83 of the teeth 80. In this manner, the TMJ joint is neither stressed nor tensed during use of the annular exercising assembly 10. During use, the annular exercising assembly 10 tenses the soft palate and the tongue base which includes the pharyngeal muscles. Indeed, the annular exercising assembly 10 globally exercises numerous muscle groups thereby, isometrically or isotonically toning the face, neck and body simultaneously. Through exercising these muscle groups, incidences of sleep apnea can be reduced and or eliminated for example, the annular exercising assembly 10 tones the muscles of the soft palate, tongue and tongue base, as well as the pharyngeal area. The toning of these muscles is instrumental in the reduction of sleep apnea incidents. Swallowing disorders can also be decreased through the toning of the muscle groups and vocal output is strengthened and clarified. Through use of the annular exercising assembly 10, muscles of the nasal region and especially the levator labii superioris alaeque nasi and the nares in general tighten. Through such tightening, the formation of polyps in the sinuses (which restrict airflow) can be substantially reduced. This effect may be attributed to a massaging quality to the movement of the maxillary and nasal muscles with increased blood flow to the sinuses. By changing the type and duration of exercises used with the annular exercising assembly 10, individual muscle groups can be targeted thereby, specifically toning the face and neck for example, thereby giving the user a more youthful appearance. In general, the annular exercising assembly 10 generally activates and/or tenses the following muscle groups: Nasal region, Maxillary region, Mandibular region, Intermaxillary region, Tempero-mandibular region, the Pterygo-mandibular region and the labial region. Further, the annular exercising assembly 10 employs leverage and tensing of the Thyroid cartilage and results in intensified muscle toning in a minimum amount of time. Since the annular exercising assembly 10 is held in place only by the user's lips, no stress or strain is placed on the TMJ joint by compression of the teeth or an excursion of the jaws. The use of the annular exercising assembly 10 during exercise will not effect the delicate balance of the TMJ joint and further serves to strengthen the tissues and muscles surrounding the TMJ joint, thus resulting in a better support system for the TMJ joint. The annular exercising assembly 10 also aids in globally exercising the lip and mid-face muscles in two movements, thus allowing the muscles to work together and results in a faster toning process, one example of such toning resulting in preservation of the bow effect of the upper lip. In toning the lips, a user 55 is able to prevent and/or minimize the appearance of wrinkles and eliminates painful cracking of the lips from deep wrinkles. As we age, musculature around the mouth and neck weakens. Using the annular exercising assembly 10, a user can arrest such muscle deterioration. Once the annular exercising assembly 10 has been placed between the user's 55 lips, a regimen of isometric or isotonic exercises are preformed in both a vertical plane, by compressing the upper lip portion 60 toward the lower lip portion 70, and in a horizontal plane by compressing the right corner lip portion 65 toward the left corner lip portion 75. Thus, the present invention is an isometric or isotonic exercising tool that is freestanding in construction and is held in place by the user's 55 lips without the need for an external support mechanism or intra oral support system past the lingual wall and anterior gum. The annular exercising assembly 10 is held by the user's 55 lips in the anterior, medial or posterior position and is capable of exercising all the muscles in at least two movements. In this manner, many muscle groups are exercised in isolation as well as in relation to one another. Strengthening of these muscle groups effectively improves posture and endurance necessary for tedious and repetitious tasks which involve body postures that stress the neck and facial muscles. One effect is the diminished appearance of a double chin and a more defined jaw line which increases the user's 55 youthful appearance. The structure of the annular exercising assembly 10 holds the user's 55 lips in a neutral position while the user 55 performs an isometric or isotonic exercise. By keeping the lips in a neutral position, a contraction and/or pursing of any part of the lips, which may reinforce the presence of wrinkles, is prevented. Furthermore, since the annular exercising assembly 10 supports the anterior surface of the lips, use of the annular exercising assembly 10 preserves the youthful appearance of the bow effect in the upper mid-lip area. The use of the annular exercising assembly 10 results in toned mid-face muscles thereby giving a younger appearance to the mid-face and jaw area. Through the toning of the mid-face muscles which are used in the mastication of food, older users will find that they acquire a stronger bite and have greater ease in chewing boluses. Through use of the annular exercising assembly 10, the whole body of the user 55 may be isometrically or isotonically exercised. The annular exercising assembly 10 may be used only to tone the facial neck areas or it may be used in conjunction with isometric or isotonic exercises using only body parts or other exercising equipment that allows the holding of muscle groups in a tensed position. In this manner the whole body can be exercised in less than five minutes thereby saving time and increasing muscle tone. Increased muscle tone helps support tissue surrounding the joints and does not allow the joints to slip thereby decreasing injuries to the joints. The toning of the muscle groups will also delay the atrophy of these muscles. Combining the annular exercising assembly 10 with isometric or isotonic exercises using chest and/or back muscle groups gives a more defined appearance of the pectoralis muscles and adds strength to the upper torso. Women user's thereby firm and increase breast tissue leading to an increased bust size. Thus, through use of the annular exercising assembly 10 and simple upper body exercises, costly and dangerous breast implants can be avoided, as well as the inherent risks in any such surgery. Use of the annular exercising assembly 10 may be enhanced by using the device in a laying down position and pressing the palms of the hands together across the chest. During times of constipation, use of the annular exercising assembly 10 during bowel movements results in the pushing of fecal matter through the colon/anus by contractions of the muscles in a top downward movement rather than the straining in the perineum area. In this manner, the use of laxatives and/or enemas can be eliminated and the decrease in straining will result in the prevention of enlarging hemorrhoids. Use of the annular exercising assembly 10 with muscle contractions focused on the perineum area results in further strengthening of the bowel and bladder walls. Results from this combination of exercises and the annular exercising assembly 10 control incontinence better than the use of Kegel exercised done with muscle contraction of the peritoneal area alone. Eliminating and/or controlling incontinence in this manner decreases the economic (cost of pads, etc.) and social (isolation, etc.) impacts of a user who is incontinent. Finally, use of the annular exercising assembly 10 with a regular exercise regimen leads to a massaging effect of the vascular system thereby resulting in a lowering of a user's blood pressure and concomitant circulatory disorders. An alternate embodiment of the annular exercising assembly 10 is shown in FIGS. 7 and 8. In this alternate embodiment, the annular exercising assembly 10 further includes at least one connection member 100 having an elongated tubular assembly 105, having a first end 110, and a second end 120. The first and second ends 110, 120, respectively, are connected to the exterior side 21 of the exterior member 12, so as to define a passageway 130. The passageway 130 and the elongated tubular assembly 105 form the at least one connection member 100. The at least one connection member 100 serves the purpose of having an exterior point on the annular exercising assembly 10 to allow a user, physical therapist, doctor and/or aide (to name but a few) to position, hold, or remove the annular exercising assembly 10 in the user's mouth. Additionally, the at least one connection member 100 provides a loop or hoop like device to which a cord (not shown) may be attached. Such a cord (not shown) could allow the user to keep the annular exercising assembly 10 hung about the user's neck and/or attached to the user's person in much the same manner as a pacifier may be attached to a baby's clothes and/or similar to eye-glass chains which allow glasses to be suspended from a user's neck when not in use. Another alternative embodiment of the annular exercising assembly 10 is shown in FIGS. 9-12. In this alternative embodiment, the annular exercising assembly 10 further includes an airway protection assembly 140 having a grid-like appearance. The airway protection assembly 140 may be positioned within or about the passageway 50 of the annular exercising assembly 10. The airway protection assembly 140 may be constructed from a metal screen, gauze, string or any other such material allowing for the passage of air while preventing the entry of foreign objects (such as dust, dirt, debris, insects, such as flies, etc.) into a user's airway. While the airway protection assembly 140 is shown having a grid-like appearance, it should be understood that any such configuration may be provided so long as the airway protection assembly 140 acts in the way it is intended and described herein, that is, to allow the passage of air through the passageway 50 of the annular exercising assembly 10. The airway protection assembly 140 may be fixed or removable. As shown in FIG. 9, the airway protection assembly 140 may be generally sized and shaped to fit within or about the passageway 50 of the annular exercising assembly 10. It should be understood that the airway protection assembly 140 may be affixed within the passageway 50 of the annular exercising assembly 10 with an adhesive or other such bonding material. Further, as shown in FIG. 10, the airway protection assembly 140 may be provided with a plurality of stabilizing members 142 positioned about an external peripheral edge 144 of the airway protection assembly 140. The stabilizing members 142 are sized and shaped to engage the exterior peripheral edge 20 of the annular exercising assembly 10 allowing for the airway protection assembly 140 to be positioned within the passageway 50 of the annular exercising assembly 10. Alternatively, a plurality of grooves (not shown) may be formed in the exterior side 21 of the exterior peripheral edge 20 or the exterior side 32 of the interior peripheral edge 30 of the annular exercising assembly 10 for receiving the stabilizing members 142 and fastening the airway protection assembly 140 to the annular exercising assembly 10. As shown in FIGS. 11 and 11a, the annular exercising assembly 10 may be provided with a plurality of hooks 146 positioned about the interior peripheral edge 30 of the annular exercising assembly 10. The airway protection assembly 140 may be provided with a plurality of spaces 148 corresponding to the hooks 146 allowing the the airway protection assembly 140 to be connected to the annular exercising assembly 10 and positioned about the passageway 50 of the annular exercising assembly 10. Referring to FIG. 12, another embodiment of the annular exercising assembly 10 is shown. The airway protection assembly 140 may be provided with an exterior wall 150 that extends from the external peripheral edge 144 of the airway protection assembly 140 to conform to the interior peripheral edge 30 of the annular exercising assembly 10. The exterior wall 150 is positioned to engage the interior peripheral edge 30 of the annular exercising assembly 10, thus preventing the airway protection assembly 140 from slipping into the user's airway. Thus, it should be apparent that there has been provided in accordance with the present invention an annular exercising assembly 10 and methods for using same that fully satisfy the objectives and advantages set forth above. Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH> | <SOH> SUMMARY OF THE PRIOR ART AND HISTORICAL BACKGROUND <EOH>During exercise, everyday lifting of heavy objects, childbearing and/or during defecation, muscles which surround the larynx are tensed thereby resulting in a bracing of the larynx, through such isolation and straining of the larynx muscle, fatigue and discomfort is encouraged. Thus, it becomes apparent that the muscle groups integral to the larynx are important to weight lifting and other day to day tasks. When used in such a manner, the larynx acts as a focal bracing point which allows for the straining individual to use the respective muscle groups in order to achieve any of the enumerated tasks. Individuals who have had larnygectomies are typically hindered in their efforts to accomplish such tasks. Further, through isolation and use of the larynx muscle groups, an individual is capable of greater feats of strength than the mere use of muscles of the arms, legs, and/or body along. Indeed, through isolation and tensing of the larynx during exertions of physical strength, other muscle groups are tensed in a “chain reaction” mechanism. Thus, the larynx and the muscle groups surrounding the larynx are important components in aiding activities in which muscle groups must be tensed and/or strained. Prior art muscle toning apparatuses include U.S. Pat. No. 5,556,357 to Hanna; U.S. Pat. No. 3,014,286 to Hricak; U.S. Pat. No. 3,547,433 to Robins; and U.S. Pat. No. 4,280,696 to Ramon. All of these patents have a fatal and potentially dangerous flaw—each describes an apparatus which requires the tensing and clinching of the jaw as well as a sustained force which is placed upon the teeth that are in contact with the apparatus. For example, in the Hanna '357 patent it is the user's teeth which rest upon the apparatus to exert opposite opposing force against one another. Also, as shown in the Hricak '286 patent, the apparatuses oftentimes placed the user's tongue in an unnatural position and places the jaw in a clinched and tensed position. Prolonged use of these types of devices may lead to jaw joint pain (Templar-Mandibular Joint'“TMJ” problems), incorrect positioning of the tongue resulting in suffocation and speech difficulties, as well as the degradation of the user's teeth which may also result in speech and eating difficulties. Clearly, the use of these prior art devices was at the user's own peril. Through use of the present invention, the muscles surrounding the larynx are “hyper” tensed—through such “hyper” tension, increased levels of tone and strength is found throughout the above-enumerated muscle groups. Also, if the present invention is used during isometric or isotonic exercises in conjunction with external stimulation, or alone, the same isolation and tensing of the musculature occurs. Thus, the present invention enhances isometric or isotonic exercise thereby increasing the effectiveness of the exercise—less time is required, better body/muscle tone is achieved, healthier tissue is promoted surrounding the joints, and better posture and overall health is achieved. The present invention, therefore, discloses an apparatus for enhancing isometric or isotonic exercises as well as methods of using same. The apparatus disclosed and claimed herein does not suffer from the same problems as the prior art devices. Indeed, the present invention maintains the jaw in a substantially relaxed position whereby the user's teeth are not in contact with one another. | 20050103 | 20061226 | 20050901 | 80222.0 | 0 | MATHEW, FENN C | APPARATUS FOR ENHANCING EXERCISES AND METHODS OF USING SAME | SMALL | 1 | CONT-ACCEPTED | 2,005 |
|||
11,028,477 | ACCEPTED | Pyrrole substituted 2-indolinone protein kinase inhibitors | The present invention relates to pyrrole substituted 2-indolinone compounds and their pharmaceutically acceptable salts which modulate the activity of protein kinases and therefore are expected to be useful in the prevention and treatment of protein kinase related cellular disorders such as cancer. | 1-60. (canceled) 61. A compound of Formula (I); wherein: R1 is selected from the group consisting of hydrogen, halo, alkyl, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, —(CO)R15, —NR13R14, —(CH2)rR16 and —C(O)NR8R9; R2 is selected from the group consisting of hydrogen, halo, alkyl, trihalomethyl, hydroxy alkoxy, —NR13R14, —NR13C(O)R14, —C(O)R15, aryl, heteroaryl, and —S(O)2NR13R14; R3 is selected from the group consisting of hydrogen, halogen, alkyl, trihalomethyl, hydroxy, alkoxy, —C(O)R15, —NR13R14, aryl, heteroaryl, —NR13S(O)2R14, —S(O)2NR13R14, —NR13C(O)R14, and —NR13C(O)OR14; R4 is selected from the group consisting of hydrogen, halogen, alkyl, hydroxy, alkoxy and —NR13R14; R5 is selected from the group consisting of hydrogen and alkyl; R6 is —C(O)R10; R7 is selected from the group consisting of hydrogen, alkyl, aryl and heteroaryl; R8 and R9 are independently selected from the group consisting of hydrogen, alkyl and aryl; R10 is —N(R11)(CH2)nR2; R11 is selected from the group consisting of hydrogen and alkyl; R12 is selected from the group consisting of —NR13R14, hydroxy, —C(O)R15, aryl, and heteroaryl; R13 and R14 are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl and heteroaryl; or R13 and R14 may combine to form a group selected from the group consisting of —(CH2)4—, —(CH2)5—, —(CH2)2O(CH2)2—, and —(CH2)2N(CH3)(CH2)2; R15 is selected from the group consisting of hydrogen, hydroxy, alkoxy and aryloxy; R16 is selected from the group consisting of hydroxy, —C(O)R15, —NR13R14 and —C(O)NR13R14; R17 is selected from the group consisting of alkyl, cycloalkyl, aryl and heteroaryl; and n and r are independently 1, 2, 3, or 4; or a pharmaceutically acceptable salt thereof 62. The compound of claim 61, wherein R1 is selected from the group consisting of hydrogen, lower alkyl, —(CH2)rR16 and —C(O)NR8R9; R2 is selected from the group consisting of hydrogen, halogen, aryl and —S(O)2NR13R14; R3 is selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, aryl, heteroaryl, and —C(O)R15; R4 is hydrogen; R5 is selected from the group consisting of hydrogen and lower alkyl; R7 is selected from the group consisting of hydrogen, lower alkyl, and aryl; R16 is selected from the group consisting of hydroxy and C(O)R15; and r is 2 or 3. 63. The compound of claim 62, wherein n is 1, 2, or 3; R11 is hydrogen; and R12 is selected from the group consisting of hydroxy, lower alkoxy, C(O)R15, heteroaryl and —NR13R14. 64. The compound of claim 63, wherein R13 and R14 are independently selected from the group consisting of hydrogen, lower alkyl, heteroaryl and, combined, —(CH)4—, —(CH2)5—, —CH2)2—O—(CH2)2— and —(CH2)2N(CH3)(CH2)2—. 65. A compound of formula or a pharmaceutically acceptable salt thereof. 66. A compound that is the L-malate salt of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide. 67. A compound of formula or a pharmaceutically acceptable salt thereof. 68. A pharmaceutical composition comprising a compound of claim 61 and a pharmaceutically acceptable carrier or excipient. 69. A pharmaceutical composition comprising the compound of claim 65 and a pharmaceutically acceptable carrier or excipient. 70. A pharmaceutical composition comprising the compound of claim 66 and a pharmaceutically acceptable carrier or excipient. 71. A pharmaceutical composition comprising the compound of claim 67 and a pharmaceutically acceptable carder or excipient. | CROSS-REFERENCE INFORMATION This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Applications Ser. Nos. 60/182,710, filed Feb. 15, 2000, 60/216,422 filed on Jul. 6, 2000 and Ser. No. 60/243,532, filed Oct. 27, 2000, the disclosures of which are incorporated by reference herein in their entirety. BACKGROUND OF THE INVENTION 1. Field of Invention The present invention relates to certain 3-pyrrole substituted 2-indolinone compounds which modulate the activity of protein kinases (“PKs”). The compounds of this invention are therefore useful in treating disorders related to abnormal PK activity. Pharmaceutical compositions comprising these compounds, methods of treating diseases utilizing pharmaceutical compositions comprising these compounds and methods of preparing them are also disclosed. 2. State of the Art The following is offered as background information only and is not admitted to be prior art to the present invention. PKs are enzymes that catalyze the phosphorylation of hydroxy groups on tyrosine, serine and threonine residues of proteins. The consequences of this seemingly simple activity are staggering; cell growth, differentiation and proliferation, i.e., virtually all aspects of cell life in one way or another depend on PK activity. Furthermore, abnormal PK activity has been related to a host of disorders, ranging from relatively non-life threatening diseases such as psoriasis to extremely virulent diseases such as glioblastoma (brain cancer). The PKs can be conveniently broken down into two classes, the protein tyrosine kinases (PTKs) and the serine-threonine kinases (STKs). One of the prime aspects of PTK activity is their involvement with growth factor receptors. Growth factor receptors are cell-surface proteins. When bound by a growth factor ligand, growth factor receptors are converted to an active form which interacts with proteins on the inner surface of a cell membrane. This leads to phosphorylation on tyrosine residues of the receptor and other proteins and to the formation inside the cell of complexes with a variety of cytoplasmic signaling molecules that, in turn, effect numerous cellular responses such as cell division (proliferation), cell differentiation, cell growth, expression of metabolic effects to the extracellular microenvironment, etc. For a more complete discussion, see Schlessinger and Ullrich, Neuron, 9:303-391 (1992) which is incorporated by reference, including any drawings, as if fully set forth herein. Growth factor receptors with PTK activity are known as receptor tyrosine kinases (“RTKs”). They comprise a large family of transmembrane receptors with diverse biological activity. At present, at least nineteen (19) distinct subfamilies of RTKs have been identified. An example of these is the subfamily designated the “HER” RTKs, which include EGFR (epithelial growth factor receptor), HER2, HER3 and HER4. These RTKs consist of an extracellular glycosylated ligand binding domain, a transmembrane domain and an intracellular cytoplasmic catalytic domain that can phosphorylate tyrosine residues on proteins. Another RTK subfamily consists of insulin receptor (IR), insulin-like growth factor Ireceptor (IGF-1R) and insulin receptor related receptor (IRR). IR and IGF-1R interact with insulin, IGF-I and IGF-II to form a heteratetramer of two, entirely extracellular glycosylated a subunits and two β subunits which cross the cell membrane and which contain the tyrosine kinase domain. A third RTK subfamily is referred to as the platelet derived growth factor receptor (“PDGFR”) group, which includes PDGFRα, PDGFRβ, CSFIR, c-kit and c-fms. These receptors consist of glycosylated extracellular domains composed of variable numbers of immunoglobin-like loops and an intracellular domain wherein the tyrosine kinase domain is interrupted by unrelated amino acid sequences. Another group which, because of its similarity to the PDGFR subfamily, is sometimes subsumed into the later group is the fetus liver kinase (“flk”) receptor subfamily. This group is believed to be made up of kinase insert domain-receptor fetal liver kinase-1 (KDR/FLK-1, VEGF-R2), flk-1R, flk-4 and fms-like tyrosine kinase 1 (flt-1). A further member of the tyrosine kinase growth factor receptor family is the fibroblast growth factor (“FGF”) receptor subgroup. This group consists of four receptors, FGFR1-4, and seven ligands, FGF1-7. While not yet well defined, it appears that the receptors consist of a glycosylated extracellular domain containing a variable number of immunoglobin-like loops and an intracellular domain in which the tyrosine kinase sequence is interrupted by regions of unrelated amino acid sequences. Still another member of the tyrosine kinase growth factor receptor family is the vascular endothelial growth factor (VEGF”) receptor subgroup. VEGF is a dimeric glycoprotein similar to PDGF but has different biological functions and target cell specificity in vivo. In particular, VEGF is presently thought to play an essential role is vasculogenesis and angiogenesis. A more complete listing of the known RTK subfamilies is described in Plowman et al., DN&P, 7(6):334-339 (1994) which is incorporated by reference, including any drawings, as if fully set forth herein. In addition to the RTKs, there also exists a family of entirely intracellular PTKs called “non-receptor tyrosine kinases” or “cellular tyrosine kinases.” This latter designation, abbreviated “CTK,” will be used herein. CTKs do not contain extracellular and transmembrane domains. At present, over 24 CTKs in 11 subfamilies (Src, Frk, Btk, Csk, Abl, Zap70, Fes, Fps, Fak, Jak and Ack) have been identified. The Src subfamily appear so far to be the largest group of CTKs and includes Src, Yes, Fyn, Lyn, Lck, Blk, Hck, Fgr and Yrk. For a more detailed discussion of CTKs, see Bolen, Oncogene, 8:2025-2031 (1993), which is incorporated by reference, including any drawings, as if fully set forth herein. The serine/threonine kinases, STKs, like the CTKs, are predominantly intracellular although there are a few receptor kinases of the STK type. STKs are the most common of the cytosolic kinases; i.e., kinases that perform their function in that part of the cytoplasm other than the cytoplasmic organelles and cytoskelton. The cytosol is the region within the cell where much of the cell's intermediary metabolic and biosynthetic activity occurs; e.g., it is in the cytosol that proteins are synthesized on ribosomes. RTKs, CTKs and STKs have all been implicated in a host of pathogenic conditions including, significantly, cancer. Other pathogenic conditions which have been associated with PTKs include, without limitation, psoriasis, hepaticcirrhosis, diabetes, angiogenesis, restenosis, ocular diseases, rheumatoid arthritis and other inflammatory disorders, immunological disorders such as autoimmune disease, cardiovascular disease such as atherosclerosis and a variety of renal disorders. With regard to cancer, two of the major hypotheses advanced to explain the excessive cellular proliferation that drives tumor development relate to functions known to be PK regulated. That is, it has been suggested that malignant cell growth results from a breakdown in the mechanisms that control cell division and/or differentiation. It has been shown that the protein products of a number of proto-oncogenes are involved in the signal transduction pathways that regulate cell growth and differentiation. These protein products of proto-oncogenes include the extracellular growth factors, transmembrane growth factor PTK receptors (RTKs), cytoplasmic PTKs (CTKs) and cytosolic STKs, discussed above. In view of the apparent link between PK-related cellular activities and wide variety of human disorders, it is no surprise that a great deal of effort is being expended in an attempt to identify ways to modulate PK activity. Some of this effort has involved biomimetic approaches using large molecules patterned on those involved in the actual cellular processes. (e.g., mutant ligands (U.S. Pat. No. 4,966,849); soluble receptors and antibodies (App. No. WO 94/10202, Kendall and Thomas, Proc. Nat'l Acad. Sci., 90:10705-09 (1994), Kim, et al., Nature, 362:841-844 (1993)); RNA ligands (Jelinek, et al., Biochemistry, 33:10450-56); Takano, et al., Mol. Bio. Cell 4:358A (1993); Kinsella, et al., Exp. Cell Res. 199:56-62 (1992); Wright, et al., J. Cellular Phys., 152:448-57) and tyrosine kinase inhibitors (WO 94/03427; WO 92/21660; WO 91/15495; WO 94/14808; U.S. Pat. No. 5,330,992; Mariani, et al., Proc. Am. Assoc. Cancer Res., 35:2268 (1994)). In addition to the above, attempts have been made to identify small molecules which act as PK inhibitors. For example, bis-monocylic, bicyclic and heterocyclic aryl compounds (PCT WO 92/20642), vinyleneazaindole derivatives (PCT WO 94/14808) and 1-cyclopropyl-4-pyridylquinolones (U.S. Pat. No. 5,330,992) have been described as tyrosine kinase inhibitors. Styryl compounds (U.S. Pat. No. 5,217,999), styryl-substituted pyridyl compounds (U.S. Pat. No. 5,302,606), quinazoline derivatives (EP App. No.0 566 266 A1), selenaindoles and selenides (PCT WO 94/03427), tricyclic polyhydroxylic compounds (PCT WO 92/21660) and benzylphosphonic acid compounds (PCT WO 91/15495) have all been described as PTK inhibitors useful in the treatment of cancer. SUMMARY OF THE INVENTION The present invention is directed to certain 3-pyrrole substituted 2-indolinone compounds which exhibit PK modulating ability and are therefore useful in treating disorders related to abnormal PK activity. Accordingly, in one aspect, the present invention relates to 3-pyrrole substituted 2-indolinones of Formula (I): wherein: R1 is selected from the group consisting of hydrogen, halo, alkyl, cyclkoalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, —(CO)R15, —NR13R14, —(CH2)rR16 and —C(O)NR8R9; R2 is selected from the group consisting of hydrogen, halo, alkyl, trihalomethyl, hydroxy, alkoxy, cyano, —NR13R14, —NR13C(O)R14, —C(O) R15, aryl, heteroaryl, —S(O)2NR13R14 and —SO2R20 (wherein R20 is alkyl, aryl, aralkyl, heteroaryl and heteroaralkyl); R3 is selected from the group consisting of hydrogen, halogen, alkyl, trihalomethyl, hydroxy, alkoxy, —(CO)R15, —NR13R14, aryl, heteroaryl, —NR13S(O)2R14, —S(O)2NR13R14, —NR13C(O)R14, —NR13C(O)OR14 and —SO2R20 (wherein R20 is alkyl, aryl, aralkyl, heteroaryl and heteroaralkyl); R4 is selected from the group consisting of hydrogen, halogen, alkyl, hydroxy, alkoxy and —NR13R14; R5 is selected from the group consisting of hydrogen, alkyl and —C(O)R10; R6 is selected from the group consisting of hydrogen, alkyl and —C(O)R10; R7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, —C(O)R17 and —C(O)R10; or R6 and R7 may combine to form a group selected from the group consisting of —(CH2)4—, —(CH2)5— and —(CH2)6—; with the proviso that at least one of R5, R6 or R7 must be —C(O)R10; R8 and R9 are independently selected from the group consisting of hydrogen, alkyl and aryl; R10 is selected from the group consisting of hydroxy, alkoxy, aryloxy, —N(R11)(CH2)nR12, and —NR13R14; R11 is selected from the group consisting of hydrogen and alkyl; R12 is selected from the group consisting of —NR13R14, hydroxy, —C(O)R15, aryl, heteroaryl, —N+(O−)R13R14, —N(OH)R13, and —NHC(O)Ra (wherein Ra is unsubstituted alkyl, haloalkyl, or aralkyl); R13 and R14 are independently selected from the group consisting of hydrogen, alkyl, cyanoalkyl, cycloalkyl, aryl and heteroaryl; or R13 and R14 may combine to form a heterocyclo group; R15 is selected from the group consisting of hydrogen, hydroxy, alkoxy and aryloxy; R16 is selected from the group consisting of hydroxy, —C(O)R15, —NR13R14 and —C(O)NR13R14; R17 is selected from the group consisting of alkyl, cycloalkyl, aryl and heteroaryl; R20 is alkyl, aryl, aralkyl or heteroaryl; and n and r are independently 1, 2, 3, or 4; or a pharmaceutically acceptable salt thereof. Preferably, R1 is selected from the group consisting of hydrogen, halo, alkyl, cyclkoalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, —C(O)R15, —NR13R14, —(CH2)rR16 and —C(O)NR8R9; R2 is selected from the group consisting of hydrogen, halo, alkyl, trihalomethyl, hydroxy, alkoxy, —NR13R14, —NR13C(O)R14, —C(O)R15, aryl, heteroaryl, and —S(O)2NR13R14; R3 is selected from the group consisting of hydrogen, halogen, alkyl, trihalomethyl, hydroxy, alkoxy, —(CO)R15, —NR13R14, aryl, heteroaryl, —NR13S(O)2R14, —S(O)2NR13R14, —NR13C(O)R14and —NR13C(O)OR14; R4 is selected from the group consisting of hydrogen, halogen, alkyl, hydroxy, alkoxy and —NR13R14; R5 is selected from the group consisting of hydrogen, alkyl and —C(O)R10; R6 selected from the group consisting of hydrogen, alkyl and —C(O)R10; R7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, —C(O)R17 and —C(O)R10; R6 and R7 may combine to form a group selected from the group consisting of —(CH2)4—, —(CH2)5— and —(CH2)6—; with the proviso that at least one of R5, R6 or R7 must be —C(O)R10; R8 and R9 are independently selected from the group consisting of hydrogen, alkyl and aryl; R10 is selected from the group consisting of hydroxy, alkoxy, aryloxy, —N(R11)(CH2)nR12 and —NR13R14; R11 is selected from the group consisting of hydrogen and alkyl; R12 is selected from the group consisting of —NR13R14, hydroxy, —C(O)R15, aryl and heteroaryl; R13 and R14 are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl and heteroaryl; R13 and R14 may combine to form a group selected from the group consisting of —(CH2)4—, —(CH2)5—, —(CH2)2O(CH2)2—, and —(CH2)2N(CH3)(CH2)2—; R15 is selected from the group consisting of hydrogen, hydroxy, alkoxy and aryloxy; R16 is selected from the group consisting of hydroxy, —C(O)R15, —NR13R14 and —C(O)NR13R14; R17 is selected from the group consisting of alkyl, cycloalkyl, aryl and heteroaryl; and n and r are independently 1, 2, 3, or 4; or a pharmaceutically acceptable salt thereof. In a second aspect this invention is directed to a pharmaceutical composition comprising one or more compound(s) of Formula (I) or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable excipient. In a third aspect, this invention is directed to a method of treating diseases mediated by abnormal protein kinase activity, in particular, receptor tyrosine kinases (RTKs), non-receptor protein tyrosine kinases (CTKs) and serine/threonine protein kinases (STKs), in an organism, in particular humans, which method comprises administering to said organism a pharmaceutical composition comprising a compound of Formula (I). Such diseases include by way of example and not limitation, cancer, diabetes, hepatic cirrhosis, cardiovasacular disease such as atherosclerosis, angiogenesis, immunological disease such as autoimmune disease and renal disease. In a fourth aspect, this invention is directed to a method of modulating of the catalytic activity of PKs, in particular, receptor tyrosine kinases (RTKs), non-receptor protein tyrosine kinases (CTKs) and serine/threonine protein kinases (STKs), using a compound of this invention which may be carried out in vitro or in vivo. In particular, the receptor protein kinase whose catalytic activity is modulated by a compound of this invention is selected from the group consisting of EGF, HER2, HER3, HER4, IR, IGF-1R, IRR, PDGFRα, PDGFRβ, CSFIR, C-Kit, C-fms, Flk-1R, Flk4, KDR/Flk-1, Flt-1 , FGFR-1R, FGFR-2R, FGFR-3R and FGFR-4R. The cellular tyrosine kinase whose catalytic activity is modulated by a compound of this invention is selected from the group consisting of Src, Frk, Btk, Csk, Abl, ZAP70, Fes/Fps, Fak, Jak, Ack, Yes, Fyn, Lyn, Lck, Blk, Hck, Fgr and Yrk. The serine-threonine protein kinase whose catalytic activity is modulated by a compound of this invention is selected from the group consisting of CDK2 and Raf. In a fifth aspect, this invention is directed to the use of a compound of Formula (I) in the preparation of a medicament which is useful in the treatment of a disease mediated by abnormal PK activity. In a sixth aspect, this invention is directed to an intermediate of Formula (II): wherein: R5 is selected from the group consisting of hydrogen, alkyl and —C(O)R10; R6 is selected from the group consisting of hydrogen, alkyl and —C(O)R10; R7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, —C(O)R17 and —C(O)R10; R6 and R7 may combine to form a group selected from the group consisting of —(CH2)4—, —(CH2)5— and —(CH2)6—; with the proviso that at least one of R5, R6 or R7 must be —C(O)R10; R10 is selected from the group consisting of hydroxy, alkoxy, aryloxy, —N (R11)(CH2)nR12 and —NR13R14; R11 is selected from the group consisting of hydrogen and alkyl;, R12 is selected from the group consisting of —NR13R14, hydroxy, —C(O)R15, aryl and heteroaryl; R13 and R14 are independently selected from the group consisting of hydrogen, alkyl, cyanoalkyl, cycloalkyl, aryl and heteroaryl; or R13 and R14 may combine to form a heterocyclo group; R15 is selected from the group consisting of hydrogen, hydroxy, alkoxy and aryloxy; R17 is selected from the group consisting of alkyl, cycloalkyl, aryl and heteroaryl; and n is 1, 2, 3, or 4. Preferaby, R5 or R6, in the compound of formula II, is —C(O)R10; R6 is selected from the group consisting of hydrogen, and alkyl, more preferably hydrogen or methyl; R5 is selected from the group consisting of hydrogen, and alkyl, more preferably hydrogen or methyl when R6 is —COR10; R6 is selected from the group consisting of hydrogen, and alkyl, more preferably hydrogen or methyl when R5 is —COR10;; R7 is selected from the group consisting of hydrogen, alkyl, and aryl, more preferably hydrogen, methyl or phenyl; R10 is selected from the group consisting of hydroxy, alkoxy, —N(R11)(CH2)nR12 and —NR13R14; R11 is selected from the group consisting of hydrogen and alkyl, more preferably hydrogen or methyl; R12 is selected from the group consisting of —NR13R14; R13 and R14 are independently selected from the group consisting of hydrogen, or alkyl; or R13 and R14 may combine to form a heterocyclo group; and n is 1, 2 or 3. Within the above preferred groups, more preferred groups of intermediate compounds are those wherein R5, R6, R11, R12, R13 or R14 are independently groups described in the section titled “preferred embodiments” herein below. In a seventh aspect, this invention is directed to methods of preparing compounds,of Formula (I). Lastly, this invention is also directed to identifying a chemical compound that modulates the catalytic activity of a protein kinase by contacting cells expressing said protein kinase with a compound or a salt of the present invention and then monitoring said cells for an effect. DETAILED DESCRIPTION OF THE INVENTION DEFINITIONS Unless otherwise stated the following terms used in the specification and claims have the meanings discussed below: “Alkyl” refers to a saturated aliphatic hydrocarbon radical including straight chain and branched chain groups of 1 to 20 carbon atoms (whenever a numerical range; e.g. “1-20”, is stated herein, it means that the group, in this case the alkyl group, may contain 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc. up to and including 20 carbon atoms). Alkyl groups containing from 1 to 4 carbon atoms are refered to as lower alkyl groups. When said lower alkyl groups lack substituents, they are referred to as unsubstituted lower alkyl groups. More preferably, an alkyl group is a medium size alkyl having 1 to 10 carbon atoms e.g., methyl, ethyl, propyl, 2-propyl, n-butyl, iso-butyl, tert-butyl, pentyl, and the like. Most preferably, it is a lower alkyl having 1 to 4 carbon atoms e.g., methyl, ethyl, propyl, 2-propyl, n-butyl, iso-butyl, or tert-butyl, and the like. The alkyl group may be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more, more preferably one to three, even more preferably one or two substituent(s) independently selected from the group consisting of halo, hydroxy, unsubstituted lower alkoxy, aryl optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, aryloxy optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, 6-member heteroaryl having from 1 to 3 nitrogen atoms in the ring, the carbons in the ring being optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, 5-member heteroaryl having from 1 to 3 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, the carbon and the nitrogen atoms in the group being optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, 5- or 6-member heteroalicyclic group having from 1 to 3 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, the carbon and nitrogen (if present) atoms in the group being optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, mercapto, (unsubstituted lower alkyl)thio, arylthio optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, cyano, acyl, thioacyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, nitro, N-sulfonamido, S-sulfonamido, R18S(O)—, R18S(O)2—, —C(O)OR18, R18C(O)O—, and —NR18R19, wherein R18 and R19 are independently selected from the group consisting of hydrogen, unsubstituted lower alkyl, trihalomethyl, unsubstituted (C3-C6)cycloalkyl, unsubstituted lower alkenyl, unsubstituted lower alkynyl and aryl optionally substituted with one or more, groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups. Preferably, the alkyl group is substituted with one or two substituents independently selected from the group consisting of hydroxy, 5- or 6-member heteroalicyclic group having from 1 to 3 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, the carbon and nitrogen (if present) atoms in the group being optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, 5-member heteroaryl having from 1 to 3 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, the carbon and the nitrogen atoms in the group being optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, 6-member heteroaryl having from 1 to 3 nitrogen atoms in the ring, the carbons in the ring being optionally substituted with one or more groups, preferably one, two or three groups which are independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, or —NR18R19, wherein R18 and R19 are independently selected from the group consisting of hydrogen, unsubstituted lower alkyl. Even more preferably the alkyl group is substituted with one or two substituents which are independently of each other hydroxy, dimethylamino, ethylamino, diethylamino, dipropylamino, pyrrolidino, piperidino, morpholino, piperazino, 4-lower alkylpiperazino, phenyl, imidazolyl, pyridinyl, pyridazinyl, pyrimidinyl, oxazolyl, triazinyl, and the like. “Cycloalkyl” refers to a 3 to 8 member all-carbon monocyclic ring, an all-carbon 5-member/6-member or 6-member/6-member fused bicyclic ring or a multicyclic fused ring (a “fused” ring system means that each ring in the system shares an adjacent pair of carbon atoms with each other ring in the system) group wherein one or more of the rings may contain one or more double bonds but none of the rings has a completely conjugated pi-electron system. Examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexadiene, adamantane, cycloheptane, cycloheptatriene, and the like. A cycloalkyl group may be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more, more preferably one or two substituents, independently selected from the group consisting of unsubstituted lower alkyl, trihaloalkyl, halo, hydroxy, unsubstituted lower alkoxy, aryl optionally substituted with one or more, preferably one or two groups independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, aryloxy optionally substituted with one or more, preferably one or two groups independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, 6-member heteroaryl having from 1 to 3 nitrogen atoms in the ring, the carbons in the ring being optionally substituted with one or more, preferably one or two groups independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, 5-member heteroaryl having from 1 to 3 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, the carbon and nitrogen atoms of the group being optionally substituted with one or more, preferably one or two groups independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, 5- or 6-member heteroalicyclic group having from 1 to 3 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, the carbon and nitogen (if present)atoms in the group being optionally substituted with one or more, preferably one or two groups independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, mercapto,(unsubstituted lower alkyl)thio, arylthio optionally substituted with one or more, preferably one or two groups independently of each other halo, hydroxy, unsubstituted lower alkyl or unsubstituted lower alkoxy groups, cyano, acyl, thioacyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, nitro, N-sulfonamido, S-sulfonamido, R18S(O)—, R18S(O)2—, —C(O)OR18, R18C(O)O—, and —NR18R19 are as defined above. “Alkenyl” refers to a lower alkyl group, as defined herein, consisting of at least two carbon atoms and at least one carbon-carbon double bond. Representative examples include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 1-, 2-, or 3-butenyl, and the like. “Alkynyl” refers to a lower alkyl group, as defined herein, consisting of at least two carbon atoms and at least one carbon-carbon triple bond. Representative examples include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-, 2-, or 3-butynyl, and the like. “Aryl” refers to an all-carbon monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups of 1 to 12 carbon atoms having a completely conjugated pi-electron system. Examples, without limitation, of aryl groups are phenyl, naphthalenyl and anthracenyl. The aryl group may be substituted or unsubstituted. When substituted, the substituted group(s) is preferably one or more, more preferably one, two or three, even more preferably one or two, independently selected from the group consisting of unsubstituted lower alkyl, trihaloalkyl, halo, hydroxy, unsubstituted lower alkoxy, mercapto,(unsubstituted lower alkyl)thio, cyano, acyl, thioacyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, nitro, N-sulfonamido, S-sulfonamido, R18S(O)—, R18S(O)2—, —C(O)OR18, R18C(O)O—, and —NR18R19, with R18 and R19 as defined above. Preferably, the aryl group is optionally substituted with one or two substituents independently selected from halo, unsubstituted lower alkyl, trihaloalkyl, hydroxy, mercapto, cyano, N-amido, mono or dialkylamino, carboxy, or N-sulfonamido. “Heteroaryl” refers to a monocyclic or fused ring (i.e., rings which share an adjacent pair of atoms) group of 5 to 12 ring atoms containing one, two, or three ring heteroatoms selected from N, O, or S, the remaining ring atoms being C, and, in addition, having a completely conjugated pi-electron system. Examples, without limitation, of unsubstituted heteroaryl groups are pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrimidine, quinoline, isoquinoline, purine and carbazole. The heteroaryl group may be substituted or unsubstituted. When substituted, the substituted group(s) is preferably-one or more, more preferably one, two, or three, even more preferably one or two, independently selected from the group consisting of unsubstituted lower alkyl, trihaloalkyl, halo, hydroxy, unsubstituted lower alkoxy, mercapto, (unsubstituted lower alkyl)thio, cyano, acyl, thioacyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, nitro, N-sulfonamido, S-sulfonamido, R18S(O)—, R18O)2—, —C(O)OR18, R18C(O)O—, and —NR18R19, with R18 and R19 as defined above. Preferably, the heteroaryl group is optionally substituted with one or two substituents independently selected from halo, unsubstituted lower alkyl, trihaloalkyl, hydroxy, mercapto, cyano, N-amido, mono or dialkylamino, carboxy, or N-sulfonamido. “Heteroalicyclic” refers to a monocyclic or fused ring group having in the ring(s) of 5 to 9 ring atoms in which one or two ring atoms are heteroatoms selected from N, O, or S(O)n (where n is an integer from 0 to 2), the remaining ring atoms being C. The rings may also have one or more double bonds. However, the rings do not have a completely conjugated pi-electron system. Examples, without limitation, of unsubstituted heteroalicyclic groups are pyrrolidino, piperidino, piperazino, morpholino, thiomorpholino, homopiperazino, and the like. The heteroalicyclic ring may be substituted or unsubstituted. When substituted, the substituted group(s) is preferably one or more, more preferably one, two or three, even more preferably one or two, independently selected from the group consisting of unsubstituted lower alkyl, trihaloalkyl, halo, hydroxy, unsubstituted lower alkoxy, mercapto,(unsubstituted lower alkyl)thio, cyano, acyl, thioacyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, nitro, N-sulfonamido, S-sulfonamido, R18S(O)—, R18S(O)2—, —C(O)OR18, R18C(O)O—, and —NR18R19, with R18 and R19 as defined above. Preferably, the heteroalicyclic group is optionally substituted with one or two substituents independently selected from halo, unsubstituted lower alkyl, trihaloalkyl, hydroxy, mercapto, cyano, N-amido, mono or dialkylamino, carboxy, or N-sulfonamido. Preferably, the heteroalicyclic group is optionally substituted with one or two substituents independently selected from halo, unsubstituted lower alkyl, trihaloalkyl, hydroxy, mercapto, cyano, N-amido, mono or dialkylamino, carboxy, or N-sulfonamido. “Heterocycle” means a saturated cyclic radical of 3 to 8 ring atoms in which one or two ring atoms are heteroatoms selected from N, O, or S(O)n (where n is an integer from 0 to 2), the remaining ring atoms being C, where one or two C atoms may optionally be replaced by a carbonyl group. The heterocyclyl ring may be optionally substituted independently with one, two, or three substituents selected from optionally substituted lower alkyl (substituted with 1 or 2 substituents independently selected from carboxy or ester), haloalkyl, cyanoalkyl, halo, nitro, cyano, hydroxy, alkoxy, amino, monoalkylamino, dialkylamino, aralkyl, heteroaralkyl, —COR (where R is alkyl) or COOR where R is (hydrogen or alkyl). More specifically the term heterocyclyl includes, but is not limited to, tetrahydropyranyl, 2,2-dimethyl-1,3-dioxolane, piperidino, N-methylpiperidin-3-yl, piperazino, N-methylpyrrolidin-3-yl, 3-pyrrolidino, morpholino, thiomorpholino, thiomorpholino-1-oxide, thiomorpholino-1,1-dioxide, 4-ethyloxycarbonylpiperazino, 3-oxopiperazino, 2-imidazolidone, 2-pyrrolidinone, 2-oxohomopiperazino, tetrahydropyrimidin-2-one, and the derivatives thereof. Preferably, the heterocycle group is optionally substituted with one or two substituents independently selected from halo, unsubstituted lower alkyl, lower alkyl substituted with carboxy, ester hydroxy, mono or dialkylamino. “Hydroxy” refers to an —OH group. “Alkoxy” refers to both an —O-(unsubstituted alkyl) and an —O-(unsubstituted cycloalkyl) group. Representative examples include, but are not limited to, e.g., methoxy, ethoxy, propoxy, butoxy, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, and the like. “Aryloxy” refers to both an —O-aryl .and an —O-heteroaryl group, as defined herein. Representative examples include, but are not limited to, phenoxy, pyridinyloxy, furanyloxy, thienyloxy, pyrimidinyloxy, pyrazinyloxy, and the like, and derivatives thereof. “Mercapto” refers to an —SH group. “Alkylthio” refers to both an —S-(unsubstituted alkyl) and an —S-(unsubstituted cycloalkyl) group. Representative examples include, but are not limited to, e.g., methylthio, ethylthio, propylthio, butylthio, cyclopropylthio, cyclobutylthio, cyclopentylthio, cyclohexylthio, and the like. “Arylthio” refers to both an —S-aryl and an —S-heteroaryl group, as defined herein. Representative examples include, but are not limited to, phenylthio, pyridinylthio, furanylthio, thientylthio, pyrimidinylthio, and the like and derivatives thereof. “Acyl” refers to a —C(O)—R″ group, where R″ is selected from the group consisting of hydrogen, unsubstituted lower alkyl, trihalomethyl, unsubstituted cycloalkyl, aryl optionally substituted with one or more, preferably one, two, or three substituents selected from the group consisting of unsubstituted lower alkyl, trihalomethyl, unsubstituted lower alkoxy, halo and —NR18R19 groups; heteroaryl (bonded through a ring carbon) optionally substituted with one or more, preferably one, two, or three substitutents selected from the group consisting of unsubstituted lower alkyl, trihaloalkyl, unsubstituted lower alkoxy, halo and —NR18R19 groups and heteroalicyclic (bonded through a ring carbon) optionally substituted with one or more, preferably one, two, or three substituents selected from the group consisting of unsubstituted lower alkyl, trihaloalkyl, unsubstituted lower alkoxy, halo and —NR18R19 groups. Representative acy groups include, but are not limited to, acetyl, trifluoroacetyl, benzoyl, and the like “Aldehyde” refers to an acyl group in which R″ is hydrogen. “Thioacyl” refers to a —C(S)—R″ group, with R″ as defined herein. “Ester” refers to a —C(O)O—R″ group with R″ as defined herein except that R″ cannot be hydrogen. “Acetyl” group refers to a —C(O)CH3 group. “Halo” group refers to fluorine, chlorine, bromineor iodine, preferably fluorine or chlorine. “Trihalomethyl” group refers to a —CX3 group wherein X is a halo group as defined herein. “Trihalomethanesulfonyl” group refers to a X3CS(═O)2— groups with X as defined above. “Cyano” refers to a —C≡N group. “Methylenedioxy” refers to a —OCH2O— group where the two oxygen atoms are bonded to adjacent carbon atoms. “Ethylenedioxy” group refers to a —OCH2CH2O— where the two oxygen atoms are bonded to adjacent carbon atoms. “S-sulfonamido” refers to a —S(O)2NR18R19 group, with R18 and R19 as defined herein. “N-sulfonamido” refers to a —NR18S(O)2R19 group, with R18 and R19 as defined herein. “O-carbamyl” group refers to a —OC(O)NR18R19 group with R18 and R19 as defined herein. “N-carbamyl” refers to an R18OC(O)NR19— group, with R18 and R19 as defined herein. “O-thiocarbamyl” refers to a —OC(S)NR18R19 group with R18 and R19 as defined herein. “N-thiocarbamyl” refers to a R18OC(S)NR19— group, with R18 and R19 as defined herein. “Amino” refers to an —NR18R19 group, wherein R18 and R19 are both hydrogen. “C-amido” refers to a —C(O)NR18R19 group with R18 and R19 as defined herein. “N-amido” refers to a R18C(O)NR19— group, with R18 and R19 as defined herein. “Nitro” refers to a —NO2 group. “Haloalkyl” means an unsubstituted alkyl, preferably unsubstituted lower alkyl as defined above that is substituted with one or more same or different halo atoms, e.g., —CH2Cl, —CF3, —CH2CF3, —CH2CCl3, and the like. “Aralkyl” means unsubstituted alkyl, preferably unsubstituted lower alkyl as defined above which is substituted with an aryl group as defined above, e.g., —CH2phenyl, —(CH2)2phenyl, —(CH2)3phenyl, CH3CH(CH3)CH2phenyl, and the like and derivatives thereof. “Heteroaralkyl” group means unsubstituted alkyl, preferably unsubstituted lower alkyl as defined above which is substituted with a heteroaryl group, e.g., —CH2pyridinyl, —(CH2)2pyrimidinyl, —(CH2)3imidazolyl, and the like, and derivatives thereof. “Monoalkylamino” means a radical —NHR where R is an unsubstitued alkyl or unsubstituted cycloalkyl group as defined above, e.g., methylamino, (1-methylethyl)amino, cyclohexylamino, and the like. “Dialkylamino” means a radical —NRR where each R is independently an unsubstitued alkyl or unsubstituted cycloalkyl group as defined above, e.g., dimethylamino, diethylamino, (1-methylethyl)-ethylamino, cyclohexylmethylamino, cyclopentylmethylamino, and the like. “Cyanoalkyl” means unsubstituted alkyl, preferably unsubstituted lower alkyl as defined above, which is substituted with 1 or 2 cyano groups. “Optional” or “optionally” means that the subsequently described event or circumstance may but need not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, “heterocycle group optionally substituted with an alkyl group” means that the alkyl may but need not be present, and the description includes situations where the heterocycle group is substituted with an alkyl group and situations where the heterocyclo group is not substituted with the alkyl group. The terms “2-indolinone”, “indolin-2-one” and “2-oxindole” are used interchangeably herein to refer to a molecule having the chemical structure: The term “pyrrole” refers to a molecule having the chemical structure: The term “pyrrole substituted 2-indolinone” and “3-pyrrolidenyl-2-indolinone” are used interchangeably herein to refer to a chemical compound having the general structure shown in Formula (I). Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed “isomers”. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers”. Stereoisomers that are not mirror images of one another are termed “diastereomers” and those that are non-superimposable mirror images of each other are termed “enantiomers”. When a compound has an asymmetric center, for example, it is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (−)-isomers respectively). A chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a “racemic mixture”. The compounds of this invention may possess one or more asymmetric centers; such compounds can therefore be produced as individual (R)- or (S)-stereoisomers or as mixtures thereof. For example, if the R6 substituent in a compound of formula (I) is 2-hydroxyethyl, then the carbon to which the hydroxy group is attached is an asymmetric center and therefore the compound of Formula (I) can exist as an (R)- or (S)-stereoisomer. Unless indicated otherwise, the description or naming of a particular compound in the specification and claims is intended to include both individual enantiomers and mixtures, racemic or otherwise, thereof. The methods for the determination of stereochemistry and the separation of stereoisomers are well-known in the art (see discussion in Chapter 4 of “Advanced Organic Chemistry”, 4th edition J. March, John Wiley and Sons, New York, 1992). The compounds of Formula (I) may exhibit the phenomena of tautomerism and structural isomerism. For example, the compounds described herein may adopt an E or a Z configuration about the double bond connecting the 2-indolinone moiety to the pyrrole moiety or they may be a mixture of E and Z. This invention encompasses any tautomeric or structural isomeric form and mixtures thereof which possess the ability to modulate RTK, CTK and/or STK activity and is not limited to any one tautomeric or structural isomeric form. A “pharmaceutical composition” refers to a mixture of one or more of the compounds described herein, or physiologically/pharmaceutically acceptable salts or prodrugs thereof, with other chemical components, such as physiologically/pharmaceutically acceptable carriers and excipients. The purpose of a pharmaceutical composition is to facilitate administration of a compound to an organism. The compound of Formula (I) may also act as a prodrug. A “prodrug” refers to an agent which is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmaceutical compositions over the patent drug. An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the “prodrug”) to facilitate transmittal across a cell membrane where water solubility is detrimental to mobility but then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water solubility is beneficial. A further example of a prodrug might be a short polypeptide, for example, without limitation, a 2-10 amino. acid polypeptide, bonded through a terminal amino group to a carboxy group of a compound of this invention wherein the polypeptide is hydrolyzed or metabolized in vivo to release the active molecule. The prodrugs of a compound of Formula (I) are within the scope of this invention. Additionally, it is contemplated that a compound of Formula (I) would be metabolized by enzymes in the body of the organism such as human being to generate a metabolite that can modulate the activity of the protein kinases. Such metabolites are within the scope of the present invention. As used herein, a “physiologically/pharmaceutically acceptable carrier” refers to a carrier or diluent that does not cause significant irritation to an organism and does not abrogate the, biological activity and properties of the administered compound. An “pharmaceutically acceptable excipient” refers to an inert substance added to a pharmaceutical composition to further facilitate administration of a compound. Examples, without limitation, of excipients include calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols. As used herein, the term “pharmaceutically acceptable salt” refers to those salts which retain the biological effectiveness and properties of the parent compound. Such salts include: (i) acid addition salt which is obtained by reaction of the free base of the parent compound with inorganic acids such as hydrochloric acid, hydrobromic acid, nitric acid, phosphoric acid, sulfuric acid, and perhcloric acid and the like, or with organic acids such as acetic acid, oxalic acid, (D) or (L) malic acid, maleic acid, methanesulfoniic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, tartaric acid, citric acid, succinic acid or malonic acid and the like, preferably hydrochloric acid or (L)-malic acid such as the L-malate salt of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid(2-diethylaminoethyl)amide; or (2) salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like. “PK” refers to receptor protein tyrosine kinase (RTKs), non-receptor or “cellular” tyrosine kinase (CTKs) and serine-threonine kinases (STKs). “Method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by, practitioners of the chemical, pharmaceutical, biological, biochemical and medical arts. “Modulation” or “modulating” refers to the alteration of the catalytic activity of RTKs, CTKs and STKs. In particular, modulating refers to the activation of the catalytic activity of RTKS, CT Ks and STKs, preferably the activation or inhibition of the catalytic activity of RTKs, CTKs and STKs, depending on the concentration of the compound or salt to which the RTK, CTK or STK is exposed or, more preferably, the inhibition of the catalytic activity of RTKs, CTKs and STKS. “Catalytic activity” refers to the rate of phosphorylation of tyrosine under the influence, direct or indirect, of RTKs and/or CTKs or the phosphorylation of serine and threonine under the influence, direct or indirect, of STKs. “Contacting” refers to bringing a compound of this invention and a target PK together in such a manner that the compound can affect the catalytic activity of the PK, either directly, i.e., by interacting with the kinase itself, or indirectly, i.e., by interacting with another molecule on which the catalytic activity of the kinase is dependent. Such “contacting” can be accomplished “in vitro,” i.e., in a test tube, a petri dish or the like. In a test tube, contacting may involve only a compound and a PK of interest or it may involve whole cells. Cells may also be maintained or grown in cell culture dishes and contacted with a compound in that environment. In this context, the ability of a particular compound to affect a PK related disorder, i.e., the IC50 of the compound, defined below, can be determined before use of the compounds in vivo with more complex living organisms is attempted. For cells outside the organism, multiple methods exist, and are well-known to those skilled in the art, to get the PKs in contact with the compounds including, but not limited to, direct cell microinjection and numerous transmembrane carrier techniques. “In vitro” refers to procedures performed in an artificial environment such as, e.g., without limitation, in a test tube or culture medium. “In vivo” refers to procedures performed within a living organism such as, without limitation, a mouse, rat or rabbit. “PK related disorder,” “PK driven disorder,” and “abnormal PK activity” all refer to a condition characterized by inappropriate, i.e., under or, more commonly, over, PK catalytic activity, where the particular PK can be an RTK, a CTK or an STK. Inappropriate catalytic activity can arise as the result of either: (1) PK expression in cells which normally do not express PKs, (2) increased PK expression leading to unwanted cell proliferation, differentiation and/or growth, or, (3) decreased PK expression leading to unwanted reductions in cell proliferation, differentiation and/or growth. Over-activity of a PK refers to either amplification of the gene encoding a particular PK or production of a level of PK activity which can correlate with a cell proliferation, differentiation and/or growth disorder (that is, as the level of the PK increases, the severity of one or more of the symptoms of the cellular disorder increases). Under-activity is, of course, the converse, wherein the severity of one or more symptoms of a cellular disorder increase as the level of the PK activity decreases. “Treat”, “treating” and “treatment” refer to a method of alleviating or abrogating a PK mediated cellular disorder and/or its attendant symptoms. With regard particularly to cancer, these terms simply mean that the life expectancy of an individual affected with a cancer will be increased or that one or more of the symptoms of the disease will be reduced. “Organism” refers to any living entity comprised of at least one cell. A living organism can be as simple as, for example, a single eukariotic cell or as complex as a mammal, including a human being. “Therapeutically effective amount” refers to that amount of the compound being administered which will relieve to some extent one or more of the symptoms of the disorder being treated. In reference to the treatment of cancer, a therapeutically effective amount refers to that amount which has the effect of: (1) reducing the size of the tumor; (2) inhibiting (that is, slowing to some extent,preferably stopping) tumor metastasis; (3) inhibiting to some extent (that is, slowing to some extent, preferably stopping) tumor growth, and/or, (4) relieving to some extent (or, preferably, eliminating) one or more symptoms associated with the cancer. “Monitoring” means observing or detecting the effect of contacting a compound with a cell expressing a particular PK. The observed or detected effect can be a change in cell phenotype, in the catalytic activity of a PK or a change in the interaction of a PK with a natural binding partner. Techniques for observing or detecting such effects are well-known in the art. The above-referenced effect is selected from a change or an absence of change in a cell phenotype, a change or absence of change in the catalytic activity of said protein kinase or a change or absence of change in the interaction of said protein kinase with a natural binding partner in a final aspect of this invention. “Cell phenotype” refers to the outward appearance of a cell or tissue or the biological function of the cell or tissue. Examples, without limitation, of a cell phenotype are cell size, cell growth, cell proliferation, cell differentiation, cell survival, apoptosis, and nutrient uptake and use. Such phenotypic characteristics are measurable by techniques well-known in the art. “Natural binding partner” refers to a polypeptide that binds to a particular PK in a cell. Natural binding partners can play a role in propagating a signal in a PK-mediated signal transduction process. A change in the interaction of the natural binding partner with the PK can manifest itself as an increased or decreased concentration of the PK/natural binding partner complex and, as a result, in an observable change in the ability of the PK to mediate signal transduction. Representative compounds of the present invention are shown in Table I below. TABLE 1 Exam- ple Structure Name 1 4-Methyl-5-(2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid 2 4-Methyl-5-(1-methyl-2-oxo-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole-2 carboxylic acid 3 4-Methyl-5-(2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-1H-pyrrole-2- carboxylic acid methyl ester 4 5-(5-Chloro-2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-4-methyl-1H-pyrrole-2 carboxylic acid ethyl ester 5 5-(5-Chloro-2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-4-methyl-1H-pyrrole-2 carboxylic acid 6 5-(5-Bromo-2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-4-methyl-1H-pyrrole-2 carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 7 5-(5-Bromo-2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-4-methyl-1H-pyrrole-2 carboxylic acid (3-diethylaminopropyl)amide 8 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)amide 9 5-(2-Oxo-6-phenyl-1,2-dihydroindol-3- ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)amide 10 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)methylamide 11 5-(2-Oxo-6-phenyl-1,2-dihydroindol-3- ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)methylamide 12 3-Methyl-5-(2-oxo-1,2-dihydroindol-3- ylidenemethyl)-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide 13 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole-2 carboxylic acid (3-diethylaminopropyl)amide 14 3-Methyl-5-(2-oxo-6-phenyl-1,2-dihydroindol- 3-ylidenemethyl)-1H-pyrrole-2 carboxylic acid (3-diethylaminopropyl)amide 15 5-(5-Methoxy-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole 2-carboxylic acid (3-diethylaminopropyl)amide 16 5-(6-Methoxy-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole 2-carboxylic acid (3-diethylaminopropyl)amide 17 3-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole-1- carboxylic acid (2-diethylaminoethyl)amide 18 3-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole- 1-carboxylic acid (3-diethylaminopropyl)amide 19 3-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole- 1-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 20 3-(2-Oxo-6-pyridin-3-yl-1,2-dihydroindol-3- ylidenemethyl)-4,5,6,7- tetrahydro-2H-isoindole-1-carboxylic acid (2-diethylaminoethyl)amide 21 4-Benzoyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole-2- carboxylic acid (3-diethylaminopropyl)amide 22 4-Benzoyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-morpholin-4-ylpropyl)amide 23 4-Benzoyl-3-methyl-5-(2-oxo-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole- 2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 24 4-Benzoyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 25 4-Benzoyl-3-methyl-5-(2-oxo-6-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole-2- carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 26 4-Benzoyl-5-(6-methoxy-2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 27 4-Benzoyl-5-(5-methoxy-2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 28 4-Benzoyl-5-(5-fluoro-2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 29 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-diethylaminopropyl)amide 30 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 31 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-morpholin-4-ylpropyl)amide 32 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (3-hydroxy-propyl)amide 33 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (2-hydroxy-ethyl)amide 34 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (2-morpholin-4-yl-ethyl)amide 35 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide 36 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-3-methyl-1H-pyrrole- 2-carboxylic acid [2-(4-hydroxy-phenyl)-ethyl]amide 37 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole- 3-carboxylic acid (3-diethylaminopropyl)amide 38 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole- 3-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 39 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole- 3-carboxylic acid (2-diethylaminoethyl)amide 40 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole- 3-carboxylic acid [3-(4-methyl-piperazin-1-yl)- propyl]amide 41 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole- 3-carboxylic acid 42 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-methyl-4-phenyl-1H-pyrrole- 3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide 43 5-[6-(2-Methoxy-phenyl)-2-oxo-1,2- dihydroindol-3-ylidenemethyl]-2-methyl- 4-phenyl-1H-pyrrole-3-carboxylic acid (2- pyrrolidin-1-yl-ethyl)amide 44 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-methyl-4-phenyl-1H pyrrole-3-carboxylic acid (2-dimethylamino- ethyl)amide 45 5-[6-(2-Methoxy-phenyl)-2-oxo-1,2- dihydroindol-3-ylidenemethyl]-2-methyl-4- phenyl-1H-pyrrole-3-carboxylic acid (2- dimethylamino-ethyl)amide 46 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-methyl-4-phenyl-1H- pyrrole-3-carboxylic acid ethyl ester 47 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2-methyl-4-phenyl-1H- pyrrole-3-carboxylic acid (3-diethylaminopropyl) amide 48 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-dimethyl-1H- pyrrole-3-carboxylic acid (2-dimethylamino-ethyl) amide 49 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2- dihydroindol-3-yldenemethyl)-1H- pyrrole-3-carboxylic acid (2-dimethylamino-ethyl) amide 50 5-(5-Chloro-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-methyl-1H- pyrrole-3-carboxylic acid (2-dimethylamino-ethyl) amide 51 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-dimethyl-1H- pyrrole-3-carboxylic acid (2-diethylaminoethyl) amide 52 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-dimethyl-1H- pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl) amide 53 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-dimethyl-1H- pyrrole-3-carboxylic acid (3-imidazol-1-ylpropyl) amide 54 5-[6-(2-Methoxy-phenyl)-2-oxo-1,2- dihydroindol-3-ylidenemethyl]-2,4-dimethyl- 1H-pyrrole-3-carboxylic acid (2- dimethylamino-ethyl)amide 55 5-[6-(3-Methoxy-phenyl)-2-oxo-1,2- dihydroindol-3-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylamino-ethyl)amide 56 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole- 3-carboxylic acid (2-diethylaminoethyl)amide 57 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole- 3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide 58 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole- 3-carboxylic acid (3-imidazol-1-ylpropyl)amide 59 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole-3- carboxylic acid (2-diethylaminoethyl)amide 60 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole-3- carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide 61 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H-pyrrole-3- carboxylic acid (3-imidazol-1-ylpropyl)amide 62 5-[6-(3,5-Dichloro-phenyl)-2-oxo-1,2- dihydroindol-3-yldenemethyl]-2,4-dimethyl-1H- pyrrole-3-carboxylic acid (2- diethylaminoethyl)amide 63 2,4-Dimethyl-5-(2-oxo-6-pyridin-3-yl-1,2- dihydroindol-3-ylidenemethyl)-1H- pyrrole-3-carboxylic acid (2-diethylaminoethyl) amide 64 2,4-Dimethyl-5-(2-oxo-6-pyridin-3-yl-1,2- dihydroindol-3-ylidenemethyl)-1H- pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl- ethyl)amide 65 2,4-Dimethyl-5-(2-oxo-6-pyridin-3-yl-1,2- dihydroindol-3-ylidenemethyl)-1H- pyrrole-3-carboxylic acid (3-dimethylamino- propyl)amide 66 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H- pyrrole-3-carboxylic acid (3-dimethylamino- propyl)amide 67 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H- pyrrole-3-carboxylic acid (3-diethylaminopropyl) amide 68 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2- dihydroindol-3-ylidenemethyl)-1H- pyrrole-3-carboxylic acid (3-diethylaminopropyl) amide 69 3-[4-(3-Diethylamino-propylcarbamoyl)-3,5- dimethyl-1H-pyrrol-2-ylmethylene)- 2-oxo-2,3-dihydro-1H-indole- 4-carboxylic acid (3-chloro-4-methoxy- phenyl)amide 70 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-dimethyl-1H- pyrrole-3-carboxylic acid (3-diethylaminopropyl) amide 71 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-diisopropyl-1H- pyrrole-3-carboxylic acid (2-diethylaminoethyl) amide 72 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-diisopropyl-1H- pyrrole-3-carboxylic acid (3-diethylaminopropyl) amide 73 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-diisopropyl-1H- pyrrole-3-carboxylic acid (3-pyrrolidin-1- ylpropyl)amide 74 5-(5-Bromo-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-dimethyl-1H- pyrrole-3-carboxylic acid (pyridin-4-ylmethyl) amide 75 5-[6-(4-Butyl-phenyl)-2-oxo-1,2-dihydroindol-3- ylidenemethyl]-2,4-dimethyl- 1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl- ethyl)amide 76 5-[6-(5-isopropyl-2-methoxy-phenyl)-2-oxo-1,2- dihydroindol-3- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-pyrrolidin-1-yl- ethyl)amide 77 5-[6-(4-Ethyl-phenyl)-2-oxo-1,2-dihydroindol-3- ylidenemethyl]-2,4-dimethyl- 1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1- yl-ethyl)amide 78 5-[6-(2,4-Dimethoxy-phenyl)-2-oxo-1,2- dihydroindol-3-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2- pyrrolidin-1-yl-ethyl)amide 79 5-[6-(3-Isopropyl-phenyl)-2-oxo-1,2- dihydroindol-3-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2- pyrrolidin-1-yl-ethyl)amide 80 5-(5-Fluoro-2-oxo-1,2-dihydroindol-3- ylidenemethyl)-2,4-dimethyl-1H- pyrrole-3-carboxylic acid (2-diethylaminoethyl) amide 81 3-[4-(2-diethylaminoethylcarbamoyl)-3,5- dimethyl-1H-pyrrol-2-ylmethylene]2-oxo-2,3-dihydro-1H-indole-6-carboxylic acid 82 5-(5-Dimethylsulfamoyl-2-oxo-1,2-dihydroindol- 3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole- 3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide 83 5-[5-(3-Chloro-phenylsulfamoyl-2-oxo- 1,2-dihydrolindol-3-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide 84 2,4-Dimethyl-5-[2-oxo-5-(pyridin-3- ylsulfamoyl)-1,2-dihydroindol-3- ylidenemethyl]-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide 85 3-[3,5-Dimethyl-4-(4-methyl-piperazine-1- carbonyl)-1H-pyrrol-2- ylmethylene]-4-(2-hydroxy-ethyl)-1,3- dihydroindol-2-one 86 3-[3,5-Dimethyl-4-(4-methyl-piperazine-1- carbonyl)-1H-pyrrol-2- ylmethylene]-2-oxo-2,3-dihydro-1H- indole-5-sulfonic acid phenylamide 87 5-(5-Dimethylsulfamoyl-2-oxo-1,2- dihydroindol-3-ylidenemethyl)-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide 88 5-[5-(3-Chloro-phenylsulfamoyl]-2-oxo- 1,2-dihydroindol-3-ylidenemethyl]- 2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-diethylaminoethyl)amide 89 3-(5-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid (2-dimethylamino-ethyl)-amide 90 3-(2-Oxo-1,2-dihydro-indol-3-ylidenemethyl)- 4,5,6,7-tetrahydro-2H- isoindole-1-carboxylic acid ethyl ester 91 3-(4-Methyl-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid ethyl ester 92 3-(5-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid ethyl ester 93 3-(3-Ethoxycarbonyl-4,5,6,7-tetrahydro-2H- isoindol-1-ylmethylene)-2-oxo- 2,3-dihydro-1H-indole-5-carboxylic acid 94 3-(5-Methoxy-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid ethyl ester 95 3-(2-Oxo-5-phenyl-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid ethyl ester 96 3-(2-Oxo-5-sulfamoyl-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid ethyl ester 97 3-(5-Methylsulfamoyl-2-oxo-1,2-dihydro-indol- 3-ylidenemethyl)-4,5,6,7- tetrahydro-2H-isoindole-1-carboxylic acid ethyl ester 98 3-(5-Dimethylsulfamoyl-2-oxo-1,2-dihydro-indol- 3-ylidenemethyl)-4,5,6,7- tetrahydro-2H-isoindole-1-carboxylic acid ethyl ester 99 3-(2-Oxo-5-phenylsulfamoyl-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7- tetrahydro-2H-isoindole-1-carboxylic acid ethyl ester 100 3-(6-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid ethyl ester 101 3-(2-Oxo-6-phenyl-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid ethyl ester 102 3-(3-Ethoxycarbonyl-4,5,6,7-tetrahydro-2H- isoindol-1-ylmethylene)-2-oxo- 2,3-dihydro-1H-indole-6-carboxylic acid 103 3-(6-Methoxy-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid ethyl ester 104 3-(5-isopropylsulfamoyl-2-oxo-1,2-dihydro- indol-3-ylidenemethyl]-4,5,6,7- tetrahydro-2H-isoindole-1-carboxylic acid ethyl ester 105 3-(3-Methylcarbamoyl-4,5,6,7-tetrahydro-2H- isoindol-1-ylmethylene)-2- oxo-2,3-dihydro-1H-indole-5-carboxylic acid 106 3-(3-Dimethylcarbamoyl-4,5,6,7-tetrahydro-2H- isoindol-1-ylmethylene)-2- oxo-2,3-dihydro-1H-indole-5-carboxylic acid 107 2-Oxo-3-[3-pyrrolidine-1-carbonyl-4,5,6,7- tetrahydro-2H-isoindol-1- ylmethylene]-2,3-dihydro-1H-indole-5- carboxylic acid 108 3-[3-(Morpholine-4-carbonyl)-4,5,6,7- tetrahydro-2H-isoindol-1- ylmethylene]-2-oxo-2,3-dihydro-1H-indole-5- carboxylic acid 109 3-[3-(Morpholine-4-carbonyl)-4,5,6,7- tetrahydro-2H-isoindol-1- ylmethylene]-2-oxo-2,3-dihydro-1H-indole-6- carboxylic acid 110 3-(5-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid methylamide 111 3-(5-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-4,5,6,7-tetrahydro- 2H-isoindole-1-carboxylic acid dimethylamide 112 5-Bromo-3-[3-(pyrrolidine-1-carbonyl)-4,5,6,7- tetrahydro-2H-isoindole-1- ylmethylene]-1,3-dihydro-indol-2-one 113 5-Bromo-3-[3-(morpholine-4-carbonyl)-4,5,6,7- tetrahydro-2H-isoindole-1- ylmethylene]-1,3-dihydro-indol-2-one 114 3-(3-Dimethylcarbamoyl-4,5,6,7-tetrahydro-2H- isoindol-1-ylmethylene)-2- oxo-2,3-dihydro-1H-indole-6-carboxylic acid 115 4-Methyl-5-(5-methylsulfamoyl-2-oxo-1,2- dihydro-indol-3-yldenemethyl)- 1H-pyrrole-3-carboxylic acid 116 {[4-Methyl-5-(4-methyl-5-methylsulfamoyl-2- oxo-1,2-dihydro-indol-3- ylidenemethyl)-1H-pyrrole-3-carbonyl]amino}- acetic acid ethyl ester 117 {[4-Methyl-5-(5-methylsulfamoyl-2-oxo-1,2- dihydro-indol-3-ylidenemethyl)- 1H-pyrrole-3-carbonyl]-amino}- acetic acid ethyl ester 118 {[4-Methyl-5-(5-methylsulfamoyl-2-oxo-1,2- dihydro-indol-3-ylidenemethyl)- 1H-pyrrole-3-carbonyl]-amino}-acetic acid 119 3-[3-Methyl-4-(piperidine-1-carbonyl)-1H-pyrrol- 2-ylmethylene]-2-oxo-2,3- dihydro-1H-indole-5-sulfonic acid methylamide 120 5-Methyl-2-(2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-1H-pyrrole-3- carboxylic acid 121 5-Methyl-2-(2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-1H-pyrrole-3- carboxylic acid ethyl ester 122 2-(5-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-5-methyl-1H-pyrrole- 3-carboxylic acid ethyl ester 123 2-(5-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-5-methyl-1H-pyrrole- 3-carboxylic acid 124 2-(5-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-5-methyl-1H-pyrrole- 3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide 125 2-(5-Bromo-2-oxo-1,2-dihydro-indol-3- ylidenemethyl)-5-methyl-1H-pyrrole- 3-carboxylic acid (2-diethylamino-ethyl)-amide 133 5-[5-Chloro-2-oxo-1,2-dihydro- indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole- 3-carboxylic acid (2-acetylamino-ethyl)- amide 399 [M − 1] 134 5-[5-Fluoro-2-oxo-1,2-dihydro- indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole- 3-carboxylic acid (2-acetylamino-ethyl)- amide 383 [M − 1] 135 2,4-Dimethyl-5-[2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-1H-pyrrole-3- carboxylic acid (2-acetylamino-ethyl)- amide 365 [M − 1] 136 5-[5-Bromo-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole- 3-carboxylic acid [3-(2-oxo-tetrahydro- pyrimidin-1-yl)-propyl]-amide 500 [M + 1]502 [M + 1] 137 5-[5-Chloro-2-oxo-1,2-dihydro- indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole- 3-carboxylic acid [3-(2-oxo-tetrahydro- pyrimidin-1-yl)-propyl]-amide 454 [M − 1] 138 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole- 3-carboxylic acid [3-(2-oxo-tetrahydro- pyrimidin-1-yl)-propyl]-amide 438 [M − 1] 139 2,4-Dimethyl-5-[2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-1H-pyrrole-3- carboxylic acid [3-(2-oxo-tetrahydro-pyrimidin- 1-yl)-propyl]-amide 422 [M + 1] 140 5-[5-Cyano-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole- 3-carboxylic acid [3-(2-oxo-tetrahydro- pyrimidin-1-yl)-propyl]-amide 447 [M + 1] 141 Trifluoro-acetate4-[2-({5-[5- bromo-2-oxo- 1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4 dimethly-1H-pyrrole-3-carbonyl}-amino)- ethyl]-2-oxo-piperazin-1-ium; 486 [M + 1]488 [M + 1] 126 2,4-Dimethyl-5-[2-oxo-1,2- dihydro- indol-(3Z)-ylidenemethyl]- 1H-pyrrole-3-carboxylic acid (2- diethylaminoethyl)-amide 381 [M + 1] 127 5-[5-Chloro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)-amide 415 [M + 1] 128 2,4-Dimethyl-5-[2-oxo-1,2- dihydro-indol-(3Z)-ylidenemethyl]- 2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-pyrrolidin-1- ylethyl)-amide 379 [M + 1] 129 5-[5-Fluoro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)-amide 397 [M + 1] 130 5-[5-Chloro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-1H- pyrrole-3-carboxylic acid (2- pyrrolidin-1-ylethyl)-amide 413 [M + 1] 131 2,4-Dimethyl-5-[2-oxo-1,2- dihydro-indol-(3Z)-ylidenemethyl]- 2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2- dimethylaminoethyl)-amide 353 [M + 1] 132 5-[5-Fluoro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)-amide 371 [M + 1] 142 5-[5-Cyano-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H pyrrole-3-carboxylic acid [3-(2-oxo- pyrrolidin-1-yl)-propyl]-amide 430 [M − 1] 143 5-[5-Bromo-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H pyrrole-3-carboxylic acid [2-(2-oxo- imidazolidin-1-yl)-ethyl]-amide 470 [M − 1]472 [M − 1] 144 5-[5-Chloro-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H pyrrole-3-carboxylic acid [2-(2-oxo- imidazolidin-1-yl)-ethyl]-amide 428 [M + 1] 145 5-[5-Fluoro-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H pyrrole-3-carboxylic acid]2-(2-oxo- imidazolidin-1-yl)-ethyl]-amide 412 [M + 1] 146 2,4-Dimethyl-5-[2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-1H-pyrrole 3-carboxylic acid]2-(2-oxo- imidazolidin-1-yl)-ethyl]amide 392 [M − 1] 147 5-[5-Cyano-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H pyrrole-3-carboxylic acid]2-(2-oxo- imidazolin-1-yl)-ethyl]amide 419 [M + 1] 148 {4-[2-({5-[5-Bromo-2-oxo-1,2- dihydro-indol-(3Z)-ylidenemethyl]- 2,4-dimethyl-1H-pyrrole-3-carbonyl}amino)-ethyl]-piperazin-1-yl}-acetic acid ethyl ester 558 [M + 1]560 [M + 1] 149 {4-[2-({5-[5-Chloro-2-oxo-1,2- dihydro-indol-(3Z)-ylidenemethyl]- 2,4-dimethyl-1H-pyrrole-3-carbonyl}amino)-ethyl]-piperazin-1-yl}-acetic acid ethyl ester 514 [M + 1] 150 {4-[2-({5-[5-Fluoro-2-oxo-1,2- dihydro-indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carbonyl}- amino)-ethyl]-piperazin-1-yl}-acetic acid ethyl ester 498 [M + 1] 153 2,4-Dimethyl-5-[2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-1H-pyrrole-3- carboxylic acid [2-(cyanomethyl-amino)- ethyl]-amide 362 [M − 1] 154 5-[5-Bromo-2-oxo-1,2-dihydro-indol- (3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3 carboxylic acid [3-(2-oxo-azepan-1-yl)-propyl]- amide 511 [M − 1]513 [M − 1] 155 5-[5-Chloro-2-oxo-1,2-dihydro-indol- (3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3 carboxylic acid [3-(2-oxo-azepan-1-yl)-propyl]- amide 469 [M + 1] 156 5-[5-Fluoro-2-oxo-1,2-dihydro-indol- (3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3 carboxylic acid [3-(2-oxo-azepan-1-yl)- propyl]-amide 453 [M + 1] 157 2,4-Dimethyl-5-[2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-1H-pyrrole-3- carboxylic acid [3-(2-oxo-azepan-1-yl)- propyl]-amide 435 [M + 1] 158 5-[5-Cyano-2-oxo-1,2-dihydro-indol- (3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3 carboxylic acid [3-(2-oxo-azepan-1-yl)- propyl]-amide 460 [M + 1] 159 5-[5-Bromo-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3 carboxylic acid (2-acetylamino-ethyl)- amide 443 [M − 1]445 [M − 1] 160 Trifluoro-acetate4-[2-({5-[5-fluoro-2- oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethly-1H- pyrrole-3-carbonyl}-amino)-ethyl]-2- oxo-piperazin-1-ium; 426 [M + 1] 161 Trifluoro-acetate4-[2-({2,4-dimethyl-5- [2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-1H-pyrrole-3-carbonyl}- amino)-ethyl]-2-oxo-piperazin-1-ium; 408 [M + 1] 162 Trifluoro-acetate4-[2-({5-[5-cyano-2- oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]- 2,4-dimethyl-1H-pyrrole-3-carbonyl}-amino)- ethyl]-2-oxo-piperazin-1-ium; 433 [M + 1]488 [M + 1] 163 5-[5-Bromo-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H- pyrrole-3-carboxylic acid [2-(2-cyano- ethylamino)-ethyl]-amide 454 [M − 1]456 [M − 1] 164 5-[5-Chloro-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H- pyrrole-3-carboxylic acid [2-(2-cyano- ethylamino)-ethyl]-amide 410 [M − 1] 165 5-[5-Fluoro-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H- pyrrole-3-carboxylic acid [2-(2-cyano- ethylamino)-ethyl]-amide 394 [M − 1] 166 2,4-Dimethyl-5-[2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-1H- pyrrole-3 carboxylic acid [2-(2-cyano- ethylamino)-ethyl]-amide 376 [M − 1] 167 5-[5-Cyano-2-oxo-1,2-dihydro-indol- (3Z)-ylidenemethyl]-2,4-dimethyl-1H- pyrrole-3-carboxylic acid [2-(2-cyano- ethylamino)-ethyl]-amide 401 [M − 1] 168 Trifluoro-acetate4-[2-({5-[5-chloro-2- oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H- pyrrole-3-carbonyl}-amino)-ethyl]-2- oxo-piperazin-1-ium; 440 [M − 1] 168 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid [2-(4-methyl-piperazin-1-yl)- ethyl]-amide 424 [M − 1] 169 5-[5-Chloro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid [2-(4-methyl-piperazin-1-yl)- ethyl]-amide 440 [M − 1] 170 5-[5-Bromo-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid [2-(4-methyl-piperazin-1-yl)- ethyl]-amide 484 [M − 1]486 [M − 1] 171 2,4-Dimethyl-5-[2-oxo-1,2-dihydro-indol-(3Z) ylidenemethyl]-1H-pyrrole-3-carboxylic acid [2-(4-methyl-piperazin-1-yl)-ethyl]- amide 406 [M − 1] 172 2,4-Dimethyl-5-[2-oxo-1,2-dihydro-indol-(3Z) ylidenemethyl]-1H-pyrrole-3-carboxylic acid [2-(3,5-dimethyl-piperazin-1-yl)-ethyl]- amide 422 [M + 1] 173 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid [2-(3,5-dimethyl-piperazin-1 yl)-ethyl]-amide 438 [M − 1] 174 5-[5-Chloro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid [2-(3,5-dimethyl-piperazin-1 yl)-ethyl]-amide 456 [M + 1] 175 5-[5-Bromo-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid [2-(3,5-dimethyl-piperazin-1 yl)-ethyl]-amide 498 [M − 1]500 [M − 1] 176 2,4-Dimethyl-5-[2-oxo-1,2- dihydro-indol-(3Z)-ylidenemethyl]- 1H-pyrrole-3-carboxylic acid [3- (4-methyl-piperazin-1-yl)-propyl]- amide 422 [M + 1] 177 5-[5-Fluoro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid [3-(4-methyl-piperazin-1-yl)- propyl]-amide 438 [M − 1] 178 5-[5-Chloro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid [3-(4-methyl-piperazin-1-yl)- propyl]-amide 454 [M − 1] 179 5-[5-Bromo-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid [3-(4-methyl-piperazin-1-yl)- propyl]-amide 498 [M − 1]500 [M − 1] 180 2,4-Dimethyl-5-[2-oxo-1,2- dihydro-indol-(3Z)-ylidenemethyl]- 1H-pyrrole-3-carboxylic acid [2- (4-benzyl-piperazin-1-yl)-ethyl]- amide 482 [M − 1] 181 5-[5-Fluoro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid [2-(4-benzyl-piperazin-1-yl)- ethyl]-amide 500 [M − 1] 182 5-[5-Chloro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid [2-(4-benzyl-piperazin-1-yl)- ethyl]-amide 517 [M − 1] 183 5-[5-Bromo-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid [2-(4-benzyl-piperazin-1-yl)- ethyl]amide 560 [M − 1]562 [M − 1] 184 5-[5-Chloro-2-oxo-1,2-dihydro- indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3- carboxylic acid [3-pyrrolidin-1yl-2-one)- amide 480 [M + 1] 185 Trifluoro-acetate 4-[2-({5-[5- Chloro-2-oxo-1,2- dihydro-indol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carbonyl}-amino)-ethyl]2-oxo-piperazin-1-ium 440 [M − 1] 186 5-[5-Chloro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid [3-pyrrolidin-1yl-2-one)- amide 187 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (3-pyrrolidin-1yl-2-one)- amide 188 5-[2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (3-pyrrolidin-1yl-2-one)- amide 189 5-[5-Chloro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-pyridin-2-ylethyl)-amide 190 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-pyridin-2-ylethyl)-amide trifluororacetate salt 191 5-[2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-pyridin-2-ylethyl)-amide hydrochloride salt 192 5-[5-Bromo-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-pyridin-2-ylethyl)-amide trifluororacetate salt 193 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-ethylaminoethyl)-amide 194 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-aminoethyl)-amide 195 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-2,4-dimethyl- 1H-pyrrole-3-carboxylic acid (2-diethyl-N- oxoaminoethyl)-amide 196 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-ethyl-N-hydroxy- aminoethyl)-amide 197 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-1H-pyrrole-3-carboxylic acid (2-diethylamino-2-hydroxyethyl)- amide 198 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H- pyrrole-3-carboxylic acid [2-ethyl-2-(2- hydroxyethyl)aminoethyl]-amide 199 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid [2-ethyl-2-(1- hydroxyethyl)aminoethyl]-amide 200 5-[5-Cyano-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (2-N-acetylaminoethyl)- amide 201 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3- carboxylic acid (carboxymethyl)-amide 202 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-1H-pyrrole-3- carboxylic acid [2-(2-hydroxethylamino)ethyl]- amide 203 5-[5-Cyano-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-1H-pyrrole-3-carboxylic acid (2-pyridin-2-ylethyl)-amide trifluoroacetate 204 5-[5-Bromo-2-oxo-1,2-dihydro-indol-(3Z)- ylidenemethyl]-1H-pyrrole-3-carboxylic acid (3-pyrrolidin-1-yl-2-onepropyl)-amide trifluoroacetate The compound numbers correspond to the Example numbers in the Examples section. That is, the synthesis of Compound 1 in Table 1 is described in Example 1. The compounds presented in Table 1 are exemplary only and are not to be construed as limiting the scope of this invention in any manner. PREFERRED EMBODIMENTS While the broadest definition is set forth in the Summary of the Invention, certain compounds of Formula (I) set forth below are preferred. (1) A preferred group of compounds of Formula (I) is that wherein R1, R3, and R4 are hydrogen. (2) Another preferred group of compounds of Formula (I) is that wherein R1, R2, and R4 are hydrogen. (3) Another preferred group of compounds of Formula (I) is that wherein R1, R2, and R3 are hydrogen. (4) Another preferred group of compounds of Formula (I) is that wherein R2, R3, and R4 are hydrogen. (5) Another preferred group of compounds of Formula (I) is that wherein R1, R2, R3 and R4 are hydrogen. (6) Yet another preferred group of compounds of Formula (I) is that wherein R5, R6 or R7, preferably R5 or R6, more preferably R6 is —COR10 wherein R10 is —NR11(CH2)nR12 wherein: R11 is hydrogen or lower unsubstituted alkyl, preferably hydrogen or methyl; n is 2, 3 or 4, preferably 2 or 3; and R12 is —NR13R14 wherein R13 and R14 are independently alkyl, more preferably lower unsubstituted lower alkyl or R13 and R14 combine to form a group selected from —(CH2)4—, —(CH2)5—, —(CH2)2—O—(CH2)2— or —(CH2)2N(CH3)(CH2)2—, preferably R13 and R14 are independently hydrogen, methyl, ethyl, or combine to form morpholin-4-yl, pyrrolidin-1-yl, piperazin-1-yl, or 4-methylpiperazin-1-yl. More preferably, R5 or R6 in (6) above is N-(2-dimethylaminoethyl-)aminocarbonyl, N-(2-ethylaminoethyl)-N-methylaminocarbonyl, N-(3-dimethylaminopropyl)-aminocarbonyl, N-(2-diethylaminoethyl)aminocarbonyl, N-(3-ethylaminopropyl)aminocarbonyl, N-(3-diethylaminopropyl)aminocarbonyl, 3-pyrrolidin-1-yl-propylaminocarbonyl, 3-morpholin-4-ylpropyl-aminocarbonyl, 2-pyrrolidin-1-ylethylaminocarbonyl, 2-morpholin-4-ylethylaminocarbonyl, 2-(4-methylpiperazin-1-yl)ethylaminocarbonyl, 2-(4-methylpiperazin-1-yl)propylaminocarbonyl, 2-(3,5-dimethylpiperazin-1-y)ethylaminocarbonyl or 2-(3,5-dimethylpiperazin-1-y)propylaminocarbonyl, even more preferably N-(2-diethyl-aminoethyl)aminocarbonyl or N-(2-ethylaminoethyl)amino-carbonyl. (7) Yet another preferred group of compounds of Formula (I) is that wherein R5, R6 or R7, preferably R5 or R6, more preferably R6 is —COR10 wherein R10 is —NR3R14 wherein R13 is hydrogen and R14 is alkyl, preferably lower alkyl substituted with hydroxy, aryl, heteroaryl, heteroalicyclic, or carboxy, more preferably methyl, ethyl, propyl or butyl substituted with hydroxy, aryl, heteroalicyclic such as piperidine, piperazine, morpholine and the like, heteroaryl, or carboxy. Even more preferably within this group (7), R5 or R6 is 2-ethoxycarbonylmethyl-aminocarbonyl, carboxymethylamino-carbonyl, 3-hydroxypropyl-aminocarbonyl, 2-hydroxyethylaminocarbonyl, 3-triazin-1-ylpropylamino-carbonyl, triazin-1-ylethylaminocarbonyl, 4-hydroxy-phenylethylaminocarbonyl, 3-imidazol-1-ylpropyl-aminocarbonyl, pyridin-4-ylmethylaminocarbonyl, 2-pyridin-2-ylethylaminocarbonyl or 2-imidazol-1-ylethylaminocarbonyl. (8) Yet another preferred group of compounds of Formula (I) is that wherein R5, R6 or R7, preferably R5 or R6, more preferably R6 is —COR10 wherein R10 is —NR11(CH2)nR12 wherein: R11 is hydrogen or alkyl, preferably hydrogen or methyl; n is 2, 3 or 4, preferably 2 or 3; and R12 is —NR13R14 wherein R13 and R14 together combine to form a heterocycle, preferably a 5, 6 or 7 membered heterocycle containing a carbonyl group and 1 or 2 nitrogen atoms. Preferably, R5 or R6 is 2-(3-ethoxycarbonylmethylpiperazin-1-yl)ethylaminocarbonyl, 2-(3-oxopiperazin-1-yl)ethylaminocarbonyl, 2-(imidazolidin-1-yl-2-one)ethylaminocarbonyl, 2-(tetrahydropyrimidin-1-yl-2-one)ethylaminocarbonyl, 2-(2-oxopyrrolidin-1-yl)-ethylaminocarbonyl, 3-(4-methylpiperazin-1-yl)-propylaminocarbonyl, 3-(3-ethoxycarbonylmethylpiperazin-1-yl)-propylaminocarbonyl, 3-(3-oxopiperazin-1-yl)propyl-aminocarbonyl, 3-(imidazolidin-1-yl-2-one)propyl-aminocarbonyl, 3-(tetrahydropyrimidin-1-yl-2-one)-propylaminocarbonyl, 3-(2-oxopyrrolidin-1-yl)propyl-aminocarbonyl, 2-(2-oxohomopiperidin-1-yl)ethylamino-carbonyl or 3-(2-oxohomopiperidin-1-yl)propylaminocarbonyl. (9) Yet another preferred group of compounds of Formula (I) is that wherein R5, R6 or R7, preferably R5 or R6, more preferably, R6 is —COR10 wherein: (a) R10 is —NR11(CH2)nR12 wherein: R11 is hydrogen or alkyl, preferably hydrogen or methyl; n is 2, 3 or 4, preferably 2 or 3; and R12 is —NR13R14 wherein R13 is hydrogen and R14 is cyanoalkyl or —NHCORa where Ra is alkyl; or (b) R10 is —NR13R14 wherein R13 and R14 together combine to form a heterocycle not containing a carbonyl group within the ring. Preferably, R5 or R6 is 2-(2-cyanoethylamino)ethylaminocarbonyl, 2-(acetylamino)-ethylaminocarbonyl, morpholinocarbonyl, piperidin-1-yl-carbonyl, 2-cyanomethylaminoethylaminocarbonyl or piperidin-1-ylcarbonyl. (10) Another preferred group of compouds of Formula (I) is that wherein R5 is —COR10 wherein R10 is —NR13R14 wherein R13 is hydrogen and R14 is lower alkyl substituted with hydroxy, lower alkyl substituted with hydroxyalkylamino, carboxy, or —NR18R19 wherein R18 and R19 are independently hydrogen or lower unsubstituted alkyl, more preferably R5 is 2-[(diethylamino)-2-hydroxyethyl]aminocarbonyl, 2-(N-ethyl-N-2-hydroxyethylamino)ethylaminocarbonyl, carboxymethylamino-carbonyl, or 2-(2-hydroxyethylamino)ethylamino-carbonyl. (11) Yet another preferred group of compounds of Formula (I) is that wherein R6 is —COR10 wherein R10 is —NR13R14 wherein R13 is hydrogen and R14 is lower alkyl substituted with hydroxy, lower alkyl substituted with hydroxyalkylamino, carboxy, or —NR18R19 wherein R18 and R19 are independently hydrogen or lower unsubstituted alkyl; more preferably R6 is [2-(diethylamino)-2-hydroxy]ethylaminocarbonyl, 2-(N-ethyl-N-2-hydroxyethyl-amino)ethylaminocarbonyl, carboxymethylaminocarbonyl, or 2-(2-hydroxyethylamino)ethylamino-carbonyl. (12) Yet another preferred group of compounds of Formula (I) is that wherein R5 is —COR10 wherein. R10 is —NR11(CH2)nR12 wherein R12 is —N+(O−)NR13R14 or —N(OH)R13 wherein R13 and R14 are independently selected from the group consisting of hydrogen and unsubstituted lower alkyl, preferably R5 is 2-(N-hydroxy-N-ethylamino)-ethylaminocarbonyl or 2-[N+(O−(C2H5)2]ethyl-aminocarbonyl (13) Yet another preferred group of compounds of Formula (I) is that wherein R6 is —COR10 wherein R10 is —NR11(CH2)nR12 wherein R12 is —N+(O−)NR13R14 or —N(OH)R13 wherein R13 and R14 are independently selected from the group consisting of hydrogen and unsubstituted lower alkyl, preferably R6 is 2-(N-hydroxy-N-ethylamino)ethylaminocarbonyl or 2-[N+(O−)(C2H5)2]ethyl-aminocarbonyl. (14) In the above preferred groups (6)-(13) when R5 is —COR10, then a more preferred group of compounds is that wherein: R6 is selected from the group consisting of hydrogen and alkyl, preferably hydrogen, methyl, ethyl, isopropyl, tert-butyl, isobutyl, or n-butyl, more preferably hydrogen or methyl; and R7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, and —C(O)R17 wherein R17 is hydroxy, alkyl or aryl, more preferably hydrogen, methyl, ethyl, isopropyl, n-, iso or tert-butyl, phenyl, benzoyl, acetyl or carboxy, even more preferably methyl, hydrogen or phenyl. (15) In the above preferred groups; (6)-(13) when R5 is —COR10, then another more preferred group of compounds is that wherein R6 and R7 combine to form —(CH2)4—. (16) In the above preferred groups (6)-(13) when R6 is —COR10, then a more preferred group of compounds is that wherein: R5 is selected from the group consisting of hydrogen and alkyl, preferably hydrogen, methyl, ethyl, isopropyl, tert-butyl, isobutyl, or n-butyl, more preferably hydrogen or methyl; and R7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, and —C(O)R17, wherein R17 is hydroxy, alkyl or aryl, more preferably hydrogen, methyl, ethyl, isopropyl, n-, iso or tert-butyl, phenyl, benzoyl, acetyl or carboxy, even more preferably methyl, hydrogen or phenyl. (17) Within the above preferred and more preferred groups (6)-(16), an even more preferred group of compounds is that wherein: R1 is hydrogen, alkyl, —C(O)NR8R9, unsubstituted cycloalkyl or aryl, preferably hydrogen, phenyl, 3,4-dimethoxyphenylaminocarbonyl, 4-methoxy-3-chlorophenyl-aminocarbonyl, even more preferably hydrogen or methyl, most preferably hydrogen; R2 is cyano, hydrogen, halo, lower alkoxy, aryl or —S(O)2NR13R14 wherein R13 is hydrogen and R14 is hydrogen, aryl or alkyl, preferably R2 is hydrogen, chloro, bromo, fluoro, methoxy, ethoxy, phenyl, dimethylaminosulfonyl, 3-chlorophenyl-aminosulfonyl, carboxy, methoxy, aminosulfonyl, methylaminosulfonyl, phenylaminosulfonyl, pyridin-3-yl-aminosulfonyl, dimethylaminosulfonyl, isopropylamino-sulfonyl, more preferably hydrogen, fluoro, or bromo; R3 is selected from the group consisting of hydrogen, lower alkoxy, —C(O)R15, —NR13C(O)R14, aryl preferably aryl optionally substituted with one or two substitutents selected from the group consisting of lower alkyl, halo, or lower alkoxy, and heteroaryl, preferably heteroaryl optionally substituted with one or two substitutents selected from the group consisting of lower alkyl, halo, or lower alkoxy, preferably hydrogen, methoxy, carboxy, phenyl, pyridin-3-yl, 3,4-dichlorophenyl, 2-methoxy-5-isopropylphenyl, 4-n-butylphenyl, 3-isopropylphenyl, more preferably hydrogen or phenyl; and R4 is hydrogen. (18) Another more preferred group of compounds of Formula (I) is that wherein: R1 is hydrogen, alkyl, —C(O)NR8R9, unsubstituted cycloalkyl or aryl, preferably hydrogen, 3,4-dimethoxy-phenyl-aminocarbonyl, 4-methoxy-3-chlorophenylaminocarbonyl, even more preferably hydrogen or methyl, particularly hydrogen; R2 cyano, hydrogen, halo, lower alkoxy, aryl or —S(O)2NR13R14 wherein R13 is hydrogen and R14 is hydrogen, aryl or alkyl, preferably R2 is hydrogen, chloro, bromo, fluoro, methoxy, ethoxy, phenyl, dimethylaminosulfonyl, 3-chlorophenyl-aminosulfonyl, carboxy, methoxy, aminosulfonyl, methylaminosulfonyl, phenylaminosulfonyl, pyridin-3-yl-aminosulfonyl, dimethylaminosulfonyl, isopropylamino-sulfonyl, more preferably hydrogen, fluoro, or bromo; R3 is selected from the group consisting of hydrogen, lower alkoxy, —C(O)R15, —NR13C(O)R14, aryl preferably aryl optionally substituted with one or two substitutents selected from the group consisting of lower alkyl, halo, or lower alkoxy, and heteroaryl, preferably heteroaryl optionally substituted with one or two substitutents selected from the group consisting of lower alkyl, halo, or lower alkoxy,; preferably hydrogen, methoxy, carboxy, phenyl, pyridin-3-yl, 3,4-dichlorophenyl, 2-methoxy-5-isopropyiphenyl, 4-n-butylphenyl, 3-isopropylphenyl, more preferably hydrogen or phenyl; and R4 is hydrogen. Within the above preferred group (18) a more preferred group of compounds is wherein: R5 is —COR10 where R10 is as defined in the Summary of the Invention, preferably —NR11(CH2)nR12 or —NR13R14 as defined in the Summary of the Invention. R6 is selected from the group consisting of hydrogen and alkyl, preferably hydrogen, methyl, ethyl, isopropyl, tert-butyl, isobutyl, or n-butyl, more preferably hydrogen or methyl; and R7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, and —C(O)R17 wherein R17 is hydroxy, alkyl or aryl, more preferably hydrogen, methyl, ethyl, isopropyl, n-, iso or tert-butyl, phenyl, benzoyl, acetyl or carboxy, even more preferably methyl, hydrogen or phenyl. In the above preferred group (18) another more preferred group of compounds is that wherein: R6 is —COR10 where R10 is as defined in the Summary of the Invention, preferably —NR11(CH2)nR12 or —NR13R14 as defined in the Summary of the Invention. R5 is selected from the group consisting of hydrogen and alkyl, preferably hydrogen, methyl, ethyl, isopropyl, tert-butyl, isobutyl, or n-butyl, more preferably hydrogen or methyl; and R7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, and —C(O)R17 wherein R17 is hydroxy, alkyl or aryl, more preferably hydrogen, methyl, ethyl, isopropyl, n-, iso or tert-butyl, phenyl, benzoyl, acetyl or carboxy, even more preferably methyl, hydrogen or phenyl. (19) Another more preferred group of compounds of Formula (I) is that wherein: R1 and R4 ate hydrogen; R2 is selected from the group consisting of hydrogen, halo, lower alkoxy, —C(O)R15 and —S(O)2NR13R14; R3 is selected from the group consisting of hydrogen, lower alkoxy, —C(O)R15, —S(O)2NR13R14, aryl and heteroaryl; R5 is —C(O)R10; R6 is selected from the group consisting of hydrogen and lower alkyl; and R7 is selected from the group consisting of hydrogen, lower alkyl and —C(O)R17. It is another presently preferred embodiment of this invention that, in a compound having a structure as described in (15): R10 is selected from the group consisting of hydroxy, lower alkoxy and —NR11(CH2)nR12, wherein n is 2 or 3; R11 is selected from the group consisting of hydrogen and lower alkyl; and, R12 is selected from the group consisting of aryl and —NR13R14. It is a further presently preferred embodiment of this invention that, in a compound having a structure as described in the previous two paragraphs, R13 and R14 are independently selected from the group consisting of hydrogen, lower alkyl, and, combined, —(CH2)4—, —(CH2)5—, —CH2)2O(CH2)2— or —(CH2)2N(CH3)(CH2)2—. (20) Another presently preferred embodiment of this invention is a compound in which: R1 is selected from the group consisting of hydrogen, lower alkyl, —(CH2)rR16 and —C(O)NR8R9; R2 is selected from the group consisting of hydrogen, halogen, aryl and —S(O)2NR13R14; R3 is selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, aryl, heteroaryl and —C(O)R15; R4 is hydrogen; R5 is selected from the group consisting of hydrogen and lower alkyl; R6 is —C(O)R10; R7 is selected from the group consisting of hydorgen, lower alkyl and aryl; R16 is selected from the group consisting of hydroxy and —C(O)R15; and, r is 2 or 3. A presently preferred embodiment of this invention is a compound having as structure described in the paragraph just above in which R3 is aryl optionally substituted with one or more groups selected from the group consisting of lower alkyl, lower alkoxy and halo. (21) Likewise, it is a presently preferred embodiment of this invention that, in a compound in which: R1 is selected from the group consisting of hydrogen, lower alkyl, —(CH2)rR16 and —C(O)NR8R9; R2 is selected from the group consisting of hydrogen, halogen, aryl and —S(O)2NR13R14; R3 is selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, aryl, heteroaryl and —C(O)R15; R4 is hydrogen; R5 is selected from the group consisting of hydrogen and lower alkyl; R6 is —C(O)R10; R7 is selected from the group consisting of hydorgen, lower alkyl and aryl; R16 is selected from the group consisting of hydroxy and —C(O)R15; and, r is 2 or 3, R10 is selected from the group consisting of hydroxy, lower alkoxy, —NR13R14 and —NR11(CH2)nR12, wherein n is 1, 2 or 3, R11 is hydrogen and R12 is selected from the group consisting of hydroxy, lower alkoxy, —C(O)R15, heteroaryl and —NR13R14. (22) A further presently preferred embodiment of this invention is a compound having a structure as described in the paragraph immediately above in which R13 and R14 are independently selected from the group consisting of hydrogen, lower alkyl, heteroaryl and, combined, —(CH2)4—, —(CH2)5—, —(CH2)2O(CH2)2—, or —(CH2)2N(CH3)(CH2)2—. (23) Another presently preferred embodiment of this invention is a compound in which: R1 is —C(O)NR8R9, wherein R8 is hydrogen and R9 is aryl optionally substituted with one or more groups selected from the group consisting of halo, hydroxy and lower alkoxy; R2 is selected from the group consisting of hydrogen, halogen, aryl and —S(O)2NR13R14; R3 is selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, aryl, heteroaryl and —C(O)R15; R4 is hydrogen; R5 is selected from the group consisting of hydrogen and lower alkyl; R6 is —C(O)R10; R7 is selected from the group consisting of hydorgen, lower alkyl and aryl; R16 is selected from the group consisting of hydroxy and —C(O)R15; and, r is 2 or 3, (24) A still further presently preferred embodiment of this invention is a compound in which: R1 is selected from the group consisting of hydrogen and lower alkyl; R2 is selected from the group consisting of hydrogen, halo, lower alkoxy, aryl, —C(O)R15 and —S(O)2NR13R14; R3 is selected from the group consisting of hydrogen, halo, aryl, heteroaryl and —C(O)R15; R4 is hydrogen; R5 is —C(O)R10; and, R6 and R7 combine to form a —(CH2)4— group. In a compound having a structure as described in the paragraph immediately above, it is a presently preferred embodiment that R10 is selected from the group consisting of hydroxy, alkoxy, —NR13R14 and —NH(CH2)nNR13R14 wherein n is 2 or 3. It is a presently preferred embodiment of this invention that, in a compound having a structure as described in the two paragraphs immediately above, R13 and R14 are independently selected from the group consisting of hydrogen, lower alkyl, and, combined, —(CH2)4—, —(CH2)5—, —(CH2)2O(CH2)2— or —(CH2)2N (CH3)(CH2)2—. Utility The PKs whose catalytic activity is modulated by the compounds of this invention include protein tyrosine kinases of which there are two types, receptor tyrosine kinases (RTKs) and cellular tyrosine kinases (CTKs), and serine-threonine kinases (STKs). RTK mediated signal transduction is initiated by extracellular interaction with a specific growth factor (ligand), followed by receptor dimerization, transient stimulation of the intrinsic protein tyrosine kinase activity and phosphorylation. Binding sites are thereby created for. intracellular signal transduction molecules and lead to the formation of complexes with a spectrum of cytoplasmic signaling molecules that facilitate the appropriate cellular response (e.g., cell division, metabolic effects on the extracellular microenvironment, etc.). See, Schlessinger and Ullrich, 1992, Neuron 9:303-391. It has been shown that tyrosine phosphorylation sites on growth factor receptors function as high-affinity binding sites for SH2 (src homology) domains of signaling molecules. Fantl et al., 1992, Cell 69:413-423, Songyang et al., 1994, Mol. Cell. Biol. 14:2777-2785), Songyang et al., 1993, Cell 72:767-778, and Koch et al., 1991, Science 252:668-678. Several intracellular substrate proteins that associate with RTKs have been identified. They may be divided into two principal groups: (1) substrates that have a catalytic domain, and (2) substrates which lack such domain but which serve as adapters and associate with catalytically active molecules. Songyang et al., 1993, Cell 72:767-778. The specificity of the interactions between receptors and SH2 domains of their substrates is determined by the amino acid residues immediately surrounding the phosphorylated tyrosine residue. Differences in the binding affinities between SH2 domains and the amino acid sequences surrounding the phosphotyrosine residues on particular receptors are consistent with the observed differences in their substrate phosphorylation profiles. Songyang et al., 1993, Cell 72:767-778. These observations suggest that the function of each RTK is determined not only by its pattern of expression and ligand availability but also by the array of downstream signal transduction pathways that are activated by a particular receptor. Thus, phosphorylation provides an important regulatory step which determines the selectivity of signaling pathways recruited by specific growth factor receptors, as well as differentiation factor receptors. STKs, being primarily cytosolic, affect the internal biochemistry of the cell, often as a down-line response to a PTK event. STKs have been implicated in the signaling process which initiates DNA synthesis and subsequent mitosis leading to cell proliferation. Thus, PK signal transduction results in, among other responses, cell proliferation, differentiation, growth and metabolism. Abnormal cell proliferation may result in a wide array of disorders and diseases, including the development of neoplasia such as carcinoma, sarcoma, glioblastoma and hemangioma, disorders such as leukemia, psoriasis, arteriosclerosis, arthritis and diabetic retinopathy and other disorders related to uncontrolled angiogenesis and/or vasculogenesis. A precise understanding of the mechanism by which the compounds of this invention inhibit PKs is not required in order to practice the present invention. However, while not hereby being bound to any particular mechanism or theory, it is believed that the compounds interact with the amino acids in the catalytic region of PKs. PKs typically possess a bi-lobate structure wherein ATP appears to bind in the cleft between the two lobes in a region where the amino acids are conserved among PKs. Inhibitors of PKs are believed to bind by non-covalent interactions such as hydrogen bonding, van der Waals forces and ionic interactions in the same general region where the aforesaid ATP binds to the PKs. More specifically, it is thought that the 2-indolinone component of the compounds of this invention binds in the general space normally occupied by the adenine ring of ATP. Specificity of a particular molecule for a particular PK may then arise as the result of additional interactions between the various substituents on the 2-indolinone core and the amino acid domains specific to particular PKs. Thus, different indolinone substituents may contribute to preferential binding to particular PKs. The ability to select compounds active at different ATP (or other nucleotide) binding sites makes the compounds of this invention useful for targeting any protein with such a site. The compounds disclosed herein thus have utility in in vitro assays for such proteins as well as exhibiting in vivo therapeutic effects through interaction with such proteins. Additionally, the compounds of the present invention provide a therapeutic approach to the treatment of many kinds of solid tumors, including but not limited to carcinomas, sarcomas including Kaposi's sarcoma, erythroblastoma, glioblastoma, meningioma, astrocytoma, melanoma and myoblastoma. Treatment or prevention of non-solid tumor cancers such as leukemia are also contemplated by this invention. Indications may include, but are not limited to brain cancers, bladder cancers, ovarian cancers, gastric cancers, pancreas cancers, colon cancers, blood cancers, lung cancers and bone cancers. Further examples, without limitation, of the types of disorders related to inappropriate PK activity that the compounds described herein may be useful in preventing, treating and studying, are cell proliferative disorders, fibrotic disorders and metabolic disorders. Cell proliferative disorders, which may be prevented, treated or further studied by the present invention include cancer, blood vessel proliferative disorders and mesangial cell proliferative disorders. Blood vessel proliferative disorders refer to disorders related to abnormal vasculogenesis (blood vessel formation) and angiogenesis (spreading of blood vessels). While vasculogenesis and angiogenesis play important roles in a variety of normal physiological processes such as embryonic development, corpus luteum formation, wound healing and organ regeneration, they also play a pivotal role in cancer development where they result in the formation of new capillaries needed to keep a tumor alive. Other examples of blood vessel proliferation disorders include arthritis, where new capillary blood vessels invade the joint and destroy cartilage, and ocular diseases, like diabetic retinopathy, where new capillaries in the retina invade the vitreous, bleed and cause blindness. Two structurally related RTKs have been identified to bind VEGF with high affinity: the fms-like tyrosine 1 (fit-1) receptor (Shibuya et al., 1990, Oncogene,5:519-524; De Vries et al., 1992, Science, 255:989-991) and the KDR/FLK-1 receptor, also known as VEGF-R2. Vascular endothelial growth factor (VEGF) has been reported to be an endothelial cell specific mitogen with in vitro endothelial cell growth promoting activity. Ferrara & Henzel, 1989, Biochein. Biophys. Res. Comm., 161:851-858; Vaisman et al., 1990, J. Biol. Chem., 265:19461-19566. Information set forth in U.S. application Ser. Nos. 08/193,829, 08/038,596 and 07/975,750, strongly suggest that VEGF is not only responsible for endothelial cell proliferation, but also is the prime regulator of normal and pathological angiogenesis. See generally, Klagsburn & Soker, 1993, Current Biology, 3(10)699-702; Houck, et al., 1992, J. Biol. Chem., 267:26031-26037. Normal vasculogenesis and angiogenesis play important roles in a variety of physiological processes such as embryonic development, wound healing, organ regeneration and female reproductive processes such as follicle development in the corpus luteum during ovulation and placental growth after pregnancy. Folkman & Shing, 1992, J. Biological Chem., 267(16):10931-34. Uncontrolled vasculogenesis and/or angiogenesis has been associated with diseases such as, diabetes as well as with malignant solid tumors that rely on vascularization for growth. Klagsburn & Soker, 1993, Current Biology, 3(10):699-702; Folkham, 1991, J. Natl. Cancer Inst., 82:4-6; Weidner, et al., 19.91, New Engl. J. Med., 324:1-5. The surmised role of VEGF in endothelial cell proliferation and migration during angiogenesis and vasculogenesis indicates an important role for the KDR/FLK-1 receptor in these processes. Diseases such as diabetes mellitus (Folkman, 198, in XIth Congress of Thrombosis and Haemostasis (Verstraeta, et al., eds.), pp. 583-596, Leuven University Press, Leuven) and arthritis, as well as malignant tumor growth may result from uncontrolled angiogenesis. See e.g., Folkman, 1971, N. Engl. J. Med., 285:1182-1186. The receptors to which VEGF specifically binds are an important and powerful therapeutic target for the regulation and modulation of vasculogenesis and/or angiogenesis and a variety of severe diseases which involve abnormal cellular growth caused by such processes. Plowman, et al., 1994, DN&P, 7 (6):334-339. More particularly, the KDR/FLK-1 receptor's highly specific role in neovascularization make it a choice target for therapeutic approaches to the treatment of cancer and other diseases which involve the uncontrolled formation of blood vessels. Thus, the present invention provides compounds capable of regulating and/or modulating tyrosine kinase signal transduction including KDR/FLK-1 receptor signal transduction in order to inhibit or promote angiogenesis and/or vasculogenesis, that is, compounds that inhibit, prevent, or interfere with the signal transduced by KDR/FLK-1 when activated by ligands such as VEGF. Although it is believed that the compounds of the present invention act on a receptor or other component along the tyrosine kinase signal transduction pathway, they may also act directly on the tumor cells that result from uncontrolled angiogenesis. Although the nomenclature of the human and murine counterparts of the generic “flk-I” receptor differ, they are, in many respects, interchangeable. The murine receptor, Flk-1, and its human counterpart, KDR, share a sequence homology of 93.4% within the intracellular domain. Likewise, murine FLK-I binds human VEGF with the same affinity as mouse VEGF, and accordingly, is activated by the ligand derived from either species. Millauer et al., 1993, Cell, 72:835-846; Quinn et al., 1993, Proc. Natl. Acad. Sci. USA, 90:7533-7537. FLK-1 also associates with and subsequently tyrosine phosphorylates human RTK substrates (e.g., PLC-γ or p85) when co-expressed in 293 cells (human embryonal kidney fibroblasts). Models which rely upon the FLK-1 receptor therefore are directly applicable to understanding the KDR receptor. For example, use of the murine FLK-1 receptor in methods which identify compounds that regulate the murine signal transduction pathway are directly applicable to the identification of compounds which may be used to regulate the human signal transduction pathway, that is, which regulate activity related to the KDR receptor. Thus, chemical compounds identified as inhibitors of KDR/FLK-1 in vitro, can be confirmed in suitable in vivo models. Both in vivo mouse and rat animal models have been demonstrated to be of excellent value for the examination of the clinical potential of agents acting on the KDR/FLK-1 induced signal transduction pathway. Thus, the present invention provides compounds that regulate, modulate and/or inhibit vasculogenesis and/or angiogenesis by affecting the enzymatic activity of the KDR/FLK-1 receptor and interfering with the signal transduced by KDR/FLK-1. Thus the present invention provides a therapeutic approach to the treatment of many kinds of solid tumors including, but not limited to, glioblastoma, melanoma and Kaposi's sarcoma, and ovarian, lung, mammary, prostate, pancreatic, colon and epidermoid carcinoma. In addition, data suggests the administration of compounds which inhibit the KDR/Flk-1 mediated signal transduction pathway may also be used in the treatment of hemangioma, restenois and diabetic retinopathy. Furthermore, this invention relates to the inhibition of vasculogenesis and angiogenesis by other receptor-mediated pathways, including the pathway comprising the flt-1 receptor. Receptor tyrosine kinase mediated signal transduction is initiated by extracellular interaction with a specific growth factor (ligand), followed by receptor dimerization, transient stimulation of the intrinsic protein tyrosine kinase activity and autophosphorylation. Binding sites are thereby created for intracellular signal transduction molecules which leads to the formation of complexes with a spectrum of cytoplasmic signalling molecules that facilitate the appropriate cellular response, e.g., cell division and metabolic effects to the extracellular microenvironment. See, Schlessinger and Ullrich, 1992, Neuron, 9:1-20. The close homology of the intracellular regions of KDR/FLK-1 with that of the PDGF-β receptor (50.3% homology) and/or the related flt-1 receptor indicates the induction of overlapping signal transduction pathways. For example, for the PDGF-β receptor, members of the src family (Twamley et al., 1993, Proc. Natl. Acad. Sci. USA, 90:7696-7700), phosphatidylinositol-3′-kinase (Hu et al., 1992, Mol. Cell. Biol., 12:981-990), phospholipase cγ (Kashishian & Cooper, 1993, Mol. Cell. Biol., 4:49-51), ras-GTPase-activating protein, (Kashishian et al., 1992, EMBO J., 11:1373-1382), PTP-ID/syp (Kazlauskas et al., 1993, Proc. Natl. Acad. Sci. USA, 10 90:6939-6943), Grb2 (Arvidsson et al., 1994, Mol. Cell. Biol., 14:6715-6726), and the adapter molecules Shc and Nck (Nishimura et al., 1993, Mol. Cell. Biol., 13:6889-6896), have been shown to bind to regions involving different autophosphorylation sites. See generally, Claesson-Welsh, 1994, Prog. Growth Factor Res., 5:37-54. Thus, it is likely that signal transduction pathways activated by KDR/FLK-1 include the ras pathway (Rozakis et al., 1992, Nature, 360:689-692), the PI-3′-kinase, the src-mediated and the plcγ-mediated pathways. Each of these pathways may play a critical role in the angiogenic and/or vasculogenic effect of KDR/FLK-1 in endothelial cells. Consequently, a still further aspect of this invention relates to the use of the organic compounds described herein to modulate angiogenesis and vasculogenesis as such processes are controlled by these pathways. Conversely, disorders related to the shrinkage, contraction or closing of blood vessels, such as restenosis, are also implicated and may be treated or prevented by the methods of this invention. Fibrotic disorders refer to the abnormal formation of extracellular matrices. Examples of fibrotic disorders include hepatic cirrhosis and mesangial cell proliferative disorders. Hepatic cirrhosis is characterized by the increase in extracellular matrix constituents resulting in the formation of a hepatic scar. An increased extracellular matrix resulting in a hepatic scar can also be caused by a viral infection such as hepatitis. Lipocytes appear to play a major role in hepatic cirrhosis. Other fibrotic disorders implicated include atherosclerosis. Mesangial cell proliferative disorders refer to disorders brought about by abnormal proliferation of mesangial cells. Mesangial proliferative disorders include various human renal diseases such as glomerulonephritis, diabetic nephropathy and malignant nephrosclerosis as well as such disorders as thrombotic microangiopathy syndromes, transplant rejection, and glomerulopathies. The RTK PDGFR has been implicated in the maintenance of mesangial cell proliferation. Floege et al., 1993, Kidney International 43:47S-54S. Many cancers are cell proliferative disorders and, as noted previously, PKs have been associated with cell proliferative disorders. Thus, it is not surprising that PKs such as, for example, members of the RTK-family have been associated with the development of cancer. Some of these receptors, like EGFR (Tuzi et al., 1991, Br. J. Cancer 63:227-233, Torp et al., 1992, APMIS 100:713-719) HER2/neu (Slamon et al., 1989, Science 244:707-712) and PDGF-R (Kumabe et al., 1992, Oncogene, 7:627-633) are over-expressed in many tumors and/or persistently activated by autocrine loops. In fact, in the most common and severe cancers these receptor over-expressions (Akbasak and Suner-Akbasak et al., 1992, J. Neurol. Sci., 111:119-133, Dickson et al., 1992, Cancer Treatment Res. 61:249-273, Korc et al., 1992, J. Clin. Invest. 90:1352-1360) and autocrine loops (Lee and Donoghue, 1992, J. Cell. Biol., 118:1057-1070, Korc et al., supra, Akbasak and Suner-Akbasak et al., supra) have been demonstrated. For example, EGFR has been associated with squamous cell carcinoma, astrocytoma, glioblastoma, head and neck cancer, lung cancer and bladder cancer. HER2 has been associated with breast, ovarian, gastric, lung, pancreas and bladder cancer. PDGFR has been associated with glioblastoma andmelanoma as well as lung, ovarian and prostate cancer. The RTK c-met has also been associated with malignant tumor formation. For example, c-met has been associated with, among other cancers, colorectal, thyroid, pancreatic, gastric and hepatocellular carcinomas and lymphomas. Additionally c-met has been linked to leukemia. Over-expression of the c-met gene has also been detected in patients with Hodgkins disease and Burkitts disease. IGF-IR, in addition to being implicated in nutritional support and in type-II diabetes, has also been associated with several types of cancers. For example, IGF-I has been implicated as an autocrine growth stimulator for several tumor types, e.g. human breast cancer carcinoma cells (Arteaga et al., 1989, J. Clin. Invest. 84:1418-1423) and small lung tumor cells (Macauley et al., 1990, Cancer Res., 50:2511-2517). In addition, IGF-I, while integrally involved in the normal growth and differentiation of the nervous system, also appears to be an autocrine stimulator of human gliomas. Sandberg-Nordqvist et al., 1993, Cancer Res. 53:2475-2478. The importance of IGF-IR and its ligands in cell proliferation is further supported by the fact that many cell types in culture (fibroblasts, epithelial cells, smooth muscle cells, T-lymphocytes, myeloid cells, chondrocytes and osteoblasts (the stem cells of the bone marrow)) are stimulated to grow by IGF-I. Goldring and Goldring, 1991, Eukaryotic Gene Expression,1:301-326. Baserga and Coppola suggest that IGF-IR plays a central role in the mechanism of transformation and, as such, could be a preferred target for therapeutic interventions for a broad spectrum of human malignancies. Baserga, 1995, Cancer Res., 55:249-252, Baserga, 1994, Cell 79:927-930, Coppola et al., 1994, Mol. Cell. Biol., 14:4588-4595. STKs have been implicated in many types of cancer including, notably, breast cancer (Cance, et al., Int. J. Cancer, 54:571-77 (1993)). The association between abnormal PK activity and disease is not restricted to cancer. For example, RTKs have been associated with diseases such as psoriasis, diabetes mellitus, endometriosis, angiogenesis, atheromatous plaque development, Alzheimer's disease, restenosis, von Hippel-Lindau disease, epidermal hyperproliferation, neurodegenerative diseases, age-related macular degeneration and hemangiomas. For example, EGFR has been indicated in corneal and dermal wound healing. Defects in Insulin-R and IGF-1R are indicated in type-II diabetes mellitus. A more complete correlation between specific RTKs and their therapeutic indications is set forth in Plowman et al., 1994, DN&P. 7:334-339. As noted previously, not only RTKs but CTKs including, but, not limited to, src, abl, fps, yes, fyn, lyn lck, blk, hck, fgr and yrk (reviewed by Bolen et al., 1992, FASEB J., 6:3403-3409) are involved in the proliferative and metabolic signal transduction pathway and thus could be expected, and have been shown, to be involved in many PTK-mediated disorders to which the present invention is directed. For example, mutated src (v-src) has been shown to be an oncoprotein (pp60v-src) in chicken. Moreover, its cellular homolog, the proto-oncogene pp60c-src transmits oncogenic signals of many receptors. Over-expression of EGFR or HER2/neu in tumors leads to the constitutive activation of pp60c□src, which is characteristic of malignant cells but absent in normal cells. On the other hand, mice deficient in the expression of c-src exhibit an osteopetrotic phenotype, indicating a key participation of c-src in osteoclast function and a possible involvement in related disorders. Similarly, Zap70 has been implicated in T-cell signaling which may relate to autoimmune disorders. STKs have been associated with inflamation, autoimmune disease, immunoresponses, and hyperproliferation disorders such as restenosis, fibrosis, psoriasis, osteoarthritis and rheumatoid arthritis. PKs have also been implicated in embryo implantation. Thus, the compounds of this invention may provide an effective method of preventing such embryo implantation and thereby be useful as birth control agents. Additional disorders which may be treated or prevented using the compounds of this invention are immunological disorders such as autoimmune disease, AIDS and cardiovasular disorders such as atherosclerosis. Finally, both RTKs and CTKs are currently suspected as being involved in hyperimmune disorders. Examples of the effect of a number of exemplary compounds of this invention on several PTKs are shown in Table 2 below. The compounds and data presented are not to be construed as limiting the scope of this invention in any manner whatsoever. Administration and Pharmaceutical Composition A compound of the present invention or a phearmaceutically acceptable salt thereof, can be administered as such to a human patient or can be administered in pharmaceutical compositions in which the foregoing materials are mixed with suitable carriers or excipient(s). Techniques for formulation and administration of drugs may be found in “Remington's Pharmacological Sciences,” Mack Publishing Co., Easton, Pa., latest edition. As used herein, “administer” or “administration” refers to the delivery of a compound of Formula (I) or a pharmaceutically acceptable salt thereof or of a pharmaceutical composition containing a compound of Formula (I) or a pharmaceutically acceptable salt thereof of this invention to an organism for the purpose of prevention or treatment of a PK-related disorder. Suitable routes of administration may include, without limitation, oral, rectal, transmucosal or intestinal administration or intramuscular, subcutaneous, intramedullary, intrathecal, direct intraventricular, intravenous, intravitreal, intraperitoneal, intranasal, or intraocular injections. The preferred routes of administration are oral and parenteral. Alternatively, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a solid tumor, often in a depot or sustained release formulation. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with tumor-specific antibody. The liposomes will be targeted to and taken up selectively by the tumor. Pharmaceutical compositions of the present invention may be manufactured by processes well known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. For injection, the compounds of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art. For oral administration, the compounds can be formulated by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, lozenges, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient. Pharmaceutical preparations for oral use can be made using a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding other suitable auxiliaries if desired, to obtain tablets or dragee cores. Useful excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol, cellulose preparations such as, for example, maize starch, wheat starch, rice starch and potato starch and other materials such as gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinyl-pyrrolidone (PVP). If desired, disintegrating agents may be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid. A salt such as sodium alginate may also be used. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses. Pharmaceutical compositions which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with a filler such as lactose, a binder such as starch, and/or a lubricant such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. Stabilizers may be added in these formulations, also. Pharmaceutical compositions which may also be used include hard gelatin capsules. As a non-limiting example, the active compound capsule oral drug product formulation may be as 50 and 200 mg dose strengths (formulation codes J-011248-AA-00 and J-011248-AA-01, respectively). The two dose strengths are made from the same granules by filling into different size hard gelatin capsules, size 3 for the 50 mg capsule and size 0 for the 200 mg capsule. The composition of the formulation may be, for example, as indicated in Table 2. TABLE 2 Concentration Amount in Amount in Ingredient in Granulation 50 mg 200 mg Name/Grade (% w/w) Capsule (mg) Capsule (mg) Formulation J-011248-AA J-011248-AA-00 J-011248-AA-01 Code Active 65.0 50.0 200.0 Compound NF Mannitol NF 23.5 18.1 72.4 Croscarmellose 6.0 4.6 18.4 sodium NF Povidone 5.0 3.8 15.2 K 30 NF Magnesium 0.5 0.38 1.52 stearate NF Capsule, Size 3 Size 0 Swedish yellow NF The capsules may be packaged into brown glass or plastic bottles to protect the active compound from light. The containers containing the active compound capsule formulation must be stored at controlled room temperature (15-30° C.). For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray using a pressurized pack or a nebulizer and a suitable propellant, e.g., without limitation, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetra-fluoroethane or carbon dioxide. In the case of a pressurized aerosol, the dosage unit may be controlled by providing a valve to deliver a metered amount. Capsules and cartridges of, for example, gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may also be formulated for parenteral administration, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulating materials such as suspending, stabilizing and/or dispersing agents. Pharmaceutical compositions for parenteral administration include aqueous solutions of a water soluble form, such as, without limitation, a salt, of the active compound. Additionally, suspensions of the active compounds may be prepared in a lipophilic vehicle. Suitable lipophilic vehicles include fatty oils such as sesame oil, synthetic fatty acid esters such as ethyl oleate and triglycerides, or materials such asliposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers and/or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water, before use. The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, using, e.g., conventional suppository bases such as cocoa butter or other glycerides. In addition to the fomulations described previously, the compounds may also be formulated as depot preparations. Such long acting formulations may be administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection. A compound of this invention may be formulated for this route of administration with suitable polymeric or hydrophobic materials (for instance, in an emulsion with a pharamcologically acceptable oil), with ion exchange resins, or as a sparingly soluble derivative such as, without limitation, a sparingly soluble salt. A non-limiting example of a pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer and an aqueous phase such as the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:D5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of such a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicitynonpolar surfactants may be used instead of Polysorbate 80, the fraction size of polyethylene glycol may be varied, other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone, and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. In addtion, certain organic solvents such as dimethylsulfoxide also may be employed, although often at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed. The pharmaceutical compositions herein also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include, but are not limited to, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the PK modulating compounds of the invention may be provided as physiologically acceptable salts wherein the claimed compound may form the negatively or the positively charged species. Examples of salts in which the compound forms the positively charged moiety include, without limitation, quaternary ammonium (defined elsewhere herein), salts such as the hydrochloride, sulfate, carbonate, lactate, tartrate, malate, maleate, succinate wherein the nitrogen atom of the quaternary ammonium group is a nitrogen of the selected compound of this invention which has reacted with the appropriate acid. Salts in which a compound of this invention forms the negatively charged species include, without limitation, the sodium, potassium, calcium and magnesium salts formed by the reaction of a carboxylic acid group in the compound with an appropriate base (e.g. sodium hydroxide (NaOH), potassium hydroxide (KOH), Calcium hydroxide (Ca(OH)2), etc.). Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an amount sufficient to achieve the intended purpose, e.g., the modulation of PK activity or the treatment or prevention of a PK-related disorder. More specifically, a therapeutically effective amount means an amount of compound effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated. Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the methods of the invention, the therapeutically effective amount or dose can be estimated initially from cell culture assays. Then, the dosage can be formulated for use in animal models so as to achieve a circulating concentration range that includes the IC50 as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the PK activity). Such information can then be used to more accurately determine useful doses in humans. Toxicity and therapeutic efficacy of the compounds described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the IC50 and the LD50 (both of which are discussed elsewhere herein) for a subject compound. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage may vary depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl, et al., 1975, in “The Pharmacological Basis of Therapeutics”, Ch. 1 p.1). Dosage amount and interval may be adjusted individually to provide plasma levels of the active species which are sufficient to maintain the kinase modulating effects. These plasma levels are referred to as minimal effective concentrations (MECs). The MEC will vary for each compound but can be estimated from in vitro data, e.g., the concentration necessary to achieve 50-90% inhibition of a kinase may be ascertained using the assays described herein. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. HPLC assays or bioassays can be used to determine plasma concentrations. Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen that maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. At present, the therapeutically effective amounts of compounds of Formula (I) may range from approximately 25 mg/m2 to 1500 mg/m2 per day; preferably about 3 mg/m2/day. Even more preferably 50mg/qm qd till 400 mg/qd. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration and other procedures known in the art may be employed to determine the correct dosage amount and interval. The amount of a composition administered will, of course, be dependent on the subject being treated, the severity of the affliction, the manner of administration, the judgment of the prescribing physician, etc. The compositions may, if desired, be presented in a pack or dispenser device, such as an FDA approved kit, which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. The pack or dispenser may also be accompanied by a notice associated with the container in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the compositions or of human or veterinary administration. Such notice, for example, may be of the labeling approved by the U.S. Food and Drug Administration for prescription drugs or of an approved product insert. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition. Suitable conditions indicated on the label may include treatment of a tumor, inhibition of angiogenesis, treatment of fibrosis, diabetes, and the like. It is also an aspect of this invention that a compound described herein, or its salt or prodrug, might be combined with other chemotherapeutic agents for the treatment of the diseases and disorders discussed above. For instance, a compound, salt or prodrug of this invention might be combined with alkylating agents such as fluorouracil (5-FU) alone or in further combination with leukovorin; or other alkylating agents such as, without limitation, other pyrimidine analogs such as UFT, capecitabine, gemcitabine and cytarabine, the alkyl sulfonates, e.g., busulfan (used in the treatment of chronic granulocytic leukemia), improsulfan and piposulfan; aziridines, e.g., benzodepa, carboquone, meturedepa and uredepa; ethyleneimines and methylmelamines, e.g., altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylolmelamine; and the nitrogen mustards, e.g., chlorambucil (used in the treatment of chronic lymphocytic leukemia, primary macroglobulinemia and non-Hodgkin's lymphoma), cyclophosphamide (used in the treatment of Hodgkin's disease, multiple myeloma, neuroblastoma, breast cancer, ovarian cancer, lung cancer, Wilm's tumor and rhabdomyosarcoma); estramustine, ifosfamide, novembrichin, prednimustine and uracil mustard (used in the treatment of primary thrombocytosis, non-Hodgkin's lymphoma, Hodgkin's disease and ovarian cancer); and triazines, e.g., dacarbazine (used in the treatment of soft tissue sarcoma). A compound, salt or prodrug of this invention can also be used in combination with other antimetabolite chemotherapeutic agents such as, without limitation, folic acid analogs, e.g. methotrexate (used in the treatment of acute lymphocytic leukemia, choriocarcinoma, mycosis fungiodes breast cancer, head and neck cancer and osteogenic sarcoma) and pteropterin; and the purine analogs such as mercaptopurine and thioguanine which find use in the treatment of acute granulocytic, acute lymphocytic and chronic granulocytic leukemias. It is contemplated that a compound, salt or prodrug of this invention can also be used in combination with natural product based chemotherapeutic agents such as, without limitation, the vinca alkaloids, e.g., vinblastin (used in the treatment of breast and testicular cancer), vincristine and vindesine; the epipodophylotoxins, e.g., etoposide and teniposide, both of which are useful in the treatment of testicular cancer and Kaposi's sarcoma; the antibiotic chemotherapeutic agents, e.g., daunorubicin, doxorubicin, epirubicin, mitomycin (used to treat stomach, cervix, colon, breast, bladder and pancreatic cancer), dactinomycin, temozolomide, plicamycin, bleomycin (used in the treatment of skin, esophagus and genitourinary tract cancer); and the enzymatic chemotherapeutic agents such as L-asparaginase. In addition to the above, a compound, salt or prodrug of this invention could also be used in combination with the platinum coordination complexes (cisplatin, etc.); substituted ureas such as hydroxyurea; methylhydrazine derivatives, e.g., procarbazine; adrenocortical suppressants, e.g., mitotane, aminoglutethimide; and hormone and hormone antagonists such as the adrenocorticosteriods (e.g., prednisone), progestins (e.g., hydroxyprogesterone caproate); estrogens (e.g., diethylstilbesterol); antiestrogens such as tamoxifen; androgens, e.g., testosterone propionate; and aromatase inhibitors such as anastrozole. Finally, it is also contemplated that the combination of a compound of this invention will be effective in combination with mitoxantrone or paclitaxel for the treatment of solid tumor cancers or leukemias such as, without limitation, acute myelogenous (non-lymphocytic) leukemia. General Synthetic Procedure The following general methodology maybe employed to prepare the compounds of this invention: The appropriately substituted 2-oxindole (1 equiv.), the appropriately substituted aldehyde (1.2 equiv.) and a base (0.1 equiv.) are mixed in a solvent (1-2 ml/mmol 2-oxindole) and the mixture is then heated for from about 2 to about 12 hours. After cooling, the precipitate that forms is filtered, washed with cold ethanol or ether and vacuum dried to give the solid product. If no precipitate forms, the reaction mixture is concentrated and the residue is triturated with dichloromethane/ether, the resulting solid is collected by filtration and then dried. The product may optionally be further purified by chromatography. The base may be an organic or an inorganic base. If an organic base is used, preferably it is a nitrogen base. Examples of organic nitrogen bases include, but are not limited to, diisopropylamine, trimethylamine, triethylamine, aniline, pyridine, 1,8-diazabicyclo[5.4.1]undec-7-ene, pyrrolidine and piperidine. Examples of inorganic bases are, without limitation, ammonia, alkali metal or alkaline earth hydroxides, phosphates, carbonates, bicarbonates, bisulfates and amides. The alkali metals include, lithium, sodium and potassium while the alkaline earths include calcium, magnesium and barium. In a presently preferred embodiment of this invention, when the solvent is a protic solvent, such as water or alcohol, the base is an alkali metal or an alkaline earth inorganic base, preferably, a alkali metal or an alkaline earth hydroxide. It will be clear to those skilled in the art, based both on known general principles of organic synthesis and on the disclosures herein which base would be most appropriate for the reaction contemplated. The solvent in which the reaction is carried out may be a protic or an aprotic solvent, preferably it is a protic solvent. A “protic solvent” is a solvent which has hydrogen atom(s) covalently bonded to oxygen or nitrogen atoms which renders the hydrogen atoms appreciably acidic and thus capable of being “shared” with a solute through hydrogen bonding. Examples of protic solvents include, without limitation, water and alcohols. An “aprotic solvent” may be polar or non-polar but, in either case, does not contain acidic hydrogens and therefore is not capable of hydrogen bonding with solutes. Examples, without limitation, of non-polar aprotic solvents, are pentane, hexane, benzene, toluene, methylene chloride and carbon tetrachloride. Examples of polar aprotic solvents are chloroform, tetrahydrofuran, dimethylsulfoxide and dimethylformamide. In a presently preferred embodiment of this invention, the solvent is a protic solvent, preferably water or an alcohol such as ethanol. The reaction is carried out at temperatures greater than room temperature. The temperature is generally from about 30° C. to about 150° C., preferably about 80° C. to about 100° C., most preferable about 75° C. to about 85° C., which is about the boiling point of ethanol. By “about” is meant that the temperature range is preferably within 10 degrees Celcius of the indicated temperature, more preferably within 5 degrees Celcius of the indicated temperature and, most preferably, within 2 degrees Celcius of the indicated temperature. Thus, for example, by “about 75° C.” is meant 75° C.±10° C., preferably 75° C.±5° C. and most preferably, 75° C.±2° C. 2-Oxindoles and aldehydes, may be readily synthesized using techniques well known in the chemical arts. It will be appreciated by those skilled in the art that other synthetic pathways for forming the compounds of the invention are available and that the following is offered by way of example and not limitation. EXAMPLES The following preparations and examples are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof. Synthetic Examples Method A: Formylation of Pyrroles POCl3 (1.1 equiv.) is added dropwise to dimethylformamide (3 equiv.) at −10° C. followed by addition of the appropriate pyrrole dissolved in dimethylformamide. After stirring for two hours, the reaction mixture is diluted with H2O and basified to pH 11 with 10 N KOH. The precipitate which forms is collected by filtration, washed with H2O and dried in a vacuum oven to give the desired aldehyde. Method B: Saponification of Pyrrolecarboxylic Acid Esters A mixture of a pyrrolecarboxylic acid ester and KOH (2-4 equiv.) in EtOH is refluxed until reaction completion is indicated by thin layer chromatography (TLC). The cooled reaction mixtrue is acidified to pH 3 with 1 N HCl. The precipitate which forms is collected by filtration, washed with H2O and dried in a vacuum oven to give the desired pyrrolecarboxylic acid. Method C: Amidation To a stirred solution of a pyrrolecarboxylic acid dissolved in dimethylformamide(0.3M) is added 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (1.2 equiv.), 1-hydroxybenzotriazole (1.2 equiv.), and triethylamine (2 equiv.). The appropriate amine is added (1 equiv.) and the reaction stirred until completion is indicated by TLC. Ethyl ;acetate is then added to the reaction mixture and the solution washed with saturated NaHCO3 and brine (with extra salt), dried over anhydrous MgSO4 and concentrated to afford the desired amide. Method D: Condensation of Aldehydes and Oxindoles Containing Carboxylic Acid Substituents A mixture of the oxindole (1 equivalent), 1 equivalent of the aldehyde and 1-3 equivalents of piperidine (or pyrrolidine) in ethanol (0.4 M) is stirred at 90-100° C. until reaction completion is indicated by TLC. The mixture is then concentrated and the residue acidified with 2N HCl. The precipitate that forms is washed with H2O and EtOH and then dried in a vacuum oven to give the product. Method E: Condensation of Aldehydes and Oxindoles not Containing Carboxylic Acid Substituents A mixture of the oxindole (1 equivalent), 1 equivalent of the aldehyde and 1-3 equivalents of piperidine (or pyrrolidine) in ethanol (0.4 M) is stirred at 90-100° C. until reaction completion is indicated by TLC. The mixture is cooled to room temperature and the solid which forms is collected by vacuum filtration, washed with ethanol and dried to give the product. If a precipitate does not form upon cooling of the reaction mixture, the mixture is concentrated and purified by column chromatography. C. Examples of Oxindole Syntheses The following examples of the synthesis of representative oxindoles is not to be construed as limiting the scope of this invention in any manner whatsoever. Alternate routes to the oxindoles shown as well as other oxindoles to be used to make the compounds of this invention will become apparent to those skilled in the art based on the following disclosures. Such syntheses and oxindoles are within the scope and spirit of this invention. 5-Amino-2-oxindole 5-Nitro-2-oxindole (6.3 g) was hydrogenated in methanol over 10% palladium on carbon to give 3.0 g (60% yield) of the title compound as a white solid. 5-Bromo-2-oxindole 2-Oxindole (1.3 g) in 20 mL acetonitrile was cooled to −10° C. and 2.0 g N-bromosuccinimide was slowly added with stirring. The reaction was stirred for 1 hour at −10° C. and 2 hours at 0° C. The precipitate was collected, washed with water and dried to give 1.9 g (90 % yield) of the title compound. 4-Methyl-2-oxindole Diethyl oxalate (30 mL) in 20 mL of dry ether was added with stirring to 19 g of potassium ethoxide suspended in 50 mL of dry ether. The mixture was cooled in an ice bath and 20 mL of 3-nitro-6-xylene in 20 mL of dry ether was slowly added. The thick dark red mixture was heated to reflux for 0.5 hr, concentrated to a dark red solid, and treated with 10% sodium hydroxide until almost all of the solid dissolved. The dark red mixture was treated with 30% hydrogen peroxide until the red color changed to yellow. The mixture was treated alternately with 10% sodium hydroxide and 30% hydrogen peroxide until the dark red color was no longer present. The solid was filtered off and the filtrate acidified with 6N hydrochloric acid. The resulting precipitate was collected by vacuum filtration, washed with water, and dried under vacuum to give 9.8 g (45% yield) of 2-methyl-6-nitrophenylacetic acid as an off-white solid. The solid was hydrogenated in methanol over 10% palladium on carbon to give 9.04. g of the title compound as a white solid. 7-Bromo-5-chloro-2-oxindole 5-Chloro-2-oxindole (16.8 g) and 19.6 g of N-bromosuccinimide were suspended in 140 mL of acetonitrile and refluxed for 3 hours. Thin layer chromatography (silica, ethyl acetate) at 2 hours of reflux showed 5-chloro-2-oxindole or N-bromosuccinimide (Rf 0.8), product (Rf 0.85) and a second product (Rf 0.9) whose proportions did not change after another hour of reflux. The mixture was cooled to 10° C., the precipitate was collected by vacuum filtration, washed with 25 mL of ethanol and sucked dry for 20 minutes in the funnel to give 14.1 g of wet product (56% yield). The solid was suspended in 200 mL of denatured ethanol and slurry-washed by stirring and refluxing for 10 minutes. The mixture was cooled in an ice bath to 10° C. The solid product was collected by vacuum filtration, washed with 25 mL of ethanol and dried under vacuum at 40° C. to give 12.7 g (51% yield) of 7-bromo-5-chloro-2-oxindole. 5-Fluoro-2-oxindole 5-Fluoroisatin (8.2 g) was dissolved in 50 mL of hydrazine hydrate and refluxed for 1.0 hr. The reaction mixtures were then poured in ice water. The precipitate was then filtered, washed with water and dried in a vacuum oven to afford the title compound. 5-Nitro-2-oxindole 2-Oxindole (6.5 g) was dissolved in 25 mL concentrated sulfuric acid and the mixture maintained at −10 to −15° C. while 2.1 mL of fuming nitric acid was added dropwise. After the addition of the nitric acid the reaction mixture was stirred at 0° C. for 0.5 hr and poured into ice-water. The precipitate was collected by filtration, washed with water and crystallized from 50% acetic acid. The crystalline product was then filtered, washed with water and dried under vacuum to give 6.3 g (70%) of 5-nitro-2-oxindole. 5-Aminosulfonyl-2-oxindole To a 100 mL flask charged with 27 mL of chlorosulfonic acid was added slowly 13.3 g of 2-oxindole. The reaction temperature was maintained below 30° C. during the addition. After the addition, the reaction mixture was stirred at room temperature for 1.5 hr, heated to 68° C. for 1 hr, cooled, and poured into water. The precipitate was washed with water and dried in a vacuum oven to give 11.0 g of 5-chlorosulfonyl-2-oxindole (50% yield) which was used without further purification. 5-chlorosulfonyl-2-oxindole (2.1 g) was added to 10 mL of ammonium hydroxide in 10 mL of ethanol and stirred at room temperature overnight. The mixture was concentrated and the solid collected by vacuum filtration to give 0.4 g (20% yield) of the title compound as an off-white solid. 5-Isopropylaminosulfonyl-2-oxindole To a 100 mL flask charged with 27 mL chlorosulfonic acid was slowly added 13.3 g 2-oxindole. The reaction temperature was maintained below 30° C. during the addition. The reaction mixture was stirred at room temperature for 1.5 hour, heated to 68° C. for 1 hour, cooled, and poured into water. The precipitate which formed was filtered, washed with water and dried in a vacuum oven to give 11.0 g (50%) of 5-chlorosulfonyl-2-oxindole which was used without further purification. A suspension of 3 g 5-chlorosulfonyl-2-oxindole, 1.15 g isopropylamine and 1.2 mL of pyridine in 50 mL of dichloromethane was stirred at room temperature for 4 hours during which time a white solid formed. The solid was collected by vacuum filtration, slurry-washed with hot ethanol, cooled, collected by vacuum filtration and dried under vacuum at 40° C. overnight to give 1.5 g (45%) of 5-isopropylaminosulfonyl-2-oxindole. 1HNMR (360 MHz, DMSO-d6) δ 10.69 (s, br, 1H, NH), 7.63 (dd, J=2 and 8 Hz, 1H), 7.59 (d, J=2 Hz, 1H), 7.32 (d, J=7 Hz, 1H, NH—SO2—), 6.93 (d, J =8 Hz, 1H), 3.57 (s, 2H), 3.14-3.23 (m, 1H, CH—(CH3)2), 0.94 (d, J=7 Hz, 6H, 2×CH3). 5-Phenylaminosulfonyl-2-oxindole A suspension of 5-chlorosulfonyl-2-oxindole (1.62 g, 7 mmol), aniline (0.782 mL, 8.4 mmol) and pyridine (1 mL) in dichloromethane (20 ml) was stirred at room temperature for 4 hours. The reaction mixture was diluted with ethyl acetate (300 mL) and acidified with 1N hydrochloric acid (16 mL). The organic layer was washed with sodium bicarbonate and brine, dried and concentrated. The residue was washed with ethanol (3 mL) and then chromatographed on silica gel eluting with methanol/dichloromethane 1:9 to give of 5-phenylaminosulfonyl-2-oxindole. 1HNMR (360 MHz, DMSO-d6) δ 10.71 (s, br, 1H, NH), 10.10 (s, br, 1H, NH), 7.57-7.61 (m, 2H), 7.17-7.22 (m, 2H), 7.06-7.09 (m, 2H), 6.97-7.0 (m, 1H), 6.88 (d, J=8.4 Hz, 1H), 3.52 (s, 2H). 2-Oxo-2,3-dihydro-1H-indole-5-sulfonic acid pyridin-3-ylamide A solution of 5-chlorosufonyl-2-oxindole (3 g) and 3-aminopyridine (1.46 g) in pyridine (15 mL) was stirred at room temperature overnight at which time a brown solid was present. The solid was filtered, washed with ethanol and dried under vacuum to yield 1.4 g (38%) of 2-oxo-2,3-dihydro-1H-indole-5-sulfonic acid pyridin-3-ylamide. 1HNMR (360 MHz, DMSO-d6) δ 10.74 (s, 1H, NH), 10.39 (s, 1H, SO2NH), 8.27-8.28 (d, 1H), 8.21-8.23 (m, 1H), 7.59-7.62 (m, 2H), 7.44-7.68 (m, 1H), 7.24-7.28 (m, 1H), 6.69-6.71 (d, 1H), 3.54 (s, 2H). MS m/z (APCI+) 290.2. 5-Phenyloxindole 5-Bromo-2-oxindole (5 g, 23.5 mmol) was dissolved in 110 mL toluene and 110 mL ethanol with stirring and a little heat. Tetrakis(triphenylphosphine)palladium,(0) (1.9 g, 1.6 mmol) was added followed by 40 mL (80 mmol) 2M aqueous sodium carbonate. To this mixture was added benzene boronic acid (3.7 g, 30.6 mmol) and the mixture was heated in a 100° C. oil bath for 12 hours. The reaction was cooled, diluted with ethyl acetate (500 mL), washed with saturated sodium bicarbonate (200 mL), water (200 mL), 1N HCl (200 mL) and brine (200 mL). The organic layer was dried over magnesium sulfate and concentrated to afford a brown solid. Trituration with dichloromethane afforded 3.8 g (77%) of 5-phenyl-2-oxindole as a tan solid. 1H NMR (360 MHz, DMSO-d6) δ 10.4 (br s, 1H, NH), 7.57 (dd, J=1.8 and 7.2 Hz, 1H), 7.5 to 7.35 (m, 5H), 7.29 (m, 1H), 6.89 (d, J=8.2 Hz, 1H), 3.51 (s, 2H, CH2CO). MS m/z 209 [M+]. In similar fashion, the following oxindoles can be prepared: 6-(3,5-Dichlorophenyl)-1,3-dihydroindol-2-one 1H NMR (360 MHz, DMSO-d6) δ 10.46 (br, 1H, NH), 7.64 (d, J=1.8 Hz, 2H), 7.57 (m, 1H), 7.27 (m, 2H), 7.05 (d, J=1.1 Hz, 1H), 3.5 (s, 2H). MS-EI m/z 277/279 [M]+. 6-(4-Butylphenyl)-1,3-dihydroindol-2-one 1H NMR (360 MHz, DMSO-d6) δ 10.39 (s, 1H, NH), 7.49 (d, J=8.0 Hz, 2H), 7.25 (d, J=8 Hz, 3H), 7.17 (dd, J=1.5 and 7.8 Hz, 1H), 6.99 (d, J=1.5 Hz, 1H), 3.48 (s, 2H, CH2CO), 2.60 (t, J=7.5 Hz, 2 Hz, CH2CH3), 1.57 (m, 2H, CH2), 1.32 (m, 2H, CH2), 0.9 (t, J=7.5 Hz, 3H, CH3). 6-(5-Isopropyl-2-methoxyphenyl)-1,3-dihydroindol-2-one 1H NMR (360 MHz, DMSO-d6) δ 10.29 (br s, 1H, NH), 7.16-7.21 (m, 2H), 7.08 (d, J=2.4 Hz, 1H), 6.97-7.01 (m, 2H), 6.89 (d, J=0.8 Hz, 1H), 3.71 (s, 3H, OCH3), 3.47 (s, 2H, CH2CO), 2.86 (m, 1H, CH(CH3)2), 1.19 (d, J=6.8 Hz, 6H, CH(CH3)2). MS-EI m/z 281 [M]+. 6-(4-Ethylphenyl)-1,3-dihydroindol-2-one 1H NMR (360 MHz, DMSO-d6) δ 10.39 (br s, 1H, NH), 7.50 (d, J=8.2 Hz, 2H), 7.28 (d, J=8.2 Hz, 2H), 7.25 (d, J=7.5 Hz, 1H), 7.17 (dd, J=1.6 & 7.5 Hz, 1H), 6.99 (d, J=1.6 Hz, 1H), 3.48 (s, 2H, CH2CO), 2.63 (q, J=7.6 Hz, 2H, CH2CH3), 1.20 (t, J=7.6 Hz, 3H, CH2CH3). MS-EI m/z 237 [M]+. 6-(3-Isopropylphenyl)-1,3-dihydroindol-2-one 1H NMR (360 MHz, DMSO-d6) δ 10.37 (br s, 1H, NH), 7.43 (m, 1H), 7.35-7.39 (m, 1H), 7.17-7.27 (m, 3H), 7.01 (d, J=1.8 Hz, 1H), 3.49 (s, 2H, CH2CO), 2.95 (m, 1H, CH(CH3)2), 1.24 (d, J=6.8 Hz, 6H, CH(CH3)2). MS-EI m/z 251 [M]+. 6-(2,4-Diethoxyphenyl)-1,3-dihydroindol-2-one 1H NMR (360 MHz, DMSO-d6) δ 10.28, (br s, 1H, NH), 7.17 (m, 2H), 6.93 (dd, J=1.6 & 7.6 Hz, 1H), 6.86 (d, J=1.6 Hz, 1H), 6.63 (d, J=2.4 Hz, 1H), 6.58 (dd, J=2.4 & 8.5 Hz, 1H), 3.79 (s, 3H, OCH3), 3.74 (s, 3H, OCH3), 3.45 (s, 2H, CH2CO). MS-EI m/z 269 [M]+. 6-Pyridin-3-yl-1,3-dihydroindol-2-one 1H NMR (360 MHz, DMSO-d6) δ 10.51 (s, 1H, NH), 8.81 (d, J=2.5 Hz, 1H), 8.55 (dd, J=1.8 and 5.7 Hz, 1H), 8 (m, 1H), 7.45 (dd, J=5.7 and 9.3 Hz, 1H), 7.3 (m, 2H), 7.05 (s, 1H), 3.51 (s, 2H, CH2CO). MS m/z 210 [M]+. 2-Oxo-2,3-dihydro-1H-indole-4-carboxylic acid (3-chloro-4-ethoxyphenyl)-amide To a solution of 4-carboxy-2-oxindole (200 mg, 1.13 mmol) and 3-chloro-4-methoxyphenylamine (178 mg, 1.13 mmol) in dimethylformamide (15 mL) at room temperature was added benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent, 997 mg, 2.26 mmol) followed by 4-dimethylaminopyridine (206 mg, 1.69 mmol). The mixture was stirred at room temperature for 72 hours. The reaction was then diluted with ethyl acetate (300 mL), washed with saturated sodium bicarbonate (100 mL), water, 2N hydrochloric acid (100 mL), water (3×200 mL) and brine. It was then dried over magnesium sulfate and concentrated. The residue was triturated with ethyl acetate to give 2-oxo-2,3-dihydro-1H-indole-4-carboxylic acid (3-chloro-4-methoxyphenyl)-amide as a pink solid. 1HNMR (360 MHz, DMSO-d6) δ 10.50 (s, br, 1H, NH), 10.12 (s, br, 1H, NH), 7.9 (s, J=2.5 Hz, 1H), 7.62 (dd, J=2.5 & 9 Hz, 1H), 7.38 (d, J=7.6 Hz, 1H), 7.32 (t, J=7.6 Hz, 1H), 7.13 (d, J=9 Hz, 1H), 6.98 (d, J=7.6 Hz, 1H), 3.83 (s, 3H, OCH3), 3.69 (s, 2H, CH2). MS-EI m/z 316 [M]+. 4-Carboxy-2-oxindole A solution of trimethylsilyldiazomethane in hexane (2 M) was added dropwise to a solution of. 2.01 g 2-chloro-3-carboxy-nitrobenzene in 20 mL methanol at room temperature until no further gas evolution occurred. Acetic acid was then added to quench excess trimethylsilyldiazomethane. The reaction mixture was evaporated under vacuum and the residue was dried in an oven overnight. The 2-chloro-3-methoxycarbonylnitrobenzene obtained was pure enough for the following reaction. Dimethyl malonate (6.0 mL) was added to an ice-cold suspension of 2.1 g sodium hydride in 15 mL DMSO. The reaction mixture was stirred at 100° C. for 1 hour and then cooled to room temperature. 2-Chloro-3-methoxycarbonylnitrobenzene (2.15 g) was added in one portion and the mixture was heated to 100° C. for 1.5 hours. The reaction mixture was then cooled to room temperature, poured into ice water, acidified to pH 5 and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrated to give 3.0 g of the dimethyl 2-methoxycarbonyl-6-nitrophenyl-malonate. Dimethyl 2-methoxycarbonyl-6-nitrophenylmalonate (3.0 g) was refluxed in 50 mL of 6 N hydrochloric acid overnight. The mixture was concentrated to dryness, 20 mL ethanol and 1.1 g of tin(II) chloride were added and the mixture was refluxed for 2 hours. The mixture was filtered through Celite, concentrated and chromatographed on silica gel using ethyl acetate:hexane:acetic acid as eluent to give 0.65 g (37%) of 4-carboxy-2-oxindole as a white solid. 1HNMR (360 MHz, DMSO-d6) δ 12.96 (s, br, 1H, COOH), 10.74 (s, br, 1H, NH), 7.53 (d, J=8 Hz, 1H), 7.39 (t, J=8 Hz, 1H), 7.12 (d, J=8 Hz, 1H), 3.67 (s, 2H). D. Synthesis of Pyrrole Substituted 2-indolinones. Example 1 4-Methyl-5-(2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid 4-Methyl-2-pyrrolecarboxylic acid ethyl ester (commercially available) was formylated using method A to give (73%) of 5-formyl-4-methyl-2-pyrrolecarboxylic acid ethyl ester. It was then hydrolysed using method B to give 5-formyl-4-methyl-1H-pyrrole-2-carboxylic acid (58%). Oxindole (133 mg, 1 mmol) was condensed with 5-formyl-4-methyl-1H-pyrrole-2-carboxylic acid (153 mg) using method D to give 268 mg (100%) of the title compound as an orange-red solid. 1HNMR (360 MHz, DMSO-d6) δ 13.84 (s, br, 1H, NH), 12.84 (s, br, 1H, COOH), 10.98 (s, br, 1H, NH), 7.82 (d, J=7.5 Hz, 1H), 7.67 (s, 1H, H-vinyl), 7.18 (t, J=7.5 Hz, 1H), 7.01 (t, J=7.5 Hz, 1H), 6.88 (d, J=7.5 Hz, 1H), 6.71 (d, J=2.2 Hz, 1H), 2.32 (s, 3H, CH3). MS (negative mode) 266.8 (M−1]+. Example 2 4-Methyl-5-(1-methyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid 1-Methyl-1,3-dihydroindol-2-one (147 mg, 1 mmol) was condensed with 5-formyl-4-methyl-1H-pyrrole-2-carboxylic acid (153 mg) using method D to give 250 mg (86%) of the title compound. 1HNMR (360 MHz, DMSO-d6) δ 13.82 (s, br, 1H, NH), 12.88 (s, br, 1H, 7.83 (d, J=7.5 Hz, 1H), 7.65 (s, 1H, H-vinyl), 7.26 (t, J=7.5 Hz, 1H), 7.02-7.09 (m, 2H), 6.70 (d, J=2.2 Hz, 1H), 2.32 (s, 3H, CH3). MS m/z 283.0 [M+1]+. Example 3 4-Methyl-5-(2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid methyl ester Oxindole (105 mg, 0.79 mmol) was condensed with 5-formyl-4-methyl-1H-pyrrole-2-carboxylic acid methyl ester (110 mg, 0.67 mmol) using method E to give 153.2 mg (81%) of the title compound. 1HNMR (360 MHz, DMSO-d6) δ 13.98 (s, br, 1H, NH), 10.97 (s, br, 1H, NH), 7.82 (d, J=7.6 Hz, 1H), 7.67 (s, 1H, H-vinyl), 7.2 (dt, J=1.2 & 7.7 Hz, 1H), 7.01 (dt, J=1.2, 7.7 Hz, 1H), 6.90 (d, J=7.6. Hz, 1H), 6.77 (d, J=2 Hz, 1H). MS (ES) m/z 283 [M++1]. Example 4 5-(5-Chloro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-4-methyl-1H-pyrrole-2-carboxylic acid ethyl ester 5-Chloro-1,3-dihydroindol-2-one (2.22 g, 13.2 mmol) was condensed with 5-formyl-4-methyl-1H-pyrrole-2-carboxylic acid ethyl ester (2.43 g) using method E to give 4.1 g (94%) of the title compound as an orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.95 (s, br, 1H, NH), 7.98 (d, J=2.2 Hz, 1H, H-4), 7.78 (s, 1H, H-vinyl), 7.18 (dd, J=2.2 & 8.3 Hz, 1H, H-6), 6.87 (d, J=8.3 Hz, 1H, H-7), 7.34 (d, J=1.8 Hz, 1H, H-3′), 4.27 (q, J=7.2 Hz, 2H, OCH2CH3), 2.33 (s, 3H, CH3), 1.29 (t, J=7.2 Hz, 3H, OCH2CH3). MS-EI m/z 330 [M+]. Example 5 5-(5-Chloro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-4-methyl-1H-pyrrole-2-carboxylic acid A mixture of 5-(5-chloro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-4-methyl-1H-pyrrole-2-carboxylic acid ethyl ester (1.3 g, 4 mmol) and potassium hydroxide in methanol (25 mL) and ethanol (25 mL) was heated to reflux for overnight. Insoluble materials were removed by filtration and the mixture was neutralized with 6N hydrochloric acid to give 0.876 g (70%) of the title compound. 1HNMR (360 MHz, DMSO-d6) δ 13.80 (s, br, 1H, NH), 12.90 (s, br, 1H, COOH), 11.06 (s, br, 1H, NH), 8.02 (d, J=1.8 Hz, 1H, H-4), 7.81 (s, 1H, H-vinyl), 7.20 (dd, J=1.8 & 8.3 Hz, 1H, H-6), 6.89 (d, J=8.3 Hz, 1H, H-7), 6.72 (d, J=1.8 Hz, 1H, H-3′), 2.35 (s, 3H, CH3). MS-EI m/z 302 [M+]. Example 6 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-4-methyl-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-yl-propyl)amide 5-Bromo-1,3-dihydroindol-2-one (0.16 g, 0.76 mmol) was condensed with 5-formyl-4-methyl-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide (0.2 g, prepared by method C) to give 60 mg (17%) of the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.61 (s, br, 1H, NH), 11.02 (s, br, 1H, NH), 8.42 (t, J=5.8 Hz, 1H, CONHCH2), 8.12 (d, J=1.8 Hz, 1H, H-4), 7.78 (s, 1H, H-vinyl), 7.30 (dd, J=1.8 & 8.4 Hz, 1H, H-6), 6.82 (d, J=8.4 Hz, 1H, H-7), 6.77 (d, J=2.4 Hz, 1H, H-3′), 3.22-3.31 (m, 2H, CH2), 2.38-2.43 (m, 6H, 3×CH2), 2.35 (s, 3H, CH3), 1.62-1.71 (m, 6H, 3×CH2). MS-EI m/z 456 and 458 [M+−1 and M++2]. Example 7 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-4-methyl-1H-pyrrole-2-carboxylic acid (3-diethylamino-propyl)amide 5-Bromo-1,3-dihydroindol-2-one (0.16 g, 0.75 mmol) was condensed with 5-formyl-4-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide (0.2 g, prepared by method C) to give 30 mg (8%) of the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.61 (s, br, 1H, NH), 11.02 (s, br, 1H, NH), 8.40 (m, 1H, CONHCH2), 8.12 (d, J=1.5 Hz, 1H, H-4), 7.78 (s, 1H, H-vinyl), 7.30 (dd, J=1.5 & 8.2 Hz, 1H, H-6), 6.82 (d, J=8.2 Hz, 1H, H-7), 6.78 (d, J=2.4 Hz, 1H, H-3′), 3.23 (m, 2H, CH2), 2.38-2.45 (m, 6H, CH2 & N(CH2CH3)2), 2.35 (s, 3H, CH3), 1.61 (m, 2H, CH2), 0.93 (t, J=7.1 Hz, 6H, N(CH2CH3)2). MS-EI m/z 458 and 460 [M+−1 and M++2]. Example 8 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)amide 5-Bromo-1,3-dihydroindol-2-one (212 mg, 1 mmol) was condensed with 5-formyl-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)amide (prepared from ethyl pyrrole-2-carboxylate by method A, B and then C) to give 162 mg (38%) of the title compound. 1H NMR (300 MHz, DMSO-d6) δ 13.53 (s, br, 1H, NH), 11.06 (s, br, 1H, NH), 8.37 (t, 1H, CONHCH2), 7.89 (m, 2H), 7.32 (dd, J=2.0 Hz, 1H), 6.96 (s, 1H), 6.80-6.84 (m, 2H), 3.3 (m, 2H, CH2), 2.45-2.55 (m, 6H, N(CH2CH3)2 & CH2), 0.95 (t, J=7.2 Hz, 6H, N(CH2CH3)2). MS-EI m/z 430 and 432 (M+−1 and M++1]. Example 9 5-(2-Oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)amide 6-Phenyl-1,3-dihydroindol-2-one (209 mg, 1 mmol) was condensed with 5-formyl-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)amide to give 182 mg (42%) of the title compound. 1H NMR (300 MHz, DMSO-d6) δ 13.56 (s, br, 1H, NH), 11.06 (s, br, 1H, NH), 8.36 (t, 1H, CONHCH2), 7.77 (s, 1H, H-vinyl), 7.73 (d, J=7.8 Hz, 1H), 7.64 (d, J=7.2 Hz, 2H), 7.46 (m, 2H), 7.32 (m, 2H), 7.11 (s, 1H), 6.96 (m, 1H), 6.80 (m, 1H), 3.31-3.32 (m, 2H, CH2), 2.46-2.53 (m, 6H, N (CH2CH3) 2 & CH2), 0.96 (t, J=6.9 Hz, 6H, N(CH2CH3)2). MS-EI m/z 428 [M+]. Example 10 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)-methyl-amide 5-Bromo-1,3-dihydroindol-2-one (212 mg, 1 mmol) was condensed with 5-formyl-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)methylamide to give 246 mg (55%) of the title compound. 1H NMR (360 MHz, DMSO-d6) δ 13.54 (s, br, 1H, NH), 11.06 (s, br, 1H, NH), 7.90 (m, 2H), 7.33 (dd, J=1.8 & 8.4 Hz, 1H), 6.82-6.85 (m, 3H), 3.55 (s, br, 2H, CH2), 3.25 (s, br, 3H, NCH3), 2.57 (t, J=6.5 Hz, 2H, CH2), 2.45 (m, 4H, N(CH2CH3)2), 0.91 (m, 6H, N(CH2CH3)2). MS-EI m/z 444 and 446 [M+−1 and M++1]. Example 11 5-(2-Oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)methylamide 6-Phenyl-1,3-dihydroindol-2-one (209 mg, 1 mmol) was condensed with 5-formyl-1H-pyrrole-2-carboxylic acid (2-diethylaminoethyl)methylamide to give 277 mg (63%) of the title compound. 1H NMR (360 MHz, DMSO-d6) δ 13.58 (s, br, 1H, NH), 11.04 (s, br, 1H, NH), 7.78 (s, 1H, H-vinyl), 7.73 (d, J=7.8 Hz, 1H), 7.64 (d, J=7.5 Hz, 2H), 7.46 (m, 2H), 7.33-7.36 (m, 2H), 7.11 (s, 1H), 6.84 (m, 1H), 6.78 (m, 1H), 3.55 (s, br, 2H, CH2), 3.25 (s, br, 3H, NCH3), 2.58 (t, 2H, CH2), 2.44 (m, 4H, N(CH2CH3)2), 0.92 (m, 6H, N(CH2CH3)2). Example 12 3-Methyl-5-(2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide Oxindole (66.5 mg, 0.5 mmol) was condensed with 5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide (prepared from 3-formyl-3-methyl-1H-pyrrole-2-carboxylic acid ethyl ester by method B then C) to give 39 mg (21%) of the title compound. 1H NMR (300 MHz, DMSO-d6) δ 13.34 (s, br, 1H, NH), 10.88 (s, br, 1H, NH), 7.62-7.67 (m, 3H), 7.17 (m, 1H), 6.99 (m, 1H), 6.87 (d, J=7.6 Hz, 1H), 6.63 (d, J=1 Hz, 1H), 3.26-3.32 (m, 2H, CH2), 2.41-2.48 (m, 6H, CH2 & N(CH2CH3)2), 2.29 (s, 3H, CH3), 1.63 (m, 2H, CH2), 0.93 (t, J=7.2 Hz, 6H, N(CH2CH3)2). MS-EI m/z 380 [M+]. Example 13 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylamino-propyl)amide 5-Bromo-1,3-dihydroindol-2-one (106 mg, 0.5 mmol) was condensed with 5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide to give 35 mg (15%) of the title compound. 1H NMR (300 MHz, DMSO-d6) δ 13.35 (s, br, 1H, NH), 11.00 (s, br, 1H, NH), 7.89 (d, J=1.9 Hz, 1H, H-4), 7.80 (s, 1H, H-vinyl), 7.74 (t, J=5.3 Hz, 1H, CONHCH2), 7.31 (dd, J=1.9 & 8.4 Hz, 1H, H-6), 6.83 (d, J=8.4 Hz, 1H, H-7), 6.63 (s, 1H, H-3′), 3.26 (m, 2H, CH2), 2.41-2.48 (m, 6H, CH2 & N(CH2CH3)2), 2.29 (s, 3H, CH3), 1.63 (m, 2H, CH2), 0.93 (t, J=7.1 Hz, 6H, N(CH2CH3)2). MS-EI m/z 458 and 460 [M+−1 and M++1]; Example 14 3-Methyl-5-(2-oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide 6-Phenyl-1,3-dihydroindol-2-one (105 mg, 0.5 mmol) was condensed with 5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide to give 67.8 (30%) of the title compound. 1H NMR (300 MHz, DMSO-d6) δ 13.37 (s, br, 1H, NH), 11.02 (s, br, 1H, NH), 7.23-7.73 (m, 11H), 3.29 (m, 2H, CH2), 2.41-2.48 (m, 6H, CH2 & N(CH2CH3)2), 2.29 (s, 3H, CH3), 1.64 (m, 2H, CH2), 0.94 (t, J=7.0 Hz, 6H, N(CH2CH3)2). MS-EI m/z 456 [M+]. Example 15 5-(5-Methoxy-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylamino-propyl)amide 5-Methoxy-1,3-dihydroindol-2-one (82.5 mg, 0.5 mmol) was condensed with 5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide to give 80 mg (39%) of the title compound. 1H NMR (300 MHz, DMSO-d6) δ 13.45 (s, br, 1H, NH), 10.70 (s, br, 1H, NH), 7.68-7.70 (m, 2H), 7.32 (d, J=1.8 Hz, 1H), 6.72-6.79 (m, 2H), 6.60 (s, 1H), 3.73 (s, 3H, OCH3), 3.28 (m, 2H, CH2), 2.41-2.48 (m, 6H, CH2 & N(CH2CH3)2), 2.29 (s, 3H, CH3), 1.63 (m, 2H, CH2), 0.93 (t, J=7.0 Hz, 6H, N(CH2CH3)2). MS m/z 410 [M+]. Example 16 5-(6-Methoxy-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylamino-propyl)amide 6-Methoxy-1,3-dihydroindol-2-one (82.5 mg, 0.5 mmol) was condensed with 5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide to give 63 mg (31%) of the title compound. 1H NMR (300 MHz, DMSO-d6) δ 13.22 (s, br, 1H, NH), 10.86 (s, br, 1H, NH), 7.39-7.63 and 6.37-6.55 (m, 6H), 3.73 (s, 3H, OCH3), 3.3 (m, 2H, CH2), 2.45 (m, 6H, CH2 & N(CH2CH3)2), 2.28 (s, 3H, CH3), 1.63 (m, 2H, CH2), 0.93 (m, 6H, N(CH2CH3)2). MS m/z 410 [M+]. Example 17 3-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid (2-diethylamino-ethyl)amide 4,5,6,7-Tetrahydro-2H-isoindole-1-carboxylic acid ethyl ester (May, Donald A.; Lash, Timothy D.; J. Org. Chem., 1992, 57:18, 4820-4828) was formylated using method A then B to give 3-formyl-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid. 5-Bromo-1,3-dihydroindol-2-one (1.43 g, 6.8 mmol) was condensed with 3-formyl-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid (2-diethylaminoethyl)amide (1.97 g) to give 2.2 g (67%) of the title compound as a yellow-orange solid. 1H NMR (360 MHz, DMSO-d6) δ 13.47 (s, 1H, NH), 11.0 (s, 1H, NH), 8.0 (d, 1H, NH), 7.70 (s, 1H, CH), 7.28 (dd, J=2.1 and 8.2 Hz, 1H, ArH), 7.16 (m, 1H, ArH), 6.8 (d, J=8.3 Hz, 1H, ArH), 3.3 (s, 2H, CONH), 2.5 (m, 6H, 3×NCH2), 2.78 (br m, 2H, pyrrole CH2), 2.72 (br m, 2H, pyrroleCH2), 1.7 (br m, 4H, N(CH2CH3)2), 1.74 (br s, 4H, CH2CH2CH2CH2), 0.96 (t, J=7.4 Hz, 6H, N(CH2CH3)2). MS-EI m/z 484 and 486 (M+−1 and M++1]. Example 18 3-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid (3-diethylamino-propyl)amide 5-Bromo-1,3-dihydroindol-2-one (20 mg, 0.1 mmol) was condensed with 3-formyl-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid (3-diethylaminopropyl)amide (30 mg) to give 33 mg (46%) of the title compound as an orange solid. 1H NMR (360 MHz, DMSO-d6) δ 10.9 (s, 1H, NH), 8.0 (m, 1H, NH), 7.68 (m, 1H, ArH), 7.4 (m, 1H, ArH), 7.29 (d, J=1.9 and 8.5 Hz, 1H, ArH), 6.8 (d, J=8 Hz, 1H, ArH), 2.7 (br m, 4H, 2×NCH2), 2.4 (m, 8H, 4×NCH2), 1.7 (br m, 4H, N(CH2CH3)2), 1.6 (br m, 2H, CH2CH2CH2), 0.93 (t, J=7.4 Hz, 6H, N(CH2CH3)2). MS-EI m/z 499 and 501 [M+ and M++2]. Example 19 3-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 5-Bromo-1,3-dihydroindol-2-one (80 mg, 0.4 mmol) was condensed with 3-formyl-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide (120 mg) to give 43 mg (22%) of the title compound as a tan-orange solid. 1H NMR (360 MHz, DMSO-d6) δ 13.4 (s, 1H, NH), 10.9 (s, 1H, NH), 8.0 (m, 1H, NH), 7.69 (m, 1H, ArH), 7.49 (m, 1H, ArH), 7.28 (d, J=1.7 and 7.8 Hz, 1H, ArH), 6.8 (d, J=8 Hz, 1H, ArH), 3.3 (br m, 2H, 2×NCH2), 2.8 (m, 4H, 2×pyrroleCH2), 2.5 (br m, 4H, N(CH2CH3)2), 1.6 (br m, 8H, 2×pyrroleCH2CH2, CH2CH2CH2 and CONHCH2). MS-EI m/z 497 and 499 [M+ and M++2]. Example 20 3-(2-Oxo-6-pyridin-3-yl-1,2-dihydroindol-3-ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid (2-diethylaminoethyl)amide 6-Pyridin-3-yl-1,3dihydroindol-2-one (60 mg, 0.4 mmol) was condensed with 3-formyl-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid (2-diethylaminoethyl)amide (80 mg) to give 50 mg (38%) of the title compound as a reddish solid. 1H NMR (360 MHz, DMSO-d6) δ 13.4 (s, 1H, NH), 11 (s, 1H, NH), 8.9 (d, 1H, NH), 8.7 (dd, 1H, ArH), 8.1 (dd, 1H, ArH), 7.9 (d, 1H, ArH), 7.6 (s, 1H, CH), 7.5 (dd, 1H, ArH), 7.3 (dd, 1H, ArH), 7.1 (m, 2H, ArH), 3.35 (m, 2H, CONHCH2), 2.8 (m, 4H, 2×pyrroleCH2), 2.5 (br m, 6H, N(CH2CH3)2 and NCH2), 1.75 (br s, 4H, 2×pyrroleCH2CH2), 0.9 (t, 6H, N(CH2CH3)2). MS-EI m/z 484 [M+]. Example 21 4-Benzoyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide To a mixture of benzoyl chloride (1 equiv.) and aluminum chloride (1 equiv.) in dichloroethane at 0° C. was added ethyl 3,5-dimethyl-2-pyrrolecarboxylate (1 equiv.). The mixture was stirred at 80° C. for 4 hr. The mixture was then extracted with ethyl acetate (EtOAc) and H2O. The combined organic extracts were washed with saturated sodium bicarbonate and brine, dried and concentrated to give (51%) of 4-benzoyl-3,5-dimethyl-1H-pyrrole-2-carboxylic acid. A mixture of 4-benzoyl-3,5-dimethyl-1H-pyrrole-2-carboxylic acid ethyl ester (4.13 g, 15.2 mmol) and ceric ammonium nitrate (33 g, 4 equiv.) in 50 mL of tetrahydrofuran (THF):acetic acid (HOAc):H2O 1:1:1 was refluxed overnight. The reaction mixture was then cooled, extracted with EtOAc and then basified to pH 9 with sodium carbonate. The organic layer was then washed with brine, dried (MgSO4) and concentrated followed by column chromatography to give 3.25 g (75%) of 4-benzoyl-5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid ethyl ester as a yellow solid. 5-Bromo-1,3-dihydro-indol-2-one was condensed with 4-benzoyl-5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid using method D to give 4-benzoyl-5-(5-bromo-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid. The above carboxylic acid was then coupled with N,N-diethyl-1,3-propanediamine using method C to give the title compound. 1H NMR (360 MHz, DMSO-d6) δ 7.96 (m, 1H, CONHCH2), 7.76 (d, J=7.0 Hz, 2H), 7.68 (t, 1H), 7.56 (m, 2H), 7.40 (s, 2H) 7.33 (dd, J=1.6 & 8.3 Hz, 1H, H-6), 6.84 (d, J=8.3 Hz, 1H, H-7), 3.33 (m, 2H, CH2), 2.42-2.46 (m, 6H, 3×CH2), 2.10 (s, 3H, CH3), 1.65 (m, 2H, CH2), 0.94 (t, J=7.0 Hz, 6H, N(CH2CH3)2). MS Electron Impact m/z 564 [M++1]. Example 22 4-Benzoyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-morpholin-4-ylpropyl)amide 1H NMR (360 MHz, DMSO-d6) δ 14.10 (s, 1H, NH), 11.14 (br s, 1H, NH), 7.92 (m, 1H, CONHCH2), 7.75 (m, 2H), 7.69 (t, 1H), 7.56 (m, 2H), 7.42 (m, 2H), 7.33 (dd, J=1.9 & 8.3 Hz, 1H, H-6), 6.85 (d, J=8.3 Hz, 1H, H-7), 3.56 (m, 4H, 2×CH2), 3.33 (m, 2H, CH2), 2.35 (m, 6H, 3×CH2), 2.10 (s, 3H, CH3), 1.70 (m, 2H, CH2). Example 23 4-Benzoyl-3-methyl-5-(2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 1H NMR (300 MHz, DMSO-d6) δ 14.18 (s, 1H, NH), 11.14 (br s, 1H, NH), 8.01 (m, 1H, CONHCH2), 7.74 (m, 1H), 7.67 (m, 1H), 7.55 (m, 1H), 7.32 (s, 1H, H-vinyl), 7.17 (m, 1H), 6.92 (m, 1H), 3.36 (m, 2H, CH2), 2.44 (m, 6 H, 3×CH2), 2.11 (s, 3H, CH3), 1.65-1.75 (m, 6H, 3×CH2). MS Electron Impact m/z 482 [M+]. Example 24 4-Benzoyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 1H NMR (360 MHz, DMSO-d6) δ 14.01 (s, 1H, NH), 11.18 (br s, 1H, NH), 7.98 (m, 1H, CONHCH2), 7.75 (m, 2H), 7.68 (m, 1H), 7.55 (m, 2H), 7.40 (m, 2H), 7.33. (dd, J=2.0 & 8.2 Hz, 1H, H-6), 6.84 (d, J=8.2 Hz, 1H, H-7), 3.34 (m, 2H, CH2), 2.42-2.47 (m, 6 H, 3×CH2), 2.09 (s, 3H, CH3), 1.70 (m, 2H, CH2), 1.64 (m, 4H, 2×CH2). Example 25 4-Benzoyl-3-methyl-5-(2-oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 1H NMR (300 MHz, DMSO-d6) δ 14.15 (s, 1H, NH), 11.16 (br s, 1H, NH), 7.98 (m, 1H, CONHCH2), 7.77 (d, J=7.7 Hz, 2H), 7.69 (m, 1H), 7.53-7.63 (m, 4H), 7.44 (m, 2H), 7.33-7.37 (m, 2H), 7.24 (s, 2H), 7.12 (s, 1H), 3.36 (m, 2H, CH2), 2.43-2.48 (m, 6 H, 3×CH2), 2.12 (s, 3H, CH3), 1.74 (m, 2H, CH2), 1.69 (m, 4H, 2×CH2). MS Electron Impact m/z 558 [M+]. Example 26 4-Benzoyl-5-(6-methoxy-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 1H NMR (300 MHz, DMSO-d6) δ 13.99 (s, 1H, NH), 11.05 (br s, 1H, NH), 7.93 (m, 1H, CONHCH2), 7.72 (m, 2H), 7.65 (m, 1H), 7.54 (m, 2H), 7.15 (s, 1H, H-vinyl), 7.04 (d, J=8.4 Hz, 1H, H-4), 6.51 (dd, J=2.3 & 8.4 Hz, 1H, H-5), 6.44 (d, J=2.3 Hz, 1H, H-7), 3.74 (s, 3H, OCH3), 3.35 (m, 2H, CH2), 2.42-2.46 (m, 6 H, 3×CH2), 2.10 (s, 3H, CH3), 1.72 (m, 2H, CH2), 1.65 (m, 4H, 2×CH2). MS Electron Impact m/z 512 [M+]. Example 27 4-Benzoyl-5-(5-methoxy-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 1H NMR (360 MHz, DMSO-d6) δ 14.24 (s, 1H, NH), 10.90 (br s, 1H, NH), 7.97 (m, 1H, CONHCH2), 7.75 (d, J=7.2 Hz, 2H), 7.69 (m, 1H), 7.56 (m, 2H), 7.24 (s, 1H, H-vinyl), 6.79 (m, 2H), 6.66 (m, 1H), 3.67 (s, 3H, OCH3), 3.34 (m, 2H, CH2), 2.43-2.48 (m, 6 H, 3×CH2), 2.14 (s, 3H, CH3), 1.71 (m, 2H, CH2), 1.66 (m, 4H, 2×CH2). MS Electron Impact m/z 512 [M+]. Example 28 4-Benzoyl-5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 1H NMR (300 MHz, DMSO-d6) δ 14.20 (s, 1H, NH), 11.14 (br s, 1H, NH), 8.03 (m, 1H, CONHCH2), 7.75 (m, 2H), 7.68 (m, 1H), 7.55 (m, 2H), 7.38 (s, 1H, H-vinyl), 7.08 (m, 1H), 7.01 (m, 1H), 6.87 (m, 1H), 3.34 (m, 2H, CH2), 2.42-2.48 (m, 6 H, 3×CH2), 2.09 (s, 3H, CH3), 1.70 (m, 2H, CH2), 1.65 (m, 4H, 2×CH2). MS Electron Impact m/z 500 [M+]. Example 29 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide 5-Bromo-1,3-dihydro-indol-2-one was condensed with 4-acetyl-5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid (3-diethylaminopropyl)amide (prepared from 4-acetyl-5-formyl-3-methyl-1H-pyrrole-2-carboxylic acid ethyl ester by method B then C) to give the title compound. 1H NMR (300 MHz, DMSO-d6) δ 14.19 (s, 1H, NH), 11.19 (br s, 1H, NH), 8.15 (m, 1H, CONHCH2), 8.11 (s, 1H, H-vinyl), 7.72 (d, J=1.8 Hz, 1H, H-4), 7.38 (dd, J=1.8 & 8.2 Hz, 1H, H-6), 6.87 (d, J=8.2 Hz, 1H, H-7), 3.27 (m, 2H, CH2), 2.57 (s, 3H, CH3CO), 2.46 (m, 9 H, CH3 & 3×CH2), 1.64 (m, 2H, CH2), 0.93 (t, J=7.1 Hz, 6H, N(CH2CH3)2). Example 30 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 1H NMR (300 MHz, DMSO-d6) δ 8.14 (m, 1H, CONHCH2), 8.10 (s, 1H, H-vinyl), 7.70 (d, 1H, H-4), 7.36 (dd, J=1.6 & 8.1 Hz, 1H, H-6), 6.85 (d, J=8.1 Hz, 1H, H-7), 3.32 (m, 2H, CH2), 2.57 (s, 3H, CH3CO), 2.44 (s, 3H, CH3), 2.35-2.48 (m, 6H, 3×CH3), 1.65-1.71 (m, 6H, 3×CH2). MS m/z 499 & 501 [M+] & [M++2]. Example 31 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-morpholin-4-ylpropyl)amide 1H NMR (300 MHz, DMSO-d6) δ 14.20 (s, 1H, NH), 11.26 (br s, 1H, NH), 8.09 (m, 2H, H-vinyl & CONHCH2), 7.73 (d, J=1.5 Hz, 1H, H-4), 7.38 (dd, J=1.5 & 8.3 Hz, 1H, H-6), 6.87 (d, J=8.3 Hz, 1H, H-7), 3.55 (m, 4H, 2×CH2), 3.26 (m, 2H, CH2), 2.57 (s, 3H, CH3CO), 2.44 (s, 3H, CH3), 2.35 (m, 6H, 3×CH3), 1.68 (m, 2H, CH2). MS-EI m/z 514 & 516 [M+−1] & [M++1]. Example 32 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (3-hydroxypropyl)amide 1H NMR (360 MHz, DMSO-d6) δ 14.17 (s, 1H, NH), 11.25 (br s, 1H, NH), 8.10 (s, 1H, H-vinyl), 8.03 (m, 1H, CONHCH2), 7.71 (br s, 1H, H-4), 7.37 (br d, J=8.4 Hz, 1H, H-6), 6.87 (d, J=8.4 Hz, 1H, H-7), 4.51 (br s, 1H, OH), 3.51 (br s, 2H, CH2), 3.36 (m, 2H, CH2), 2.57 (s, 3H, CH3CO), 2.43 (s, 3H, CH3), 1.70 (m, 2H, CH2). MS-EI m/z 445 & 447 [M+−1] & [M++1]. Example 34 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (2-morpholin-4-ylethyl)amide 1H NMR (360 MHz, DMSO-d6) δ 14.19 (s, 1H, NH), 11.14 (br s, 1H, NH), 8.10 (.s, 1H, H-vinyl), 7.84 (m, 1H, CONHCH2), 7.71 (d, J=1.8 Hz, 1H, H-4), 7.38 (dd, J=1.8 & 8.2 Hz, 1H, H-6), 6.87 (d, J=8.2 Hz, 1H, H-7), 3.58 (m, 4H, 2×CH2), 3.40 (m, 2H, CH2), 2.57 (s, 3H, CH3CO), 2.49 (m, 4H, 2×CH2), 2.45 (m, CH3 & CH2). MS-EI m/z 500 & 502 [M+−1] & [M++1]. Example 35 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 1H NMR (360 MHz, DMSO-d6) δ 14.17 (s, 1H, NH), 11.23 (s, 1H, NH), 8.11. (s, 1H, H-vinyl), 7.91 (m, 1H, CONHCH2), 7.73 (d, J=1.9 Hz, 1H, H-4), 7.39 (dd, J=1.9 & 8.3 Hz, 1H, H-6), 6.88 (d, J=8.3 Hz, 1H, H-7), 3.40 (m, 2H, CH2), 2.62 (m, 2H, CH2), 2.57 (s, 3H, CH3CO), 2.49 (m, 4H, 2×CH2), 2.44 (s, 3H, CH3), 1.69 (m, 4H, 2×CH2). Example 36 4-Acetyl-5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-3-methyl-1H-pyrrole-2-carboxylic acid (2-(4-hydroxyphenyl)ethyl]amide 1H NMR (300 MHz, DMSO-d6) δ 14.21 (s, 1H, NH), 11.18 (s, 1H,OH), 9.09 (s, 1H, NH), 8.06-8.10 (m, 2H), 7.73 (s, 1H), 7.38 (d, J=7.8 Hz, 1H), 7.04 (d, J=7.1 Hz, 2H), 6.88 (d, J=7.8 Hz, 1H), 6.67 (d, J=7.1 Hz, 2H), 3.42 (m, 2H, CH2), 2.72 (m, 2H, CH2), 2.56 (s, 3H, CH3CO), 2.37 (s, 3H, CH3). MS-EI m/z 507 & 509 [M+−1] & [M++1]. Example 37 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide A mixture of 2-aminoacetophenone hydrochloride (1 equiv.), ethyl isobutyrylacetate (1.2 equiv.) and sodium acetate (2.4 equiv.) in H2O was stirred at 100° C. for 18 hours and then cooled to room temperature. The aqueous layer was decanted off and the oil was dissolved in ethyl acetate. It was then washed with water and brine and then dried to give (93%) of 2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid ethyl ester as a red brown oil. 1HNMR (300 MHz, DMSO-d6) δ 11.21 (s, br, 1H, NH), 7.14-7.27 (m, 5H), 6.70 (d, J=2.7 Hz, 1H), 4.02 (q, J=7.1 Hz, 2H, OCH2CH3), 3.65 (m, 1H, CH(CH3)2), 1.22 (d, J=7.5 Hz, 6H, CH(CH3)2), 1.04 (t, J=7.1 Hz, 3H, OCH2CH3). MS-EI m/z 257 [M+]. The above pyrrole was formylated using method A to give (41%) 5-formyl-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid ethyl ester as a reddish solid. 1HNMR (300 MHz, DMSO-d6) δ 12.35 (s, br, 1H, NH), 9.14 (s, 1H, CHO), 7.36 (s, 5H), 3.96 (q, J=7.1 Hz, 2H, OCH2CH3), 3.74 (m, 1H, CH(CH3)2), 1.29 (d, J=6.9 Hz, 6H, CH(CH3)2), 0.90 (t, J=7.1 Hz, 3H, OCH2CH3). MS-EI m/z 285 [M+]. The pyrrolecarboxylic acid ester was hydrolysed using method B to give (57%) of 5-formyl-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid as a beige solid. 1HNMR (300 MHz, DMSO-d6) δ 12.28 (s, br, 1H, COOH), 12.02 (s, br, 1H, NH), 9.10 (s, 1H, CHO), 7.35 (s, 5H), 3.81 (m, 1H, CH(CH3)2), 1.28 (d, J=6.9 Hz, 6H, CH(CH3)2). MS-EI m/z 257 [M+]. 5-Bromo-1,3-dihydroindol-2-one (120 mg, 0.31 mmol) was condensed with 5-formyl-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide (prepared by method C) to give 120 mg (71%) of the title compound. 1HNMR (300 MHz, DMSO-d6) δ 14.23 (s, br, 1H, NH), 11.08 (s, br, 1H, NH), 7.38-7.55 (m, 7H, Ar—H & CONHCH2), 7.30 (s, 1H, H-vinyl), 7.26 (dd, J=1.8& 7.8 Hz, 1H), 6.85 (d, J=8.7 Hz, 1H), 3.36 (m, 1H, CH(CH3)2), 3.07 (m, 2H, CH2), 2.34 (q, J=7.1 Hz, 4H, N(CH2CH3)2), 2.22 (t, J=6.9 Hz, 2H, CH2), 1.40 (m, 2H, CH2), 1.31 (d, J=6.9 Hz, 6H, CH(CH3)2), 0.86 (t, J=7.1 Hz, 6H, N(CH2CH3)2). MS m/z 565.1 [M++1]. Example 38 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 5-(5-bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid (127 mg, 0.28 mmol) was condensed with 3-pyrrolidin-1-yl-propylamine (43 mg, 0.336 mmol) to give 140 mg (66%) of the title compound. 1HNMR (300 MHz, DMSO-d6) δ 14.40 (s, br, 1H, NH), 7.38-7.47 (m, 7H), 7.23-7.27 (m, 2H), 6.84 (d, J=8.1 Hz, 1H), 3.36 (m, 1H, CH(CH3)2), 3.08 (m, 2H, CH2), 2.30 (m, 4H, 2×CH2), 2.20 (t, J=7.0 Hz, 2H, CH2), 1.62 (m, 4H, 2×CH2), 1.42 (t, J=7.0 Hz, 2H, CH2), 1.31 (d, J=7.2 Hz, 6H, CH(CH3)2). MS-EI m/z 560 and 562 [M+−1 and M++1]. Example 39 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide 5-Bromo-1,3-dihydroindol-2-one (57 ,g. 0.27 mmol) was condensed with 5-formyl-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (120 mg) to give 78 mg (53%) of the title compound as a yellow solid. 1HNMR (300 MHz, DMSO-d6) δ 14.23 (s, br, 1H, NH), 11.09 (s, br, 1H, NH), 7.38-7.51 (m, 6H), 7.25-7.28 (m, 2H), 7.19 (t, 1H, CONHCH2), 6.85 (d, J=7.8 Hz,1H), 3.43 (m, 1H, CH(CH3)2), 3.11 (m, 2H, CH2), 2.28-2.39 (m, 6H, N(CH2CH3)2 & CH2, 1.31 (d, J=6.9 Hz, CH(CH3)2), 0.85 (t, J=7.0 Hz, 6H, N(CH2CH3)2. MS-EI m/z 548 and 550 [M+−1 and M++1]. Example 40 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid [3-(4-methylpiperazin-1-yl)propyl]amide 5-Bromo-1,3-dihydroindol-2-one (53 mg, 0.25 mmol) was condensed with 5-formyl-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid [3-(4-methylpiperazin-1-yl)propyl]amide (300 mg) to give 65 mg of the title compound. 1HNMR (300 MHz, DMSO-d6) δ 14.22 (s, br, 1H, NH), 11.08 (s, br, 1H, NH), 7.23-7.50 (m, 9H), 6.85 (d, J=8.7 Hz, 1H), 3.37 (m, 1H, CH(CH3)2), 3.05 (m, 2H, CH2), 2.24 (m, 8H, 4×CH2), 2.11 (m, 5H, CH2 & CH3), 1.42 (m, 2H, CH2), 1.31 (d, J=7.2 Hz, 6H, CH(CH3)2). MS-EI m/z 589 and 591 [M+−1 and M++1]. Example 41 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid 5-Bromo-1,3-dihydroindol-2-one (170 mg, 0.8 mmol) was condensed with 5-formyl-2-isopropyl-4-phenyl-1H-pyrrole-3-carboxylic acid (205 mg) using method D to give 210 mg (58%) of the title compound as a yellow solid. 1HNMR (300 MHz, DMSO-d6) δ 14.31 (s, br, 1H, NH), 11.16 (s, br, 1H, NH), 7.26-7.44 (m, 7H), 7.11 (s, 1H, H-vinyl), 6.85 (d, J=7.8 Hz, 1H), 3.78 (m, 1H, CH(CH3)2), 1.34 (d, J=6.9 Hz, 6H, CH(CH3)2). MS-EI m/z 452 [M++1]. Example 42 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 5-Bromo-1,3-dihydroindol-2-one (44 mg, 0.21 mmol) was condensed with 5-formyl-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (70 mg, prepared in the same manner as the isopropyl analog, above) to give 0.03 g (27%) of the title compound as a yellow solid. 1HNMR (300 MHz, DMSO-d6) δ 13.87 (s, br, 1H, NH), 11.11 (s, br, 1H, NH), 7.36-7.51 (m, 6H), 7.26 (dd, J=1.8 & 8.1 Hz, 1H), 7.2 (s, 1H, H-vinyl), 7.09 (m, 1H, CONHCH2), 6.83 (d, J=8.1 Hz, 1H), 3.17 (m, 2H, NCH2), 2.48 (m, CH3), 2.29-2.35 (m, 6H, 3×NCH2), 1.59 (m, 4H, 2×CH2). MS-EI m/z 518 and 520 [M+−1 and M++1]. Example 43 5-[6-(2-Methoxyphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 6-(2-Methoxyphenyl)-1,3-dihydroindol-2-one (50 mg, 0.21 mmol) was condensed with 5-formyl-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (70 mg) to give 0.04 g (35%) of the title compound as a yellow-orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.82 (s, br, 1H, NH), 11.02 (s, br, 1H, NH), 7.48 (m, 2H), 7.43 (m, 1H), 7.38 (m, 2H), 7.32 (m, 1H), 7.24 (m, 2H), 7.16 (s, 1H, H-vinyl), 7.08 (m, 2H), 7.03 (m, 1H), 7.0 (m, 2H), 3.74 (s, 3H, OCH3), 3.19 (m, 2H, NCH2), 2.49 (m, CH3), 2.32-2.38 (m, 6H, 3×NCH2), 1.59 (m, 4H, 2×CH2). MS-EI m/z 546 [M+]. Example 44 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide 5-Bromo-1,3-dihydroindol-2-one (46 mg, 0.22 mmol) was condensed with 5-formyl-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide (65 mg) to give 60 mg (55%) of the title compound as a yellow solid. 1HNMR (360 MHz, DMSO-d6) δ 13.86 (s, br, 1H, NH), 11.09 (s, br, 1H, NH), 7.47-7.49 (m, 2H), 7.38-7.41 (m, 4H), 7.26 (dd, J=2.2 & 8.3 Hz, 1H), 7.21 (s, 1H, H-vinyl), 7.04 (m, 1H, CONHCH2), 6.77 (d, J=8.3 Hz, 1H), 3.15 (m, 2H, NCH2), 2.48 (m, CH3), 2.16 (t, J=6.8 Hz, 2H, 3×NCH2), 2.02 (s, 6H, 2×NCH3). MS m/z 493 and 494.8 [M+ and M++2]. Example 45 5-[6-(2-Methoxyphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide 6-(2-Methoxyphenyl)-1,3-dihydroindol-2-one (53 mg, 0.22 mmol) was condensed with 5-formyl-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide (65 mg) to give 0.05 g (44%) of the title compound as an orange gum. 1HNMR (300 MHz, DMSO-d6) δ 13.82 (s, br, 1H, NH), 11.02 (s, br, 1H, NH), 7.37-7.52 (m, 5H), 7.32 (m, 1H), 7.22-7.27 (m, 2H), 7.16 (s, 1H), 7.08 (m, 2H), 7.03 (m, 1H), 7.0 (m, 2H), 3.74 (s, 3H, OCH3), 3.15 (m, 2H, NCH2), 2.49 (m, CH3), 2.16 (t, J=6.5 Hz, 2H, NCH2), 2.02 (s, 6H, 2×NCH3). MS m/z 521 [M++1]. Example 46 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid ethyl ester 5-Bromo-1,3-dihydroindol-2-one (60 mg, 0.29 mmol) was condensed with 5-formyl-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid ethyl ester (75 mg) to give 78 mg (60%) of the title compound as an orange solid. 1HNMR (360 MHz, DMSO-d6) δ 14.01 (s, br, 1H, NH), 11.13 (s, br, 1H, NH), 7.42-7.46 (m, 3H), 7.27-7.34 (m, 4H), 7.12 (s, 1H), 6.84 (dd, J=2.2 & 8.3 Hz, 1H), 3.99-4.03 (m, 2H, OCH2CH3), 2.61 (s, 3H, CH3), 0.98-1.03 (m, 3H, OCH2CH3). MS-EI m/z 450 and 452 [M+−1 and M++1]. Example 47 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide 5-bromo-1,3-dihydroindol-2-one (0.47 g, 2.2 mmol) was condensed with 5-formyl-2-methyl-4-phenyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide (0.75 g) to give 0.11 g (42%) of the title compound as an orange solid. 1HNMR (300MHz, DMSO-d6) δ 13.86 (s, br, 1H, NH), 7.42-7.46 (m, 3H), 7.37-7.50 (m, 7H), 7.24-7.28 (m, 2H), 6.83 (d, J=8.1 Hz, 1H), 3.09 (m, 2H, NCH2), 2.45 (s, 3H, CH3), 2.38 (q, J=7.1 Hz, 4H, 2×NCH2CH3), 2.26 (t, J=6.9 Hz, 2H, NCH2), 1.42 (m, 2H, NCH2), 0.87 (t, J=7.1 Hz, 6H, 2×NCH2CH3). MS-EI m/z 535.0 and 537 [M+ and M++2]. Example 48 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylamino-ethyl)amide A mixture of tert-butyl 3-oxobutyrate and sodium nitrite (1 equiv.) in acetic acid was stirred at room temperature to give tert-butyl-2-hydroximino-3-oxobutyrate. Ethyl-3-oxobutyrate (1 equiv.), zinc dust (3.8 equiv.) and the crude tert-butyl-2-hydroximino-3-oxobutyrate in acetic acid was stirred at 60° C. for 1 hr. The reaction mixture was poured into H2O and the filtrate was collected to give (65%) 2-tert-butyloxycarbonyl-3,5-dimethyl-4-ethoxycarbonylpyrrole. A mixture of 2-tert-butyloxycarbonyl-3,5-dimethyl-4-ethoxycarbonylpyrrole and triethyl orthoformate (1.5 equiv.) in trifluoroacetic acid was stirred at 15° C. for 1 hour. The reaction was concentrated and the residue was purified to give (64%) 2,4-dimethyl-3-ethoxycarbonyl-5-formylpyrrole as yellow needles. 2,4-Dimethyl-3-ethoxycarbonyl-5-formylpyrrole was hydrolyzed using method B to give (90%) 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid. 1H NMR (360 MHz, DMSO-d6) δ 12 (br s, 2H, NH and CO2H), 9.58 (s, 1H, CHO), 2.44 (s, 3H, CH3), 2.40 (s, 3H, CH3). MS m/z 267 [M+]. 5-Bromo-1,3-dihydroindol-2-one (0.17 g, 0.8 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide (0.2 g, prepared by method C) using method B to give 0.3 g (83%) of the title compound as a yellow solid. 1HNMR (360 MHz, DMSO-d6) δ 13.60 (s, br, 1H, NH), 10.94 (s, br, 1H, NH), 8.07 (d, J=1.8 Hz, 1H, H-4), 7.75 (s, 1H, H-vinyl), 7.44 (t, J=5.2 Hz, 1H, CONHCH2), 7.24 (dd, J=1.8 & 8.4 Hz, 1H, H-6), 6.82 (d, J=8.4 Hz, 1H, H-7), 3.26-3.33 (m, 2H, NCH2), 2.42 (s, 3H, CH3), 2.41 (s, 3H, CH3), 2.38 (t, J=6.7 Hz, 2H, NCH2), 2.18 (s, 6H, N(CH3)2). MS-EI m/z 430, and 432 [M+−1 and M++1]. Example 49 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide 6-Phenyl-1,3-dihydroindol-2-one (0.17 g, 0.8 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide (0.2 g) to give 0.13 g (36%) of the title compound as a yellow-orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.59 (s, br, 1H, NH), 10.93 (, br, 1H, NH), 7.85 (d, J=7.92 Hz, 1H, H-4), 7.63-7.65 (m, 3H), 7.40-7.47 (m, 3H,), 7.32-7.36 (m, 1H, Ar—H), 7.30 (dd, J=1.6 & 7.9 Hz, 1H, H-5), 7.11 (d, J=1.6 Hz, 1H, H-7), 3.28-3.34 (m, 2H, NCH2), 2.43 (s, 3H, CH3), 2.41 (s, 3H, CH3), 2.38 (t, J=6.8 Hz, 2H, NCH2), 2.18 (s, 6H, N(CH3)2). MS-EI m/z 428 [M+]. Example 50 5-(5-Chloro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylamino-ethyl)amide 5-Chloro-1,3-dihydroindol-2-one (0.1 g, 0.6 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide (0.15 g) to give 0.22 g (90%) of the title compound as a yellow solid. 1HNMR (300 MHz, DMSO-d6) δ 13.61 (s, br, 1H, NH), 10.98 (, br, 1H, NH), 7.96 (d, J=2.0 Hz, 1H, H-4), 7.75 (s, 1H, H-vinyl), 7.50 (t, J=5.5 Hz, 1H, CONHCH2), 7.12 (dd, J=2.0 & 8.3 Hz, 1H, H-6), 6.86 (d, J=8.3 Hz, 1H, H-7), 3.26-3.31 (m, 2H, NCH2), 2.42 (s, 3H, CH3), 2.40 (s, 3H, CH3), 2.36 (t, J=6.6 Hz, 2H, NCH2), 2.17 (s, 6H, N(CH3)2). MS-EI m/z 386 [M+]. Example 51 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide 5-Bromo-1,3-dihydroindol-2-one (0.17 g, 0.8 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (0.2 g) to give 0.09 g (26%) of the title compound as a yellow solid. 1HNMR (360 MHz, DMSO-d6) δ 13.61 (s, br, 1H, NH), 10.98 (, br, 1H, NH), 8.09 (d, J=1.7 Hz, 1H, H-4), 7.76 (s, 1H, H-vinyl), 7.42 (t, J=5.5 Hz, 1H, CONHCH2), 7.24 (dd, J=1.7 & 8.0 Hz, 1H, H-6), 6.82 (d, J=8.0 Hz, 1H, H-7), 3.23-3.32 (m, 2H, NCH2), 2.46-2.55 (m, 6H, 3×NCH2), 2.43 (s, 3H, CH3), 2.42 (s, 3H, CH3), 0.96 (t, J=7.2 Hz, 6H, 2×NCH2CH3). MS-EI m/z 458 and 460 [M+−1 and M++1]. Example 52 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide 5-Bromo-1,3-dihydroindol-2-one (0.09 g, 0.4 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (0.1 g) to give 0.14 g (81%) of the title compound as a yellow-orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.61 (s, br, 1H, NH), 10.98 (, br, 1H, NH), 8.09 (d, J=1.9 Hz, 1H, H-4), 7.76 (s, 1H, H-vinyl), 7.53 (t, J=5.5 Hz, 1H, CONHCH2), 7.24 (dd, J=1.9 & 8.5 Hz, 1H, H-6), 6.81 (d, J=8.5 Hz, 1H, H-7), 3.29-3.35 (m, 2H, NCH2), 2.54 (t, J=6.9 Hz, 2H, NCH2), 2.47 (m, under DMSO), 2.42 (s, 3H, CH3), 2.40 (s, 3H, CH3), 1.66-1.69 (m, 4H, 2×CH2). MS-EI m/z 456 and 458 [M+−1 and M++1]. Example 53 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-imidazol-1-yl-propyl)amide 5-Bromo-1,3-dihydroindol-2-one (0.09 g, 0.4 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-imidazol-1-ylpropyl)amide (0.1 g) to give 0.1 g (59%) of the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.63 (s, br, 1H, NH), 10.99 (, br, 1H, NH), 8.09 (d, J=2.2 Hz, 1H, H-4), 7.77 (s, 1H, H-vinyl), 7.71 (t, J=5.7 Hz, 1H, CONHCH2), 7.65 (s, 1H, Ar—H), 7.25 (dd, J=2.2 & 8.4 Hz, 1H, H-6), 7.20 (s, 1H, Ar—H), 6.89 (s, 1H, Ar—H), 6.81 (d, J=8.4 Hz, 1H, H-7), 4.02 (t, J=6.7 Hz, 2H, NCH2), 3.18 (q, J=6.7 Hz, 2H, NCH2), 2.43 (s, 3H, CH3), 2.41 (s, 3H, CH3), 1.93 (m, 2H, CH2). MS-EI m/z 467 and 469 [M+−1 and M++1]. Example 54 5-[6-(2-Methoxyphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide 6-(2-Methoxyphenyl)-1,3-dihydroindol-2-one (30 mg, 0.13 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide (30 mg) to give 0.06 g (100%) of the title compound as a yellow-orange gum. 1HNMR (300 MHz, DMSO-d6) δ 13.60 (s, br, 1H, NH), 10.89 (s, br, 1H, NH), 7.79 (d, J=8.4 Hz, 1H), 7.63 (s, 1H, H-vinyl), 7.46 (t, J=5.5 Hz, 1H, CONHCH2), 7.28-7.35 (m, 2H), 6.99-7.11 (m, 4H), 3.76 (s, 3H, OCH3), 3.27-3.31 (m, 2H, NCH2), 2.43 (s, 3H, CH3), 2.39 (s, 3H, CH3), 2.37 (m, 2H, NCH2), 2.18 (s, 6H, N (CH3)2). MS-EI m/z 458 [M+]. Example 55 5-[6-(3-Methoxyphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide 6-(3-Methoxyphenyl)-1,3-dihydroindol-2-one (30 mg, 0.13 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide (30 mg) to give 8 mg (14%) of the title compound as a yellow-orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.59 (s, br, 1H, NH), 10.92 (s, br, 1H, NH), 7.84 (d, J=7.6 Hz, 1H), 7.65 (s, 1H, H-vinyl), 7.42 (m, 1H, CONHCH2), 7.36 (d, J=7.8 Hz, 1H), 7.29 (dd, J=1.6 & 7.6 Hz, 1H), 7.20 (d, J=7.8 Hz, 1H), 7.14 (d, J=2.8 Hz, 1H), 7.11 (d, J=1.6 Hz, 1H), 6.91 (dd, J=2.8 & 7.8 Hz, 1H), 3.82 (s, 3H, OCH3), 3.21-3.33 (m, 2H, NCH2), 2.43 (s, 3H, CH3), 2.40 (s, 3H, CH3), 2.36-2.40 (m, 2H, NCH2), 2.18, (s, 6H, N(CH3)2). MS-EI m/z 458 [M+]. Example 56 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide 5-Phenyl-1,3-dihydroindol-2-one (80 mg, 0.4 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (0.1 g) using method B to give 79 mg (46%) of the title compound. 1HNMR (300 MHz, DMSO-d6) δ 13.66 (s, br, 1H, NH), 10.95 (, br, 1H, NH), 8.15 (d, J=1.2 Hz, 1H), 7.81 (s, 1H, H-vinyl), 7.71 (d, J=7.5 Hz, 1H), 7.40-7.47 (m, 4H), 7.31 (m, 1H), 6.95 (d, J=8.1 Hz, 1H), 3.2-3.31 (m, 2H, NCH2), 2.46-2.55 (m, 6H, 3×NCH2), 2.44 (s, 6H, 2×CH3), 0.96 (t, J=7.4 Hz, 6H, 2×NCH2CH3). MS-EI m/z 456 [M+]. Example 57 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 5-Phenyl-1,3-dihydroindol-2-one (0.04 g, 0.2 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (0.04 g) to give the title compound as a yellow-orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.65 (s, br, 1H, NH), 10.96 (, br, 1H, NH), 8.15 (d, J=1.0 Hz, 1H), 7.80 (s, 1H, H-vinyl), 7.71 (d, J=7.2 Hz, 2H), 7.49 (t, J=6.3 Hz, 1H, CONHCH2), 7.41-7.46 (m, 3H), 7.31 (m, 1H), 6.95 (d, J=7.8 Hz, 1H), 4.08 (m, 4H, 2× NCH2), 3.32 (m, 2H, NCH2), 2.55. (t, J=7.1 Hz, 2H, NCH2), 2.47 (m, under DMSO), 2.43 (s, 6H, 2×CH3), 1.66 (m, 4H, 2×CH2). MS-EI m/z 454 [M+]. Example 58 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (3-imidazol-1-ylpropyl)amide 5-Phenyl-1,3-dihydroindol-2-one (8 mg, 0.04 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-imidazol-1-ylpropyl)amide (10 mg) to give 10 mg (59%) of the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.67 (s, br, 1H, NH), 10.96 (, br, 1H, NH), 8.16 (d, J=1.2 Hz, 1H), 7.81 (s, 1H, H-vinyl), 7.65-7.72 (m, 4H), 7.44 (m, 3H), 7.31 (m, 1H, CONHCH2), 7.21 (s, 1H, Ar—H), 4.02 (t, J=6.5 Hz, 2H, NCH2), 3.19 (q, J=6.5 Hz, 2H, CONHCH2), 2.44 (s, 6H, 2×CH3), 1.93 (m, 2H, CH2CH2 CH2). MS-EI m/z 465 [M+]. Example 59 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide 6-Phenyl-1,3-dihydroindol-2-one (0.08 g, 0.4 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (0.1 g) to give 65 mg (38%) of the title compound as a yellow solid. 1HNMR (300 MHz, DMSO-d6) δ 13.61 (s, br, 1H, NH), 10.99 (, br, 1H, NH), 7.86 (d, J=7.8 Hz, 1H), 7.62-7.66 (m, 3H), 7.40-7.47 (m, 3H), 7.28-7.36 (m, 2H), 7.10 (d, J=1.2 Hz, 1H), 3.26 (m, 2H, NCH2), 2.46-2.55 (m, 6H, 3×NCH2), 2.44 (s, 3H, CH3), 2.41 (s, 3H, CH3), 0.97 (t, J=7.2 Hz, 6H, 2×NCH2CH3). MS-EI m/z 456 [M+]. Example 60 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 6-Phenyl-1,3-dihydroindol-2-one (30 mg, 0.15 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (40 mg) to give 5.9 mg (8.5%) of the title compound as a yellow-orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.60 (s, br, 1H, NH), 10.99 (, br, 1H, NH), 7.86 (d, J=7.8 Hz, 1H), 7.63-7.66 (m, 3H), 7.51 (m, 1H, CONHCH2), 7.45 (m, 2H), 7.28-7.36 (m, 2H), 7.10 (d, J=1.5 Hz, 1H), 3.31 (m, 6H, 3×NCH2), 2.55 (t, J=6.6 Hz, 2H, NCH2), 2.43 (s, 3H, CH3), 2.40 (s, 3H, CH3), 1.67 (m, 4H, 2×CH2). MS-EI m/z 454 [M+]. Example 61 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (3-imidazol-1-ylpropyl)amide 6-Phenyl-1,3-dihydroindol-2-one (8 mg, 0.04 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-imidazol-1-ylpropyl)amide (10 mg) to give 7.3 mg (43%) of the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.62 (s, br, 1H, NH), 10.99 (, br, 1H, NH), 7.86 (d, J=8.2 Hz, 1H), 7.62-7.70 (m, 5H), 7.45 (m, 2H), 7.35 (m, 1H), 7.30 (dd, J=1.4 & 8.2 Hz, 1H), 7.21 (s, 1H), 7.10 (d, J=1.4 Hz, 1H), 6.89 (s, 1H), 4.02 (t, J=6.9 Hz, 2H, CH2), 3.19 (m, 2H, NCH2 CH2), 2.43 (s, 3H, CH3), 2.41 (s, 3H, CH3), 1.93 (t, J=6.9 Hz, 2H, NCH2). MS-EI m/z 465 [M+]. Example 62 5-[6-(3,5-Dichlorophenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide 6-(3,5-Dichlorophenyl)-1,3-dihydroindol-2-one (64 mg, 0.23 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (60 mg) to give 53 mg (44%) of the title compound as a light brown solid. 1HNMR (360 MHz, DMSO-d6) δ 13.62 (s, br, 1H, NH), 10.99 (s, 1H, NH), 7.89 (d, J=7.9 Hz, 1H, H-4), 7.69-7.71 (m, 3H), 7.55 (m, 1H, CONHCH2), 7.37 (m, 2H), 7.14 (d, J=1.4 Hz, 1H, H-7), 3.27 (m, 2H, NCH2), 2.48-2.58 (m, 6H, 3×NCH2), 2.45 (s, 3H, CH3), 2.42 (s, 3H, CH3), 0.97 (t, J=6.8 Hz, 6H, 3×NCH2CH3). MS m/z 526.9 [M++1]. Example 63 2,4-Dimethyl-5-(2-oxo-6-pyridin-3-yl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide 6-Pyridin-3-yl-1,3-dihydroindol-2-one (40 mg, 0.19 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (50 mg) give 29 mg (33%) of the title compound as a light orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.62 (s, br, 1H, NH), 11.05 (s, br, 1H, NH), 8.86 (s, br, 1H), 8.53 (d, J=5.8 Hz, 1H), 8.04 (m, 1H), 7.91 (d, J=8.1 Hz, 1H), 7.70 (s, 1H, H-vinyl), 7.40-7.48 (m, 2H), 7.35 (d, J=7.5 Hz, 1H), 7.14 (s, 1H), 3.26 (m, 2H, NCH2), 2.48-2.55 (m, 3×NCH2), 2.42 (s, 3H, CH3), 2.38 (s, 3H, CH3), 0.96 (t, J=6.9 Hz, 6H, 2×NCH2CH3). MS-EI m/z 457 [M+]. Example 64 2,4-Dimethyl-5-(2-oxo-6-pyridin-3-yl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 6-Pyridin-3-yl-1,3-dihydroindol-2-one (60 mg, 0.28 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (75 mg) to give 90 mg (71%) of the title compound as a light orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.61 (s, br, 1H, NH), 11.05 (s, br, 1H, NH), 8.86 (d, J=1.5 Hz, 1H), 8.54 (dd, J=1.5 & 4.8 Hz, 1H), 8.05 (m, 1H), 7.91 (d, J=7.8 Hz, 1H), 7.70 (s, 1H, H-vinyl), 7.44-7.53 (m, 2H), 7.36 (dd, J=1.5 & 8.1 Hz, 1H), 7.15 (d, J=1.2 Hz, 1H), 3.33 (m, 2H, NCH2), 2.47-2.57 (m, 6H, 3×NCH2), 2.43 (s, 3H, CH3), 2.41 (s, 3H, CH3), 1.67 (m, 4H, 2×CH2). MS-EI m/z 455 [M+]. Example 65 2,4-Dimethyl-5-(2-oxo-6-pyridin-3-yl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (3-dimethylaminopropyl)amide 6-Pyridin-3-yl-1,3-dihydroindol-2-one (42 mg, 0.2 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-dimethylaminopropyl)amide (50 mg) to give 67 mg (75%) of the title compound as yellow-brown solid. 1HNMR (360 MHz, DMSO-d6) δ 13.61 (s, br, 1H, NH), 11.00 (s, br, 1H, NH), 8.86 (s, br, 1H), 8.54 (s, br, 1H), 8.04 (m, 1H), 7.90 (d, J=8.0 Hz, 1H), 7.69 (s, 1H, H-vinyl), 7.63 (m, 1H), 7.45-7.48 (m, 1H), 7.35 (dd, J=1.7 & 8.0 Hz, 1H), 7.15 (d, J=1.7 Hz, 1H), 3.21-3.27 (m, 2H, NCH2), 2.43 (s, 3H, CH3), 2.41 (s, 3H, CH3), 2.28 (m, 2H, NCH2), 2.14 (s, 6H, 2×NCH3), 1.64 (m, 2H, CH2). MS-EI m/z 443 [M+]. Example 66 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (3-dimethylaminopropyl)amide 5-Phenyl-1,3-dihydroindol-2-one (67 mg, 0.32 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-dimethylaminopropyl)amide (81 mg) to give 40 mg (28%) of the title compound as an orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.66 (s, br, 1H, NH), 10.92 (s, br, 1H, NH), 8.14 (s, 1H), 7.79 (s, 1H), 7.71 (m, 2H), 7.62 (m, 1H), 7.44 (m, 3H), 7.32 (m, 1H), 6.95 (m, 1H), 3.33 (m, 2H, NCH2), 2.43 (s, 6H, 2×CH3), 2.27 (m, 2H, NCH2), 2.13 (s, 6H, 2×NCH3), 1.63 (m, 2H, CH2). MS-EI m/z 442 [M+]. Example 67 2,4-Dimethyl-5-(2-oxo-5-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide 5-Phenyl-1,3-dihydroindol-2-one (1.5 g, 7.16 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide (2 g) to give 1.3 g (40%) of the title compound as a yellow-orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.64 (s, 1H, NH), 10.91 (s, 1H, NH), 8.14 (d, J=1.4 Hz, 1H, ArH), 7.8 (s, 1H, ArH), 7.7 (dd, J=1.2 and 8.5 Hz, 2H, ArH), 7.6 (t, J=5.3 Hz, 1H, CONHCH2), 7.4 (m, 3H, ArH), 7.3 (t, J=7.4 Hz, 1H, ArH), 6.9 (d, J=8.0 Hz, 1H, ArH), 3.2 (m, 2H, CONHCH2), 2.5 (m, 12H, 3×NCH2 and 2×CH3), 1.61 (m, 2H, CH2CH2CH2), 0.93 (t, J=6.7 Hz, 6H, NCH2CH3). MS-EI m/z 470 [M+]. Example 68 2,4-Dimethyl-5-(2-oxo-6-phenyl-1,2-dihydroindol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide 6-Phenyl-1,3-dihydroindol-2-one (1.5 g, 7.16 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide (2 g) to give 1.9 g (57%) of the title compound as an orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.58 (s, 1H, NH), 10.94 (s, 1H, NH), 7.8 (d, J=7.9 Hz, 1H, ArH), 7.6 (m, 4H, ArH), 7.4 (t, J=7.5 Hz, 2H, ArH), 7.3 (m, 2H), 7.1 (d, J=1.4 Hz, 1H, ArH), 3.2 (m, 2H, CONHCH2), 2.5 (m, 12H, 3×NCH2and 2×CH3), 1.61 (m, 2H, CH2CH2CH2), 0.93 (t, J=6.7 Hz, 6H, NCH2CH3). MS-EI m/z 470 [M+]. Example 69 3-[4-(3-Diethylaminopropylcarbamoyl)-3,5-dimethyl-1H-pyrrol-2-ylmethylene]-2-oxo-2,3-dihydro-1H-indole-4-carboxylic acid (3-chloro-4-methoxyphenyl)amide 2-Oxo-2,3-dihydro-1H-indole-4-carboxylic acid (3-chloro-4-methoxyphenyl)amide (1 g, 3.16 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide (1 g, 3.58 mmol) to give 1.7 g (85%) of the title compound as a yellow-orange solid. MS-EI m/z 578.2 [M+]. Example 70 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-diethylamino-propyl)amide 5-Bromo-1,3-dihydroindol-2-one (0.5 g, 2.36 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide (0.51 g) to give 0.84 g of the title compound as a red-orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.61 (s, 1H, NH), 10.99 (s, 1H, NH), 8.09 (d, J=1.8 Hz, 1H, ArH), 7.7 (m, 4H), 7.2 (dd, J=1.8 and 8.3 Hz, 2H, ArH), 6.8 (d, J=7.8 Hz, 1H, ArH), 3.3 (br s, 4H, 2×NCH2), 3.2 (m, 2H, CONHCH2), 2.6 (br s, 2H, NCH2 and 2×CH3), 2.4 (s, 6H, 2×CH3), 1.66 (m, 2H, CH2CH2CH2), 0.98 (t, J=7.1 Hz, 6H, NCH2CH3). MS-EI m/z 472 and 474 [M+−1 and M++1]. Example 71 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-diisopropyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide 5-Bromo-1,3-dihydroindol-2-one (100 mg, 0.47 mmol) was condensed with 5-formyl-2,4-diisopropyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (150 mg) to give 0.15 g (62%) of the title compound as a yellow-orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.97 (s, 1H, NH), 10.95 (s, 1H, NH), 8.09 (d, J=1.3 Hz, 1H, ArH), 7.84 (m, 1H), 7.79 (s, 1H), 7.23 (dd, J=1.3 and 8.1 Hz, 1H, ArH), 6.8 (d, J=8.1 Hz, 1H, ArH), 3.5 (m, 1H, CH), 3.3 (m, 3H, CH and NHCH2), 2.5 (br m, 6H, 3×NCH2), 1.28 (d, J=6.9 Hz, 6H, 2×CH3), 1.23 (d, J=6.6 Hz, 6H, 2×CH3), 0.96 (m, 6H, 2×CH2CH3). MS-EI m/z 514 and 516 [M+−1 and M++1]. Example 72 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-diisopropyl-1H-pyrrole-3-carboxylic acid (3-diethylamino-propyl)amide 5-Bromo-1,3-dihydroindol-2-one (90 mg, 0.42 mmol) was condensed with 5-formyl-2,4-diisopropyl-1H-pyrrole-3-carboxylic acid (3-diethylaminopropyl)amide (140 mg) to give 54 mg (25%) of the title compound as red-brown solid. 1HNMR (300 MHz, DMSO-d6) δ 13.98 (s, 1H, NH), 10.96 (s, 1H, NH), 8.09 (d, J=1.7 Hz, 2H), 7.78 (s, 1H, H-vinyl), 7.23 (dd, J=1.7 and 8.1 Hz, 1H, ArH), 6.82 (d, J=8.1 Hz, 1H, ArH), 3.5 (m, 1H, CH), 3.25 (m, 2H, NHCH2), 3.15 (m, 1H, CH), 2.7 (br s, 6H, 3×NCH2), 1.7 (br m, 2H, CH2CH2CH2), 1.28 (d, J=6.9 Hz, 6H, 2×CH3), 1.24 (d, J=5.9 Hz, 6H, 2×CH3), 1.06 (m, 6H, 2×CH2CH3). MS-EI m/z 528 and 530 [M+−1 and M++1]. Example 73 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-diisopropyl-1H-pyrrole-3-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide 5-Bromo-1,3-dihydroindol-2-one (130 mg, 0.6 mmol) was condensed with 5-formyl-2,4-diisopropyl-1H-pyrrole-3-carboxylic acid (3-pyrrolidin-1-ylpropyl)amide (150 mg, 0.45 mmol) to give 36 mg (15%) of the title compound as a tan-orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.98 (s, 1H, NH), 10.97 (s, 1H, NH), 8.10 (d, J=1.6 Hz, 2H), 7.78 (s, 1H, H-vinyl), 7.23 (dd, J=1.6 and 7.6 Hz, 1H, ArH), 6.82 (d, J=7.6 Hz, 1H, ArH), 3.5 (m, 1H, CH), 3.25 (m, 2H, NHCH2), 3.15 (m, 1H, CH), 2.7 (br s, 6H, 3×NCH2), 1.7 (br m, 6H, 3×NCH2CH2), 1.28 (d, J=5.6 Hz, 6H, 2×CH3), 1.24 (d, J=5.7 Hz, 6H, 2×CH3). MS-EI m/z 526 and 528 [M+−1 and M++1]. Example 74 5-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (pyridin-4-ylmethyl)-amide 5-Bromo-1,3-dihydroindol-2-one (170 mg, 0.8 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (pyridin-4-ylmethyl)amide (200 mg) to give 14 mg (4%) of the title compound as a yellow solid. 1HNMR (300 MHz, DMSO-d6) δ 13.67 (s, 1H, NH), 11.01 (s, br, 1H, NH), 8.51 (dd, J=1.6 & 4.3 Hz, 2H), 8.23 (t, J=6.0 Hz, 1H, CONHCH2), 8.11. (d, J=1.9 Hz, 1H), 7.78 (s, 1H, H-vinyl), 7.31 (d, J=6.0 Hz, 2H), 7.25 (dd, J=1.9 & 8.1 Hz, 1H), 6.82 (d, J=8.1 Hz, 1H), 4.45 (d, J=6.0 Hz, 2H, NCH2), 2.46 (s, 6H, 2×CH3). MS-EI m/z 450 and 452 [M+−1 and M++1]. Example 75 5-(6-(4-Butylphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 5-[6-(4-Butylphenyl)]-1,3-dihydroindol-2-one (50 mg, 0.19 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (50 mg) to give 74 mg (76%) of the title compound as an orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.58 (s, 1H, NH), 10.93 (s, br, 1H, NH), 7.82 (d, J=7.9 Hz, 1H), 7.63 (s, 1H, H-vinyl), 7.54 (d, J=7.9 Hz, 2H), 7.46 (m, 1H, CONH), 7.26 (m, 3H), 7.09 (s, 1H), 3.30 (m, 2H, CH2), 2.52-2.63. (m, 4H, 2×CH2), 2.49 (m, 4H, 2×CH2), 2.43 (s, 3H, CH3), 2.40 (s, 3H, CH3), 1.68 (m, 4H, 2×CH2), 1.58 (m, 2H, CH2), 1.34 (m, 2H, CH2), 0.91 (t, J=7.2 Hz, 3H, CH2CH3). MS-EI m/z 510 [M+]. Example 76 5-[6-(5-Isopropyl-2-methoxyphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 6-(5-Isopropyl-2-methoxyphenyl)-1,3-dihydroindol-2-one (50 mg, 0.17 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)amide (45 mg) to give 67 mg (75%) of the title compound as an orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.60 (s, 1H, NH), 10.82 (s, br, 1H, NH), 7.77 (d, J=7.9 Hz, 1H), 7.61 (s, 1H, H-vinyl), 7.45 (m, 1H, CONH), 7.0-7.19 (m, 5H), 3.73 (s, 3H, OCH3), 3.32 (m, 2H, CH2), 2.87 (m, 1H, CH(CH3)2), 2.56 (m, 2H, CH2), 2.48 (m, 4H, 2×CH2), 2.43 (s, 3H, CH3), 2.40 (s, 3H, CH3), 1.68 (m, 4H, 2×CH2), 1.21 (d, J=6.8 Hz, 6H, CH(CH3)2). MS m/z 527.2 [M++1]. Example 77 5-[6-(4-Ethylphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 6-(4-Ethylphenyl)-1,3-dihydroindol-2-one (45 mg, 0.19 mmol) was condensed 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (50 mg) to give 60 mg. (65%) of the title compound as a yellow-orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.59 (s, 1H, NH), 10.96 (s, br, 1H, NH), 7.83 (d, J=8.4 Hz, 1H), 7.64 (s, 1H, H-vinyl), 7.51-7.56 (m, 3H), 7.25-7.30 (m, 3H), 7.08 (d, J=1 Hz, 1H), 3.31 (m, 2H, CH2), 2.63 (m, 2H, CH2CH3), 2.55 (m, 2H, CH2), 2.49 (m, 4H, 2×CH2), 2.42 (s, 3H, CH3), 2.40 (s, 3H, CH3), 1.67 (m, 4H, 2×CH2), 1.20 (t, 7.5 Hz, 3H, CH2CH3). MS-EI m/z 482 [M+]. Example 78 5-[6-(2,4-Dimethoxyphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 6-(2,4-Dimethoxyphenyl)-1,3-dihydroindol-2-one (51 mg, 0.19 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (50 mg) to give 30 mg (31%) of the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.59 (s, 1H, NH), 10.86 (s, br, 1H, NH), 7.75 (d, J=7.8 Hz, 1H), 7.60 (s, 1H, H-vinyl), 749 (m, 1H, CONH), 7.22 (d, J=8.4 Hz, 1H), 7.03 (m, 1H), 6.97 (s, 1H), 6.58-6.65 (m, 2H), 3.79 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), 3.33 (m, 2H, CH2), 2.55 (m, 2H, CH2), 2.50 (m, 4H, 2×CH2), 2.42 (s, 3H, CH3), 2.39 (s, 3H, CH3), 1.67 (m, 4H, 2×CH2). MS-EI m/z 514 [M+]. Example 79 5-[6-(3-Isopropylphenyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 6-(3-Isopropylphenyl)-1,3-dihydroindol-2-one (48 mg, 0.19 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (50 mg) to give 59 mg (63%) of the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.63 (s, 1H, NH), 10.97 (s, br, 1H, NH), 7.87 (d, J=7.8 Hz, 1H), 7.68 (s, 1H, H-vinyl), 7.24-7.55 (m, 6H), 7.13 (s, 1H), 3.34 (m, 2H, CH2), 3.30 (m, 1H, CH(CH3)2), 2.60 (m, 2H, CH2), 2.50 (m, 4H, 2×CH2), 2.45 (s, 3H, CH3), 2.43 (s, 3H, CH3), 1.70 (m, 4H, 2×CH2), 1.27 (d, J=6.9 Hz, 6H, CH(CH3)2). MS-EI m/z 496 [M+]. Example 80 5-(5-Fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide 5-Fluoro-1,3-dihydroindol-2-one (0.54 g, 3.8 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide to give 0.83 g (55%) of the title compound as a yellow green solid. 1HNMR (360 MHz, DMSO-d6) δ 13.66 (s, 1H, NH), 10.83 (s, br, 1H, NH), 7.73 (dd, J=2.5 & 9.4 Hz, 1H), 7.69 (s, 1H, H-vinyl), 7.37 (t, 1H, CONHCH2CH2), 6.91 (m, 1H), 6.81-6.85 (m, 1H), 3.27 (m, 2H, CH2), 2.51 (m, 6H, 3×CH2), 2.43 (s, 3H, CH3), 2.41 (s, 3H, CH3), 0.96 (t, J=6.9 Hz, 6H, N(CH2CH3)2). MS-EI m/z 398 [M+]. Example 80 Alternative Synthesis 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide Hydrazine hydrate (55%, 3000 mL) and 5-fluoroisatin (300 g) were heated to 100° C. An additional 5-fluoro-isatin (500 g) was added in portions (100 g) over 120 minutes with stirring. The mixture was heated to 110° C. and stirred for 4 hours. The mixture was cooled to room temperature and the solids collected by vacuum filtration to give crude (2-amino-5-fluoro-phenyl)-acetic acid hydrazide (748 g). The hydrazide was suspended in water (700 mL) and the pH of the mixture adjusted to <pH 3 with 12 N hydrochloric acid. The mixture was stirred for 12 hours at room temperature. The solids were collected by vacuum filtration and washed twice with water. The product was dried under vacuum to give 5-fluoro-1,3-dihydro-indol-2-one (600 g, 73% yield) as as a brown powder. 1H-NMR (dimethylsulfoxide-d6) δ 3.46 (s, 2H, CH2), 6.75, 6.95, 7.05 (3×m, 3H, aromatic), 10.35 (s, 1H, NH). MS m/z 152 [M+1]. 3,5-Dimethyl-1H-pyrrole-2,4-dicarboxylic acid 2-tert-butyl ester 4-ethyl ester (2600 g) and ethanol (7800 mL) were stirred vigorously while 10 N hydrochloric acid (3650 mL) was slowly added. The temperature increased from25° C. to 35° C. and gas evolution began. The mixture was warmed to 54° C. and stirred with further heating for one hour at which time the temperature was 67° C. The mixture was cooled to 5° C. and 32 L of ice and water were slowly added with stirring. The solid was collected by vacuum filtration and washed three times with water. The solid was air dried to constant weight to give of 2,4-dimethyl-1H-pyrrole-3-carboxylic acid ethyl ester (1418 g, 87% yield) as a pinkish solid. 1H-NMR (dimethylsulfoxide-d6) δ 2.10, 2.35 (2×s, 2×3H, 2×CH3), 4.13 (q, 2H, CH2), 6.37 (s, 1H, CH), 10.85 (s, 1H, NH). MS m/z 167 [M+1]. Dimethylformamide (322 g) and dichloromethane (3700 mL) were cooled in an ice bath to 4° C. and phosphorus oxychloride (684 g) was added with stirring. Solid 2,4-dimethyl-1H-pyrrole-3-carboxylic acid ethyl ester (670 g) was slowly added in aliquots over 15 minutes. The maximum temperature reached was 18° C. The mixture was heated to reflux for one hour, cooled to 10° C. in an ice bath and 1.6 L of ice water was rapidly added with vigorous stirring. The temperature increased to 15° C. 10 N Hydrochloric acid (1.6 L) was added with vigorous stirring. The temperature increased to 22° C. The mixture was allowed to stand for 30 minutes and the layers allowed to separate. The temperature reached a maximum of 40° C. The aqueous layer was adjusted to pH 12-13 with 10 N potassium hydroxide (3.8 L) at a rate that allowed the temperature to reach and remain at 55° C. during the addition. After the addition was complete the mixture was cooled to 10° C. and stirred for 1 hour. The solid was collected by vacuum filtration and washed four times with water to give 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid ethyl ester (778 g, 100% yield) as a yellow solid. 1H-NMR (DMSO-d6) δ 1.25 (t, 3H, CH3), 2.44, 2.48 (2's, 2×3H, 2×CH3), 4.16 (q, 2H, CH2), 9.59 (s, 1H, CHO), 12.15 (br s, 1H, NH). MS m/z 195 [M+1]. 5-Formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid ethyl ester (806 g), potassium hydroxide (548 g), water (2400 mL) and methanol (300 mL) were refluxed for two hours with stirring and then cooled to 8° C. The mixture was extracted twice with dichloromethane. The aqueous layer was adjusted to pH 4 with 1000 mL of 10 N hydrochloric acid keeping the temperature under 15° C. Water was added to facilitate stirring. The solid was collected by vacuum filtration, washed three times with water and dried under vacuum at 50° C. to give 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic (645 g, 93.5% yield) acid as a yellow solid. NMR (DMSO-d6) δ 2.40, 2.43 (2×s, 2×3H, 2×CH3), 9.57 (s, 1H, CHO), 12.07 (br s, 2H, NH+COOH). MS m/z 168 [M+1]. 5-Formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (1204 g) and 6020 mL of dimethylformamide were stirred at room temperature while 1-(3-dimethyl-aminopropyl-3-ethylcarbodiimide hydrochloride (2071 g), hydroxybenzotriazole (1460 g), triethylamine (2016 mL) and diethylethylenediamine (1215 mL) were added. The mixture was stirred for 20 hours at room temperature. The mixture was diluted with 3000 mL of water, 2000 mL of brine and 3000 mL of saturated sodium bicarbonate solution and the pH adjusted to greater than 10 with 10 N sodium hydroxide. The mixture was extracted twice with 5000 mL each time of 10% methanol in dichloromethane and the extracts combined, dried over anhydrous magnesium sulfate and rotary evaporated to dryness. The mixture was with diluted with 1950 mL of toluene and rotary evaporated again to dryness. The residue was triturated with 3:1 hexane:diethyl ether (4000 mL). The solids were collected by vacuum filtration, washed twice with 400 mL of ethyl acetate and dried under vacuum at 34° C. for 21 hours to give 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (819 g, 43% yield) as a light brown solid. 1H-NMR (dimethylsulfoxide-d6) δ 0.96 (t, 6H, 2×CH3), 2.31, 2.38 (2×s, 2×CH3), 2.51 (m, 6H 3×CH2), 3.28 (m, 2H, CH2), 7.34 (m, 1H, amide NH), 9.56 (s, 1H, CHO), 11.86 (s, 1H, pyrrole NH). MS m/z 266 [M+1]. 5-Formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)-amide (809 g), 5-fluoro-1,3-dihydro-indol-2-one (438 g), ethanol (8000 mL) and pyrrolidine (13 mL) were heated at 78° C. for 3 hours. The mixture was cooled to room temperature and the solids collected by vacuum filtration and washed with ethanol. The solids were stirred with ethanol (5900 mL) at 72° C. for 30 minutes. The mixture was cooled to room temperature. The solids were collected by vacuum filtration, washed with ethanol and dried under vacuum at 54° C. for 130 hours to give 5-(5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (1013 g, 88% yield) as an orange solid. 1H-NMR (dimethylsulfoxide-d6) δ 0.98 (t, 6H, 2×CH3), 2.43, 2.44 (2×s, 6H, 2×CH3), 2.50 (m, 6H, 3×CH2), 3.28 (q, 2H, CH2), 6.84, 6.92, 7.42, 7.71, 7.50 (5×m, 5H, aromatic, vinyl, CONH), 10.88 (s, 1H, CONH), 13.68 (s, 1H, pyrrole NH). MS m/z 397 [M−1]. Example 81 3-[4-(2-Diethylaminoethylcarbamoyl)-3,5-dimethyl-1H-pyrrol-2-ylmethylene]-2-oxo-2,3-dihydro-1H-indole-6-carboxylic acid 2-oxo-2,3-dihydro-1H-indole-6-carboxylic acid (80 mg, 0.45 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide to give 210 mg (92%) of the title compoundasa yellow orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.6 (s, 1H, NH), 7.76 (d, J=8.0 Hz, 1H), 7.66 (s, 1H, H-vinyl), 7.57 (dd, J=1.5 & 8.0 Hz, 1H), 7.40-7.42 (m, 2H), 3.28 (m, 2H, CH2), 2.88 (m, H-piperidine), 2.54 (m, 6H, 3×CH2), 2.44 (s, 3H, CH3), 2.40 (s, 3H, CH3), 1.56 (m, H-piperidine), 0.97 (t, J=6.98 Hz, 6H, N(CH2CH3)2). MS m/z 424 [M+]. Example 82 5-(5-Dimethylsulfamoyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 2-Oxo-2,3-dihydro-1H-indole-5-sulfonic acid dimethylamide (90 mg, 0.38 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (100 mg) to give 100 mg (54%) of the title compound as a yellow solid. 1HNMR (360 MHz, DMSO-d6) δ 13.65 (s, 1H, NH), 11.30 (s, br, 1H, NH), 8.25 (d, 1H), 7.92 (s, 1H, H-vinyl), 7.48-7.53 (m, 2H), 7.07 (d, J=8.2 Hz, 1H), 3.33 (m, 2H, CH2), 2.61 (s, 6H, N(CH3)2), 2.56 (t, 2H, CH2), 2.49 (m, 4H, 2×CH2), 2.45 (s, 3H, CH3), 2.44 (s, 3H, CH3), 1.67 (m, 4H, 2×CH2). MS-EI m/z 485 [M+]. Example 83 5-[5-(3-Chlorophenylsulfamoyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 2-Oxo-2,3-dihydro-1H-indole-5-sulfonic acid (3-chloro-phenyl)amide (120 mg, 0.38 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (100 mg) to give 150 mg (69%) of the title compound as a yellow orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.55 (s, 1H, NH), 11.26 (br s, 1H, NH), 10.30 (br s,1H, NH), 8.26 (d, 1H), 7.79 (s, 1H, H-vinyl), 7.51-7.57 (m, 2H), 7.22 (t, J=8.1 Hz, 1H), 7.15 (m, 1H), 7.07 (m, 1H), 7.0 (m, 2H), 3.44 (m, 2H, CH2), 2.57 (t, J=7.0 Hz, 2H, CH2), 2.49 (m, 4H, 2×CH2), 2.44 (s, 3H, CH3), 2.43 (s, 3H, CH3), 1.68 (m, 4H, 2×CH2). MS m/z 568 [M+]. Example 84 2,4-Dimethyl-5-(2-oxo-5-(pyridin-3-ylsulfamoyl)-1,2-dihydroindol-3-ylidenemethyl]-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide 2-Oxo-2,3-dihydro-1H-indole-5-sulfonic acid pyridin-3-ylamide (110 mg, 0.38 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)amide (100 mg) to give 150 mg (74%) of the title compound as an orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.58 (s, 1H, NH), 8.21 (d, J=2.0 Hz, 2H), 8.04 (m, 1H), 7.76 (s, 1H, H-vinyl), 7.49-7.54 (m, 2H), 7.41 (m, 1H), 7.14 (m, 1H), 6.94 (d, J=8.5 Hz, 1H), 3.33 (m, 2H, CH2), 2.56 (t, J=7.06 Hz, 2H, CH2), 2.49 (m, 4H, 2×CH2), 2.43 (s, 6H, 2×CH3), 1.68 (m, 4H, 2×CH2). MS m/z 535 [M+]. Example 85 3-(3,5-Dimethyl-4-(4-methylpiperazine-1-carbonyl)-1H-pyrrol-2-ylmethylene]-4-(2-hydroxyethyl)-1,3-dihydroindol-2-one 4-(2-Hydroxyethyl)-1,3-dihydroindol-2-one (71 mg, 0.4 mmol) was condensed with 3,5-dimethyl-4-(4-methyl-piperazine-1-carbonyl)-1H-pyrrole-2-carbaldehyde to give 90 mg (55%) of the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 14.25 (s, 1H, NH), 10.88 (s, 1H, NH), 7.57 (s, 1H, H-vinyl), 7.03 (m, 1H), 6.75-6.82 (m, 2H), 4.86 (m, 1H, OH), 3.70 (m, 2H, CH2), 3.04 (m, 2H, CH2), 2.48 (m, 4H, 2×CH2), 2.28 (br s, 7H), 2.19 (s, 3H, CH3), 2.18 (s, 3H, CH3). MS m/z (+ve) 4.09.3 [M+]. Example 86 3-[3,5-Dimethyl-4-(4-methylpiperazine-1-carbonyl)-1H-pyrrol-2-ylmethylene]-2-oxo-2,3-dihydro-1H-indole-5-sulfonic acid phenylamide 2-Oxo-2,3-dihydro-1H-indole-5-sulfonic acid phenylamide (110 mg, 0.4 mmol) was condensed with 3,5-dimethyl-4-(4-methylpiperazine-1-carbonyl)-1H-pyrrole-2-carbaldehyde (100 mg) to give 50 mg (24%) of the title compound as a yellow solid. 1HNMR (300 MHz, DMSO-d6) δ 13.52 (s, 1H, NH), 11.26 (s, 1H, NH), 10.08 (s, 1H, NH), 8.21 (d, J=1.6 Hz, 1H), 7.75 (s, 1H, H-vinyl), 7.50 (dd, J=1.6 & 8.3 Hz, 1H), 7.19 (m, 2H), 7.10 (m, 2H), 6.97 (m, 2H), 2.49 (m, 4H, 2×CH2), 2.28 (m, 10H, 2×CH3 & 2×CH2), 2.18 (s, 3H, CH3). MS-EI m/z 519 [M+]. Example 87 5-(5-Dimethylsulfamoyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide 2-Oxo-2,3-dihydro-1H-indole-5-sulfonic acid dimethylamide (90 mg, 0.38 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (100 mg) to give 80 mg (43%) of the title compound as a yellow solid. 1HNMR (300 MHz, DMSO-d6) δ 11.30 (s, 1H, NH), 8.27 (d, J=1.7 Hz, 1H), 7.94 (s, 1H, H-vinyl), 7.49 (dd, J=1.7 & 8.0 Hz, 1H), 7.44 (m, 1H, CONHCH2CH2), 7.07 (d, J=8.0 Hz, 1H), 3.26 (m, 2H, CH2), 2.60 (s, 6H, N(CH3)2), 2.53. (m, 2H, CH2), 2.45-2.50 (m, 10H, 2×CH3 & N(CH2CH3)2, 0.96 (t, J=7.2 Hz, 6H, N(CH2CH3)2). MS-EI m/z 487 [M+]. Example 88 5-(5-(3-Chlorophenylsulfamoyl)-2-oxo-1,2-dihydroindol-3-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide 2-Oxo-2,3-dihydro-1H-indole-5-sulfonic acid (3-chloro-phenyl)amide (120 mg, 3.8 mmol) was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide (100 mg) to give 80 mg (37%) of the title compound as a yellow solid. 1HNMR (360 MHz, DMSO-d6) δ 13.55 (s, 1H, NH), 11.24 (s, 1H, NH), 10.29 (s, 1H, NH), 8.25 (d, J=1.87 Hz, 1H), 7.79 (s, 1H, H-vinyl), 7.52 (dd, J=1.87 & 8.3 Hz, 1H), 7.42 (m, 1H, CONHCH2CH2), 7.22 (t, J=8.02 Hz, 1H), 7.15 (t, J=2 Hz, 1H), 7.08 (m, 1H), 7.0 (m, 2H), 3.27 (m, 2H, CH2), 2.48-2.57 (m, 6H, 3×CH2), 2.45 (s, 3H, CH3), 2.44 (s, 3H, CH3), 0.97 (t, J=7.0 Hz, 6H, N(CH2CH3)2). MS m/z 570.1 [M+]. Example 95 3-(2-Oxo-5-phenyl-1,2-dihydroindol-3-ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid ethyl ester 1HNMR (360 MHz, DMSO-d6) δ 13.74 (s, 1H, NH), 11.00 (s, 1H, NH), 8.13 (d, J=1.7 Hz, 1H), 7.74 (s, 1H, H-vinyl), 7.70 (d, J=7.7 Hz, 2H), 7.49 (dd, J=1.7 & 8.0 Hz, 1H), 7.44 (t, J=7.7 Hz, 2H), 7.32 (m, 1H), 6.96 (d, J=8.0 Hz, 1H), 4.26 (q, J=7.0 Hz, 2H, OCH2CH3), 2.79 (m, 2H, CH2), 2.72 (m, 2H, CH2), 1.73 (m, 4H, 2×CH2), 1.30 (t, J=7.0 Hz, 3H, OCH2CH3). MS-EI m/z 412 [M+]. Example 99 3-(2-Oxo-5-phenylsulfamoyl-1,2-dihydroindol-3-ylidenemethyl)-4,5,6,7-tetrahydro-2H-isoindole-1-carboxylic acid ethyl ester 1HNMR (360 MHz, DMSO-d6) δ 13.64 (s, 1H, NH), 11.33 (s, 1H, NH), 10.07 (s, 1H, NH), 8.24 (d, J=1.8 Hz, 1H), 7.74 (s, 1H, H-vinyl), 7.57 (dd, J=1.8 & 8.0 Hz, 1H), 7.21 (t, J=7.6 Hz, 2H), 7.11 (d, J=7.6 Hz, 2H), 6.99 (d, J=8.0 Hz, 1H), 6.98 (d, J=7.6 Hz, 1H), 4.27 (q, J=7.0 Hz, 2H, OCH2CH3), 2.80 (m, 2H, CH2), 2.73 (m, 2H, CH2), 1.73 (m, 4H, 2×CH2), 1.30 (t, J=7.0 Hz, 3H, OCH2CH3). MS-EI m/z 491 [M+]. Example 109 3-[3-(Morpholine-4-carbonyl)-4,5,6,7-tetrahydro-2H-isoindol-1-ylmethylene]-2-oxo-2,3-dihydro-1H-indole-6-carboxylic acid 1HNMR (360 MHz, DMSO-d6) δ 13.60 (s, 1H, NH), 12.75 (br s, 1H, COOH), 11.08 (s, 1H, NH), 7.85 (d, J=7.8 Hz, 1H), 7.71 (s, 1H, H-vinyl), 7.62 (dd, J=1.4 & 7.8 Hz, 1H), 7.41 (d, J=1.4 Hz, 1H), 3.65 (m, 4H, 2×CH2), 3.55 (m, 4H, 2×CH2), 2.81 (m, 2H, CH2), 2.54 (m, 2H, CH2) 1.73 (m, 4H, 2×CH2). MS-EI m/z 421 [M+]. Example 112 5-Bromo-3-(3-(pyrrolidine-1-carbonyl)-4,5,6,7-tetrahydro-2H-isoindol-1-ylmethylene]-1,3-dihydro-indol-2-one 1HNMR (360 MHz, DMSO-d6) δ 13.56 (s, 1H, NH), 11.00 (s, 1H, NH), 8.05 (d, J=1.8 Hz, 1H), 7.74 (s, 1H, H-vinyl), 7.28 (dd, J=1.3 & 8.3 Hz, 1H), 6.83 (d, J=8.3 Hz, 1H), 3.57 (m, 4H, 2×CH2), 2.79 (m, 2H, CH2), 2.65 (m, 2H, CH2), 1.88 (m, 4H, 2×CH2), 1.71 (m, 4H, 2×CH2). MS-EI m/z 439 & 441 [M+−1] & [M++1]. Example 114 3-(3-Dimethylcarbamoyl-4,5,6,7-tetrahydro-2H-isoindol-1-ylmethylene)-2-oxo-2,3-dihydro-1H-indole-6-carboxylic acid 1HNMR (360 MHz, DMSO-d6) δ 13.60 (s, 1H, NH), 12.72 (br s, 1H, COOH), 11.05 (s, 1H, NH), 7.85 (d, J=7.9 Hz, 1H), 7.72 (s, 1H, H-vinyl), 7.62 (dd, J=1.3 & 7.9 Hz, 1H), 7.42 (d, J=1.3 Hz, 1H), 3.03 (s, 6H, N(CH3)2), 2.81 (m, 2H, CH2), 2.55 (m, 2H, CH2), 1.73 (m, 4H, 2×CH2). MS-EI m/z 379 [M+]. Exapmle 115 4-Methyl-5-(5-methylsulfamoyl-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid 1HNMR (300 MHz, DMSO-d6) □ 13.56 (br s, 1H, NH), 8.24 (d, J=1.5 Hz, 1H), 7.86 (s, 1H, H-vinyl), 7.74 (d, J=2.96 Hz, 1H), 7.56 (dd, J=1.5 & 8.1 Hz, 1H), 7.20 (br m, 1H, NHCH3), 7.03 (d, J=8.1 Hz, 1H), 2.57 (s, 3H, CH3), 2.41 (s, 3H, CH3). MS-EI m/z 361 [M+]. Example 116 ([4-Methyl-5-(4-methyl-5-methylsulfamoyl-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carbonyl]-amino}-acetic acid ethyl ester 4-Methyl-1H-pyrrole-3-carboxylic acid ethyl ester (lit. ref. D. O. Cheng, T. L. Bowman and E. LeGoff; J. Heterocyclic Chem.; 1976; 13; 1145-1147) was formylated using method A, hydrolysed using method B followed by amidation (method C) to give [(5-formyl-4-methyl-1H-pyrrole-3-carbonyl)-amino]-acetic acid ethyl ester. 4-Methyl-5-methylaminosulfonyl-2-oxindole (50 mg, 0.21 mmol) was condensed with [(5-formyl-4-methyl-1H-pyrrole-3-carbonyl)-amino]-acetic acid ethyl ester (100 mg, 0.42 mmol) and piperidine (0.1 mL) in ethanol (2 mL) to give 50 mg (52%) of the title compound. 1HNMR (360 MHz, DMSO-d6) δ 13.59 (s, 1H, NH), 11.29 (v.br. s, 1H, NH—CO), 8.33 (t, J=5.8 Hz, 1H, CONHCH2), 7.83 (d, J=3.11 Hz, 1H), 7.80 (s, 1H, H-vinyl), 7.71 (d, J=8.5 Hz, 1H), 7.34 (br m, 1H, NHCH3), 6.89 (d, J=8.5 Hz, 1H), 4.11 (q, J=7.1 Hz, 2H, OCH2CH3), 3.92 (d, J=5.8 Hz, 2H, GlyCH2), 2.86 (s, 3H, CH3), 2.48 (s, 3H, CH3), 2.42 (d, J=4.71 Hz, 3H, HNCH3), 1.20 (t, J=7.1 Hz, 3H, OCH2CH3). MS-EI m/z 460 [M+]. Example 117 {[4-Methyl-5-(5-methylsulfamoyl-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carbonyl]-amino}-acetic acid ethyl ester A mixture of 5-methylaminosulfonyl-2-oxindole (0.06 g, 0.22 mmol), [(5-formyl-4-methyl-1H-pyrrole-3-carbonyl)-amino]-acetic acid ethyl ester (0.075 g, 0.27 mmol) and piperidine (2 drops) in ethanol (5 mL) was heated in a sealed tube at 90° C. for 12 hrs. After cooling, the precipitate was collected by vacuum filtration, washed with ethanol, triturated with dichloromethane/ether and dried to give 0.035 g (36%) of the title compound as a yellowish brown solid. 1H NMR (360 MHz, DMSO-d6 ) δ 13.6 (s, 1H, NH), 11 (v.br. s, 1H, NH—CO), 8.30 (t, J=5.7 Hz, 1H, CONHCH2), 8.25 (d, J=1.2 Hz, 1H), 7.88 (s, 1H, H-vinyl), 7.84 (d, J=3.3 Hz, 1H), 7.57 (dd, J=1.9 & 8.5 Hz, 1H), 7.14 (br m, 1H, NHCH3), 7.04 (d, J=8.5 Hz, 1H), 4.11 (q, J=6.7 Hz, 2H, OCH2CH3), 3.92 (d, J=5.7 Hz, 2H, GlyCH2), 2.55 (s, 3H, CH3), 2.41 (m, 3H, NCH3), 1.20 (t, J=6.7 Hz, 3H, OCH2CH3). MS m/z 446 [M+]. Example 118 {(4-Methyl-5-(5-methylsulfamoyl-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carbonyl]-amino)-acetic acid A mixture of [(5-formyl-4-methyl-1H-pyrrole-3-carbonyl)-amino]-acetic acid ethyl ester (0.142 g, 0.59 mmol) and 1N NaOH (1.2 mL) in methanol (10 mL) was stirred at room temperature for 1 hr. The reaction was concentrated and the residue was condensed with 5-methylaminosulfonyl-2-oxindole (0.13 g, 0.48 mmol) and piperidine (0.12 mL) in ethanol (12 mL) to give 0.11 g (52%) of the title compound. 1HNMR (300 MHz, DMSO-d6) δ 13.98 (br s, 1H, NH), 8.17 (s, 1H), 7.80 (s, 1H), 7.75 (d, J=3.1 Hz, 1H), 7.51 (dd, J=2 & 8.2 Hz, 1H), 7.21 (m on br s, 2H), 6.97 (d, J=8.1 Hz, 1H), 3.41 (d, J=4.2 Hz, 2H, CH2NH), 2.54 (s, 3H, pyrrole-CH3), 2.39 (s, 3H, ArCH3). MS m/z 417 [M−1]+. Example 120 5-Methyl-2-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid 1HNMR (300 MHz, DMSO-d6) δ 13.77 (br s, 1H, NH), 12.49 (s, 1H, COOH), 11.07 (s, 1H, NH), 8.39 (s, 1H, H-vinyl), 7.43 (d, J=7.47 Hz, 1H), 7.20 (t, J=7.47 Hz, 1H), 7.03 (t, J=7.47 Hz, 1H), 6.91 (d, J=7.47 Hz, 1H), 6.49 (d, J=1.53 Hz, 1H), 2.34 (s, 3H, CH3). MS m/z 269 [M+H]+. Example 121 5-Methyl-2-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid ethyl ester 1HNMR (300 MHz, DMSO-d6) δ 13.79 (s, 1H, NH), 11.08 (s, 1H, NH), 8.31 (s, 1H, H-vinyl), 7.45 (d, J=7.52 Hz, 1H), 7.20 (t, J=7.52 Hz, 1H), 7.03 (t, J,=7.52 Hz, 1H), 6.91 (d, J=7.52 Hz, 1H), 6.50 (d, J=2.1 Hz, 1H), 4.26 (q, J=7.2 Hz, 2H, OCH2CH3), 2.33 (s, 3H, CH3), 1.32 (t, J=7.2 Hz, 3H, OCH2CH3). MS m/z 297.1 [M+H]+. Example 122 2-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-5-methyl-1H-pyrrole-3-carboxylic acid ethyl ester 1HNMR (360 MHz, DMSO-d6) δ 13.72 (s, 1H, NH), 11.16 (s, 1H, NH), 8.29 (s, 1H, H-vinyl), 7.53 (d, J=2.0 Hz, 1H), 7.35 (dd, J=2.0 & 8.05 Hz, 1H), 6.87 (t, J=8.05 Hz, 1H), 6.53 (d, J=2.4 Hz, 1H), 4.28 (q, J=7.03 Hz, 2H, OCH2CH3), 2.35 (s, 3H, CH3), 1.33 (t, J=7.03 Hz, 3H, OCH2CH3). MS m/z 375 & 377 [M+H]+. Example 123 2-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-5-methyl-1H-pyrrole-3-carboxylic acid 1HNMR (300 MHz, DMSO-d6) δ 13.72(s, 1H, NH), 12.57 (s, 1H, COOH), 11.19 (s, 1H, NH), 8.36 (s, 1H, H-vinyl), 7.51 (d, J=1.4 Hz, 1H), 7.34 (dd, J=1.4 & 8.17 Hz, 1H), 6.87 (t, J=8.17 Hz, 1H), 6.52 (d, J=2.5 Hz, 1H), 2.35 (s, 3H, CH3). MS m/z 347 & 349 [M+H]+. Example 124 2-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-5-methyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ylethyl)-amide To a solution of 2-formyl-5-methyl-1H-pyrrole-3-carboxylic acid (250 mg, 1.63 mmol) in dimethylformamide (3 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (376 mg, 1.2 equiv.), 1-hydroxybenzotriazole (265 mg, 1.2 equiv.), triethylamine (0.45 mL, 2 equiv.) and 1-(2-aminoethyl)pyrrolidine (0.23 mL. 1.1 equiv.). After stirring at room temperature overnight, the reaction was diluted with saturated sodium bicarbonate and brine (with extra salt) and extracted with 10% methanol in dichloromethane. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated to give 130 mg of 2-formyl-5-methyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide. A mixture of 5-bromo-2-oxindole (106 mg, 0.5 mmol), 2-formyl-5-methyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (125 mg, 1 equiv.) and piperidine (0.2 mL) in ethanol (2 mL) was heated in a sealed tube at 80° C. for 1 hr and then cooled. The precipitate which formed was collected by vacuum filtration, washed with ethanol and ethyl acetate and dried to give the title compound as an orange solid. 1HNMR (300 MHz, DMSO-d6) δ 13.62 (s, 1H, NH), 11.06 (br s, 1H, NH), 8.56 (s, 1H, H-vinyl), 8.15 (m, 1H, CONHCH2), 7.48 (d, J=1.8 Hz, 1H), 7.31 (dd, J=1.8 & 7.9 Hz, 1H), 6.86 (d, J=7.9 Hz, 1H), 6.60 (d, J=2.3 Hz, 1H), 3.35 (m, 2H, HNCH2CH2), 2.56 (t, J=6.91 Hz, 2H, HNCH2CH2), 2.35 (s, 3H, CH3), 1.67 (m, 4H, 2×CH2). MS m/z 443/445 [M+ and M++2]. Example 125 2-(5-Bromo-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-5-methyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)-amide To a solution of 2-formyl-5-methyl-1H-pyrrole-3-carboxylic acid (320 mg, 2.1 mmol) in dimethylformamide (3 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (483 mg, 1.2 equiv.), 1-hydroxybenzotriazole (340 mg, 1.2 equiv.), triethylamine (0.59 mL, 2 equiv.) and N,N-diethylethylenediamine (0.32 mL, 1.1 equiv.). After stirring at room temperature overnight, the reaction was diluted with saturated sodium bicarbonate and brine (with extra salt) and extracted with 10% methanol in dichloromethane. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated to give 2-formyl-5-methyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)-amide. A mixture of 5-bromo-2-oxindole (106 mg, 0.5 mmol), 2-formyl-5-methyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (126 mg, 1 equiv.) and piperidine (0.2 mL) in ethanol (2 mL) was heated in a sealed tube at 80° C. for 1 hr and then cooled. The precipitate was collected by vacuum filtration, washed with ethanol and ethyl acetate and dried to give the title compound as an orange solid. 1HNMR (360 MHz, DMSO-d6) δ 13.62 (s, 1H, NH), 11.11 (br s, 1H, NH), 8.54 (s, 1H, H-vinyl), 8.1 (m, 1H, CONHCH2), 7.49 (d, J=2.2 Hz, 1H), 7.31 (dd, J=2.2 & 8.3 Hz, 1H), 6.86 (d, J=8.3 Hz, 1H), 6.58 (d, J=2.24 Hz, 1H), 3.31 (m, 2H, HNCH2CH2), 2.59 (m, 6H, 3×CH2), 2.36 (s, 3H, CH3), 0.99 (t, J=6.8 Hz, 6H, N(CH2CH3)2). MS m/z 445/447 [M+ and M++2]. Example 126 2,4-Dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide A mixture of 1,3-dihydro-indol-2-one (266 mg, 2 mmol), 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (530 mg, 2 mmol) and piperidine (1 drop) in ethanol was heated at 90° C. for 2 hours. The reaction was cooled to room temperature, the resulting precipitate was collected by vacuum filtration, washed with ethanol and dried to give 422 mg (55%) of the title compound as a light yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 13.7 (s, 1H, NH), 10.9 (s, 1H, NH), 7.88 (d, J=7.6 Hz, 1H), 7.64 (s, 1H, H-vinyl), 7.41 (t, J=5.4 Hz, 1H, NH), 7.13 (dt, J=1.2 & 7.6 Hz, 1H), 6.99 (dt, J=1.2 & 7.6 Hz, 1H), 6.88 (d, J=7.6 Hz, 1H), 3.28 (m, 2H), 2.48-2.55 (m, 6H), 2.44 (s, 3H, CH3), 2.41 (s, 3H, CH3), 0.97 (t, J=7.2 Hz, 6H, N(CH2CH3)2). MS+ve APCI 381 [M++1]. Example 127 5-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide A mixture of 5-Chloro-1,3-dihydro-indol-2-one (335 mg, 2 mmol), 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (530 mg, 2 mmol) and piperidine (1 drop) in ethanol was heated at 90° C. for 2 hours. The reaction was cooled to room temperature; the resulting precipitate was collected by vacuum filtration, washed with ethanol and dried to give 565 mg (68%) of the title compound as an orange solid. 1H NMR (400 MHz, DMSO-d6) δ 13.65 (s, 1H, NH), 11.0 (s, 1H, NH), 7.98 (d, J=2.1 Hz, 1H) 7.77 (s, 1H H-vinyl), 7.44 (t, NH), 7.13 (dd, J=2.1 & 8.4 Hz, 1H) 6.87 (d, J=8.4 Hz, 1H), 3.28 (g, 2H), 2.48-2.53 (m, 6H), 2.44 (s, 3H, CH3), 2.43 (s, 3H, CH3), 0.97 (t, J=7.0 Hz, 6H, N(CH2CH3)2) MS+ve APCI 415 [M++1]. Example 128 2,4-Dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-ethyl)-amide 1,3-Dihydro-indol-2-one was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide to give the title compound. MS+ve APCI 379 [M++1]. Example 129 5-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide 5-Fluoro-1,3-dihydro-indol-2-one was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide to give the title compound. MS+ve APCI. 397 [M++1]. Scale-Up Procedure: 5-Formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (61 g), 5-fluoro-1,3-dihydro-indol-2-one (79 g), ethanol (300 mL) and pyrrolidine (32 mL) were refluxed for 4.5 hours. Acetic acid (24 mL) was added to the mixture and refluxing was continued for 30 minutes. The mixture was cooled to room temperature and the solids collected by vacuum filtration and washed twice with ethanol. The solids were stirred for 130 minutes in 40% acetone in water (400 mL) containing 12 N hydrochloric acid (6.5 mL). The solids were collected by vacuum filtration and washed twice with 40% acetone in water. The solids were dried under vacuum to give 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (86 g, 79% yield) as an orange solid. 1H-NMR (dimethylsulfoxide-d6) δ 2.48, 2.50 (2×s, 6H, 2×CH3), 6.80, 6.88, 7.68, 7.72 (4×m, 4H, aromatic and vinyl), 10.88 (s, 1H, CONH), 12.12 (s, 1H, COOH), 13.82 (s, 1H, pyrrole NH). MS m/z 299 [M−1]. 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (100 g) and dimethylformamide (500 mL) were stirred and benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (221 g), 1-(2-aminoethyl)pyrrolidine (45.6 g) and triethylamine (93 mL) were added. The mixture was stirred for 2 hours at ambient temperature. The solid product was collected by vacuum filtration and washed with ethanol. The solids were slurry-washed by stirring in ethanol (500 mL) for one hour at 64° C. and cooled to room temperature. The solids were collected by vacuum filtration, washed with ethanol, and dried under vacuum to give 5-(5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (101.5 g, 77% yield). 1H-NMR (dimethylsulfoxide-d6) δ 1.60 (m, 4H, 2×CH2), 2.40, 2.44 (2×s, 6H, 2×CH3), 2.50 (m, 4H, 2×CH2), 2.57, 3.35 (2×m, 4H, 2×CH2), 7.53, 7.70, 7.73, 7.76 (4×m, 4H, aromatic and vinyl), 10.88 (s, 1H, CONH), 13.67 (s, 1H, pyrrole NH). MS m/z 396 [M+1]. Example 130 5-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide 5-Chloro-1,3-dihydro-indol-2-one was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide to give the title compound. MS+ve APCI 413 [M++1]. Example 131 2,4-Dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)-amide 1,3-Dihydro-indol-2-one was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylamino-ethyl)amide to give the title compound. 1H NMR (400 MHz, PMSO-d6) δ 13.63 (s, 1H, NH), 10.90 (s, 1H, NH), 7.78 (d, J=7.8 Hz, 1H), 7.63 (s, 1H H-vinyl), 7.48 (t, 1H, NH), 7.13 (dt, 1H), 6.98 (dt, 1H), 6.88 (d, J=7.7 Hz, 1H), 3.31 (q, J=6.6 Hz, 2H), 2.43 (s, 3H, CH3), 2.40 (s, 3H, CH3), 2.38 (t, J=6.6 Hz, 2H), 2.19 (s, 6H, N(CH2CH3)2) MS+ve APCI 353 [M++1]. Example 132 5-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)-amide 5-Fluoro-1,3-dihydro-indol-2-one was condensed with 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-dimethylaminoethyl)amide to give the title compound. 1H NMR (400 MHz, DMSO-d6) δ 13.68 (s, 1H, NH), 10.90 (s, 1H, NH), 7.76 (dd, J=2.4 & 9.4 Hz, 1H), 7.71 (s, 1H H-vinyl), 7.51 (t, 1H, NH), 6.93 (m, 1H), 6.84 (dd, J=4.6 & 8.4 Hz, 1H), 3.31 (q, J=6.6 Hz, 2H), 2.43 (s, 3H, CH3), 2.41 (s, 3H, CH3), 2.38 (t, J=6.6 Hz, 2H), 2.19 (s, 6H, N(CH2CH3)2) MS+ve APCI 371 [M++1]. Example 193 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-ethylamino-ethyl)-amide 5-Formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-ethylamino-ethyl)-amide (99 g), ethanol (400 mL), 5-fluoro-2-oxindole (32 g) and pyrrolidine (1.5 g) were refluxed for 3 hours with stirring. The mixture was cooled to room temperature and the solids collected by vacuum filtration. The solids were stirred in ethanol at 60° C., cooled to room temperature and collected by vacuum filtration. The product was dried under vacuum to give 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-ethylamino-ethyl)-amide (75 g, 95% yield). 1H-NMR (dimethylsulfoxide-d6) δ 1.03 (t, 3H, CH3), 2.42, 2.44 (2×s, 6H, 2×CH3), 2.56 (q, 2H, CH2), 2.70, 3.30 (2×t, 4H, 2×CH2), 6.85, 6.92, 7.58, 7.72, 7.76 (5×m, 5H, aromatic, vinyl and CONH), 10.90 (br s, 1H, CONH), 13.65 (br s, 1H, pyrrole NH). MS m/z 369 [M−1]. Example 195 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethyl-N-oxoamino-ethyl)-amide Method A: 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (598 mg) and dichloromethane (60 mL) in an ice bath were treated with 3-chloroperbenzoic acid (336 mg) and the mixture stirred at room temperature overnight. The solvent was rotary evaporated and the residue suspended in methanol (20 mL). Water (20 mL) containing sodium hydroxide (240 mg) was added and the mixture stirred for one hour. The precipitate was collected by vacuum filtration, washed with 5 mL of water and dried under a vacuum to give 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethyl-N-oxoamino-ethyl)-amide (510 mg, 82% yield) as an orange solid. 1H-NMR (DMSO-d6) δ 13.72 (br s, 1H, NH), 11.02 (br s, 1H, CONH), 9.81 (br s, 1H, CONH), 7.75 (dd, 1H, aromatic), 7.70 (s, 1H, aromatic), 6.93 (td, 1H, aromatic), 6.84 (m, 1H, aromatic), 3.63 (m, 2H, CH2), 3.29 (m, 2H, CH2), 3.14 (m, 4H, 2×CH2), 2.47 (s, 1H, CH3), 2.45 (s, 3H, CH3), 1.64 (t, 6H, 2×CH3). MS m/z 415 [M+1]. Method B: 5-Formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (10 g) was suspended in dichloromethane (100 mL) and cooled in an ice bath. 3-Chloro-peroxybenzoic acid (13.1 g) was added with stirring and the mixture allowed to warm to room temperature and then stirred ovenight. The mixture was rotary evaporated to dryness and chromatographed on a column of silica gel eluting with 20% methanol in dichloromethane. Fractions containing product were combined and rotary evaporated to dryness to give 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethyl-N-oxoamino-ethyl)-amide (9 g, 83% yield). 5-Formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethyl-N-oxoamino-ethyl)-amide (9 g), 5-fluoro-1,3-dihydro-indol-2-one ((9 g, 83% yield)), and pyrrolidine ((9 g, 83% yield (0.1 g) were refluxed in ethanol (30 mL) for 4 hours. The mixture was cooled in an ice bath and the precipitate collected by vacuum filtration and washed with ethanol. The solids were stirred in ethyl acetate (30 mL), collected by vacuum filtration, washed with ethyl acetate and dried under vacuum to give 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethyl-N-oxoamino-ethyl)-amide (10.3 g 80% yield) as an orange solid. 1H-NMR (DMSO-d6) δ 13.72 (br s, 1H, NH), 11.02 (br s, 1H, CONH), 9.81 (br s, 1H, CONH), 7.75 (dd, 1H, aromatic), 7.70 (s, 1H, aromatic), 6.93 (td, 1H, aromatic), 6.84 (m, 1H, aromatic), 3.63 (m, 2H, CH2), 3.29. (m, 2H, CH2), 3.14 (m, 4H, 2×CH2), 2.47 (s, 1H, CH3), 2.45 (s, 3H, CH3), 1.64 (t, 6H, 2×CH3). MS m/z 415 [M+1]. Example 190 5-(5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-(pyridin-1-yl)ethyl]-amide. 5-[5-Fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (120 mg, 0.4 mmol) was shaken with EDC, HCl (96 mg, 0.5 mmol), anhydrous 1-hydroxy-benztriazole (68 mg, 0.5 mmol), and 2-(2-aminoethylpyridine purchased from Aldrich in anhydrous DMF (3 mL) for 2-3 days at room temperature. The reaction mixture was diluted with 1M NaHCO3 (1.5 ml), then with 8 ml of water. The precipitated crude product was collected by filtration, washed with water, dried and purified by crystallization or chromatography to give 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(pyridin-1-yl)-ethyl]amide. Example 189 5-[5-Chloro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-(pyridin-1-yl)ethyl]amide Proceeding as described in previous example but substituting 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid with 5-[5-chloro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (127 mg)-provided 5-(5-chloro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(pyridin-1-yl)ethyl]amide. Example 192 5-[5-Bromo-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(pyridin-1-yl)ethyl]amide Proceeding as described in Example 190 above but substituting 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid with 5-(5-bromo-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (145 mg) provided 5-(5-bromo-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(pyridin-1-yl)ethyl]amide. Example 191 5-[2-Oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(pyridin-1-yl)ethyl]amide Proceeding as described in Example 190 above but substituting 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidene-methyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid with 5-(2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (113 mg) provided 5-[2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(pyridin-1-yl)ethyl]amide. Example 203 5-[5-Cyano-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(pyridin-1-yl)ethyl]amide Proceeding as described in Example 190 above but substituting 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid with 5-[5-cyano-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (123 mg) provided 5-[5-cyano-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-1-dimethyl-1H-pyrrole-3-carboxylic acid [2-(pyridin-1-yl)ethyl]amide. Examples 142, 186, 187, 188 and 204 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with 1-(2-aminoethyl)pyrrolidine, purchased from Aldrich Chemical Company, Inc. provided the desired compounds. Examples 143-147 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with 1-(2-aminoethyl)imidazolin-2-one (prepared by heating dimethyl carbonate with bis(2-aminoethyl) amine (2 equivalents) in a sealed flask to 150° C. for 30 min., following the procedure described in U.S. Pat. No. 2,613,212 (1950), to Rohm & Haas Co. The crude product was purified on silica using an eluent mixture chloroform-methanol-aqueous ammonia 80:25:2) provided the desired compounds. Examples 148-151 and 184 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with 4-(2-aminoethyl)piperazine-1-acetic acid ethyl ester (prepared as follows: Piperazine-1-acetic acid ethyl ester (11.22 g) was treated with iodoacetonitrile (5.0 mL) in the presence of potassium carbonate (6.9 g) in ethyl acetate (260 mL) at 0° C. After complete iodoacetonitrile addition (45 min), the reaction mixture was subsequently stirred at room temperature for 11 hours. The reaction mixture was filtered and the filtrates evaporated. The residue was hydrogenated in a presence of cobalt boride (prepared from CoCl2 and sodium borohydride) at room temperature at 50 psi for 2 days in ethanol. Filtration, evaporation and chromatographic purification using an eluent mixture chloroform-methanol-aqueous ammonia 80:25:2 provided the desired amine (3.306 g) as a pale yellow oil) provided the desired compounds. Example 152-153 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with 2-[(2-aminoethylamino)]acetonitrile (prepared as follows: A solution of iodoacetonitrile (50 mmol) in ethyl alcohol (80 ml) was added to a solution of ethylene diamine (150 ml) in ethyl alcohol (60 ml) at 0° C. over a period of 30 minutes. The stirring was continued for another 1 hr at 0° C., then at room temperature for 14 hours. 55 mmol of potassium carbonate was added, stirred for 30 minutes, filtered and the filtrate was concentrated at room temperature. The residue, was purified on silica using an eluent mixture chloroform-methanol-aqueous ammonia 80:15:1.5 to give 2-[(2-aminoethylamino)]-acetonitrile (3.550 g) which was used immediately) provided the desired compounds. Example 154-158 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with 1-(3-aminopropyl)-azepin-2-one (prepared according to the procedure in Kraft A.: J. Chem. Soc. Perkin Trans. 1, 6, 1999, 705-14, except that the hydrolysis of DBU was performed at 145° C. neat in a presence of lithium hydroxide (1 hr, 5 ml of DBU, 2 ml of water, 420 mg of lithium hydroxyde hydrate). Purification of the crude product on silica using an eluent mixture chloroform-methanol-aqueous ammonia 80:40:4 provided 1-(3-aminopropyl)azepin-2-one (4.973 g, 87% yield)) provide the desired compounds. Examples 133-135, 159 and 200 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with N-acetyl ethylene diamine, (prepared by heating a mixture of ethyl acetate with ethylene diamine (1.5 equivalents) to 160° C. for 1 hr in a sealed vessel. The vacuum distillation provided the desired product in 56% yield. N-acetylethylene diamine is also available from Aldrich) provide the desired compounds. Examples 146-140 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with 1-(3-aminopropyl)-tetrahydro-pyrimidin-2-one (prepared in the same way as 1-(3-aminopropyl)-azepin-2-one according to the procedure in Kraft A.: J. Chem. Soc. Perkin Trans. 1, 6, 1999, 705-14: Briefly, 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (4.939 g), lithium hydroxyde hydrate (918 mg) and 2 ml of water was heated without a solvent in a sealed vessel to 145° C. for 1 hr. The crude product was purified on a column of silica in chloroform-methanol-aqueous ammonia 80:40:4 to give pure amine (5.265 g, 94% yield). Examples 141, 160-162 and 185 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with 1-(2-aminoethyl)-piperazine-2-one (prepared as follows: Neat tert-butyldiphenylsilyl chloride (25 mL, 97.7 mmol) was added dropwise into a solution of DBU (19.5 ml, 130 mmol) and bis(2-aminoethyl)amine (4.32 mL, 40 mmol) in anhydrous dimethyl acetamide (80 mL) at room temperature upon cooling on water bath within 5 minutes. The mixture was stirred for 5 hours. Bromoacetic acid ethyl ester (6.70 mL, 60 mmol) was added neat upon cooling to room temperature. The reaction was stirred for 25 minutes, then evaporated on high vacuum. The residue was dissolved in methanol (200 ml), KHCO3 (10 g) and KF (12 g, 200 mmol) were added and the mixture was stirred at 60° C. for 5 hours. 10 g of Na2CO3 was added, stirred for 10 minutes, cooled and filtered. The filtrates were evaporated. The residue was extracted with hexanes (2 times 250 ml). The hexane-insoluble material was dissolved in ethanol (60 ml), filtered and evaporated. The residue was purified on a column of silica in chloroform-methanol-aqueous ammonia 80:40:4 to give pure amine (4.245 g, 74% yield)) provided the desired compounds. Examples 163-167 Proceeding as described in Examples 190, 189, 191, 192, and 203 above but substituting 2-(2-aminoethyl)pyridine with 3-[(2-aminoethyl)amino]propionitrile (prepared from ethylene diamine (150 mmol) and acrylonitrile (50 mmol) in THF at room temperature, as described in Israel, M. et al: J. Med Chem. 7, 1964, 710-16., provided the desired amine (4.294 g)) provided the desired compounds. Example 168 5-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-(4-methylpiperazin-1-yl)-ethyl]-amide To a stirred yellow muddy mixture of 5-(5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (90 mg), DMF (0.8 mL) and TEA (0.084 mL) in a 20 mL reaction tube, was added BOP reagent (199 mg). The mixture became clear in 5 min. 2-(4-Methylpiperazin-1-yl)ethylamine1 (51 mg) was added into the clear mixture. The resulting solution was stirred at room temperature over night. Yellow solid products precipitated from the reaction system. Thin layer chromatography (10% methanol in methylene chloride) showed that all the starting material had been converted into the product. The solid was isolated by vacuum filtration and washed once with ethanol (1 mL). The solid was sonicated in diethyl ether (2 mL) for 20 min and collected by vacuum filtration. After drying under vacuum, 5-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (4-methylpiperazin-1-yl-ethyl)-amide (79 mg, 62% yield) was obtained. 1H NMR (DMSO-d6) δ 2.13 (s, 3H, CH3), 2.40, 2.42 (2×s, 6H, 2×CH3), 2.41 (m, 2H, CH2), 2.47 (m, 8H, 4×CH2), 3.30 (m, 2H, CH2), 6.82 (dd, J=4.5, 8.7 Hz, 1H), 6.91 (td, 2J=2.4; 3J=8.8 Hz, 1H), 7.43 (t, J=5.6 Hz, 1H), 7.70 (s, 1H), 7.75 (dd, J=2.8, 9.6 Hz, 1H) (aromatic and vinyl), 10.88 (s, 1H, CONH), 13.67 (s, 1H, NH). LC-MS (m/z) 424.4 (M−1). Example 169 5-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (4-methylpiperazin-1-yl-ethyl)-amide Following the procedure in Example 168 above but substituting 5-[5-fluoro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid with 5-[5-chloro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (95 mg, 0.3 mmol) gave 5-(5-chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (4-methylpiperazin-1-yl-ethyl)-amide (76 mg, 58%). 1H NMR (DMSO-d6) δ 2.13 (s, 3H, CH3), 2.41, 2.42 (2×s, 6H, 2×CH3), 2.42 (m, 2H, CH2), 2.48 (m, 8H, 4×CH2), 3.30 (m, 2H, CH2), 6.84 (d, J=8.0 Hz, 1H), 7.11 (dd, J=2.0, 8.0 Hz, 1H), 7.44 (t, J=5.6 Hz, 1H), 7.76 (s, 1H), 7.97 (d, J=2.0 Hz, 1H) (aromatic and vinyl), 10.98 (s, 1H, CONH), 13.62 (s, 1H, NH). LC-MS (m/z) 440.2 (M−1). Example 170 5-(5-Bromo-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (4-methylpiperazin-1-yl-ethyl)-amide Following the procedure described in Example 168, but substituting 5-(5-chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid with 5-(5-bromo-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid gave 5-(5-bromo-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (4-methylpiperazin-1-yl-ethyl)-amide (39 mg, 54%). was obtained from SU011670 (54 mg, 0.15 mmol). 1H NMR (DMSO-d6) δ 2.14 (s, 3H, CH3), 2.41, 2.42 (2×s, 6H, 2×CH3), 2.42 (m, 2H, CH2), 2.48 (m, 8H, 4×CH2), 3.31 (m, 2H, CH2), 6.80 (d, J=8.0 Hz, 1H), 7.23 (dd, J=2.0, 8.0 Hz, 1H), 7.44 (t, J=5.6 Hz, 1H), 7.76 (s, 1H), 8.09 (d, J=2.0 Hz, 1H) (aromatic and vinyl), 10.99 (s, 1H, CONH), 13.61 (s, 1H, NH). LC-MS (m/z) 486.6 (M). Example 172 5-(2-Oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (4-methylpiperazin-1-yl-ethyl)-amide Following the procedure described in Example. 168 above but substituting 5-(5-fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid SU014900 with 5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid gave 5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (4-methylpiperazin-1-yl-ethyl)-amide, SU014903 (136 mg, 84%) was obtained from SU012120 (112.8 mg, 0.4 mmol) 1H-NMR (DMSO-d6) δ 2.13 (s, 3H, CH3), 2.39, 2.42 (2×s, 6H, 2×CH3), 2.42 (m, 2H, CH2), 2.48 (m, 8H, 4×CH2), 3.30 (t, 2H, CH2), 6.86 (d, J=8.0 Hz, 1H), 6.96 (t, J=7.4 Hz, 1H), 7.10 (t, J=7.8 Hz, 1H), 7.41 (t, J=5.4 Hz, 1H), 7.62 (s, 1H), 7.76 (d, J=7.6 Hz, 1H) (aromatic and vinyl), 10.88 (s, 1H, CONH), 13.61 (s, 1H, NH). LC-MS (m/z) 406.6 (M−1). Example 171 5-(2-Oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-(3,5-dimethylpiperazin-1-yl)ethyl)amide To a stirred yellow muddy mixture of 5-[2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (112.8 mg, 0.4 mmol), DMF (0.5 mL) and triethylamine (0.111 mL) in a 20 mL reaction tube, was added BOP reagent (265 mg). The mixture became clear in 5 min. 2-(2,6-dimethylpiperazin-1-yl)ethylamine (68.6 mg) (see., Tapia, L. Alonso-Cires, P. Lopez-Tudanca, R. Mosquera, L. Labeaga, A. Innerarity, A. Orjales, J. Med. Chem., 1999, 42, 2870-2880) was added into the clear mixture. The resulting solution was stirred at room temperature over night. Thin layer chromatography (10% methanol in methylene chloride) showed that all the starting material had been converted into the product. The reaction mixture was evaporated to dryness and then purified by flash chromatography (CH2Cl2/CH3OH=20/1-15/1) followed by recrystalization to give 5-[2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(3,5-dimethylpiperazin-1-yl)ethyl)amide (83 mg, 50% yield). 1H NMR (DMSO-d6) δ 1.15, 1.16 (2×s, 6H, 2×CH3), 1.95 (t, J=11.6 Hz, 2H, CH2), 2.41, 2.47 (2×s, 6H, 2×CH3), 2.50 (m, 2H, CH2), 3.03 (d, J=10 Hz, 2H), 3.19 (m, 2H), 3.30 (m, 2H, CH2), 6.86 (d, J=8.0 Hz, 1H), 6.97 (t, J=7.2 Hz, 1H), 7.11 (t, J=7.8 Hz, 1H), 7.48 (t, J=5.6 Hz, 1H), 7.61 (s, 1H), 7.75 (d, J=7.6 Hz, 1H) (aromatic and vinyl), 10.88 (s, 1H, CONH), 13.62 (s, 1H, NH). LC-MS (m/z) 422.2 (M+1). Example 173 5-(5-Fluoro-2-oxo-1,2-dihydro -indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-(3,5-dimethylpiperazin-1-yl)ethyl)amide Following the procedure described in Example 168 above the desired compound was obtained (60 mg, 0.2 mmol). 1H NMR (DMSO-d6) δ 0.891, 0.907 (2×s, 6H, 2×CH3), 1.49 (t, J=10.4 Hz, 2H), 2.40, 2.42 (2×s, 6H, 2×CH3), 2.41 (m, 2H, CH2), 2.74 (m, 4H), 3.30 (m, 2H), 6.82 (dd, J=4.5, 8.7 Hz, 1H), 6.90 (td, 2J=2.4, 3J=8.4 Hz, 1H), 7.42 (t, J=5.6 Hz, 1H), 7.70 (s, 1H), 7.74 (dd, J=4.6, 8.4 Hz, 1H) (aromatic and vinyl), 10.88 (s, 1H, CONH), 13.65 (s, 1H, NH). LC-MS (m/z) 438.4 (M−1). Example 174 5-[5-Chloro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(3,5-dimethylpiperazin-1-yl)ethyl)amide Following the procedure for Example 171 above the desired compound (31.2 mg, 34%) was obtained from 5-[5-chloro-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (63 mg, 0.2 mmol). 1H NMR (DMSO-d6) δ 1.15, 1.16 (2×s, 6H, 2×CH3), 1.95 (t, J=11.6 Hz, 2H, CH2), 2.40, 2.42 (2×s, 6H, 2×CH3), 2.50 (m, 2H, CH2), 3.03 (d, J=11.2 Hz, 2H), 3.19 (m, 2H), 3.30 (m, 2H, CH2), 6.85 (d, J=8.4 Hz, 1H), 7.11 (dd, J=2.0, 8.0 Hz,1H), 7.52 (t, J=5.6 Hz, 1H), 7.76 (s, 1H), 7.97 (d, J=2.0 Hz, 1H) (aromatic and vinyl), 10.99 (s, 1H, CONH), 13.63 (s, 1H, NH). LC-MS (m/z) 456.2 (M+1). Example 175 5-[5-Bromo-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid [2-(3,5-dimethylpiperazin-1-yl)ethyl)amide Following the procedure described in Example 171 the desired compound (40 mg, 40%) was obtained from 5-[5-bromo-2-oxo-1,2-dihydro-indol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (74 mg, 0.2 mmol). 1H NMR (DMSO-d6) δ 1.15, 1.16 (2×s, 6H, 2×CH3), 1.95 (t, J=11.6 Hz, 2H, CH2), 2.40, 2.42 (2×s, 6H, 2×CH3), 2.50 (m, 2H, CH2), 3.03 (d, J=10.4 Hz, 2H), 3.19 (m, 2H), 3.30 (m, 2H, CH2), 6.81 (d, J=8.4 Hz, 1H), 7.24 (dd, J=2.0, 8.4 Hz, 1H), 7.51 (t, J=5.6 Hz, 1H), 7.76 (s, 1H), 8.10 (d, J=2.0 Hz, 1H) (aromatic and vinyl), 10.99 (s, 1H, CONH), 13.62 (s, 1H, NH). LC-MS (m/z) 498.4 (M−1). Biological Examples The following assays are employed to find those compounds demonstrating the optimal degree of the desired activity. A. Assay Procedures. The following assays may be used to determine the level of activity and effect of the different compounds of the present invention on one or more of the PKs. Similar assays can be designed along the same lines for any PK using techniques well known in the art. Several of the assays described herein are performed in an ELISA (Enzyme-Linked Immunosorbent Sandwich Assay) format (Voller, et al., 1980, “Enzyme-Linked Immunosorbent Assay,” Manual of Clinical Immunology, 2d ed., Rose and Friedman, Am. Soc. Of Microbiology, Washington, D.C., pp. 359-371). The general procedure is as follows: a compound is introduced to cells expressing the test kinase, either naturally or recombinantly, for a selected period of time after which, if the test kinase is a receptor, a ligand known to activate the receptor is added. The cells are lysed and the lysate is transferred to the wells of an ELISA plate previously coated with a specific antibody recognizing the substrate of the enzymatic phosphorylation reaction. Non-substrate components of the cell lysate are washed away and the amount of phosphorylation on the substrate is detected with an antibody specifically recognizing phosphotyrosine compared with control cells that were not contacted with a test compound. The presently preferred protocols for conducting the ELISA experiments for specific PKs is provided below. However, adaptation of these protocols for determining the activity of compounds against other RTKS, as well as for CTKs and STKs, is well within the scope of knowledge of those skilled in the art. Other assays described herein measure the amount of DNA made in response to activation of a test kinase, which is a general measure of a proliferative response. The general procedure for this assay is as follows: a compound is introduced to cells expressing the test kinase, either naturally or recombinantly, for a selected period of time after which, if the test kinase is a receptor, a ligand known to activate the receptor is added. After incubation at least overnight, a DNA labeling reagent such as 5-bromodeoxyuridine (BrdU) or H3-thymidine is added. The amount of labeled DNA is detected with either an anti-BrdU antibody or by measuring radioactivity and is compared to control cells not contacted with a test compound. GST-FLK-1 Bioassay This assay analyzes the tyrosine kinase activity of GST-Flk1 on poly(glu,tyr) peptides. Materials and Reagents: 1. Corning 96-well ELISA plates (Corning Catalog No. 5805-96). 2. poly(glu,tyr) 4:1, lyophilizate (Sigma Catalog #P0275). 3. Preparation of poly(glu,tyr)(pEY) coated assay plates: Coat 2 ug/well of poly(glu,tyr)(pEY) in 100 ul PBS, hold at room temperature for 2 hours or at 4° C. overnight. Cover plates well to prevent evaporation. 4. PBS Buffer: for 1 L, mix 0.2 g KH2PO4, 1.15 g Na2HPO4, 0.2 g KCl and 8 g NaCl in approx. 900 ml dH2O. When all reagents have dissolved, adjust the pH to 7.2 with HCl. Bring total volume to 1 L with dH2O. 5. PBST Buffer: to 1 L of PBS Buffer, add 1.0 ml Tween-20. 6. TBB—Blocking Buffer: for 1 L, mix 1.21 g TRIS, 8.77 g NaCl, 1 ml TWEEN-20 in approximately 900 ml dH2O. Adjust pH to 7.2 with HCl. Add 10 g BSA, stir to dissolve. Bring total volume to 1 L with dH2O. Filter to remove particulate matter. 7. 1% BSA in PBS: To make a 1× working solution, add 10 g BSA to approx. 990 ml PBS buffer, stir to dissolve. Adjust total volume to 1 L with PBS buffer, filter to remove particulate matter. 8. 50 mM Hepes pH 7.5. 9. GST-Flk1cd purified from sf9 recombinant baculovirus transformation (SUGEN, Inc.). 10. 4% DMSO in dH2O. 11. 10 mM ATP in dH2O. 12. 40 mM MnCl2 13. Kinase Dilution Buffer (KDB): mix 10 ml Hepes (pH 7.5), 1 ml 5M NaCl, 40 μL 100 mM sodium orthovanadate and 0.4 ml of 5% BSA in dH2O with 88.56 ml dH2O. 14. NUNC 96-well V bottom polypropylene plates, Applied Scientific Catalog #AS-72092 15. EDTA: mix 14.12 g ethylenediaminetetraacetic acid (EDTA) to approx. 70 ml dH2O. Add 10 N NaOH until EDTA dissolves. Adjust pH to 8.0. Adjust total volume to 100 ml with dH2O. 16. 1° Antibody Dilution Buffer: mix 10 ml of 5% BSA in PBS buffer with 89.5 ml TBST. 17. Anti-phosphotyrosine monoclonal antibody conjugated to horseradish peroxidase (PY99 HRP, Santa Cruz Biotech). 18. 2,2′-Azinobis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS, Moss, Cat. No. ABST). 19. 10% SDS. Procedure: 1. Coat Corning 96-well ELISA plates with 2 μg of polyEY peptide in sterile PBS as described in step 3 of Materials and Reagents. 2. Remove unbound liquid from wells by inverting plate. Wash once with TBST. Pat the plate on a paper towel to remove excess liquid. 3. Add 100 μl of 1% BSA in PBS to each well. Incubate, with shaking, for 1 hr. at room temperature. 4. Repeat step 2. 5. Soak wells with 50 mM HEPES (pH7.5) (150 μl/well). 6. Dilute test compound with dH2O/4% DMSO to 4 times the desired final assay concentration in 96-well polypropylene plates. 7. Add 25 μl diluted test compound to ELISA plate. In control wells, place 25 μl of dH2O/4% DMSO. 8. Add 25 μl of 40 mM MnCl2 with 4× ATP (2 μM) to each well. 9. Add 25 μl 0.5M EDTA to negative control wells. 10. Dilute GST-Flk1 to 0.005 μg (5 ng)/well with KDB. 11. Add 50 μl of diluted enzyme to each well. 12. Incubate, with shaking, for 15 minutes at room temperature. 13. Stop reaction by adding 50 μl of 250 mM EDTA (pH 8.0). 14. Wash 3× with TBST and pat plate on paper towel to remove excess liquid. 15. Add 100 μl per well anti-phosphotyrosine HRP conjugate, 1:5,000 dilution in antibody dilution buffer. Incubate, with shaking, for 90 min. at room temperature. 16. Wash as in step 14. 17. Add 100 μl of room temperature ABTS solution to each well. 18. Incubate, with shaking, for 10 to 15 minutes. Remove any bubbles. 19. Stop reaction by adding 20 μl of 10% SDS to each well. 20. Read results on Dynatech MR7000 ELISA reader with test filter at 410 nM and reference filter at 630 nM. PYK2 Bioassay This assay is used to measure the in vitro kinase activity of HA epitope-tagged full length pyk2 (FL.pyk2-HA) in an ELISA assay. Materials and Reagents: 1. Corning 96-well Elisa plates. 2. 12CA5 monoclonal anti-HA antibody (SUGEN, Inc.) 3. PBS (Dulbecco's Phosphate-Buffered Saline (Gibco Catalog #450-1300EB) 4. TBST Buffer: for 1 L, mix 8.766 g NaCl, 6.057 g TRIS and 1 ml of 0.1% Triton X-100 in approx. 900 ml dH2O. Adjust pH to 7.2, bring volume to 1 L. 5. Blocking Buffer: for 1 L, mix 100 g 10% BSA, 12.1 g 100 mM TRIS, 58.44 g 1M NaCl and 10 mL of 1% TWEEN-20. 6. FL.pyk2-HA from sf9 cell lysates (SUGEN, Inc.). 7. 4% DMSO in MilliQue H2O. 8. 10 mM ATP in dH2O. 9. 1M MnCl2. 10. 1M MgCl2. 11. 1M Dithiothreitol (DTT). 12. 10× Kinase buffer phosphorylation: mix 5.0 ml 1M Hepes (pH 7.5), 0.2 ml 1M MnCl2, 1.0 ml 1 M MgCl2, 1.0 ml 10% Triton X-100 in 2.8 ml dH2O. Just prior to use, add 0.1 ml 1M DTT. 13. NUNC 96-well V bottom polypropylene plates. 14. 500 mM. EDTA in dH2O. 15. Antibody dilution buffer: for 100 mL, 1 mL 5% BSA/PBS and 1 mL 10% Tween-20 in 88 mL TBS. 16. HRP-conjugated anti-Ptyr PY99), Santa Cruz Biotech Cat. No. SC-7020. 17. ABTS, Moss, Cat. No. ABST-2000. 18. 10% SDS. Procedure: 1. Coat Corning 96 well ELISA plates with 0.5 μg per well 12CA5 anti-HA antibody in 100 μl PBS. Store overnight at 4° C. 2. Remove unbound HA antibody from wells by inverting plate. Wash plate with dH2O. Pat the plate on a paper towel to remove excess liquid. 3. Add 150 μl Blocking Buffer to each well. Incubate, with shaking, for 30 min at room temperature. 4. Wash plate 4× with TBS-T. 5. Dilute lysate in PBS (1.5 μg lysate/100 μl PBS). 6. Add 100 μl of diluted lysate to each well. Shake at room temperature for 1 hr. 7. Wash as in step 4. 8. Add 50 μl of 2× kinase Buffer to ELISA plate containing captured pyk2-HA. 9. Add 25 μL of 400 μM test compound in 4% DMSO to each well. For control wells use 4% DMSO alone. 10. Add 25 μL of 0.5 M EDTA to negative control wells. 11. Add 25 μl of 20 μM ATP to all wells. Incubate, with shaking, for 10 minutes. 12. Stop reaction by adding 25 μl 500 mM EDTA (pH 8.0) to all wells. 13. Wash as in step 4. 14. Add 100 μL HRP conjugated anti-Ptyr diluted 1:6000 in Antibody Dilution Buffer to each well. Incubate, with shaking, for 1 hr. at room temperature. 15. Wash plate 3× with TBST and 1× with PBS. 16. Add 100 μL of ABST solution to each well. 17. If necessary, stop the development reaction by adding 20 μL 10% SDS to each well. 18. Read plate on ELISA reader with test filter at 410 nM and reference filter at 630 nM. FGFR1 Bioassay This assay is used to measure the in vitro kinase activity of FGF1-R in an ELISA assay. Materials and Reagents: 1. Costar 96-well Elisa plates (Corning Catalog #3369). 2. Poly(Glu-Tyr) (Sigma Catalog #PO275). 3. PBS (Gibco Catalog #450-1300EB) 4. 50 mM Hepes Buffer Solution. 5. Blocking Buffer (5% BSA/PBS). 6. Purified GST-FGFR1 (SUGEN, Inc.) 7. Kinase Dilution Buffer. Mix 500 μl 1M Hepes (GIBCO), 20 μl 5% BSA/PBS, 10 μl 100 mM sodium orthovanadate and 50 μl 5M NaCl. 8. 10 mM ATP 9. ATP/MnCl2 phosphorylation mix: mix 20 μL ATP, 400 μL 1M MnCl2 and 9.56 ml dH2O. 10. NUNC 96-well V bottom polypropylene plates (Applied Scientific Catalog #AS-72092). 11. 0.5M EDTA. 12. 0.05% TBST Add 500 μL TWEEN to 1 liter TBS. 13. Rabbit polyclonal anti-phosphotyrosine serum (SUGEN, Inc.). 14. Goat anti-rabbit IgG peroxidase conjugate (Biosource, Catalog #ALI0404). 15. ABTS Solution. 16. ABTS/H2O2 solution. Procedure: 1. Coat Costar 96 well ELISA plates with 1 μg per well Poly(Glu, Tyr) in 100 μl PBS. Store overnight at 4° C. 2. Wash coated plates once with PBS. 3. Add 150 μL of 5%BSA/PBS Blocking Buffer to each well. Incubate, with shaking, for 1 hr.room temperature. 4. Wash plate 2× with PBS, then once with 50 mM Hepes. Pat plates on a paper towel to remove excess liquid and bubbles. 5. Add 25 μL of 0.4 mM test compound in 4% DMSO or 4% DMSO alone (controls) to plate. 6. Dilute purified GST-FGFR1 in Kinase Dilution Buffer (5 ng kinase/50 ul KDB/well). 7. Add 50 μL of diluted kinase to each well. 8. Start kinase reaction by adding 25 μl/well of freshly prepared ATP/Mn++ (0.4 ml 1M MnCl2, 40 μL 10 mM ATP, 9.56 ml dH2O), freshly prepared). 9. This is a fast kinase reaction and must be stopped with 25 μL of 0.5M EDTA in a manner similar to the addition of ATP. 10. Wash plate 4× with fresh TBST. 11. Make up Antibody Dilution Buffer: Per 50 ml: Mix 5 ml of 5% BSA, 250 μl of 5% milk and 50 μl of 100 mM sodium vanadate, bring to final volume with 0.05% TBST. 12. Add 100 μl per well of anti-phosphotyrosine (1:10000 dilution in AbB). Incubate, with shaking for 1 hr. at room temperature. 13. Wash as in step 10. 14. Add 100 μl per well of Biosource Goat anti-rabbit IgG peroxidase conjugate (1:6000 dilution in ADB). Incubate, with shaking for 1 hr. at room temperature. 15. Wash as in step 10 and then with PBS to remove bubbles and excess TWEEN. 16. Add 100 μl of ABTS/H2O2 solution to each well. 17. Incubate, with shaking, for 10 to 20 minutes. Remove any bubbles. 18. Read assay on Dynatech MR7000 elisa reader: test filter at 410 nM, reference filtrate 630 nM. EGFR Biossay This assay is used to the in vitro kinase activity of FGF1-R in an ELISA assay. Materials and Reagents: 1. Corning 96-well Elisa plates. 2. SUMO1 monoclonal anti-EGFR antibody. (SUGEN, Inc.). 3. PBS 4. TBST Buffer 5. Blocking Buffer: for 100 ml, mix 5.0 g Carnation Instant Non-fat Milk® with 100 ml of PBS. 6. A431 cell lysate (SUGEN, Inc.). 7. TBS Buffer: 8. TBS+10% DMSO: for 1L, mix 1.514 g TRIS, 2.192 g NaCl and 25 ml DMSO; bring to 1 liter total volume with dH2O. 9. ATP (Adenosine-5′-triphosphate, from Equine muscle, Sigma Cat. No. A-5394), 1.0 mM solution in dH2O. This reagent should be made up immediately prior to use and kept on ice. 10. 1.0 mM MnCl2. 11. ATP/MnCl2 phosphorylation mix: to make 10 ml, mix 300 μl of 1 mM ATP, 500 μl MnCl2 and 9.2 ml dH2O. Prepare just prior to use, keep on ice. 12. NUNC 96-well V bottom polypropylene plates. 13. EDTA. 14. Rabbit polyclonal anti-phosphotyrosine serum (SUGEN, Inc.). 15. Goat anti-rabbit IgG peroxidase conjugate (Biosource Cat. No. ALI0404) 16. ABTS. 17. 30% Hydrogen peroxide. 18. ABTS/H2O2. 19. 0.2 M HCl. Procedure: 1. Coat Corning 96 well ELISA plates with 0.5 μg SUMO1 in 100 μl PBS per well, store overnight at 4° C. 2. Remove unbound SUMO1 from wells by inverting plate to remove liquid. Wash 1× with dH2O. Pat the plate on a paper towel to remove excess liquid. 3. Add 150 μl of Blocking Buffer to each well. Incubate, with shaking, for 30 min. at room temperature. 4. Wash plate 3× with deionized water, then once with TBST. Pat plate on a paper towel to remove excess liquid and bubbles. 5. Dilute lysate in PBS (7 μg lysate/100 μl PBS). 6. Add 100 μl of diluted lysate to each well. Shake at room temperature for 1 hr. 7. Wash plates as in 4, above. 8. Add 120 μl TBS to ELISA plate containing captured EGFR. 9. Dilute test compound 1:10 in TBS, place in well 10. Add 13.5 μl diluted test compound to ELISA plate. To control wells, add. 13.5 μl TBS in 10% DMSO. 11. Incubate, with shaking, for 30 minutes at room temperature. 12. Add 15 μl phosphorylation mix to all wells except negative control well. Final well volume should be approximately 150μl with 3 FM ATP/5 mM MnCl2 final concentration in each well. Incubate with shaking for 5 minutes. 13. Stop reaction by adding 16.5 μl of EDTA solution while shaking. Shake for additional 1 min. 14. Wash 4× with deionized water, 2× with TBST. 15. Add 100 μl anti-phosphotyrosine (1:3000 dilution in TBST) per well. Incubate, with shaking, for 30-45 min. at room temperature. 16. Wash as in 4, above. 17. Add 100 μl Biosource Goat anti-rabbit IgG peroxidase conjugate (1:2000 dilution in TBST) to each well. Incubate with shaking for 30 min. at room temperature. 18. Wash as in 4, above. 19. Add 100 μl of ABTS/H2O2 solution to each well. 20. Incubate 5 to 10 minutes with shaking. Remove any bubbles. 21. If necessary, stop reaction by adding 100 μl 0.2 M HCl per well. 22. Read assay on Dynatech MR7000 ELISA reader: test filter at 410 nM, reference filter at 630 nM. PDGFR Bioassay This assay is used to the in vitro kinase activity of FGF1-R in an ELISA assay. Materials and Reagents: 1. Corning 96-well Elisa plates 2. 28D4C10 monoclonal anti-PDGFR antibody (SUGEN, Inc.). 3. PBS. 4. TBST Buffer. 5. Blocking Buffer (same as for EGFR bioassay). 6. PDGFR-β expressing NIH 3T3 cell lysate (SUGEN, Inc.). 7. TBS Buffer. 8. TBS+10% DMSO. 9. ATP. 10. MnCl2. 11. Kinase buffer phosphorylation mix: for 10 ml, mix 250 μl 1M TRIS, 200 μl 5M NaCl, 100 μl 1M MnCl2 and 50 μl 100 mM Triton X-100 in enough dH2O to make 10 ml. 12. NUNC 96-well V bottom polypropylene plates. 13. EDTA. 14. Rabbit polyclonal anti-phosphotyrosine serum (SUGEN,Inc.). 15. Goat anti-rabbit IgG peroxidase conjugate (Biosource Cat. No. ALI0404). 16. ABTS. 17. Hydrogen peroxide, 30% solution. 18. ABTS/H2O2. 19. 0.2 M HCl. Procedure: 1. Coat Corning 96 well ELISA plates with 0.5 μg 28D4C10 in 100 μl PBS per well, store overnight at 4° C. 2. Remove unbound 28D4C10 from wells by inverting plate to remove liquid. Wash 1× with dH2O. Pat the plate on a paper towel to remove excess liquid. 3. Add 150 μl of Blocking Buffer to each well. Incubate for 30 min. at room temperature with shaking. 4. Wash plate 3× with deionized water, then once with TBST. Pat plate on a paper towel to remove excess liquid and bubbles. 5. Dilute lysate in HNTG (10 μg lysate/100 μl HNTG). 6. Add 100 μl of diluted lysate to each well. Shake at room temperature for 60 min. 7. Wash plates as described in Step 4. 8. Add 80 μl working kinase buffer mix to ELISA plate containing captured PDGFR. 9. Dilute test compound 1:10 in TBS in 96-well polypropylene plates. 10. Add 10 μl diluted test compound to ELISA plate. To control wells, add 10 μl TBS+10% DMSO. Incubate with shaking for 30 minutes at room temperature. 11. Add 10 μl ATP directly to all wells except negative control well (final well volume should be approximately 100 μl with 20 μM ATP in each well.) Incubate 30 minutes with shaking. 12. Stop reaction by adding 10 μl of EDTA solution to each well. 13. Wash 4× with deionized water, twice with TBST. 14. Add 100 μl anti-phosphotyrosine (1:3000 dilution in TBST) per well. Incubate with shaking for 30-45 min. at room temperature. 15. Wash as in Step 4. 16. Add 100 μl Biosource Goat anti-rabbit IgG peroxidase conjugate (1:2000 dilution in TBST) to each well. Incubate with shaking for 30 min. at room temperature. 17. Wash as in Step 4. 18. Add 100 μl of ABTS/H2O2 solution to each well. 19. Incubate 10 to 30 minutes with shaking. Remove any bubbles. 20. If necessary stop reaction with the addition of 100 μl 0.2 M HCl per well. 21. Read assay on Dynatech MR7000 ELISA reader with test filter at 410 nM and reference filter at 630 nM. Cellular HER-2 Kinase Assay This assay is used to measure HER-2 kinase activity in whole cells in an ELISA format. Materials and Reagents: 1. DMEM (GIBCO Catalog #11965-092). 2. Fetal Bovine Serum (FBS, GIBCO Catalog #16000-044), heat inactivated in a water bath for 30 min. at 56° C. 3. Trypsin (GIBCO Catalog #25200-056). 4. L-Glutamine (GIBCO Catalog #25030-081) 5. HEPES (GIBCO Catalog #15630-080). 6. Growth Media Mix 500ml DMEM, 55 ml heat inactivated FBS, 10 ml HEPES and 5.5 ml L-Glutamine. 7. Starve Media Mix 500 ml DMEM, 2.5 ml heat inactivated FBS, 10 ml HEPES and 5.5 ml L-Glutamine. 8. PBS. 9. Flat Bottom 96-well Tissue Culture Micro Titer Plates (Corning Catalog #25860). 10. 15 cm Tissue Culture Dishes (Corning Catalog #08757148). 11. Corning 96-well ELISA Plates. 12. NUNC 96-well V bottom polypropylene plates. 13. Costar Transfer Cartridges for the Transtar 96 (costar Catalog #7610). 14. SUMO 1: monoclonal anti-EGFR antibody (SUGEN, Inc.). 15. TBST Buffer. 16. Blocking Buffer : 5% Carnation Instant Milk® in PBS. 17. EGF Ligand: EGF-201, Shinko American, Japan. Suspend powder in 100 uL of 10 mM HCl. Add 100 uL 10 mM NaOH. Add 800 uL PBS and transfer to an Eppendorf tube, store at −20° C. until ready to use. 18. HNTG Lysis Buffer For Stock 5× HNTG, mix 23.83 g Hepes, 43.83 g NaCl, 500 ml glycerol and 100 ml Triton X-100 and enough dH2O to make 1 L of total solution. For 1× HNTG*, mix 2 ml HNTG, 100 μL 0.1M Na3VO4, 250 μL 0.2M Na4P2O7 and 100 uL EDTA. 19. EDTA. 20. Na3VO4. To make stock solution, mix 1.84 g Na3VO4 with.90 ml dH2O. Adjust pH to 10. Boil in microwave for one minute (solution becomes clear). Cool to room temperature. Adjust pH to 10. Repeat heating/cooling cycle until pH remains at 10. 21. 200 mM Na4P2O7. 22. Rabbit polyclonal antiserum specific for phosphotyrosine (anti-Ptyr antibody, SUGEN, Inc.). 23. Affinity purified antiserum, goat anti-rabbit IgG antibody, peroxidase conjugate (Biosource Cat. #ALI0404), 24. ABTS Solution. 25. 30% Hydrogen peroxide solution. 26. ABTS/H2O2. 27. 0.2 M HCl. Procedure: 1. Coat Corning 96 well ELISA plates with SUMO1 at 1.0 ug per well in PBS, 100 ul final volume/well. Store overnight at 4° C. 2. On day of use, remove coating buffer and wash plate 3 times with dH2O and once with TBST buffer. All washes in this assay should be done in this manner, unless otherwise specified. 3. Add 100 ul of Blocking Buffer to each well. Incubate plate, with shaking, for 30 min. at room temperature. Just prior to use, wash plate. 4. Use EGFr/HER-2 chimera/3T3-C7 cell line for this assay. 5. Choose dishes having 80-90% confluence. Collect cells by trypsinization and centrifuge at 1000 rpm at room temperature for 5 min. 6. Resuspend cells in starve medium and count with trypan blue. Viability above 90% is required. Seed cells in starve medium at a density of 2,500 cells per well, 90 ul per well, in a 96 well microtiter plate. Incubate seeded cells overnight at 37° under 5% CO2. 7. Start the assay two days after seeding. 8. Test compounds are dissolved in 4% DMSO. Samples are then further diluted directly on plates with starve-DMEM. Typically, this dilution will be 1:10 or greater. All wells are then transferred to the cell plate at a further 1:10 dilution (10 μl sample and media into 90 μl of starve media. The final DMSO concentration should be 1% or lower. A standard serial dilution may also be used. 9. Incubate under 5% CO2 at 37° C. for 2 hours. 10. Prepare EGF ligand by diluting stock EGF (16.5 uM) in warm DMEM to 150 nM. 11. Prepare fresh HNTG* sufficient for 100 ul per well; place on ice. 12. After 2 hour incubation with test compound, add prepared EGF ligand to cells, 50 ul per well, for a final concentration of 50 nM. Positive control wells receive the same amount of EGF. Negative controls do not receive EGF. Incubate at 37° C. for 10 min. 13. Remove test compound, EGF, and DMEM. Wash cells once with PBS. 14. Transfer HNTG* to cells, 100 ul per well. Place on ice for 5 minutes. Meanwhile, remove blocking buffer from ELISA plate and wash. 15. Scrape cells from plate with a micropipettor and homogenize cell material by repeatedly aspirating and dispensing the HNTG* lysis buffer. Transfer lysate to a coated, blocked, washed ELISA plate. Or, use a Costar transfer cartridge to transfer lysate to the plate. 16. Incubate, with shaking, at room temperature for 1 hr. 17. Remove lysate, wash. Transfer freshly diluted anti-Ptyr antibody (1:3000 in TBST) to ELISA plate, 100 ul per well. 18. Incubate, with shaking, at room temperature, for 30 min. 19. Remove anti-Ptyr antibody, wash. Transfer freshly diluted BIOSOURCE antibody to ELISA plate(1:8000 in TBST, 100 ul per well). 20. Incubate, with shaking, at room temperature for 30 min. 21. Remove BIOSOURCE antibody, wash. Transfer freshly prepared ABTS/H2O2 solution to ELISA plate, 100 ul per well. 22. Incubate, with shaking, for 5-10 minutes. Remove any bubbles. 23. Stop reaction with the addition of 100 ul of 0.2M HCl per well. 24. Read assay on Dynatech MR7000 ELISA reader with test filter set at 410 nM and reference filter at 630 nM. CDK2/Cyclin A Assay This assay is used to measure the in vitro serine/threonine kinase activity of human cdk2/cyclin A in a Scintillation Proximity Assay (SPA). Materials and Reagents. 1. Wallac 96-well polyethylene terephthalate (flexi) plates (Wallac Catalog #1450-401). 2. Amersham Redivue [γ33P] ATP (Amersham catalog #AH 9968). 3. Amersham streptavidin coated polyvinyltoluene SPA beads (Amersham catalog #RPNQ0007). The beads should be reconstituted in PBS without magnesium or calcium, at 20 mg/ml. 4. Activated cdk2/cyclin A enzyme complex purified from Sf9 cells (SUGEN, Inc.). 5. Biotinylated peptide substrate (Debtide). Peptide biotin-X-PKTPKKAKKL is dissolved in dH2O at a concentration of 5 mg/ml. 6. Peptide/ATP Mixture: for 10 ml, mix 9.979 ml dH2O, 0.00125 ml “cold” ATP, 0.010 ml Debtide and 0.010 ml γ33P ATP. The ultimate concentration per well will be 0.5 μM “cold” ATP, 0.1 μg Debtide and 0.2 μCi γ33P ATP. 7. Kinase buffer: for 10 ml, mix 8.85 ml dH2O, 0.625 ml TRIS(pH 7.4), 0.25 ml 1M MgCl2, 0.25 ml 10% NP40 and 0.025 ml 1M DTT, added fresh just prior to use., 8. 10 mM ATP in dH2O. P 9. 1M Tris, pH adjusted to 7.4 with HCl. 10. 1M MgCl2. 11. 1M DTT. 12. PBS (Gibco Catalog #14190-144). 13. 0.5M EDTA. 14. Stop solution: For 10 ml, mix 9.25 ml PBS, 0.005 ml 100 mM ATP, 0.1 ml 0.5 M EDTA, 0.1 ml 10% Triton X-100 and 1.25 ml of 20 mg/ml SPA beads. Procedure: 1. Prepare solutions of test compounds at 5× the desired final concentration in 5% DMSO. Add 10 ul to each well. For negative controls, use 10 ul 5% DMSO alone in wells. 2. Dilute 5 μl of cdk2/cyclin A solution with 2.1 ml 2× kinase buffer. 3. Add 20 ul enzyme to each well. 4. Add 10 μL of 0.5 M EDTA to the negative control wells. 5. To start kinase reaction, add 20 μL of peptide/ATP mixture to each well. Incubate for 1 hr. without shaking. 6. Add 200 μl stop solution to each well. 7. Hold at least 10 min. 8. Spin plate at approx. 2300 rpm for 3-5 min. 9. Count plate using Trilux or similar reader. Met Transportation Assay This assay is used to measure phosphotyrosine levels on a poly(glutamic acid:tyrosine (4:1)) substrate as a means for identifying agonists/antagonists of met transphosphorylation of the substrate. Materials and Reagents: 1. Corning 96-well Elisa plates, Corning Catalog #25805-96. 2. Poly(glu, tyr) 4:1, Sigma, Cat. No; P 0275. 3. PBS, Gibco Catalog #450-1300EB 4. 50 mM HEPES 5. Blocking Buffer: Dissolve 25 g Bovine Serum Albumin, Sigma Cat. No A-7888, in 500 ml PBS, filter through a 4 μm filter. 6. Purified GST fusion protein containing the Met kinase domain, Sugen, Inc. 7. TBST Buffer. 8. 10% aqueous (MilliQue H2O) DMSO. 9. 10 mM aqueous (dH2O) Adenosine-5′-triphosphate, Sigma 35 Cat. No. A-5394. 10. 2× Kinase Dilution Buffer: for 100 ml, mix 10 mL 1M HEPES at pH 7.5 with 0.4 mL 5% BSA/PBS, 0.2 mL 0.1 M sodium orthovanadate and 1 mL 5M sodium chloride in 88.4 mL dH2O. 11. 4× ATP Reaction Mixture: for 10 mL, mix 0.4 mL 1 M manganese chloride and 0.02 mL 0.1 M ATP in 9.56 mL dH2O. 12. 4× Negative Controls Mixture: for 10 mL, mix 0.4 mL 1 M manganese chloride in 9.6 mL dH2O. 13. NUNC 96-well V bottom polypropylene plates, Applied Scientific Catalog #S-72092 14. 500 mM EDTA. 15. Antibody Dilution Buffer: for 100 mL, mix 10 mL 5% BSA/PBS, 0.5 mL 5% Carnation Instant Milk® in PBS and 0.1 mL 0.1 M sodium orthovanadate in 88.4 mL TBST. 16. Rabbit polyclonal antophosphotyrosine antibody, Sugen, Inc. 17. Goat anti-rabbit horseradish peroxidase conjugated antibody, Biosource, Inc. 18. ABTS Solution: for 1 L, mix 19.21 g citric acid, 35.49;g Na2HPO4 and 500 mg ABTS with sufficient dH2O to make 1 L. 19. ABTS/H2O2: mix 15 mL ABST solution with 2 μL H2O2 five minutes before use. 20. 0.2 M HCl Procedure: 1. Coat ELISA plates with 2 μg Poly(Glu-Tyr) in 100 μL PBS, store overnight at 4° C. 2. Block plate with 150 μL of 5% BSA/PBS for 60 min. 3. Wash plate twice with PBS, once with 50 mM Hepes buffer pH 7.4. 4. Add 50 μl of the diluted kinase to all wells. (Purified kinase is diluted with Kinase Dilution Buffer. Final concentration should be 10 ng/well.) 5. Add 25 μL of the test compound (in 4% DMSO) or DMSO alone (4% in dH2O) for controls to plate. 6. Incubate the kinase/compound mixture for 15 minutes. 7. Add 25 μL of 40 mM MnCl2 to the negative control wells. 8. Add 25 μL ATP/MnCl2 mixture to the all other wells (except the negative controls). Incubate for 5 min. 9. Add 25 μL 500 mM EDTA to stop reaction. 10. Wash plate 3× with TBST. 11. Add 100 μl rabbit polyclonal anti-Ptyr diluted 1:10,000 in Antibody Dilution Buffer to each well. Incubate, with shaking, at room temperature for one hour. 12. Wash plate 3× with TBST. 13. Dilute Biosource HRP conjugated anti-rabbit antibody 1:6,000 in Antibody Dilution buffer. Add 100 μL per well and incubate at room temperature, with shaking, for one hour. 14. Wash plate 1× with PBS. 15. Add 100 μl of ABTS/H2O2 solution to each well. 16. If necessary, stop the development reaction with the addition of 100 μl of 0.2M HCl per well. 17. Read plate on Dynatech MR7000 elisa reader with the test filter at 410 nM and the reference filter at 630 nM. IGF-1 Transphosphorylation Assay This assay is used to measure the phosphotyrosine level in poly(glutamic acid:tyrosine)(4:1) for the identification of agonists/antagonists of gst-IGF-1 transphosphorylation of a substrate. Materials and Reagents: 1. Corning 96-well Elisa plates. 2. Poly (Glu-tyr) (4:1), Sigma Cat. No. P 0275. 3. PBS, Gibco Catalog #450-1300EB. 4. 50 mM HEPES 5. TBB Blocking Buffer: for 1 L, mix 100 g BSA, 12.1 gTRIS (pH 7.5), 58.44 g sodium chloride and 10 mL 1% TWEEN-20. 6. Purified GST fusion protein containing the IGF-1 kinase domain (Sugen, Inc.) 7. TBST Buffer: for 1 L, mix 6.057 g Tris, 8.766 g sodium chloride and 0.5 ml TWEEN-20 with enough dH2O to make 1 liter. 8. 4% DMSO in Milli-Q H2O. 9. 10 mM ATP in dH2O. 10. 2× Kinase Dilution Buffer: for 100 mL, mix 10 mL 1 M HEPES (pH 7.5), 0.4 mL 5% BSA in dH2O, 0.2 mL 0.1 M sodium orthovanadate and 1 mL 5. M sodium chloride with enough dH2O to make 100 mL. 11. 4× ATP Reaction Mixture: for 10 mL, mix 0.4 mL 1 M MnCl2 and 0.008 mL 0.01 M ATP and 9.56 mL dH2O. 12.4× Negative Controls Mixture: mix 0.4 mL 1 M manganese chloride in 9.60 mL dH2O. 13. NUNC 96-well V bottom polypropylene plates. 14. 500 mM EDTA in dH2O. 15. Antibody Dilution Buffer: for 100 mL, mix 10 mL 5% BSA in PBS, 0.5 mL 5% Carnation Instant Non-fat Milk® in PBS and 0.1 mL 0.1 M sodium orthovanadate in 88.4 mL TBST. 16. Rabbit Polyclonal antiphosphotyrosine antibody, Sugen, Inc. 17. Goat anti-rabbit HRP conjugated antibody, Biosource. 18. ABTS Solution. 20. ABTS/H2O2: mix 15 mL ABTS with 2 μL H2O2 5 minutes before using. 21. 0.2 M HCl in dH2O. Procedure: 1. Coat ELISA plate with 2.0 μg/well Poly(Glu, Tyr) 4:1 (Sigma P0275) in 100 μl PBS. Store plate overnight at 4° C. 2. ash plate once with PBS. 3. Add 100 μl of TBB Blocking Buffer to each well. Incubate plate for l hour with shaking at room temperature. 4. Wash plate once with PBS, then twice with 50 mM Hepes buffer pH 7.5. 5. Add 25 μL of test compound in 4% DMSO (obtained by diluting a stock solution of 10 mM test compound in 100% DMSO with dH2O) to plate. 6. Add 10.0 ng of gst-IGF-1 kinase in 50 μl Kinase Dilution Buffer) to all wells. 7. Start kinase reaction by adding 25 μl 4× ATP Reaction Mixture to all test wells and positive control wells. Add 25 μl 4× Negative Controls Mixture to all negative control wells. Incubates for 10 minutes with shaking at room temperature. 8. Add 25 μl 0.5M EDTA (pH 8.0) to all wells. 9. Wash plate 4× with TBST Buffer. 10. Add rabbit polyclonal anti-phosphotyrosine antisera at a dilution of 1:10,000 in 100 μl Antibody Dilution Buffer to all wells. Incubate, with shaking, at room temperature for 1 hour. 11. Wash plate as in step 9. 12. Add 100 μl Biosource anti-rabbit HRP at a dilution of 1:10,000 in Antibody dilution buffer to all wells. Incubate, with shaking, at roomtemperature for 1 hour. 13. Wash plate as in step 9, follow with one wash with PBS to reduce bubbles and excess Tween-20. 14. Develop by adding 100μl/well ABTS/H2O2 to each well. 15. After about 5 minutes, read on ELISA reader with test filter at 410 nm and referenced filter at 630 nm. BrdU Incorporation Assays The following assays use cells engineered to express a selected receptor and then evaluate the effect of a compound of interest on the activity of ligand-induced DNA synthesis by determining BrdU incorporation into the DNA. The following materials, reagents and procedure are general to each of the following BrdU incorporation assays. Variances in specific assays are noted. Materials and Reagents: 1. The appropriate ligand. 2. The appropriate engineered cells. 3. BrdU Labeling Reagent: 10 mM, in PBS (pH 7.4).(Boehringer Mannheim, Germany). 4. FixDenat: fixation solution (ready to use)(Boehringer Mannheim, Germany). 5. Anti-BrdU-POD: mouse monoclonal antibody conjugated with peroxidase (Boehringer Mannheim, Germany). 6. TMB Substrate Solution: tetramethylbenzidine (TMB, Boehringer Mannheim, Germany). 7. PBS Washing Solution: 1× PBS, pH 7.4. 8. Albumin, Bovine (BSA), fraction V powder (Sigma Chemical Co., USA). General Procedure: 1. Cells are seeded at 8000 cells/well in 10% CS, 2 mM Gln in DMEM, in a 96 well plate. Cells are incubated overnight at 37° C. in 5% CO2. 2. After 24 hours, the cells are washed with PBS, and then are serum-starved in serum free medium (0% CS DMEM with 0.1% BSA) for 24 hours. 3. On day 3, the appropriate ligand and the test compound are added to the cells simultaneously. The negative control wells receive serum free DMEM with 0.1% BSA only; the positive control cells receive the ligand but no test compound. Test compounds are prepared in serum free DMEM with ligand in a 96 well plate, and serially diluted for 7 test concentrations. 4. After 18 hours of ligand activation, diluted BrdU labeling reagent (1:100 in DMEM, 0.1% BSA) is added and the cells are incubated with BrdU (final concentration=10 μM) for 1.5 hours. 5. After incubation with labeling reagent, the medium is removed by decanting and tapping the inverted plate on a paper towel. FixDenat solution is added (50 μl/well) and the plates are incubated at room temperature for 45 minutes on a plate shaker. 6. The FixDenat solution is thoroughly removed by decanting and tapping the inverted plate on a paper towel. Milk is added (5% dehydrated milk in PBS, 200 μl/well) as a blocking solution and the plate is incubated for 30 minutes at room temperature on a plate shaker. 7. The blocking solution is removed by decanting and the wells are washed once with PBS. Anti-BrdU-POD solution (1:200 dilution in PBS, 1% BSA) is added (50 μl/well) and the plate is incubated for 90 minutes at room temperature on a plate shaker. 8. The antibody conjugate is thoroughly removed by decanting and rinsing the wells 5 times with PBS, and the plate is dried by inverting and tapping on a paper towel. 9. TMB substrate solution is added (100 μl/well) and incubated for 20 minutes at room temperature on a plate shaker until color development is sufficient for photometric detection. 10. The absorbance of the samples are measured at 410 nm (in “dual wavelength” mode with a filter reading at 490 nm, as a reference wavelength) on a Dynatech ELISA plate reader. EGF-Induced BrdU Incorporation Assay Materials and Reagents: 1. Mouse EGF, 201 (Toyobo Co., Ltd., Japan). 2. 3T3/EGFRc7. EGF-Induced Her-2-driven BrdU Incorporation Assay Materials and Reagents: 1. Mouse EGF, 201 (Toyobo Co., Ltd., Japan). 2. 3T3/EGFr/Her2/EGFr (EGFr with a Her-2 kinase domain). EGF-Induced Her-4-Driven BrdU Incorporation Assay Materials and Reagents: 1. Mouse EGF, 201 (Toyobo Co., Ltd., Japan). 2. 3T3/EGFr/Her4/EGFr (EGFr with a Her-4 kinase domain). PDGF-Induced BrdU Incorporation Assay Materials and Reagents: 1. Human PDGF B/B (Boehringer Mannheim, Germany). 2. 3T3/EGFRc7. FGF-Induced BrdU Incorporation Assay Materials and Reagents: 1. Human FGF2/bFGF (Gibco BRL, USA). 2. 3T3c7/EGFr IGF1-Induced BrdU Incorporation Assay Materials and Reagents: 1. Human, recombinant (G511, Promega Corp., USA) 2. 3T3/IGF1r. Insulin-Induced BrdU Incorporation Assay Materials and Reagents: 1. Insulin, crystalline, bovine, Zinc (13007, Gibco BRL, USA). 2. 3T3/H25. HGF-Induced BrdU Incorporation Assay Materials and Reagents: P 1. Recombinant human HGF (Cat. No. 249-HG, R&D Systems, Inc. USA). 2. BxPC-3 cells (ATCC CRL-1687). Procedure: 1. Cells are seeded at 9000 cells/well in RPMI 10% FBS in a 96 well plate. Cells are incubated overnight at 37° C. in 5% CO2. 2. After 24 hours, the cells are washed with PBS, and then are serum starved in 100 μl serum-free medium (RPMI with 0.1% BSA) for 24 hours. 3. On day 3, 25 μl containing ligand (prepared at 1 μg/ml in RPMI with 0.1% BSA; final HGF conc. is 200 ng/ml) and test compounds are added to the cells. The negative control wells receive 25 μl serum-free RPMI with 0.1% BSA only; the positive control cells receive the ligand (HGF) but no test compound. Test compounds are prepared at 5 times their final concentration in serum-free-RPMI with ligand in a 96 well plate, and serially diluted to give 7 test concentrations. Typically, the highest final concentration of test compound is 100 μM, and 1:3 dilutions are used (i.e. final test compound concentration range is 0.137-100 μM). 4. After 18 hours of ligand activation, 12.5 μl of diluted BrdU labeling reagent (1:100 in RPMI, 0.1% BSA) is added to each well and the cells are incubated with BrdU (final concentration is 10 μM) for 1 hour. 5. Same as General Procedure. 6. Same as General Procedure. 7. The blocking solution is removed by decanting and the wells are washed once with PBS. Anti-BrdU-POD solution (1:100 dilution in PBS, 1% BSA) is added (100 μl/well) and the plate is incubated for 90 minutes at room temperature on a plate shaker. 8. Same as General Procedure. 9. Same as General Procedure. 10. Same as General Procedure. HUV-EC-C Assay This assay is used to measure a compound's activity against PDGF-R, FGF-R, VEGF, aFGF or Flk-1/KDR, all of which are naturally expressed by HUV-EC cells. Day 0 1. Wash and trypsinize HUV-EC-C cells (human umbilical vein endothelial cells, (American Type Culture Collection, catalogue no. 1730 CRL). Wash with Dulbecco's phosphate-buffered saline (D-PBS, obtained from Gibco BRL, catalogue no. 14190-029) 2 times at about 1 ml/cm2 of tissue culture flask. Trypsinize with 0.05% trypsin-EDTA in non-enzymatic cell dissociation solution (Sigma Chemical Company, catalogue no. C-1544). The 0.05% trypsin is made by diluting 0.25% trypsin/l mM EDTA (Gibco, catalogue no. 25200-049) in the cell dissociation solution. Trypsinize with about 1 ml/25-30 cm2 of tissue culture flask for about 5 minutes at 37° C. After-cells have detached from the flask, add an equal volume of assay medium and transfer to a 50 ml sterile centrifuge tube (Fisher Scientific, catalogue no. 05-539-6). 2. Wash the cells with about 35 ml assay medium in the 50 ml sterile centrifuge tube by adding the assay medium, centrifuge for 10 minutes at approximately 200×g, aspirate the supernatant, and resuspend with 35 ml D-PBS. Repeat the wash two more times with D-PBS, resuspend the cells in about 1 ml assay medium/15 cm2 of tissue culture flask. Assay medium consists of F12K medium (Gibco BRL, catalogue no. 21127-014) and 0.5% heat-inactivated fetal bovine serum. Count the cells with a Coulter Counter® (Coulter Electronics, Inc.) and add assay medium to the cells to obtain a concentration of 0.8-1.0×105 cells/ml. 3. Add cells to 96-well flat-bottom plates at 100 μl/well or 0.8-1.0×104 cells/well, incubate 24 h at 37° C., 5% CO2. Day 1 1. Make up two-fold test compound titrations in separate 96-well plates, generally 50 μM on down to 0 μM. Use the same assay medium as mentioned in day 0, step 2 above. Titrations are made by adding 90 μl/well of test compound at 200 μM (4× the final well concentration) to the top well of a particular plate column. Since the stock test compound is usually 20 mM in DMSO, the 200 μM drug concentration contains 2% DMSO. A diluent made up to 2% DMSO in assay medium (F12K+0.5% fetal bovine serum) is used as diluent for the test compound titrations in order to dilute the test compound but keep the DMSO concentration constant. Add this diluent to the remaining wells in the column at 60 μl/well. Take 60 μl from the 120 μl of 200 μM test compound dilution in the top well of the column and mix with the 60 μl in the second well of the column. Take 60 μl from this well and mix with the 60 μl in the third well of the column, and so on until two-fold titrations are completed. When the next-to-the-last well is mixed, take 60 μl of the.120 μl in this well and discard it. Leave the last well with 60 μl of DMSO/media diluent as a non-test compound-containing control. Make 9 columns of titrated test compound, enough for triplicate wells each for: (1) VEGF (obtained from Pepro Tech Inc., catalogue no. 100-200, (2) endothelial cell growth factor (ECGF) (also known as acidic fibroblast growth factor, or aFGF) (obtained from Boehringer Mannheim Biochemica, catalogue no. 1439 600), or, (3) human PDGF B/B (1276-956, Boehringer Mannheim, Germany) and assay media control. ECGF comes as a preparation with sodium heparin. 2. Transfer 50 μl/well of the test compound dilutions to the 96-well assay plates containing the 0.8-1.0×104 cells/100 μl/well of the HUV-EC-C cells from day 0 and incubate ˜2 h at 37° C., 5% CO2. 3. In triplicate, add 50 μl/well of 80 μg/ml VEGF, 20 ng/ml ECGF, or media control to each test compound condition. As with the test compounds, the growth factor concentrations are 4× the desired final concentration. Use the assay media from day 0 step 2 to make the concentrations of growth factors. Incubate approximately 24 hours at 37° C., 5% CO2. Each well will have 50 μl test compound dilution, 50 μl growth factor or media, and 100 μl cells, which calculates to 200 μl/well total. Thus the 4× concentrations of test compound and growth factors become 1× once everything has been added to the wells. Day 2 1. Add 3H-thymidine (Amersham, catalogue no. TRK-686) at 1 μCi/well (10 μl/well of 100 μCi/ml solution made up in RPMI media+10% heat-inactivated fetal bovine serum) and incubate ˜24 h at 37° C., 5% CO2. RPMI is obtained from Gibco BRL, catalogue no. 11875-051. Day 3 1. Freeze plates overnight at −20° C. Day 4 Thaw plates and harvest with a 96-well plate harvester (Tomtec Harvester 96®) onto filter mats (Wallac, catalogue no. 1205-401), read counts on a Wallac Betaplate™ liquid scintillation counter. TABLE 3 shows the results of biological testing of some exemplary compounds of this invention. The results are reported in terms of IC50, the micromolar (μM) concentration of the compound being tested which causes a 50% change in the activity of the target PKT compared to the activity of the PTK in a control to which no test compound has been added. Specifically, the results shown indicate the concentration of a test compound needed to cause a 50%reduction of the activity of the target PTK. Bioassays which have been or can be used to evaluate compounds are described in detail below. TABLE 3 bio bio bio bio cell Her2 bio flkGST FGFR1 PDGF EGF EGF Kinase cdk2spa pyk2 IC50 IC50 IC50 IC50 IC50 IC50 C50 IC50 Example (μM) (μM) (μM) (μM) (μM) (μM) (μM) (μM) 1 57.68 15.16 >100 >100 >100 >100 2 >100 >100 >100 >100 3 9.85 9.62 >100 >100 >100 >100 4 3.57 >20 >100 >100 >100 >100 5 8.3 16.06 >100 >100 >100 >100 6 4.04 >100 3.26 7.82 2.43 7 7.74 >100 5.07 9.8 4.24 8 12.1 >100 51.34 20.08 5.5 9 0.96 >100 >100 >100 16.38 10 5.72 >100 94.04 15.86 8.06 11 9.77 >100 >100 >100 >100 12 >20 21.46 >100 27.73 13 >20 81.92 8.17 2.66 14 13.01 42.41 >100 66.02 15 >20 >100 >100 98.61 16 >20 98.06 >100 23.32 17 8.25 2.47 94.35 0.83 11.47 15.94 >10 18 2.67 2.57 9.23 4.99 19 7.5 6.86 34.18 8.37 20 11.53 >100 41.16 8 21 7.18 >100 40.34 27.69 22 >20 >100 >100 87.67 23 >20 >100 36.64 4.05 24 >100 16.84 5.31 25 12.55 >100 23.48 7.9 26 16.03 66.87 34.67 10.04 27 >100 26.5 3.91 28 4.5 71.27 53.66 2.67 29 10.12 >100 26.72 3.98 30 9.4 >100 18.69 4.1 31 >50 >100 9.83 47.19 32 45.74 5.94 >100 >100 34 >50 >100 >100 >100 35 >20 >100 80.4 54.14 36 >20 >100 >100 >100 37 0.22 3.06 10.78 9.84 1.4 38 4.17 3.06 6.04 8.97 2.16 39 3.38 4.69 3.67 14.54 3.53 40 4.5 7.9 6.52 6.27 42 0.1 0.12 11.95 74.55 20.43 43 1.12 8.38 >100 37.33 53.37 44 <0.05 0.02 20.73 67.46 6.99 45 1.71 >100 >100 29.95 >100 46 30.62 6.18 >100 >100 >100 47 0.08 1.56 0.06 11.42 41.54 8.4 >20 1.05 48 0.006 0.3 <0.78 17.88 21.58 7.93 0.09 49 <0.78 >100 43.86 >100 50 <0.78 >100 20.34 >100 51 0.006 1.66 0.01 18.1 21.61 23.24 16.69 0.35 52 0.08 1.26 <0.78 12.53 >100 >100 10.66 0.45 53 <0.78 >100 >100 >100 54 1.98 <0.78 23.88 9.76 7.02 55 0.27 0.53 6.03 35.99 77.82 56 2.32 3.19 >100 10.03 7.11 57 0.06 7.98 >100 9.97 6.94 58 21.14 >100 >100 >100 59 <0.78 >100 >100 >100 60 <0.78 >100 >100 >100 61 <0.78 >100 >100 >100 62 8.00 8.32 >100 >100 >100 63 0.21 <0.78 8.59 >100 >100 64 0.55 <0.78 30.49 >100 >100 65 0.37 <0.05 >100 74.36 15.97 66 <0.05 >100 11.84 2.76 67 0.39 24.77 31.38 19.79 2.56 68 1.16 0.03 >100 23.52 34.13 69 0.3 56.55 >100 97.54 >100 70 0.09 1.50 0.0030 10.57 6.42 7.99 12.62 0.63 71 15.21 22.5 >100 9.91 72 6.06 10.54 >100 39.94 9.65 73 5.95 14.12 >100 39.5 8.59 74 1.2 0.09 46.75 >100 75 2.7 61.55 >100 >100 76 3.33 19.18 5.11 3.01 77 0.49 25.01 >100 >100 78 1.94 70.62 9.33 4.25 79 1.49 >100 27.39 >100 80 0.13 4.29 0.001 >100 50.19 17.19 0.28 81 0.21 0.18 >100 >100 82 2.03 7.69 6.88 >100 >100 0.31 83 0.34 0.41 9.46 2.18 86.9 0.008 84 1.38 12.51 67.2 5.86 0.006 85 0.2 0.8 2.59 >100 3.76 86 1.45 1.3 19.6 41.8 >100 3.58 87 3.27 7.56 6.46 >100 9.1 0.17 88 0.35 1.18 8.06 2.36 >100 0.09 89 7.84 47.58 8.53 9.67 15.97 115 7.3 7.48 >100 >100 0.006 116 >20 >100 >100 >100 <0.0005 117 0.91 12.9 >100 >100 0.006 118 1.93 1.2 >100 >100 0.002 119 1.38 61.63 >100 >100 <0.0005 In Vivo Animal Models Xenograft Animal Models The ability of human tumors to grow as xenografts in athymic mice (e.g., Balb/c, nu/nu) provides a useful in vivo model for studying the biological response to therapies for human tumors. Since the first successful xenotransplantation of human tumors into athymic mice, .(Rygaard and Povlsen, 1969, Acta Pathol. Microbial. Scand. 77:758-760), many different human tumor cell lines (e.g., mammary, lung, genitourinary, gastro-intestinal, head and neck, glioblastoma, bone, and malignant melanomas) have been transplanted and successfully grown in nude mice. The following assays may be used to determine the level of activity, specificity and effect of the different compounds of the present invention. Three general types of assays are useful for evaluating compounds: cellular/catalytic, cellular/biological and in vivo. The object of the cellular/catalytic assays is to determine the effect of a compound on the ability of a TK to phosphorylate tyrosines on a known substrate in a cell. The object of the cellular/biological assays is to determine the effect of a compound on the biological response stimulated by a TK in a cell. The object of the in vivo assays is to determine the effect of a compound in an animal model of a particular disorder such as cancer. Suitable cell lines for subcutaneous xenograft experiments include C6 cells (glioma, ATCC #CCL 107), A375 cells (melanoma, ATCC #CRL 1619), A431 cells (epidermoid carcinoma, ATCC #CRL 1555), Calu 6 cells (lung, ATCC #HTB 56), PC3 cells (prostate, ATCC #CRL 1435), SKOV3TP5 cells and NIH 3T3 fibroblasts genetically engineered to overexpress EGFR, PDGFR, IGF-1R or any other test kinase. The following protocol can be used to perform xenograft experiments: Female athymic mice (BALB/c, nu/nu) are obtained from Simonsen Laboratories (Gilroy, Calif.). All animals are maintained under clean-room conditions in Micro-isolator cages with Alpha-dri bedding. They receive sterile rodent chow and water. ad libitum. Cell lines are grown in appropriate medium (for example, MEM, DMEM, Ham's F10, or Ham's F12 plus 5%-10% fetal bovine serum (FBS) and 2 mM glutamine (GLN)). All cell culture media, glutamine, and fetal bovine serum are purchased from Gibco Life Technologies (Grand Island, N.Y.) unless otherwise specified. All cells are grown in a humid atmosphere of 90-95% airand 5-10% CO2 at 37° C. All cell lines are routinely subcultured twice a week and are negative for mycoplasma as determined by the Mycotect method (Gibco). Cells are harvested at or near confluency with 0.05% Trypsin-EDTA and pelleted at 450×g for 10 min. Pellets are resuspended in sterile PBS or media (without FBS) to a particular concentration and the cells are implanted into the hindflank of the mice (8-10 mice per group, 2-10×106 cells/animal). Tumor growth is measured over 3 to 6 weeks using venier calipers. Tumor volumes are calculated as a product of length×width×height unless otherwise indicated. P values are calculated using the Students t-test. Test compounds in 50-100 μL excipient(DMSO, or VPD:D5W) can be delivered by IP injection at different concentrations generally starting at day one after implantation. Tumor Invasion Model The following tumor invasion model has been developed and may be used for the evaluation of therapeutic value and efficacy of the compounds identified to selectively inhibit KDR/FLK-1 receptor. Procedure 8 week old nude mice (female) (Simonsen Inc.) are used as experimental animals. Implantation of tumor cells can be performed in a laminar flow hood. For anesthesia, Xylazine/Ketamine Cocktail (100 mg/kg ketamine and 5 mg/kg Xylazine) are administered intraperitoneally. A midline incision is done to expose the abdominal cavity (approximately 1.5 cm in length) to inject 107 tumor cells in a volume of 100 μl medium. The cells are injected either into the duodenal lobe of the pancreas or under the serosa of the colon. The peritoneum and muscles are closed with a 6-0 silk continuous suture and the skin is closed by using wound clips. Animals are observed daily. Analysis After 2-6 weeks, depending on gross observations of the animals, the mice are sacrificed, and the local tumor metastases to various organs (lung, liver, brain, stomach, spleen, heart, muscle) are excised and analyzed (measurement of tumor size, grade of invasion, immunochemistry, in situ hybridization determination, etc.). C-Kit Assay This assay is used to detect the level of c-kit tyrosine phosphorylation. MO7E (human acute myeloid leukemia) cells were serum starved overnight in 0.1% serum. Cells were pre-treated with the compound (concurrent with serum starvation), prior to ligand stimulation. Cells were stimulated with 250 ng/ml rh-SCF for 1.5 minutes. Following stimulation, cells were lysed andimmunoprecipitated with an anti-c-kit antibody. Phosphotyrosine and protein levels were determined by Western blotting. MTT Proliferation Assay MO7E cells were serum starved and pre-treated with compound as described for the phosphorylation experiments. Cells were plated @ 4×105 cells/well in a 96 well dish, in 100 μl RPMI+10% serum. rh-SCF (100 ng/mL) was added and the plate was incubated for 48 hours. After 48 hours, 10 μl of 5 mg/ml MTT [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide) was added and allowed to incubate for 4 hours. Acid isopropanol (100 μl of 0.04N HCl in isopropanol) was added and the optical density was measured at a wavelength of 550 nm. Apoptosis Assay MO7E cells were incubated ±SCF and ±compound in 10% FBS with rh-GM-CSF(long/mL) and rh-IL-3 (10 ng/mL). Samples were assayed at 24 and 48 hours. To measure activated caspase-3, samples were washed with PBS and permeabilized with ice-cold 70% ethanol. The cells were then stained with PE-conjugated polyclonal rabbit anti-active caspase-3 and analyzed by FACS. To measure cleaved PARP, samples were lysed and analyzed by western blotting with an anti-PARP antibody. Additional Assays Additional assays which may be used to evaluate the compounds of this invention include, without limitation, a bio-flk-1 assay, an EGF receptor-HER2 chimeric receptor assay in whole cells, a bio-src assay, a bio-lck assay and an assay measuring the phosphorylation function of raf. The protocols for each of these assays may be found in U.S. application Ser. No. 09/099,842, which is incorporated by reference, including any drawings, herein. Measurement of Cell Toxicity Therapeutic compounds should be more potent in inhibiting receptor tyrosine kinase activity than in exerting a cytotoxic effect. A measure of the effectiveness and cell toxicity of a compound can be obtained by determining the therapeutic index, i.e., IC50/LD50. IC50, the dose required to achieve 50% inhibition, can be measured using standard techniques such as those described herein. LD50, the dosage which results in 50% toxicity, can also be measured by standard techniques as well (Mossman, 1983, J. Immunol. Methods, 65:55-63), by measuring the amount of LDH released (Korzeniewski and Callewaert, 1983, J. Immunol. Methods, 64:313, Decker and Lohmann-Matthes, 1988, J. Immunol. Methods, 115:61), or by measuring the lethal dose in animal models. Compounds with a large therapeutic index are preferred. The therapeutic index should be greater than 2, preferably at least 10, more preferably at least 50. B. Example of Cellular Assay Results Using 5-(5-Fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide To confirm the potency of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) detected in biochemical assays (vide infra), the ability of said compound to inhibit ligand-dependent RTK phosphorylation was evaluated in cell-based assays using NIH-3T3 mouse cells engineered to overexpress Flk-1 or human PDGFRβ. 5-(5-Fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) inhibited VEGF-dependent Flk-1 tyrosine phosphorylation with an IC50 value of approximately 0.03 μM. This value is similar to the 0.009 μM Ki value determined for inhibition of Flk-1 by 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) determined in biochemical assays. This indicates that 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) readily penetrates into cells. Consistent with the biochemical data (vide infra) indicating that 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) had comparable activity against Flk-1 and PDGFRβ, it was also found that it inhibited PDGF-dependent receptor phosphorylation in cells with an IC50 value of approximately 0.03 μM. The ability of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) to inhibit c-kit, a closely related RTK that binds stem cell factor (SCF), was determined using MO7E cells that express this receptor. In these cells, 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) inhibited SCF-dependent c-kit phosphorylation with an IC50 value of 0.01-0.1 μM. This compound also inhibited SCF-stimulated c-kit phosphorylation in acute myeloid leukemia (AML) blasts isolated from the peripheral blood of patients. In addition to testing the ability of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) to inhibit ligand-dependent receptor phosphorylation in cells, its effect on ligand-dependent proliferative response of cells was also examined in vitro (see Table 4). In these studies, cells quiesced by overnight serum starvation were induced to undergo DNA synthesis upon addition of the appropriate mitogenic ligand. As shown in Table 4, 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) inhibited the PDGF-induced proliferation of NIH-3T3 cells overexpressing PDGFRβ or PDGFRα with IC50 values 0.031 and 0.069 μM, respectively, and the SCF-induced proliferation of MO7E cells with an IC50 value of 0.007 μM. TABLE 4 Cellular IC50 Biochemical Receptor Ligand-dependent Ki1 Phosphorylation Proliferation Receptor (μM) (μM) (μM) Flk-1/KDR 0.009 0.032 0.0043 PDGFRα 0.008 0.034 0.0314 PDGFRβ ND ND 0.0695 FGFR 0.83 ND 0.73 c-kit ND 0.01-0.16 0.0076 ND = Not Determined 1Determined using recombinant enzyme 2Determined usinq serum-starved NIH-3T3 cells expressing Flk-1 3Determined using serum-starved HUVECs 4Determined using serum-starved NIH-3T3 cells expressing PDGFR□ 5Determined using serum-starved NIH-3T3 cells expressing PDGFR□ 6Determined using serum-starved MO7E cells As shown in Table 4, there is a general agreement between the biochemical and cellular activities of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) supporting the conclusion that this compound crosses cellular membranes. Further, it can be concluded that the cellular responses are a result of the activity of compound 80 against the indicated target. In contrast, when tested in the presence of complete growth medium in vitro, substantially higher concentrations of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) (>10 μM) were required to inhibit the growth of a variety of human tumor cells (see Table 5). This indicates that the compound did not directly inhibit the growth of these cells at concentrations required to inhibit ligand-dependent receptor phosphorylation and cell proliferation. TABLE 5 Cell IC50 LD50 Line Origin (μM) (μM) HT29 Colon carcinoma 10 22 A549 Lung carcinoma 9.5 22 NCI-H460 NSC lung carcinoma 8.9 20 SF767T Glioma 7.9 14 A431 Epidermoid carcinoma 6.0 18 Briefly, the results shown in Table 5 were obtained by incubating cells for 48 hr in complete growth medium in the presence of serial dilutions 5-(5-Fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide. At the end of the growth period, the relative number of cells was determined. IC50 values were calculated as the concentration of compound that inhibited the growth of cells by 50% relative to untreated cells. LD50 values were calculated as the concentration of compound that caused a 50% reduction in the number of cells relative to those at the start of the experiment. A more relevant cell-based assay in which to evaluate the anti-angiogenic potential of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) is the in vitro mitogenesis assay using human umbilical vein endothelial cells (HUVECs) as a model system for the endothelial cell proliferation critical to the angiogenic process. In this assay, a mitogenic response, measured as an increase in DNA synthesis, is induced in serum-starved HUVECs upon addition of VEGF or FGF. In these cells, 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) inhibited the VEGF- and FGF-induced mitogenic response in a dose-dependent manner with IC50 values of 0.004 μM and 0.7 μM, respectively, when compound was present throughout the 48-hr assay. Briefly, the aforementioned results were obtained using Serum-starved HUVECs that were incubated with mitogenic concentrations of VEGF (100 ng/ml) or FGF (30 ng/ml) in the presence of serial dilutions of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) for 24 hrs. The mitogenic response during the following 24 hrs. in the presence of ligand and inhibitor was quantitated by measurement of DNA synthesis based on incorporation of bromodeoxyuridine into cellular DNA. In separate experiments, compound 80 inhibited the VEGF-dependent phosphorylation of ERK 1/2 (p42/44MAP kinase), an early downstream target of Flk-1/KDR, in a dose-dependent manner. The inhibitory activity of compound 80 was also shown to be long-lasting in this system; inhibiting VEGF-dependent phosphorylation of ERK 1/2 for as long as 48 hours after removal of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) from the medium following a short (2 hr) exposure to micromolar concentrations of the compound. VEGF has been recognized to be an important survival factor for endothelial cells. Since 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) inhibits the VEGF-dependent mitogenic response of HUVECs, the effect of the compound on HUVEC survival was investigated. In these experiments, cleavage of the caspase 3 substrate poly-ADP-ribosyl polymerase (PARP) was used as a readout for apoptosis. HUVECs cultured in serum-free conditions for 24 hours exhibited substantial levels of PARP cleavage, as detected by the accumulation of the 23 kDa PARP cleavage fragment. This was largely prevented by the addition of VEGF to the cell medium, indicating that VEGF acts as a survival factor in this assay. 5-(5-Fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) has been shown to inhibit KDR signaling. Accordingly, 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) inhibited VEGF-mediated HUVEC survival in a dose-dependent manner. Thus, these data indicate that compound 80 induced apoptosis in endothelial cells in culture in the presence of VEGF. C. In Vivo Efficacy Studies i. Efficacy Against Established Tumor Xenografts The in vivo efficacy of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) was studied in subcutaneous (SC) xenograft models using human tumor cells implanted into the hindflank region of athymic mice. Following implantation, tumors were allowed to become established to a size of 100-550 mm3 prior to starting oral treatment with the compound. Daily oral administration of compound 80 caused a dose-dependent inhibition of A431 tumor growth when treatment was initiated after tumors had grown to a size of 400 mm3. Statistically significant (P<0.05) inhibition of tumor growth was seen at doses of 40 mg/kg/day (74% inhibition) and 80 mg/kg/day (84% inhibition) (see Table 6). In preliminary experiments, a higher (160 mg/kg/day) dose of the compound was not more efficacious against established A431 tumors than the 80 mg/kg/day dose. In addition, mice treated at the 160 mg/kg/day dose of the compound lost body weight, indicating that the higher dose was not as well tolerated. Similar results were obtained in an experiment in which A431 tumors were only allowed to reach 100 mm3 in size (see Table 5). In this second experiment, complete regression of the tumors occurred in six of the eight animals treated at the 80 mg/kg/day for 21 days. In these six animals, the tumors did not regrow during a 110-day observation period following the end of treatment. In the two animals in which the tumors regrew to a large size (2000-3000 mm3), the tumors regressed in response to a second round of treatment with compound 80. Importantly, in all efficacy experiments, 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) at 80 mg/kg/day has been well tolerated, even when dosed continuously for more than 100 days. TABLE 6 % Initial Tumor Compound1 Inhibition Volume (mm3) (mg/kg/day) (day) P-Value 400 80 84 (36) 0.001 40 74 (36) 0.003 20 51 (36) 0.130 100 80 93 (40) 0.002 40 75 (40) 0.015 10 61 (40) 0.059 1Compound 80. Briefly, the results shown in Table 6 were obtained using A431 cells (0.5×106 cells/mouse) which were implanted SC into the hindflank region of athymic mice. Daily oral administration of 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) in a Cremophore-based vehicle or vehicle control began when tumors reached the indicated average volume. Tumors were measured using vernier calipers and tumor volume was calculated as the product of length x width x height. F-values were calculated by comparing the size of the tumors for animals that were treated with compound 80 (n=8) to those of animals that were treated with a vehicle (n=16) on the last day of the experiment, using the two-tailed Student's t-test. The efficacy compound 80 against established human tumors of different origins was determined using Colo205 (colon carcinoma), SF763T (glioma), and NCI-H460 (non-small cell lung carcinoma) xenografts (see Table 7). These experiments were conducted using 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) administered orally at 80 mg/kg/day; a dose that was effective and well tolerated. TABLE 7 % Initial Tumor Inhibition Tumor Type Volume (mm3) (day) P-Value A4311 Epidermoid 100 93 (40) 0.002 A4311 Epidermoid 400 84 (36) 0.001 Colo205 Colon 370 77 (54) 0.028 NCI-H460 Lung 300 61 (54) 0.003 SF763T Glioma 550 53 (30) 0.001 1Data are from experiment reported in Table 5. In the abovementioned experiments, compound 80 was administered once daily at 80 mg/kg in a Cremophor-based vehicle once tumors reached the indicated size. Percent inhibition compared to the vehicle-treated control group was calculated at termination of the experiments. P-values were calculated by comparing tumor sizes of the animals that had been treated with the compound to tumor sizes of those animals that had been treated with the vehicle, using the two-tailed Student's t-test. Although 5-(5-fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide (Compound 80) inhibited the growth of all the tumor types shown in Table 7, there was a difference in the response of the different xenograft models. Specifically, the growth of NCI-H460 and SF763T tumors was arrested or greatly slowed whereas the Colo205 tumors, like A431 tumors, regressed when treated with 5-(5-Fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide. In order to determine the molecular basis for the difference in response between xenograft models, the SF763T tumors were studied. Therefore, SF763T tumors, which were less responsive-to treatment with 5-(5-Fluoro-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)amide, have been evaluated at the molecular level using immunohistological-techniques to determine the effect of treatment with the compound. These studies were initially conducted in this tumor type because SF763T tumors are highly vascularized with microvessels that strongly express the endothelial cell marker CD31 and are hence well suited for studies of tumor microvessel density (MVD). Immunohistological evaluation of SF763T tumors indicated that tumors from treated animals had reduced MVD relative to vehicle-treated controls, consistent with an anti-angiogenic mechanism of action for compound 80; MVD was 24.2±4.1 in animals treated with compound 80, compared to 39.3±5.7 for those that were treated with just the vehicle. As anticipated from the associated tumor growth arrest, a pronounced inhibition of tumor cell proliferation was evident in tumors that were treated with compound 80. These tumors had half the mitotic index of those in vehicle-treated tumors (data not shown). The effect compound 80 on MVD and tumor cell proliferation indicates that the compound has profound anti-angiogenic and anti-tumor effects, even under conditions in which tumors do not regress. The ability of compound 80 to inhibit PDGFR phosphorylation and subsequent signaling in vivo was also evaluated in the SF763T tumors, which express high levels of PDGFRP. Treatment of the SF763T tumors with compound 80 strongly inhibited PDGFRP tyrosine phosphorylation in established SF763T tumors. Compound 80 also reduced the levels of phosphorylated (activated) phospholipase C gamma (PLC-γ), an immediate downstream indicator of PDGFR activation. These data demonstrate that oral administration of compound 80 causes a direct effect on target (PDGFR) activity in tumors in vivo. Based on the demonstration that the ability of compound 80 to inhibit VEGF-dependent signaling in HUVECs in vitro was long-lasting (vide supra), the efficacy of the compound was evaluated when the compound was administered infrequently in the Colo205 tumor model. As shown in Table 8, 80 mg/kg (91% inhibition) and 40 mg/kg (84% inhibition) were efficacious when administered daily, but not when administered twice weekly. In contrast, a higher dose of compound 80 (160 mg/kg) did inhibit (52% inhibition) the growth of established Colo205 tumors when administered twice weekly, suggesting that this compound can demonstrate efficacy when administered infrequently at a higher dose. It should be noted that dosing regimens may be determined by those with ordinary skill in the art without undue experimentation. TABLE 8 Dose (mg/kg) Frequency % Inhibition P-Value 160 Twice weekly 52 0.085 Once weekly 17 NS 80 Daily 91 0.039 Twice weekly 19 NS Once weekly 0 NS 40 Daily 84 0.028 Twice weekly 36 NS NS: not significant (P > 0.05) Briefly, the results shown in Table 8 were obtained using Colo205 cells (0.5×106 cells/mouse) that had been implanted SC into the hindflank region of athymic mice. Oral administration of compound 80 according to the indicated schedule began when tumors reached 400 mm3. Tumors were, measured using vernier calipers and tumor volume was calculated as the product of length×width×height. P-values were calculated by comparing the size of the tumors for animals that were treated with compound 80 to those of animals that were treated with a vehicle on the last day of the experiment, using the two-tailed Student's t-test. ii. Efficacy of Compound 80 in a Model of Disseiminated Disease In addition to supporting the sustained growth of solid primary tumors, angiogenesis is also an essential component supporting the development of disseminated disease due to metastasis from the primary tumor. The effect of compound 80 on the development of disseminated disease was examined in the B16-F1 mouse melanoma lung colonization model. In this model, B16-F1 cells inoculated intravenously via the tail vein of athymic mice colonize the lungs and form tumors. As shown in Table 8, oral administration of compound 80 at 80 mg/kg/day effectively reduced the burden of B16-F1 cells in the lung as evaluated by measurements of total lung weight. These data suggest that compound 80 can inhibit disseminated disease in vivo. TABLE 9 Lung Weight (g) % Inhibition P-Value Vehicle 0.83 ± 0.07 — — Compound1 0.41 ± 0.04 50 <0.001 1Compound 80 Briefly, the results shown in Table 9 were obtained using athymic mice that had been inoculated with B16-F1 tumor cells (5×105 cells/mouse) via the tail vein. Mice were treated daily with orally administered compound 80 at 80 mg/kg/day (n=10) or vehicle (n=18) for 24 days after tumor cell inoculation. At the end of the treatment period, the mice were sacrificed and their lungs removed and weighed. Percent inhibition was calculated by comparing the lung weight of those animals that had been treated with compound 80, with the lung weight of the animals that had only been treated with vehicle. P-values were determined using the two-tailed Student's t-test. D. Examples of Biological Activity Examples of the in vitro potency of compounds of this invention are shown in Table 2. CONCLUSION In studies to investigate the pharmacokinetic characteristics of the compounds of the preferred embodiments of the present invention it has been demonstrated that oral administration of a single dose of said compounds resulted in high oral bioavailability in mice. The good oral bioavailability and linear pharmacokinetics indicate that the compounds of the preferred embodiments of the present have favorable pharmacokinetic characteristics. In addition, the compounds of the preferred embodiments of the present invention are potent inhibitor of the tyrosine kinase activity of the split-kinase domain RTKs Flk-1/KDR and PDGFR, which are involved in angiogenesis, and the RTK c-kit, a receptor for stem cell factor (SCF), that is involved in certain hematologic cancers. At higher concentrations, the compounds of the preferred embodiments of the present invention also inhibit the tyrosine kinase activity of FGFR-1, a third RTK involved in angiogenesis. Consistent with their biochemical activity, the compounds of the preferred embodiments of the present invention inhibit the ligand-dependent tyrosine phosphorylation of target RTKs and the in vitro mitogenic response of human umbilical vein endothelial cells (HUVECs) stimulated with VEGF or FGF, of PDGFR-expressing NIH-3T3 cells stimulated with PDGF, and of MO7E acute myeloid leukemia cells stimulated with SCF. In contrast, the compounds of the preferred embodiments of the present invention do not directly inhibit the proliferation of tumor cells in complete growth medium except at concentrations 2 to 3 orders of magnitude higher than those required to inhibit the ligand-dependent mitogenic responses. In mouse xenograft studies, the compounds of the prefered embodiments of the present invention inhibited the growth of established human tumors of various origins in a dose-dependent manner and at concentrations that were well tolerated even upon extended (>100 days) dosing. At 80 mg/kg/day, the compounds of the preferred embodiments of the present invention induced regression of large established A431 and Colo205 tumors, and caused substantial growth inhibition or stasis of SF763T and NCI-H460 tumors. In mice bearing SF763T tumors, the compounds of the preferred embodiments of the present invention caused reductions in microvessel density, phosphorylation of PDGFR in the tumors, and mitotic index in the tumor cells. At this dose, the compounds of the preferred embodiments of the present invention also inhibited lung colonization by B16-F1 tumor cells in a model of tumor metastasis. Regimen studies demonstrated that the compounds of the preferred embodiments of the present invention are most efficacious when administered daily. Direct evidence of the anti-angiogenic activity of the compounds of the preferred embodiments of the present invention was detected in SF763T tumors in which microvessel density was reduced. Direct evidence that the compounds of the preferred embodiments of the present invention inhibit PDGFR phosphorylation and signaling in vivo was also obtained in SF763T tumors. Taken together, these data support the notion that orally administered compounds of the preferred embodiments of the present invention are anti-angiogenic agents for the treatment of cancers, including solid tumors and hematological malignancies in which angiogenesis and/or signaling through c-kit are important in the disease pathology. It will be appreciated that the compounds, methods and pharmaceutical compositions of the present invention are effective in modulating PK activity and therefore are expected to be effective as therapeutic agents against RTK, CTK-, and STK-related disorders. One skilled in the art would also readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent herein. The molecular complexes and the methods, procedures, treatments, molecules, specific compounds described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention are defined by the scope of the claims. It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. All patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims. In addition, where features or aspects of the invention are described in terms of Markush groups, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group. For example, if X is described as selected from the group consisting of bromine, chlorine, and iodine, claims for X being bromine and claims for X being bromine and chlorine are fully described. Other embodiments are within the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of Invention The present invention relates to certain 3-pyrrole substituted 2-indolinone compounds which modulate the activity of protein kinases (“PKs”). The compounds of this invention are therefore useful in treating disorders related to abnormal PK activity. Pharmaceutical compositions comprising these compounds, methods of treating diseases utilizing pharmaceutical compositions comprising these compounds and methods of preparing them are also disclosed. 2. State of the Art The following is offered as background information only and is not admitted to be prior art to the present invention. PKs are enzymes that catalyze the phosphorylation of hydroxy groups on tyrosine, serine and threonine residues of proteins. The consequences of this seemingly simple activity are staggering; cell growth, differentiation and proliferation, i.e., virtually all aspects of cell life in one way or another depend on PK activity. Furthermore, abnormal PK activity has been related to a host of disorders, ranging from relatively non-life threatening diseases such as psoriasis to extremely virulent diseases such as glioblastoma (brain cancer). The PKs can be conveniently broken down into two classes, the protein tyrosine kinases (PTKs) and the serine-threonine kinases (STKs). One of the prime aspects of PTK activity is their involvement with growth factor receptors. Growth factor receptors are cell-surface proteins. When bound by a growth factor ligand, growth factor receptors are converted to an active form which interacts with proteins on the inner surface of a cell membrane. This leads to phosphorylation on tyrosine residues of the receptor and other proteins and to the formation inside the cell of complexes with a variety of cytoplasmic signaling molecules that, in turn, effect numerous cellular responses such as cell division (proliferation), cell differentiation, cell growth, expression of metabolic effects to the extracellular microenvironment, etc. For a more complete discussion, see Schlessinger and Ullrich, Neuron, 9:303-391 (1992) which is incorporated by reference, including any drawings, as if fully set forth herein. Growth factor receptors with PTK activity are known as receptor tyrosine kinases (“RTKs”). They comprise a large family of transmembrane receptors with diverse biological activity. At present, at least nineteen (19) distinct subfamilies of RTKs have been identified. An example of these is the subfamily designated the “HER” RTKs, which include EGFR (epithelial growth factor receptor), HER2, HER3 and HER4. These RTKs consist of an extracellular glycosylated ligand binding domain, a transmembrane domain and an intracellular cytoplasmic catalytic domain that can phosphorylate tyrosine residues on proteins. Another RTK subfamily consists of insulin receptor (IR), insulin-like growth factor Ireceptor (IGF-1R) and insulin receptor related receptor (IRR). IR and IGF-1R interact with insulin, IGF-I and IGF-II to form a heteratetramer of two, entirely extracellular glycosylated a subunits and two β subunits which cross the cell membrane and which contain the tyrosine kinase domain. A third RTK subfamily is referred to as the platelet derived growth factor receptor (“PDGFR”) group, which includes PDGFRα, PDGFRβ, CSFIR, c-kit and c-fms. These receptors consist of glycosylated extracellular domains composed of variable numbers of immunoglobin-like loops and an intracellular domain wherein the tyrosine kinase domain is interrupted by unrelated amino acid sequences. Another group which, because of its similarity to the PDGFR subfamily, is sometimes subsumed into the later group is the fetus liver kinase (“flk”) receptor subfamily. This group is believed to be made up of kinase insert domain-receptor fetal liver kinase-1 (KDR/FLK-1, VEGF-R2), flk-1R, flk-4 and fms-like tyrosine kinase 1 (flt-1). A further member of the tyrosine kinase growth factor receptor family is the fibroblast growth factor (“FGF”) receptor subgroup. This group consists of four receptors, FGFR1-4, and seven ligands, FGF1-7. While not yet well defined, it appears that the receptors consist of a glycosylated extracellular domain containing a variable number of immunoglobin-like loops and an intracellular domain in which the tyrosine kinase sequence is interrupted by regions of unrelated amino acid sequences. Still another member of the tyrosine kinase growth factor receptor family is the vascular endothelial growth factor (VEGF”) receptor subgroup. VEGF is a dimeric glycoprotein similar to PDGF but has different biological functions and target cell specificity in vivo. In particular, VEGF is presently thought to play an essential role is vasculogenesis and angiogenesis. A more complete listing of the known RTK subfamilies is described in Plowman et al., DN & P, 7(6):334-339 (1994) which is incorporated by reference, including any drawings, as if fully set forth herein. In addition to the RTKs, there also exists a family of entirely intracellular PTKs called “non-receptor tyrosine kinases” or “cellular tyrosine kinases.” This latter designation, abbreviated “CTK,” will be used herein. CTKs do not contain extracellular and transmembrane domains. At present, over 24 CTKs in 11 subfamilies (Src, Frk, Btk, Csk, Abl, Zap70, Fes, Fps, Fak, Jak and Ack) have been identified. The Src subfamily appear so far to be the largest group of CTKs and includes Src, Yes, Fyn, Lyn, Lck, Blk, Hck, Fgr and Yrk. For a more detailed discussion of CTKs, see Bolen, Oncogene, 8:2025-2031 (1993), which is incorporated by reference, including any drawings, as if fully set forth herein. The serine/threonine kinases, STKs, like the CTKs, are predominantly intracellular although there are a few receptor kinases of the STK type. STKs are the most common of the cytosolic kinases; i.e., kinases that perform their function in that part of the cytoplasm other than the cytoplasmic organelles and cytoskelton. The cytosol is the region within the cell where much of the cell's intermediary metabolic and biosynthetic activity occurs; e.g., it is in the cytosol that proteins are synthesized on ribosomes. RTKs, CTKs and STKs have all been implicated in a host of pathogenic conditions including, significantly, cancer. Other pathogenic conditions which have been associated with PTKs include, without limitation, psoriasis, hepaticcirrhosis, diabetes, angiogenesis, restenosis, ocular diseases, rheumatoid arthritis and other inflammatory disorders, immunological disorders such as autoimmune disease, cardiovascular disease such as atherosclerosis and a variety of renal disorders. With regard to cancer, two of the major hypotheses advanced to explain the excessive cellular proliferation that drives tumor development relate to functions known to be PK regulated. That is, it has been suggested that malignant cell growth results from a breakdown in the mechanisms that control cell division and/or differentiation. It has been shown that the protein products of a number of proto-oncogenes are involved in the signal transduction pathways that regulate cell growth and differentiation. These protein products of proto-oncogenes include the extracellular growth factors, transmembrane growth factor PTK receptors (RTKs), cytoplasmic PTKs (CTKs) and cytosolic STKs, discussed above. In view of the apparent link between PK-related cellular activities and wide variety of human disorders, it is no surprise that a great deal of effort is being expended in an attempt to identify ways to modulate PK activity. Some of this effort has involved biomimetic approaches using large molecules patterned on those involved in the actual cellular processes. (e.g., mutant ligands (U.S. Pat. No. 4,966,849); soluble receptors and antibodies (App. No. WO 94/10202, Kendall and Thomas, Proc. Nat'l Acad. Sci., 90:10705-09 (1994), Kim, et al., Nature, 362:841-844 (1993)); RNA ligands (Jelinek, et al., Biochemistry, 33:10450-56); Takano, et al., Mol. Bio. Cell 4:358A (1993); Kinsella, et al., Exp. Cell Res. 199:56-62 (1992); Wright, et al., J. Cellular Phys., 152:448-57) and tyrosine kinase inhibitors (WO 94/03427; WO 92/21660; WO 91/15495; WO 94/14808; U.S. Pat. No. 5,330,992; Mariani, et al., Proc. Am. Assoc. Cancer Res., 35:2268 (1994)). In addition to the above, attempts have been made to identify small molecules which act as PK inhibitors. For example, bis-monocylic, bicyclic and heterocyclic aryl compounds (PCT WO 92/20642), vinyleneazaindole derivatives (PCT WO 94/14808) and 1-cyclopropyl-4-pyridylquinolones (U.S. Pat. No. 5,330,992) have been described as tyrosine kinase inhibitors. Styryl compounds (U.S. Pat. No. 5,217,999), styryl-substituted pyridyl compounds (U.S. Pat. No. 5,302,606), quinazoline derivatives (EP App. No.0 566 266 A1), selenaindoles and selenides (PCT WO 94/03427), tricyclic polyhydroxylic compounds (PCT WO 92/21660) and benzylphosphonic acid compounds (PCT WO 91/15495) have all been described as PTK inhibitors useful in the treatment of cancer. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention is directed to certain 3-pyrrole substituted 2-indolinone compounds which exhibit PK modulating ability and are therefore useful in treating disorders related to abnormal PK activity. Accordingly, in one aspect, the present invention relates to 3-pyrrole substituted 2-indolinones of Formula (I): wherein: R 1 is selected from the group consisting of hydrogen, halo, alkyl, cyclkoalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, —(CO)R 15 , —NR 13 R 14 , —(CH 2 ) r R 16 and —C(O)NR 8 R 9 ; R 2 is selected from the group consisting of hydrogen, halo, alkyl, trihalomethyl, hydroxy, alkoxy, cyano, —NR 13 R 14 , —NR 13 C(O)R 14 , —C(O) R 15 , aryl, heteroaryl, —S(O) 2 NR 13 R 14 and —SO 2 R 20 (wherein R 20 is alkyl, aryl, aralkyl, heteroaryl and heteroaralkyl); R 3 is selected from the group consisting of hydrogen, halogen, alkyl, trihalomethyl, hydroxy, alkoxy, —(CO)R 15 , —NR 13 R 14 , aryl, heteroaryl, —NR 13 S(O) 2 R 14, —S(O) 2 NR 13 R 14 , —NR 13 C(O)R 14 , —NR 13 C(O)OR 14 and —SO 2 R 20 (wherein R 20 is alkyl, aryl, aralkyl, heteroaryl and heteroaralkyl); R 4 is selected from the group consisting of hydrogen, halogen, alkyl, hydroxy, alkoxy and —NR 13 R 14 ; R 5 is selected from the group consisting of hydrogen, alkyl and —C(O)R 10 ; R 6 is selected from the group consisting of hydrogen, alkyl and —C(O)R 10 ; R 7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, —C(O)R 17 and —C(O)R 10 ; or R 6 and R 7 may combine to form a group selected from the group consisting of —(CH 2 ) 4 —, —(CH 2 ) 5 — and —(CH 2 ) 6 —; with the proviso that at least one of R 5 , R 6 or R 7 must be —C(O)R 10 ; R 8 and R 9 are independently selected from the group consisting of hydrogen, alkyl and aryl; R 10 is selected from the group consisting of hydroxy, alkoxy, aryloxy, —N(R 11 )(CH 2 ) n R 12 , and —NR 13 R 14 ; R 11 is selected from the group consisting of hydrogen and alkyl; R 12 is selected from the group consisting of —NR 13 R 14 , hydroxy, —C(O)R 15 , aryl, heteroaryl, —N + (O − )R 13 R 14 , —N(OH)R 13 , and —NHC(O)R a (wherein R a is unsubstituted alkyl, haloalkyl, or aralkyl); R 13 and R 14 are independently selected from the group consisting of hydrogen, alkyl, cyanoalkyl, cycloalkyl, aryl and heteroaryl; or R 13 and R 14 may combine to form a heterocyclo group; R 15 is selected from the group consisting of hydrogen, hydroxy, alkoxy and aryloxy; R 16 is selected from the group consisting of hydroxy, —C(O)R 15 , —NR 13 R 14 and —C(O)NR 13 R 14 ; R 17 is selected from the group consisting of alkyl, cycloalkyl, aryl and heteroaryl; R 20 is alkyl, aryl, aralkyl or heteroaryl; and n and r are independently 1, 2, 3, or 4; or a pharmaceutically acceptable salt thereof. Preferably, R 1 is selected from the group consisting of hydrogen, halo, alkyl, cyclkoalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, —C(O)R 15 , —NR 13 R 14 , —(CH 2 ) r R 16 and —C(O)NR 8 R 9 ; R 2 is selected from the group consisting of hydrogen, halo, alkyl, trihalomethyl, hydroxy, alkoxy, —NR 13 R 14 , —NR 13 C(O)R 14 , —C(O)R 15 , aryl, heteroaryl, and —S(O) 2 NR 13 R 14 ; R 3 is selected from the group consisting of hydrogen, halogen, alkyl, trihalomethyl, hydroxy, alkoxy, —(CO)R 15 , —NR 13 R 14 , aryl, heteroaryl, —NR 13 S(O) 2 R 14, —S(O) 2 NR 13 R 14 , —NR 13 C(O)R 14 and —NR 13 C(O)OR 14 ; R 4 is selected from the group consisting of hydrogen, halogen, alkyl, hydroxy, alkoxy and —NR 13 R 14 ; R 5 is selected from the group consisting of hydrogen, alkyl and —C(O)R 10 ; R 6 selected from the group consisting of hydrogen, alkyl and —C(O)R 10 ; R 7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, —C(O)R 17 and —C(O)R 10 ; R 6 and R 7 may combine to form a group selected from the group consisting of —(CH 2 ) 4 —, —(CH 2 ) 5 — and —(CH 2 ) 6 —; with the proviso that at least one of R 5 , R 6 or R 7 must be —C(O)R 10 ; R 8 and R 9 are independently selected from the group consisting of hydrogen, alkyl and aryl; R 10 is selected from the group consisting of hydroxy, alkoxy, aryloxy, —N(R 11 )(CH 2 ) n R 12 and —NR 13 R 14 ; R 11 is selected from the group consisting of hydrogen and alkyl; R 12 is selected from the group consisting of —NR 13 R 14 , hydroxy, —C(O)R 15 , aryl and heteroaryl; R 13 and R 14 are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl and heteroaryl; R 13 and R 14 may combine to form a group selected from the group consisting of —(CH 2 ) 4 —, —(CH 2 ) 5 —, —(CH 2 ) 2 O(CH 2 ) 2 —, and —(CH 2 ) 2 N(CH 3 )(CH 2 ) 2 —; R 15 is selected from the group consisting of hydrogen, hydroxy, alkoxy and aryloxy; R 16 is selected from the group consisting of hydroxy, —C(O)R 15 , —NR 13 R 14 and —C(O)NR 13 R 14 ; R 17 is selected from the group consisting of alkyl, cycloalkyl, aryl and heteroaryl; and n and r are independently 1, 2, 3, or 4; or a pharmaceutically acceptable salt thereof. In a second aspect this invention is directed to a pharmaceutical composition comprising one or more compound(s) of Formula (I) or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable excipient. In a third aspect, this invention is directed to a method of treating diseases mediated by abnormal protein kinase activity, in particular, receptor tyrosine kinases (RTKs), non-receptor protein tyrosine kinases (CTKs) and serine/threonine protein kinases (STKs), in an organism, in particular humans, which method comprises administering to said organism a pharmaceutical composition comprising a compound of Formula (I). Such diseases include by way of example and not limitation, cancer, diabetes, hepatic cirrhosis, cardiovasacular disease such as atherosclerosis, angiogenesis, immunological disease such as autoimmune disease and renal disease. In a fourth aspect, this invention is directed to a method of modulating of the catalytic activity of PKs, in particular, receptor tyrosine kinases (RTKs), non-receptor protein tyrosine kinases (CTKs) and serine/threonine protein kinases (STKs), using a compound of this invention which may be carried out in vitro or in vivo. In particular, the receptor protein kinase whose catalytic activity is modulated by a compound of this invention is selected from the group consisting of EGF, HER2, HER3, HER4, IR, IGF-1R, IRR, PDGFRα, PDGFRβ, CSFIR, C-Kit, C-fms, Flk-1R, Flk4, KDR/Flk-1, Flt-1 , FGFR-1R, FGFR-2R, FGFR-3R and FGFR-4R. The cellular tyrosine kinase whose catalytic activity is modulated by a compound of this invention is selected from the group consisting of Src, Frk, Btk, Csk, Abl, ZAP70, Fes/Fps, Fak, Jak, Ack, Yes, Fyn, Lyn, Lck, Blk, Hck, Fgr and Yrk. The serine-threonine protein kinase whose catalytic activity is modulated by a compound of this invention is selected from the group consisting of CDK2 and Raf. In a fifth aspect, this invention is directed to the use of a compound of Formula (I) in the preparation of a medicament which is useful in the treatment of a disease mediated by abnormal PK activity. In a sixth aspect, this invention is directed to an intermediate of Formula (II): wherein: R 5 is selected from the group consisting of hydrogen, alkyl and —C(O)R 10 ; R 6 is selected from the group consisting of hydrogen, alkyl and —C(O)R 10 ; R 7 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, —C(O)R 17 and —C(O)R 10 ; R 6 and R 7 may combine to form a group selected from the group consisting of —(CH 2 ) 4 —, —(CH 2 ) 5 — and —(CH 2 ) 6 —; with the proviso that at least one of R 5 , R 6 or R 7 must be —C(O)R 10 ; R 10 is selected from the group consisting of hydroxy, alkoxy, aryloxy, —N (R 11 )(CH 2 ) n R 12 and —NR 13 R 14 ; R 11 is selected from the group consisting of hydrogen and alkyl;, R 12 is selected from the group consisting of —NR 13 R 14 , hydroxy, —C(O)R 15 , aryl and heteroaryl; R 13 and R 14 are independently selected from the group consisting of hydrogen, alkyl, cyanoalkyl, cycloalkyl, aryl and heteroaryl; or R 13 and R 14 may combine to form a heterocyclo group; R 15 is selected from the group consisting of hydrogen, hydroxy, alkoxy and aryloxy; R 17 is selected from the group consisting of alkyl, cycloalkyl, aryl and heteroaryl; and n is 1, 2, 3, or 4. Preferaby, R 5 or R 6 , in the compound of formula II, is —C(O)R 10 ; R 6 is selected from the group consisting of hydrogen, and alkyl, more preferably hydrogen or methyl; R 5 is selected from the group consisting of hydrogen, and alkyl, more preferably hydrogen or methyl when R 6 is —COR 10 ; R 6 is selected from the group consisting of hydrogen, and alkyl, more preferably hydrogen or methyl when R 5 is —COR 10 ;; R 7 is selected from the group consisting of hydrogen, alkyl, and aryl, more preferably hydrogen, methyl or phenyl; R 10 is selected from the group consisting of hydroxy, alkoxy, —N(R 11 )(CH 2 ) n R 12 and —NR 13 R 14 ; R 11 is selected from the group consisting of hydrogen and alkyl, more preferably hydrogen or methyl; R 12 is selected from the group consisting of —NR 13 R 14 ; R 13 and R 14 are independently selected from the group consisting of hydrogen, or alkyl; or R 13 and R 14 may combine to form a heterocyclo group; and n is 1, 2 or 3. Within the above preferred groups, more preferred groups of intermediate compounds are those wherein R 5 , R 6 , R 11 , R 12 , R 13 or R 14 are independently groups described in the section titled “preferred embodiments” herein below. In a seventh aspect, this invention is directed to methods of preparing compounds,of Formula (I). Lastly, this invention is also directed to identifying a chemical compound that modulates the catalytic activity of a protein kinase by contacting cells expressing said protein kinase with a compound or a salt of the present invention and then monitoring said cells for an effect. detailed-description description="Detailed Description" end="lead"? | 20050104 | 20061024 | 20050811 | 96407.0 | 2 | STOCKTON, LAURA LYNNE | PYRROLE SUBSTITUTED 2-INDOLINONE PROTEIN KINASE INHIBITORS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,028,517 | ACCEPTED | Solar powered garden light | A garden light assembly including a solar cell assembly adapted for supplying electric current, at least one light mounted on a mounting plate and in electrical communication with the solar cell assembly, and a refractor/reflector positioned to reflect outwards light rays emanating from the at least one light, the refractor/reflector including a curved surface concavely curved with respect to the at least one light. | 1. Apparatus comprising: a garden light assembly comprising a solar cell assembly adapted for supplying electric current, at least one light mounted on a mounting plate and in electrical communication with said solar cell assembly, and a refractor/reflector positioned to reflect outwards light rays emanating from said at least one light, said refractor/reflector comprising a curved surface concavely curved with respect to said at least one light. 2. The apparatus according to claim 1, wherein said curved surface is white. 3. The apparatus according to claim 1, wherein said curved surface is mirrored. 4. The apparatus according to claim 1, further comprising an optical accessory positioned between said at least one light and said refractor/reflector adapted to modulate light rays emanating from said at least one light. 5. The apparatus according to claim 4, wherein said optical accessory comprises a focusing lens. 6. The apparatus according to claim 1, further comprising a light diffuser through which pass light rays reflected from said refractor/reflector. 7. The apparatus according to claim 6, wherein said light diffuser has a light transmission in a range from transparent to translucent. 8. The apparatus according to claim 1, further comprising a sealing element that seals said refractor/reflector with respect to other elements of said apparatus against passage of liquid therethrough. 9. The apparatus according to claim 1, wherein the curved surface of said refractor/reflector has a parabolic curve. 10. The apparatus according to claim 1, further comprising a mounting pole that supports said mounting plate and said refractor/reflector. | FIELD OF THE INVENTION The present invention relates generally to garden lights, and more specifically to a solar powered garden light. BACKGROUND OF THE INVENTION Some lights use solar power. For example, solar garden lights may be placed in a sunny area for charging and provide light during the night. They typically require no wiring. Some solar lights come on automatically at night time, and others have manual switches or an over-ride switch. Solar garden lights may be used for patios, gardens, walkways, driveways and the like. An example of a commercially available solar garden light is the SiliconLight Solar Flag & Sign Light from Silicon Solar, Bainbridge, N.Y., US. The SiliconLight is equipped with 13,000 mcd (millicandle) LED bulbs for up to 10 hour of operation. SUMMARY OF THE INVENTION The present invention seeks to provide a novel solar powered garden light, as is described more in detail hereinbelow. The term “garden light” throughout the specification and claims encompasses any kind of outdoor light. There is thus provided in accordance with an embodiment of the present invention a garden light including a solar cell assembly adapted for supplying electric current, at least one light mounted on a mounting plate and in electrical communication with the solar cell assembly, and a refractor/reflector positioned to refract and reflect outwards light rays emanating from the at least one light, the refractor/reflector including a curved surface concavely curved with respect to the at least one light. The curved surface of the reflector may have a parabolic curve or a tulip-shaped curve, for example. In accordance with an embodiment of the present invention an optical accessory (e.g., a focusing lens) may be positioned between the light(s) and the refractor/reflector, adapted to modulate light rays emanating from the light(s). A light diffuser may be provided through which pass light rays reflected from the refractor/reflector. The light diffuser may have a light transmission in a range from transparent to translucent. A sealing element may seal the refractor/reflector with respect to other elements of the apparatus against passage of liquid therethrough. The garden light assembly may be mounted on a mounting pole or other structure that supports the mounting plate and the reflector. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which: FIG. 1 is a simplified pictorial illustration of a garden light, constructed and operative in accordance with an embodiment of the present invention; and FIGS. 2 and 3 are simplified pictorial illustrations showing inner components of the garden light of FIG. 1. DETAILED DESCRIPTION OF EMBODIMENTS Reference is now made to FIG. 1, which illustrates a solar powered garden light 10, constructed and operative in accordance with an embodiment of the present invention. Garden light 10 may include a solar cell assembly 12 adapted for supplying electric current. The solar cell assembly 12 may include a solar cell and solar collector (of any size and shape; the collector may be next to or remote from the cell; in the illustrated embodiment the collector may be at the wide part of the refractor/reflector) for generating electricity, such components being well known and commercially available from many manufacturers. One or more lights 14 (FIG. 3), such as but not limited to, LEDs, may be mounted on a mounting plate 16. Lights 14 may be in electrical communication with the solar cell assembly 12, such as by hard wired connection, printed wire connection and the like. In a preferred embodiment, the lights 14 are LEDs mounted on a printed circuit board with power connection to the solar cell. The lights 14 may be arranged in any pattern, such as but not limited to, a circular pattern or matrix pattern. The lights 14 may be of any size, mcd rating, and color. A refractor/reflector 18 may be positioned to refract and reflect outwards light rays emanating from the lights 14. The refractor/reflector 18 may have a white, curved surface 20, which is concavely curved with respect to the lights 14. “White” is defined as the color that has no or little hue, due to the reflection of all or almost all incident light. “White” in the specification and claims encompasses, bright white, “dirty” white, off-white, gray-white, snow white, hard-boiled-egg white and other shades of white. Alternatively, the curved surface 20 may be silvered or have a mirror finish (mirrored). The curved surface 20 of the refractor/reflector 18 may be, without limitation, a parabolic curve or a tulip-shaped curve, for example. The periphery of the curved surface 20 about its longitudinal axis may be smooth and round (e.g., conical). Alternatively, the curved surface 20 may be prismatic, that is, have facets about its longitudinal axis. The refractor/reflector 18 is shown with the broader part of the curved surface 20 facing upwards, but the invention also encompasses the opposite, wherein the curved surface 20 faces downwards or anything in-between. An optical accessory 22 may be positioned between the lights 14 and the refractor/reflector 18, such as but not limited to, a focusing lens. The optical accessory 22 may modulate (e.g., focus) light rays emanating from the lights 14. A light diffuser 24 (FIG. 1) may be placed over the refractor/reflector 18, through which pass light rays reflected from the refractor/reflector 18. In the non-limiting illustrated embodiment, the light diffuser 24 is generally spherical and may be transparent or translucent (or anything between). Diffuser 24 may have any size, shape and color. The garden light 10 may be sealed against liquids, such as rain, and other environmental factors. For example, a sealing element 26, such as a rubber grommet, may be placed at the junction of the refractor/reflector 18 and the optical accessory 22 to seal the refractor/reflector 18 with respect to the rest of the assembly against passage of liquid therethrough. The garden light assembly may be supported on a mounting pole 28, which may be attached to the assembly with a cup-shaped adapter 30 (FIG. 1). Of course, the garden light assembly may be supported on other fixtures, such as but not limited to, wall-mounted fixtures, low-profile mounts and many others. External components of the garden light assembly may be constructed of any suitable material, such as but not limited to, metal (e.g., stainless steel, aluminum or others) or plastic (e.g., polycarbonate or other plastics). It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the features described hereinabove as well as modifications and variations thereof which would occur to a person of skill in the art upon reading the foregoing description and which are not in the prior art. | <SOH> BACKGROUND OF THE INVENTION <EOH>Some lights use solar power. For example, solar garden lights may be placed in a sunny area for charging and provide light during the night. They typically require no wiring. Some solar lights come on automatically at night time, and others have manual switches or an over-ride switch. Solar garden lights may be used for patios, gardens, walkways, driveways and the like. An example of a commercially available solar garden light is the SiliconLight Solar Flag & Sign Light from Silicon Solar, Bainbridge, N.Y., US. The SiliconLight is equipped with 13,000 mcd (millicandle) LED bulbs for up to 10 hour of operation. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention seeks to provide a novel solar powered garden light, as is described more in detail hereinbelow. The term “garden light” throughout the specification and claims encompasses any kind of outdoor light. There is thus provided in accordance with an embodiment of the present invention a garden light including a solar cell assembly adapted for supplying electric current, at least one light mounted on a mounting plate and in electrical communication with the solar cell assembly, and a refractor/reflector positioned to refract and reflect outwards light rays emanating from the at least one light, the refractor/reflector including a curved surface concavely curved with respect to the at least one light. The curved surface of the reflector may have a parabolic curve or a tulip-shaped curve, for example. In accordance with an embodiment of the present invention an optical accessory (e.g., a focusing lens) may be positioned between the light(s) and the refractor/reflector, adapted to modulate light rays emanating from the light(s). A light diffuser may be provided through which pass light rays reflected from the refractor/reflector. The light diffuser may have a light transmission in a range from transparent to translucent. A sealing element may seal the refractor/reflector with respect to other elements of the apparatus against passage of liquid therethrough. The garden light assembly may be mounted on a mounting pole or other structure that supports the mounting plate and the reflector. | 20050105 | 20070206 | 20060706 | 58730.0 | F21L400 | 1 | WARD, JOHN A | SOLAR POWERED GARDEN LIGHT | SMALL | 0 | ACCEPTED | F21L | 2,005 |
|
11,028,629 | ACCEPTED | Substrate holding apparatus | The present invention relates to a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface. The substrate holding apparatus comprises a top ring body for holding a substrate, an elastic pad for being brought into contact with the substrate, and a support member for supporting the elastic pad. The substrate holding apparatus further comprises a contact member mounted on a lower surface of the support member and disposed in a space formed by the elastic pad and the support member. The contact member has an elastic membrane for being brought into contact with the elastic pad. A first pressure chamber is defined in the contact member, and a second pressure chamber is defined outside of the contact member. The substrate holding apparatus further comprises a fluid source for independently supplying a fluid into, or creating a vacuum in, the first pressure chamber and the second pressure chamber. | 1-62. (canceled) 63. A substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, said substrate holding apparatus comprising: a top ring body for holding a substrate; a seal ring to be brought into contact with an upper surface of a peripheral portion of the substrate when held by said top ring body; a support member for supporting said seal ring; a contact member mounted on a lower surface of said support member and disposed in a space formed by the substrate, said seal ring and said support member when the substrate is held by said top ring body, said contact member having an elastic membrane to be brought into contact with the substrate when held by said top ring body; a first pressure chamber defined in said contact member; a second pressure chamber defined outside of said contact member; and a fluid source for independently supplying a fluid into, or creating a vacuum in, said first pressure chamber and said second pressure chamber. 64. The substrate holding apparatus according to claim 63, wherein said fluid source is for supplying a fluid controlled in terms of temperature into said first pressure chamber and said second pressure chamber, respectively. 65. The substrate holding apparatus according to claim 63, wherein a communicating portion for allowing fluid supplied to said first pressure chamber to contact a contact surface of the substrate, when held by said top ring body, is formed in a lower surface of said elastic membrane of said contact member. 66. The substrate holding apparatus according to claim 63, wherein said contact member comprises a holding member for detachably holding said elastic membrane. 67. The substrate holding apparatus according to claim 66, wherein said holding member is detachably mounted on said support member. 68. The substrate holding apparatus according to claim 63, wherein a protrusion radially protruding from a circumferential edge of said elastic membrane is provided on a lower surface of said elastic membrane. 69. The substrate holding apparatus according to claim 63, wherein said contact member includes a central contact member disposed at a position corresponding to a central portion of the substrate when held by said top ring body, and an outer contact member disposed outside of said central contact member. 70. The substrate holding apparatus according to claim 69, wherein said outer contact member is mounted at a position corresponding to an outer peripheral portion of the substrate when held by said top ring body. 71. The substrate holding apparatus according to claim 63, further comprising a retainer ring fixed to or integrally formed with said top ring body for holding a peripheral portion of the substrate when held by said top ring body. 72. The substrate holding apparatus according to claim 71, wherein said top ring body comprises a cleaning liquid passage defined therein for supplying a cleaning liquid into a gap defined between an outer circumferential surface of said seal ring and said retainer ring. 73. The substrate holding apparatus according to claim 71, wherein said retainer ring 1 is fixed to said top ring body without interposing an elastic member between said retainer ring and said top ring body. 74. The substrate holding apparatus according to claim 63, wherein said elastic membrane has a partially different thickness. 75. The substrate holding apparatus according to claim 63, wherein said elastic membrane partially includes an inelastic member. 76. The substrate holding apparatus according to claim 63, wherein said support member is made of an insulating material. 77. The substrate holding apparatus according to claim 63, wherein said seal ring extends radially inwardly from an innermost position of a recess for recognizing or identifying an orientation of the substrate when held by said top ring body. | This application is a divisional of U.S. application Ser. No. 09/973,842, filed Oct. 11, 2001. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, and more particularly to a substrate holding apparatus for holding a substrate such as a semiconductor wafer in a polishing apparatus for polishing the substrate. 2. Description of the Related Art In a manufacturing process of a semiconductor device, a thin film is formed on a semiconductor device, and then micro-machining processes, such as patterning or forming holes, are performed. Thereafter, the above processes are repeated to form thin films on the semiconductor device. Recently, semiconductor devices have become more integrated, and structure of semiconductor elements has become more complicated. In addition, the number of layers in multilayer interconnections used for a logical system has been increased. Therefore, irregularities on a surface of the semiconductor device are increased, so that a step height on the surface of the semiconductor device becomes larger. When irregularities of a surface of a semiconductor device are increased, the following problems arise. Thickness of a film formed in a portion having a step is relatively small. An open circuit is caused by disconnection of interconnections, or a short circuit is caused by insufficient insulation between layers. As a result, good products cannot be obtained, and a yield is reduced. Further, even if a semiconductor device initially works normally, reliability of the semiconductor device is lowered after a long-term use. At a time of exposure during a lithography process, if an irradiation surface has irregularities, then a lens unit in an exposure system is locally unfocused. Therefore, if the irregularities of the surface of the semiconductor device are increased, then it is difficult to form a fine pattern on the semiconductor device. Thus, during a manufacturing process of a semiconductor device, it is increasingly important to planarize a surface of the semiconductor device. The most important one of planarizing technologies is chemical mechanical polishing (CMP). In chemical mechanical polishing using a polishing apparatus, while a polishing liquid containing abrasive particles such as silica (SiO2) therein is supplied onto a polishing surface such as a polishing pad, a substrate such as a semiconductor wafer is brought into sliding contact with the polishing surface, so that the substrate is polished. This type of polishing apparatus comprises a polishing table having a polishing surface constituted by a polishing pad, and a substrate holding apparatus, such as a top ring or a carrier head, for holding a semiconductor wafer. When a semiconductor wafer is polished with this type of polishing apparatus, the semiconductor wafer is held by the substrate holding apparatus and pressed against the polishing pad under a predetermined pressure. At this time, the polishing table and the substrate holding apparatus are moved relatively to each other to bring the semiconductor wafer into sliding contact with the polishing surface, so that the surface of the semiconductor wafer is polished to a flat mirror finish. If a pressing force produced between the semiconductor wafer and the polishing surface of the polishing pad is not uniform over an entire surface of the semiconductor wafer, then the semiconductor wafer is insufficiently or excessively polished depending on the pressing force applied to the semiconductor wafer. Therefore, it has been attempted that a holding surface of the substrate holding apparatus is formed by an elastic membrane of an elastic material such as rubber, and a fluid pressure such as air pressure is applied to a backside surface of the elastic membrane to make uniform the pressing force applied to the semiconductor wafer over the entire surface of the semiconductor wafer. The polishing pad is so elastic that the pressing force applied to a peripheral portion of the semiconductor wafer becomes non-uniform and hence the peripheral portion of the semiconductor wafer is excessively polished to cause edge rounding. In order to prevent such edge rounding, there has been used a substrate holding apparatus in which a semiconductor wafer is held at its peripheral portion by a guide ring or a retainer ring, and an annular portion of a polishing surface that corresponds to the peripheral portion of the semiconductor wafer is pressed by the guide ring or the retainer ring. A thickness of a thin film formed on a surface of a semiconductor wafer varies from position to position in a radial direction of the semiconductor wafer depending on a film deposition method or characteristics of a film deposition apparatus. Specifically, the thin film has a film thickness distribution in the radial direction of the semiconductor wafer. When a conventional substrate holding apparatus for uniformly pressing an entire surface of the semiconductor wafer is used for polishing the semiconductor wafer, the entire surface of the semiconductor wafer is polished uniformly. Therefore, a conventional substrate holding apparatus cannot realize a polishing amount distribution that is equal to the film thickness distribution on the surface of the semiconductor wafer, and hence cannot sufficiently cope with the film thickness distribution in the radial direction so as to cause insufficient or excessive polishing. As described above, the film thickness distribution on the surface of the semiconductor wafer varies depending on the type of a film deposition method or a film deposition apparatus employed. Specifically, a position and number of portions having a large film thickness in the radial direction and difference in thickness between thin film portions and thick film portions vary depending on the type of a film deposition method or a film deposition apparatus employed. Therefore, a substrate holding apparatus capable of easily coping with various film thickness distributions at low cost has been required rather than a substrate holding apparatus capable of coping with only a specific film thickness distribution. SUMMARY OF THE INVENTION The present invention has been made in view of the above drawbacks. It is therefore an object of the present invention to provide a substrate holding apparatus capable of polishing a substrate such as a semiconductor wafer in accordance with a thickness distribution of thin film formed on a surface of the substrate, and obtaining uniformity of film thickness after polishing. It is another object of the present invention to provide a substrate holding apparatus capable of easily coping with not only a specific film thickness distribution but also various film thickness distributions at low cost. According to an aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, the substrate holding apparatus comprising: a top ring body for holding the substrate; an elastic pad for being brought into contact with the substrate; a support member for supporting the elastic pad; a contact member mounted on a lower surface of the support member and disposed in a space formed by the elastic pad and the support member, the contact member having an elastic membrane for being brought into contact with the elastic pad; a first pressure chamber defined in the contact member; a second pressure chamber defined outside of the contact member; and a fluid source for independently supplying a fluid into, or creating a vacuum in, the first pressure chamber and the second pressure chamber. According to another aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, the substrate holding apparatus comprising: a top ring body for holding a substrate; a seal ring for being brought into contact with an upper surface of a peripheral portion of the substrate; a support member for supporting the seal ring; a contact member mounted on a lower surface of the support member and disposed in a space formed by the substrate, the seal ring and the support member, with the contact member having an elastic membrane for being brought into contact with the substrate; a first pressure chamber defined in the contact member; a second pressure chamber defined outside of the contact member; and a fluid source for independently supplying a fluid into, or creating a vacuum in, the first pressure chamber and the second pressure chamber. According to still another aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, the substrate holding apparatus comprising: a top ring body for holding the substrate; a support member having a contact member mounted on a lower surface thereof, the contact member being disposed in a space formed by the substrate and the support member and having an elastic membrane for being brought into contact with the substrate; a first pressure chamber defined in the contact member; a second pressure chamber defined outside of the contact member; and a fluid source for independently supplying a fluid into, or creating a vacuum in, the first pressure chamber and the second pressure chamber. According to another aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, the substrate holding apparatus comprising: a top ring body for holding the substrate; an elastic pad for being brought into contact with the substrate; a support member for supporting the elastic pad; and contact members mounted on a lower surface of the support member, the contact members each having an elastic membrane for being brought into contact with the elastic pad and being independently pressed against the elastic pad. According to the present invention, pressures in a first pressure chamber and a second pressure chamber can be independently controlled. Therefore, a pressing force applied to a thicker area of a thin film on a substrate can be made higher than a pressing force applied to a thinner area of the thin film, thereby selectively increasing a polishing rate of the thicker area of the thin film. Consequently, an entire surface of the substrate can be polished exactly to a desired level irrespective of a film thickness distribution obtained at a time the thin film is formed. The pressing force is a pressure per unit area for pressing the substrate against a polishing surface. In a preferred aspect of the present invention, the fluid source supplies a fluid, controlled in terms of temperature, into the first pressure chamber and the second pressure chamber, respectively. Preferably, the contact members are spaced from one another at predetermined intervals. According to another aspect of the present invention, a communicating portion for allowing fluid supplied to the first pressure chamber to contact a contact surface of the substrate is formed in a lower surface of the elastic membrane of a contact member. When pressurized fluids supplied to the pressure chambers are controlled in terms of temperature and a temperature of the substrate is controlled from a backside of the surface to be polished, the above arrangement can increase an area in which a pressurized fluid, controlled in terms of temperature, is brought into contact with the substrate. Therefore, controllability in terms of temperature of the substrate can be improved. Further, when polishing of the substrate is finished and the substrate is released, the pressure chambers are respectively opened to outside air via the communicating portion. Thus, fluids supplied into the pressure chambers are prevented from remaining in the pressure chambers. Therefore, even when substrates are continuously polished, controllability in terms of temperature of the substrate can be maintained. In a substrate holding apparatus comprising a seal ring, a lower surface of the support member is not covered after a substrate is released. Therefore, a large part of the lower surface of the support member is exposed after the substrate is released, so that the substrate holding apparatus can easily be cleaned after a polishing process. In either a substrate holding apparatus comprising an elastic pad or a substrate holding apparatus comprising a seal ring, the support member should preferably be made of an insulating material such as resin or ceramic. The seal ring should preferably extend radially inwardly from an innermost position of a recess, such as a notch or orientation flat, for recognizing or identifying an orientation of a substrate. In a preferred aspect of the present invention, each contact member comprises a holding member for detachably holding its elastic membrane. With this arrangement, the elastic membrane of the contact member can easily be replaced with another one, and hence a position and size of the first pressure chamber and the second pressure chamber can be changed simply by changing the elastic membrane of the contact member. Therefore, a substrate holding apparatus according to the present invention can easily cope with various thickness distributions of a thin film formed on a substrate to be polished at a low cost. In another preferred aspect of the present invention, the holding member of each contact member is detachably mounted on the support member. With this arrangement, the contact member can easily be replaced with another one, and hence a position and size of the first pressure chamber and the second pressure chamber can be changed simply by changing the contact member. Therefore, a substrate holding apparatus according to the present invention can easily cope with various thickness distributions of a thin film formed on a substrate to be polished at a low cost. In still another preferred aspect of the present invention, a protrusion radially extending from a circumferential edge of the elastic membrane of each contact member is provided on a lower surface of the elastic membrane. The protrusion is brought into close contact with an elastic pad or a substrate by a pressurized fluid supplied to the second pressure chamber to prevent the pressurized fluid from flowing into a lower portion of the contact member. Hence, a range of pressure control can be widened to press the substrate against a polishing surface more stably. In another preferred aspect of the present invention, the contact member includes a central contact member disposed at a position corresponding to a central portion of a substrate, and an outer contact member disposed outside of the central contact member. In still another preferred aspect of the present invention, the outer contact member is mounted at a position corresponding to an outer peripheral portion of a substrate. With this arrangement, a pressing force applied to the peripheral portion of the substrate is appropriately controlled to suppress effects due to elastic deformation of a polishing surface or entry of a polishing liquid into a space between the polishing surface and the substrate, for thereby uniformly polishing the peripheral portion of the substrate. In another preferred aspect of the present invention, the substrate holding apparatus further comprises a retainer ring fixed to, or integrally formed with, the top ring body for holding a peripheral portion of the substrate. In still another preferred aspect of the present invention, the top ring body comprises a cleaning liquid passage defined therein for supplying a cleaning liquid into a gap defined between an outer circumferential surface of the elastic pad and the retainer ring. When a cleaning liquid (pure water) is supplied from the cleaning liquid passage into the gap defined between the outer circumferential surface of the elastic pad and the retainer ring, a polishing liquid in the gap is washed away to remove deposits of a polishing liquid in the gap. Therefore, the support member, the elastic pad, or the substrate can smoothly be moved in a vertical direction with respect to the top ring body and the retainer ring. In another preferred aspect of the present invention, the retainer ring 1 is fixed to the top ring body without interposing an elastic member between the retainer ring and the top ring body. If an elastic member such as rubber is clamped between the retainer ring and the top ring body, then a desired horizontal surface cannot be maintained on a lower surface of the retainer ring because of elastic deformation of this elastic member. However, the above arrangement, i.e. absent an elastic member between the retainer ring and the top ring body, can maintain a desired horizontal surface on the lower surface of the retainer ring. In still another preferred aspect of the present invention, the elastic membrane of each contact member has differing thicknesses, or partially includes an inelastic member. With this arrangement, deformation of the elastic membrane due to pressure in the first and second pressure chambers can be optimized. According to another aspect of the present invention, there is provided a polishing apparatus comprising the above substrate holding apparatus and a polishing table having a polishing surface. According to still another aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, comprising: a top ring body for holding the substrate; annular members formed of an elastic material for being held in contact with the substrate; sections defined by the annular members, the sections being opened downwardly; and a fluid passage for supplying a fluid into the sections. According to another aspect of the present invention, there is provided a polishing method for polishing a substrate, comprising: pressing a substrate against a polishing surface provided on a polishing table; and polishing a substrate in such a state that a pressing force applied to a thicker area of a thin film on the substrate is made higher than a pressing force applied to a thinner area of the thin film. According to still another aspect of the present invention, there is provided a polishing method for polishing a substrate, comprising: pressing a substrate against a polishing surface provided on a polishing table; defining sections opened downwardly by annular members formed of an elastic material held in contact with the substrate; and supplying a fluid into, or creating a vacuum in, the sections. The above and other objects, features, and advantages of the present invention will be apparent from the following description when taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention by way of example. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an entire structure of a polishing apparatus according to a first embodiment of the present invention; FIG. 2 is a vertical cross-sectional view showing a substrate holding apparatus according to the first embodiment of the present invention; FIG. 3 is a bottom view of the substrate holding apparatus shown in FIG. 2; FIGS. 4A through 4E are vertical cross-sectional views showing other examples of contact members (central bag and ring tube) in a substrate holding apparatus according to the present invention; FIG. 5 is a vertical cross-sectional view showing another example of contact members (central bag and ring tube) in a substrate holding apparatus according to the present invention; FIGS. 6A and 6B are vertical cross-sectional views showing other examples of contact members (central bag and ring tube) in a substrate holding apparatus according to the present invention; FIG. 7 is a vertical cross-sectional view showing a substrate holding apparatus according to a second embodiment of the present invention; FIG. 8 is a vertical cross-sectional view showing another example of contact members (central bag and ring tube) in a substrate holding apparatus according to the present invention; FIG. 9 is a bottom view of the substrate holding apparatus shown in FIG. 8 in such a state that a semiconductor wafer is removed; FIG. 10 is a bottom view showing another example of contact members (central bag and ring tube) in a substrate holding apparatus according to the present invention; FIG. 11 is a vertical cross-sectional view showing another example of contact members (central bag and ring tube) in a substrate holding apparatus according to the present invention; FIG. 12 is a vertical cross-sectional view showing a substrate holding apparatus according to a third embodiment of the present invention; FIG. 13 is a bottom view of the substrate holding apparatus shown in FIG. 12; and FIG. 14 is a vertical cross-sectional view showing a substrate holding apparatus according to another embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A polishing apparatus according to a first embodiment of the present invention will be described below with reference to FIGS. 1 through 6. FIG. 1 is a cross-sectional view showing an entire structure of a polishing apparatus having a substrate holding apparatus according to the first embodiment of the present invention. The substrate holding apparatus serves to hold a substrate, such as a semiconductor wafer, to be polished and to press the substrate against a polishing surface of a polishing table. As shown in FIG. 1, a polishing table 100 is disposed underneath a top ring 1 constituting the substrate holding apparatus according to the present invention, and has a polishing pad 101 attached to an upper surface thereof. A polishing liquid supply nozzle 102 is disposed above the polishing table 100 and supplies a polishing liquid Q onto the polishing pad 101 on the polishing table 100. Various kinds of polishing pads are sold on the market. For example, some of these are SUBA800, IC-1000, and IC-1000/SUBA400 (two-layer cloth) manufactured by Rodel Inc., and Surfin xxx-5 and Surfin 000 manufactured by Fujimi Inc. SUBA800, Surfin xxx-5, and Surfin 000 are non-woven fabrics bonded by urethane resin, and IC-1000 is rigid foam polyurethane (single-layer). Foam polyurethane is porous and has a large number of fine recesses or holes formed in its surface. The top ring 1 is connected to a top ring drive shaft 11 by a universal joint 10. The top ring drive shaft 11 is coupled to a top ring air cylinder 111 fixed to a top ring head 110. The top ring air cylinder 111 operates to vertically move the top ring drive shaft 11 to thus lift and lower the top ring 1 as a whole. The top ring air cylinder 111 also operates to press a retainer ring 3, fixed to a lower end of a top ring body 2, against the polishing pad 101. The top ring air cylinder 111 is connected to a compressed air source (fluid source) 120 via a regulator R1, which regulates pressure of air supplied to the top ring air cylinder 111 for thereby adjusting a pressing force with which the retainer ring 3 presses the polishing pad 101. The top ring drive shaft 11 is connected to a rotary sleeve 112 by a key (not shown). The rotary sleeve 112 has a timing pulley 113 fixedly disposed therearound. A top ring motor 114 having a drive shaft is fixed to an upper surface of the top ring head 110. The timing pulley 113 is operatively coupled to a timing pulley 116, mounted on a drive shaft of the top ring motor 114, by a timing belt 115. When the top ring motor 114 is energized, the timing pulley 116, the timing belt 115, and the timing pulley 113 are rotated to rotate the rotary sleeve 112 and the top ring drive shaft 11 in unison with each other, thus rotating the top ring 1. The top ring head 110 is supported on a top ring head shaft 117 fixedly supported on a frame (not shown). The top ring 1 according to the first embodiment of the present invention will be described below. FIG. 2 is a vertical cross-sectional view showing the top ring 1 according to the first embodiment, and FIG. 3 is a bottom view of the top ring 1 shown in FIG. 2. As shown in FIG. 2, the top ring 1 comprises the top ring body 2 in the form of a cylindrical housing with a storage space defined therein, and the retainer ring 3 fixed to the lower end of the top ring body 2. The top ring body 2 is made of a material having high strength and rigidity, such as metal or ceramic. The retainer ring 3 is made of highly rigid synthetic resin, ceramic, or the like. The top ring body 2 comprises a cylindrical housing 2a, an annular pressurizing sheet support 2b fitted in the cylindrical housing 2a, and an annular seal 2c fitted over an outer circumferential edge of an upper surface of the cylindrical housing 2a. The retainer ring 3 is fixed to a lower end of the cylindrical housing 2a and has a lower portion projecting radially inwardly. The retainer ring 3 may be integrally formed with the top ring body 2. The top ring drive shaft 11 is disposed above a center of the cylindrical housing 2a. The top ring body 2 is coupled to the top ring drive shaft 11 by the universal joint 10. The universal joint 10 has a spherical bearing mechanism by which the top ring body 2 and the top ring drive shaft 11 are tiltable with respect to each other, and a rotation transmitting mechanism for transmitting rotation of the top ring drive shaft 11 to the top ring body 2. The rotation transmitting mechanism and the spherical bearing mechanism transmit pressing and rotating forces from the top ring drive shaft 11 to the top ring body 2 while allowing the top ring body 2 and the top ring drive shaft 11 to be tilted with respect to each other. The spherical bearing mechanism comprises a spherical recess 11a defined centrally in a lower surface of the top ring drive shaft 11, a spherical recess 2d defined centrally in an upper surface of the housing 2a, and a ball bearing 12 made of a hard material, such as ceramic, interposed between the spherical recesses 11a and 2d. The rotation transmitting mechanism comprises a drive pin (not shown) fixed to the top ring drive shaft 11, and a driven pin (not shown) fixed to the housing 2a. The drive pin is held in driving engagement with the driven pin while the drive pin and the driven pin are vertically movable relative to each other. Rotation of the top ring drive shaft 11 is transmitted to the top ring body 2 through the drive and driven pins. Even when the top ring body 2 is tilted with respect to the top ring drive shaft 11, the drive and driven pins remain in engagement with each other at a moving point of contact, so that torque of the top ring drive shaft 11 can reliably be transmitted to the top ring body 2. The top ring body 2 and the retainer ring 3 secured to the top ring body 2 jointly have a space defined therein, which accommodates therein an elastic pad 4 having a lower end surface to be brought into contact with an upper surface of a semiconductor wafer W held by the top ring 1, an annular holder ring 5, and a disk-shaped chucking plate (support member) 6 for supporting the elastic pad 4. The elastic pad 4 has a radially outer edge clamped between the holder ring 5 and the chucking plate 6, secured to a lower end of the holder ring 5, and extends radially inwardly so as to cover a lower surface of the chucking plate 6, thus forming a space between the elastic pad 4 and the chucking plate 6. The chucking plate 6 may be made of metal. However, when a thickness of a thin film formed on a surface of a semiconductor wafer is measured by a method using eddy current in such a state that the semiconductor wafer to be polished is held by the top ring, the chucking plate 6 should preferably be made of a non-magnetic material, e.g., an insulating material such as fluororesin or ceramic. A pressurizing sheet 7, which comprises an elastic membrane, extends between the holder ring 5 and the top ring body 2. The pressurizing sheet 7 is made of a highly strong and durable rubber material such as ethylene propylene rubber (ethylene-propylene terpolymer (EPDM)), polyurethane rubber, silicone rubber, or the like. The pressurizing sheet 7 has a radially outer edge clamped between the housing 2a and the pressurizing sheet support 2b, and a radially inner edge clamped between an upper portion 5a and a stopper 5b of the holder ring 5. The top ring body 2, the chucking plate 6, the holder ring 5, and the pressurizing sheet 7 jointly define a pressure chamber 21 in the top ring body 2. As shown in FIG. 2, a fluid passage 31 comprising tubes and connectors communicates with the pressure chamber 21, which is connected to the compressed air source 120 via a regulator R2 connected to the fluid passage 31. In a case of a pressurizing sheet 7 made of an elastic material such as rubber, if the pressurizing sheet 7 is clamped between the retainer ring 3 and the top ring body 2, then the pressurizing sheet 7 is elastically deformed as an elastic material, and a desired horizontal surface cannot be maintained on a lower surface of the retainer ring 3. In order to maintain a desired horizontal surface on the lower surface of the retainer ring 3, the pressurizing sheet 7 is clamped between the housing 2a of the top ring body 2 and the pressurizing sheet support 2b, provided as a separate member in the present embodiment. The retainer ring 3 may vertically be movable with respect to the top ring body 2, or the retainer ring 3 may have a structure capable of pressing a polishing surface independently of the top ring 2, as disclosed in Japanese laid-open Patent Publication No. 9-168964 and Japanese Patent Application No. 11-294503 (corresponding to U.S. patent application Ser. No. 09/652,148). In such cases, the pressurizing sheet 7 is not necessarily fixed in the aforementioned manner. A cleaning liquid passage 51 in the form of an annular groove is defined in the upper surface of the housing 2a near its outer circumferential edge over which the seal 2c is fitted. The cleaning liquid passage 51 communicates with a fluid passage 32 via a through hole 52 formed in the seal 2c, and is supplied with a cleaning liquid (pure water) via the fluid passage 32. A plurality of communication holes 53 are defined in the housing 2a and the pressurizing sheet support 2b in communication with the cleaning liquid passage 51. The communication holes 53 communicate with a small gap G defined between an outer circumferential surface of the elastic pad 4 and an inner circumferential surface of the retainer ring 3. The fluid passage 32 is connected to a cleaning liquid source (not shown) through a rotary joint (not shown). The space defined between the elastic pad 4 and the chucking plate 6 accommodates therein a central bag 8 as a central contact member to be brought into contact with the elastic pad 4, and a ring tube 9 as an outer contact member to be brought into contact with the elastic pad 4. These contact members may be brought into abutment with the elastic pad 4. In the present embodiment, as shown in FIGS. 2 and 3, the central bag 8 having a circular contact surface is disposed centrally on a lower surface of the chucking plate 6, and the ring tube 9 having an annular contact surface is disposed radially outwardly of the central bag 8 in surrounding relation thereto. Specifically, the central bag 8 and the ring tube 9 are spaced from each other at a predetermined interval. Each of the elastic pad 4, the central bag 8 and the ring tube 9 is made of a highly strong and durable rubber material such as ethylene propylene rubber (ethylene-propylene terpolymer (EPDM)), polyurethane rubber, silicone rubber, or the like. The space defined between the chucking plate 6 and the elastic pad 4 is divided into a plurality of spaces (second pressure chambers) by the central bag 8 and the ring tube 9. Specifically, a pressure chamber 22 is defined between the central bag 8 and the ring tube 9, and a pressure chamber 23 is defined radially outwardly of the ring tube 9. The central bag 8 comprises an elastic membrane 81 to be brought into contact with the upper surface of the elastic pad 4, and a central bag holder (holding member) 82 for detachably holding the elastic membrane 81 in position. The central bag holder 82 has threaded holes 82a defined therein, and is detachably fastened to a center of the lower surface of the chucking plate 6 by screws 55 threaded into the threaded holes 82a. The central bag 8 has a central pressure chamber 24 (first pressure chamber) defined therein by the elastic membrane 81 and the central bag holder 82. Similarly, the ring tube 9 comprises an elastic membrane 91 to be brought into contact with the upper surface of the elastic pad 4, and a ring tube holder (holding member) 92 for detachably holding the elastic membrane 91 in position. The ring tube holder 92 has threaded holes 92a defined therein, and is detachably fastened to the lower surface of the chucking plate 6 by screws 56 threaded into the threaded holes 92a. The ring tube 9 has an intermediate pressure chamber 25 (first pressure chamber) defined therein by the elastic membrane 91 and the ring tube holder 92. Fluid passages 33, 34, 35 and 36 comprising tubes and connectors communicate with the pressure chambers 22, 23, the central pressure chamber 24, and the intermediate pressure chamber 25, respectively. The pressure chambers 22, 23, 24 and 25 are connected to the compressed air source 120 via respective regulators R3, R4, R5 and R6 connected respectively to the fluid passages 33, 34, 35 and 36. The fluid passages 31, 33, 34, 35 and 36 are connected to respective regulators R2, R3, R4, R5 and R6 through a rotary joint (not shown) mounted on an upper end of the top ring drive shaft 11. The pressure chamber 21 above the chucking plate 6 and the pressure chambers 22 to 25 are supplied with a pressurized fluid such as pressurized air or atmospheric air, or evacuated, via the fluid passages 31, 33, 34, 35 and 36. As shown in FIG. 1, the regulators R2 to R6 connected to the fluid passages 31, 33, 34, 35 and 36 of the pressure chambers 21 to 25 can respectively regulate pressures of pressurized fluids supplied to the pressure chambers 21 to 25, for thereby independently controlling pressures in the pressure chambers 21 to 25 or independently introducing atmospheric air or vacuum into the pressure chambers 21 to 25. Thus, pressures in the pressure chambers 21 to 25 are independently varied with the regulators R2 to R6, so that pressing forces, which are pressures per unit area for pressing the semiconductor wafer W against the polishing pad 101, can be adjusted in local areas of the semiconductor wafer W via the elastic pad 4. In some applications, the pressure chambers 21 to 25 may be connected to a vacuum source 121. In this case, pressurized fluid or atmospheric air supplied to the pressure chambers 22 to 25 may independently be controlled in terms of temperature, for thereby directly controlling a temperature of the semiconductor wafer from a backside of a surface to be polished. Particularly, when each of the pressure chambers is independently controlled in terms of temperature, a rate of chemical reaction can be controlled during a chemical polishing process of CMP. As shown in FIG. 3, a plurality of openings 41 are formed in the elastic pad 4. The chucking plate 6 has radially inner suction portions 61 and radially outer suction portions 62 extended downwardly therefrom. The openings 41 positioned between the central bag 8 and the ring tube 9 allow the inner suction portions 61 to be exposed externally, and the openings 41 positioned outside of the ring tube 9 allow the outer suction portions 62 to be exposed externally. In the present embodiment, the elastic pad 4 has eight openings 41 for allowing eight suction portions 61, 62 to be exposed. Each of the inner suction portions 61 has a hole 61a communicating with a fluid passage 37, and each of the outer suction portions 62 has a hole 62a communicating with a fluid passage 38. Thus, each inner suction portion 61 and each outer suction portion 62 are connected to the vacuum source 121, such as a vacuum pump, via respective fluid passages 37, 38 and valves V1, V2. When the suction portions 61, 62 are evacuated by the vacuum source 121 to develop a negative pressure at lower opening ends of the communicating holes 61a, 62a thereof, a semiconductor wafer W is attracted to lower ends of the suction portions 61, 62 by the negative pressure. The suction portions 61, 62 have elastic sheets 61b, 62b, such as thin rubber sheets, attached to their lower ends, for thereby elastically contacting and holding the semiconductor wafer W on lower surfaces thereof. As shown in FIG. 2, when the semiconductor wafer W is polished, the lower ends of the suction portions 61, 62 are positioned above the lower surface of the elastic pad 4, without projecting downwardly from the lower surface of the elastic pad 4. When the semiconductor wafer W is attracted to the suction portions 61, 62, the lower ends of the suction portions 61, 62 are positioned at the same level as the lower surface of the elastic pad 4. Since there is the small gap G between the outer circumferential surface of the elastic pad 4 and the inner circumferential surface of the retainer ring 3, the holder ring 5, the chucking plate 6, and the elastic pad 4 attached to the chucking plate 6 can vertically be moved with respect to the top ring body 2 and the retainer ring 3, and hence are of a floating structure with respect to the top ring body 2 and the retainer ring 3. A plurality of teeth 5c project radially outwardly from an outer circumferential edge of the stopper 5b of the holder ring 5. When the teeth 5c engage an upper surface of a radially inwardly projecting portion of the retainer ring 3 upon downward movement of the holder ring 5, the holder ring 5 is limited against any further downward movement. Operation of the top ring 1 thus constructed will be described below. When the semiconductor wafer W is to be delivered to the polishing apparatus, the top ring 1 is moved to a position to which the semiconductor wafer W is transferred, and the communicating holes 61a, 62a of the suction portions 61, 62 are evacuated via the fluid passages 37, 38 by the vacuum source 121. The semiconductor wafer W is attracted to the lower ends of the suction portions 61, 62 by a suction effect of the communicating holes 61a, 62a. With the semiconductor wafer W attracted to the top ring 1, the top ring 1 is moved to a position above the polishing table 100 having the polishing surface (polishing pad 101) thereon. The retainer ring 3 holds an outer circumferential edge of the semiconductor wafer W so that the semiconductor wafer W is not removed from the top ring 1. For polishing the lower surface of the semiconductor wafer W, the semiconductor wafer W is thus held on the lower surface of the top ring 1, and the top ring air cylinder 111 connected to the top ring drive shaft 11 is actuated to press the retainer ring 3, fixed to the lower end of the top ring body 2, against the polishing surface on the polishing table 100 under a predetermined pressure. Then, pressurized fluids are respectively supplied to the pressure chambers 22, 23, the central pressure chamber 24, and the intermediate pressure chamber 25 under respective pressures, thereby pressing the semiconductor wafer W against the polishing surface on the polishing table 100. The polishing liquid supply nozzle 102 then supplies the polishing liquid Q onto the polishing pad 101. Thus, the semiconductor wafer W is polished by the polishing pad 101 with the polishing liquid Q being present between the lower surface, to be polished, of the semiconductor wafer W and the polishing pad 101. Local areas of the semiconductor wafer W that are positioned beneath the pressure chambers 22, 23 are pressed against the polishing pad 101 under pressures of pressurized fluids supplied to the pressure chambers 22, 23. A local area of the semiconductor wafer W that is positioned beneath the central pressure chamber 24 is pressed via the elastic membrane 81 of the central bag 8 and the elastic pad 4 against the polishing pad 101 under pressure of pressurized fluid supplied to the central pressure chamber 24. A local area of the semiconductor wafer W that is positioned beneath the intermediate pressure chamber 25 is pressed via the elastic membrane 91 of the ring tube 9 and the elastic pad 4 against the polishing pad 101 under pressure of pressurized fluid supplied to the intermediate pressure chamber 25. Therefore, polishing pressures acting on respective local areas of the semiconductor wafer W can be adjusted independently by controlling pressures of pressurized fluids supplied to each of the pressure chambers 22 to 25. Specifically, each of the regulators R3 to R6 independently regulates pressure of pressurized fluid supplied to the pressure chambers 22 to 25 for thereby adjusting pressing forces applied to press the local areas of the semiconductor wafer W against the polishing pad 101 on the polishing table 100. With the polishing pressures on the respective local areas of the semiconductor wafer W being adjusted independently, the semiconductor wafer W is pressed against the polishing pad 101 on the polishing table 100 that is being rotated. Similarly, pressure of pressurized fluid supplied to the top ring air cylinder 111 can be regulated by the regulator R1 to adjust a force with which the retainer ring 3 presses the polishing pad 101. While the semiconductor wafer W is being polished, the force with which the retainer ring 3 presses the polishing pad 101 and the pressing force with which the semiconductor wafer W is pressed against the polishing pad 101 can appropriately be adjusted for thereby applying polishing pressures in a desired pressure distribution to a central area C1, an inner area C2, an intermediate area C3, and a peripheral area C4 of the semiconductor wafer W (see FIG. 3). The local areas of the semiconductor wafer W that are positioned beneath the pressure chambers 22, 23 are divided into areas to which a pressing force from a fluid is applied via the elastic pad 4, and areas to which pressure of a pressurized fluid is directly applied, such as areas positioned beneath the openings 41. However, pressing forces applied to these two areas are equal to each other. When the semiconductor wafer W is polished, the elastic pad 4 is brought into close contact with the upper surface of the semiconductor wafer W near the openings 41, so that the pressurized fluids supplied to the pressure chambers 22, 23 are prevented from flowing out to an exterior. In this manner, the semiconductor wafer W is divided into concentric circular and annular areas C1 to C4, which can be pressed under independent pressing forces. Polishing rates of the circular and annular areas C1 to C4, which depend on pressing forces applied to those areas, can independently be controlled because the pressing forces applied to those areas can independently be controlled. Consequently, even if a thickness of a thin film to be polished on a surface of the semiconductor wafer W suffers radial variations, the thin film on the surface of the semiconductor wafer W can be polished uniformly without being insufficiently or excessively polished. More specifically, even if a thickness of a thin film to be polished on a surface of the semiconductor wafer W differs depending on a radial position on the semiconductor wafer W, pressure in a pressure chamber positioned over a thicker area of the thin film is made higher than pressure in a pressure chamber positioned over a thinner area of the thin film, or pressure in a pressure chamber positioned over a thinner area of the thin film is made lower than pressure in a pressure chamber positioned over a thicker area of the thin film. In this manner, a pressing force applied to the thicker area of the thin film is made higher than a pressing force applied to the thinner area of the thin film, thereby selectively increasing a polishing rate of the thicker area of the thin film. Consequently, an entire surface of the semiconductor wafer W can be polished exactly to a desired level irrespective of a film thickness distribution obtained at a time the thin film is formed. Any unwanted edge rounding on a circumferential edge of the semiconductor wafer W can be prevented by controlling a pressing force applied to the retainer ring 3. If a thin film to be polished on a circumferential edge of the semiconductor wafer W has large thickness variations, then a pressing force applied to the retainer ring 3 is intentionally increased or reduced to thus control a polishing rate of the circumferential edge of the semiconductor wafer W. When pressurized fluids are supplied to the pressure chambers 22 to 25, the chucking plate 6 is subjected to upward forces. In the present embodiment, pressurized fluid is supplied to the pressure chamber 21 via the fluid passage 31 to prevent the chucking plate 6 from being lifted under forces from the pressure chambers 22 to 25. As described above, the pressing force applied by the top ring air cylinder 111 to press the retainer ring 3 against the polishing pad 101, and the pressing forces applied by the pressurized fluids supplied to the pressure chambers 22 to 25 to press the local areas of the semiconductor wafer W against the polishing pad 101, are appropriately adjusted to polish the semiconductor wafer W. When polishing of the semiconductor wafer W is finished, the semiconductor wafer W is attracted to the lower ends of the suction portions 61, 62 under vacuum in the same manner as described above. At this time, supply of the pressurized fluids into the pressure chambers 22 to 25 is stopped, and the pressure chambers 22 to 25 are vented to an atmosphere. Accordingly, the lower ends of the suction portions 61, 62 are brought into contact with the semiconductor wafer W. The pressure chamber 21 is vented to the atmosphere or evacuated to develop a negative pressure therein. If the pressure chamber 21 is maintained at a high pressure, then the semiconductor wafer W is strongly pressed against the polishing surface only in areas brought into contact with the suction portions 61, 62. Therefore, it is necessary to decrease pressure in the pressure chamber 21 immediately. Accordingly, a relief port 39 penetrating through the top ring body 2 may be provided for decreasing pressure in the pressure chamber 21 immediately, as shown in FIG. 2. In this case, when the pressure chamber 21 is pressurized, it is necessary to continuously supply pressurized fluid into the pressure chamber 21 via the fluid passage 31. The relief port 39 comprises a check valve (not shown) for preventing an outside air from flowing into the pressure chamber 21 at a time when a negative pressure is developed in the pressure chamber 21. After the semiconductor wafer W is attracted to the lower ends of the suction portions 61, 62, the top ring 1 in its entirety is moved to a position to which the semiconductor wafer W is to be transferred. Then, a fluid such as compressed air or a mixture of nitrogen and pure water is ejected to the semiconductor wafer W via the communicating holes 61a, 62a of the suction portions 61, 62 to release the semiconductor wafer W from the top ring 1. The polishing liquid Q used to polish the semiconductor wafer W tends to flow through the gap G between the outer circumferential surface of the elastic pad 4 and the retainer ring 3. If the polishing liquid Q is firmly deposited in the gap G, then the holder ring 5, the chucking plate 6, and the elastic pad 4 are prevented from smoothly moving vertically with respect to the top ring body 2 and the retainer ring 3. To avoid such a drawback, a cleaning liquid (pure water) is supplied through the fluid passage 32 to the cleaning liquid passage 51. Accordingly, pure water is supplied via the communication holes 53 to a region above the gap G, thus cleaning members defining the gap G to remove deposits of the polishing liquid Q. The pure water should preferably be supplied after a polished semiconductor wafer W is released and until a next semiconductor wafer to be polished is attracted to the top ring 1. It is also preferable to discharge all supplied pure water out of the top ring 1 before the next semiconductor wafer is polished, and hence to provide the retainer ring 3 with a plurality of through holes 3a shown in FIG. 2 for discharging the pure water. Furthermore, if a pressure buildup is developed in a space 26 defined between the retainer ring 3, the holder ring 5, and the pressurizing sheet 7, then it acts to prevent the chucking plate 6 from being elevated in the top ring body 2. Therefore, in order to allow the chucking plate 6 to be elevated smoothly in the top ring body 2, the through holes 3a should preferably be provided for equalizing pressure in the space 26 with atmospheric pressure. As described above, according to the present invention, pressures in the pressure chambers 22, 23, the pressure chamber 24 in the central bag 8, and the pressure chamber 25 in the ring tube 9 are independently controlled to control pressing forces acting on the semiconductor wafer W. Further, according to the present invention, regions in which a pressing force applied to the semiconductor wafer W is controlled can easily be changed by changing positions or sizes of the central bag 8 and the ring tube 9. Examples of changing regions in which a pressing force applied to the semiconductor wafer W is controlled will be described below. FIGS. 4A through 4E and FIG. 5 are vertical cross-sectional views showing other examples of the contact members (central bag 8 and ring tube 9) in the substrate holding apparatus according to the present invention. As shown in FIGS. 4A and 4B, area C1 in which a pressing force applied to a semiconductor wafer is controlled can be changed by utilizing another central bag 8 having a different size. In this case, when a size and shape of a hole 82b for allowing pressure chamber 24 defined in central bag 8 to communicate with the fluid passage 35, and a size and position of threaded holes 82a for mounting central bag holder 82 on the chucking plate 6 are predetermined, a range in which a pressing force applied to a semiconductor wafer is controlled can be changed simply by preparing a central bag holder 82 having a different size. In this case, it is not necessary to modify the chucking plate 6. As shown in FIGS. 4C and 4D, a width and/or position of area C3 in which a pressing force applied to a semiconductor wafer is controlled can be changed by utilizing another ring tube 9 having a different size and/or shape. Further, as shown in FIG. 4E, a plurality of holes 57 and threaded holes (not shown) may be provided at predetermined radial positions of the chucking plate 6. In this case, communicating hole 92b is positioned at a position corresponding to one of the holes 57, and the other holes 57 (and threaded holes) are filled with screws 58 for sealing fluids. Thus, the ring tube 9 can flexibly be mounted in a radial direction, so that a region in which a pressing force is controlled can flexibly be changed. As shown in FIG. 5, a protrusion 81a extending radially outwardly from a circumferential edge of the elastic membrane 81 may be provided on a lower surface of the central bag 8, and protrusions 91a extending radially from circumferential edges of the elastic membrane 91 may be provided on a lower surface of the ring tube 9. The protrusions 81a, 91a are made of the same material as that of the central bag 8 and the ring tube 9. As described above, when a semiconductor wafer is polished, pressurized fluids are supplied to the pressure chamber 22 positioned between the central bag 8 and the ring tube 9, and the pressure chamber 23 surrounding the ring tube 9. Therefore, the protrusions 81a, 91a are brought into close contact with the elastic pad 4 by the pressurized fluids supplied to the pressure chambers 22, 23. Thus, even if pressure of pressurized fluid supplied to the pressure chamber 22 adjacent to the central bag 8 is considerably higher than pressure of pressurized fluid supplied to the pressure chamber 24 defined in the central bag 8, high-pressure fluid adjacent to the central bag 8 is prevented from flowing into a lower portion of the central bag 8. Similarly, even if pressure of pressurized fluid supplied to the pressure chamber 22 or 23 adjacent to the ring tube 9 is considerably higher than pressure of pressurized fluid supplied to the pressure chamber 25 defined in the ring tube 9, high-pressure fluid adjacent to the ring tube 9 is prevented from flowing into a lower portion of the ring tube 9. Therefore, the protrusions 81a, 91a can widen a range of pressure control in each of the pressure chambers, for thereby pressing the semiconductor wafer more stably. The elastic membranes 81, 91 may each have differing thicknesses or may partially include an inelastic member. FIG. 6A shows an example in which the elastic membrane 91 of the ring tube 9 has side surfaces 91b thicker than a surface to be brought into contact with the elastic pad 4. FIG. 6B shows an example in which the elastic membrane 91 of the ring tube 9 partially includes inelastic members 91d in side surfaces thereof. In these examples, deformation of the side surfaces of the elastic membrane due to pressure in the pressure chambers can appropriately be limited. As described above, a distribution of a thin film formed on a surface of a semiconductor wafer varies depending on a deposition method or a deposition apparatus employed. According to the present invention, a substrate holding apparatus can change a position and size of the pressure chambers for applying pressing forces to the semiconductor wafer simply by changing central bag 8 and central bag holder 82, or ring tube 9 and ring tube holder 92. Therefore, a position and region in which a pressing force is controlled can easily be changed in accordance with distribution of a thin film to be polished at low cost. In other words, the substrate holding apparatus can cope with various thickness distributions of a thin film formed on a semiconductor wafer to be polished. Change of shape and position of the central bag 8 or the ring tube 9 leads to a change of size of the pressure chamber 22 positioned between the central bag 8 and the ring tube 9, and the pressure chamber 23 surrounding the ring tube 9. A polishing apparatus according to a second embodiment of the present invention will be described below with reference to FIGS. 7 through 11. FIG. 7 is a vertical cross-sectional view showing a top ring 1 according to the second embodiment. Like parts and components are designated by the same reference numerals and characters as those in the first embodiment. In the second embodiment, as shown in FIG. 7, the top ring 1 has a seal ring 42 instead of an elastic pad. The seal ring 42 comprises an elastic membrane covering only a lower surface of a chucking plate 6 near its outer circumferential edge. In the second embodiment, neither an inner suction portion (indicated by the reference numeral 61 in FIG. 2) nor an outer suction portion (indicated by the reference numeral 62 in FIG. 2) is provided on the chucking plate 6, for a simple configuration. However, suction portions for attracting a semiconductor wafer may be provided on the chucking plate 6, as with the first embodiment. The seal ring 42 is made of a highly strong and durable rubber material such as ethylene propylene rubber (ethylene-propylene terpolymer (EPDM)), polyurethane rubber, silicone rubber, or the like. The seal ring 42 is provided in such a state that a lower surface of the seal ring 42 is brought into contact with an upper surface of semiconductor wafer W. The seal ring 42 has a radially outer edge clamped between the chucking plate 6 and a holder ring 5, as with the elastic pad 4 in the first embodiment. The semiconductor wafer W has a recess defined in an outer edge thereof, which is referred to as a notch or orientation flat, for recognizing or identifying an orientation of the semiconductor wafer. Therefore, the seal ring 42 should preferably extend radially inwardly from an innermost position of the recess, i.e. the notch or orientation flat. A central bag 8 is disposed centrally on a lower surface of the chucking plate 6, and a ring tube 9 is disposed radially outwardly of the central bag 8 in surrounding relation thereto, as with the first embodiment. In the second embodiment, semiconductor wafer W to be polished is held by the top ring 1 in such a state that the semiconductor wafer W is brought into contact with the seal ring 42, an elastic membrane 81 of the central bag 8, and an elastic membrane 91 of the ring tube 9. Therefore, the semiconductor wafer W, the chucking plate 6, and the seal ring 42 jointly define a space therebetween, instead of the space defined by the elastic pad and the chucking plate in the first embodiment. This space is divided into a plurality of spaces (second pressure chambers) by the central bag 8 and the ring tube 9. Specifically, a pressure chamber 22 is defined between the central bag 8 and the ring tube 9, and a pressure chamber 23 is defined radially outwardly of the ring tube 9. Fluid passages 33, 34, 35 and 36 comprising tubes and connectors communicate with the pressure chambers 22, 23, a central pressure chamber (first pressure chamber) 24 defined in the central bag 8, and an intermediate pressure chamber (first pressure chamber) 25 defined in the ring tube 9, respectively. The pressure chambers 22, 23, 24 and 25 are connected to a compressed air source via respective regulators connected respectively to the fluid passages 33, 34, 35 and 36. The regulators connected to fluid passages 31, 33, 34, 35 and 36 of pressure chambers 21 to 25 can respectively regulate pressures of pressurized fluids supplied to the pressure chambers 21 to 25, for thereby independently controlling pressures in the pressure chambers 21 to 25, or independently introducing atmospheric air or vacuum into the pressure chambers 21 to 25. Thus, pressures in the pressure chambers 21 to 25 are independently varied with the regulators, so that pressing forces can be adjusted in local areas of the semiconductor wafer W. In some applications, the pressure chambers 21 to 25 may be connected to a vacuum source 121. Operation of the top ring 1 thus constructed will be described below. When the semiconductor wafer W is to be delivered to the polishing apparatus, the top ring 1 is moved to a position to which the semiconductor wafer W is delivered, and the central bag 8 and the ring tube 9 are supplied with a pressurized fluid under a predetermined pressure for bringing lower surfaces of the central bag 8 and the ring tube 9 into close contact with an upper surface of the semiconductor wafer W. Thereafter, the pressure chambers 22, 23 are connected to a vacuum source via the fluid passages 33, 34 to develop a negative pressure in the pressure chambers 22, 23 for thereby attracting the semiconductor wafer W under vacuum. For polishing a lower surface of the semiconductor wafer W, the semiconductor wafer W is thus held on a lower surface of the top ring 1, and top ring air cylinder 111 connected to top ring drive shaft 11 is actuated to press retainer ring 3, fixed to a lower end of top ring body 2, against a polishing surface on polishing table 100 under a predetermined pressure. Then, pressurized fluids are respectively supplied to the pressure chambers 22, 23, the central pressure chamber 24, and the intermediate pressure chamber 25 under respective pressures, thereby pressing the semiconductor wafer W against the polishing surface on the polishing table 100. Polishing liquid supply nozzle 102 then supplies polishing liquid Q onto polishing pad 101. Thus, the semiconductor wafer W is polished by the polishing pad 101 with the polishing liquid Q being present between the lower surface, to be polished, of the semiconductor wafer W and the polishing pad 101. Local areas of the semiconductor wafer W that are positioned beneath the pressure chambers 22, 23 are pressed against the polishing pad 101 under the pressures of the pressurized fluids supplied to the pressure chambers 22, 23. A local area of the semiconductor wafer W that is positioned beneath the central pressure chamber 24 is pressed via the elastic membrane 81 of the central bag 8 against the polishing pad 101 under the pressure of the pressurized fluid supplied to the central pressure chamber 24. A local area of the semiconductor wafer W that is positioned beneath the intermediate pressure chamber 25 is pressed via the elastic membrane 91 of the ring tube 9 against the polishing pad 101 under the pressure of the pressurized fluid supplied to the intermediate pressure chamber 25. Therefore, polishing pressures acting on respective local areas of the semiconductor wafer W can be adjusted independently by controlling pressures of pressurized fluids supplied to each of the pressure chambers 22 to 25. Thus, the semiconductor wafer W is divided into concentric circular and annular areas, which can be pressed under independent pressing forces. Polishing rates of the circular and annular areas, which depend on pressing forces applied to those areas, can independently be controlled because pressing forces applied to those areas can independently be controlled. Consequently, even if a thickness of a thin film to be polished on a surface of the semiconductor wafer W suffers radial variations, the thin film on the surface of the semiconductor wafer W can be polished uniformly without being insufficiently or excessively polished. More specifically, even if a thickness of a thin film to be polished on a surface of the semiconductor wafer W differs depending on a radial position on the semiconductor wafer W, pressure in a pressure chamber positioned over a thicker area of the thin film is made higher than pressure in a pressure chamber positioned over a thinner area of the thin film, or pressure in a pressure chamber positioned over a thinner area of the thin film is made lower than pressure in a pressure chamber positioned over a thicker area of the thin film. In this manner, a pressing force applied to the thicker area of the thin film is made higher than a pressing force applied to the thinner area of the thin film, thereby selectively increasing a polishing rate of the thicker area of the thin film. Consequently, an entire surface of the semiconductor wafer W can be polished exactly to a desired level irrespective of a film thickness distribution obtained at a time the thin film is formed. When the semiconductor wafer W is polished, the seal ring 42 is brought into close contact with a part of an upper surface of the semiconductor wafer for thereby sealing this space. Hence, pressurized fluid is prevented from flowing out to an exterior of the pressure chamber 23. When polishing of the semiconductor wafer W is finished, the semiconductor wafer W is attracted under vacuum in the same manner as described above, and then the pressure chamber 21 is vented to an atmosphere or evacuated to develop a negative pressure therein. After the semiconductor wafer W is attracted, the top ring 1 in its entirety is moved to a position from which the semiconductor wafer W is to be delivered. Then, a fluid such as compressed air or a mixture of nitrogen and pure water is ejected to the semiconductor wafer W via the fluid passages 33, 34 to release the semiconductor wafer W from the top ring 1. If the elastic membrane 81 of the central bag 8 and the elastic membrane 91 of the ring tube 9 have through holes defined in their lower surfaces, then since downward forces are applied to the semiconductor wafer W by fluid flowing through these through holes, the semiconductor wafer W can be smoothly released from the top ring 1. After the semiconductor wafer W is released from the top ring 1, most of lower surfaces of the top ring 1 are exposed. Therefore, the lower surfaces of the top ring 1 can be cleaned relatively easily after the semiconductor wafer W is polished and released. Other Examples of the central bag 8 and the ring tube 9 in the substrate holding apparatus according to the present invention will be described below. FIG. 8 is a vertical cross-sectional view showing another example of the present invention, and FIG. 9 is a bottom view of FIG. 8 in such a state that a semiconductor wafer W is removed. In this example, as shown in FIGS. 8 and 9, a central bag 8 has an elastic membrane 81 only at an outer circumferential edge of the central bag 8, and a circular hole (communicating portion) 83 is formed in a lower surface of the elastic membrane 81 of the central bag 8. A ring tube 9 has two elastic membranes, i.e., a radially inner elastic membrane 91e and a radially outer elastic membrane 91f, and an annular groove (communicating portion) 93 is formed between the inner elastic membrane 91e and the outer elastic membrane 91f. Pressurized fluids supplied to central pressure chamber 24 and intermediate pressure chamber 25 contact an upper surface, which is a contact surface, of a semiconductor wafer W. When pressurized fluids supplied to the central pressure chamber 24 and the intermediate pressure chamber 25 are controlled in terms of temperature, and a temperature of the semiconductor wafer W is controlled from a backside of the surface to be polished, as described above, the communicating portions 83, 93 formed in the lower surfaces of the elastic membranes of the central bag 8 and the ring tube 9 can increase an area in which pressurized fluid controlled in terms of temperature is brought into contact with the semiconductor wafer W. Therefore, controllability of temperature of the semiconductor wafer W can be improved. Further, when polishing of the semiconductor wafer W is finished and the semiconductor wafer W is released, the central pressure chamber 24 and the intermediate pressure chamber 25 are respectively opened to outside air via the circular hole 83 and the annular groove 93. Thus, fluids supplied into the central pressure chamber 24 and the intermediate pressure chamber 25 are prevented from remaining in the central pressure chamber 24 and the intermediate pressure chamber 25. Therefore, even when semiconductor wafers W are continuously polished, controllability of temperature of each semiconductor wafer W can be maintained. When a semiconductor wafer W is polished, pressurized fluids are supplied to the central pressure chamber 24 and the intermediate pressure chamber 25. Therefore, the lower surface of the elastic membrane 81 of the central bag 8 and the lower surface of the inner and outer elastic membranes 91e, 91f of the ring tube 9 are pressed against an upper surface, which is the contact surface, of the semiconductor wafer W. Accordingly, even though the circular hole 83 and the annular groove 93 are formed in the elastic membranes, pressurized fluids supplied to the central pressure chamber 24 and the intermediate pressure chamber 25 are prevented from flowing out to an exterior. In the example shown in FIGS. 8 and 9, a force that causes the circular hole 83 to expand outwardly acts on the elastic membrane 81 of the central bag 8 due to pressurized fluid supplied to the central pressure chamber 24. A force that causes the annular groove 93 to expand outwardly acts on the elastic membranes 91e, 91f of the ring tube 9 due to pressurized fluid supplied to the intermediate pressure chamber 25. In order to disperse these forces, a plurality of circular holes (communicating portions) 84, 94 may be provided on the lower surface of the elastic membrane 81, 91 of the central bag 8 and the ring tube 9, as shown in FIG. 10. As shown in FIG. 11, an annular contacting portion 85 having a sealed fluid therein may be provided at a lower end of elastic membrane 81 of the central bag 8. Further, an (inner) annular contacting portion 95a and an (outer) annular contacting portion 95b each having a sealed fluid therein may be provided at a lower end of elastic membrane 91 of the ring tube 9. In this case, contacting portions 85, 95a, 95b are pressed against a semiconductor wafer W by a pressurized fluid supplied to pressure chamber 21, and hence pressure chambers 22, 23, central pressure chamber 24, and intermediate pressure chamber 25 are respectively sealed with the contacting portions 85, 95a, 95b. At this time, the contacting portions 85, 95a, 95b pressed against the semiconductor wafer W are deformed to increase an area in which the contacting portions 85, 95a, 95b are brought into contact with the semiconductor wafer W, so that a force applied to the semiconductor wafer W becomes larger. However, adjustment of pressure in the pressure chamber 21 can prevent an excessive force from being applied to the semiconductor wafer W by the contacting portions 85, 95a and 95b. The examples shown in FIGS. 8 through 11 can be applied to the first embodiment. A polishing apparatus according to a third embodiment of the present invention will be described below with reference to FIGS. 12 and 13. FIG. 12 is a vertical cross-sectional view showing a top ring 1 according to the third embodiment, and FIG. 13 is a bottom view showing the top ring 1 of FIG. 12 in such a state that a semiconductor wafer W is removed. Like parts and components are designated by the same reference numerals and characters as those in the second embodiment. In the third embodiment, as shown in FIG. 12, the top ring 1 has no elastic pad and no seal ring. A central bag 8 has an annular central bag holder 82, and an annular elastic membrane 81 is held at an outer circumferential edge of the central bag holder 82. A circular hole 83 is formed in a lower surface of the elastic membrane 81 of the central bag 8, as with the example shown in FIGS. 8 and 9. Ring tube 9 is mounted at a position corresponding to an outer peripheral portion of the semiconductor wafer W. The ring tube 9 has an inner elastic membrane 91e and an outer elastic membrane 91f, and an annular groove 93 is formed between the inner elastic membrane 91e and the outer elastic membrane 91f, as with the example shown in FIGS. 8 and 9. An annular auxiliary holder 96 is disposed inside of a ring tube holder. The inner elastic membrane 91e of the ring tube 9 has a protrusion extending radially inwardly from an upper end thereof. The protrusion is held by the auxiliary holder 96, so that the inner elastic membrane 91e is held securely. The elastic membrane 81 of the central bag 8 has a protrusion 81b extending radially outwardly from a lower circumferential edge thereof. The inner elastic membrane 91e of the ring tube 9 has a protrusion 91g extending radially inwardly from a lower circumferential edge thereof. As described in the example shown in FIG. 5, these protrusions can widen a range of pressure control, for thereby pressing the semiconductor wafer W against a polishing surface more stably. Chucking plate 6 has inner suction portions 61 and outer suction portions 62 for attracting a semiconductor wafer W thereto, as with the first embodiment. The inner suction portions 61 are disposed inside of the central bag 8, and the outer suction portions 62 are disposed between the central bag 8 and the ring tube 9. In the present embodiment, the semiconductor wafer W to be polished is held by the top ring 1 in such a state that the semiconductor wafer W is brought into contact with the elastic membranes 81, 91e, 91f of the central bag 8 and the ring tube 9. Therefore, the central bag 8 and the ring tube 9 jointly define a pressure chamber 22 between the semiconductor wafer W and the chucking plate 6. As described above, the ring tube 9 is mounted at a position corresponding to the outer peripheral portion of the semiconductor wafer W, and a pressure chamber (indicated by the reference numeral 23 in FIG. 7) is not defined outside of the ring tube 9. Fluid passages 31, 33, 35 and 36 comprising tubes and connectors communicate with a pressure chamber 21 defined above the chucking plate 6, the pressure chamber 22, a central pressure chamber (first pressure chamber) 24 defined in the central bag 8, and an intermediate pressure chamber (first pressure chamber) 25 defined in the ring tube 9, respectively. The pressure chambers 21, 22, 24 and 25 are connected to a compressed air source via respective regulators connected respectively to the fluid passages 31, 33, 35 and 36. The regulators connected to the fluid passages 31, 33, 35 and 36 of the pressure chambers 21, 22, 24 and 25 can respectively regulate pressures of pressurized fluids supplied to the pressure chambers 21, 22, 24 and 25, for thereby independently controlling pressures in the pressure chambers 21, 22, 24 and 25, or independently introducing atmospheric air or vacuum into the pressure chambers 21, 22, 24 and 25. Thus, pressures in the pressure chambers 21, 22, 24 and 25 are independently varied with the regulators, so that pressing forces can be adjusted in local areas of the semiconductor wafer W. When the semiconductor wafer W is polished, it is difficult to uniformly polish a peripheral portion of the semiconductor wafer W, because of elastic deformation of a polishing pad or the like, or entry of a polishing liquid into a space between a polishing surface and the semiconductor wafer W, regardless of a thickness distribution of a thin film formed on a surface of the semiconductor wafer W to be polished. In the present embodiment, the ring tube 9 is mounted at a position corresponding to the outer peripheral portion of the semiconductor wafer W. Further, width D1 of the ring tube 9 is narrow, and diameter D2 of the central bag 8 is large. Hence, a pressing force applied to the peripheral portion of the semiconductor wafer W is controlled to uniformly polish the peripheral portion of the semiconductor wafer W. Specifically, the ring tube 9 should preferably have a width of at most 10 mm, more preferably at most 5 mm. Distance D3 between the central bag 8 and the ring tube 9 should preferably be in the range of 20 to 25 mm in a case of a semiconductor wafer having a diameter of 200 mm, and in the range of 25 to 30 mm in a case of a semiconductor wafer having a diameter of 300 mm. While the present invention has been described in detail with reference to the preferred embodiments thereof, it would be apparent to those skilled in the art that many modifications and variations may be made therein without departing from the spirit and scope of the present invention. In the embodiments described above, the fluid passages 31, 33, 34, 35 and 36 are provided as separate passages. However, an arrangement of fluid passages and pressure chambers may be modified in accordance with a magnitude of a pressing force to be applied to a semiconductor wafer W and a position to which the pressing force is applied. For example, these passages may be joined to each other, or the pressure chambers may be connected to each other. The pressure chambers 22, 23 may be connected to the pressure chamber 21 to form one pressure chamber, without the fluid passage 33 communicating with the pressure chamber 22 and the fluid passage 34 communicating with the pressure chamber 23. In this case, pressures in pressure chambers 21, 22, 23 are controlled at an equal pressure by a pressurized fluid supplied via the fluid passage 31. If it is not necessary to provide a pressure difference between the pressure chamber 22 and the pressure chamber 23, and pressures in central pressure chamber 24 and intermediate pressure chamber 25 are not larger than pressures in the pressure chambers 21, 22, 23, then the above arrangement can be adopted to dispense with fluid passages 33, 34, for thereby decreasing the number of fluid passages and simplifying the fluid passages. When the inner suction portions 61 and the outer suction portions 62 are provided on the chucking plate 6, as in the first and third embodiments, not only is a vacuum created in the fluid passages 37, 38 communicating with the suction portions 61, 62, but also pressurized fluids may be supplied to the fluid passages 37, 38. In this case, suction of a semiconductor wafer at the suction portions 61, 62 and supply of pressurized fluids to the pressure chambers 22, 23 can be performed with one respective passage. Hence, it is not necessary to provide two fluid passages, i.e., the fluid passages 33, 34, for thereby decreasing the number of fluid passages and simplifying the fluid passages. In the first and second embodiments, the chucking plate 6 has a protuberance 63 projecting downwardly from the outer circumferential edge thereof for maintaining a shape of a lower peripheral portion of the elastic pad 4 or the seal ring 42 (see FIGS. 2 and 7). However, if it is not necessary to maintain the shape of the elastic pad 4 or the seal ring 42 because of its material or the like, then the chucking plate 6 does not need to have such a protuberance. FIG. 14 is a vertical cross-sectional view showing a top ring 1 in which the chucking plate 6 has no protuberance 63 as in the first embodiment. In this case, semiconductor wafer W can uniformly be pressed from a central portion thereof to an outer peripheral portion thereof. Further, the semiconductor wafer can easily follow a large waviness or undulation on a polishing surface. In the embodiments described above, the polishing surface is constituted by a polishing pad. However, the polishing surface is not limited to this. For example, the polishing surface may be constituted by a fixed abrasive. The fixed abrasive is formed into a flat plate comprising abrasive particles fixed by a binder. With the fixed abrasive, a polishing process is performed by the abrasive particles self-generated from the fixed abrasive. The fixed abrasive comprises abrasive particles, a binder, and pores. For example, cerium dioxide (CeO2) having an average particle diameter of 0.5 μm is used as an abrasive particle, and epoxy resin is used as a binder. Such a fixed abrasive forms a harder polishing surface. The fixed abrasive includes a fixed abrasive pad having a two-layer structure formed by a thin layer of a fixed abrasive and an elastic polishing pad attached to the layer of the fixed abrasive. IC-1000 described above may be used for another hard polishing surface. As described above, according to the present invention, pressures in a first pressure chamber and a second pressure chamber can be independently controlled. Therefore, a pressing force applied to a thicker area of a thin film can be made higher than a pressing force applied to a thinner area of the thin film, thereby selectively increasing a polishing rate of the thicker area of the thin film. Consequently, an entire surface of a substrate can be polished exactly to a desired level irrespective of film thickness distribution obtained at a time the thin film is formed. Further, according to the present invention, a contact member comprises a holding member for detachably holding an elastic membrane, or the holding member of the contact member is detachably mounted on a support member. Hence, the elastic membrane or the contact member can easily be replaced with another one. Specifically, a position and size of a first pressure chamber and second pressure chamber can be changed simply by changing the elastic membrane or the contact member. Therefore, a substrate holding apparatus according to the present invention can easily cope with various thickness distributions of a thin film formed on a substrate to be polished at a low cost. In a substrate holding apparatus comprising a seal ring, a lower surface of a support member is not covered after a semiconductor wafer is released. Therefore, a large part of the lower surface of the support member is exposed after the semiconductor wafer is released, so that the substrate holding apparatus can easily be cleaned after a polishing process. Furthermore, a protrusion radially extending from a circumferential edge of the elastic membrane of each contact member is provided on a lower surface of the elastic membrane. Therefore, the protrusion is brought into close contact with an elastic pad or a substrate by a pressurized fluid supplied to the second pressure chamber to prevent the pressurized fluid from flowing into a lower portion of the contact member. Hence, a range of pressure control can be widened to press a substrate against a polishing surface more stably. Although certain preferred embodiments of the present invention have been shown and described in detail, it should be understood that various changes and modifications may be made therein without departing from the scope of the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, and more particularly to a substrate holding apparatus for holding a substrate such as a semiconductor wafer in a polishing apparatus for polishing the substrate. 2. Description of the Related Art In a manufacturing process of a semiconductor device, a thin film is formed on a semiconductor device, and then micro-machining processes, such as patterning or forming holes, are performed. Thereafter, the above processes are repeated to form thin films on the semiconductor device. Recently, semiconductor devices have become more integrated, and structure of semiconductor elements has become more complicated. In addition, the number of layers in multilayer interconnections used for a logical system has been increased. Therefore, irregularities on a surface of the semiconductor device are increased, so that a step height on the surface of the semiconductor device becomes larger. When irregularities of a surface of a semiconductor device are increased, the following problems arise. Thickness of a film formed in a portion having a step is relatively small. An open circuit is caused by disconnection of interconnections, or a short circuit is caused by insufficient insulation between layers. As a result, good products cannot be obtained, and a yield is reduced. Further, even if a semiconductor device initially works normally, reliability of the semiconductor device is lowered after a long-term use. At a time of exposure during a lithography process, if an irradiation surface has irregularities, then a lens unit in an exposure system is locally unfocused. Therefore, if the irregularities of the surface of the semiconductor device are increased, then it is difficult to form a fine pattern on the semiconductor device. Thus, during a manufacturing process of a semiconductor device, it is increasingly important to planarize a surface of the semiconductor device. The most important one of planarizing technologies is chemical mechanical polishing (CMP). In chemical mechanical polishing using a polishing apparatus, while a polishing liquid containing abrasive particles such as silica (SiO 2 ) therein is supplied onto a polishing surface such as a polishing pad, a substrate such as a semiconductor wafer is brought into sliding contact with the polishing surface, so that the substrate is polished. This type of polishing apparatus comprises a polishing table having a polishing surface constituted by a polishing pad, and a substrate holding apparatus, such as a top ring or a carrier head, for holding a semiconductor wafer. When a semiconductor wafer is polished with this type of polishing apparatus, the semiconductor wafer is held by the substrate holding apparatus and pressed against the polishing pad under a predetermined pressure. At this time, the polishing table and the substrate holding apparatus are moved relatively to each other to bring the semiconductor wafer into sliding contact with the polishing surface, so that the surface of the semiconductor wafer is polished to a flat mirror finish. If a pressing force produced between the semiconductor wafer and the polishing surface of the polishing pad is not uniform over an entire surface of the semiconductor wafer, then the semiconductor wafer is insufficiently or excessively polished depending on the pressing force applied to the semiconductor wafer. Therefore, it has been attempted that a holding surface of the substrate holding apparatus is formed by an elastic membrane of an elastic material such as rubber, and a fluid pressure such as air pressure is applied to a backside surface of the elastic membrane to make uniform the pressing force applied to the semiconductor wafer over the entire surface of the semiconductor wafer. The polishing pad is so elastic that the pressing force applied to a peripheral portion of the semiconductor wafer becomes non-uniform and hence the peripheral portion of the semiconductor wafer is excessively polished to cause edge rounding. In order to prevent such edge rounding, there has been used a substrate holding apparatus in which a semiconductor wafer is held at its peripheral portion by a guide ring or a retainer ring, and an annular portion of a polishing surface that corresponds to the peripheral portion of the semiconductor wafer is pressed by the guide ring or the retainer ring. A thickness of a thin film formed on a surface of a semiconductor wafer varies from position to position in a radial direction of the semiconductor wafer depending on a film deposition method or characteristics of a film deposition apparatus. Specifically, the thin film has a film thickness distribution in the radial direction of the semiconductor wafer. When a conventional substrate holding apparatus for uniformly pressing an entire surface of the semiconductor wafer is used for polishing the semiconductor wafer, the entire surface of the semiconductor wafer is polished uniformly. Therefore, a conventional substrate holding apparatus cannot realize a polishing amount distribution that is equal to the film thickness distribution on the surface of the semiconductor wafer, and hence cannot sufficiently cope with the film thickness distribution in the radial direction so as to cause insufficient or excessive polishing. As described above, the film thickness distribution on the surface of the semiconductor wafer varies depending on the type of a film deposition method or a film deposition apparatus employed. Specifically, a position and number of portions having a large film thickness in the radial direction and difference in thickness between thin film portions and thick film portions vary depending on the type of a film deposition method or a film deposition apparatus employed. Therefore, a substrate holding apparatus capable of easily coping with various film thickness distributions at low cost has been required rather than a substrate holding apparatus capable of coping with only a specific film thickness distribution. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention has been made in view of the above drawbacks. It is therefore an object of the present invention to provide a substrate holding apparatus capable of polishing a substrate such as a semiconductor wafer in accordance with a thickness distribution of thin film formed on a surface of the substrate, and obtaining uniformity of film thickness after polishing. It is another object of the present invention to provide a substrate holding apparatus capable of easily coping with not only a specific film thickness distribution but also various film thickness distributions at low cost. According to an aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, the substrate holding apparatus comprising: a top ring body for holding the substrate; an elastic pad for being brought into contact with the substrate; a support member for supporting the elastic pad; a contact member mounted on a lower surface of the support member and disposed in a space formed by the elastic pad and the support member, the contact member having an elastic membrane for being brought into contact with the elastic pad; a first pressure chamber defined in the contact member; a second pressure chamber defined outside of the contact member; and a fluid source for independently supplying a fluid into, or creating a vacuum in, the first pressure chamber and the second pressure chamber. According to another aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, the substrate holding apparatus comprising: a top ring body for holding a substrate; a seal ring for being brought into contact with an upper surface of a peripheral portion of the substrate; a support member for supporting the seal ring; a contact member mounted on a lower surface of the support member and disposed in a space formed by the substrate, the seal ring and the support member, with the contact member having an elastic membrane for being brought into contact with the substrate; a first pressure chamber defined in the contact member; a second pressure chamber defined outside of the contact member; and a fluid source for independently supplying a fluid into, or creating a vacuum in, the first pressure chamber and the second pressure chamber. According to still another aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, the substrate holding apparatus comprising: a top ring body for holding the substrate; a support member having a contact member mounted on a lower surface thereof, the contact member being disposed in a space formed by the substrate and the support member and having an elastic membrane for being brought into contact with the substrate; a first pressure chamber defined in the contact member; a second pressure chamber defined outside of the contact member; and a fluid source for independently supplying a fluid into, or creating a vacuum in, the first pressure chamber and the second pressure chamber. According to another aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, the substrate holding apparatus comprising: a top ring body for holding the substrate; an elastic pad for being brought into contact with the substrate; a support member for supporting the elastic pad; and contact members mounted on a lower surface of the support member, the contact members each having an elastic membrane for being brought into contact with the elastic pad and being independently pressed against the elastic pad. According to the present invention, pressures in a first pressure chamber and a second pressure chamber can be independently controlled. Therefore, a pressing force applied to a thicker area of a thin film on a substrate can be made higher than a pressing force applied to a thinner area of the thin film, thereby selectively increasing a polishing rate of the thicker area of the thin film. Consequently, an entire surface of the substrate can be polished exactly to a desired level irrespective of a film thickness distribution obtained at a time the thin film is formed. The pressing force is a pressure per unit area for pressing the substrate against a polishing surface. In a preferred aspect of the present invention, the fluid source supplies a fluid, controlled in terms of temperature, into the first pressure chamber and the second pressure chamber, respectively. Preferably, the contact members are spaced from one another at predetermined intervals. According to another aspect of the present invention, a communicating portion for allowing fluid supplied to the first pressure chamber to contact a contact surface of the substrate is formed in a lower surface of the elastic membrane of a contact member. When pressurized fluids supplied to the pressure chambers are controlled in terms of temperature and a temperature of the substrate is controlled from a backside of the surface to be polished, the above arrangement can increase an area in which a pressurized fluid, controlled in terms of temperature, is brought into contact with the substrate. Therefore, controllability in terms of temperature of the substrate can be improved. Further, when polishing of the substrate is finished and the substrate is released, the pressure chambers are respectively opened to outside air via the communicating portion. Thus, fluids supplied into the pressure chambers are prevented from remaining in the pressure chambers. Therefore, even when substrates are continuously polished, controllability in terms of temperature of the substrate can be maintained. In a substrate holding apparatus comprising a seal ring, a lower surface of the support member is not covered after a substrate is released. Therefore, a large part of the lower surface of the support member is exposed after the substrate is released, so that the substrate holding apparatus can easily be cleaned after a polishing process. In either a substrate holding apparatus comprising an elastic pad or a substrate holding apparatus comprising a seal ring, the support member should preferably be made of an insulating material such as resin or ceramic. The seal ring should preferably extend radially inwardly from an innermost position of a recess, such as a notch or orientation flat, for recognizing or identifying an orientation of a substrate. In a preferred aspect of the present invention, each contact member comprises a holding member for detachably holding its elastic membrane. With this arrangement, the elastic membrane of the contact member can easily be replaced with another one, and hence a position and size of the first pressure chamber and the second pressure chamber can be changed simply by changing the elastic membrane of the contact member. Therefore, a substrate holding apparatus according to the present invention can easily cope with various thickness distributions of a thin film formed on a substrate to be polished at a low cost. In another preferred aspect of the present invention, the holding member of each contact member is detachably mounted on the support member. With this arrangement, the contact member can easily be replaced with another one, and hence a position and size of the first pressure chamber and the second pressure chamber can be changed simply by changing the contact member. Therefore, a substrate holding apparatus according to the present invention can easily cope with various thickness distributions of a thin film formed on a substrate to be polished at a low cost. In still another preferred aspect of the present invention, a protrusion radially extending from a circumferential edge of the elastic membrane of each contact member is provided on a lower surface of the elastic membrane. The protrusion is brought into close contact with an elastic pad or a substrate by a pressurized fluid supplied to the second pressure chamber to prevent the pressurized fluid from flowing into a lower portion of the contact member. Hence, a range of pressure control can be widened to press the substrate against a polishing surface more stably. In another preferred aspect of the present invention, the contact member includes a central contact member disposed at a position corresponding to a central portion of a substrate, and an outer contact member disposed outside of the central contact member. In still another preferred aspect of the present invention, the outer contact member is mounted at a position corresponding to an outer peripheral portion of a substrate. With this arrangement, a pressing force applied to the peripheral portion of the substrate is appropriately controlled to suppress effects due to elastic deformation of a polishing surface or entry of a polishing liquid into a space between the polishing surface and the substrate, for thereby uniformly polishing the peripheral portion of the substrate. In another preferred aspect of the present invention, the substrate holding apparatus further comprises a retainer ring fixed to, or integrally formed with, the top ring body for holding a peripheral portion of the substrate. In still another preferred aspect of the present invention, the top ring body comprises a cleaning liquid passage defined therein for supplying a cleaning liquid into a gap defined between an outer circumferential surface of the elastic pad and the retainer ring. When a cleaning liquid (pure water) is supplied from the cleaning liquid passage into the gap defined between the outer circumferential surface of the elastic pad and the retainer ring, a polishing liquid in the gap is washed away to remove deposits of a polishing liquid in the gap. Therefore, the support member, the elastic pad, or the substrate can smoothly be moved in a vertical direction with respect to the top ring body and the retainer ring. In another preferred aspect of the present invention, the retainer ring 1 is fixed to the top ring body without interposing an elastic member between the retainer ring and the top ring body. If an elastic member such as rubber is clamped between the retainer ring and the top ring body, then a desired horizontal surface cannot be maintained on a lower surface of the retainer ring because of elastic deformation of this elastic member. However, the above arrangement, i.e. absent an elastic member between the retainer ring and the top ring body, can maintain a desired horizontal surface on the lower surface of the retainer ring. In still another preferred aspect of the present invention, the elastic membrane of each contact member has differing thicknesses, or partially includes an inelastic member. With this arrangement, deformation of the elastic membrane due to pressure in the first and second pressure chambers can be optimized. According to another aspect of the present invention, there is provided a polishing apparatus comprising the above substrate holding apparatus and a polishing table having a polishing surface. According to still another aspect of the present invention, there is provided a substrate holding apparatus for holding a substrate to be polished and pressing the substrate against a polishing surface, comprising: a top ring body for holding the substrate; annular members formed of an elastic material for being held in contact with the substrate; sections defined by the annular members, the sections being opened downwardly; and a fluid passage for supplying a fluid into the sections. According to another aspect of the present invention, there is provided a polishing method for polishing a substrate, comprising: pressing a substrate against a polishing surface provided on a polishing table; and polishing a substrate in such a state that a pressing force applied to a thicker area of a thin film on the substrate is made higher than a pressing force applied to a thinner area of the thin film. According to still another aspect of the present invention, there is provided a polishing method for polishing a substrate, comprising: pressing a substrate against a polishing surface provided on a polishing table; defining sections opened downwardly by annular members formed of an elastic material held in contact with the substrate; and supplying a fluid into, or creating a vacuum in, the sections. The above and other objects, features, and advantages of the present invention will be apparent from the following description when taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention by way of example. | 20050105 | 20060801 | 20050602 | 57366.0 | 0 | ROSE, ROBERT A | SUBSTRATE HOLDING APPARATUS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,028,649 | ACCEPTED | Temperature sensor circuit and calibration method thereof | A temperature sensor circuit comprises a first monitor voltage generation circuit that generates a first monitor voltage with a characteristic that changes with respect to temperature; a second monitor voltage generation circuit that generates a second monitor voltage with a characteristic that changes by a variation amount different from the first monitor voltage with respect to the temperature; and a differential amplifier circuit, to which the first and second monitor voltages are inputted and that outputs the result of comparing the two voltages. Further, the differential amplifier circuit of the temperature sensor circuit is capable of switching to a first connection state, which outputs the comparison result, and to a second connection state, which outputs an offset monitor voltage that is rendered by adding the offset voltage of the differential amplifier circuit to the first or second monitor voltage or subtracting the offset voltage therefrom. | 1. A temperature sensor circuit, comprising: a first monitor voltage generation circuit that generates a first monitor voltage with a characteristic that changes with respect to temperature; a second monitor voltage generation circuit that generates a second monitor voltage with a characteristic that changes by a variation amount different from the first monitor voltage with respect to the temperature; and a differential amplifier circuit, to which the first and second monitor voltages are inputted and that outputs a result of comparing the two voltages, wherein the differential amplifier circuit is capable of switching to a first connection state to output the comparison result, and to a second connection state to output a voltage that is rendered by adding an offset voltage of the differential amplifier circuit to the first or second monitor voltage or subtracting the offset voltage therefrom. 2. The temperature sensor circuit according to claim 1, wherein the second connection state is a state where an input of the monitor voltage to one input terminal of the differential amplifier circuit is prohibited and where a negative feedback circuit is provided to the one input terminal from the output of the differential amplifier circuit. 3. The temperature sensor circuit according to claim 2, wherein the negative feedback circuit comprises: an output transistor to a gate of which the output of the differential amplifier circuit is connected; and feedback wiring that connects a drain of the output transistor to the one input terminal of the differential amplifier circuit. 4. The temperature sensor circuit according to claim 1, further comprising: an output buffer circuit to which the offset monitor voltage or the first or second monitor voltage is inputted and that amplifies the voltage thus inputted to output. 5. The temperature sensor circuit according to claim 1, wherein the second connection state includes: a state where a first offset monitor voltage, which is rendered by adding the offset voltage to one of the first and second monitor voltage, is outputted; a state where a second offset monitor voltage, which is rendered by subtracting the offset voltage from one of the first and second monitor voltage, is outputted; and a state where a third offset monitor voltage, which is rendered by adding the offset voltage to the other of the first and second monitor voltages or subtracting the offset voltage therefrom, is outputted. 6. The temperature sensor circuit according to claim 5, wherein the second connection state is a state where the input of the monitor voltage to one input terminal of the differential amplifier circuit is prohibited and where a negative feedback circuit that comprises an output transistor and feedback wiring is provided to connect the output of the differential amplifier circuit to the one input terminal. 7. The temperature sensor circuit according to claim 6, further comprising: first and second switches that connect each of the first and second monitor voltages to the noninverting input terminal or inverting input terminal of the differential amplifier circuit; a fifth switch that connects the output terminal of the differential amplifier circuit to the comparison result output terminal or output transistor; and a sixth switch that connects the drain of the output transistor to the noninverting input terminal or inverting input terminal of the differential amplifier circuit. 8. A calibration method for a temperature sensor circuit that comprises a first monitor voltage generation circuit that generates a first monitor voltage with a characteristic that changes with respect to temperature; a second monitor voltage generation circuit that generates a second monitor voltage with a characteristic that changes by a variation amount different from the first monitor voltage with respect to the temperature; and a differential amplifier circuit, to which the first and second monitor voltages are inputted and that outputs a result of comparing the two voltages, the differential amplifier circuit being capable of switching to a first connection state to output the comparison result, and to a second connection state to output an offset monitor voltage that is rendered by adding an offset voltage of the differential amplifier circuit to the first or second monitor voltage or subtracting the offset voltage therefrom, the calibration method comprising the steps of: detecting a first-temperature state offset monitor voltage that is rendered by establishing the second connection state and adding the offset voltage to the first or second monitor voltage or subtracting the offset voltage therefrom in the first temperature state; detecting a second-temperature state offset monitor voltage that is rendered by adding the offset voltage to the first or second monitor voltage or subtracting the offset voltage therefrom in a second temperature state that differs from the first temperature state; and trimming circuit elements of the first or second monitor voltage generation circuit to generate the first or second monitor voltage so that a detection temperature determined on the basis of the first- and second-temperature state offset monitor voltages becomes a desired detection temperature. 9. The temperature sensor circuit calibration method according to claim 8, further comprising the step of detecting, in the first and second temperature states respectively, the temperature state offset monitor voltage for one of the first and second monitor voltage or the other of the first and second monitor voltages in correspondence with a plurality of trimming values with respect to circuit elements of the first or second monitor voltage generation circuit. 10. The temperature sensor circuit calibration method according to claim 8, wherein the second connection state includes: a state where a first offset monitor voltage, which is rendered by adding the offset voltage to one of the first and second monitor voltage, is outputted; a state where a second offset monitor voltage, which is rendered by subtracting the offset voltage from one of the first and second monitor voltage, is outputted; and a state where a third offset monitor voltage, which is rendered by adding the offset voltage to the other of the first and second monitor voltages or subtracting the offset voltage therefrom, is outputted, wherein, in the first and second temperature states respectively, the first, second, and third offset monitor voltages are detected as the first- and second-temperature state offset monitor voltages. 11. The temperature sensor circuit calibration method according to claim 8, further comprising: a step of returning to the first connection state after the trimming step. | CROSS-REFERENCE TO RELATED APPLICATIONS This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2004-168699, filed on Jun. 7, 2004, the entire contents of which are incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor circuit, mounted on a semiconductor chip, that measures a predetermined temperature and to a calibration method thereof and, more particularly, to a temperature sensor circuit that facilitates high-precision calibration and a calibration method thereof. 2. Description of the Related Art Temperature sensor circuits constituted by a semiconductor circuit are widely used. For example, in the case of Dynamic Random Access Memory (DRAM), it is necessary to refresh the data of internal memory cells at regular intervals, but the refresh cycle must be changed in accordance with the temperature of the semiconductor chip. That is, when the temperature is low, changes to the data of the memory cell can be slow and the refresh cycle can be extended. However, when the temperature is high, changes to the data of the memory cell are rapid and the refresh cycle must be shortened. Therefore, the temperature sensor circuit is mounted in the DRAM and the refresh cycle is changed in accordance with the sensor output of the temperature sensor circuit. This temperature sensor circuit generates different temperature-dependent voltages and compares and detects these voltages by means of a differential amplifier circuit to yield an output. Further, as a circuit for generating a temperature-dependent voltage, a bandgap reference circuit may be used, as per Japanese Patent Application Laid Open No. 2002-149252 (published on May 24, 2002), for example. Furthermore, the differential amplifier circuit of the temperature sensor circuit generally yields an offset. A variety of methods for correcting this offset have been proposed, as per Japanese Patent Application Laid Open No. 2000-165241 (published on Jun. 16, 2000), for example. SUMMARY OF THE INVENTION However, the temperature sensor circuit formed on the semiconductor chip is subject to scattering under due to the influence of process variations and, as a result, is faced by problem of variations in the detected temperature. In order to suppress such a variation in the detected temperature, calibration is performed so that the desired temperature is detected by fine-tuning or trimming the circuit elements of the temperature sensor circuit, such as the resistors, for example. Further, the calibration step must be executed by using a semiconductor integrated circuit tester. However, when high-precision calibration is to be performed, the calibration process is a burden and there is an increase in the costs of the semiconductor integrated circuit. Further, when calibration is to be performed at low cost, calibration for the correct detection temperature is difficult due to the offset of the differential amplifier circuit of the temperature sensor circuit. Accordingly, an object of the present invention is to provide a temperature sensor circuit and calibration method thereof that makes it possible to calibrate the detection temperature highly precisely with minimal process steps. In order to resolve this object, according to a first aspect of the present invention, the temperature sensor circuit comprises a first monitor voltage generation circuit that generates a first monitor voltage with a characteristic that changes with respect to temperature; a second monitor voltage generation circuit that generates a second monitor voltage with a characteristic that changes by a variation amount different from the first monitor voltage with respect to the temperature; and a differential amplifier circuit, to which the first and second monitor voltages are inputted and that outputs the result of comparing the two voltages. Further, the differential amplifier circuit of the temperature sensor circuit is capable of switching to a first connection state, which outputs the comparison result, and to a second connection state, which outputs an offset monitor voltage that is rendered by adding the offset voltage of the differential amplifier circuit to the first or second monitor voltage or subtracting the offset voltage therefrom. According to the first aspect, in a preferred embodiment, the second connection state is a state where an input of the monitor voltage to one input terminal of the differential amplifier circuit is prohibited and where a negative feedback circuit is provided at the one input terminal from the output of the differential amplifier circuit. Further, this negative feedback circuit comprises an output transistor to the gate of which the output of the differential amplifier circuit is connected; and feedback wiring that connects the drain of the output transistor to the one input terminal of the differential amplifier circuit, for example. In order to achieve the above object, according to a second aspect of the present invention, the method comprises, in the temperature sensor circuit, detecting a first-temperature state offset monitor voltage that is rendered by establishing the second connection state and adding the offset voltage to the first or second monitor voltage or subtracting the offset voltage therefrom in the first temperature state; detecting a second-temperature state offset monitor voltage that is rendered by adding the offset voltage to the first or second monitor voltage or subtracting the offset voltage therefrom in a second temperature state; and trimming the circuit elements of the first or second monitor voltage generation circuit to generate the first or second monitor voltage so that the detection temperature determined on the basis of the first- and second-temperature state offset monitor voltages becomes a desired detection temperature. According to the above aspects of the present invention, the detection temperature can be calibrated highly precisely by means of minimal calibration process steps. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the temperature sensor circuit of this embodiment; FIG. 2 is a characteristic diagram of the temperature sensor circuit; FIG. 3 shows the trimming method by means of dual-temperature voltage measurement of this embodiment; FIG. 4 illustrates the problem of an offset voltage; FIG. 5 shows connection states of the differential amplifier circuit of this embodiment; FIG. 6 is a circuit diagram of the differential amplifier circuit that permits switching of the first and second connection states of this embodiment; FIG. 7 is a circuit diagram of a pad output buffer circuit; FIG. 8 is a flowchart of the calibration procedure of the temperature sensor of this embodiment; FIG. 9 shows a connection example of the differential amplifier circuit that permits monitor voltage measurement including an offset voltage according to this embodiment; FIG. 10 is a circuit diagram of a differential amplifier circuit that permits switching to the four connection states in FIG. 9; FIG. 11 shows a switching-unit circuit diagram and a truth table; FIG. 12 is a truth table that shows the operation of the control logic circuit 10 in FIG. 10; and FIG. 13 is a flowchart of the calibration procedure for the temperature sensor of this embodiment. DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. However, the technological scope of the present invention is not limited to this embodiment but, rather, extends to the inventions appearing in the claims and to any equivalents thereof. FIG. 1 shows the temperature sensor circuit of this embodiment. This temperature sensor circuit comprises a first monitor voltage generation circuit 100, which generates a first monitor voltage V1 with a positive increase characteristic with respect to temperature, a second monitor voltage generation circuit 200, which generates a second monitor voltage V2 with a negative increase characteristic with respect to temperature; and a differential amplifier circuit op3, to which the first monitor voltage V1 and second monitor voltage V2 are inputted and that outputs the difference between the two voltages as the comparison result temphz. Further, the differential amplifier circuit op3 of the temperature sensor circuit is capable of switching to a first connection state that outputs the comparison result and a second connection state that outputs a voltage rendered by adding or subtracting the offset voltage of the differential amplifier circuit to or from the first or second monitor voltage. The switched connection states will be described hereinafter. In the first monitor voltage generation circuit 100, the first differential amplifier circuit op1 compares the inputs Va and Vb and the differential output OUT1 is connected to the respective gates of the P-channel transistors m1 and m2, the drain terminals of these transistors being fed back negatively to the respective inputs Va and Vb respectively. The differential amplifier circuit op1 operates to render Va=Vb as a result of a negative feedback circuit that consists of the P-channel transistors m1 and m2 and feedback circuits for feedback to the inputs Va and Vb. Meanwhile, the input Va is connected to ground potential VSS via a diode D1 and therefore the potential of the input Va is the forward voltage Vf1 of the diode D1. The forward voltage Vf1 has a negative increase characteristic in response to temperature. Further, because the input Vb is connected to ground potential VSS via the resistor R1 and diode D2, the potential of the input Vb is the sum of the forward voltage Vf2 of the diode D2 and the voltage dV (=R1×I2) of the resistor R1. Therefore, because of Va=Vb, the voltage dV of the resistor R1 is dV=(kT/q)×InN. Here, k is Boltzmann's constant, q is elementary electric charge, T is the absolute temperature, and N is the junction area ratio of the diodes D2 and D1. That is, the voltage of the resistor R1 possesses a positive proportionality relation with respect to temperature T, that is, a positive increase characteristic. The current I2 also has the same characteristic. Further, because the output OUT1 of the first differential amplifier circuit op1 is connected to the gate of the P-channel transistor m3, the transistors m2 and m3 constitute a current mirror circuit and the current I3 flowing to the transistor m3 has the same trend as the current I2 flowing to the transistor m2. As a result, the first monitor voltage V1=I3×R3 has a positive proportionality relation with respect to temperature T, that is, a positive increase characteristic. Meanwhile, in the case of the second monitor voltage generation circuit 200, a second differential amplifier circuit op2 compares the input Va and the voltage V3, the differential output OUT2 thereof is connected to the gate of the P-channel transistor m5 and the drain of the transistor m5 is fed back to the input V3. As a result of the negative feedback circuit, the second differential amplifier circuit op2 operates to render Va=V3. Meanwhile, because the input V3 is connected to ground VSS via the resistor R2, the voltage is then V3=I5×R2. Further, because voltage Va=Vf1, the voltage V3 has a negative proportionality relation with respect to temperature T, that is, a negative increase characteristic. Therefore, the current I5 of the transistor m5 also possesses the same negative proportionality relation, that is, negative increase characteristic. In addition, because the transistor M5 and transistor m4 constitute a current mirror circuit, the currents I5 and I4 are dimensioned in proportion to the size of the transistors m5 and m4 respectively and possess the same characteristics. Therefore, the second monitor voltage V2 also has the same characteristic as the voltage V3. That is, the second monitor voltage V2 has a negative proportionality relation with respect to temperature T, that is, a negative increase characteristic. FIG. 2 is a characteristic diagram of the temperature sensor circuit. FIG. 2A is a graph showing the characteristics of the first monitor voltage V1 and second monitor voltage V2 with respect to temperature and FIG. 2B is a graph showing the characteristic of the output temphz of the differential amplifier circuit op3 with respect to temperature. The first monitor voltage V1 possesses a positive proportionality characteristic with respect to temperature T and the second monitor voltage V2 possesses a negative proportionality characteristic with respect to temperature T. These voltages intersect at a certain detection temperature Td. Correspondingly, the output temphz of the differential amplifier circuit op3 is inverted to a low level and high level before and after the detection temperature Td respectively. Therefore, the output temphz of the differential amplifier circuit op3 is a signal that indicates a temperature above the detection temperature Td (a high level) or a temperature below the detection temperature Td (a low level). If this output temphz is utilized, the refresh cycle of the DRAM can be controlled at a suitable length. The first monitor voltage V1 and second monitor voltage V2 need not necessarily have positive and negative increase characteristics respectively with respect to temperature T. These voltages may have different variation amounts with respect to temperature T so as to possess a relationship in which the characteristics intersect one another as shown in FIG. 2A. As long as the first monitor voltage V1 and second monitor voltage V2 possess this characteristic relationship, the same temperature sensor circuit functions can be implemented. As described above, the temperature sensor circuit shown in FIG. 1 is able to detect whether the temperature is higher or lower than the desired detection temperature Td. However, the first monitor voltage V1 and second monitor voltage V2 are scattered under the influence of variations in the fabrication process and, as a result, the detection temperature Td is also scattered. In FIG. 2A, if the first monitor voltage V1 rises, the detection temperature Td drops and, if V1 drops, the detection temperature Td rises. If the second monitor voltage V2 rises, the detection temperature Td also rises, and if V2 drops, Td also drops. Therefore, in order to cancel out the effects of variations in the fabrication process, the temperature sensor circuit must fine-tune (trim) the detection temperature. More specifically, the resistors R3 and R4 in the circuit of FIG. 1 can be variably set by means of fuse elements and test signals, and so forth. A variety of methods may be considered for the calibration method by means of such trimming. For example, the temperature at which the output temphz varies is checked by scanning the temperature T for each resistor R3 or R4 while varying the resistor R3 or R4, and the temperature at which the output temphz changes is observed for each trimming point of the resistor R3 or R4. Then, the trimming point of the resistor R3 or R4 at which the output temphz changes at the desired temperature Td is set at the value of the resistor R3 or R4. However, this method cannot be said to be a realistic method due to the high costs and excessive process steps in the production. FIG. 3 shows the trimming method by means of dual-temperature voltage measurement of this embodiment. According to this method, the first monitor voltage V1 and second monitor voltage V2 at predetermined temperatures Tm1 and Tm2 on both sides of the desired detection temperature Td are measured and the detection temperature is found through calculation from the first monitor voltage V1 and second monitor voltage V2 thus measured as shown in FIG. 3. The above procedure is performed for each trimming point of the resistor R3 or R4 to find the respective detection temperatures Tx0, Tx1, and Tx2. Further, the resistor R3 or R4 is set for each trimming point that corresponds with the detection temperature Tx0, Tx1, or Tx2 that is closest to the desired detection temperature Td. In the example in FIG. 3, the resistor R4 is fixed and the trimming point of the resistor R3 is determined. That is, at temperature Tm1, the second monitor voltage V2 is measured and the first monitor voltage V1 corresponding with a plurality of trimming points tp0 to tp2 of the resistor R3 is measured. Likewise, at temperature Tm2, the second monitor voltage V2 is measured and the first monitor voltage V1 corresponding with a plurality of trimming points tp0 to tp2 of the resistor R3 is measured. Further, the detection temperatures Tx0 to Tx2 at which the two monitor voltages V1 and V2 intersect are found through calculation from the measured voltages (the voltages marked with circles in FIG. 3). The calculation method is as per FIG. 3, for example. Because the two monitor voltages have a positive or negative proportionality relation, the detection temperatures Tx0 to Tx2 at the intersecting points can be found by means of linear interpolation from the four measurement points above. The resistor R3 is then set at the trimming point tp1 that corresponds with detection temperature Tx1, which is closest to the desired detection temperature Td. Conversely, the resistor R3 may be fixed and the trimming point of resistor R4 may be determined. In this case, the second monitor voltage V2 must be detected with respect to a plurality of trimming points. Alternatively, a plurality of trimming points may be determined with respect to both the resistor R3 and R4. According to the above trimming method, the optimum trimming point of the resistor R3 or R4 is determined by directly measuring the first monitor voltage V1 and second monitor voltage V2. However, this method does not consider the offset voltage that exists in the differential amplifier circuit op3 and, therefore, when the offset voltage is large, there is the problem that even when the resistors R3 and R4 are trimmed accordingly, the desired detection temperature Td cannot be detected highly precisely. Owing to the scatter of the characteristics of the transistor and so forth of the differential amplifier circuit op3, a state in which the differential amplifier circuit is balanced is not necessarily a state where the input V1=V2, but instead a state where V1=V2+Vos, which is the result of a shift by the offset voltage Vos. Therefore, because the determination of the trimming point from the input voltages V1 and V2 does not consider the offset voltage Vos, the detection temperature is subject to a shift through the offset voltage. FIG. 4 illustrates the problem of the offset voltage. In FIG. 4, the circle marks are voltages that have been measured by means of the above trimming method and the triangle mark is a detection temperature Tx that is calculated from these measurement voltages. On the other hand, when, as described above, an offset voltage Vos exists in the differential amplifier circuit and the differential amplifier circuit is balanced such that V1=V2+Vos, for example, a square mark is the detection temperature Ts that is actually detected. That is, a shift exists between the calculated detection temperature Tx and the actual detection temperature Ts. Therefore, in this embodiment, the differential amplifier circuit op3 has a constitution that is capable of switching to a first connection state (normal state), which outputs the result of a comparison between the first and second monitor voltages and a second connection state (trimming state), which outputs an offset monitor voltage that is rendered by adding the offset voltage of the differential amplifier circuit to the first or second monitor voltage or subtracting the offset voltage therefrom. FIG. 5 shows connection states of the differential amplifier circuit of this embodiment. FIG. 5A is the first connection state, which outputs a comparison result constituting the differential voltage of the first monitor voltage V1 and second monitor voltage V2, which is the normal connection state. In FIG. 5, the offset voltage Vos is provided on the side of the second monitor voltage V2 as an equivalence circuit. However, the offset voltage Vos may be provided on the side of the first monitor voltage V1. In this connection state, as shown in FIG. 4, the differential amplifier circuit op3 generates, as the output signal temphz, the result of a comparison between the first monitor voltage V1 and the voltage V2+Vos, which is rendered by adding a offset voltage Vos to the second monitor voltage V2. Meanwhile, FIG. 5B represents the second connection state, which outputs to Vout a voltage rendered by adding the offset voltage Vos to the second monitor voltage V2 (Vc1=V2+Vos), which is the connection state during monitor voltage measurement when trimming is executed. That is, in the state of connection 1 shown in FIG. 5B, the input of the first monitor voltage V1 to the noninverting input terminal of the differential amplifier circuit is prohibited by turning OFF a switch SW10, the output of the differential amplifier circuit op3 is connected to the gate of the P-channel transistor m10, and the drain of the transistor m10 is the output terminal Vout and is fed back to the noninverting input terminal of the differential amplifier circuit op3. A negative feedback circuit is constituted for the differential amplifier circuit op3 by means of the transistor m10 and feedback wiring FD. As a result of this constitution, in a state where the differential amplifier circuit op3 is balanced, the two inputs Vout (=Vc1) and V2+Vos are equal and an offset monitor voltage Vc1=V2+Vos is outputted to the output terminal Vout. That is, by rendering the state of connection 1 in FIG. 5B, a voltage rendered by adding the offset voltage Vos to the second monitor voltage V2 can be detected from the output terminal Vout. Further, even when the offset voltage Vos exists on the side of the noninverting input terminal, the connection state of FIG. 5B is such that the voltage rendered by adding the offset voltage Vos to the second monitor voltage V2 (or subtracting the offset voltage therefrom) can likewise be calculated from the output terminal Vout. In addition, in the connection state in FIG. 5B, when the first monitor voltage V1 and second monitor voltage V2 are reversed, a voltage rendered by adding the offset voltage Vos to the first monitor voltage V1 can be measured from the output terminal Vout. Therefore, returning to FIG. 4, if the offset monitor voltage V2+Vos, which is rendered by adding an offset voltage Vos, can be measured instead of the second monitor voltage V2, the detection temperature Ts can be found through calculation from the measured voltage value. Therefore, in a state where the effect of the offset voltage of the differential amplifier circuit has been added, the detection temperature Ts can be found and trimming can be performed highly precisely. FIG. 6 is a circuit diagram of the differential amplifier circuit that permits switching of the first and second connection states of this embodiment. In this circuit, the differential amplifier circuit op3 is formed by transistors m11 to m16. Further, in this circuit, two sets of CMOS transfer gates TR1, TR11, and TR2, TR12, which are switched by a control signal con1z, are provided, such that a normal connection (first connection state) results when the control signal con1z is at the low level and the trimming state, the state of connection 1 (second connection state) results when the control signal con1z is at the high level. In the normal connection state when the control signal con1z is at the low level, the transfer gates TR1 and TR2 conduct and the transfer gates TR11 and TR12 are both nonconductive, meaning that the first monitor voltage V1 is inputted to the noninverting input terminal V+ of the differential amplifier circuit op3 and the node N15 is connected to the detection output temphz via the transfer gate TR2. Here, the output of the inverter INV1 is at the high level and the transistor m17 is OFF. Further, the transistor m16 is turned ON and the transistor m10 enters an OFF state, meaning that the feedback wiring FD is rendered ineffective. In a state where the control signal con1z is in the high-level, voltage measurement state, the transfer gates TR1 and TR2 are nonconductive and the transfer gates TR11 and TR12 are both conductive, meaning that the input of the first monitor voltage V1 is prohibited and the feedback wiring FD is connected to the noninverting input terminal V+ via the transfer gate TR11. Further, the transistor m16 is turned OFF and the node N15 is connected to the gate of the transistor m10 via the transfer gate TR12. As a result, the output N15 of the differential amplifier circuit op3 is then constituted to be fed back negatively to the noninverting input terminal V+ by means of the transistor m10 and feedback wiring FD and hence the offset monitor voltage V2+Vos is outputted to the output terminal Vout. In this state, the connection is the same as FIG. 5B. FIG. 7 is a circuit diagram of a pad output buffer circuit. In a case where the offset monitor voltage V2+Vos is measured from the output terminal Vout in the differential amplifier circuit shown in FIG. 6 and the first monitor voltage V1 is measured, if the input impedance of the measuring device is low, there is an excessive input current to the measuring device and the measurement voltage drops. In order to avoid this, it is desirable to measure the output terminal Vout and the first monitor voltage V1 by using the pad output buffer circuit shown in FIG. 7. In FIG. 7, a differential amplifier circuit is constituted by means of transistors m21 to m26 such that the drain terminal of the transistor m24 is connected to the output P-channel transistor m26 and the drain of the output transistor m26 is fed back negatively to the gate of the transistor m23. By rendering an operational amplifier constitution in which a negative feedback circuit is provided in the differential amplifier circuit in this way, the voltage applied to the gate of the transistor m24 can be outputted from the output pad Pad. Moreover, because the output transistor m26 is large, same has an adequate current driving capability and therefore the voltage can be measured highly precisely even in the case of a measuring device with a low input impedance. Therefore, when the control signal sw1z is set high, the transfer gate TR21 conducts and the output terminal Vout in FIG. 6 is connected to the gate of the transistor m24 and the voltage V2+Vos of the output terminal Vout is outputted to the output pad Pad. Further, when the control signal sw1z is set low, the transfer gate TR22 conducts such that the first monitor voltage V1 is connected to the gate of the transistor m24 and the first monitor voltage V1 is outputted to the output pad Pad. Although an offset voltage also exists in the pad output buffer circuit in FIG. 7, the offset voltage is applied to both of the two measured voltages and there is therefore no effect on the calibration. FIG. 8 is a flowchart of the calibration procedure of the temperature sensor of this embodiment. In the calibration, the temperature is first Tm1 (S10), Vc1=V2+Vos is measured from the output terminal Vout in the state of connection 1 (S12) and the first monitor voltage V1 with respect to R3 at a plurality of trimming points is measured (S14). Next, the temperature is Tm2 (S16), Vc1=V2+Vos is measured from the output terminal Vout in the state of connection 1 (S18) and the first monitor voltage V1 with respect to R3 at a plurality of trimming points is measured (S20). Further, the detection temperature Tx# with respect to R3 at the plurality of trimming points are found through calculation (S22) and the trimming point of resistor R3 that corresponds with the detection temperature Tx# that is closest to the desired detection temperature Td is detected (S24). The detection temperature Tx# is found by adding the effect of the offset voltage Vos of the differential amplifier circuit op3 and therefore corresponds to the actual detection temperature. The trimming point of the resistor R3 is set for the optimum resistor R3 detected as detailed above (S26). The differential amplifier circuit is then restored to a normal connection (S28). FIG. 9 shows a connection example of the differential amplifier circuit that permits monitor voltage measurement including an offset voltage according to this embodiment. In the example of FIG. 9, the switchable connection states of connection 2 of FIG. 9C and connection 3 of FIG. 9D are included in addition to the normal connection example of FIG. 5A and connection 1 of FIG. 5B. As described above, in connection 1 of FIG. 9B, Vc1=V2+Vos is detected from the output terminal Vout. Further, in connection 2 of FIG. 9C, the second monitor voltage V2 is supplied to the inverting input terminal of the differential amplifier circuit op3, the input of the first monitor voltage V1 is prohibited, and the drain Vout of the P-channel transistor m10 is fed back to the noninverting input terminal of the differential amplifier circuit op3. When this connection state is established, in a balanced state, V2=Vc2+Vos and Vc2=V2−Vos is outputted to the output terminal Vout. In addition, in the case of connection 3 of FIG. 9D, the input of the second monitor voltage V2 is prohibited, the first monitor voltage V1 is supplied to the inverting input terminal of the differential amplifier circuit op3, and the feedback FD is connected to the noninverting input terminal side of the differential amplifier circuit op3. When this connection state is established, in the balanced state, Vc3=V1+Vos and V1+Vos is outputted to the output terminal Vout. The voltages Vc1, Vc2, and Vc3 measured from the output terminal Vout by means of connections 1, 2 and 3 are as follows: Vc1=V2+Vos (1) Vc2=V2−Vos (2) Vc3=V1+Vos (3) Therefore, if the offset voltage Vos is found from equations (1) and (2) and the offset voltage Vos is subtracted based on equation (3), the first monitor voltage V1 can be found. Therefore, if the voltages of (1), (2) and (3) above are each measured by means of connections 1, 2 and 3 at temperatures Tm1 and Tm2 respectively, the first monitor voltage V1 and the offset voltage second monitor voltage V2+Vos can be obtained, whereby the trimming point of resistor R3 for which the detection temperature is at the desired temperature Td coupled with the effect of the offset voltage can be detected. Further, a connection 4 (not shown) in which the first monitor voltage V1 and second monitor voltage V2 of connection 2 of FIG. 9C are reversed is possible instead of the connection 3 above. In this case, Vc4=V1−Vos is outputted to the output terminal Vout. Therefore, if Vc4=V1−Vos is measured by means of connection 4 and the above offset voltage Vos is added, the first monitor voltage V1 can be found. FIG. 10 is a circuit diagram of a differential amplifier circuit that permits switching to the four connection states in FIG. 9. In FIG. 10, the differential amplifier circuit comprises, in addition to the differential amplifier circuit op3 comprising the transistors m11 to m15, the transistors m10, m16, and m17, the resistor R11, and the feedback wiring FD, similarly to FIG. 6, and switching units SW1 to SW6 for switching the connections between the foregoing circuit elements are provided. These switching units change the connections between the three terminals a, b, and c in accordance with two control signals f and s. Further, the control signals f and s for the switching units and the gate signals pg2 and pg1 for the transistors m16 and m17 respectively are generated as control signal S100 by means of the control logic circuit 10. The control logic circuit 10 generates the control signals f and s for switching unit groups and the control signals pg1 and pg2 for the transistors in accordance with the input signals con1z, con2z, and con3z. FIG. 11 shows a switching-unit circuit diagram and a truth table. The switching unit circuit comprises inverters INV10, 11, NAND gates NAND2 and NAND4, inverters INV 12 and 14, and CMOS transfer gates TRa and TRb. Further, as indicated by the truth table, control is implemented to produce three states corresponding to cases where the output terminal c enters a high impedance state HiZ, the output terminal c is connected to the input terminal a, and the output terminal c is connected to the input terminal b in accordance with the input control signals f and s. FIG. 12 is a truth table that shows the operation of the control logic circuit 10 in FIG. 10. FIG. 12A is a truth table that shows what the control signals f and s for the switching units SW1 to SW6 and the control signals pg1 and pg2 for the transistor are in accordance with the input control signals con1z, con2z and con3z, while FIG. 12B is a table that shows the state of each switching unit and the state of the transistors m16, m17 in accordance with the control signals f, s, pg1 and pg2. As shown in FIG. 12A, when the input control signals con1z, con2z, and con3z are ‘0,0,0’, switching is to the normal state (FIG. 9A); when the input control signals con1z, con2z, and con3z are ‘1,0,0’, switching is to the state of connection 1 (FIG. 9B); when the input control signals con1z, con2z, and con3z are ‘0,1,0’, switching is to the state of connection 2 (FIG. 9C; and when the input control signals con1z, con2z, and con3z are ‘0,0,1’, switching is to the state of connection 3 (FIG. 9D). FIG. 13 is a flowchart of the calibration procedure of the temperature sensor of this embodiment. The flowchart is an example where voltage measurement for calibration is performed by using the states of connections 1, 2 and 3 in FIG. 9. Therefore, on account of the similarity with the flowchart of FIG. 8, the same reference numerals have been assigned to the same procedures. In calibration that utilizes the states of connections 1, 2, and 3, the temperature is first Tm1 (S10) and Vc1=V2+Vos is measured from the output terminal Vout in the state of connection 1 (S12), Vc2=V2−Vos is measured from the output terminal Vout in the state of connection 2 (S30), and Vc3=V1+Vos is measured from the output terminal Vout with respect to a plurality of resistors R3 in the state of connection 3 (S32). Next, the temperature is Tm2 (S16) and Vc1=V2+Vos is measured from the output terminal Vout in the state of connection 1 (S18), Vc2=V2−Vos is measured from the output terminal Vout in the state of connection 2 (S34), and Vc3=V1+Vos is measured from the output terminal Vout with respect to a plurality of resistors R3 in the state of connection 3 (S36). Thereafter, similarly to FIG. 8, the detection temperature Tx# with respect to a plurality of trimming points of the resistor R3 are found through calculation (S22), and the trimming point of the resistor R3 corresponding with the detection temperature Tx# that is closest to the desired detection temperature Td is detected (S24). The detection temperature Tx# is found in consideration of the effect of the offset voltage Vos of the differential amplifier circuit op3 and therefore corresponds to the actual detection temperature. The resistor R3 is set as the optimum resistor R3 detected as detailed above (S26). The differential amplifier circuit is then restored to the normal connection (S28). As a result of switching to the states of connections 1, 2 and 3, the first monitor voltage V1, and V2+Vos, which is rendered by adding the offset voltage to the second monitor voltage, can be detected by means of a circuit in which the drain of the P-channel transistor m10 is the output terminal Vout. Therefore, even when the input impedance of the measuring device is small, the two voltages above can be measured correctly. As a result, calibration can be performed on the temperature sensor circuit without using a pad output buffer. As described hereinabove, according to this embodiment, the differential amplifier circuit of the temperature sensor circuit can be switched to a state in which it is possible to output the first monitor voltage V1 and an offset monitor voltage V2+Vos that is rendered by adding the offset voltage Vos to the second monitor voltage V2 or to a state where a voltage from which V2+Vos can be calculated can be outputted. Accordingly, calibration of the detection temperature can be performed highly accurately. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a temperature sensor circuit, mounted on a semiconductor chip, that measures a predetermined temperature and to a calibration method thereof and, more particularly, to a temperature sensor circuit that facilitates high-precision calibration and a calibration method thereof. 2. Description of the Related Art Temperature sensor circuits constituted by a semiconductor circuit are widely used. For example, in the case of Dynamic Random Access Memory (DRAM), it is necessary to refresh the data of internal memory cells at regular intervals, but the refresh cycle must be changed in accordance with the temperature of the semiconductor chip. That is, when the temperature is low, changes to the data of the memory cell can be slow and the refresh cycle can be extended. However, when the temperature is high, changes to the data of the memory cell are rapid and the refresh cycle must be shortened. Therefore, the temperature sensor circuit is mounted in the DRAM and the refresh cycle is changed in accordance with the sensor output of the temperature sensor circuit. This temperature sensor circuit generates different temperature-dependent voltages and compares and detects these voltages by means of a differential amplifier circuit to yield an output. Further, as a circuit for generating a temperature-dependent voltage, a bandgap reference circuit may be used, as per Japanese Patent Application Laid Open No. 2002-149252 (published on May 24, 2002), for example. Furthermore, the differential amplifier circuit of the temperature sensor circuit generally yields an offset. A variety of methods for correcting this offset have been proposed, as per Japanese Patent Application Laid Open No. 2000-165241 (published on Jun. 16, 2000), for example. | <SOH> SUMMARY OF THE INVENTION <EOH>However, the temperature sensor circuit formed on the semiconductor chip is subject to scattering under due to the influence of process variations and, as a result, is faced by problem of variations in the detected temperature. In order to suppress such a variation in the detected temperature, calibration is performed so that the desired temperature is detected by fine-tuning or trimming the circuit elements of the temperature sensor circuit, such as the resistors, for example. Further, the calibration step must be executed by using a semiconductor integrated circuit tester. However, when high-precision calibration is to be performed, the calibration process is a burden and there is an increase in the costs of the semiconductor integrated circuit. Further, when calibration is to be performed at low cost, calibration for the correct detection temperature is difficult due to the offset of the differential amplifier circuit of the temperature sensor circuit. Accordingly, an object of the present invention is to provide a temperature sensor circuit and calibration method thereof that makes it possible to calibrate the detection temperature highly precisely with minimal process steps. In order to resolve this object, according to a first aspect of the present invention, the temperature sensor circuit comprises a first monitor voltage generation circuit that generates a first monitor voltage with a characteristic that changes with respect to temperature; a second monitor voltage generation circuit that generates a second monitor voltage with a characteristic that changes by a variation amount different from the first monitor voltage with respect to the temperature; and a differential amplifier circuit, to which the first and second monitor voltages are inputted and that outputs the result of comparing the two voltages. Further, the differential amplifier circuit of the temperature sensor circuit is capable of switching to a first connection state, which outputs the comparison result, and to a second connection state, which outputs an offset monitor voltage that is rendered by adding the offset voltage of the differential amplifier circuit to the first or second monitor voltage or subtracting the offset voltage therefrom. According to the first aspect, in a preferred embodiment, the second connection state is a state where an input of the monitor voltage to one input terminal of the differential amplifier circuit is prohibited and where a negative feedback circuit is provided at the one input terminal from the output of the differential amplifier circuit. Further, this negative feedback circuit comprises an output transistor to the gate of which the output of the differential amplifier circuit is connected; and feedback wiring that connects the drain of the output transistor to the one input terminal of the differential amplifier circuit, for example. In order to achieve the above object, according to a second aspect of the present invention, the method comprises, in the temperature sensor circuit, detecting a first-temperature state offset monitor voltage that is rendered by establishing the second connection state and adding the offset voltage to the first or second monitor voltage or subtracting the offset voltage therefrom in the first temperature state; detecting a second-temperature state offset monitor voltage that is rendered by adding the offset voltage to the first or second monitor voltage or subtracting the offset voltage therefrom in a second temperature state; and trimming the circuit elements of the first or second monitor voltage generation circuit to generate the first or second monitor voltage so that the detection temperature determined on the basis of the first- and second-temperature state offset monitor voltages becomes a desired detection temperature. According to the above aspects of the present invention, the detection temperature can be calibrated highly precisely by means of minimal calibration process steps. | 20050105 | 20080715 | 20051208 | 69919.0 | 0 | JAGAN, MIRELLYS | TEMPERATURE SENSOR CIRCUIT AND CALIBRATION METHOD THEREOF | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,028,668 | ACCEPTED | Information display method, information display device, and information delivery and display system | A template file defines a video material data, a first still picture material data, a second still picture material data and text data, and a display area for each of the material data. A presentation file defines the template file and a correlation between each of the display areas and each material data. Based on the template file and the presentation file, an information display device combines and displays as a program the video material data, the first still picture material data, the second still picture material data, and the text data in their respective display areas. | 1. A program display method, comprising: combining one or more material data in a single program; and displaying the material data in one or more display areas based on a template file and a presentation file, wherein the template file defines the material data and the display areas to display the material data, and the presentation file defines the template file and a correlation between the display areas and the material data. 2. The program display method according to claim 1, further comprising: making available one or more template files; and creating the presentation file for each template file, wherein a layout of a display screen is changed by selecting each of the presentation files. 3. The program display method according to claim 1, further comprising: making available a plurality of material data to be used in different programs; and creating a plurality of presentation files by correlating one or more display areas of each presentation file with different material data, wherein a different program is displayed by selecting each of the created presentation files. 4. An information display device, comprising: a data storing unit that stores one or more material data, one or more template files defining one or more display areas for displaying the material data, and one or more presentation files defining the template file and a correlation between the display areas and the material data; a schedule management processing unit that outputs, based on information related to a predetermined display schedule of each program, a playback instruction for playing the presentation file that corresponds to the program to be displayed; a playback processing unit that retrieves from the data storing unit the presentation file corresponding to the playback instruction output by the schedule management processing unit and the template file and the material data defined in the presentation file and that plays the material data in the display areas defined in the template file according to the correlation between the display areas and the material data defined in the retrieved presentation file; and a display unit that displays the material data being played by the playback processing unit in each display area. 5. An information delivery and display system, comprising: an information creating device that creates a program, the information creating device including: a first data storing unit that stores one or more material data and one or more template files defining one or more display areas for displaying the material data; a presentation creation processing unit that creates a presentation file based on a template file selected from amongst the plurality of template files and a correlation of the one or more display areas and the one or more material data of the selected template file; and a package delivery processing unit that retrieves from the data storing unit the template file and the material data defined in one or more presentation files created by the presentation creation processing unit; a data delivery server that stores the program created by the information creating device, and that receives from the package delivery processing unit a presentation package that includes the template file, the material data, and one or more presentation files; and a program display device that downloads and displays the stored program from the data delivery server, the program display device including: a second data storing unit that stores one or more presentation files and the presentation package received from the data delivery server; a schedule management processing unit that outputs, based on information related to a predetermined display schedule of each program, a playback instruction for playing the presentation file that corresponds to the program to be played; a playback processing unit that retrieves from the second data storing unit the presentation file that corresponds to the playback instruction output by the schedule management processing unit and the template file and the material data defined in the presentation file, and that plays the material data in the display areas defined in the template file according to the correlation between the display areas and the material data defined in the retrieved presentation file; and a display unit that displays the material data being played in each display area by the playback processing unit. | BACKGROUND OF THE INVENTION 1) Field of the Invention The present invention relates to an information display method, an information display device, and an information delivery and display system that provides information in the form of videos, still pictures, and text. 2) Description of the Related Art Information delivery and display systems are known in which an information creating device creates information, also referred to as programs, such as a guide to a building and its interiors, various floors of a departmental store and the products available on them, real estate, etc., and provides the created programs to viewers by delivering the programs to information display devices via a network such as the Internet, local area network (LAN), etc. In the conventional information delivery and display system, when the programs are created using the information creating device, a producer has to screen the information to be provided to the viewers program by program, which requires a lot of time and effort. Japanese Patent Laid-Open Publication No. 2003-316859 discloses an advertisement creating system that includes a sales drawing database, a map database, a sales drawing creating terminal, and a server. In this system, upon receiving a request from the sales drawing creating terminal, the server outputs picture data, floor plan data, layout data of a sales drawing or advertising catalog, and related information. The sales drawing creating terminal creates a sales drawing or an advertising catalog using the data received from the server. The sales drawings and advertising catalogs are then stored in the sales drawing database and made available to user terminals when accessed. In particular, the information (maps, picture data and floor plan data of the real estate, and related information) and the layout data necessary for creating the sales drawing or advertising catalog of the real estate are stored as databases. When the producer, who in this case is the program creator or creator of the sales drawing/advertising catalog, inputs from the sales drawing creating terminal (i.e., the information creating device) data pertaining to a registration number, name, value, traffic, location, premises, building, limitations, facilities, remarks, main copy, sub-copy, and transaction mode, the server stores the inputted information by correlating them with the registration number. The server retrieves from the map database the map that includes the location and displays the map on the sales drawing creating terminal. If the producer selects the map that is displayed, the selected map is stored by correlating it with the registration number. If the producer selects the layout data from the sales drawing creating device, input information based on the selected layout data is displayed. Using the sales drawing creating device, the producer retrieves the picture data and the floor plan data from the sales drawing database and creates the sales drawing or the advertisement catalog by pasting the picture data and the floor plan data in the spaces of the layout data. The server stores the sales drawing or the advertising catalog with the picture data and the floor plan data on it in the sales drawing database and makes available the sales drawing/advertising catalog stored in the sales drawing database from the user terminal (information display terminal). In the conventional technology described above, the information necessary for the program (i.e., the sales drawing/advertisement catalog) is stored in the form of a database, and the program is created by retrieving the required information from the database. Consequently, programs can be created easily and cost-effectively. However, while creating a plurality of programs, the process becomes complex, involving inputting program-specific information not present in the database, selecting the layout data, and pasting the information retrieved from the database. In other words, it is costly in terms of effort and time to use the conventional technology for creating a plurality of programs. Further, in the conventional technology, the program showcasing the finished product, such as the sales drawing or the advertisement catalog with the map, drawing data, and the floor plan data pasted on it, is delivered to the user terminal. As a result, the amount of data for the finished product becomes very large, which results in a delay in delivering the finished product. The amount of data becomes much larger when the program includes video data than when only still picture data is involved, resulting in an inordinate delay in delivering the finished product. SUMMARY OF THE INVENTION It is an object of the present invention to at least solve the problems in the conventional technology. A program display method according to an aspect of the present invention includes combining one or more material data in a single program; and displaying the material data in one or more display areas based on a template file and a presentation file. The template file defines the material data and the display areas to display the material data, and the presentation file defines the template file and a correlation between the display areas and the material data. An information display device according to another aspect of the present invention includes a data storing unit that stores one or more material data, one or more template files defining one or more display areas for displaying the material data, and one or more presentation files defining the template file and a correlation between the display areas and the material data; a schedule management processing unit that outputs, based on information related to a predetermined display schedule of each program, a playback instruction for playing the presentation file that corresponds to the program to be displayed; a playback processing unit that retrieves from the data storing unit the presentation file corresponding to the playback instruction output by the schedule management processing unit and the template file and the material data defined in the presentation file and that plays the material data in the display areas defined in the template file according to the correlation between the display areas and the material data defined in the retrieved presentation file; and a display unit that displays the material data being played by the playback processing unit in each display area. An information delivery and display system according to still another aspect of the present invention includes an information creating device that creates a program, the information creating device includes a first data storing unit that stores one or more material data and one or more template files defining one or more display areas for displaying the material data; a presentation creation processing unit that creates a presentation file based on a template file selected from amongst the plurality of template files and a correlation of the one or more display areas and the one or more material data of the selected template file; and a package delivery processing unit that retrieves from the data storing unit the template file and the material data defined in one or more presentation files created by the presentation creation processing unit; a data delivery server that stores the program created by the information creating device, and that receives from the package delivery processing unit a presentation package that includes the template file, the material data, and one or more presentation files; and a program display device that downloads and displays the stored program from the data delivery server, the program display device including a second data storing unit that stores one or more presentation files and the presentation package received from the data delivery server; a schedule management processing unit that outputs, based on information related to a predetermined display schedule of each program, a playback instruction for playing the presentation file that corresponds to the program to be played; a playback processing unit that retrieves from the second data storing unit the presentation file that corresponds to the playback instruction output by the schedule management processing unit and the template file and the material data defined in the presentation file, and that plays the material data in the display areas defined in the template file according to the correlation between the display areas and the material data defined in the retrieved presentation file; and a display unit that displays the material data being played in each display area by the playback processing unit. The other objects, features, and advantages of the present invention are specifically set forth in or will become apparent from the following detailed description of the invention when read in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is schematic diagram for explaining how a program is created by combining a template file and material data; FIG. 2 is a schematic diagram for explaining how two different programs can be created by using a single template file and material data; FIG. 3 is a schematic diagram for explaining how a program with two different layouts can be created by using different template files and the same material data; FIG. 4 is a drawing of a structure of a presentation package, which is the largest unit of files handled by an information delivery and display system according to an embodiment of the present invention; FIG. 5 is a drawing for explaining a template file shown in FIG. 4; FIG. 6 is a system configuration of the information delivery and display system according to an embodiment of the present invention; FIG. 7 is a block diagram of an information creating device shown in FIG. 6; FIG. 8 is a block diagram of an information display device shown in FIG. 6; FIG. 9 is a flowchart of a process by which the information creating device creates a program; and FIG. 10 is a flowchart of a process by which the information display device displays the program. DETAILED DESCRIPTION Exemplary embodiments of an information display method, an information display device, and an information delivery and display system are explained below with reference to the accompanying drawings. An overview of the information display method according to the present invention and its characteristics are explained with reference to FIG. 1 through FIG. 3. Information providing programs (hereinafter, “program”), such as learning materials used in e-learning, real estate guides, building interior guides, etc., generally include a combination of videos, still pictures, and text. The present invention relates to programs that are composed of one or more data of different attributes and to a method by which one or more display areas (windows) are provided in a display screen, each display area displaying information such as video data, still picture data, and/or text data. In particular, as shown in FIG. 1, the display screen, which includes a video display area 262, a first still picture display area 263, a second still picture display area 264, and a text scroll area 265 is defined in a template file 261. The template file defines display position information of display positions of the video display area 262, the first still picture display area 263, the second still picture display 264, the text scroll area 265 of each material data (video material data 251, still picture material data 252, and text data 253), the size of the display areas, the player used for playing the material data displayed in the different display areas (the player associated With the display area), and other relevant information. A presentation file defines a template file name, a correlation between the video material data 251 and the video display area 262, a correlation between the still picture material data and the first and second still picture display areas 263, 264, and a correlation between the text data 253 and the text scroll area 265. During playback, the template file 261, the video material data 251, the still picture material data 252, and the text data 253 are retrieved based on the presentation file. In addition, a program 270 is created wherein each material data is played by the respective associated players in their respective display areas. In this case, the video material data 252 is played in the video display area 262, the still picture material data 251 is played in the first still picture display area 263 and 264, and the text data 253 is played in the text scroll area 265. In other words, the presentation file, the template file 261, the video material data 251, the still picture material data 252, and the text data 253 are stored, and the template file 261, the video material data 251, the still picture material data 252, and the text data 253 that are managed by the presentation file that corresponds to a single program are combined. Thus, in the information display method according to the present invention, a plurality of material data is displayed in one or more display areas defined in a template file. The material data and the template file are managed by a presentation file. Consequently, by merely changing the presentation file, a plurality of programs can easily be created. Further, managing one program through the presentation file, in which a plurality of material data and the template file are defined, obviates the need for processing anew the material data to create programs, which saves time. Further, since a single program displayed by combining a plurality of material data is managed by a single presentation file, in which a plurality of material data and a template file are defined, the program can be changed by only replacing the files that need to be replaced. Consequently, the time required for transferring data can be reduced. Since a plurality of display areas and the player for playing the material data in each display area are defined in the template file, material data that have different attributes, such as video, still picture, text, etc., can be combined and displayed in a single program. Programs advertising a suit and a musical instrument are shown as examples. As shown in FIG. 2, a suit still picture material data 311, a long coat still picture material data 312, a fashion show video material data 313, and an apparel manufacturer's brand slogan material data 314 are provided as the material data used to create a suit advertisement program. Further, a guitar still picture material data 315, a bass guitar still picture material data 316, a concert video material data 317, and a record company's brand slogan material data 318 are provided as the material data used to create a suit advertisement program. Further, a template file 320 is provided that includes a video display area 321, a first still picture display area 322, a second still picture display area 323, and a text scroll area 324. A first presentation file 330 defines the template file 320, a correlation between the video display area 321 and the fashion show video material data 313, a correlation between the first still picture display area 322 and the suit still picture material data 311, a correlation between the second still picture display area 323 and the long coat still picture material data 312, and a correlation between the text scroll area 324 and the apparel manufacturer's brand slogan material data 314. A second presentation file 331 defines the template file 320, a correlation between the video display area 321 and the concert video material data 317, a correlation between the first still picture display area 322 and the guitar still picture material data 315, a correlation between the second still picture display area 323 and the bass guitar still picture material data 316, and a correlation between the text scroll area 324 and the record company's brand slogan material data 318. If the first presentation file 330 is used, a first program 340 is created in which the fashion video material data 313 is played in the video display area 321 of the template file 320, the suit still picture material data 311 is displayed in the first still picture display area 322, the long coat still picture material data 312 is displayed in the second still picture display area 323, and the apparel manufacturer's brand slogan 314 is displayed in the text scroll area 324 by the respective associated players. If the second presentation file 331 is used, a second program 341 is created in which the concert video material data 317 is played in the video display area 321 of the template file 320, the guitar still picture material data 315 is displayed the first still picture display area 322, the bass guitar still picture material data 316 is displayed in the second still picture display area 323, and the record company's brand slogan 318 is displayed in the text scroll area 324 by the respective associated players. Thus, in the information display method according to the present invention, the template file 320 can be shared by two programs and different programs can easily be created by merely changing the material data defined in the presentation file. Further, as shown in FIG. 3, as the material data used to create a movie advertisement program, there are provided a movie preview video material data 431, a male lead still picture material data 432, a supporting actress still picture material data 433, a supporting actor still picture material data 434, and a performance schedule text data 435. Further, a first template file 410 is provided that includes a video display area 411, a first still picture display area 412, a second still picture display area 413, a third still picture display area 414, and a text scroll area 415. A second template file 420 is also provided that similarly includes a video display area 421, a first still picture display area 422, a second still picture display area 423, a third still picture display area 424, and a text scroll area 425, but at positions and having different sizes than those in the first template file 410. A first presentation file 440 defines the template file 410, a correlation between the video display area 411 and the movie preview video material data 431, a correlation between the first still picture display area 412 and the male lead still picture material data 432, a correlation between the second still picture display area 413 and the supporting actress still picture material data 433, a correlation between the third still picture display area 414 and the supporting actor still picture material data 434, and a correlation between the text scroll area 415 and the performance schedule text data 435. A second presentation file 441 defines the template file 420, a correlation between the video display area 411 and the movie preview video material data 431, a correlation between the first still picture display area 412 and the male lead still picture material data 432, a correlation between the second still picture display area 413 and the supporting actress still picture material data 433, a correlation between the third still picture display area 414 and the supporting actor still picture material data 434, and a correlation between the text scroll area 324 and the performance schedule text data 435. If the first presentation file 440 is used, a first program 450 is created in which the movie preview video material data 431 is played in the video display area 411 of the template file 410, the male lead still picture material data 432 is displayed in the first still picture display area 412, the supporting actress still picture material data 433 is displayed in the second still picture display area 423, the supporting actor still picture material data 434 is displayed in the third still picture display area 424, and the performance schedule text data 435 is displayed in the text scroll area 415 by the respective associated players. If the second presentation file 420 is used, a second program 451 is created in which the movie preview video material data 431 is played in the video display area 411 of the template file 410, the male lead still picture material data 432 is displayed in the first still picture display area 412, the supporting actress still picture material data 433 is displayed in the second still picture display area 423, the supporting actor still picture material data 434 is displayed in the third still picture display area 424, and the performance schedule text data 435 is displayed in the text scroll area 415 by the respective associated players. The movie advertisement program may remain displayed when using the presentation file 440 and when switching to the presentation file 441 at the time of screening the program. Accordingly, the same information can be offered to the viewer in different layouts, and in the information display method according to the present invention, the layout can be changed with great ease merely by changing the template file defined in the presentation file. FIG. 4 is a drawing of a structure of a presentation package 2, which is the largest unit of files handled by the information delivery and display system according to an embodiment of the present invention. The presentation package 2 includes a package information file 21, a menu file 22, an auto-presentation script 23, a plurality of presentation files 24-1 through 24-n, a plurality of material data 25-1 through 25-m, and a plurality of template files 26-1 through 26-k. The package information file 21, the menu file 22, the auto-presentation script 23, the presentation files 24-1 through 24-n, and the template files 26-1 through 26-k are the control information files that normally contain information used to display programs having a plurality of material data (contents). The material data (contents) 25-1 through 25-m are the actual display data displayed by the operations of the control information files. The material data 25-1 through 25-m are contents data used in the template files 26-1 through 26-k. The material data 25-1 through 25-m include video image file formats such as Moving Picture Experts Group (MPEG), animation Graphic Interchange Format (animation GIF), etc., still picture file formats such as Joint Photographic Coding Experts Group (JPEG), Portable Network Graphics (PNG), Graphic Interchange Format (GIF), Tagged Image File Format (TIFF), etc., audio file formats such as Musical Instruments Digital Interface (MIDI), MPEG Audio Layer-3 (MP3), Windows (R) Media Audio (WMA), and audio-video file formats such as Flash, text files, etc. In the template files 26-1 through 26-k are defined display position information, which indicates the display position of one or more display areas (windows) for displaying each material data, the sizes of the display areas, the player used for playing the material data in the display area, such as information pertaining to the association between each display area and the player for the display area), and other related information. For example, as shown in FIG. 5, let us assume an example in which a display screen 241 displays a program that includes the following four display areas: a video display area 242 that displays MPEG files; a first still picture display area 243 that displays JPEG files; a second still picture display area 244 that displays PNG files; and a text scroll area 245 that displays text files. The information pertaining to the video display area 242 defined in the template files includes the display position information, i.e., the display area name indicating the video display area 242, the size of the video display area 242, and the information pertaining to the association between the display area name indicating the video display area 242 and its player, which is a video player in this case. The information pertaining to the first still picture display area 243 defined in the template files includes the display position information, i.e., the display area name indicating the first still picture display area 243, the size of the first still picture display area 243, and the information pertaining to the association between the display area name indicating the first still picture display area 243 and a player, which is an image viewer in this case. The information pertaining to the second still picture display area 244 defined in the template files includes the display position information, i.e., the display area name indicating the second still picture display area 244, the size of the second still picture display area 244, and the information pertaining to the association between the display area name indicating the second still picture display area 244 and a player, which is also an image viewer in this case. The information pertaining to the text scroll area 245 defined in the template files includes the display position information, i.e., the display area name indicating the text scroll area 245, the size of the text scroll area 245, and the information pertaining to the association between the text scroll area 245 and a player, which is a text scroll engine in this case. By modifying the information defined in the template files, such as the display position of the display area, the size of the display area, and the association between the display area and the player, the layout of the display screen 241 can be easily changed. In other words, a plurality of template files having different definitions can be prepared in advance and different display layouts can be obtained depending on the template that is used. In addition, different programs can be created using the same template file merely by changing the material data to be displayed in each display area. In each of the presentation files 24-1 through 24-n is defined a file name of one of the template files 26-1 through 26-k and the information pertaining to the correlation between one or more display areas (display area names) of the template file and one or more material data 25-1 through 25-m (file names). For example, in FIG. 5, assuming that the material data 25-1 is displayed in the video display area 242, the material data 25-2 is displayed in the first still picture display area 243, the material data 25-3 is displayed in the second still picture display area 244, and the material data 25-4 is displayed in the text scroll area, the information pertaining to these four correlations is defined in one presentation file 24-1. Thus, one presentation file corresponds to one program, and all the presentation files 24-1 through 24-n are used in the file management of the material data 25-1 through 25-m and the template files 26-1 through 26-k. In the menu file 22 is defined information pertaining to a definition of a menu screen that includes program selection buttons by which an information viewer can select any program from the plurality of programs (i.e., the presentation files 24-1 through 24-n) and information pertaining to a correlation between each of the program selection buttons (i.e., the program selection button name) and the file name of the presentation file. In the auto-presentation script 23 is defined the display schedule of each program, which includes information pertaining to a program start time and a program end time of each program. In other words, each presentation file name is associated with a single program start time and a single program end time. The file names of the menu file 22 and the auto-presentation script 23 are defined in the package information file 21. The package information file 21 is used in the management of the menu file 22 and the auto-presentation script 23. The presentation files 24-1 through 24-n are managed by the menu file 22 and the auto-presentation script 23. FIG. 6 is a system configuration of the information delivery and display system according to an embodiment of the present invention. The information delivery and display system includes a material data creating device 9, a template creating device 8, an information creating device 7, a data delivery server 3, a monitoring device 5, an information display device 1, and a network 6, such as the Internet, that connects all the devices to enable communication between the elements of the information delivery and display system. The material data creating device 9 can be a personal computer or similar device on which a creator creates the material data 25-1 through 25-m and that includes the functions for creating video files, still picture files, text files, and audio-video files. The template creating device 8 can be a personal computer or similar device on which the creator creates the template files 26-1 through 26-k and that includes the functions for creating templates. The information creating device 7 can be a personal computer or similar device on which a producer creates programs. The information creating device 7 creates programs by creating all the files in the presentation package 2 shown in FIG. 4 using the various material data created using the material data creating device 9 and the template files created using the template creating device 8. The information creating device 7 sends the created presentation package to the data delivery server 3 via the network 6. The information created device 7 is provided with a presentation creation function, a schedule/menu creation function, a package creation function, and a data upload function. The presentation creation function enables the producer to create a plurality of presentation files 24-1 through 24-n, which correspond to a plurality of programs, using the material data 25-1 through 25-m created by the material data creating device 9 and template files 26-1 through 26-k created by the template creating device 8. In particular, the producer defines, for each presentation file, a file name for one template file and the correlation between the one or more display areas (display area names) and the one or more material data 25-1 through 25-m (file names) in the template file. Further, the presentation creation function displays the program by playing the material data using the template file defined in the presentation file, which enables the producer to verify the presentation file. The schedule/menu creation function determines, based on the information pertaining to the order of priority specified by the producer for displaying the presentation files, the display schedule for the programs defined in each presentation file created using the presentation creation function and creates the auto-presentation script 23 and the menu file 22. Whenever the menu file 22, the auto-presentation script 23, or the presentation files 24-1 through 24-n are created or modified, the package creation function creates the package information file 21 or changes the files in the package information file 21 by selecting the applicable menu file 22, auto-presentation script 23, or presentation files 24-1 through 24-n. The data upload function sends the presentation package 2 created by the package creation function to the data delivery server 3 via the network 6. The data upload function involves creating a plurality of packages containing one or more files from the plural files in the presentation package 2 in each package, encrypting each package, tagging package identification information to the encrypted packages, and sending the encrypted and tagged packages to the data delivery server 3. The package identification information includes information such as the presentation package name to which the package belongs, and includes information pertaining to the contents of the files in the package, such as whether the files are new material data 25-1 through 25-6, modified data of material data 25-1 through 25-8, new presentation files 24-1 through 24-10, or a menu file 22. A package represents a group of files that share the same encryption key. When creating a package, the data upload function determines whether the target presentation package 2 is new or an updated version. If assessed to be an updated version, the data upload function creates and sends packages containing only the updated files. The packages are created to reduce the amount of data transferred during a single data communication. If the data amount is not particularly large, the presentation package 2 itself may be encrypted and sent. The data delivery server 3 carries out monitoring and control of the information display device 1 based on a monitor instruction and a control instruction from the monitoring device 5. The data delivery server 3 is provided with a presentation package management function, a terminal management function, and a log compilation function. The presentation package management function stores the package received from the information creating device 7 and determines from the package identification information whether the received package is one of the packages of a new presentation package 2 or a package of an existing presentation package 2 containing only the updated files. If assessed to be a package containing only the updated files, the presentation package management function decrypts the stored package and the package received from the information creating device 7, updates only the to-be-updated part, which corresponds to the files in the package received from the information creating device 7, of the old presentation package 2, repacks, encrypts, and stores the updated package. If assessed to be a package of a new presentation package 2, the presentation package management function waits until all the packages are received, converts them into a new presentation package 2, and stores the new presentation package 2. The terminal management function is explained next. When the information display device 1 accesses the system for polling, based on the monitor instruction from the monitoring device 5, the terminal management function sends to the information display device 1 information pertaining to the status of the information display device 1 such as the temperature or other relevant status (hereinafter, “monitor information”) of the display unit of the information display device 1. When the information display device 1 accesses the system for polling, based on the control instruction from the monitoring device 5, the terminal management function sends to the information display device 1 a download request to download the presentation package or the package, an instruction to switch to another of the plurality of presentation packs stored in the information display device 1, or an instruction to change the settings of a polling interval to confirm the instruction to switch to another presentation package. The log compilation function compiles and stores the monitor information received from the information display device 1. Every type of data stored by the log compilation function is available for inspection by the monitoring device 5. The information display device 1 is a device that displays the programs created by the information creating device 7 and stores one or more presentation packs 2 obtained by decrypting packages or presentation packs 2 downloaded from the data delivery server 3. The information display device 1 is provided with a schedule management function and a playback display function. The schedule management function manages the display schedule of the programs based on the auto-presentation script 23 of the presentation package 2. The schedule management function outputs to the playback display function a playback instruction that starts the playback and a stop instruction that stops the playback of the program. The schedule management function outputs the playback instruction either when it is the program start time defined in the auto-presentation script 23 or when the information viewer selects a program by clicking on a program selection button on a menu screen. The playback instruction includes the file name of the presentation files corresponding to the program to be played. The schedule management function outputs the stop instruction when the program is playing either when the finish time of the display specified in the auto-presentation script 23 has arrived or when the information viewer selects from the menu screen another program. The schedule management function also enables switching between the plurality of presentation packs 2 stored in the information display device 1 based on the control instruction received from the monitoring device 5 via the data delivery server 3. The playback display function displays the program based on the presentation files included in the playback instruction. The playback display function displays the program by playing one or more material data correlated to one or more display areas of the template file defined in the presentation file by their respective associated players. For example, as shown in FIG. 1, a program 270 is created from a template file 261, in which are defined a video display area 262, still picture display areas 263 and 264, and a text scroll area 265, a video material data 251 correlated to the video display area 262, a still picture material data 252 correlated to the still picture display areas 263 and 264, and a text data 253 correlated to the text scroll area 265 is to be displayed. The program 270 has a video display area 262 in which the video material data 251 is played by the correlated video player, the still picture display areas 263 and 264 in which the still pictures 253 are played by the correlated image viewer, and the text scroll area 265 in which the text data 253 is played by the text scroll engine. If no template file is defined in the presentation file, the playback display function displays the program using a stored default template file. The monitoring device 5 can be a personal computer that allows the system administrator to monitor and control the information display device 1 and that performs a monitoring function and a control function. The monitoring function sends to the data delivery server 3 the monitor instruction to get monitor information from the information display device. The control function sends to the data delivery server 3 the control instructions to control the information display device 1 such as a download request of the presentation package 2 or a package, an instruction to switch to another presentation package 2, an instruction to change the settings of the polling interval, or other relevant instruction. The information delivery and display system shown in FIG. 6 shows one device each of the template creating device 8, the material data creating device 9, and the information display device 1. However, there may be a plurality of template creating devices 8, material data creating devices 9, and information display devices 1. A brief overview of the functioning of the information delivery and display system according to the first embodiment of the present invention is explained next. The operations involved in displaying the program on the information display device 1 are explained first. The template creating device 8 sends the template files 26-1 through 26-k created by the creator to the information creating device 7. Similarly, the material data creating device 9 sends the material data 25-1 through 25-m created by the creator to the information creating device 7. The information creating device 7 creates the files in the presentation package 2 shown in FIG. 4 using each type of the material data 25-1 through 25-m created by the material data creating device 9 and the template files 26-1 through 26-k created by the template creating device 8. The information creating device 7 sends the presentation package 2 created using the package creation function to the data delivery server 3 via the network 6. The data delivery server 3 decrypts the received presentation package 2 or the package, encrypts it again, and stores it. The data delivery server 3 allows, the downloading of the stored presentation package 2 or package to the information display device 1 based on the control instruction from the monitoring device 5. The information display device 1 decrypts the presentation package 2 or package downloaded from the data delivery server 3. Based on the auto-presentation script 23 or the menu file 22 in the presentation package 2, the information display device 1 plays the program by playing the material data using the template files defined in the presentation file of the program. The operations involved in the monitoring of the information display device 1 from the monitoring device 5 are explained next. The information display device 1 accesses the data delivery server 3 for polling at predetermined time intervals. If there is a monitor instruction from the monitoring device 5 when the information display device 1 accesses the data delivery server 3, the data delivery server 3 sends a monitor information send request to the information display device 1. The information display device 1 sends the requested monitor information to the data delivery server 3. The data delivery server 3 receives and stores the monitor information and resets (clears) the monitor instruction from the monitoring device 5. In this way, the monitoring device 5 accesses the data delivery server 3 at predetermined time intervals and scans the monitor information stored in the data delivery server 3 to monitor the status of the information display device 1. The operations involved in controlling the information display device 1 from the monitoring device 5 are explained next. The information display device 1 accesses the data delivery server 3 for polling at predetermined time intervals. If there is a control instruction from the monitoring device 5 when the information display device 1 accesses the data delivery server 3, the data delivery server 3 sends the control instruction to the information display device 1. The information display device 1 carries out the control based on the control request received from the data delivery server 3. If the control instruction pertains to an instruction to download the presentation package 2 or the package, the information display device 1 requests the data delivery server 3 for the presentation package 2 or package specified by the control instruction and downloads it. If the control instruction pertains to an instruction to switch to another presentation package 2, the information display device 1 uses the schedule management function to switch from the current presentation package 2 to the presentation package 2 specified by the control instruction. If the control instruction pertains to an instruction to set the polling interval, the information display device 1 sets the polling interval, which becomes valid from the next time the information display device 1 accesses the data delivery server 3 for polling. Communication is carried out through metafiles when the GET method of HTTP is used in the communication protocol during polling of the data delivery server 3 by the information display device 1. In other words, the information display device 1 accesses the data delivery server 3 at a predetermined polling interval using the GET method of the HTTP protocol. When the information display device 1 accesses the data delivery server 3, a terminal ID, which is a unique ID for every information display device 1, is tagged. When the information display device 1 accesses the data delivery server 3, the data delivery server 3 sends a terminal control metafile to the information display device 1. The terminal control metafile includes files such as instruction files that control activities such as switching between presentation packs 2. If the terminal control metafile sent by the data delivery server 3 includes a monitor instruction, the information display device 1 sends the monitor item to the data delivery server 3 in the form of a terminal information metafile. If the terminal control metafile sent by the data delivery server 3 includes an instruction to receive a terminal remote control metafile, the information display device 1 accesses the data delivery server 3 by the GET method of HTTP to receive the terminal remote control metafile. Thus, the data delivery server 3 controls the information display device 1 through metafiles. The polling interval can also be changed through the terminal remote control metafile from the data delivery server 3. FIG. 7 is a block diagram of the information creating device 7 shown in FIG. 6. The information creating device 7 includes an interface unit 71, an input unit 72, a display unit 73, a package delivery processing unit 74, a file creation processing unit 75, and a data storing unit 76. The package delivery processing unit 74 includes a data upload processing unit 741 and a package creation processing unit 742. The file creation processing unit 75 includes a schedule/menu creation processing unit 751 and a presentation creation processing unit 752. The interface unit 71 enables mutual communication among the material data creating device 9, the template creating device 8, and the data delivery server 3 via the network 6. The input unit 72 includes a common input device such as a keyboard and a mouse and is used by the producer to create various types of files (see FIG. 2) included in the presentation package 2. The display unit 73 can be a cathode ray tube (CRT) display, liquid crystal display (LCD), or other display device that displays the program defined by the various types of files of the presentation package 2, such as the package information file 21, the menu file 22, the auto-presentation script (schedule) file 23, the presentation files 24-1 through 24-n, the material data 25-1 through 25m, or the template files 26-1 through 26-k. The data storing unit 76 stores the various types of files in the presentation package 2 including the various types of material data 25-1 through 25-m created by the material data creating device 9, the template files 26-1 through 26-k created by the template creating device 8, the presentation files 24-1 through 24-n created by the information creating device 7, the package information file 21, the menu file 22, and the auto-presentation script 23. The data storing unit 76 also stores a sent history of the presentation package 2 sent by the data upload processing unit 741. The sent history of the presentation package 2 includes the name of the presentation package 2, the file names and the creation date of the various types of files included in the presentation package, such as the material data 25-1 through 25-m, the template files 26-1 through 26-k, the presentation files 24-1 through 24-n, the package information file 21, the menu file 22, and the auto-presentation script 23. The presentation creation processing unit 752 implements the presentation creation function, and creates a plurality of presentation files 24-1 through 24-n that correspond to a plurality of programs by using the material data 25-1 through 25-m created by the material data creating device 9 and the template files 26-1 through 26-k created by the template creating device 8. The schedule/menu creation processing unit 751 implements the schedule/menu creation function and determines, based on degree of priority information, the display schedule of the presentation files created by the presentation creation processing unit 752. The degree of priority information indicates the order of priority for displaying the presentation files and is specified by the producer. The package creation processing unit 742 implements the package creation function. When the menu file 22, the auto-presentation script 23, or any of the presentation files 24-1 through 24-n is created or modified, the package creation processing unit 742 selects the relevant menu file 22, auto-presentation script 23, or the presentation files 24-1 through 24-n and creates the package information file 21 or changes the files included in the package information file 21. The data upload processing unit 741 implements the data upload function and delivers the presentation package 2 created by the package creation processing unit 742 to the data delivery server 3 via the network 6. FIG. 8 is a block diagram of the information display device 1 shown in FIG. 6. The information display device 1 includes an interface unit 11, a display unit 12, a data storing unit 13, and display processing unit 14. The interface unit 11 provides mutual communication between the information display device 1 and the data delivery server 3 via the network 6. The data storing unit 13 stores one or more presentation packs 2 created by the information creating device 7 based on the control instruction received from the monitor device 5 via the data delivery server 3. The display processing unit 14 includes a schedule management processing unit 141 and a playback processing unit 142. The schedule management processing unit 141 implements the schedule management function and manages the display schedule of the programs based on the auto-presentation script 23 included in the presentation package 2. When the information viewer selects any of the plurality of program selection buttons displayed by the menu file 22 on the display unit 12 or a menu screen display unit (not shown), the schedule management processing unit 141 modifies the schedule such that the presentation file corresponding to the selected program selection button is played. The playback processing unit 142 plays one or more material data corresponding to one or more display areas included in the template file defined in the presentation file with their respective associated players and displays the program on the display unit 12. Reference is made to the flowcharts shown in FIG. 9 and FIG. 10 to explain a process by which the information creating device 7 creates a program and a process by which the information display device 1 displays the program created by the information creating device 7. FIG. 9 is a flowchart of the process by which the information creating device 7 creates a program. It is assumed here that the data storing unit 76 already stores the material data 25-1 through 25-m created by the material data creating device 9 and the template files 26-1 through 26-k created by the template creating device 8. The producer selects from the material data 25-1 through 25-m and the template files 26-1 through 26-k (the template file and the material data corresponding to the number of display areas in the template file required for the program) and, using the input unit 72, enters the name of the selected template file and the correlation between one or more display area names of the selected template file and the file names of the material data (step S100 and S110). For example, to create the program 270 shown in FIG. 1, the producer enters the file name of the template file 261, the correlation between the video display area 262 and the video material data 251, the correlation between the first and the second still picture display areas 263 and 264 and the still picture material data 252, and the correlation between the text scroll area 265 and the text data 253. The presentation creation processing unit 752 creates a presentation file of a predetermined format based on the file name of the template file and the correlation between one or more display areas of the template file and the file names of the material data inputted by the producer using the input unit 72 (Step S120). The producer may enable the presentation file to be immediately edited. The presentation creation processing unit 752 repeats the process of creating a presentation file (Steps S100 through S130) every time there is an input of the file name of the template file and the correlation between one or more display areas of the template file and the file names of the material data to create one or more presentation files 24-1 through 24-n. Once the presentation files 24-1 through 24-n used to create a program are ready, the producer enters the degree of priority information that indicates the order of priority for displaying the presentation files 24-1 through 24-n (Step S140). The schedule/menu creation processing unit 751 determines the display schedule of the presentation files created by the presentation creation processing unit 752 based on the degree of priority information input by the producer, and creates an auto-presentation script 23 such that each presentation file name is associated with a single program start time and program end time. The schedule/menu creation processing unit 751 also creates the menu file 22 in which is defined information used to define the menu screen that includes program selection buttons for the information viewer to select one of the plurality of programs, which correspond to the plurality of presentation files 24-1 through 24-n, and the correlation information between the program selection buttons (program selection button names) and the files names of the presentation files (Step S150). When the menu file 22, the auto-presentation script 23, or any of the presentation files 24-1 through 24-n is created or modified, the package creation processing unit 742 selects the relevant menu file 22, auto-presentation script 23, or presentation files 24-1 through 24-n and either creates the package information file 21 or changes the files included in the package information file 21 to create a new presentation package 2. Upon receiving an instruction from the input unit 72 to upload the presentation package 2 to the data delivery server, the data upload processing unit 741 sends the presentation package 2 created by the package creation processing unit 742 to the data delivery server 3 (Step S160). In particular, the data upload processing unit 741 retrieves the sent history stored in the data storing unit 76 and searches the names of presentation packs 2 with the name of the presentation package 2 to be sent as the retrieval key. If the name of the presentation package 2 to be sent is not present among the names of the presentation package 2 in the sent history, the data upload processing unit 741 considers the presentation package 2 as a new presentation package 2 and creates a plurality of packages, with each package having one or more files included in the presentation package 2. The data upload processing unit 741 encrypts each of the plurality of packages, tags the package identification information to the encrypted packages, and sends them to the data delivery server 3. If the name of the presentation package to be sent is present among the names of the presentation package in the sent history, then the data upload processing unit 741 compares the file names and the creation dates in the presentation package 2 with the file names and the creation dates in the sent history and retrieves the files that don't match. The data upload processing unit 741 then creates one or more packages that include the non-matching modified files, encrypts each of the packages, tags the package identification information to the encrypted packages, and sends them to the data delivery server 3. After sending the packages, the data upload processing unit 741 updates the sent history by appending the name of the sent presentation package 2 or the file names of the updated files. The presentation package management function of the data delivery server 3 determines from the package identification information whether the package received from the information creating device 7 is one of the packages constituting a new presentation package 2 or a package of an existing presentation package 2 containing only the updated files. If assessed to be a package containing only the updated files, the presentation package management function decrypts the stored package and the package received from the information creating device 7, updates only the to-be-updated part of the old presentation package 2, which corresponds to the files in the package received from the information creating device 7, repacks, encrypts, and stores the updated package. If assessed to be a package of a new presentation package 2, the presentation package management function waits until all the packages are received, converts them into a new presentation package 2, and stores the new presentation package 2. FIG. 10 is a flowchart of the process by which the information display device 1 displays the program created by the information creating device 7. It is assumed here that the package or the presentation package 2 downloaded from the data delivery server 3 according to the control instruction from the monitoring device 5 is stored in the data storing device 13 in the form of an encrypted presentation package 2. The schedule management processing unit 141 is equipped with a clock function. When it is the program start time defined in the auto-presentation script stored in the data storing device 13, the schedule management processing unit 141 outputs the playback instruction that includes the name of the presentation file associated with the program start time to the playback processing unit 142 (Step S200 and Step S220). If the schedule management processing unit 141 detects a program selection button has been selected, then the schedule management processing unit 141 outputs the playback instruction that includes the name of the presentation file associated with the selected program selection button to the playback processing unit 142 (Step S200 and Step S210). The playback processing unit 142 retrieves the presentation file included in the playback instruction issued from the data storing unit 13 (Step S230). The playback processing unit 142 also retrieves the template file and the material data defined in the retrieved presentation file from the data storing unit 13 (Step S240). The playback processing unit 142 displays the program by playing one or more material data correlated to one or more display areas of the template file defined in the presentation file with their respective associated players (Step S250). In particular, in the template file are defined the display position information that indicates the display position of one or more display areas (windows) for displaying each material data, the sizes of the display areas, and the player used for playing the material data in the display area based on information pertaining to the association between each display area and the player for the display area. The presentation file defines the information pertaining to the correlation between one or more display areas (display area names) of the template file and one or more material data. The playback processing unit 142 determines the display area in the display unit 12 based on the display position information defined in the template file and the size of the display area and plays the material data correlated with the display area in the presentation file with the aid of the associated player defined in the template file, thus combining and displaying a plurality of material data as a single program on the display unit 12. To sum up, in the information delivery and display system according to the present embodiment, the material data creating device 9 creates the material data 25-1 through 25-m, the template creating device 8 creates the template files 26-1 through 26-k, and the information creating device 7 creates the presentation file using the material data 25-1 through 25-m and the template files 26-1 through 26-k with the template file and the material data to be used being correlated. The created presentation file is downloaded to the information display device 1 via the data delivery server 3. Using the template file and the plurality of material data correlated with the display areas in the template file defined in the presentation file, the information display device 1 creates a single program for playing each of the material data in the correlated display area by the respective associated player. In other words, the information creating device 7 delivers the presentation files, the template files, and one or more material data used to create the programs via the data delivery server 3. The information display device 1 combines and displays the material data based on the presentation files and the template files. Thus, to modify a program, only the presentation file, template file, or the material data is delivered to the information display device 1, thereby obviating the need for delivering all of the data of the program. Consequently, the amount of data to be delivered can be reduced substantially. According to the present embodiment, the playback processing unit 142 of the information display device 1 is able to combine the material data and play them as a single program merely by mapping the template file, in which are defined the display position information that indicates the display position of one or more display areas for displaying each material data, the sizes of the display areas, and the player used for playing the material data in the display area, and by mapping the presentation file, in which is defined the information pertaining to the correlation between one or more display areas of the template file and one or more material data. Consequently, no extra processes are used during program playback. According to the present embodiment, the template file defines the display position information that indicates the display position of one or more display areas for displaying each material data, the sizes of the display areas, and the player used for playing the material data in the display area, which corresponds to the information pertaining to the association between each display area and the player for the display area. However, the template file may also define the player for areas other than the display areas, such as the background, and the material data as the background for the presentation file. Thus, the appeal of a program can be further enhanced by displaying in the background an image that is contextually relevant, such as to suit a season, place where the program is viewed, the gender and age of the viewer, etc. According to the present embodiment, the information creating device 7 creates the presentation package 2. However, the material data creating device 9 and the template creating device 8 may respectively send the material data and the template files directly to the data delivery server 3. In this case, the information creating device 7 may only send the package information file 21, the menu file 22, the auto-presentation script 23, and the presentation files 24-1 through 24-n to the data delivery server 3, and the data delivery server 3 may create the presentation package 2 that includes the template files 26-1 through 26-k defined in the presentation files 24-1 through 24-n and the material data 25-1 through 25-m. The material data creating device 9 and the template creating device 8 may also respectively send the material data and the template files directly to the information display device 1. In this case, the information creating device 7 may only send the package information file 21, the menu file 22, the auto-presentation script 23, and the presentation files 24-1 through 24-n to the data delivery server 3, and the information display device 1 may download only these files. This process enables flexibility in selective modification of the material data and the template file even if the material data and the template files are created by a plurality of creators, which reduces the time for creating a program. In the present embodiment, a name of the template file is defined in the presentation file. However, it is possible to define only the association between each of the display areas of the template file and the material data in the presentation file. In this case, a default template file may be stored in the data storing unit 13 of the information display device, and the playback processing unit 142 may retrieve the default template file when no name of the template file is defined in the presentation file. Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth. | <SOH> BACKGROUND OF THE INVENTION <EOH>1) Field of the Invention The present invention relates to an information display method, an information display device, and an information delivery and display system that provides information in the form of videos, still pictures, and text. 2) Description of the Related Art Information delivery and display systems are known in which an information creating device creates information, also referred to as programs, such as a guide to a building and its interiors, various floors of a departmental store and the products available on them, real estate, etc., and provides the created programs to viewers by delivering the programs to information display devices via a network such as the Internet, local area network (LAN), etc. In the conventional information delivery and display system, when the programs are created using the information creating device, a producer has to screen the information to be provided to the viewers program by program, which requires a lot of time and effort. Japanese Patent Laid-Open Publication No. 2003-316859 discloses an advertisement creating system that includes a sales drawing database, a map database, a sales drawing creating terminal, and a server. In this system, upon receiving a request from the sales drawing creating terminal, the server outputs picture data, floor plan data, layout data of a sales drawing or advertising catalog, and related information. The sales drawing creating terminal creates a sales drawing or an advertising catalog using the data received from the server. The sales drawings and advertising catalogs are then stored in the sales drawing database and made available to user terminals when accessed. In particular, the information (maps, picture data and floor plan data of the real estate, and related information) and the layout data necessary for creating the sales drawing or advertising catalog of the real estate are stored as databases. When the producer, who in this case is the program creator or creator of the sales drawing/advertising catalog, inputs from the sales drawing creating terminal (i.e., the information creating device) data pertaining to a registration number, name, value, traffic, location, premises, building, limitations, facilities, remarks, main copy, sub-copy, and transaction mode, the server stores the inputted information by correlating them with the registration number. The server retrieves from the map database the map that includes the location and displays the map on the sales drawing creating terminal. If the producer selects the map that is displayed, the selected map is stored by correlating it with the registration number. If the producer selects the layout data from the sales drawing creating device, input information based on the selected layout data is displayed. Using the sales drawing creating device, the producer retrieves the picture data and the floor plan data from the sales drawing database and creates the sales drawing or the advertisement catalog by pasting the picture data and the floor plan data in the spaces of the layout data. The server stores the sales drawing or the advertising catalog with the picture data and the floor plan data on it in the sales drawing database and makes available the sales drawing/advertising catalog stored in the sales drawing database from the user terminal (information display terminal). In the conventional technology described above, the information necessary for the program (i.e., the sales drawing/advertisement catalog) is stored in the form of a database, and the program is created by retrieving the required information from the database. Consequently, programs can be created easily and cost-effectively. However, while creating a plurality of programs, the process becomes complex, involving inputting program-specific information not present in the database, selecting the layout data, and pasting the information retrieved from the database. In other words, it is costly in terms of effort and time to use the conventional technology for creating a plurality of programs. Further, in the conventional technology, the program showcasing the finished product, such as the sales drawing or the advertisement catalog with the map, drawing data, and the floor plan data pasted on it, is delivered to the user terminal. As a result, the amount of data for the finished product becomes very large, which results in a delay in delivering the finished product. The amount of data becomes much larger when the program includes video data than when only still picture data is involved, resulting in an inordinate delay in delivering the finished product. | <SOH> SUMMARY OF THE INVENTION <EOH>It is an object of the present invention to at least solve the problems in the conventional technology. A program display method according to an aspect of the present invention includes combining one or more material data in a single program; and displaying the material data in one or more display areas based on a template file and a presentation file. The template file defines the material data and the display areas to display the material data, and the presentation file defines the template file and a correlation between the display areas and the material data. An information display device according to another aspect of the present invention includes a data storing unit that stores one or more material data, one or more template files defining one or more display areas for displaying the material data, and one or more presentation files defining the template file and a correlation between the display areas and the material data; a schedule management processing unit that outputs, based on information related to a predetermined display schedule of each program, a playback instruction for playing the presentation file that corresponds to the program to be displayed; a playback processing unit that retrieves from the data storing unit the presentation file corresponding to the playback instruction output by the schedule management processing unit and the template file and the material data defined in the presentation file and that plays the material data in the display areas defined in the template file according to the correlation between the display areas and the material data defined in the retrieved presentation file; and a display unit that displays the material data being played by the playback processing unit in each display area. An information delivery and display system according to still another aspect of the present invention includes an information creating device that creates a program, the information creating device includes a first data storing unit that stores one or more material data and one or more template files defining one or more display areas for displaying the material data; a presentation creation processing unit that creates a presentation file based on a template file selected from amongst the plurality of template files and a correlation of the one or more display areas and the one or more material data of the selected template file; and a package delivery processing unit that retrieves from the data storing unit the template file and the material data defined in one or more presentation files created by the presentation creation processing unit; a data delivery server that stores the program created by the information creating device, and that receives from the package delivery processing unit a presentation package that includes the template file, the material data, and one or more presentation files; and a program display device that downloads and displays the stored program from the data delivery server, the program display device including a second data storing unit that stores one or more presentation files and the presentation package received from the data delivery server; a schedule management processing unit that outputs, based on information related to a predetermined display schedule of each program, a playback instruction for playing the presentation file that corresponds to the program to be played; a playback processing unit that retrieves from the second data storing unit the presentation file that corresponds to the playback instruction output by the schedule management processing unit and the template file and the material data defined in the presentation file, and that plays the material data in the display areas defined in the template file according to the correlation between the display areas and the material data defined in the retrieved presentation file; and a display unit that displays the material data being played in each display area by the playback processing unit. The other objects, features, and advantages of the present invention are specifically set forth in or will become apparent from the following detailed description of the invention when read in conjunction with the accompanying drawings. | 20050105 | 20100420 | 20050728 | 98074.0 | 0 | ULRICH, NICHOLAS S | PROGRAM DISPLAY METHOD, PROGRAM DISPLAY APPARATUS, AND PROGRAM DELIVERY AND DISPLAY SYSTEM | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,028,777 | ACCEPTED | Sterile fluid pumping or mixing system and related method | A system for pumping or mixing a fluid using a levitating, rotating magnetic element and various other components for use in a pumping or mixing system are disclosed. The magnetic element is placed in a vessel or container that can be positioned in close proximity to a superconducting element. The vessel or container may be sealed with the magnetic element and a product therein, with the fluid being introduced after sealing. Preferably, the vessel or container is capable of holding fluid volumes greater than 10 liters. | 1. A fluid pumping or mixing system, comprising: a vessel or container for holding a fluid and a product; a magnetic element capable of providing a pumping or mixing action to the fluid upon rotation; at least one superconducting element for levitating said magnetic element in the vessel or container; a wall defining a chamber around the superconducting element, said chamber thermally isolating the superconducting element from the vessel or container; a cooling source thermally linked to said superconducting element; a motive device for rotating said magnetic element or said superconducting element. 2. The system for pumping or mixing a fluid according to claim 1, wherein the chamber is evacuated or insulated to minimize thermal transfer from said superconducting element to said wall and provide the desired thermal isolation. 3. The system for pumping or mixing a fluid according to claim 1, wherein said wall is the outer wall of a cryostat and said cooling source is a chamber in said cryostat holding a liquid cryogen. 4. The system for pumping or mixing a fluid according to claim 1, wherein said cooling source is a refrigerator. 5. The system for pumping or mixing a fluid according to claim 1, wherein said superconducting element is supported by the wall defining said chamber, and wherein said chamber is in turn supported from a stable mounting structure by a bearing permitting rotational motion, said motive device rotating said wall and said superconducting element together. 6. The system for pumping or mixing a fluid according to claim 5, wherein said cooling source is coupled to and rotates with said wall. 7. The system according to claim 1, wherein the product is selected from the group consisting of a bacterial nutrient culture media, eukaryotic cell nutrient culture media, buffer, reagent, and the like. 8. The system according to claim 1, wherein the product is introduced into the vessel in a dry, powder-like form and the fluid is introduced either before or after the magnetic element is in a levitated state. 9. The system according to claim 1, wherein the vessel is substantially sealed prior to the levitation of the magnetic element, but includes a sterile fitting for introducing or extracting the fluid, product, or both therefrom. 10. The system according to claim 1, wherein the vessel and magnetic element are sterilized prior to introduction of the fluid. 11. The system for pumping or mixing a fluid according to claim 1, wherein the vessel is capable of holding a volume of fluid of about 10 liters or greater. 12. A method of mixing a fluid in a vessel or container, comprising: placing a magnetic pumping or mixing element and a product in the vessel or container; substantially sealing the vessel or container from the outside environment; levitating the magnetic element above a superconducting element positioned in an evacuated or insulated chamber adjacent to the vessel or container and thermally linked to a cooling source; rotating the magnetic element in the vessel or container. 13. The method according to claim 12, wherein the step of rotating the magnetic element includes rotating the superconducting element. 14. The method according to claim 12, further including cleaning or sterilizing both the vessel or container and the magnetic element prior to the sealing step. 15. The method according to claim 12, further including placing the product in the vessel prior to the sealing step. 16. The method according to claim 12, wherein the substantially sealed vessel includes at least one sterile or aseptic fitting, and further including the step of introducing the fluid into the vessel after the sealing step through the fitting, whereby a sterile or aseptic mixing environment is created. 17. An assembly for use in a pumping or mixing system, comprising: a sealed vessel or container capable of holding a volume of fluid of about 10 liters or greater; a product sealed in the vessel or container; a magnetic pumping or mixing element sealed in the vessel or container. 18. The assembly according to claim 17, wherein the sealed vessel includes means for receiving a fluid while substantially maintaining the sterility of the vessel, mixing element, and product contained therein. 19. The assembly according to claim 17, wherein the product is selected from the group consisting of a bacterial nutrient culture media, eukaryotic cell nutrient culture media, buffer, reagent, or like intermediate product for forming one or more end products. | This application is a continuation of U.S. application Ser. No. 10/120,006 entitled “Sterile Fluid Pumping or Mixing System and Related Method” now U.S. Pat. No. 6,837,613, which is incorporated herein by reference. TECHNICAL FIELD The present invention relates generally to the mixing or pumping of fluids or the like and, more particularly, to a number of systems, related components, and related methods for pumping or mixing fluids using a rotating magnetic element, rotor, impeller, or the like that is levitated by a superconducting element, including a system capable of mixing or pumping a sterile or substantially sterile fluid in or through a pre-sealed vessel or container containing a product, such as a nutrient culture media, buffer, reagent, or the like. BACKGROUND OF THE INVENTION Most pharmaceutical solutions and suspensions manufactured on an industrial scale require highly controlled, thorough mixing to achieve a satisfactory yield and to ensure a uniform distribution of ingredients in the final product. Agitator tanks are frequently used to complete the mixing process, but a better degree of mixing is normally achieved by using a mechanical stirrer or impeller (e.g., a set of mixing blades attached to a metal rod). Typically, the mechanical stirrer or impeller is simply lowered into the fluid through an opening in the top of the vessel and rotated by an external motor to create the desired mixing action. One significant limitation or shortcoming of such an arrangement is the danger of contamination or leakage during mixing. The rod carrying the mixing blades or impeller is typically introduced into the vessel through a dynamic seal or bearing. This opening provides an opportunity for bacteria or other contaminants to enter, which of course can lead to the degradation of the product. A corresponding danger of environmental contamination exists in applications involving hazardous or toxic fluids, or suspensions of pathogenic organisms, since dynamic seals or bearings are prone to leakage. Cleanup and sterilization are also made difficult by the dynamic bearings or seals, since these structures typically include folds and crevices that are difficult to reach. Since these problems are faced by all manufacturers of sterile solutions, pharmaceuticals, or the like, the U.S. Food and Drug Administration (FDA) consequently promulgated strict processing requirements for such fluids, and especially those slated for intravenous use. Recently, there has also been an extraordinary increase in the use of biosynthetic pathways in the production of pharmaceutical materials, but problems plague those involved in this rapidly advancing industry. The primary problem is that suspensions of genetically altered bacterial cells frequently used to produce protein pharmaceuticals (insulin is a well-known example) require gentle mixing to circulate nutrients. If overly vigorous mixing or contact between the impeller and the vessel wall occurs, the resultant forces and shear stresses may damage or destroy a significant fraction of the cells, as well as protein molecules that are sensitive to shear stresses. This not only reduces the beneficial yield of the process, but also creates deleterious debris in the fluid suspension that requires further processing to remove. In an effort to overcome this problem, others have proposed alternative mixing technologies. The most common proposal for stirring fluids under sterile conditions is to use a rotating, permanent magnet bar covered by an inert layer of TEFLON (polytetrafluoroethylene), glass, or the like. The magnetic bar is positioned in the bottom portion of the agitator vessel and rotated by a driving magnet positioned external to the vessel. Of course, the use of such an externally driven magnetic bar avoids the need for a dynamic bearing, seal or other opening in the vessel to transfer the rotational force from the driving magnet to the stirring magnet. Therefore, a completely enclosed system is provided. This of course prevents leakage and the potential for contamination created by hazardous materials (e.g., cytotoxic agents, solvents with low flash points, blood products, etc.) and eases clean up. However, several well-recognized drawbacks are associated with this mixing technology, making it unacceptable for use in many applications. For example, the driving magnet produces not only torque on the stirring magnetic bar, but also an attractive axial thrust force tending to drive the bar into contact with the bottom wall of the vessel. This of course generates substantial friction at the interface between the bar and the bottom wall of the vessel. This uncontrolled friction generates unwanted heat and may also introduce an undesirable shear stress in the fluid. Consequently, fragile biological molecules, such as proteins and living cells that are highly sensitive to temperature and shear stress, are easily damaged during the mixing process, and the resultant debris may contaminate the product. Moreover, the magnetic bar stirrer cannot generate the level of circulation required to provide effective mixing throughout the entire volume of large vessels, such as bags or agitation tanks having volumes of greater than 10 liters, as are commonly used in commercial production operations. Magnetic stirrer bars also typically include sharp corners that may perforate thin-walled or flexible vessels, such as bags. In yet another effort to eliminate the need for dynamic bearings or shaft seals, some have proposed mixing systems using external magnets that remotely couple the mixing impeller to a motor external to the vessel. A typical magnetic coupler comprises a drive magnet attached to the motor and a stirring magnet carrying an impeller. Similar to the magnetic bar technology described above, the driver and stirrer magnets are kept in close proximity to ensure that the coupling between the two is strong enough to provide sufficient torque. An example of one such proposal is found in U.S. Pat. No. 5,470,152 to Rains. As described above, the high torque generated can drive the impeller into the walls of the vessel creating significant friction. By strategically positioning roller bearings inside the vessel, the effects of friction between the impeller and the vessel wall can be substantially reduced. Of course, high stresses at the interfaces between the ball bearings and the vessel wall or impeller result in a grinding of the mixing proteins and living cells, and a concomitant loss of yield. Further, the bearings may be sensitive to corrosive reactions with water-based solutions and other media and will eventually deteriorate, resulting in frictional losses that slow the impeller, reduce the mixing action, and eventually also lead to undesirable contamination of the product. Bearings also add to the cleanup problems. In an effort to address and overcome the limitations described above, still others have proposed levitated rotors designed to reduce the deleterious effects of friction resulting from magnetically coupled mixers. By using a specially configured magnetic coupler to maintain only a repulsive levitation force in the vertical direction, the large thrust force between the stirring and driving magnets can be eliminated, along with the resultant shear stress and frictional heating. An example of one such arrangement is shown in U.S. Pat. No. 5,478,149 to Quigg. However, one limitation remaining from this approach is that only magnet-magnet interactions provide the levitation. This leads to intrinsically unstable systems that produce the desired levitation in the vertical direction, but are unable to control side-to-side movement. As a result, external contact bearings in the form of bearing rings are necessary to laterally stabilize the impeller. Although this “partial” levitation reduces the friction between the impeller and the vessel walls, it does not totally eliminate the drawbacks of the magnetically coupled, roller bearing mixers previously mentioned. In an effort to eliminate the need for contact or other types of mechanical roller bearings, complex feedback control has been proposed to stabilize the impeller. Typical arrangements use electromagnets positioned alongside the levitating magnet. However, the high power level required to attain only sub-millimeter separations between the levitating magnet and the stabilizing magnets constitutes a major disadvantage of this approach. Furthermore, this solution is quite complex, since the stabilizing magnets must be actively monitored and precisely controlled by complex computer-implemented software routines to achieve even a moderate degree of stability. As a consequence of this complexity and the associated maintenance expense, this ostensible solution has not been accepted in the commercial arena, and it is doubtful that it can be successfully scaled up for use in mixing industrial or commercial scale process volumes. Thus, a need is identified for an improved system having a levitating magnetic element, impeller, rotor, or like element for mixing or pumping fluids, and especially ultra-pure, hazardous, or delicate fluid solutions or suspensions, including those comprised of cell nutrient media, buffers, reagents, or the like. The system would preferably employ a magnetic element that levitates in a stable fashion to avoid contact with the bottom or side walls of the vessel. Since the element levitates in the fluid, no mixing rod or other structure penetrating through the mixing vessel would be necessary, thus eliminating the need for dynamic bearings or shaft seals and all potentially deleterious effects associated therewith. Since penetration is unnecessary, the vessel could be completely sealed with the magnetic element in place during manufacture or otherwise prior to pumping or mixing, possibly along with a nutrient media or other material, to avoid the potential for contamination and reduce the chance for exposure in the case of hazardous or biological fluids, such as contaminated blood or the like. The vessel and magnetic element could also be made of inexpensive or easily disposable materials and hence discarded after each use, which would eliminate the need for cleaning or sterilization. The absence of a mixing or stirring rod penetrating through the vessel would also allow a slowly rotating rotor or impeller to be held at an off-axis position in a sealed vessel, thus making it possible to independently rotate the vessel about its central axis to achieve very gentle, yet thorough, mixing. In the case of warm or temperature-sensitive fluids, the use of superconductivity to provide the desired levitation would be possible by thermally isolating and separating the superconducting element from the magnetic element and providing a separate, substantially isolated cooling source. This combined thermal isolation and separation would avoid creating any significant cooling in the vessel, the magnetic element or the fluid being mixed or pumped. The use of a superconductor would also eliminate the sole reliance on magnet-magnet repulsion to provide the levitation force and the concomitant need for active electronic control systems to ensure stable levitation, even with large process volumes and at high rotational speeds. Overall, the proposed system would have superior characteristics over existing mixing or pumping technologies, especially in terms of sterility, mixing quality, safety and reliability, and would be readily adaptable for use in larger, industrial scale operations. SUMMARY OF THE INVENTION In accordance with a first aspect of the invention, a fluid pumping or mixing system is disclosed. The system comprises a vessel or container for holding a fluid and a product, a magnetic element capable of providing a pumping or mixing action to the fluid upon rotation, at least one superconducting element for levitating said magnetic element in the vessel or container, a wall defining a chamber around the superconducting element, said chamber thermally isolating the superconducting element from the vessel or container, a cooling source thermally linked to said superconducting element; and a motive device for rotating said magnetic element or said superconducting element. The chamber is preferably evacuated or insulated to minimize thermal transfer from the superconducting element to the wall and provide the desired thermal isolation. The wall may be the outer wall of a cryostat and the cooling source may be a chamber in said cryostat holding a liquid cryogen. Alternatively, the cooling source may be a refrigerator. The superconducting element may be supported by the wall defining the chamber, with the chamber in turn being supported from a stable mounting structure by a bearing permitting rotational motion. Accordingly, the motive device may rotate the wall and the superconducting element together. Moreover, the cooling source may be coupled to and rotate with the wall. The product may be selected from the group consisting of a bacterial nutrient culture media, eukaryotic cell nutrient culture media, buffer, reagent, and the like. The product may be introduced into the vessel in a dry, powder-like form and the fluid may be introduced either before or after the magnetic element is in a levitated state. Preferably, the vessel is substantially sealed prior to the levitation of the magnetic element, and may include a sterile fitting for introducing or extracting the fluid, product, or both therefrom. Also, the vessel and magnetic element are sterilized prior to introduction of the fluid. Most preferably, the vessel is capable of holding a volume of fluid of about 10 liters or greater. In accordance with a second aspect of the invention, a method of mixing a fluid in a vessel or container is disclosed. The method comprises placing a magnetic pumping or mixing element and a product in the vessel or container, substantially sealing the vessel or container from the outside environment, levitating the magnetic element above a superconducting element positioned in an evacuated or insulated chamber adjacent to the vessel or container and thermally linked to a cooling source, and rotating the magnetic element in the vessel or container. In one specific embodiment, the step of rotating the magnetic element includes rotating the superconducting element. The method may further include cleaning or sterilizing both the vessel or container and the magnetic element prior to the sealing step, as well as placing the product in the vessel prior to the sealing step. In the case where the substantially sealed vessel includes at least one sterile or aseptic fitting, the method may further include the step of introducing the fluid into the vessel after the sealing step through the fitting, whereby a sterile or aseptic mixing environment is created. In accordance with a third aspect of the invention, an assembly for use in a pumping or mixing system is disclosed. The assembly comprises a sealed vessel or container capable of holding a volume of fluid of about 10 liters or greater (such as tanks capable of holding 100 liters or more), a product sealed in the vessel or container, and a magnetic pumping or mixing element sealed in the vessel or container. The sealed vessel includes means for receiving a fluid while substantially maintaining the sterility of the vessel, mixing element, and product contained therein. The product may be selected from the group consisting of a bacterial nutrient culture media, eukaryotic cell nutrient culture media, buffer, reagent, or like intermediate product for forming one or more end products. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, assist in explaining the principles of the invention. In the drawings: FIG. 1 is a partially cross-sectional, partially cutaway, partially schematic view of one embodiment of the system of the present invention wherein the levitating magnetic element is rotated by an external drive or driving magnet to mix a fluid in a vessel and the cooling source is a separate cooling chamber defined by the outer wall of a cryostat holding a cryogen; FIG. 2 is an enlarged cross-sectional, partially cutaway, partially schematic view of an embodiment wherein the rotating, levitating magnetic element is used to pump a fluid through a vessel positioned adjacent to the housing for the superconducting element and the cooling source is a closed cycle refrigerator; FIG. 3 is a partially cross-sectional, partially cutaway, partially schematic view of the system of the first embodiment wherein the superconducting element, vessel, magnetic element, and drive magnet are axially aligned, but moved off-center relative to the vertical center axis of the vessel; FIG. 4a is a bottom view of the drive magnet used in situations where exceptional rotational stability of the magnetic element of the preferred embodiment is required; FIG. 4b is a partially cross-sectional, partially cutaway side view of the system showing the drive magnet of FIG. 4a magnetically coupled to a similarly constructed second permanent magnet forming a part of the magnetic element; FIG. 4c is one possible embodiment of the pumping or mixing system including a magnetic element having a plurality of chambers for holding a substance that is lighter than the surrounding fluid, such as air, that assists in levitating the element; FIG. 5 is a partially cross-sectional, partially schematic side view of a second possible embodiment of a pumping or mixing system using a magnetic element levitated by a thermally isolated cold superconducting element wherein the motive force for rotating the element in the vessel is provided by rotating the superconducting element itself; FIG. 6a is a top schematic view of one possible arrangement of the levitating magnetic element that may be driven by a rotating superconducting element; FIG. 6b shows the magnetic element of FIG. 6a levitating above a rotating superconducting element formed of two component parts; FIG. 7 is a partially cutaway, partially cross-sectional schematic side view of a vessel in the form of a centrifugal pumping head, including a levitating, rotating magnetic element for pumping fluid from the inlet to the outlet of the centrifugal pumping head; FIG. 8a shows an alternate embodiment of a magnetic element especially adapted for use in a vessel or container having a relatively narrow opening; FIG. 8b shows another alternate embodiment of a magnetic element adapted especially for use in a vessel or container having a relatively narrow opening; FIG. 8c illustrates the magnetic element of FIG. 8b in a partially folded state for insertion in the narrow opening of a vessel or container; FIG. 9 is a partially cross-sectional, partially schematic side view of a second embodiment of a pumping or mixing system wherein separate levitating and driven magnets are carried on the same, low-profile magnetic element, with the levitation being supplied by a thermally isolated superconducting element and the rotary motion being supplied a motive device including driving magnets coupled to a rotating shaft and positioned in an opening in the evacuated or insulated chamber for housing the superconducting element; FIG. 9a is a top or bottom view of one possible embodiment of a magnetic element for use in the system of FIG. 9; FIG. 9b is a partially cross-sectional side view of the magnetic element of FIGS. 9 and 9a levitating above the superconducting element, and illustrating the manner in which the driven magnets are coupled to the corresponding driving magnets to create the desired rotational motion; FIG. 10 is a top view of a most preferred version of a cryostat for use with the pumping and mixing system of the embodiment of FIG. 9; FIG. 11 is a partially cutaway, partially cross-sectional side schematic view of a centrifugal pumping head for use with the system of FIG. 9; FIG. 12 is a cross-sectional side view of another possible embodiment of a pumping or mixing system of the present invention; FIG. 12a is a cross-sectional view taken along line 12a-12a of FIG. 12; FIG. 12b is a cross-sectional view taken along line 12b-12b of FIG. 12; FIG. 12c is a cross-sectional view of the embodiment of FIG. 12, but wherein the motive device is in the form of a winding around the vessel for receiving an electrical current that creates an electrical field and causes the magnetic element to rotate; FIG. 13 is an alternate embodiment of an inline levitating magnetic element, similar in some respects to the embodiment of FIG. 9; FIG. 14 is an enlarged partially cross-sectional, partially cutaway side view showing the manner in which a sealed flexible bag carrying a magnetic element may be used for mixing a fluid, and also showing one example of how a transmitter and receiver may be used to ensure that the proper magnetic element is used with the system; FIG. 14a is an enlarged, partially cross-sectional, partially cutaway side view showing an attachment including a coupler for coupling with the pumping or mixing element; FIG. 14b is an enlarged, partially cross-sectional, partially cutaway side view showing a mixing vessel having a centering post; FIG. 14c is an enlarged, partially cross-sectional, partially cutaway side view showing the use of a second motive device in the system of FIG. 14, such as a linear motion device, for moving the superconducting element, and hence, the pumping or mixing element to and fro inside of the vessel; FIG. 15 illustrates one charging magnet including a spacer that may form part of a kit for use in charging the superconducting element as it is cooled to the transition temperature, as well as a heater for warming the superconducting element to above the transition temperature for recharging; FIG. 16 illustrates a cross-sectional side view of one possible embodiment in which a sterile or aseptic vessel or container is pre-sealed with a sterilized magnetic element and other product inside. DETAILED DESCRIPTION OF THE INVENTION Reference is now made to FIG. 1, which shows a first possible embodiment of the mixing or pumping system 10 of the present invention. In this embodiment, a cryostat 12 is used to hold the cooling source for the superconducting element that produces the desired levitation in a pumping or mixing element 14 (also referred to herein as a “magnetic” element) that is capable upon rotation or other movement of creating a pumping or mixing action in a fluid F. The magnetic pumping or mixing element 14 is placed in a container or vessel 16 positioned external to the cryostat 12, which may already contain the fluid F or may be filled after the magnetic element 14 is in place (along with any other product, including a bacteria or cell nutrient media, reagent, buffer, or like substance). It should be appreciated at the outset that the term “fluid” is used herein to denote any substance that is capable of flowing, as may include fluid suspensions, gases, gaseous suspensions, or the like, without limitation. In this particular embodiment, the vessel 16 for holding the fluid is shown as being cylindrical in shape and may have an open top. Alternatively, it may be completely sealed from the ambient environment to avoid the potential for fluid contamination or leakage during mixing, or adapted to pump the fluid F from an inlet to an outlet in the vessel 16 (see FIG. 2). In any case, the vessel 16 may be fabricated of any material suitable for containing fluids, including glass, plastic (including specialized single or multi-layered polymers or composites thereof commonly used to ensure that a sterile internal environment is maintained, or those that have special light transmission properties), metal, or the like. Of course, the use of lightweight plastic or other high density polymers is particularly desirable if the vessel 16 is going to be discarded after mixing or pumping is complete, as set forth in more detail in the description that follows. As illustrated in FIG. 1, the vessel 16 rests atop the outer wall 18 of the cryostat 12. Preferably, this outer wall 18 is fabricated of non-magnetic stainless steel, but the use of other materials is of course possible, as long as the ability of the magnetic element 14 to levitate and rotate remains substantially unaffected. Positioned inside of and juxtaposed to this wall 18 is a superconducting element 20. In the illustrated embodiment, the superconducting element 20 is supported by a rod 22 that serves as the thermal link between the superconducting element 20 and a cooling source 24. The outer wall 18 of the cryostat 12 defines a chamber 25 that is preferably evacuated to thermally isolate the cold superconducting element 20 from the relatively warm vessel 16, magnetic element 14, and fluid F. Positioning of the superconducting element 20 in this vacuum chamber 25 is possible by virtue of the thermal link provided by the rod 22. The thermal isolation and separation provided by the chamber 25 allows for the superconducting element 20 to be placed in very close proximity to the outer wall 18 without affecting its temperature, or the temperature of the vessel 16. This allows the separation distance from the superconducting element 20 to the inner surface of the wall 18 to be narrowed significantly, such that in the preferred embodiment, the gap G between the two is under 10 millimeters, and can be as narrow as approximately 0.01 millimeters. This substantial reduction in the separation distance enhances the levitational stability, magnetic stiffness, and loading capacity of the magnetic element 14 without the concomitant cooling effects associated with prior art approaches for levitating magnetic elements using cold superconducting elements. In this first illustrated embodiment, the cooling source 24 is a separate, substantially contained cooling chamber 26 holding a cryogen C, such as liquid nitrogen. The chamber 26 is defined by an outer wall 28 that is substantially thermally separated from the outer wall 18 of the cryostat 12 to minimize heat transfer. An inlet I is provided through this wall 28 for introducing the cryogen into the cooling chamber 26. To permit any vapor P to escape from the chamber 26 as the cryogen C warms, an exhaust outlet O is also provided (see action arrows in FIG. 1 also designating the inlet and outlet). In the illustrated embodiment, the inlet I and outlet O lines may formed of a material having a low thermal conductivity, such as an elongate, thin walled tube formed of non-magnetic stainless steel, and are sealed or welded in place to suspend the cooling chamber 26 in the cryostat 12. As should be appreciated by one of ordinary skill in the art, the use of a thin walled tube formed of a material having a low thermal conductivity, such as stainless steel, results in a negligible amount of thermal transfer from the inlet or outlet to the wall 18. The sealing or welding method employed should allow for the chamber 25 to be maintained in an evacuated state, if desired. Despite this illustration of one possible support arrangement, it should be appreciated that the use of any other support arrangement or means that minimizes thermal transfer between the cooling chamber 26 and the cryostat wall or other housing 18 is also possible. The rod 22 serving as the thermal link between the cooling source 24 and the superconducting element 20 may be cylindrical and may extend through the outer wall 28 of the cooling chamber 26. The entire surface area of the superconducting element 20 preferably makes contact with the upper surface of the cylindrical rod 22 to ensure that thermal transfer is maximized. The rod 22 may be formed of materials having low thermal resistance/high thermal conductance, such as brass, copper, or aluminum. As should be appreciated from viewing FIG. 1, and as briefly noted in the foregoing description, the combination of the outer wall 18 and the inner cooling chamber 26 in this first embodiment defines the chamber 25 around the superconducting element 20. Preferably, this chamber 25 is evacuated to minimize heat transfer from the cooling chamber walls 28 and the superconducting element 20 to the outer wall 18 of the cryostat 12. The evacuation pressure is preferably at least 10−3 torr, and most preferably on the order of 10−5 torr, but of course may vary depending upon the requirements of a particular application. The important factor is that thermal transfer from the cooling source 24, which in this case is the cooling chamber 26 holding a cryogen C, and the superconducting element 20 to the outer wall 18 is minimized to avoid cooling the vessel 16 or fluid F held therein. Although a vacuum chamber 25 is proposed as one preferred manner of minimizing this thermal transfer, the use of other means to provide the desired thermal isolation is possible, such as by placing insulating materials, substances, or the like in the chamber 25. As is known in the art, by cooling the superconducting element 20 in the presence of a magnetic field, it becomes capable of distributing the current induced by a permanent magnet such that the magnet levitates a certain distance above the superconducting element, depending primarily upon the intensity and the direction of the magnetic field generated by the levitating magnet. Although basically a repulsive force is created, the peculiar nature of the pinning forces generated actually tie the levitating magnet to the superconducting element as if the two were connected by an invisible spring. As should be appreciated, this form of attachment cannot be achieved in conventional levitation schemes for magnetic elements that employ two opposed permanent magnets that merely repel each other, since no pinning forces act to tie the two magnets together, while at the same time provide a balancing repulsive force. In the preferred embodiment of the present system 10, the element 20 providing the superconductive effects is a “high temperature” or “type II” superconductor. Most preferably, the superconducting element 20 is formed of a relatively thin cylindrical pellet of melt-textured Yttrium-Barium Copper Oxide (YBCO) that, upon being cooled to a “high” temperature (usually about 77-78 Kelvin) using a cooling source 24, such as the illustrated liquid nitrogen chamber 26, exhibits the desired levitational properties in a permanent magnet. Of course, the use of other known superconducting materials having higher or lower operating temperatures is also possible, and my prior U.S. Pat. No. 5,567,672 is incorporated herein by reference for, among other things, the other high-temperature superconducting materials referenced therein. The magnetic element 14 in the preferred embodiment includes a first permanent magnet 32 for positioning in the vessel 16 adjacent to the superconducting element 20 such that it levitates in the fluid F. Although the polarity of this first magnet 32 is not critical to creating the desired levitation, the magnet 32 is preferably disk-shaped and polarized in the vertical direction. This ensures that a symmetrical magnetic field is created by the magnet 32 and stable levitation results above the superconducting element 20, while at the same time free rotation relative to the vertical axis is possible. In a version of the magnetic element 14 particularly adapted for use in relatively deep fluid vessels, a support shaft 34 is connected to and extends vertically from the first permanent magnet 32. Along the shaft 34, at least one, and preferably two, impeller assemblies 36 are carried that serve to provide the desired pumping, or in the case of FIG. 1, mixing action when the magnetic element 14 is rotated. Rotation of the levitating magnetic element 14 in the vessel 16 is achieved by a magnetic coupling formed between a second permanent magnet 38 (shown in dashed line outline in FIG. 1, but see also FIG. 2) and a drive magnet 40 positioned externally of the vessel 16. The drive magnet 40 is rotated by a drive means, such as an electric motor 42 or the like, and the magnetic coupling formed with the second permanent magnet 38 serves to transmit the driving torque to the magnetic element 14 to provide the desired pumping or mixing action. The direction of rotation is indicated by the action arrows shown in FIGS. 1 and 2 as being in the counterclockwise direction, but it should be appreciated that this direction is easily reversed by simply reversing the direction in which the drive magnet 40 is rotated. In operation, and in practicing one possible method of pumping or mixing a fluid disclosed herein, the vessel 16 containing the fluid F and magnetic element 14 are together placed external to the wall 18 of the cryostat 12 adjacent to the superconducting element 20, which is placed in the evacuated or insulated chamber 25. When the first disk-shaped permanent magnet 32 is brought into the proximity of the superconducting element 20, the symmetrical magnetic field generated causes the entire magnetic element 14 to levitate in a stable fashion above the bottom wall of the vessel 16. This levitation brings the second permanent magnet 38 into engagement with the drive magnet 40 to form the desired magnetic coupling. In addition to transmitting the driving torque, this magnetic coupling also serves to stabilize rotation of the magnetic element 14. The motor 42 or other motive device is then engaged to cause the drive magnet 40 to rotate, which in turn induces a steady, stable rotation in the magnetic element 14. Rotating impeller assemblies 36 then serve to mix or pump the fluid F in a gentle, yet thorough fashion. Since the magnetic element 14 fully levitates and can be completely submerged in the fluid F, the need for mixing or stirring rods penetrating through the vessel 16 in any fashion is eliminated. The concomitant need for dynamic shaft seals or support bearings in the vessel walls is also eliminated. A related advantage is that the vessel 16 and the magnetic element 14 may be sterilized and completely sealed from the outside environment before mixing to provide further assurances against leakage or contamination. Yet another related advantage discussed in detail below is that the vessel 16 and magnetic element 14 can be formed of relatively inexpensive, disposable materials and simply discarded once mixing is complete. As should be appreciated, this advantageously eliminates the need for cleanup and re-sterilization of the magnetic element 14 and vessel 16. Thus, by completely sealing a disposable vessel, such as a plastic container or flexible bag containing the magnetic element 14 and fluid F prior to mixing, the entire assembly can simply be discarded once all or a portion of the fluid contents are recovered. This reduces the risk of exposure both during and after mixing in the case of hazardous fluids, and also serves to protect the fluid from contamination prior to or during the pumping or mixing operation. An alternative version of this first possible embodiment of the system 10 of the present invention particularly adapted for pumping a fluid F is shown in FIG. 2. In this version, the vessel 16 includes at least one fluid inlet 44 and at least one outlet 46. The magnetic element 14 preferably carries rotating impeller assemblies 36 that serve to provide the desired pumping action by forcing fluid F from the inlet 44 to the outlet 46 (see action arrows). By increasing or decreasing the rotational speed of the motor 42 or other motive device, or adjusting the size, shape or style of the magnetic element 14, impeller blades 36, or substituting a different design altogether, a precise level of pumping action may be provided. Another possible modification shown in FIG. 2 is to use a closed cycle refrigerator 48 to provide the necessary cooling for the superconducting element 20 instead of a cryostat with a liquid cryogen as the cooling source. The refrigerator 48 can be positioned externally to a housing 18 containing the superconducting element 20, which may be the equivalent of the cryostat outer wall 18 previously described. As with the first embodiment, a chamber 25 is defined by the housing 18. This chamber 25 is preferably evacuated or filled with other insulating materials to minimize thermal transfer from the superconducting element 20 to the housing 18. However, since no cooling source 24 is contained within the housing 18, it is not actually a “cryostat” as that term is commonly defined. Nevertheless, the desired dual levels of thermal separation are still possible, and the concomitant advantages provided, since: (1) the cooling source 24, 48 is positioned away from the housing 18 and, thus, the vessel 16, magnetic element 14, and fluid F; and (2) the housing 18 still separates and defines a chamber 25 that thermally isolates the superconducting element 20 and the vessel 16. In yet another alternate arrangement, the refrigerator 48 can be used as a primary cooling source, with the cryogenic chamber (not shown) serving as a secondary or “backup” cooling source in the event of a power outage or mechanical failure. In accordance with another of the many important aspects of the present system 10, the absence of a mixing rod or other mechanical stirrer extending through a wall of the vessel 16 also allows for placement of the magnetic element 14 at an off-axis position, as shown in FIG. 3. Specifically, the superconducting element 20, magnetic element 14, and drive magnet 40 are all axially aligned away from the vertical center axis of the vessel 16. One particular advantage of using this approach is that the magnetic element 14 may be rotated at a very low speed while the vessel 16 is also rotated about its center axis. This advantageously ensures that gentle, yet thorough mixing, is achieved, which is particularly advantageous for use with fluids that are sensitive to shear stress. As should be appreciated, this arrangement can be used both whether the vessel 16 is completely sealed, provided with an inlet 44 and an outlet 46 for pumping as shown in FIG. 2, or open to the ambient environment. For purposes of illustration only, FIG. 3 shows the cryostat 12 of the embodiment shown in FIG. 1 having an outer wall 18 and a cooling chamber 26 defined by a wall 28. However, it should be appreciated that use of the housing 18 and closed-cycle refrigerator 48 of the second embodiment of FIG. 2 as part of the “cryostat” is also possible with this arrangement. Through experimentation, it has been discovered that when the magnetic element 14 of the type described for use in this first possible embodiment is employed, providing the requisite degree of stability to ensure that all contact with the side walls of the container 16 is avoided may in some instances be a concern. Thus, to ensure that the magnetic element 14 rotates with exceptional stability and such deleterious contact is completely avoided, the second permanent magnet 38 and the drive magnet 40 are each provided with at least two pairs, and preferably four pairs of cooperating sub-magnets 50a, 50b. As shown in FIGS. 4a and 4b, these magnets 50a, 50b have opposite polarities and thereby serve to attract each other and prevent the levitating magnetic element 14 from moving from side-to-side to any substantial degree. However, the attractive force is counterbalanced by the combined spring-like attractive and repulsive levitational/pinning forces created between the first permanent magnet 32 and the superconducting element 20 when cooled. This avoids the potential for contact with the upper wall of the vessel 16, if present. Overall, the magnetic element 14 is capable of exceptionally stable rotation using this arrangement, which further guards against the undesirable frictional heating or shear stress created if the rotating magnetic element 14, or more particularly, the first and second permanent magnets 32, 38 or the blades of the impeller assemblies 36 could move into close proximity with the bottom or side walls of the vessel 16. As should be appreciated, it is possible to rearrange the components of the system 10 such that the levitation and driving forces are provided from other areas of the vessel, rather than from the top and bottom of the vessel. Thus, as shown in FIG. 4c, the cryostat 12 or other housing for containing the superconducting element 20 may be positioned adjacent to one side of the vessel 16, while the drive magnet 40 is positioned adjacent to the opposite side. In that case, the magnetic element 14 may be turned on its side and supported by a separate stable support structure, such as a table T or the like. The vessel 16 is shown as being sealed, but it should be appreciated that any of the vessels disclosed herein may be employed instead, including even an open-ended pipe. To assist in levitating the magnetic element 14 in either the embodiment of FIG. 1 or 2 or the other embodiments disclosed herein, at least one, and preferably a plurality of chambers 60 are provided for containing a substance that is lighter than the surrounding fluid F. The chambers 60 may be provided adjacent to each magnet 32, 38 in the magnetic element 14, as well as around the shaft 34, if desired. In the preferred embodiment where the fluid F is or has a specific gravity similar to that of water, the substance contained in the chambers 60 may be air. However, in more viscous fluids, such as those having a specific gravity more like glycerin, it may be possible to use lighter fluids, such as water, even lighter gases, or combinations thereof. These chambers 60 thus serve to assist in levitating the magnetic element 14 by helping it “float” in the fluid F. However, the “pinning” force created by the superconducting element 20, plus the levitating and aligning force created between the second permanent magnet 38 and the driving magnet 40, both also serve to assist in keeping the magnetic element 14 in the proper position as it rotates. In the case of disk or pancake shaped permanent first and second magnets 32, 48 and a cylindrical shaft 34, each chamber 60 is preferably annular. Instead of fluid-filled chambers, the use of other buoyant materials is also possible to provide the levitation-assist function. As previously mentioned, one of the many advantages of the system 10 of the present invention is that, since the magnetic element 14 levitates in the fluid F and no mixing or stirring rods are required for rotation, the vessel 16 can be completely sealed from the outside ambient environment. Thus, by forming the magnetic element 14 and vessel 16 of relatively inexpensive or disposable materials, both can simply be discarded after mixing is completed and the fluid F is recovered. Of course, such disposable materials can also be used to form the vessel 16 designed for pumping fluids (FIG. 2), or to form the open-top container for mixing fluids to avoid the need for clean up or sterilization once the operation is complete. It should also be appreciated that the magnetic element 14 illustrated is an example of one preferred arrangement only, and that other possible configurations are possible. For instance, impeller blades are not required, since a disk-shaped magnet alone creates some mixing action simply by rotating. If present, the blade or blades could simply be placed circumferentially around the disk-shaped first permanent magnet 32 to reduce the length of the shaft 34, or eliminate it altogether, especially if the vessel 16 has a relatively small vertical dimension. Instead of a bladed impeller assembly 36, the use of other structural arrangements is also possible, such as disk-shaped wheels having vanes or like structures designed to create more or less efficient rotation, and a concomitant increase in the desired mixing or pumping action when rotated. Depending on the depth of the vessel 16, the length of the shaft 34, if present, can also be increased or decreased as necessary. All components forming the magnetic element in any embodiment described above may be coated with TEFLON or other inert materials to reduce the chances of contamination or corrosion, as well as to facilitate clean up, if required. Of course, besides use in the mixing or pumping of small batches of fluid solutions or suspensions used during experimentation and research in the laboratory setting, all components are also easily scaled up for use in industrial or commercial pumping or mixing operations, such as those commonly used in the manufacture of pharmaceuticals on a large-scale basis. The levitation of the magnetic element 14 can still be readily achieved in systems of much greater capacity than the one shown for purposes of illustration in the drawings, thus making the present arrangement particularly well-suited for the commercial production of pharmaceuticals or any other solutions or suspensions that require gentle, yet thorough mixing during processing. Experiments conducted to date have demonstrated the efficacy of the system 10 described above. The set-up utilized in conducting these experiments included a magnetic element having axially aligned upper and lower magnets and an impeller assembly mounted on a vertically extending support shaft, as shown in FIG. 1. A cylindrical pellet of melt-textured YBa2Cu3O7+x having a diameter of 30 millimeters and a thickness of 25 millimeters was used as the superconducting element and placed in a cryostat having a configuration similar to the one shown in FIG. 1. The cryostat included a cooling chamber filled with approximately 1 liter of liquid nitrogen. A Nd-Fe-B permanent magnet with a surface field intensity of 0.4 Tesla was used as the lower, first permanent magnet. Experiments conducted using this set-up demonstrated that the desired exceptionally stable levitation of the magnetic element above the top surface of the cryostat in a vessel filled with a relatively warm (i.e., about room temperature) fluid was possible. A separation distance of up to seven millimeters was achieved, and the levitation was stable for up to five hours using just a liter of liquid nitrogen as the cryogen. In the first experiment using this set up, water was selected as a model low viscosity fluid. Rotational speeds of up to 600 rpm were achieved—this upper limit being defined by only the limited capabilities of the motor used to rotate the drive magnet in this experiment. No decoupling or instability in the magnetic element was observed at any speed. In the case of glycerin, a model high viscosity fluid, a maximum rotational speed of 60 rpm was achieved before some decoupling of the magnetic element was observed. To further demonstrate the mixing capabilities using the proposed system, SEPHADEX powder (dry bead, 50-150 micron diameter) was placed on the bottom of a water-filled vessel and the levitating magnetic element rotated. A uniform suspension was achieved after approximately five minutes of mixing. As should be appreciated, the system 10 described above and shown in FIGS. 1-4 is based on a stationary superconducting element 20 and a magnetic element 14 that, in addition to a “levitation” magnet, includes one or more separate driven magnets for coupling with a drive mechanism positioned at the opposite end of the vessel or container relative to the superconducting element. However, other embodiments of the pumping or mixing system may include a levitating, rotating pumping or mixing element with magnets that are simultaneously used not only for levitation, but also for transmitting driving torque. In one embodiment, this driving torque is provided by the pinning forces that couple the magnetic element with a rotating superconducting element. Thus, the superconducting element causes the magnetic pumping or mixing element to rotate, even though there is no physical contact between the two. More specifically, and in accordance with this second possible embodiment of the present invention illustrated in FIG. 5, the pumping or mixing system 100 includes a cryostat 102, which may be formed of two separate components: a first component 102a including an outer wall 104 that surrounds a relatively thin, disk-shaped superconducting element 106 to define a chamber 108, and a second component 102b including the cooling source 110. Preferably, the outer wall 104 is formed of thin, non-magnetic material, such as non-magnetic stainless steel or the like, but the use of other materials is possible, as long as they do not interfere with the operation of the system 100 and have relatively poor thermal conductivity. The chamber 108 surrounding the superconducting element 106 may be evacuated or insulated as described above to thermally isolate and separate it from the wall 104. However, as noted further below, it is possible to eliminate the chamber 108 entirely in the case where a non-temperature sensitive fluid is being pumped or mixed. In the case where the chamber 108 is evacuated, a valve 112 may be provided in the outer wall 104 for coupling to a vacuum source, and an optional getter 114 (such as an activated carbon insert or the like) may be positioned in the chamber 108 for absorbing any residual gases and ensuring that the desired evacuation pressure is maintained. As with the embodiments described above, the evacuation pressure is preferably on the order of 10−3 torr or greater. The superconducting element 106 is supported in the chamber 108 independent of the outer wall 104 of the first portion 102a of the cryostat 102. The support may be provided by a platform 116 that is in turn enclosed by wall 104 and supported at one end of an elongated thermal link 118, preferably formed of metal or another material having a high degree of thermal conductivity (e.g., 50 Watts/Kelvin or higher). To supply the necessary cooling to the superconducting element 106, the opposite end of the elongated thermal link 118 is positioned in contact with the cooling source 110, which as described above forms a part of the second component 102b of the “cryostat” 102 (the term cryostat being used throughout to denote a structure or combination of structures that are capable of holding and maintaining a superconducting element in a state such that levitation is induced in a permanent magnet, whether forming a single unit or not, and regardless of the temperatures required). The cooling source 110 is illustrated as an open-top container 119, such as a Dewar flask, containing a liquid cryogen C, such as nitrogen. However, it is also possible to use a closed-cycle refrigerator or any other device capable of supplying the cooling necessary to levitate a magnet above a superconducting element after field cooling is complete. In the case where the wall 104 of the first portion 102a of the cryostat 102 makes contact with the cryogenic fluid C, as illustrated, it should be appreciated that there is only negligible thermal transfer to the portion of the wall 104 adjacent the vessel, since: (1) the wall 104 may be formed of a thin material having low thermal conductivity; and (2) the portion of the wall 104 adjacent to the vessel is surrounded by the ambient, room-temperature environment. To permit the superconducting element 106 to rotate, a roller bearing assembly 120 comprising one or more annular roller bearings 122 supports the first portion of the cryostat 102a, including the wall 104 defining the chamber 108. As should be appreciated from viewing FIG. 5, these roller bearings 122 permit the first portion of the cryostat 102a housing the superconducting element 102 to rotate about an axis, which is defined as the axis of rotation. A bearing housing 124 or the like structure for supporting the bearing(s) 122 is secured to an adjacent stable support structure 126. In the illustrated embodiment, a motive device includes an endless belt 128 that serves to transmit rotational motion from the pulley 129 keyed or attached to the shaft 130 of a motor 131 to the first portion of the cryostat 102a. The motor 131 may be a variable speed, reversible electric motor, but the use of other types of motors to create the rotary motion necessary to cause the superconducting element 106, and more particularly, the first portion of the cryostat 102a, to rotate is possible. The vessel 132 containing the fluid to be mixed (which as described below can also be in the form of a centrifugal pumping head for transmitting a fluid) is positioned adjacent to the rotating superconducting element 106, preferably on a stable support surface T fabricated of a material that does not interfere with the magnetic field created by the bearing 134. As previously noted, the vessel 132 can be a rigid vessel of any shape (open top, sealed having an inlet or outlet, cylindrical with a hollow center, such as a pipe, or even a flexible plastic bag (by itself, with rigid inserts, or inserted into a rigid or semi-rigid vessel)). The only requirement is that the vessel 132 employed is capable of at least temporarily holding the fluid F (or gas) being mixed or pumped. To create the desired mixing action in this embodiment, a magnetic element 134 is positioned in the vessel 132 and simultaneously levitated and rotated by the superconducting element 106. More specifically, the first portion of the cryostat 102a containing the superconducting element 106, thermal link 118, and the evacuated chamber 108 is rotated as a result of the rotational motion transmitted by the endless belt 128. This rotation causes the magnetic element 134 in the vessel 124 to rotate and either pump or mix the fluid F held therein. In the case where the chamber 104 is evacuated or insulated, the magnetic element 134 is rotated in a stable, reliable fashion while the desired thermal separation between the cold superconducting element 106 supplying the levitation force, the vessel 124, and hence the fluid F, is achieved. The magnetic element 134 may include a plurality of mixing blades B (see FIGS. 6a and 6b), vanes V (not shown, but see FIG. 7), or like structures to create an impeller. However, again referring back to FIG. 5, a low-profile, disk-shaped magnetic element 134 may also be used to provide the desired mixing action, especially for particularly delicate fluids, such as blood or other types of cell suspensions. As perhaps best understood by viewing FIGS. 6a and 6b together, the magnetic element 134 may include at least two magnets 135a, 135b. These magnets 135a, 135b not only serve to generate the magnetic field that causes the magnetic element 134 to levitate above the superconducting element 106, but also transmit rotational motion thereto. As should be appreciated by one of ordinary skill in the art, the magnetic field generated by the magnets 135a, 135b must be axially non-symmetrical relative to the axis of rotation of the superconducting element 106 in order to create the magnetic coupling necessary to efficiently transmit the rotary motion. In one embodiment, the magnets 135a, 135b are disk-shaped and polarized along a center vertical axis (see FIG. 6b, showing permanent magnets 135a, 135b of alternating polarities (S-South; N-North) levitating above a pair of superconducting elements 106a, 106b, with the corresponding action arrows denoting the direction and axis of polarity). These magnets 135a, 135b can be fabricated from a variety of known materials exhibiting permanent magnetic properties, including, but not limited to, Neodymium-Iron-Boron (NdFeB), Samarium Cobalt (SmCo), the composition of aluminum, nickel, and cobalt (Alnico), ceramics, or combinations thereof. The magnets 135a, 135b may be connected by a piece of a matrix material M, such as plastic. Alternatively, the magnets 135a, 135b may each be embedded in separate pieces of a matrix material M, or may be embedded in a single unitary piece of material (not shown). Also, as previously mentioned, the magnetic element 134 may carry one or more optional blades B, vanes or like structures to enhance the degree of pumping or mixing action supplied during rotation. In another possible embodiment, the second portion of the cryostat 102b including the cooling source (either a liquid cryogen container (open top, sealed with inlet/outlet ports, or a refrigerator)) may be rigidly attached to the first portion 102a and both components may be simultaneously rotated together (see the dashed lines at the top of the open cooling container 119 in FIG. 5). The rotational motion may be supplied by an endless belt/motor combination, as described above, or alternatively may be provided through a direct coupling between the second portion of the cryostat 102b (comprising any type of cooling source) and an inline shaft of a motor or similar motive device (not shown). As briefly mentioned above, it is possible to use this embodiment of the system 100 without evacuating, insulating, or otherwise thermally separating the superconducting element 106 from the ambient environment, such as for mixing or pumping cold (cryogenic) or non-temperature sensitive fluids. In that case, there is no specific need for a wall 104 or chamber 108 surrounding the superconducting element 106, since there is no need for thermally separating it from the structure supporting the vessel 132. Even with this modification, reliable and stable levitation of the magnetic element 134 is still possible. From the foregoing, it should be appreciated that the same driving mechanism and cryostat shown in FIG. 5 can be used for pumping a fluid instead of mixing it. One version of a container or vessel 132 in the form of a centrifugal pumping head 150 is shown in FIG. 7. This pumping head 150 includes a pumping chamber 152 having an inlet 154 and an outlet 156 (which of course, could be reversed, such as in a non-centrifugal pumping head (see FIG. 2)). The chamber 150 contains the levitating magnetic element 158, which as shown may include a plurality of vanes V, or may alternatively carry a plurality of blades (not shown). At least two permanent magnets 160a, 160b having different polarities are embedded or otherwise included in the magnetic element 158, which may be substantially comprised of an inert matrix material M having any particularly desired shape to facilitate the pumping or mixing action. As described above, these magnets 160a, 160b provide both levitation and torque transmission as a result of the adjacent rotating superconducting element 106. As should be appreciated, one advantage of providing the driving force for the levitating magnetic element 158 from the same side of the vessel/pumping head 150 from which the levitating force originates is that the fluid inlet 154 (or outlet 156, in the case where the two are reversed) may be placed at any location along the opposite side of the vessel/pumping head 150, including even the center, without interfering with the pumping or mixing operation. Also, this same side of the vessel/pumping head 150 may be frusto-conical or otherwise project outwardly, as illustrated, without interfering with the driving operation or necessitating a change in the design of the magnetic element 134, 158. As briefly noted above, in some instances the opening in a vessel may be too small to permit an even moderately sized pumping or mixing element 134 to be inserted into the fluid F. In such a case, alternate versions of a magnetic element 134 meeting this particular need are shown in FIGS. 8a-8c. In the first alternate version, the magnetic element 134a is in the form of a slender rod formed of an inert matrix material M carrying one of the levitating/driven magnets 135a, 135b at or near each end. As should be appreciated, this pumping or mixing element 134a may be easily turned to an upstanding position and inserted in the opening. Upon then coming into engagement with the rotating superconducting element 106, the pumping or mixing element 134a would simultaneously levitate and rotate to pump or mix a fluid held in the vessel. To further facilitate insertion in the narrow opening, the matrix material M may be an elastomeric material or another material having the ability to freely flex or bend. A second version of a pumping or mixing element 134b for use with a vessel having a narrow opening is shown in FIG. 8b. The pumping or mixing element 134b includes first and second thin rods 180 formed of a matrix material M. The rods 180 each carry the levitating/driven magnets 135a, 135b at each end thereof, with at least two magnets having the identical polarity being held on each different rod. In one version, the rods 180 are pinned about their centers (note connecting pin 182) and are thus capable of folding in a scissor-like fashion. As should be appreciated from FIG. 8c, this allows the pumping or mixing element 134b to be folded to a low-profile position for passing through the opening of the vessel 124. The rods 182 of the pumping or mixing element 134b may then separated upon coming into engagement with the rotating superconducting element 106 positioned adjacent to the bottom of the vessel 132. Since magnets 135a or 135b having the same polarity are positioned adjacent to each other, the corresponding ends of the rods 180 repel each other as the pumping or mixing element 134b rotates. This prevents the rods 180 from assuming an aligned position once in the vessel 132. As should be appreciated, instead of pinning two separate rods 180 together to form the pumping or mixing element 134b, it is also possible to integrally mold the rods 180 of a flexible material to form a cross. This would permit the rods 180 of the pumping or mixing element 134b to flex for passing through any narrow opening, but then snap-back or otherwise return to the desired configuration for levitating above the superconducting element 106. In accordance with yet another aspect of the present invention, a third version of a pumping or mixing system 200 is disclosed. In this third embodiment, which is illustrated in FIGS. 9, 9a, 9b, and 10, the forces for driving and levitating the pumping or mixing element 204 are supplied from the same side of a fluid vessel 202 (which is shown as an open-top container, but as described above, could be a sealed container, a pumping chamber or head, a flexible bag, a pipe, or the like). In this system 200, the pumping or mixing element 204 actually includes two magnetic subsystems: a first one that serves to levitate the pumping or mixing element 204, which includes a first magnet 206, preferably in the form of a ring, and a second magnetic subsystem that includes at least two alternating polarity driven magnets 208a, 208b, preferably positioned inside of the first, ring-shaped magnet 206, to transmit driving torque to the magnetic element (see FIGS. 9a and 9b). FIG. 9 shows one embodiment of the overall system 200 in which the ring-shaped permanent magnet 206 provides the levitation for the pumping or mixing element 204. Polarization of the ring magnet 206 is vertical (as shown by the long vertical arrows in FIG. 9b). The driven magnets 208a, 208b are shown being disk-shaped and having opposite or alternating polarities (see corresponding short action arrows in FIG. 9b representing the opposite polarities) to form a magnetic coupling and transmit the torque to the levitating pumping or mixing element 204. Levitation magnet 206 and driven magnets 208a, 208b are preferably integrated in one rigid structure such as by embedding or attaching all three to a lightweight, inert matrix material M, such as plastic or the like. To correspond to the ring-shaped levitation magnet, the superconducting element 210 for use in this embodiment is annular, as well. This superconducting element 210 can be fabricated of a single unitary piece of a high-temperature superconducting material (YBCO or the like), or may be comprised of a plurality of component parts or segments. Upon being cooled to the transition temperature in the presence of a magnetic field and aligning with the ring-shaped permanent magnet 206 producing the same magnetic field, the superconducting ring 210 thus provides the combined repulsive/attractive, spring-like pinning force that levitates the pumping or mixing element 204 in the vessel 202 in an exceptionally stable and reliable fashion. In FIG. 9, the vessel is shown as being supported on the outer surface of a special cryostat 220 designed for use with this system 200, a detailed explanation of which is provided in the description that follows. However, it is within the broadest aspects of the invention to simply support the vessel 202 on any stable support structure, such as a table (not shown), as long as it remains sufficiently close to the superconducting element 210 to induce the desired levitation in the pumping or mixing element 204 held therein. As in the embodiments described above, a motive device is used to impart rotary motion to the pumping or mixing element 204, and is preferably positioned adjacent to and concentric with the annular superconducting element 210. One example of a motive device for use in the system 200 of this third embodiment includes driving magnets 212a, 212b that correspond to the driven magnets 208a, 208b on the pumping or mixing element 204 and have opposite polarities to create a magnetic coupling (see FIG. 9). The driving magnets 212a, 212b are preferably coupled to a shaft 214 also forming part of the motive device. The driving magnets 212a, 212b may be attached directly to the shaft 214, or as illustrated in FIG. 9, may be embedded or attached to a matrix material (not numbered in FIG. 9, but see FIG. 9b). By positioning the driving magnets 212a, 212b close to the pumping or mixing element 204, such as by inserting them in the opening or bore 219 defined by the annular superconducting element 210, and rotating the shaft 214 using a motor 216 also forming a part of the motive device, synchronous rotation of the levitating pumping or mixing element 204 is induced. The pumping or mixing element 204 may include one or more blades B that are rigidly attached to the ring or levitation magnet 206 (or any matrix material forming the periphery of the pumping or mixing element 204). However, it remains within the broadest aspects of the invention to simply use a smooth, low-profile magnetic element (see FIG. 5) to provide the desired mixing action. As shown in FIGS. 9 and 10 and briefly mentioned above, the mixing or pumping system 200 including the pumping or mixing element 204 comprised of the magnetic levitation ring 206 and separate driven magnets 208a, 208b may use a special cryostat 220 to ensure that reliable and stable rotation/levitation is achieved. As perhaps best shown in the cross-sectional side view of FIG. 9, the cryostat 220 includes a cooling source 221 for indirectly supplying the necessary cooling to the superconducting element 210, which as described below is supported and contained in a separate portion of the special cryostat 220. In the illustrated embodiment, the cooling source 221 (not necessarily shown to scale in FIG. 9) includes a container 222, such as a double-walled Dewar flask, in which a first chamber 224 containing a liquid cryogen C (nitrogen) is suspended. A second chamber 223 defined around the first chamber 224 by the double wall container 222 is preferably evacuated or insulated to minimize thermal transfer to the ambient environment, which is normally at room temperature. A port 226 is also provided for filling the suspended chamber 222 with the chosen liquid cryogen C, as well as for possibly allowing any exhaust gases to escape. As with the first and second embodiments described above, the cooling source 221 may instead take the form of a closed-cycle refrigerator (not shown), in which case the double wall container 222 may be entirely eliminated from the system 200. A thermal link 228 is provided between the cooling source (in the illustrated embodiment, the container 222) and a platform 230 suspended in the cryostat 220 for supporting the superconducting ring 210. The use of the platform 230 is desirable to ensure that the temperature of the superconducting element 210 is kept below the transition temperature, which in the case of a “high temperature” superconducting material (such as YBCO) is most preferably in the range of between 87-93 Kelvin. However, the use of the platform 230 is not critical to the invention or required as part of the special cryostat 220, since the thermal link 228 could extend directly to the superconducting element 210. The thermal link 228 may be a solid rod of material, including copper, brass, aluminum or any other material having a relatively high thermal conductivity. Instead of a solid rod, it is also possible to provide an open channel 232 in the thermal link 228, especially when a liquid cryogen C capable of flowing freely, such as nitrogen, is used as the cooling source 221. This channel 232 allows the cryogen C from the suspended container 224 to reach the platform 230 directly. Of course, the direct contact with the cryogen C may provide more efficient and effective cooling for the superconducting element 210. The ring-shaped platform 230 that supports the superconducting element(s) 210 and supplies the desired cooling via thermal conduction may be made of copper, brass, aluminum, or another material having good thermal conductivity. It may be in the form of a solid ring, as illustrated, or may be in the form of a hollow ring (such as a substantially circular or elliptical torus, not shown). This would allow the liquid cryogen C to flow completely around the ring to further increase the efficiency with which the cooling is transferred to the superconducting element 210. In any case, where a platform 230 is used, care should be taken to ensure that full contact is made with at least a majority of the corresponding surface of the superconducting element 210 to ensure that the desired smooth, even, and reliable levitation is achieved. To reduce the thermal transfer to the vessel 202 in the case where a temperature sensitive fluid is being pumped or mixed by the system 200, a ring-shaped wall or enclosure 234 surrounding the platform 230 and the annular superconducting element 210 defines a first chamber 235. In addition, a hollow cylindrical wall or enclosure 236 may also surround the thermal link 232 and define a second chamber 237. Preferably, these first and second chambers 235, 237 are evacuated or insulated to minimize thermal transfer between the ambient environment and the cold elements held therein. In a preferred embodiment, each enclosure 234, 236 is fabricated from non-magnetic stainless steel, but the use of other materials is of course possible, as long as no interference is created with the levitation of the magnetic element 204. As with the second embodiment described above, it is also possible to use the system 200 of the third embodiment to pump or mix cryogenic or non-temperature sensitive fluids, in which case there is no need to evacuate or insulate the enclosures 234, 236, or to even use the special cryostat 220 described herein. As should be appreciated, it is possible to create the chambers 235, 237 defined by the enclosures 234, 236 and the chamber 223 such that all three are in fluid communication and thus represent one integrated vacuum space (not shown). This facilitates set-up, since all three chambers 223, 235, 237 may be evacuated in a single operation, such as by using a vacuum source coupled to a single valve (not shown) provided in one of the chambers. However, separately evacuating each chamber 223, 235, 237 is of course entirely possible. Also, instead of evacuating the chambers 223, 235, 237, some or all may be instead filled with an insulating material (not shown). As should be appreciated, to rotate the pumping or mixing element 204 in this embodiment, it is desirable to place the drive magnets 212a, 212b in close proximity to the magnetic element, but preferably on the same side of the vessel 202 as the superconducting element 210. Accordingly, the special cryostat 220, and more specifically, the wall or enclosure 234 defines a room-temperature cylindrical bore or opening 240 that allows for the introduction of the end of the shaft 214 carrying the driving magnets 212a, 212b, which are at room temperature. As a result of this arrangement, the shaft 214, which is part of the motive device, is concentric with the superconducting element 210. The shaft 214 is also positioned such that the driving magnets 212a, 212b align with the driven magnets 208a, 208b on the pumping or mixing element 204 when the levitating magnet 206 is aligned with the superconducting element 210. Thus, despite being positioned adjacent to and concentric with the superconducting element 210, the shaft 214 and driving magnets 212a, 212b remain at room temperature, as does the vessel 202, the fluid F, and the pumping or mixing element 204. An example of one possible embodiment of a centrifugal pumping head 250 for use with the system 200 of FIG. 9 is shown in FIG. 11. The head 250 includes a levitating magnetic element 252 that carries one or more optional blades or vanes V (which are upstanding in the side view of FIG. 11), a fluid inlet 254 (which as should be appreciated can be in the center at one side of the pumping head 250 in view of the fact that the levitation and driving forces are both supplied from the same side of the vessel 202), a fluid outlet 256, driven magnets 258a, 258b, and a ring shaped levitation magnet 260. In yet another possible embodiment of the invention, as shown in the cross-sectional view of FIG. 12, the system 300 includes a pumping or mixing element 302 adapted for inline use, such as when the vessel is in the form of a hollow pipe 304. The pumping or mixing element 302 includes first and second spaced levitating magnets 305a, 305b, one of which is preferably positioned at each end to ensure that stable levitation is achieved. The magnets 305a, 305b preferably correspond in shape to the vessel, which in the case of a pipe 304, means that the magnets are annular. The magnets 305a, 305b are carried on a shaft 306 forming a part of the pumping or mixing element 302, which further includes a driven magnet 308. The driven magnet 308 may be comprised of a plurality of sub-magnets 308a . . . 308n having different polarities and arranged in an annular configuration to correspond to the shape of the pipe 304 serving as the vessel in this embodiment (see FIG. 12b). All three magnets 305a, 305b, and 308 may be embedded or attached to an inert matrix material M, such as plastic, that provides the connection with the shaft 306. The shaft 306 of the pumping or mixing element 302 may also carry one or more blades B. First and second cryostats 310a, 310b may also be provided. As perhaps best understood with reference to the cross-sectional view of FIG. 12a, the first “cryostat” 310a includes a superconducting element for levitating the magnetic element in the form of an annular superconducting element 312a. The superconducting element 312a is suspended in a chamber 314a defined by the cryostat 310a, which may be evacuated or insulated to prevent thermal transfer to the pipe 304 or the passing fluid F. The cryostat 310a may include an inner wall adjacent to the outer surface of the pipe 304 (not shown), but such a wall is not necessary in view of the thermal separation afforded by the evacuated or insulated space surrounding the superconducting element 312a. The superconducting element 312a may be coupled to annular support platform 316a, which in turn is thermally linked to one or more cooling sources 318. The connection is only shown schematically in FIG. 12, but as should be appreciated from reviewing the foregoing disclosure, may include a rod that serves to thermally link a container holding a liquid cryogen or a closed cycle refrigerator to the superconducting element 312a. While not shown in detail, “cryostat” 310b may be identical to the cryostat 310a just described. With reference now to FIGS. 12b and 12c, two different motive devices for rotating the pumping or mixing element 302 in the pipe 304 are disclosed. The first motive device includes a driving magnet assembly 320 that is rotatably supported on a bearing 322, such as a mechanical ball or roller bearing, carried on the outer surface of the pipe 304. The magnet assembly 320 includes a plurality of driving magnets 320a . . . 320n, also having different or alternating polarities. As with the driven magnets 308a . . . 308n, the driving magnets 320a . . . 320n are embedded or attached to an inert, non-magnetic matrix material M, such as plastic. An endless belt 324 also forming a part of the motive device frictionally engages both the driving magnet assembly 320 and a pulley W carried on the spindle or shaft of a motor (preferably a reversible, variable speed electric motor, as described above). As should now be appreciated, the pumping or mixing element 302 is caused to levitate in the pipe 304 as a result of the interaction of the levitation magnets 305a, 305b with the adjacent superconducting elements 310a, 310b, which may be thermally separated from the outer surface of the pipe 304 (or the adjacent inner wall of the cryostat 310a, 310b, if present). Upon then rotating the magnetic drive assembly 320, the magnetic element 302 is caused to rotate in the pipe 304 serving as the vessel to provide the desiring pumping or mixing action. Even if the fluid F is flowing past the magnetic pumping or mixing element 302, it remains held in place in the desired position in the pipe 304 as a result of the pinning forces created by the superconducting elements 310a, 310b acting on the levitation magnets 305a, 305b. The second version of a motive device is shown in the cross-sectional view of FIG. 12c, which is similar to the cross-section taken in FIG. 12b. However, instead of a magnetic driving assembly 320, endless belt 324, and motor, rotary motion is imparted to the pumping or mixing element 302 by creating an electrical field around the pipe 304. This may be done by placing a winding 326 around the outer wall of the pipe 304 and supplying it with an electrical current, such as from a power supply 328 or other source of AC current. Since the pumping or mixing element 302 carries magnets 308a . . . 308n having different polarities, the resulting electric field will thus cause it to rotate. Yet another embodiment of an inline pumping or mixing system 400 is shown in FIG. 13. The cryostat 402 in this case is essentially positioned directly in the path of fluid flow along the pipe 403, thus creating an annular (or possibly upper and lower) flow channels 404a, 404b. The cryostat 402 has an outer wall 406 that defines a chamber 408 for containing a superconducting element 410. The superconducting element 410 may be annular in shape, in which case the chamber 408 is of a similar shape. The chamber 408 may also be evacuated or insulated to thermally separate the superconducting element 410 from the outer wall 406. The superconducting element 410 is thermally linked to a cooling source 412, as shown schematically in FIG. 13. It should be appreciated that this cryostat 402 is similar in many respects to the one described above in discussing the third embodiment illustrated in FIG. 9, which employs a similar, but somewhat reoriented, arrangement. The wall 406 creating annular chamber 408 for the superconducting element 410 defines a room temperature bore or opening 414 into which a portion of a motive device may be inserted, such as the end of a shaft 416 carrying at least two driving magnets. FIG. 13 illustrates the motive device with three such driving magnets 418a, 418b, 418c, one of which is aligned with the rotational axis of the shaft 416. The opposite end of the shaft 416 is coupled to a motor (not numbered), which rotates the shaft and, hence, the driving magnets 418a, 418b, and 418c. The magnets 418a, 418b, 418c may be coupled directly to the shaft 416, or embedded/attached to an inert matrix material M. The magnetic pumping or mixing element 420 is positioned in the pipe 403 adjacent to the outer wall 406 of the cryostat 402. The pumping or mixing element 420 includes a levitation magnet 422 that corresponds in size and shape to the superconducting element 410, as well as driven magnets 424a, 424b, 424c that correspond to the driving magnets 418a, 418b, and 418c. The levitation magnet 422 and driven magnets 424a-424c are attached to or embedded in a matrix material M, which may also support one or more blades B that provide the desired pumping or mixing action. In operation, the motor rotates the shaft 416 to transmit rotary motion to the driving magnets 418a, 418b and 418c. As a result of the magnetic coupling formed between these magnets 418a-c and the opposite polarity driven magnets 424a-c, the pumping or mixing element 420 is caused to rotate in the fluid F. At the same time, the pumping or mixing element 420 remains magnetically suspended in the fluid F as the result of the pinning forces created between the superconducting element 410 and the levitation magnet 422. The operation is substantially the same as that described above with regard to the third embodiment, and thus will not be explained further here. Various optional modifications may in some circumstances enhance the set-up or performance of any of the systems described above, or instead adapt them for a particular use, purpose, or application. As noted previously, the disposable vessel or container for holding the fluid undergoing pumping or mixing may be in the form of a flexible bag. An example of such a bag 500 is shown in FIG. 14, along with the system 100 for levitating the pumping or mixing element 502 of FIG. 5. The bag 500 may be sealed with the fluid F and pumping or mixing element 502 (which may take the form of one of the several pumping or mixing elements disclosed above or an equivalent thereof, such as one that is disk-shaped and having blades) inside prior to distribution for use, or may be provided with a sealable (or resealable) opening that allows for the fluid and pumping or mixing element to be introduced (possibly pre-sterilized, and introduced along with a cell nutrient media, buffer, reagent, or the like, as discussed below) and later retrieved. Both the pumping or mixing element 502 and bag 500, whether permanently sealed or resealable, may be fabricated of inexpensive, disposable materials, such as polymers (plastics). Accordingly, both can simply be discarded after the pumping or mixing operation is completed and the fluid F is retrieved. It should also be appreciated that the vertical dimension of the bag 500 is defined by the volume of fluid F held therein. Thus, instead of placing the bag 500 containing the pumping or mixing element 502 directly on the surface of the cryostat, table T, or other support structure adjacent to the superconducting element 106, it is possible to place the flexible bag 500 in a separate rigid or semi-rigid container (not shown). This helps to ensure that the fluid F provides the bag 500 with a sufficient vertical dimension to permit the magnetic element to freely rotate in a non-contact fashion. Alternatively, the bag 500 may include internal or external reinforcements (such as, for example, structural reinforcing ribs or the like, not shown) to enhance its rigidity without interfering with the rotation of the pumping or mixing element 502. In cases where the pumping or mixing element 502 is prepackaged in the bag 500, with or without fluid, it may inadvertently couple to adjacent magnets or other metallic structures. Breaking this coupling may render the bag susceptible to puncturing, tearing, or other forms of damage. Accordingly, as shown in FIGS. 14a and 14b, it may be desirable to hold the pumping or mixing element 502 place prior to use with any of the systems described herein, especially in cases where it is sealed inside the vessel/bag 500 during manufacturing. As shown in FIG. 14a, one manner of holding the element 502 in place is to use an attachment 520, cover, or similar device including a coupler 522 formed of a ferromagnetic material or the like adjacent to the bag 500. This coupler 522 is thus attracted to and forms a magnetic coupling with the pumping or mixing element 502 when the attachment 520 is in place. As a result of this coupling, the pumping or mixing element 502 is prevented from coupling with magnets in adjacent bags or other magnetic structures (not shown). The attachment 520 should be fabricated of a non-magnetic material, such as rubber. In the operative position, the coupler 522 shields the magnetic field created by the pumping or mixing element 502. When the assembly including the bag 500 and the pumping or mixing element 502 is ready for use, the attachment 520 may simply be removed from the bag 500 to break the magnetic coupling between the pumping or mixing element 502 and the coupler 522. A second manner of keeping the pumping or mixing element 502 at a desired location to facilitate coupling with the particular levitation/rotation devices used is to provide the bag 500 with a “centering” structure, such as post 528. As shown in the embodiment illustrated in FIG. 14b, which includes the basic levitation and rotation system of FIG. 5, this post 528 may take the form of a rigid or semi-rigid piece of material projecting into the interior of the bag 500. Preferably, the post 528 is formed of the same material as the bag 500 or other container (plastic) and has an outer diameter that is less than the inner diameter or a bore or opening formed in the pumping or mixing element 502. As should be appreciated, the pumping or mixing element 502 may be held in place on the post 528 by gravity during shipping, prior to use, and even between uses. As illustrated, the upper end of the post 528 could also include a T-shaped or oversized head 529 (which could have a spherical, pyramidal, conic, or cubic shape). Alternatively, the head could have one or more transversely extending, deformable cross-members, an L-shaped hook-like member, or another type of projection for at least temporarily capturing the pumping or mixing element 502 to prevent it from inadvertently falling off when not in use. Of course, the positioning of the head 529 for capturing the pumping or mixing element 502 is preferably selected such that it does not interfere with the free levitation or rotation. As should be appreciated, the post 528 provides not only centering function, but also holds the pumping or mixing element 502 in place in case it accidentally decouples during the pumping or mixing operation. This significantly eases the process of returning the pumping or mixing element 502 to the proper position for initiating or resuming levitation/rotation by the corresponding system (which may be, for example, systems 10, 100, 200, 300, 800 etc.). In FIG. 14b, this post 528 is adapted to receive the pumping or mixing element 502, which has a corresponding opening (and thus, may be annular or have any other desired shape or size). Since the post 528 preferably includes an oversized head portion 529 that keeps the pumping or mixing element 502 in place, including before a fluid is introduced, the vessel 500 may be manufactured, sealed (if desired), shipped, and stored prior to use with the pumping or mixing element 502 already in place. The vessel 500 may also be sterilized as necessary for a particular application, and in the case of a flexible bag, may even be folded for compact storage. As should be appreciated, the post 528 also serves the advantageous function of keeping the pumping or mixing element 502 substantially in place (or “centered”) should it accidentally become decoupled from the adjacent motive device, which as in this case is a rotating annular superconducting element 106. However, the centering post 528 could also be used in the embodiment of FIG. 9 as well by simply forming a center opening in the pumping or mixing element 204. In the illustrated embodiment, the post 528 is shown as being formed by an elongated rod-like structure inserted through one of the nipples 530 typically found in the flexible plastic bags frequently used in the bioprocessing industry (pharmaceuticals, food products, cell cultures, etc.). The oversized head portion 529 is preferably formed of a material that is sufficiently flexible/deformable to easily pass through the opening in the nipple 530. A conventional clamp 531, such as a cable or wire tie, may be used to form a fluid-impervious seal between the nipple 530 and the portion of the post 528 passing therethrough, but other known methods for forming a permanent or semi-permanent seal could be used (e.g., ultrasonic welding in the case of plastic materials, adhesives, etc.). Any other nipples 530 present (shown in phantom in FIG. 14b) may be used for introducing the fluid prior to mixing, retrieving a fluid during mixing or after mixing is complete, or circulating the fluid in the case of a pumping operation. Advantageously, the use of the rod/nipple combination allows for easy retrofitting. Nevertheless, instead of using a separate rod, the post 528 may be integrally formed with the material forming the vessel 500, either during the manufacturing process or as part of a retrofit operation. The oversized head portion 529 may be cross-shaped, disc-shaped, L-shaped, Y-shaped, or may have any other desired shape, as long as the corresponding function of capturing the pumping or mixing element 502 is provided. The head portion 529 may be integrally formed, or alternatively may be provided as a separate component that is clamped or fastened to the post 528. In yet another embodiment, the vessel 500 may also include a structure that helps to ensure that proper alignment is achieved between the centering post 528 and an adjacent structure, such as a device for rotating and/or levitating the pumping or mixing element 502. In the embodiment of FIG. 14b, this alignment structure is shown in the form of an alignment post 532 projecting outwardly from the vessel 500 and co-extensive with the centering post 528. The adjacent motive device, which as shown as including a cryostat 102 containing a rotating superconducting element 106, includes a locator bore 533. This bore 533 is concentric with the superconducting element 106 and is sized and shaped for receiving the alignment post 532 (which may have any desired cross-sectional shape, including circular, elliptical, square, polygonal, etc.). As a result of the centering and alignment posts 528,532, assurance is thus provided that the pumping or mixing element 502 is in the desired position for forming a coupling with an adjacent motive device, such as the cryostat 102 housing the rotating superconducting element 106 (which may both rotate together, as described above). This is particularly helpful for properly aligning the pumping or mixing element 502 with the cryostat, such as cryostat 102, in the case of opaque vessels or adjacent containers, sealed or aseptic containers, large containers, or where the fluid is not clear. Instead of forming the alignment post 532 from an elongated rod inserted into a nipple 530 or the like, it should be appreciated that it may also be integrally formed with the vessel 500 during manufacturing, or later during a retrofit. FIG. 14b also shows the centering post 528 projecting upwardly from a bottom wall of the vessel 500, but as should be appreciated, it could extend from any wall or other portion thereof. For example, the rod serving as both the centering post 528 and the alignment post 532 may be positioned substantially perpendicular to a vertical plane. In many of the above-described embodiments, the pumping or mixing action is essentially localized in nature. This may be undesirable in some situations, such as where the vessel or volume of fluid is relatively large compared to the pumping or mixing element. To solve this problem, the particular system used to supply the pumping or mixing action may be provided with a motive device for physically moving the superconducting element (which may also be simultaneously rotated), which will cause the levitating magnetic pumping or mixing element to follow a similar path. With reference to the schematic view of FIG. 14c, and by way of example only, the particular arrangement is shown in use on the system 100 of FIG. 5, but with the bag 500 of FIG. 14. In addition to a motive device 540 for rotating the first portion of the cryostat 102a (which may comprise the bearing(s) 120, endless belt 128, motor 131, shaft, and pulley) and a cooling source 541, the system 100 may include a second motive device 542. In one embodiment, this second motive device 542 (shown schematically in dashed line outline only in FIG. 14b) is capable of moving the first portion of the cryostat 102a, and hence the superconducting element 106, to and fro in a linear fashion (see action arrows L in FIG. 14c). Thus, in addition to levitating and rotating the pumping or mixing element 502, the side-to-side motion allows it to move relative to the bag 500 or other vessel containing the fluid. This advantageously permits non-localized pumping or mixing action to be provided. The motive device 542 may include a support structure, such as a platform (not shown) for supporting all necessary components, such as the first portion of the cryostat 102a (or the entire cryostat, such as in the embodiment of FIG. 9), the first motive device 540 for rotating one of the superconducting element 106 (or the magnetic pumping or mixing element 502 such as in the embodiment of FIG. 9), and the cooling source 541 (which may form part of the cryostat as shown in FIG. 9, or may be a separate component altogether, as shown in FIG. 2). Instead of using a linear motion device, it should also be appreciated that the second motive device 542 may be capable of moving the superconducting element in a circular or elliptical pattern relative to the fixed position of the bag 500 or other vessel, or in any other direction that will enhance the overall mixing or pumping action provided by the rotating pumping or mixing element 502. Also, the bag 502 or vessel may be separately rotated or moved to further enhance the operation (see the above-description of the embodiment of FIG. 3). Ensuring that the magnetic pumping or mixing element is proper for a particular system and are sized properly may also be important. To do so, it is possible to provide a transmitter in one of the magnetic element or the vessel for generating a signal that is received by a receiver in the system (or vice versa), such as one positioned adjacent to the superconducting element or elsewhere. An example of one possible configuration is shown in FIG. 14, wherein the transmitter 550 is provided on the pumping or mixing element 502 itself and the receiver 560 is positioned in the cryostat 102 (but see FIG. 14a, wherein the transmitter 550 or receiver 560 is provided in the bag serving as the vessel). A controller for the system, such as a computer (not shown) or other logic device, can then be used to maintain the system for rotating the pumping or mixing element 502 in a non-operational, or “lock-out,” condition until the receiver and transmitter 550, 560 correspond to each other (that is, until the transmitter 550 generates an appropriate signal that is received by the receiver 560). The transmitter/receiver combination employed may be of any type well known in the art, including electromagnetic, ultrasound, optical, or any other wireless or remote signal transmitting and receiving devices. In accordance with another aspect of the invention, a kit is also provided to assist in the set-up of any of the systems previously described. Specifically, and as briefly noted in both this and my prior pending application, it is necessary during field cooling to cool the superconducting element to below its transition temperature in the presence of a magnetic field in order to induce levitation in a permanent magnet producing the same magnetic field. This cooling process causes the superconducting element to “remember” the field, and thus induce the desired levitation in the pumping or mixing element each time it or an additional magnet is placed over the superconducting element. While it is possible to use the magnetic pumping or mixing element itself to produce the magnetic field during field cooling, oftentimes the pumping or mixing element will be sealed in the vessel or container. This makes it difficult, if not impossible, to ensure that the corresponding magnets are properly aligned and spaced from the superconducting element during cooling. To overcome this potential problem, the set-up kit of the present invention as illustrated in FIG. 15 comprises a charging magnet 600 having a size, shape, and magnetic field distribution that is identical to the levitation magnet contained in the particular pumping or mixing element slated for use in one of the pumping or mixing systems previously described. The charging magnet 600 is placed adjacent to the superconducting element 602, such as on the upper surface of the cryostat 604, table (not shown), or other chamber. As illustrated, the charging magnet 600 may further include a spacer 606. This spacer 606 allows the charging magnet 600 to simulate the spacing of the magnetic pumping or mixing element (not shown) above the superconducting element 602 during field cooling. This ensures that the desired levitation height is achieved for the magnetic element (not shown) once the vessel is in position. The spacer 606 is formed of a non-magnetic material to avoid interfering with the charging process. By providing a variety of different sizes, shapes, and configurations of charging magnets in the kit (e.g., annular magnets), it is possible to easily perform field cooling for any corresponding size or shape of levitation magnet in the corresponding magnetic pumping or mixing element, and then simply place the vessel containing the magnetic element over the superconducting element 602 to induce the desired stable, reliable levitation. During field cooling, and regardless of whether the magnetic pumping or mixing element or a separate charging magnet 600 is used to produce the charging magnetic field, it is possible to induce an undesired magnetic state in the superconducting element 602, such as if the position of the pumping or mixing element (not shown) or charging magnet 600 is not correct. Since improper charging may prevent the magnetic pumping or mixing element from levitating in a stable fashion, recharging the superconducting element 602 may be required. To facilitate recharging the superconducting element, it is provided with a heater H, such as an electric heating coil (not shown). By energizing this coil using a power supply P or other source of electrical current (not shown), the superconducting element 602 may be quickly brought up from the transition temperature for recharging. As shown schematically, the power supply P is preferably positioned externally to the cryostat 604. Once the position of the magnetic element or charging magnet 600 is adjusted or corrected, the heater H may be turned off and the superconducting element once again allowed to cool to the transition temperature in the presence of the desired magnetic field. Reference is now made to FIG. 16, which illustrates in a partially cross-sectional side view an embodiment where a container or vessel 700 is sealed having at least a magnetic element 702, rotor, impeller or the like contained therein. The vessel or container 700 may be rigid or semi-rigid or may be flexible. If flexible, a rigid pallet, as disclosed for example in U.S. Pat. No. 6,076,457, to Vallot (which is incorporated herein by reference) may also be employed to provide support for the container, such as during transportation. The container or vessel 700 may have no defined inlet or outlets, or may have any desired number of inlets or outlets of any type known in the art, such as for introducing fluids, recovering fluids during pumping or after mixing is complete, or relieving pressure from the container (e.g., gas), either as a result of biological activity or at the time of introducing a fluid. One example of a suitable container is the “sachet,” as disclosed in the art (U.S. Pat. Nos. 6,186,932, 5,988,422, and 5,350,080, the disclosures of which are incorporated herein by reference). Preferably, the vessel or container 700 has a volume of greater than 10 liters (in which conventional magnetic stirrer bar arrangements are generally incapable of providing adequate pumping or mixing action without the risk of decoupling, generating high shear stresses, or unwanted frictional heating with the sidewalls), but can be in the form of a tank capable of holding several hundred or thousand liters of fluid. To create a sterile pumping or mixing environment, which is desirable for many applications (such as the manufacture or processing of biologically active materials (blood, insulin, etc.), pharmaceuticals, intermediates thereof, or the like), it is possible to sterilize and seal the container or vessel 700 with a sterilized pumping or mixing element 702 contained therein for use as a self-contained unit. In addition to the pumping or mixing element 702, an optional product P, such as a bacterial nutrient culture media, eukaryotic cell nutrient culture media, buffer, reagent, or the like (hereinafter referred to generically as a “product”) may be introduced into the container or vessel 700 prior to sealing it (as is shown in FIG. 16). The product P is typically in the form of a dry powder, but other forms, such as a gel, tablet, fluid suspension/mixture, or the like could also be used. Of course, one latent advantage of providing a pre-sealed, aseptic container or vessel 700 with only the product P and a pumping or mixing element 702 is the significant reduction in the trouble and expense associated with transporting fluid-filled containers or vessels to a location where the pumping or mixing will occur (either during later shipping to a final destination or along an assembly line). In the case of a dry powder, fluid (which could be sterile water, a buffer (to maintain a certain specified pH or a desired osmolality, etc.), reagent, or the like) may be introduced after sealing, but prior to mixing or pumping. As briefly mentioned above, a fitting 704 (which may be any well-known type of sterile or aseptic fitting, swage lock, septum (see, e.g., U.S. Pat. No. 6,090,091 and the other patents cited therein, the disclosures of which are incorporated herein by reference), or the like formed of any type of material (preferably disposable, but possibly also non-disposable)) may be provided to allow for the introduction and/or removal of the fluid (and possibly for the simultaneous introduction and removal of fluid as is required during pumping). Various types of such fittings are well-known in the art, as demonstrated in the '932, '422, and '091 patents cited above, as well as in U.S. Pat. No. 5,350,080, the disclosure of which is also incorporated herein by reference. A vessel 700 with such a fitting 704 is still referred to as “sealed” herein, since it is sealed in the sense that contaminants are kept out. However, it should also be appreciated that a sealed container or vessel 700 could be one without a defined inlet or outlet (e.g., a hermetically sealed bag, box, or the like). Also, as is known in the art, special filters may be used to ensure the sterility of any fluid introduced into the vessel or container 700, as well as special hoods or clean rooms designed to maintain sterile conditions. While the use of conventional durable, lightweight polymeric materials (polypropylene, polyethylene, etc.) for forming the container or vessel 700 is possible, materials having special properties, such as a resistance to ultraviolet light or other types of undesirable energy that may damage sensitive products P, or multi-layered materials may also be used. Examples of specialized multi-layered materials for forming flexible or semi-rigid disposable media containers or vessels are disclosed in U.S. Pat. Nos. 6,168,862,5,998,019, and the various references cited therein, the disclosures of all of which are incorporated herein by reference. As should be appreciated, many of the pumping or mixing systems disclosed herein, and especially systems 100, 200, and 300, are well-adapted for use with vessels or containers 700 having a product P, such as a bacterial cell or eukaryotic nutrient media, and pumping or mixing element 702 in the form of a disk-shaped magnetic rotor or impeller with blades pre-sealed therein to maintain a sterile environment, both before and after pumping or mixing is completed. More specifically, after field charging is complete and any external attachment is removed (see FIG. 14a), the sealed container or vessel 700 including the magnetic element 702 is simply brought into the presence of the superconducting element, as is described above and shown in FIG. 14. This causes the pumping or mixing element 702 to levitate in a stable fashion, while the cold superconducting element remains completely thermally separated/thermally isolated from the vessel or container 700 since it is positioned in an evacuated or insulated space. If not already present, the fluid F may be introduced into the vessel or container 700, such as through any fitting 704 present either before or after levitation in the pumping or mixing element 702 is induced. By then rotating the pumping or mixing element 702 using any of the drive arrangements described herein, it is possible to gently mix the fluid in a sterile or aseptic environment (and possibly pump the fluid F, in the event that the container 700 is provided with a suitable inlet and outlet (not shown, but see FIGS. 2, 7, and 11)). Aside from introducing the fluid, if necessary, no additional external contact or intervention is required, which advantageously allows for the sterile or aseptic environment to be maintained. This advantageously also eliminates the need for introducing a magnetic stirrer bar through a resealable opening in the vessel or a shaft carrying a mixing blade or the like through the vessel or container wall (or a dynamic seal or bearing provided therein), both of which not only increase the effort required to complete the pumping or mixing operation, but also the potential for deleterious contamination. Another advantage of using a disk-shaped magnetic pumping and mixing element, whether with blades or not, is that it eliminates the sharp corners present in magnetic bar stirrers that may deleteriously perforate the flexible bag. Once mixing is complete, the end product (the fluid F containing any media, buffer, reagent, or the like) may then be retrieved or recovered through the fitting 704 in any known manner (preferably one that maintains sterility) and for any known use. In the case where the container or vessel 700 is disposable, it may then simply be discarded with the pumping or mixing element 702 inside, which advantageously avoids the need for clean-up or resterilization. Other systems for levitating pumping or mixing elements are disclosed in commonly owned pending U.S. patent application Ser. No. 09/724,815 and PCT application Ser. No. PCT/US01/31459 (designating the United States), the disclosures of which are both incorporated herein by reference. In summary, a number of systems 10, 100, 200, 300, as well as variations on these systems and related methods, are disclosed that use or facilitate the use of superconducting technology to levitate a magnetic element that, when rotated, serves to pump or mix a fluid. In one system 10, the magnetic pumping or mixing element 14 is placed in a fluid vessel 16 positioned external to a cryostat 12 having an outer wall or other housing 18 for containing a superconducting element 20. A cooling source 24 (either a cryogenic chamber 26, FIGS. 1 and 3 or a refrigerator 48, FIG. 2) thermally linked to the superconducting element 20 provides the necessary cooling to create the desired superconductive effects and induce levitation in the magnetic element 14. Since the magnetic element levitates in the fluid F, no penetration of the vessel walls by mixing or stirring rods is necessary, which eliminates the need for dynamic bearings or seals. Additionally, the outer wall 18 of the cryostat 12 or other housing defines a chamber 25 that thermally isolates and separates the superconducting element 20 from the vessel 16 containing the fluid F and magnetic element 14. The thermal isolation may be provided by evacuating the chamber 25, or filling it with an insulating material. By virtue of this thermal isolation and separation, the superconducting element 20 can be positioned in close proximity to the outer wall or housing 18 adjacent to the vessel 16 and magnetic element 14, thereby achieving a significant reduction in the separation distance or gap G between the magnetic element 14 and the superconducting element 20. This enhances the magnetic stiffness and loading capacity of the magnetic levitating element 14, thus making it suitable for use with viscous fluids or relatively large volumes of fluid. The exceptionally stable levitation provided as a result of the reduced separation distance also significantly reduces the potential for contact between the rotating magnetic element and the bottom or sidewalls of the vessel. This makes this arrangement particularly well-suited for use in fluids that are sensitive to shear stress or the effects of frictional heating. However, since the superconducting element 20 is substantially thermally isolated and separated from the vessel 16, the magnetic element 14, and hence the fluid F contained therein, may be shielded from the cold temperatures generated by the cooling source 24 to produce the desired superconductive effects and the resultant levitation. This allows for temperature sensitive fluids to be mixed or pumped. By using means external to the vessel 16 to rotate and/or stabilize the magnetic element 14 levitating in the fluid F, such as one or more rotating driving magnets coupled to the magnetic element 14, the desired pumping or mixing action is provided. Additional embodiments of systems 100, 200 for pumping or mixing a fluid wherein the necessary motive force is provided from the same side of the vessel at which the superconducting element is positioned are also disclosed, as are systems 300, 400 for rotating an inline magnetic element positioned in a vessel in the form of a pipe or the like. Also, the concept of sealing a pumping or mixing element 702 in a container or vessel 700, such as a flexible bag capable of holding a volume of fluid greater than ten liters, along with a product P to create and maintain a sterile or aseptic environment during the pumping or mixing operation is also disclosed. The foregoing description of various embodiments of the present invention have been presented for purposes of illustration and description. The description is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments described provide the best illustration of the principles of the invention and its practical applications to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled. | <SOH> BACKGROUND OF THE INVENTION <EOH>Most pharmaceutical solutions and suspensions manufactured on an industrial scale require highly controlled, thorough mixing to achieve a satisfactory yield and to ensure a uniform distribution of ingredients in the final product. Agitator tanks are frequently used to complete the mixing process, but a better degree of mixing is normally achieved by using a mechanical stirrer or impeller (e.g., a set of mixing blades attached to a metal rod). Typically, the mechanical stirrer or impeller is simply lowered into the fluid through an opening in the top of the vessel and rotated by an external motor to create the desired mixing action. One significant limitation or shortcoming of such an arrangement is the danger of contamination or leakage during mixing. The rod carrying the mixing blades or impeller is typically introduced into the vessel through a dynamic seal or bearing. This opening provides an opportunity for bacteria or other contaminants to enter, which of course can lead to the degradation of the product. A corresponding danger of environmental contamination exists in applications involving hazardous or toxic fluids, or suspensions of pathogenic organisms, since dynamic seals or bearings are prone to leakage. Cleanup and sterilization are also made difficult by the dynamic bearings or seals, since these structures typically include folds and crevices that are difficult to reach. Since these problems are faced by all manufacturers of sterile solutions, pharmaceuticals, or the like, the U.S. Food and Drug Administration (FDA) consequently promulgated strict processing requirements for such fluids, and especially those slated for intravenous use. Recently, there has also been an extraordinary increase in the use of biosynthetic pathways in the production of pharmaceutical materials, but problems plague those involved in this rapidly advancing industry. The primary problem is that suspensions of genetically altered bacterial cells frequently used to produce protein pharmaceuticals (insulin is a well-known example) require gentle mixing to circulate nutrients. If overly vigorous mixing or contact between the impeller and the vessel wall occurs, the resultant forces and shear stresses may damage or destroy a significant fraction of the cells, as well as protein molecules that are sensitive to shear stresses. This not only reduces the beneficial yield of the process, but also creates deleterious debris in the fluid suspension that requires further processing to remove. In an effort to overcome this problem, others have proposed alternative mixing technologies. The most common proposal for stirring fluids under sterile conditions is to use a rotating, permanent magnet bar covered by an inert layer of TEFLON (polytetrafluoroethylene), glass, or the like. The magnetic bar is positioned in the bottom portion of the agitator vessel and rotated by a driving magnet positioned external to the vessel. Of course, the use of such an externally driven magnetic bar avoids the need for a dynamic bearing, seal or other opening in the vessel to transfer the rotational force from the driving magnet to the stirring magnet. Therefore, a completely enclosed system is provided. This of course prevents leakage and the potential for contamination created by hazardous materials (e.g., cytotoxic agents, solvents with low flash points, blood products, etc.) and eases clean up. However, several well-recognized drawbacks are associated with this mixing technology, making it unacceptable for use in many applications. For example, the driving magnet produces not only torque on the stirring magnetic bar, but also an attractive axial thrust force tending to drive the bar into contact with the bottom wall of the vessel. This of course generates substantial friction at the interface between the bar and the bottom wall of the vessel. This uncontrolled friction generates unwanted heat and may also introduce an undesirable shear stress in the fluid. Consequently, fragile biological molecules, such as proteins and living cells that are highly sensitive to temperature and shear stress, are easily damaged during the mixing process, and the resultant debris may contaminate the product. Moreover, the magnetic bar stirrer cannot generate the level of circulation required to provide effective mixing throughout the entire volume of large vessels, such as bags or agitation tanks having volumes of greater than 10 liters, as are commonly used in commercial production operations. Magnetic stirrer bars also typically include sharp corners that may perforate thin-walled or flexible vessels, such as bags. In yet another effort to eliminate the need for dynamic bearings or shaft seals, some have proposed mixing systems using external magnets that remotely couple the mixing impeller to a motor external to the vessel. A typical magnetic coupler comprises a drive magnet attached to the motor and a stirring magnet carrying an impeller. Similar to the magnetic bar technology described above, the driver and stirrer magnets are kept in close proximity to ensure that the coupling between the two is strong enough to provide sufficient torque. An example of one such proposal is found in U.S. Pat. No. 5,470,152 to Rains. As described above, the high torque generated can drive the impeller into the walls of the vessel creating significant friction. By strategically positioning roller bearings inside the vessel, the effects of friction between the impeller and the vessel wall can be substantially reduced. Of course, high stresses at the interfaces between the ball bearings and the vessel wall or impeller result in a grinding of the mixing proteins and living cells, and a concomitant loss of yield. Further, the bearings may be sensitive to corrosive reactions with water-based solutions and other media and will eventually deteriorate, resulting in frictional losses that slow the impeller, reduce the mixing action, and eventually also lead to undesirable contamination of the product. Bearings also add to the cleanup problems. In an effort to address and overcome the limitations described above, still others have proposed levitated rotors designed to reduce the deleterious effects of friction resulting from magnetically coupled mixers. By using a specially configured magnetic coupler to maintain only a repulsive levitation force in the vertical direction, the large thrust force between the stirring and driving magnets can be eliminated, along with the resultant shear stress and frictional heating. An example of one such arrangement is shown in U.S. Pat. No. 5,478,149 to Quigg. However, one limitation remaining from this approach is that only magnet-magnet interactions provide the levitation. This leads to intrinsically unstable systems that produce the desired levitation in the vertical direction, but are unable to control side-to-side movement. As a result, external contact bearings in the form of bearing rings are necessary to laterally stabilize the impeller. Although this “partial” levitation reduces the friction between the impeller and the vessel walls, it does not totally eliminate the drawbacks of the magnetically coupled, roller bearing mixers previously mentioned. In an effort to eliminate the need for contact or other types of mechanical roller bearings, complex feedback control has been proposed to stabilize the impeller. Typical arrangements use electromagnets positioned alongside the levitating magnet. However, the high power level required to attain only sub-millimeter separations between the levitating magnet and the stabilizing magnets constitutes a major disadvantage of this approach. Furthermore, this solution is quite complex, since the stabilizing magnets must be actively monitored and precisely controlled by complex computer-implemented software routines to achieve even a moderate degree of stability. As a consequence of this complexity and the associated maintenance expense, this ostensible solution has not been accepted in the commercial arena, and it is doubtful that it can be successfully scaled up for use in mixing industrial or commercial scale process volumes. Thus, a need is identified for an improved system having a levitating magnetic element, impeller, rotor, or like element for mixing or pumping fluids, and especially ultra-pure, hazardous, or delicate fluid solutions or suspensions, including those comprised of cell nutrient media, buffers, reagents, or the like. The system would preferably employ a magnetic element that levitates in a stable fashion to avoid contact with the bottom or side walls of the vessel. Since the element levitates in the fluid, no mixing rod or other structure penetrating through the mixing vessel would be necessary, thus eliminating the need for dynamic bearings or shaft seals and all potentially deleterious effects associated therewith. Since penetration is unnecessary, the vessel could be completely sealed with the magnetic element in place during manufacture or otherwise prior to pumping or mixing, possibly along with a nutrient media or other material, to avoid the potential for contamination and reduce the chance for exposure in the case of hazardous or biological fluids, such as contaminated blood or the like. The vessel and magnetic element could also be made of inexpensive or easily disposable materials and hence discarded after each use, which would eliminate the need for cleaning or sterilization. The absence of a mixing or stirring rod penetrating through the vessel would also allow a slowly rotating rotor or impeller to be held at an off-axis position in a sealed vessel, thus making it possible to independently rotate the vessel about its central axis to achieve very gentle, yet thorough, mixing. In the case of warm or temperature-sensitive fluids, the use of superconductivity to provide the desired levitation would be possible by thermally isolating and separating the superconducting element from the magnetic element and providing a separate, substantially isolated cooling source. This combined thermal isolation and separation would avoid creating any significant cooling in the vessel, the magnetic element or the fluid being mixed or pumped. The use of a superconductor would also eliminate the sole reliance on magnet-magnet repulsion to provide the levitation force and the concomitant need for active electronic control systems to ensure stable levitation, even with large process volumes and at high rotational speeds. Overall, the proposed system would have superior characteristics over existing mixing or pumping technologies, especially in terms of sterility, mixing quality, safety and reliability, and would be readily adaptable for use in larger, industrial scale operations. | <SOH> SUMMARY OF THE INVENTION <EOH>In accordance with a first aspect of the invention, a fluid pumping or mixing system is disclosed. The system comprises a vessel or container for holding a fluid and a product, a magnetic element capable of providing a pumping or mixing action to the fluid upon rotation, at least one superconducting element for levitating said magnetic element in the vessel or container, a wall defining a chamber around the superconducting element, said chamber thermally isolating the superconducting element from the vessel or container, a cooling source thermally linked to said superconducting element; and a motive device for rotating said magnetic element or said superconducting element. The chamber is preferably evacuated or insulated to minimize thermal transfer from the superconducting element to the wall and provide the desired thermal isolation. The wall may be the outer wall of a cryostat and the cooling source may be a chamber in said cryostat holding a liquid cryogen. Alternatively, the cooling source may be a refrigerator. The superconducting element may be supported by the wall defining the chamber, with the chamber in turn being supported from a stable mounting structure by a bearing permitting rotational motion. Accordingly, the motive device may rotate the wall and the superconducting element together. Moreover, the cooling source may be coupled to and rotate with the wall. The product may be selected from the group consisting of a bacterial nutrient culture media, eukaryotic cell nutrient culture media, buffer, reagent, and the like. The product may be introduced into the vessel in a dry, powder-like form and the fluid may be introduced either before or after the magnetic element is in a levitated state. Preferably, the vessel is substantially sealed prior to the levitation of the magnetic element, and may include a sterile fitting for introducing or extracting the fluid, product, or both therefrom. Also, the vessel and magnetic element are sterilized prior to introduction of the fluid. Most preferably, the vessel is capable of holding a volume of fluid of about 10 liters or greater. In accordance with a second aspect of the invention, a method of mixing a fluid in a vessel or container is disclosed. The method comprises placing a magnetic pumping or mixing element and a product in the vessel or container, substantially sealing the vessel or container from the outside environment, levitating the magnetic element above a superconducting element positioned in an evacuated or insulated chamber adjacent to the vessel or container and thermally linked to a cooling source, and rotating the magnetic element in the vessel or container. In one specific embodiment, the step of rotating the magnetic element includes rotating the superconducting element. The method may further include cleaning or sterilizing both the vessel or container and the magnetic element prior to the sealing step, as well as placing the product in the vessel prior to the sealing step. In the case where the substantially sealed vessel includes at least one sterile or aseptic fitting, the method may further include the step of introducing the fluid into the vessel after the sealing step through the fitting, whereby a sterile or aseptic mixing environment is created. In accordance with a third aspect of the invention, an assembly for use in a pumping or mixing system is disclosed. The assembly comprises a sealed vessel or container capable of holding a volume of fluid of about 10 liters or greater (such as tanks capable of holding 100 liters or more), a product sealed in the vessel or container, and a magnetic pumping or mixing element sealed in the vessel or container. The sealed vessel includes means for receiving a fluid while substantially maintaining the sterility of the vessel, mixing element, and product contained therein. The product may be selected from the group consisting of a bacterial nutrient culture media, eukaryotic cell nutrient culture media, buffer, reagent, or like intermediate product for forming one or more end products. | 20050104 | 20080415 | 20050602 | 92575.0 | 1 | SOOHOO, TONY GLEN | STERILE FLUID PUMPING OR MIXING SYSTEM AND RELATED METHOD | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,028,842 | ACCEPTED | Electrical connector | Provided is an electrical connector having first and second surfaces and configured to establish electrical communication between two or more electrical devices. The electrical connector includes an insulative housing and a resilient, conductive contact retained in an aperture disposed from the first surface to the second surface. To contact the electrical devices, the contact includes a center portion from which extends two diverging, cantilevered spring arms that project beyond either surface of the electrical connector. To shorten the path that current must travel through the contact, one spring arm terminates in a bellows leg that extends proximate to the second spring arm. When placed between the electrical devices, the spring arms are deflected together causing the bellows leg to press against the second spring arm. For retaining the contact within the aperture, the contact also includes retention members extending from the center portion that engage the insulative housing. | 1-39. (canceled) 40. A method of establishing electrical communication between a first circuit-carrying element and second circuit-carrying element, the method comprising: providing an electrically conductive contact including a center portion, a first spring arm extending upwards from the center portion, an opposing second spring arm extending generally downwards from the center portion, a first contact surface, and an opposing second contact surface; locating the contact between the first and second elements; deflecting the first spring arm and second spring arm towards each other in a first direction by pressing the contact between the first and second elements; pressing the first contact surface and second contact surface together as a result of the deflection of the first and second spring arms; sliding the first and second contact surfaces with respect to each another in a second direction as a result of the continued deflection of the first and second spring arms; wherein the first direction and the second direction are generally normal to each other. 41. The method of claim 40, wherein the first contact surface is located on a bellows leg extending generally downward from the first spring arm, and the second contact surface is located along the second spring arm. 42. The method of claim 41, further comprising the step of recovering the contact by un-deflecting the first and second spring arms away from each other in the first direction. 43. The method of claim 42, wherein the first and second contact surfaces are separated by a gap, and wherein pressing together the first and second contact surfaces results in elimination of the gap. 44. The method of claim 43, wherein the step of recovering the contact includes recreating the gap. 45. The method of claim 40 wherein the contact includes: the center portion including an upper end and a lower end; the first spring arm extending at an angled relationship upwards from the upper end, the first spring arm includes a first land surface; and the second spring arm extending from the lower end; the second spring arm including a second land surface. 46. The method of claim 45 wherein the second contact surface is located between the lower end and the second land surface; and a bellows leg extending generally downward from the first land surface; the bellows leg including the first contact surface proximate to the second contact surface; whereby deflection of the first and second spring arms towards each other presses the first and second contact surfaces together. 47. The method of claim 46, wherein a gap separates the first contact surface from the second contact surface. 48. The method of claim 46, wherein the center portion is generally planer. 49. The method of claim 46, wherein the first land surface is defined by a bend joining the first spring arm to the bellows leg. 50. The method of claim 46, wherein the second spring arm curves generally downwards. 51. The method of claim 50, wherein the second land surface is defined by the curve. 52. The method of claim 51, wherein the second spring arm terminates at the second land surface. 53. The method of claim 46, wherein the first contact surface curves generally upwards. 54. The method of claim 46, wherein the bellows leg terminates at the first contact surface. 55. The method of claim 54, wherein the bellows leg bends towards the center portion, the bend located between the first land surface and the first contact surface. 56. The method of claim 46, the center portion includes a retention member. 57. The method of claim 56, wherein the retention member is a twist wing extending from the center portion, the twist wing including a lower segment twisted with respect to the center portion. 58. The method of claim 56, wherein the retention member is a bendable retention post projecting parallel from the center portion. 59. The method of claim 58, wherein the bendable retention post includes an upper trapping segment and a lower trapping segment. 60. The method of claim 59, wherein the upper trapping segment and the lower trapping segment are not co-planer to the center portion. 61. The method of claim 40, wherein the electrical contact is formed from a blank stamped from sheet material. 62. The method of claim 61, wherein the sheet material is Beryllium Copper (BeCU). 63. The method of claim 40 providing an insulative housing including a first surface, a second surface, and a plurality of apertures disposed from the first surface to the second surface. 64. The method of claim 63, wherein the contact includes a retention member for retaining the contact within the aperture. 65. The method of claim 64, wherein the aperture includes a sidewall, and the retention member is a bendable retention post for trapping the sidewall. 66. The method of claim 65, wherein the bendable retention post includes an upper segment and a lower segment that project away from the center portion and bend partially around the sidewall. 67. The method of claim 64, wherein the aperture includes a slot accessible from the second surface, and the retention member is a retention wing received in the slot. 68. The method of claim 67, wherein the slot includes a protuberance formed into the slot for trapping the retention wing. 69. The method of claim 64, wherein the aperture includes a slot accessible from the second surface, and the retention member is a twist wing projecting from the center portion, the twist wing including a lower segment twisted with respect to the center portion, the twisted lower segment producing an interference fit when the twist wing is received into the slot. 70. The method of claim 64, wherein the aperture includes a slot accessible from the second surface and disposed partially towards the first surface, and the retention member is a barbed wing projecting from the center portion, the barbed wing including a projecting barb, the barb producing an interference fit when the barbed wing is received into the slot. 71. The method of claim 40, wherein the first contact surface and the second contact surface are separated by a gap when the first and second spring arms are not deflected toward each other. 72. The method of claim 46, wherein continued deflection of the first and second spring arms towards each other causes the second contact surface to slide along the bellows leg. 73. The method of claim 72, wherein the direction of sliding motion of the second contact surface is substantially normal to the direction of deflection of the first and second spring arms. 74. The method of claim 63, wherein the contact floatingly retained in at least one aperture. 75. The method of claim 74, wherein the first spring arm projects above the first surface and the second spring arm projects below the second surface. 76. The method of claim 74, wherein the contact can vertically move with respect to the insulative housing. 77. The method of claim 74, wherein the contact can horizontally move with respect to the insulative housing. 78. The method of claim 74, wherein the apertures each include a sidewall, and the resilient contact includes a bendable retention post trapping the sidewall for floatingly retaining the resilient contact in the aperture. 79. The method of claim 74, wherein the apertures each include a slot disposed from the second surface part way towards the first surface and terminating in a ledge, the slot having a protuberance proximate to the second surface; and wherein the contact includes a retention wing received in the slot and trapped between the ledge and protuberance. | FIELD OF THE INVENTION The present invention relates generally to electrical coupling and, more particularly to electrical connectors having conductive contacts. The invention has particular utility in the field of electrically interconnecting circuit-carrying elements. BACKGROUND OF THE INVENTION Numerous styles of electrical connectors are commonly used to electrically couple two or more circuit-carrying elements. For example, electrical connectors are often used to provide a conductive path between contact pads on an integrated circuit package and conductive traces on a substrate, such as a printed circuit board. A typical connector used for this situation and similar situations includes a low profile, insulative housing that retains a plurality of conductive contacts and can be placed between the integrated circuit package and the substrate. The contacts protrude beyond respective surfaces of the housing to simultaneously touch the contact pads and conductive traces when the integrated circuit package and substrate are pressed together. Preferably, the contacts have a resilient quality and can thereby deform between and urge back against the pads and traces. As a related issue, the contacts should provide a substantial range of deflection to be compatible with various styles of housings, pads, and traces. It is also preferable that the conductive path which the electric current must travel across the housing be as direct and short as possible. Furthermore, the contact should be shaped and retained in the housing in a manner that optimizes electrical contact between the contact and the pad and conductive trace. Thus, there is a need for an improved electrical contact that provides the desired resiliency, range, shortened electrical path, and optimized contact. SUMMARY OF THE PRESENT INVENTION The present invention provides a resilient contact that can be retained in an aperture disposed through an insulative housing to form an assembled electrical connector. The contact has a center portion from which two cantilevered spring arms extend in a diverging manner. The ends of each spring arm define a land surface that protrudes beyond the surfaces of the housing to contact a contact pad or conductive trace. To shorten the electrical path through the contact, there is extending from the end of one spring arm in a direction towards the second spring arm an elongated bellows leg. The portion of the bellows leg in proximity to the second spring arm defines a first contact surface that opposes a similar second contact surface defined as part of the second spring arm. When the contact pad and conductive trace are pressed toward one another, the cantilevered spring arms are likewise deflected towards each other. The two contact surfaces are thereby pressed together to produce the shortened electrical path. To prevent the contact surfaces from abrasively sliding against each other, each contact surface is preferably formed with a curved shape. When pressed together, the apexes of the curved shapes contact each other. To allow the apexes to slide smoothly over each other, the bellows leg is formed to afford a resiliency that allows the second contact surface to slide over the bellows leg thereby providing for continued deflection of the spring arms. Preferably, the direction of sliding motion between the second contact surface and the bellows leg is normal to the plane in which the spring arms deflect In another aspect of the invention, to retain the contact within the insulative housing, the contact can have retention members extending outwardly from the sides of the center portion. In an embodiment, the retention members can be configured to engage the insulative housing in a manner that allows the contact to float with respect to the aperture so that the contact can adjust to the locations of the contact pads and the conductive traces. In an embodiment, the retention members can be configured to rigidly join the contact to the insulative housing. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective, exploded view illustrating an electrical connector having a contact according to the present invention for providing electrical communication between an integrated circuit package and a substrate. FIG. 2 is a detailed view of the indicated section of FIG. 1 illustrating the first surface of the housing including a contact inserted into an aperture. FIG. 3 is a detailed view taken opposite the view illustrated in FIG. 2 illustrating the opposing second surface of the housing. FIG. 4 is a perspective view of the electrical contact as formed. FIG. 5 is a cross-sectional view taken along lines 5-5 of FIG. 2 illustrating the un-deflected contact retained in the aperture of the insulative housing and also illustrating the integrated circuit package and the substrate. FIG. 6 is a perspective view of the cross-sectional view illustrated in FIG. 5. FIG. 7 is a cross-sectional view similar to FIG. 5 illustrating the contact as deflected between the integrated circuit package and the substrate. FIG. 8 is a perspective view of the cross-sectional view illustrated in FIG. 7. FIG. 9 is a side elevational view illustrating the forces exerted during deflection of the contact. FIG. 10 is a graph depicting the forces exerted in FIG. 9. FIG. 11 is a side elevational view of a prior art contact illustrating the forces exerted during deflection of that contact. FIG. 12 is a graph depicting the forces exerted in FIG. 11. FIG. 13 is a top plan view of a blank stamped from sheet metal that is to be formed into the contact. FIG. 14 is a cross-sectional perspective view taken along line 14-14 of FIG. 3 illustrating the contact being retained in the insulative housing. FIG. 15 is a cross-sectional perspective view taken along line 14-14 of FIG. 3 illustrating protuberances being formed into retention slots. FIG. 16 is a rear perspective view of an embodiment of the contact configured with bendable retention wings. FIG. 17 is a top plan view of a blank stamped from sheet metal that is to be formed into the contact of FIG. 16. FIG. 18 is a detailed perspective view of the second surface of the insulative housing illustrating the contacts of FIG. 16 retained in the apertures. FIG. 19 is a detailed perspective view taken opposite the view illustrated in FIG. 18 illustrating the first surface of the insulative housing. FIG. 20 is a cross-sectional perspective view taken along line 20-20 of FIG. 18 illustrating the bendable retention wings abutting against a sidewall. FIG. 21 is a cross-sectional perspective view taken along line 20-20 of FIG. 18 illustrating the retention wings trapping the sidewall. FIG. 22 is a rear perspective view of an embodiment of the contact configured with twist wings. FIG. 23 is a top plan view of a blank stamped from sheet metal that is to be formed into the contact of FIG. 22. FIG. 24 is a detailed perspective view of the second surface of the insulative housing illustrating the contacts of FIG. 22 retained in the apertures. FIG. 25 is a detailed perspective view taken opposite the view illustrated in FIG. 24 illustrating the first surface of the insulative housing. FIG. 26 is a cross-sectional perspective view taken along line 26-26 of FIG. 24 illustrating the contact being retained in the aperture. FIG. 27 is a rear perspective view of an embodiment of the contact configured with barbed wings. FIG. 28 is a top plan view of a blank stamped from sheet metal that is to be formed into the contact of FIG. 27. FIG. 29 is a detailed perspective view of the second surface of the insulative housing illustrating the contacts of FIG. 27 retained in the apertures. FIG. 30 is a detailed perspective view taken opposite the view illustrated in FIG. 29 illustrating the first surface of the insulative housing. FIG. 31 is a cross-sectional perspective view taken along line 31-31 of FIG. 29 illustrating the contact being retained in the aperture. DETAILED DESCRIPTION OF THE DRAWINGS Now referring to the drawings, wherein like reference numbers refer to like features, there is illustrated in FIG. 1 an exemplary electrical connector 102 configured for retaining an electrical contact of the present invention in an exemplary application. The electrical connector is located between an integrated circuit package 104 that includes a plurality of electrically conductive contact pads or lands and a substrate 106 that includes one or more conductive traces. To provide electrical communication between the contact pads of the integrated circuit package 104 and the electrical traces of the substrate 106, the electrical connector 102 includes a plurality of electrical contacts 100 retained in an insulative housing 110. As illustrated in FIG. 1, to retain the contacts 100, the insulative housing 110 includes a plurality of apertures 112 disposed therethrough from a first surface 114 to a second surface 116. The apertures 112 are arranged to correspond to the locations of the contact pads of the integrated circuit package 104 and the conductive traces of the substrate 106. As illustrated in FIGS. 2 and 3, when the contact 100 is appropriately inserted into the aperture 112, parts of the contact project from both the first and second surfaces and are therefore capable of making electrical contact with the contact pads and conductive traces. While the present invention is described in the context of providing electronic coupling between an integrated circuit package and substrate, it will be readily appreciated that the invention is equally applicable to electronic coupling between other types of electrical components, such as, between two circuit-carrying substrates. An embodiment of the electrical contact 100 is better illustrated in FIG. 4. The electrical contact 100 has a generally planer center portion 120 defined by an upper end 122 and a lower end 124. For purposes of orientation, the upper end 122 will define an upwards direction with respect to the electrical contact and the lower end 124 will define a downwards direction with respect to the electrical contact 100. However, the terms “upwards” and “downwards” are relative and in no way should be construed as a limitation of the inventive electrical contact. The center portion 120 is further defined by a first side 130 and a second side 132 that extend between the upper and lower ends 122, 124 such that the center portion has a given width 136. In the illustrated embodiment, the width of the center portion 120 may be approximately 0.024 inches. Extending at an angled, upwards direction from the upper end 122 is a first spring arm 140. The first spring arm 140 is attached to the center portion 120 in a cantilevered fashion such that the first spring arm can deflect with respect to the center portion. The first spring arm 140 terminates in a curved first land surface 142 at a location above the upper end 122. Therefore, as illustrated in FIGS. 5 and 6, when the electrical contact 100 is correctly placed in the aperture 112, the first land surface 142 projects above the first surface of the housing proximate to a pad 105 on the integrated circuit package 104. Referring to FIGS. 7 and 8, as the integrated circuit package 104 is pressed or clamped to the first surface 114 of the insulative housing 110, the pad 105 causes the first spring arm 140 to deflect downward with respect to the center portion 120. In fact, the first spring arm 140 may be deflected partially or wholly into the aperture 112. Because of the cantilevered nature of the first spring arm 140 and the resiliency of the contact material, the deflected first spring arm 140 exerts an upward contact force against the pad 105 ensuring an adequate electrical connection. As shown in FIGS. 7 and 8, the contact pad 105 tangentially contacts the curved first land surface 142 thereby concentrating the contact force produced by the cantilevered first spring arm. Additionally, because of the curved shape of the first land surface 142, there is less of a tendency for the first land surface to pierce or penetrate the contact pad 105. Furthermore, the first land surface 142 and the first spring arm 140 can be formed with substantially the same width as the center portion 120. Thus, in such embodiments, the width of the first land surface 142 provides a sufficient dimension for the contact pad 105 to contact. Referring to FIG. 4, extending generally downwards from the first land surface 142 is a bellows leg 150. In the illustrated embodiment, the bellows leg 150 includes a first portion 156 that extends generally parallel to the center portion 120 and a second portion 157 that extends generally parallel to the first spring arm 140. The first and second portions 156, 157 are joined together at a bend 154 that approximately corresponds to the vertically position of the center portion 120. In the illustrated embodiment, the angle of the bend is less than 90 degrees so that the second portion continues to extend generally downward with respect to the center portion. The bellows leg 150 terminates in a first contact surface 152 that curves slightly upwards toward the first spring arm 140. The first contact surface 152 can be located above or below the lower end 124 of the center portion 120. As illustrated, the first contact surface 152 and the bellows leg 150 can be formed with the same width as the center portion 120 and the first spring arm 140. Referring to FIG. 4, extending from the lower end 124 of the center portion 120 is a second spring arm 160 that terminates in a second land surface 162. The second spring arm 160 includes a first portion 166 attached to the lower end 124 in a cantilevered fashion. The first portion 166 is also attached to a second portion 167 by a curve 164 that directs the second portion generally downwards. As such, in the illustrated embodiment, the second land surface 162 is below the lower end 124. Therefore, as illustrated in FIGS. 5 and 6, when the electrical contact 100 is correctly placed in the aperture 112, the second land surface 162 projects below the second surface 116 of the insulative housing 112 proximate to an electrical trace 107 on the substrate 106. Furthermore, because of the cantilevered fashion in which the second spring arm 160 is attached to the center portion 120, the second spring arm can deflect with respect to the center portion. Referring to FIGS. 7 and 8, as the substrate 106 is pressed or clamped to the second surface 116 of the insulative housing 110, the electrical trace 107 causes the second spring arm 160 to deflect upwards with respect to the center portion 120. In fact, the second spring arm 160 may be deflected partially or wholly into the aperture 112. Because of the cantilevered nature of the second spring arm 160 and the resiliency of the contact material, the deflected second spring arm exerts a downward contact force against the electrical trace 107 ensuring an adequate electrical connection. To optimize contact between the electrical trace 107 and the second land surface 162, the second land surface is shaped to curve slightly upwards. As will be appreciated, the electrical trace 107 tangentially contacts the apex of the curved second land surface 162 thereby concentrating the contact force produced by the second spring arm 160. Additionally, because of the smooth, curved shape of the second land surface 162, there is less of a tendency for the second land surface to pierce or penetrate the electrical trace 107. Furthermore, the second land surface 162 can be formed with a width equal to or, as illustrated, greater than the width of the center portion 120. Thus, in such embodiments, the width of the second land surface 162 provides a sufficient dimension for the electrical trace 107 to make contact with. Referring to FIG. 4, the curve 164 can function as a second contact surface that is located between the first portion 166 and the second portion 167. Preferably, the second contact surface 164 is located approximately below the first contact surface 152 so that the two contact surfaces appear, as illustrated in FIGS. 5 and 6, as opposing curves. In the embodiment illustrated in FIGS. 5 and 6, the first and second contact surfaces 152, 164 are separated by a gap 168. An advantage of providing the gap 168 is that the first and second contact surfaces 152, 164 can be easily plated during production of the contact. Referring to FIGS. 7 and 8, when the first and second spring arms 140, 160 are deflected towards each other by the integrated circuit package and/or substrate, the first contact surface 152 is pressed against the second contact surface 164 thereby eliminating the gap. This results in shortening the path electric current must travel through the contact 100. Since contact between the bellows leg 150 and spring arm 160 occurs tangentially along the apex of the curved first contact surface 152 and the curved second contact surface 164, abrasion and the likelihood of damaging or fusing together of the first and second contact surfaces is reduced. When the forces causing the spring arms to deflect are removed, the resiliency of the contact material can cause the contact surfaces 152, 164 to separate re-creating the gap 168 illustrated in FIGS. 5 and 6. Furthermore, where the widths of the bellows leg 150 and second spring arm 160 are similar to or the same as the center portion 120, the contact surfaces will have an adequate dimension across which contact can occur. Preferably, referring to FIGS. 2, 3, 5 and 6, the first and second spring arms 140, 160 do not project a substantial amount beyond the first and second surfaces 114, 116 of the insulative housing 110. This reduces the chance that the spring arms 140, 160 will be overly strained during deflection and thereby avoid becoming permanently deformed. This also reduces the chance that the projecting spring arms 140, 160 will be bent or otherwise damaged due to unintentional contact with a foreign object. Referring to FIGS. 5 and 6, it will be noted that because the second contact surface 164 is located within the length of the second spring arm 160 and has substantially the same width as the center portion 120, there is a sufficient amount of surface area for the first contact surface 152 to press against. In other words, precise alignment between the first and second contact surface 152, 164 is not required. Additionally, it will be appreciated that the bellows leg 150 and first contact surface 152 function to press the second spring arm downwards against the electrical trace 107. Referring to FIGS. 7 and 8, to allow the first and second spring arms 140, 160 to be further deflected toward each other after the initial contact between the first and second contact surfaces 152, 164, the second spring arm and the bellows leg 150 can be configured to allow the second contact surface 164 to slide along the bellows leg. More specifically, the resilient nature of the contact material allows the bellows leg 150 to bend upon itself at the first land surface 142 and the bend 154. Therefore, after the initial contact, the second contact surface 164 can slide along the second portion 157 of the bellows leg 150 as the bellows leg is displaced upwards toward the first spring arm 140. Accordingly, the first contact surface 152 is directed towards the center portion 120 as the bellows leg 150 bends. An advantage of enabling sliding motion of the second contact surface 164 along the first portion 157 is that it provides for a greater range of deflection between the spring arms 140, 160. Another advantage of enabling sliding motion of the second contact surface 164 with respect to the first contact surface 152 is that the contact surfaces can be wiped clean of any built-up debris that could hinder electrical communication across the contact surfaces. When the forces causing deflection of the spring arms are removed, the second contact surface 164 can slide back along the bellows leg 154 thereby causing the contact 100 to recover its initial un-deflected shape. Another advantage of the inventive contact 100 is demonstrated by reference to FIG. 9, which illustrates the contact 100 in both its initial un-deflected shape 170 and deflected shape 171. In a preferred embodiment, the direction of the sliding motion between the second contact surface 164 and the bellows leg 150 is normal to the plane in which the first and second spring arms 140, 160 deflect. This preferred configuration enhances the contact's ability to recover its initial un-deflected shape when the forces deflecting the first and second spring arms 140, 160 are removed. During the initial deflection, the deflecting forces must exceed the upwards and downwards resiliency forces generated by the spring arms 140, 160. The vectors representing the deflecting forces and the resiliency forces are oriented in a vertical plane as indicated by the arrow 172. As the first and second contact surfaces 152, 164 contact and slide along each other, a frictional force is generated that the deflecting forces must additionally overcome. The force vectors for the frictional forces, however, are substantially oriented in a horizontal plane as indicated by arrow 173, and are therefore normal to the deflecting forces. Accordingly, the frictional forces do not substantially oppose the vertical deflecting forces. When the deflecting forces are removed and the resiliency forces displace the first and second spring arms 140, 160 to their initial positions, the frictional forces will attempt to resist the sliding motion of the second contact surface 164 along the bellows leg 150. Again though, because the frictional resistance forces are normal to the resiliency forces, they will not substantially affect recovery of the contact. The relationship between force and displacement for the illustrated contact can be represented by the graph shown in FIG. 10 in which force 174 is represented by the vertical axis while displacement 175 is represented by the horizontal axis. The graph of FIG. 10 is a representation of data generated by computer-aided finite element analysis simulations of the inventive contact. The curve 176 represents the force and displacement relations for the initial deflection of the spring arms together while curve 177 represents the recovery of the spring arms. As represented, curve 176 originates from the horizontal axis left of where recovery curve 177 intersects the horizontal axis. This discrepancy represents cold working of the metal contact that occurs during the initial deflection cycle after the contact is manufactured the imparted cold working results in a permanent set preventing the contact from fully recovering its pre-deflection shape. Curve 178 represents any subsequent deflection of the spring arms together. As will be appreciated, recovery of the spring arms from the subsequent deflections as represented by curve 178 occurs along the subsequent recovery curve 179. Accordingly, after accounting for the initial cold working of the contact, the contact will generally return to the same shape. Moreover, the curve 178 generated during the subsequent deflections is substantially similar to the curve 179 generated during recovery. It will be appreciated from the above that the inventive contact is a substantial improvement over prior art contacts in which the deflection, resiliency, and frictional forces are all oriented within the same plane. An example of such a prior art contact 180 is illustrated in FIG. 11 in both its initial un-deflected shape 182 and its deflected shape 183. The prior art contact 180 includes a center portion 184, opposing first and second resilient spring arms 185, 186, and inward extending fingers 187, 188 arranged at the free ends of each spring arm 185, 186. The fingers 187, 188 engage each other in an overlapping relationship. The deflection, resiliency, and frictional forces are all oriented in a vertical plane designated by the arrow 189. When the deflecting forces are removed and the first and second spring arms 185, 186 attempt to return to their initial positions, the frictional forces will resist the resiliency forces. If the resiliency forces are insufficient to overcome the frictional forces, the spring arms 185, 186 will not return to their initial positions. The force vs. displacement graph for this contact is illustrated in FIG. 12, with force 190 represented by the vertical axis and displacement 192 represented by the horizontal axis. As before, a discrepancy exists between the curve 194 representing initial deflection and the curve representing recovery 195 due to the initial cold working of the contact and the permanent set induced. Subsequent deflections of the spring arms together are represented by curve 196 while subsequent recoveries are represented by curve 197. As illustrated, a substantial discrepancy exists between the curve 196 generated during subsequent deflections and the subsequent recovery curve 197, causing the two curves 196, 197 to form a hysteresis pattern. This hysteresis represents the resiliency force having to overcome the opposing frictional force. This problem is avoided by configuring the inventive contact 100 illustrated in FIG. 9 such that the friction forces are normal to the resiliency forces. The electrical contact can be manufactured from any suitable conductive material that possesses the desirable resilient properties. Preferably, the contact is manufactured from metallic sheet material ranging between, for example, 0.0015-0.0030 inches in thickness. For example, as illustrated in FIG. 13, a planer blank 180 can be stamped from the sheet material that includes, in a flattened out arrangement, all the features of the contact including the center portion 120, spring arms 140, 160, and the bellows leg 150. Accordingly, stamping the blank 180 predetermines the width 136 of those features. The planer blank 180 can then be processed through a series of forming operations to form the shaped contact 100 illustrated in FIG. 4. The forming operations impart the curved shapes of the spring arms 140, 160 and bellows leg 150 by permanently cold-working the sheet material. The use of sheet material provides for some influence over the resilient properties through appropriate selection of the thickness of the chosen sheet material. Preferably, the sheet material and the formed dimensions are such as to allow the spring arms of the electrical contact to be deflected toward each other and recover over numerous cycles. To retain the contact in the aperture, the contact can include one or more retention members that can engage the insulative housing. For example, in the embodiment illustrated in FIG. 4, the retention member can be configured as a retention wing 200. The retention wing 200 is a structure projecting from the first side 130 of the center portion 120 that extends between a upper shoulder 204 and a lower shoulder 206 and is vertically co-planer to the center portion. A second retention wing 202 can project from the second side 132 of the center portion and extend between a upper and lower shoulder 208, 210 as well. As illustrated in FIG. 13, the first and second retention wings 200, 202 are preferably formed as integral parts of the planer blank. As illustrated in FIGS. 3 and 14, the retention wings 200, 202, can be received by vertical slots 220, 222 formed on either side of the aperture 112 that considerably widen the aperture at one end. The slots 220, 222 are disposed from the second surface 116 part way towards the first surface 114 and terminate at two respective ledges 224, 226. When the contact 100 is inserted into the aperture, the upper shoulders 204, 206 of the retention wings abut against the ledges 224, 226. The dimension of the slots 220, 222 from the second surface 116 to the ledges 224, 226 functions to vertically position the contact within the insulative housing 110. Referring to FIG. 15, to prevent the contact 100 from backing out of the aperture after insertion, two protuberances 228, 230 are formed into the slots proximate to the lower shoulders of the retention wings 200, 202. The protuberances 228, 230 can be formed by deforming the slots 220, 222 after insertion of the contact 100. For this reason, the insulative housing 110 is preferably made from a malleable material that can soften upon localized heating. Accordingly, the retention members 200, 202 are trapped between the ledges 224, 226 and protuberances 228, 230 and the contact is thereby retained in the insulative housing 110. In a preferred embodiment, the length of the slots 220,222 between the ledges 224, 226 and the protuberances 228, 230 is slightly larger than the length of the retention wings 200, 202 between the upper shoulders 204, 208 and the respective lower shoulders 206, 210. Also preferably, the size of the slots 220, 222 is larger than the thickness of the sheet metal forming the retention wings 200, 202. Accordingly, the contact is capable of slight vertical and/or horizontal movement with respect to the insulative housing 110 and can therefore float within the aperture 112. As will be appreciated from FIGS. 7 and 8, an advantage of floating the contact 100 is that the contact can reposition itself within the aperture when the first and second spring arms 140, 160 are deflected together. Accordingly, when the pad 105 presses against the first land surface 142, the floating contact can shift within the aperture 112 so that the width of the first land surface lies substantially across the pad. A similar alignment can occur when the electrical trace 107 is pressed against the second land surface 162. As such, misalignment occurring during insertion of the contact is reduced. A related advantage of allowing the contact to reposition itself is the resulting equalization of the incurred forces and strains between the first and second spring arms. As illustrated in FIG. 16, in another embodiment of the contact 300, the retention members 310,312 can be bendable retention posts. Prior to insertion, the retention posts 310, 312 are vertical structures that can extend from both sides of the center portion 302. The retention posts 310, 312 each includes a lower segment 314, 316 that is bent at approximately a right angle with respect to the retention posts. Accordingly, the lower segments 314, 316 are normal to the center portion 302 and project therefrom in a direction generally opposite the direction that the first and second springs arms 304,306 extend. The retention posts 310,312 each also includes an upper segment 318, 320 that, prior to insertion into the insulative housing, is generally parallel with respect to the plane of the center portion 302. As will be appreciated from FIG. 17, the retention posts 310, 312 can be formed as an integral portion of the stamped blank 324 used to produce the formed contact 300 and accordingly will have the same thickness as the spring arms 304, 306 and center portion 302. To engage the retention posts, as illustrated in FIG. 18, the aperture 342 disposed into the housing 340 is substantially wider at a second end 350 than at the first end 352. Furthermore, as will be appreciated from FIGS. 18 and 19, the wider second end 350 extends further along the overall length of the aperture 342 at the first surface 344 than at the second surface 346. Referring to FIG. 20, the insulative housing 340 includes a sidewall 348 extending across the rear of the second end 350 that is inset from the first and second surfaces 344, 346. When the contact 300 is inserted into the aperture from the second surface 346, the bent lower segments 314, 316 abut against the sidewall 348. Accordingly, the dimension that the sidewall 348 is inset from the second surface 344 functions to vertically position the contact 300 within the insulative housing 340. To prevent the contact 340 from backing out of the aperture 342, as illustrated in FIG. 21, the upper segments 318, 320 of the retention posts can be bent over the sidewall 348. The sidewall 348 is thereby trapped between the upper segments 318, 320 and lower segments 314, 316. Furthermore, as will be appreciated from FIG. 21, by locating the upper segments 318, 320 and lower segments 314, 316 within the wider second end 350 of the aperture 342, the segments do not protrude beyond the first and second surfaces 344, 346 of the insulative housing. To bend the upper segments 318, 320, referring to FIG. 19, a tool can be inserted through the wider second end 350 of the aperture 342 to impinge upon the upper segments 318, 320. For this reason, the wider second end 350 makes up a greater portion of the overall length of the aperture 342 along the first surface 344. Additionally, as illustrated in FIG. 17, to facilitate bending of the upper segments 318, 320 the retention posts can be formed with a score or crease 322 at the appropriate locations. An advantage of using bendable retention posts 310, 312 to retain the contact 300 within the aperture 342 is that the contact can re-position itself with respect to the aperture. Specifically, as illustrated in FIG. 21, because the upper segments 318, 320 and lower segments 314, 316 trap the sidewall 348 without permanently joining to the sidewall, the contact can float to a certain degree with respect to the aperture 342. Floating the contact, as described above, optimizes contact with the pad on the integrated circuit package and conductive trace on the substrate by enabling the contact to align itself with a pad or conductive trace. In another embodiment, illustrated in FIG. 22, the contact 400 can include a first and second twist wings 410, 412 projecting from either side of the center portion 402. The twist wings 410, 412 each includes a lower segment 414, 416 that is twisted or turned into the plane of the center portion 402. The twist wings each also includes an upper shoulder 418, 420 that is substantially co-planer with respect to the plane of the center portion 402. Referring to FIG. 23, the twist wings 410, 412 are initially formed as integral portions of the stamped blank 424. During the forming operation that shapes the first and second spring arms 404, 406, a mechanical force is imparted to the lower segments 414, 416 to produce the twisted shaped of the formed twist wings 410, 412. To engage the twist wings, as illustrate in FIG. 24, the aperture 442 disposed through the housing 440 includes two slots 450, 452 formed on either side of the aperture. As will be appreciated from FIGS. 24 and 25, the slots are located at a second end 454 of the aperture 442 and extend from the second surface 446 part way towards the first surface 444. Accordingly, as illustrated in FIG. 26, the slots 450, 452 terminate at two respective ledges 456, 458. When the contact 400 is inserted into the aperture 442, the upper shoulders 418, 420 abut against the ledges 456, 458 which thereby establishes the vertical position of the contact with respect to the housing 440. To prevent the contact 450 from backing out of the aperture 442, the size of the two slots 450, 452 is preferably such that insertion of the twisted lower segments 414, 416 produces an interference fit. Accordingly, the contact 400 is joined to the insulative housing 440 and cannot float with respect to the aperture 442. An advantage of joining the contact to the insulative housing is that the chances of the contact becoming separated are substantially reduced. Additionally, it will be appreciated that no portion of the twist wings 410, 412 protrudes beyond either the first or second surfaces 444, 446 to interfere in establishing electrical contact with a microchip or substrate. To facilitate insertion of the contact, the second end of the aperture 442 can include a depression 456 disposed into the second surface 446 that permits use of an insertion tool. In another embodiment, illustrated in FIG. 27, the contact 500 can include first and second barbed wings 510, 512 projecting from either side of the center portion 502. The first and second barbed wings 510, 512 are generally co-planer with the center portion 502 and include generally vertical post structures 514 that are attached to the center portion. Projecting from the post structure 514 opposite the side attached to the center portion are an upper barb 516 and a lower barb 518. Referring to FIG. 28, the barbed wings 510, 512 can be initially formed as integral portions of the stamped blank 524 along with the upper and lower spring arms 504, 506 and the center portion 502. To engage the barbed wings 510, 512, as illustrated in FIGS. 29 and 30, the aperture 542 disposed through the insulative housing 540 between the first and second surfaces 544, 546 includes two slots 550, 552 at one end. As illustrated in FIG. 31, when the contact 500 is properly inserted into the aperture 542, the barbed wings 510, 512 are received into the slots 550, 552. Preferably, the size of the slots 550, 552 is such as to create an interference fit with the projecting upper barbs 516. Accordingly, the contact is joined to the insulative housing 540 and cannot float in the aperture 552. As illustrated in FIG. 29, a first depression 556 is formed into the second surface 546 proximate to the end of the aperture 542 in which the slots 550, 552 are formed. As illustrated in FIG. 31, the depression 556 is considerably wider than the distance between the slots 550, 552 thereby creating a pair of ledges 560, 562 where the depression and slots intersect. Accordingly, when the contact 500 is inserted into the aperture, the lower barbs 518 can abut against the ledges and thereby vertically position the contact with respect to the insulative housing 540. Additionally, it will be appreciated that, in part, because of the depression 556, no portion of the barbed wings 510, 512 protrudes beyond either the first or second surfaces 544, 546 to interfere in establishing electrical contact with a microchip or substrate. As illustrated in FIG. 29, there is also disposed into the second surface 546 proximate to the aperture a second depression 558. The second depression 558 is located opposite the first depression 556 and provides the aperture 542 with a bar-bell shape at the second surface 546. The second depression 558 considerably widens the aperture 542 to accommodate a second land surface 507 at the end of the lower spring arm 506. Accordingly, as illustrated in FIGS. 28 and 29, the second land surface 507 can be wider than the second spring arm 506 and the center portion 502 and thereby provide more surface area over which electrical contact can be made. Accordingly, the present invention provides an electrical contact that can be retained within an aperture disposed through an insulative housing. The contact includes two cantilevered spring arms that diverge from a center portion located in the aperture to contact pads or traces placed against either surface of the insulative housing. One spring arm includes a bellows leg that extends proximately to the second spring arm. When the pads and traces are pressed against the housing, the cantilevered spring arms are deflected towards each other and the bellows leg contacts the second spring arm resulting in a shortened electrical path through the contact. In another aspect of the invention, the contact can include retention members that, in an embodiment, floatingly retain the contact within the aperture or, in another embodiment, join the contact to the insulative housing. All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein. The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention. Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations of those preferred embodiments would become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. | <SOH> BACKGROUND OF THE INVENTION <EOH>Numerous styles of electrical connectors are commonly used to electrically couple two or more circuit-carrying elements. For example, electrical connectors are often used to provide a conductive path between contact pads on an integrated circuit package and conductive traces on a substrate, such as a printed circuit board. A typical connector used for this situation and similar situations includes a low profile, insulative housing that retains a plurality of conductive contacts and can be placed between the integrated circuit package and the substrate. The contacts protrude beyond respective surfaces of the housing to simultaneously touch the contact pads and conductive traces when the integrated circuit package and substrate are pressed together. Preferably, the contacts have a resilient quality and can thereby deform between and urge back against the pads and traces. As a related issue, the contacts should provide a substantial range of deflection to be compatible with various styles of housings, pads, and traces. It is also preferable that the conductive path which the electric current must travel across the housing be as direct and short as possible. Furthermore, the contact should be shaped and retained in the housing in a manner that optimizes electrical contact between the contact and the pad and conductive trace. Thus, there is a need for an improved electrical contact that provides the desired resiliency, range, shortened electrical path, and optimized contact. | <SOH> SUMMARY OF THE PRESENT INVENTION <EOH>The present invention provides a resilient contact that can be retained in an aperture disposed through an insulative housing to form an assembled electrical connector. The contact has a center portion from which two cantilevered spring arms extend in a diverging manner. The ends of each spring arm define a land surface that protrudes beyond the surfaces of the housing to contact a contact pad or conductive trace. To shorten the electrical path through the contact, there is extending from the end of one spring arm in a direction towards the second spring arm an elongated bellows leg. The portion of the bellows leg in proximity to the second spring arm defines a first contact surface that opposes a similar second contact surface defined as part of the second spring arm. When the contact pad and conductive trace are pressed toward one another, the cantilevered spring arms are likewise deflected towards each other. The two contact surfaces are thereby pressed together to produce the shortened electrical path. To prevent the contact surfaces from abrasively sliding against each other, each contact surface is preferably formed with a curved shape. When pressed together, the apexes of the curved shapes contact each other. To allow the apexes to slide smoothly over each other, the bellows leg is formed to afford a resiliency that allows the second contact surface to slide over the bellows leg thereby providing for continued deflection of the spring arms. Preferably, the direction of sliding motion between the second contact surface and the bellows leg is normal to the plane in which the spring arms deflect In another aspect of the invention, to retain the contact within the insulative housing, the contact can have retention members extending outwardly from the sides of the center portion. In an embodiment, the retention members can be configured to engage the insulative housing in a manner that allows the contact to float with respect to the aperture so that the contact can adjust to the locations of the contact pads and the conductive traces. In an embodiment, the retention members can be configured to rigidly join the contact to the insulative housing. | 20050104 | 20070904 | 20050714 | 64585.0 | 0 | CHANG, RICK KILTAE | ELECTRICAL CONNECTOR | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,028,962 | ACCEPTED | Microprobe tips and methods for making | Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in over exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of a the tip material around carefully sized placed etching shields, via hot pressing, and the like. | 1. A method for creating a contact structure, comprising: forming compliant probe structure electrochemically; and forming a contact tip having a desired configuration, wherein the contact tip is formed on the compliant probe structure. 2. The method of claim 1 wherein the contact tip has a shape wherein the shape is derived at least in part from the mushrooming of an electrodeposited sacrificial material over a dielectric material. 3. The method of claim 1 wherein the contact tip has a shape wherein the shape is derived at least in part via etching of a patterned tip material. 4. The method of claim 1 wherein the contact tip has a shape wherein the shape is derived at least in part via isotropic etching of a tip material around etching shields. 5. The method of claim 1 wherein the contact tip comprises a different material than the compliant probe structure. 6. The method of claim 1 wherein the contact tip comprises the same material as the probe structure. 7. The method of claim 1 wherein the contact tip comprises a coating material. 8. The method of claim 1 wherein the contact tip comprises a coating material and the probe structure comprises a coating material. 9. The method of claim 8 wherein the coating material on the tip is different from the coating material on the probe structure. 10. The method of claim 8 wherein the coating material on the tip is the same as the coating material on the probe structure. 11. A method for creating a contact structure, comprising: forming compliant probe structure from a plurality of adhered layers of deposited conductive material; and forming a contact tip having a desired configuration, wherein the contact tip is formed on the compliant probe structure. | RELATED APPLICATIONS This application claims benefit of U.S. application Ser. Nos. 60/533,975, 60/540,510, 60/533,933, 60/536,865, and 60/540,511 and this application is a CIP of 10/949,738 which in turn is a CIP of 10/772,943, which in turn claims benefit of U.S. Application Ser. Nos. 60/445,186; 60/506,015; 60/533,933, and 60/536,865; furthermore the '738 application claims benefit of U.S. Application Ser. Nos.: 60/506,015; 60/533,933; and 60/536,865. Each of these applications is incorporated herein by reference as if set forth in full herein including any appendices attached thereto. FIELD OF THE INVENTION The present invention relates generally to microprobes (i.e. compliant contact elements) and EFAB™ type electrochemical fabrication processes for making them and more particularly to microprobe tips designs and process for making them. BACKGROUND A technique for forming three-dimensional structures (e.g. parts, components, devices, and the like) from a plurality of adhered layers was invented by Adam L. Cohen and is known as Electrochemical Fabrication. It is being commercially pursued by Microfabrica Inc. (formerly MEMGen®) Corporation) of Burbank, Calif. under the name EFAB™. This technique was described in U.S. Pat. No. 6,027,630, issued on Feb. 22, 2000. This electrochemical deposition technique allows the selective deposition of a material using a unique masking technique that involves the use of a mask that includes patterned conformable material on a support structure that is independent of the substrate onto which plating will occur. When desiring to perform an electrodeposition using the mask, the conformable portion of the mask is brought into contact with a substrate while in the presence of a plating solution such that the contact of the conformable portion of the mask to the substrate inhibits deposition at selected locations. For convenience, these masks might be generically called conformable contact masks; the masking technique may be generically called a conformable contact mask plating process. More specifically, in the terminology of Microfabrica Inc. (formerly MEMGen® Corporation) of Burbank, Calif. such masks have come to be known as INSTANT MASKS™ and the process known as INSTANT MASKING™ or INSTANT MASK™ plating. Selective depositions using conformable contact mask plating may be used to form single layers of material or may be used to form multi-layer structures. The teachings of the '630 patent are hereby incorporated herein by reference as if set forth in full herein. Since the filing of the patent application that led to the above noted patent, various papers about conformable contact mask plating (i.e. INSTANT MASKING) and electrochemical fabrication have been published: (1.) A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis and P. Will, “EFAB: Batch production of functional, fully-dense metal parts with micro-scale features”, Proc. 9th Solid Freeform Fabrication, The University of Texas at Austin, p161, August 1998. (2.) A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis and P. Will, “EFAB: Rapid, Low-Cost Desktop Micromachining of High Aspect Ratio True 3-D MEMS”, Proc. 12th IEEE Micro Electro Mechanical Systems Workshop, IEEE, p244, January 1999. (3.) A. Cohen, “3-D Micromachining by Electrochemical Fabrication”, Micromachine Devices, March 1999. (4.) G. Zhang, A. Cohen, U. Frodis, F. Tseng, F. Mansfeld, and P. Will, “EFAB: Rapid Desktop Manufacturing of True 3-D Microstructures”, Proc. 2nd International Conference on Integrated MicroNanotechnology for Space Applications, The Aerospace Co., April 1999. (5.) F. Tseng, U. Frodis, G. Zhang, A. Cohen, F. Mansfeld, and P. Will, “EFAB: High Aspect Ratio, Arbitrary 3-D Metal Microstructures using a Low-Cost Automated Batch Process”, 3rd International Workshop on High Aspect Ratio MicroStructure Technology (HARMST'99), June 1999. (6.) A. Cohen, U. Frodis, F. Tseng, G. Zhang, F. Mansfeld, and P. Will, “EFAB: Low-Cost, Automated Electrochemical Batch Fabrication of Arbitrary 3-D Microstructures”, Micromachining and Microfabrication Process Technology, SPIE 1999 Symposium on Micromachining and Microfabrication, September 1999. (7.) F. Tseng, G. Zhang, U. Frodis, A. Cohen, F. Mansfeld, and P. Will, “EFAB: High Aspect Ratio, Arbitrary 3-D Metal Microstructures using a Low-Cost Automated Batch Process”, MEMS Symposium, ASME 1999 International Mechanical Engineering Congress and Exposition, November, 1999. (8.) A. Cohen, “Electrochemical Fabrication (EFAB™)”, Chapter 19 of The MEMS Handbook, edited by Mohamed Gad-EI-Hak, CRC Press, 2002. (9.) Microfabrication—Rapid Prototyping's Killer Application”, pages 1-5 of the Rapid Prototyping Report, CAD/CAM Publishing, Inc., June 1999. The disclosures of these nine publications are hereby incorporated herein by reference as if set forth in full herein. The electrochemical deposition process may be carried out in a number of different ways as set forth in the above patent and publications. In one form, this process involves the execution of three separate operations during the formation of each layer of the structure that is to be formed: 1. Selectively depositing at least one material by electrodeposition upon one or more desired regions of a substrate. 2. Then, blanket depositing at least one additional material by electrodeposition so that the additional deposit covers both the regions that were previously selectively deposited onto, and the regions of the substrate that did not receive any previously applied selective depositions. 3. Finally, planarizing the materials deposited during the first and second operations to produce a smoothed surface of a first layer of desired thickness having at least one region containing the at least one material and at least one region containing at least the one additional material. After formation of the first layer, one or more additional layers may be formed adjacent to the immediately preceding layer and adhered to the smoothed surface of that preceding layer. These additional layers are formed by repeating the first through third operations one or more times wherein the formation of each subsequent layer treats the previously formed layers and the initial substrate as a new and thickening substrate. Once the formation of all layers has been completed, at least a portion of at least one of the materials deposited is generally removed by an etching process to expose or release the three-dimensional structure that was intended to be formed. The preferred method of performing the selective electrodeposition involved in the first operation is by conformable contact mask plating. In this type of plating, one or more conformable contact (CC) masks are first formed. The CC masks include a support structure onto which a patterned conformable dielectric material is adhered or formed. The conformable material for each mask is shaped in accordance with a particular cross-section of material to be plated. At least one CC mask is needed for each unique cross-sectional pattern that is to be plated. The support for a CC mask is typically a plate-like structure formed of a metal that is to be selectively electroplated and from which material to be plated will be dissolved. In this typical approach, the support will act as an anode in an electroplating process. In an alternative approach, the support may instead be a porous or otherwise perforated material through which deposition material will pass during an electroplating operation on its way from a distal anode to a deposition surface. In either approach, it is possible for CC masks to share a common support, i.e. the patterns of conformable dielectric material for plating multiple layers of material may be located in different areas of a single support structure. When a single support structure contains multiple plating patterns, the entire structure is referred to as the CC mask while the individual plating masks may be referred to as “submasks”. In the present application such a distinction will be made only when relevant to a specific point being made. In preparation for performing the selective deposition of the first operation, the conformable portion of the CC mask is placed in registration with and pressed against a selected portion of the substrate (or onto a previously formed layer or onto a previously deposited portion of a layer) on which deposition is to occur. The pressing together of the CC mask and substrate occur in such a way that all openings, in the conformable portions of the CC mask contain plating solution. The conformable material of the CC mask that contacts the substrate acts as a barrier to electrodeposition while the openings in the CC mask that are filled with electroplating solution act as pathways for transferring material from an anode (e.g. the CC mask support) to the non-contacted portions of the substrate (which act as a cathode during the plating operation) when an appropriate potential and/or current are supplied. An example of a CC mask and CC mask plating are shown in FIGS. 1A-1C. FIG. 1A shows a side view of a CC mask 8 consisting of a conformable or deformable (e.g. elastomeric) insulator 10 patterned on an anode 12. The anode has two functions. FIG. 1A also depicts a substrate 6 separated from mask 8. One is as a supporting material for the patterned insulator 10 to maintain its integrity and alignment since the pattern may be topologically complex (e.g., involving isolated “islands” of insulator material). The other function is as an anode for the electroplating operation. CC mask plating selectively deposits material 22 onto a substrate 6 by simply pressing the insulator against the substrate then electrodepositing material through apertures 26a and 26b in the insulator as shown in FIG. 1B. After deposition, the CC mask is separated, preferably non-destructively, from the substrate 6 as shown in FIG. 1C. The CC mask plating process is distinct from a “through-mask” plating process in that in a through-mask plating process the separation of the masking material from the substrate would occur destructively. As with through-mask plating, CC mask plating deposits material selectively and simultaneously over the entire layer. The plated region may consist of one or more isolated plating regions where these isolated plating regions may belong to a single structure that is being formed or may belong to multiple structures that are being formed simultaneously. In CC mask plating as individual masks are not intentionally destroyed in the removal process, they may be usable in multiple plating operations. Another example of a CC mask and CC mask plating is shown in FIGS. 1D-1F. FIG. 1D shows an anode 12′ separated from a mask 8′ that comprises a patterned conformable material 10′ and a support structure 20. FIG. 1D also depicts substrate 6 separated from the mask 8′. FIG. 1E illustrates the mask 8′ being brought into contact with the substrate 6. FIG. 1F illustrates the deposit 22′ that results from conducting a current from the anode 12′ to the substrate 6. FIG. 1G illustrates the deposit 22′ on substrate 6 after separation from mask 8′. In this example, an appropriate electrolyte is located between the substrate 6 and the anode 12′ and a current of ions coming from one or both of the solution and the anode are conducted through the opening in the mask to the substrate where material is deposited. This type of mask may be referred to as an anodeless INSTANT MASK™ (AIM) or as an anodeless conformable contact (ACC) mask. Unlike through-mask plating, CC mask plating allows CC masks to be formed completely separate from the fabrication of the substrate on which plating is to occur (e.g. separate from a three-dimensional (3D) structure that is being formed). CC masks may be formed in a variety of ways, for example, a photolithographic process may be used. All masks can be generated simultaneously, prior to structure fabrication rather than during it. This separation makes possible a simple, low-cost, automated, self-contained, and internally-clean “desktop factory” that can be installed almost anywhere to fabricate 3D structures, leaving any required clean room processes, such as photolithography to be performed by service bureaus or the like. An example of the electrochemical fabrication process discussed above is illustrated in FIGS. 2A-2F. These figures show that the process involves deposition of a first material 2 which is a sacrificial material and a second material 4 which is a structural material. The CC mask 8, in this example, includes a patterned conformable material (e.g. an elastomeric dielectric material) 10 and a support 12 which is made from deposition material 2. The conformal portion of the CC mask is pressed against substrate 6 with a plating solution 14 located within the openings 16 in the conformable material 10. An electric current, from power supply 18, is then passed through the plating solution 14 via (a) support 12 which doubles as an anode and (b) substrate 6 which doubles as a cathode. FIG. 2A, illustrates that the passing of current causes material 2 within the plating solution and material 2 from the anode 12 to be selectively transferred to and plated on the cathode 6. After electroplating the first deposition material 2 onto the substrate 6 using CC mask 8, the CC mask 8 is removed as shown in FIG. 2B. FIG. 2C depicts the second deposition material 4 as having been blanket-deposited (i.e. non-selectively deposited) over the previously deposited first deposition material 2 as well as over the other portions of the substrate 6. The blanket deposition occurs by electroplating from an anode (not shown), composed of the second material, through an appropriate plating solution (not shown), and to the cathode/substrate 6. The entire two-material layer is then planarized to achieve precise thickness and flatness as shown in FIG. 2D. After repetition of this process for all layers, the multi-layer structure 20 formed of the second material 4 (i.e. structural material) is embedded in first material 2 (i.e. sacrificial material) as shown in FIG. 2E. The embedded structure is etched to yield the desired device, i.e. structure 20, as shown in FIG. 2F. Various components of an exemplary manual electrochemical fabrication system 32 are shown in FIGS. 3A-3C. The system 32 consists of several subsystems 34, 36, 38, and 40. The substrate holding subsystem 34 is depicted in the upper portions of each of FIGS. 3A to 3C and includes several components: (1) a carrier 48, (2) a metal substrate 6 onto which the layers are deposited, and (3) a linear slide 42 capable of moving the substrate 6 up and down relative to the carrier 48 in response to drive force from actuator 44. Subsystem 34 also includes an indicator 46 for measuring differences in vertical position of the substrate which may be used in setting or determining layer thicknesses and/or deposition thicknesses. The subsystem 34 further includes feet 68 for carrier 48 which can be precisely mounted on subsystem 36. The CC mask subsystem 36 shown in the lower portion of FIG. 3A includes several components: (1) a CC mask 8 that is actually made up of a number of CC masks (i.e. submasks) that share a common support/anode 12, (2) precision X-stage 54, (3) precision Y-stage 56, (4) frame 72 on which the feet 68 of subsystem 34 can mount, and (5) a tank 58 for containing the electrolyte 16. Subsystems 34 and 36 also include appropriate electrical connections (not shown) for connecting to an appropriate power source for driving the CC masking process. The blanket deposition subsystem 38 is shown in the lower portion of FIG. 3B and includes several components: (1) an anode 62, (2) an electrolyte tank 64 for holding plating solution 66, and (3) frame 74 on which the feet 68 of subsystem 34 may sit. Subsystem 38 also includes appropriate electrical connections (not shown) for connecting the anode to an appropriate power supply for driving the blanket deposition process. The planarization subsystem 40 is shown in the lower portion of FIG. 3C and includes a lapping plate 52 and associated motion and control systems (not shown) for planarizing the depositions. Another method for forming microstructures from electroplated metals (i.e. using electrochemical fabrication techniques) is taught in U.S. Pat. No. 5,190,637 to Henry Guckel, entitled “Formation of Microstructures by Multiple Level Deep X-ray Lithography with Sacrificial Metal layers”. This patent teaches the formation of metal structure utilizing mask exposures. A first layer of a primary metal is electroplated onto an exposed plating base to fill a void in a photoresist, the photoresist is then removed and a secondary metal is electroplated over the first layer and over the plating base. The exposed surface of the secondary metal is then machined down to a height which exposes the first metal to produce a flat uniform surface extending across the both the primary and secondary metals. Formation of a second layer may then begin by applying a photoresist layer over the first layer and then repeating the process used to produce the first layer. The process is then repeated until the entire structure is formed and the secondary metal is removed by etching. The photoresist is formed over the plating base or previous layer by casting and the voids in the photoresist are formed by exposure of the photoresist through a patterned mask via X-rays or UV radiation. Electrochemical Fabrication provides the ability to form prototypes and commercial quantities of miniature objects, parts, structures, devices, and the like at reasonable costs and in reasonable times. In fact, Electrochemical Fabrication is an enabler for the formation of many structures that were hitherto impossible to produce. Electrochemical Fabrication opens the spectrum for new designs and products in many industrial fields. Even though Electrochemical Fabrication offers this new capability and it is understood that Electrochemical Fabrication techniques can be combined with designs and structures known within various fields to produce new structures, certain uses for Electrochemical Fabrication provide designs, structures, capabilities and/or features not known or obvious in view of the state of the art. A need exists in various fields for miniature devices having improved characteristics, reduced fabrication times, reduced fabrication costs, simplified fabrication processes, and/or more independence between geometric configuration and the selected fabrication process. A need also exists in the field of miniature (i.e. mesoscale and microscale) device fabrication for improved fabrication methods and apparatus. A need also exists in the electrochemical fabrication field for enhanced techniques that supplement those already known in the field to allow even greater versatility in device design, improved selection of materials, improved material properties, more cost effective and less risky production of such devices, and the like. SUMMARY OF THE INVENTION It is an object of some aspects of the invention to provide an electrochemical fabrication technique capable of fabricating improved microprobe tips. It is an object of some aspects of the invention to provide an electrochemical fabrication technique capable of fabricating improved microprobes and microprobe tips. It is an object of some aspects of the invention to provide an improved electrochemical fabrication technique capable of fabricating microprobe tips. It is an object of some aspects of the invention to provide an improved electrochemical fabrication technique capable of fabricating microprobes and microprobe tips. Other objects and advantages of various aspects of the invention will be apparent to those of skill in the art upon review of the teachings herein. The various aspects of the invention, set forth explicitly herein or otherwise ascertained from the teachings herein, may address one or more of the above objects alone or in combination, or alternatively may address some other object of the invention ascertained from the teachings herein. It is not necessarily intended that all objects be addressed by any single aspect of the invention even though that may be the case with regard to some aspects. In a first aspect of the invention, a method for creating a contact structure, comprising: forming a contact tip having a desired configuration; forming compliant probe structure electrochemically; and adhering the contact tip to the probe structure to form a contact structure. In a second aspect of the invention, a method for creating a contact structure, comprising: forming a contact tip having a desired configuration; forming compliant probe structure from a plurality of adhered layers of electrodeposited material; and adhering the contact tip to the probe structure to form a contact structure. In a third aspect of the invention, a method for creating a contact structure, comprising: forming a contact tip having a desired configuration; and forming compliant probe structure electrochemically, wherein the compliant probe structure is formed on the contact tip. In a fourth aspect of the invention, a method for creating a contact structure, comprising: forming a contact tip having a desired configuration; and forming compliant probe structure from a plurality of adhered layers of electrodeposited material, wherein the compliant probe structure is formed on the contact tip. In a fifth aspect of the invention, a method for creating a contact structure, comprising: forming compliant probe structure electrochemically; and forming a contact tip having a desired configuration, wherein the contact tip is formed on the compliant probe structure. In a sixth aspect of the invention, a method for creating a contact structure, comprising: forming compliant probe structure from a plurality of adhered layers of electrodeposited material; and forming a contact tip having a desired configuration, wherein the contact tip is formed on the compliant probe structure. Further aspects of the invention will be understood by those of skill in the art upon reviewing the teachings herein. Other aspects of the invention may involve combinations of the above noted aspects of the invention. Other aspects of the invention may involve apparatus that can be used in implementing one or more of the above method aspects of the invention. These other aspects of the invention may provide various combinations of the aspects presented above as well as provide other configurations, structures, functional relationships, and processes that have not been specifically set forth above. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A-1C schematically depict side views of various stages of a CC mask plating process, while FIGS. 1D-1G schematically depict a side views of various stages of a CC mask plating process using a different type of CC mask. FIGS. 2A-2F schematically depict side views of various stages of an electrochemical fabrication process as applied to the formation of a particular structure where a sacrificial material is selectively deposited while a structural material is blanket deposited. FIGS. 3A-3C schematically depict side views of various example subassemblies that may be used in manually implementing the electrochemical fabrication method depicted in FIGS. 2A-2F. FIGS. 4A-4I schematically depict the formation of a first layer of a structure using adhered mask plating where the blanket deposition of a second material overlays both the openings between deposition locations of a first material and the first material itself. FIGS. 5A-5J schematically depict side views at various stages of the process for forming an array of probe elements according to a first embodiment of the invention where the probe element tips are formed via electroplating onto a seed layer coated epoxy template which was molded from a silicon wafer that underwent patterned anisotropic etching. FIGS. 6A-6J schematically depict side views at various stages of process for forming an array of probe elements according to a second embodiment of the invention which is similar to the first embodiment of the invention with the exception that the probe element tips are formed a different material than the rest of the probe elements. FIGS. 7A-7F schematically depict side views at various stages of a process for forming a probe element according to a third embodiment of the invention where the probe element tip is formed using a protrusion of patterned photoresist that is made to have an undercut FIGS. 8A-8F schematically depict side views at various stages of a process for forming a probe element according to a fourth embodiment of the invention where the probe element tip is formed using an indentation in a patterned photoresist that is made to have sidewalls that taper outward. FIGS. 9A-9G schematically depict side views at various stages of a process for forming an array of probe elements according to a fifth embodiment of the invention where the probe element tips are formed using protrusions of a patterned photoresist material over which an electroplated material is made to mushroom and through which openings are etched. FIGS. 10A-10C schematically depict side views at various stages of a process for forming an array of probe elements according to a sixth embodiment of the invention where the probe element tips are formed using protrusions of a patterned photoresist material over which an electroplated material is made to mushroom. FIGS. 11A-11F schematically depict partially transparent, perspective views, side views along a central cut plane, and top views at various stages of a process for forming an array of probe tips according to a seventh embodiment of the invention where the probe tips are formed using a mold formed from a patterned deposition that forms multiple voids (one per tip) followed by a blanket deposition that narrows the voids and gives them a desired shape. FIGS. 12A-12E schematically depicts partially transparent, perspective views at various stages of a process for forming an array of probe tips according to an eighth embodiment of the invention where the probe tips are formed using a partially masked area of structural material or tip material surrounded by a sacrificial material and then etching the structural or tip material relative to the sacrificial material to achieved desired tip configurations. FIGS. 13A-13C schematically depict side views at various stages of a process for forming an array of probe elements according to a ninth embodiment of the invention where the probe tips are formed after forming the other portions of elements by placing patterned masking material over a tip material and etching away the tip material in the exposed regions leaving behind tip elements located on previously formed portions of the elements. FIGS. 14A-14D schematically depict side views at various stages of a process for forming an embossing tool for forming probe tips with all array elements present and having a first tip configuration. FIGS. 15A-15D schematically depict side views at various stages of a process for forming an embossing tool for forming probe tips with only a portion of the array elements present and having a second tip configuration. FIGS. 16A-16M schematically depict side views at various stages of a process for forming an array of probe elements according to a tenth embodiment of the invention where the probe element tips are formed using the embossing tool produced according to FIGS. 14A-14D. FIGS. 17A-17L schematically depict side views at various stages of a process for forming an array of probe elements according to an eleventh embodiment of the invention where the probe element tips are formed using the embossing tool produced according to FIGS. 14A-14D, where the embossed material is conductive, and where selected probe elements are not formed. FIGS. 18A-18J schematically depict side views at various stages of a process for forming an array of probe elements according to a twelfth embodiment of the invention where the probe element tips are formed using the embossing tool produced according to FIGS. 14A-14D and where selected probe elements and probe tips are not formed. FIGS. 19A-19N schematically depict side views at various stages of a process for forming an array of probe elements according to a thirteenth embodiment of the invention where some probe elements have different heights and different tip configurations and where the probe tip elements are formed using the embossing tools produced according to FIGS. 14A-14D and FIG. 15A-15D. FIGS. 20A-20E schematically depict side views at various stages of a process for forming a probe element according to a fourteenth embodiment of the invention where the probe tip is coated with a desired contact material which is protected from a sacrificial material use in forming the probe element. FIGS. 21A-21F schematically depict side views at various stages of a process for forming a probe element according to a fifteenth embodiment of the invention where the probe tip is given a tapered configuration and a coating of desired contact material which is protected from a sacrificial material used in forming the probe element. FIGS. 22A-22H schematically depict partially transparent, perspective views of an example structure at various stages of a process for forming an array of probe tips and elements according to a sixteenth embodiment of the invention where the probe tips are formed using a silicon mold and the tips are protected from sacrificial material etchants by sealing them between structural material and silicon prior removing sacrificial material. FIGS. 23A-23U depict an example process flow for fabricating probes of a single height using mushrooming to produce the tips. FIGS. 24A-24CC depict the process flow for an embodiment of the invention in which the photoresist patterns needed to define the tips through mushrooming are formed at the appropriate layer, but the mushrooming deposition of sacrificial material is deferred until layers are built to a sufficient height to allow the full tip height to be formed. FIGS. 25A-25D schematically depict side views at various stages of an alternative process for forming an undercut dielectric pattern similar to that of the embodiment of FIG. 7A-7F where multiple deposits of photoresist will be used in combination with multiple exposures. FIGS. 26A-26H depict the process for making the contact mask, whereas FIGS. 26I-26N illustrate the use of the contact mask in forming tips on a wafer. FIGS. 27A-27B depicts an embodiment for generating probe tips which involves the creation of photoresist molds with sloped sidewalls. FIGS. 28A-28S depicts an embodiment which relates to a method of fabricating probes with probe tips. FIGS. 29A-29D depict a process where trumpet-like flare to the tip's leading surface can occur due to bulging of the sacrificial metal. FIGS. 30A-30D depicts an enhanced process which may be used if bulging and flaring occurs. FIGS. 31A-32B depict an alternative processes to allow the polymer to set, then use a directional plasma etch to remove the polymer from the surface of the mushroomed sacrificial material and the bottom of the hole but letting it remain behind in the undercut regions. FIGS. 33A-33D depict an approach where Cu fill-in can serve as a way for later release and separation of the tip material from the Ni mold. FIGS. 34A-34D depict a 2-layer tip structure which may be made using photoresist first, with a wider 1st layer and a narrower 2nd layer. FIGS. 35A-35B depict probe tips as made by one or more of the various processes described herein with an attachment material located thereon and there after used to bond the tips to probes. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION FIGS. 1A-1G, 2A-2F, and 3A-3C illustrate various features of one form of electrochemical fabrication that are known. Other electrochemical fabrication techniques are set forth in the '630 patent referenced above, in the various previously incorporated publications, in various other patents and patent applications incorporated herein by reference, still others may be derived from combinations of various approaches described in these publications, patents, and applications, or are otherwise known or ascertainable by those of skill in the art from the teachings set forth herein. All of these techniques may be combined with those of the various embodiments of various aspects of the invention to yield enhanced embodiments. Still other embodiments may be derived from combinations of the various embodiments explicitly set forth herein. FIGS. 4A-4I illustrate various stages in the formation of a single layer of a multi-layer fabrication process where a second metal is deposited on a first metal as well as in openings in the first metal where its deposition forms part of the layer. In FIG. 4A, a side view of a substrate 82 is shown, onto which patternable photoresist 84 is cast as shown in FIG. 4B. In FIG. 4C, a pattern of resist is shown that results from the curing, exposing, and developing of the resist. The patterning of the photoresist 84 results in openings or apertures 92(a)-92(c) extending from a surface 86 of the photoresist through the thickness of the photoresist to surface 88 of the substrate 82. In FIG. 4D, a metal 94 (e.g. nickel) is shown as having been electroplated into the openings 92(a)-92(c). In FIG. 4E, the photoresist has been removed (i.e. chemically stripped) from the substrate to expose regions of the substrate 82 which are not covered with the first metal 94. In FIG. 4F, a second metal 96 (e.g., silver) is shown as having been blanket electroplated over the entire exposed portions of the substrate 82 (which is conductive) and over the first metal 94 (which is also conductive). FIG. 4G depicts the completed first layer of the structure which has resulted from the planarization of the first and second metals down to a height that exposes the first metal and sets a thickness for the first layer. In FIG. 4H the result of repeating the process steps shown in FIGS. 4B-4G several times to form a multi-layer structure are shown where each layer consists of two materials. For most applications, one of these materials is removed as shown in FIG. 4I to yield a desired 3-D structure 98 (e.g. component or device). The various embodiments, alternatives, and techniques disclosed herein may be combined with or be implemented via electrochemical fabrication techniques. Such combinations or implementations may be used to form multi-layer structures using a single patterning technique on all layers or using different patterning techniques on different layers. For example, different types of patterning masks and masking techniques may be used or even techniques that perform direct selective depositions without the need for masking. For example, conformable contact masks may be used during the formation of some layers while non-conformable contact masks may be used in association with the formation of other layers. Proximity masks and masking operations (i.e. operations that use masks that at least partially selectively shield a substrate by their proximity to the substrate even if contact is not made) may be used, and adhered masks and masking operations (masks and operations that use masks that are adhered to a substrate onto which selective deposition or etching is to occur as opposed to only being contacted to it) may be used. FIGS. 5A-5J schematically depict side views at various stages of the process for forming an array of probe elements according to a first embodiment of the invention where the probe element tips are formed via electroplating onto a seed layer coated epoxy template which was molded from a silicon wafer that underwent patterned anisotropic etching. FIG. 5A depicts a state of the process after a patterned silicon wafer is supplied. The silicon wafer has been patterned by placing a mask over its surface and patterning the mask to have openings in regions that correspond to desired probe tip locations. While the mask is in place an isotropic etching is preformed to create V-shaped or conically shaped holes in the silicon. In alternative embodiments these openings may take the form of V-shaped trenches where it is desired that probe tips take such a form. The openings 104 and silicon 102 correspond to desired probe tip locations and represent the compliment of the probe tip shape. After the patterned silicon is obtained a casting material 106, such as an epoxy is molded over the patterned surface of the silicon as illustrated in FIG. 5B. Next the molded inverted replica of the patterned silicon is separated from the silicon as shown in FIG. 5C. FIG. 5D depicts the state of the process after electrodepositing and planarizing a sacrificial material 108 over the patterned surface of the replica. The sacrificial material 108 may be, for example, copper. Depending on the conductive or dielectric nature of the material forming replica 106, it may be necessary to form a seed layer or plating base on the surface of material 106 prior to electroplating. Such a seed layer may take the form of sputtered titanium or chromium over which a sputtered seed layer material may be located in preparation for electroplating. FIG. 5E depicts a state of the process after electroplated material 108 is separated from replica 106. FIG. 5F depicts a state of the process after a desired tip material 110 is plated over the patterned surface of the sacrificial material 108. Next as indicated in FIG. 5G the tip material 110 and sacrificial material 108 are planarized to a level that causes individual tips 112a, 112b, 112c, 112d, and 112e, to become separated from one another. FIG. 5H depicts the state of the process after multiple layers of structure have been formed where each layer consists of regions of sacrificial material 108 and regions of structural material 110. Also as shown in FIG. 5H a bonding material 116 is shown as having been selectively applied to exposed regions of conductive material 110 associated with each probe element. Material 116 may be applied in a variety of manners such as, for example, electroplating via openings in a masking material. Material 116 may, for example, be a low melting point metal such as tin, lead, a tin lead alloy, or other solder like material. After depositing the adhesion material it may be reflowed to give it a ball like configuration as shown in FIG. 5H. Before or after application of the adhesion or bump material dicing of probe elements into desired groups may occur where the groups represent discrete quantities and patterns of probes that may be used in a desired application. FIG. 5I depicts a state of the process after the probe structures have been flipped over and adhered to a substrate 118 via bumps or adhesion material 116. Substrate 118 may, for example, be a space transformer or intermediate structure containing a desired network of conductive leads. FIG. 5J depicts a state of the process after sacrificial material 108 has been removed resulting in probes 120a-120e being independently contacted and mounted to substrate 118. The layer by layer built up portions of probes 120a-120e as depicted are not intended to illustrate any particular probe features or design configurations but instead are intended to show the existence of an elongated structure extending from substrate 118 to tips 112a-112e. Probe configuration made tight on appropriate form, for example, probe forms described in U.S. patent application Ser. No. 60/533,933 filed Dec. 31, 2003 and entitled “Electrochemically Fabricated Microprobes” may be used. This referenced patent application is incorporated herein by reference as if set forth in full. In summary, the primary elements of the first embodiment include: (1) An isotropically etching of desired probe tip configurations into silicon via a patterned mask. (2) Cast a complimentary replica of the openings in the silicon. The casting material may be, for example, an insulative or conductive epoxy material. Prior to casting the silicon surface may be treated with an appropriate release agent to aid in separating the wafer and the replicated pattern. (3) Separate the replica and the silicon wafer. (4) If the surface of the replica is not conductive or plate-able apply a seed layer to the patterned surface of the replica. If necessary prior to applying a seed layer material, an adhesion layer material may be applied. The application of either or both of these materials may occur via a physical deposition process, such as sputtering, a chemical vapor deposition process, an electroless deposition process, and or a direct metallization process. The adhesion layer material may be, for example, titanium, chromium, a titanium-tungsten alloy, or the like. The seed layer material itself may be, for example, copper, nickel, or any other material that may be applied to the adhesion layer material onto which subsequent plating may occur. (5) Electroplate a sacrificial material to a desired height which is at least as great as, and more preferably greater than, the height of the patterned protrusions on the replica. The sacrificial material may, for example, be copper or some other material that is readily separable from a structural material that the probe tips and rest of the probe elements will be made from. (6) Optionally planarize the surface of the sacrificial material so as to give the sacrificial material a reference surface that will be useful in performing subsequent operations. Alternatively a casting operation or the like may be used to give the sacrificial material a desired reference surface. (7) The sacrificial material is separated from the epoxy mold. (8) A desired tip metal is blanket plated onto the patterned surface of the sacrificial material to a sufficient height to fill the voids in the surface. (9) The tip material and the sacrificial material are planarized so that the tip metal separately fills each void in the sacrificial material without bridging the individual tip regions. A multi-layer electrochemical fabrication process occurs so as to build up probe elements from a plurality of adhered layers of structural material, where each layer includes structural material in desired locations and sacrificial material in the remaining locations. (10) After formation of all layers, an adhesion material or bonding material is selectively located on the structural material for each probe element. This bonding material may take the form of a low temperature metal such as tin, tin-lead or other solder like material. The selective application of the bonding material may occur in a variety of ways. For example, it may occur via a masking and selective plating operation, followed by removal of the masking material, and potentially followed by the reflowing of the deposited material to give it a rounded configuration over each probe element. (11) The structure may be diced into smaller groupings of probe elements having desired configurations in preparation for locating them on desired locations of substrates such as space transformers or probe chip structures or the like. (12) Use a flip chip process to bond the probe elements to the substrate using the bonding or adhesion material. (13) Remove the sacrificial material by etching to release and separate the individual probe elements that have been mounted to the substrate. In alternative embodiments this process may be used to produce single probe elements. In some variations of this embodiment, master patterns may be made from other selective patterned materials and probe tip configurations may take on other shapes. FIGS. 6A-6J schematically depict side views at various stages of process for forming an array of probe elements according to a second embodiment of the invention which is similar to the first embodiment of the invention with the exception that the probe element tips are formed a different material than the rest of the probe elements. FIG. 6A depicts a state of the process after a tip material 150 is deposited into a sacrificial molding material 152. If sacrificial mold material 152 is not conductive or plate-able a seed layer and potentially an adhesion layer may be formed on mold surface prior to plating material 150. In variations of this embodiment, material 150 may be located on the patterned surface of material 152 using a process other then electroplating. FIG. 6B depicts a state of the process after tip material 150 and mold material 152 have been planarized to make tip elements 150a-150e independent of one another by removing any bridging material 150 that connected them after the deposition operation. FIG. 6C depicts a state of the process after multiple layers of the probe elements have been formed according to an electrochemical fabrication process where each layer includes regions of a sacrificial material 154 and regions of structural material 156. The regions of these materials on each layer are defined by the desired cross section of the array of probe elements associated with that cross section. After formation of all layers 158 an adhesion or bonding material 160 is selectively located over the ends of structural material 156 (i.e. over the distal end of the probe elements). Material 160 may be selectively applied by masking surface 162 of layers 158 and then electrodepositing material 160, (e.g. tin, tin-lead, or other solder like materials) into the openings in the mask. After electrodeposition is completed the mask may be removed and if desired bonding material 160 may be heated so that it reflows to form rounded balls or bumps of material. FIG. 6D depicts a state of the process after the array of probe elements 164 have been bonded via bonding material 160 to a substrate 16, and the sacrificial material 154 has been removed. The order of attachment and the order of removal may be performed in any desired manner. In other words, in some variations of this embodiment, the removal operation may occur prior to the attachment operation while in other variations of this embodiment the attaching operation may occur prior to the removal operation. In still other variations of the present embodiment where removal of sacrificial material is to occur prior to attachment, the removal of sacrificial material may occur prior to formation of the bumps 160 of the adhesion material being attached to the distal ends of the structural material 156 forming the probe elements. In still other variations of the present embodiment the last layer or layers of the probe elements may be formed using a different material than sacrificial material 154. This different material may be a conductive or dielectric sacrificial material or it may be a dielectric structural material. This different material may be put in place as part of the formation process for the last layer or layers or alternatively it may be put in place after layer formation is completed and an etching of the sacrificial material from surface 162 removes one or more layers of the material. After the different material is put in place, surface 162 may be re-planarized and then bumps 160 formed. In still further variations of the present embodiment, bumps 160 may not be directly formed on structural material 156 but instead may be formed in desired locations on a substrate 166 and then made to contact and bond to probe elements 164 during the adhesion operation. FIG. 6E shows the state of the process after the original sacrificial material 152 holding tips 150a-150e is removed thereby forming independent probe elements 164a-164e on substrate 166. If the different material described in one of the above variations is used, that different material may be removed before or after the adhesion process occurs or may remain as a part of the final structure and may actually be used to enhance adhesion between the probe elements 164a-164e and substrate 166. FIGS. 7A-7F schematically depict side views at various stages of a process for forming a probe element according to a third embodiment of the invention where the probe element tip is formed using a protrusion of patterned photoresist that is made to have an undercut. FIG. 7A depicts a state of the process where a temporary substrate 182 is coated with a negative photoresist material 184, e.g. Futurrex NR9-8000, which has one or more openings 188 through which radiation 190 may be directed to expose the photoresist material. Openings 188 correspond to locations where probe element tip material 192 will eventually be located on substrate 182. FIG. 7B depicts a state of the process after substrate 182 and photoresist 184 have been immersed in a developing solution 194 such that unexposed portions of photoresist 184 are removed and such that exposed region 184a remains. FIG. 7C depicts a state of the process after continuing to expose photoresist element 184a to developing solution so that it becomes overdeveloped which causes undercutting of the photoresist to occur leading to the trapezoidal shaped element 184b. FIG. 7D depicts a state of the process after photoresist element 184b has been used as a mask in a through plating operation which results in the deposition of a sacrificial material 196 which may be the same or different from substrate material 182. If the deposition of sacrificial material 196 is not sufficiently uniform a planarization operation may be used to achieve the configuration depicted in FIG. 7D. FIG. 7E depicts a state of the process after probe tip material 192 has been deposited into the void created by the removal of photoresist material 184b. If necessary to give probe tip material 192 and sacrificial material 196 a desired surface configuration the upper surface of these two materials may be planarized to yield the configuration shown in FIG. 7E. FIG. 7F depicts a state of the process after electro chemical fabrication of a plurality of layers produces probe element 202 bounded on one end by probe tip material 192 and bounded on the other end by an adhesion material 200. After formation of the completed probe tip (as shown) or probe tip array (not shown) the sacrificial material 196 may be removed and the probe elements bonded to a substrate after which temporary substrate 182 may be removed. In variations of this embodiment adhesion material 200 need not be surrounded by sacrificial material 196 as it may be directly pattern deposited. In such cases, or in cases where removal of the upper most portion of the sacrificial material occurs it may be possible to bond probe elements 202 to a desired substrate via bonding material 200 prior to removal of all of the sacrificial material. In such cases temporary substrate material 182 maybe removed before or after adhesion has taken place. The variations and features of this embodiment may have application in variations of the previously discussed embodiments or embodiments to be discussed hereinafter just as variations and features of the previous embodiments may have application to creation of further variations of the present embodiment or variations of embodiments to be described hereinafter just as features of the various embodiments to be discussed hereinafter and their variations may have applications to create further variations of the present embodiment or previously discussed embodiments. FIGS. 8A-8F schematically depict side views at various stages of a process for forming a probe element according to a fourth embodiment of the invention where the probe element tip is formed using an indentation in a patterned photoresist that is made to have sidewalls that taper outward. FIG. 8A depicts a state of the process after a temporary substrate 212 is coated with a positive photoresist 214 and a mask 216 with one or more openings 218 positioned above the photoresist. Radiation 220 is allowed to expose the photoresist in hole regions 218. FIG. 8B depicts a state of the process after exposed photoresist 214 is developed and then overdeveloped to yield opening or openings 222 having tapered side walls 224. FIG. 8C depicts a state of the process after a probe element tip material 226 is deposited into opening 222 of photoresist 214 and then photoresist 214 is removed. FIG. 8D depicts a state of the process after a sacrificial material 228 is electrodeposited over substrate 212 and over probe tip material 226. FIG. 8E depicts a state of the process after the sacrificial material and probe tip material have been planarized. FIG. 8F depicts a state of the process after a plurality of layers of probe element 230 have been formed from a structural material 232 and sacrificial material 228. On one end probe element 230 includes the probe tip made from material 226 and on the other end an adhesion or bonding material 234. Next as described in association with the previous embodiments, probe element 230 or an array of probe elements (not shown) may be released from the sacrificial material and from the temporary substrate and bonded to a desired substrate via adhesion material 234. In variations of the above embodiment enhanced sloping or tapering of the photoresist material may occur not just as a result of overdevelopment but also as a result of underexposure and/or tailored baking operations. FIGS. 9A-9G schematically depict side views at various stages of a process for forming an array of probe elements according to a fifth embodiment of the invention where the probe element tips are formed using protrusions of a patterned photoresist material over which an electroplated material is made to mushroom and through which openings are etched. FIG. 9A depicts a state of the process after a temporary substrate 232 is coated with a seed layer material or seed layer stack 234 and that is in turn coated with a photoresist material 236. Located above the photoresist material is a photomask 238 which contains openings 240a-240e through which radiation 242 may expose and latently pattern photoresist material 236. FIG. 9B depicts a state of the process after development of the exposed and latently patterned photoresist 238 yields small plugs of photoresist material 238a-238d which mark locations where probe tip elements will be formed. FIG. 9C depicts a state of the process after a sacrificial material 244 is deposited into the openings between and adjacent to photoresist plugs 238a-238d. If necessary the photoresist plugs and deposited sacrificial material 244 may be planarized to yield the structural configuration shown in FIG. 9C. In variations of the embodiment such planarization may not be necessary while in other embodiments such planarization may be useful in enhancing the uniformity of mold patterns that will be created. FIG. 9D depicts a state of the process after additional deposition or continued deposition operations causes outward mushrooming of sacrificial material over the photoresist plugs. In the context of the present application mushrooming refers to the in plane spreading of the electrodeposited material occurring over dielectric material as the height of the deposition grows. FIG. 9E depicts a state of the process after a desired amount of mushrooming has occurred (i.e. spillover of deposited conductive sacrificial material onto the dielectric photoresist plugs) and as RIE exposure 246 has isotropically etched through the photoresist plugs to vertically create an opening extending from plating base 232 through the dielectric and sacrificial materials. These openings and surrounding conductive and sacrificial materials form molds in which probe element tip material may be deposited. The probe tip material may consist of a single material 248 (see FIG. 9F) that fills openings 250a-250d, or alternatively may be a relatively thin coating of a desired material that is backed by a secondary tip material (not shown). If necessary, after deposition of probe tip material 248 the surface of the sacrificial and probe tip materials may be planarized to yield the configuration shown in FIG. 9F. FIG. 9G depicts a state of the process after a plurality of electrochemically fabricated layers complete formation of probe elements 252 out of a structural material 254 and sacrificial material 244 and after deposition of an adhesion or bonding material 256 has occurred. As with the previously discussed embodiments probe elements may individually or in desired array patterns be diced from one another, temporary substrate material may be removed, seed layer material may be removed, remaining photoresist material may be removed and probe elements 252 may be bonded to a desired substrate via bonding or adhesion material 256. FIGS. 10A-10C schematically depict side views at various stages of a process for forming an array of probe elements according to a sixth embodiment of the invention where the probe element tips are formed using protrusions of a patterned photoresist material over which an electroplated material is made to mushroom. The embodiments of FIGS. 10A-10C are similar to that of FIGS. 9A-9G with the exception that the photoresist material over which mushrooming of sacrificial material occurs is not etched though. FIG. 10A depicts a state of the process after a probe tip material 262 begins to fill voids 264a to 264d but horizontal growth of the deposit from the sides of sacrificial material 244. FIG. 10B depicts a state of the process after openings 264a-264d have been filled with tip probe material 262 and after planarization has removed portions of material 262 that bridged over sacrificial material 244 and connected individual probe tip elements together. FIG. 10C depicts a state of the process after probe elements 266 have been completed by the electrochemical fabrication of a plurality of layers of structural material 254 and sacrificial material 244 and after a bonding or adhesion material 256 has been deposited. As with the embodiment of FIGS. 9A-9G probe elements 266 may be adhered to a desired substrate via bonding material 256 and sacrificial material 244 may be removed along with photoresist material 238, seed layer material 234, and temporary substrate 232 to yield a plurality of independent probe elements connected to a substrate with desired conductive interconnects and the like. FIGS. 11A-11F schematically depict partially transparent, perspective views, side views along a central cut plane, and top views at various stages of a process for forming an array of probe tips according to a seventh embodiment of the invention where the probe tips are formed using a mold formed from a patterned deposition that forms multiple voids (one per tip) followed by a blanket deposition that narrows the voids and gives them a desired shape. FIG. 11A depicts three views of the state of the process after a substrate is supplied. View 302-1 provides a perspective view of the substrate. View 302-2 provides a side view of the substrate along the X-axis while view 302-3 provides a top view of the substrate in the X-Y plane. Substrate 302 is a temporary substrate and may be made from a conductive material or a dielectric material having a seed layer formed thereon. FIG. 11B depicts three views of the substrate after a patterned deposition of a sacrificial material (e.g. copper) has been patterned thereon. Sacrificial material 304 is patterned to contain two voids 306-1 and 306-2. These voids represent locations where probe tips will be located and in this illustration, only two probe tips will be formed. Of course, this process may be used to form a single probe tip or used to form arrays of probe tips including tens, hundreds, or even thousands of elements. As with FIG. 11A the various views of FIG. 11B are shown in conjunction with coordinate axis symbols which indicate the perspective from which the view is taken. FIG. 11C depicts three views of the state of the process after a blanket deposition of a sacrificial material 308 occurs. Material 308 may or may not be the same material as sacrificial material 304. The blanket deposition of material 306 results in a filling in and a closing up of the voids 306-1 and 306-2 from the initial deposition of material 304. The closing up of the voids results in sloped walls of material 308 surrounding unfilled portions of voids 306-1 and 306-2. Filling in of void 306-1 occurs up to a position indicated by 312-1 while the filling in of void 306-2 occurs up to a line element 312-2. The shape of the unfilled portion of the voids depends on the initial debt and configuration of original voids 306-1 and 306-2. FIG. 11D provides three views of the state of the process after sacrificial material (i.e. nickel) deposition occurs and after a planarization operation occurs and after removal of any masking material associated with the patterned deposition occurs. The blanket deposit of material 306 as indicated in FIG. 11C provided desired void configurations 314-2 and 314-1 which possessed shapes complimentary to the desired shapes of probe tip elements to be formed. The operations leading to FIG. 11D result in creation of probe tip elements 316-1 and 316-2. FIG. 11E depicts three views of the state of the process after deposition of another sacrificial material 320 occurs and after planarization of the resulting deposits occurs. Sacrificial material 320 may be identical to sacrificial materials 308 and 304 or may be different from one or both of them. The performance of the deposition and planarization operation of FIG. 11E is based on the assumption that layers of structural material forming probe elements will be added to the tips as was indicated in the various previous embodiments set forth herein. If no such addition was to occur, the operations leading to FIG. 11E need not have occurred. FIG. 11F shows three views of the state of the process after each of the sacrificial materials and the substrate have been removed and under the assumption that no additional layers of structure (e.g. of probe elements) have occurred. The seventh embodiment of the invention as illustrated in FIGS. 11A-11F may be considered to include the following major operations: (1) Supply a substrate. (2) Pattern deposit a first sacrificial material onto the substrate leaving openings or voids in the sacrificial material in locations which will give rise to probe tip elements. The patterning of the sacrificial material may occur in a variety of ways, for example, it may occur by first locating and patterning a masking material onto the surface of the substrate and thereafter plating the sacrificial material onto exposed regions of the substrate. Alternatively, a blanket deposition of a sacrificial material may occur followed by patterned masking and selective etching. In a further alternative, direct deposition of the sacrificial material may occur, for example, by ink jet printing or the like. (3) Blanket deposit a second sacrificial material which may be identical to the first sacrificial material to build up the second sacrificial material over regions of the first sacrificial material and to partially fill in voids in the first sacrificial material such that voids of desired configuration occur in the second sacrificial material which take on a shape complimentary to that of the probe tip elements to be formed. (4) Pattern deposit a structural material into the voids formed in the second sacrificial material and potentially to form structures of desired configuration above the second sacrificial material. The patterned deposition of the structural material may occur in a variety of manners, for example, it may occur by locating and patterning a mask material over those portions of the second sacrificial material not to receive structural material. (5) The surface of the structural material and the masking material may optionally be planarized at a desired height. (6) Assuming that additional layers of material are to be added, deposition of a third sacrificial material may occur. The third sacrificial material may be the same as or different form either one or both of the first and second sacrificial materials. The deposition of the third sacrificial material may occur in a blanket or patterned manner. (7) The surface of the deposited materials may next be planarized if needed so that both sacrificial and structural materials are exposed and ready for accepting additional material depositions associated with build up of probe elements or the like. (9) Build up layers of the structure as desired for example using electrofabrication techniques as disclosed elsewhere herein. (10) Remove the sacrificial material to release the probe tips and other elements of the probe structures. Such release may occur before or after bonding of the probe elements to a new substrate. Various alternatives to this seventh embodiment are possible. For example, after the patterned deposition operation of the first sacrificial material and prior to any removal of associated masking material the surface of the sacrificial material may be planarized so as to give a controlled surface as a starting point for subsequent operations. In another variation of the embodiment, after the blanket deposition operation of the second sacrificial material a flash or quick etching operation or series of etching and deposition operations may occur to smooth out any irregularities in the surface of the second sacrificial material and particularly any irregularities the void regions of the second sacrificial material which will be used for molding probe tip elements. In addition or alternatively, after deposition of the second sacrificial material the voids therein may be filled with a temporary conductive or dielectric material and the surface of the second sacrificial material planarized and thereafter the temporary material removed. This planarization operation may improve the quality of the probe tip elements in regions slightly displaced from tip regions. In another variation of the present embodiment the deposition of the sacrificial material and the deposition of the structural material may be reversed such that the deposition of the sacrificial material is a patterned deposition while the deposition of the structural material may be a blanket deposition or may continue to be a selective deposition. The embodiments discussed thus far have contemplated the formation of probe tip elements prior to the formation of the remaining portions of the probe elements themselves. It should be understood that in alternative embodiments it may be possible to form, for example, the arms (i.e. extended portions) of the probe elements and thereafter to form and adhere the tip elements to the arm elements. Several of the embodiments discussed up to this point are susceptible to this reversal in formation order. FIGS. 12A-12E schematically depicts partially transparent, perspective views at various stages of a process for forming an array of probe tips according to an eighth embodiment of the invention where the probe tips are formed using a partially masked area of structural material or tip material surrounded by a sacrificial material and then etching the structural or tip material relative to the sacrificial material to achieved desired tip configurations. FIG. 12A depicts an initiation point for this state of the process where an array of probe elements 334a-334d have been formed on a substrate 332 and are encapsulated (with the exception of an upper surface) with a sacrificial material 336. In some variations of this embodiment the substrate may be a temporary substrate while in other variations it may be a permanent substrate. FIG. 12B depicts a state of the process after a masking material of desired configuration has been located over regions of the structural material 338 from which at least the tips of elements 334a-334d were formed. The masking may take on a variety of patterns. For example, as indicated by element 342a the masking material may be centered relative to the last layer of material 338 of one of the probes, it may be offset toward one side or the front or back of one of the probe elements as indicated by 342b, it may be a circular patch centered over the tip material as indicated by 342c, or it may be a square patch located over the tip material as indicated by 342d. FIG. 12C depicts a state of the process after a selective etching operation (e.g. a wet etch of nickel) is allowed to operate on the structural material in the unmasked regions. FIG. 12D depicts a state of the process after mask material overlaying the etched structural material has been removed. FIG. 12E depicts a state of the process after the substrate and sacrificial material have been removed leaving elements 334a-334d with tips structures 344a-344d which resulted form the relationship between the mask size, its location and the size of the structural material exposed to the etchant. In this embodiment the probe elements took the form of lever arm structures as opposed to the form of vertically elongated structures as presented in some of the previous embodiments. It will be understood by those of skill in the art that the probe structures may be utilized in conjunction with the probe tip creation technique of the present embodiments or may be of the indicated form or of the form presented in the previous embodiments. Similarly it will be understood by those of skill in the art that the probe tip creation techniques of those embodiments mat be combined with the formation of the cantilever type structures of the present embodiment. It will be understood by those of skill in the art that probe tip materials may be different from the materials used to form the rest of the probe elements or they may be of the same material. It will also be understood by those of skill in the art that contact materials associated with probe elements may be different form the probe tip materials themselves. Such contact materials may be applied after tip formation, for example, by a selected electrochemical deposition process or sputtering process or the like. Alternatively contact materials may be deposited during operations for the tip structure itself. It will also be understood by those of skill in the art that according to the present embodiment different probe tips in a probe tip array may have similar tip configurations or alternatively they may have different configurations depending on how they were formed and how it is intended that they will be used. FIG. 13A-13C schematically depict side views at various stages of a process for forming an array of probe elements according to a ninth embodiment of the invention where the probe tips are formed after forming the other portions of elements by placing patterned masking material over a tip material and etching away the tip material in the exposed regions leaving behind tip elements located on previously formed portions of the elements. FIG. 13A depicts a state of the process after a plurality of probe elements have been formed from a plurality of stacked and adhered layers of structural material 352 and sacrificial material 354. These layers were formed on a substrate 356 which may be a temporary substrate or a permanent substrate. The final layer of the built up probe elements are covered with a layer of probe tip material 358 which are in turn overlaid with a masking material which has been patterned to locate plugs of the masking material over locations where probe tip elements are to exist. The size and shape of the plugs of masking material will dictate the resulting tip configuration after an etchant 362 isotropically etches the probe tip material. FIG. 13B depicts a state of the process after etching has been completed and probe tip material is etched and the sacrificial material is exposed. The shadowing from the masking material provides for a tapered etching of the covered tip material and thus results in probe tips of a desired configuration. In variations to the present embodiment, multiple masking operations and etching operations may be used to further tailor the final shape of the probe tips. FIG. 13C depicts a state of the process after sacrificial material 354 has been removed which yields the array of probe elements 366a-366d adhered to substrate 356 and including tips 368 of desired configuration. FIG. 14A-14D schematically depict side views at various stages of a process for forming an embossing tool for forming probe tips with all array elements present and having a first tip configuration. FIG. 14A depicts a state of the process after a desired substrate material 372 is supplied while FIG. 14B depicts a state of the process after selective etching of substrate material 372 results in voids 374a-374e being formed. The etching that occurred to yield the voids of 374a-374e may have been implemented via the location and patterning of a mask material onto the surface of substrate 372. Substrate 372 may for example be silicon and the etchant may be, for example, KOH. FIG. 14C depicts a state of the process after a mold material (e.g. epoxy material) 376 has been cast over the patterned surface of substrate 372. FIG. 14D depicts a state of the process after mold material 376 has solidified and has been separated from the patterned substrate 372. The spacing of protrusions 378a-378e on tool 380 corresponds to locations where probe tip elements are to be formed, for example, as will be described in the embodiment of FIG. 16. FIG. 15A-15D schematically depict side views at various stages of a process for forming an embossing tool for forming probe tips with only a portion of the array elements present and having a second tip configuration. FIG. 15A-15D illustrate states of the process which are analogous to those illustrated in FIGS. 14A-14B with the exception that voids 384c and 384d are etched so as to have a different configuration than voids 374c and 374d, and where no voids in substrate 382 are formed which correspond to locations of voids 374a, 374b and 374e of FIG. 14B. As such, after completion of tool 390 from solidified molding material 386 the tool only contains protrusions 378c and 378d. In comparing the tools of FIG. 15D and FIG. 14D it may be considered that the tool of FIG. 15B includes only a portion of the possible protruding elements necessary to form a complete array of probe tips whereas the protrusions of FIG. 14D may be used to form a complete array. As will be understood after reviewing the next embodiments, each of these tools may have use in forming probe element arrays with tips of desired configuration. FIGS. 16A-16M schematically depict side views at various stages of a process for forming an array of probe elements according to a tenth embodiment of the invention where the probe element tips are formed using the embossing tool produced according to FIGS. 14A-14D. FIG. 16A depicts a state of the process after a substrate 402 is coated with a photoresist or other polymeric material 404. FIG. 16B depicts a state of the process after embossing tool 380 has been placed against polymeric material 404 while FIG. 16C depicts a state of the process after embossing tool 380 is made to emboss polymeric material 404. FIG. 16D depicts a state of the process after tool 380 has been removed leaving behind substrate 402 with polymeric material 404 located thereon and with voids 406a-406e located in the polymeric material. FIG. 16E depicts a state of the process after a seed layer material 408 is coated over the patterned polymeric material 404. The seed layer material may be of any appropriate sacrificial material that may be separated from a probe tip material without damaging it. For example, the seed layer material may be sputtered copper, tin, gold or the like. Prior to formation of the seed layer, if necessary, an adhesion layer may be located onto the surface of the patterned polymeric material. FIG. 16F depicts a state of the process after a probe tip material 412 has been plated over plating base 408. As indicated in FIG. 16F the deposition of probe tip material 412 occurs in a blanket fashion. In variations of this embodiment, probe tip material may be deposited in a selected manner such that regions between probe tip locations 414a-414e would not receive probe tip material. In such variations masking material associated with the selective deposition may be removed and a sacrificial material deposited (which may be the same as the seed layer material) and then the sacrificial material and probe tip material planarized to a desired level on which layers of structure may be formed. Alternatively, prior to removal of the masking material, planarization of the combined masking material and probe tip material may occur. The masking material may then be removed and then sacrificial material added and another planarization operation implemented if desired. FIG. 16G depicts a state of the process after a planarization operation trims the height of probe tip material and sacrificial material (e.g. seed layer material) to a common level such that probe tip material is removed from regions that separate desired probe tip locations. In achieving the result depicted in FIG. 16G it is assumed that the initial seed layer thickness was sufficient to allow the planarization operation to occur. If this was not the case one of the alternative embodiments mentioned above in association with FIG. 16F could be implemented, FIG. 16H depicts a state of the process after a plurality of layers of structural material 416 and sacrificial material 418 have been deposited to build up the structure of the probe elements. The structural material may, for example, be nickel or nickel-cobalt, and the probe tip material may be, for example, rhodium, or rhenium, while the sacrificial material may, for example, be copper or tin. As indicated in FIG. 16H though all probe element tips in the array were formed not all associated probe element structures were formed. In particular probe tips 414a, 414b and 414e have associated elements of probe structure formed while probe tips 414c and 414d do not. During a subsequent operation of the process probe tips 414c and 414d will be removed from the probe array. In an alternative embodiment instead of forming probe tip elements 414c and 414d those probe tip locations may simply have been masked prior to deposit of probe tip material. FIG. 16I depicts a state of the process after an adhesion or bonding material has been selectively deposited onto the distal end of the probe structures. FIG. 16J depicts a state of the process after adhesion material has been reflowed to give it a rounded or ball like configuration. FIG. 16K shows the state of the process after unreleased probe structures have been inverted and contacted to a permanent substrate 424 which includes regions of a second adhesion material 426 that correspond to locations of adhesion material 420. FIG. 16L depicts a state of the process after bonding of the probe structures and the permanent substrate occur and sacrificial material 418 is removed. FIG. 16M depicts the state of the process after probe tips 414a, 414b and 414d have been released from the seed layer material, polymeric material and substrate 402 to yield completed probes 426a, 426b and 426e on the permanent substrate 424. FIGS. 17A-17L schematically depict side views at various stages of a process for forming an array of probe elements according to an eleventh embodiment of the invention where the probe element tips are formed using the embossing tool produced according to FIGS. 14A-14D, where the embossed material is conductive, and where selected probe elements are not formed. The process of FIGS. 17A-17L is similar to that of FIGS. 16A-16M with the exception that the seed layer of FIG. 16E is not necessary (as the material to be embossed is a conductor such as tin in this embodiment). FIG. 17A depicts a state of the process after a temporary substrate 452 is provided with a planarized coating of a conductive sacrificial material 454 located thereon. Sacrificial material 454 may be any appropriate material that may be removed from a probe tip material without damaging the tips and possibly removed from a material of substrate 452. In some variations of this embodiment the sacrificial material 454 and the material substrate 452 may be one and the same material. FIG. 17B depicts a state of the process after embossing tool 380 is brought into initial contact with sacrificial material 454. FIG. 17C depicts a state of the process after embossing tool 380 has been made to penetrate into sacrificial material 454. This may be done, for example, by heating the embossing tool and/or the sacrificial material such that in locations where contact is made the sacrificial material is flowable and can be flowed or otherwise reshaped to take the form dictated by the patterning on tool 380. FIG. 17D depicts a state of the process after embossing tool 380 has been removed from embossed sacrificial material 454 leaving behind voids 456a-456e corresponding to locations where probe tips may exist in a probe tip array that is to be formed. FIG. 17E depicts a state of the process after a probe tip material 458 is deposited over the patterned surface of sacrificial material 454. FIG. 17F depicts a state of the process after the sacrificial material and probe tip material have been planarized to a common level. FIG. 17G depicts a state of the process after formation of probe elements has been completed as the result of the electrodeposition of a plurality of layers where each layer contains regions of structural material 462, corresponding to locations of probe elements, and sacrificial material 464. Sacrificial material 464 may be the same or different from sacrificial material 454. FIG. 17H depicts a state of the process after an adhesion material or bonding material 466 has been pattern deposited onto the uppermost surface of the probe structures. FIG. 17I depicts a state of the process after adhesion material 466 has been reflowed to give it a rounded or bubbled up shape as shown in FIG. 17I. FIG. 17J depicts a state of the process after unreleased probe structures have been inverted and bonded to a permanent substrate 468 which includes regions of a second adhesion material 470 which correspond to regions of the first adhesion material 466 located on the electrochemically fabricated layers of structure making up the probe elements. FIG. 17K depicts a state of the process after sacrificial material 464 has been removed. FIG. 17L depicts a state of the process after the original substrate 452 and sacrificial material 454 have been removed thereby yielding released probe structures 472a, 472b and 472e which are bonded to permanent substrate 468. As indicated in FIG. 17G probe tip regions 474a, 474b and 474e had structural material corresponding to probe elements adhered thereto whereas probe tip elements 474c and 474d did not. As such, after the final separation of sacrificial material 454 and substrate 452 from the probe elements bonded to substrate 468, tip elements 474c and 474d were removed. FIG. 18A-18J schematically depict side views at various stages of a process for forming an array of probe elements according to a twelfth embodiment of the invention where the probe element tips are formed using the embossing tool produced according to FIGS. 14A-14D and where selected probe elements and probe tips are not formed. FIG. 18A begins with a structure similar to that shown in FIG. 17F along with a masking material 472 located above the probe tip elements. FIG. 18B depicts a state of the process after patterning of the masking material results in an opening or openings above probe elements 474c and 474d that are to be removed. FIG. 18C depicts a state of the process after a selective etching operation removes probe tip material 438 from probe tip locations 474c and 474d. FIG. 18D depicts a state of the process after masking material 472 has been removed. FIG. 18E depicts a state of the process after electrochemical fabrication of a plurality of layers occurs above the probe tip elements. In particular a structural material 462 is deposited along with a sacrificial material 464. In the process of forming the first electrochemically fabricated layer sacrificial material 464 is made to fill in voids 476c and 476d. FIGS. 18F-18J are similar to FIGS. 17H-17L and thus will not be discussed in detail at this time with the exception of noting that upon final release there are no probe tip elements 474c or 474d that need to be removed. FIGS. 19A-19N schematically depict side views at various stages of a process for forming an array of probe elements according to a thirteenth embodiment of the invention where some probe elements have different heights and different tip configurations and where the probe tip elements are formed using the embossing tools produced according to FIGS. 14A-14D and FIG. 15A-15D. The process of FIGS. 19A-19N begins with the state of the process of forming an array of microstructures as depicted in FIG. 17G. FIG. 19A depicts a state of the process after an opening has been etched through a number of layers of deposited sacrificial material in the region overlying probe tips 474c and 474d. This etching operation may occur by masking the upper surface of the last formed layer of the structure with a masking material patterning the mask material to have a opening located therein above the regions of probes 474c and 474d and then etching into the sacrificial material and removing the mask. FIG. 19B depicts a state of the process after an embossable sacrificial material is located in at least the opening etched through the layers of sacrificial material. As shown in FIG. 19B the embossable material 482 is blanket deposited over the previously deposited materials. The embossable material may be tin or indium or the like. FIG. 19C depicts a state of the process after the deposited embossable material has been planarized to remove it from all locations except where it is filling the opening etched through the sacrificial material. FIG. 19D depicts a state of the process after embossing tool 390 is located in initial contact with embossable material 482 while FIG. 19E depicts a state of the process after tool 390 has been inserted into an embossed material 482. FIG. 19F depicts a state of the process after embossing tool 390 has been removed. FIG. 19G depicts a state of the process after deposition of a desired probe tip material fills holes 484c and 484d in embossed material 482. The probe tip material may be rhenium or rhodium, for example. FIG. 19H depicts a state of the process after a planarization operation has trimmed the deposited materials back to a level corresponding to that of the last layer of the structure formed. In variations of this embodiment the last layer of structure formed may have been formed with excess height initially, such that the various planarization operations performed could incrementally trim it down until a desired height is achieved as a result of a processing that led to the state of the process depicted in FIG. 19H. FIG. 19I depicts a state of the process after a number of additional layers of structure have been formed where these additional layers of structure include regions of structural material corresponding to probe elements and regions of sacrificial material located there between. FIG. 19J depicts a state of the process after all layers of the structures have been formed and after application of an adhesion or bonding material, for example, tin or tin lead or other solder like material or the like has been selectively deposited over regions of structural material. FIG. 19K depicts a state of the process after the adhesion material has been reflowed to give it a rounded or bold appearance. FIG. 19L depicts a state of the process after the probe structures have been inverted and located adjacent to bonding pads 488 located on a permanent substrate 490 (e.g. a space transformer). FIG. 19M depicts a state of the process after adhesion of the probe elements to the permanent substrate 490 has occurred and after sacrificial material 464 has been removed. FIG. 19N shows the state of the process after sacrificial material 454, substrate 452, and embossing material 482 have been removed thereby yielding a released probe array attached to permanent substrate 490. As can be seen in the figure, three of the probe elements have pointed tips while the other probe elements have rounded tip configurations. Similarly three of the elements are more elongated in nature then the other two elements. Those of skill in the art will understand that use of the processes associated with this thirteenth embodiment of the invention can produce probe element arrays with any combination of numbers of probe elements, different tip configurations (whether as a single height or at multiple heights) single or multiple or variable height probe elements and/or probe elements of different structural configurations (e.g. vertical extending spring like elements), and substantially horizontally extending cantilever type elements). FIGS. 20A-20E schematically depict side views at various stages of a process for forming a probe element according to a fourteenth embodiment of the invention where the probe tip is coated with a desired contact material which is protected from a sacrificial material use in forming the probe element. The process of FIGS. 20A-20E may be used to form a desired coating material on a probe tip while protecting that probe tip material from attack by a sacrificial material etchant or the like that it may not be compatible with. FIG. 20A depicts a state of the process after a sacrificial material 502 has received a patterned coating of a sacrificial material 504 (for example, copper). Substrate 502 may be of the same sacrificial material as 504 or it alternatively may be some other sacrificial material or potentially even a structural material that can eventually be separated from a probe tip. The openings over substrate 502 through the sacrificial material 504 correspond to locations where probe tip elements are to be formed. FIG. 20B depicts a state of the process after a blanket deposition of a protective material 506 is made to overcoat both the substrate and the sacrificial material. Next a probe tip floating material 508 is blanket deposited over the protective material 506 and thereafter a structural material 510 is blanket deposited. FIG. 20C depicts a state of the process after a planarization operation trims off those portions of the protective material 506, the probe tip coating material 508 and the structural material 510 that overlay regions of sacrificial material 504. As can be seen in FIG. 20C, probe tip coating material 508 is separated from sacrificial material 504 by a coating of the protective material 506. FIG. 20D depicts a state of the process after an additional layer of structural and sacrificial material is added. In particular it is noted that the structural material forming part of a probe element is provided with an extended width that completely covers the probe tip coating material and the protective material as well. As a result of the selecting of the size and configuration of the second layer to completely overlay the probe tip coating material the probe tip coating material is sandwiched between structural material 510 and protective material 506 and thus any subsequent etching operations that are intended to remove material 504 will not cause damage to probe tip coating material 508. FIG. 20E depicts a state of the process after a spring like probe element has been formed wherein the contact area of the probe element is shown as still being over-coated with the protective material and with the probe tip coating material. In a subsequent operation not shown protective material 506 may be removed to yield a probe element with a desired probe tip coating material. It will be understood by those of skill in the art that though a single probe tip and probe element have been illustrated in this embodiment the principles set forth in the process of this embodiment may be extended to the simultaneous creation of an array of probe tip elements or a plurality of arrays of probe tip elements. FIGS. 21A-21F schematically depict side views at various stages of a process for forming a probe element according to a fifteenth embodiment of the invention where the probe tip is given a tapered configuration and a coating of desired contact material which is protected from a sacrificial material used in forming the probe element. FIG. 21A depicts a state of the process after a substrate 512 receives a patterned deposit of a sacrificial material 514. The substrate may be, for example, a structural material that can later be separated from the probe tip or tips that are to be formed or alternatively it may be a sacrificial material that may be destructively removed from the probe tip or probe tip elements that are formed. In some variations of the embodiment it may be of the same material as sacrificial material 514. In some embodiments of the invention sacrificial material 514 may be copper, tin, gold or the like. FIG. 21B depicts a state of the process after electrochemical polishing or etching is used to round the corners of the sacrificial material bounding the opening that extend there-through. FIG. 21C depicts a state of the process after deposition of a protective material 516, a probe tip coating material 518 and deposition of a probe tip structural material 520 occurs. FIG. 21D depicts a state of the process after two additional operations have occurred, the first operation being a planarization operation of the deposited materials so that materials 516, 518 and 520 that overlay material 514 are removed. Operation two involves the formation of a next layer 524 over planed layer 522. FIG. 21E depicts the probe tip element 526 released from the substrate 512 and sacrificial material 514 where the probe tip element still includes protective material 516 surrounding probe tip coating material 518 and where probe tip coating material 518 is kept by probe tip structural material 520. FIG. 21F depicts a state of the process after protective coating 516 is removed leaving probe tip coating material 518 surrounding probe tip structural material 520. FIGS. 22A-22H schematically depict partially transparent, perspective views of an example structure at various stages of a process for forming an array of probe tips and elements according to a sixteenth embodiment of the invention where the probe tips are formed using a silicon mold and the tips are protected from sacrificial material etchants by sealing them between structural material and silicon prior removing sacrificial material. FIG. 22A depicts the starting point of the embodiment which illustrates that a silicon substrate 552 (e.g. having a 100 orientation) is supplied. In embodiments where other tip configurations are desired different substrates could be selected. In the present embodiment the silicon substrate is selected to have low resistance. FIG. 22B depicts a state of the process after a number of voids 554a-554j have been etched in the substrate each one corresponding to a probe tip shape and relative position. As illustrated a trench 556 is also etched into the silicon. The formation of such a trench is optional as its use is strictly as an etching aid when it comes time to separate the tip structures from the silicon. The tip configurations may be that of pyramids or wedges formed by use of an anisotropic etchant such as KOH or TMAH and the like. Spherical or semi-spherical configurations may be obtained by using other etchants such as HCN or XeF2. Rounded pyramids or wedges may be obtained by using a combination of etchants. In variations of the embodiment etching of all openings may be simultaneously performed using a single mask or alternatively multiple masks could be used and etching could be performed at different times. FIG. 22C depicts a state of the process after voids 554a-554j have been filled in with a desired tip material 560. The filling in of voids 554a-554j may occur by an electroplating operation, a sputtering operation or in some other manner. The filling in of the voids may occur with trench 556 masked or with trench 556 open as any deposition tip material in the trench 556 will simply fall away in a later operation. The filling of voids 554a-554j may involve the use of not only a probe tip material but also a probe tip coating material. FIG. 22D depicts a state of the process after selective deposition of a structural material 562 forms sealing caps over the probe tip material. The sealing caps preferably extend beyond the region of the probe tip material to completely enclose the tip material between the silicon substrate and the structural material. If the probe tip material was not deposited in a selective manner then prior to the deposition of the structural material as indicated in FIG. 22D a planarization operation may optionally be used to ensure that the structural material may bond directly to the silicon material. After deposition of the structural material a sacrificial material may be blanket deposited and the surface planarized leaving an exposed region of structural material over the tip locations and sacrificial material elsewhere (not shown). FIG. 22E depicts a state of the process after multiple layers of the probe elements have been built up via an electrochemical fabrication process or the like where the last layer leaves exposed regions of structural material corresponding to the last layer of the probe elements being surrounded by sacrificial material. FIG. 22F shows the state of the process after an adhesion or bonding material 566 is formed over the regions of structural material 562 which may or may not be surrounded by sacrificial material 564. The un-released probe elements and substrate 552 are next flip chip bonded to a desired permanent substrate (e.g. a space transformer) as shown in FIG. 22G. Next the sacrificial material is removed via an etching operation that may proceed from the sides of the array towards the center or alternatively the silicon substrate may be ground back to expose the trench area which is filled with sacrificial material and then etching may proceed from the sides as well as from the central region of the array. FIG. 22H depicts a state of the process after both the silicon substrate and the sacrificial material have been removed. A next embodiment of the invention relates to the fabrication of tips for microprobes using the ‘mushrooming’ approach described previously herein for tip fabrication, as well as the transfer/bond/release approach to building microprobes upside down on a temporary wafer and ending up with them bonded to a space transformer, (which is described in more detail in U.S. patent application Ser. No. 60/533,947). This patent application is incorporated herein by reference. This embodiment also relates to a method of fabricating probes having different heights which allows tips to be fabricated using the mushrooming approach on these different-height tips. When tip-equipped probes of multiple heights are produced with EFAB™, the tips at intermediate heights (i.e., not adjacent to the release layer on the temporary wafer) must be formed at the same height as normal layer features that form part of other probes whose tips are at different heights than these (e.g., adjacent to the release layer). A major challenge in producing tips at intermediate heights using mushrooming occurs if the tip is taller than the thickness of single layer at the height of the tip, as is often the case unless one is willing to distort the layer thicknesses in this region (undesirable) to accommodate the tip height. This embodiment of the invention is of a means for fabricating tips of intermediate height in which a) the tip height can be greater than the height of the corresponding layer; b) the corresponding layer height need not be altered in any way to accommodate the tip. FIGS. 23A-23U depict an example process flow for fabricating probes of a single height using mushrooming to produce the tips. In FIG. 23A a temporary wafer (assumed to be alumina coated with seed and adhesion layers) is shown. A blank region on the wafer surface to allow direct access to the end-pointing probes is shown; this can be produced by locally etching the seed and adhesion layers. Other than mushrooming in from the edges of this end-pointing ‘pad’ region (this mushrooming is not shown in the figures), the pad will not be plated. In FIG. 23B a thick layer of sacrificial material (assumed to be Cu) has been plated, and in FIG. 23C, it has been planarized to form a release layer of the desired thickness. In FIG. 23D, thin photoresist has been patterned to form insulating structures over which sacrificial metal can mushroom to form tip geometries and in FIG. 23E, Cu has been mushroomed over these by plating for a controlled time. FIG. 23F depicts a state of the process where Cu has been deposited by PVD (e.g., sputtering) over the wafer so that there is a continuous metal film for plating the tips (otherwise the exposed resist area could not be plated over except via mushrooming, which requires thick plating). FIG. 23F also shows that the Cu has been removed from the end-pointing pad area (e.g., by etching) so that it won't plate up. FIG. 23G depicts a state of the process where tip coating material (e.g., Re) has been applied, for example, by plating (if the tip coating material is applied by PVD, then the previous step of applying Cu by PVD can be bypassed). FIG. 23H depicts a state of the process where a tip backing material (e.g., Ni) has been plated. Note that in some cases, tips can be fabricated made entirely of the tip coating material and no backing material is needed. However, for tip coatings that are too soft (e.g., Au) or which have too much residual stress (e.g., possibly Re or Rh) as deposited, a thin coating would preferably be used, backed by another material. FIG. 23I depicts a state of the process where the wafer has been planarized, resulting in the final form of the tips. In FIG. 23J the remaining layers of the probes (including a base for the solder) will have been fabricated. In FIG. 23K, a thick resist has been deposited and patterned. In FIG. 23L, solder has been plated into the resist apertures and in FIG. 23M the resist has been stripped. In FIG. 23N, the solder has been reflowed. FIG. 23O depicts a state of the process where a protective coating has been added to protect the build prior to dicing. This coating, if somewhat hard, can also minimize the degree to which burrs on the top (eventually, the bottom) surface of the die will be produced during dicing. In FIG. 23P, the wafer has been diced, yielding a single die with several probes; the burr is visible. In FIG. 23Q, the die has been partially released in order to a) remove the burr; b) recess the Cu surface below that of the solder. The latter is done for two reasons: 1) to eliminate the risk of solder wicking out across the Cu and shorting together neighboring probes; 2) to separate the solder from the Cu, allowing the former to be embedded in an underfill that protects it during Cu release. A third possible reason for the partial release is to facilitate and reduce the time required for the full release later; in this regard, the release may be continued much further than shown here (limited only by the desire to a) hold all the probes in good alignment until bonded; b) minimize the risk of damage to the probes until bonded); c) prevent the underfill polymer (if used) from enveloping the probes and interfering with their compliance (indeed, if the gap is too large the underfill may not properly wick in due to reduced capillary pressure). FIG. 23R depicts a state of the process where the die has been flipped and aligned roughly to the bumps on a space transformer. A flux has been applied to either or both the die or space transformer to a) adhere the two together well enough to retain alignment until bonded; b) minimize oxide formation which can interfere with good bonding. FIG. 23S depicts a state of the process where the solder has been reflowed, self-aligning the die, and the flux has been removed. In FIG. 23T, an underfill polymer has been wicked in to fill the space under the die. FIG. 23U depicts the state of the process where the die has been fully released from Cu. During this process, the Cu-enveloped photoresist features patterned earlier would typically fall away or become dissolved. If desired, the release process can be stopped and a photoresist stripper used once the resist is exposed, then the release continued. FIGS. 24A-24CC depicts the process flow for an embodiment of the invention. In this embodiment the photoresist patterns needed to define the tips through mushrooming are formed at the appropriate layer (adjacent to the eventual tip wherever it may be), but the mushrooming deposition of sacrificial material is deferred until layers are built to a sufficient height to allow the full tip height to be formed. This deferment is accomplished by means of coating the resist with a dielectric film after patterning. Alternative coatings (e.g., with a metal) are also possible, but if such coatings are platable, would require more effort to remove the coating given that it will first be necessary to remove the metal over it. In another embodiment (not shown), the mushrooming is performed in an incremental fashion (i.e., plating Cu as normal on each layer (which will partially mushroom) or plating extra-thick Cu, which can fully mushroom), and then the mushroomed shape is planarized (along with the entire layer) to the layer thickness (which truncates the mushroomed shape); this is then repeated on several layers, gradually building up the mushroomed ‘mold’ for the tip. This is expected to result in a tip shape that is not identical to that produced by the mushrooming process shown in FIG. 24E, but this may be acceptable. Indeed, if desired for the sake of uniformity, all tips may be plated into molds produced in this layer-by-layer process. FIGS. 24A-24I are equivalent to FIGS. 23A-23I, but in the case of FIGS. 24A-24CC, not all probes are full height. Only three are shown with their tips being formed adjacent to the release layer. FIG. 24J depicts a state of the process in which some additional layers have been formed, stopping at the layer which needs to be patterned with photoresist to define the mushrooming of the tips. FIG. 24K depicts a thin photoresist has been patterned to form insulating structures over which sacrificial metal can mushroom to form tip geometries. In FIG. 24L, the resist has been coated with a thin dielectric coating. It is critical that the combined thickness of the resist and this dielectric coating not exceed the layer thickness of the next layer, or else the dielectric coating (and possibly the resist) will be damaged by the subsequent planarization of this layer (depending on the nature of the coating and the type of planarization performed, it may be acceptable to remove a portion of the dielectric coating, so long as enough remains to prevent plating over the tips until the correct time). FIG. 24M depicts a state of the process in which photoresist for patterning the next layer has been applied, and in FIG. 24N, it is patterned. In FIG. 24O, Cu has been plated (it is assumed here that the probes are fabricated by pattern-plating the Cu and not the probe structural material). It should be noted that there is no plating (other than some sideways mushrooming not shown) on the dielectric coating. FIG. 24P depicts a state of the process where the resist has been stripped and in FIG. 24R, probe material has been plated. In FIG. 24S, the wafer has been planarized. The process shown in FIGS. 24M-24S may be repeated several times to build up several layers until there is sufficient height available to build the entire tip mold by single-step mushrooming. FIG. 24T depicts a state of the process where the coating has been removed and in FIG. 24U, Cu has been mushroomed over the resist features by plating for a controlled time. In FIG. 24V, Cu has been deposited by PVD (e.g., sputtering) over the wafer. FIG. 24W also depicts that the Cu has again been removed from the end-pointing pad area. In FIG. 24W, a tip coating material (e.g., Re) has been applied, for example, by plating (again, if the tip coating material is applied by PVD, then the previous step of applying Cu by PVD can be bypassed). FIG. 24X depicts a tip backing material (e.g., Ni) has been plated. In FIG. 24Y, the wafer has been planarized, resulting in the final form of the tips. FIG. 24Z depicts a state of the process where the remaining layers of the probes (including a base for the solder) will have been fabricated. In FIG. 24AA, solder has been pattern-deposited and then reflowed. Subsequent to this the wafer is cut. In FIG. 24BB, the die has been flipped and the solder reflowed in the presence of flux to self-align and bond the die, and the flux has been removed. Also in FIG. 24BB an under fill polymer has been wicked in to fill the space under the die. FIG. 24CC depicts a state of the process where the die has been fully released from Cu, resulting in probes with tips of different heights. While the process flow is shown for probes having two different heights, this is by way of example and a group of probes having three or more different heights can be so produced. In the above embodiment particular a particular sacrificial material, Cu, and structural material, Ni, have been focused on but in alternative embodiments other materials may be used. FIGS. 25A-25D schematically depict side views at various stages of an alternative process for forming an undercut dielectric pattern similar to that of the embodiment of FIG. 7A-7F where multiple deposits of photoresist will be used in combination with multiple exposures. FIG. 25A depicts a state of the process where a substrate 582 is coated with a positive photoresist material and then is given a relatively small blanket exposure of radiation. FIG. 25B depicts a state of the process after the first exposed coating of photoresist of over-coated with a second coating 586. FIG. 25C depicts a state of the process after a photomask is located over or adjacent to coating 586 and a relatively large exposure of radiation is applied to regions where probe tips are to be formed. FIG. 25D depicts a state of the process after a development operation causes undercutting of the initial coating 584 of photoresist. A next embodiment of the invention relates to a method of forming tapered tips for microprobes or other applications. It makes use of a contact mask similar to but molded to have tapered sidewalls in order to create a deposit of sacrificial material (typically Cu) having tapered, vs. straight, sidewalls. Another unique (though optional) aspect of the contact mask is that it is partly transparent so as to allow alignment to targets on the wafer; this can be generically useful (i.e., even for contact masks with straight sidewalls) in that makes the contact mask more like a photomask in alignment requirements, allowing alignment between contact mask and wafer without having to view each with opposite-facing cameras in special alignment equipment, etc. A partly-transparent contact mask is desirable in forming tips if it is desired to form tips partway through a build (i.e., to create probes with tips at different heights) in which case alignment to existing geometry (vs. the largely-unpatterned wafer surface) is necessary. FIGS. 26A-26H depicts the process for making the contact mask, whereas FIGS. 26I-26N illustrate the use of the contact mask in forming tips on a wafer. FIGS. 26A-26B depicts a state of the process after the contact mask substrate (normally just a thick Si wafer) is fabricated, assuming a partly-transparent contact mask is desired. In FIG. 26A, low-resistivity (i.e., heavily-doped) Si is shown adjacent to a rigid glass plate larger in diameter than the wafer, having at least one aperture to accommodate a spring contact. In FIG. 26b, the wafer and glass have been bonded (e.g., by anodic bonding) and the spring inserted so as to make electrical contact with the wafer through the glass. It is possible to see through the composite contact mask substrate (around the edges of the Si wafer) for purposes of alignment. Alternate approaches to fabricating a contact mask substrate such as this include drilling viewing holes through a Si wafer and surrounding a Si wafer by a glass ring which is bonded or press fit to it. FIGS. 26C-26E depict a mold for molding the contact mask is prepared. In FIG. 26C, a Si wafer is shown; while in FIG. 26D it has been anisotropically etched (e.g., using KOH) to form trenches (e.g., pyramids or elongated pyramids with smooth sidewalls at an angle of 54.74° to the surface if the Si surface is the 100 crystal plane of Si). The mold is also treated with a silane or coated with parylene in order to provide a non-adherent surface for the PDMS. FIG. 26E depicts a state of the process where PDMS has been applied to the mold and in FIG. 26F the contact mask substrate has been lowered onto the mold and pressure applied so as to squeeze out the excess PDMS, which is then cured. In FIG. 26G, the contact mask substrate has been demolded and RIE has been performed to remove any PDMS molding flash from in-between the features, leaving behind bare Si. In FIG. 26H, electrical contact to the Si wafer of the contact mask has been made through the spring and thin Ni (not shown) and then Cu have been plated onto the contact mask substrate, the latter to serve as feedstock for the deposition of Cu when the contact mask is used below. Note that while the contact mask substrate and mold are unusual, the molding and plating processes are otherwise similar to those normally used in the manufacture of contact masks. FIG. 26I depicts a state of the process where the contact mask and a wafer (e.g., Ni, Ti/Au-coated alumina) have been aligned using the alignment targets on each and the two have been mated while substantially parallel. A well-controlled pressure is applied (too much will distort the shape of the PDMS tips; too little will allow for plating flash under the tips, though this may be quite acceptable in this situation. Since the intent is to build the probes upside-down on this wafer and eventually release them from the wafer, a deposit of a normally thick release layer of Cu before the step shown in FIG. 26I, so some Cu plating flash is hardly an issue. In FIG. 26J, contact has been made to the contact mask (serving as an anode) and Cu has been plated onto the wafer around the PDMS tips. In FIG. 26K, the contact mask has been de-mated, leaving behind Cu deposits having trenches similar in geometry to the PDMS and thus to the original Si mold. In FIG. 26L, a tip material has been deposited (in fact, this may be two materials: a thin film of one such as Rh backed by a thicker film of another such as Ni). In FIG. 26M, the layer has been planarized, producing an array of tips. At this point, the standard EFAB process can be performed to fabricate the probes in alignment above the tips. If desired, the steps shown in FIGS. 26I-26M can be carried out at one or more heights further up (though normally with a different contact mask pattern than that used to pattern the tips as already shown for the tallest probes) in the build to create probes with tips at multiple heights. In this case, as already noted, the contact mask would be carefully aligned to the alignment targets on the wafer. It should be noted that the pitch between probe tips cannot be extremely small using this embodiment of the invention since there must be room between the PDMS tips in order to plate Cu feedstock and the distance between the Cu feedstock layer and the wafer must typically be reasonable (e.g., 50 μm or greater) or shorting may occur during plating. Another embodiment for generating probe tips which involves the creation of photoresist molds with sloped sidewalls. This embodiment is explained with the aid of FIGS. 27A and 27B. A shadow or gray photomask (i.e. a mask having areas through which UV light passes but with less intensity) is used to in combination with positive photoresist (e.g. AZ 4620). FIG. 27A depicts a standard photomask being used to obtain a stair stepped photoresist pattern. FIG. 27B depicts the use of a gray scale mask to obtain sloped sidewalls of the photoresist and thus a sloped mold. Probe tips may be fabricated by plating a suitable metal into the mold. A next embodiment of the invention relates to a method of fabricating probes with probe tips. The process is shown in FIG. 28. FIG. 28A depicts a substrate (e.g., alumina) (‘Substrate 1’) with a thick (e.g., plated over sputtered) seed layer of sacrificial material (e.g., Cu). An adhesion layer (e.g., Ti—W, not shown) may be used underneath the seed layer if needed. In FIG. 28B, resist has been patterned and solder has been plated into the apertures. In FIG. 28C, a removable material (e.g. in or another material that can be melted at a lower temperature than solder or etched without damage to the solder) has been applied and in FIG. 28D the layer has been planarized. This material is assumed here to be conductive and capable of being plated with sacrificial material with good adhesion; if it is not, suitable seed (and possibly adhesion) layers can be applied before continuing. In FIG. 28E, a multi-layer probe structure has been fabricated, embedded in sacrificial material. Note that as shown, In FIG. 28F, resist has been patterned and a relatively tall deposit of material (e.g., Ni) suitable for use as a probe tip core has been plated. In FIG. 28G, the edges of the wafer have been protected (e.g., by lacquer or wax) and in FIG. 28H, electrochemical etching has been performed under conditions that result in a sharpening of the protruding deposited metal structures. Some etching of the sacrificial material surrounding the probes may also occur. If this occurs to an extent that cannot be tolerated, the sacrificial material may be protected (e.g., by patterned resist) prior to the etching. In FIG. 28I, resist has been patterned so as to expose the sharpened tips. In FIG. 28J, a tip coating material (e.g., Rh) has been deposited over the tips. In FIG. 28K, the resist has been stripped and in FIG. 28L, sacrificial material has been deposited so as to envelop the tips, although this step can be eliminated, for example, if the adhesive applied as shown in FIG. 28M is sufficiently thick to accommodate the tip height. In FIG. 28M, the structure shown in FIG. 28L has been attached to Substrate 2 using an adhesive (this should be capable of tolerating the temperatures associated with subsequent processing). If desired, the sacrificial material applied as shown in FIG. 28L can be planarized prior to this step, such that the adhesive layer can be made thinner. In FIG. 28N, Substrate 1 and the seed layer coating it is removed (e.g., by dissolution of the seed layer). In FIG. 28O, the removable material is removed and then the solder is reflowed. To minimize heating of the adhesive, the removable material can be removed and/or the solder reflowed using a localized flow of hot air. In FIG. 28P, the structure shown in FIG. 28O has been flipped over and placed onto a space transformer (or other device) provided with bonding pads. In FIG. 28Q, the solder has been reflowed, bonding the probes to the space transformer. In FIG. 28R, Substrate 2 has been removed (e.g., by removing the adhesive coating it) and an underfill (in this case, permanent) has been wicked in (if needed, for example, to protect the solder from etching of the sacrificial material) between the sacrificial material and space transformer. In FIG. 28S, the sacrificial material has been etched, leaving behind probes bonded to a space transformer. In alternative embodiments other techniques may be used to get desired probe tip configurations. In other examples probe tips may be created by building an extruded shape (i.e., build normally) and then electro-chemically sharpening after transfer and release. There may be some distortion to the rest of the probe structure, but this may be acceptable for some applications. If the level of distortion is unacceptable, a combination of probe material, probe tip material, and etchant may be chosen such that etching of the probe tip occurs at a faster rate than the etching of the probe body. In an alternative or in addition to careful selection of materials an operation may be performed prior to sharpening to preferentially enhance the resistance of the probe body material to sharpening, for example, oxidation or an appropriate CVD reaction. In the embodiments of FIGS. 9A-9G, 10A-10C, 23A-23U, and 24A-24CC tip formation occurs via a process that makes use of an electroplating effect where the overplating and mushrooming of a sacrificial metal over a patterned photoresist layer forms a sacrificial mold that is used to shape the tips. It has been noticed that overplating (i.e. mushrooming) may produce a slight bulge in the mushroomed sidewalls of the sacrificial metal. This bulging has several effects. One is that when the structural material is plated in the hole that is formed by the sacrificial metal, the structural material follows the curved contour of the sacrificial metal wall, until it reaches the bottom of that hole where the initial photoresist rests. In this region, due to the bulging of the sacrificial metal, there exists a small skirting space under the bulge such that when the structural material fills that area in and is released, the result is a trumpet-like flare to the tip's leading surface. This is depicted in FIGS. 29A-29D. If such bulging and flaring occurs an enhanced process may be used as depicted in FIGS. 30A-30D. On a conductive substrate (either a metallic substrate to begin with, or a dielectric substrate with deposited seed layers) a thin photoresist is spun on and patterned with appropriate geometries for the desired tip shape and size [FIG. 30A]. Overplating is performed as per the previously discussed fabrication methods, but using a very low current density. Once this is done, a bulge may exist in the side walls of the holes formed by the sacrificial metal. The low plating current density is assumed to reduce the amount of bulging that will occur. The sample is then subjected to a PVD deposition of a secondary seed layer (for example, sputter deposition of TiW/Cu) that will conformably coat all available surfaces—including the space underneath the bulge as mentioned above [see FIG. 30A]. Once this is complete, a thin layer of Cu is electroplated (e.g. having a thickness of ˜sum) over the seed layer [see FIG. 30B]. Next, the structural material is blanket plated over the entire sample, filling in the hole for the tips [see FIG. 30C], and then the surface is lapped and polished [see FIG. 30D]. The tips are thus formed and fabrication of probe bodies may proceed. This approach offers several benefits. First, by using a secondary seed layer and a subsequent sacrificial material (e.g. copper) electroplated layer, this leads to the filling in of the region that resulted in flaring of the fabricated tips. Thus when the structural material is electroplated, it will not form the trumpet-shaped lip at the leading surface of the tip. A second benefit is that by adding a seed layer and a conductive layer over that, a third material separate from the sacrificial and the structural material may be used to electroplate into the hole first, and then the rest of the space may be filled with the structural material. This allows coating of the tips with a third, arbitrary material that is electroplatable (for example, a thin film of Rhodium may be electroplated into the hole first, then the structural material Ni may be used to fill in the rest of the hole, thus forming Rh coated Ni tips after release). Third, it was also noticed in previous experiments that for certain geometries of the tip-patterning photoresist the structural material might not fully fill in the space in the hole resulting in a slit or a gap in the middle of the tips. This may be undesirable for a number of reasons, including contamination issues. Finally, empirical experience has shown that sometimes the photoresist that had been used for the initial overplating is not always eliminated upon release etching of the tips. Oftentimes the photoresist will remain behind as undesired flaps on top of the tip structures upon release. By adding a seed layer and sacrificial layer above that, any direct physical connection between the tips and the photoresist is eliminated, such that upon release etching of the sacrificial metal, the photoresist loses mechanical adhesion to the build and is removed in the etching solution. In an alternative embodiment a polymer may be used to fill in the space underneath the bulge created by the mushroomed sacrificial material (e.g. copper). First the polymer may be made to fill the entire hole and then it may be preferentially removed from the central portion of the hole and a seed layer deposited in preparation for depositing tip material. This preferential removal of the polymer may be accomplished by either simply pouring out the polymer out of the hole, and allowing surface tension to keep the polymer in the region underneath-the-bulge, and then curing the polymer. The polymer would need to begin as a very thin liquid to allow for this to occur. A second alternative may be to allow the polymer to set, then use directional plasma etch to remove the polymer from the surface of the mushroomed sacrificial material and the bottom of the hole, but letting it remain behind in the undercut regions. Two examples of this process are depicted in FIG. 31A-31D and 32A-32B. FIG. 31A depicts formation of mushroomed sacrificial material with an opening filled with polymer. FIG. 31B depicts the removal of a portion of the liquid polymer by pouring it out. FIG. 31C depicts a polymer remaining in the bottom of the hole and filling the region underneath the bulge. FIG. 31D depicts deposition of a seed layer over the entire topology in preparation for depositing tip material. FIG. 32A depicts the coating of the opening with the polymer which is allowed to set after which a directional plasma etch is used to preferentially remove the polymer from the exposed up-facing surfaces. FIG. 32B depicts deposition of a seed layer over the entire topology in preparation for depositing tip material. In another alternative embodiment, it may be possible to perform an etch of the mushroomed copper to try to reduce the size of the bulge. This would be especially useful in bulges that are particularly pronounced, making use of the extended geometry's tendency to be flattened out during etching. In another alternative embodiment, it may be possible to minimize or eliminate the bulge with alternating plating baths and plating conditions. Possible baths include, for example, acid-Cu with different formulations than what is currently used, pyrophosphate baths, and electroless baths. Additives may also be considered to regulate the growth more precisely to reduce the amount of the bulge. Modifications in the plating conditions may also be tried by varying the plating current density higher or lower, use of pulse plating to deposit, remove, deposit the material, or to deposit at a continuously varying rate. A further alternative embodiment may use a different sacrificial material (e.g. something other than copper) in the forming the mushroomed overgrowth. For example, Ni may be used. The Ni may be put down exactly as the Cu, a seed layer deposited, Cu fill-in electroplated, and the rest of the tip fabricated. The Cu fill-in would also serve as a way for later release and separation of the tip material from the Ni mold. An example of this approach is depicted in FIGS. 33A-33D. FIG. 33A depicts formation of the mushroomed material using a metal other than Cu—for example, nickel—that may produce less of a bulge than Cu which is followed by deposition of a seed layer over the entire topology. FIG. 33B depicts the electroplating of a thin layer of Cu over the deposited seed layer. This will form a layer of Cu over the photoresist as well as filling in any remaining skirting under the bulge. FIG. 33C depicts the beginning of planarization of the deposited materials while FIG. 33D depicts the result of planarization which sets the stage for proceeding with the remaining build operations. In other alternatives it may be possible to use modified patterns of the photoresist to preferentially shape the mushroomed overgrowth. For example, a “Maya pyramid” shaped 2-layer structure may be made using photoresist first, with a wider 1st layer and a narrower 2nd layer. When the bulging reaches the 2nd layer, the plating stops and the top surface of the 2nd layer is then taken as the now bottom of the tip mold. The crevice underneath the bulge is never exposed to the electroplating since the 2-layer photoresist fits into that profile. Alternatively, a 1st layer can be patterned, the Cu electroplated and mushroomed and the bulge allowed to form, and then a second photoresist/photolithography step may be performed to allow the photoresist to fill in the hole, and then be patterned to have the 2nd layer fill in the bottom of the tip mold. This way, reminiscent of Method Two, the photoresist polymer will fill in the crevice underneath the bulge. Finally, a seed layer is deposited and the rest of the tip built. Another way to use modified patterns may be to use different shapes altogether, for example, a ring of photoresist instead of a circular disk. An example of the pyramid approach is depicted in FIGS. 34A-34D. FIG. 34A depicts formation of mushroom using a 2-tiered photoresist pattern. FIG. 34B depicts deposition of a seed layer over the entire topology and a thin layer of electroplated sacrificial material over the deposited seed layer. FIG. 34C depicts the beginning of planarization of the deposited materials while FIG. 34D depicts the result of planarization which sets the stage for proceeding with the remaining build operations. In some alternative embodiments, probe tips as made by one or more of the various processes described herein may have solder or other bonding material located on their back sides (i.e. the side away from the tip) and then the tips may be bonded to any desired prefabricated metal target. Example of such probe tips are shown in FIG. 35A and an example of such probe tips being bonded to a set of COBRA probes is shown in FIG. 35B. Of course in other embodiments, the tips may be bonded to other things, bonding may occur simultaneously with a smaller number of tips or with a larger number of tips, and/or something other than tips may be transferred. In alternative embodiments other techniques may be used to get desired probe tip configurations. For example, it may be possible to get undercut photoresists by using a shadowed or grey scaled photomask to expose the photoresist which upon development will yield a sloped surface. In some embodiments probe tips may be made from the same material as the probe elements themselves (e.g. Ni or Ni—P) while in other embodiments probe tips may be formed from one or more different materials (e.g. palladium (Pd), gold (Au), rhodium (Rh), or rhenium) or coating on the probe tips may be formed from these other materials. Some embodiments may employ diffusion bonding or the like to enhance adhesion between successive layers of material. Various teachings concerning the use of diffusion bonding in electrochemical fabrication process is set forth in U.S. patent application Ser. No. 60/534,204 filed Dec. 31, 2003 by Cohen et al. which is entitled “Method for Fabricating Three-Dimensional Structures Including Surface Treatment of a First Material in Preparation for Deposition of a Second Material” and which is hereby incorporated herein by reference as if set forth in full. Further teaching about microprobes and electrochemical fabrication techniques are set forth in a number of US Patent Applications which are filed on Dec. 31, 2003 herewith. These Filings include: (1) U.S. patent application Ser. No. 60/533,933 by Arat et al. and which is entitled “Electrochemically Fabricated Microprobes”; (2) U.S. patent application Ser. No. 60/533,947 by Kumar et al. and which is entitled “Probe Arrays and Method for Making”; (3) U.S. patent application Ser. No. 60/533,948 by Cohen et al. and which is entitled “Electrochemical Fabrication Method for Co-Fabricating Probes and Space Transformers”; and (4) U.S. patent application Ser. No. 60/533,897 by Cohen et al. and which is entitled “Electrochemical Fabrication Process for Forming Multilayer Multimaterial Microprobe structures”. These patent filings are each hereby incorporated herein by reference as if set forth in full herein. Further teachings about planarizing layers and setting layers thicknesses and the like are set forth in the following US Patent Applications: (1) U.S. Patent Application No. 60/534,159 filed Dec. 31, 2003 by Cohen et al. and which is entitled “Electrochemical Fabrication Methods for Producing Multilayer Structures Including the use of Diamond Machining in the Planarization of Deposits of Material” and (2) U.S. patent application Ser. No. 60/534,183 filed Dec. 31, 2003 by Cohen et al. and which is entitled “Method and Apparatus for Maintaining Parallelism of Layers and/or Achieving Desired Thicknesses of Layers During the Electrochemical Fabrication of Structures”. These patent filings are each hereby incorporated herein by reference as if set forth in full herein. Additional teachings concerning the formation of structures on dielectric substrates and/or the formation of structures that incorporate dielectric materials into the formation process and possibility into the final structures as formed are set forth in a number of patent applications. The first of these filings is U.S. patent application Ser. No. 60/534,184, filed Dec. 31, 2003 which is entitled “Electrochemical Fabrication Methods Incorporating Dielectric Materials and/or Using Dielectric Substrates”. The second of these filings is U.S. patent application Ser. No. 60/533,932, filed Dec. 31, 2003 which is entitled “Electrochemical Fabrication Methods Using Dielectric Substrates”. The third of these filings is U.S. patent application Ser. No. 60/534,157, filed Dec. 31, 2003 which is entitled “Electrochemical Fabrication Methods Incorporating Dielectric Materials”. The fourth of these filings is U.S. Patent Application No. 60/533,891, filed Dec. 31, 2003 which is entitled “Methods for Electrochemically Fabricating Structures Incorporating Dielectric Sheets and/or Seed layers That Are Partially Removed Via Planarization”. A fifth such filing is U.S. Patent Application No. 60/533,895, filed Dec. 31, 2003 which is entitled “Electrochemical Fabrication Method for Producing Multi-layer Three-Dimensional Structures on a Porous Dielectric” These patent filings are each hereby incorporated herein by reference as if set forth in full herein. Various other embodiments of the present invention exist. Some of these embodiments may be based on a combination of the teachings herein with various teachings incorporated herein by reference. Some embodiments may not use any blanket deposition process and/or they may not use a planarization process. Some embodiments may involve the selective deposition of a plurality of different materials on a single layer or on different layers. Some embodiments may use selective deposition processes or blanket deposition processes on some layers that are not electrodeposition processes. Some embodiments may use nickel as a structural material while other embodiments may use different materials. Some embodiments may use copper as the structural material with or without a sacrificial material. Some embodiments may remove a sacrificial material while other embodiments may not. Some embodiments may employ mask based selective etching operations in conjunction with blanket deposition operations. Some embodiments may form structures on a layer-by-layer base but deviate from a strict planar layer on planar layer build up process in favor of a process that interlacing material between the layers. Such alternating build processes are disclosed in U.S. application Ser. No. 10/434,519, filed on May 7, 2003, entitled Methods of and Apparatus for Electrochemically Fabricating Structures Via Interlaced Layers or Via Selective Etching and Filling of Voids which is herein incorporated by reference as if set forth in full. In view of the teachings herein, many further embodiments, alternatives in design and uses of the instant invention will be apparent to those of skill in the art. As such, it is not intended that the invention be limited to the particular illustrative embodiments, alternatives, and uses described above but instead that it be solely limited by the claims presented hereafter. | <SOH> BACKGROUND <EOH>A technique for forming three-dimensional structures (e.g. parts, components, devices, and the like) from a plurality of adhered layers was invented by Adam L. Cohen and is known as Electrochemical Fabrication. It is being commercially pursued by Microfabrica Inc. (formerly MEMGen®) Corporation) of Burbank, Calif. under the name EFAB™. This technique was described in U.S. Pat. No. 6,027,630, issued on Feb. 22, 2000. This electrochemical deposition technique allows the selective deposition of a material using a unique masking technique that involves the use of a mask that includes patterned conformable material on a support structure that is independent of the substrate onto which plating will occur. When desiring to perform an electrodeposition using the mask, the conformable portion of the mask is brought into contact with a substrate while in the presence of a plating solution such that the contact of the conformable portion of the mask to the substrate inhibits deposition at selected locations. For convenience, these masks might be generically called conformable contact masks; the masking technique may be generically called a conformable contact mask plating process. More specifically, in the terminology of Microfabrica Inc. (formerly MEMGen® Corporation) of Burbank, Calif. such masks have come to be known as INSTANT MASKS™ and the process known as INSTANT MASKING™ or INSTANT MASK™ plating. Selective depositions using conformable contact mask plating may be used to form single layers of material or may be used to form multi-layer structures. The teachings of the '630 patent are hereby incorporated herein by reference as if set forth in full herein. Since the filing of the patent application that led to the above noted patent, various papers about conformable contact mask plating (i.e. INSTANT MASKING) and electrochemical fabrication have been published: (1.) A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis and P. Will, “EFAB: Batch production of functional, fully-dense metal parts with micro-scale features”, Proc. 9th Solid Freeform Fabrication, The University of Texas at Austin, p161, August 1998. (2.) A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis and P. Will, “EFAB: Rapid, Low-Cost Desktop Micromachining of High Aspect Ratio True 3-D MEMS”, Proc. 12th IEEE Micro Electro Mechanical Systems Workshop, IEEE, p244, January 1999. (3.) A. Cohen, “3-D Micromachining by Electrochemical Fabrication”, Micromachine Devices, March 1999. (4.) G. Zhang, A. Cohen, U. Frodis, F. Tseng, F. Mansfeld, and P. Will, “EFAB: Rapid Desktop Manufacturing of True 3-D Microstructures”, Proc. 2nd International Conference on Integrated MicroNanotechnology for Space Applications, The Aerospace Co., April 1999. (5.) F. Tseng, U. Frodis, G. Zhang, A. Cohen, F. Mansfeld, and P. Will, “EFAB: High Aspect Ratio, Arbitrary 3-D Metal Microstructures using a Low-Cost Automated Batch Process”, 3rd International Workshop on High Aspect Ratio MicroStructure Technology (HARMST'99), June 1999. (6.) A. Cohen, U. Frodis, F. Tseng, G. Zhang, F. Mansfeld, and P. Will, “EFAB: Low-Cost, Automated Electrochemical Batch Fabrication of Arbitrary 3-D Microstructures”, Micromachining and Microfabrication Process Technology, SPIE 1999 Symposium on Micromachining and Microfabrication, September 1999. (7.) F. Tseng, G. Zhang, U. Frodis, A. Cohen, F. Mansfeld, and P. Will, “EFAB: High Aspect Ratio, Arbitrary 3-D Metal Microstructures using a Low-Cost Automated Batch Process”, MEMS Symposium, ASME 1999 International Mechanical Engineering Congress and Exposition, November, 1999. (8.) A. Cohen, “Electrochemical Fabrication (EFAB™)”, Chapter 19 of The MEMS Handbook, edited by Mohamed Gad-EI-Hak, CRC Press, 2002. (9.) Microfabrication—Rapid Prototyping's Killer Application”, pages 1-5 of the Rapid Prototyping Report, CAD/CAM Publishing, Inc., June 1999. The disclosures of these nine publications are hereby incorporated herein by reference as if set forth in full herein. The electrochemical deposition process may be carried out in a number of different ways as set forth in the above patent and publications. In one form, this process involves the execution of three separate operations during the formation of each layer of the structure that is to be formed: 1. Selectively depositing at least one material by electrodeposition upon one or more desired regions of a substrate. 2. Then, blanket depositing at least one additional material by electrodeposition so that the additional deposit covers both the regions that were previously selectively deposited onto, and the regions of the substrate that did not receive any previously applied selective depositions. 3. Finally, planarizing the materials deposited during the first and second operations to produce a smoothed surface of a first layer of desired thickness having at least one region containing the at least one material and at least one region containing at least the one additional material. After formation of the first layer, one or more additional layers may be formed adjacent to the immediately preceding layer and adhered to the smoothed surface of that preceding layer. These additional layers are formed by repeating the first through third operations one or more times wherein the formation of each subsequent layer treats the previously formed layers and the initial substrate as a new and thickening substrate. Once the formation of all layers has been completed, at least a portion of at least one of the materials deposited is generally removed by an etching process to expose or release the three-dimensional structure that was intended to be formed. The preferred method of performing the selective electrodeposition involved in the first operation is by conformable contact mask plating. In this type of plating, one or more conformable contact (CC) masks are first formed. The CC masks include a support structure onto which a patterned conformable dielectric material is adhered or formed. The conformable material for each mask is shaped in accordance with a particular cross-section of material to be plated. At least one CC mask is needed for each unique cross-sectional pattern that is to be plated. The support for a CC mask is typically a plate-like structure formed of a metal that is to be selectively electroplated and from which material to be plated will be dissolved. In this typical approach, the support will act as an anode in an electroplating process. In an alternative approach, the support may instead be a porous or otherwise perforated material through which deposition material will pass during an electroplating operation on its way from a distal anode to a deposition surface. In either approach, it is possible for CC masks to share a common support, i.e. the patterns of conformable dielectric material for plating multiple layers of material may be located in different areas of a single support structure. When a single support structure contains multiple plating patterns, the entire structure is referred to as the CC mask while the individual plating masks may be referred to as “submasks”. In the present application such a distinction will be made only when relevant to a specific point being made. In preparation for performing the selective deposition of the first operation, the conformable portion of the CC mask is placed in registration with and pressed against a selected portion of the substrate (or onto a previously formed layer or onto a previously deposited portion of a layer) on which deposition is to occur. The pressing together of the CC mask and substrate occur in such a way that all openings, in the conformable portions of the CC mask contain plating solution. The conformable material of the CC mask that contacts the substrate acts as a barrier to electrodeposition while the openings in the CC mask that are filled with electroplating solution act as pathways for transferring material from an anode (e.g. the CC mask support) to the non-contacted portions of the substrate (which act as a cathode during the plating operation) when an appropriate potential and/or current are supplied. An example of a CC mask and CC mask plating are shown in FIGS. 1A-1C . FIG. 1A shows a side view of a CC mask 8 consisting of a conformable or deformable (e.g. elastomeric) insulator 10 patterned on an anode 12 . The anode has two functions. FIG. 1A also depicts a substrate 6 separated from mask 8 . One is as a supporting material for the patterned insulator 10 to maintain its integrity and alignment since the pattern may be topologically complex (e.g., involving isolated “islands” of insulator material). The other function is as an anode for the electroplating operation. CC mask plating selectively deposits material 22 onto a substrate 6 by simply pressing the insulator against the substrate then electrodepositing material through apertures 26 a and 26 b in the insulator as shown in FIG. 1B . After deposition, the CC mask is separated, preferably non-destructively, from the substrate 6 as shown in FIG. 1C . The CC mask plating process is distinct from a “through-mask” plating process in that in a through-mask plating process the separation of the masking material from the substrate would occur destructively. As with through-mask plating, CC mask plating deposits material selectively and simultaneously over the entire layer. The plated region may consist of one or more isolated plating regions where these isolated plating regions may belong to a single structure that is being formed or may belong to multiple structures that are being formed simultaneously. In CC mask plating as individual masks are not intentionally destroyed in the removal process, they may be usable in multiple plating operations. Another example of a CC mask and CC mask plating is shown in FIGS. 1D-1F . FIG. 1D shows an anode 12 ′ separated from a mask 8 ′ that comprises a patterned conformable material 10 ′ and a support structure 20 . FIG. 1D also depicts substrate 6 separated from the mask 8 ′. FIG. 1E illustrates the mask 8 ′ being brought into contact with the substrate 6 . FIG. 1F illustrates the deposit 22 ′ that results from conducting a current from the anode 12 ′ to the substrate 6 . FIG. 1G illustrates the deposit 22 ′ on substrate 6 after separation from mask 8 ′. In this example, an appropriate electrolyte is located between the substrate 6 and the anode 12 ′ and a current of ions coming from one or both of the solution and the anode are conducted through the opening in the mask to the substrate where material is deposited. This type of mask may be referred to as an anodeless INSTANT MASK™ (AIM) or as an anodeless conformable contact (ACC) mask. Unlike through-mask plating, CC mask plating allows CC masks to be formed completely separate from the fabrication of the substrate on which plating is to occur (e.g. separate from a three-dimensional (3D) structure that is being formed). CC masks may be formed in a variety of ways, for example, a photolithographic process may be used. All masks can be generated simultaneously, prior to structure fabrication rather than during it. This separation makes possible a simple, low-cost, automated, self-contained, and internally-clean “desktop factory” that can be installed almost anywhere to fabricate 3D structures, leaving any required clean room processes, such as photolithography to be performed by service bureaus or the like. An example of the electrochemical fabrication process discussed above is illustrated in FIGS. 2A-2F . These figures show that the process involves deposition of a first material 2 which is a sacrificial material and a second material 4 which is a structural material. The CC mask 8 , in this example, includes a patterned conformable material (e.g. an elastomeric dielectric material) 10 and a support 12 which is made from deposition material 2 . The conformal portion of the CC mask is pressed against substrate 6 with a plating solution 14 located within the openings 16 in the conformable material 10 . An electric current, from power supply 18 , is then passed through the plating solution 14 via (a) support 12 which doubles as an anode and (b) substrate 6 which doubles as a cathode. FIG. 2A , illustrates that the passing of current causes material 2 within the plating solution and material 2 from the anode 12 to be selectively transferred to and plated on the cathode 6 . After electroplating the first deposition material 2 onto the substrate 6 using CC mask 8 , the CC mask 8 is removed as shown in FIG. 2B . FIG. 2C depicts the second deposition material 4 as having been blanket-deposited (i.e. non-selectively deposited) over the previously deposited first deposition material 2 as well as over the other portions of the substrate 6 . The blanket deposition occurs by electroplating from an anode (not shown), composed of the second material, through an appropriate plating solution (not shown), and to the cathode/substrate 6 . The entire two-material layer is then planarized to achieve precise thickness and flatness as shown in FIG. 2D . After repetition of this process for all layers, the multi-layer structure 20 formed of the second material 4 (i.e. structural material) is embedded in first material 2 (i.e. sacrificial material) as shown in FIG. 2E . The embedded structure is etched to yield the desired device, i.e. structure 20 , as shown in FIG. 2F . Various components of an exemplary manual electrochemical fabrication system 32 are shown in FIGS. 3A-3C . The system 32 consists of several subsystems 34 , 36 , 38 , and 40 . The substrate holding subsystem 34 is depicted in the upper portions of each of FIGS. 3A to 3 C and includes several components: (1) a carrier 48 , (2) a metal substrate 6 onto which the layers are deposited, and (3) a linear slide 42 capable of moving the substrate 6 up and down relative to the carrier 48 in response to drive force from actuator 44 . Subsystem 34 also includes an indicator 46 for measuring differences in vertical position of the substrate which may be used in setting or determining layer thicknesses and/or deposition thicknesses. The subsystem 34 further includes feet 68 for carrier 48 which can be precisely mounted on subsystem 36 . The CC mask subsystem 36 shown in the lower portion of FIG. 3A includes several components: (1) a CC mask 8 that is actually made up of a number of CC masks (i.e. submasks) that share a common support/anode 12 , (2) precision X-stage 54 , (3) precision Y-stage 56 , (4) frame 72 on which the feet 68 of subsystem 34 can mount, and (5) a tank 58 for containing the electrolyte 16 . Subsystems 34 and 36 also include appropriate electrical connections (not shown) for connecting to an appropriate power source for driving the CC masking process. The blanket deposition subsystem 38 is shown in the lower portion of FIG. 3B and includes several components: (1) an anode 62 , (2) an electrolyte tank 64 for holding plating solution 66 , and (3) frame 74 on which the feet 68 of subsystem 34 may sit. Subsystem 38 also includes appropriate electrical connections (not shown) for connecting the anode to an appropriate power supply for driving the blanket deposition process. The planarization subsystem 40 is shown in the lower portion of FIG. 3C and includes a lapping plate 52 and associated motion and control systems (not shown) for planarizing the depositions. Another method for forming microstructures from electroplated metals (i.e. using electrochemical fabrication techniques) is taught in U.S. Pat. No. 5,190,637 to Henry Guckel, entitled “Formation of Microstructures by Multiple Level Deep X-ray Lithography with Sacrificial Metal layers”. This patent teaches the formation of metal structure utilizing mask exposures. A first layer of a primary metal is electroplated onto an exposed plating base to fill a void in a photoresist, the photoresist is then removed and a secondary metal is electroplated over the first layer and over the plating base. The exposed surface of the secondary metal is then machined down to a height which exposes the first metal to produce a flat uniform surface extending across the both the primary and secondary metals. Formation of a second layer may then begin by applying a photoresist layer over the first layer and then repeating the process used to produce the first layer. The process is then repeated until the entire structure is formed and the secondary metal is removed by etching. The photoresist is formed over the plating base or previous layer by casting and the voids in the photoresist are formed by exposure of the photoresist through a patterned mask via X-rays or UV radiation. Electrochemical Fabrication provides the ability to form prototypes and commercial quantities of miniature objects, parts, structures, devices, and the like at reasonable costs and in reasonable times. In fact, Electrochemical Fabrication is an enabler for the formation of many structures that were hitherto impossible to produce. Electrochemical Fabrication opens the spectrum for new designs and products in many industrial fields. Even though Electrochemical Fabrication offers this new capability and it is understood that Electrochemical Fabrication techniques can be combined with designs and structures known within various fields to produce new structures, certain uses for Electrochemical Fabrication provide designs, structures, capabilities and/or features not known or obvious in view of the state of the art. A need exists in various fields for miniature devices having improved characteristics, reduced fabrication times, reduced fabrication costs, simplified fabrication processes, and/or more independence between geometric configuration and the selected fabrication process. A need also exists in the field of miniature (i.e. mesoscale and microscale) device fabrication for improved fabrication methods and apparatus. A need also exists in the electrochemical fabrication field for enhanced techniques that supplement those already known in the field to allow even greater versatility in device design, improved selection of materials, improved material properties, more cost effective and less risky production of such devices, and the like. | <SOH> SUMMARY OF THE INVENTION <EOH>It is an object of some aspects of the invention to provide an electrochemical fabrication technique capable of fabricating improved microprobe tips. It is an object of some aspects of the invention to provide an electrochemical fabrication technique capable of fabricating improved microprobes and microprobe tips. It is an object of some aspects of the invention to provide an improved electrochemical fabrication technique capable of fabricating microprobe tips. It is an object of some aspects of the invention to provide an improved electrochemical fabrication technique capable of fabricating microprobes and microprobe tips. Other objects and advantages of various aspects of the invention will be apparent to those of skill in the art upon review of the teachings herein. The various aspects of the invention, set forth explicitly herein or otherwise ascertained from the teachings herein, may address one or more of the above objects alone or in combination, or alternatively may address some other object of the invention ascertained from the teachings herein. It is not necessarily intended that all objects be addressed by any single aspect of the invention even though that may be the case with regard to some aspects. In a first aspect of the invention, a method for creating a contact structure, comprising: forming a contact tip having a desired configuration; forming compliant probe structure electrochemically; and adhering the contact tip to the probe structure to form a contact structure. In a second aspect of the invention, a method for creating a contact structure, comprising: forming a contact tip having a desired configuration; forming compliant probe structure from a plurality of adhered layers of electrodeposited material; and adhering the contact tip to the probe structure to form a contact structure. In a third aspect of the invention, a method for creating a contact structure, comprising: forming a contact tip having a desired configuration; and forming compliant probe structure electrochemically, wherein the compliant probe structure is formed on the contact tip. In a fourth aspect of the invention, a method for creating a contact structure, comprising: forming a contact tip having a desired configuration; and forming compliant probe structure from a plurality of adhered layers of electrodeposited material, wherein the compliant probe structure is formed on the contact tip. In a fifth aspect of the invention, a method for creating a contact structure, comprising: forming compliant probe structure electrochemically; and forming a contact tip having a desired configuration, wherein the contact tip is formed on the compliant probe structure. In a sixth aspect of the invention, a method for creating a contact structure, comprising: forming compliant probe structure from a plurality of adhered layers of electrodeposited material; and forming a contact tip having a desired configuration, wherein the contact tip is formed on the compliant probe structure. Further aspects of the invention will be understood by those of skill in the art upon reviewing the teachings herein. Other aspects of the invention may involve combinations of the above noted aspects of the invention. Other aspects of the invention may involve apparatus that can be used in implementing one or more of the above method aspects of the invention. These other aspects of the invention may provide various combinations of the aspects presented above as well as provide other configurations, structures, functional relationships, and processes that have not been specifically set forth above. | 20050103 | 20080429 | 20061221 | 71057.0 | H01R1200 | 0 | ARBES, CARL J | METHOD OF MAKING A CONTACT | UNDISCOUNTED | 0 | ACCEPTED | H01R | 2,005 |
|
11,029,003 | ACCEPTED | Immunoglobulin chimeric monomer-dimer hybrids | The invention relates to a chimeric monomer-dimer hybrid protein wherein said protein comprises a first and a second polypeptide chain, said first polypeptide chain comprising at least a portion of an immunoglobulin constant region and a biologically active molecule, and said second polypeptide chain comprising at least a portion of an immunoglobulin constant region without the biologically active molecule of the first chain. The invention also relates to methods of using and methods of making the chimeric monomer-dimer hybrid protein of the invention. | 1. A chimeric protein comprising a first and second polypeptide chain, wherein said first chain comprises a biologically active molecule, and at least a portion of an immunoglobulin constant region and wherein said second chain comprises at least a portion of an immunoglobulin constant region without a biologically active molecule or immunoglobulin variable region. 2. The chimeric protein of claim 1, wherein said second chain further comprises an affinity tag. 3. The chimeric protein of claim 2, wherein the affinity tag is a FLAG tag. 4. The chimeric protein of claim 1, wherein the portion of an immunoglobulin is an Fc fragment. 5. The chimeric protein of claim 4, wherein the portion of an immunoglobulin is an FcRn binding partner. 6. The chimeric protein of claim 5, wherein the FcRn binding partner is a peptide mimetic of an Fc fragment of an immunoglobulin. 7. The chimeric protein of claim 1, wherein the immunoglobulin is IgG. 8. The chimeric protein of claim 1, wherein the biologically active molecule is a polypeptide. 9. The chimeric protein of claim 7, wherein the IgG is an IgG1 or an IgG2. 10-12. (canceled) 13. The chimeric protein of claim 1, wherein the biologically active molecule is a clotting factor. 14. The chimeric protein of claim 13, wherein the clotting factor is Factor VII or VIIa. 15. The chimeric protein of claim 13, wherein the clotting factor is Factor IX. 16. The chimeric protein of claim 1, wherein the biologically active molecule is a small molecule. 17. (canceled) 18. The chimeric protein of claim 1, wherein the biologically active molecule is interferon. 19. The chimeric protein of claim 18, wherein the interferon is interferon α and has a linker of 15-25 amino acids. 20. The chimeric protein of claim 19, wherein the interferon α has a linker of 15-20 amino acids. 21-24. (canceled) 25. The chimeric protein of claim 1, wherein the biologically active molecule is a growth factor. 26. The chimeric protein of claim 25, wherein the growth factor is erythropoietin. 27. (canceled) 28. A chimeric protein comprising a first and second polypeptide chain, wherein said first chain comprises a biologically active molecule, and at least a portion of an immunoglobulin constant region and wherein said second chain consists of at least a portion of an immunoglobulin constant region and optionally an affinity tag. 29. The chimeric protein of claim 28, wherein the affinity tag is a FLAG tag. 30. A chimeric protein comprising a first and second polypeptide chain, wherein said first chain comprises a biologically active molecule, and at least a portion of an immunoglobulin constant region and wherein said second chain consists essentially of at least a portion of an immunoglobulin constant region and optionally an affinity tag. 31. The chimeric protein of claim 30, wherein the affinity tag is a FLAG tag. 32. A chimeric protein comprising a first and second polypeptide chain a) wherein said first chain comprises a biologically active molecule, at least a portion of an immunoglobulin constant region, and a first domain having at least one specific binding partner; and b) wherein said second chain comprises at least a portion of an immunoglobulin without a biologically active molecule or immunoglobulin variable region and further comprising a second domain said second domain being a specific binding partner of said first domain. 33. The chimeric protein of claim 32, wherein said second chain further comprises an affinity tag. 34. The chimeric protein of claim 33, wherein the affinity tag is a FLAG tag. 35. The chimeric protein of claim 32, wherein the portion of an immunoglobulin is an Fc fragment. 36. The chimeric protein of claim 32, wherein the immunoglobulin is IgG. 37. The chimeric protein of claim 35, wherein the portion of an immunoglobulin is an FcRn binding partner. 38. The chimeric protein of claim 37, wherein the FcRn binding partner is a peptide mimetic of an Fc fragment of an immunoglobulin. 39. The chimeric protein of claim 32, wherein the first domain binds with the second domain non-covalently. 40. The chimeric protein of claim 32, wherein the first domain is one half of a leucine zipper coiled coil and said second domain is the complementary binding partner of said leucine zipper coiled coil. 41. The chimeric protein of claim 32, wherein the biologically active molecule is a peptide. 42. The chimeric protein of claim 32, wherein the biologically active molecule is interferon. 43. The chimeric protein of claim 42, wherein the interferon is interferon α and has a linker of 15-25 amino acids. 44. The chimeric protein of claim 43, wherein the interferon α has a linker of 15-20 amino acids. 45-48. (canceled) 49. The chimeric protein of claim 32, wherein the biologically active molecule is a clotting factor. 50. The chimeric protein of claim 49, wherein the clotting factor is Factor VII or Factor VIIa. 51. The chimeric protein of claim 49, wherein the clotting factor is Factor IX. 52. The chimeric protein of claim 32, wherein the biologically active molecule is a small molecule. 53-57. (canceled) 58. The chimeric protein of claim 32, wherein the biologically active molecule is a growth factor or hormone. 59. The chimeric protein of claim 58, wherein the growth factor is erythropoietin. 60. A pharmaceutical composition comprising the chimeric protein of claim 1 and a pharmaceutically acceptable excipient. 61. A chimeric protein comprising a first and second polypeptide chain a) wherein said first chain comprises a biologically active molecule, at least a portion of an immunoglobulin constant region, and a first domain having at least one specific binding partner; and b) wherein said second chain consists of at least a portion of an immunoglobulin, a second domain said second domain being a specific binding partner of said first domain and optionally an affinity tag. 62. The chimeric protein of claim 61, wherein the affinity tag is a FLAG tag. 63. A chimeric protein comprising a first and second polypeptide chain a) wherein said first chain comprises a biologically active molecule, at least a portion of an immunoglobulin constant region, and a first domain having at least one specific binding partner; and b) wherein said second chain consists essentially of at least a portion of an immunoglobulin, and a second domain said second domain being a specific binding partner of said first domain and optionally an affinity tag. 64. The chimeric protein of claim 63, wherein the affinity tag is a FLAG tag. 65-89. (canceled) 90. A method of treating a subject with a disease or condition comprising administering a chimeric protein to the subject, such that said disease or condition is treated, wherein said chimeric protein comprises a first and second polypeptide chain, a) said first chain comprising an FcRn binding partner, and a biologically active molecule and b) said second chain comprising an FcRn binding partner without a biologically active molecule or a variable region of an immunoglobulin. 91. The method of claim 90, wherein said chimeric protein is administered intravenously, subcutaneously, orally, buccally, sublingually, nasally, parenterally, rectally, vaginally or via a pulmonary route. 92. The method of claim 90, wherein said disease or condition is a viral infection. 93. The method of claim 90, wherein the biologically active molecule is interferon. 94. The method of claim 93, wherein the interferon is interferon α and has a linker of 15-25 amino acids. 95. The method of claim 94, wherein the interferon α has a linker of 15-20 amino acids. 96-98. (canceled) 99. The method of claim 90, wherein said disease or condition is a hemostatic disorder. 100. The method of claim 90, wherein said disease or condition is hemophilia A. 101. The method of claim 90, wherein said disease or condition is hemophilia B. 102. The method of claim 90, wherein said biologically active molecule is Factor VII or Factor VIIa. 103. The method of claim 90, wherein said biologically active molecule is Factor IX. 104. The method of claim 90, wherein said disease or condition is anemia. 105. The method of claim 90, wherein said biologically active molecule is erythropoietin. 106. A chimeric protein of the formula X-La-F:F or F:F-La-X wherein X is a biologically active molecule, L is a linker, F is at least a portion of an immunoglobulin constant region and, a is any integer or zero. 107. The chimeric protein of claim 106, wherein F is an FcRn binding partner. 108. The chimeric protein of claim 106, wherein the FcRn is a peptide mimetic of an Fc fragment of an immunoglobulin. 109. The chimeric protein of claim 106, wherein each F is chemically associated with the other F. 110. The method of claim 109, wherein the chemical association is a non-covalent interaction. 111. The method of claim 109, wherein the chemical bond is a covalent bond. 112. The method of claim 109, wherein the chemical bond is a disulfide bond. 113. The chimeric protein of claim 106, wherein F is linked to F by a bond that is not a disulfide bond. 114. The chimeric protein of claim 106, wherein F is an IgG immunoglobulin constant region. 115. The chimeric protein of claim 106, wherein F is an IgG1. 116. The chimeric protein of claim 106, wherein F is an Fc fragment. 117. The chimeric protein of claim 106, wherein X is a polypeptide. 118. (canceled) 119. The chimeric protein of claim 106, wherein X is a small molecule. 120-123. (canceled) 124. The chimeric protein of claim 106, wherein X is a clotting Factor. 125. The chimeric protein of claim 124, wherein the clotting factor is Factor VII or VIIa. 126. The chimeric protein of claim 124, wherein the clotting factor is Factor IX. 127-128. (canceled) 129. The chimeric protein of claim 106, wherein X is a growth factor. 130. The chimeric protein of claim 129, wherein the growth factor is erythropoietin. 131. A method of treating a disease or condition in a subject comprising administering the chimeric protein of claim 106 to said subject. 132. The method of claim 131, wherein the disease or condition is a viral infection. 133. The method of claim 131, wherein the biologically active molecule is interferon. 134. The method of claim 133, wherein the interferon is interferon α and has a linker of 15-25 amino acids. 135. The method of claim 134, wherein the interferon α has a linker of 15-20 amino acids. 136. (canceled) 137. The method of claim 131, wherein the disease or condition is a bleeding disorder. 138. The method of claim 137, wherein the bleeding disorder is hemophilia A. 139. The method of claim 137, wherein the bleeding disorder is hemophilia B. 140. The method of claim 131, wherein the disease or condition is anemia. 141. The method of claim 131, wherein the chimeric protein is administered intravenously, intramuscularly, subcutaneously, orally, buccally, sublingually, nasally, rectally, vaginally, via an aerosol, or via a pulmonary route. 142. The method of claim 141, wherein the chimeric protein is administered via a pulmonary route. 143. The method of claim 141, wherein the chimeric protein is administered orally. 144. The method of claim 131, wherein the immunoglobulin is IgG. 145. The method of claim 131, wherein the portion of an immunoglobulin is an Fc fragment. 146. A chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region without the biologically active molecule of the first chain and wherein said second chain is not covalently bonded to any molecule having a molecular weight greater than 2 kD. 147. The chimeric protein of claim 146, wherein the portion of an immunoglobulin constant region is an FcRn binding partner. 148. A chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region not covalently linked to any other molecule except the portion of an immunoglobulin of said first polypeptide chain. 149. The chimeric protein of claim 148, wherein the portion of an immunoglobulin constant region is an FcRn binding partner. 150. A chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain consists of at least a portion of an immunoglobulin constant region. 151. The chimeric protein of claim 150, wherein the portion of an immunoglobulin constant region is an FcRn binding partner. 152. A chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region without the biologically active molecule of the first chain and a molecule with a molecular weight less than 2 kD covalently attached. 153. The chimeric protein of claim 152, wherein the portion of an immunoglobulin constant region is an FcRn binding partner. 154-176. (canceled) 177. The chimeric protein of claim 18, wherein the biologically active molecule is interferon α. 178. The chimeric protein of claim 18, wherein the biologically active molecule is interferon β. 179. The chimeric protein of claim 42, wherein the biologically active molecule is interferon α. 180. The chimeric protein of claim 42, wherein the biologically active molecule is interferon β. 181-182. (canceled) 183. The method of claim 93, wherein the biologically active molecule is interferon α. 184. The method of claim 93, wherein the biologically active molecule is interferon β. 185. The method of claim 133, wherein the biologically active molecule is interferon α. 186. The method of claim 133, wherein the biologically active molecule is interferon β. 187-188. (canceled) 189. A chimeric protein comprising a first and second polypeptide chain, wherein said first chain comprises EPO, an eight amino acid linker having the amino acid sequence EFAGAAAV, and an Fc fragment of an immunoglobulin constant region comprising a mutation of aspargine to alanine at position 297; and wherein said second chain comprises an Fc fragment of an immunoglobulin constant region comprising a mutation of aspargine to alanine at position 297. 190. The chimeric protein of claim 189, further comprising an affinity tag. 191. A chimeric protein comprising a first and second polypeptide chain, wherein said first chain comprises IFNβ, an eight amino acid linker having the amino acid sequence EFAGAAAV, and an Fc fragment of an immunoglobulin constant region comprising a mutation of aspargine to alanine at position 297; and wherein said second chain comprises an Fc fragment of an immunoglobulin constant region comprising a mutation of aspargine to alanine at position 297. 192. The chimeric protein of claim 191, further comprising an affinity tag. 193. A chimeric protein comprising a first and second polypeptide chain, wherein said first chain comprises factor IX, an eight amino acid linker having the amino acid sequence EFAGAAAV, and an Fc fragment of an immunoglobulin constant region comprising a mutation of aspargine to alanine at position 297; and wherein said second chain comprises an Fc fragment of an immunoglobulin constant region comprising a mutation of aspargine to alanine at position 297. 194. The chimeric protein of claim 193, further comprising an affinity tag. 195. The method of claim 90, wherein the disease or condition is a cardiovascular disease or condition. 196. The method of claim 195, wherein the cardiovascular disease or condition is chosen from stroke, brain ischemia, cerebral ischemia, myocardial ischemia, cardiac ischemia, ischemic heart disease, myocardial infarction, coronary artery disease, acute coronary syndrome, artherosclerosis, chronic heart failure, congestive heart failure, and reperfusion injury. 197. The method of claim 195, wherein the biologically active molecule is erythropoietin. | RELATED APPLICATIONS This application is a Continuation-in-Part of pending prior application Ser. No. 10/841,250 filed May 6, 2004, which claims the benefit of U.S. Provisional Application No. 60/469,600 filed May 6, 2003, and U.S. Provisional Application No. 60/487,964 filed Jul. 17, 2003, and U.S. Provisional Application No. 60/539,207 filed Jan. 26, 2004. U.S. application Ser. No. 10/842,054 filed May 6, 2004, is incorporated herein by reference. FIELD OF THE INVENTION The invention relates generally to therapeutic chimeric proteins, comprised of two polypeptide chains, wherein the first chain is comprised of a therapeutic biologically active molecule and the second chain is not comprised of the therapeutic biologically active molecule of the first chain. More specifically, the invention relates to chimeric proteins, comprised of two polypeptide chains, wherein both chains are comprised of at least a portion of an immunoglobulin constant region wherein the first chain is modified to further comprise a biologically active molecule, and the second chain is not so modified. The invention, thus relates to a chimeric protein that is a monomer-dimer hybrid, i.e., a chimeric protein having a dimeric aspect and a monomeric aspect, wherein the dimeric aspect relates to the fact that it is comprised of two polypeptide chains each comprised of a portion of an immunoglobulin constant region, and wherein the monomeric aspect relates to the fact that only one of the two chains is comprised of a therapeutic biologically active molecule. FIG. 1 illustrates one example of a monomer-dimer hybrid wherein the biologically active molecule is erythropoietin (EPO) and the portion of an immunoglobulin constant region is an IgG Fc region. BACKGROUND OF THE INVENTION Immunoglobulins are comprised of four polypeptide chains, two heavy chains and two light chains, which associate via disulfide bonds to form tetramers. Each chain is further comprised of one variable region and one constant region. The variable regions mediate antigen recognition and binding, while the constant regions, particularly the heavy chain constant regions, mediate a variety of effector functions, e.g., complement binding and Fc receptor binding (see, e.g., U.S. Pat. Nos. 6,086,875; 5,624,821; 5,116,964). The constant region is further comprised of domains denoted CH (constant heavy) domains (CH1, CH2, etc.). Depending on the isotype, (i.e. IgG, IgM, IgA IgD, IgE) the constant region can be comprised of three or four CH domains. Some isotypes (e.g. IgG) constant regions also contain a hinge region Janeway et al. 2001, Immunobiology, Garland Publishing, N.Y., N.Y. The creation of chimeric proteins comprised of immunoglobulin constant regions linked to a protein of interest, or fragment thereof, has been described (see, e.g., U.S. Pat. Nos. 5,480,981 and 5,808,029; Gascoigne et al. 1987, Proc. Natl. Acad. Sci. USA 84:2936; Capon et al. 1989, Nature 337:525; Traunecker et al. 1989, Nature 339:68; Zettmeissl et al. 1990, DNA Cell Biol. USA 9:347; Byrn et al. 1990, Nature 344:667; Watson et al. 1990, J. Cell. Biol. 110:2221; Watson et al. 1991, Nature 349:164; Aruffo et al. 1990, Cell 61:1303; Linsley et al. 1991, J. Exp. Med. 173:721; Linsley et al. 1991, J. Exp. Med. 174:561; Stamenkovic et al., 1991, Cell 66:1133; Ashkenazi et al. 1991, Proc. Natl. Acad. Sci. USA 88:10535; Lesslauer et al. 1991, Eur. J. Immunol. 27:2883; Peppel et al. 1991, J. Exp. Med. 174:1483; Bennett et al. 1991, J. Biol. Chem. 266:23060; Kurschner et al. 1992, J. Biol. Chem. 267:9354; Chalupny et al. 1992, Proc. Natl. Acad. Sci. USA 89:10360; Ridgway and Gorman, 1991, J. Cell. Biol. 115, Abstract No. 1448; Zheng et al. 1995, J. Immun. 154:5590). These molecules usually possess both the biological activity associated with the linked molecule of interest as well as the effector function, or some other desired characteristic associated with the immunoglobulin constant region (e.g. biological stability, cellular secretion). The Fc portion of an immunoglobulin constant region, depending on the immunoglobulin isotype can include the CH2, CH3, and CH4 domains, as well as the hinge region. Chimeric proteins comprising an Fc portion of an immunoglobulin bestow several desirable properties on a chimeric protein including increased stability, increased serum half life (see Capon et al. 1989, Nature 337:525) as well as binding to Fc receptors such as the neonatal Fc receptor (FcRn) (U.S. Pat. Nos. 6,086,875, 6,485,726, 6,030,613; WO 03/077834; U.S. 2003-0235536A1). FcRn is active in adult epithelial tissue and expressed in the lumen of the intestines, pulmonary airways, nasal surfaces, vaginal surfaces, colon and rectal surfaces (U.S. Pat. No. 6,485,726). Chimeric proteins comprised of FcRn binding partners (e.g. IgG, Fc fragments) can be effectively shuttled across epithelial barriers by FcRn, thus providing a non-invasive means to systemically administer a desired therapeutic molecule. Additionally, chimeric proteins comprising an FcRn binding partner are endocytosed by cells expressing the FcRn. But instead of being marked for degradation, these chimeric proteins are recycled out into circulation again, thus increasing the in vivo half life of these proteins. Portions of immunoglobulin constant regions, e.g., FcRn binding partners typically associate, via disulfide bonds and other non-specific interactions, with one another to form dimers and higher order multimers. The instant invention is based in part upon the surprising discovery that transcytosis of chimeric proteins comprised of FcRn binding partners appears to be limited by the molecular weight of the chimeric protein, with higher molecular weight species being transported less efficiently. Chimeric proteins comprised of biologically active molecules, once administered, typically will interact with a target molecule or cell. The instant invention is further based in part upon the surprising discovery that monomer-dimer hybrids, with one biologically active molecule, but two portions of an immunoglobulin constant region, e.g., two FcRn binding partners, function and can be transported more effectively than homodimers, also referred to herein simply as “dimers” or higher order multimers with two or more copies of the biologically active molecule. This is due in part to the fact that chimeric proteins, comprised of two or more biologically active molecules, which exist as dimers and higher order multimers, can be sterically hindered from interacting with their target molecule or cell, due to the presence of the two or more biologically active molecules in close proximity to one another and that the biologically active molecule can have a high affinity for itself. Accordingly one aspect of the invention provides chimeric proteins comprised of a biologically active molecule that is transported across the epithelium barrier. An additional aspect of the invention provides chimeric proteins comprised of at least one biologically active molecule that is able to interact with its target molecule or cell with little or no steric hindrance or self aggregation. The aspects of the invention provide for chimeric proteins comprising a first and second polypeptide chain, the first chain comprising at least a portion of immunoglobulin constant region, wherein the portion of an immunoglobulin constant region has been modified to include a biologically active molecule and the second chain comprising at least a portion of immunoglobulin constant region, wherein the portion of an immunoglobulin constant region has not been so modified to include the biologically active molecule of the first chain. SUMMARY OF THE INVENTION The invention relates to a chimeric protein comprising one biologically active molecule and two molecules of at least a portion of an immunoglobulin constant region. The chimeric protein is capable of interacting with a target molecule or cell with less steric hindrance compared to a chimeric protein comprised of at least two biologically active molecules and at least a portion of two immunoglobulin constant regions. The invention also relates to a chimeric protein comprising at least one biologically active molecule and two molecules of at least a portion of an immunoglobulin constant region that is transported across an epithelium barrier more efficiently than a corresponding homodimer, i.e., wherein both chains are linked to the same biologically active molecule. The invention, thus relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region, but no immunoglobulin variable region and without any biologically active molecule attached. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region without an immunoglobulin variable region or any biologically active molecule and wherein said second chain is not covalently bonded to any molecule having a molecular weight greater than 1 kD, 2 kD, 5 kD, 10 kD, or 20 kD. In one embodiment, the second chain is not covalently bonded to any molecule having a molecular weight greater than 0-2 kD. In one embodiment, the second chain is not covalently bonded to any molecule having a molecular weight greater than 5-10 kD. In one embodiment, the second chain is not covalently bonded to any molecule having a molecular weight greater than 15-20 kD. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region not covalently linked to any other molecule except the portion of an immunoglobulin of said first polypeptide chain. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain consists of at least a portion of an immunoglobulin constant region and optionally an affinity tag. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain consists essentially of at least a portion of an immunoglobulin constant region and optionally an affinity tag. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region without an immunoglobulin variable region or any biologically active molecule and optionally a molecule with a molecular weight less than 10 kD, 5 kD, 2 kD or 1 kD. In one embodiment, the second chain comprises a molecule less than 15-20 kD. In one embodiment, the second chain comprises a molecule less than 5-10 kD. In one embodiment, the second chain comprises a molecule less than 1-2 kD. The invention relates to a chimeric protein comprising a first and second polypeptide chain, wherein said first chain comprises a biologically active molecule, at least a portion of an immunoglobulin constant region, and at least a first domain, said first domain having at least one specific binding partner, and wherein said second chain comprises at least a portion of an immunoglobulin constant region, and at least a second domain, wherein said second domain is a specific binding partner of said first domain, without any immunoglobulin variable region or a biologically active molecule. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, said method comprising transfecting a cell with a first DNA construct comprising a DNA molecule encoding a first polypeptide chain comprising a biologically active molecule and at least a portion of an immunoglobulin constant region and optionally a linker, and a second DNA construct comprising a DNA molecule encoding a second polypeptide chain comprising at least a portion of an immunoglobulin constant region without any biologically active molecule or an immunoglobulin variable region, and optionally a linker, culturing the cells under conditions such that the polypeptide chain encoded by the first DNA construct is expressed and the polypeptide chain encoded by the second DNA construct is expressed and isolating monomer-dimer hybrids comprised of the polypeptide chain encoded by the first DNA construct and the polypeptide chain encoded by the second DNA construct. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, and wherein said first polypeptide chain comprises a biologically active molecule, at least a portion of an immunoglobulin constant region, and at least a first domain, said first domain, having at least one specific binding partner, and wherein said second polypeptide chain comprises at least a portion of an immunoglobulin constant region and a second domain, wherein said second domain, is a specific binding partner of said first domain, without any biologically active molecule or an immunoglobulin variable region, said method comprising transfecting a cell with a first DNA construct comprising a DNA molecule encoding said first polypeptide chain and a second DNA construct comprising a DNA molecule encoding, said second polypeptide chain, culturing the cells under conditions such that the polypeptide chain encoded by the first DNA construct is expressed and the polypeptide chain encoded by the second DNA construct is expressed and isolating monomer-dimer hybrids comprised of the polypeptide chain encoded by the first DNA construct and polypeptide chain encoded by the second DNA construct. The invention relates to a method of making a chimeric protein of the invention said method comprising transfecting a cell with a first DNA construct comprising a DNA molecule encoding a first polypeptide chain comprising a biologically active molecule and at least a portion of an immunoglobulin constant region and optionally a linker, culturing the cell under conditions such that the polypeptide chain encoded by the first DNA construct is expressed, isolating the polypeptide chain encoded by the first DNA construct and transfecting a cell with a second DNA construct comprising a DNA molecule encoding a second polypeptide chain comprising at least a portion of an immunoglobulin constant region without any biologically active molecule or immunoglobulin variable region, culturing the cell under conditions such that the polypeptide chain encoded by the second DNA construct is expressed, isolating the polypeptide chain, encoded by the second DNA construct, combining the polypeptide chain, encoded by the first DNA construct and the polypeptide chain encoded by the second DNA construct under conditions such that monomer-dimer hybrids comprising the polypeptide chain encoded by the first DNA construct and the polypeptide chain encoded by the second DNA construct form, and isolating said monomer-dimer hybrids. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, said method comprising transfecting a cell with a DNA construct comprising a DNA molecule encoding a polypeptide chain comprising at least a portion of an immunoglobulin constant region, culturing the cells under conditions such that the polypeptide chain encoded by the DNA construct is expressed with an N terminal cysteine such that dimers of the polypeptide chain form and isolating dimers comprised of two copies of the polypeptide chain encoded by the DNA construct and chemically reacting the isolated dimers with a biologically active molecule, wherein said biologically active molecule has a C terminus thioester, under conditions such that the biologically active molecule reacts predominantly with only one polypeptide chain of the dimer thereby forming a monomer-dimer hybrid. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, said method comprising transfecting a cell with a DNA construct comprising a DNA molecule encoding a polypeptide chain comprising at least a portion of an immunoglobulin constant region, culturing the cells under conditions such that the polypeptide chain encoded by the DNA construct is expressed with an N terminal cysteine such that dimers of the polypeptide chains form, and isolating dimers comprised of two copies of the polypeptide chain encoded by the DNA construct, and chemically reacting the isolated dimers with a biologically active molecule, wherein said biologically active molecule has a C terminus thioester, such that the biologically active molecule is linked to each chain of the dimer, denaturing the dimer comprised of the portion of the immunoglobulin linked to the biologically active molecule such that monomeric chains form, combining the monomeric chains with a polypeptide chain comprising at least a portion of an immunoglobulin constant region without a biologically active molecule linked to it, such that monomer-dimer hybrids form, and isolating the monomer-dimer hybrids. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, said method comprising transfecting a cell with a DNA construct comprising a DNA molecule encoding a polypeptide chain comprising at least a portion of an immunoglobulin constant region, culturing the cells under conditions such that the polypeptide chain encoded by the DNA construct is expressed as a mixture of two polypeptide chains, wherein the mixture comprises a polypeptide with an N terminal cysteine, and a polypeptide with a cysteine in close proximity to the N terminus, isolating dimers comprised of the mixture of polypeptide chains encoded by the DNA construct and chemically reacting the isolated dimers with a biologically active molecule, wherein said biologically active molecule has an active thioester, such that at least some monomer-dimer hybrid forms and isolating the monomer-dimer hybrid from said mixture. The invention relates to a method of treating a disease or condition comprising administering a chimeric protein of the invention thereby treating the disease or condition. Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram comparing the structure of an EPO-Fc homodimer, or dimer, and the structure of an Epo-FC monomer-dimer hybrid. FIG. 2a is the amino acid sequence of the chimeric protein Factor VII-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell and the propeptide (bold), which is recognized by the vitamin K-dependent γ carboxylase which modifies the Factor VII to achieve full activity. The sequence is subsequently cleaved by PACE to yield Factor VII-Fc. FIG. 2b is the amino acid sequence of the chimeric protein Factor IX-Fc. Included in the sequence is the signal peptide (underlined) which is cleaved by the cell and the propeptide (bold) which is recognized by the vitamin K-dependent γ carboxylase which modifies the Factor IX to achieve full activity. The sequence is subsequently cleaved by PACE to yield Factor IX-Fc. FIG. 2c is the amino acid sequence of the chimeric protein IFNα-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell resulting in the mature IFNα-Fc. FIG. 2d is the amino acid sequence of the chimeric protein IFNα-Fc Δ linker. Included in the sequence is the signal peptide (underlined) which is cleaved by the cell resulting in the mature IFNα-Fc Δ linker. FIG. 2e is the amino acid sequence of the chimeric protein Flag-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell resulting in the mature Flag-Fc. FIG. 2f is the amino acid sequence of the chimeric protein Epo-CCA-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell resulting in the mature Epo-CCA-Fc. Also shown in bold is the acidic coiled coil domain. FIG. 2g is the amino acid sequence of the chimeric protein CCB-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell resulting in the mature CCB-Fc. Also shown in bold is the basic coiled coil domain. FIG. 2h is the amino acid sequence of the chimeric protein Cys-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell resulting in the mature Cys-Fc. When this sequence is produced in CHO cells a percentage of the molecules are incorrectly cleaved by the signal peptidase such that two extra amino acids are left on the N terminus, thus preventing the linkage of a biologically active molecule with a C terminal thioester (e.g., via native ligation). When these improperly cleaved species dimerize with the properly cleaved Cys-Fc and are subsequently reacted with biologically active molecules with C terminal thioesters, monomer-dimer hybrids form. FIG. 2i is the amino acid sequence of the chimeric protein IFNα-GS15-Fc. Included in the sequence is the signal peptide (underlined) which is cleaved by the cell resulting in the mature IFNα-GS15-Fc. FIG. 2j is the amino acid sequence of the chimeric protein Epo-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell resulting in the mature Epo-Fc. Also shown in bold is the 8 amino acid linker. FIG. 3a is the nucleic acid sequence of the chimeric protein Factor VII-Fc. Included in the sequence is the signal peptide (underlined) and the propeptide (bold) which is recognized by the vitamin K-dependent γ carboxylase which modifies the Factor VII to achieve full activity. The translated sequence is subsequently cleaved by PACE to yield mature Factor VII-Fc. FIG. 3b is the nucleic acid sequence of the chimeric protein Factor IX-Fc. Included in the sequence is the signal peptide (underlined) and the propeptide (bold) which is recognized by the vitamin K-dependent γ carboxylase which modifies the Factor IX to achieve full activity. The translated sequence is subsequently cleaved by PACE to yield mature Factor IX-Fc. FIG. 3c is the nucleic acid sequence of the chimeric protein IFNα-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell after translation resulting in the mature IFNα-Fc. FIG. 3d is the nucleic acid sequence of the chimeric protein IFNα- Fc Δ linker. Included in the sequence is the signal peptide (underlined) which is cleaved by the cell after translation resulting in the mature IFNα-Fc Δ linker. FIG. 3e is the amino acid sequence of the chimeric protein Flag-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell after translation resulting in the mature Flag-Fc. FIG. 3f is the nucleic acid sequence of the chimeric protein Epo-CCA-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell after translation resulting in the mature Epo-CCA-Fc. Also shown in bold is the acidic coiled coil domain. FIG. 3g is the nucleic acid sequence of the chimeric protein CCB-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell after translation resulting in the mature CCB-Fc. Also shown in bold is the basic coiled coil domain. FIG. 3h is the nucleic acid sequence of the chimeric protein Cys-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell after translation resulting in the mature Cys-Fc. FIG. 3i is the nucleic acid sequence of the chimeric protein IFNα-GS15-Fc. Included in the sequence is the signal peptide (underlined) which is cleaved by the cell after translation resulting in the mature IFNα-GS15-Fc. FIG. 3j is the nucleic acid sequence of the chimeric protein Epo-Fc. Included in the sequence is the signal peptide (underlined), which is cleaved by the cell after translation resulting in the mature Epo-Fc. Also shown in bold is a nucleic acid sequence encoding the 8 amino acid linker. FIG. 4 demonstrates ways to form monomer-dimer hybrids through native ligation. FIG. 5a shows the amino acid sequence of Fc MESNA (SEQ ID NO:4). FIG. 5b shows the DNA sequence of Fc MESNA (SEQ ID NO:5). FIG. 6 compares antiviral activity of IFNα homo-dimer (i.e. comprised of 2 IFNα molecules) with an IFNα monomer-dimer hybrid (i.e. comprised of 1 IFNα molecule). FIG. 7 is a comparison of clotting activity of a chimeric monomer-dimer hybrid Factor VIIa-Fc (one Factor VII molecule) and a chimeric homodimer Factor VIIa-Fc (two Factor VII molecules). FIG. 8 compares oral dosing in neonatal rats of a chimeric monomer-dimer hybrid Factor VIIa-Fc (one Factor VII molecule) and a chimeric homodimer Factor VIIa-Fc (two Factor VII molecules). FIG. 9 compares oral dosing in neonatal rats of a chimeric monomer-dimer hybrid Factor IX-Fc (one Factor IX molecule) with a chimeric homodimer. FIG. 10 is a time course study comparing a chimeric monomer-dimer hybrid Factor IX-Fc (one Factor IX molecule) administered orally to neonatal rats with an orally administered chimeric homodimer. FIG. 11 demonstrates pharmokinetics of Epo-Fc dimer compared to Epo-Fc monomer-dimer hybrid in cynomolgus monkeys after a single pulmonary dose. FIG. 12 compares serum concentration in monkeys of subcutaneously administered Epo-Fc monomer-dimer hybrid with subcutaneously administered Aranesp® (darbepoetin alfa). FIG. 13 compares serum concentration in monkeys of intravenously administered Epo-Fc monomer-dimer hybrid with intravenously administered Aranesp® (darbepoetin alfa) and Epogen® (epoetin alfa). FIG. 14 shows a trace from a Mimetic Red 2™ column (ProMetic LifeSciences, Inc., Wayne, N.J.) and an SDS-PAGE of fractions from the column containing EpoFc monomer-dimer hybrid, EpoFc dimer, and Fc. EpoFc monomer-dimer hybrid is found in fractions 11, 12, 13, and 14. EpoFc dimer is found in fraction 18. Fc is found in fractions 1/2. FIG. 15 shows the pharmacokinetics of IFNβFc with an 8 amino acid linker in cynomolgus monkeys after a single pulmonary dose. FIG. 16 shows neopterin stimulation in response to the IFNβ-Fc homodimer and the IFNβ-Fc N297A monomer-dimer hybrid in cynomolgus monkeys. FIG. 17a shows the nucleotide sequence of interferon β-Fc; FIG. 17b shows the amino acid sequence of interferon β-Fc. FIG. 18 shows the amino acid sequence of T20(a); T21 (b) and T1249(c). DESCRIPTION OF THE EMBODIMENTS A. Definitions Affinity tag, as used herein, means a molecule attached to a second molecule of interest, capable of interacting with a specific binding partner for the purpose of isolating or identifying said second molecule of interest. Analogs of chimeric proteins of the invention, or proteins or peptides substantially identical to the chimeric proteins of the invention, as used herein, means that a relevant amino acid sequence of a protein or a peptide is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identical to a given sequence. By way of example, such sequences may be variants derived from various species, or they may be derived from the given sequence by truncation, deletion, amino acid substitution or addition. Percent identity between two amino acid sequences is determined by standard alignment algorithms such as, for example, Basic Local Alignment Tool (BLAST) described in Altschul et al. 1990, J. Mol. Biol., 215:403-410, the algorithm of Needleman et al. 1970, J. Mol. Biol., 48:444-453; the algorithm of Meyers et al. 1988, Comput. Appl. Biosci., 4:11-17; or Tatusova et al. 1999, FEMS Microbiol. Lett., 174:247-250, etc. Such algorithms are incorporated into the BLASTN, BLASTP and “BLAST 2 Sequences” programs (see www.ncbi.nlm.nih.gov/BLAST). When utilizing such programs, the default parameters can be used. For example, for nucleotide sequences the following settings can be used for “BLAST 2 Sequences”: program BLASTN, reward for match 2, penalty for mismatch −2, open gap and extension gap penalties 5 and 2 respectively, gap x_dropoff 50, expect 10, word size 11, filter ON. For amino acid sequences the following settings can be used for “BLAST 2 Sequences”: program BLASTP, matrix BLOSUM62, open gap and extension gap penalties 11 and 1 respectively, gap x_dropoff 50, expect 10, word size 3, filter ON. Bioavailability, as used herein, means the extent and rate at which a substance is absorbed into a living system or is made available at the site of physiological activity. Biologically active molecule, as used herein, means a non-immunoglobulin molecule or fragment thereof, capable of treating a disease or condition or localizing or targeting a molecule to a site of a disease or condition in the body by performing a function or an action, or stimulating or responding to a function, an action or a reaction, in a biological context (e.g. in an organism, a cell, or an in vitro model thereof). Biologically active molecules may comprise at least one of polypeptides, nucleic acids, small molecules such as small organic or inorganic molecules. A chimeric protein, as used herein, refers to any protein comprised of a first amino acid sequence derived from a first source, bonded, covalently or non-covalently, to a second amino acid sequence derived from a second source, wherein the first and second source are not the same. A first source and a second source that are not the same can include two different biological entities, or two different proteins from the same biological entity, or a biological entity and a non-biological entity. A chimeric protein can include for example, a protein derived from at least 2 different biological sources. A biological source can include any non-synthetically produced nucleic acid or amino acid sequence (e.g. a genomic or cDNA sequence, a plasmid or viral vector, a native virion or a mutant or analog, as further described herein, of any of the above). A synthetic source can include a protein or nucleic acid sequence produced chemically and not by a biological system (e.g. solid phase synthesis of amino acid sequences). A chimeric protein can also include a protein derived from at least 2 different synthetic sources or a protein derived from at least one biological source and at least one synthetic source. A chimeric protein may also comprise a first amino acid sequence derived from a first source, covalently or non-covalently linked to a nucleic acid, derived from any source or a small organic or inorganic molecule derived from any source. The chimeric protein may comprise a linker molecule between the first and second amino acid sequence or between the first amino acid sequence and the nucleic acid, or between the first amino acid sequence and the small organic or inorganic molecule. Clotting factor, as used herein, means any molecule, or analog thereof, naturally occurring or recombinantly produced which prevents or decreases the duration of a bleeding episode in a subject with a hemostatic disorder. In other words, it means any molecule having clotting activity. Clotting activity, as used herein, means the ability to participate in a cascade of biochemical reactions that culminates in the formation of a fibrin clot and/or reduces the severity, duration or frequency of hemorrhage or bleeding episode. Dimer as used herein refers to a chimeric protein comprising a first and second polypeptide chain, wherein the first and second chains both comprise a biologically active molecule, and at least a portion of an immunoglobulin constant region. A homodimer refers to a dimer where both biologically active molecules are the same. Dimerically linked monomer-dimer hybrid refers to a chimeric protein comprised of at least a portion of an immunloglobulin constant region, e.g. an Fc fragment of an immunoglobulin, a biologically active molecule and a linker which links the two together such that one biologically active molecule is bound to 2 polypeptide chains, each comprising a portion of an immunoglobulin constant region. FIG. 4 shows an example of a dimerically linked monomer-dimer hybrid. DNA construct, as used herein, means a DNA molecule, or a clone of such a molecule, either single- or double-stranded that has been modified through human intervention to contain segments of DNA combined in a manner that as a whole would not otherwise exist in nature. DNA constructs contain the information necessary to direct the expression of polypeptides of interest. DNA constructs can include promoters, enhancers and transcription terminators. DNA constructs containing the information necessary to direct the secretion of a polypeptide will also contain at least one secretory signal sequence. Domain, as used herein, means a region of a polypeptide (including proteins as that term is defined) having some distinctive physical feature or role including for example an independently folded structure composed of one section of a polypeptide chain. A domain may contain the sequence of the distinctive physical feature of the polypeptide or it may contain a fragment of the physical feature which retains its binding characteristics (i.e., it can bind to a second domain). A domain may be associated with another domain. In other words, a first domain may naturally bind to a second domain. A fragment, as used herein, refers to a peptide or polypeptide comprising an amino acid sequence of at least 2 contiguous amino acid residues, of at least 5 contiguous amino acid residues, of at least 10 contiguous amino acid residues, of at least 15 contiguous amino acid residues, of at least 20 contiguous amino acid residues, of at least 25 contiguous amino acid residues, of at least 40 contiguous amino acid residues, of at least 50 contiguous amino acid residues, of at least 100 contiguous amino acid residues, or of at least 200 contiguous amino acid residues or any deletion or truncation of a protein, peptide, or polypeptide. Hemostasis, as used herein, means the stoppage of bleeding or hemorrhage; or the stoppage of blood flow through a blood vessel or body part. Hemostatic disorder, as used herein, means a genetically inherited or acquired condition characterized by a tendency to hemorrhage, either spontaneously or as a result of trauma, due to an impaired ability or inability to form a fibrin clot. Linked, as used herein, refers to a first nucleic acid sequence covalently joined to a second nucleic acid sequence. The first nucleic acid sequence can be directly joined or juxtaposed to the second nucleic acid sequence or alternatively an intervening sequence can covalently join the first sequence to the second sequence. Linked as used herein can also refer to a first amino acid sequence covalently, or non-covalently, joined to a second amino acid sequence. The first amino acid sequence can be directly joined or juxtaposed to the second amino acid sequence or alternatively an intervening sequence can covalently join the first amino acid sequence to the second amino acid sequence. Operatively linked, as used herein, means a first nucleic acid sequence linked to a second nucleic acid sequence such that both sequences are capable of being expressed as a biologically active protein or peptide. Polypeptide, as used herein, refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term does not exclude post-expression modifications of the polypeptide, for example, glycosylation, acetylation, phosphorylation, pegylation, addition of a lipid moiety, or the addition of any organic or inorganic molecule. Included within the definition, are for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids) and polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. High stringency, as used herein, includes conditions readily determined by the skilled artisan based on, for example, the length of the DNA. Generally, such conditions are defined in Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1, pp. 1.101-104, Cold Spring Harbor Laboratory Press (1989), and include use of a prewashing solution for the nitrocellulose filters 5×SSC, 0.5% SDS, 1.0 mM EDTA (PH 8.0), hybridization conditions of 50% formamide, 6×SSC at 42° C. (or other similar hybridization solution, such as Stark's solution, in 50% formamide at 42° C., and with washing at approximately 68° C., 0.2×SSC, 0.1% SDS. The skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the probe. Moderate stringency, as used herein, include conditions that can be readily determined by those having ordinary skill in the art based on, for example, the length of the DNA. The basic conditions are set forth by Sambrook et al. Molecular Cloning: A Laboratory Manual, 2d ed. Vol. 1, pp. 1.101-104, Cold Spring Harbor Laboratory Press (1989), and include use of a prewashing solution for the nitrocellulose filters 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0), hybridization conditions of 50% formamide, 6×SSC at 42° C. (or other similar hybridization solution, such as Stark's solution, in 50% formamide at 42° C.), and washing conditions of 60° C., 0.5×SSC, 0.1% SDS. A small inorganic molecule, as used herein means a molecule containing no carbon atoms and being no larger than 50 kD. A small organic molecule, as used herein means a molecule containing at least one carbon atom and being no larger than 50 kD. Treat, treatment, treating, as used herein means, any of the following: the reduction in severity of a disease or condition; the reduction in the duration of a disease course; the amelioration of one or more symptoms associated with a disease or condition; the provision of beneficial effects to a subject with a disease or condition, without necessarily curing the disease or condition, the prophylaxis of one or more symptoms associated with a disease or condition. B. Improvements Offered by Certain Embodiments of the Invention The invention provides for chimeric proteins (monomer-dimer hybrids) comprising a first and a second polypeptide chain, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region without any biologically active molecule or variable region of an immunoglobulin. FIG. 1 contrasts traditional fusion protein dimers with one example of the monomer-dimer hybrid of the invention. In this example, the biologically active molecule is EPO and the portion of an immunoglobulin is IgG Fc region. Like other chimeric proteins comprised of at least a portion of an immunoglobulin constant region, the invention provides for chimeric proteins which afford enhanced stability and increased bioavailability of the chimeric protein compared to the biologically active molecule alone. Additionally, however, because only one of the two chains comprises the biologically active molecule, the chimeric protein has a lower molecular weight than a chimeric protein wherein all chains comprise a biologically active molecule and while not wishing to be bound by any theory, this may result in the chimeric protein being more readily transcytosed across the epithelium barrier, e.g., by binding to the FcRn receptor thereby increasing the half-life of the chimeric protein. In one embodiment, the invention thus provides for an improved non-invasive method (e.g. via any mucosal surface, such as, orally, buccally, sublingually, nasally, rectally, vaginally, or via pulmonary or occular route) of administering a therapeutic chimeric protein of the invention. The invention thus provides methods of attaining therapeutic levels of the chimeric proteins of the invention using less frequent and lower doses compared to previously described chimeric proteins (e.g. chimeric proteins comprised of at least a portion of an immunoglobulin constant region and a biologically active molecule, wherein all chains of the chimeric protein comprise a biologically active molecule). In another embodiment, the invention provides an invasive method, e.g., subcutaneously, intravenously, of administering a therapeutic chimeric protein of the invention. Invasive administration of the therapeutic chimeric protein of the invention provides for an increased half life of the therapeutic chimeric protein which results in using less frequent and lower doses compared to previously described chimeric proteins (e.g. chimeric proteins comprised of at least a portion of an immunoglobulin constant region and a biologically active molecule, wherein all chains of the chimeric protein comprise a biologically active molecule). Yet another advantage of a chimeric protein wherein only one of the chains comprises a biologically active molecule is the enhanced accessibility of the biologically active molecule for its target cell or molecule resulting from decreased steric hindrance, decreased hydrophobic interactions, decreased ionic interactions, or decreased molecular weight compared to a chimeric protein wherein all chains are comprised of a biologically active molecule. C. Chimeric Proteins The invention relates to chimeric proteins comprising one biologically active molecule, at least a portion of an immunoglobulin constant region, and optionally at least one linker. The portion of an immunoglobulin will have both an N, or an amino terminus, and a C, or carboxy terminus. The chimeric protein may have the biologically active molecule linked to the N terminus of the portion of an immunoglobulin. Alternatively, the biologically active molecule may be linked to the C terminus of the portion of an immunoglobulin. In one embodiment, the linkage is a covalent bond. In another embodiment, the linkage is a non-covalent bond. The chimeric protein can optionally comprise at least one linker; thus, the biologically active molecule does not have to be directly linked to the portion of an immunoglobulin constant region. The linker can intervene in between the biologically active molecule and the portion of an immunoglobulin constant region. The linker can be linked to the N terminus of the portion of an immunoglobulin constant region, or the C terminus of the portion of an immunoglobulin constant region. If the biologically active molecule is comprised of at least one amino acid the biologically active molecule will have an N terminus and a C terminus and the linker can be linked to the N terminus of the biologically active molecule, or the C terminus the biologically active molecule. The invention relates to a chimeric protein of the formula X-La-F:F or F:F-La-X, wherein X is a biologically active molecule, L is an optional linker, F is at least a portion of an immunoglobulin constant region and, a is any integer or zero. The invention also relates to a chimeric protein of the formula Ta-X-La-F:F or Ta-F:F-La-X, wherein X is a biologically active molecule, L is an optional linker, F is at least a portion of an immunoglobulin constant region, a is any integer or zero, T is a second linker or alternatively a tag that can be used to facilitate purification of the chimeric protein, e.g., a FLAG tag, a histidine tag, a GST tag, a maltose binding protein tag and (:) represents a chemical association, e.g. at least one non-peptide bond. In certain embodiments, the chemical association, i.e., (:) is a covalent bond. In other embodiments, the chemical association, i.e., (:) is a non-covalent interaction, e.g., an ionic interaction, a hydrophobic interaction, a hydrophilic interaction, a Van der Waals interaction, a hydrogen bond. It will be understood by the skilled artisan that when a equals zero X will be directly linked to F. Thus, for example, a may be 0, 1, 2, 3, 4, 5, or more than 5. In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2a (SEQ ID NO:6). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2b (SEQ ID NO:8). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2c (SEQ ID NO:10). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2d (SEQ ID NO:12). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2e (SEQ ID NO:14). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2f (SEQ ID NO:16). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2g (SEQ ID NO:18). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2h (SEQ ID NO:20). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2i (SEQ ID NO:22). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 2j (SEQ ID NO:24). In one embodiment, the chimeric protein of the invention comprises the amino acid sequence of FIG. 17b (SEQ ID NO:27). 1. Chimeric Protein Variants Derivatives of the chimeric proteins of the invention, antibodies against the chimeric proteins of the invention and antibodies against binding partners of the chimeric proteins of the invention are all contemplated, and can be made by altering their amino acids sequences by substitutions, additions, and/or deletions/truncations or by introducing chemical modification that result in functionally equivalent molecules. It will be understood by one of ordinary skill in the art that certain amino acids in a sequence of any protein may be substituted for other amino acids without adversely affecting the activity of the protein. Various changes may be made in the amino acid sequences of the chimeric proteins of the invention or DNA sequences encoding therefore without appreciable loss of their biological activity, function, or utility. Derivatives, analogs, or mutants resulting from such changes and the use of such derivatives is within the scope of the present invention. In a specific embodiment, the derivative is functionally active, i.e., capable of exhibiting one or more activities associated with the chimeric proteins of the invention, e.g., FcRn binding, viral inhibition, hemostasis, production of red blood cells. Many assays capable of testing the activity of a chimeric protein comprising a biologically active molecule are known in the art. Where the biologically active molecule is an HIV inhibitor, activity can be tested by measuring reverse transcriptase activity using known methods (see, e.g., Barre-Sinoussi et al. 1983, Science 220:868; Gallo et al. 1984, Science 224:500). Alternatively, activity can be measured by measuring fusogenic activity (see, e.g., Nussbaum et al. 1994, J. Virol. 68(9):5411). Where the biological activity is hemostasis, a StaCLot FVIIa-rTF assay can be performed to assess activity of Factor VIIa derivatives (Johannessen et al. 2000, Blood Coagulation and Fibrinolysis 11:S159). Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs (see Table 1). Furthermore, various amino acids are commonly substituted with neutral amino acids, e.g., alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine (see, e.g., MacLennan et al. 1998, Acta Physiol. Scand. Suppl. 643:55-67; Sasaki et al. 1998, Adv. Biophys. 35:1-24). TABLE 1 Original Exemplary Typical Residues Substitutions Substitutions Ala (A) Val, Leu, Ile Val Arg (R) Lys, Gln, Asn Lys Asn (N) Gln Gln Asp (D) Glu Glu Cys (C) Ser, Ala Ser Gln (Q) Asn Asn Gly (G) Pro, Ala Ala His (H) Asn, Gln, Lys, Arg Arg Ile (I) Leu, Val, Met, Ala, Leu Phe, Norleucine Leu (L) Norleucine, Ile, Val, Ile Met, Ala, Phe Lys (K) Arg, Arg 1,4-Diamino-butyric Acid, Gln, Asn Met (M) Leu, Phe, Ile Leu Phe (F) Leu, Val, Ile, Ala, Tyr Leu Pro (P) Ala Gly Ser (S) Thr, Ala, Cys Thr Thr (T) Ser Ser Trp (W) Tyr, Phe Tyr Tyr (Y) Trp, Phe, Thr, Ser Phe Val (V) Ile, Met, Leu, Phe, Ala, Leu Norleucine 2. Biologically Active Molecules The invention contemplates the use of any biologically active molecule as the therapeutic molecule of the invention. The biologically active molecule can be a polypeptide. The biologically active molecule can be a single amino acid. The biologically active molecule can include a modified polypeptide. The biologically active molecule can include a lipid molecule (e.g. a steroid or cholesterol, a fatty acid, a triacylglycerol, glycerophospholipid, or sphingolipid). The biologically active molecule can include a sugar molecule (e.g. glucose, sucrose, mannose). The biologically active molecule can include a nucleic acid molecule (e.g. DNA, RNA). The biologically active molecule can include a small organic molecule or a small inorganic molecule. a. Cytokines and Growth Factors In one embodiment, the biologically active molecule is a growth factor, hormone or cytokine or analog or fragment thereof. The biologically active molecule can be any agent capable of inducing cell growth and proliferation. In a specific embodiment, the biologically active molecule is any agent which can induce erythrocytes to proliferate. Thus, one example of a biologically active molecule contemplated by the invention is EPO. The biologically active molecule can also include, but is not limited to, RANTES, MIP1α, MIP1β, IL-2, IL-3, GM-CSF, growth hormone, tumor necrosis factor (e.g. TNFα or β). The biologically active molecule can include interferon α, whether synthetically or recombinantly produced, including but not limited to, any one of the about twenty-five structurally related subtypes, as for example interferon-α2a, now commercially available for clinical use (ROFERON®, Roche) and interferon-α2b also approved for clinical use (INTRON®), Schering) as well as genetically engineered versions of various subtypes, including, but not limited to, commercially available consensus interferon α (INFERGEN®, Intermune, developed by Amgen) and consensus human leukocyte interferon see, e.g., U.S. Pat. Nos. 4,695,623; 4,897,471, interferon β, epidermal growth factor, gonadotropin releasing hormone (GnRH), leuprolide, follicle stimulating hormone, progesterone, estrogen, or testosterone. A list of cytokines and growth factors which may be used in the chimeric protein of the invention has been previously described (see, e.g., U.S. Pat. Nos. 6,086,875, 6,485,726, 6,030,613; WO 03/077834; U.S. 2003-0235536A1). b. Antiviral Agents In one embodiment, the biologically active molecule is an antiviral agent, including fragments and analogs thereof. An antiviral agent can include any molecule that inhibits or prevents viral replication, or inhibits or prevents viral entry into a cell, or inhibits or prevents viral egress from a cell. In one embodiment, the antiviral agent is a fusion inhibitor. In one embodiment, the antiviral agent is a cytokine which inhibits viral replication. In another embodiment, the antiviral agent is interferon α. The viral fusion inhibitor for use in the chimeric protein can be any molecule which decreases or prevents viral penetration of a cellular membrane of a target cell. The viral fusion inhibitor can be any molecule that decreases or prevents the formation of syncytia between at least two susceptible cells. The viral fusion inhibitor can be any molecule that decreases or prevents the joining of a lipid bilayer membrane of a eukaryotic cell and a lipid bilayer of an enveloped virus. Examples of enveloped virus include, but are not limited to HIV-1-, HIV-2, SIV, influenza, parainfluenza, Epstein-Barr virus, CMV, herpes simplex 1, herpes simplex 2 and respiratory syncytia virus. The viral fusion inhibitor can be any molecule that decreases or prevents viral fusion including, but not limited to, a polypeptide, a small organic molecule or a small inorganic molecule. In one embodiment, the fusion inhibitor is a polypeptide. In one embodiment, the viral fusion inhibitor is a polypeptide of 3-36 amino acids. In another embodiment, the viral fusion inhibitor is a polypeptide of 3-50 amino acids, 10-65 amino acids, 10-75 amino acids. The polypeptide can be comprised of a naturally occurring amino acid sequence (e.g. a fragment of gp41) including analogs and mutants thereof or the polypeptide can be comprised of an amino acid sequence not found in nature, so long as the polypeptide exhibits viral fusion inhibitory activity. In one embodiment, the viral fusion inhibitor is a polypeptide, identified as being a viral fusion inhibitor using at least one computer algorithm, e.g., ALLMOTI5, 107×178×4 and PLZIP (see, e.g., U.S. Pat. Nos. 6,013,263; 6,015,881; 6,017,536; 6,020,459; 6,060,065; 6,068,973; 6,093,799; and 6,228,983). In one embodiment, the viral fusion inhibitor is an HIV fusion inhibitor. In one embodiment, HIV is HIV-1. In another embodiment, HIV is HIV-2. In one embodiment, the HIV fusion inhibitor is a polypeptide comprised of a fragment of the gp41 envelope protein of HIV-1. The HIV fusion inhibitor can comprise, e.g., T20 (SEQ ID NO:1) or an analog thereof, T21 (SEQ ID NO:2) or an analog thereof, T1249 (SEQ ID NO:3) or an analog thereof, NCCGgp41 (Louis et al. 2001, J. Biol. Chem. 276:(31)29485) or an analog thereof, or 5 helix (Root et al. 2001, Science 291:884) or an analog thereof. Assays known in the art can be used to test for viral fusion inhibiting activity of a polypeptide, a small organic molecule, or a small inorganic molecule. These assays include a reverse transcriptase assay, a p24 assay, or syncytia formation assay (see, e.g., U.S. Pat. No. 5,464,933). A list of antiviral agents which may be used in the chimeric protein of the invention has been previously described (see, e.g., U.S. Pat. Nos. 6,086,875, 6,485,726, 6,030,613; WO 03/077834; U.S. 2003-0235536A1). c. Hemostatic Agents In one embodiment, the biologically active molecule is a clotting factor or other agent that promotes hemostasis, including fragments and analogs thereof. The clotting factor can include any molecule that has clotting activity or activates a molecule with clotting activity. The clotting factor can be comprised of a polypeptide. The clotting factor can be, as an example, but not limited to Factor VIII, Factor IX, Factor XI, Factor XII, fibrinogen, prothrombin, Factor V, Factor VII, Factor X, Factor XIII or von Willebrand Factor. In one embodiment, the clotting factor is Factor VII or Factor VIIa. The clotting factor can be a factor that participates in the extrinsic pathway. The clotting factor can be a factor that participates in the intrinsic pathway. Alternatively, the clotting factor can be a factor that participates in both the extrinsic and intrinsic pathway. The clotting factor can be a human clotting factor or a non-human clotting factor, e.g., derived from a non-human primate, a pig or any mammal. The clotting factor can be chimeric clotting factor, e.g., the clotting factor can comprise a portion of a human clotting factor and a portion of a porcine clotting factor or a portion of a first non-human clotting factor and a portion of a second non-human clotting factor. The clotting factor can be an activated clotting factor. Alternatively, the clotting factor can be an inactive form of a clotting factor, e.g., a zymogen. The inactive clotting factor can undergo activation subsequent to being linked to at least a portion of an immunoglobulin constant region. The inactive clotting factor can be activated subsequent to administration to a subject. Alternatively, the inactive clotting factor can be activated prior to administration. In certain embodiments an endopeptidase, e.g., paired basic amino acid cleaving enzyme (PACE), or any PACE family member, such as PCSK1-9, including truncated versions thereof, or its yeast equivalent Kex2 from S. cerevisiae and truncated versions of Kex2 (Kex2 1-675) (see, e.g., U.S. Pat. Nos. 5,077,204; 5,162,220; 5,234,830; 5,885,821; 6,329,176) may be used to cleave a propetide to form the mature chimeric protein of the invention (e.g. factor VII, factor IX). d. Other Proteinaceous Biologically Active Molecules In one embodiment, the biologically active molecule is a receptor or a fragment or analog thereof. The receptor can be expressed on a cell surface, or alternatively the receptor can be expressed on the interior of the cell. The receptor can be a viral receptor, e.g., CD4, CCR5, CXCR4, CD21, CD46. The biologically active molecule can be a bacterial receptor. The biologically active molecule can be an extra-cellular matrix protein or fragment or analog thereof, important in bacterial colonization and infection (see, e.g., U.S. Pat. Nos. 5,648,240; 5,189,015; 5,175,096) or a bacterial surface protein important in adhesion and infection (see, e.g., U.S. Pat. No. 5,648,240). The biologically active molecule can be a growth factor, hormone or cytokine receptor, or a fragment or analog thereof, e.g., TNFα receptor, the erythropoietin receptor, CD25, CD122, or CD132. A list of other proteinaceous molecules which may be used in the chimeric protein of the invention has been previously described (see, e.g., U.S. Pat. Nos. 6,086,875; 6,485,726; 6,030,613; WO 03/077834; U.S. 2003-0235536A1). e. Nucleic Acids In one embodiment, the biologically active molecule is a nucleic acid, e.g., DNA, RNA. In one specific embodiment, the biologically active molecule is a nucleic acid that can be used in RNA interference (RNAi). The nucleic acid molecule can be as an example, but not as a limitation, an anti-sense molecule or a ribozyme or an aptamer. Antisense RNA and DNA molecules act to directly block the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense approaches involve the design of oligonucleotides that are complementary to a target gene mRNA. The antisense oligonucleotides will bind to the complementary target gene mRNA transcripts and prevent translation. Absolute complementarily, is not required. A sequence “complementary” to a portion of an RNA, as referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex. Antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects, the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides. The oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as polypeptides (e.g. for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. 1989, Proc. Natl. Acad. Sci. USA 86:6553; Lemaitre et al. 1987, Proc. Natl. Acad. Sci. USA 84:648; WO 88/09810,) or the blood-brain barrier (see, e.g., WO 89/10134), hybridization-triggered cleavage agents (see, e.g., Krol et al. 1988, BioTechniques 6:958) or intercalating agents (see, e.g., Zon 1988, Pharm. Res. 5:539). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a polypeptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent. Ribozyme molecules designed to catalytically cleave target gene mRNA transcripts can also be used to prevent translation of target gene mRNA and, therefore, expression of target gene product. (See, e.g., WO 90/11364; Sarver et al. 1990, Science 247, 1222-1225). Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. (See Rossi 1994, Current Biology 4:469). The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event. The composition of ribozyme molecules must include one or more sequences complementary to the target gene mRNA, and must include the well known catalytic sequence responsible for mRNA cleavage. For this sequence, see, e.g., U.S. Pat. No. 5,093,246. In one embodiment, ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target gene mRNAs. In another embodiment, the use of hammerhead ribozymes is contemplated. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5′-UG-3′. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Myers 1995, Molecular Biology and Biotechnology: A Comprehensive Desk Reference, VCH Publishers, New York, and in Haseloff and Gerlach 1988, Nature, 334:585. f. Small Molecules The invention also contemplates the use of any therapeutic small molecule or drug as the biologically active molecule in the chimeric protein of the invention. A list of small molecules and drugs which may be used in the chimeric protein of the invention has been previously described (see, e.g., U.S. Pat. Nos. 6,086,875; 6,485,726; 6,030,613; WO 03/077834; U.S. 2003-0235536A1). 2. Immunoglobulins The chimeric proteins of the invention comprise at least a portion of an immunoglobulin constant region. Immunoglobulins are comprised of four protein chains that associate covalently—two heavy chains and two light chains. Each chain is further comprised of one variable region and one constant region. Depending upon the immunoglobulin isotype, the heavy chain constant region is comprised of 3 or 4 constant region domains (e.g. CH1, CH2, CH3, CH4). Some isotypes are further comprised of a hinge region. The portion of an immunoglobulin constant region can be obtained from any mammal. The portion of an immunoglobulin constant region can include a portion of a human immunoglobulin constant region, a non-human primate immunoglobulin constant region, a bovine immunoglobulin constant region, a porcine immunoglobulin constant region, a murine immunoglobulin constant region, an ovine immunoglobulin constant region or a rat immunoglobulin constant region. The portion of an immunoglobulin constant region can be produced recombinantly or synthetically. The immunoglobulin can be isolated from a cDNA library. The portion of an immunoglobulin constant region can be isolated from a phage library (See, e.g., McCafferty et al. 1990, Nature 348:552, Kang et al. 1991, Proc. Natl. Acad. Sci. USA 88:4363; EP 0 589 877 B1). The portion of an immunoglobulin constant region can be obtained by gene shuffling of known sequences (Mark et al. 1992, Bio/Technol. 10:779). The portion of an immunoglobulin constant region can be isolated by in vivo recombination (Waterhouse et al. 1993, Nucl. Acid Res. 21:2265). The immunoglobulin can be a humanized immunoglobulin (U.S. Pat. No. 5,585,089, Jones et al. 1986, Nature 332:323). The portion of an immunoglobulin constant region can include a portion of an IgG, an IgA, an IgM, an IgD, or an IgE. In one embodiment, the immunoglobulin is an IgG. In another embodiment, the immunoglobulin is IgG1. In another embodiment, the immunoglobulin is IgG2. The portion of an immunoglobulin constant region can include the entire heavy chain constant region, or a fragment or analog thereof. In one embodiment, a heavy chain constant region can comprise a CH1 domain, a CH2 domain, a CH3 domain, and/or a hinge region. In another embodiment, a heavy chain constant region can comprise a CH1 domain, a CH2 domain, a CH3 domain, and/or a CH4 domain. The portion of an immunoglobulin constant region can include an Fc fragment. An Fc fragment can be comprised of the CH2 and CH3 domains of an immunoglobulin and the hinge region of the immunoglobulin. The Fc fragment can be the Fc fragment of an IgG1, an IgG2, an IgG3 or an IgG4. In one specific embodiment, the portion of an immunoglobulin constant region is an Fc fragment of an IgG1. In another embodiment, the portion of an immunoglobulin constant region is an Fc fragment of an IgG2. In another embodiment, the portion of an immunoglobulin constant region is an Fc neonatal receptor (FcRn) binding partner. An FcRn binding partner is any molecule that can be specifically bound by the FcRn receptor with consequent active transport by the FcRn receptor of the FcRn binding partner. Specifically bound refers to two molecules forming a complex that is relatively stable under physiologic conditions. Specific binding is characterized by a high affinity and a low to moderate capacity as distinguished from nonspecific binding which usually has a low affinity with a moderate to high capacity. Typically, binding is considered specific when the affinity constant KA is higher than 106 M−1, or more preferably higher than 108 M−1. If necessary, non-specific binding can be reduced without substantially affecting specific binding by varying the binding conditions. The appropriate binding conditions such as concentration of the molecules, ionic strength of the solution, temperature, time allowed for binding, concentration of a blocking agent (e.g. serum albumin, milk casein), etc., may be optimized by a skilled artisan using routine techniques. The FcRn receptor has been isolated from several mammalian species including humans. The sequences of the human FcRn, monkey FcRn rat FcRn, and mouse FcRn are known (Story et al. 1994, J. Exp. Med. 180:2377). The FcRn receptor binds IgG (but not other immunoglobulin classes such as IgA, IgM, IgD, and IgE) at relatively low pH, actively transports the IgG transcellularly in a luminal to serosal direction, and then releases the IgG at relatively higher pH found in the interstitial fluids. It is expressed in adult epithelial tissue (U.S. Pat. Nos. 6,485,726, 6,030,613, 6,086,875; WO 03/077834; U.S. 2003-0235536A1) including lung and intestinal epithelium (Israel et al. 1997, Immunology 92:69) renal proximal tubular epithelium (Kobayashi et al. 2002, Am. J. Physiol. Renal Physiol. 282:F358) as well as nasal epithelium, vaginal surfaces, and biliary tree surfaces. FcRn binding partners of the present invention encompass any molecule that can be specifically bound by the FcRn receptor including whole IgG, the Fc fragment of IgG, and other fragments that include the complete binding region of the FcRn receptor. The region of the Fc portion of IgG that binds to the FcRn receptor has been described based on X-ray crystallography (Burmeister et al. 1994, Nature 372:379). The major contact area of the Fc with the FcRn is near the junction of the CH2 and CH3 domains. Fc-FcRn contacts are all within a single Ig heavy chain. The FcRn binding partners include whole IgG, the Fc fragment of IgG, and other fragments of IgG that include the complete binding region of FcRn. The major contact sites include amino acid residues 248, 250-257, 272, 285, 288, 290-291, 308-311, and 314 of the CH2 domain and amino acid residues 385-387, 428, and 433-436 of the CH3 domain. References made to amino acid numbering of immunoglobulins or immunoglobulin fragments, or regions, are all based on Kabat et al. 1991, Sequences of Proteins of Immunological Interest, U.S. Department of Public Health, Bethesda, Md. The Fc region of IgG can be modified according to well recognized procedures such as site directed mutagenesis and the like to yield modified IgG or Fc fragments or portions thereof that will be bound by FcRn. Such modifications include modifications remote from the FcRn contact sites as well as modifications within the contact sites that preserve or even enhance binding to the FcRn. For example, the following single amino acid residues in human IgG1 Fc (Fcγ1) can be substituted without significant loss of Fc binding affinity for FcRn: P238A, S239A, K246A, K248A, D249A, M252A, T256A, E258A, T260A, D265A, S267A, H268A, E269A, D270A, E272A, L274A, N276A, Y278A, D280A, V282A, E283A, H285A, N286A, T289A, K290A, R292A, E293A, E294A, Q295A, Y296F, N297A, S298A, Y300F, R301A, V303A, V305A, T307A, L309A, Q311A, D312A, N315A, K317A, E318A, K320A, K322A, S324A, K326A, A327Q, P329A, A330Q, P331A, E333A, K334A, T335A, S337A, K338A, K340A, Q342A, R344A, E345A, Q347A, R355A, E356A, M358A, T359A, K360A, N361A, Q362A, Y373A, S375A, D376A, A378Q, E380A, E382A, S383A, N384A, Q386A, E388A, N389A, N390A, Y391F, K392A, L398A, S400A, D401A, D413A, K414A, R416A, Q418A, Q419A, N421A, V422A, S424A, E430A, N434A, T437A, Q438A, K439A, S440A, S444A, and K447A, where for example P238A represents wildtype proline substituted by alanine at position number 238. As an example, one specifc embodiment, incorporates the N297A mutation, removing a highly conserved N-glycosylation site. In addition to alanine other amino acids may be substituted for the wildtype amino acids at the positions specified above. Mutations may be introduced singly into Fc giving rise to more than one hundred FcRn binding partners distinct from native Fc. Additionally, combinations of two, three, or more of these individual mutations may be introduced together, giving rise to hundreds more FcRn binding partners. Moreover, one of the FcRn binding partners of the monomer-dimer hybrid may be mutated and the other FcRn binding partner not mutated at all, or they both may be mutated but with different mutations. Any of the mutations described herein, including N297A, may be used to modify Fc, regardless of the biologically active molecule (e.g., EPO, IFN, Factor IX, T20). Certain of the above mutations may confer new functionality upon the FcRn binding partner. For example, one embodiment incorporates N297A, removing a highly conserved N-glycosylation site. The effect of this mutation is to reduce immunogenicity, thereby enhancing circulating half life of the FcRn binding partner, and to render the FcRn binding partner incapable of binding to FcγRI, FcγRIIA, FcγRIIB, and FcγRIIIA, without compromising affinity for FcRn (Routledge et al. 1995, Transplantation 60:847; Friend et al. 1999, Transplantation 68:1632; Shields et al. 1995, J. Biol. Chem. 276:6591). As a further example of new functionality arising from mutations described above affinity for FcRn may be increased beyond that of wild type in some instances. This increased affinity may reflect an increased “on” rate, a decreased “off” rate or both an increased “on” rate and a decreased “off” rate. Mutations believed to impart an increased affinity for FcRn include T256A, T307A, E380A, and N434A (Shields et al. 2001, J. Biol. Chem. 276:6591). Additionally, at least three human Fc gamma receptors appear to recognize a binding site on IgG within the lower hinge region, generally amino acids 234-237. Therefore, another example of new functionality and potential decreased immunogenicity may arise from mutations of this region, as for example by replacing amino acids 233-236 of human IgG1 “ELLG” to the corresponding sequence from IgG2 “PVA” (with one amino acid deletion). It has been shown that FcγRI, FcγRII, and FcγRIII, which mediate various effector functions will not bind to IgG1 when such mutations have been introduced. Ward and Ghetie 1995, Therapeutic Immunology 2:77 and Armour et al. 1999, Eur. J. Immunol. 29:2613. In one embodiment, the FcRn binding partner is a polypeptide including the sequence PKNSSMISNTP (SEQ ID NO:26) and optionally further including a sequence selected from HQSLGTQ (SEQ ID NO:27), HQNLSDGK (SEQ ID NO:28), HQNISDGK (SEQ ID NO:29), or VISSHLGQ (SEQ ID NO:30) (U.S. Pat. No. 5,739,277). Two FcRn receptors can bind a single Fc molecule. Crystallographic data suggest that each FcRn molecule binds a single polypeptide of the Fc homodimer. In one embodiment, linking the FcRn binding partner, e.g., an Fc fragment of an IgG, to a biologically active molecule provides a means of delivering the biologically active molecule orally, buccally, sublingually, rectally, vaginally, as an aerosol administered nasally or via a pulmonary route, or via an ocular route. In another embodiment, the chimeric protein can be administered invasively, e.g., subcutaneously, intravenously. The skilled artisan will understand that portions of an immunoglobulin constant region for use in the chimeric protein of the invention can include mutants or analogs thereof, or can include chemically modified immunoglobulin constant regions (e.g. pegylated), or fragments thereof (see, e.g., Aslam and Dent 1998, Bioconjugation: Protein Coupling Techniques For the Biomedical Sciences Macmilan Reference, London). In one instance, a mutant can provide for enhanced binding of an FcRn binding partner for the FcRn. Also contemplated for use in the chimeric protein of the invention are peptide mimetics of at least a portion of an immunoglobulin constant region, e.g., a peptide mimetic of an Fc fragment or a peptide mimetic of an FcRn binding partner. In one embodiment, the peptide mimetic is identified using phage display or via chemical library screening (see, e.g., McCafferty et al. 1990, Nature 348:552, Kang et al. 1991, Proc. Natl. Acad. Sci. USA 88:4363; EP 0 589 877 B1). 3. Optional Linkers The chimeric protein of the invention can optionally comprise at least one linker molecule. The linker can be comprised of any organic molecule. In one embodiment, the linker is polyethylene glycol (PEG). In another embodiment, the linker is comprised of amino acids. The linker can comprise 1-5 amino acids, 1-10 amino acids, 1-20 amino acids, 10-50 amino acids, 50-100 amino acids, 100-200 amino acids. In one embodiment, the linker is the eight amino acid linker EFAGAAAV (SEQ ID NO:31). Any of the linkers described herein may be used in the chimeric protein of the invention, e.g., a monomer-dimer hybrid, including EFAGAAAV, regardless of the biologically active molecule (e.g. EPO, IFN, Factor IX). The linker can comprise the sequence Gn. The linker can comprise the sequence (GA)n (SEQ ID NO:32). The linker can comprise the sequence (GGS)n (SEQ ID NO:33). The linker can comprise the sequence (GGS)n(GGGGS)n (SEQ ID NO:34). In these instances, n may be an integer from 1-10, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Examples of linkers include, but are not limited to, GGG (SEQ ID NO:35), SGGSGGS (SEQ ID NO:36), GGSGGSGGSGGSGGG (SEQ ID NO:37), GGSGGSGGGGSGGGGS (SEQ ID NO:38), GGSGGSGGSGGSGGSGGS (SEQ ID NO:39). The linker does not eliminate or diminish the biological activity of the chimeric protein. Optionally, the linker enhances the biological activity of the chimeric protein, e.g., by further diminishing the effects of steric hindrance and making the biologically active molecule more accessible to its target binding site. In one specific embodiment, the linker for interferon α is 15-25 amino acids long. In another specific embodiment, the linker for interferon α is 15-20 amino acids long. In another specific embodiment, the linker for interferon α is 10-25 amino acids long. In another specific embodiment, the linker for interferon α is 15 amino acids long. In one embodiment, the linker for interferon α is (GGGGS)n (SEQ ID NO:40) where G represents glycine, S represents serine and n is an integer from 1-10. In a specific embodiment, n is 3. The linker may also incorporate a moiety capable of being cleaved either chemically (e.g. hydrolysis of an ester bond), enzymatically (i.e. incorporation of a protease cleavage sequence) or photolytically (e.g., a chromophore such as 3-amino-3-(2-nitrophenyl) proprionic acid (ANP)) in order to release the biologically active molecule from the Fc protein. 4. Chimeric Protein Dimerization Using Specific Binding Partners In one embodiment, the chimeric protein of the invention comprises a first polypeptide chain comprising at least a first domain, said first domain having at least one specific binding partner, and a second polypeptide chain comprising at least a second domain, wherein said second domain, is a specific binding partner of said first domain. The chimeric protein thus comprises a polypeptide capable of dimerizing with another polypeptide due to the interaction of the first domain and the second domain. Methods of dimerizing antibodies using heterologous domains are known in the art (U.S. Pat. Nos. 5,807,706 and 5,910,573; Kostelny et al. 1992, J. Immunol. 148(5):1547). Dimerization can occur by formation of a covalent bond, or alternatively a non-covalent bond, e.g., hydrophobic interaction, Van der Waal's forces, interdigitation of amphiphilic peptides such as, but not limited to, alpha helices, charge-charge interactions of amino acids bearing opposite charges, such as, but not limited to, lysine and aspartic acid, arginine and glutamic acid. In one embodiment, the domain is a helix bundle comprising a helix, a turn and another helix. In another embodiment, the domain is a leucine zipper comprising a peptide having several repeating amino acids in which every seventh amino acid is a leucine residue. In one embodiment, the specific binding partners are fos/jun. (see Branden et al. 1991, Introduction To Protein Structure, Garland Publishing, New York). In another embodiment, binding is mediated by a chemical linkage (see, e.g., Brennan et al. 1985, Science 229:81). In this embodiment, intact immunoglobulins, or chimeric proteins comprised of at least a portion of an immunoglobulin constant region are cleaved to generate heavy chain fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the TNB derivatives is then reconverted to the heavy chain fragment thiol by reduction with mercaptoethylamine and is then mixed with an equimolar amount of the other TNB derivative to form a chimeric dimer. D. Nucleic Acids The invention relates to a first nucleic acid construct and a second nucleic acid construct each comprising a nucleic acid sequence encoding at least a portion of the chimeric protein of the invention. In one embodiment, the first nucleic acid construct comprises a nucleic acid sequence encoding a portion of an immunoglobulin constant region operatively linked to a second DNA sequence encoding a biologically active molecule, and said second DNA construct comprises a DNA sequence encoding an immunoglobulin constant region without the second DNA sequence encoding a biologically active molecule. The biologically active molecule can include, for example, but not as a limitation, a viral fusion inhibitor, a clotting factor, a growth factor or hormone, or a receptor, or analog, or fragment of any of the preceding. The nucleic acid sequences can also include additional sequences or elements known in the art (e.g., promoters, enhancers, poly A sequences, affinity tags). In one embodiment, the nucleic acid sequence of the second construct can optionally include a nucleic acid sequence encoding a linker placed between the nucleic acid sequence encoding the biologically active molecule and the portion of the immunoglobulin constant region. The nucleic acid sequence of the second DNA construct can optionally include a linker sequence placed before or after the nucleic acid sequence encoding the biologically active molecule and/or the portion of the immunoglobulin constant region. In one embodiment, the nucleic acid construct is comprised of DNA. In another embodiment, the nucleic acid construct is comprised of RNA. The nucleic acid construct can be a vector, e.g., a viral vector or a plasmid. Examples of viral vectors include, but are not limited to adeno virus vector, an adeno associated virus vector or a murine leukemia virus vector. Examples of plasmids include but are not limited to pUC, pGEM and pGEX. In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3a (SEQ ID NO:7). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3b (SEQ ID NO:9). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3c (SEQ ID NO:11). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3d (SEQ ID NO:13). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3e (SEQ ID NO:15). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3f (SEQ ID NO:17). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3g (SEQ ID NO:19). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3h (SEQ ID NO:21). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3i (SEQ ID NO:23). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 3j (SEQ ID NO:25). In one embodiment, the nucleic acid construct comprises the nucleic acid sequence of FIG. 17a (SEQ ID NO:27). Due to the known degeneracy of the genetic code, wherein more than one codon can encode the same amino acid, a DNA sequence can vary from that shown in SEQ ID NOS:7, 9, 11, 13, 15, 17, 19, 21, 23, 25 or 27 and still encode a polypeptide having the corresponding amino acid sequence of SEQ ID NOS:6, 8, 10, 12, 14, 16, 18, 20, 22, 24 or 26 respectively. Such variant DNA sequences can result from silent mutations (e.g. occurring during PCR amplification), or can be the product of deliberate mutagenesis of a native sequence. The invention thus provides isolated DNA sequences encoding polypeptides of the invention, chosen from: (a) DNA comprising the nucleotide sequence of SEQ ID NOS:7, 9, 11, 13, 15, 17, 19, 21, 23, 25 or 27; (b) DNA encoding the polypeptides of SEQ ID NOS:6, 8, 10, 12, 14, 16, 18, 20, 22, 24 or 26; (c) DNA capable of hybridization to a DNA of (a) or (b) under conditions of moderate stringency and which encodes polypeptides of the invention; (d) DNA capable of hybridization to a DNA of (a) or (b) under conditions of high stringency and which encodes polypeptides of the invention, and (e) DNA which is degenerate as a result of the genetic code to a DNA defined in (a), (b), (c), or (d) and which encode polypeptides of the invention. Of course, polypeptides encoded by such DNA sequences are encompassed by the invention. In another embodiment, the nucleic acid molecules comprising a sequence encoding the chimeric protein of the invention can also comprise nucleotide sequences that are at least 80% identical to a native sequence. Also contemplated are embodiments in which a nucleic acid molecules comprising a sequence encoding the chimeric protein of the invention comprises a sequence that is at least 90% identical, at least 95% identical, at least 98% identical, at least 99% identical, or at least 99.9% identical to a native sequence. A native sequence can include any DNA sequence not altered by the human hand. The percent identity may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences can be determined by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. 1984, Nucl. Acids Res. 12:387, and available from the University of Wisconsin Genetics Computer Group (UWGCG). The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess 1986, Nucl. Acids Res. 14:6745, as described by Schwartz and Dayhoff, eds. 1979, Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358; (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps. Other programs used by one skilled in the art of sequence comparison may also be used. E. Synthesis of Chimeric Proteins Chimeric proteins comprising at least a portion of an immunoglobulin constant region and a biologically active molecule can be synthesized using techniques well known in the art. For example, the chimeric proteins of the invention can be synthesized recombinantly in cells (see, e.g., Sambrook et al. 1989, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. and Ausubel et al. 1989, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N.Y.). Alternatively, the chimeric proteins of the invention can be synthesized using known synthetic methods such as solid phase synthesis. Synthetic techniques are well known in the art (see, e.g., Merrifield, 1973, Chemical Polypeptides, (Katsoyannis and Panayotis eds.) pp. 335-61; Merrifield 1963, J. Am. Chem. Soc. 85:2149; Davis et al. 1985, Biochem. Intl. 10:394; Finn et al. 1976, The Proteins (3d ed.) 2:105; Erikson et al. 1976, The Proteins (3d ed.) 2:257; U.S. Pat. No. 3,941,763. Alternatively, the chimeric proteins of the invention can be synthesized using a combination of recombinant and synthetic methods. In certain applications, it may be beneficial to use either a recombinant method or a combination of recombinant and synthetic methods. Nucleic acids encoding a biologically active molecule can be readily synthesized using recombinant techniques well known in the art. Alternatively, the peptides themselves can be chemically synthesized. Nucleic acids of the invention may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. 1988, Nucl. Acids Res. 16:3209, methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports as described in Sarin et al. 1988, Proc. Natl. Acad. Sci. USA 85:7448. Additional methods of nucleic acid synthesis are known in the art. (see, e.g., U.S. Pat. Nos. 6,015,881; 6,281,331; 6,469,136). DNA sequences encoding immunoglobulin constant regions, or fragments thereof, may be cloned from a variety of genomic or cDNA libraries known in the art. The techniques for isolating such DNA sequences using probe-based methods are conventional techniques and are well known to those skilled in the art. Probes for isolating such DNA sequences may be based on published DNA sequences (see, for example, Hieter et al. 1980, Cell 22:197-207). The polymerase chain reaction (PCR) method disclosed by Mullis et al. (U.S. Pat. No. 4,683,195) and Mullis (U.S. Pat. No. 4,683,202) may be used. The choice of library and selection of probes for the isolation of such DNA sequences is within the level of ordinary skill in the art. Alternatively, DNA sequences encoding immunoglobulins or fragments thereof can be obtained from vectors known in the art to contain immunoglobulins or fragments thereof. For recombinant production, a first polynucleotide sequence encoding a portion of the chimeric protein of the invention (e.g. a portion of an immunoglobulin constant region) and a second polynucleotide sequence encoding a portion of the chimeric protein of the invention (e.g. a portion of an immunoglobulin constant region and a biologically active molecule) are inserted into appropriate expression vehicles, i.e. vectors which contains the necessary elements for the transcription and translation of the inserted coding sequence, or in the case of an RNA viral vector, the necessary elements for replication and translation. The nucleic acids encoding the chimeric protein are inserted into the vector in proper reading frame. The expression vehicles are then transfected or co-transfected into a suitable target cell, which will express the polypeptides. Transfection techniques known in the art include, but are not limited to, calcium phosphate precipitation (Wigler et al. 1978, Cell 14:725) and electroporation (Neumann et al. 1982, EMBO, J. 1:841), and liposome based reagents. A variety of host-expression vector systems may be utilized to express the chimeric proteins described herein including both prokaryotic or eukaryotic cells. These include, but are not limited to, microorganisms such as bacteria (e.g. E. coli) transformed with recombinant bacteriophage DNA or plasmid DNA expression vectors containing an appropriate coding sequence; yeast or filamentous fungi transformed with recombinant yeast or fungi expression vectors containing an appropriate coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g. baculovirus) containing an appropriate coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g. cauliflower mosaic virus or tobacco mosaic virus) or transformed with recombinant plasmid expression vectors (e.g. Ti plasmid) containing an appropriate coding sequence; or animal cell systems, including mammalian cells (e.g. CHO, Cos, HeLa cells). When the chimeric protein of the invention is recombinantly synthesized in a prokaryotic cell it may be desirable to refold the chimeric protein. The chimeric protein produced by this method can be refolded to a biologically active conformation using conditions known in the art, e.g., denaturing under reducing conditions and then dialyzed slowly into PBS. Depending on the expression system used, the expressed chimeric protein is then isolated by procedures well-established in the art (e.g. affinity chromatography, size exclusion chromatography, ion exchange chromatography). The expression vectors can encode for tags that permit for easy purification of the recombinantly produced chimeric protein. Examples include, but are not limited to vector pUR278 (Ruther et al. 1983, EMBO J. 2:1791) in which the chimeric protein described herein coding sequences may be ligated into the vector in frame with the lac z coding region so that a hybrid protein is produced; pGEX vectors may be used to express chimeric proteins of the invention with a glutathione S-transferase (GST) tag. These proteins are usually soluble and can easily be purified from cells-by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The vectors include cleavage sites (thrombin or Factor Xa protease or PreScission Protease™ (Pharmacia, Peapack, N.J.)) for easy removal of the tag after purification. To increase efficiency of production, the polynucleotides can be designed to encode multiple units of the chimeric protein of the invention separated by enzymatic cleavage sites. The resulting polypeptide can be cleaved (e.g. by treatment with the appropriate enzyme) in order to recover the polypeptide units. This can increase the yield of polypeptides driven by a single promoter. When used in appropriate viral expression systems, the translation of each polypeptide encoded by the mRNA is directed internally in the transcript; e.g., by an internal ribosome entry site, IRES. Thus, the polycistronic construct directs the transcription of a single, large polycistronic mRNA which, in turn, directs the translation of multiple, individual polypeptides. This approach eliminates the production and enzymatic processing of polyproteins and may significantly increase yield of polypeptide driven by a single promoter. Vectors used in transformation will usually contain a selectable marker used to identify transformants. In bacterial systems, this can include an antibiotic resistance gene such as ampicillin or kanamycin. Selectable markers for use in cultured mammalian cells include genes that confer resistance to drugs, such as neomycin, hygromycin, and methotrexate. The selectable marker may be an amplifiable selectable marker. One amplifiable selectable marker is the DHFR gene. Another amplifiable marker is the DHFR cDNA (Simonsen and Levinson 1983, Proc. Natl. Acad. Sci. USA 80:2495). Selectable markers are reviewed by Thilly (Mammalian Cell Technology, Butterworth Publishers, Stoneham, Mass.) and the choice of selectable markers is well within the level of ordinary skill in the art. Selectable markers may be introduced into the cell on a separate plasmid at the same time as the gene of interest, or they may be introduced on the same plasmid. If on the same plasmid, the selectable marker and the gene of interest may be under the control of different promoters or the same promoter, the latter arrangement producing a dicistronic message. Constructs of this type are known in the art (for example, U.S. Pat. No. 4,713,339). The expression elements of the expression systems vary in their strength and specificities. Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used in the expression vector. For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage A, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedron promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g. heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g. the 35S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g. metallothionein promoter) or from mammalian viruses (e.g. the adenovirus late promoter; the vaccinia virus 7.5 K promoter) may be used; when generating cell lines that contain multiple copies of expression product, SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker. In cases where plant expression vectors are used, the expression of sequences encoding linear or non-cyclized forms of the chimeric proteins of the invention may be driven by any of a number of promoters. For example, viral promoters such as the 35S RNA and 19S RNA promoters of CaMV (Brisson et al. 1984, Nature 310:511-514), or the coat protein promoter of TMV (Takamatsu et al. 1987, EMBO J. 6:307-311) may be used; alternatively, plant promoters such as the small subunit of RUBISCO (Coruzzi et al. 1984, EMBO J. 3:1671-1680; Broglie et al. 1984, Science 224:838-843) or heat shock promoters, e.g., soybean hsp17.5-E or hsp17.3-B (Gurley et al. 1986, Mol. Cell. Biol. 6:559-565) may be used. These constructs can be introduced into plant cells using Ti plasmids, R1 plasmids, plant virus vectors, direct DNA transformation, microinjection, electroporation, etc. For reviews of such techniques see, e.g., Weissbach & Weissbach 1988, Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp. 421-463; and Grierson & Corey 1988, Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9. In one insect expression system that may be used to produce the chimeric proteins of the invention, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express the foreign genes. The virus grows in Spodoptera frugiperda cells. A coding sequence may be cloned into non-essential regions (for example, the polyhedron gene) of the virus and placed under control of an AcNPV promoter (for example, the polyhedron promoter). Successful insertion of a coding sequence will result in inactivation of the polyhedron gene and production of non-occluded recombinant virus (i.e. virus lacking the proteinaceous coat coded for by the polyhedron gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted gene is expressed. (see, e.g., Smith et al. 1983, J. Virol. 46:584; U.S. Pat. No. 4,215,051). Further examples of this expression system may be found in Ausubel et al., eds. 1989, Current Protocols in Molecular Biology, Vol. 2, Greene Publish. Assoc. & Wiley Interscience. Another system which can be used to express the chimeric proteins of the invention is the glutamine synthetase gene expression system, also referred to as the “GS expression system” (Lonza Biologics PLC, Berkshire UK). This expression system is described in detail in U.S. Pat. No. 5,981,216. In mammalian host cells, a number of viral based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, a coding sequence may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g. region E1 or E3) will result in a recombinant virus that is viable and capable of expressing peptide in infected hosts (see, e.g., Logan & Shenk 1984, Proc. Natl. Acad. Sci. USA 81:3655). Alternatively, the vaccinia 7.5 K promoter may be used (see, e.g., Mackett et al. 1982, Proc. Natl. Acad. Sci. USA 79:7415; Mackett et al. 1984, J. Virol. 49:857; Panicali et al. 1982, Proc. Natl. Acad. Sci. USA 79:4927). In cases where an adenovirus is used as an expression vector, a coding sequence may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g. region E1 or E3) will result in a recombinant virus that is viable and capable of expressing peptide in infected hosts (see, e.g., Logan & Shenk 1984, Proc. Natl. Acad. Sci. USA 81:3655). Alternatively, the vaccinia 7.5 K promoter may be used (see, e.g., Mackett et al. 1982, Proc. Natl. Acad. Sci. USA 79:7415; Mackett et al. 1984, J. Virol. 49:857; Panicali et al. 1982, Proc. Natl. Acad. Sci. USA 79:4927). Host cells containing DNA constructs of the chimeric protein are grown in an appropriate growth medium. As used herein, the term “appropriate growth medium” means a medium containing nutrients required for the growth of cells. Nutrients required for cell growth may include a carbon source, a nitrogen source, essential amino acids, vitamins, minerals and growth factors. Optionally the media can contain bovine calf serum or fetal calf serum. In one embodiment, the media contains substantially no IgG. The growth medium will generally select for cells containing the DNA construct by, for example, drug selection or deficiency in an essential nutrient which is complemented by the selectable marker on the DNA construct or co-transfected with the DNA construct. Cultured mammalian cells are generally grown in commercially available serum-containing or serum-free media (e.g. MEM, DMEM). Selection of a medium appropriate for the particular cell line used is within the level of ordinary skill in the art. The recombinantly produced chimeric protein of the invention can be isolated from the culture media. The culture medium from appropriately grown transformed or transfected host cells is separated from the cell material, and the presence of chimeric proteins is demonstrated. One method of detecting the chimeric proteins, for example, is by the binding of the chimeric proteins or portions of the chimeric proteins to a specific antibody recognizing the chimeric protein of the invention. An anti-chimeric protein antibody may be a monoclonal or polyclonal antibody raised against the chimeric protein in question. For example, the chimeric protein contains at least a portion of an immunoglobulin constant region. Antibodies recognizing the constant region of many immunoglobulins are known in the art and are commercially available. An antibody can be used to perform an ELISA or a western blot to detect the presence of the chimeric protein of the invention. The chimeric protein of the invention can be synthesized in a transgenic animal, such as a rodent, cow, pig, sheep, or goat. The term “transgenic animals” refers to non-human animals that have incorporated a foreign gene into their genome. Because this gene is present in germline tissues, it is passed from parent to offspring. Exogenous genes are introduced into single-celled embryos (Brinster et al. 1985, Proc. Natl. Acad. Sci. USA 82:4438). Methods of producing transgenic animals are known in the art, including transgenics that produce immunoglobulin molecules (Wagner et al. 1981, Proc. Natl. Acad. Sci. USA 78:6376; McKnight et al. 1983, Cell 34:335; Brinster et al. 1983, Nature 306:332; Ritchie et al. 1984, Nature 312:517; Baldassarre et al. 2003, Theriogenology 59:831; Robl et al. 2003, Theriogenology 59:107; Malassagne et al. 2003, Xenotransplantation 10(3):267). The chimeric protein of the invention can also be produced by a combination of synthetic chemistry and recombinant techniques. For example, the portion of an immunoglobulin constant region can be expressed recombinantly as described above. The biologically active molecule, can be produced using known chemical synthesis techniques (e.g. solid phase synthesis). The portion of an immunoglobulin constant region can be ligated to the biologically active molecule using appropriate ligation chemistry and then combined with a portion of an immunoglobulin constant region that has not been ligated to a biologically active molecule to form the chimeric protein of the invention. In one embodiment, the portion of an immunoglobulin constant region is an Fc fragment. The Fc fragment can be recombinantly produced to form Cys-Fc and reacted with a biologically active molecule expressing a thioester to make a monomer-dimer hybrid. In another embodiment, an Fc-thioester is made and reacted with a biologically active molecule expressing an N terminus Cysteine (FIG. 4). In one embodiment, the portion of an immunoglobulin constant region ligated to the biologically active molecule will form homodimers. The homodimers can be disrupted by exposing the homodimers to denaturing and reducing conditions (e.g. beta-mercaptoethanol and 8M urea) and then subsequently combined with a portion of an immunoglobulin constant region not linked to a biologically active molecule to form monomer-dimer hybrids. The monomer-dimer hybrids are then renatured and refolded by dialyzing into PBS and isolated, e.g., by size exclusion or affinity chromatography. In another embodiment, the portion of an immunoglobulin constant region will form homodimers before being linked to a biologically active molecule. In this embodiment, reaction conditions for linking the biologically active molecule to the homodimer can be adjusted such that linkage of the biologically active molecule to only one chain of the homodimer is favored (e.g. by adjusting the molar equivalents of each reactant). The biologically active molecule can be chemically synthesized with an N terminal cysteine. The sequence encoding a portion of an immunoglobulin constant region can be sub-cloned into a vector encoding intein linked to a chitin binding domain (New England Biolabs, Beverly, Mass.). The intein can be linked to the C terminus of the portion of an immunoglobulin constant region. In one embodiment, the portion of the immunoglobulin with the intein linked to its C terminus can be expressed in a prokaryotic cell. In another embodiment, the portion of the immunoglobulin with the intein linked to its C terminus can be expressed in a eukaryotic cell. The portion of immunoglobulin constant region linked to intein can be reacted with MESNA. In one embodiment, the portion of an immunoglobulin constant region linked to intein is bound to a column, e.g., a chitin column and then eluted with MESNA. The biologically active molecule and portion of an immunoglobulin can be reacted together such that nucleophilic rearrangement occurs and the biologically active molecule is covalently linked to the portion of an immunoglobulin via an amide bond. (Dawsen et al. 2000, Annu. Rev. Biochem. 69:923). The chimeric protein synthesized this way can optionally include a linker peptide between the portion of an immunoglobulin and the biologically active molecule. The linker can for example be synthesized on the N terminus of the biologically active molecule. Linkers can include peptides and/or organic molecules (e.g. polyethylene glycol and/or short amino acid sequences). This combined recombinant and chemical synthesis allows for the rapid screening of biologically active molecules and linkers to optimize desired properties of the chimeric protein of the invention, e.g., viral inhibition, hemostasis, production of red blood cells, biological half-life, stability, binding to serum proteins or some other property of the chimeric protein. The method also allows for the incorporation of non-natural amino acids into the chimeric protein of the invention which may be useful for optimizing a desired property of the chimeric protein of the invention. If desired, the chimeric protein produced by this method can be refolded to a biologically active conformation using conditions known in the art, e.g., reducing conditions and then dialyzed slowly into PBS. Alternatively, the N-terminal cysteine can be on the portion of an immunoglobulin constant region, e.g., an Fc fragment. An Fc fragment can be generated with an N-terminal cysteine by taking advantage of the fact that a native Fc has a cysteine at position 226 (see Kabat et al. 1991, Sequences of Proteins of Immunological Interest, U.S. Department of Public Health, Bethesda, Md.). To expose a terminal cysteine, an Fc fragment can be recombinantly expressed. In one embodiment, the Fc fragment is expressed in a prokaryotic cell, e.g., E. coli. The sequence encoding the Fc portion beginning with Cys 226 (EU numbering) can be placed immediately following a sequence endcoding a signal peptide, e.g., OmpA, PhoA, STII. The prokaryotic cell can be osmotically shocked to release the recombinant Fc fragment. In another embodiment, the Fc fragment is produced in a eukaryotic cell, e.g., a CHO cell, a BHK cell. The sequence encoding the Fc portion fragment can be placed directly following a sequence encoding a signal peptide, e.g., mouse IgK light chain or MHC class I Kb signal sequence, such that when the recombinant chimeric protein is synthesized by a eukaryotic cell, the signal sequence will be cleaved, leaving an N terminal cysteine which can than be isolated and chemically reacted with a molecule bearing a thioester (e.g. a C terminal thioester if the molecule is comprised of amino acids). The N terminal cysteine on an Fc fragment can also be generated using an enzyme that cleaves its substrate at its N terminus, e.g., Factor Xa, enterokinase, and the product isolated and reacted with a molecule with a thioester. The recombinantly expressed Fc fragment can be used to make homodimers or monomer-dimer hybrids. In a specific embodiment, an Fc fragment is expressed with the human a interferon signal peptide adjacent to the Cys at position 226. When a construct encoding this polypeptide is expressed in CHO cells, the CHO cells cleave the signal peptide at two distinct positions (at Cys 226 and at Val within the signal peptide 2 amino acids upstream in the N terminus direction). This generates a mixture of two species of Fc fragments (one with an N-terminal Val and one with an N-terminal Cys). This in turn results in a mixture of dimeric species (homodimers with terminal Val, homodimers with terminal Cys and heterodimers where one chain has a terminal Cys and the other chain has a terminal Val). The Fc fragments can be reacted with a biologically active molecule having a C terminal thioester and the resulting monomer-dimer hybrid can be isolated from the mixture (e.g. by size exclusion chromatography). It is contemplated that when other signal peptide sequences are used for expression of Fc fragments in CHO cells a mixture of species of Fc fragments with at least two different N termini will be generated. In another embodiment, a recombinantly produced Cys-Fc can form a homodimer. The homodimer can be reacted with peptide that has a branched linker on the C terminus, wherein the branched linker has two C terminal thioesters that can be reacted with the Cys-Fc. In another embodiment, the biologically active molecule has a single non-terminal thioester that can be reacted with Cys-Fc. Alternatively, the branched linker can have two C terminal cysteines that can be reacted with an Fc thioester. In another embodiment, the branched linker has two functional groups that can be reacted with the Fc thioester, e.g., 2-mercaptoamine. The biologically active molecule may be comprised of amino acids. The biologically active molecule may include a small organic molecule or a small inorganic molecule. F. Methods of Using Chimeric Proteins The chimeric proteins of the invention have many uses as will be recognized by one skilled in the art, including, but not limited to methods of treating a subject with a disease or condition. The disease or condition can include, but is not limited to, a viral infection, a hemostatic disorder, anemia, cancer, leukemia, an inflammatory condition or an autoimmune disease (e.g. arthritis, psoriasis, lupus erythematosus, multiple sclerosis), or a bacterial infection (see, e.g., U.S. Pat. Nos. 6,086,875, 6,030,613, 6,485,726; WO 03/077834; U.S. 2003-0235536A1). 2. Methods of Treating Cardiovascular Diseases or Conditions In one embodiment, the invention relates to a method of treating a subject having a cardiovascular disease or condition, comprising administering a therapeutically effective amount of at least one chimeric protein, wherein the chimeric protein comprises a first and a second polypeptide chain, wherein the first chain comprises at least a portion of an immunoglobulin constant region and at least one agent capable of promoting mitosis, promoting angiogenesis and/or inhibiting apoptosis, such as erythropoietin, and the second polypeptide chain comprises at least a portion of an immunoglobulin without said agent. The cardiovascular disease or condition can include, but is not limited to, stroke, brain ischemia, cerebral ischemia, myocardial ischemia, cardiac ischemia, ischemic heart disease, myocardial infarction, coronary artery disease, acute coronary syndrome, artherosclerosis, chronic heart failure, congestive heart failure, or a reperfusion injury. In one embodiment, administering a therapeutically effective amount of at least one chimeric protein of the invention to a subject having a cardiovascular disease or condition promotes vascularization, organ growth, mitogenesis, angiogenesis, endothelial cell proliferation, endothelial cell differentiation, vascular repair, cardiovascular regeneration, or infarct reduction. In one embodiment, administering a therapeutically effective amount of at least one chimeric protein of the invention inhibits apoptosis, limits the sequelae of cerebral ischemia, reduces ventricular mass, ameliorates exercise-related cardiac ischemia, enhances exercise capacity, or protects neurons from ischemic damage. 2. Methods of Treating a Subject with a Red Blood Cell Deficiency The invention relates to a method of treating a subject having a deficiency of red blood cells, e.g., anemia, comprising administering a therapeutically effective amount of at least one chimeric protein, wherein the chimeric protein comprises a first and a second polypeptide chain, wherein the first chain comprises at least a portion of an immunoglobulin constant region and at least one agent capable of inducing proliferation of red blood cells, e.g., EPO, and the second polypeptide chain comprises at least a portion of an immunoglobulin without the agent capable of inducing red blood cell proliferation of the first chain. 3. Methods of Treating a Subject with a Viral Infection The invention relates to a method of treating a subject having a viral infection or exposed to a virus comprising administering a therapeutically effective amount of at least one chimeric protein, wherein the chimeric protein comprises a first and a second polypeptide chain, wherein the first chain comprises at least a portion of an immunoglobulin constant region and at least one antiviral agent, e.g., a fusion inhibitor or interferon α and the second polypeptide chain comprises at least a portion of an immunoglobulin without the antiviral agent of the first chain. In one embodiment, the subject is infected with a virus which can be treated with IFNα, e.g., hepatitis C virus. In one embodiment, the subject is infected with HIV, such as HIV-1 or HIV-2. In one embodiment, the chimeric protein of the invention inhibits viral replication. In one embodiment, the chimeric protein of the invention prevents or inhibits viral entry into target cells, thereby stopping, preventing, or limiting the spread of a viral infection in a subject and decreasing the viral burden in an infected subject. By linking a portion of an immunoglobulin to a viral fusion inhibitor the invention provides a chimeric protein with viral fusion inhibitory activity with greater stability and greater bioavailability compared to viral fusion inhibitors alone, e.g., T20, T21, T1249. Thus, in one embodiment, the viral fusion inhibitor decreases or prevents HIV infection of a target cell, e.g., HIV-1. a. Conditions that May be Treated The chimeric protein of the invention can be used to inhibit or prevent the infection of a target cell by a hepatitis virus, e.g., hepatitis virus C. The chimeric protein may comprise an anti-viral agent which inhibits viral replication. In one embodiment, the chimeric protein of the invention comprises a fusion inhibitor. The chimeric protein of the invention can be used to inhibit or prevent the infection of any target cell by any virus (see, e.g., U.S. Pat. Nos. 6,086,875, 6,030,613, 6,485,726; WO 03/077834; U.S. 2003-0235536A1). In one embodiment, the virus is an enveloped virus such as, but not limited to HIV, SIV, measles, influenza, Epstein-Barr virus, respiratory syncytia virus, or parainfluenza virus. In another embodiment, the virus is a non-enveloped virus such as rhino virus or polio virus The chimeric protein of the invention can be used to treat a subject already infected with a virus. The subject can be acutely infected with a virus. Alternatively, the subject can be chronically infected with a virus. The chimeric protein of the invention can also be used to prophylactically treat a subject at risk for contracting a viral infection, e.g., a subject known or believed to in close contact with a virus or subject believed to be infected or carrying a virus. The chimeric protein of the invention can be used to treat a subject who may have been exposed to a virus, but who has not yet been positively diagnosed. In one embodiment, the invention relates to a method of treating a subject infected with HCV comprising administering to the subject a therapeutically effective amount of a chimeric protein, wherein the chimeric protein comprises an Fc fragment of an IgG and a cytokine, e.g., IFNα. In one embodiment, the invention relates to a method of treating a subject infected with HIV comprising administering to the subject a therapeutically effective amount of a chimeric protein wherein the chimeric protein comprises an Fc fragment of an IgG and the viral fusion inhibitor comprises T20. 4. Methods of Treating a Subject Having a Hemostatic Disorder The invention relates to a method of treating a subject having a hemostatic disorder comprising administering a therapeutically effective amount of at least one chimeric protein, wherein the chimeric protein comprises a first and a second chain, wherein the first chain comprises at least one clotting factor and at least a portion of an immunoglobulin constant region, and the second chain comprises at least a portion of an immunoglobulin constant region. The chimeric protein of the invention treats or prevents a hemostatic disorder by promoting the formation of a fibrin clot. The chimeric protein of the invention can activate any member of a coagulation cascade. The clotting factor can be a participant in the extrinsic pathway, the intrinsic pathway or both. In one embodiment, the clotting factor is Factor VII or Factor VIIa. Factor VIIa can activate Factor X which interacts with Factor Va to cleave prothrombin to thrombin, which in turn cleaves fibrinogen to fibrin. In another embodiment, the clotting factor is Factor IX or Factor IXa. In yet another embodiment, the clotting factor is Factor VIII or Factor VIIIa. In yet another embodiment, the clotting factor is von Willebrand Factor, Factor XI, Factor XII, Factor V, Factor X or Factor XIII. a. Conditions that May be Treated The chimeric protein of the invention can be used to treat any hemostatic disorder. The hemostatic disorders that may be treated by administration of the chimeric protein of the invention include, but are not limited to, hemophilia A, hemophilia B, von Willebrand's disease, Factor XI deficiency (PTA deficiency), Factor XII deficiency, as well as deficiencies or structural abnormalities in fibrinogen, prothrombin, Factor V, Factor VII, Factor X, or Factor XIII. In one embodiment, the hemostatic disorder is an inherited disorder. In one embodiment, the subject has hemophilia A, and the chimeric protein comprises Factor VIII or Factor VIIIa. In another embodiment, the subject has hemophilia A and the chimeric protein comprises Factor VII or Factor VIIa. In another embodiment, the subject has hemophilia B and the chimeric protein comprises Factor IX or Factor IXa. In another embodiment, the subject has hemophilia B and the chimeric protein comprises Factor VII or Factor VIIa. In another embodiment, the subject has inhibitory antibodies to Factor VIII or Factor VIIIa and the chimeric protein comprises Factor VII or Factor VIIa. In yet another embodiment, the subject has inhibitory antibodies against Factor IX or Factor IXa and the chimeric protein comprises Factor VII or Factor VIIa. The chimeric protein of the invention can be used to prophylactically treat a subject with a hemostatic disorder. The chimeric protein of the invention can be used to treat an acute bleeding episode in a subject with a hemostatic disorder In one embodiment, the hemostatic disorder is the result of a deficiency in a clotting factor, e.g., Factor IX, Factor VIII. In another embodiment, the hemostatic disorder can be the result of a defective clotting factor, e.g., von Willebrand's Factor. In another embodiment, the hemostatic disorder can be an acquired disorder. The acquired disorder can result from an underlying secondary disease or condition. The unrelated condition can be, as an example, but not as a limitation, cancer, an autoimmune disease, or pregnancy. The acquired disorder can result from old age or from medication to treat an underlying secondary disorder (e.g. cancer chemotherapy). 5. Methods of Treating a Subject in Need of a General Hemostatic Agent The invention also relates to methods of treating a subject that does not have a hemostatic disorder or a secondary disease or condition resulting in acquisition of a hemostatic disorder. The invention thus relates to a method of treating a subject in need of a general hemostatic agent comprising administering a therapeutically effective amount of at least one chimeric protein, wherein the chimeric protein comprises a first and a second polypeptide chain wherein the first polypeptide chain comprises at least a portion of an immunoglobulin constant region and at least one clotting factor and the second chain comprises at least a portion of an immunoglobulin constant region without the clotting factor of the first polypeptide chain. a. Conditions that May be Treated In one embodiment, the subject in need of a general hemostatic agent is undergoing, or is about to undergo, surgery. The chimeric protein of the invention can be administered prior to or after surgery as a prophylactic. The chimeric protein of the invention can be administered during or after surgery to control an acute bleeding episode. The surgery can include, but is not limited to, liver transplantation, liver resection, or stem cell transplantation. The chimeric protein of the invention can be used to treat a subject having an acute bleeding episode who does not have a hemostatic disorder. The acute bleeding episode can result from severe trauma, e.g., surgery, an automobile accident, wound, laceration gun shot, or any other traumatic event resulting in uncontrolled bleeding. 6. Treatment Modalities The chimeric protein of the invention can be administered intravenously, subcutaneously, intramuscularly, or via any mucosal surface, e.g., orally, sublingually, buccally, sublingually, nasally, rectally, vaginally or via pulmonary route. The chimeric protein can be implanted within or linked to a biopolymer solid support that allows for the slow release of the chimeric protein to the desired site. The dose of the chimeric protein of the invention will vary depending on the subject and upon the particular route of administration used. Dosages can range from 0.1 to 100,000 μg/kg body weight. In one embodiment, the dosing range is 0.1-1,000 μg/kg. The protein can be administered continuously or at specific timed intervals. In vitro assays may be employed to determine optimal dose ranges and/or schedules for administration. Many in vitro assays that measure viral infectivity are known in the art. For example, a reverse transcriptase assay, or an rt PCR assay or branched DNA assay can be used to measure HIV concentrations. A StaClot assay can be used to measure clotting activity. Additionally, effective doses may be extrapolated from dose-response curves obtained from animal models. The invention also relates to a pharmaceutical composition comprising a viral fusion inhibitor, at least a portion of an immunoglobulin and a pharmaceutically acceptable carrier or excipient. Examples of suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences by E. W. Martin. Examples of excipients can include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol, and the like. The composition can also contain pH buffering reagents, and wetting or emulsifying agents. For oral administration, the pharmaceutical composition can take the form of tablets or capsules prepared by conventional means. The composition can also be prepared as a liquid for example a syrup or a suspension. The liquid can include suspending agents (e.g. sorbitol syrup, cellulose derivatives or hydrogenated edible fats), emulsifying agents (lecithin or acacia), non-aqueous vehicles (e.g. almond oil, oily esters, ethyl alcohol, or fractionated vegetable oils), and preservatives (e.g. methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations can also include flavoring, coloring and sweetening agents. Alternatively, the composition can be presented as a dry product for constitution with water or another suitable vehicle. For buccal and sublingual administration the composition may take the form of tablets, lozenges or fast dissolving films according to conventional protocols. For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray from a pressurized pack or nebulizer (e.g. in PBS), with a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoromethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The pharmaceutical composition can be formulated for parenteral administration (i.e. intravenous or intramuscular) by bolus injection. Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multidose containers with an added preservative. The compositions can take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient can be in powder form for constitution with a suitable vehicle, e.g., pyrogen free water. The pharmaceutical composition can also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. 7. Combination Therapy The chimeric protein of the invention can be used to treat a subject with a disease or condition in combination with at least one other known agent to treat said disease or condition. In one embodiment, the invention relates to a method of treating a subject infected with HIV comprising administering a therapeutically effective amount of at least one chimeric protein comprising a first and a second chain, wherein the first chain comprises an HIV fusion inhibitor and at least a portion of an immunoglobulin constant region and the second chain comprises at least a portion of an immunoglobulin without an HIV fusion inhibitor of the first chain, in combination with at least one other anti-HIV agent. Said other anti-HIV agent can be any therapeutic with demonstrated anti-HIV activity. Said other anti-HIV agent can include, as an example, but not as a limitation, a protease inhibitor (e.g. Amprenavir®, Crixivan®, Ritonivir®), a reverse transcriptase nucleoside analog (e.g. AZT, DDI, D4T, 3TC, Ziagen®), a nonnucleoside analog reverse transcriptase inhibitor (e.g. Sustiva®), another HIV fusion inhibitor, a neutralizing antibody specific to HIV, an antibody specific to CD4, a CD4 mimic, e.g., CD4-IgG2 fusion protein (U.S. patent application Ser. No. 09/912,824) or an antibody specific to CCR5, or CXCR4, or a specific binding partner of CCR5, or CXCR4. In another embodiment, the invention relates to a method of treating a subject with a hemostatic disorder comprising administering a therapeutically effective amount of at least one chimeric protein comprising a first and a second chain, wherein the first chain comprises at least one clotting factor and at least a portion of an immunoglobulin constant region and the second chain comprises at least a portion of an immunoglobulin constant region without the clotting factor of the first chain, in combination with at least one other clotting factor or agent that promotes hemostasis. Said other clotting factor or agent that promotes hemostasis can be any therapeutic with demonstrated clotting activity. As an example, but not as a limitation, the clotting factor or hemostatic agent can include Factor V, Factor VII, Factor VIII, Factor IX, Factor X, Factor XI, Factor XII, Factor XIII, prothrombin, or fibrinogen or activated forms of any of the preceding. The clotting factor of hemostatic agent can also include anti-fibrinolytic drugs, e.g., epsilon-amino-caproic acid, tranexamic acid. 8. Methods of Inhibiting Viral Fusion with a Target Cell The invention also relates to an in vitro method of inhibiting HIV fusion with a mammalian cell comprising combining the mammalian cell with at least one chimeric protein, wherein the chimeric protein comprises a first and a second chain, wherein the first chain comprises at least a portion of an immunoglobulin constant region and an HIV inhibitor and the second chain comprises at least a portion of an immunoglobulin constant region without the HIV inhibitor of the first chain. The mammalian cell can include any cell or cell line susceptible to infection by HIV including but not limited to primary human CD4+ T cells or macrophages, MOLT-4 cells, CEM cells, AA5 cells or HeLa cells which express CD4 on the cell surface. G. Methods of Isolating Chimeric Proteins Typically, when chimeric proteins of the invention are produced they are contained in a mixture of other molecules such as other proteins or protein fragments. The invention thus provides for methods of isolating any of the chimeric proteins described supra from a mixture containing the chimeric proteins. It has been determined that the chimeric proteins of the invention bind to dye ligands under suitable conditions and that altering those conditions subsequent to binding can disrupt the bond between the dye ligand and the chimeric protein, thereby providing a method of isolating the chimeric protein. In some embodiments the mixture may comprise a monomer-dimer hybrid, a dimer and at least a portion of an immunoglobulin constant region, e.g., an Fc. Thus, in one embodiment, the invention provides a method of isolating a monomer-dimer hybrid. In another embodiment, the invention provides a method of isolating a dimer. Accordingly, in one embodiment, the invention provides a method of isolating a monomer-dimer hybrid from a mixture, where the mixture comprises a) the monomer-dimer hybrid comprising a first and second polypeptide chain, wherein the first chain comprises a biologically active molecule, and at least a portion of an immunoglobulin constant region and wherein the second chain comprises at least a portion of an immunoglobulin constant region without a biologically active molecule or immunoglobulin variable region; b) a dimer comprising a first and second polypeptide chain, wherein the first and second chains both comprise a biologically active molecule, and at least a portion of an immunoglobulin constant region; and c) a portion of an immunoglobulin constant region; said method comprising 1) contacting the mixture with a dye ligand linked to a solid support under suitable conditions such that both the monomer-dimer hybrid and the dimer bind to the dye ligand; 2) removing the unbound portion of an immunoglobulin constant region; 3) altering the suitable conditions of 1) such that the binding between the monomer-dimer hybrid and the dye ligand linked to the solid support is disrupted; 4) isolating the monomer-dimer hybrid. In some embodiments, prior to contacting the mixture with a dye ligand, the mixture may be contacted with a chromatographic substance such as protein A sepharose or the like. The mixture is eluted from the chromatographic substance using an appropriate elution buffer (e.g. a low pH buffer) and the eluate containing the mixture is then contacted with the dye ligand. Suitable conditions for contacting the mixture with the dye ligand may include a buffer to maintain the mixture at an appropriate pH. An appropriate pH may include a pH of from, 3-10, 4-9, 5-8. In one embodiment, the appropriate pH is 8.0. Any buffering agent known in the art may be used so long as it maintains the pH in the appropriate range, e.g., tris, HEPES, PIPES, MOPS. Suitable conditions may also include a wash buffer to elute unbound species from the dye ligand. The wash buffer may be any buffer which does not disrupt binding of a bound species. For example, the wash buffer can be the same buffer used in the contacting step. Once the chimeric protein is bound to the dye ligand, the chimeric protein is isolated by altering the suitable conditions. Altering the suitable conditions may include the addition of a salt to the buffer. Any salt may be used, e.g., NaCl, KCl. The salt should be added at a concentration that is high enough to disrupt the binding between the dye ligand and the desired species, e.g., a monomer-dimer hybrid. In some embodiments where the mixture is comprised of an Fc, a monomer-dimer hybrid, and a dimer, it has been found that the Fc does not bind to the dye ligand and thus elutes with the flow through. The dimer binds more tightly to the dye ligand than the monomer-dimer hybrid. Thus a higher concentration of salt is required to disrupt the bond (e.g. elute) between the dimer and the dye ligand compared to the salt concentration required to disrupt the bond between the dye ligand and the monomer-dimer hybrid. In some embodiments NaCl may be used to isolate the monomer-dimer hybrid from the mixture. In some embodiments the appropriate concentration of salt which disrupts the bond between the dye ligand and the monomer-dimer hybrid is from 200-700 mM, 300-600 mM, 400-500 mM. In one embodiment, the concentration of NaCl required to disrupt the binding between the dye ligand the monomer-dimer hybrid is 400 mM. NaCl may also be used to isolate the dimer from the mixture. Typically, the monomer-dimer hybrid is isolated from the mixture before the dimer. The dimer is isolated by adding an appropriate concentration of salt to the buffer, thereby disrupting the binding between the dye ligand and the dimer. In some embodiments the appropriate concentration of salt which disrupts the bond between the dye ligand and the dimer is from 800 mM to 2 M, 900 mM to 1.5 M, 950 mM to 1.2 M. In one specific embodiment, 1 M NaCl is used to disrupt the binding between the dye ligand and the dimer. The dye ligand may be a bio-mimetic. A bio-mimetic is a human-made substance, device, or system that imitates nature. Thus in some embodiments the dye ligand imitates a molecule's naturally occurring ligand. The dye ligand may be chosen from Mimetic Red 1™, Mimetic Red 2™, Mimetic Orange 1™, Mimetic Orange 2™, Mimetic Orange 3™, Mimetic Yellow 1™, Mimetic Yellow 2™, Mimetic Green 1™, Mimetic Blue 1™, and Mimetic Blue 2™ (Prometic Biosciences (USA) Inc., Wayne, N.J.). In one specific embodiment, the dye ligand is Mimetic Red 2™ (Prometic Biosciences (USA) Inc., Wayne, N.J.). In certain embodiments the dye ligand is linked to a solid support, e.g., from Mimetic Red 1A6XL™, Mimetic Red 2 A6XL™, Mimetic Orange 1 A6XL™, Mimetic Orange 2 A6XL™, Mimetic Orange 3 A6XL™, Mimetic Yellow 1 A6XL™, Mimetic Yellow 2 A6XL™, Mimetic Green 1 A6XL™, Mimetic Blue 1 A6XL™, and Mimetic Blue 2 A6XL™ (Prometic Biosciences (USA) Inc., Wayne, N.J.). The dye ligand may be linked to a solid support. The solid support may be any solid support known in the art (see, e.g., www.seperationsNOW.com). Examples of solid supports may include a bead, a gel, a membrane, a nanoparticle, or a microsphere. The solid support may comprise any material which can be linked to a dye ligand (e.g. agarose, polystyrene, sepharose, sephadex). Solid supports may comprise any synthetic organic polymer such as polyacrylic, vinyl polymers, acrylate, polymethacrylate, and polyacrylamide. Solid supports may also comprise a carbohydrate polymer, e.g., agarose, cellulose, or dextran. Solid supports may comprise inorganic oxides, such as silica, zirconia, titania, ceria, alumina, magnesia (i.e., magnesium oxide), or calcium oxide. Solid supports may also comprise combinations of some of the above-mentioned supports including, but not limited to, dextran-acrylamide. EXAMPLES Example 1 Molecular Weight Affects FcRn Mediated Trancytosis Chimeric proteins comprised of various proteins of interest and IgG Fc were recombinantly produced (Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed., Cold Spring Harbor Laboratory Press, (1989)) or in the case of contactin-Fc, MAB-β-gal, (a complex of a monoclonal antibody bound to β-gal) (Biodesign Iternational, Saco, Me.) and MAB-GH (a complex of monoclonal antibody and growth hormone) (Research Diagnostics, Inc. Flanders, N.J.) were purchased commercially. Briefly, the genes encoding the protein of interest were cloned by PCR, and then sub-cloned into an Fc fusion expression plasmid. The plasmids were transfected into DG44 CHO cells and stable transfectants were selected and amplified with methotrexate. The chimeric protein homodimers were purified over a protein A column. The proteins tested included interferon α, growth hormone, erythropoietin, follicle stimulating hormone, Factor IX, beta-galactosidase, contactin, and Factor VIII. Linking the proteins to immunoglobulin portions, including the FcRn receptor binding partner, or using commercially available whole antibody (including the FcRn binding region)-antigen complexes permitted the investigation of transcytosis as a function of molecular weight (see U.S. Pat. No. 6,030,613). The chimeric proteins were administered to rats orally and serum levels were measured 2-4 hours post administration using an ELISA for recombinantly produced chimeric proteins and both a western blot and ELISA for commercially obtained antibody complexes and chimeric proteins. Additionally, all of the commercially obtained proteins or complexes as well as Factor VIII-Fc, Factor IX-Fc and Epo-Fc controls were iodinated using IODO beads (Pierce, Pittsburgh, Pa.). The results indicated serum levels of Fc and monoclonal antibody chimeric proteins orally administered to rats are directly related to the size of the protein. The apparent cutoff point for orally administered Fc chimeric proteins is between 200-285 kD. (Table 2). TABLE 2 Protein Size (kD) Transcytosis IFNα-Fc 92 ++++ GH-Fc 96 +++ Epo-Fc 120 +++ FSH-Fc 170 +++ MAB:GH 172-194 +++ FIX-Fc 200 + MAB:βGal 285-420 − Contactin-Fc 300 − FVIIIΔ-Fc 380 − Example 2 Cloning of pcDNA 3.1-Flag-Fc The sequence for the FLAG peptide (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys), a common affinity tag used to identify or purify proteins, was cloned into the pcDNA 3.1-Fc plasmid, which contains the mouse IgK signal sequence followed by the Fc fragment of human IgG1 (amino acids 221-447, EU numbering). The construct was created by overlapping PCR using the following primers: (SEQ ID NO:41) FlagFc-F1: 5′- GCTGGCTAGCCACCATGGA -3′ (SEQ ID NO:42) FlagFc-R1: 5′- CTTGTCATCGTCGTCCTTGTAGTCGTCA CCAGTGGAACCTGGAAC -3′ (SEQ ID NO:43) FlagFc-F2: 5′- GACTACAAGG ACGACGATGA CAAGGACAAA ACTCACACAT GCCCACCGTG CCCAGCTCCG GAACTCC -3′ (SEQ ID NO:44) FlagFc-R2: 5′- TAGTGGATCCTCATTTACCCG -3′ The pcDNA 3.1-Fc template was then added to two separate PCR reactions containing 50 pmol each of the primer pairs FlagFc-F1/R1 or FlagFc-F2/R2 in a 50 μl reaction using Pfu Ultra DNA polymerase (Stratagene, CA) according to manufacturer's standard protocol in a MJ Thermocycler using the following cycles: 95° C. 2 minutes; 30 cycles of (95° C. 30 seconds, 52° C. 30 seconds, 72° C. 45 seconds), followed by 72° C. for 10 minutes. The products of these two reactions were then mixed in another PCR reaction (2 μl each) with 50 pmol of FlagFc-F1 and FlagFc-R2 primers in a 50 μl reaction using Pfu Ultra DNA polymerase (Stratagene, CA) according to manufacturer's standard protocol in a MJ Thermocycler using the following cycles: 95° C. 2 minutes; 30 cycles of (95° C. 30 seconds, 52° C. 30 seconds, 72° C. 45 seconds), followed by 72° C. for 10 minutes. The resulting fragment was gel purified, digested and inserted into the pcDNA 3.1-Fc plasmid NheI-Bam HI. The resulting plasmid contains contains the mouse IgK signal sequence producing the FlagFc protein. Example 3 Cloning of -Factor VII-Fc Construct The coding sequence for Factor VII, was obtained by RT-PCR from human fetal liver RNA (Clontech, Palo Alto, Calif.). The cloned region is comprised of the cDNA sequence from bp 36 to bp 1430 terminating just before the stop codon. A SbfI site was introduced on the N-terminus. A BspEI site was introduced on the C-terminus. The construct was cloned by PCR using the primers: (SEQ ID NO:45) Downstream: 5′GCTACCTGCAGGCCACCATGGTCTCCCAGGCCCTCA GG 3′ (SEQ ID NO:46) Upstream: 5′CAGTTCCGGAGCTGGGCACGGCGGGCACGTGTGAGT TTTGTCGGGAAAT GG 3′ and the following conditions: 95° C. for 5 minutes followed by 30 cycles of 95° C. for 30 seconds, 55° C. for 30 seconds, 72° C. for 1 minute and 45 seconds, and a final extension cycle of 72° C. for 10 minutes. The fragment was digested SbfI-BspE I and inserted into pED.dC-Fc a plasmid encoding for the Fc fragment of an IgG1. Example 4 Cloning of Factor IX-Fc Construct The human Factor IX coding sequence, including the prepropeptide sequence, was obtained by RT-PCR amplification from adult human liver RNA using the following primers: (SEQ ID NO:47) natFIX-F: 5′-TTACTGCAGAAGGTTATGCAGCGCGTGAACATG- 3′ (SEQ ID NO:48) F9-R: 5′-TTTTTCGAATTCAGTGAGCTTTGTTTTTTCCTTAATC C- 3′ 20 ng of adult human liver RNA (Clontech, Palo Alto, Calif.) and 25 pmol each primer were added to a RT-PCR reaction using the SuperScript.™ One-Step RT-PCR with PLATINUM® Taq system (Invitrogen, Carlsbad, Calif.) according to manufacturers protocol. Reaction was carried out in a MJ Thermocycler using the following cycles: 50° C. 30 minutes; 94° C. 2 minutes; 35 cycles of (94° C. 30 seconds, 58° C. 30 seconds, 72° C. 1 minute), and a final 72° C. 10 minutes. The fragment was gel purified using Qiagen Gel Extraction Kit (Qiagen, Valencia, Calif.), and digested with PstI-EcoRI, gel purified, and cloned into the corresponding digest of the pED.dC.XFc plasmid. Example 5 Cloning of PACE Construct The coding sequence for human PACE (paired basic amino acid cleaving enzyme), an endoprotease, was obtained by RT-PCR. The following primers were used: (SEQ ID NO:49) PACE-F1: 5′- GGTAAGCTTGCCATGGAGCTGAGGCCCTGGTTGC -3′ (SEQ ID NO:50) PACE-R1: 5′- GTTTTCAATCTCTAGGACCCACTCGCC -3′ (SEQ ID NO:51) PACE-F2: 5′- GCCAGGCCACATGACTACTCCGC -3′ (SEQ ID NO:52) PACE-R2: 5′- GGTGAATTCTCACTCAGGCAGGTGTGAGGGCAGC -3′ The PACE-F1 primer adds a HindIII site to the 5′ end of the PACE sequence beginning with 3 nucleotides before the start codon, while the PACE-R2 primer adds a stop codon after amino acid 715, which occurs at the end of the extracellular domain of PACE, as well as adding an EcoRI site to the 3′ end of the stop codon. The PACE-R1 and -F2 primers anneal on the 3′ and 5′ sides of an internal BamHI site, respectively. Two RT-PCR reactions were then set up using 25 pmol each of the primer pairs of PACE-F1/R1 or PACE-F2/R2 with 20 ng of adult human liver RNA (Clontech; Palo Alto, Calif.) in a 50 μl RT-PCR reaction using the SuperScript.™ One-Step RT-PCR with PLATINUM® Taq system (Invitrogen, Carlsbad, Calif.) according to manufacturers protocol. The reaction was carried out in a MJ Thermocycler using the following cycles: 50° C. 30 minutes; 94° C. 2 minutes; 30 cycles of (94° C. 30 seconds, 58° C. 30 seconds, 72° C. 2 minutes), followed by 72° C. 10 minutes. These fragments were each ligated into the vector pGEM T-Easy (Promega, Madison, Wis.) and sequenced fully. The F2-R2 fragment was then subcloned into pcDNA6 V5/His (Invitrogen, Carlsbad, Calif.) using the BamHI/EcoRI sites, and then the F1-R1 fragment was cloned into this construct using the HindIII/BamHI sites. The final plasmid, pcDNA6-PACE, produces a soluble form of PACE (amino acids 1-715), as the transmembrane region has been deleted. The sequence of PACE in pcDNA6-PACE is essentially as described in Harrison et al. 1998, Seminars in Hematology 35:4. Example 6 Cloning of IFNα-Fc Eight Amino Acid Linker Construct The human interferon α 2b (hIFNα) coding sequence, including the signal sequence, was obtained by PCR from human genomic DNA using the following primers: (SEQ ID NO:53) IFNa-Sig-F: 5′-GCTACTGCAGCCACCATGGCCTTGACCTTTGCTT TAC -3′ (SEQ ID NO:54) IFNa-EcoR-R: 5′-CGTTGAATTCTTCCTTACTTCTTAAACTTTCTTG C -3′ Genomic DNA was prepared from 373MG human astrocytoma cell line, according to standard methods (Sambrook et al. 1989, Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press). Briefly, approximately 2×105 cells were pelleted by centrifugation, resuspended in 100 μl phosphate buffered saline pH 7.4, then mixed with an equal volume of lysis buffer (100 mM Tris pH 8.0/200 mM NaCl/2% SDS/5 mM EDTA). Proteinase K was added to a final concentration of 100 μg/ml, and the sample was digested at 37° C. for 4 hours with occasional gentle mixing. The sample was then extracted twice with phenol:chloroform, the DNA precipitated by adding sodium acetate pH 7.0 to 100 mM and an equal volume of isopropanol, and pelleted by centrifugation for 10 min at room temperature. The supernatant was removed and the pellet was washed once with cold 70% ethanol and allowed to air dry before resuspending in TE (10 mM Tris pH 8.0/1 mM EDTA). 100 ng of this genomic DNA was then used in a 25 μl PCR reaction with 25 pmol of each primer using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to manufacturer's standard protocol in a MJ Thermocycler using the following cycles: 94° C. 2 minutes; 30 cycles of (94° C. 30 seconds, 50° C. 30 seconds, 72° C. 45 seconds), and finally 72° C. 10 minutes. The expected sized band (˜550 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia, Calif.), digested with PstI/EcoRI, gel purified again, and cloned into the PstI/EcoRI site of pED.dC.XFc, which contains an 8 amino acid linker (EFAGAAAV) followed by the Fc region of human IgG1. Example 7 Cloning of IFNαFc ΔLinker Construct 1 μg of purified pED.dC.native human IFNαFc DNA, from Example 6, was then used as a template in a 25 μl PCR reaction with 25 pmol of each primer IFNa-Sig-F and the following primer: (SEQ ID NO:55) hIFNaNoLinkFc-R: 5′CAGTTCCGGAGCTGGGCACGGCGGG CACGTGTGAGTTTTGTCTTCCTTACTTCTTAAAC TTTTTGCAAGTTTG- 3′ The PCR reaction was carried out using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to the manufacturer's standard protocol in a RapidCycler thermocycler (Idaho Technology, Salt Lake City, Utah), denaturing at 94° C. for 2 minutes followed by 18 cycles of 95° C. for 15 seconds, 55° C. for 0 seconds, and 72° C. for 1 minute with a slope of 6, followed by 72° C. extension for 10 minutes. A PCR product of the correct size (˜525 bp) was gel purified using a Gel Extraction kit (Qiagen; Valencia, Calif.), digested with the PstI and BspEI restriction enzymes, gel purified, and subcloned into the corresponding sites of a modified pED.dC.XFc, where amino acids 231-233 of the Fc region were altered using the degeneracy of the genetic code to incorporate a BspEI site while maintaining the wild type amino acid sequence. Example 8 Cloning of IFNαFc GS15 Linker Construct A new backbone vector was created using the Fc found in the Δlinker construct (containing BspEI and RsrII sites in the 5′ end using the degeneracy of the genetic code to maintain the amino acid sequence), using this DNA as a template for a PCR reaction with the following primers: (SEQ ID NO:56) 5′B2xGGGGS: 5′ gtcaggatccggcggtggagggagcgacaaaact cacacgtgccc 3′ (SEQ ID NO:57) 3′GGGGS: 5′ tgacgcggccgctcatttacccggagacaggg 3′ A PCR reaction was carried out with 25 pmol of each primer using Pfu Turbo enzyme (Stratagene, La Jolla, Calif.) according to manufacturer's standard protocol in a MJ Thermocycler using the following method: 95° C. 2 minutes; 30 cycles of (95° C. 30 seconds, 54° C. 30 seconds, 72° C. 2 minutes), 72° C. 10 minutes. The expected sized band (˜730 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.), digested BamHI/NotI; gel purified again, and cloned into the BamHI/NotI digested vector of pcDNA6 ID, a version of pcDNA6 with the IRES sequence and dhfr gene inserted into NotI/XbaI site. 500 ng of purified pED.dC.native human IFNαFc DNA was then used as a template in a 25 μl PCR reaction with the following primers: (SEQ ID NO:58) 5′ IFNa for GGGGS: 5′ ccgctagcctgcaggccaccatggccttg acc 3′ (SEQ ID NO:59) 3′ IFNa for GGGGS: 5′ ccggatccgccgccaccttccttactacg taaac 3′ A PCR reaction was carried out with 25 pmol of each primer using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to manufacturer's standard protocol in a MJ Thermocycler using the following cycles: 9.5° C. 2 minutes; 14 cycles of (94° C. 30 seconds, 48° C. 30 seconds, 72° C. 1 minute), 72° C. 10 minutes. The expected sized band (˜600 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.), digested NheI/BamHI, gel purified again, and cloned into the NheI/BamHI site of the pcDNA6 ID/Fc vector, above, to create an IFNα Fc fusion with a 10 amino acid Gly/Ser linker (2xGGGGS), pcDNA6 ID/IFNα-GS10-Fc. A PCR reaction was then performed using 500 ng of this pcDNA6 ID/IFNα-GS10-Fc with the following primers (SEQ ID NO:60) 5′ B3XGGGGS: 5′ (SEQ ID NO:61) gtcaggatccggtggaggcgggtccggcggtggaggg agcgacaaaactcacacgtgccc 3′ (SEQ ID NO:62) fcclv-R: 5′ atagaagcctttgaccaggc 3′ A PCR reaction was carried out with 25 pmol of each primer using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to manufacturer's standard protocol in a MJ Thermocycler using the following cycles: 95° C. 2 minutes; 14 cycles of (94° C. 30 seconds, 48° C. 30 seconds, 72° C. 1 minute), 72° C. 10 minutes. The expected sized band (504 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.), digested BamHI/BspEI, the 68 bp band was gel purified, and cloned into the BamHI/BspEI site of the pcDNA6 ID/IFNα-GS10-Fc vector, above, to create an IFNα Fc fusion with a 15 amino acid Gly/Ser linker (3xGGGGS), pcDNA6 ID/IFNα-GS15-Fc. Example 9 Cloning of a Basic Peptide Construct The hinge region of the human IgG1 Fc fragment from amino acid 221-229 (EU numbering) was replaced with a basic peptide (CCB). Four overlapping oligos were used (IDT, Coralville, Iowa): (SEQ ID NO:63) 1. CCB-Fc Sense 1: 5′ GCC GGC GAA TTC GGT GGT GAG TAC CAG GCC CTG AAG AAG AAG GTG GCC CAG CTG AAG GCC AAG AAC CAG GCC CTG AAG AAG AAG 3′ (SEQ ID NO:64) 2. CCB-Fc Sense 2: 5′ GTG GCC CAG CTG AAG CAC AAG GGC GGC GGC CCC GCC CCA GAG CTC CTG GGC GGA CCG A 3′ (SEQ ID NO:65) 3. CCB-Fc Anti-Sense 1: 5′ CGG TCC GCC CAG GAG CTC TGG GGC GGG GCC GCC GCC CTT GTG CTT CAG CTG GGC CAC CTT CTT CTT CAG GGC CTG GTT CTT G 3′ (SEQ ID NO:66) 4. CCB-Fc Anti-Sense 2: 5′ GCC TTC AGC TGG GCC ACC TTC TTC TTC AGG GCC TGG TAC TCA CCA CCG AAT TCG CCG GCA 3′ The oligos were reconstituted to a concentration of 50 μM with dH2O. 5 μl of each oligo were annealed to each other by combining in a thin walled PCR tube with 2.2 μl of restriction buffer #2 (i.e. final concentration of 10 mM Tris HCl pH 7.9, 10 mM MgCl2, 50 mM Na Cl, 1 mM dithiothreitol) (New England Biolabs, Beverly, Mass.) and heated to 95° C. for 30 seconds and then allowed to anneal by cooling slowly for 2 hours to 25° C. 5 pmol of the now annealed oligos were ligated into a pGEM T-Easy vector as directed in the kit manual. (Promega, Madison Wis.). The ligation mixture was added to 50 μl of DH5α competent E. coli cells (Invitrogen, Carlsbad, Calif.) on ice for 2 minutes, incubated at 37° C. for 5 minutes, incubated on ice for 2 minutes, and then plated on LB+100 μg/L ampicillin agar plates and placed at 37° C. for 1-4 hours. Individual bacterial colonies were picked and placed in 5 ml of LB+100 μg/L ampicillin and allowed to grow for 14 hours. The tubes were spun down at 2000×g, 4° C. for 15 minutes and the vector DNA was isolated using Qiagen miniprep kit (Qiagen, Valencia, Calif.) as indicated in the kit manual. 2 μg of DNA was digested with NgoM IV-Rsr-II. The fragment was gel purified by the Qiaquick method as instructed in the kit manual (Qiagen, Valencia, Calif.) and ligated to pED.dcEpoFc with NgoM IV/Rsr II. The ligation was transformed into DH5α competent E. coli cells and the DNA prepared as described for the pGEM T-Easy vector. Example 10 Cloning of the Erythropoietin-Acidic Peptide Fc Construct The hinge region of the human IgG1 Fc fragment in EPO-Fc from amino acid 221-229 (EU numbering) was replaced with an acidic peptide (CCA). Four overlapping oligos were used (IDT, Coralville, Iowa): 1. Epo-CCA-Fc Sense 1: (SEQ ID NO:67) 5′ CCG GTG ACA GGG AAT TCG GTG GTG AGT ACC AGG CCC TGG AGA AGG AGG TGG CCC AGC TGG AG 3′ 2. Epo-CGA-Fc Sense 2: (SEQ ID NO:68) 5′ GCC GAG AAC GAG GCC GTG GAG AAG GAG GTG GCC CAG CTG GAG CAC GAG GGT GGT GGT CCC GCT CCA GAG GTG GTG GGG GGA CA 3′ 3. Epo-GGA-Fc Anti-Sense 1: (SEQ ID NO:69) 5′ GTC CGC CCA GCA GCT CTG GAG CGG GAC CAC CAC CCT CGT GCT CCA GCT GGG CCA C 3′ 4. Epo-GGA-Fc Anti-Sense 2: (SEQ ID NO:70) 5′ CTC CTT CTC CAG GGC CTG GTT CTC GGC CTC CAG CTG GGC CAC CTC CTT CTC CAG GGC CTG GTA CTC ACC ACC GAA TTC CCT GTC ACC GGA 3′ The oligos were reconstituted to a concentration of 50 μM with dH2O. 5 μl of each oligo were annealed to each other by combining in a thin walled PCR tube with 2.2 μl of restriction buffer No. 2 (New England Biolabs, Beverly, Mass.) and heated to 95° C. for 30 seconds and then allowed to cool slowly for 2 hours to 25° C. 5 pmol of the now annealed oligos were ligated into a pGEM T-Easy vector as directed in the kit manual. (Promega, Madison, Wis.). The ligation mixture was added to 50 μl of DH5α competent E. coli cells (Invitrogen, Carlsbad, Calif.) on ice for 2 minutes, incubated at 37° C. 5 minutes, incubated on ice for 2 minutes, and then plated on LB+100 μg/L ampicillin agar plates and placed at 37° C. for 14 hours. Individual bacterial colonies were picked and placed in 5 ml of LB+100 μg/L ampicillin and allowed to grow for 14 hours. The tubes were spun down at 2000×g, 4° C. for 15 minutes and the vector DNA was prepared using Qiagen miniprep kit (Qiagen, Valencia, Calif.) as indicated in the kit manual. 2 μg of DNA was digested with Age I-Rsr-II. The fragment was gel purified by the Qiaquick method as instructed in the kit manual (Qiagen, Valencia, Calif.) and ligated into pED.Epo Fc.1 Age I-Rsr II. The ligation was transformed into DH5α competent E. coli cells and DNA prepped as described above. Example 11 Cloning of Cys-Fc Construct Using PCR and standard molecular biology techniques (Sambrook et al.-1989; Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press), a mammalian expression construct was generated such that the coding sequence for the human IFNα signal peptide was directly abutted against the coding sequence of Fc beginning at the first cysteine residue (Cys 226, EU Numbering). Upon signal peptidase cleavage and secretion from mammalian cells, an Fc protein with an N-terminal cysteine residue was thus generated. Briefly, the primers IFNa-Sig-F (IFNa-Sig-F: 5′-GCTACTGCAGCCACCATGGCCTTGACCTT TGCTTTAC-3′) (SEQ ID NO:71) and Cys-Fc-R (5′-CAGTTCCGGAGCTGGGCACGGCGGA GAGCCCACAGAGCAGCTTG-3′) (SEQ ID NO:72) were used in a PCR reaction to create a fragment linking the IFNα signal sequence with the N terminus of Fc, beginning with Cys 226. 500 ng of pED.dC.native hIFNα Δlinker was added to 25 pmol of each primer in a PCR reaction with Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to manufacturer's standard protocol. The reaction was carried out in a MJ Thermocycler using the following cycles: 94° C. 2 minutes; 30 cycles of (94° C. 30 seconds, 50° C. 30 seconds, 72° C. 45 seconds), and finally 72° C. 10 minutes. The expected sized band (˜112 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.), digested with the PstI and BspEI restriction enzymes, gel purified, and subcloned into the corresponding sites pED.dC.native hIFNα Δlinker to generate pED.dC.Cys-Fc (FIG. 5). Example 12 Protein Expression and Preparation of Fc-MESNA The coding sequence for Fc (the constant region of human IgG1) was obtained by PCR amplification from an Fc-containing plasmid using standard conditions and reagents, following the manufacturer's recommended procedure to subclone the Fc coding sequence NdeI/SapI. Briefly, the primers 5′-GTGGTCATA TGGGCATTGAAGGCAGAGGCGCCGCTGCGGTCG-3′ (SEQ ID NO:73) and 5′-GGTGGTTGC TCTTCCGCAAAAACCCGGAGACAGGGAGAGACTCTTCTGCG-3′ (SEQ ID NO:74) were used to amplify the Fc sequence from 500 ng of the plasmid pED.dC.Epo-Fc using Expand High Fidelity System (Boehringer Mannheim, Basel Switzerland) in a RapidCylcler thermocycler (Idaho Technology Salt Lake City, Utah), denaturing at 95° C. for 2 minutes followed by 18 cycles of 95° C. for 0 sec, 55° C. for 0 sec, and 72° C. for 1 minute with a slope of 4, followed by 72° C. extension for 10 minutes. The PCR product was subcloned into an intermediate cloning vector and sequenced fully, and then subcloned using the NdeI and SapI sites in the pTWIN1 vector following standard procedures. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989, Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. This plasmid was then transformed into BL21(DE3) pLysS cells using standard methods. Id. A 1 liter culture of cells was grown to an absorbance reading of 0.8 AU at 37° C., induced with 1 mM isopropyl beta-D-1-thiogalactopyranoside, and grown overnight at 25° C. Cells were pelleted by centrifugation, lysed in 20 mM Tris 8.8/1% NP40/0.1 mM phenylmethanesulfonyl fluoride/1 μg/ml Benzonase (Novagen Madison, Wis.), and bound to chitin beads (New England Biolabs; Beverly, Mass.) overnight at 4° C. Beads were then washed with several column volumes of 20 mM Tris 8.5/500 mM NaCl/1 mM EDTA, and then stored at −80° C. Purified Fc-MESNA was generated by eluting the protein from the beads in 20 mM Tris 8.5/500 mM NaCl/1 mM EDTA/500 mM 2-mercapto ethane sulfonic acid (MESNA), and the eluate was used directly in the coupling reaction, below. Example 13 Factor VII-Fc Monomer-Dimer Hybrid Expression and Purification CHO DG-44 cells expressing Factor VII-Fc were established. CHO DG-44 cells were grown at 37° C., 5% CO2, in MEM Alpha plus nucleoside and ribonucleosides and supplemented with 5% heat-inactivated fetal bovine serum until transfection. DG44 cells were plated in 100 mm tissue culture petri dishes and grown to a confluency of 50%-60%. A total of 10 μg of DNA was used to transfect one 100 mm dish: 7.5 μg of pED.dC.FVII-Fc+1.5 μg pcDNA3/Flag-Fc+1 μg of pcDNA6-PACE. The cells were transfected as described in the Superfect transfection reagent manual (Qiagen, Valencia, Calif.). The media was removed from transfection after 48 hours and replaced with MEM Alpha without nucleosides plus 5% dialyzed fetal bovine serum and 10 μg/ml of Blasticidin (invitrogen, Carlsbad, Calif.) and 0.2 mg/ml geneticin (Invitrogen, Carlsbad, Calif.). After 10 days, the cells were released from the plate with 0.25% trypsin and transferred into T25 tissue culture flasks, and the selection was continued for 10-14 days until the cells began to grow well as stable cell lines were established. Protein expression was subsequently amplified by the addition 25 nM methotrexate. Approximately 2×107 cells were used to inoculate 300 ml of growth medium in a 1700 cm2 roller bottle (Corning, Corning, N.Y.) supplemented with 5 μg/ml of vitamin K3 (menadione sodium bisulfite) (Sigma, St Louis, Mo.). The roller bottles were incubated in a 5% CO2 at 37° C. for 72 hours. Then the growth medium was exchanged with 300 ml serum-free production medium (DMEM/F12 with 5 μg/ml bovine insulin and 10 μg/ml Gentamicin) supplemented with 5 μg/L of vitamin K3. The production medium (conditioned medium) was collected every day for 10 days and stored at 4° C. Fresh production medium was added to the roller bottles after each collection and the bottles were returned to the incubator. Pooled media was first clarified using a Sartoclean glass fiber filter (3.0 μm+0.2 μm) (Sartorious Corp. Gottingen, Germany) followed by an Acropack 500 filter (0.8 μm+0.2 μm) (Pall Corp., East Hills, N.Y.). The clarified media was then concentrated approximately 20-fold using Pellicon Biomax tangential flow filtration cassettes (10 kDa MWCO) (Millipore Corp., Billerica, Mass.). Fc chimeras were then captured from the concentrated media by passage over a Protein A Sepharose 4 Fast Flow Column (AP Biotech, Piscataway, N.J.). A 5×5 cm (100 ml) column was loaded with ≦5 mg Fc protein per ml column volume at a linear flow rate of 100 cm/hour to achieve a residence time of ≧3 minutes. The column was then washed with >5 column volumes of 1×DPBS to remove non-specifically bound proteins. The bound proteins were eluted with 100 mM Glycine pH 3.0. Elution fractions containing the protein peak were then neutralized by adding 1 part 1 M Tris-HCL, pH 8 to 10 parts elute fraction. To remove FLAG-Fc homodimers (that is, chimeric Fc dimers with FLAG peptide expressed as fusions with both Fc molecules) from the preparation, the Protein A Sepharose 4 Fast Flow pool was passed over a Unosphere S cation-exchange column (BioRad Corp., Richmond, Calif.). Under the operating conditions for the column, the FLAG-Fc monomer-dimer hybrid is uncharged (FLAG-Fc theoretical pl=6.19) and flows through the column while the hFVII-Fc constructs are positively charged, and thus bind to the column and elute at higher ionic strength. The Protein A Sepharose 4 Fast Flow pool was first dialyzed into 20 mM MES, 20 mM NaCl, pH 6.1. The dialyzed material was then loaded onto a 1.1×11 cm (9.9 ml) column at 150 cm/hour. During the wash and elution, the flow rate was increased to 500 cm/hour. The column was washed sequentially with 8 column volumes of 20 mM MES, 20 mM NaCl, pH 6.1 and 8 column volumes of 20 mM MES, 40 mM NaCl, pH 6.1. The bound protein was eluted with 20 mM MES, 750 mM NaCl, pH 6.1. Elution fractions containing the protein peak were pooled and sterile filtered through a 0.2 μm filter disc prior to storage at −80° C. An anti-FLAG MAB affinity column was used to separate chimeric Fc dimers with hFVII fused to both Fc molecules from those with one FLAG peptide and one hFVII fusion. The Unosphere S Eluate pool was diluted 1:1 with 20 mM Tris, 50 mM NaCl, 5 mM CaCl2, pH 8 and loaded onto a 1.6×5 cm M2 anti-FLAG sepharose column (Sigma Corp., St. Louis, Mo.) at a linear flow rate of 60 cm/hour. Loading was targeted to <2.5 mg monomer-dimer hybrid/ml column volume. After loading the column was washed with 5 column volumes 20 mM Tris, 50 mM NaCl, 5 mM CaCl2, pH 8.0, monomer-dimer hybrids were then eluted with 100 mM Glycine, pH 3.0. Elution fractions containing the protein peak were then neutralized by adding 1 part 1 M Tris-HCl, pH 8 to 10 parts eluate fraction. Pools were stored at −80° C. Example 14 Factor IX-Fc Homodimer and Monomer-Dimer Hybrid Expression and Purification CHO DG-44 cells expressing Factor IX-Fc were established. DG44 cells were plated in 100 mm tissue culture petri dishes and grown to a confluency of 50%-60%. A total of 10 μg of DNA was used to transfect one 100 mm dish: for the homodimer transfection, 8 μg of pED.dC.Factor IX-Fc+2 μg of pcDNA6-PACE was used; for the monomer-dimer hybrid transfection, 8 μg of pED.dC.Factor IX-Fc+1 μg of pcDNA3-FlagFc+1 μg pcDNA6-PACE was used. The cells were transfected as described in the Superfect transfection reagent manual (Qiagen, Valencia, Calif.). The media was removed from transfection after 48 hours and replaced with MEM Alpha without nucleosides plus 5% dialyzed fetal bovine serum and 10 μg/ml of Blasticidin (invitrogen, Carlsbad, Calif.) for both transfections, while the monomer-dimer hybrid transfection was also supplemented with 0.2 mg/ml geneticin (Invitrogen, Carlsbad, Calif.). After 3 days, the cells were released from the plate with 0.25% trypsin and transferred into T25 tissue culture flasks, and the selection was continued for 10-14 days until the cells began to grow well as stable cell lines were established. Protein expression was subsequently amplified by the addition 10 nM or 100 nM methotrexate for the homodimer or monomer-dimer hybrid, respectively. For both cell lines, approximately 2×107 cells were used to inoculate 300 ml of growth medium in a 1700 cm2 roller bottle (Corning, Corning, N.Y.), supplemented with 5 μg/L of vitamin K3 (menadione sodium bisulfite) (Sigma, St. Louis, Mo.). The roller bottles were incubated in a 5% CO2 at 37° C. for approximately 72 hours. The growth medium was exchanged with 300 ml serum-free production medium (DMEM/F12 with 5 μg/ml bovine insulin and 10 μg/ml Gentamicin), supplemented with 5 μg/L of vitamin K3. The production medium (conditioned medium) was collected everyday for 10 days and stored at 4° C. Fresh production medium was added to the roller bottles after each collection and the bottles were returned to the incubator. Prior to chromatography, the medium was clarified using a Supor Cap-100 (0.8/0.2 μm) filter (Pall Gelman Sciences, Ann Arbor, Mich.). All of the following steps were performed at 4° C. The clarified medium was applied to Protein A Sepharose, washed with 5 column volumes of 1×PBS (10 mM phosphate, pH 7.4, 2.7 mM KCl, and 137 mM NaCl), eluted with 0.1 M glycine, pH 2.7, and then neutralized with 1/10 volume of 1 M Tris-HCl, pH 9.0. The protein was then dialyzed into PBS. The monomer-dimer hybrid transfection protein sample was subject to further purification, as it contained a mixture of FIX-Fc:FIX-Fc homodimer, FIX-Fc:Flag-Fc monomer-dimer hybrid, and Flag-Fc:Flag-Fc homodimer. Material was concentrated and applied to a 2.6 cm×60 cm (318 ml) Superdex 200 Prep Grade column at a flow rate of 4 ml/minute (36 cm/hour) and then eluted with 3 column volumes of 1×PBS. Fractions corresponding to two peaks on the UV detector were collected and analyzed by SDS-PAGE. Fractions from the first peak contained either FIX-Fc:FIX-Fc homodimer or FIX-Fc:FlagFc monomer-dimer hybrid, while the second peak contained FlagFc:FlagFc homodimer. All fractions containing the monomer-dimer hybrid but no FlagFc homodimer were pooled and applied directly to a 1.6×5 cm M2 anti-FLAG sepharose column (Sigma Corp., St. Louis, Mo.) at a linear flow rate of 60 cm/hour. After loading, the column was washed with 5 column volumes PBS. Monomer-dimer hybrids were then eluted with 100 mM Glycine, pH 3.0. Elution fractions containing the protein peak were then neutralized by adding 1/10 volume of 1 M Tris-HCl, and analyzed by reducing and nonreducing SDS-PAGE. Fractions were dialyzed into PBS, concentrated to 1-5 mg/ml, and stored at −80° C. Example 15 IFNα Homodimer and Monomer-Dimer Hybrid Expression and Purification CHO DG-44 cells expressing hIFNα were established. DG44 cells were plated in 100 mm tissue culture petri dishes and grown to a confluency of 50%-60%. A total of 10 μg of DNA was used to transfect one 100 mm dish: for the homodimer transfection, 10 μg of the hIFNαFc constructs; for the monomer-dimer hybrid transfection, 8 μg of the hIFNαFc constructs+2 μg of pcDNA3-FlagFc. The cells were transfected as described in the Superfect transfection reagent manual (Qiagen, Valencia, Calif.). The media was removed from transfection after 48 hours and replaced with MEM Alpha without nucleosides plus 5% dialyzed fetal bovine serum, while the monomer-dimer hybrid transfection was also supplemented with 0.2 mg/ml geneticin (Invitrogen, Carlsbad, Calif.). After 3 days, the cells were released from the plate with 0.25% trypsin and transferred into T25 tissue culture flasks, and the selection was continued for 10-14 days until the cells began to grow well and stable cell lines were established. Protein expression was subsequently amplified by the addition methotrexate: ranging from 10 to 50 nM. For all cell lines, approximately 2×107 cells were used to inoculate 300 ml of growth medium in a 1700 cm2 roller bottle (Corning, Corning, N.Y.). The roller bottles were incubated in a 5% CO2 at 37° C. for approximately 72 hours. Then the growth medium was exchanged with 300 ml serum-free production medium (DMEM/F12 with 5 μg/ml bovine insulin and 10 μg/ml Gentamicin). The production medium (conditioned medium) was collected every day for 10 days and stored at 4° C. Fresh production medium was added to the roller bottles after each collection and the bottles were returned to the incubator. Prior to chromatography, the medium was clarified using a Supor Cap-100 (0.8/0.2 μm) filter from Pall Gelman Sciences (Ann Arbor, Mich.). All of the following steps were performed at 4° C. The clarified medium was applied to Protein A Sepharose, washed with 5 column volumes of 1×PBS (10 mM phosphate, pH 7.4, 2.7 mM KCl, and 137 mM NaCl), eluted with 0.1 M glycine, pH 2.7, and then neutralized with 1/10 volume of 1 M Tris-HCl, pH 9.0. The protein was then dialyzed into PBS. The monomer-dimer hybrid transfection protein samples were then subject to further purification, as it contained a mixture of IFNαFc:IFNαFc homodimer, IFNαFc:FlagFc monomer-dimer hybrid, and FlagFc:FlagFc homodimer (or Δlinker or GS15 linker). Material was concentrated and applied to a 2.6 cm×60 cm (318 ml) Superdex 200 Prep Grade column at a flow rate of 4 ml/min (36 cm/hr) and then eluted with 3 column volumes of 1×PBS. Fractions corresponding to two peaks on the UV detector were collected and analyzed by SDS-PAGE. Fractions from the first peak contained either IFNαFc:IFNαFc homodimer or IFNαFc:FlagFc monomer-dimer hybrid, while the second peak contained FlagFc:FlagFc homodimer. All fractions containing the monomer-dimer hybrid, but no FlagFc homodimer, were pooled and applied directly to a 1.6×5 cm M2 anti-FLAG sepharose column (Sigma Corp., St. Louis, Mo.) at a linear flow rate of 60 cm/hour. After loading the column was washed with 5 column volumes PBS monomer-dimer hybrids were then eluted with 100 mM Glycine, pH 3.0. Elution fractions containing the protein peak were then neutralized by adding 1/10 volume of 1 M Tris-HCl, and analyzed by reducing and nonreducing SDS-PAGE. Fractions were dialyzed into PBS, concentrated to 1-5 mg/ml, and stored at −80° C. Example 16 Coiled Coil Protein Expression and Purification The plasmids, pED.dC Epo-CCA-Fc and pED.dC CCB-Fc will be transfected either alone or together at a 1:1 ratio into CHO DG44 cells. The cells will be transfected as described in the Superfect transfection reagent manual (Qiagen, Valencia, Calif.). The media will be removed after 48 hours and replaced with MEM Alpha w/o nucleosides plus 5% dialyzed fetal bovine serum. Purification will be done by affinity chromatography over a protein A column according to methods known in the art. Alternatively, purification can be achieved using size exclusion chromatography. Example 17 Cys-Fc Expression and Purification CHO DG-44 cells expressing Cys-Fc were established. The pED.dC.Cys-Fc expression plasmid, which contains the mouse dihydrofolate reductase (dhfr) gene, was transfected into CHO DG44 (dhfr deficient) cells using Superfect reagent (Qiagen; Valencia, Calif.) according to manufacturer's protocol, followed by selection for stable transfectants in αMEM (without nucleosides) tissue culture media supplemented with 5% dialyzed FBS and penicillin/streptomycin antibiotics (Invitrogen; Carlsbad, Calif.) for 10 days. The resulting pool of stably transfected cells were then amplified with 50 nM methotrexate to increase expression. Approximately 2×107 cells were used to inoculate 300 ml of growth medium in a 1700 cm2 roller bottle (Corning, Corning, N.Y.). The roller bottles were incubated in a 5% CO2 at 37° C. for approximately 72 hours. The growth medium was exchanged with 300 ml serum-free production medium (DMEM/F12 with 5 μg/ml bovine insulin and 10 μg/ml Gentamicin). The production medium (conditioned medium) was collected every day for 10 days and stored at 4° C. Fresh production medium was added to the roller bottles after each collection and the bottles were returned to the incubator. Prior to chromatography, the medium was clarified using a Supor Cap-100 (0.8/0.2 μm) filter from Pall Gelman Sciences (Ann Arbor, Mich.). All of the following steps were performed at 4° C. The clarified medium was applied to Protein A Sepharose, washed with 5 column volumes of 1×PBS (10 mM phosphate, pH 7.4, 2.7 mM KCl, and 137 mM NaCl), eluted with 0.1 M glycine, pH 2.7, and then neutralized with 1/10 volume of 1 M Tris-HCl, pH 9.0. Protein was dialyzed into PBS and used directly in conjugation reactions. Example 18 Coupling of T20-Thioesters to Cys-Fc Cys-Fc (4 mg, 3.2 mg/ml final concentration) and either T20-thioester or T20-PEG-thioester (2 mg, approximately 5 molar equivalents) were incubated for 16 hours at room temperature in 0.1 M Tris 8/10 mM MESNA. Analysis by SDS-PAGE (Tris-Gly gel) using reducing sample buffer indicated the presence of a new band approximately 5 kDa larger than the Fc control (>40-50% conversion to the conjugate). Previous N-terminal sequencing of Cys-Fc and unreacted Cys-Fc indicated that the signal peptide is incorrectly processed in a fraction of the molecules, leaving a mixture of (Cys)-Fc, which will react through native ligation with peptide-thioesters, and (Val)-(Gly)-(Cys)-Fc, which will not. As the reaction conditions are insufficient to disrupt the dimerization of the Cys-Fc molecules, this reaction generated a mixture of T20-Cys-Fc:T20-Cys-Fc homodimers, T20-Cys-Fc:Fc monomer-dimer hybrids, and Cys-Fc:Cys-Fc Fc-dimers. This protein was purified using size exclusion chromatography as indicated above to separate the three species. The result was confirmed by SDS-PAGE analysis under nonreducing conditions. Example 19 Antiviral Assay for IFNα Activity Antiviral activity (IU/ml) of IFNα fusion proteins was determined using a CPE (cytopathic effect) assay. A549 cells were plated in a 96 well tissue culture plate in growth media (RPMI 1640 supplemented with 10% fetal bovine serum (FBS) and 2 mM L-glutamine) for 2 hours at 37° C., 5% CO2. IFNα standards and IFNα fusion proteins were diluted in growth media and added to cells in triplicate for 20 hours at 37° C., 5% CO2. Following incubation, all media was removed from wells, encephalomyocarditis virus (EMC) virus was diluted in growth media and added (3000 pfu/well) to each well with the exception of control wells. Plates were incubated at 37° C., 5% CO2 for 28 hours. Living cells were fixed with 10% cold trichloroacetic acid (TCA) and then stained with Sulforhodamine B (SRB) according to published protocols (Rubinstein et al. 1990, J. Natl. Cancer Inst. 82, 1113). The SRB dye was solubilized with 10 mM Tris pH 10.5 and read on a spectrophotometer at 490 nm. Samples were analyzed by comparing activities to a known standard curve World Health Organization IFNα 2b International Standard ranging from 5 to 0.011 IU/ml. The results are presented below in Table 3 and FIG. 6 and demonstrate increased antiviral activity of monomer-dimer hybrids. TABLE 3 INTERFERON ANTIVIRAL ASSAY HOMODIMER V. MONOMER-DIMER HYBRID Antiviral Activity Protein (IU/nmol) Std dev IFNαFc 8aa linker homodimer 0.45 × 105 0.29 × 105 IFNαFc 8aa linker:FlagFc 4.5 × 105 1.2 × 105 monomer-dimer hybrid IFNαFc Δ linker homodimer 0.22 × 105 0.07 × 105 IFNαFc Δ delta linker: FlagFc 2.4 × 105 0.0005 × 105 monomer-dimer hybrid IFNaαFc GS15 linker 2.3 × 105 1.0 × 105 homodimer IFNαFc GS15 linker 5.3 × 105 0.15 × 105 monomer-dimer hybrid Example 20 FVIIa Clotting Activity Analysis The StaClot FVIIa-rTF assay kit was purchased from Diagnostica Stago (Parsippany, N.J.) and modified as described in Johannessen et al. 2000, Blood Coagulation and Fibrinolysis 11:S159. A standard curve was preformed with the FVIIa World Health Organization standard 89/688. The assay was used to compare clotting activity of monomer-dimer hybrids compared to homodimers. The results showed the monomer-dimer hybrid had four times the clotting activity compared to the homodimer (FIG. 7). Example 21 FVIIa-Fc Oral Dosing in Day 10 Rats 25 gram day 9 newborn Sprague Dawley rats were purchased from Charles River (Wilmington, Mass.) and allowed to acclimate for 24 hours. The rats were dosed orally with FVIIaFc homodimer, monomer-dimer hybrid or a 50:50 mix of the two. A volume of 200 μl of a FVIIaFc solution for a dose of 1 mg/kg was administered. The solution was composed of a Tris-HCl buffer pH 7.4 with 5 mg/ml soybean trypsin inhibitor. The rats were euthanized with CO2 at several time points, and 2.00 μl of blood was drawn by cardiac puncture. Plasma was obtained by the addition of a 3.8% sodium citrate solution and centrifugation at room temperature at a speed of 1268×g. The plasma samples were either assayed fresh or frozen at 20° C. Orally dosed monomer-dimer hybrid resulted in significantly higher maximum (Cmax) serum concentrations compared to homodimeric Factor VII (FIG. 8). Example 22 Factor IX-Fc Oral Dosing of Neonatal Rats Ten-day old neonatal Sprague-Dawley rats were dosed p.o. with 200 μl of FIX-Fc homodimer or FIX-Fc:FlagFc monomer-dimer hybrid at approximately equimolar doses of 10 nmol/kg in 0.1 M sodium phosphate buffer, pH 6.5 containing 5 mg/ml soybean trypsin inhibitor and 0.9% NaCl. At 1, 2, 4, 8, 24, 48, and 72 hours post injection, animals were euthanized with CO2, blood was drawn via cardiac puncture and plasma was obtained by the addition of a 3.8% sodium-citrate solution and centrifugation at room temperature at a speed of 1268×g. Samples were then sedimented by centrifugation, serum collected and frozen at −20° C. until analysis of the fusion proteins by ELISA. Example 23 Factor IX-Fc ELISA A 96-well Immulon 4HBX ELISA plate (Thermo LabSystems, Vantaa, Finland) was coated with 100 μl/well of goat anti-Factor IX IgG (Affinity Biologicals, Ancaster, Canada) diluted 1:100 in 50 mM carbonate buffer, pH 9.6. The plates were incubated at ambient temperature for 2 hours or overnight at 4° C. sealed with plastic film. The wells were washed 4 times with PBST, 300 μl/well using the TECAN plate washer. The wells were blocked with PBST+6% BSA, 200 μl/well, and incubated 90 minutes at ambient temperature. The wells were washed 4 times with PBST, 300 μl/well using the TECAN plate washer. Standards and blood samples from rats described in Example 18 were added to the wells, (100 μl/well), and incubated 90 minutes at ambient temperature. Samples and standards were diluted in HBET buffer (HBET: 5.95 g HEPES, 1.46 g NaCl, 0.93 g Na2EDTA, 2.5 g Bovine Serum Albumin, 0.25 ml Tween-20, bring up to 250 ml with dH2O, adjust pH to 7.2). Standard curve range was from 200 ng/ml to 0.78 ng/ml with 2 fold dilutions in between. Wells were washed 4 times with PBST, 300 μl/well using the TECAN plate washer. 100 μl/well of conjugated goat anti-human IgG-Fc-HARP antibody (Pierce, Rockford, Ill.) diluted in HBET 1:25,000 was added to each well. The plates were incubated 90 minutes at ambient temperature. The wells were washed 4 times with PBST, 300 μl/well using the TECAN plate washer. The plates were developed with 100 μl/well of tetramethylbenzidine peroxidase substrate (TMB) (Pierce, Rockford, Ill.) was added according to the manufacturer's instructions. The plates were incubated 5 minutes at ambient temperature in the dark or until color developed. The reaction was stopped with 100 μl/well of 2 M sulfuric acid. Absorbance was read at 450 nm on SpectraMax plusplate reader (Molecular Devices, Sunnyvale, Calif.). Analysis of blood drawn at 4 hours indicated more than a 10 fold difference in serum concentration between Factor IX-Fc monomer-dimer hybrids compared to Factor IX Fc homodimers (FIG. 9). The results indicated Factor IX-Fc monomer-dimer hybrid levels were consistently higher than Factor IX-Fc homodimers (FIG. 10). Example 24 Cloning of Epo-Fc The mature Epo coding region was obtained by PCR amplification from a plasmid encoding the mature erythropoietin coding sequence, originally obtained by RT-PCR from Hep G2 mRNA, and primers hepoxba-F and hepoeco-R, indicated below. Primer hepoxba-F contains an XbaI site, while primer hepoeco-R contains an EcoRI site. PCR was carried out in the Idaho Technology RapidCycler using Vent polymerase, denaturing at 95° C. for 15 seconds, followed by 28 cycles with a slope of 6.0 of 95° C. for 0 seconds, 55° C. for 0 seconds, and 72° C. for 1 minute 20 seconds, followed by 3 minute extension at 72° C. An approximately 514 bp product was gel purified, digested with XbaI and EcoRI, gel purified again and directionally subcloned into an XbaI/EcoRI-digested, gel purified pED.dC.XFc vector, mentioned above. This construct was named pED.dC.EpoFc. The Epo sequence, containing both the endogenous signal peptide and the mature sequence, was obtained by PCR amplification using an adult kidney QUICK-clone cDNA preparation as the template and primers Epo+Pep-Sbf-F and Epo+Pep-Sbf-R, described below. The primer Epo+Pep-Sbf-F contains an SbfI site upstream of the start codon, while the primer Epo+Pep-Sbf-R anneals downstream of the endogenous SbfI site in the Epo sequence. The PCR reaction was carried out in the PTC-200 MJ Thermocycler using Expand polymerase, denaturing at 94° C. for 2 minutes, followed by 32 cycles of 94° C. for 30 seconds, 57° C. for 30 seconds, and 72° C. for 45 seconds, followed by a 10 minute extension at 72° C. An approximately 603 bp product was gel isolated and subcloned into the pGEM-T Easy vector. The correct coding sequence was excised by SbfI digestion, gel purified, and cloned into the PstI-digested, shrimp alkaline phosphatase (SAP)-treated, gel purified pED.dC.EpoFc plasmid. The plasmid with the insert in the correct orientation was initially determined by KpnI digestion. A XmnI and PvuII digestion of this construct was compared with pED.dC.EpoFc and confirmed to be in the correct orientation. The sequence was determined and the construct was named pED.dC.natEpoFc. PCR Primers: (SEQ ID NO:75) hepoxba-F (EPO-F): 5′-AATCTAGAGCCCCACCACGCGTCATCTGT GAC-3′ (SEQ ID NO:76) hepoeco-R (EPO-R) 5′-TTGAATTCTCTGTCCCCTGTCCTGCAGGC C-3′ (SEQ ID NO:77) Epo+Pep-Sbf-F: 5′-GTACCTGCAGGCGGAGATGGGGGTGCA- 3′ (SEQ ID NO:78) Epo+Pep-Sbf-R: 5′-CCTGGTCATCTGTCCCCTGTCC-3′ Example 25 Cloning of Epo-Fc An alternative method of cloning EPO-Fc is described herein. Primers were first designed to amplify the full length Epo coding sequence, including the native signal sequence, as follows: (SEQ ID NO:79) Epo-F: 5′-GTCCAACCTG CAGGAAGCTTG CGGCCACCAT GGGAGTGCAC GAATGTCCTG CCTGG- 3′ (SEQ ID NO:80) Epo-R: 5′-GCCGAATTCA GTTTTGTCGA GCGCAGCGG CGCCGGCGAA CTGTCTGTCC CCTGTTCTGC AGGCCTCC- 3′ The forward primer incorporates an SbfI and HindIII site upstream of a Kozak sequence, while the reverse primer removes the internal SbfI site, and adds an 8 amino acid linker to the 3′ end of the coding sequence (EFAGAAAV) (SEQ ID NO:81) as well as SalI and EcoRI restriction sites. The Epo coding sequence was then amplified from a kidney cDNA library (BD Biosciences Clontech, Palo Alto, Calif.) using 25 pmol of these primers in a 25 μl PCR reaction using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to manufacturer's standard protocol in a MJ Thermocycler using the following cycles: 94° C. 2 minutes; 30 cycles of (94° C. 30 seconds, 58° C. 30 seconds, 72° C. 45 seconds), followed by 72° C. for 10 minutes. The expected sized band (641 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia, Calif.) and ligated into the intermediate cloning vector pGEM T-Easy (Promega, Madison, Wis.). DNA was transformed into DH5α cells (Invitrogen, Carlsbad, Calif.) and miniprep cultures grown and purified with a Plasmid Miniprep Kit (Qiagen, Valencia, Calif.) both according to manufacturer's standard protocols. Once the sequence was confirmed, this insert was digested out with SbfI/EcoRI restriction enzymes, gel purified, and cloned into the PstI/EcoRI sites of the mammalian expression vector pED.dC in a similar manner. Primers were designed to amplify the coding sequence for the constant region of human IgG1 (the Fc region, EU numbering 221-447) as follows: (SEQ ID NO:82) Fc-F: 5′-GCTGCGGTCG ACAAAACTCA CACATGCCCA CCGTGCCCAG CTCCGGAACT CCTGGGCGGA CCGTCAGTC- 3′ (SEQ ID NO:83) Fc-R 5′-ATTGGAATTC TGATTTACCC GGAGACAGGG AGAGGC- 3′ The forward primer incorporates a SalI site at the linker-Fc junction, as well as introducing BspEI and RsrII sites into the Fc region without affecting the coding sequence, while the reverse primer adds an EcoRI site after the stop codon. The Fc coding sequence was then amplified from a leukocyte cDNA library (BD Biosciences Clontech, Palo Alto, Calif.) using 25 pmol of these primers in a 25 μl PCR reaction using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to manufacturer's standard protocol in a MJ Thermocycler using the following cycles: 94° C. 2 minutes; 30 cycles of (94° C. 30 seconds, 58° C. 30 seconds, 72° C. 45 seconds), followed by 72° C. for 10 minutes. The expected sized band (696 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia, Calif.) and ligated into the intermediate cloning vector pGEM T-Easy (Promega, Madison, Wis.). DNA was transformed into DH5α cells (Invitrogen, Carlsbad, Calif.) and miniprep cultures grown and purified with a Plasmid Miniprep Kit (Qiagen, Valencia, Calif.), both according to manufacturer's standard protocols. Once the sequence was confirmed, this insert was digested out with Sal/EcoRI restriction enzymes, gel purified, and cloned into the SalI/EcoRI sites of the plasmid pED.dC.Epo (above) in a similar manner, to generate the mammalian expression plasmid pED.dC.EpoFc. In another experiment this plasmid was also digested with RsrII/XmaI, and the corresponding fragment from pSYN-Fc-002, which contains the Asn 297 Ala mutation (EU numbering) was cloned in to create pED.dC.EPO-Fc N297A (pSYN-EPO-004). Expression in mammalian cells was as described in Example 26. The amino acid sequence of EpoFc with an eight amino acid linker is provided in FIG. 2j. During the process of this alternative cloning method, although the exact EpoFc amino acid sequence was preserved (FIG. 2J), a number of non-coding changes were made at the nucleotide level (FIG. 3J). These are G6A (G at nucleotide 6 changed to A) (eliminate possible secondary structure in primer), G567A (removes endogenous SbfI site from Epo), A582G (removes EcoRI site from linker), A636T and T639G (adds unique BspEI site to Fc), and G651C (adds unique RsrII site to Fc). The nucleotide sequence in FIG. 3J is from the construct made in Example 25, which incorporates these differences from the sequence of the construct from Example 24. Example 26 EPO-Fc Homodimer and Monomer-Dimer Hybrid Expression and Purification DG44 cells were plated in 100 mm tissue culture petri dishes and grown to a confluency of 50%-60%. A total of 10 μg of DNA was used to transfect one 100 mm dish: for the homodimer transfection, 10 μg of pED.dC.EPO-Fc; for the monomer-dimer hybrid transfection, 8 μg of pED.dC.EPO-Fc+2 μg of pcDNA3-FlagFc. The constructs used were cloned as described in Example 24. The cloning method described in Example 25 could also be used to obtain constructs for use in this example. The cells were transfected as described in the Superfect transfection reagent manual (Qiagen, Valencia, Calif.). Alternatively, pED.dC.EPO-Fc was cotransfected with pSYN-Fc-016 to make an untagged monomer. The media was removed from transfection after 48 hours and replaced with MEM Alpha without nucleosides plus 5% dialyzed fetal bovine serum for both transfections, while the monomer-dimer hybrid transfection was also supplemented with 0.2 mg/ml geneticin (Invitrogen, Carlsbad, Calif.). After 3 days, the cells were released from the plate with 0.25% trypsin and transferred into T25 tissue culture flasks, and the selection was continued for 0.10-14 days until the cells began to grow well as stable cell lines were established. Protein expression was subsequently amplified by the addition methotrexate. For both cell lines, approximately 2×107 cells were used to inoculate 300 ml of growth medium in a 1700 cm2 roller bottle (Corning, Corning, N.Y.). The roller bottles were incubated in a 5% CO2 at 37° C. for approximately 72 hours. The growth medium was exchanged with 300 ml serum-free production medium (DMEM/F12 with 5 μg/ml bovine insulin and 10 μg/ml Gentamicin). The production medium (conditioned medium) was collected every day for 10 days and stored at 4° C. Fresh production medium was added to the roller bottles after each collection and the bottles were returned to the incubator. Prior to chromatography, the medium was clarified using a Supor Cap-100 (0.8/0.2 μm) filter from Pall Gelman Sciences (Ann Arbor, Mich.). All of the following steps were performed at 4° C. The clarified medium was applied to Protein A Sepharose, washed with 5 column volumes of 1×PBS (10 mM phosphate, pH 7.4, 2.7 mM KCl, and 137 mM NaCl), eluted with 0.1 M glycine, pH 2.7, and then neutralized with 1/10 volume of 1 M Tris-HCl, pH 9.0. Protein was then dialyzed into PBS. The monomer-dimer hybrid transfection protein sample was subject to further purification, as it contained a mixture of EPO-Fc:EPO-Fc homodimer, EPO-Fc:Flag-Fc monomer-dimer hybrid, and Flag-Fc:Flag-Fc homodimer. Material was concentrated and applied to a 2.6 cm×60 cm (318 ml) Superdex 200 Prep Grade column at a flow rate of 4 ml/min (36 cm/hour) and then eluted with 3 column volumes of 1×PBS. Fractions corresponding to two peaks on the UV detector were collected and analyzed by SDS-PAGE. Fractions from the first peak contained either EPO-Fc:EPO-Fc homodimer or EPO-Fc:FlagFc monomer-dimer hybrid, while the second peak contained FlagFc:FlagFc homodimer. All fractions containing the monomer-dimer hybrid but no FlagFc homodimer were pooled and applied directly to a 1.6×5 cm M2 anti-FLAG sepharose column (Sigma Corp.) at a linear flow rate of 60 cm/hour. After loading the column was washed with 5 column volumes PBS. Monomer-dimer hybrids were then eluted with 100 mM Glycine, pH 3.0. Elution fractions containing the protein peak were then neutralized by adding 1/10 volume of 1 M Tris-HCl, and analyzed by reducing and nonreducing SDS-PAGE. Fractions were dialyzed into PBS, concentrated to 1-5 mg/ml, and stored at −80° C. Alternatively, fractions from first peak of the Superdex 200 were analyzed by SDS-PAGE, and only fractions containing a majority of EpoFc monomer-dimer hybrid, with a minority of EpoFc homodimer, were pooled. This pool, enriched for the monomer-dimer hybrid, was then reapplied to a Superdex 200 column, and fractions containing only EpoFc monomer-dimer hybrid were then pooled, dialyzed and stored as purified protein. Note that this alternate purification method could be used to purify non-tagged monomer-dimer hybrids as well. Example 27 Administration of EpoFc Dimer and Monomer-Dimer Hybrid with an Eight Amino Acid Linker to Cynomolgus Monkeys For pulmonary administration, aerosols of either EpoFc dimer or EpoFc monomer-dimer hybrid proteins (both with the 8 amino acid linker) in PBS, pH 7.4 were created with the Aeroneb Pro™ (AeroGen, Mountain View, Calif.) nebulizer, in-line with a Bird Mark 7A respirator, and administered to anesthetized naïve cynomolgus monkeys through endotracheal tubes (approximating normal tidal breathing). Both proteins were also administered to naïve cynomolgus monkeys by intravenous injection. Samples were taken at various time points, and the amount of Epo-containing protein in the resulting plasma was quantitated using the Quantikine IVD Human Epo Immunoassay (R&D Systems, Minneapolis, Minn.). Pharmacokinetic parameters were calculated using the software WinNonLin. Table 4 presents the bioavailability results of cynomolgus monkeys treated with EpoFc monomer-dimer hybrid or EpoFc dimer. TABLE 4 ADMINISTRATION OF EPOFC MONOMER-DIMER HYBRID AND EPOFC DIMER TO MONKEYS Approx. Deposited Monkey Dose1 Cmax Cmax t1/2 t1/2 avg Protein # Route (μg/kg) (ng/ml) (fmol/ml) (hr) (hr) EpoFc CO6181 pulm 20 72.3 1014 23.6 25.2 monomer- CO6214 pulm 20 50.1 703 23.5 dimer CO7300 pulm 20 120 1684 36.2 hybrid CO7332 pulm 20 100 1403 17.5 CO7285 IV 25 749 10508 21.3 22.6 CO7288 IV 25 566 7941 23 CO7343 IV 25 551 1014 23.5 EpoFc DD026 pulm 15 10.7 120 11.5 22.1 dimer DD062 pulm 15 21.8 244 27.3 DD046 pulm 15 6.4 72 21.8 DD015 pulm 15 12.8 143 20.9 DD038 pulm 35 27 302 29 F4921 IV 150 3701 41454 15.1 14.6 96Z002 IV 150 3680 41219 15.3 1261CQ IV 150 2726 30533 23.6 127-107 IV 150 4230 47379 15.0 118-22 IV 150 4500 50403 8.7 126-60 IV 150 3531 39550 9.8 1Based on 15% deposition fraction of nebulized dose as determined by gamma scintigraphy The percent bioavailability (F) was calculated for the pulmonary doses using the following equation: F=(AUC pulmonary/Dose pulmonary)/(AUC IV/Dose IV)*100 TABLE 5 CALCULATION OF PERCENT BIOAVAILABILITY FOR EPOFC MONOMER-DIMER HYBRID V. DIMER AFTER PULMONARY ADMINISTRATION TO NAÏVE CYNOMOLGUS MONKEYS Approx. Monkey Dose1 AUC Bioavailability2 Average Protein # (deposited) ng · hr/mL (F) Bioavailability EpoFc CO6181 20 μg/kg 3810 25.2% monomer- CO6214 20 μg/kg 3072 20.3% 34.9% dimer CO7300 20 μg/kg 9525 63.0% hybrid CO7332 20 μg/kg 4708 31.1% DD026 15 μg/kg 361 5.1% DD062 15 μg/kg 1392 19.6% EpoFc DD046 15 μg/kg 267 3.8% 10.0% dimer DD015 15 μg/kg 647 9.1% DD038 35 μg/kg 2062 12.4% 1Based on 15% deposition fraction of nebulized dose as determined by gamma scintigraphy 2Mean AUC for IV EpoFc monomer-dimer hybrid = 18,913 ng · hr/mL (n = 3 monkeys), dosed at 25 μg/kg. Mean AUC for IV EpoFc dimer = 70,967 ng · hr/mL (n = 6 monkeys), dosed at 150 μg/kg The pharmacokinetics of EpoFc with an 8 amino acid linker administered to cynomolgus monkeys is presented in FIG. 11. The figure compares the EpoFc dimer with the EpoFc monomer-dimer hybrid in monkeys after administration of a single pulmonary dose. Based on a molar comparison significantly higher serum levels were obtained in monkeys treated with the monomer-dimer hybrid compared to the dimer. Example 28 Subcutaneous Administration of EPOFc Monomer-Dimer Hybrid To compare serum concentrations of known erythropoietin agents with EPOFc monomer-dimer hybrids, both EPOFc monomer-dimer hybrid and Aranesp® (darbepoetin alfa), which is not a chimeric fusion protein, were administered subcutaneously to different monkeys and the serum concentration of both was measured over time. Cynomolgus monkeys (n=3 per group) were injected subcutaneously with 0.025 mg/kg EpoFc monomer-dimer hybrid. Blood samples were collected predose and at times up to 144 hours post dose. Serum was prepared from the blood and stored frozen until analysis by ELISA (Human Epo-Quantikine Immunoassay) (R & D Systems, Minneapolis, Minn.). Pharmacokinetic parameters were determined using WinNonLinâ® software (Pharsight, Mountainview, Calif.). The results indicated the serum concentrations of both EPOFc monomer-dimer hybrid and Aranesp® (darbepoetin alfa) were equivalent over time, even though the administered molar dose of Aranesp® (darbepoetin alfa) was slightly larger (Table 6) (FIG. 12). TABLE 6 % Dose Dose Cmax AUC T1/2 Bioavailability Route (μg/kg) (nmol/kg) (ng/mL) (ng · hr · mL−1) (hr) (F) EpoFc Subcutaneous 25 0.3 133 ± 34 10,745 ± 3,144 26 ± 5 57 ± 17 Monomer- dimer hybrid Aranesp ® Subcutaneous 20 0.54 83 ± 11 5390 ± 747 22 ± 2 53 ± 8 Example 29 Intravenous Administration of EPOFc Monomer-Dimer Hybrid To compare serum concentrations of known erythropoietin agents with EPOFc monomer-dimer hybrids, EPOFc monomer-dimer hybrid, Aranesp® (darbepoetin alfa), and Epogen® (epoetin alfa), neither of which is a chimeric fusion protein, were administered intravenously to different monkeys and the serum concentration of both was measured over time. Cynomolgus monkeys (n=3 per group) were injected intravenously with 0.025 mg/kg EpoFc monomer-dimer hybrid. Blood samples were collected predose and at times up to 144 hours post dose. Serum was prepared from the blood and stored frozen until analysis by ELISA (Human Epo Quantikine Immunoassay) (R & D Systems, Minneapolis, Minn.). Pharmacokinetic parameters were determined using WinNonLinâ software (Pharsight, Mountainview, Calif.). The results indicated the serum concentration versus time (AUC) of EPOFc monomer-dimer hybrid was greater than the concentrations of either Epogen® (epoetin alfa) or Aranesp® (darbepoetin alfa), even though the monkeys received larger molar doses of both Epogen® (epoetin alfa) and Aranesp® (darbepoetin alfa) (Table 7) (FIG. 13). TABLE 7 Dose Dose Cmax AUC T1/2 Route (μg/kg) (nmol/kg) (ng/mL) (ng · hr · mL−1) (hr) EpoFc Intravenous 25 0.3 622 ± 110 18,913 ± 3,022 23 ± 1 Monomer- dimer hybrid Aranesp ® Intravenous 20 0.54 521 ± 8 10,219 ± 298 20 ± 1 Epogen Intravenous 20 0.66 514 ± 172 3936 ± 636 6.3 ± 0.6 Example 30 Alternative Purification of EpoFc Monomer-Dimer Hybrid Yet another alternative for purifying EPO-Fc is described herein. A mixture containing Fc, EpoFc monomer-dimer hybrid, and EpoFc dimer was applied to a Protein A Sepharose column (Amersham, Uppsala, Sweden). The mixture was eluted according to the manufacturer's instructions. The Protein A Sepharose eluate, containing the mixture was buffer exchanged into 50 mM Tris-Cl (pH 8.0). The protein mixture was loaded onto an 8 mL Mimetic Red 2 XL column (ProMetic Life Sciences, Inc., Wayne, N.J.) that had been equilibrated in 50 mM Tris-Cl (pH 8.0). The column was then washed with 50 mM Tris-Cl (pH 8.0); 50 mM NaCl. This step removed the majority of the Fc. EpoFc monomer-dimer hybrid was specifically eluted from the column with 50 mM Tris-Cl (pH 8.0); 400 mM NaCl. EpoFc dimer can be eluted and the column regenerated with 5 column volumes of 1 M NaOH. Eluted fractions from the column were analyzed by SDS-PAGE (FIG. 14). Example 31 Cloning of IgK Signal Sequence—Fc Construct for Making Untagged Fc Alone The coding sequence for the constant region of IgG1 (EU #221-447; the Fc region) was obtained by PCR amplification from a leukocyte cDNA library (Clontech, CA) using the following primers: (SEQ ID NO: 84) rcFc-F 5′- GCTGCGGTCGACAAAACTCACACATGCGCACCGTGCCCAG CTCCGGAACTCCTGGGCGGACCGTCAGTC -3′ (SEQ ID NO: 85) rcFc-R 5′- ATTGGAATTCTCATTTACCCGGAGACAGGGAGAGGC -3′ The forward primer adds three amino acids (MV) and a SalI cloning site before the beginning of the Fc region, and also incorporates a BspEI restriction site at amino acids 231-233 and an RsrII restriction site at amino acids 236-238 using the degeneracy of the genetic code to preserve the correct amino acid sequence (EU numbering). The reverse primer adds an EcoRI cloning site after the stop codon of the Fc. A 25 μl PCR reaction was carried out with 25 pmol of each primer using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to the manufacturer's standard protocol in a MJ Thermocycler using the following cycles: 94° C. 2 minutes; 30 cycles of (94° C. 30 seconds, 58° C. 30 seconds, 72° C. 45 seconds), 72° C. 10 minutes. The expected sized band (˜696 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.), and cloned into pGEM T-Easy (Promega, Madison, Wis.) to produce an intermediate plasmid pSYN-Fc-001 (pGEM T-Easy/Fc). The mouse IgK signal sequence was added to the Fc CDS using the following primers: (SEQ ID NO: 86) rc-IgK sig seq-F: 5′-TTTAAGCTTGCCGCCACCATGGAGACAGA CACACTCCTGCTATGGGTACTGCTGCTCTGGG TTCCAGGTTCCACTGGTGACAAAACTCACACA TGCCCACCG -3′ (SEQ ID NO: 87) Fc-noXma-GS-R: 5′-GGTCAGCTCATCGCGGGATGGG-3′ (SEQ ID NO: 88) Fc-noXma-GS-F: 5′-CGCATCGCGCGATGAGCTGAGC-3′ The rc-IgK signal sequence-F primer adds a HindIII restriction site to the 5′end of the molecule, followed by a Kozak sequence (GCCGCCACC) (SEQ ID NO: 89) followed by the signal sequence from the mouse IgK light chain, directly abutted to the beginning of the Fc sequence (EU# 221). The Fc-noXma-GS-F and -R primers remove the internal XmaI site from the Fc coding sequence, using the degeneracy of the genetic code to preserve the correct amino acid sequence. Two 25 μl PCR reactions were carried out with 25 pmol of either rc-IgK signal sequence-F and Fc-noXma-GS-R or Fc-noXma-GS-F and rcFc-R using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to the manufacturer's standard protocol in a MJ Thermocycler. The first reaction was carried out with 500 ng of leukocyte cDNA library (BD Biosciences Clontech, Palo Alto, Calif.) as a template using the following cycles: 94° C. 2 minutes; 30 cycles of (94° C. 30 seconds, 55° C. 30 seconds, 72° C. 45 seconds), 72° C. 10 minutes. The second reaction was carried out with 500 ng of pSYN-Fc-001 as a template (above) using the following cycles: 94° C. 2 minutes; 16 cycles of (94° C. 30 seconds, 58° C. 30 seconds, 72° C. 45 seconds), 72° C. 10 minutes. The expected sized bands (˜495 and 299 bp, respectively) were gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.), then combined in a PCR reaction with 25 pmol of rc-IgK signal sequence-F and rcFc-R primers and run as before, annealing at 58° C. and continuing for 16 cycles. The expected sized band (˜772 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.) and cloned into pGEM T-Easy (Promega, Madison, Wis.) to produce an intermediate plasmid pSYN-Fc-007 (pGEM T-Easy/IgK sig seq-Fc). The entire IgK signal sequence-Fc cassette was then subcloned using the HindIII and EcoRI sites into either the pEE6.4 (Lonza, Slough, UK) or pcDNA3.1 (Invitrogen, Carlsbad, Calif.) mammalian expression vector, depending on the system to be used, to generate pSYN-Fc-009 (pEE6.4/IgK sig seq-Fc) and pSYN-Fc-015 (pcDNA3/IgK sig seq-Fc). Example 32 Cloning of IgK Signal Sequence—Fc N297A Construct for Making Untagged Fc N297A Alone In order to mutate Asn 297 (EU numbering) of the Fc to an Ala residue, the following primers were used: (SEQ ID NO: 90) N297A-F 5′- GAGCAGTACGCTAGCACGTACCG -3′ (SEQ ID NO: 91) N297A-R 5′- GGTACGTGCTAGCGTACTGCTCC -3′ Two PCR reactions were carried out with 25 pmol of either rc-IgK signal sequence-F and N297A-R or N297A-F and rcFc-R using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to the manufacturer's standard protocol in a MJ Thermocycler. Both reactions were carried out using 500 ng of pSYN-Fc-007 as a template using the following cycles: 94° C. 2 minutes; 16 cycles of (94° C. 30 seconds, 48° C. 30 seconds, 72° C. 45 seconds), 72° C. 1.0 minutes. The expected sized bands (˜319 and 475 bp, respectively) were gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.), then combined in a PCR reaction with 25 pmol of rc-IgK signal sequence-F and rcFc-R primers and run as before, annealing at 58° C. and continuing for 16 cycles. The expected sized band (−772 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.) and cloned into pGEM T-Easy (Promega, Madison, Wis.) to produce an intermediate plasmid pSYN-Fc-008 (pGEM T-Easy/IgK sig seq-Fc N297A). The entire IgK signal sequence-Fc alone cassette was then subcloned using the HindIII and EcoRI sites into either the pEE6.4 (Lonza, Slough, UK) or pcDNA3.1 (Invitrogen, Carlsbad, Calif.) mammalian expression vector, depending on the system to be used, to generate pSYN-Fc-010 (pEE6.4/IgK sig seq-Fc N297A) and pSYN-Fc-016 (pcDNA3/IgK sig seq-Fc N297A). These same N297A primers were also used with rcFc-F and rcFc-R primers and pSYN-Fc-001 as a template in a PCR reaction followed by subcloning as indicated above to generate pSYN-Fc-002 (pGEM T Easy/Fc N297A). Example 33 Cloning of EpoFc and Fc into Single Plasmid for Double Gene Vectors for Making EpoFc Wildtype or N297A Monomer-Dimer Hybrids, and Expression An alternative to transfecting the EpoFc and Fc constructs on separate plasmids is to clone them into a single plasmid, also called a double gene vector, such as used in the Lonza Biologics (Slough, UK) system. The RsrII/EcoRI fragment from pSYN-Fc-002 was subcloned into the corresponding sites in pEE12.4 (Lonza Biologics, Slough, UK) according to standard procedures to generate pSYN-Fc-006 (pEE12.4/Fc N297A fragment). The pSYN-EPO-004 plasmid was used as a template for a PCR reaction using Epo-F primer from Example 25 and the following primer: (SEQ ID NO: 91) EpoRsr-R: 5′- CTGACGGTCCGCCCAGGAGTTCCGGAGCTG GGCACGGTGGGCATG TGTGAGTTTTGTCGACCG CAGCGG -3′ A PCR reaction was carried out using Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to the manufacturer's standard protocol in a MJ Thermocycler as indicated above, for 16 cycles with 55° C. annealing temperature. The expected sized band (˜689 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.) and cloned into pSYN-Fc-006 using the HindIII/RsrII restriction sites, to generate pSYN-EPO-005 (pEE12.4/EpoFc N297A). The double gene vector for the EpoFc N297A monomer-dimer hybrid was then constructed by cloning the NotI/BamHI fragment from pSYN-Fc-010 into the corresponding sites in pSYN-EPO-005 to generate pSYN-EPO-008 (pEE12.4-6.4/EpoFc N297A/Fc N297A). The wild type construct was also made by subcloning the wild type Fc sequence from pSYN-Fc-001 into pSYN-EPO-005 using the RsrII and EcoRI sites, to generate pSYN-EPO-006 (pEE12.4/EpoFc). The double gene vector for the EpoFc monomer-dimer hybrid was then constructed by cloning the NotI/BamHI fragment from pSYN-Fc-009 into the corresponding sites in pSYN-EPO-006 to generate pSYN-EPO-007 (pEE12.4-6.4/EpoFc/Fc). Each plasmid was transfected into CHOK1SV cells and positive clones identified and adpated to serum-free suspension, as indicated in the Lonza Biologics Manual for Standard Operating procedures (Lonza Biologics, Slough, UK), and purified as indicated for the other monomer-dimer constructs. Example 34 Cloning of Human IFNβFc, IFNβ-Fc N297A with Eight Amino Acid Linkers and IgK-Fc-6His Constructs 10 ng of a human genomic DNA library from Clontech (BD Biosciences Clontech, Palo Alto, Calif.) was used as a template to isolate human IFNβ with its native signal sequence using the following primers: IFNβ-F H3/Sbfl: (SEQ ID NO: 92) 5′- CTAGCCTGCAGGAAGCTTGCCGCCACCATGACCAACAAGTGTCTCC TC -3′ IFNβ-R (EFAG) Sal: (SEQ ID NO: 93) 5′TTTGTCGACCGCAGCGGCGCCGGCGAACTCGTTTCGGAGGTAACCTGT AAG -3′ The reverse primer was also used to create an eight amino acid linker sequence (EFAGAAAV) (SEQ ID NO: 94) on the 3′ end of the human IFNβ sequence. The PCR reaction was carried out using the Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to the manufacturer's standard protocol in a Rapid Cycler thermocycler (Idaho Technology, Salt Lake City, Utah). A PCR product of the correct size (˜607 bp) was gel purified using a Gel Extraction kit (Qiagen; Valencia, Calif.), cloned into TA cloning vector (Promega, Madison, Wis.) and sequenced. This construct was named pSYN-IFNβ-002. pSYN-IFNβ-002 was digested with SbfI and SalI and cloned into pSP72 (Promega) at PstI and SalI sites to give pSYN-IFNβ-005. Purified pSYN-Fc-001 (0.6 μg) was digested with SalI and EcoRI and cloned into the corresponding sites of pSYN-IFNβ-005 to create the plasmid pSYN-IFNβ-006 which contains human IFNβ linked to human Fc through an eight amino acid linker sequence. pSYN-IFNβ-006 was then digested with SbfI and EcoRI and the full-length IFNβ-Fc sequence cloned into the PstI and EcoRI sites of pEDdC.sig to create plasmid pSYN-IFNβ-008. pSYN-Fc-002 containing the human Fc DNA with a single amino acid change from asparagine to alanine at position 297 (N297A; EU numbering) was digested with BspEI and XmaI to isolate a DNA fragment of 365 bp containing the N297A mutation. This DNA fragment was cloned into the corresponding sites in pSYN-IFNβ-008 to create plasmid pSYN-IFNβ-009 that contains the IFNβ-Fc sequence with an eight amino acid linker and an N297A mutation in Fc in the expression vector, pED.dC. Cloning of IgK signal sequence-Fc N297A-6His. The following primers were used to add a 6×His tag to the C terminus of the Fc N297A coding sequence: Fc GS-F: (SEQ ID NO: 95) 5′- GGCAAGCTTGCCGCCACCATGGAGACAGACACACTCC -3′ Fc.6His-R: (SEQ ID NO: 96) 5′- TCAGTGGTGATGGTGATGATGTTTACCCGGAGACAGGGAG -3′ Fc.6His-F: (SEQ ID NO: 97) 5′- GGTAAACATCATCACCATCACCACTGAGAATTCCAATATCACTAG TGAATTCG -3′ Sp6+T-R: (SEQ ID NO: 98) 5′- GCTATTTAGGTGACACTATAGAATACTCAAGC -3′ Two PCR reactions were carried out with 50 pmol of either Fc GS-F and Fc.6His-R or Fc.6His-F and Sp6+T-R using the Expand High Fidelity System (Boehringer Mannheim, Indianapolis, Ind.) according to the manufacturer's standard protocol in a MJ Thermocycler. Both reactions were carried out using 500 ng of pSYN-Fc-008 as a template in a 50 μl reaction, using standard cycling conditions. The expected sized bands (˜780 and 138 bp, respectively) were gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.), then combined in a 50 μl PCR reaction with 50 pmol of Fc GS-F and Sp6+T-R primers and run as before, using standard cycling conditions. The expected sized band (˜891 bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia Calif.) and cloned into pcDNA6 V5-His B using the HindIII and EcoRI sites to generate pSYN-Fc-014 (pcDNA6/IgK sig seq-Fc N297A-6 His). Example 35 Expression and Purification of IFNβFc, IFNβ-Fc N297A Homodimer and IFNβ-Fc N297A Monomer-Dimer Hybrid CHO DG44 cells were plated in 100 mm tissue culture dishes and grown to a confluency of 50%-60%. A total of 10 μg of DNA was used to transfect a single 100 mm dish. For the homodimer transfection, 10 μg of the pSYN-FNβ-008 or pSYN-IFNβ-009 construct was used; for the monomer-dimer hybrid transfection, 8 μg of the pSYN-IFNβ-009+2 μg of pSYN-Fc-014 construct was used. The cells were transfected using Superfect transfection reagents (Qiagen, Valencia, Calif.) according to the manufacturer's instructions. 48 to 72 hours post-transfection, growth medium was removed and cells were released from the plates with 0.25% trypsin and transferred to T75 tissue culture flasks in selection medium (MEM Alpha without nucleosides plus 5% dialyzed fetal bovine serum). The selection medium for the monomer-dimer hybrid transfection was supplemented with 5 μg/ml Blasticidin (Invitrogen, Carlsbad, Calif.). Selection was continued for 10-14 days until the cells began to grow well and stable cell lines were established. Protein expression was subsequently amplified by the addition methotrexate: ranging from 10 to 50 nM. For all cell lines, approximately 2×107 cells were used to inoculate 300 ml of growth medium in a 1700 cm2 roller bottle (Corning, Corning, N.Y.). The roller bottles were incubated in a 5% CO2 incubator at 37° C. for approximately 72 hours. The growth medium was then exchanged with 300 ml serum-free production medium (DMEM/F12 with 5 μg/ml human insulin). The production medium (conditioned medium) was collected every day for 10 days and stored at 4° C. Fresh production medium was added to the roller bottles after each collection and the bottles were returned to the incubator. Prior to chromatography, the medium was clarified using a Supor Cap-100 (0.8/0.2 μm) filter from Pall Gelman Sciences (Ann Arbor, Mich.). All of the following steps were performed at 4° C. The clarified medium was applied to Protein A Sepharose, washed with 5 column volumes of 1×PBS (10 mM phosphate, pH 7.4, 2.7 mM KCl, and 137 mM NaCl), eluted with 0.1 M glycine, pH 2.7, and then neutralized with 1/10 volume of 1 M Tris-HCl pH 8.0, 5 M NaCl. The homodimer proteins were further purified over a Superdex 200 Prep Grade sizing column run and eluted in 50 mM sodium phosphate pH 7.5, 500 mM NaCl, 10% glycerol. The monomer-dimer hybrid protein was subject to further purification since it contained a mixture of IFNβFc N297A:IFNβFc N297A homodimer, IFNβFc N297A: Fc N297A His monomer-dimer hybrid, and Fc N297A His: Fc N297A His homodimer. Material was applied to a Nickel chelating column in 50 mM sodium phosphate pH 7.5, 500 mM NaCl. After loading, the column was washed with 50 mM imidazole in 50 mM sodium phosphate pH 7.5, 500 mM NaCl and protein was eluted with a gradient of 50-500 mM imidazole in 50 mM sodium phosphate pH 7.5, 500 mM NaCl. Fractions corresponding to elution peaks on a UV detector were collected and analyzed by SDS-PAGE. Fractions from the first peak contained IFNβFc N297A: Fc N297A His monomer-dimer hybrid, while the second peak contained Fc N297A His: Fc N297A His homodimer. All fractions containing the monomer-dimer hybrid, but no Fc homodimer, were pooled and applied directly to a Superdex 200 Prep Grade sizing column, run and eluted in 50 mM sodium phosphate pH 7.5, 500 mM NaCl, 10% glycerol. Fractions containing IFNβ-Fc N297A:Fc N297A His monomer-dimer hybrids were pooled and stored at −80° C. Example 36 Antiviral Assay for IFNβ Activity Antiviral activity (IU/ml) of IFNβ fusion proteins was determined using a CPE (cytopathic effect) assay. A549 cells were plated in a 96 well tissue culture plate in growth media (RPMI 1640 supplemented with 10% fetal bovine serum (FBS) and 2 mM L-glutamine) for 2 hours at 37° C., 5% CO2. IFNβ standards and IFNβ fusion proteins were diluted in growth media and added to cells in triplicate for 20 hours at 37° C., 5% CO2. Following incubation, all media was removed from wells, encephalomyocarditis virus (EMCV) was diluted in growth media and added (3000 pfu/well) to each well with the exception of control wells. Plates were incubated at 37° C., 5% CO2 for 28 hours. Living cells were fixed with 10% cold trichloroacetic acid (TCA) and then stained with Sulforhodamine B (SRB) according to published protocols (Rubinstein et al. 1990, J. Natl. Cancer Inst. 82, 1113). The SRB dye was solubilized with 10 mM Tris pH 10.5 and read on a spectrophotometer at 490 nm. Samples were analyzed by comparing activities to a known standard curve ranging from 10 to 0.199 IU/ml. The results are presented below in Table 8 and demonstrate increased antiviral activity of monomer-dimer hybrids. TABLE 8 INTERFERON BETA ANTIVIRAL ASSAY HOMODIMER V. MONOMER-DIMER HYBRID Antiviral Activity Protein (IU/nmol) Std dev IFNβ-Fc 8aa linker homodimer 4.5 × 105 0.72 × 105 IFNβFc N297A 8aa linker homodimer 3.21 × 105 0.48 × 105 IFNβFc N297A 8aa linker: Fc His 12.2 × 105 2 × 105 monomer-dimer hybrid Example 37 Administration of IFNβFc Homodimer and Monomer-Dimer Hybrid with an Eight Amino Acid Linker to Cynomolgus Monkeys For pulmonary administration, aerosols of either IFNβFc homodimer or IFNβFc N297A monomer-dimer hybrid proteins (both with the 8 amino acid linker) in PBS, pH 7.4, 0.25% HSA were created with the Aeroneb Pro™ (AeroGen, Mountain View, Calif.) nebulizer, in-line with a Bird Mark 7A respirator, and administered to anesthetized naïve cynomolgus monkeys through endotracheal tubes (approximating normal tidal breathing). Blood samples were taken at various time points, and the amount of IFNβ-containing protein in the resulting serum was quantitated using a human IFNβ Immunoassay (Biosource International, Camarillo, Calif.). Pharmacokinetic parameters were calculated using the software WinNonLin. Table 9 presents the results of cynomolgus monkeys treated with IFNβFc N297A monomer-dimer hybrid or IFNβFc homodimer. TABLE 9 ADMINISTRATION OF IFNβFC N297A MONOMER-DIMER HYBRID AND IFNβFC HOMODIMER TO MONKEYS Approx. Deposited Monkey Dose1 Cmax AUC t1/2 t1/2 avg Protein # Route (μg/kg) (ng/ml) (hr*ng/ml) (hr) (hr) IFNβFc CO7308 pulm 20 23.3 987.9 27.6 27.1 N297A CO7336 pulm 20 22.4 970.6 25.6 monomer- CO7312 pulm 20 21.2 1002.7 28.0 dimer hybrid IFNβFc CO7326 pulm 20 2.6 94.6 11.1 11.4 homodimer CO7338 pulm 20 5.0 150.6 11.7 1Based on 15% deposition fraction of nebulized dose as determined by gamma scintigraphy The pharmacokinetics of IFNβFc with an 8 amino acid linker administered to cynomolgus monkeys is presented in FIG. 15. The figure compares the IFNβFc homodimer with the IFNβFc N297A monomer-dimer hybrid in monkeys after administration of a single pulmonary dose. Significantly higher serum levels were obtained in monkeys treated with the monomer-dimer hybrid compared to the homodimer. Serum samples were also analyzed for neopterin levels (a biomarker of IFNβ activity) using a neopterin immunoassay (MP Biomedicals, Orangeburg, N.Y.). The results for this analysis are shown in FIG. 16. The figure compares neopterin stimulation in response to the IFNβ-Fc homodimer and the IFNβ-Fc N297A monomer-dimer hybrid. It can be seen that significantly higher neopterin levels were detected in monkeys treated with IFNβ-Fc N297A monomer-dimer hybrid as compared to the IFNβ-Fc homodimer. All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches. All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supercede and/or take precedence over any such contradictory material. Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only and are not meant to be limiting in any way. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>Immunoglobulins are comprised of four polypeptide chains, two heavy chains and two light chains, which associate via disulfide bonds to form tetramers. Each chain is further comprised of one variable region and one constant region. The variable regions mediate antigen recognition and binding, while the constant regions, particularly the heavy chain constant regions, mediate a variety of effector functions, e.g., complement binding and Fc receptor binding (see, e.g., U.S. Pat. Nos. 6,086,875; 5,624,821; 5,116,964). The constant region is further comprised of domains denoted CH (constant heavy) domains (CH1, CH2, etc.). Depending on the isotype, (i.e. IgG, IgM, IgA IgD, IgE) the constant region can be comprised of three or four CH domains. Some isotypes (e.g. IgG) constant regions also contain a hinge region Janeway et al. 2001 , Immunobiology, Garland Publishing, N.Y., N.Y. The creation of chimeric proteins comprised of immunoglobulin constant regions linked to a protein of interest, or fragment thereof, has been described (see, e.g., U.S. Pat. Nos. 5,480,981 and 5,808,029; Gascoigne et al. 1987, Proc. Natl. Acad. Sci. USA 84:2936; Capon et al. 1989, Nature 337:525; Traunecker et al. 1989, Nature 339:68; Zettmeissl et al. 1990, DNA Cell Biol. USA 9:347; Byrn et al. 1990, Nature 344:667; Watson et al. 1990, J. Cell. Biol. 110:2221; Watson et al. 1991, Nature 349:164; Aruffo et al. 1990 , Cell 61:1303; Linsley et al. 1991, J. Exp. Med. 173:721; Linsley et al. 1991, J. Exp. Med. 174:561; Stamenkovic et al., 1991, Cell 66:1133; Ashkenazi et al. 1991, Proc. Natl. Acad. Sci. USA 88:10535; Lesslauer et al. 1991, Eur. J. Immunol. 27:2883; Peppel et al. 1991, J. Exp. Med. 174:1483; Bennett et al. 1991, J. Biol. Chem. 266:23060; Kurschner et al. 1992, J. Biol. Chem. 267:9354; Chalupny et al. 1992, Proc. Natl. Acad. Sci. USA 89:10360; Ridgway and Gorman, 1991, J. Cell. Biol. 115, Abstract No. 1448; Zheng et al. 1995, J. Immun. 154:5590). These molecules usually possess both the biological activity associated with the linked molecule of interest as well as the effector function, or some other desired characteristic associated with the immunoglobulin constant region (e.g. biological stability, cellular secretion). The Fc portion of an immunoglobulin constant region, depending on the immunoglobulin isotype can include the CH2, CH3, and CH4 domains, as well as the hinge region. Chimeric proteins comprising an Fc portion of an immunoglobulin bestow several desirable properties on a chimeric protein including increased stability, increased serum half life (see Capon et al. 1989, Nature 337:525) as well as binding to Fc receptors such as the neonatal Fc receptor (FcRn) (U.S. Pat. Nos. 6,086,875, 6,485,726, 6,030,613; WO 03/077834; U.S. 2003-0235536A1). FcRn is active in adult epithelial tissue and expressed in the lumen of the intestines, pulmonary airways, nasal surfaces, vaginal surfaces, colon and rectal surfaces (U.S. Pat. No. 6,485,726). Chimeric proteins comprised of FcRn binding partners (e.g. IgG, Fc fragments) can be effectively shuttled across epithelial barriers by FcRn, thus providing a non-invasive means to systemically administer a desired therapeutic molecule. Additionally, chimeric proteins comprising an FcRn binding partner are endocytosed by cells expressing the FcRn. But instead of being marked for degradation, these chimeric proteins are recycled out into circulation again, thus increasing the in vivo half life of these proteins. Portions of immunoglobulin constant regions, e.g., FcRn binding partners typically associate, via disulfide bonds and other non-specific interactions, with one another to form dimers and higher order multimers. The instant invention is based in part upon the surprising discovery that transcytosis of chimeric proteins comprised of FcRn binding partners appears to be limited by the molecular weight of the chimeric protein, with higher molecular weight species being transported less efficiently. Chimeric proteins comprised of biologically active molecules, once administered, typically will interact with a target molecule or cell. The instant invention is further based in part upon the surprising discovery that monomer-dimer hybrids, with one biologically active molecule, but two portions of an immunoglobulin constant region, e.g., two FcRn binding partners, function and can be transported more effectively than homodimers, also referred to herein simply as “dimers” or higher order multimers with two or more copies of the biologically active molecule. This is due in part to the fact that chimeric proteins, comprised of two or more biologically active molecules, which exist as dimers and higher order multimers, can be sterically hindered from interacting with their target molecule or cell, due to the presence of the two or more biologically active molecules in close proximity to one another and that the biologically active molecule can have a high affinity for itself. Accordingly one aspect of the invention provides chimeric proteins comprised of a biologically active molecule that is transported across the epithelium barrier. An additional aspect of the invention provides chimeric proteins comprised of at least one biologically active molecule that is able to interact with its target molecule or cell with little or no steric hindrance or self aggregation. The aspects of the invention provide for chimeric proteins comprising a first and second polypeptide chain, the first chain comprising at least a portion of immunoglobulin constant region, wherein the portion of an immunoglobulin constant region has been modified to include a biologically active molecule and the second chain comprising at least a portion of immunoglobulin constant region, wherein the portion of an immunoglobulin constant region has not been so modified to include the biologically active molecule of the first chain. | <SOH> SUMMARY OF THE INVENTION <EOH>The invention relates to a chimeric protein comprising one biologically active molecule and two molecules of at least a portion of an immunoglobulin constant region. The chimeric protein is capable of interacting with a target molecule or cell with less steric hindrance compared to a chimeric protein comprised of at least two biologically active molecules and at least a portion of two immunoglobulin constant regions. The invention also relates to a chimeric protein comprising at least one biologically active molecule and two molecules of at least a portion of an immunoglobulin constant region that is transported across an epithelium barrier more efficiently than a corresponding homodimer, i.e., wherein both chains are linked to the same biologically active molecule. The invention, thus relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region, but no immunoglobulin variable region and without any biologically active molecule attached. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region without an immunoglobulin variable region or any biologically active molecule and wherein said second chain is not covalently bonded to any molecule having a molecular weight greater than 1 kD, 2 kD, 5 kD, 10 kD, or 20 kD. In one embodiment, the second chain is not covalently bonded to any molecule having a molecular weight greater than 0-2 kD. In one embodiment, the second chain is not covalently bonded to any molecule having a molecular weight greater than 5-10 kD. In one embodiment, the second chain is not covalently bonded to any molecule having a molecular weight greater than 15-20 kD. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region not covalently linked to any other molecule except the portion of an immunoglobulin of said first polypeptide chain. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain consists of at least a portion of an immunoglobulin constant region and optionally an affinity tag. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain consists essentially of at least a portion of an immunoglobulin constant region and optionally an affinity tag. The invention relates to a chimeric protein comprising a first and a second polypeptide chain linked together, wherein said first chain comprises a biologically active molecule and at least a portion of an immunoglobulin constant region, and said second chain comprises at least a portion of an immunoglobulin constant region without an immunoglobulin variable region or any biologically active molecule and optionally a molecule with a molecular weight less than 10 kD, 5 kD, 2 kD or 1 kD. In one embodiment, the second chain comprises a molecule less than 15-20 kD. In one embodiment, the second chain comprises a molecule less than 5-10 kD. In one embodiment, the second chain comprises a molecule less than 1-2 kD. The invention relates to a chimeric protein comprising a first and second polypeptide chain, wherein said first chain comprises a biologically active molecule, at least a portion of an immunoglobulin constant region, and at least a first domain, said first domain having at least one specific binding partner, and wherein said second chain comprises at least a portion of an immunoglobulin constant region, and at least a second domain, wherein said second domain is a specific binding partner of said first domain, without any immunoglobulin variable region or a biologically active molecule. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, said method comprising transfecting a cell with a first DNA construct comprising a DNA molecule encoding a first polypeptide chain comprising a biologically active molecule and at least a portion of an immunoglobulin constant region and optionally a linker, and a second DNA construct comprising a DNA molecule encoding a second polypeptide chain comprising at least a portion of an immunoglobulin constant region without any biologically active molecule or an immunoglobulin variable region, and optionally a linker, culturing the cells under conditions such that the polypeptide chain encoded by the first DNA construct is expressed and the polypeptide chain encoded by the second DNA construct is expressed and isolating monomer-dimer hybrids comprised of the polypeptide chain encoded by the first DNA construct and the polypeptide chain encoded by the second DNA construct. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, and wherein said first polypeptide chain comprises a biologically active molecule, at least a portion of an immunoglobulin constant region, and at least a first domain, said first domain, having at least one specific binding partner, and wherein said second polypeptide chain comprises at least a portion of an immunoglobulin constant region and a second domain, wherein said second domain, is a specific binding partner of said first domain, without any biologically active molecule or an immunoglobulin variable region, said method comprising transfecting a cell with a first DNA construct comprising a DNA molecule encoding said first polypeptide chain and a second DNA construct comprising a DNA molecule encoding, said second polypeptide chain, culturing the cells under conditions such that the polypeptide chain encoded by the first DNA construct is expressed and the polypeptide chain encoded by the second DNA construct is expressed and isolating monomer-dimer hybrids comprised of the polypeptide chain encoded by the first DNA construct and polypeptide chain encoded by the second DNA construct. The invention relates to a method of making a chimeric protein of the invention said method comprising transfecting a cell with a first DNA construct comprising a DNA molecule encoding a first polypeptide chain comprising a biologically active molecule and at least a portion of an immunoglobulin constant region and optionally a linker, culturing the cell under conditions such that the polypeptide chain encoded by the first DNA construct is expressed, isolating the polypeptide chain encoded by the first DNA construct and transfecting a cell with a second DNA construct comprising a DNA molecule encoding a second polypeptide chain comprising at least a portion of an immunoglobulin constant region without any biologically active molecule or immunoglobulin variable region, culturing the cell under conditions such that the polypeptide chain encoded by the second DNA construct is expressed, isolating the polypeptide chain, encoded by the second DNA construct, combining the polypeptide chain, encoded by the first DNA construct and the polypeptide chain encoded by the second DNA construct under conditions such that monomer-dimer hybrids comprising the polypeptide chain encoded by the first DNA construct and the polypeptide chain encoded by the second DNA construct form, and isolating said monomer-dimer hybrids. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, said method comprising transfecting a cell with a DNA construct comprising a DNA molecule encoding a polypeptide chain comprising at least a portion of an immunoglobulin constant region, culturing the cells under conditions such that the polypeptide chain encoded by the DNA construct is expressed with an N terminal cysteine such that dimers of the polypeptide chain form and isolating dimers comprised of two copies of the polypeptide chain encoded by the DNA construct and chemically reacting the isolated dimers with a biologically active molecule, wherein said biologically active molecule has a C terminus thioester, under conditions such that the biologically active molecule reacts predominantly with only one polypeptide chain of the dimer thereby forming a monomer-dimer hybrid. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, said method comprising transfecting a cell with a DNA construct comprising a DNA molecule encoding a polypeptide chain comprising at least a portion of an immunoglobulin constant region, culturing the cells under conditions such that the polypeptide chain encoded by the DNA construct is expressed with an N terminal cysteine such that dimers of the polypeptide chains form, and isolating dimers comprised of two copies of the polypeptide chain encoded by the DNA construct, and chemically reacting the isolated dimers with a biologically active molecule, wherein said biologically active molecule has a C terminus thioester, such that the biologically active molecule is linked to each chain of the dimer, denaturing the dimer comprised of the portion of the immunoglobulin linked to the biologically active molecule such that monomeric chains form, combining the monomeric chains with a polypeptide chain comprising at least a portion of an immunoglobulin constant region without a biologically active molecule linked to it, such that monomer-dimer hybrids form, and isolating the monomer-dimer hybrids. The invention relates to a method of making a chimeric protein comprising a first and second polypeptide chain, wherein the first polypeptide chain and the second polypeptide chain are not the same, said method comprising transfecting a cell with a DNA construct comprising a DNA molecule encoding a polypeptide chain comprising at least a portion of an immunoglobulin constant region, culturing the cells under conditions such that the polypeptide chain encoded by the DNA construct is expressed as a mixture of two polypeptide chains, wherein the mixture comprises a polypeptide with an N terminal cysteine, and a polypeptide with a cysteine in close proximity to the N terminus, isolating dimers comprised of the mixture of polypeptide chains encoded by the DNA construct and chemically reacting the isolated dimers with a biologically active molecule, wherein said biologically active molecule has an active thioester, such that at least some monomer-dimer hybrid forms and isolating the monomer-dimer hybrid from said mixture. The invention relates to a method of treating a disease or condition comprising administering a chimeric protein of the invention thereby treating the disease or condition. Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. | 20050105 | 20080325 | 20051124 | 61582.0 | 1 | HUMPHREY, LOUISE WANG ZHIYING | IMMUNOGLOBULIN CHIMERIC MONOMER-DIMER HYBRIDS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,029,049 | ACCEPTED | Rim protector | A rim protection apparatus fitted around a periphery of a rim of a motor vehicle wheel is provided. The rim protection apparatus covers the circumferential edge of the rim. The apparatus has substantially planar circular protective ring and means for fitting the protective ring around the periphery of the rim. The protective ring has a front surface and a back surface, the back surface being coupled with the rim of the wheel when the apparatus is fitted around the periphery of the rim of the wheel, the front surface being a decorative surface accenting the color and appearance of the wheel. The protective ring is fitted around the periphery of the rim with an adhesive layer disposed on the back surface of the protective ring. | 1. A rim protection apparatus fitted around a periphery of a rim of a motor vehicle wheel, the apparatus comprising: a substantially planar circular shock-absorbing protective ring comprising: a first part covering a first surface of the rim in a first plane, the first plane being the plane of a sidewall of the motor vehicle wheel; a second part perpendicular to the first part covering a second surface of the rim, the second surface of the rim being perpendicular to the first surface of the rim; and a means for fitting the protective ring around the periphery of the rim, the apparatus covering the circumferential edge of the rim wherein the protective ring is tightly coupled to the wheel; wherein said first part and said second part are configured to be gradually placed to cup the rim so that said first part and said second part are no longer substantially planar but perpendicular to one another. 2. The apparatus of claim 1 wherein the circular shock-absorbing protective ring comprises a front surface and a back surface, the back surface being coupled with the rim of the wheel when the apparatus is fitted around the periphery of the rim of the wheel, the front surface being a decorative surface accenting the color and appearance of the wheel, the protective ring having an inner edge and an outer edge. 3. The apparatus of claim 1 wherein the means for fitting comprises an adhesive layer disposed on the back surface of the shock-absorbing protective ring. 4. The apparatus of claim 1 wherein the means for fitting further comprises a removable backing tape for covering an adhesive layer prior to being coupled with the rim of the wheel. 5. The apparatus of claim 1 wherein the apparatus is flush mounted around the periphery of the rim of the wheel. 6. The apparatus of claim 1 wherein the apparatus is fitted around a periphery of a rim of at least one of a wheel without spokes and a wheel with spokes. 7. The apparatus of claim 1 wherein the apparatus is fitted around a periphery of a rim of a wheel with spokes by using a lip coupled to at least one of the inner edge and the outer edge of the protective ring, the lip being disposed on the rain of the wheel. 8. The apparatus of claim 1 protecting a rim and spokes when the apparatus is fitted around a periphery of a rim of a wheel with spokes, the protective ring covering the surface of the rim, the protective ring comprising a plurality of extensions extending from at least one of the inner edge and the outer edge of the protective ring to a center of the wheel, each extension covering at least one spoke of the wheel. 9. The apparatus of claim 1 wherein the protective ring is constructed using an abrasion resistant and shock-absorbing material. 10. The apparatus of claim 1 wherein the protective ring is constructed using a material that is one of a plastic, a metal, a carbon fiber or fiberglass. 11. The apparatus of claim 1 wherein the apparatus is removed from the wheel by peeling off the protective ring, the ring being removed in case of damage, the damage being indicated by a damage indicator disposed underneath the first part of the protective ring, the damage indicator being disposed above an adhesive layer. 12. The apparatus of claim 1 wherein the front surface of the shock-absorbing protective ring is custom designed to match the color and design of the wheel, the protective ring accentuating the color and design of the wheel while protecting the rim of the wheel. 13. A protection apparatus for a rim, comprising: a first surface; a second surface in communication with and in the same plane as said first surface; wherein said first surface and said second surface are configured to perpendicularly communicate when said first surface and said second surface are placed over the rim. 14. The protection apparatus of claim 13 wherein said first surface covers a sidewall of the rim. 15. The protection apparatus of claim 13 wherein said second surface covers a front surface of the rim. 16. The protection apparatus of claim 14 wherein said second surface covers a front surface of the rim. | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to protective devices for motor vehicle wheels. More particularly, the present invention relates to an apparatus for protecting a rim of a motor vehicle wheel from damage, while also enhancing the color and design of the wheel. 2. Discussion of the Related Art Motor vehicle wheels are frequently damaged on their side surfaces near the tires. The damage is more acute in case the wheels are made of some light alloy. The damage is usually caused by the wheel knocking and scraping against obstacles such as curbs, walls and stones. In case of such damage, usually the rim of the wheel is bent or distorted, and a user is generally required to replace the entire wheel. To avoid having to change the entire wheel or the tire, the wheel may be fitted with a protective ring. The protective ring covers the rim of the wheel entirely, and protects it from being damaged when the wheel knocks or scrapes against obstacles. Numerous types of rim protection devices are known in the art. For example, U.S. Pat. No. 5,423,599, issued Jun. 13, 1995 to Sherod et al. discloses a detachable wheel mask for temporarily covering an entire wheel of an automobile during washing and protecting the wheel from dirt while cleaning. The wheel mask includes a circular protective cover of a size corresponding with the wheel, a retaining element for fitting within a groove formed between the wheel rim and the tire to secure the protective cover to the wheel rim enclosing the wheel and a handle. Whereas the foregoing wheel rim mask may provide adequate protection from tire dressing being applied to the wheel rim, such protective covers are not readily adjustable to fit a plurality of differently sized wheel rims. In addition, the wheel mask is a temporary fixture and is meant to provide protection against liquid spray when the wheel is being cleaned. The wheel mask does not provide protection against damage that occurs to the wheel rim, when the wheel knocks or scrapes against obstacles. The wheel mask is not tightly glued to the wheel, and hence, is liable to come off if a force is applied. Further, the wheel mask does not have a decorative function and therefore, does not accentuate the color and design of the wheel. U.S. Pat. No. 5,524,972, issued Jun. 11, 1996 to Cailor et al. describes a wheel mask to protect the vehicle wheels during chemical treatment of the tires. The wheel mask is a thin plastic molding having a circular concave body that includes a central hub having an exterior handle. The handle is inwardly open and formed of walls which project outwardly of the hub and are tapered to permit partial insertion of a handle of another mask, and the ridge walls are angled outwardly to enhance stacking of a plurality of masks. This device suffers from the same disadvantages described above. Wheel rim covers such as the one disclosed in U.S. Pat. No. 4,811,991, issued on Mar. 14, 1989 to Marino et al. is a hand-held device that can be held in place over the wheel rim with one hand while the user applies tire dressing to the tire with the other. U.S. Pat. No. 4,874,206 issued on Oct. 17, 1989 to Sampson, and U.S. Pat. No. 4,955,670 issued on Sep. 11, 1990 to Koller discloses wheel rim covers that include attachment means so that such protective covers can be secured to the wheel rim to free up both hands of the user. This device suffers from the same disadvantages described above. Japanese Pat. No. 07045016 issued on Aug. 27, 1996 to Tomita Auto describes a side rim protector, which prevents damage of a side rim of a road wheel of an automobile and increases decorative effect thereof. The side rim protector consists of a ringlike member having substantially equal diameter to that of a side rim and an engaging section which is one of mounting means formed integrally with the ringlike member. The side rim protector is fixed on a side rim side by fitting the engaging section in and engaging it with a groove on the side rim side. It is formed by resin or rubber and can be colored, thereby increasing decorative effect. The described side rim protector protects only a side rim of an automobile wheel. In addition since the side rim protector is constructed by using rubber, it is liable to be damaged sooner, if continuously used. Further since it is attached to the wheel using some engaging means and is not glued on to the wheel, it may come off when the wheel is used continuously for a prolonged period for time. In light of the above, despite the attempts made by the prior art devices, there still exists a need for an improved motor vehicle rim protector which provides maximum protection to a rim of the wheel, when the wheel bumps or scrapes against obstacles, while also enhancing the appearance of the wheel. None of the prior art patents, taken alone or in combination, teaches or suggests the presently claimed rim protection apparatus for motor vehicle wheels. SUMMARY OF THE INVENTION The present invention provides a rim protection apparatus fitted around a periphery of a rim of a motor vehicle wheel. The apparatus comprises a substantially planar circular protective ring and means for fitting the protective ring around the periphery of the rim. The rim protection apparatus covers the circumferential edge of the rim wherein the protective ring is tightly coupled to the wheel. The protective ring comprises a first part covering a first surface of the rim in a first plane, the first plane being the plane of a sidewall of the motor vehicle wheel and a second part perpendicular to the first part covering a second surface of the rim, the second surface of the rim being perpendicular to the first surface of the rim. The protective ring further comprises a front surface and a back surface, the back surface being coupled with the rim of the wheel when the apparatus is fitted around the periphery of the rim of the wheel, the front surface being a decorative surface accenting color and appearance of the wheel. The means for fitting the protective ring around the periphery of the rim comprises an adhesive disposed on the back surface of the protective ring. The rim protection apparatus is meant for actual vehicular use and protects the rim from potential scratches, bumps and deformation that result from day to day use of the wheel. Accordingly a first objective of the invention is to provide an abrasion resistant rim protection apparatus for protecting a rim of a motor vehicle wheel from potential scratches, bumps and deformation that result from day to day use of the wheel. A second objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that accents the color and design of the wheel. A third objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that is constructed using a hard, light weight and abrasion resistant material such as plastic, metal, carbon fiber or fiber glass. A fourth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that is custom designed to match color and design of the wheel. A fifth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel, that is secured around a periphery of the rim using an adhesive layer. A sixth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel without spokes as well as a wheel with spokes. A seventh objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel with spokes such that the protective ring covers the surface of the rim and comprises a plurality of extensions extending from at least one of the inner edge and the outer edge of the protective ring to a center of the wheel, each extension covering at least one spoke of the wheel. An eighth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that is provided with a damage indicator disposed underneath the first part of the protective ring. The damage indicator indicates the need for replacement of the rim protection apparatus when the first part of the protective ring is scraped or damaged. A ninth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that can be easily removed from the wheel by peeling off the protective ring from the wheel. A tenth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that can be installed or replaced single handedly by a user without using any specialized installation tools. These and other objects of the present invention will become readily apparent upon further review of the following description and drawings. BRIEF DESCRIPTION OF THE DRAWINGS A more complete appreciation of the invention, and many of the attendant advantages hereof, readily will be apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein: FIG. 1 illustrates a rim protection apparatus fitted around a periphery of a rim of a motor vehicle wheel, in accordance with an embodiment of the present invention; and FIG. 2 illustrates a rim protection apparatus fitted around a periphery of a rim and spokes of a motor vehicle wheel having spokes, in accordance with an embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates a rim protection apparatus fitted around a periphery of a rim (102) of a motor vehicle wheel (100) for protecting the rim (102), in accordance with an embodiment of the present invention. The rim protection apparatus comprises a protective ring (104) and means for fitting the protective ring (104) around the periphery of the rim (102). The rim protection apparatus is constructed using a hard, lightweight and abrasion resistant material that can absorb abuse and protect the rim (102) from being damaged. In various embodiments of the present invention, the rim protection apparatus is constructed using materials such as plastic, metal, carbon fiber or fiberglass. In various embodiments of the present invention, the rim protection apparatus is designed to protect various different styles of wheels such as wheels without spokes and wheels with spokes etc. The protective ring (104) is substantially planar and circular and comprises a first part (106) and a second part (108) perpendicular to the first part (106). The first part (106) covers a first surface of the rim which is parallel to a sidewall of the of the motor vehicle wheel (100). The second part (108) covers a second surface of the rim, which is perpendicular to the first surface of the rim and the sidewall of the wheel (100). In addition, the protective ring (104) has an inner edge (110) and an outer edge (112) and a central aperture therein. (Inner edge (110) and outer edge (112) not shown). In an embodiment of the present invention, extra durability is provided to the first part (106) either, by constructing it using an abrasion resistant material or increasing its thickness. Extra durability is provided to the first part (106) since, the first part (106) is most liable to be damaged when the wheel (100) bumps, knocks or scrapes against obstacles. Therefore, since the first part (106) provides maximum protection to the rim (102), it is constructed in a manner that enables it to withstand repeated knocks and scrapes without necessitating repair. The protective ring (104) further comprises an outer front surface (106) and an inner back surface (108). The back surface (108) is coupled with the rim (102), when the rim protection apparatus is fitted around the periphery of the rim (102). The front surface (106) is a decorative surface accenting color and appearance of the wheel (100). In an embodiment of the present invention, the front surface (106) is decorated using flashing lights, decorative lettering or holograms. In another embodiment, the front surface (106) is custom designed to match the color and design of the motor vehicle or the wheel (100). In yet another embodiment, the front surface (106) is suitably treated to provide a good ornamental effect. For example, the front surface (106) may be constructed using a metal sheet, which provides a smoother and shinier surface finish resulting directly from its production process, without requiring further polishing. The front surface (106) may be constructed using materials like aluminum, stainless steel or even plastic. In this case, too, a good ornamental effect can be conferred on the front surface (106) directly in the production process, or the front surface (106) can be subsequently painted, chromed or otherwise treated. Whether the front surface (106) is made of metal, carbon fiber, fiberglass or plastic, the material should preferably be shockproof and scratchproof to resist the shocks and scratching resulting from contact with curbs, walls, stones, etc. The back surface (108) is provided with means for fitting the rim protection apparatus around the periphery of the rim (102) of the wheel (100). In an embodiment of the present invention, the means for fitting comprises an adhesive layer disposed on the back surface (108) of the protective ring (104). The back surface (108) is further provided with a removable backing tape for covering the adhesive layer, prior to the disposition of the protective ring (104) on the rim (102). In an embodiment of the present invention, a damage-indicating material is disposed underneath the front surface (106) above the adhesive layer on the back surface (108). The damage-indicating material can be of a different color and design than the front surface (106). The damage-indicating material ensures that once the rim protection apparatus of the present invention is damaged to an extent that the front surface (106) is scraped; the impacts and abrasions on the damage-indicating material are visible to the user. Once the rim protection apparatus of the present invention has been damaged to the point of needing replacement, the visible change of color between the original front surface (106) and the exposed damage-indicating material, would serve as a visual reminder to the user for replacing the rim protection apparatus. Therefore, the rim protection apparatus described in the present invention protects two different surface planes of the rim by covering the circumferential edge of the rim. In addition, the rim protection apparatus is easy to install, and can be done single handedly by a user without the use of any specialized installation tools. In an embodiment of the present invention, in order to install the rim protection apparatus, a user lines off the outer edge of the protective ring (104) on a side of the rim (102), where the rim touches the wheel (100), such that the protective ring (104) touches the wheel. Next, the user gradually places the protective ring (104), such that the protective ring (104) “cups” the circumferential edge of the rim (102). In an embodiment of the present invention, the rim protection apparatus is adhered around a circumferential edge of the rim (102) using the adhesive layer disposed on the back surface (108) of the protective ring, after removing the tape covering the adhesive layer. In an embodiment of the present invention, the rim protection apparatus can be removed from the wheel (100) by peeling it off the rim (102). FIG. 2 illustrates a rim protection apparatus fitted around a periphery of a rim (202) and spokes (204) of a motor vehicle (200) wheel having spokes (204), in accordance with an embodiment of the present invention. The protective ring (206) covers either a circumferential edge or the entire surface of the rim (202). The protective ring (206) comprises a plurality of extensions (210) extending from its inner edge or outer edge to the center of the wheel (200). The extensions (210) are preferably constructed using the same abrasion resistant materials as the protective ring (206). Each extension covers and provides protection to one spoke (204) of the wheel. In an embodiment of the present invention, the rim protection apparatus is fitted around the periphery of the rim (202) of the wheel (200) with spokes (204) by using a lip (208) of the wheel (200), (lip (208) is not shown). The lip (208) is disposed on the rim (202) and is coupled to the inner edge of the protective ring (206), when the rim protection apparatus is fitted around the periphery of the rim (204). Therefore, the rim protection apparatus described in the present invention, protects the rim of a motor vehicle wheel against damage caused due to the knocking or scraping of the wheel against obstacles. In various embodiments of the present invention, the rim protection apparatus is flush mounted around the periphery of rims of wheels of various styles and designs. Further, the rim protection apparatus of the present invention is a permanent fixture on the wheel and accents the color and design of the wheel. In case of extensive damage caused to the rim protection apparatus, the same can easily be removed or replaced, single handedly, by a user without requiring any specialized removal or installation tools. While the present invention has been described in terms of certain preferred embodiments, one skilled in the art will readily appreciate that various modifications, changes, omissions and substitutions may be made without departing from the spirit thereof. It is intended, therefore, that the present invention be not limited solely by the scope of the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to protective devices for motor vehicle wheels. More particularly, the present invention relates to an apparatus for protecting a rim of a motor vehicle wheel from damage, while also enhancing the color and design of the wheel. 2. Discussion of the Related Art Motor vehicle wheels are frequently damaged on their side surfaces near the tires. The damage is more acute in case the wheels are made of some light alloy. The damage is usually caused by the wheel knocking and scraping against obstacles such as curbs, walls and stones. In case of such damage, usually the rim of the wheel is bent or distorted, and a user is generally required to replace the entire wheel. To avoid having to change the entire wheel or the tire, the wheel may be fitted with a protective ring. The protective ring covers the rim of the wheel entirely, and protects it from being damaged when the wheel knocks or scrapes against obstacles. Numerous types of rim protection devices are known in the art. For example, U.S. Pat. No. 5,423,599, issued Jun. 13, 1995 to Sherod et al. discloses a detachable wheel mask for temporarily covering an entire wheel of an automobile during washing and protecting the wheel from dirt while cleaning. The wheel mask includes a circular protective cover of a size corresponding with the wheel, a retaining element for fitting within a groove formed between the wheel rim and the tire to secure the protective cover to the wheel rim enclosing the wheel and a handle. Whereas the foregoing wheel rim mask may provide adequate protection from tire dressing being applied to the wheel rim, such protective covers are not readily adjustable to fit a plurality of differently sized wheel rims. In addition, the wheel mask is a temporary fixture and is meant to provide protection against liquid spray when the wheel is being cleaned. The wheel mask does not provide protection against damage that occurs to the wheel rim, when the wheel knocks or scrapes against obstacles. The wheel mask is not tightly glued to the wheel, and hence, is liable to come off if a force is applied. Further, the wheel mask does not have a decorative function and therefore, does not accentuate the color and design of the wheel. U.S. Pat. No. 5,524,972, issued Jun. 11, 1996 to Cailor et al. describes a wheel mask to protect the vehicle wheels during chemical treatment of the tires. The wheel mask is a thin plastic molding having a circular concave body that includes a central hub having an exterior handle. The handle is inwardly open and formed of walls which project outwardly of the hub and are tapered to permit partial insertion of a handle of another mask, and the ridge walls are angled outwardly to enhance stacking of a plurality of masks. This device suffers from the same disadvantages described above. Wheel rim covers such as the one disclosed in U.S. Pat. No. 4,811,991, issued on Mar. 14, 1989 to Marino et al. is a hand-held device that can be held in place over the wheel rim with one hand while the user applies tire dressing to the tire with the other. U.S. Pat. No. 4,874,206 issued on Oct. 17, 1989 to Sampson, and U.S. Pat. No. 4,955,670 issued on Sep. 11, 1990 to Koller discloses wheel rim covers that include attachment means so that such protective covers can be secured to the wheel rim to free up both hands of the user. This device suffers from the same disadvantages described above. Japanese Pat. No. 07045016 issued on Aug. 27, 1996 to Tomita Auto describes a side rim protector, which prevents damage of a side rim of a road wheel of an automobile and increases decorative effect thereof. The side rim protector consists of a ringlike member having substantially equal diameter to that of a side rim and an engaging section which is one of mounting means formed integrally with the ringlike member. The side rim protector is fixed on a side rim side by fitting the engaging section in and engaging it with a groove on the side rim side. It is formed by resin or rubber and can be colored, thereby increasing decorative effect. The described side rim protector protects only a side rim of an automobile wheel. In addition since the side rim protector is constructed by using rubber, it is liable to be damaged sooner, if continuously used. Further since it is attached to the wheel using some engaging means and is not glued on to the wheel, it may come off when the wheel is used continuously for a prolonged period for time. In light of the above, despite the attempts made by the prior art devices, there still exists a need for an improved motor vehicle rim protector which provides maximum protection to a rim of the wheel, when the wheel bumps or scrapes against obstacles, while also enhancing the appearance of the wheel. None of the prior art patents, taken alone or in combination, teaches or suggests the presently claimed rim protection apparatus for motor vehicle wheels. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a rim protection apparatus fitted around a periphery of a rim of a motor vehicle wheel. The apparatus comprises a substantially planar circular protective ring and means for fitting the protective ring around the periphery of the rim. The rim protection apparatus covers the circumferential edge of the rim wherein the protective ring is tightly coupled to the wheel. The protective ring comprises a first part covering a first surface of the rim in a first plane, the first plane being the plane of a sidewall of the motor vehicle wheel and a second part perpendicular to the first part covering a second surface of the rim, the second surface of the rim being perpendicular to the first surface of the rim. The protective ring further comprises a front surface and a back surface, the back surface being coupled with the rim of the wheel when the apparatus is fitted around the periphery of the rim of the wheel, the front surface being a decorative surface accenting color and appearance of the wheel. The means for fitting the protective ring around the periphery of the rim comprises an adhesive disposed on the back surface of the protective ring. The rim protection apparatus is meant for actual vehicular use and protects the rim from potential scratches, bumps and deformation that result from day to day use of the wheel. Accordingly a first objective of the invention is to provide an abrasion resistant rim protection apparatus for protecting a rim of a motor vehicle wheel from potential scratches, bumps and deformation that result from day to day use of the wheel. A second objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that accents the color and design of the wheel. A third objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that is constructed using a hard, light weight and abrasion resistant material such as plastic, metal, carbon fiber or fiber glass. A fourth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that is custom designed to match color and design of the wheel. A fifth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel, that is secured around a periphery of the rim using an adhesive layer. A sixth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel without spokes as well as a wheel with spokes. A seventh objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel with spokes such that the protective ring covers the surface of the rim and comprises a plurality of extensions extending from at least one of the inner edge and the outer edge of the protective ring to a center of the wheel, each extension covering at least one spoke of the wheel. An eighth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that is provided with a damage indicator disposed underneath the first part of the protective ring. The damage indicator indicates the need for replacement of the rim protection apparatus when the first part of the protective ring is scraped or damaged. A ninth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that can be easily removed from the wheel by peeling off the protective ring from the wheel. A tenth objective of the invention is to provide a rim protection apparatus for protecting a rim of a motor vehicle wheel that can be installed or replaced single handedly by a user without using any specialized installation tools. These and other objects of the present invention will become readily apparent upon further review of the following description and drawings. | 20050104 | 20071120 | 20060706 | 96078.0 | B60B700 | 2 | BELLINGER, JASON R | RIM PROTECTOR | SMALL | 0 | ACCEPTED | B60B | 2,005 |
|
11,029,335 | ACCEPTED | Methods of manufacturing thin film transistors using masks to protect the channel regions from impurities while doping a semiconductor layer to form source/drain regions | A method of manufacturing a thin film transistor includes forming a semiconductor layer on a substrate; forming a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; forming a first photosensitive pattern over the conductive layer; patterning the conductive layer according to the photosensitive pattern to form a gate electrode; and ion-doping an impurity into the semiconductor layer using the photosensitive pattern as a mask to form source and drain regions. | 1. A method of manufacturing a thin film transistor, comprising: forming a semiconductor layer on a substrate; forming a gate insulating layer over an entire surface of the substrata to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; patterning the conductive layer using a photoresist to form a gate electrode and then removing the photoresist, the gate electrode having a density of 1.5 g/cm3 to 2.5 g/cm3 and a thickness of more than 4,000 Å to prevent an impurity from passing therethrough; and ion-doping the impurity into the semiconductor layer using the gate electrode as a mask to form source and drain regions; wherein the impurity comprises hydrogen. 2. The method according to claim 1, wherein the gate electrode has one or more layers. 3. The method according to claim 2, wherein the gate electrode comprises at least one of Mo, W, MoW, Al, and AlNd. 4. The method according to claim 1, wherein the impurity further comprises p+-type ions. 5. The method according to claim 1, wherein the gate electrode comprises Al or AlNd. 6. The method according to claim 1, wherein the gate electrode has a thickness of 4,000 Å to 4,500 Å. 7. A method of manufacturing a thin film transistor, comprising: forming a semiconductor layer on a substrate; forming a gate insulating layer over an entire surface of the substrate to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; forming a non-desired impurity blocking pattern over the conductive layer; patterning the conductive layer according to the non-desired impurity blocking pattern to form a gate electrode having a density of 1.5 g/cm3 to 2.5 g/cm3 and a thickness of more than 4,000 Å; and ion-doping a p+-type impurity into the semiconductor layer using the non-desired impurity blocking pattern as a mask blocking penetration of non-desired impurities to form first source and drain regions; wherein the non-desired impurities comprise hydrogen. 8. The method according to claim 7, wherein the gate electrode has a thickness of 4,000 Å to 4,500 Å. 9. A thin film transistor, comprising: a semiconductor layer on a substrate; a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; a conductive layer on the gate insulating layer; and a gate electrode formed by patterning the conductive layer using a photoresist and having a predetermined density and a thickness enough to prevent an impurity from passing therethrough; wherein a hydrogen ion density is constant according to a depth of the semiconductor layer in a channel region of the semiconductor layer. 10. The thin film transistor according to claim 9, wherein the gate electrode has a thickness of at least 3,500 Å. 11. The thin film transistor according to claim 10, wherein the gate electrode has a thickness of 4,000 Å to 4,500 Å, and a density of 1.5 g/cm3 to 2.5 g/cm3. 12. The thin film transistor according to claim 11, wherein the gate electrode is made of Al or AlNd. 13. The thin film transistor according to claim 9, wherein the gate electrode comprises at least one of Mo, W, MoW, Al, and AlNd. 14. The thin film transistor according to claim 9, wherein the impurity is p+-type ions. 15. A thin film transistor, comprising: a semiconductor layer on a substrate: a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; a conductive layer on the gate insulating layer; and a gate electrode formed by patterning the conductive layer using a photoresist and having a thickness of at least 3,500 Å to 4,000 Å and a density of 3.5 g/cm3to 4.5 g/cm3, wherein the gate electrode is made of Mo, W, or MoW; wherein a hydrogen ion density is constant according to a depth of the semiconductor layer in a channel region of the semiconductor layer. | CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 10/166,367, filed Jun. 11, 2002, currently pending, which claims the benefit of Korean Application No. 2001-72465, filed on Nov. 20, 2001, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein in their entirety by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor. 2. Description of Related Art A flat panel display device includes a thin film transistor (TFT). The thin film transistor employs a lightly doped drain (LDD) structure or an off-set structure in order to prevent a leakage current that occurs in an off state thereof. Recently, research to achieve excellent operability of the thin film transistor, for example, by improving electrical characteristics such as a threshold voltage of a channel layer and electron mobility, has been conducted. FIGS. 1A and 1B are cross-sectional views illustrating a process of manufacturing a conventional CMOS thin film transistor. Referring to FIG. 1A, a substrate 10 having a first region 10a and a second region 10b is provided. The first region 10a is a region on which a p-type thin film transistor will be formed, and the second region 10b is a region on which an n-type thin film transistor will be formed. A poly silicon layer is deposited and patterned to form first and second semiconductor layers 11a and 11b on the first and second regions 10a and 10b, respectively. A gate insulating layer 12 is formed over the entire surface of the substrate 10 to cover the first and second semiconductor layers 11a and 11b. A metal layer 13 is deposited on the gate insulating layer 12. A first photosensitive layer (not shown) having first and second photoresist patterns is formed on the metal layer 13. The first pattern of the first photosensitive layer is formed over the first semiconductor layer 11a, and the second pattern of the first photosensitive layer covers the entire surface of the second region 10b of the substrate 10. The metal layer 13 is patterned according to the first photosensitive layer, so that a first gate electrode 14a is formed over the first semiconductor layer 11a, and the rest of the metal layer 13 covers the entire surface of the second region 10b. The photoresist pattern is then removed. A p+-type high-density impurity is ion-doped by an ion implanter that employs an ion-shower method to thereby form first high-density source and drain regions 16a and 16b. However, the ion implanter that employs the ion-shower method has no mass separator which removes non-desired impurities (e.g., hydrogen) except a desired impurity (e.g., a p+-type impurity) from the doped impurity. As a result, the non-desired impurities such as a hydrogen ion can be doped to even the first and second semiconductor layers 11a and 11b. Subsequently, a second photosensitive layer (not shown) having first and second patterns is formed on the metal layer 13. The first pattern of the second photosensitive layer covers the entire surface of the first region 10a of the substrate 10, and the second pattern of the second photosensitive layer is formed over the second semiconductor layer 11b. The rest of the metal layer 13 covering the entire surface of the second region 10b is patterned according to the second pattern of the second photosensitive layer to thereby form a second gate electrode 14b. Using the second photosensitive layer as a mask, an n−-type low-density impurity is ion-doped into the second semiconductor layer 11b to form low-density source and drain regions 18a and 18b. The second photosensitive layer is then removed. A third photosensitive layer having first and second patterns is formed. The first pattern of the third photosensitive layer covers the entire surface of the first region 10a of the substrate 10. The second pattern of the third photosensitive layer has a greater width than the second gate electrode 14b and so surrounds the second gate electrode 14b. Using the third photoresist layer as a mask, an n+-type high-density impurity is ion-doped into the second semiconductor layer 11b to form second high-density source and drain regions 20a and 20b. Consequently, the CMOS thin film transistor having a lightly-doped drain (LDD) structure is completed. However, as described above, the ion implanter that employs the ion-shower method has no mass separator, which removes non-desired impurities except a desired impurity from the doped impurity. Hence, during an ion doping process to form the first high-density source and drain regions 16a and 16b of the PMOS thin film transistor, the non-desired impurities such as hydrogen ions are ion-doped to even channel regions of the first and second semiconductor layers 11a and 11b under the first and second gate electrodes 14a and 14b. In other words, even though the first gate electrode 14a and the non-patterned metal layer 13 block the p+-type impurity from being ion-doped during an ion doping process to form the first high-density source and drain regions 16a and 16b, the hydrogen ions having a relatively small mass pass through the first gate electrode 14a and the non-patterned metal layer 13 to be ion-doped to even the channel regions of the first and second semiconductors 14a and 14b. For example, in order to ion-dope a boron (B), a B2H6 gas is decomposed into BX+, BXHY+, and HX+. However, since BXHY+ and HX+ including a hydrogen ion is not removed by the ion implanter that employs the ion shower method, BXHY+ and HX+ as well as BX+ are ion-doped into the first and second semiconductor layers 11a and 11b. FIG. 2 illustrates a density of a hydrogen ion doped into respective regions of the thin film transistor after an ion-doping process to form the source and drain regions of the PMOS thin film transistor. As can be seen in FIG. 2, the hydrogen ions are doped into even the semiconductor layer. Even though a small amount of hydrogen ions are ion-doped into the channel region of the semiconductor layer, the doped hydrogen ions affect an interface characteristic between the semiconductor layer and the gate insulating layer, thereby deteriorating electrical characteristics such as a threshold voltage and an electron mobility and a reliability of the resultant thin film transistor. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method of manufacturing a CMOS thin film transistor having excellent electrical characteristics and a high reliability. The foregoing and other objects of the present invention are achieved by providing a method of manufacturing a thin film transistor, comprising: forming a semiconductor layer on a substrate; forming a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; forming a first photosensitive pattern over the semiconductor layer; patterning the conductive layer according to the photosensitive pattern to form a gate electrode; and ion-doping an impurity into the semiconductor layer using the photosensitive pattern as a mask to form source and drain regions. The photosensitive pattern may be made from one of photoresist, acryl, polyimide, and benzocyclobutene. The method further comprises hard-baking the photosensitive layer at a predetermined temperature before the ion-doping. The photosensitive layer has a thickness of at least 5,000 Å. The foregoing and other objects of the present invention may also be achieved by providing a method of manufacturing a thin film transistor, comprising: forming a semiconductor layer on a substrate; forming a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; patterning the conductive layer to form a gate electrode, the gate electrode having a density and a thickness sufficient enough to prevent an impurity from passing therethrough; ion-doping an impurity into the semiconductor layer using the photosensitive pattern as a mask to form source and drain regions. The gate electrode has a thickness of 3,500 Å to 4,500 Å. The gate electrode has a thickness of 3,500 Å to 4,000 Å, and a density of 3.5 g/cm3 to 4.5 g/cm3. The gate electrode is made of Mo, W, or MoW. The gate electrode has a thickness of 4,000 Å to 4,500 Å, and a density of 1.5 g/cm3 to 2.5 g/cm3. The gate electrode is made of Al or AlNd. The gate electrode has one or more layers. The gate electrode comprises at least one of Mo, W, MoW, Al, and AlNd. The foregoing and other objects of the present invention are achieved by providing a method of manufacturing a thin film transistor, comprising: forming a semiconductor layer on a substrate; forming a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; forming a photosensitive pattern on a portion of the conductive layer corresponding to the semiconductor layer; patterning the conductive layer according to the photosensitive pattern to form a gate electrode; removing the photosensitive pattern; forming an impurity shielding layer on the gate electrode; and ion-doping an impurity into the semiconductor layer using the impurity shielding layer as a mask to form source and drain regions. The impurity shielding layer is made of an insulating layer or a metal layer. The insulating layer includes an oxide layer, a nitride layer and a silicide layer. The metal layer is made of one of Mo, W, MoW, Al, and AlNd. The impurity shielding layer has one or more layers. The method further comprises: after the ion-doping, removing the impurity shielding layer; forming a second photosensitive pattern having a width greater than the gate electrode, so that the second photosensitive layer surrounds the gate electrode; and ion-doping an impurity into the semiconductor layer using the second photosensitive layer as a mask, thereby forming a lightly doped drain (LDD) region. The impurity shielding layer has a width greater than the gate electrode so that the second photosensitive layer sourrounds the gate electrode, thereby forming an off-set region. BRIEF DESCRIPTION OF THE DRAWINGS These and other objects and advantages of the present invention will become more apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which: FIGS. 1A and 1B are cross-sectional views illustrating a process of manufacturing a conventional CMOS thin film transistor; FIG. 2 illustrates a density of a hydrogen ion doped into respective regions of the thin film transistor after an ion-doping process to form the source and drain regions of the conventional CMOS thin film transistor of FIG. 1; FIGS. 3A to 3G are cross-sectional views illustrating a process of manufacturing a CMOS thin film transistor according to an embodiment of the present invention; FIG. 4 illustrates a density of a hydrogen ion doped into respective regions of the thin film transistor after an ion-doping process to form the source and drain regions of the CMOS thin film transistor of FIGS. 3A to 3G; FIG. 5 is a cross-sectional view illustrating a process of manufacturing a CMOS thin film transistor according to another embodiment of the present invention; FIG. 6 illustrates a density of a hydrogen ion doped into respective regions of the thin film transistor after an ion-doping process to form the source and drain regions of the CMOS thin film transistor of FIG. 5; FIG. 7 is a cross-sectional view illustrating a process of manufacturing a CMOS thin film transistor according to yet another embodiment of the present invention; and FIG. 8 illustrates a graph of a C-V curve of the CMOS thin film transistors according to the conventional art and the present invention. DETAILED DESCRIPTION OF PREFFERED EMBODIMENTS Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. Hereinafter, a method of manufacturing a thin film transistor according to the present invention is described focusing on a CMOS thin film transistor. FIGS. 3A to 3G are cross-sectional views illustrating a process of manufacturing a CMOS thin film transistor according to an embodiment of the present invention. Referring to FIG. 3A, a substrate 30 having a first region 30a and a second region 30b is provided. The first region 30a is a region on which a p-type thin film transistor will be formed, and the second region 30b is a region on which an n-type thin film transistor will be formed. A poly silicon layer is deposited and patterned to form first and second semiconductor layers 31a and 31b on the first and second regions 30a and 30b, respectively. Referring to FIG. 3B, a gate insulating layer 32 comprising an oxide layer is formed over the entire surface of the substrate 30 to cover the first and second semiconductor layers 31a and 31b. A metal layer 33 is deposited on the gate insulating layer 32. A first photosensitive layer 34 having first and second patterns 34a and 34b is formed to a thickness of at least 5,000 Å on the metal layer 33. The first photosensitive layer 34 is made of one of photoresist, acryl, polyimide, and benzocyclobutene (BCB). The first pattern 34a of the first photosensitive layer 34 is formed over the first semiconductor layer 31a, and the second pattern 34b of the first photosensitive layer 34 covers the entire surface of the second region 30b of the substrate 30. Thereafter, a hard-baking process is performed at a predetermined temperature in order to remove, for example, water in the early stage, thereby preventing the first photosensitive layer 34 from bursting during a subsequent ion-doping process. Meanwhile, it is an aspect of the invention that the hard-baking process for the photosensitive layer is performed before the ion-doping process whenever the ion-doping is performed using the photosensitive layer as a mask. Referring to FIG. 3C, using the first photosensitive layer 34 as a mask, the metal layer 33 is patterned to form a first gate electrode 36a over the first semiconductor layer 31a. The portion of the metal layer 33 under the second pattern 34b of the first photosensitive layer 34 remains without being patterned. Using the first photosensitive layer 34 as a mask again, a p+-type high-density impurity is ion-doped to thereby form first high-density source and drain regions 38a and 38b. The first photosensitive layer 34 serves to block the hydrogen ions, decomposed by the ion implanter that employs the ion shower method, from being ion-doped into the underlying layers there under. The first photosensitive layer 34 is then removed. Referring to FIG. 3D, a second photosensitive layer 40 having first and second patterns 40a and 40b is formed on the metal layer 33. The first pattern 40a of the second photosensitive layer 40 covers the entire surface of the first region 30a of the substrate 30, and the second pattern 40b of the second photosensitive layer 40 is formed over the second semiconductor layer 31b. Referring to FIG. 3E, the portion of the metal layer 33 covering the entire surface of the second region 30b is patterned using the second pattern 40b of the second photosensitive layer 40 as a mask to thereby form a second gate electrode 36b. Using the second photosensitive layer 40 as a mask again, an n−-type low-density impurity is ion-doped into the second semiconductor layer 31b to form low-density source and drain regions 42a and 42b. The second photosensitive layer 40 is then removed. Referring to FIG. 3F, a third photosensitive layer 44 having first and second patterns 44a and 44b is formed. The first pattern 44a of the third photosensitive layer 44 covers the entire surface of the first region 30a of the substrate 30. The second pattern 44b of the third photosensitive layer 44 has a greater width than the second gate electrode 36b to so surround the second gate electrode 36b. Using the third photoresist layer 44 as a mask, an n+-type high-density impurity is ion-doped into the second semiconductor layer 31b to form second high-density source and drain regions 46a and 46b. The third photosensitive layer 44 is then removed, as illustrated in FIG. 3G. Consequently, the CMOS thin film transistor according to the present invention is completed. FIG. 4 illustrates a density of a hydrogen ion doped into respective regions of the thin film transistor after an ion-doping process to form the source and drain regions of the CMOS thin film transistor according to the process illustrated in FIGS. 3A through 3G. As illustrated in FIG. 4, when the impurity is doped, the hydrogen ions cannot be doped into the gate electrode and are therefore only doped into the passivation layer. FIG. 5 is a cross-sectional view illustrating a process of manufacturing a CMOS thin film transistor according to another embodiment of the present invention. The method of manufacturing the CMOS thin film transistor according to this embodiment of the present invention is different as far as the process of forming the previous high-density source and drain regions from the first embodiment of the present invention. After forming the first gate electrode 36a as illustrated in FIG. 3C, the first photosensitive layer 34 is removed. An impurity shielding layer 54 having first and second patterns 54a and 54b is formed. That is, the first pattern 54a of the impurity shielding layer 54 is formed on the first gate electrode 36a, and the second pattern 54b of the impurity shielding layer 54 is formed on the non-patterned portion of the metal layer 33. The impurity of shielding layer 54 is made of an insulating layer such as an oxide layer, a nitride layer and a silicide layer or a metal layer such as Mo, W, MoW, Al, and AlNd. In the case of the metal layer, the impurity shielding layer 54 has a single- or a multi-layered structure. Using the impurity shielding layer 54 as a mask, a p+-type high-density impurity is ion-doped to thereby form first high-density source and drain regions 38a and 38b. The impurity shielding layer 54 blocks the hydrogen ions from being ion-doped into the underlying layers thereunder. The impurity shielding layer 54 is then removed. Subsequent processes are identical to those of FIGS. 3D to 3G. FIG. 6 illustrates a density of hydrogen ions doped into respective regions of the thin film transistor after an ion-doping process to form the source and drain regions of the CMOS thin film transistor according to this embodiment of the present invention. As illustrated in FIG. 6, the hydrogen ions are doped into the gate electrode, but cannot be doped into the semiconductor layer. FIG. 7 is a cross-sectional view illustrating a process of manufacturing a CMOS thin film transistor according to another embodiment of the present invention. After forming the gate insulating layer 32, a metal layer 50 is deposited over the entire surface of the substrate 30 as illustrated in FIG. 3A. The metal layer 50 has a thickness and a density enough to block the hydrogen ions from being ion-doped into the channel regions of the first and second semiconductor layers 31a and 31b. Preferably, a thickness of the metal layer 50 is in a range between 3,500 Å to 4,500 Å. In the case of the metal layer 50 having a thickness of less than 4,000 Å, preferably, the metal layer 50 preferably has a density of 3.5 g/cm3 to 4.5 g/cm3 and is made of a conductive material such as Mo, W, and MoW. In the case of the metal layer 50 having a thickness of more than 4,000 Å, preferably, the metal layer 50 has a density of 1.5 g/cm3 to 2.5 g/cm3 and is made of a conductive material such as Al and AlNd. The metal layer 50 has a single- or a multi-layered structure. For example, the metal layer 50 can have a three-layered structure comprising a MoW layer having a thickness of 500 Å, an Al layer having a thickness of 2,000 Å and a MoW layer having a thickness of 500 Å. Thereafter, the first photosensitive layer 34 having the first and second patterns 34a and 34b is formed on the metal layer 50 as illustrated in FIG. 3B. Using the first photosensitive layer 34 as a mask, the metal layer 50 is patterned to form the first gate electrode 36a. The first photosensitive layer 34 is then removed. Using the first gate electrode 36a and the non-patterned portion of the metal layer 50 as a mask, a p+-type high-density impurity is ion-doped to thereby form first high-density source and drain regions 38a and 38b. Since a thickness and a density of the metal layer 50 are adjusted, the hydrogen ions cannot be ion-doped into the channel regions of the first and second semiconductor layers 31a and 31b. Subsequent processes are identical to those of FIGS. 3D to 3G. FIG. 8 illustrates a graph of a C-V curve of the CMOS thin film transistors according to the conventional art and the present invention. A vertical axis denotes a ratio C/Cox of a capacitance C between the gate electrode and the substrate with respect to a capacitance Cox of the gate insulating layer. A horizontal axis denotes a voltage Vg applied to the gate electrode. As can be seen in FIG. 8, in the CMOS thin film transistor according to the present invention, the capacitance C drops sharply at the voltage Vg of about 0 volts, so that the ratio C/Cox is shifted from 0.2 to 1. However, in the CMOS thin film transistor according to the conventional art, the capacitance C drops gradually at the voltage Vg of about 0 volts, so that the ratio C/Cox is shifted from 0.4 to 1. This is because in the case of the conventional CMOS thin film transistor the hydrogen ions are ion-doped to an interface between the semiconductor layer and the gate insulating layer, thereby forming trap sites in the semiconductor layer. However, in the case of the inventive CMOS thin film transistor, it is possible to prevent the hydrogen ions from being ion-doped into the interface between the semiconductor layer and the gate insulating layer, thereby preventing a formation of the trap sites in the semiconductor layers. The present invention has been described focusing on the CMOS thin film transistor. However, the present invention is not limited to the CMOS thin film transistor. For example, the present invention can be applied to a method of manufacturing just one of a CMOS thin film transistor and a PMOS thin film transistor. As described above, the thin film transistor manufactured according to the present invention has excellent electrical characteristics such as a threshold voltage and an electron mobility, and a high reliability. Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor. 2. Description of Related Art A flat panel display device includes a thin film transistor (TFT). The thin film transistor employs a lightly doped drain (LDD) structure or an off-set structure in order to prevent a leakage current that occurs in an off state thereof. Recently, research to achieve excellent operability of the thin film transistor, for example, by improving electrical characteristics such as a threshold voltage of a channel layer and electron mobility, has been conducted. FIGS. 1A and 1B are cross-sectional views illustrating a process of manufacturing a conventional CMOS thin film transistor. Referring to FIG. 1A , a substrate 10 having a first region 10 a and a second region 10 b is provided. The first region 10 a is a region on which a p-type thin film transistor will be formed, and the second region 10 b is a region on which an n-type thin film transistor will be formed. A poly silicon layer is deposited and patterned to form first and second semiconductor layers 11 a and 11 b on the first and second regions 10 a and 10 b , respectively. A gate insulating layer 12 is formed over the entire surface of the substrate 10 to cover the first and second semiconductor layers 11 a and 11 b. A metal layer 13 is deposited on the gate insulating layer 12 . A first photosensitive layer (not shown) having first and second photoresist patterns is formed on the metal layer 13 . The first pattern of the first photosensitive layer is formed over the first semiconductor layer 11 a , and the second pattern of the first photosensitive layer covers the entire surface of the second region 10 b of the substrate 10 . The metal layer 13 is patterned according to the first photosensitive layer, so that a first gate electrode 14 a is formed over the first semiconductor layer 11 a , and the rest of the metal layer 13 covers the entire surface of the second region 10 b . The photoresist pattern is then removed. A p + -type high-density impurity is ion-doped by an ion implanter that employs an ion-shower method to thereby form first high-density source and drain regions 16 a and 16 b. However, the ion implanter that employs the ion-shower method has no mass separator which removes non-desired impurities (e.g., hydrogen) except a desired impurity (e.g., a p + -type impurity) from the doped impurity. As a result, the non-desired impurities such as a hydrogen ion can be doped to even the first and second semiconductor layers 11 a and 11 b. Subsequently, a second photosensitive layer (not shown) having first and second patterns is formed on the metal layer 13 . The first pattern of the second photosensitive layer covers the entire surface of the first region 10 a of the substrate 10 , and the second pattern of the second photosensitive layer is formed over the second semiconductor layer 11 b . The rest of the metal layer 13 covering the entire surface of the second region 10 b is patterned according to the second pattern of the second photosensitive layer to thereby form a second gate electrode 14 b. Using the second photosensitive layer as a mask, an n − -type low-density impurity is ion-doped into the second semiconductor layer 11 b to form low-density source and drain regions 18 a and 18 b. The second photosensitive layer is then removed. A third photosensitive layer having first and second patterns is formed. The first pattern of the third photosensitive layer covers the entire surface of the first region 10 a of the substrate 10 . The second pattern of the third photosensitive layer has a greater width than the second gate electrode 14 b and so surrounds the second gate electrode 14 b . Using the third photoresist layer as a mask, an n + -type high-density impurity is ion-doped into the second semiconductor layer 11 b to form second high-density source and drain regions 20 a and 20 b . Consequently, the CMOS thin film transistor having a lightly-doped drain (LDD) structure is completed. However, as described above, the ion implanter that employs the ion-shower method has no mass separator, which removes non-desired impurities except a desired impurity from the doped impurity. Hence, during an ion doping process to form the first high-density source and drain regions 16 a and 16 b of the PMOS thin film transistor, the non-desired impurities such as hydrogen ions are ion-doped to even channel regions of the first and second semiconductor layers 11 a and 11 b under the first and second gate electrodes 14 a and 14 b. In other words, even though the first gate electrode 14 a and the non-patterned metal layer 13 block the p + -type impurity from being ion-doped during an ion doping process to form the first high-density source and drain regions 16 a and 16 b , the hydrogen ions having a relatively small mass pass through the first gate electrode 14 a and the non-patterned metal layer 13 to be ion-doped to even the channel regions of the first and second semiconductors 14 a and 14 b. For example, in order to ion-dope a boron (B), a B 2 H 6 gas is decomposed into B X + , B X H Y + , and H X + . However, since B X H Y + and H X + including a hydrogen ion is not removed by the ion implanter that employs the ion shower method, B X H Y + and H X + as well as B X + are ion-doped into the first and second semiconductor layers 11 a and 11 b. FIG. 2 illustrates a density of a hydrogen ion doped into respective regions of the thin film transistor after an ion-doping process to form the source and drain regions of the PMOS thin film transistor. As can be seen in FIG. 2 , the hydrogen ions are doped into even the semiconductor layer. Even though a small amount of hydrogen ions are ion-doped into the channel region of the semiconductor layer, the doped hydrogen ions affect an interface characteristic between the semiconductor layer and the gate insulating layer, thereby deteriorating electrical characteristics such as a threshold voltage and an electron mobility and a reliability of the resultant thin film transistor. | <SOH> SUMMARY OF THE INVENTION <EOH>Accordingly, it is an object of the present invention to provide a method of manufacturing a CMOS thin film transistor having excellent electrical characteristics and a high reliability. The foregoing and other objects of the present invention are achieved by providing a method of manufacturing a thin film transistor, comprising: forming a semiconductor layer on a substrate; forming a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; forming a first photosensitive pattern over the semiconductor layer; patterning the conductive layer according to the photosensitive pattern to form a gate electrode; and ion-doping an impurity into the semiconductor layer using the photosensitive pattern as a mask to form source and drain regions. The photosensitive pattern may be made from one of photoresist, acryl, polyimide, and benzocyclobutene. The method further comprises hard-baking the photosensitive layer at a predetermined temperature before the ion-doping. The photosensitive layer has a thickness of at least 5,000 Å. The foregoing and other objects of the present invention may also be achieved by providing a method of manufacturing a thin film transistor, comprising: forming a semiconductor layer on a substrate; forming a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; patterning the conductive layer to form a gate electrode, the gate electrode having a density and a thickness sufficient enough to prevent an impurity from passing therethrough; ion-doping an impurity into the semiconductor layer using the photosensitive pattern as a mask to form source and drain regions. The gate electrode has a thickness of 3,500 Å to 4,500 Å. The gate electrode has a thickness of 3,500 Å to 4,000 Å, and a density of 3.5 g/cm 3 to 4.5 g/cm 3 . The gate electrode is made of Mo, W, or MoW. The gate electrode has a thickness of 4,000 Å to 4,500 Å, and a density of 1.5 g/cm 3 to 2.5 g/cm 3 . The gate electrode is made of Al or AlNd. The gate electrode has one or more layers. The gate electrode comprises at least one of Mo, W, MoW, Al, and AlNd. The foregoing and other objects of the present invention are achieved by providing a method of manufacturing a thin film transistor, comprising: forming a semiconductor layer on a substrate; forming a gate insulating layer over the entire surface of the substrate to cover the semiconductor layer; depositing a conductive layer on the gate insulating layer; forming a photosensitive pattern on a portion of the conductive layer corresponding to the semiconductor layer; patterning the conductive layer according to the photosensitive pattern to form a gate electrode; removing the photosensitive pattern; forming an impurity shielding layer on the gate electrode; and ion-doping an impurity into the semiconductor layer using the impurity shielding layer as a mask to form source and drain regions. The impurity shielding layer is made of an insulating layer or a metal layer. The insulating layer includes an oxide layer, a nitride layer and a silicide layer. The metal layer is made of one of Mo, W, MoW, Al, and AlNd. The impurity shielding layer has one or more layers. The method further comprises: after the ion-doping, removing the impurity shielding layer; forming a second photosensitive pattern having a width greater than the gate electrode, so that the second photosensitive layer surrounds the gate electrode; and ion-doping an impurity into the semiconductor layer using the second photosensitive layer as a mask, thereby forming a lightly doped drain (LDD) region. The impurity shielding layer has a width greater than the gate electrode so that the second photosensitive layer sourrounds the gate electrode, thereby forming an off-set region. | 20050106 | 20070417 | 20050602 | 96870.0 | 0 | SMOOT, STEPHEN W | METHODS OF MANUFACTURING THIN FILM TRANSISTORS USING MASKS TO PROTECT THE CHANNEL REGIONS FROM IMPURITIES WHILE DOPING A SEMICONDUCTOR LAYER TO FORM SOURCE/DRAIN REGIONS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,029,351 | ACCEPTED | Method of removing unnecessary matter from semiconductor wafer, and apparatus using the same | In an unnecessary matter removal method of joining a separation tape onto a semiconductor wafer and, then, separating the separation tape from the semiconductor wafer, thereby separating an unnecessary matter on the semiconductor wafer together with the separation tape, the separation tape is separated from the semiconductor wafer in such a manner that an edge member is brought into contact with the separation tape joined to the semiconductor wafer, and a tip end of the edge member is pressed to the semiconductor wafer at a separation completion end portion where the unnecessary matter is separated from the wafer. | 1. A method of joining a separation tape onto a semiconductor wafer and, then, separating the separation tape from the semiconductor wafer, thereby separating an unnecessary matter on the semiconductor wafer together with the separation tape, the method comprising the step of: separating the separation tape in such a manner that an edge member is brought into contact with a surface of the separation tape joined to the semiconductor wafer and, then, a tip end of the edge member is pressed to the semiconductor wafer at a separation completion end portion where the unnecessary matter is separated from the semiconductor wafer. 2. The method of claim 1, further comprising the steps of: joining the separation tape onto the semiconductor wafer at a separation start end portion where the separation tape is joined onto the semiconductor wafer and, then, is separated from the semiconductor wafer, in such a manner that the tip end of the edge member is pressed to a surface of the separation tape; releasing the tip end of the edge member from the surface of the separation tape after completion of joining of the separation tape in the previous step; and separating the separation tape to the separation completion end portion in a state of releasing the tip end of the edge member from the surface of the semiconductor wafer, while moving the edge member to join the separation tape onto the semiconductor wafer. 3. The method of claim 2, wherein in the step of releasing the tip end of the edge member from the surface of the semiconductor wafer, the tip end of the edge member is released from the surface of the separation tape in a state where the tip end of the edge member has a predetermined angle relative to the surface of the separation tape. 4. The method of claim 2, wherein a movement speed of the edge member is made slow at the separation start end portion. 5. The method of claim 1, wherein a supply speed of the separation tape is equal to the movement speed of the edge member. 6. The method of claim 1, wherein the separation tape is supplied with a predetermined tension being applied thereto. 7. The method of claim 1, wherein a joining length of the separation tape at the separation completion end portion is equal to or less than 10% of a diameter of the semiconductor wafer. 8. The method of claim 1, wherein the unnecessary matter is a surface protective tape joined onto the surface of the semiconductor wafer. 9. The method of claim 1, wherein the unnecessary matter is a resist film formed on the surface of the semiconductor wafer. 10. An apparatus for joining a separation tape onto a semiconductor wafer and, then, separating the separation tape from the semiconductor wafer, thereby separating an unnecessary matter on the semiconductor wafer together with the separation tape, the apparatus comprising: a transport mechanism for transporting the semiconductor wafer to a predetermined process; an alignment stage for aligning the semiconductor wafer so that the separation tape is joined onto the semiconductor wafer; a chuck table for holding the aligned semiconductor wafer; a tape supply unit for supplying the separation tape toward the held semiconductor wafer; tape separation means for joining the separation tape to the unnecessary matter on the semiconductor wafer in such a manner that a tip end of an edge member is pressed to a surface of the supplied separation tape and, then, separating the separation tape from the surface of the semiconductor wafer, thereby separating the unnecessary matter together with the separation tape; a tape collector for collecting the separated unnecessary separation tape; and control means for controlling the separation means so as to join the separation tape to the unnecessary matter at a separation start end portion, where the separation tape is joined onto the semiconductor wafer and, then, is separated from the semiconductor wafer, and a separation completion end portion, in such a manner that the tip end of the edge member of the separation means is pressed to the separation tape, and to release the tip end of the edge member from the separation tape at the other portion. | BACKGROUND OF THE INVENTION (1) Field of the Invention The invention relates to a method of removing an unnecessary matter such as a protective tape or a resist film from a surface of a semiconductor wafer by means of a separation tape. (2) Description of the Related Art In a fabrication process of a semiconductor wafer (hereinafter, simply referred to simply as “wafer”), at the time when a back face of the wafer, that has been previously patterned, is ground (back grinding), a wide protective tape is joined beforehand onto the wafer surface. The protective tape projected from an outer periphery of the wafer is cut out along an outer diameter of the wafer. The wafer with the whole surface thereof covered by the protective tape is suction-held by a sucker from the surface and, then, is subjected to a grinding process. After that, the protective tape necessary no longer is removed from the wafer surface. A method of separating the protective tape uses a separation tape. According to this method, a separation tape having an adhesion higher than that of the protective tape is joined to the protective tape (unnecessary matter) on the wafer surface using a roller rolled thereon. After that, the separation tape is wound off, so that the protective tape is separated together with the separation tape. Upon separating and removing the unnecessary protective tape by the separation tape from the wafer thinned in the back grinding process, the separation tape cannot be joined up to the end of the protective tape and the protective tape cannot be separated in stable manner. In view of this, there has been proposed a method of separating and removing the protective tape using an edge member (JP-A 2002-124494). In recent years, however, trend is an increased rate at which bumps are formed on the surface of the semiconductor chip. In the case where the protective tape is separated from the wafer formed with the bumps on the surface thereof by the method described in JP-A 2002-124494, the wafer surface may be damaged. Also, friction between the edge member and the separation tape may generate foreign matters. In view of this, the present inventor has made vigorous efforts to solve this problem by separating the protective tape with the edge member moved upward and has come to know the new problem that the protective tape is slid in a lateral direction immediately before leaving the wafer end and the adhesive surface of the protective tape rubs the wafer surface, with the result that the wafer surface is contaminated. SUMMARY OF THE INVENTION The invention has been made in view of the above circumstances, and it is therefore an object of the invention to provide an unnecessary matter removal method capable of reliably separating and removing an unnecessary matter from a wafer without inflicting damage to the wafer even in the case of separating the unnecessary matter from the wafer by a separation tape. In order to achieve the above object, the invention employs the following configuration: A method of joining a separation tape onto a semiconductor wafer and, then, separating the separation tape from the semiconductor wafer, thereby separating an unnecessary matter on the semiconductor wafer together with the separation tape, the method comprising the step of: separating the separation tape in such a manner that an edge member is brought into contact with a surface of the separation tape joined to the semiconductor wafer and, then, a tip end of the edge member is pressed to the semiconductor wafer at a separation completion end portion where the unnecessary matter is separated from the semiconductor wafer. According to the method of the invention, the edge member is brought into contact with the surface of the separation tape and, then, is pressed to the wafer at separation completion end portion where the unnecessary matter is separated from the wafer, so that the unnecessary matter can be prevented from being slid in a lateral direction at the time when the unnecessary matter is separated from the wafer. In addition, the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, friction between the edge member and the separation tape can be reduced at the time when the separation tape is separated from the wafer. Thus, it is possible to prevent the surface of the wafer from being contaminated and to suppress foreign matters from being generated from the separation tape. Since the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, even when bumps are formed on the surface of the wafer, the bumps receives no damage at the time when the separation tape is separated from the wafer. Herein, the separation completion end portion includes a portion on a slightly front side of a portion where the unnecessary matter is completely separated from the wafer. The range of the separation completion end portion varies depending on the size of the unnecessary matter and the like. For example, in the case where the unnecessary matter is a surface protective tape joined onto the surface of the wafer, the separation completion end portion preferably has a range of 10% or less of a wafer diameter from an end portion of the wafer from which the protective tape is completely separated. Also in the case where the unnecessary matter is a resist film, similar to the case of the protective tape, the separation completion end portion preferably has a range of 10% or less of a wafer diameter from an end portion of the wafer from which the resist film is completely separated. In addition, since the edge member is used for separation of the separation tape, the separation tape can be pulled in a fixed direction at the time when the separation tape is separated from the wafer, so that separation resistance can be reduced. With this configuration, even when the wafer is thin or even when the unnecessary matter is, for example, a surface protective tape joined onto the surface of the wafer or a resist film formed on the surface of the wafer, the unnecessary matter can be reliably removed from the wafer without inflicting damage to the wafer. Preferably, a supply speed of the separation tape is made equal to a movement speed of the edge member or the separation tape is supplied with a predetermined tension applied thereto. In other words, the separation tape can be joined onto the wafer so as not to be flexed. In order to achieve the above object, the invention also employs the following configuration: The method of the above configuration, further comprising the steps of: joining the separation tape onto the semiconductor wafer at a separation start end portion where the separation tape is joined onto the semiconductor wafer and, then, is separated from the semiconductor wafer, in such a manner that the tip end of the edge member is pressed to a surface of the separation tape; releasing the tip end of the edge member from the surface of the separation tape after completion of joining of the separation tape in the previous step; and separating the separation tape to the separation completion end portion in a state of releasing the tip end of the edge member from the surface of the semiconductor wafer, while moving the edge member to join the separation tape onto the semiconductor wafer. According to the method of the invention, the edge member presses the unnecessary matter and the wafer at the separation start portion where separation resistance is maximum. Consequently, even in the case where the wafer is thin, the separation tape can be separated from the wafer so that the wafer has no load. In addition, the edge member is brought into contact with the surface of the separation tape and, then, is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, so that the unnecessary matter can be prevented from being slid in a lateral direction and the separation tape can be prevented from being flexed at the time when the unnecessary matter is separated from the wafer. In addition, the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, friction between the edge member and the separation tape can be reduced at the time when the separation tape is separated from the wafer. Thus, it is possible to prevent the surface of the wafer from being contaminated and to suppress foreign matters from being generated from the separation tape. Since the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, even when bumps are formed on the surface of the wafer, the bumps receives no damage at the time when the separation tape is separated from the wafer. Herein, the separation start end portion includes a predetermined distance from an end portion of the wafer with which the edge member is brought into contact in a movement direction. The range of the separation start end portion varies depending on the size of the unnecessary matter and the like. In the step of releasing the tip end of the edge member from the wafer, preferably, the separation tape is released from the tip end of the edge member in a state where the tip end of the edge member has a predetermined angle relative to the separation tape. This configuration is effective for suppressing friction with the separation tape at a portion other than the separation start end portion and the separation completion end portion at minimum. Preferably, a movement speed of the edge member is made slow at the separation start end portion. This configuration makes it possible to reliably join the separation tape from an end portion of the wafer, and to improve a removing efficiency of the unnecessary matter. In order to achieve the above object, the invention also employs the following configuration: An apparatus for joining a separation tape onto a semiconductor wafer and, then, separating the separation tape from the semiconductor wafer, thereby separating an unnecessary matter on the semiconductor wafer together with the separation tape, the apparatus comprising: a transport mechanism for transporting the semiconductor wafer to a predetermined process; an alignment stage for aligning the semiconductor wafer so that the separation tape is joined onto the semiconductor wafer; a chuck table for holding the aligned semiconductor wafer; a tape supply unit for supplying the separation tape toward the held semiconductor wafer; tape separation means for joining the separation tape to the unnecessary matter on the semiconductor wafer in such a manner that a tip end of an edge member is pressed to a surface of the supplied separation tape and, then, separating the separation tape from the surface of the semiconductor wafer, thereby separating the unnecessary matter together with the separation tape; a tape collector for collecting the separated unnecessary separation tape; and control means for controlling the separation means so as to join the separation tape to the unnecessary matter at a separation start end portion, where the separation tape is joined onto the semiconductor wafer and, then, is separated from the semiconductor wafer, and a separation completion end portion, in such a manner that the tip end of the edge member of the separation means is pressed to the separation tape, and to release the tip end of the edge member from the separation tape at the other portion. According to the apparatus of the invention, the edge member is brought into contact with the surface of the separation tape and, then, is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, so that the unnecessary mater can be prevented from being slid in a lateral direction at the time when the unnecessary matter is separated from the wafer. In addition, the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, friction between the edge member and the separation tape can be reduced at the time when the separation tape is separated from the wafer. Thus, it is possible to prevent the surface of the wafer from being contaminated and to suppress foreign matters from being generated from the separation tape. Since the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, even when bumps are formed on the surface of the wafer, the bumps receives no damage at the time when the separation tape is separated from the wafer. BRIEF DESCRIPTION OF THE DRAWINGS For the purpose of illustrating the invention, there are shown in the drawings several forms which are presently preferred, it being understood, however, that the invention is not limited to the precise arrangement and instrumentalities shown. FIG. 1 is an overall perspective view showing a protective tape separation apparatus used for separating a protective tape according to an embodiment of an unnecessary matter removal method of the present invention; FIG. 2 is an overall front view of the protective tape separation apparatus; FIG. 3 is an overall plan view showing the protective tape separation apparatus; FIG. 4 is a front view showing a tape joining unit and a tape separating unit; FIG. 5 is a front view showing a support structure of a tape separating edge member; FIG. 6 is a perspective view showing a main part in a tape separating operation state; FIGS. 7 to 13 are front views each illustrating a tape separating step; and FIG. 14 is an enlarged front view showing a main part in the tape separating step. DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, description will be given of one embodiment of the invention. An unnecessary matter removal method according to the invention has the following effect: an edge member is pressed to a wafer at a separation completion end portion where an unnecessary matter is separated from the wafer, so that the unnecessary matter can be prevented from being slid in a lateral direction at the time when the unnecessary matters are separated from the wafer. Since edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, friction between the separation tape and the edge member can be minimized at the time when the unnecessary matter is separated from the wafer. As a result, the generation of dust due to the friction between the separation tape and the edge member can be also suppressed. FIG. 1 shows one embodiment of an apparatus used for the unnecessary matter removal method according to the invention. More specifically, FIG. 1 is an overall perspective view showing a protective tape removal apparatus for removing a protective tape joined to a surface of a wafer, which is one example of the unnecessary matter, from the wafer. FIG. 2 is a front view thereof, FIG. 3 is a plan view thereof, FIG. 4 is a front view of a tape joining unit and a tape separating unit, FIG. 5 is a front view showing a support structure of a tape separating edge member, and FIG. 6 is a perspective view showing a main part in a tape separating operation state. The protective tape removal apparatus according to this embodiment has, on a base 12, a wafer supply unit 1 loaded with a cassette C1 accommodating a stack of wafers W that have been subjected to a back grinding process, a wafer transport mechanism 3 having a robot arm 2, an alignment stage 4 for positioning the wafer W, a tape supply unit 5 for supplying the separation tape T to a separating position, a separation table 6 for suction-holding the wafer W, a tape joining unit 7 for joining the separation tape T to the wafer W on the separation table 6, a tape separating unit 8 for separating the joined separation tape T, a tape collector for collecting the separated separation tape Ts by winding, a wafer collector 10 having a cassette C2 for accommodating a stack of processed wafers W, a unit driver 11 for reciprocating the tape joining unit 7 and the tape separating unit 8 horizontally independently of each other, and the like. The wafer supply unit 1, the wafer transport mechanism 3, the alignment stage 4, the separation table 6 and the wafer collector 10 are arranged on the upper surface of the base 12, whereas the tape supply unit 5 and the tape collector 10 are arranged on the front surface of a vertical wall 13 which erects on the upper surface of the base 12. Also, the tape joining unit 7 and the tape separating unit 8 are arranged at a position facing the lower opening of the vertical wall 13, while the unit driver 11 is arranged on the back of the vertical wall 13. The wafer supply unit 1 has a configuration in that the wafers W in a horizontal posture with a the surface, to which the protective tape P is joined, directed upward are inserted into the cassette C1 with an appropriate vertical space provided therebetween, and are loaded on the cassette table 14. The cassette table 14 can be arranged in different directions by being revolved by an air cylinder 15. The wafer collector 2 also has a configuration in that the wafers W, that have been subjected to the protective tape separation process, are inserted into the cassette C2 with an appropriate vertical space provided therebetween, and are mounted on the cassette table 16. This cassette table 16 is also changeable in direction by being revolved by an air cylinder 17. The robot arm 2 of the wafer transport mechanism 3 is configured in a way horizontally retractable and pivotable to take out the wafer W from the wafer supply unit 1, supply the wafer W to the alignment stage 4, convey the wafer W from the alignment stage 4 into the separation table 6, convey the processed wafer W from the separation table 6 and convey the processed wafer W into the wafer collector 10. The tape supply unit 5 is so configured that the separation tape T supplied from an original roll R is guided to the tape joining unit 7 and the tape separating unit 8 over the separation table 6. The separation tape T has a smaller width than the diameter of the wafer W. As shown in FIG. 3, a suction pad 18 with the upper surface thereof constituting a vacuum suction surface is arranged vertically retractibly at the center of the separation table 6. The upper surface of the table is configured as a vacuum suction surface to hold the wafer W without displacement. As shown in FIG. 4, a movable table 22 horizontally movably supported along a rail 21 is reciprocated by the tape joining unit 7 horizontally at a predetermined stroke by a feed screw 23 adapted to be driven in forward and reverse directions by a motor M1. A joining roller 25 is mounted on the movable table 22 vertically movably through a swingable arm 24. The tape separating unit 8 is also so configured that a movable table 26 supported horizontally movably along the rail 21 is reciprocated horizontally at a predetermined stroke by a feed screw 27 driven in forward and reverse directions by a motor M2. The movable table 26 has mounted thereon a tape separating edge member 28, a guide roller 29, a supply roller 30 adapted to be rotated, and a holding roller 31 arranged in opposed relation to the supply roller 30. As shown in FIGS. 5 and 6, the tape separating edge member 28 has a sharp tip end. The edge member 28 is configured of a plate member wider than the diameter of the wafer, and is fixedly connected, retractibly through the slit 33 and the bolt 34, to a rotary shaft 32 projected and supported rotatably on the front surface of the movable table 26. An operating arm 35 is fastened and connected at the base of the rotary shaft 32. A connection rod pivotally connected to the free end of the operating arm 35 is connected to a piston rod 36a of an air cylinder 36 mounted on the front surface of the movable table 26. Specifically, the rotary shaft 32 is rotated by the swinging motion of the operating arm 35 with the retractive operation of the piston rod. With this configuration, the tip end of the edge member 28 is moved vertically. The connection rod 37 extended from the free end of the operating arm 35 is screwed into the piston rod 36a of the air cylinder 36. Specifically, by adjusting the amount in which the connection rod 37 is screwed, the swinging angle of the operating arm 35 with the piston rod 36a projected to the stroke end, i.e., the angle of the edge member 28 at the lowest position can be adjusted as desired. Each part of the protective tape separation apparatus according to this embodiment is configured as described above. The basic process of separating the protective tape P joined on the surface of the wafer W will be described with reference to FIGS. 7 to 14. First, the robot arm 2 suction-holds and takes out one wafer W from the cassette C1 of the wafer supply unit 1 and places it on the alignment stage 4. Based on the detection of the orientation flat and the notch of the wafer W, the wafer W is positioned. The wafer W thus positioned is again transported by being supported on the robot arm 2 and supplied onto the separation table 6. The wafer W conveyed onto the separation table 6 is received by a suction pad 18 projected from the table and placed in a predetermined posture on the upper surface of the separation table 6 with the downward movement of the suction pad 18. The wafer W is thus suction-held with the surface, to which the protective tape P is joined, directed upward. In the process, as shown in FIG. 7, the tape joining unit 7 and the tape separating unit 8 are located in a standby position at some distance behind the separation table 6. As shown in FIG. 8, when the wafer W is placed on the separation table 6, the joining roller 25 of the tape joining unit 7 moves down to a predetermined joining level, where the whole unit moves forward and the joining roller 25 rolls over the wafer W. In this way, the separation tape T is joined onto the surface of the protective tape P. As shown in FIG. 9, upon completion of joining of the separation tape T, the air cylinder 36 of the tape separating unit 8 is projected to the stroke end and the edge member 28 moves down to the lower limit by the swing motion of the operating arm 35. Next, as shown in FIG. 10, the tape separating unit 8 is moved forward. At the same time, the separation tape T is supplied by the supply roller 30 at a peripheral speed in synchronism with the movement speed of the tape separating unit 8. The separation tape T folded back and guided at a predetermined angle at the tip end of the edge member 28 is guided between the supply roller 30 and the holding roller 31 through a guide roller 29. Once the tip end of the edge member 28 reaches the end of the wafer W, i.e., the separation start end portion of the protective tape P which is an unnecessary matter, the tip end of the edge member 28 moves up while maintaining the same angle. In this way, the protective tape P and the wafer W are held by the edge member 28 at the separation start end portion where the separation resistance is maximum. Even in the case where the wafer W is thin, the separation tape T can be separated without imposing any load on the wafer W. As shown in FIG. 11, the tape separating unit 8 with the edge member 28 moved up moves forward integrally with the protective tape P joined thereto, so that the protective tape P is separated from the surface of the wafer W. In this way, the wafer surface is not pressed by the tip end of the edge member 28 during the movement; therefore, the friction is reduced between the separation tape T and the edge member 28. As a result, the dust otherwise caused by the friction between the separation tape T and the edge member 28 is not generated. Also, even in the case where irregularities such as bumps are formed on the surface of the wafer W, the separation tape T can be separated without inflicting damage to the wafer W. In this case, the edge member 28 moves forward at a lower speed when the protective tape P starts to be separated as the edge member 28 passes through the end of the wafer W and at a higher speed subsequently to improve the processing efficiency. Also, the supply roller 30 is rotated by a driver (not shown) through a slip clutch adapted to slip under a predetermined or higher torque, so that the separation tape T is supplied with a predetermined tension applied thereto. As shown in FIG. 12, the edge member 28, with the arrival at the separation completion end portion where the protective tape P is separated from the wafer W, moves down again and the tip end thereof presses the separation tape T to the wafer W. As a result, the protective tape P can be prevented from being slid in a lateral direction at the time when the protective tape P is separated from the wafer W. Thus, the adhesive or the like of the protective tape P can be prevented from coming in contact with the surface of the wafer W when the protective P is separated. As shown in FIG. 13, upon complete separation of the protective tape P with the tape separating unit 8 passing above the wafer, the wafer W is transported from the separation table 6 by the robot arm 2 and accommodated by being inserted into the cassette C2 of the wafer collector 10. After that, the tape joining unit 7 and the tape separating unit 8 are moved and restored into the original standby position, and the separation tape Ts separated is wound and collected. Also, the joining roller 25 and the edge member 28 are moved up to the original standby position. One procedure of the protective tape separation process is thus completed, and the next wafer receiving phase is entered. The operation of moving up and down and the movement speed of the edge member 28 are centrally controlled by a control unit not shown. FIG. 14 schematically shows, in enlarged form, a series of the process described above. As shown in FIG. 14, while the separation tape T is separated, the edge member 28 is moved up from the wafer W. At the separation completion end portion L where the unnecessary matter such as the protective tape P is separated from the wafer W, the tip end of the edge member 28 is pressed to the wafer W thereby to prevent the unnecessary matter such as the protective tape P from being slid in a lateral direction when completely separated from the wafer. In the case where the unnecessary matter is the protective tape P for protecting the surface of the wafer W, the separation completion end portion L is preferably within a range 10% or less of the diameter of the wafer W. As a result, the slide of the protective tape P in a lateral direction at the time of separation can be prevented reliably. Also, the friction between the tip end of the edge member 28 and the separation tape T is reduced at the time of separation. Thus, the dust constituting foreign matters can be prevented from being generated from the separation tape T by the friction. The embodiments described above deal with the protective tape joined to the wafer surface as an unnecessary matter. Nevertheless, the unnecessary matter to be removed according to the invention also include a resist film used for forming a pattern on the wafer surface. In the case where the unnecessary matter is a resist film, the separation tape, after being joined directly onto the resist film, is separated by a similar method. In this way, the resist film can be reliably removed from the wafer surface together with the separation tape. The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>(1) Field of the Invention The invention relates to a method of removing an unnecessary matter such as a protective tape or a resist film from a surface of a semiconductor wafer by means of a separation tape. (2) Description of the Related Art In a fabrication process of a semiconductor wafer (hereinafter, simply referred to simply as “wafer”), at the time when a back face of the wafer, that has been previously patterned, is ground (back grinding), a wide protective tape is joined beforehand onto the wafer surface. The protective tape projected from an outer periphery of the wafer is cut out along an outer diameter of the wafer. The wafer with the whole surface thereof covered by the protective tape is suction-held by a sucker from the surface and, then, is subjected to a grinding process. After that, the protective tape necessary no longer is removed from the wafer surface. A method of separating the protective tape uses a separation tape. According to this method, a separation tape having an adhesion higher than that of the protective tape is joined to the protective tape (unnecessary matter) on the wafer surface using a roller rolled thereon. After that, the separation tape is wound off, so that the protective tape is separated together with the separation tape. Upon separating and removing the unnecessary protective tape by the separation tape from the wafer thinned in the back grinding process, the separation tape cannot be joined up to the end of the protective tape and the protective tape cannot be separated in stable manner. In view of this, there has been proposed a method of separating and removing the protective tape using an edge member (JP-A 2002-124494). In recent years, however, trend is an increased rate at which bumps are formed on the surface of the semiconductor chip. In the case where the protective tape is separated from the wafer formed with the bumps on the surface thereof by the method described in JP-A 2002-124494, the wafer surface may be damaged. Also, friction between the edge member and the separation tape may generate foreign matters. In view of this, the present inventor has made vigorous efforts to solve this problem by separating the protective tape with the edge member moved upward and has come to know the new problem that the protective tape is slid in a lateral direction immediately before leaving the wafer end and the adhesive surface of the protective tape rubs the wafer surface, with the result that the wafer surface is contaminated. | <SOH> SUMMARY OF THE INVENTION <EOH>The invention has been made in view of the above circumstances, and it is therefore an object of the invention to provide an unnecessary matter removal method capable of reliably separating and removing an unnecessary matter from a wafer without inflicting damage to the wafer even in the case of separating the unnecessary matter from the wafer by a separation tape. In order to achieve the above object, the invention employs the following configuration: A method of joining a separation tape onto a semiconductor wafer and, then, separating the separation tape from the semiconductor wafer, thereby separating an unnecessary matter on the semiconductor wafer together with the separation tape, the method comprising the step of: separating the separation tape in such a manner that an edge member is brought into contact with a surface of the separation tape joined to the semiconductor wafer and, then, a tip end of the edge member is pressed to the semiconductor wafer at a separation completion end portion where the unnecessary matter is separated from the semiconductor wafer. According to the method of the invention, the edge member is brought into contact with the surface of the separation tape and, then, is pressed to the wafer at separation completion end portion where the unnecessary matter is separated from the wafer, so that the unnecessary matter can be prevented from being slid in a lateral direction at the time when the unnecessary matter is separated from the wafer. In addition, the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, friction between the edge member and the separation tape can be reduced at the time when the separation tape is separated from the wafer. Thus, it is possible to prevent the surface of the wafer from being contaminated and to suppress foreign matters from being generated from the separation tape. Since the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, even when bumps are formed on the surface of the wafer, the bumps receives no damage at the time when the separation tape is separated from the wafer. Herein, the separation completion end portion includes a portion on a slightly front side of a portion where the unnecessary matter is completely separated from the wafer. The range of the separation completion end portion varies depending on the size of the unnecessary matter and the like. For example, in the case where the unnecessary matter is a surface protective tape joined onto the surface of the wafer, the separation completion end portion preferably has a range of 10% or less of a wafer diameter from an end portion of the wafer from which the protective tape is completely separated. Also in the case where the unnecessary matter is a resist film, similar to the case of the protective tape, the separation completion end portion preferably has a range of 10% or less of a wafer diameter from an end portion of the wafer from which the resist film is completely separated. In addition, since the edge member is used for separation of the separation tape, the separation tape can be pulled in a fixed direction at the time when the separation tape is separated from the wafer, so that separation resistance can be reduced. With this configuration, even when the wafer is thin or even when the unnecessary matter is, for example, a surface protective tape joined onto the surface of the wafer or a resist film formed on the surface of the wafer, the unnecessary matter can be reliably removed from the wafer without inflicting damage to the wafer. Preferably, a supply speed of the separation tape is made equal to a movement speed of the edge member or the separation tape is supplied with a predetermined tension applied thereto. In other words, the separation tape can be joined onto the wafer so as not to be flexed. In order to achieve the above object, the invention also employs the following configuration: The method of the above configuration, further comprising the steps of: joining the separation tape onto the semiconductor wafer at a separation start end portion where the separation tape is joined onto the semiconductor wafer and, then, is separated from the semiconductor wafer, in such a manner that the tip end of the edge member is pressed to a surface of the separation tape; releasing the tip end of the edge member from the surface of the separation tape after completion of joining of the separation tape in the previous step; and separating the separation tape to the separation completion end portion in a state of releasing the tip end of the edge member from the surface of the semiconductor wafer, while moving the edge member to join the separation tape onto the semiconductor wafer. According to the method of the invention, the edge member presses the unnecessary matter and the wafer at the separation start portion where separation resistance is maximum. Consequently, even in the case where the wafer is thin, the separation tape can be separated from the wafer so that the wafer has no load. In addition, the edge member is brought into contact with the surface of the separation tape and, then, is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, so that the unnecessary matter can be prevented from being slid in a lateral direction and the separation tape can be prevented from being flexed at the time when the unnecessary matter is separated from the wafer. In addition, the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, friction between the edge member and the separation tape can be reduced at the time when the separation tape is separated from the wafer. Thus, it is possible to prevent the surface of the wafer from being contaminated and to suppress foreign matters from being generated from the separation tape. Since the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, even when bumps are formed on the surface of the wafer, the bumps receives no damage at the time when the separation tape is separated from the wafer. Herein, the separation start end portion includes a predetermined distance from an end portion of the wafer with which the edge member is brought into contact in a movement direction. The range of the separation start end portion varies depending on the size of the unnecessary matter and the like. In the step of releasing the tip end of the edge member from the wafer, preferably, the separation tape is released from the tip end of the edge member in a state where the tip end of the edge member has a predetermined angle relative to the separation tape. This configuration is effective for suppressing friction with the separation tape at a portion other than the separation start end portion and the separation completion end portion at minimum. Preferably, a movement speed of the edge member is made slow at the separation start end portion. This configuration makes it possible to reliably join the separation tape from an end portion of the wafer, and to improve a removing efficiency of the unnecessary matter. In order to achieve the above object, the invention also employs the following configuration: An apparatus for joining a separation tape onto a semiconductor wafer and, then, separating the separation tape from the semiconductor wafer, thereby separating an unnecessary matter on the semiconductor wafer together with the separation tape, the apparatus comprising: a transport mechanism for transporting the semiconductor wafer to a predetermined process; an alignment stage for aligning the semiconductor wafer so that the separation tape is joined onto the semiconductor wafer; a chuck table for holding the aligned semiconductor wafer; a tape supply unit for supplying the separation tape toward the held semiconductor wafer; tape separation means for joining the separation tape to the unnecessary matter on the semiconductor wafer in such a manner that a tip end of an edge member is pressed to a surface of the supplied separation tape and, then, separating the separation tape from the surface of the semiconductor wafer, thereby separating the unnecessary matter together with the separation tape; a tape collector for collecting the separated unnecessary separation tape; and control means for controlling the separation means so as to join the separation tape to the unnecessary matter at a separation start end portion, where the separation tape is joined onto the semiconductor wafer and, then, is separated from the semiconductor wafer, and a separation completion end portion, in such a manner that the tip end of the edge member of the separation means is pressed to the separation tape, and to release the tip end of the edge member from the separation tape at the other portion. According to the apparatus of the invention, the edge member is brought into contact with the surface of the separation tape and, then, is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, so that the unnecessary mater can be prevented from being slid in a lateral direction at the time when the unnecessary matter is separated from the wafer. In addition, the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, friction between the edge member and the separation tape can be reduced at the time when the separation tape is separated from the wafer. Thus, it is possible to prevent the surface of the wafer from being contaminated and to suppress foreign matters from being generated from the separation tape. Since the edge member is pressed to the wafer at the separation completion end portion where the unnecessary matter is separated from the wafer, even when bumps are formed on the surface of the wafer, the bumps receives no damage at the time when the separation tape is separated from the wafer. | 20050106 | 20070904 | 20050707 | 65891.0 | 0 | LEE, CHEUNG | METHOD OF REMOVING UNNECESSARY MATTER FROM SEMICONDUCTOR WAFER, AND APPARATUS USING THE SAME | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,029,425 | ACCEPTED | Light emitting device and method of manufacturing the same | A light emitting device is provided in which reduction of recombinations in a light emitting element is prevented by using a low-resistant electrode structure. A light emitting device of the present invention has a light emitting element composed of first and second electrodes and an organic compound layer that is sandwiched between the first and second electrodes, and the device is characterized in that one of the first and second electrodes has a transparent conductive film, a transparent conductive resin formed on the transparent conductive film, and a plurality of conductors formed on the transparent conductive resin. | 1. A light emitting device comprising: a plurality of light emitting elements, each of the plurality of light emitting elements comprising: a first electrode; a second electrode; an organic compound layer interposed between the first and second electrodes; one of the first and second electrodes comprising: a transparent conductive film; a transparent conductive resin formed on the transparent conductive film; a plurality of conductors formed on the transparent conductive resin. 2. A light emitting device comprising: a plurality of light emitting elements, each of the plurality of light emitting elements comprising: a first electrode; a second electrode; an organic compound layer interposed between the first and second electrodes; one of the first and second electrodes comprising: a transparent conductive film; a transparent conductive resin formed on the transparent conductive film; a plurality of conductors formed on the transparent conductive resin, wherein a partition wall is formed between adjacent light emitting elements. 3. A light emitting device comprising: a plurality of light emitting elements, each of the plurality of light emitting elements comprising: at least a thin film transistor; an insulating film over at least one of a gate electrode of the thin film transistor, a gate wiring connected to the thin film transistor, a source wiring connected to the thin film transistor, a drain wiring connected to the thin film transistor, and a current supply wiring connected to the thin film transistor; a transparent conductive film; a transparent conductive resin formed on the transparent conductive film; a plurality of conductors formed on the transparent conductive resin. 4. A device according to claim 1, wherein a seal pattern is formed outside each of the light emitting elements, and wherein at least an opening is formed in the seal pattern. 5. A device according to claim 1, wherein at least an opening is formed between adjacent conductors. 6. A device according to claim 1, wherein at least an opening is formed between adjacent conductors, and wherein a light emitted from the organic compound layer reaches outside through the opening. 7. A device according to claim 1, wherein each of the plurality of conductors has a width in a range of 0.5 to 5 μm. 8. A device according to claim 5, wherein the opening has a width in a range of 10 to 100 μm. 9. A device according to claim 5, wherein a width of the opening is 5 to 15 times of a width of each of the plurality of conductors. 10. A device according to claim 1, wherein the light emitting device is in combination with an electric apparatus, wherein the electric apparatus is one selected from the group consisting of a display device, a digital still camera, a notebook computer, a mobile computer a portable image reproducing device provided with a recording medium, a goggle-type display, a video camera, a portable image taking display apparatus. 11. A method of manufacturing a light emitting device, said method comprising: forming an organic compound layer over a first surface of a substrate; forming at least a conductor over a second surface of a cover member; opposing the first surface of the substrate and the second substrate; bonding the substrate and the cover member with a seal pattern. 12. A method of manufacturing a light emitting device, said method comprising: forming an organic compound layer over a first surface of a substrate; forming at least a conductor over a second surface of a cover member; forming a seal pattern along end portions of the cover member; forming a transparent conductive resin inside the seal pattern over the cover member; opposing the first surface of the substrate and the second surface of the cover member; bonding the substrate and the cover member with the seal pattern. 13. A method of manufacturing a light emitting device, said method comprising: forming an organic compound layer over a first surface of a substrate; forming a seal pattern along end portions of the substrate; forming a transparent conductive resin inside the seal pattern over the substrate; forming at least a conductor over a second surface of a cover member; opposing the first surface of the substrate and the second surface of the cover member; bonding the substrate and the cover member with the seal pattern. 14. A method of manufacturing a light emitting device, said method comprising: forming an organic compound layer over a first surface of a substrate; forming at least a conductor over a second surface of a cover member; forming a seal pattern along end portions of the cover member; opposing the first surface of the substrate and the second substrate; bonding the substrate and the cover member with the seal pattern; injecting a transparent organic resin through an opening formed in the seal pattern. 15. A method of manufacturing a light emitting device, said method comprising: forming an organic compound layer over a first surface of a substrate; forming at least a conductor over a second surface of a cover member; forming a seal pattern along end portions of the substrate; opposing the first surface of the substrate and the second substrate; bonding the substrate and the cover member with the seal pattern; injecting a transparent organic resin through an opening formed in the seal pattern. 16. A method according to claim 11, wherein the light emitting device is in combination with an electric apparatus, wherein the electric apparatus is one selected from the group consisting of a display device, a digital still camera, a notebook computer, a mobile computer, a portable image reproducing device provided with a recording medium, a goggle-type display, a video camera, a portable image taking display apparatus. 17. A method according to claim 12, wherein the light emitting device is in combination with an electric apparatus, wherein the electric apparatus is one selected from the group consisting of a display device, a digital still camera, a notebook computer, a mobile computer, a portable image reproducing device provided with a recording medium, a goggle-type display, a video camera, a portable image taking display apparatus. 18. A method according to claim 13, wherein the light emitting device is in combination with an electric apparatus, wherein the electric apparatus is one selected from the group consisting of a display device, a digital still camera, a notebook computer, a mobile computer, a portable image reproducing device provided with a recording medium, a goggle-type display, a video camera, a portable image taking display apparatus. 19. A method according to claim 14, wherein the light emitting device is in combination with an electric apparatus, wherein the electric apparatus is one selected from the group consisting of a display device, a digital still camera, a notebook computer, a mobile computer, a portable image reproducing device provided with a recording medium, a goggle-type display, a video camera, a portable image taking display apparatus. 20. A method according to claim 15, wherein the light emitting device is in combination with an electric apparatus, wherein the electric apparatus is one selected from the group consisting of a display device, a digital still camera, a notebook computer, a mobile computer, a portable image reproducing device provided with a recording medium, a goggle-type display, a video camera, a portable image taking display apparatus. 21. A device according to claim 6, wherein the opening has a width in a range of 10 to 100 μm. 22. A device according to claim 6, wherein a width of the opening is 5 to 15 times of a width of each of the plurality of conductors. 23. A device according to claim 2, wherein a seal pattern is formed outside the light emitting element, and wherein at least an opening is formed in the seal pattern. 24. A device according to claim 2, wherein at least an opening is formed between adjacent conductors. 25. A device according to claim 2, wherein at least an opening is formed between adjacent conductors, and wherein a light emitted from the organic compound layer reaches outside through the opening. 26. A device according to claim 2, wherein each of the plurality of conductors has a width in a range of 0.5 to 5 μm. 27. A device according to claim 24, wherein the opening has a width in a range of 10 to 100 μm. 28. A device according to claim 25, wherein the opening has a width in a range of 10 to 100 μm. 29. A device according to claim 24, wherein a width of the opening is 5 to 15 times of a width of each of the plurality of conductors. 30. A device according to claim 25, wherein a width of the opening is 5 to 15 times of a width of each of the plurality of conductors. 31. A device according to claim 2, wherein the light emitting device is in combination with an electric apparatus, wherein the electric apparatus is one selected from the group consisting of a display device, a digital still camera, a notebook computer, a mobile computer, a portable image reproducing device provided with a recording medium, a goggle-type display, a video camera, a portable image taking display apparatus. 32. A device according to claim 3, wherein at least an opening is formed between adjacent conductors. 33. A device according to claim 3, wherein at least an opening is formed between adjacent conductors, and wherein a light emitted from the organic compound layer reaches outside through the opening. 34. A device according to claim 3, wherein each of the plurality of conductors has a width in a range of 0.5 to 5 μm. 35. A device according to claim 32, wherein the opening has a width in a range of 10 to 100 μm. 36. A device according to claim 33, wherein the opening has a width in a range of 10 to 100 μm. 37. A device according to claim 32, wherein a width of the opening is 5 to 15 times of a width of each of the plurality of conductors. 38. A device according to claim 33, wherein a width of the opening is 5 to 15 times of a width of each of the plurality of conductors. 39. A device according to claim 3, wherein the light emitting device is in combination with an electric apparatus, wherein the electric apparatus is one selected from the group consisting of a display device, a digital still camera, a notebook computer, a mobile computer, a portable image reproducing device provided with a recording medium, a goggle-type display, a video camera, a portable image taking display apparatus. | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device with a light emitting element that has a film containing an organic compound that emits fluorescent light or phosphorescent light upon application of electric field (the film is hereinafter referred to as organic compound layer), and to a method of manufacturing the light emitting device. In the present invention, a light emitting element is an element that has an organic compound layer between a pair of electrodes and the term light emitting device includes an image display device which uses this organic light emitting element. Also, the following modules are all included in the definition of the light emitting device: a module obtained by attaching to a light emitting element a connector such as an anisotropic conductive film (FPC: flexible printed circuit), a TAB (tape automated bonding) tape, or a TCP (tape carrier package); a module in which a printed wiring board is provided at an end of the TAB tape or the TCP; and a module in which an IC (integrated circuit) is directly mounted to a light emitting element by the COG (chip on glass) method. 2. Description of the Related Art Light emitting devices, which are characterized by their thinness and light-weight, fast response, and direct current low voltage driving, are expected to develop into next-generation flat panel displays. Among light emitting devices, ones having light emitting elements arranged to form a matrix are considered to be particularly superior to conventional liquid crystal display devices for their wide viewing angle and excellent visibility. It is said that light emitting elements emit light through the following mechanism: a voltage is applied between a pair of electrodes that sandwich an organic compound layer, electrons injected from the cathode and holes injected from the anode are re-combined at the luminescent center of the organic compound layer to form molecular excitons, and the molecular excitons return to the base state while releasing energy to cause the light emitting element to emit light. Excitation state includes a singlet exiton and a triplet exiton, and it is considered that luminescence can be made through either excitation state. Light emitting devices having light emitting elements arranged to form a matrix can employ passive matrix driving (simple matrix light emitting devices), active matrix driving (active matrix light emitting devices), or other driving methods. If the pixel density is large, active matrix light emitting devices in which each pixel has a switch are considered to be advantageous because they can be driven with low voltage. In an active matrix light emitting device, a thin film transistor (hereinafter referred to as TFT) is formed on an insulating surface, an interlayer insulating film is formed over the TFT, and an anode of the light emitting element is formed to bc electrically connected to the TFT through the interlayer insulating film. The material suitable for the anode is a transparent conductive material having a large work function, typically, ITO (indium tin oxide). An organic compound layer is formed on the anode. The organic compound layer includes a hole injection layer, a hole transporting layer, a light emitting layer, a blocking layer, an electron transporting layer, an electron injection layer, etc. The organic compound layer may be a single layer that emits light, or may have a combination of the above-mentioned layers. After forming the organic compound layer, a cathode is formed to complete the light emitting element. The laminate of the anode, cathode, and organic compound layer corresponds to the light emitting element. The material used to form the cathode is a metal having a small work function (typically a metal belonging to Group 1 or 2 in the periodic table) or an alloy containing the metal. A first insulating layer is formed from an organic resin material to cover an end of the anode. The first insulating layer is provided to prevent short circuit between the anode and the cathode that is formed after the anode is formed. The transparent conductive film used as the anode transmits visible light and therefore allows light emitted from the organic compound layer to pass therethrough. However, the transparent conductive film has a drawback of high resistivity compared to the resistivity of a metal. High film resistance of the anode formed of the transparent conductive film brings difficulty to injection of carriers and lowers the number of carriers that are re-combined in the light emitting element. Less recombinations in the light emitting element correspond to the light emission mechanism of the light emitting element ceasing to function. As a result, the light emitting element cannot emit light at a desired luminance. SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is therefore to provide a light emitting device in which reduction of recombinations in a light emitting element is prevented by employing a low-resistant electrode structure. According to the present invention, a light emitting device has a light emitting element composed of first and second electrodes and an organic compound layer that is sandwiched between the first and second electrodes, and the device is characterized in that one of the first and second electrodes has a transparent conductive film, a transparent conductive resin formed on the transparent conductive film, and a plurality of conductors formed on the transparent conductive resin. The present invention obtains the effect of lowering the resistance of the transparent conductive film by forming the plural conductors in the first or second electrode. In this specification, an electrode above the organic compound layer is called a first electrode (upper electrode) and an electrode below the organic compound layer is called a second electrode (lower electrode). The term transparent conductive resin refers to a conductive resin that has 75% or higher light transmittance, preferably, 90% or higher. According to the present invention, a light emitting device has a plurality of light emitting elements each composed of first and second electrodes and an organic compound layer that is sandwiched between the first and second electrodes, and the device is characterized in that one of the first and second electrodes has a transparent conductive film, a transparent conductive resin formed on the transparent conductive film, and a plurality of conductors formed on the transparent conductive resin, and that a partition wall is formed between adjacent light emitting elements. According to the present invention, the light emitting device is characterized in that an opening is formed between adjacent conductors, and that light emitted from the organic compound layer reaches outside through the opening. When a light emitting device has an opening, a voltage cannot uniformly be applied to its organic compound layer to make it impossible to obtain sufficient light emission. However, this is not a problem in the light emitting device of the present invention, because the transparent conductive resin is formed to be brought into contact with the transparent conductive film and with the cover member having the plural conductors and opening. In other words, in the present invention, the electric field is uniformly applied to the organic compound layer because the present invention can make the transparent conductive resin function as a part of the electrodes. The transparent conductive resin also has a function of bonding the transparent conductive film to the plural conductors and the cover member. In this specification, the term cover member refers to a substrate that faces an element substrate and is bonded to the element substrate with a seal pattern sandwiched between the substrates. The light emitting device of the present invention is characterized in that a seal pattern is formed outside the light emitting element and that an opening is formed in the seal pattern. With the opening formed in the seal pattern, the transparent conductive resin can be injected through the opening. According to the present invention, a light emitting device has a light emitting element electrically connected to a TFT, and is characterized in that an insulating film, a transparent conductive film, a transparent conductive resin, and a plurality of conductors are formed above a gate electrode of the TFT, or above a gate wiring line connected to the TFT, or above a source wiring line connected to the TFT, or above a drain wiring line connected to the TFT, or above a current supplying line connected to the TFT, the transparent conductive film being formed on the insulating film, the transparent conductive resin being formed on the transparent conductive film, the plural conductors being formed on the transparent conductive resin. Having the above-mentioned characteristic, the present invention can reduce the resistance of the transparent conductive film without lowering the aperture ratio. The light emitting device of the present invention is characterized in that each of the conductors is 0.5 to 5 μm in width. The light emitting device of the present invention is characterized in that the opening is 10 to 100 μm in width. A high molecular weight material can be used for the transparent conductive resin. A low molecular weight material refers to a material that is lower in molecular weight than a high molecular weight material. Light obtained from the light emitting element may be one or both of light emission by singlet excitation and light emission by triplet excitation. BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings: FIGS. 1A to 1D are diagrams showing a process of manufacturing a light emitting device of the present invention; FIGS. 2A to 2C are diagrams showing a process of manufacturing a light emitting device of the present invention; FIGS. 3A and 3B are diagrams showing the top structure of a light emitting device and the circuit structure thereof of the present invention; FIG. 4 is a diagram showing the top structure of a light emitting device and the circuit structure thereof of the present invention; FIGS. 5A to 5F are diagrams showing shapes of electrodes of conductors of the present invention; FIG. 6 is a diagram showing the element structure of a light emitting element of the present invention; FIG. 7 is a diagram showing the element structure of a light emitting element of Embodiment 2; FIGS. 8A and 8B are diagrams of a light emitting device with FIG. 8A showing the top structure thereof and FIG. 8B showing the sectional structure thereof of Embodiment 4; FIG. 9 is a diagram showing the sectional structure of a light emitting device of Embodiment 4; FIGS. 10A and 10B are diagrams showing the top structure of a light emitting device and the circuit structure thereof of Embodiment 5; FIG. 11 is a diagram showing the sectional structure of a light emitting device of Embodiment 7; FIG. 12 is a diagram showing the sectional structure of a light emitting device of Embodiment 8; and FIGS. 13A to 13H are diagrams showing examples of electric apparatus of Embodiment 9. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment Mode An embodiment mode of the present invention will be described with reference to FIGS. 1A to 4. In FIG. 1A, thin film transistors are formed on a substrate 101. The substrate 101 in this embodiment mode is a glass substrate, but a quartz substrate, a silicon substrate, a metal substrate, or a ceramic substrate may be used instead. Next, a crystalline silicon film is formed into a thickness of 50 nm. The crystalline silicon film can be formed by a known method. The crystalline silicon film is patterned to form an island-like crystalline silicon film 102 and an island-like crystalline silicon film 103 (102 and 103 are hereinafter referred to as active layers). A silicon oxide film is formed as a gate insulating film 104 to cover the active layers 102 and 103. A gate electrode 105 and a gate electrode 106 are formed on the gate insulating film 104. The material of the gate electrodes 105 and 106 is a tungsten film, or a tungsten alloy film, with a thickness of 350 nm. The gate electrodes 105 and 106 are a part of a gate wiring line 301 as shown in FIG. 3A. Using the gate electrodes 105 and 106 as masks, the active layers 102 and 103 are doped with an element that belongs to Group 13 in the periodic table (typically boron) as shown in FIG. 1B. A known method can be employed to dope the active layers with the element. Thus formed are impurity regions 107 to 111 having the p type conductivity (hereinafter referred to as p type impurity regions). Channel formation regions 112 to 114 are defined below the gate electrodes 105 and 106. The p type impurity regions 107 to 111 individually serve as source regions or drain regions of the TFTs. Next, a protective film (here, a silicon nitride film) 115 is formed into a thickness of 50 nm. Then the element belonging to Group 13 in the periodic table, which has been used to dope the active layers, is activated by heat treatment. The activation can be achieved by furnace annealing, laser annealing, or lamp annealing, or by a combination of these annealing methods. In this embodiment mode, heat treatment is conducted at 500° C. for four hours in a nitrogen atmosphere. It is effective to conduct hydrogenation treatment after the activation is finished. A known hydrogen annealing technique or plasma hydrogenation technique can be employed for the hydrogenation treatment. Next, as shown in FIG. 1C, a first interlayer insulating film 116 is formed from an organic resin such as polyimide, acrylic, or polyimideamide to have a thickness of 800 nm. The organic resin is applied by a spinner and then heated to be burnt or polymerized, thereby obtaining a flat surface. Organic resin materials in general are low in dielectric constant and therefore can reduce parasitic capacitance. The first interlayer insulating film 116 may instead be an inorganic insulating film. Next, a second interlayer insulating film 117 is formed on the first interlayer insulating film 116 so that gas leakage from the first interlayer insulating film 116 does not affect the light emitting element. The second interlayer insulating film 117 is an inorganic insulating film, typically, a silicon oxide film, a silicon oxynitride film, or a silicon nitride film, or a laminate having the above-mentioned insulating films in combination. The second interlayer insulating film is formed by plasma CVD in which the reaction pressure is set to 20 to 200 Pa, the substrate temperature to 300 to 400° C., and the power density to 0.1 to 1.0 W/cm2 at high frequency (13.56 MHz) for electric discharge. Alternatively, the surfaces of the first and second interlayer insulating films 116 and 117 are subjected to plasma treatment to form a cured film that contains one or more kinds of gas elements selected from the group consisting of hydrogen, nitrogen, carbon halide, hydrogen fluoride, and noble gas. Thereafter, a resist mask having a desired pattern is formed and contact holes reaching drain regions of the TFTs are formed to form wiring lines 118 to 121. The wiring lines are obtained by patterning into a desired pattern a conductive metal film that is formed from Al or Ti or from an alloy of Al or Ti by sputtering or vacuum evaporation. The wiring lines 118 and 119 respectively function as a source wiring line and a gate wiring line. The TFTs are completed through the above-mentioned steps. In the light emitting device of this embodiment mode, a switching TFT 201 and a current controlling TFT 202 are formed as shown in FIG. 1C. Though not shown in FIG. 1C, an erasing TFT 203 of FIGS. 3A and 3B is also formed at the same time. A gate electrode of the erasing TFT 203 is a part of a gate wiring line 302. The gate wiring line 302 and a gate wiring line 301 that forms a gate electrode of the switching TFT 201 are separate wiring lines. The TFTs in this embodiment mode are all p-channel TFTs but the present invention is not limited thereto. N-channel TFTs can be also used. The conductivity type of the TFTs can be set at designer's discretion. A capacitor storage 305 shown in FIGS. 3A and 3B is also formed at the same time as the TFTs are formed. The storage capacitor 305 is composed of a storage capacitor and another storage capacitor. The former storage capacitor is positioned below a wiring line that forms the gate electrode 106 and includes a semiconductor layer 306, the gate insulating film 104, and the wiring. The semiconductor layer 306 is formed at the same time the active layers of the TFTs are formed. The latter storage capacitor includes the wiring line that forms the gate electrode 106, the protective film 115, the first interlayer insulating film 116, the second interlayer insulating film 117, and a current supplying line 304. The semiconductor layer 306 is electrically connected to the current supplying line 304. Next, a conductive film is formed and then the conductive film is etched as shown in FIG. 1D to complete the lower electrode 122. The lower electrode 122 acts as a cathode or an anode depending on whether its work function is larger or smaller than the work function of an upper electrode 124. The conductive film is desirably 0.1 to 1 μm in thickness. Thereafter, an organic resin film is formed on the entire surface from polyimide, acrylic, or polyimideamide. A thermally-curable material that is cured by heating or a photosensitive material that is cured by irradiation of ultraviolet ray is employed for the organic resin film. When a thermally-curable material is used, a resist mask is formed after the organic resin film is formed on the entire surface, and an insulating layer 123 having an opening above the lower electrode 122 is formed by dry etching. When a photosensitive material is employed, a photo mask is formed after the organic resin film is formed on the entire surface and an insulating layer 123 is formed above the lower electrode 122 through exposure and development using the photo mask. In either case, the insulating layer 123 is formed to have a tapered edge and cover an end portion of the lower electrode 122. Having the edge tapered, the insulating layer can be covered well with an organic compound layer that is to be formed subsequently. An organic compound layer 130 is formed next. The organic compound layer 130 is a laminate having a hole generating layer, a light emitting layer, a hole injection layer, a hole transporting layer, a hole blocking layer, an electron transporting layer, an electron injection layer, a buffer layer, etc. suitably selected in combination. These layers may be formed of low molecular weight materials or high molecular weight materials. Then a transparent conductive film 126 is formed. A transparent conductive high molecular weight material such as ITO is used for the transparent conductive film 126. Preferably, the thickness of the transparent conductive film 126 is 80 to 200 nm. If an ITO film is employed, the film is formed by sputtering. If other transparent conductive high molecular weight materials are chosen, the film is formed by spin coating. If the organic compound layer 130 is formed on the lower electrode 122 so as to obtain a flat surface, defects such as dark spot and light emission failure of the light emitting element due to short circuit between the lower electrode 122 and the transparent conductive film 126 can be prevented. (FIG. 2A) As shown in FIG. 2B, a metal is deposited by evaporation on a cover member 128 and the obtained metal film is patterned to form conductors 131 on the cover member 128. The metal that can be used in this embodiment mode is silver, gold, platinum, palladium, aluminum, magnesium, calcium, indium, copper, neodium, nickel, tin, chromium, or the like. The cover member 128 is bonded to the substrate in a later step as shown in FIG. 3A. Then, a width A of each conductor in a pixel is 0.5 to 5.0 μm (preferably 1.0 to 2.0 μm), and a width B (of an opening 132) that is the distance between two adjacent conductors is 10 to 100 μm (preferably 20 to 30 μm). The width B of the opening is appropriately 5 to 15 times the width A. For example, a preferable opening width is 10 to 30 μm when each conductor is 2.0 μm in width. The cover member 128 may be a glass substrate or a quarts substrate, or a plastic substrate formed of FRP (fiberglass-reinforced plastic), PVF (polyvinyl fluoride), Mylar, polyester, acrylic, or the like. The cover member may be stepped so that a drying agent can be sealed therein. Subsequently, the device shown in FIG. 2A is bonded to the device shown in FIG. 2B. Specifically, a seal pattern (not shown in the drawing) is formed along the end faces (perimeter) of the cover member 128. Then a transparent conductive resin 129 is applied to the surface of the cover member 128 inside the seal pattern. This embodiment mode employs as the transparent conductive resin 129 polypyrrole, polyaniline, polythiophene, poly(3,4-ethylene dioxythiophene), polyisothianaphthene, polyacetylene, tetracyanoquinodimethane, a polyvinyl chloride composition, or a high molecular weight material mainly containing an aromatic amine polymer. The resin 129 may also be a compound of these materials. The above-mentioned materials may be suitably doped with dopants. Keeping the interior of a vacuum exhaust apparatus at a vacuum state and applying a constant pressure to the substrate 101 and the cover member 128, the substrate 101 is bonded to the cover member 128. The substrate 101 and the cover member 128 are bonded such that the side of the substrate 101 on which the organic compound layer 130 is formed opposes the side of the cover member 128 on which the conductors 131 are formed. At this point, the seal member formed on the cover member 128 is heated and cured. Thus completed is a light emitting device having a light emitting element 127 that is composed of the upper electrode 124, the lower electrode 122, and the organic compound layer 130. The upper electrode 124 is composed of the transparent conductive film 126, the transparent conductive resin 129, and the conductors 131. The conductors 131 and the opening 132 are formed above the light emitting element 127 that is electrically connected to the TFTs. The transparent conductive film, the transparent conductive resin on the transparent conductive film, and the conductors on the transparent conductive resin are also formed above the gate electrodes on the TFTs, above the source wiring lines connected to the TFTs, above the gate wiring lines connected to the TFTs, above the drain wiring lines connected to the TFTs, and above the current supplying line connected to the TFTs. As described above, a light emitting device having a low-resistant conductive film can be obtained by forming the transparent conductive film 126, the conductors 131, and the transparent conductive resin 129 sandwiched between the transparent conductive film 126 and the conductors 131 as described above. Since the opening 132 is formed between adjacent conductors in the pixel, light emitted from the organic compound layer 130 can reach outside through the opening 132. As a result, the light emitting element can emit light upward. The transparent conductive film of the light emitting element 127 in the present invention is not limited to a transparent material, and therefore a choice of materials that can be used for the electrode is widened. In the light emitting device of the present invention, the organic compound layer 130 can be shut off from the outside. To elaborate, external substances that accelerate degradation of the organic compound layer 130, such as moisture and oxygen, can be prevented from entering the light emitting element. Accordingly, the present invention eliminates the need for a space filled with inert gas, thereby making it possible to reduce the thickness of the light emitting device greatly. FIG. 3A is a top view of the conductors 131. The conductors 131 are placed above the gate electrodes 105 and 106, the source wiring line 118, the drain wiring line 120, the gate wiring lines 301 and 302, and the current supplying line 304 and in the pixel. Preferably, the conductors 131 are placed in at least one of the following positions: above the gate electrodes 105 and 106, above the wiring line 118, above the drain wiring line 120, above the gate wiring lines 301 and 302, above the current supplying line 304, and in the pixel, while interposing an insulating film therebetween. This arrangement is effective in lowering the resistance of the transparent conductive film 126. Instead of forming the conductors in the pixel portion, plural conductors may be formed above a gate electrode having high light-shielding ability, above a source wiring line, above a gate wiring line, above a drain wiring line, or above a current supplying line while interposing an insulating film therebetween. This makes it possible to lower the resistance of the transparent conductive film without reducing the aperture ratio. In the present invention, the conductors desirably occupy as small an area as possible in the pixel. The conductors above the TFTs and the wiring lines desirably occupy as large an area as possible. As shown in FIG. 4, conductors 431 may be in parallel with a source wiring line 418. FIGS. 3A and 3B and FIG. 4 show conductors forming a stripe pattern in the pixel. However, the pattern of the conductors are not particularly limited. For instance, the conductors may be rectangles as shown in FIG. 5A, or may be brandied as shown in FIGS. 5B and 5C, or may be electrically connected to other electrodes as shown in FIGS. 5D and 5E, or may form a grid pattern as shown in FIG. 5F. In this embodiment mode, the seal pattern is formed on the cover member and the transparent conductive resin is applied to the cover member to complete the light emitting device. However, the present invention is not limited thereto. The seal pattern may be formed on the substrate and the transparent conductive resin may be applied to the substrate to obtain the light emitting device. In this embodiment mode, the transparent conductive resin 129 is applied to the surface of the cover member inside the seal pattern in a manner similar to the liquid crystal drop injection method employed in a liquid crystal display device manufacturing process. The applied transparent conductive resin 129 is sandwiched between the substrate and the cover member 128 in the light emitting device manufactured in accordance with the present invention. Alternatively, the seal pattern may have an opening so that the transparent conductive resin is injected through the opening similar to the manner in which a liquid crystal is injected through an injection port in vacuum. If the transparent conductive resin has high viscosity, the resin may be heated or pressurized. After the injection, the opening may be closed by an end-sealing material. The present invention is not limited to the TFT structures employed in this embodiment mode but may take the inverted stagger structure or the top gate structure. Embodiment 1 This embodiment describes the structure of a light emitting element of a light emitting device according to the present invention. The description is given with reference to FIG. 6. In FIG. 6, reference symbol 501 denotes a lower electrode, which is a film of a metal such as platinum (Pt), chromium (Cr), tungsten (W), or nickel (Ni). The lower electrode 501 corresponds to an anode. The role of the lower electrode 501 in this embodiment is to inject holes to an organic compound layer when a voltage is applied. Therefore, the material of the lower electrode 501 is required to be higher in HOMO level than the organic compound that forms the organic compound layer. In other words, the lower electrode is desirably formed from a material having a large work function. Next, a hole generating layer 504 is formed by co-evaporation of an electron acceptor 502 and a low molecular weight material 503. In this embodiment, the material of the electron acceptor 502 can be the same material given in Embodiment Mode. The low molecular weight material 503 used in this embodiment is a material capable of injecting holes. The hole generating layer 504 in this embodiment is formed into a thickness of 100 to 200 nm by co-evaporation of the low molecular weight material 503 that is a material capable of injecting holes and the electron acceptor 502. The hole generating layer 504 in the present invention is a film transmissive of light. Examples of the low molecular weight material 503 include condensed rings hydrocarbon such as anthracene, tetracene, or pyrene, normal paraffin, oligothiophene-based materials, and phthalocyanine-based materials. Examples of the electron acceptor 502 include TCNQ (tetracyano-quinodimethan), FeCl3, ZrCl4, HfCl4, NbCl5, TaCl5, MoCl5, and WCl6. Also, in the case where the hole-generating layer is formed using a polymeric material, the hole-generating layer can be formed by existing the polymeric material such as polyacetylenes, polythiophenes, poly(3-methyl)thiophenes, poly(3-ethyl) thiophenes, poly(3-n-butyl) thiophenes, poly(3-hexyl) thiophenes, poly (3-octyl) thiophenes, poly (3-dodecyl) thiophenes, poly (3-octadecyl)thiophenes, poly(3-eicosyl)thiophenes and poly(3-methyl-Co-butyl) thiophenes together with the electron acceptor 502 (acceptor) such as PF6-, bromine and iodine in a solvent and using the printing method, the ink jet method or the spin coating method. When forming the hole generating layer 504, the molar ratio of the low molecular weight material 503 to the electron acceptor 502 is desirably 1:1. Electric charges move between an organic material and the electron acceptor 502 when an electron of the organic material is pulled out of the organic material by the electron acceptor 502, thereby generating holes from the organic material. Accordingly, holes are injected from the lower electrode upon application of a voltage and the density of holes flowing is raised. The presence of the hole generating layer 504 makes it possible to form the organic compound layer uniformly and to apply electric field uniformly to the organic compound layer, as well. Therefore a highly reliable light emitting element can be formed. Next, a hole injection layer 505, a hole transporting layer 506, a light emitting layer 507, and an electron transporting layer 508 are layered. The hole injection layer 505 is formed from a material capable of injecting holes. This embodiment employs the same low molecular weight material that the hole generating layer 504 uses to form the hole injection layer 505 to have a thickness of 10 to 30 nm. By forming the hole generating layer 504 and the hole injection layer 505 from the same low molecular weight material, the energy barrier between the two layers is lowered to make it easy for carriers to move. The hole transporting layer 506 is formed from a material capable of transporting holes. This embodiment uses as a material capable of transporting holes an aromatic amine-based material such as 4,4′-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (denoted by α-NPD), 1,1-bis[4-bis(4-methylphenyl)-amino-phenyl]cyclohexane (denoted by TPAC), or 4,4′,4″-tris[N-(3-methylphenyl)-N-phenyl-amino]triphenyl amine (denoted by MTDATA). The thickness of the hole transporting layer 506 is 30 to 60 nm. The light emitting layer 507 is formed from a luminous material. This embodiment uses as a luminous material Alq3 or Alpq3 that is obtained by introducing phenyl base to Alq3. The thickness of the light emitting layer 507 is 30 to 60 nm. The light emitting layer 507 may be doped with a dopant. The dopant can be a known material such as perylene, rubrene, coumarin, 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl aminostylil)-4H-pyran (denoted by DCM), or quinacridon. The light emitting layer 507 may be formed by co-evaporation of CBP and an iridium complex (Ir(ppy)3) or a platinum complex. CBP is a dopant and the iridium complex emits light by triplet excitation. In this case, a hole blocking layer has to be formed between the light emitting layer 507 and the electron transporting layer 508. The hole blocking layer is formed from BCP to have a thickness of 10 to 30 nm. The electron transporting layer 508 is formed from a material capable of transporting electrons. This embodiment employs as a material capable of transporting electrons a 1,3,4-oxadiazole derivative, a 1,2,4-triazole derivative, or the like. Specifically, the material that can be used for the layer 508 is 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (denoted by PBD), 2,5-(1,1′-dinaphthyl)-1,3,4-oxadiazole (denoted by BND), 1,3-bis [5-(p-tert-butylphenyl)-1,3,4-oxadiazole-2-Ile]benzene (denoted by OXD-7), or 3-(4-tert-butylphenyl)-4-phenyl-5-(4-biphenylyl)-1,2,4-triazole (denoted by TAZ). The thickness of the electron transporting layer 508 is 30 to 60 nm. The hole generating layer 504, the hole injection layer 505, the hole transporting layer 506, the light emitting layer 507, and the electron transporting layer 508 (and the blocking layer) together make an organic compound layer 509. After the organic compound layer 509 is formed, a transparent conductive film 510 is formed. In this embodiment, ITO is used to form the transparent conductive film 510 of the light emitting element. Conductors 511 are formed on a cover member (not shown in the drawing) and an opening 512 is formed in the cover member. This is achieved in this embodiment by evaporation of silver through sputtering and subsequent patterning. The patterning employs etching and a mixture of hydrogen fluoride and nitric acid as etchant. The conductors 511 formed on the cover member (not shown) are bonded to the transparent conductive film 510 in vacuum with a transparent conductive resin 513 sandwiched therebetween. The transparent conductive resin 513 may be applied to the cover member (not shown) or injected from an opening (not shown in the drawing) of the seal pattern as in the above-mentioned Embodiment Mode. The transparent conductive resin 513 of this embodiment is a high molecular weight material mainly containing a polyvinyl chloride composition or an aromatic amine polymer. A polyvinyl chloride composition is a material composed of a vinyl chloride resin, a plasticizer (for example, phthalate esters or glycol esters), and lithium salt (lithium chloride, (trifluoromethane sulfonyl) imide lithium, or the like). An aromatic amine polymer is a polymer such as aminonaphthalenes and aminoquinoline. The transparent conductive resin 513 is formed on the transparent conductive film 510. The conductors 511 and the opening 512 are formed on the transparent conductive resin 513. In this specification, the conductors 511, the transparent conductive resin 513, and the transparent conductive film 510 are together called an upper electrode 514. The light is emitted in the direction indicated by the arrow in FIG. 6. As described above, the upper electrode 514 is made up of the transparent conductive film 510, the transparent conductive resin 513, and the conductors 511 to obtain a light emitting device that has a low-resistant conductive film. Transparent and conductive materials are employed for the transparent conductive film 510 and the transparent conductive resin 513, and the opening 512 is provided between adjacent conductors. Therefore light emitted from the organic compound layer 509 can reach outside through the opening 512. This allows the organic compound layer to emit light upward. A light-shielding material may be employed for the lower electrode 501. The present invention employs a sealing method in which the contact between the organic compound layer 509 and oxygen or moisture is avoided by forming the transparent conductive resin 513 between the transparent conductive film 510 and the conductors 511. Accordingly, there is no need to provide a space filled with inert gas, making it possible to reduce the thickness of the light emitting device greatly. The lower electrode 501 serves as an anode and the upper electrode 514 serves as a cathode in this embodiment, but the present invention is not limited thereto. The lower electrode 501 can be a cathode whereas the upper electrode 514 serves as an anode. In this case, the electron transporting layer, light emitting layer, hole transporting layer, hole injection layer, and hole generating layer of the organic compound layer are layered in this order with the electron transporting layer being the closest to the lower electrode. Embodiment 2 This embodiment describes a case of forming a mixture layer in the light emitting element of Embodiment 1. The description will be given with reference to FIG. 7. In FIG. 7, reference symbol 601 denotes a lower electrode and 602 denotes a hole generating layer that is formed by co-evaporation of an electron acceptor and a low molecular weight material. A hole injection layer 603, a hole transporting layer 604, a light emitting layer 605, and an electron transporting layer 606 are laminated on the hole generating layer 602 to form an organic compound layer 607. Details about the methods of forming these layers may refer to Embodiment 1. In this embodiment, the interface between the hole transporting layer 604 and the light emitting layer 605 and the interface between the electron transporting layer 606 and the light emitting layer 605 each have a mixture layer. In this embodiment, the mixture layer formed at the interface between the light emitting layer 605 and the hole transporting layer 604 is called a mixture layer (1) 608, whereas the mixture layer formed at the interface between the light emitting layer 605 and the electron transporting layer 606 is called a mixture layer (2) 609. The mixture layer (1) 608 is formed by co-evaporation of the material for forming the light emitting layer 605 and the material for forming the hole transporting layer 604. The ratio of the materials that are mixed to form the mixture layer (1) 608 can be varied. The mixture layer (2) 609 is formed by co-evaporation of the material for forming the light emitting layer 605 and the material for forming the electron transporting layer 606. The ratio of the materials that are mixed to form the mixture layer (2) 609 can be varied. After the electron transporting layer 606 is formed, a transparent conductive film 610 is formed by evaporation. In this embodiment, ITO is used to form the transparent conductive film 610 of the light emitting element. Conductors 611 are formed on a cover member (not shown in the drawing) and an opening 612 is formed in the cover member. This is achieved in this embodiment by evaporation of silver through sputtering and subsequent patterning. The patterning employs etching and a mixture of hydrogen fluoride and nitric acid as etchant. The conductors 611 formed on the cover member (not shown) are bonded to the transparent conductive film 610 in vacuum with a transparent conductive resin 613 sandwiched therebetween. The transparent conductive resin 613 of this embodiment is a high molecular weight material mainly containing a polyvinyl chloride composition or an aromatic amine polymer. A polyvinyl chloride composition is a material composed of a vinyl chloride resin, a plastic material (for example, phthalate esters or glycol esters), and lithium salt (lithium chloride, (trifluoromethane sulfonyl) imide lithium, or the like). An aromatic amine polymer is a polymer such as aminonaphthalenes and aminoquinoline. The transparent conductive resin 613 is formed on the transparent conductive film 610. The conductors 611 and the opening 612 are formed on the transparent conductive resin 613. In this specification, the conductors 611, the transparent conductive resin 613, and the transparent conductive film 610 are together called an upper electrode 614. As has been described, the mixture layers are formed at the interfaces between the light emitting layer 605 and the layers adjacent thereto (specifically, the interface between the light emitting layer 605 and the hole transporting layer 604 and the interface between the light emitting layer 605 and the electron transporting layer 606). This structure improves injection of holes from the hole transporting layer 604 to the light emitting layer 605 and injection of electrons from the electron transporting layer 606 to the light emitting layer 605. Accordingly, recombination of carriers in the light emitting layer 605 is enhanced. The light is emitted in the direction indicated by the arrow in FIG. 7. As described above, the upper electrode 614 is made up of the transparent conductive film 610, the transparent conductive resin 613, and the conductors 611 to obtain a light emitting device that has a low-resistant conductive film. Transparent and conductive materials are employed for the conductors 611 and the transparent conductive resin 613, and the opening 612 is provided between adjacent conductors. Therefore, light emitted from the organic compound layer 607 can reach outside through the opening 612. This allows the organic compound layer to emit light upward. A light-shielding material may be employed for the lower electrode 601. The present invention employs a sealing method in which the contact between the organic compound layer 607 and oxygen or moisture is avoided by forming the transparent conductive resin 613 between the transparent conductive film 610 and the conductors 611. Accordingly, there is no need to provide a space filled with inert gas, making it possible to reduce the thickness of the light emitting device greatly. The lower electrode 601 serves as an anode and the upper electrode 614 serves as a cathode in this embodiment, but the present invention is not limited thereto. The lower electrode 601 can be a cathode whereas the upper electrode 614 serves as an anode. In this case, the electron transporting layer, mixture layer (2), light emitting layer, mixture layer (1), hole transporting layer, hole injection layer, and hole generating layer of the organic compound layer are laminated in this order with the electron transporting layer being the closest to the lower electrode. Embodiment 3 This embodiment gives a description on a light emitting device having light emitting elements that respectively emit red light, green light, and blue light. In this embodiment, a lower electrode 122 is formed as shown in FIG. 2A and then organic compound layers that emit light in different colors are formed by using different materials for their light emitting layers. All of the light emitting layers are formed by evaporation, which allows the use of metal mask in forming light emitting layers of pixels of different colors from different materials. In this embodiment, a light emitting layer that emits light in red color (hereinafter referred to as red light emitting layer) is formed first using a metal mask. A known material can be used as the material of the red light emitting layer of this embodiment. All of the red light emitting layers to be formed in the light emitting device may be formed simultaneously. Alternatively, the red light emitting layers may be formed sequentially while moving the metal mask along. Next, a light emitting layer that emits light in green color (hereinafter referred to as green light emitting layer) is formed using a metal mask. A known material can be used as the material of the green light emitting layer of this embodiment. All of the green light emitting layers to be formed in the light emitting device may be formed simultaneously. Alternatively, the green light emitting layers may be formed sequentially while moving the metal mask along. Further, a light emitting layer that emits light in blue color (hereinafter referred to as blue light emitting layer) is formed using a metal mask. A known material can be used as the material of the blue light emitting layer of this embodiment. All of the blue light emitting layers to be formed in the light emitting device may be formed simultaneously. Alternatively, the blue light emitting layers may be formed a few at a time while moving the metal mask along. The above-mentioned steps provide the light emitting device having light emitting elements that respectively emit red light, green light, and blue light. The colors of light emitted from the light emitting elements are not limited to those shown in this embodiment. Known materials such as one that emits white light and one that emits orange light may be used in combination. Embodiment 4 This embodiment describes the exterior of a light emitting device of the present invention with reference to FIGS. 8A and 8B. FIG. 8A is a top view of the light emitting device and FIG. 8B is a sectional view taken along the line A-A′ of FIG. 8A. Reference symbol 701 denotes a source signal line driving circuit; 702, a pixel portion; and 703, a gate signal line driving circuit. Denoted by 710 is a substrate; 704, a cover member; 705, a seal pattern, 707; a transparent conductive resin; 720, conductors; 721, a concave portion; 722, a drying agent; and 723, a film. The space surrounded by the cover member 704 (including the film 723) and the seal pattern 705 is filled with the transparent conductive resin 707. The light is emitted in the direction indicated by the arrow in FIG. 8B. Reference symbol 708 represents a connection wiring line for transmitting signals that are to be inputted to the source signal line driving circuit 701 and the gate signal line driving circuit 703. The connection wiring line 708 receives video signals and clock signals from an FPC (flexible printed circuit) 709 that selves as an external input terminal. The FPC alone is shown in the drawings but a printed wiring board (PWB) may be attached to the FPC. In this specification, a light emitting device refers to a light emitting device itself plus an FPC, or plus an FPC and a PWB. Next, the sectional structure taken along the line A-A′ in FIG. 8A is described with reference to FIG. 8B. The driving circuits and the pixel portion are formed On the substrate 710. In FIG. 8B, one of the driving circuits, namely, the source signal line driving circuit 701, and the pixel portion 702 are shown. The source signal line driving circuit 701 here is a CMOS circuit having a p-channel TFT 713 and an n-channel TFT 714 in combination. The driving circuit can be any known CMOS circuit, PMOS circuit, or NMOS circuit. This embodiment employs a driver-integrated substrate in which driving circuits are formed on a substrate, but the present invention is not limited thereto. The driving circuits may be external to the substrate. The pixel portion 702 is composed of a plurality of pixels each of which includes a current controlling TFT 711 and a lower electrode 712. The lower electrode 712 is electrically connected to a drain of the current controlling TFT 711. An insulator 715 is formed on each end of the lower electrode 712. An organic compound layer 717 is formed on the lower electrode 712. A transparent conductive film 718 is formed on the insulator 715 and the organic compound layer 717. The transparent conductive film 718 also functions as a common wiring line shared by all the pixels and is electrically connected to the FPC 709 through the connection wiring line 708. The conductors 720 are formed on the cover member 704. An opening 724 is provided between the conductors 720. The cover member 704 is bonded to the substrate 710 in vacuum with the seal pattern 705 interposed therebetween. The transparent conductive resin 707 is formed between the substrate 710 and the cover member 704. Spacers formed from a resin film may be provided to keep the distance between the cover member 704 and the substrate 710. The seal member is preferably an epoxy resin. Desirably, the material of the seal member is one that allows as small amount of moisture and oxygen as possible to transmit. In this embodiment, a glass substrate or a quartz substrate is used as the cover member 704. Alternatively, the cover member may be a plastic substrate that is formed of FRP (fiberglass-reinforced plastics), PVF (polyvinyl fluoride), Mylar, polyester, acrylic, or the like. After the cover member 704 is bonded to the substrate 710 using the seal pattern 705, the side faces (exposed faces) of the device may be further covered and sealed by the seal pattern (seal member). The transparent conductive film 718, the transparent conductive resin 707, and the conductors 720 are together called an upper electrode 725. Completed through the above-mentioned steps is a light emitting element 719 that is composed of the upper electrode 725, the organic compound layer 717, and the lower electrode 712. The light emitting device of the present invention can lower the resistance of the transparent conductive film 718 by forming the conductors 720 that are electrically connected to the transparent conductive film 718. Since the opening is formed between the conductors 720, light emitted from the organic compound layer 717 can reach outside through the opening 724. As a result, the light emitting element can emit light upward. The material of the lower electrode 712 of the light emitting element is not limited to a transparent material, and therefore a choice of materials that can be used for the lower electrode 7112 is widened. The present invention employs a sealing method in which the contact between the organic compound layer 717 and oxygen or moisture is avoided by forming the transparent conductive resin 707 between the transparent conductive film 718 and the conductors 720. Accordingly, there is no need to provide a space filled with inert gas, making it possible to reduce the thickness of the light emitting device greatly. The structure of this embodiment can be employed when any of the light emitting elements that are structured in accordance with Embodiments 1 through 3 is sealed to obtain a light emitting device. This embodiment uses glass substrates for the substrate 710 and the cover member 704. However, as shown in FIG. 9, flexible films formed from an organic resin may be used for a substrate 1110 and a cover member 1104. If flexible films are employed, the substrate 1110 and the cover member 1104 can be curved. A TFT may be formed on a glass substrate to be transferred to a flexible film. In the embodiment of the present invention which is illustrated in FIGS. 8A and 8B, the drying agent 722 is placed above the source signal line driving circuit 701 in order to allow the organic compound layer to emit light upward. In the embodiment of the present invention which is illustrated in FIG. 9, a drying agent 1122 may be placed outside a seal pattern 1105a. Alternatively, a sealing pattern 1105b may be placed outside the drying agent 1122. Of the substrate and cover member, one may be a glass substrate while the other is formed from a flexible film. Embodiment 5 A description is given with reference to FIG. 10A on the top view of a pixel of a light emitting device according to the present invention. The circuit structure in FIG. 10A is shown in FIG. 10B. In FIG. 10A, reference symbol 801 denotes a switching TFT, which is a p-channel TFT. A wiring line denoted by 802 is a gate wiring line that is electrically connected to gate electrodes 804 (804a and 804b) of the switching TFT 801. In this embodiment, the switching TFT has a double gate structure in which two channel formation regions are formed. However, a single gate structure in which one channel formation region is formed or a triple gate structure in which three channel formation regions are formed may be employed instead. A source of the switching TFT 801 is connected to a source wiring line 805. A drain of the switching TFT 801 is connected to a drain wiring line 806. The drain wiring line 806 is electrically connected to a gate electrode 808 of a current controlling TFT 807. The current controlling TFT 807 is an n-channel TFT. In this embodiment, the switching TFT 801 is a p-channel TFT and the current controlling TFT 807 is an n-channel TFT. Alternatively, an n-channel TFT may be used for the switching TFT 801 while a p-channel TFT is used for the current controlling TFT 807, or TFTs 801 and 807 may be both n-channel TFTs, or TFTs 801 and 807 may be both p-channel TFTs. A source of the current controlling TFT 807 is electrically connected to a current supplying line 809. A drain of the current controlling TFT 807 is electrically connected to a drain wiring line 810. The drain wiring line 810 is also electrically connected to a lower electrode (not shown in the drawing). An organic compound layer is formed on a transparent conductive film (not shown in the drawing) and conductors 831 are formed thereon to complete a light emitting, element 815 shown in FIG. 8B. A storage capacitor (capacitor) is formed in a region denoted by 812. The storage capacitor 812 is formed among the current supplying line 809, a semiconductor layer 813, an insulating film (not shown in the drawing) on the same layer as a gate insulating film, and a capacitance electrode 814. The capacitance electrode 814 is electrically connected to the gate electrode 808. A capacitor composed of the capacitance electrode 814, the same layer (not shown) as an interlayer insulating film, and the current supplying line 809 can also be used as a storage capacitor. The conductors are formed above the gate wiring line 802, above the gate electrodes 804 (804a and 804b), above the gate electrode 808, above the source wiring line 805, above the drain wiring line 810, above the current supplying line 809, and in the pixel. The conductors are placed in one of the following positions: above the gate wiring line 802, above the gate electrodes 804 (804a and 804b), above the gate electrode 808, above the source wiring line 805, above the drain wiring line 810, above the current supplying line 809, and in the pixel, while interposing an insulating film therebetween. This arrangement is effective in lowering the resistance of the transparent conductive film. The pixel portion structure described in this embodiment can replace the pixel portion structure of Embodiment Mode. Embodiment 6 This embodiment describes a case of forming a high molecular weight hole generating layer from a high molecular weight material and an electron acceptor. This embodiment is identical with the above-mentioned Embodiment Mode except the materials of the hole generating layer and the method of forming the hole generating layer. As the polymeric material for forming the hole-generating layer, polyacetylenes, polythiophenes, poly(3-methyl)thiophenes, poly(3-ethyl)thiophenes, poly(3-n-butyl)thiophenes, poly(3-hexyl) thiophenes, poly(3-octyl)thiophenes, poly(3-dodecyl)thiophenes, poly(3-octadecyl)thiophenes, poly(3-eicosyl)thiophenes, poly(3-methyl-Co-butyl)thiophenes, or the like, which is a conjugated polymeric material, can be used. The hole-generating layer is formed by dissolving or dispersing in the solvent the above-mentioned polymeric material together with the dopant such as PF6-, bromine and iodine. Furthermore, poly(3-hexyl)thiophenes, poly(3-octyl)thiophenes, poly(3-dodecyl)thiophenes, poly(3-octadecyl)thiophenes, poly(3-eicosyl)thiophenes and poly(3-methyl-Co-butyl)thiophenes are soluble. As the solvent, chloroform, benzene, tetralin, or the like can be used. In this embodiment, a hole generating layer 504 with a thickness of 10 to 50 nm (preferably 20 to 30 nm) is formed on a lower electrode 501 shown in FIG. 6. The hole generating layer 504 is formed from a soluble material by printing or by the ink jet method. Alternatively, the hole generating layer 504 may be formed by spin coating. In this case, the hole generating layer 504 is shared by adjacent electrodes, and therefore the distance between the adjacent electrodes has to be large to increase the resistance thereof. The resistance of the adjacent electrodes (anodes) has to be set to {fraction (1/10)} or more of the resistance between electrodes (cathodes) that face the anodes. An organic compound layer 509 is formed on the hole generating layer 504. The organic compound layer 509 is a combination of a hole injection layer 505, a hole transporting layer 506, a light emitting layer 507, and an electron transporting layer 508. In this embodiment, known materials are used to form the hole injection layer, the hole transporting layer, the light emitting layer, and the electron transporting layer. After the organic compound layer 509 is formed in this way, an ITO film is formed as a transparent conductive film 510 on the organic compound layer 509. Conductors 511 are formed on a cover member (not shown in the drawing) and an opening 512 is formed in the cover member. The conductors 511 formed on the cover member (not shown) are bonded to the transparent conductive film 510 in vacuum with a transparent conductive resin 513 sandwiched therebetween. In the light emitting device of the present invention, the organic compound layer 509 having a laminate structure is formed between the transparent conductive film 510 and the conductors 511, and the same material is used to form the hole generating layer 504 and the hole injection layer 505. The transparent conductive resin 513 is formed on the transparent conductive film 510. The conductors 511 and the opening 512 are formed on the transparent conductive resin 513. In this specification, the conductors 511, the transparent conductive resin 513, and the transparent conductive film 510 are together called an upper electrode 514. The light is emitted in the direction indicated by the arrow in FIG. 6. Thus completed is a light emitting element composed of the lower electrode 501, the organic compound layer 509, and the upper electrode 514. The light emitting device of the present invention can lower the resistance of the transparent conductive film 510 by forming the conductors 511 that are electrically connected to the transparent conductive film 510. Transparent and conductive materials are employed for the transparent conductive film 510 and the transparent conductive resin 513, and the opening 512 is provided between adjacent conductors. Therefore, light emitted from the organic compound layer 509 can reach outside through the opening 512. This allows the organic compound layer to emit light upward. A light-shielding material may be employed for the lower electrode 501. The present invention employs a sealing method in which the contact between the organic compound layer 509 and oxygen or moisture is avoided by forming the transparent conductive resin 513 between the transparent conductive film 510 and the conductors 511. Accordingly, there is no need to provide a space filled with inert gas, making it possible to reduce the thickness of the light emitting device greatly. The lower electrode 501 serves as an anode and the upper electrode 514 serves as a cathode in this embodiment, but the present invention is not limited thereto. The lower electrode 501 can be a cathode whereas the upper electrode 514 serves as an anode. In this case, the electron transporting layer, tight emitting layer, hole transporting layer, hole injection layer, and hole generating layer of the organic compound layer are layered in this order with the electron transporting layer being the closest to the lower electrode. The structure of this embodiment may be combined with any of the structures of Embodiments 1 through 6. Embodiment 7 A description is given with reference to FIG. 11 on an example of applying the present invention to TFTs that are structured differently from the TFTs of Embodiment 4. Reference symbol 1001 denotes a substrate; 1002, a gate electrode; 1003, a source wiring line; 1004, a capacitance wiring line; and 1005, a first insulating film. 1006 denotes a source wiring line; 1007 and 1008, channel formation regions; 1009, a source or drain region; and 1010, an LDD region. 1011 denotes a drain region; 1012, an LDD region; 1013 and 1014, third insulating films; and 1015, a fourth insulating film. 1016 denotes a first interlayer insulating film, 1017, a connection wiring line; 1018, a source or drain wiring line; 1019, a drain wiring line; and 1020, a lower electrode. 1021 denotes a second interlayer insulating film; 1022, an organic compound layer; 1023, a transparent conductive film; 1024, a transparent conductive resin; and 1025, a cover member. 1026 denotes conductors; 1027, a light emitting element; and 1028, an opening. The arrow in FIG. 11 indicates the direction of light emitted from the organic compound layer 1022. In this specification, the conductors 1026, the transparent conductive resin 1024, and the transparent conductive film 1023 are together called an upper electrode 1029. The lower electrode 1020, the organic compound layer 1022, and the upper electrode 1029 constitute the light emitting element 1027. The light emitting device of this embodiment can lower the resistance of the transparent conductive film 1023 by forming the conductors 1026 that are electrically connected to the transparent conductive film 1023. Since the opening 1028 is provided between adjacent conductors, light emitted from the organic compound layer 1022 can reach outside through the opening 1028. This allows the organic compound layer to emit light upward. The conductors 1026 of the light emitting element 1027 therefore do not need to be transparent, which widens a choice of materials of the electrodes. The present invention employs a sealing method in which the contact between the organic compound layer 1022 and oxygen or moisture is avoided by forming the transparent conductive resin 1024 between the transparent conductive film 1023 and the conductors 1026 Accordingly, there is no need to provide a space filled with inert gas, making it possible to reduce the thickness of the light emitting device greatly. Embodiment 8 The present invention can be applied to a passive-type light emitting device. A description is made of an example of applying the present invention to the passive-type light emitting device with reference to FIG. 12. Reference symbol 900 denotes a substrate; 901, a light emitting element; 902, an upper electrode; 903, a first insulating film; 904, a second insulating film; 905, a seal pattern; 906 a transparent conductive resin; 907, a lower electrode; 908, an organic compound layer; 909, a transparent conductive film; 910, a third insulating film; 911, a fourth insulating film; 912, a cover material; 913, conductors; 914, opening portion; and 915, partition wall. The arrow indicates the direction of light emitted from the organic compound layer 908. The partition walls 915 are patterned into a desired shape by photolithography at given positions. The material of the partition walls is NN700 (a product of JSR Corporation) having a photosensitive acrylic material as its main ingredient. NN700 is applied by a spinner to the entire surface of the cover member 912 on which the conductors 913 are formed. The thickness of the NN700 film is set to 1.4 μm. After applying and calcinating NN700, the NN700 film is exposed using a photo mask and a mask aligner. Thereafter the film is developed with a developer mainly containing TMAH (tetramethyl ammonium hydroxide). The substrate is let dry and then subjected to baking at 250° C. for an hour. As a result, partition walls for insulating adjacent light emitting elements from each other are obtained as shown in FIG. 12. The height of each partition wall is 1.2 μm after the baking. The transparent conductive resin 906 may be formed by application or injection, or by the ink jet method. In this specification, the conductors 913, the transparent conductive resin 906, and the transparent conductive film 909 are together called an upper electrode 902. The light is emitted in the direction indicated by the arrow in FIG. 12. Thus completed is a light emitting element 901 composed of the lower electrode 907, the organic compound layer 908, and the upper electrode 902. Further, the light emitting device of this embodiment can lower the resistance of the transparent conductive film 909 by forming the conductors 913 that are electrically connected to the transparent conductive film 909. Since the opening 914 is provided between adjacent conductors, light emitted from the organic compound layer 908 can reach outside through the opening 914. This allows the organic compound layer to emit light upward. The conductors 913 of the light emitting element 901 therefore do not need to be transparent, which widens a choice of materials of the electrodes. The present invention employs a sealing method in which the contact between the organic compound layer 908 and oxygen or moisture is avoided by forming the transparent conductive resin 906 between the transparent conductive film 909 and the conductors 913. Accordingly, there is no need to provide a space filled with inert gas, making it possible to reduce the thickness of the light emitting device greatly. Embodiment 9 Light emitting devices with light emitting elements are self-luminous and therefore have superior visibility in bright surroundings as well as wider viewing angle compared to liquid crystal display devices. Accordingly, light emitting devices with light emitting elements can be used in display units of various electric apparatuses. An electric apparatus using a light emitting device that is manufactured in accordance with the present invention can be a video camera, a digital camera, a goggle type display (head mounted display), a navigation system, an audio replaying device (such as a car audio system and an audio component), a notebook computer, a game machine, a portable information terminal (such as a mobile computer, a cellular phone, a portable game machine, and an electronic book), an image reproducing device provided with a recording medium (specifically, a device having a display device capable of displaying an image that is retrieved from a recording medium such as a DVD (digital versatile disc)), etc. Light emitting devices with light emitting elements are particularly preferred in portable information terminals of which screens are often slanted when viewed and therefore required to have wide viewing angle. Specific examples of these electric appliances are shown in FIGS. 13A to 13H. FIG. 13A shows a display device, which is composed of a case 2001, a supporting base 2002, a display unit 2003, speaker units 2004, a video input terminal 2005, etc. The light emitting device manufactured in accordance with the present invention can be used as the display unit 2003. Light emitting devices with light emitting elements are self-luminous and do not need back light, thereby making it possible to obtain thinner display units than those utilizing liquid crystal display devices. The term display device includes all display devices for displaying information, such as personal computer monitors, display devices for receiving TV broadcasting, and display devices for advertising. FIG. 13B shows a digital still camera, which is composed of a main body 2101, a display portion 2102, an image receiving portion 2103, an operation key 2104, an outer connection port 2105, a shutter 2106 etc. The light emitting device manufactured in accordance with the present invention can be used as the display unit 2102. FIG. 13C shows a notebook computer, which is composed of a main body 2201, a case 2202, a display portion 2203, a keyboard 2204, an outer connection port 2205, a pointing mouse 2206 etc. The light emitting device manufactured in accordance with the present invention can be used as the display unit 2203. FIG. 13D shows a mobile computer, which is composed of a main body 2301, a display portion 2302, a switch 2303, an operation key 2304, an infrared port 2305 etc. The light emitting device manufactured in accordance with the present invention can be used as the display unit 2302. FIG. 13E shows a portable image reproducing device provided with a recording medium (specifically, a DVD player). The device is composed of a main body 2401, a case 2402, a display unit A 2403, a display unit B 2404, a recording medium (DVD etc.) reading unit 2405, operation keys 2406, speaker units 2407, etc. The display unit A 2403 mainly displays image information whereas the display unit B 2404 mainly displays text information. The light emitting device manufactured in accordance with the present invention can be used for the display unit A 2403 and the display unit B 2404 both. An image reproducing device provided with a recording medium includes a household game machine. FIG. 13F shows a goggle-type display (head mount display), which is composed of a main body 2501, a display portion 2502, and an arm portion 2503. The light emitting device manufactured in accordance with the present invention can be used as the display unit 2502. FIG. 13G shows a video camera, which is composed of a main body 2601, a display portion 2602, a case 2603, an outer connection port 2604, a remote control receiving portion 2605, an image receiving portion 2606, a battery 2607, an audio input portion 2608, an operation key 2609, an eye piece portion 2610, etc. The light emitting device manufactured in accordance with the present invention can be used as the display unit 2602. FIG. 13H shows a portable image taking display apparatus, which is composed of a main body 2701, a display portion 2702, an image receiving portion 2703, an operation switch 2704, a battery 2705, etc. The light emitting device manufactured in accordance with the present invention, especially shown FIG. 9 can be used as the display unit 2702. Being curved itself, the light emitting device of the present invention can be effectively built in a three-dimensionally curved electric apparatus that is designed on the basis of ergonomics. If the luminance of light emitted from an organic material is raised in future, the light emitting device can be used in a front or rear projector by magnifying and projecting outputted light that contains image information with a lens etc. Electric apparatuses as those given in the above-mentioned now display information distributed through Internet, CATV (cable television), and other electronic communication lines, animation information, in particular, with increasing frequency. Organic materials have very fast response speed and therefore light emitting devices are preferable modes for displaying animated images. When displaying information on a light emitting device, it is preferred to allow as small number of pixels as possible to emit light because the light emitting device consumes more power as the number of emitting pixels is increased. Therefore, if a light emitting device is used in a display unit that mainly displays text information such as a portable information terminal, particularly a cellular phone or an audio replaying device, the display device is preferably driven so that pixels emitting light form text information white pixels that are not emitting light form the background on the screen. As described above, the light emitting device manufactured in accordance with the present invention has a very wide application range and is applicable to electric appliances of every field. The electric appliances of this embodiment can employ as their display units the light emitting devices manufactured in Embodiments 1 through 8. The present invention can provide a light emitting device having a low-resistant conductive film by forming an electrode from a transparent conductive film, a transparent conductive resin, and conductors. The transparent conductive film and the transparent conductive resin are transparent and have conductivity, and an opening is provided between adjacent conductors. Therefore light emitted from the organic compound layer can reach outside through the opening. This allows the organic compound layer to emit light upward. A light-shielding material may be employed for the lower electrode. The present invention employs a sealing method in which the contact between the organic compound layer and oxygen or moisture is avoided by forming the transparent conductive resin between the transparent conductive film and the conductors. Accordingly there is no need to provide a space filled with inert gas, making it possible to reduce the thickness of the light emitting device greatly. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a light emitting device with a light emitting element that has a film containing an organic compound that emits fluorescent light or phosphorescent light upon application of electric field (the film is hereinafter referred to as organic compound layer), and to a method of manufacturing the light emitting device. In the present invention, a light emitting element is an element that has an organic compound layer between a pair of electrodes and the term light emitting device includes an image display device which uses this organic light emitting element. Also, the following modules are all included in the definition of the light emitting device: a module obtained by attaching to a light emitting element a connector such as an anisotropic conductive film (FPC: flexible printed circuit), a TAB (tape automated bonding) tape, or a TCP (tape carrier package); a module in which a printed wiring board is provided at an end of the TAB tape or the TCP; and a module in which an IC (integrated circuit) is directly mounted to a light emitting element by the COG (chip on glass) method. 2. Description of the Related Art Light emitting devices, which are characterized by their thinness and light-weight, fast response, and direct current low voltage driving, are expected to develop into next-generation flat panel displays. Among light emitting devices, ones having light emitting elements arranged to form a matrix are considered to be particularly superior to conventional liquid crystal display devices for their wide viewing angle and excellent visibility. It is said that light emitting elements emit light through the following mechanism: a voltage is applied between a pair of electrodes that sandwich an organic compound layer, electrons injected from the cathode and holes injected from the anode are re-combined at the luminescent center of the organic compound layer to form molecular excitons, and the molecular excitons return to the base state while releasing energy to cause the light emitting element to emit light. Excitation state includes a singlet exiton and a triplet exiton, and it is considered that luminescence can be made through either excitation state. Light emitting devices having light emitting elements arranged to form a matrix can employ passive matrix driving (simple matrix light emitting devices), active matrix driving (active matrix light emitting devices), or other driving methods. If the pixel density is large, active matrix light emitting devices in which each pixel has a switch are considered to be advantageous because they can be driven with low voltage. In an active matrix light emitting device, a thin film transistor (hereinafter referred to as TFT) is formed on an insulating surface, an interlayer insulating film is formed over the TFT, and an anode of the light emitting element is formed to bc electrically connected to the TFT through the interlayer insulating film. The material suitable for the anode is a transparent conductive material having a large work function, typically, ITO (indium tin oxide). An organic compound layer is formed on the anode. The organic compound layer includes a hole injection layer, a hole transporting layer, a light emitting layer, a blocking layer, an electron transporting layer, an electron injection layer, etc. The organic compound layer may be a single layer that emits light, or may have a combination of the above-mentioned layers. After forming the organic compound layer, a cathode is formed to complete the light emitting element. The laminate of the anode, cathode, and organic compound layer corresponds to the light emitting element. The material used to form the cathode is a metal having a small work function (typically a metal belonging to Group 1 or 2 in the periodic table) or an alloy containing the metal. A first insulating layer is formed from an organic resin material to cover an end of the anode. The first insulating layer is provided to prevent short circuit between the anode and the cathode that is formed after the anode is formed. The transparent conductive film used as the anode transmits visible light and therefore allows light emitted from the organic compound layer to pass therethrough. However, the transparent conductive film has a drawback of high resistivity compared to the resistivity of a metal. High film resistance of the anode formed of the transparent conductive film brings difficulty to injection of carriers and lowers the number of carriers that are re-combined in the light emitting element. Less recombinations in the light emitting element correspond to the light emission mechanism of the light emitting element ceasing to function. As a result, the light emitting element cannot emit light at a desired luminance. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention has been made in view of the above, and an object of the present invention is therefore to provide a light emitting device in which reduction of recombinations in a light emitting element is prevented by employing a low-resistant electrode structure. According to the present invention, a light emitting device has a light emitting element composed of first and second electrodes and an organic compound layer that is sandwiched between the first and second electrodes, and the device is characterized in that one of the first and second electrodes has a transparent conductive film, a transparent conductive resin formed on the transparent conductive film, and a plurality of conductors formed on the transparent conductive resin. The present invention obtains the effect of lowering the resistance of the transparent conductive film by forming the plural conductors in the first or second electrode. In this specification, an electrode above the organic compound layer is called a first electrode (upper electrode) and an electrode below the organic compound layer is called a second electrode (lower electrode). The term transparent conductive resin refers to a conductive resin that has 75% or higher light transmittance, preferably, 90% or higher. According to the present invention, a light emitting device has a plurality of light emitting elements each composed of first and second electrodes and an organic compound layer that is sandwiched between the first and second electrodes, and the device is characterized in that one of the first and second electrodes has a transparent conductive film, a transparent conductive resin formed on the transparent conductive film, and a plurality of conductors formed on the transparent conductive resin, and that a partition wall is formed between adjacent light emitting elements. According to the present invention, the light emitting device is characterized in that an opening is formed between adjacent conductors, and that light emitted from the organic compound layer reaches outside through the opening. When a light emitting device has an opening, a voltage cannot uniformly be applied to its organic compound layer to make it impossible to obtain sufficient light emission. However, this is not a problem in the light emitting device of the present invention, because the transparent conductive resin is formed to be brought into contact with the transparent conductive film and with the cover member having the plural conductors and opening. In other words, in the present invention, the electric field is uniformly applied to the organic compound layer because the present invention can make the transparent conductive resin function as a part of the electrodes. The transparent conductive resin also has a function of bonding the transparent conductive film to the plural conductors and the cover member. In this specification, the term cover member refers to a substrate that faces an element substrate and is bonded to the element substrate with a seal pattern sandwiched between the substrates. The light emitting device of the present invention is characterized in that a seal pattern is formed outside the light emitting element and that an opening is formed in the seal pattern. With the opening formed in the seal pattern, the transparent conductive resin can be injected through the opening. According to the present invention, a light emitting device has a light emitting element electrically connected to a TFT, and is characterized in that an insulating film, a transparent conductive film, a transparent conductive resin, and a plurality of conductors are formed above a gate electrode of the TFT, or above a gate wiring line connected to the TFT, or above a source wiring line connected to the TFT, or above a drain wiring line connected to the TFT, or above a current supplying line connected to the TFT, the transparent conductive film being formed on the insulating film, the transparent conductive resin being formed on the transparent conductive film, the plural conductors being formed on the transparent conductive resin. Having the above-mentioned characteristic, the present invention can reduce the resistance of the transparent conductive film without lowering the aperture ratio. The light emitting device of the present invention is characterized in that each of the conductors is 0.5 to 5 μm in width. The light emitting device of the present invention is characterized in that the opening is 10 to 100 μm in width. A high molecular weight material can be used for the transparent conductive resin. A low molecular weight material refers to a material that is lower in molecular weight than a high molecular weight material. Light obtained from the light emitting element may be one or both of light emission by singlet excitation and light emission by triplet excitation. | 20050106 | 20070724 | 20050602 | 95668.0 | 0 | SMITH, BRADLEY | LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,029,500 | ACCEPTED | Surface acoustic wave device | The present invention provides a surface acoustic wave device that allows a plurality of surface acoustic wave filters to be formed on a single chip and permits greater miniaturization. The surface acoustic wave device comprises a piezoelectric substrate, a first surface acoustic wave resonator formed on the piezoelectric substrate, and a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator. The positions in which the first and second surface acoustic wave resonators are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators. The surface acoustic wave device further comprises a part for dividing the overlap surface acoustic wave propagation region into an upper half and a lower half and for affording the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator a mutually antiphase relationship in the upper-half region and lower-half region thus divided. | 1. A surface acoustic wave device, comprising: a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein the positions in which the first and second surface acoustic wave resonators are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; and a phase control portion for dividing the overlap surface acoustic wave propagation region into an upper half and a lower half and for affording the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator a mutually antiphase relationship in the upper-half region and lower-half region thus divided. 2. A surface acoustic wave device, comprising: a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein the positions in which the first and second surface acoustic wave resonators are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; and a phase control portion for dividing the overlap surface acoustic wave propagation region into a plurality of regions and affording the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator amutually antiphase relationship in the upper-half region and lower-half region of the respective regions thus divided. 3. The surface acoustic wave device according to claim 1 or 2, wherein the phase control portion for affording the phases of the surface acoustic waves propagated by the first surface acoustic wave resonator a mutually antiphase relationship are a metallic film that is formed on the piezoelectric substrate between the first and second surface acoustic wave resonators and that comprises a cutout of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*Vf−Vm)*f) (n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency). 4. The surface acoustic wave device according to claim 1 or 2, wherein the phase control portion for affording the phases of the surface acoustic waves propagated by the first surface acoustic wave resonator a mutually antiphase relationship are a metallic film that is formed on the piezoelectric substrate between the first and second surface acoustic wave resonators and that is of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*Vf−Vm)*f) (n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency of the first surface acoustic wave resonator). 5. A surface acoustic wave device, comprising: a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; and a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein N electrodes subject to the following relation among a plurality of electrodes that constitute a reflector that is disposed on a side of the first surface acoustic wave resonator opposite the second surface acoustic wave resonator are half the size of the opening width of the reflector part, and the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator are subject to a mutually antiphase relationship in the upper-half region and lower-half region with the above ½ width 4*N/λ=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f) (n=1,2, . . . ) (where λ is the wavelength of the propagated surface acoustic wave and the length of the reflector is λ/4). 6. A surface acoustic wave device in which at least two or more vertically connected surface acoustic wave resonators are arranged in at least two or more sets on a piezoelectric substrate, wherein the positions in which adjacent first and second surface acoustic wave resonators of different sets are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; a wraparound electrode is formed between the adjacent first and second surface acoustic wave resonators; and the wraparound electrode comprises a cutout of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*Vf−Vm)*f) (n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency). | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device and, more particularly, a surface acoustic wave device such as a surface acoustic wave filter. 2. Description of the Related Art Surface acoustic wave devices are used in antenna duplexers of mobile communications devices such as cellular phones. Miniaturization of mobile communication apparatuses and additional miniaturization of surface acoustic wave devices in keeping with the trend toward greater complexity are required. In cases where a surface acoustic wave device is used in an antenna duplexer, a transmission surface acoustic wave (SAW) filter and a reception surface acoustic wave (SAW) filter are formed on the same common chip for the sake of miniaturization. Here, cases arise where a signal that is inputted by a transmission terminal is converted into a surface acoustic wave by a transmission resonator and a short circuit is formed so that the surface acoustic wave is propagated and linked to the reception resonator. In such a case, the transmission/reception isolation characteristic deteriorates and the filter transmission characteristic is subject to spurious emission. As conventional techniques for solving this problem, a technique that provides a groove by means of dicing between two SAW filters on a piezoelectric substrate (Japanese Patent Application Laid Open Nos. H5-102783 and 2000-13179), or a technique that allows one filter to carry parts that intersect lines that are connected to a signal terminal and lines that are connected to a ground terminal (Japanese Patent Application Laid Open No. 2003-51731), have been disclosed. However, in the inventions appearing in Japanese Patent Application Laid Open Nos. H5-102783 and 2000-13179, the fine processing of the processing technology is problematic, there are resonator problems and limitations on placement, and there is the risk of an increase in chip size. In addition, deterioration in the characteristics is induced because chips fly toward the resonator when a groove is provided by means of dicing. On the other hand, an object of the invention according to Japanese Patent Application Laid Open No. 2003-51731 is to prevent worsening of the isolation and the attenuation amount caused by reciprocal induction that is produced in order to counteract the magnetic flux that arises due to the influence of the current flowing to the filter. SUMMARY OF THE INVENTION Therefore, unlike the object and constitution described in Japanese Patent Application Laid Open No. 2003-51731, an object of the present invention is to prevent the occurrence of a short circuit. It is a further object of the present invention to provide a surface acoustic wave device that solves the problems of fine-processing complexity, an increase in chip size, and the production of chipping when a groove is provided by means of dicing, which were problems faced by both the inventions of Japanese Patent Application Laid Open Nos. H5-102783 and 2000-13179, and that allows a plurality of surface acoustic wave filters to be formed on a single chip and greater miniaturization to be achieved. A first aspect of the surface acoustic wave device according to the present invention, which achieves the above object, comprises a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; and a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein the positions in which the first and second surface acoustic wave resonators are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; and the surface acoustic wave device further comprises a phase control portion for dividing the overlap surface acoustic wave propagation region into an upper half and a lower half and for affording the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator a mutually antiphase relationship in the upper-half region and lower-half region thus divided. A second aspect of the surface acoustic wave device according to the present invention, which achieves the above object, comprises a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; and a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein the positions in which the first and second surface acoustic wave resonators are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; and the surface acoustic wave device further comprises a phase control portion for dividing the overlap surface acoustic wave propagation region into a plurality of regions and affording the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator a mutually antiphase relationship in the upper-half region and lower-half region of the respective regions thus divided. According to a third aspect of the surface acoustic wave device according to the present invention, which achieves the above object, the phase control portion for affording the phases of the surface acoustic waves propagated by the first surface acoustic wave resonator a mutually antiphase relationship according to the first or second aspect are a metallic film that is formed on the piezoelectric substrate between the first and second surface acoustic wave resonators and that comprises a cutout of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f) (n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency). According to a fourth aspect of the surface acoustic wave device according to the present invention, which achieves the above object, the phase control portion for affording the phases of the surface acoustic waves propagated by the first surface acoustic wave resonator a mutually antiphase relationship according to the first or second aspect are a metallic film that is formed on the piezoelectric substrate between the first and second surface acoustic wave resonators and that is of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f) (n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency of the first surface acoustic wave resonator). Further, a fifth aspect of the surface acoustic wave device according to the present invention, which achieves the above object, comprises a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; and a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein N electrodes subject to the following relation among a plurality of electrodes that constitute a reflector that is disposed on a side of the first surface acoustic wave resonator opposite the second surface acoustic wave resonator are half the size of the opening width of the reflector part, and the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator are subject to a mutually antiphase relationship in the upper-half region and lower-half region with the above ½ width: 4*N/A=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f) (n=1,2, . . . ) (where λ is the wavelength of the propagated surface acoustic wave and the length of the reflector is λ/4). In addition, a sixth aspect of the surface acoustic wave device according to the present invention, which achieves the above object, is a surface acoustic wave device in which at least two or more vertically connected surface acoustic wave resonators are arranged in at least two or more sets on a piezoelectric substrate, wherein the positions in which adjacent first and second surface acoustic wave resonators of different sets are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; a wraparound electrode is formed between the adjacent first and second surface acoustic wave resonators; and the wraparound electrode comprises a cutout of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f)(n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency). The characteristics of the present invention will become more evident from the embodiments of the invention described hereinbelow with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional constitutional example of a surface acoustic wave device that functions as an antenna duplexer that is constituted by two ladder-type surface acoustic wave filters; FIG. 2 illustrates spurious emission in the filter characteristic; FIG. 3 illustrates a method for forming a groove in order to prevent the propagation of the surface acoustic wave to an adjacent filter; FIG. 4 illustrates a method for coating with a highly viscous epoxy resin to absorb surface acoustic waves between transmission and reception filters in order to prevent the propagation of the surface acoustic wave to an adjacent filter; FIG. 5 is a first embodiment of a surface acoustic wave device to which the present invention is applied; FIG. 6 is a second embodiment of the present invention; FIG. 7 is a third embodiment of the present invention; FIG. 8 is another embodiment according to the present invention; FIG. 9 is a graph showing the effect of each of the embodiments; FIG. 10 is an embodiment in which the present invention is also applied to a surface acoustic wave device that functions as an antenna duplexer constituted by two ladder-type surface acoustic wave filters; and FIG. 11 is for consideration of the relationship between a cutout of length L and the electrode width of wraparound electrodes EL1 and EL2 in the embodiment in FIG. 10. As a result of the constitution of the present invention, signal interference between resonators in a common package can be eliminated without forming a groove by means of dicing, whereby it is possible to obtain a surface acoustic wave device that allows a plurality of surface acoustic wave filters to be formed on one chip and permits greater miniaturization. DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described hereinbelow with reference to the drawings. The embodiments permit an understanding of the present invention but the technological scope of the present invention is not limited to or by these embodiments. Here, prior to the description of the embodiments, the problems to be solved by the present invention will be described in more detail to permit an understanding of the present invention. FIG. 1 shows a conventional constitution example of a surface acoustic wave device that functions as an antenna duplexer constituted by two ladder-type surface acoustic wave filters. A transmission signal is applied to a transmission terminal that is denoted by TP in FIG. 1 and reaches an antenna pad ANT via a transmission filter in which surface acoustic wave (SAW) resonators T1 to T4 are connected in the form of a ladder. In addition, a reception filter, in which SAW resonators R1 to R4 are connected in the form of a ladder, is connected to an antenna (not shown) via a phase shifter (not shown). The transmission signal reaches the antenna via the transmission filter and is emitted as a radio wave as mentioned earlier, being applied to the reception filter at one end. However, in the transmission frequency band, the band of the reception filter is in the attenuation band, and therefore the transmission signal barely reaches the reception terminal RP that is connected to a receiver low noise amplifier. A signal in the reception frequency band is also in the attenuation band in the transmission filter and in the passband in the reception filter. Therefore, a signal received by the antenna arrives at the reception terminal RP via the phase shifter and antenna terminal ANT but barely reaches the transmission terminal TP. Here, the isolation characteristic indicates the transmission characteristic according to which a signal inputted from the transmission side is outputted to the reception terminal RP via the transmission SAW resonators T4, T3, then T2, the antenna pad ANT, and then the reception resonators R1, R2, then R3. This transmission characteristic desirably undergoes an attenuation of −50 dB or less. However, when the transmission and reception filters exist on the same chip, cases arise where a signal inputted from the transmission side is outputted to the reception terminal RP via a short circuit that includes the transmission resonator T3, surface acoustic wave propagation, and then the reception resonator R3, or the transmission resonator T2, surface acoustic wave propagation, and the reception resonator R2. As a result of such a short circuit, the isolation characteristic deteriorates and spurious emission occurs. FIG. 2 illustrates spurious emission in the filter characteristic. FIG. 2A shows the attenuation characteristic rendered by an insertion loss with respect to the frequency, spurious emission being generated by the formation of the short circuit of the surface acoustic wave in the conventional constitution above in the part circled by a broken line in FIG. 1. FIG. 2B indicates the extraction of this spurious emission component. The filter characteristics deteriorate as a result of the production of this spurious emission. In order to avoid the occurrence of spurious emission caused by the formation of such an acoustic-surface-wave short circuit, conventional countermeasures include one method that forms a groove by means of dicing as shown in FIG. 3 in order to prevent the propagation of a surface acoustic wave to an adjacent filter as mentioned earlier. In FIG. 3, a groove 2 is formed in the center of the chip by means of dicing for division in two regions, which are a transmission-side region I and a reception-side region II. The formation of a path along which a surface acoustic wave is short-circuited from a resonator in the transmission-side region I to a resonator in the reception-side region II can thus be prevented as a result of the groove 2. Here, since the minimum width of a groove that is formed by means of dicing and that allows the formation of a short circuit to be prevented is on the order of approximately 50 μm, it is not a large impediment to the miniaturization of the chip. However, because the dicing is performed at the center of the chip, this limits the layout of the chip. In addition, there is the problem of the high probability of an effect on the transmission/reception filters caused by chipping of dicing. As another method of preventing the formation of a short circuit, a method that involves applying a highly viscous epoxy resin to absorb surface acoustic waves between the transmission and reception filters may be assumed. FIG. 4 illustrates such a method. An epoxy resin 3 is applied instead of forming a groove 2 between the transmission and reception filters. However, there is the probability of deterioration in the characteristics due to the chemical influence of the epoxy resin. Further, a broad application area is required in order to absorb surface acoustic waves, which makes chip miniaturization problematic. Therefore, the present invention resolves the problems of conventional methods of preventing the formation of short-circuiting of a surface acoustic wave. FIG. 5 is a first embodiment of a surface acoustic wave device to which the present invention is applied. A pair of SAW resonators 11 and 12 is formed opposite one another by means of a metallic film such as aluminum or an aluminum alloy on the surface of a piezoelectric substrate 10 of LiTaO3, LiNbO3, or the like. In addition, a metallic film 4 is formed between the SAW resonators 11 and 12. The SAW resonators 11 and 12 each have a different frequency characteristic in the surface acoustic wave device that corresponds with the intended usage of the surface acoustic wave device. In addition, the positions in which the SAW resonators 11 and 12 are formed on the piezoelectric substrate 10 are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the SAW resonators 11 and 12. These requirements are also the same in the embodiments described hereinbelow. As a result of this partially overlapping relationship, the width within which the surface acoustic wave 5 propagated from the SAW resonator 11 is received by the SAW resonator 12, that is, the width of overlap with the electrode of the SAW resonator 12, is guided, this width being ‘M’. The metallic film 4 provided between the SAW resonators 11 and 12 is provided with a cutout of length L in a part corresponding to the width M/2, which is the upper half of the width of the overlap of the electrode with the SAW resonator 12. As a result of this electrode cutout of width M/2 and length L, a phase difference is produced for the surface acoustic wave 5 that is inputted to the SAW resonator 12, between the upper half portion SAW-U and lower-half SAW-D of width M of the surface acoustic wave 5. That is, supposing that the velocity in the lower region of the metallic film 4 is Vm, the velocity in the region without the metallic film 4 is Vf, where f is the drive frequency, in the event of a cutout length L that fulfils the condition, L / Vm - L / Vf = ( 2 n + 1 ) / ( 2 * f ) Equation 1 → L = Vm * Vf * ( 2 n + 1 ) / ( 2 * ( Vf - Vm ) * f ) ( n = 1 , 2 … ) the upper-half surface acoustic wave SAW-U and lower-half surface acoustic wave SAW-D, which arrive at the SAW resonator 12 of the propagated surface acoustic wave 5, possess a phase difference that is an odd multiple of the half wavelength of the surface acoustic wave. The surface acoustic wave SAW-U and surface acoustic wave SAW-Dare antiphase to each other. Therefore, because the phases of the upper-half surface acoustic wave SAW-U and lower-half surface acoustic wave SAW-D of the surface acoustic wave 5 that reaches the SAW resonator 12 facing the SAW resonator 11 are antiphase to each other, the two waves SAW-U and SAW-D offset each other, meaning that a spurious signal is no longer received by the SAW resonator 12. As a result, the spurious signal can be reduced. FIG. 6 is a second embodiment of the present invention. In FIG. 6, the same reference numerals have been assigned to the same elements as those of the first embodiment in FIG. 5. As per FIG. 5, the SAW resonators 11 and 12 are placed on the piezoelectric substrate 10. The embodiment shown in FIG. 6 is a constitution in which a part that corresponds to a cutout equivalent to the width M/2 and length L of the metallic film 4 of the embodiment in FIG. 5 is reversely made the metallic film 41. Electrode is not formed between the SAW resonators 11 and 12 in other parts. Even where the embodiment is as shown in FIG. 6, due to the existence of the metallic film 41, a phase difference is produced between the upper-half surface acoustic wave SAW-U and the lower-half surface acoustic wave SAW-D of the surface acoustic wave 5 propagated by the SAW resonator 11 that arrives at the SAW resonator 12. Accordingly, similarly also with this embodiment, because the phases of the upper-half surface acoustic wave SAW-U and the lower-half surface acoustic wave SAW-D are antiphase to each other, the two waves offset each other, meaning that a spurious signal is no longer received by the SAW resonator 12. As a result, the spurious signal can be reduced as per the embodiment in FIG. 5. The foregoing embodiments are examples in which a surface acoustic wave propagation region, which is defined by virtually extending the respective openings of the first SAW resonator 11 and second SAW resonator 12, is divided into an upper-half region and a lower-half region. The present invention further divides the overlap surface acoustic wave propagation regions into a plurality of regions and is also able to afford the phases of surface acoustic waves propagated by the SAW resonator 11 an antiphase relationship in the upper-half regions and lower-half regions of these divided regions. FIG. 7 is a third embodiment of the present invention in which an overlap surface acoustic wave propagation region is divided into two regions and the phases of surface acoustic waves are afforded an antiphase relationship to each other in the upper-half region and lower-half region of each of these divided regions. In FIG. 7, the same reference numerals have been assigned to the same constituent elements as those of the above embodiment. As per the embodiment in FIG. 6, the resonators 11 and 12 are placed on a piezoelectric substrate 10. In addition, a metallic film 41 of width M/2 and length L, which is disposed between the SAW resonators 11 and 12 of the embodiment in FIG. 6, is further divided into metallic films 411 and 412 of width M/4. As a result of this constitution, two metallic films 411 and 412 of width M/4 and length L exist between the SAW resonators 11 and 12, and the surface acoustic wave 5 propagated by the SAW resonator 11 is separated into surface acoustic waves SAW-UL and U2, which are propagated over the metallic films 411 and 412, and surface acoustic waves SAW-DL and D2, which are propagated via parts without electrode. Therefore, the surface acoustic waves SAW-U1 and U2, which are propagated over the metallic films 411 and 412, and surface acoustic waves SAW-D1 and D2, which are propagated via parts without electrode, are antiphase to each other and, when propagated to the SAW resonator 12, the surface acoustic waves SAW-U1 and D1 and SAW-U2 and D2 counteract one another such that the SAW resonator 12 does not receive a spurious signal. As a result, the spurious signal can be reduced. FIG. 8 is yet another embodiment of the present invention. In FIG. 8, the same reference numerals have been assigned to the same constituent elements as those of the embodiment above. As per each of the above embodiments, the SAW resonators 11 and 12 are disposed facing one another on the piezoelectric substrate 10. A characteristic of this embodiment is that the opening width of part of the reflector 13 of the SAW resonator 11 facing the SAW resonator 12 is made half. That is, N reflector part electrodes 13-1 among a plurality of electrodes that constitute the reflector 13 have half the width of the others. The length of the width of the reflector part 13-1, which is half the electrode length of the reflector 13, is made equal to the length L of each of the above embodiments (the length L of the cutout of the electrode disposed between the resonators 11 and 12 of embodiment 1, and the length L of the electrode disposed between the resonators 11 and 12 in embodiments 2 and 3). That is, for the reflector 13 with the length λ/4, by halving the opening width of the reflector part 13-1, the length of N of which satisfies: 4*N/λ=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f) (n=1, 2, . . . ), the same action and effects are obtained as those of the above embodiment, where Vm is the velocity of a part with the reflector electrodes and Vf is the velocity of a part without reflector electrodes. For a surface acoustic wave emitted by the reflector 13, an acoustic velocity differential and a phase difference are produced between part SAW-D, in which the N reflector partial electrodes 13-1 are not present, and part SAW-U, which has these partial electrodes. Therefore, surface acoustic wave SAW-U and surface acoustic wave SAW-D counteract each other and the SAW resonator 12 does not receive a spurious signal. As a result, the spurious signal can be reduced. FIG. 9 is a graph showing the effect of each of the above embodiments, the frequency (MHz) being plotted on the horizontal axis and the insertion loss (dB) being plotted on the vertical axis. As is evident from a comparison with FIG. 2, it can be seen that spurious emission is reduced by the present invention. FIG. 10 is an embodiment in which the present invention is also applied to a surface acoustic wave device that functions as an antenna duplexer constituted by two ladder-type surface acoustic wave filters. A transmission signal is applied to the transmission terminal TP in FIG. 10 and reaches the antenna pad ANT via a transmission filter in which surface acoustic wave (SAW) resonators T1 to T4 are connected in the form of a ladder. In addition, a reception filter, in which SAW resonators R1 to R4 are connected in the form of a ladder, is connected to an antenna (not shown) via a phase shifter (not shown). Here, in the constitution shown in FIG. 10, a surface acoustic wave propagation path generated by SAW resonators T2 and T3 of the transmission filter and the positions of the SAW resonators R2 and R3 of the reception filter overlap one another. There is therefore the possibility of a short circuit being formed between the surface acoustic wave propagation path and SAW resonators R2 and R3 for the surface acoustic wave between the transmission and reception filters. In the embodiment shown in FIG. 10, in order to avoid this short-circuit formation, cutouts 101 and 102 of length L and width M/2 are formed in wraparound electrodes EL1 and EL2 that are formed between the transmission filter and reception filter as per the constitution in FIG. 5. As a result, according to the same principle described in FIG. 5, it is possible to avoid short-circuit coupling of a surface acoustic wave generated by the SAW resonators T2 and T3 of the transmission filter with the SAW resonators R2 and R3 of the reception filter. It can be seen that spurious emission can also be reduced in this manner in the embodiment of FIG. 10. FIG. 11 is for consideration of the relationship between a cutout of length L that is formed in the wraparound electrodes EL1 and EL2 and the electrode width of the wraparound electrodes EL1 and EL2 in the embodiment in FIG. 10. When a cutout, the length L of which is smaller than the electrode width of the wraparound electrode EL1 (same is true for EL2) that is shown partially enlarged on the right-hand side of FIG. 11, is formed, supposing that, in Equation 1, Vm=4113.3 (m/s), Vf=4210.3 (m/s), and f=800 MHz, this gives: L = 4113.3 * 4210.3 * 0.5 / ( 800 * 97 * 106 ) ( m ) = 111 * 10 - 6 ( m ) = 111 ( µm ) . Therefore, a cutout of length L can be formed in the wraparound electrode without changing the electrode width that is used in the chip of the duplexer of the communication apparatus that is used in mobile-communication frequency bands that are employed currently. According to the present invention, the unnecessary coupling of a surface acoustic wave between a plurality of SAW resonators mounted in a common package can be avoided without the need to form a groove between the SAW resonators or to provide an acoustic-surface-wave absorbent. As a result, a surface acoustic wave device that eliminates unnecessary spurious emission in the filter characteristic and that permits miniaturization of the device can be provided, and hence the contribution to the industry is substantial. Moreover, although a one port-type SAW resonator was described in the above embodiment, the application of the present invention is not limited to such a case. That is, a plurality of IDT (comb-shaped electrode converters) is placed in the direction of propagation of the surface acoustic wave according to the application of the present invention, and it can be easily seen that analogous action is obtained with a 2-port-type SAW resonator and DMS (multimode filter) on the two sides of which a grating reflector is provided. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a surface acoustic wave device and, more particularly, a surface acoustic wave device such as a surface acoustic wave filter. 2. Description of the Related Art Surface acoustic wave devices are used in antenna duplexers of mobile communications devices such as cellular phones. Miniaturization of mobile communication apparatuses and additional miniaturization of surface acoustic wave devices in keeping with the trend toward greater complexity are required. In cases where a surface acoustic wave device is used in an antenna duplexer, a transmission surface acoustic wave (SAW) filter and a reception surface acoustic wave (SAW) filter are formed on the same common chip for the sake of miniaturization. Here, cases arise where a signal that is inputted by a transmission terminal is converted into a surface acoustic wave by a transmission resonator and a short circuit is formed so that the surface acoustic wave is propagated and linked to the reception resonator. In such a case, the transmission/reception isolation characteristic deteriorates and the filter transmission characteristic is subject to spurious emission. As conventional techniques for solving this problem, a technique that provides a groove by means of dicing between two SAW filters on a piezoelectric substrate (Japanese Patent Application Laid Open Nos. H5-102783 and 2000-13179), or a technique that allows one filter to carry parts that intersect lines that are connected to a signal terminal and lines that are connected to a ground terminal (Japanese Patent Application Laid Open No. 2003-51731), have been disclosed. However, in the inventions appearing in Japanese Patent Application Laid Open Nos. H5-102783 and 2000-13179, the fine processing of the processing technology is problematic, there are resonator problems and limitations on placement, and there is the risk of an increase in chip size. In addition, deterioration in the characteristics is induced because chips fly toward the resonator when a groove is provided by means of dicing. On the other hand, an object of the invention according to Japanese Patent Application Laid Open No. 2003-51731 is to prevent worsening of the isolation and the attenuation amount caused by reciprocal induction that is produced in order to counteract the magnetic flux that arises due to the influence of the current flowing to the filter. | <SOH> SUMMARY OF THE INVENTION <EOH>Therefore, unlike the object and constitution described in Japanese Patent Application Laid Open No. 2003-51731, an object of the present invention is to prevent the occurrence of a short circuit. It is a further object of the present invention to provide a surface acoustic wave device that solves the problems of fine-processing complexity, an increase in chip size, and the production of chipping when a groove is provided by means of dicing, which were problems faced by both the inventions of Japanese Patent Application Laid Open Nos. H5-102783 and 2000-13179, and that allows a plurality of surface acoustic wave filters to be formed on a single chip and greater miniaturization to be achieved. A first aspect of the surface acoustic wave device according to the present invention, which achieves the above object, comprises a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; and a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein the positions in which the first and second surface acoustic wave resonators are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; and the surface acoustic wave device further comprises a phase control portion for dividing the overlap surface acoustic wave propagation region into an upper half and a lower half and for affording the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator a mutually antiphase relationship in the upper-half region and lower-half region thus divided. A second aspect of the surface acoustic wave device according to the present invention, which achieves the above object, comprises a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; and a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein the positions in which the first and second surface acoustic wave resonators are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; and the surface acoustic wave device further comprises a phase control portion for dividing the overlap surface acoustic wave propagation region into a plurality of regions and affording the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator a mutually antiphase relationship in the upper-half region and lower-half region of the respective regions thus divided. According to a third aspect of the surface acoustic wave device according to the present invention, which achieves the above object, the phase control portion for affording the phases of the surface acoustic waves propagated by the first surface acoustic wave resonator a mutually antiphase relationship according to the first or second aspect are a metallic film that is formed on the piezoelectric substrate between the first and second surface acoustic wave resonators and that comprises a cutout of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f) (n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency). According to a fourth aspect of the surface acoustic wave device according to the present invention, which achieves the above object, the phase control portion for affording the phases of the surface acoustic waves propagated by the first surface acoustic wave resonator a mutually antiphase relationship according to the first or second aspect are a metallic film that is formed on the piezoelectric substrate between the first and second surface acoustic wave resonators and that is of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f) (n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency of the first surface acoustic wave resonator). Further, a fifth aspect of the surface acoustic wave device according to the present invention, which achieves the above object, comprises a piezoelectric substrate; a first surface acoustic wave resonator formed on the piezoelectric substrate; and a second surface acoustic wave resonator formed on the piezoelectric substrate in the surface acoustic wave propagation direction of the first surface acoustic wave resonator, wherein N electrodes subject to the following relation among a plurality of electrodes that constitute a reflector that is disposed on a side of the first surface acoustic wave resonator opposite the second surface acoustic wave resonator are half the size of the opening width of the reflector part, and the phases of surface acoustic waves that are propagated by the first surface acoustic wave resonator are subject to a mutually antiphase relationship in the upper-half region and lower-half region with the above ½ width: 4*N/A=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f) (n=1,2, . . . ) (where λ is the wavelength of the propagated surface acoustic wave and the length of the reflector is λ/4). In addition, a sixth aspect of the surface acoustic wave device according to the present invention, which achieves the above object, is a surface acoustic wave device in which at least two or more vertically connected surface acoustic wave resonators are arranged in at least two or more sets on a piezoelectric substrate, wherein the positions in which adjacent first and second surface acoustic wave resonators of different sets are formed on the piezoelectric substrate are in an at least partially overlapping relationship in a surface acoustic wave propagation region that is defined by virtually extending the respective openings of the first and second surface acoustic wave resonators; a wraparound electrode is formed between the adjacent first and second surface acoustic wave resonators; and the wraparound electrode comprises a cutout of length L subject to the following relation in correspondence with the upper-half region or lower-half region of the overlap surface acoustic wave propagation region: L=Vm*Vf*(2 n+1)/(2*(Vf−Vm)*f)(n=1,2 . . . ) (where Vm is the velocity on the metallic film, Vf is the velocity in the region without the metallic film, and f is the drive frequency). The characteristics of the present invention will become more evident from the embodiments of the invention described hereinbelow with reference to the drawings. | 20050106 | 20070220 | 20050721 | 62464.0 | 0 | JONES, STEPHEN E | SURFACE ACOUSTIC WAVE DEVICE | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,029,595 | ACCEPTED | Energizable electrical test device for measuring current and resistance of an electrical circuit | Provided is an electrical test device having multi-meter functionality and being adapted to provide current sourcing to an electrical system for selective measurement of a plurality of parameters. The electrical test device comprises a conductor probe element, a power supply, a processor and a display device. The power supply is interconnected between an external power source and a probe element. The processor is connected to the probe element and is configured to provide an input signal to the electrical system and receive an output signal in response thereto. The output signal is representative of at least one of the parameters of the electrical system. The display device is configured to display reading the output signal which is representative of the parameter. The electrical device is configured to allow for selective powering of the electrical system upon energization of the probe element during measurement of the parameters. | 1. An electrical test device having multimeter functionality and being adapted to provide current sourcing to an electrical system for selective measurement of a plurality of parameters thereof, the electrical test device comprising: a conductive probe element configured to be placed into contact with the electrical system and provide an input signal thereto; a power supply interconnected between an external power source and the probe element; a processor electrically connected to the probe element and configured to manipulate the input signal provided to the electrical system and receive an output signal in response to the input signal, the output signal being representative of at least one of the parameters of the electrical system; and a display device electrically connected to the processor and configured to display a reading of the output signal, the reading being representative of the parameter; wherein the electrical test device is configured to allow for selective powering of the electrical system upon energization of the probe element during measurement of the parameters. 2. The electrical test device of claim 1 wherein: the electrical test device is configured to be switchable between one of an active mode and a passive mode; the active mode defined by measurement of the parameters during powering of the electrical system; the passive mode defined by measurement of the parameters without powering the electrical system. 3. The electrical test device of claim 1 further comprising: a housing having an auxiliary jack formed therein and being electrically connected to the processor; and an auxiliary cable having a proximal end and a distal end and comprising a pair of auxiliary test leads and an auxiliary ground lead; wherein the auxiliary ground and test leads being adapted to be selectively insertable into the auxiliary jack at the proximal end and connectable to the electrical system at the distal end for detecting continuity in the electrical system. 4. The electrical test device of claim 1 further comprising: a piezo element electrically connected to the processor; wherein the processor is configured to cause the piezo element to generate an audible tone during measurement of at least one of the parameters. 5. The electrical test device of claim 1 wherein the display device is a liquid crystal display. 6. The electrical test device of claim 1 further comprising a pair of power leads configured to connect the test device to the external power source. 7. The electrical test device of claim 6 wherein the external power source is a vehicle battery. 8. The electrical test device of claim 6 further comprising a ground lead configured to be connected to a ground source. 9. The electrical test device of claim 1 further comprising a keypad configured to allow for switching between measurement modes of the parameters. 10. The electrical test device of claim 1 wherein the parameters measurable by the test device include at least one of circuit continuity, resistance, voltage, current, load impedance and frequency. 11. The electrical test device of claim 1 wherein the processor is configured to cause periodic energization of the probe element for powering the electrical system at predetermined intervals for testing a relay switch. 12. The electrical test device of claim 1 further comprising a pair of signal lamps connected to the processor and configured to illuminate in response to continuity measurement. 13. The electrical test device of claim 12 wherein the signal lamps are configured as light emitting diodes. 14. The electrical test device of claim 1 further comprising at least one illumination lamp connected to the processor and configured to illuminate an area adjacent the probe element. 15. The electrical test device of claim 14 wherein the illumination lamp is configured as a light emitting diode. 16. An electrical test device having multimeter functionality and being adapted to provide current sourcing to an electrical system for selective measurement of a plurality of parameters thereof, the test device being configured to be switchable between one of an active mode and a passive mode respectively defined by measurement of the parameters with and without powering of the electrical system, the test device comprising: a conductive probe element configured to be placed into contact with the electrical system and provide an input signal thereto; a power supply interconnected between an external power source and the probe element; a processor electrically connected to the probe element and configured to manipulate the input signal provided to the electrical system and receive an output signal in response to the input signal, the output signal being representative of at least one of the parameters of the electrical system; and a display device electrically connected to the processor and configured to display a reading of the output signal, the reading being representative of the parameter; wherein the electrical test device is configured to allow for selective powering of the electrical system upon energization of the probe element during measurement of the parameters. 17. The electrical test device of claim 16 further comprising: a housing having an auxiliary jack formed therein and being electrically connected to the processor; and an auxiliary cable having a proximal end and a distal end and comprising a pair of auxiliary test leads and an auxiliary ground lead; wherein the auxiliary ground and test leads being adapted to be selectively insertable into the auxiliary jack at the proximal end and connectable to the electrical system at the distal end for detecting continuity in the electrical system. 18. The electrical test device of claim 16 further comprising: a piezo element electrically connected to the processor; wherein the processor is configured to cause the piezo element to generate an audible tone during measurement of at least one of the parameters. 19. The electrical test device of claim 16 further comprising: a pair of power leads configured to connect the test device to a vehicle battery; and a ground lead configured to be connected to a ground source 20. The electrical test device of claim 16 further comprising a keypad configured to allow for switching between measurements of the parameters. 21. The electrical test device of claim 16 wherein the parameters measurable by the test device include at least one of circuit continuity, resistance, voltage, current, load impedance and frequency. 22. The electrical test device of claim 16 wherein the processor is configured to cause periodic energization of the probe element for powering the electrical system at predetermined intervals for testing an electro-mechanical device. 23. The electrical test device of claim 22 wherein the electro-mechanical device is a relay switch. 24. The electrical test device of claim 16 further comprising a pair of signal lamps connected to the processor and configured to illuminate in response to continuity measurement. 25. The electrical test device of claim 16 wherein the processor is configured to cause the speaker and the display device to simultaneously and respectively generate an audible signal and display a reading of the output signal. 26. The electrical test device of claim 16 further comprising: a pair of power leads configured to be connected to the power source; and a ground lead configured to be connected to a ground source. 27. The electrical test device of claim 16 further comprising at least one signal lamp electrically connected to the processor and configured to receive the output signal therefrom and illuminate in response to detection of voltage polarity of the electrical system. | CROSS-REFERENCE TO RELATED APPLICATIONS (Not Applicable) STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT (Not Applicable) BACKGROUND OF THE INVENTION The present invention relates to electrical test equipment and, more particularly, to an electrical test device adapted to apply power to and perform multiple measurements upon an electrical system in the powered state. Motor vehicles such as automobiles and trucks are becoming increasingly technologically sophisticated requiring a correspondingly more sophisticated set of test equipment for maintenance and diagnostic testing. Much of the increased complexity of motor vehicles is due in part to the increased complexity of electrical circuitry and systems incorporated therein. Troubleshooting and diagnosing problems with such electrical systems requires the use of a wide array of complex test equipment. Such test equipment may include, for example, devices commonly referred to as multi-meters and which are configured to measure resistance, voltage, and current and more. Other diagnostic testing that is typically performed on motor vehicle electrical systems includes logic probes which measure and detect the presence and polarity of voltages as well as determining the continuity in electrical circuits. Unfortunately, such logic probes typically are incapable of measuring specific voltage levels. Another drawback associated with prior art test equipment regards the inability to test such electrical systems in the powered state. More specifically, many existing multi-meters and logic probes are incapable of diagnosing problems with the circuitry in the operating mode such as testing electrical systems of a motor vehicle in the inoperative state. For example, certain electrical devices in the electrical system of an automobile having a non-operational engine cannot be tested in the normal operating mode. However, it may be desirable to test such devices in the operational mode in order to ascertain the specific problems that can only diagnosed when such devices are operating. For example, a fan motor of a motor vehicle may require that the engine of the vehicle is operating in order to provide current to the fan motor. Unfortunately, unless power is provided to the fan motor using a separate power source, it is impossible to test and diagnose certain problems with the fan motor. As can be seen, there exists a need in the art for an electrical test device that is capable of providing power to an electrical system in order to test such electrical system in the active or powered state. Furthermore, there exists a need in the art for an electrical test device that combines other test features such as logic probe diagnostic testing into a single unit. In addition, there exists a need in the art for an electrical test device capable of combining key measurement functions into a single instrument in order to the accelerate diagnosis of electrical problems. Finally, there exists a need in the art for an electrical test device that is hand held, and that is easy to use and which contains a minimal number of parts and is of low cost. BRIEF SUMMARY OF THE INVENTION Provided is a uniquely configured electrical test device that is specifically adapted to provide current sourcing to an electrical system while also providing multi-meter functionality for selective measurement of a plurality of parameters of the electrical system under test. In addition to functions commonly performed by multi-meters, the electrical test device includes the capability to characterize loaded impedance, wave form and current drain. The unique configuration of the electrical test device eliminates the need for a clip-on current sensor as may be used in prior art electrical test devices to measure A.C. and D.C. current in a current carrying conductor of the electrical system under test. In addition, the unique configuration of the electrical test device eliminates the need for a separate power cable and probe element connection. In its broadest sense, the electrical test device comprises a conductive probe element, a power supply, a processor and a display device. The electrical test device is configured to allow for selective powering of an electrical system upon energization of the probe element while parameters of the electrical system are being measured. The conductive probe element is configured to be placed into contact with the electrical system under test and to provide an input signal to the electrical system. The power supply is interconnected between an external power source, such as a vehicle battery, and the probe element. The power supply is preferably configured to provide a voltage regulated output for all circuitry within the electrical test device. The processor controls all the functions of the electrical test device and is electrically connected to the probe element. The processor is configured to manipulate the input signal provided to the electrical system and to receive an output signal in response to the input signal. The output signal is representative of the measurement of at least one of the parameters of the electrical system. The display device is configured to display a reading of the output signal extracted from the electrical system under test. The reading is representative of the parameter being measured. An audible device (i.e., a speaker) may be included within the electrical test device for providing an audible indication (i.e., a tone) of the parameter being measured. The electrical device will automatically switch between an active mode and a passive mode wherein the active mode is defined by measurement of the parameters during powering of the electrical system under test. The passive mode is defined by measurement of the parameters of the electrical system without the application of power. Switching between the active and passive modes, as well as manipulation of the electrical test device in general, may be controlled by a keypad which is connected to the processor. In addition, the electrical test device may include a lamp which indicates proper powering of the electrical test device. In addition, the lamp may be operative to alert the user of a blown fuse of the electrical test device. The electrical test device features functionality as a dual continuity tester, load impedance detector, logic probe detector and generator, frequency and totalizer measurement, voltage measurement and current measurement. Due to its unique configuration, the electrical test device can simultaneously measure current and voltage of the electrical system due to the application of current sourcing into the electrical system under test. BRIEF DESCRIPTION OF THE DRAWINGS These as well as other features of the present invention will become more apparent upon reference to the drawings wherein: FIG. 1 is a block diagram of an electrical test device of the present invention and illustrates a power supply, a microprocessor, a display device, a keypad, and an energizable probe element that make up the electrical test device; FIG. 2 is a perspective view of the electrical test device and illustrating a pair of power leads and a ground lead connected to a circuit board of the electrical test device; FIG. 3 is a partially exploded perspective view of the electrical test device illustrating a housing comprising upper and lower shells, a circuit board assembly contained within the housing, and the power cable and probe element extending out of the housing; FIG. 4 is a top view of the electrical test device illustrating a keypad, a plurality of signal lamps, and speaker holes formed within the upper shell as well as an auxiliary cable connectable to the electrical test device; FIG. 5 is an end view of the electrical test device illustrating illuminating lamps, and an auxiliary jack formed within the housing for receiving the auxiliary cable. DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawings wherein the showings are for purposes of illustrating various aspects of the invention and not for purposes of limiting the same, provided is a uniquely configured electrical test device 10 that is specifically adapted to provide current sourcing to an electrical system while also providing multi-meter functionality for selective measurement of a plurality of parameters of the electrical system. Advantageously, the electrical test device 10 is uniquely configured to allow for the collection of data on active, even on relatively high-current, electrical systems. More specifically, the electrical test device 10 is specifically configured to allow access to current flow through the electrical system and includes the capability to characterize loaded impedance, wave form (e.g., fluctuation, frequency/speed), and current drain in addition to functions commonly performed by multi-meters such as voltage, current and resistance measurements. As was earlier mentioned, the unique configuration of the electrical test device 10 eliminates the need for clip-on current sensors as may be required in prior art electrical test devices. In addition, the unique configuration of the electrical test device 10 eliminates the need for a separate power cable and probe element connection. In its broadest sense, the electrical test device 10 comprises a conductive probe element 50, a power supply 88, a processor 92 and a display device 54. Importantly, the electrical test device 10 is configured to allow for selective powering of the electrical system under test upon energization of the probe element 50 while parameters of the electrical system are being measured. Referring to FIG. 1, shown is the block diagram of the electrical test device 10. As can be seen, the block diagram illustrates several functional blocks that indicate the various measurement capabilities of the test device 10. Each of the functional blocks is under control of the processor 92 which, as is shown in FIG. 1, may be configured as a microprocessor 40. Referring now more particularly to FIG. 1, shown is the conductive probe element 50 which is configured to be placed into contact with the electrical system under test. In addition, the conductor probe element 50 is configured to provide an input signal to the electrical system. The power supply 88 is interconnected between an external power source 90 and the probe element 50. The power source may be configured as a battery of a motor vehicle which includes the electrical system under test. However, the external power source 90 may be configured in a variety of embodiments other than a motor vehicle battery. Referring still to FIG. 1, the power supply 88 is connected to a reset control 94 such as a microprocessor reset control 94. The microprocessor reset control 94 may be comprised of circuitry that provides a reset signal to the processor 92 or microprocessor 40 under conditions wherein the operating voltage may be out of tolerance. As was earlier mentioned, the power supply 88 is connected to the external power source 90. The power supply 88 is preferably configured to provide a voltage regulated output for all circuitry within the electrical test device 10. Preferably, the voltage regulated output is provided independent of any input signal to the electrical system under test. As can be seen in FIG. 1, the microprocessor reset control 94 is electrically connected to the processor 92 or microprocessor 40. The processor 92 or microprocessor 40 is electrically connected to the probe element 50 and is configured to manipulate the input signal provided to the electrical system and to receive an output signal in response to the input signal. The output signal is representative of the measurement of at least one of the parameters of the electrical system. In manipulating and controlling the electrical test device 10 measurement functions, the processor 92 or microprocessor 40 may be provided with an executable software program configured to provide control of the various measurement processes of the electrical test device 10. In this manner, the processor 92 or microprocessor 40 controls all the functions of the electrical test device 10. As can be seen in FIG. 1, the electrical test device 10 includes the display device 54 which is electrically connected to the processor 92 or microprocessor 40 and which is configured to display a reading of the output signal which is extracted from the electrical system under test. The reading is representative of the parameter being measured. It should also be noted that an audible device may be included within the electrical test device 10 for providing an audible indication of certain operating parameters of the electrical system under test. For example, the audible device may comprise a piezo element 70 such as a piezo disk 74 which acts as a speaker 66 for providing information regarding continuity measurements and voltage polarity of the electrical system. As was earlier mentioned, the electrical test device 10 is specifically configured to allow for selective powering of the electrical system upon energization of the probe element 50 during measurement of the parameters of the electrical system. The electrical device may be configured to automatically switch between one of an active mode and a passive mode wherein the active mode is defined by measurement of the parameters of the electrical system during powering thereof. As was previously mentioned, such power is ultimately supplied by an external power source 90 and which is directed through a power supply 88 and passed into the probe element 50. In this manner, the probe element 50 may transfer current into the electrical system under test. The passive mode is defined by measurement of the parameters of the electrical system without the application of power to the electrical system. The application of power may be controlled by a keypad 84 which is illustrated in FIG. 1 as being connected to a processor 92 or microprocessor 40. In addition, the display device 54 such as a liquid crystal display 56 may be operative to indicate whether the test device 10 is in the passive mode or the active mode. As can be seen in FIG. 1, the electrical test device 10 may include a speaker driver 68 which is connected to the speaker 66 (i.e., the piezo element 70) and which handles the formatting and converting of signals from the processor 92 or microprocessor 40 such that the speaker 66 may be operated as necessary. In the same sense, the display driver 96, shown in FIG. 1 as being connected between the processor 92 or microprocessor 40 and the display device 54, is also operative to format and convert signals from the processor 92 or microprocessor 40 into a format needed for display by the display device 54. Referring still to FIG. 1, shown are the functional blocks representative of the features of the electrical test device 10. Included with the functional blocks are dual continuity tester 118, load impedance detector 120, logic probe detector and generator 122, frequency and totalizer measurement 124, voltage measurement 126, resistance measurement 132, power output driver 128 with over current protection, and current measurement 130. The voltage measurement 126 functionality and the current measurement 130 functionality may each include analog-to-digital conversion mechanisms. Importantly, due to the unique configuration of the electrical test device 10 as illustrated in the block diagram, the electrical test device 10 can simultaneously measure current and voltage of the electrical system due to the application of current sourcing into the electrical system under test. It should be noted that although each of the functional blocks is indicated as a separate block, componentry may be shared therebetween for facilitating any particular measurement of the electrical system. Furthermore, as can be seen, each of the functional blocks is connected to the processor 92 or microprocessor 40 which controls the operation of the electrical test device 10 during testing. It should also be noted that the dual continuity tester 118 functionality block shown in FIG. 1 may be used in conjunction with the current source provide by the probe when energized by the power supply 88. Such operation of the current source provided by the probe is similar to that which is disclosed in U.S. Pat. No. 5,367,250, issued to Whisenand (“the Whisenand reference”) and which is entitled 64 “Electrical Tester With Electrical Energizable Test Probe”, herein incorporated by reference in its entirety. The operation of the dual continuity tester 118 of the electrical test device 10 in combination with its signal lamps 58 provides for an extremely convenient means for testing the functionality of multi-pole relays. More specifically, the dual continuity tester 118 is configured to allow testing of multiple contacts with the pressing of a single button of the electrical test device wherein the coil resistance of the relay may be easily measured. In addition, many other test configurations may be obtained. Likewise, the current sourcing functionality shown in FIG. 1 is similar to that shown and disclosed in the Whisenand reference. The dual continuity tester 118, when coupled with the measurement functions of the electrical test device 10, enables testing of contact switches in relay devices. For example, in an electrical system having two relays, the dual continuity tester 118 provides for the capability to determine which one of the two relays is activated and/or which is deactivated. In this manner, the dual continuity tester 118 allows for checking of relays using either a pair of signal lamps 58. When testing relays or switches in this manner, the speaker 66 is preferably configured to be inoperative to avoid producing audible signals that may otherwise impede detection of noises that are indicative of a functioning switch. Both the signal lamp 58 and/or the audible device may be used to provide an indication as to the activated or deactivated state of the relays. Furthermore, the dual continuity tester 118 may be used to check the status and operability of multiple contacts such as in a multi-pole/multi-contact relay or switch. Referring still to FIG. 1, the load impedance detector 120 functional block allows for measurement of the magnitude of a voltage drop such as when testing electrical junctions in an electrical circuit. The load impedance detector 120 functional block is useful in testing power feed circuits that may have loose or corroded connections. As will be described in greater detail below, when the probe element 50 is connected to the electrical system under test, the impedance of the electrical system may be tested and the electrical test device 10 may provide an indication, either audibly via the speaker 66 and/or visually via the display device 54 (i.e., the LCD 56) such as when a set point (i.e., a predetermined voltage level) is above a specified voltage limit. The logic probe generator and detector 122 functional block comprises a circuit that creates a sequence for outputting into a device of the electrical system through the probe element 50. For example, a digital pulse train may be inputted into a device of the electrical system with the digital pulse train inserted into a terminal of a device under test in order to assess communication between components of the electrical system (e.g., between an odometer in communication with a control unit of a motor vehicle). The logic probe generator and detector 122 functionality also provides the electrical test device 10 with a capability to measure signal levels as well as frequency. High and low logic levels may be generated as well as pulse trains at various frequencies. The frequency and totalizer measurement 124 functional block allows the electrical test device 10 to assess the rate of voltage or current fluctuation in the electrical system under test, and to accumulate occurrences of a particular state over time. Circuitry of the frequency and totalizer measurement 124 block allow for processing of signal transition of a waveform in order to extract the frequency, revolutions per minute (RPM), duty cycle and number of pulses from a signal. The frequency aspect of the frequency and totalizer measurement 124 functional block allows for determining the frequency or RPM or duty cycle component of the electrical system. The totalizer aspect of the frequency and totalizer measurement 124 functional block accumulates pulses or cycles and allows the electrical test device 10 to measure and check for intermittent output signals from the electrical system under test. The frequency and totalizer measurement 124 functional block also provides a means for checking switches in an electrical system by providing a means for measuring the number of times that a contact within a switch bounces, for example, such as may occur in a relay switch. The voltage measurement 126 block allows for high speed voltage measurement 126 in the electrical system. The voltage measurement 126 block represents the ability of the electrical test device 10 to sample and detect positive and negative peaks of a signal as well as detecting and measuring an average of the signals and displaying results of the signal readout on the display device 54. The voltage measurement 126 block simplifies voltage drop tests, voltage transient tests and voltage fluctuation or ripple tests. The power output driver 128 with over current protection functional block provides a buffer stage or a transistor for the electrical test device 10 such that the power output driver 128 with over current protection regulates the amount of current that may be passed from the power supply 88 to the probe element 50 and ultimately into the electrical system under test. In addition, the power output driver may establish an appropriate drive impedance and protect the electrical test device 10 from damage due to automotive transients. The current measurement 130 functional block allows for high speed current measurement 130 by the electrical test device 10 such that sampling and detection of current consumed in a load provided in the input signal which is passed into the electrical system. Such consumed current may be displayed on the display device 54. Referring now to FIGS. 2-5, shown is an embodiment of the electrical test device 10 schematically illustrated in FIG. 1. As best shown in FIGS. 2-3, the electrical test device 10 may include a housing 14 configured as a generally elongated, hollow, rectangular cross-sectionally shaped box. The housing 14 has a top end 20 and a bottom end 22. The top end 20 may be generally wider than a remaining portion of the housing 14 so that a display assembly 52 containing the display device 54 may be incorporated into the housing 14. The display device 54 may be supported with display supports 44 which may orient the display device 54 at a convenient angle for observation by an operator of the test device 10. The remaining portion of the housing 14 may have a narrower width to allow for single-hand operation of the test device 10. Contained within the housing 14 is a circuit board assembly 36 comprising a circuit board 38 whereon a microprocessor 40 and display device 54 along with the power supply 88, microprocessor 40 reset control 94, speaker driver 68 and display driver 96 may be enclosed and interconnected. The housing 14 includes an upper shell 18 and a lower shell 16 which may be fastened to one another such as by mechanical fasteners. As can be seen in FIGS. 2 and 3, the housing 14 includes an upper wall 24 disposed with the upper shell 18 and a lower wall 26 disposed with the lower shell 16. In its assembled 64 state, the housing 14 includes opposing side walls 28 and opposing end walls 30. At the top end 20 of the housing 14 is an aperture formed therein and into which a probe jack 98 may be fitted. The probe element 50 is configured to be removably inserted into the probe jack 98. A probe overmold 46 may be provided to encase a major portion of the probe element 50. At the bottom end 22 of the housing 14 is another aperture formed therein and through which a power cable 78 protrudes. The power cable 78 is configured with a pair of power leads 80, preferably one positive lead and one negative lead. In addition, a ground lead 82 may be also included in the power cable 78 extending out of the bottom end 22 of the housing 14. Both power leads 80 may be configured as insulated conductors as may be the ground lead. The cable 50 maybe encased in a cable sheathing 86 which passes through an annular shaped bushing 72 coaxially fitted within the aperture formed in the end wall 30 and which may prevent undue strain on the cable 50. The cable 50 includes a proximal end 104 which is disposed adjacent the housing 14 aperture and the strain relief bushing 72. The cable 50 also includes a distal end 106 having a pair of high power alligator clips 76 disposed on extreme ends of each one of the power leads 80. As was earlier mentioned, the external power source 90 may be configured as a motor vehicle battery with the alligator clips 76 being configured to facilitate connection thereto. In this regard, the negative one of the power leads 80 may be provided in a black-colored alligator clip 76 while the positive one of the power leads 80 may be provided with a red-colored alligator clip 76. Disposed at an end of the ground lead 82 may also be an alligator clip 76 to facilitate connection to a ground source. As can be seen in FIG. 2, the upper and lower shells 16, 18 of the housing 14 are configured to provide a hang loop 34 extending out of one of the side wall 28. The hang loop 34 provides a mechanism by which the electrical test device 10 may be attached to or hung from fixed objects such as a cable or a hook. As can be seen, the power cable 78 is electrically connected to the circuit board assembly 36. As was previously mentioned in the description of FIG. 1, the external power source 90 is connected via the power cable 78 to a power supply 88 which is integrated with the circuit board assembly 36 and which is ultimately connected to the probe element 50 extending out of the top end 20 of the housing 14. Included with the probe element 50 is a probe tip 48 on an extreme end thereof. Advantageously, the probe element 50 is configured to be removable from the electrical test device 10 via a probe jack 98 such that various electrical testing accessories may be plugged into the probe jack 98 for checking the electrical system under test. Referring now to FIG. 5, shown is a front view of the electrical test device 10 and illustrating openings or apertures formed within the housing 14 through which illumination lamps 60 at least partially extend. The illumination lamps 60 may optionally be provided for illuminating an area adjacent to the test probe. Although four apertures and illumination lamps 60 are shown, any number may be provided. It is contemplated that the illumination lamp 60 or lamps may preferably be configured as light emitting diodes 64 (LED's). Activation and deactivation of the illumination lamps 60 may be provided by means of the keypad 84 which is electrically connected to the processor 92 or microprocessor 40 located on the circuit board 38 and which may be disposed at a location adjacent to the display device 54. Also shown in FIGS. 4-5 is an auxiliary jack 100 into which an auxiliary cable 102 may be inserted for facilitating continuity measurements as was described above with regard to the dual continuity tester 118 functionality block. The auxiliary cable 102 has a proximal end 104 and a distal end 106 and comprises a pair of auxiliary test leads 108 and the auxiliary ground lead 110. The auxiliary test leads 108 comprise a first continuity test lead 112 and a second continuity test lead 114. In addition, the auxiliary cable 102 may include an auxiliary ground lead 110 for use as a continuity test common ground 116. The auxiliary jack 100 formed within the housing 14 is electrically connected to the processor 92 or microprocessor 40. As was previously mentioned, the auxiliary ground and test leads 110, 108 are adapted to be selectively insertable into the auxiliary jack 100 at the proximal end 104. Referring now to FIG. 3, mounted with the housing 14 is the display device 54 which may be configured as a liquid crystal display 56 (LCD). In order to protect the display device 54 as well as the interior of the housing 14, a display overlay 12 may be included and is preferably disposed generally flush or level with an upper wall 24 of the housing 14. In addition, the display overlay 12 may extend along the upper shell 18 to form a protective barrier for the keypad 84 integrated into the electrical test device 10. As was earlier mentioned, the keypad 84 allows for manipulation of the processor 92 or microprocessor 40 for controlling functionality of the electrical test device 10. The keypad 84 may be comprised of any number of keys but preferably may include three (3) buttons for operation of the electrical test device 10. The three (3) buttons of the keypad 84 may be preferably configured to allow for selective switching between different measurement modes of the electrical test device 10. In addition, the keypad 84 may allow for the configuration of measuring and displaying various parameters of AC voltage and DC voltage measurements, resistance of the electrical circuit, current flowing within the electrical circuit, the frequency of signals, etc. More specifically, the electrical test device 10 may be manipulated such that parameters measurable by the electrical test device 10 include at least one of the following: circuit continuity, resistance, voltage, current, load impedance, and frequency, RPM and pulse counting. In addition, further measurement modes may be facilitated through manipulation of the keypad 84. For example, frequency, RPM, duty cycle and totalizer measurements may be provided upon an electrical circuit in a test. In addition, signal level and frequency may be measured as well as testing of impedance. Referring still to FIG. 3, shown included with the circuit board assembly 36 may be at least one fuse 42 and preferably a pair of fuses 42 which partially protrude through apertures formed in the housing 14 at the upper shell 18. The fuses 42 are incorporated into the electrical test device 10 as a safety precaution to prevent damage to the circuitry of the test device 10. Also included with the electrical test device 10 may be a circuit breaker 62 such as an electronic circuit breaker 62 which may also have configurable trip levels and a manual circuit breaker reset. Also shown incorporated into the circuit board assembly 36 of the electrical test device 10 is a piezo element 70 which is shown configured as a piezo disk 74 and which is disposed adjacent the bottom end 22 of the housing 14. Speaker holes 32 are shown formed in the upper shell 18 of the housing 14 to allow for transmission of audible tones generated by the piezo disk 74 such as may occur during the variously configurable modes of operation of the electrical test device 10. Also included with the circuit board assembly 36 may be an additional lamp configured as an LED 64 and which may protrude through an aperture formed in the upper shell 18 of the housing 14 as shown in FIGS. 2 and 3. Such LED 64 may be connected to the processor 92 or microprocessor 40 and may allow for providing a means to indicate whether power is being applied to the electrical test device 10. Alternatively, or in addition to, the LED 64 protruding through the upper shell 18 of the housing 14 may also be configured as a power-good indicator and to be de-activated to alert the user of a blown fuse 42. Regarding the operation of the electrical test device 10, as was earlier discussed, the electrical test device 10 is operative in either one of the passive mode or the active mode. The passive mode is defined by measurements of the electrical system with no power being supplied thereto by the probe element 50. The active mode is defined by measurement of parameters of the electrical system during application of power such as from an external power source 90 through the probe element 50 and into the electrical system. As was earlier discussed, the electrical test device 10 may be operated as a dual continuity tester 118 wherein the auxiliary cable 102 may be inserted into the auxiliary jack 100 at the top end 20 of the housing 14 as shown in FIG. 4. After insertion, the first continuity test lead 112 and second continuity test lead 114 as well as continuity test common ground 116 may be connected to the electrical system under test. In the active mode, wherein power is supplied to the electrical system under test, the continuity of a particular portion of the electrical system may be verified by using the auxiliary cable 102 comprising the first continuity test lead 112 and/or the second continuity test lead 114 in combination with the continuity test common ground 116. As shown in FIG. 3, a pair of signal lamps 58 may be included with the test device 10 and may be positioned at the top end 20 of the housing 14 so as to protrude through apertures formed in the upper shell 18. The signal lamps 58 may be configured as LED's 64 and, more specifically, may be configured as a yellow LED and a red LED. In addition, as was previously mentioned, the piezo element 70 may be used in combination with or may be exclusively during continuity testing. Importantly, the dual continuity tester 118 may use the current source provided by the external power source 90 for inputting current into the electrical system during continuity testing. Load impedance detection functionality may be facilitated such that the magnitude of a voltage drop within an electrical system such as when testing electrical junctions in power feed circuits that may have loose or corroded connections. The electrical system under test may be measured with differences there between being assessed and displayed on the display device 54. The logic probe generator and detection functional block, as was previously discussed, allows for testing for high logic, low logic and pulsing logic signals. The electrical test device 10 is configured to allow forcing of a signal into the electrical system under test with manipulation of multiple functions of the logic detection functionality such that an appropriate input signal may be injected into the electrical system under test. The frequency and totalizer measurement 124 functionality allows for measuring signals from the electrical system as well as providing the capability for entering a “divide ratio”, which may be equivalent to the number of cylinders of an engine within the motor vehicle being tested. In this manner, the electrical test device 10 may measure the revolutionary speed at which a motor vehicle engine is operating. In addition, as was previously discussed, rates of voltage or current fluctuation may be measured and signal transition components of a wave form may be analyzed to extract frequency, duty cycle and number of pulses. Regarding the voltage measurement 126 functionality, the electrical test device 10 may measure and display average voltage similar to that performed or measured by a standard volt meter as well as measurement and display of positive peak voltage and negative peak voltage. Importantly, the measurement of negative peak voltage enhances the ability to analyze and measure voltage of an alternator having a faulty diode. The electrical test device 10 may be operated as a digital volt meter capable of performing a voltage drop test and battery load testing as well as transient voltage testing. In addition, the combination of the power output drivers 128 with current measurement 130 capability allows the electrical test device 10 of the present invention to measure current and voltage simultaneously. The electrical test device 10 may be placed in the active mode and can be placed in a “latched” or permanent operation mode wherein a constant supply of power is provided through the conductive probe element 50 into the electrical system under test. However, the electrical test device 10 can be placed in a “momentary” power mode wherein power may be supplied on an as-requested basis due to manual manipulation of one of the buttons of the keypad 84. The processor 92 or microprocessor 40 may be configured to cause periodic energization of the probe element 50 for powering the electrical system under test at predetermined intervals for testing an electro-mechanical device that is part of the electrical system under test. Examples of electro-mechanical devices that may be tested in this manner include, but are not limited to, relay switches, solenoids, motors and various other devices. Power may be provided to the electrical system under test on an automatic intermittent basis at predetermined intervals such as, for example, at one-second intervals. Advantageously, the ability to provide power in such varying modes allows for testing the proper operation of electro-mechanical devices such as relay switches as well as in tracing locations of such electro-mechanical devices. By connecting the electrical test device 10 to the external power source 90 and intermittently providing current into the electrical system through the probe element 50, a user may more easily track the location of a faulty relay switch by listening for a clicking sound as power is intermittently applied thereto. Such method for checking for faulty relay switches may be especially valuable in detecting a relay switches that may be hidden underneath carpeting, seating and/or plastic molding commonly found in automotive interiors. Additional modifications and improvements of the present invention may also be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments of the present invention, and is not intended to serve as limitations of alternative devices within the spirit and scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>The present invention relates to electrical test equipment and, more particularly, to an electrical test device adapted to apply power to and perform multiple measurements upon an electrical system in the powered state. Motor vehicles such as automobiles and trucks are becoming increasingly technologically sophisticated requiring a correspondingly more sophisticated set of test equipment for maintenance and diagnostic testing. Much of the increased complexity of motor vehicles is due in part to the increased complexity of electrical circuitry and systems incorporated therein. Troubleshooting and diagnosing problems with such electrical systems requires the use of a wide array of complex test equipment. Such test equipment may include, for example, devices commonly referred to as multi-meters and which are configured to measure resistance, voltage, and current and more. Other diagnostic testing that is typically performed on motor vehicle electrical systems includes logic probes which measure and detect the presence and polarity of voltages as well as determining the continuity in electrical circuits. Unfortunately, such logic probes typically are incapable of measuring specific voltage levels. Another drawback associated with prior art test equipment regards the inability to test such electrical systems in the powered state. More specifically, many existing multi-meters and logic probes are incapable of diagnosing problems with the circuitry in the operating mode such as testing electrical systems of a motor vehicle in the inoperative state. For example, certain electrical devices in the electrical system of an automobile having a non-operational engine cannot be tested in the normal operating mode. However, it may be desirable to test such devices in the operational mode in order to ascertain the specific problems that can only diagnosed when such devices are operating. For example, a fan motor of a motor vehicle may require that the engine of the vehicle is operating in order to provide current to the fan motor. Unfortunately, unless power is provided to the fan motor using a separate power source, it is impossible to test and diagnose certain problems with the fan motor. As can be seen, there exists a need in the art for an electrical test device that is capable of providing power to an electrical system in order to test such electrical system in the active or powered state. Furthermore, there exists a need in the art for an electrical test device that combines other test features such as logic probe diagnostic testing into a single unit. In addition, there exists a need in the art for an electrical test device capable of combining key measurement functions into a single instrument in order to the accelerate diagnosis of electrical problems. Finally, there exists a need in the art for an electrical test device that is hand held, and that is easy to use and which contains a minimal number of parts and is of low cost. | <SOH> BRIEF SUMMARY OF THE INVENTION <EOH>Provided is a uniquely configured electrical test device that is specifically adapted to provide current sourcing to an electrical system while also providing multi-meter functionality for selective measurement of a plurality of parameters of the electrical system under test. In addition to functions commonly performed by multi-meters, the electrical test device includes the capability to characterize loaded impedance, wave form and current drain. The unique configuration of the electrical test device eliminates the need for a clip-on current sensor as may be used in prior art electrical test devices to measure A.C. and D.C. current in a current carrying conductor of the electrical system under test. In addition, the unique configuration of the electrical test device eliminates the need for a separate power cable and probe element connection. In its broadest sense, the electrical test device comprises a conductive probe element, a power supply, a processor and a display device. The electrical test device is configured to allow for selective powering of an electrical system upon energization of the probe element while parameters of the electrical system are being measured. The conductive probe element is configured to be placed into contact with the electrical system under test and to provide an input signal to the electrical system. The power supply is interconnected between an external power source, such as a vehicle battery, and the probe element. The power supply is preferably configured to provide a voltage regulated output for all circuitry within the electrical test device. The processor controls all the functions of the electrical test device and is electrically connected to the probe element. The processor is configured to manipulate the input signal provided to the electrical system and to receive an output signal in response to the input signal. The output signal is representative of the measurement of at least one of the parameters of the electrical system. The display device is configured to display a reading of the output signal extracted from the electrical system under test. The reading is representative of the parameter being measured. An audible device (i.e., a speaker) may be included within the electrical test device for providing an audible indication (i.e., a tone) of the parameter being measured. The electrical device will automatically switch between an active mode and a passive mode wherein the active mode is defined by measurement of the parameters during powering of the electrical system under test. The passive mode is defined by measurement of the parameters of the electrical system without the application of power. Switching between the active and passive modes, as well as manipulation of the electrical test device in general, may be controlled by a keypad which is connected to the processor. In addition, the electrical test device may include a lamp which indicates proper powering of the electrical test device. In addition, the lamp may be operative to alert the user of a blown fuse of the electrical test device. The electrical test device features functionality as a dual continuity tester, load impedance detector, logic probe detector and generator, frequency and totalizer measurement, voltage measurement and current measurement. Due to its unique configuration, the electrical test device can simultaneously measure current and voltage of the electrical system due to the application of current sourcing into the electrical system under test. | 20050105 | 20070227 | 20060706 | 70193.0 | G01R3102 | 1 | SUAREZ, FELIX E | ENERGIZABLE ELECTRICAL TEST DEVICE FOR MEASURING CURRENT AND RESISTANCE OF AN ELECTRICAL CIRCUIT | SMALL | 0 | ACCEPTED | G01R | 2,005 |
|
11,029,698 | ACCEPTED | Prostaglandin derivatives | Prostaglandin nitroderivatives having improved pharmacological activity and enhanced tolerability are described. They can be employed for the treatment of glaucoma and ocular hypertension. | 1. A compound of general formula (I) or a pharmaceutically acceptable salt or stereoisomer thereof R—X—Y—ONO2 (I) wherein R is the prostaglandin residue of formula (II): wherein the symbol or - - - represents a single bond or a double bond; L is selected from the following groups: X is —O—, —S— or —NH—; Y is a bivalent radical having the following meaning: a) straight or branched C1-C20 alkylene, being optionally substituted with one or more of the substituents selected from the group consisting of: halogen atoms, hydroxy, —ONO2 or T, wherein T is —OC(O)(C1-C10 alkyl)-ONO2 or —O(C1-C10 alkyl)-ONO2; cycloalkylene with 5 to 7 carbon atoms into cycloalkylene ring, the ring being optionally substituted with side chains T1, wherein T1 is straight or branched C1-C10 alkyl; wherein n is an integer from 0 to 20, and n1 is an integer from 1 to 20; wherein X1=—OCO— or —COO— and R2 is H or CH3; Z is —(CH)n1— or the bivalent radical defined above under b) n1 is as defined above and n2 is an integer from 0 to 2; wherein: Y1 is —CH2—CH2—(CH2)n2—; or CH═CH—(CH2)n2—; Z is —(CH)n1— or the bivalent radical defined above under b) n1, n2, R2 and X1 are as defined above; wherein: n1 and R2 are as defined above, R3 is H or —COCH3; with the proviso that when Y is selected from the bivalent radicals mentioned under b)-f), the —ONO2 group is bound to —(CH2)n1; wherein X2 is —O— or —S—, n3 is an integer from 1 to 6 and R2 is as defined above; wherein: n4 is an integer from 0 to 10; n5 is an integer from 1 to 10; R4, R5, R6, R7 are the same or different, and are H or straight or branched C1-C4 alkyl; wherein the —ONO2 group is linked to wherein n5 is as defined above; Y2 is an heterocyclic saturated, unsaturated or aromatic 5 or 6 members ring, containing one or more heteroatoms selected from nitrogen, oxygen, sulfur, and is selected from 2. A compound of general formula (I) according to claim 1 or a pharmaceutically acceptable salt or stereoisomer thereof wherein R, L, X are as defined in claim 1 and Y is a bivalent radical having the following meaning: a) straight or branched C1-C20 alkylene, being optionally substituted with one or more of the substituents selected from the group consisting of: halogen atoms, hydroxy, —ONO2 or T, wherein T is —OC(O)(C1-C10 alkyl)-ONO2 or —O(C1-C10 alkyl)-ONO2; cycloalkylene with 5 to 7 carbon atoms into cycloalkylene ring, the ring being optionally substituted with side chains T1, wherein T1 is straight or branched C1-C10 alkyl; wherein n is an integer from 0 to 20, and n1 is an integer from 1 to 20; wherein: n1 is as defined above and n2 is an integer from 0 to 2; wherein: n1, n2, R2 and X1 are as defined above; Y1 is —CH2—CH2— or —CH═CH—(CH2)n2—; wherein: n1 and R2 are as defined above, R3 is H or —COCH3; with the proviso that when Y is selected from the bivalent radicals mentioned under b)-f), the —ONO2 group is bound to —(CH2)n1; wherein X2 is —O— or —S—, n3 is an integer from 1 to 6 and R2 is as defined above; wherein: n4 is an integer from 0 to 10; n5 is an integer from 1 to 10; R4, R5, R6, R7 are the same or different, and are H or straight or branched C1-C4 alkyl; wherein the —ONO2 group is linked to wherein n5 is as defined above; Y2 is an heterocyclic saturated, unsaturated or aromatic 5 or 6 members ring, containing one or more heteroatoms selected from nitrogen, oxygen, sulfur, and is selected from 3. A compound of general formula (I) according to claim 1 or 2, wherein L is selected from the following groups: 4. A compound of general formula (I) according to anyone of the claims from 1 to 3, wherein the residue R is selected from the group consisting of travoprost, unoprostone and cloprostenol; 5. A compound of general formula (I) according to claim 1 or 2 wherein the residue R is latanoprost. 6. A compound of general formula (I) according to anyone of the claims from 1 to 5, wherein X is —O— or —S—. 7. A compound of general formula (I) according to anyone of the claims from 1 to 6, wherein Y is a bivalent radical having the following meaning: a) straight or branched C2-C6 alkylene, being optionally substituted with —ONO2 or T, wherein T is as defined in claim 1; wherein n is an integer from 0 to 5, and n1 is an integer from 1 to 5; wherein X2 is —O— or —S—, n3 is 1, R2 is as defined in claim 1. 8. A compound of general formula (I) according to anyone of the claims from 1 to 6 wherein Y is a bivalent radical having the following meaning: a) straight or branched C2-C6 alkylene being substituted with —ONO2 or T, wherein T is as defined in claim 1; wherein n is 0, and n1 is 1; wherein X2 is —O— or —S—, n3 is 1, R2 is hydrogen; 9. A compound of formula (I) according to anyone of the claims from 1 to 6 wherein Y is a bivalent radical having the following meaning: wherein X1=—OCO— or —COO— and R2 is H or CH3; Z is —(CH)n1— or the bivalent radical defined in claim 1 under b) wherein n is an integer from 0 to 5; n1 is an integer from 1 to 5 and n2 is an integer from 0 to 2; wherein: Y1 is —CH2—CH2—(CH2)n2—; or —CH═CH—(CH2)n2—; Z is —(CH)n1— or the bivalent radical defined above under b) n1, n2, R2 and X1 are as defined above; wherein: n1 and R2 are as defined above, R3 is H or COCH3; with the proviso that when Y is selected from the bivalent radicals mentioned under b)-f), the —ONO2 group is bound to —(CH2)n1; wherein: n4 is an integer from 0 to 3; n5 is an integer from 1 to 3; R4, R5, R6, R7 are the same and are H; and wherein the —ONO2 group is linked to Y2 is a 6 member saturated, unsaturated or aromatic heterocyclic ring, containing one or two atoms of nitrogen and selected for example from 10. A compound according to claim 1, selected from the group consisting of: 11. A process for preparing a compound of general formula (I) as defined in claim 1, which process comprises: i) reacting a compound of formula (III) wherein L is as defined in claim 1; P is H or a hydroxylic protecting group and W is —OH, Cl, or —OC(O)R1 wherein R1 is a linear or branched C1-C5 alkyl; with a compound of formula (IV) Z-Y-Q wherein Y is as defined in claim 1, Z is HX or Z1, being X as defined in claim 1 and Z1 selected from the group consisting of: chlorine, bromine, iodine, mesyl, tosyl; Q is —ONO2 or Z1 and ii) when Q is Z1, converting the compound obtained in the step i) into nitro derivative by reaction with a nitrate source and iii) optionally deprotecting the compounds obtained in step i) or ii). 12. A compound of general formula (I) according to claims 1-10 for use as a medicament. 13. Use of a compound according to claims 1-10 for the preparation of a medicament for treating glaucoma and ocular hypertension. 14. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound of general formula (I) and/or a salt or stereoisomer thereof as defined in claims 1-10. 15. A pharmaceutical composition according to claim 14 in a suitable form for the topical administration. 16. A pharmaceutical composition according to claims 14-15 for the treatment of glaucoma and ocular hypertension. 17. A pharmaceutical composition according to claims 15-16, wherein the compound of general formula (I) is administered as a solution, suspension or emulsion in an ophthalmically acceptable vehicle. 18. A method for treating glaucoma or ocular hypertension, said method consisting in contacting an effective intraocular pressure reducing amount of a pharmaceutical composition according to claims 14-17, with the eye in order to reduce eye pressure and to maintain said pressure on a reduced level. 19. A pharmaceutical composition comprising a mixture of a compound of formula (I) as defined in claim 1 and (i) a beta-blocker or (ii) a carbonic anhydrase inhibitor or (iii) an adrenergic agonist or a nitrooxy derivative thereof. 20. A pharmaceutical composition comprising a mixture of a compound of formula (I) as defined in claim 1 and timolol or a nitrooxy derivative thereof. | CROSS REFERENCE TO RELATED APPLICATIONS This application is based upon and claims the benefit of priority from European Patent Application No. 04100001.9 filed on Jan. 5, 2004. BACKGROUND OF THE INVENTION The present invention relates to new prostaglandin derivatives. More particularly, the present invention relates to prostaglandin nitrooxyderivatives, pharmaceutical compositions containing them and their use as drugs for treating glaucoma and ocular hypertension. Glaucoma is optic nerve damage, often associated with increased intraocular pressure (IOP), that leads to progressive, irreversible loss of vision. Almost 3 million people in the United States and 14 million people worldwide have glaucoma; this is the third leading cause of blindness worldwide. Glaucoma occurs when an imbalance in production and drainage of fluid in the eye (aqueous humor) increases eye pressure to unhealthy levels. It is known that elevated IOP can be at least partially controlled by administering drugs which either reduce the production of aqueous humor within the eye or increase the fluid drainage, such as beta-blockers, α-agonists, cholinergic agents, carbonic anhydrase inhibitors, or prostaglandin analogs. Several side effects are associated with the drugs conventionally used to treat glaucoma. Topical beta-blockers show serious pulmonary side effects, depression, fatigue, confusion, impotence, hair loss, heart failure and bradycardia. Topical α-agonists have a fairly high incidence of allergic or toxic reactions; topical cholinergic agents (miotics) can cause visual side effects. The side effects associated with oral carbonic anhydrase inhibitors include fatigue, anorexia, depression, paresthesias and serum electrolyte abnormalities (The Merck Manual of Diagnosis and Therapy, Seventeenth Edition, M. H. Beers and R. Berkow Editors, Sec. 8, Ch. 100). Finally, the topical prostaglandin analogs (bimatoprost, latanoprost, travoprost and unoprostone) used in the treatment of glaucoma, can produce ocular side effects, such as increased pigmentation of the iris, ocular irritation, conjunctival hyperaemia, iritis, uveitis and macular oedema (Martindale, Thirty-third edition, p. 1445). U.S. Pat. No. 3,922,293 describes monocarboxyacylates of prostaglandins F-type and their 15β isomers, at the C-9 position, and processes for preparing them; U.S. Pat. No. 6,417,228 discloses 13-aza prostaglandins having functional PGF2α receptor agonist activity and their use in treating glaucoma and ocular hypertension. WO 90/02553 discloses the use of prostaglandins derivatives of PGA, PGB, PGE and PGF, in which the omega chain contains a ring structure, for the treatment of glaucoma or ocular hypertension. WO 00/51978 describes novel nitrosated and/or nitrosylated prostaglandins, in particular novel derivatives of PGE1, novel compositions and their use for treating sexual dysfunctions. U.S. Pat. No. 5,625,083 discloses dinitroglycerol esters of prostaglandins which may be used as vasodilators, antihypertensive cardiovascular agents or bronchodilators. U.S. Pat. No. 6,211,233 discloses compounds of the general formula A-X1—NO2, wherein A contains a prostaglandin residue, in particular PGE1, and X1 is a bivalent connecting bridge, and their use for treating impotence. SUMMARY OF THE INVENTION It is an object of the present invention to provide new derivatives of prostaglandins able not only to eliminate or at least reduce the side effects associated with these compounds, but also to possess an improved pharmacological activity. It has been surprisingly found that prostaglandin nitroderivatives have a significantly improved overall profile as compared to native prostaglandins both in terms of wider pharmacological activity and enhanced tolerability. In particular, it has been recognized that the prostaglandin nitroderivatives of the present invention can be employed for treating glaucoma and ocular hypertension. The compounds of the present invention are indicated for the reduction of intraocular pressure in patients with open-angle glaucoma or with chronic angle-closure glaucoma who underwent peripheral iridotomy or laser iridoplasty. DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is, therefore, prostaglandin nitroderivatives of general formula (I) and pharmaceutically acceptable salts or stereoisomers thereof R—X—Y—ONO2 (I) wherein R is the prostaglandin residue of formula (II): wherein the symbol or - - - represents a single bond or a double bond; L is selected from the following groups: X is —O—, —S— or —NH—; Y is a bivalent radical having the following meaning: a) straight or branched C1-C20 alkylene, preferably C1-C10, being optionally substituted with one or more of the substituents selected from the group consisting of: halogen atoms, hydroxy, —ONO2 or T, wherein T is —OC(O)(C1-C10 alkyl)-ONO2 or —O(C1-C10 alkyl)-ONO2; cycloalkylene with 5 to 7 carbon atoms into cycloalkylene ring, the ring being optionally substituted with side chains T1, wherein T1 is straight or branched C1-C10 alkyl, preferably CH3; wherein n is an integer from 0 to 20, and n1 is an integer from 1 to 20; wherein X1=—OCO— or —COO— and R2 is H or CH3; Z is —(CH)n1— or the bivalent radical defined above under b) n1 is as defined above and n is an integer from 0 to 2; wherein: Y1 is —CH2—CH2—(CH2)n2—; or —CH═CH—(CH2)n2—; Z is —(CH)n1— or the bivalent radical defined above under b) n1, n2, R2 and X1 are as defined above; wherein: n1 and R2 are as defined above, R3 is H or —COCH3; with the proviso that when Y is selected from the bivalent radicals mentioned under b)-f), the terminal —ONO2 group is bound to —(CH2)n1; wherein X2 is —O— or —S—, n3 is an integer from 1 to 6, preferably from 1 to 4, R2 is as defined above; wherein: n4 is an integer from 0 to 10; n5 is an integer from 1 to 10; R4, R5, R6, R7 are the same or different, and are H or straight or branched C1-C4 alkyl, preferably R4, R5, R6, R7 are H; wherein the —ONO2 group is linked to wherein n5 is as defined above; Y2 is an heterocyclic saturated, unsaturated or aromatic 5 or 6 members ring, containing one or more heteroatoms selected from nitrogen, oxygen, sulfur, and is selected from The term “C1-C20 alkylene” as used herein refers to branched or straight chain C1-C20 hydrocarbon, preferably having from 1 to 10 carbon atoms such as methylene, ethylene, propylene, isopropylene, n-butylene, pentylene, n-hexylene and the like. The term “C1-C10 alkyl” as used herein refers to branched or straight chain alkyl groups comprising one to ten carbon atoms, including methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, hexyl, octyl and the like. The term “cycloalkylene” as used herein refers to ring having from 5 to 7 carbon atoms including, but not limited to, cyclopentylene, cyclohexylene optionally substituted with side chains such as straight or branched (C1-C10)-alkyl, preferably CH3. The term “heterocyclic” as used herein refers to saturated, unsaturated or aromatic 5 or 6 members ring, containing one or more heteroatoms selected from nitrogen, oxygen, sulphur, such as for example pyridine, pyrazine, pyrimidine, pyrrolidine, morpholine, imidazole and the like. As stated above, the invention includes also the pharmaceutically acceptable salts of the compounds of formula (I) and stereoisomers thereof. Examples of pharmaceutically acceptable salts are either those with inorganic bases, such as sodium, potassium, calcium and aluminium hydroxides, or with organic bases, such as lysine, arginine, triethylamine, dibenzylamine, piperidine and other acceptable organic amines. The compounds according to the present invention, when they contain in the molecule one salifiable nitrogen atom, can be transformed into the corresponding salts by reaction in an organic solvent such as acetonitrile, tetrahydrofuran with the corresponding organic or inorganic acids. Examples of organic acids are: oxalic, tartaric, maleic, succinic, citric acids. Examples of inorganic acids are: nitric, hydrochloric, sulphuric, phosphoric acids. Salts with nitric acid are preferred. The compounds of the invention which have one or more asymmetric carbon atoms can exist as optically pure enantiomers, pure diastereomers, enantiomers mixtures, diastereomers mixtures, enantiomer racemic mixtures, racemates or racemate mixtures. Within the scope of the invention are also all the possible isomers, stereoisomers and their mixtures of the compounds of formula (I), including mixtures enriched in a particular isomer. Preferred compounds of formula (I) are those wherein R, L, X are as defined in claim 1 and Y is a bivalent radical having the following meaning: a) straight or branched C1-C20 alkylene, being optionally substituted with one or more of the substituents selected from the group consisting of: halogen atoms, hydroxy, —ONO2 or T, wherein T is C(O)(C1-C10 alkyl)-ONO2 or —O(C1-C10 alkyl)-ONO2; cycloalkylene with 5 to 7 carbon atoms into cycloalkylene ring, the ring being optionally substituted with side chains T1, wherein T1 is straight or branched C1-C10 alkyl; wherein n is an integer from 0 to 20, and n1 is an integer from 1 to 20; wherein: n1 is as defined above and n2 is an integer from 0 to 2; X1=—OCO— or —COO— and R2 is H or CH3; wherein: n1, n2, R2 and X1 are as defined above; Y1 is —CH2—CH2— or —CH═CH—(CH2)n2—; wherein: n1 and R2 are as defined above, R3 is H or —COCH3; with the proviso that when Y is selected from the bivalent radicals mentioned under b)-f), the —ONO2 group is bound to —(CH2)n1; wherein X2 is —O— or —S—, n3 is an integer from 1 to 6 and R2 is as defined above; wherein: n4 is an integer from 0 to 10; n5 is an integer from 1 to 10; R4, R5, R6, R7 are the same or different, and are H or straight or branched C1-C4 alkyl; wherein the —ONO2 group is linked to wherein n5 is as defined above; Y2 is an heterocyclic saturated, unsaturated or aromatic 5 or 6 members ring, containing one or more heteroatoms selected from nitrogen, oxygen, sulfur, and is selected from Preferred compounds of formula (I) are those wherein the prostaglandin residue R is selected from the group consisting of latanoprost, travoprost, unoprostone and cloprostenol, preferably R is latanoprost. X is preferably —O— or —S—; A preferred group of compounds of general formula (I) are those wherein Y is a bivalent radical having the following meaning: a) straight or branched C2-C6 alkylene, being optionally substituted with —ONO2 or T, wherein T is as above defined; wherein n is an integer from 0 to 5, and n1 is an integer from 1 to 5; wherein X2 is —O— or —S—, n3 is 1, R2 is as defined above. Most preferred meanings of Y are: a) branched C2-C6 alkylene or straight or branched C2-C6 alkylene being optionally substituted with —ONO2 or T, wherein T is as defined in claim 1; wherein n is 0, and n1 is 1. wherein X2 is —O— or —S—, n3 is 1, R2 is hydrogen; Another preferred group of compounds of general formula (I) are those wherein Y is a bivalent radical having the following meaning: wherein X1=—OCO— or —COO— and R2 is H or CH3; Z is —(CH)n1— or the bivalent radical defined above under b) wherein n is an integer from 0 to 5; n1 is an integer from 1 to 5 and n2 is an integer from 0 to 2; wherein: Y1 is —CH2—CH2—(CH2)n2—; or —CH═CH—(CH2)n2—; Z is —(CH)n1— or the bivalent radical defined above under b) n1, n2, R2 and X1 are as defined above; wherein: n1 and R2 are as defined above, R3 is H or COCH3; with the proviso that when Y is selected from the bivalent radicals mentioned under b)-f), the —ONO2 group is bound to —(CH2)n1; wherein: n4 is an integer from 0 to 3; n5 is an integer from 1 to 3; R4, R5, R6, R7 are the same and are H; and wherein the —ONO2 group is linked to Y2 is a 6 member saturated, unsaturated or aromatic heterocyclic ring, containing one or two atoms of nitrogen and selected for example from The following are preferred compounds according to the present invention: As mentioned above, objects of the present invention are also pharmaceutical compositions containing at least a compound of the present invention of formula (I) together with non toxic adjuvants and/or carriers usually employed in the pharmaceutical field. The preferred route of administration is topical. The compounds of the present invention can be administered as solutions, suspensions or emulsions (dispersions) in an ophthalmically acceptable vehicle. The term “ophthalmically acceptable vehicle” as used herein refers to any substance or combination of substances which are non-reactive with the compounds and suitable for administration to patient. Preferred are aqueous vehicles suitable for topical application to the patient's eyes. Other ingredients which may be desirable to use in the ophthalmic compositions of the present invention include antimicrobials, preservatives, co-solvents, surfactants and viscosity building agents. The invention also relates to a method for treating glaucoma or ocular hypertension, said method consisting in contacting an effective intraocular pressure reducing amount of a composition with the eye in order to reduce eye pressure and to maintain said pressure on a reduced level. The doses of prostaglandin nitroderivatives can be determined by standard clinical techniques and are in the same range or less than those described for the corresponding underivatized, commercially available prostaglandin compounds as reported in the: Physician's Desk Reference, Medical Economics Company, Inc., Oradell, N.J., 58th Ed., 2004; The pharmacological basis of therapeutics, Goodman and Gilman, J. G. Hardman, L. e. Limbird, Tenth Ed. The compositions contain 0.1-0.30 μg, especially 1-10 μg, per application of the active compound. The treatment may be advantageously carried out in that one drop of the composition, corresponding to about 30 μl, is administered about 1 to 2 times per day to the patient's eye. It is further contemplated that the compounds of the present invention can be used with other medicaments known to be useful in the treatment of glaucoma or ocular hypertension, either separately or in combination. For example the compounds of the present invention can be combined with (i) beta-blockers, such as timolol, betaxolol, levobunolol and the like (see U.S. Pat. No. 4,952,581); (ii) carbonic anhydrase inhibitors, such as brinzolamide; (iii) adrenergic agonists including clonidine derivatives, such as apraclonidine or brimonidine (see U.S. Pat. No. 5,811,443. Also contemplated is the combination with nitrooxy derivatives of the above reported compounds, for example nitrooxy derivatives of beta-blockers such as those described in U.S. Pat. No. 6,242,432. The compounds of the present invention can be synthesized as follows. Synthesis Procedure The compounds of general formula (I) as above defined, can be obtained: i) by reacting a compound of formula (III) wherein L is as above defined; P is H or a hydroxylic protecting group such as silyl ethers, such as trimethylsilyl, tert-butyl-dimethylsilyl or acetyl and those described in T. W. Greene “Protective groups in organic synthesis”, Harvard University Press, 1980, 2nd edition, p. 14-118; W is —OH, Cl, or —OC(O)R1 wherein R1 is a linear or branched C1-C5 alkyl; with a compound of formula (IV) Z-Y-Q wherein Y is as above defined, Z is HX or Z1, being X as above defined and Z1 selected from the group consisting of: chlorine, bromine, iodine, mesyl, tosyl; Q is —ONO2 or Z1 and ii) when Q is Z1, by converting the compound obtained in the step i) into nitro derivative by reaction with a nitrate source such as silver nitrate, lithium nitrate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, iron nitrate, zinc nitrate or tetraalkylammonium nitrate (wherein alkyl is C1-C10 alkyl) in a suitable organic solvent such as acetonitrile, tetrahydrofurane, methyl ethyl ketone, ethyl acetate, DMF, the reaction is carried out, in the dark, at a temperature from room temperature to the boiling temperature of the solvent. Preferred nitrate source is silver nitrate and iii) optionally deprotecting the compounds obtained in step i) or ii) as described in T. W. Greene “Protective groups in organic synthesis”, Harvard University Press, 1980, 2nd edition, p. 68-86. Fluoride ion is the preferred method for removing silyl ether protecting group. The reaction of a compound of formula (III) wherein W=—OH, P and X, are as above defined, with a compound of formula (IV) wherein Y and Q are as above defined, Z is HX may be carried out in presence of a dehydrating agent as dicyclohexylcarbodiimide (DCC) or N′-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDAC) and a catalyst, such as N,N-dimethylamino pyridine (DMAP). The reaction is carried out in an inert organic solvent dry such as N,N′-dimethylformamide, tetrahydrofuran, benzene, toluene, dioxane, a polyhalogenated aliphatic hydrocarbon at a temperature from −20° C. and 40° C. The reaction is completed within a time range from 30 minutes to 36 hours. The compounds of formula (III) wherein W=—OH and P=H are commercially available; The compounds of formula (III) wherein W=—OH and P is a hydroxylic protecting group may be prepared from the corresponding compounds wherein P=H as well known in the art, for example as described in T. W. Greene “Protective groups in organic synthesis”, Harvard University Press, 1980, 2nd edition, p. 14-118. The reaction of a compound of formula (III) wherein W=OC(O)R1 wherein R1 is as above defined and P=H or a hydroxylic protecting group, with a compound of formula (IV) wherein Y is as above defined, Z is —OH and Q is —ONO2 may be carried out in presence of a catalyst, such as N,N-dimethylamino pyridine (DMAP). The reaction is carried out in an inert organic solvent such as N,N′-dimethylformamide, tetrahydrofuran, benzene, toluene, dioxane, a polyhalogenated aliphatic hydrocarbon at a temperature from −20° C. and 40° C. The reaction is completed within a time range from 30 minutes to 36 hours. The compounds of formula (III) wherein W=—OC(O)R1 and P=H may be obtained from the corresponding acids wherein W=—OH by reaction with a chloroformate such as isobutylchloroformate, ethylchloroformate in presence of a non-nucleophilic base such as triethylamine in an inert organic solvent such as N,N′-dimethylformamide, tetrahydrofuran, a polyhalogenated aliphatic hydrocarbon at a temperature from −20° C. and 40° C. The reaction is completed within a time range from 1 to 8 hours. The reaction of a compound of formula (III) wherein W=—OH and P=H, with a compound of formula (IV) wherein Y is as above defined, Z is Z1 and Q is —ONO2 may be carried out in presence of a organic base such as 1,8-diazabiciclo[5.4.0]undec-7-ene (DBU), N,N-diisopropylethylamine, diisopropylamine or inorganic base such as alkaline-earth metal carbonate or hydroxide, potassium carbonate, cesium carbonate, in an inert organic solvent such as N,N′-dimethylformamide, tetrahydrofuran, acetone, methyl ethyl ketone, acetonitrile, a polyhalogenated aliphatic hydrocarbon at a temperature from −20° C. and 40° C., preferably from 5° C. to 25° C. The reaction is completed within a time range from 1 to 8 hours. When Z1 is chosen among chlorine or bromine the reaction is carried out in presence an iodine compound such as Kl. The reaction of a compound of formula (III) wherein W=Cl and P is as above defined, with a compound of formula (IV) wherein Y is as above defined, Z is —OH and Q is —ONO2 may be carried out in presence of a of a organic base such as N,N-dimethylamino pyridine (DMAP), triethylamine, pyridine. The reaction is carried out in an inert organic solvent such as N,N′-dimethylformamide, tetrahydrofuran, benzene, toluene, dioxane, a polyhalogenated aliphatic hydrocarbon at a temperature from −20° C. and 40° C. The reaction is completed within a time range from 30 minutes to 36 hours. The compounds of formula (III) wherein W=Cl may be obtained from the corresponding acids wherein W=—OH by reaction with a thionyl or oxalyl chloride, halides of PIII or PV in solvents inert such as toluene, chloroform, DMF. The compounds of formula HO—Y—ONO2, wherein Y is as above defined can be obtained as follows. The corresponding diol derivative, commercially available, or synthesized by well known reactions, is converted in HO—Y-Z1, wherein Z1 is as above defined, by well known reactions, for example by reaction with thionyl or oxalyl chloride, halides of PIII or PV, mesyl chloride, tosyl chloride in solvents inert such as toluene, chloroform, DMF, etc. The conversion to the nitro derivative is carried out as above described. Alternatively the diol derivative can be nitrated by reaction with nitric acid and acetic anhydride in a temperature range from −50° C. to 0° C. according to methods well known in the literature. The compounds of formula Z1-Y—ONO2, wherein Y and Z1 are as above defined can be obtained from the halogen derivative Z1-Y-Hal, commercially available or synthesized according to methods well known in the literature, by conversion to the nitro derivative as above described. The compounds of formula H—X—Y-Z1, wherein X, Y and Z1 are as above defined can be obtained from the hydroxyl derivative H—X—Y—OH, commercially available or synthesized according to methods well known in the literature, by well known reactions, for example by reaction with thionyl or oxalyl chloride, halides of PIII or PV, mesyl chloride, tosyl chloride in solvents inert such as toluene, chloroform, DMF, etc. The following examples are to further illustrate the invention without limiting it. EXAMPLE 1 Synthesis of [1R-[1α(Z),2α(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl)cyclopentyl]-5-heptenoic acid 4-(nitrooxy)butyl ester (compound 1) II EXPERIMENTAL II.1 Preparation of 4-bromobutanol Tetrahydrofuran (12.5 g-173 mmol) was charged under nitrogen in a reactor cooled to 5-10° C. Hydrogen bromide (7.0 g-86.5 mmol) was then added slowly and the reaction medium was stirred over a period of 4.5 hours at 5-10° C. The mixture was diluted with 22.5 g of cold water and the pH of this solution was adjusted to pH=5-7 by adding 27.65% sodium hydroxide (2.0 g) keeping the temperature at 5-10° C. The solution was then extracted twice with dichloromethane (13.25 g). The combined organic phases were washed with 25% brine (7.5 g), adjusted to pH=6-7 with 27.65% sodium hydroxide and dried over magnesium sulfate. Dichloromethane was distilled off and crude 4-bromobutanol (10.3 g-66.9 mmol) was obtained in a yield of about 77%. II.2 Preparation of 4-bromobutyl nitrate In reactor cooled to −5 to 5° C., nitric acid fuming (8.5 g-135 mmol) was slowly added to a solution of 98% sulfuric acid (13.0 g-130 mmol) in dichloromethane (18.0 g-212 mmol). 4-bromobutanol (10.2 g-66.6 mmol) was then added to this mixture and the reaction medium was stirred at −5 to 5° C. over a period of 2-5 hours. The mixture was poured into cold water (110 g) keeping the temperature between −5° C. and 3° C. After decantation, the upper aqueous phase was extracted with dichloromethane and the combined organic phases were washed with water, adjusted to pH=6-7 by addition of 27.65% sodium hydroxide, washed with brine and dried over magnesium sulfate. Dichloromethane was distilled off under vacuum and crude 4-bromobutyl nitrate (12.7 g-64.1 mmol) was recovered in a yield of about 96%. II.3 Preparation of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl)cyclopentyl]-5-heptenoic acid 4-(nitrooxy)butyl ester Latanoprost acid (97.7%, S-isomer<1%) (213 mg, 0.54 mmol) was dissolved in 5.0 g anhydrous DMF. K2CO3 (206 mg, 1.49 mmol), Kl (77 mg, 0.46 mmol) and 4-bromobutylnitrate (805 mg, 25% w/w in methylene chloride, 1.02 mmol) were added. The reaction mixture was heated and stirred on a rotary evaporator at 45-50° C. After 1.5 hour, TLC (Si, CH2Cl2-MeOH, 5%) showed no starting acid. The reaction mixture was diluted with 100 ml ethyl acetate, washed with brine (3×50 ml), dried over MgSO4 and evaporated to give yellowish oil (420 mg). 1H NMR/13C NMR showed target molecule as a major product together with some starting 4-bromobutylnitrate and DMF. HPLC showed no starting acid. Residual solvent, 4-bromobutylnitrate and target ester were the main peaks. Butylnitrate ester showed similar UV spectrum as latanoprost and relative retention time was as expected. Instrument: Bruker 300 MHz Solvent: CDCl3 1H-NMR (CDCl3) δ: 7.29-7.19 (5H, m, Ar); 5.45 (1H, m, CH═CH); 5.38 (1H, m, CH═CH); 4.48 (2H, t, CH2—ONO2); 4.18 (1H, m, CH—OH); 4.10 (2H, t, COOCH2); 3.95 (1H, m, CH—OH); 3.68 (1H, m, CH—OH); 2.87-2.60 (2H, m); 2.35 (2H, t); 2.25 (2H, m); 2.13 (2H, m); 1.90-1.35 (16H, m). 13C-NMR (CDCl3) ppm: 173.94 (C═O); 142.14; 129.55 (C5); 129.50 (C6); 128.50; 125.93 78.80 (C11); 74.50 (C9); 72.70(C—ONO2); 71.39 (C15); 63.57; 52.99 (Cl2); 51.99 (C8); 41.30 (C10); 39.16 (C16); 33.66; 32.21; 29.73; 27.04; 26.70; 25.04; 24.91; 23.72; 15.37. EXAMPLE 2 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl)cyclopentyl]-5-heptenoicacid[2-methoxy-4-[2-propenoyloxy(4-nitrooxybutyl)]]phenyl ester (compound 11) A) Preparation of Ferulic acid 4-(bromo)butyl ester To a solution of ferulic acid (1 g, 5.15 mmol) in tetrahydrofurane (40 ml), triphenylphosphine (2.7 g, 10.3 mmol) and tetrabromomethane (3.41 g, 10.3 mmol) were added. The mixture was stirred at room temperature for 4 hours. The mixture was filtered and the solvent was evaporated under vacuum. The crude residue was purified by silica gel chromatography, eluent n-hexane/ethyl acetate 7/3. The product (0.77 g) was obtained as a yellow solid. (Yield 46%) M.p.=83-88° C. B) Preparation of Ferulic acid 4-(nitrooxy)butyl ester A solution of compound A (0.8 g, 2.43 mmol) and silver nitrate (1.2 g, 7.29 mmol) in acetonitrile (50 ml) was stirred at 40° C., in the dark, for 16 hours. The precipitate (silver salts) was filtered off and the solvent was evaporated under vacuum. The residue was purified by flash chromatography, eluent n-hexane/ethyl acetate 75/25. The product (0.4 g) was obtained as white powder (yield 53%) M.p.=63-64° C. C) Preparation of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl)cyclopentyl]-5-heptenoic acid [2-methoxy-4-[2-propenoyloxy(4-nitrooxybutyl)]]phenyl ester To a solution of latanoprost acid (0.2 g, 0.51 mmol) in dry tetrahydrofuran (10 ml), in atmosphere inert, ferulic acid 4-(nitrooxy)butyl ester (0.32 g, 1.02 mmol) and DMAP (cat. amount) were added. The reaction was cooled at 0° C. and EDAC (0.14 g, 0.76 mmol) was added. The reaction was stirred at room temperature for 24 hours. The solution was treated with water and chloroform, the organic layers were anidrified with sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography, eluent n-hexane/ethyl acetate 3/7. The product (0.2 g) was obtained. 1H-NMR (CDCl3) δ: 7.55 (1H, d, CH═CHCO); 7.30-7.03 (8H, m, Ar); 6.35 (1H, d, CH═CHCO); 5.48 (2H, m, CH═CH); 4.52 (2H, t, CH2—ONO2); 4.25 (2H, t, COO—CH2); 4.17 (1H, m, CH—OH); 3.95 (1H, m, CH—OH); 3.85 (3H, s, OCH3); 3.65 (1H, m, CH—OH); 2.75 (2H, m); 2.61 (2H, t); 2.48-2.20 (5H, m); 1.9-1.20 (19H, m). 13C-NMR (CDCl3): ppm: 171.62 (C═O); 166.69 (C═O); 151.40; 144.36; 142.04; 141.55; 133.21; 129.62; 129.41; 128.40; 125.85, 123.27; 121.27; 117.96; 111.32; 78.81; 74.84; 72.64 (C—ONO2); 71.32; 63.61; 55.94; 52.99; 51.91; 42.54; 39.08; 35.79; 33.37; 32.12; 29.68; 27.03; 26.53; 25.09; 24.90; 23.73. EXAMPLE 3 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl)cyclopentyl]-5-heptenoic acid 3-(nitrooxymethyl)phenyl ester (compound 4) 1. Preparation of 3-[(Bromo)methyl]phenol 3-[(Hydroxy)methyl]phenol was dissolved in acetonitrile (300 ml) and dichloromethane (900 ml) and the resulting mixture was poured in the flask kept under argon; magnetic stirring was set on. The solution was then cooled with an ice bath and carbon tetrabromide and triphenilphosphine were added. The latter was added in small portions in order to maintain the temperature at ca. 2-3° C. The solution was stirred for 1 hour at 2-3° C. and then for an additional hour at room temperature. After this period the reaction conversion (checked by TLC, using EtOAc/Petroleum ether 3/7 as the eluent) was complete. The obtained mixture was evaporated under reduce pressure and 500 ml of petroleum ether and 500 ml of EtOAc were added to the resulting yellow thick oil in a 2l round flask. A pitchy solid was formed. The mixture was kept under stirring at room temperature overnight and subsequently filtered and concentrated under reduce pressure, furnishing ca. 50 g of an oily residue. The oil was purified by flash chromatography over 600 g of silica gel, using EtOAc/Petroleum ether 2/8 as the eluent. Further purification was achieved by crystallising the resulting bromide from petroleum ether. A white solid was obtained (24 g, 64%). Analysis TLC: (EtOAc/Petroleum ether 3/7) Rf=0.4 HPLC purity: >98% FT-IR (KBr, cm−1): 3252, 1589, 1479, 1392, 1270, 1208, 1155, 952, 880, 791, 741, 686. 2. Preparation of 3-[(Nitrooxy)methyl]phenol 3-[(Bromo)methyl]phenol was dissolved in 30 ml of acetonitrile and poured in the flask, kept far from light sources at 0-5° C. under argon; magnetic stirring was set on. Silver nitrate was then added under these conditions, maintaining the temperature under 5° C. The reaction course was followed by TLC (EtOAc/Petroleum ether 3/7 as the eluent). After 4 hours and 30 minutes the conversion was complete. The reaction mixture was then filtered, the precipitated solid was washed with Et2O and the filtrate was separated in two batches. The first batch (15 ml) was kept under argon and in acetonitrile solution at −20° C. The second batch (15 ml) was worked-up as follows. The acetonitrile solution was concentrated under reduce pressure and the resulting oil was dissolved in dichloromethane (15 ml) and washed with brine (15 ml). The organic phase was separated and the aqueous phase was extracted twice with dichloromethane (2×25 ml). The combined organic phases were then dried over MgSO4, filtered and evaporated. The residue was purified by flash chromatography over 40 g of silica gel using EtOAc/Petroleum ether 2/8 as the eluent. The nitrate was obtained as an oil (0.6 g, 67%). Analysis TLC: (EtOAc/Petroleum ether 3/7) Rf=0.35 HPLC purity: >98% MS (ESI−): 168 (M+−1) FT-IR (neat oil, cm−1): 3365, 1632, 1599, 1459, 1282, 1160, 923, 867, 793, 757. 1H NMR (CDCl3, 300 MHz) δ 5.31 (2H, s), 5.45 (1H, br s), 6.78-6.84 (2H, m), 6.87-6.92 (1H, m), 7.17-7.24 (1H, m). 3. Preparation of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl)cyclopentyl]-5-heptenoic acid 3-(nitrooxymethyl)phenyl ester To a solution of latanoprost acid (0.11 g, 0.28 mmol) in chloroform (20 ml), in atmosphere inert, 3-(nitrooxymethyl)phenol (0.01 g, 0.56 mmol) and DMAP (cat. amount) were added. The reaction was cooled at 0° C. and EDAC (0.08 g, 0.42 mmol) was added. The reaction was stirred at room temperature for 24 hours. The solution was treated with water, the organic layers were anidrified with sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography, eluent n-hexane/ethyl acetate 3/7. The product (0.1 g) was obtained. 1H-NMR (CDCl3) δ: 7.41 (1H, t, Ar); 7.31-7.10 (8H, m, Ar); 5.48 (2H, m, CH═CH); 5.43 (2H, s, CH2—ONO2); 4.16 (1H, m, CH—OH); 3.95 (1H, m, CH—OH); 3.65 (1H, m, CH—OH); 2.75 (2H, m); 2.61 (2H, t); 2.48-2.20 (5H, m); 1.9-1.20 (11H, m). EXAMPLE 4 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 4-(nitrooxymethyl)benzyl ester (compound 9) A) [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl cyclopentyl]-5-heptenoic acid 4-(bromomethyl)benzyl ester To a solution of latanoprost acid (0.5 g, 1.2 mmol) in chloroform (50 ml), in inert atmosphere, 4-(bromomethyl)benzyl alcohol(0.4 g, 1.92 mmol) and DMAP (cat. amount) were added. The reaction was cooled at 0° C. and EDAC (0.37 g, 1.92 mmol) was added. The reaction was stirred at room temperature for 5 hours. The solution was treated with water, the organic layers were anidrified with sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography, eluent n-hexane/ethyl acetate 3/7. The product (0.47 g) was obtained. B) [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 4-(nitrooxymethyl)benzyl ester A solution of compound A (0.4 g, 0.7 mmol) and silver nitrate (0.23 g, 1.4 mmol) in acetonitrile (50 ml) was stirred at 40° C., in the dark, for 4 hours. The precipitated (silver salts) was filtered off and the solvent was evaporated under vacuum. The residue was purified by flash chromatography, eluent n-hexane/ethyl acetate 7/3. The product (0.15 g) was obtained as oil. 1H-NMR δ: 7.39 (4H, s, Ar); 7.31-7.17 (5H, m, Ar); 5.44 (2H, m, CH═CH); 5.42 (2H, s, CH2—ONO2); 5.30 (2H, s, O—CH2—Ar); 4.15 (1H, m, CH—OH); 3.95 (1H, m, CH—OH); 3.67 (1H, m, CH—OH); 2.75 (2H, m); 2.41 (2H, t); 2.48-1.20 (16H, m). EXAMPLE 5 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 3-(nitrooxy)propyl ester (compound 78) The compound is synthesized using the procedure described in EXAMPLE 4 starting from latanoprost acid and 3-bromopropanol. EXAMPLE 6 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 2-(nitrooxy)ethyl ester (compound 77) The compound is synthesized using the procedure described in EXAMPLE 4 starting from latanoprost acid and 2-bromoethanol. EXAMPLE 7 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 6-(nitrooxy)hexyl ester (compound 79) The compound is synthesized using the procedure described in EXAMPLE 4 starting from latanoprost acid and 6-bromohexanol. EXAMPLE 8 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenyl pentyl) cyclopentyl]-5-heptenoic acid 2-(nitrooxy)-1-methylethyl ester (compound 80) The compound is synthesized using the procedure described in EXAMPLE 4 starting from latanoprost acid and 1-bromo-2-propanol. EXAMPLE 9 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 2-(nitrooxy)propyl ester (compound 81) The compound is synthesized using the procedure described in EXAMPLE 4 starting from latanoprost acid and 2-chloro-1-propanol. EXAMPLE 10 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 2-(nitrooxy)-1-(nitrooxymethyl)ethyl ester (compound 82) The compound is synthesized using the procedure described in EXAMPLE 4 starting from latanoprost acid and 1,3-dibromo-2-propanol. EXAMPLE 11 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid [2-methoxy-4-[2-propenoyloxy(2-nitrooxyethyl)]]phenyl ester (compound 83) The compound is synthesized using the procedure described in EXAMPLE 2 starting from latanoprost acid and ferulic acid 2-(nitrooxy)ethyl ester. EXAMPLE 12 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 2-methoxy-4-[2-propenoyloxy(3-nitrooxmethylphenyl)]]phenyl ester (compound 84) The compound is synthesized using the procedure described in EXAMPLE 2 starting from latanoprost acid and ferulic acid 3-(nitrooxymethyl)phenyl ester. EXAMPLE 13 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid 2-methoxy-4-[2-propenoyloxy(4-nitrooxmethylbenzyl)]]phenyl ester (compound 85) The compound is synthesized using the procedure described in EXAMPLE 2 starting from latanoprost acid and ferulic acid 4-(nitrooxymethyl)benzyl ester. EXAMPLE 14 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid (4-nitrooxmethyl)phenyl ester (compound 6) The compound is synthesized using the procedure described in EXAMPLE 4 starting from latanoprost acid 4-(chloromethyl)phenyl ester. EXAMPLE 15 Synthesis of [1R-[1α(Z),2β(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl) cyclopentyl]-5-heptenoic acid (3-nitrooxmethyl)benzyl ester (compound 8) The compound is synthesized using the procedure described in EXAMPLE 4 starting from latanoprost acid 4-(bromomethyl)benzyl ester. EXAMPLE 16 Preparation of an ophthalmic composition using [1R-[1α(Z),2α(R*),3α,5α]]-7-[3,5-dihydroxy-2-(3-hydroxy-5-phenylpentyl)cyclopentyl]-5-heptenoic acid 4-(nitrooxy)butyl ester (compound 1) Ingredient Amount (mg/ml) Compound 1 0.1 Tween 80 5 Benzalkonium chloride 0.2 Buffer q.s. Buffer: NaCl 4.1 mg/ml NaH2PO4 (anh.) 4.74 mg/ml NaH2PO4 (monohyd.) 4.6 mg/ml water for injection qs. EXAMPLE 17 Evaluation of Nitric Oxide-Mediated Activity The formation of cyclic guanosine-3′,5′ monophosphate (cGMP) in cells in the eye is involved in the regulation of aqueous humor flow. Thus, elevation of cGMP levels leads to decreased aqueous humor production and reduction of intraocular pressure. We measured the effects of test drugs on cGMP formation in a well established cell assay. Undifferentiated pheochromocytoma cells (PC12) were used. The monolayer cells were incubated for 45 min in Hank's Balanced Salt Solution enriched with 10 mM Hepes, 5 mM MgCl2 and 0.05% ascorbic acid at the final pH of 7.4 and containing 100 μM of the phosphodiesterase inhibitor, isomethyl-butyl-xanthine (IBMX), 30 μM of the guanylyl cyclase inhibitor, YC-1, and the test drugs at the appropriate concentration. The reaction was terminated by the removal of the incubating buffer followed by the addition of 50 L of 100% ice-cold ethanol. The plate was then dried under hot air steam and the residue dissolved, extracted and analysed using commercially available cyclic cGMP enzyme immunoassay kit. The results are reported in Table 1. The concomitant application of different concentrations of the various Latanoprost nitroderivatives (1-50 μM) elicited cGMP accumulation in a concentration-dependent fashion. These effects were not shared by the parent drug Latanoprost suggesting that such effects are dependent on the release of exogenous NO. TABLE 1 Potency and Efficacy of Latanoprost and respective nitroderivatives on cGMP accumulation in rat pheochromocytoma cells. EC50 Emax Drugs (μM) (% over vehicle) Latanoprost Not effective Not effective Compound 1 (ex.1) 2.4 290 Compound 4 (ex.3) 4.4 450 Compound 11 (ex.2) 1.5 480 EC50 = effective concentration producing half maximal response Emax = maximum effect EXAMPLE 18 Evaluation of the Efficacy of Latanoprost Nitroderivative on Intraocular Pressure Male NZW rabbits ranging from 3-5 kgs of body weight were used in this study. Briefly, the ability of Latanoprost nitroderivative (compound 4, EXAMPLE 3) at reducing intraocular pressure (IOP) was tested in animals previously treated with intracameral injection of 0.25% carbomer solution installation until after a stable increase of the intraocular pressure was reached. In this particular study, test drugs were administered to one eye with the dosage schedule of 1 drop/eye/day for 5 days a week with a physiologic solution containing 0.005% of control or test compounds. The IOP was monitored 3 h after drug application, two-three times weekly for a total of 4 weeks. This concentration was chosen as it reflects that of latanoprost isopropyl ester currently used in clinic to treat the increase of IOP observed in glaucoma patients. Furthermore, at each visit, about 200 μl of aqueous humor was collected using a 30 gauge needle from both eyes under lidocaine anesthesia for further biochemical evaluation of cGMP, camp and nitrite/nitrate contents. The installation of 0.25% carbomer solution into the eye resulted in a profound increase of the IOP to about 40 mmHg that remained stable thereafter. However, the administration of the compound 4 (EX. 3) with the dose schedule outline in the method session, decreased the intraocular pressure of these animals of about 50% within 7 days of repeated treatments and over 65% by the end of the study (See Table 2). In contrast, neither Latanoprost acid (data not shown) nor its isopropyl derivative elicited any appreciable change (see Table 2). Given the literature available documenting that Latanoprost is virtually not effective in rabbits, the observed effects are likely to be attributed to the presence of the nitric oxide (NO) moiety onto Latanoprost nitroderivative rather than the parent compound. Biochemical measurements of cGMP, cAMP and NOx in the intraocular aqueous humor further supported the role of NO at decreasing the IOP of these animals. In fact, as shown in Table 3, the extent of cGMP and NOx increased following the application of the compound 4 (EX. 3) over the 4-week treatment. These effects turn out to be highly specific as the amount of intraocular cAMP remained unaltered in these animals. Latanoprost isopropyl ester did not significantly affect the levels of either cGMP, cAMP or nitrites when given at equimolar doses to that of the respective nitroderivative (see Table 3). TABLE 2 Reversal of stimuli carbomer-evoked increase in IOP before (pre-treatment) and after eye-installation of equimolar Latanoprost isopropyl ester or the respective nitroderivative IOP Pre- mmHg treatment* Day2 Day7 Day10 Day15 Day17 Day23 Day25 Latanoprost 37 ± 2 34 ± 2 33 ± 3 30 ± 1 31 ± 2 30 ± 2 32 ± 2 30 ± 2 isopropyl ester Compound 4 42 ± 2 31 ± 1 26 ± 1 20 ± 1 18 ± 2 16 ± 1 15 ± 1 14 ± 1 (ex.3) *Pre-treatment values correspond to baseline IOP evoked following the intracameral installation of 0.25% carbomer solution. TABLE 3 Effects of Latanoprost isopropyl ester and the respective nitroderivative on cGMP, cAMP and NOx content in carbomer-treated rabbits. IOP Pre- I II III IV mmHg treatment* Week Week Week Week cGMP (fmol/mg prot) Latanoprost isopropyl 87 ± 6 88 ± 6 98 ± 6 99 ± 6 100 ± 6 ester Compound 4 (ex.3) 88 ± 5 102 ± 5 125 ± 5 140 ± 5 160 ± 5 cAMP (fmol/mg prot) Latanoprost isopropyl 510 ± 18 550 ± 22 600 ± 30 620 ± 31 625 ± 31 ester Compound 4 (ex.3) 520 ± 20 600 ± 25 650 ± 31 680 ± 28 660 ± 22 NOx (nmol/mg prot) Latanoprost isopropyl 16 ± 1 18 ± 2 18 ± 1 19 ± 2 19 ± 2 ester Compound 4 (ex.3) 17 ± 1 22 ± 2 25 ± 3 26 ± 3 28 ± 3 *Pre-treatment values correspond to baseline IOP evoked following the intracameral installation of 0.25% carbomer solution. | <SOH> BACKGROUND OF THE INVENTION <EOH>The present invention relates to new prostaglandin derivatives. More particularly, the present invention relates to prostaglandin nitrooxyderivatives, pharmaceutical compositions containing them and their use as drugs for treating glaucoma and ocular hypertension. Glaucoma is optic nerve damage, often associated with increased intraocular pressure (IOP), that leads to progressive, irreversible loss of vision. Almost 3 million people in the United States and 14 million people worldwide have glaucoma; this is the third leading cause of blindness worldwide. Glaucoma occurs when an imbalance in production and drainage of fluid in the eye (aqueous humor) increases eye pressure to unhealthy levels. It is known that elevated IOP can be at least partially controlled by administering drugs which either reduce the production of aqueous humor within the eye or increase the fluid drainage, such as beta-blockers, α-agonists, cholinergic agents, carbonic anhydrase inhibitors, or prostaglandin analogs. Several side effects are associated with the drugs conventionally used to treat glaucoma. Topical beta-blockers show serious pulmonary side effects, depression, fatigue, confusion, impotence, hair loss, heart failure and bradycardia. Topical α-agonists have a fairly high incidence of allergic or toxic reactions; topical cholinergic agents (miotics) can cause visual side effects. The side effects associated with oral carbonic anhydrase inhibitors include fatigue, anorexia, depression, paresthesias and serum electrolyte abnormalities (The Merck Manual of Diagnosis and Therapy, Seventeenth Edition, M. H. Beers and R. Berkow Editors, Sec. 8, Ch. 100). Finally, the topical prostaglandin analogs (bimatoprost, latanoprost, travoprost and unoprostone) used in the treatment of glaucoma, can produce ocular side effects, such as increased pigmentation of the iris, ocular irritation, conjunctival hyperaemia, iritis, uveitis and macular oedema (Martindale, Thirty-third edition, p. 1445). U.S. Pat. No. 3,922,293 describes monocarboxyacylates of prostaglandins F-type and their 15β isomers, at the C-9 position, and processes for preparing them; U.S. Pat. No. 6,417,228 discloses 13-aza prostaglandins having functional PGF 2α receptor agonist activity and their use in treating glaucoma and ocular hypertension. WO 90/02553 discloses the use of prostaglandins derivatives of PGA, PGB, PGE and PGF, in which the omega chain contains a ring structure, for the treatment of glaucoma or ocular hypertension. WO 00/51978 describes novel nitrosated and/or nitrosylated prostaglandins, in particular novel derivatives of PGE 1 , novel compositions and their use for treating sexual dysfunctions. U.S. Pat. No. 5,625,083 discloses dinitroglycerol esters of prostaglandins which may be used as vasodilators, antihypertensive cardiovascular agents or bronchodilators. U.S. Pat. No. 6,211,233 discloses compounds of the general formula A-X 1 —NO 2 , wherein A contains a prostaglandin residue, in particular PGE 1 , and X 1 is a bivalent connecting bridge, and their use for treating impotence. | <SOH> SUMMARY OF THE INVENTION <EOH>It is an object of the present invention to provide new derivatives of prostaglandins able not only to eliminate or at least reduce the side effects associated with these compounds, but also to possess an improved pharmacological activity. It has been surprisingly found that prostaglandin nitroderivatives have a significantly improved overall profile as compared to native prostaglandins both in terms of wider pharmacological activity and enhanced tolerability. In particular, it has been recognized that the prostaglandin nitroderivatives of the present invention can be employed for treating glaucoma and ocular hypertension. The compounds of the present invention are indicated for the reduction of intraocular pressure in patients with open-angle glaucoma or with chronic angle-closure glaucoma who underwent peripheral iridotomy or laser iridoplasty. detailed-description description="Detailed Description" end="lead"? | 20050105 | 20070925 | 20051208 | 57522.0 | 1 | WITHERSPOON, SIKARL A | PROSTAGLANDIN DERIVATIVES | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,029,737 | ACCEPTED | Radio communication system and method | A method for receiving a service in a mobile terminal from a network in a wireless communication system, the method comprising establishing a first radio bearer and receiving a first service associated with the first radio bearer and receiving second radio bearer setup information from the network to establish a second radio bearer for receiving a second service associated with the second radio bearer. The mobile terminal prioritizes between the first service associated with the first radio bearer and the second service associated with the second radio bearer and determines whether the mobile terminal is able to receive a higher prioritized service if the second radio bearer is established. Furthermore, the mobile terminal retains the higher prioritized service. | 1. A method for receiving a service in a mobile terminal from a network in a wireless communication system, the method comprising: establishing a first radio bearer and receiving a first service associated with the first radio bearer; receiving second radio bearer setup information from the network to establish a second radio bearer for receiving a second service associated with the second radio bearer; prioritizing between the first service associated with the first radio bearer and the second service associated with the second radio bearer; determining whether the mobile terminal is able to receive a higher prioritized service if the second radio bearer is established; and retaining the higher prioritized service. 2. The method of claim 1, wherein the mobile terminal is in an RRC connected mode. 3. The method of claim 1, wherein the first radio bearer is a point-to-multipoint radio bearer and the second radio bearer is a point-to-point radio bearer. 4. The method of claim 1, wherein the first radio bearer is a point-to-point radio bearer and the second radio bearer is a point-to-multipoint radio bearer. 5. The method of claim 1, wherein the step of retaining the higher prioritized service comprises rejecting the establishment of the second radio bearer. 6. The method of claim 1, wherein the step of retaining the higher prioritized service comprises requesting release of a lower prioritized service to the network. 7. The method of claim 1, further comprising informing the network of the higher priority service. 8. The method of claim 1, further comprising informing the network of a service the mobile terminal is able to receive. 9. The method of claim 1, further comprising informing the network of a service the mobile terminal is unable to receive. 10. The method of claim 1, further comprising transmitting priority information to a UTRAN. 11. The method of claim 1, further comprising transmitting priority information to a core network. 12. A method for transmitting a service from a network to a mobile terminal in a wireless communication system, the method comprising: establishing a first radio bearer and transmitting a first service associated with the first radio bearer; transmitting second radio bearer setup information to the mobile terminal to establish a second radio bearer for transmitting a second service associated with the second radio bearer; receiving from the mobile terminal priority information regarding a higher prioritized service between the first service associated with the first radio bearer and the second service associated with the second radio bearer; and transmitting the higher prioritized service according to the priority information received from the mobile terminal. 13. The method of claim 12, wherein the mobile terminal is in an RRC connected mode. 14. The method of claim 12, wherein the first radio bearer is a point-to-multipoint radio bearer and the second radio bearer is a point-to-point radio bearer. 15. The method of claim 12, wherein the first radio bearer is a point-to-point radio bearer and the second radio bearer is a point-to-multipoint radio bearer. 16. The method of claim 12, wherein the priority information comprises information rejecting the establishment of the second radio bearer. 17. The method of claim 12, wherein the priority information comprises information requesting release of a lower prioritized service. 18. The method of claim 12, further comprising performing a counting process for the service associated with the second radio bearer. 19. The method of claim 12, further comprising receiving information of a service the mobile terminal is able to receive. 20. The method of claim 12, further comprising receiving information of a service the mobile terminal is unable to receive. 21. The method of claim 12, wherein the priority information is received by a UTRAN. 22. The method of claim 12, wherein the priority information is received by a core network. 23. A method for receiving a service in a wireless communication system, the method comprising: establishing a first radio bearer and receiving a first service associated with the first radio bearer; receiving second radio bearer setup information from a network to establish a second radio bearer for receiving a second service associated with the second radio bearer; determining whether a mobile terminal can receive both the first service and the second service; determining which service to receive if the mobile terminal cannot receive both the first service and the second service; and informing the network of a service the mobile terminal expects to receive based on the service determined to be received. 24. The method of claim 23, wherein the first radio bearer is a point-to-multipoint radio bearer and the second radio bearer is a point-to-point radio bearer. 25. The method of claim 23, wherein the first radio bearer is a point-to-point radio bearer and the second radio bearer is a point-to-multipoint radio bearer. 26. The method of claim 23, wherein the mobile terminal is in an RRC connected state. 27. The method of claim 23, wherein determining whether the mobile terminal can receive both the first service and the second service comprises comparing the second radio bearer setup information with first radio bearer setup information. 28. The method of claim 23, wherein determining whether the mobile terminal can receive both the first service and the second service comprises comparing the second radio bearer setup information with the mobile terminal's receiving capability. 29. The method of claim 23, wherein a UTRAN performs a counting process for the second service associated with the second radio bearer based on information received from the mobile terminal. 30. A method for receiving a service in a wireless communication system, the method comprising: establishing a first radio bearer and receiving a first service associated with the first radio bearer; receiving second radio bearer setup information from a network to establish a second radio bearer for receiving a second service associated with the second radio bearer; determining whether a mobile terminal can receive both the first service and the second service; determining which service to receive if the mobile terminal cannot receive both the first service and the second service; and informing the network of a service the mobile terminal is not able to receive based on the service determined to be received. 31. The method of claim 30, wherein the first radio bearer is a point-to-multipoint radio bearer and the second radio bearer is a point-to-point radio bearer. 32. The method of claim 30, wherein the first radio bearer is a point-to-point radio bearer and the second radio bearer is a point-to-multipoint radio bearer. 33. The method of claim 30, wherein the mobile terminal is in an RRC connected state. 34. The method of claim 30, wherein determining whether the mobile terminal can receive both the first service and the second service comprises comparing the second radio bearer setup information with first radio bearer setup information. 35. The method of claim 30, wherein determining whether the mobile terminal can receive both the first service and the second service comprises comparing the second radio bearer setup information with the mobile terminal's receiving capability. 36. The method of claim 30, wherein a UTRAN performs a counting process for the second service associated with the second radio bearer based on information received from the mobile terminal. 37. The method of claim 36, wherein the counting process is compensated when the mobile terminal informs the UTRAN of the service the mobile terminal is not able to receive. 38. A method for receiving a service in a mobile terminal in a wireless communication system, the method comprising: subscribing to a plurality of services; prioritizing between the plurality of services; transmitting priority information to a core network; and transmitting the priority information from the core network to a UTRAN; wherein the UTRAN performs a counting process using the priority information when each of the plurality of services is started or in progress. 39. The method of claim 38, wherein transmitting priority information to the core network comprises transmitting an identifier of each service in an arranged order according to the priority of the service. 40. The method of claim 38, wherein transmitting priority information to the core network comprises: appending a priority value of each service to an identifier of each service; and transmitting the identifier of each service to the core network. 41. The method of claim 38, wherein the mobile terminal is in an RRC connected state. 42. The method of claim 38, wherein the UTRAN determines that the mobile terminal will receive the services in the order from the highest priority service to the lowest priority service as determined by the mobile terminal. 43. The method of claim 38, further comprising: transmitting a receiving capability information of the mobile terminal to the core network; and transmitting the receiving capability information of the mobile terminal from the core network to the UTRAN; wherein the UTRAN performs a counting process using the receiving capability information of the mobile terminal when each of the plurality of services is started or in progress. 44. The method of claim 43, wherein the UTRAN determines what services the mobile terminal will receive according to a limitation in the receiving capability information of the mobile terminal. 45. A method for receiving a service in a mobile terminal in a wireless communication system, the method comprising: subscribing to a plurality of services; prioritizing between the plurality of services; transmitting priority information to a UTRAN; and wherein the UTRAN performs a counting process using the priority information when each of the plurality of services is started or in progress. 46. The method of claim 45, wherein transmitting priority information to the UTRAN comprises transmitting an identifier of each service in an arranged order according to the priority of the service. 47. The method of claim 45, wherein transmitting priority information to the UTRAN comprises: appending a priority value of each service to an identifier of each service; and transmitting the identifier of each service to the UTRAN. 48. The method of claim 45, wherein the mobile terminal is in an RRC connected state. 49. The method of claim 45, wherein the UTRAN determines that the mobile terminal will receive the services in the order from the highest priority service to the lowest priority service as determined by the mobile terminal. 50. The method of claim 45, further comprising transmitting a receiving capability information of the mobile terminal to the UTRAN, wherein the UTRAN performs a counting process using the receiving capability information of the mobile terminal when each of the plurality of services is started or in progress. 51. The method of claim 50, wherein the UTRAN determines what services the mobile terminal will receive according to a limitation in the receiving capability information of the mobile terminal. 52. An apparatus for receiving a service in a mobile terminal from a network in a wireless communication system, the apparatus comprising: a receiver adapted to establish a first radio bearer and receive a first service associated with the first radio bearer; the receiver adapted to receive second radio bearer setup information from the network to establish a second radio bearer for receiving a second service associated with the second radio bearer; a processor adapted to prioritize between the first service associated with the first radio bearer and the second service associated with the second radio bearer; and the processor adapted to determine whether the mobile terminal is able to receive a higher prioritized service if the second radio bearer is established; wherein the apparatus retains the higher prioritized service. 53. A network for transmitting a service to a mobile terminal in a wireless communication system, the network comprising: a transmitter adapted to establishing a first radio bearer and transmit a first service associated with the first radio bearer; the transmitter adapted to transmit second radio bearer setup information to the mobile terminal to establish a second radio bearer for transmitting a second service associated with the second radio bearer; a receiver adapted to receive from the mobile terminal priority information regarding a higher prioritized service between the first service associated with the first radio bearer and the second service associated with the second radio bearer; and the transmitter adapted to transmit the higher prioritized service according to the priority information received from the mobile terminal. 54. An apparatus for receiving a service in a wireless communication system, the apparatus comprising: a receiver adapted to establish a first radio bearer and receive a first service associated with the first radio bearer; the receiver adapted to receive second radio bearer setup information from a network to establish a second radio bearer for receiving a second service associated with the second radio bearer; a processor adapted to determine whether a mobile terminal can receive both the first service and the second service; the processor adapted to determining which service to receive if the mobile terminal cannot receive both the first service and the second service; and a transmitter adapted to inform the network of a service the mobile terminal expects to receive based on the service determined to be received. 55. An apparatus for receiving a service in a wireless communication system, the apparatus comprising: a receiver adapted to establish a first radio bearer and receive a first service associated with the first radio bearer; the receiver adapted to receive second radio bearer setup information from a network to establish a second radio bearer for receiving a second service associated with the second radio bearer; a processor adapted to determine whether a mobile terminal can receive both the first service and the second service; the processor adapted to determine which service to receive if the mobile terminal cannot receive both the first service and the second service; and a transmitter adapted to inform the network of a service the mobile terminal is not able to receive based on the service determined to be received. 56. A system for receiving a service in a wireless communication system, the system comprising: a mobile terminal adapted to subscribe to a plurality of services; the mobile terminal adapted to prioritize between the plurality of services; the mobile terminal adapted to transmit priority information to a core network; and the core network having a transmitter adapted to transmit the priority information from to a UTRAN; wherein the UTRAN performs a counting process using the priority information when each of the plurality of services is started or in progress. 57. A system for receiving a service in a wireless communication system, the system comprising: a mobile terminal adapted to subscribe to a plurality of services; the mobile terminal adapted to prioritize between the plurality of services; and the mobile terminal adapted to transmit priority information to a UTRAN; wherein the UTRAN performs a counting process using the priority information when each of the plurality of services is started or in progress. | CROSS-REFERENCE TO RELATED APPLICATIONS Pursuant to 35 U.S.C. § 119(a), this application claims the benefit of earlier filing date and right of priority to Korean Application No. 2004-0001726, filed on Jan. 9, 2004, the contents of which is hereby incorporated by reference herein in its entirety. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio communication system, and more particularly, to a radio communication system and method for transmitting and receiving a multimedia broadcast/multicast service. 2. Description of the Related Art Radio communication systems have remarkably improved; however, when providing communication services dealing with a large capacity of data, radio systems have not provided the same functions provided by wired communication systems. Accordingly, countries around the world are developing technologies, such as IMT-2000, a wireless communication system enabling a large capacity of data communication. Cooperation between many countries is currently progressing to create a specification for the technology. A universal mobile telecommunications system (UMTS) is a third generation mobile communication system evolving from the Global System for Mobile Communications (GSM) system, which is the European standard. The UMTS is aimed at providing enhanced mobile communications services based a GSM core network and Wideband Code Division Multiple Access (W-CDMA) technologies. In December 1998, ETSI of Europe, ARIB/TTC of Japan, T1 of the United States of America, and TTA of Korea formed a Third Generation Partnership Project (3GPP) for the purpose of creating a specification for standardizing the UMTS. The work towards standardizing the UMTS performed by the 3GPP has resulted in the formation of five technical specification groups (TSGs), each of which is directed to forming network elements having independent operations. Each TSG develops, approves, and manages a specification in a related region. Among them, a radio access network (RAN) group (TSG-RAN) develops a specification for the function, items desired, and interface of a UMTS terrestrial radio access network (UTRAN), which is a new RAN for supporting a W-CDMA access technology in the UMTS. Referring to FIG. 1, a related art UMTS network 1 structure is shown. The UMTS broadly comprises a user equipment (UE or terminal) 10, a UMTS Terrestrial Radio Access Network (UTRAN) 100, and a core network (CN) 200. The UE 10 is connected to the core network 200 through the UTRAN 100. The UTRAN 100 configures, maintains, and manages a radio access bearer for communications between the UE 10 and the core network 200 to meet end-to-end quality-of-service requirements. The UTRAN comprises a plurality of radio network subsystems (RNS) 110, 120, each of which comprises one radio network controller (RNC) 111 for a plurality of base stations, or Node Bs 112, 113. The RNC 111 connected to a given Node B 112, 113 is the controlling RNC for allocating and managing the common resources provided for any number of UEs 10 operating in one cell. The controlling RNC 111 controls traffic load, cell congestion, and the acceptance of new radio links. Each Node B 112, 113 may receive an uplink signal from a UE 10 and may transmit a downlink signals to the UE. Each Node B 112, 113 serves as an access point enabling a UE 10 to connect to the UTRAN 100, while an RNC 111 serves as access point for connecting the corresponding Node Bs to the core network 200. The interface between the UE 10 and the UTRAN 100 is realized through a radio interface protocol established in accordance with 3GPP radio access network specifications. Referring to FIG. 2, a related art radio interface protocol structure used in the UMTS is shown. The radio interface protocol is divided horizontally into a physical layer, a data link layer, and a network layer, and is divided vertically into a user plane for data transmissions and a control plane for transfer of control signaling. The user plane is the region in which user traffic information, such as voice signals and IP (Internet Protocol) packets is transferred. The control plane is the region for carrying control information for the maintenance and management of the interface. In FIG. 2, protocol layers may be divided into a first layer (L1), a second layer (L2), and a third layer (L3) based on the lower three layers of an open system interconnection (OSI) model that is a well-known in the art. The first layer (L1) is a physical layer (PHY) providing information transfer service to a higher layer using various radio transmission techniques. The physical layer is linked to a medium access control (MAC) layer located above it. Data travels between the MAC layer and the PHY layer via a transport channel. The second layer (L2) comprises the MAC layer, a radio link control (RLC) layer, a broadcast/multicast control (BMC) layer and a packet data convergence protocol (PDCP) layer. The MAC layer of the second layer (L2) provides assignment service of a MAC parameter for assigning and re-assigning a radio resource. It is connected to an upper layer, i.e., the radio link control (RLC) layer by a logical channel. Various logical channels may be provided according to the type information transmitted. Generally, when control plane information is transmitted, a control channel is used. When user plane information is transmitted, a traffic channel is used. The RLC layer of the second layer (L2) supports the transmission of reliable data and is responsible for the segmentation and concatenation of RLC service data units (SDUs) delivered from a higher layer. The size of the RLC SDU is adjusted for the processing capacity in the RLC layer and a header is appended to form an RLC protocol data unit (PDU) for delivery to the MAC layer. The formed units of service data and protocol data delivered from the higher layer are stored in an RLC buffer of the RLC layer. The RLC services are used by service-specific protocol layers on the user plane, namely a broadcast/multicast control (BMC) protocol and a packet data convergence protocol (PDCP), and are used by a radio resource control (RRC) layer for signaling transport on the control plane. The broadcast multicast control (BMC) layer schedules a cell broadcast (CB) message delivered from the core network 200 and enables the cell broadcast message to be broadcast to the corresponding UEs 10 in the appropriate cell. Header information, such as a message identification, a serial number, and a coding scheme, is added to the cell broadcast message to generate a broadcast/multicast control message for delivery to the RLC layer. The RLC layer appends RLC header information and transmits the thus-formed message to the MAC layer via a common traffic channel (CTCH) as a logical channel. The MAC layer maps the CTCH to a forward access channel (FACH) as a transport channel. The transport channel is mapped to a secondary common control physical channel (SCCPCH) as a physical channel. The packet data convergence protocol (PDCP) layer serves to transfer data efficiently over a radio interface having a relatively small bandwidth. The PDCP layer uses a network protocol such as IPv4 or IPv6 and a header compression technique for eliminating unnecessary control information utilized in a wire network. The PDCP layer enhances transmission efficiency since only the information essential to the header is included in the transfer. The radio resource control (RRC) layer handles the control plane signaling of the network layer (L3) between the UEs 10 and the UTRAN 100 and controls the transport and physical channels for the establishment, reconfiguration, and release of radio bearers. A radio bearer (RB) is a service provided by a lower layer, such as the RLC layer or the MAC layer, for data transfer between the UE 10 and the UTRAN 100. Establishment of an RB determines the regulating characteristics of the protocol layer and channel needed to provide a specific service, thereby establishing the parameters and operational methods of the service. When a connection is established to allow transmission between an RRC layer of a specific UE 10 and an RRC layer of the UTRAN 100, the UE 10 is said to be in the RRC-connected state. Without such connection, the UE 10 is in an idle state. For reference, the RLC layer can be included in the user plane or the control plane according to a layer connected above it. For example, when the RLC layer is part of the control plane, data is received from the RRC layer. In other cases, the RLC layer is part of the user plane. A particular radio bearer used for exchanging an RRC message or an NAS message between a terminal and the UTRAN 100 is referred to as a signaling radio bearer (SRB). When the SRB is set up between a particular terminal and the UTRAN 100, there can exist an RRC connection between the terminal and the UTRAN 100. The terminal which forms the RRC connection is said to be in the RRC connected mode (or state), and the terminal which does not form the RRC connection is said to be in the idle mode (or state). If the terminal is in the RRC connected mode, the RNC checks and manages a location of the corresponding terminal according to a cell unit. When the terminal gets into the RRC connected mode, the RNC sends a signaling message to the UTRAN 100. The terminal in the RRC connected mode may be further divided into a CELL_DCH mode, a CELL_PCH mode, a URA_PCH mode and a CELL_FACH mode. For those UEs in the idle state, URA_PCH mode, or CELL_PCH mode, a discontinuous reception (DRX) method is employed to minimize power consumption. In the DRX method, a Secondary Common Control Physical Channel (SCCPCH), onto which a Paging Indicator Channel (PICH) and a Paging Channel (PCH) is mapped, is discontinuously received by the UE 10. During the time periods when the PICH or the SCCPCH is not received, the UE is in a sleep mode state. The UE wakes up at every DRX cycle length (discontinuous receiving period length) to receive a paging indicator (PI) of the PICH. The terminal in the RRC connected mode may additionally form a signaling connection with the core network 200. This signaling connection refers to a path for exchanging a control message between the terminal and the core network 200. The RRC connected mode refers to a connection between the terminal and the UTRAN 100. Accordingly, the terminal informs the core network 200 of its location or requests a particular service using the signaling connection. To obtain the signaling connection, he terminal should be in the RRC connected mode. Hereafter, Multimedia Broadcast/Multicast Service (MBMS or MBMS service) will be described. MBMS refers to a method of providing streaming or background services to a plurality of UEs 10 using a downlink-dedicated MBMS radio bearer. The MBMS radio bearer may utilize both point-to-multipoint and point-to-point radio bearer services. As the name implies, an MBMS may be carried out in a broadcast mode or a multicast mode. The broadcast mode is transmitting multimedia data to all UEs within a broadcast area, for example the domain where the broadcast area is available. The multicast mode is for transmitting multimedia data to a specific UE group within a multicast area, for example the domain where the multicast service is available. FIG. 3 is a diagram showing procedures of the MBMS service in the multicast mode. Here, the UMTS network is shown providing a specific MBMS service (a first service) using the multicast mode. A terminal (UE1) is also shown receiving the specific service (the first service). When the UMTS network 1 provides a specific MBMS using the multicast mode, UEs 10 to be provided with the service must first complete a subscription procedure establishing a relationship between a service provider and each UE individually. Thereafter, the subscriber UE 10 receives a service announcement from the core network 200 confirming subscription and including, for example, a list of services to be provided. The subscriber UE 10 must “join,” or participate in, a multicast group of UEs receiving the specific MBMS, thereby notifying the core network 200 of its intention to receive the service. Terminating participation in the service is called “leaving.” The subscription, joining, and leaving operations may be performed by each UE 10 at any time prior to, during, or after the data transfer. While a specific MBMS is in progress, on or more service sessions may sequentially take place, and the core network 200 informs the RNC 111 of a session start when data is generated by an MBMS data source and informs the RNC of a session stop when the data transfer is aborted. Therefore, a data transfer for the specific MBMS may be performed for the time between the session start and the session stop, during which time only participating UEs 10 can receive the data. To achieve successful data transfer, the UTRAN 100 receives a notification of the session start from the core network 200 and transmits an MBMS notification to the participating UEs 10 in a prescribed cell to indicate that the data transfer is imminent. The UTRAN 100 uses the MBMS notification to count the number of participating UEs 10 within the prescribed cell. Specifically, the UTRAN 100 can perform a function which counts the number of terminals which expect to receive the specific MBMS service within a specific cell. Through the counting process, it is determined whether the radio bearer providing the specific MBMS service is one for a point-to-multipoint transmission or a point-to-point transmission, or if the radio bearer is not to be set. To select the MBMS radio bearer (RB) for a specific service, the UTRAN 100 sets a threshold value corresponding to the UE 10 count, whereby a low UE count establishes a point-to-point MBMS radio bearer and a high UE count establishes a point-to-multipoint MBMS radio bearer. The radio bearer established is based on whether the participating UEs 10 need to be in the RRC-connected state. When a point-to-point RB is established, all of the participating UEs 10 which expect to receive the service are in the RRC connected state. When a point-to-multipoint RB is established, it is unnecessary for all of the participating UEs 10 which expect to receive the service to be in the RRC connected mode since the point-to-multipoint RB enables reception by UEs in the idle state. Furthermore, based on the counted result, if no terminal wishes to receive the specific MBMS service, the UTRAN 100 does not establish any radio bearer and the MBMS service data is not transmitted. Thus, radio resources may be wasted by establishing the radio bearer even though no terminal desires the service. Also, the UTRAN 100 transmits the MBMS service data received from the core network 200 during one session of the MBMS service using the established radio bearer. In the counting process, the UTRAN 100 has no information on terminals in the RRC idle state. Therefore, if the UTRAN 100 requests a counting of terminals in the RRC idle state, subscribed to a specific MBMS service, the terminals should form the RRC connection with the UTRAN 100 and inform the UTRAN 100 that they would receive the specific MBMS service. However, if a terminal has formed a signaling connection with a Serving GPRS Support Node (SGSN), the SGSN informs the UTRAN 100 of MBMS related information of the terminal. The information includes a list of MBMS services the terminal has subscribed to. Therefore, because the UTRAN 100 can recognize whether terminals have subscribed to a specific MBMS service, the terminals do not respond to the counting request of the UTRAN 100. Furthermore, terminals which have not formed a signaling connection with the SGSN, but are in the RRC connected state, can inform the UTRAN 100 of the MBMS services they have subscribed to when forming the RRC connection with the UTRAN 100. Accordingly, the UTRAN 100 can count the number of terminals desiring to receive the specific MBMS service without any response sent by the terminals in the RRC connected state. The UTRAN 100 can perform the counting process not only at the beginning of the MBMS service but also in the middle of one session of the MBMS service. This is necessary since the number of terminals expecting to receive the MBMS service in a cell is variable because of events such as a terminal moving to another cell during the MBMS session in process, turning off power, or stopping the subscription of the MBMS service. Accordingly, in order to establish the radio bearer efficiently, the UTRAN 100 can perform the counting process during the MBMS session in process. However, in this counting process, the following problems may occur when counting the number of terminals desiring to receive the MBMS service and establishing the radio bearer. A terminal is able to get information related to several MBMS services through the MBMS service announcement so that it may subscribe to a plurality of MBMS services. If the terminal stays in the RRC connected state, the UTRAN 100 can recognize all the MBMS services the terminal has subscribed to. Thus, when the UTRAN 100 performs the counting process for a certain MBMS service, a terminal in the RRC connected state and subscribed to the corresponding MBMS service, is added in the number of terminals desiring the MBMS service to be provided. When the terminal simultaneously receives services it has subscribed to, an event may occur when several services among the subscribed services may not be received due to the terminal's limited capability. For example, a terminal having subscribed to two MBMS services has one SCCPCH through which the MBMS services can be received. If each MBMS service is transmitted through different SCCPCHs, respectively, using the point-to-multipoint RB in a cell, the terminal can receive only one of the subscribed MBMS services due to its limited capability. However, the UTRAN 100 is unable to recognize that the terminal can not receive one of the MBMS services. As a result, the UTRAN 100 performs the counting process and wrongfully considers the terminal as receiving all two MBMS services it has subscribed to. The UTRAN 100 then establishes a radio bearer based on this information. The error occurring during the counting process causes radio resources to be wasted. As a further example, it is assumed that six terminals are in a cell, and all six terminals have subscribed to an MBMS service A and an MBMS service B. Moreover, all six terminals are in the RRC connected state and can receive services through one SCCPCH. It is also assumed that a threshold value for establishing a point-to-multipoint RB is set at 3. The MBMS service A is being transmitted through the point-to-multipoint RB in a cell and the UTRAN 100 has received a session start notification for the MBMS service B from the core network 200. In this case, the UTRAN 100 may determine there are six terminals which expect to receive the MBMS service B and thus establish the point-to-multipoint RB. However, if an SCCPCH different from an SCCPCH used for transmitting the MBMS service A is used for transmitting the MBMS service B, then the six terminals may receive only one of the MBMS services A and B due to the their limited capabilities. Thus, either the MBMS service A or the MBMS service B is received according to a user's selection. A situation may occur where five terminals determine to receive the MBMS service A and one terminal determines to receive the MBMS service B. Accordingly, since there is only one terminal desiring to receive the MBMS service B, the UTRAN 100 should establish the point-to-point RB because the number terminals desiring the MBMS service B is below the threshold value of 3. However, the related art UTRAN 100 establishes the point-to-multipoint RB with respect to the MBMS service B because it wrongfully counts all six terminals for receiving the service B. The error occurs because the UTRAN 100 has no information regarding the capabilities of the terminals, service selection of the user, or the like. Unfortunately, the resources required for establishing the point-to-multipoint RB corresponds to several times that of the point-to-point RB. As a result, due to the error occurring during the counting process in the related art, radio resources are wasted and the number of services to be simultaneously provided in one cell is limited. SUMMARY OF THE INVENTION The present invention relates to a method and system for transmitting and receiving a service in a wireless communication system. Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, the present invention is embodied in a method and a system. In a preferred embodiment of the invention, a method for receiving a service in a mobile terminal from a network in a wireless communication system comprises establishing a first radio bearer and receiving a service associated with the first radio bearer, receiving second radio bearer setup information from the network to establish a second radio bearer for receiving a service associated with the second radio bearer, prioritizing between the service associated with the first radio bearer and the service associated with the second radio bearer, determining whether the mobile terminal is able to receive a higher prioritized service if the second radio bearer is established, and retaining the higher prioritized service. The mobile terminal is in an RRC connected mode. The first radio bearer is a point-to-multipoint radio bearer and the second radio bearer is a point-to-point radio bearer. Alternatively, the first radio bearer is a point-to-point radio bearer and the second radio bearer is a point-to-multipoint radio bearer. In a detailed aspect, retaining the higher prioritized service comprises rejecting the establishment of the second radio bearer. In another aspect, retaining the higher prioritized service comprises requesting release of a lower prioritized service to the network. The method further comprises informing the network of the higher priority service. In another aspect, the method comprises informing the network of a service the mobile terminal is able to receive. Alternatively, the method comprises informing the network of a service the mobile terminal is unable to receive. In a further aspect, the method comprises transmitting priority information to a UTRAN. The method may also comprise transmitting priority information to a core network. In another embodiment of the invention, a method for transmitting a service from a network to a mobile terminal in a wireless communication system comprises establishing a first radio bearer and transmitting a service associated with the first radio bearer, transmitting second radio bearer setup information to the mobile terminal to establish a second radio bearer for transmitting a service associated with the second radio bearer, receiving from the mobile terminal priority information regarding a higher prioritized service between the service associated with the first radio bearer and the service associated with the second radio bearer, and transmitting the higher prioritized service according to the priority information received from the mobile terminal. The mobile terminal is in an RRC connected mode. The first radio bearer is a point-to-multipoint radio bearer and the second radio bearer is a point-to-point radio bearer. Alternatively, the first radio bearer is a point-to-point radio bearer and the second radio bearer is a point-to-multipoint radio bearer. In a detailed aspect, the priority information comprises information rejecting the establishment of the second radio bearer. In another aspect, the priority information comprises information requesting release of a lower prioritized service. The method may further comprise performing a counting process for the service associated with the second radio bearer. In another aspect, the method comprises receiving information of a service the mobile terminal is able to receive. Alternatively, the method comprises receiving information of a service the mobile terminal is unable to receive. In a further aspect, the priority information is received by a UTRAN. Otherwise, the priority information may be received by a core network. In another embodiment of the invention, a method for receiving a service in a wireless communication system comprises establishing a first radio bearer and receiving a first service associated with the first radio bearer receiving second radio bearer setup information from a network to establish a second radio bearer for receiving a second service associated with the second radio bearer, determining whether a mobile terminal can receive both the first service and the second service, determining which service to receive if the mobile terminal cannot receive both the first service and the second service, and informing the network of a service the mobile terminal expects to receive based on the service determined to be received. In one aspect, determining whether the mobile terminal can receive both the first service and the second service comprises comparing the second radio bearer setup information with first radio bearer setup information. Furthermore, determining whether the mobile terminal can receive both the first service and the second service may also comprise comparing the second radio bearer setup information with the mobile terminal's receiving capability. In another aspect, a UTRAN performs a counting process for the second service associated with the second radio bearer based on information received from the mobile terminal. In another embodiment of the invention, a method for receiving a service in a wireless communication system comprises establishing a first radio bearer and receiving a first service associated with the first radio bearer, receiving second radio bearer setup information from a network to establish a second radio bearer for receiving a second service associated with the second radio bearer, determining whether a mobile terminal can receive both the first service and the second service, determining which service to receive if the mobile terminal cannot receive both the first service and the second service, and informing the network of a service the mobile terminal is not able to receive based on the service determined to be received. In one aspect, determining whether the mobile terminal can receive both the first service and the second service comprises comparing the second radio bearer setup information with first radio bearer setup information. Furthermore, determining whether the mobile terminal can receive both the first service and the second service may also comprise comparing the second radio bearer setup information with the mobile terminal's receiving capability. In another aspect, a UTRAN performs a counting process for the second service associated with the second radio bearer based on information received from the mobile terminal. The counting process is compensated when the mobile terminal informs the UTRAN of the service the mobile terminal is not able to receive. In another embodiment of the invention, a method for receiving a service in a mobile terminal in a wireless communication system comprises subscribing to a plurality of services, prioritizing between the plurality of services, transmitting priority information to a core network, and transmitting the priority information from the core network to a UTRAN, wherein the UTRAN performs a counting process using the priority information when each of the plurality of services is started or in progress. Transmitting priority information to the core network comprises transmitting an identifier of each service in an arranged order according to the priority of the service. Alternatively, transmitting priority information to the core network may comprise appending a priority value of each service to an identifier of each service, and transmitting the identifier of each service to the core network. According to one aspect of the present invention, the UTRAN determines that the mobile terminal will receive the services in the order from the highest priority service to the lowest priority service as determined by the mobile terminal. According to another aspect of the present invention, the method comprises transmitting mobile terminal receiving capability information to the core network and transmitting the mobile terminal receiving capability information from the core network to the UTRAN, wherein the UTRAN performs a counting process using the mobile terminal receiving capability information when each of the plurality of services is started or in progress. In one aspect, the UTRAN determines what services the mobile terminal will receive according to a limitation in the mobile terminal's receiving capability. In another embodiment of the invention, a method for receiving a service in a mobile terminal in a wireless communication system comprises subscribing to a plurality of services, prioritizing between the plurality of services, and transmitting priority information to a UTRAN, wherein the UTRAN performs a counting process using the priority information when each of the plurality of services is started or in progress. Transmitting priority information to the UTRAN comprises transmitting an identifier of each service in an arranged order according to the priority of the service. Alternatively, transmitting priority information to the UTRAN comprises appending a priority value of each service to an identifier of each service, and transmitting the identifier of each service to the UTRAN. According to one aspect of the present invention, the UTRAN determines that the mobile terminal will receive the services in the order from the highest priority service to the lowest priority service as determined by the mobile terminal. According to another aspect of the present invention, the method comprises transmitting mobile terminal receiving capability information to the UTRAN, wherein the UTRAN performs a counting process using the mobile terminal receiving capability information when each of the plurality of services is started or in progress. In one aspect, the UTRAN determines what services the mobile terminal will receive according to a limitation in the mobile terminal's receiving capability. It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. FIG. 1 illustrates a block diagram of a related art UMTS network structure. FIG. 2 illustrates a block diagram of the architecture of a related art radio interface protocol based on 3GPP radio access network specifications. FIG. 3 is a related art diagram showing MBMS service procedures in the multicast mode. FIG. 4 is a diagram showing operations between a terminal and a network in accordance with an embodiment of invention. FIG. 5 is a diagram showing an operation between a terminal and a network wherein a type of radio bearer having been established for a particular service is to be changed in accordance with one embodiment of the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. In accordance with a first embodiment of the invention, a radio system comprises a cell for providing a plurality of MBMS services, the cell including a mobile terminal or UE 10 and a UTRAN 100. The terminal 10 is capable of subscribing to a plurality of MBMS services and may transmit data to the UTRAN 100. Preferably, the data which the terminal 10 transmits comprises information regarding the MBMS services the terminal is receiving or expects to receive. The UTRAN 100 manages radio resources based on the information received from the terminal 10. Particularly, the terminal 10 transmits data to the UTRAN 100 according to the following situation. The terminal 10, currently receiving specific MBMS services, receives an MBMS notification message from the UTRAN 100 with respect to another MBMS service the terminal 10 has subscribed to. After receiving radio bearer establishment information for the other MBMS service, the terminal 10 compares the information received with its own receiving capability. When the terminal 10 determines that it cannot receive all the MBMS services it has subscribed to that a cell transmits, the terminal 10 informs the UTRAN 100 of the MBMS services it expects to receive among all the services it has subscribed to. Moreover, the terminal 10 may also transmit data to the UTRAN 100 according to the following situation. While the terminal 10 is receiving specific MBMS services in an RRC connected state, radio bearer establishment information for any of the MBMS services the terminal 10 is receiving may change. The terminal 10 then compares the changed radio bearer establishment information with its receiving capability. When the terminal 10 determines that it cannot receive all the MBMS services it has subscribed to that a cell transmits, the terminal 10 informs the UTRAN 100 of the MBMS services it expects to receive among all the services it has subscribed to. The terminal 10 further transmits data to the UTRAN 100 according to the following situation. While the terminal 10 is in the RRC connected state, the terminal may selectively receive MBMS services it has subscribed to according to its receiving capability. Changes in received MBMS services can result from a user selectively receiving services according to his or her preference. When a change occurs according to the user's selection, the terminal 10 informs the UTRAN 100 of the MBMS services it expects to receive among all the services it has subscribed to. MBMS-related information the terminal 10 transmits to the UTRAN 100 may include an MBMS service identifier. The service identifier informs the UTRAN 100 of which service each terminal 10 expects to receive. The terminal 10 can further inform the UTRAN 100 of its MBMS service receiving capability as well as information regarding a combination of MBMS services the terminal 10 can receive in each RRC state. For example, if the terminal is in a CELL_DCH state, the terminal 10 informs the UTRAN 100 whether MBMS services transmitted through a point-to-multipoint radio bearer (RB) can be received. If the terminal is in a CELL_FACH state, the terminal 10 informs the UTRAN 100 of the number of different SCCPCHs provided through which simultaneously transmitted MBMS services may be received. The UTRAN 100 uses the information to check which subscribed MBMS services are received or not received by the terminal 10, if the services are transmitted in a cell. The UTRAN 100 performs a counting process for each MBMS service transmitted from a cell based on the MBMS-related information received from the terminal 10. When data is transmitted from the terminal 10 to the UTRAN 100, the UTRAN 100 receives MBMS service reception information from the terminal 10 in the RRC connected state. If the MBMS service which the terminal 10 has subscribed to, and which the cell is transmitting or is going to transmit, is not included among the MBMS service reception information transmitted by the terminal 10, the UTRAN 100 excludes the terminal 10 from the number of terminals, or a list of terminals, which desire to receive the MBMS service. The UTRAN 100 then updates the number of terminals which desire to receive the MBMS service and compares the number with a threshold value. If required, the UTRAN 100 re-establishes a radio bearer for the MBMS service. The UTRAN 100 can further manage a terminal 10, wherein the terminal is in the RRC connected state and subscribed to a specific MBMS service but cannot receive the specific service. In this case, the UTRAN 100 manages the terminal using a list comprising of terminals which cannot receive or do not want to receive the MBMS service. In accordance with a second embodiment of the invention, a radio system comprises a cell for providing a plurality of MBMS services, the cell including a mobile terminal or UE 10 and a UTRAN 100. The terminal 10 is capable of subscribing to a plurality of MBMS services and may transmit data to the UTRAN 100. Preferably, the data which the terminal 10 transmits comprises information regarding the MBMS services the terminal cannot receive or does not want to receive. The UTRAN 100 manages radio resources based on the information received from the terminal 10. In contrast to the first embodiment, the terminal 10 does not inform the UTRAN 100 of an MBMS service the terminal is able to receive or is going to receive among the MBMS services subscribed to by the terminal and transmitted from the cell. Rather, the terminal 10 informs the UTRAN 100 of MBMS services the terminal 10 cannot receive or will not receive among the MBMS services subscribed to by the terminal and transmitted by the cell. In this method, the UTRAN 100 is directly informed of the list of MBMS services not received by the terminal 10 when performing the counting process. Referring to FIG. 4, an operation between the terminal 10 and the UTRAN 100 in accordance with the first and second embodiments is shown. A session for an MBMS service A is in progress in a cell. During the session for the MBMS service A, the UTRAN 100 transmits MBMS service data to the terminal 10. The terminal 10 according to the first and second embodiment receives the MBMS service A in an RRC connected state. The terminal 10 is also subscribed to an MBMS service B. When a session start message for the MBMS service B arrives from the core network 200 (S10), the UTRAN 100 performs a counting process for the MBMS service B (S20). Based on the result of the counting process, the UTRAN 100 informs the terminal 10 of radio bearer establishment information with respect to the MBMS service B (S30). The terminal 10, which has subscribed to both the MBMS service A and the MBMS service B, determines whether it can receive both the MBMS service A and the MBMS service B based on the radio bearer establishment information of each MBMS service and the terminal's receiving capability. If there is a service which the terminal can not receive among the subscribed services, the terminal 10 determines which of the MBMS services to receive (S40). The terminal then informs the UTRAN 100 of a list of MBMS services the terminal expects to receive (S50) based on the determination made in step S40. Alternatively, the terminal 10 may inform the UTRAN 100 of a list of MBMS services the terminal 10 cannot receive. The terminal 10 can further inform the UTRAN 100 of both lists. In the case where an MBMS service is subscribed to by the terminal 10 but can not receive it, the UTRAN 100 performs the counting process based on the information received from the terminal 10 (S60). That is, the UTRAN 100 excludes the terminal from the number of terminals, or a list thereof, which expect to receive the corresponding MBMS service. The UTRAN 100 then compares the result of the counting process (S60) for each MBMS service with a threshold value. If required, the UTRAN 100 re-establishes a radio bearer, and thereafter informs the terminal 10 of the changed information (S70). In accordance with a third embodiment of the invention, a radio system comprises a cell for providing a plurality of MBMS services, the cell including a mobile terminal or UE 10 and a UTRAN 100. The terminal 10 is capable of subscribing to a plurality of MBMS services and prioritizing between the subscribed MBMS services. Once priority amongst the services is determined, the terminal 10 transmits the priority information to the core network (CN) 200. The UTRAN 100 performs a counting process based on the priority information received from the terminal 10. When the terminal 10 subscribes to certain MBMS services, the terminal prioritizes between the subscribed MBMS services and informs the system of the priority information. The priority information is stored in the CN 200. When the terminal forms a signaling connection with an SGSN, the UTRAN 100 receives the priority information from the CN 200. Thereafter, the UTRAN 100 uses the priority information during the counting process when each MBMS service is started or in progress. For the terminal 10 in the RRC connected state, the UTRAN 100 can therefore be informed of the terminal's service receiving capability and the terminal's prioritized preferences among the MBMS services subscribed to by the terminal. Thus, if a plurality of services among the subscribed MBMS services are simultaneously in progress, the UTRAN 100 determines that the terminal 10 will receive the receivable MBMS services in the order from the highest priority service to the lowest priority service as determined by the terminal 10. The UTRAN 100 further determines what MBMS services the terminal will receive according to a limitation in the terminal's receiving capability. If the terminal is determined to receive the MBMS service, the UTRAN 100 includes the terminal in the number of terminals desiring to receive the service during the counting process. After performing the counting process, if required, the UTRAN 100 re-establishes a radio bearer and informs the terminals 10 of the changed information. In accordance with a fourth embodiment of the invention, a radio system comprises a cell for providing a plurality of MBMS services, the cell including a mobile terminal or UE 10 and a UTRAN 100. The terminal 10 is capable of subscribing to a plurality of MBMS services and prioritizing between the subscribed MBMS services. Once priority amongst the services is determined, the terminal 10 transmits the priority information to the UTRAN 100. The UTRAN 100 performs a counting process based on the priority information received from the terminal 10. In contrast to the third embodiment, the terminal 10 does not inform the CN 200 of the priority between the MBMS services the terminal 10 has subscribed to. Rather, the terminal 10 directly informs the UTRAN 100 when the terminal is in the RRC connected state. Using this method, unnecessary message exchanges between the UTRAN 100 and the CN 200 is reduced. Furthermore, the terminal 10 can inform the UTRAN 100 of its priority information more quickly. Particularly, when the terminal 10 goes into the RRC connected state, the terminal 10 informs the UTRAN 100 of the priority amongst the MBMS services the terminal has subscribed to. Also, when the terminal 10 receives an MBMS message for MBMS services the terminal has subscribed to, the terminal 10 informs the UTRAN 100 of the priority amongst the MBMS services. Furthermore, whenever the terminal re-establishes the priority of each MBMS service in the RRC connected state, the terminal informs the UTRAN 100 of the re-established priority information. Thus, in the case where the terminal 10 expects to receive other MBMS services transmitted from a cell while receiving a certain MBMS service, the terminal 10 informs the UTRAN 100 of the priority information for each MBMS service subscribed to so that the UTRAN 100 knows that the terminal 10 expects to receive or is receiving other MBMS services. When informing the UTRAN 100 of the priority of each MBMS service, the terminal 10 transmits to the UTRAN 100 an identifier of each service in an arranged order according to the priority of the service. Alternatively, the terminal 10 may inform the UTRAN 100 of the priority of each MBMS service by appending a priority value of each service when transmitting the identifier of each service. Furthermore, when informing the UTRAN 100 of the priority of each MBMS service, the terminal 10 may transmit priority information regarding all the services the terminal has subscribed to or transmit priority information regarding only those MBMS services which are in the process of being transmitted from a cell and subscribed to by the terminal. In accordance with a fifth embodiment of the invention, operations of the terminal 10 and the UTRAN 100 will be explained when a type of radio bearer (RB) having been established for a particular MBMS service should be changed. If the UTRAN 100 changes the establishment of an RB having been established for a particular MBMS service or sends establishment information of a new RB to the terminal, the terminal 10 checks the establishment information of the new RB received from the UTRAN 100. Accordingly, a situation may occur where the terminal 10 may not receive a service it expects to receive because of the changed RB. If so, the terminal 10, according to the present invention, notifies the UTRAN 100 that it may not receive the expected service. Particularly, when the terminal 10 receives a plurality of MBMS services through a point-to-multipoint RB in an RRC connected state, the terminal may receive a command from the UTRAN 100 to establish a point-to-point RB with respect to one or more services among the MBMS services subscribed to by the terminal 10. The terminal 10 then checks the establishment information of the point-to-point RB. If the terminal 10 is not able to receive MBMS services having higher priority than those MBMS services to be received through the point-to-point RB, established by the command of the UTRAN 100, the terminal 10 informs the UTRAN 100 that it cannot accept the establishment of the point-to-point RB. The terminal 10 may further inform the UTRAN 100 which particular services make it impossible to establish the point-to-point RB. Furthermore, when the terminal 10 receives a plurality of MBMS services through a point-to-point RB in an RRC connected state, the terminal may receive a command from the UTRAN 100 to establish a point-to-multipoint RB with respect to one or more services among the MBMS services subscribed to by the terminal 10. The terminal 10 then checks the establishment information of the point-to-multipoint RB. If the terminal 10 is not able to receive MBMS services having higher priority than those MBMS services to be received through the point-to-multipoint RB, established by the command of the UTRAN 100, the terminal 10 informs the UTRAN 100 that it cannot accept the establishment of the point-to-multipoint RB. The terminal 10 may further inform the UTRAN 100 which particular services make it impossible to establish the point-to-multipoint RB. Moreover, if the UTRAN 100 receives a message that the terminal 10 can not follow its command to establish an RB for particular MBMS services, the UTRAN 100 re-adjusts whether the terminal 10 should be included in a list of terminals desiring to receive a particular MBMS service. If required, the UTRAN 100 adjusts the RB to be established in order for the terminal 10 to receive the MBMS services having higher priority. Referring to FIG. 5, an operation of the terminal 10 and the UTRAN 100 is shown when a type of RB having been established for a specific MBMS service is to be changed during a session. In FIG. 5, it is assumed that the terminal receives an MBMS service A and an MBMS service B. Further, the MBMS service A has a higher priority than the MBMS service B. It is also assumed that the terminal 10 is in the RRC connected state. The UTRAN 100 performs a counting process for the MBMS service B newly received (S110). Then, according to the result of the counting process performed, if the type of RB having been established for the MBMS service B is determined to be changed, the UTRAN 100 informs the terminal 10 of the new establishment information for the RB (S120). Once receiving the establishment information from the UTRAN 100, the terminal 10 checks the RB establishment information of each MBMS service using the received information. The terminal then checks whether the MBMS service A having the higher priority can also be received (S130). If it is determined according to the checked result that the MBMS service A can not be received, the terminal informs the UTRAN 100 that the MBMS service A can not be received (S140). As aforementioned, the UTRAN is supported to more precisely, count the number of terminals expecting to receive MBMS services, thereby reducing radio resources allocated to the terminal and the UTRAN. As a result, terminals receive higher-quality MBMS services. Although the present invention is described in the context of mobile communication, the present invention may also be used in any wireless communication systems using mobile devices, such as PDAs and laptop computers equipped with wireless communication capabilities. Moreover, the use of certain terms to describe the present invention should not limit the scope of the present invention to certain type of wireless communication system, such as UMTS. The present invention is also applicable to other wireless communication systems using different air interfaces and/or physical layers, for example, TDMA, CDMA, FDMA, WCDMA, etc. The preferred embodiments may be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof. The term “article of manufacture” as used herein refers to code or logic implemented in hardware logic (e.g., an integrated circuit chip, Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), etc.) or a computer readable medium (e.g., magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic, etc.). Code in the computer readable medium is accessed and executed by a processor. The code in which preferred embodiments are implemented may further be accessible through a transmission media or from a file server over a network. In such cases, the article of manufacture in which the code is implemented may comprise a transmission media, such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc. Of course, those skilled in the art will recognize that many modifications may be made to this configuration without departing from the scope of the present invention, and that the article of manufacture may comprise any information bearing medium known in the art. As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the metes and bounds of the claims, or equivalence of such metes and bounds are therefore intended to be e,braced by the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a radio communication system, and more particularly, to a radio communication system and method for transmitting and receiving a multimedia broadcast/multicast service. 2. Description of the Related Art Radio communication systems have remarkably improved; however, when providing communication services dealing with a large capacity of data, radio systems have not provided the same functions provided by wired communication systems. Accordingly, countries around the world are developing technologies, such as IMT-2000, a wireless communication system enabling a large capacity of data communication. Cooperation between many countries is currently progressing to create a specification for the technology. A universal mobile telecommunications system (UMTS) is a third generation mobile communication system evolving from the Global System for Mobile Communications (GSM) system, which is the European standard. The UMTS is aimed at providing enhanced mobile communications services based a GSM core network and Wideband Code Division Multiple Access (W-CDMA) technologies. In December 1998, ETSI of Europe, ARIB/TTC of Japan, T1 of the United States of America, and TTA of Korea formed a Third Generation Partnership Project (3GPP) for the purpose of creating a specification for standardizing the UMTS. The work towards standardizing the UMTS performed by the 3GPP has resulted in the formation of five technical specification groups (TSGs), each of which is directed to forming network elements having independent operations. Each TSG develops, approves, and manages a specification in a related region. Among them, a radio access network (RAN) group (TSG-RAN) develops a specification for the function, items desired, and interface of a UMTS terrestrial radio access network (UTRAN), which is a new RAN for supporting a W-CDMA access technology in the UMTS. Referring to FIG. 1 , a related art UMTS network 1 structure is shown. The UMTS broadly comprises a user equipment (UE or terminal) 10 , a UMTS Terrestrial Radio Access Network (UTRAN) 100 , and a core network (CN) 200 . The UE 10 is connected to the core network 200 through the UTRAN 100 . The UTRAN 100 configures, maintains, and manages a radio access bearer for communications between the UE 10 and the core network 200 to meet end-to-end quality-of-service requirements. The UTRAN comprises a plurality of radio network subsystems (RNS) 110 , 120 , each of which comprises one radio network controller (RNC) 111 for a plurality of base stations, or Node Bs 112 , 113 . The RNC 111 connected to a given Node B 112 , 113 is the controlling RNC for allocating and managing the common resources provided for any number of UEs 10 operating in one cell. The controlling RNC 111 controls traffic load, cell congestion, and the acceptance of new radio links. Each Node B 112 , 113 may receive an uplink signal from a UE 10 and may transmit a downlink signals to the UE. Each Node B 112 , 113 serves as an access point enabling a UE 10 to connect to the UTRAN 100 , while an RNC 111 serves as access point for connecting the corresponding Node Bs to the core network 200 . The interface between the UE 10 and the UTRAN 100 is realized through a radio interface protocol established in accordance with 3GPP radio access network specifications. Referring to FIG. 2 , a related art radio interface protocol structure used in the UMTS is shown. The radio interface protocol is divided horizontally into a physical layer, a data link layer, and a network layer, and is divided vertically into a user plane for data transmissions and a control plane for transfer of control signaling. The user plane is the region in which user traffic information, such as voice signals and IP (Internet Protocol) packets is transferred. The control plane is the region for carrying control information for the maintenance and management of the interface. In FIG. 2 , protocol layers may be divided into a first layer (L 1 ), a second layer (L 2 ), and a third layer (L 3 ) based on the lower three layers of an open system interconnection (OSI) model that is a well-known in the art. The first layer (L 1 ) is a physical layer (PHY) providing information transfer service to a higher layer using various radio transmission techniques. The physical layer is linked to a medium access control (MAC) layer located above it. Data travels between the MAC layer and the PHY layer via a transport channel. The second layer (L 2 ) comprises the MAC layer, a radio link control (RLC) layer, a broadcast/multicast control (BMC) layer and a packet data convergence protocol (PDCP) layer. The MAC layer of the second layer (L 2 ) provides assignment service of a MAC parameter for assigning and re-assigning a radio resource. It is connected to an upper layer, i.e., the radio link control (RLC) layer by a logical channel. Various logical channels may be provided according to the type information transmitted. Generally, when control plane information is transmitted, a control channel is used. When user plane information is transmitted, a traffic channel is used. The RLC layer of the second layer (L 2 ) supports the transmission of reliable data and is responsible for the segmentation and concatenation of RLC service data units (SDUs) delivered from a higher layer. The size of the RLC SDU is adjusted for the processing capacity in the RLC layer and a header is appended to form an RLC protocol data unit (PDU) for delivery to the MAC layer. The formed units of service data and protocol data delivered from the higher layer are stored in an RLC buffer of the RLC layer. The RLC services are used by service-specific protocol layers on the user plane, namely a broadcast/multicast control (BMC) protocol and a packet data convergence protocol (PDCP), and are used by a radio resource control (RRC) layer for signaling transport on the control plane. The broadcast multicast control (BMC) layer schedules a cell broadcast (CB) message delivered from the core network 200 and enables the cell broadcast message to be broadcast to the corresponding UEs 10 in the appropriate cell. Header information, such as a message identification, a serial number, and a coding scheme, is added to the cell broadcast message to generate a broadcast/multicast control message for delivery to the RLC layer. The RLC layer appends RLC header information and transmits the thus-formed message to the MAC layer via a common traffic channel (CTCH) as a logical channel. The MAC layer maps the CTCH to a forward access channel (FACH) as a transport channel. The transport channel is mapped to a secondary common control physical channel (SCCPCH) as a physical channel. The packet data convergence protocol (PDCP) layer serves to transfer data efficiently over a radio interface having a relatively small bandwidth. The PDCP layer uses a network protocol such as IPv4 or IPv6 and a header compression technique for eliminating unnecessary control information utilized in a wire network. The PDCP layer enhances transmission efficiency since only the information essential to the header is included in the transfer. The radio resource control (RRC) layer handles the control plane signaling of the network layer (L 3 ) between the UEs 10 and the UTRAN 100 and controls the transport and physical channels for the establishment, reconfiguration, and release of radio bearers. A radio bearer (RB) is a service provided by a lower layer, such as the RLC layer or the MAC layer, for data transfer between the UE 10 and the UTRAN 100 . Establishment of an RB determines the regulating characteristics of the protocol layer and channel needed to provide a specific service, thereby establishing the parameters and operational methods of the service. When a connection is established to allow transmission between an RRC layer of a specific UE 10 and an RRC layer of the UTRAN 100 , the UE 10 is said to be in the RRC-connected state. Without such connection, the UE 10 is in an idle state. For reference, the RLC layer can be included in the user plane or the control plane according to a layer connected above it. For example, when the RLC layer is part of the control plane, data is received from the RRC layer. In other cases, the RLC layer is part of the user plane. A particular radio bearer used for exchanging an RRC message or an NAS message between a terminal and the UTRAN 100 is referred to as a signaling radio bearer (SRB). When the SRB is set up between a particular terminal and the UTRAN 100 , there can exist an RRC connection between the terminal and the UTRAN 100 . The terminal which forms the RRC connection is said to be in the RRC connected mode (or state), and the terminal which does not form the RRC connection is said to be in the idle mode (or state). If the terminal is in the RRC connected mode, the RNC checks and manages a location of the corresponding terminal according to a cell unit. When the terminal gets into the RRC connected mode, the RNC sends a signaling message to the UTRAN 100 . The terminal in the RRC connected mode may be further divided into a CELL_DCH mode, a CELL_PCH mode, a URA_PCH mode and a CELL_FACH mode. For those UEs in the idle state, URA_PCH mode, or CELL_PCH mode, a discontinuous reception (DRX) method is employed to minimize power consumption. In the DRX method, a Secondary Common Control Physical Channel (SCCPCH), onto which a Paging Indicator Channel (PICH) and a Paging Channel (PCH) is mapped, is discontinuously received by the UE 10 . During the time periods when the PICH or the SCCPCH is not received, the UE is in a sleep mode state. The UE wakes up at every DRX cycle length (discontinuous receiving period length) to receive a paging indicator (PI) of the PICH. The terminal in the RRC connected mode may additionally form a signaling connection with the core network 200 . This signaling connection refers to a path for exchanging a control message between the terminal and the core network 200 . The RRC connected mode refers to a connection between the terminal and the UTRAN 100 . Accordingly, the terminal informs the core network 200 of its location or requests a particular service using the signaling connection. To obtain the signaling connection, he terminal should be in the RRC connected mode. Hereafter, Multimedia Broadcast/Multicast Service (MBMS or MBMS service) will be described. MBMS refers to a method of providing streaming or background services to a plurality of UEs 10 using a downlink-dedicated MBMS radio bearer. The MBMS radio bearer may utilize both point-to-multipoint and point-to-point radio bearer services. As the name implies, an MBMS may be carried out in a broadcast mode or a multicast mode. The broadcast mode is transmitting multimedia data to all UEs within a broadcast area, for example the domain where the broadcast area is available. The multicast mode is for transmitting multimedia data to a specific UE group within a multicast area, for example the domain where the multicast service is available. FIG. 3 is a diagram showing procedures of the MBMS service in the multicast mode. Here, the UMTS network is shown providing a specific MBMS service (a first service) using the multicast mode. A terminal (UE 1 ) is also shown receiving the specific service (the first service). When the UMTS network 1 provides a specific MBMS using the multicast mode, UEs 10 to be provided with the service must first complete a subscription procedure establishing a relationship between a service provider and each UE individually. Thereafter, the subscriber UE 10 receives a service announcement from the core network 200 confirming subscription and including, for example, a list of services to be provided. The subscriber UE 10 must “join,” or participate in, a multicast group of UEs receiving the specific MBMS, thereby notifying the core network 200 of its intention to receive the service. Terminating participation in the service is called “leaving.” The subscription, joining, and leaving operations may be performed by each UE 10 at any time prior to, during, or after the data transfer. While a specific MBMS is in progress, on or more service sessions may sequentially take place, and the core network 200 informs the RNC 111 of a session start when data is generated by an MBMS data source and informs the RNC of a session stop when the data transfer is aborted. Therefore, a data transfer for the specific MBMS may be performed for the time between the session start and the session stop, during which time only participating UEs 10 can receive the data. To achieve successful data transfer, the UTRAN 100 receives a notification of the session start from the core network 200 and transmits an MBMS notification to the participating UEs 10 in a prescribed cell to indicate that the data transfer is imminent. The UTRAN 100 uses the MBMS notification to count the number of participating UEs 10 within the prescribed cell. Specifically, the UTRAN 100 can perform a function which counts the number of terminals which expect to receive the specific MBMS service within a specific cell. Through the counting process, it is determined whether the radio bearer providing the specific MBMS service is one for a point-to-multipoint transmission or a point-to-point transmission, or if the radio bearer is not to be set. To select the MBMS radio bearer (RB) for a specific service, the UTRAN 100 sets a threshold value corresponding to the UE 10 count, whereby a low UE count establishes a point-to-point MBMS radio bearer and a high UE count establishes a point-to-multipoint MBMS radio bearer. The radio bearer established is based on whether the participating UEs 10 need to be in the RRC-connected state. When a point-to-point RB is established, all of the participating UEs 10 which expect to receive the service are in the RRC connected state. When a point-to-multipoint RB is established, it is unnecessary for all of the participating UEs 10 which expect to receive the service to be in the RRC connected mode since the point-to-multipoint RB enables reception by UEs in the idle state. Furthermore, based on the counted result, if no terminal wishes to receive the specific MBMS service, the UTRAN 100 does not establish any radio bearer and the MBMS service data is not transmitted. Thus, radio resources may be wasted by establishing the radio bearer even though no terminal desires the service. Also, the UTRAN 100 transmits the MBMS service data received from the core network 200 during one session of the MBMS service using the established radio bearer. In the counting process, the UTRAN 100 has no information on terminals in the RRC idle state. Therefore, if the UTRAN 100 requests a counting of terminals in the RRC idle state, subscribed to a specific MBMS service, the terminals should form the RRC connection with the UTRAN 100 and inform the UTRAN 100 that they would receive the specific MBMS service. However, if a terminal has formed a signaling connection with a Serving GPRS Support Node (SGSN), the SGSN informs the UTRAN 100 of MBMS related information of the terminal. The information includes a list of MBMS services the terminal has subscribed to. Therefore, because the UTRAN 100 can recognize whether terminals have subscribed to a specific MBMS service, the terminals do not respond to the counting request of the UTRAN 100 . Furthermore, terminals which have not formed a signaling connection with the SGSN, but are in the RRC connected state, can inform the UTRAN 100 of the MBMS services they have subscribed to when forming the RRC connection with the UTRAN 100 . Accordingly, the UTRAN 100 can count the number of terminals desiring to receive the specific MBMS service without any response sent by the terminals in the RRC connected state. The UTRAN 100 can perform the counting process not only at the beginning of the MBMS service but also in the middle of one session of the MBMS service. This is necessary since the number of terminals expecting to receive the MBMS service in a cell is variable because of events such as a terminal moving to another cell during the MBMS session in process, turning off power, or stopping the subscription of the MBMS service. Accordingly, in order to establish the radio bearer efficiently, the UTRAN 100 can perform the counting process during the MBMS session in process. However, in this counting process, the following problems may occur when counting the number of terminals desiring to receive the MBMS service and establishing the radio bearer. A terminal is able to get information related to several MBMS services through the MBMS service announcement so that it may subscribe to a plurality of MBMS services. If the terminal stays in the RRC connected state, the UTRAN 100 can recognize all the MBMS services the terminal has subscribed to. Thus, when the UTRAN 100 performs the counting process for a certain MBMS service, a terminal in the RRC connected state and subscribed to the corresponding MBMS service, is added in the number of terminals desiring the MBMS service to be provided. When the terminal simultaneously receives services it has subscribed to, an event may occur when several services among the subscribed services may not be received due to the terminal's limited capability. For example, a terminal having subscribed to two MBMS services has one SCCPCH through which the MBMS services can be received. If each MBMS service is transmitted through different SCCPCHs, respectively, using the point-to-multipoint RB in a cell, the terminal can receive only one of the subscribed MBMS services due to its limited capability. However, the UTRAN 100 is unable to recognize that the terminal can not receive one of the MBMS services. As a result, the UTRAN 100 performs the counting process and wrongfully considers the terminal as receiving all two MBMS services it has subscribed to. The UTRAN 100 then establishes a radio bearer based on this information. The error occurring during the counting process causes radio resources to be wasted. As a further example, it is assumed that six terminals are in a cell, and all six terminals have subscribed to an MBMS service A and an MBMS service B. Moreover, all six terminals are in the RRC connected state and can receive services through one SCCPCH. It is also assumed that a threshold value for establishing a point-to-multipoint RB is set at 3 . The MBMS service A is being transmitted through the point-to-multipoint RB in a cell and the UTRAN 100 has received a session start notification for the MBMS service B from the core network 200 . In this case, the UTRAN 100 may determine there are six terminals which expect to receive the MBMS service B and thus establish the point-to-multipoint RB. However, if an SCCPCH different from an SCCPCH used for transmitting the MBMS service A is used for transmitting the MBMS service B, then the six terminals may receive only one of the MBMS services A and B due to the their limited capabilities. Thus, either the MBMS service A or the MBMS service B is received according to a user's selection. A situation may occur where five terminals determine to receive the MBMS service A and one terminal determines to receive the MBMS service B. Accordingly, since there is only one terminal desiring to receive the MBMS service B, the UTRAN 100 should establish the point-to-point RB because the number terminals desiring the MBMS service B is below the threshold value of 3 . However, the related art UTRAN 100 establishes the point-to-multipoint RB with respect to the MBMS service B because it wrongfully counts all six terminals for receiving the service B. The error occurs because the UTRAN 100 has no information regarding the capabilities of the terminals, service selection of the user, or the like. Unfortunately, the resources required for establishing the point-to-multipoint RB corresponds to several times that of the point-to-point RB. As a result, due to the error occurring during the counting process in the related art, radio resources are wasted and the number of services to be simultaneously provided in one cell is limited. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention relates to a method and system for transmitting and receiving a service in a wireless communication system. Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, the present invention is embodied in a method and a system. In a preferred embodiment of the invention, a method for receiving a service in a mobile terminal from a network in a wireless communication system comprises establishing a first radio bearer and receiving a service associated with the first radio bearer, receiving second radio bearer setup information from the network to establish a second radio bearer for receiving a service associated with the second radio bearer, prioritizing between the service associated with the first radio bearer and the service associated with the second radio bearer, determining whether the mobile terminal is able to receive a higher prioritized service if the second radio bearer is established, and retaining the higher prioritized service. The mobile terminal is in an RRC connected mode. The first radio bearer is a point-to-multipoint radio bearer and the second radio bearer is a point-to-point radio bearer. Alternatively, the first radio bearer is a point-to-point radio bearer and the second radio bearer is a point-to-multipoint radio bearer. In a detailed aspect, retaining the higher prioritized service comprises rejecting the establishment of the second radio bearer. In another aspect, retaining the higher prioritized service comprises requesting release of a lower prioritized service to the network. The method further comprises informing the network of the higher priority service. In another aspect, the method comprises informing the network of a service the mobile terminal is able to receive. Alternatively, the method comprises informing the network of a service the mobile terminal is unable to receive. In a further aspect, the method comprises transmitting priority information to a UTRAN. The method may also comprise transmitting priority information to a core network. In another embodiment of the invention, a method for transmitting a service from a network to a mobile terminal in a wireless communication system comprises establishing a first radio bearer and transmitting a service associated with the first radio bearer, transmitting second radio bearer setup information to the mobile terminal to establish a second radio bearer for transmitting a service associated with the second radio bearer, receiving from the mobile terminal priority information regarding a higher prioritized service between the service associated with the first radio bearer and the service associated with the second radio bearer, and transmitting the higher prioritized service according to the priority information received from the mobile terminal. The mobile terminal is in an RRC connected mode. The first radio bearer is a point-to-multipoint radio bearer and the second radio bearer is a point-to-point radio bearer. Alternatively, the first radio bearer is a point-to-point radio bearer and the second radio bearer is a point-to-multipoint radio bearer. In a detailed aspect, the priority information comprises information rejecting the establishment of the second radio bearer. In another aspect, the priority information comprises information requesting release of a lower prioritized service. The method may further comprise performing a counting process for the service associated with the second radio bearer. In another aspect, the method comprises receiving information of a service the mobile terminal is able to receive. Alternatively, the method comprises receiving information of a service the mobile terminal is unable to receive. In a further aspect, the priority information is received by a UTRAN. Otherwise, the priority information may be received by a core network. In another embodiment of the invention, a method for receiving a service in a wireless communication system comprises establishing a first radio bearer and receiving a first service associated with the first radio bearer receiving second radio bearer setup information from a network to establish a second radio bearer for receiving a second service associated with the second radio bearer, determining whether a mobile terminal can receive both the first service and the second service, determining which service to receive if the mobile terminal cannot receive both the first service and the second service, and informing the network of a service the mobile terminal expects to receive based on the service determined to be received. In one aspect, determining whether the mobile terminal can receive both the first service and the second service comprises comparing the second radio bearer setup information with first radio bearer setup information. Furthermore, determining whether the mobile terminal can receive both the first service and the second service may also comprise comparing the second radio bearer setup information with the mobile terminal's receiving capability. In another aspect, a UTRAN performs a counting process for the second service associated with the second radio bearer based on information received from the mobile terminal. In another embodiment of the invention, a method for receiving a service in a wireless communication system comprises establishing a first radio bearer and receiving a first service associated with the first radio bearer, receiving second radio bearer setup information from a network to establish a second radio bearer for receiving a second service associated with the second radio bearer, determining whether a mobile terminal can receive both the first service and the second service, determining which service to receive if the mobile terminal cannot receive both the first service and the second service, and informing the network of a service the mobile terminal is not able to receive based on the service determined to be received. In one aspect, determining whether the mobile terminal can receive both the first service and the second service comprises comparing the second radio bearer setup information with first radio bearer setup information. Furthermore, determining whether the mobile terminal can receive both the first service and the second service may also comprise comparing the second radio bearer setup information with the mobile terminal's receiving capability. In another aspect, a UTRAN performs a counting process for the second service associated with the second radio bearer based on information received from the mobile terminal. The counting process is compensated when the mobile terminal informs the UTRAN of the service the mobile terminal is not able to receive. In another embodiment of the invention, a method for receiving a service in a mobile terminal in a wireless communication system comprises subscribing to a plurality of services, prioritizing between the plurality of services, transmitting priority information to a core network, and transmitting the priority information from the core network to a UTRAN, wherein the UTRAN performs a counting process using the priority information when each of the plurality of services is started or in progress. Transmitting priority information to the core network comprises transmitting an identifier of each service in an arranged order according to the priority of the service. Alternatively, transmitting priority information to the core network may comprise appending a priority value of each service to an identifier of each service, and transmitting the identifier of each service to the core network. According to one aspect of the present invention, the UTRAN determines that the mobile terminal will receive the services in the order from the highest priority service to the lowest priority service as determined by the mobile terminal. According to another aspect of the present invention, the method comprises transmitting mobile terminal receiving capability information to the core network and transmitting the mobile terminal receiving capability information from the core network to the UTRAN, wherein the UTRAN performs a counting process using the mobile terminal receiving capability information when each of the plurality of services is started or in progress. In one aspect, the UTRAN determines what services the mobile terminal will receive according to a limitation in the mobile terminal's receiving capability. In another embodiment of the invention, a method for receiving a service in a mobile terminal in a wireless communication system comprises subscribing to a plurality of services, prioritizing between the plurality of services, and transmitting priority information to a UTRAN, wherein the UTRAN performs a counting process using the priority information when each of the plurality of services is started or in progress. Transmitting priority information to the UTRAN comprises transmitting an identifier of each service in an arranged order according to the priority of the service. Alternatively, transmitting priority information to the UTRAN comprises appending a priority value of each service to an identifier of each service, and transmitting the identifier of each service to the UTRAN. According to one aspect of the present invention, the UTRAN determines that the mobile terminal will receive the services in the order from the highest priority service to the lowest priority service as determined by the mobile terminal. According to another aspect of the present invention, the method comprises transmitting mobile terminal receiving capability information to the UTRAN, wherein the UTRAN performs a counting process using the mobile terminal receiving capability information when each of the plurality of services is started or in progress. In one aspect, the UTRAN determines what services the mobile terminal will receive according to a limitation in the mobile terminal's receiving capability. It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. | 20050104 | 20091124 | 20050901 | 68271.0 | 0 | MANOHARAN, MUTHUSWAMY GANAPATHY | RADIO COMMUNICATION SYSTEM AND METHOD | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,029,759 | ACCEPTED | Low dust wall repair compound | A wall repair compound useful for filling and repairing cracks, holes, and other imperfections in a wall surface includes a conventional filler material, a conventional binder material, and a dust reducing additive which reduces the quantity of airborne dust particles generated when sanding the hardened joint compound. Airborne dust reducing additives include oils, surfactants, solvents, waxes, and other petroleum derivatives. The additive can be added to conventional ready-mixed joint compounds and to setting type joint compounds. A method of reducing the quantity of airborne dust generated when sanding a fully hardened joint compound includes mixing a sufficient quantity of the dust reducing additive with the joint compound prior to when the joint compound has been applied to the wall. | 1. A joint compound composition comprising a filler, a binder, a thickener and one or more synthetic polymeric waxes, wherein each of said one or more waxes is at least slightly soluble in water and forms a solid at room temperature. 2. The composition of claim 1 wherein said joint compound comprises at least 50 wt % of said filler on a dry basis. 3. The composition of claim 1 wherein each of said polymeric waxes has an average melting temperature from about 80° F. (27° C.) to 150° F. (66° C.). 4. The composition of claim 1 wherein said binder comprises a latex binder. 5. The composition of claim 1 wherein said wax is present in a concentration of about 0.1 wt % to about 8.0 wt % on a dry basis. 6. The composition of claim 1 wherein said filler comprises at least one of calcium carbonate, calcium sulfate dihydrate or calcium sulfate hemihydrate. 7. The composition of claim 1 wherein at least one of said synthetic waxes comprises polyethylene glycol. 8. The composition of claim 1 wherein said polymeric wax is present in a concentration of about 0.5 wt % to about 6.0 wt % on a dry basis. 9. A method of finishing ajoint between adjacent gypsum board panels comprising applying a composition to said joint, said composition comprising water, a filler, a binder, a thickener and at one or more synthetic polymeric waxes, each of which is at least slightly soluble in water and forms a solid at room temperature. 10. The method of claim 9 further comprising taping said joint. 11. The method of claim 9 further comprising allowing said composition to dry and sanding said joint. 12. A joint compound composition comprising a filler, a binder, and wax. 13. A joint compound composition as defined in claim 12, wherein the wax comprises a polymeric wax. 14. A joint compound composition as defined in claim 12, wherein the wax comprises a synthetic wax. 15. A joint compound composition as defined in claim 14, wherein the wax is soluble in water. 16. A joint compound composition as defined in claim 12, wherein the wax comprises paraffin wax. 17. A joint compound composition as defined in claim 12, wherein the wax comprises from about 1.5% to about 6% of the joint compound total wet weight. 18. A joint compound composition as defined in claim 12, wherein the filler is selected from the group consisting of calcium carbonate, calcium sulfate dihydrate, and calcium sulfate hemihydrate. 19. A joint compound composition as defined in claim 18, wherein the filler comprises from about 25% to about 95% of the joint compound total wet weight. 20. A joint compound composition as defined in claim 12, wherein the binder is selected from the group consisting of acrylic resins and vinyl acetate copolymers. 21. A joint compound composition as defined in claim 20, wherein the binder comprises from about 1% to about 45% of the join compound total wet weight. | CROSS REFERENCE TO RELATED APPLICATIONS This application is a divisional of U.S. application Ser. No. 10/788,053, filed Feb. 26, 2004, which is a divisional of U.S. application Ser. No. 09/821,392, filed Mar. 29, 2001, issued as U.S. Pat. No. 6,733,581, which is a continuation-in-part of U.S. application Ser. No. 09/208,782, filed Dec. 10, 1998, issued as U.S. Pat. No. 6,358,309. FIELD OF THE INVENTION The present invention relates generally to wall repair compounds such as joint compounds, spackling compounds, and the like used to repair imperfections in walls or fill joints between adjacent wallboard panels. More particularly, the present invention relates to such a wall repair compound that includes an additive which reduces the quantity of airborne dust generated when the hardened compound is sanded. BACKGROUND OF THE INVENTION Interior walls of residential and commercial buildings are often constructed using gypsum wallboard panels, often referred to simply as “wallboard” or “drywall.” The wallboard panels are attached to studs using nails or other fasteners, and the joints between adjacent wallboard panels are filled using a specially formulated adhesive composition called joint compound to conceal the joints. The procedure for concealing the joint between adjacent wallboards, and thereby producing a smooth seamless wall surface, typically includes applying soft wet joint compound within the joint or seam formed by the abutting edges of adjacent wallboard panels using a trowel or the like. A fiberglass, cloth, or paper reinforcing tape material is then embedded within the wet joint compound, and the compound is allowed to harden. After the joint compound has hardened, a second layer of joint compound is applied over the joint and tape to completely fill the joint and provide a smooth surface. This layer is also allowed to harden. Upon hardening, the joint compound is sanded smooth to eliminate surface irregularities. Paint or a wall covering, such as wall paper, can then be applied over the joint compound so that the joint and the drywall compound are imperceptible under the paint or wall covering. The same joint compound can also be used to conceal defects caused by the nails or screws used to affix the wallboard panels to the studs, or to repair other imperfections in the wallboard panels, so as to impart a continuously smooth appearance to the wall surface. Various drywall joint compounds are known for concealing joints between adjacent wallboard panels. Conventional joint compounds typically include a filler material and a binder. Conventional fillers are calcium carbonate and calcium sulfate dihydrate (gypsum), which are used in “ready mixed” joint compounds, and calcium sulfate hemihydrate (CaSO4-½ H2O; also referred to as plaster of Paris or calcined gypsum), which is used in “setting type” joint compounds. Ready mixed joint compounds, which are also referred to as pre-mixed or drying type joint compounds, are pre-mixed with water during manufacturing and require little or no addition of water at the job site. Such joint compounds harden when the water evaporates and the compound dries. Setting type joint compounds, on the other hand, harden upon being mixed with water, thereby causing dihydrate crystals to form and interlock. Setting type joint compounds are therefore typically supplied to the job site in the form of a dry powder to which the user then adds a sufficient amount of water to give the compound a suitable consistency. The Koltisko, Jr. et al. U.S. Pat. No. 4,972,013 provides an example of a ready-mixed (wet) joint compound including a filler, binder, thickener, non-leveling agent, and water. The McInnis U.S. Pat. No. 5,277,712 provides an example of a setting (dry mix-type) joint compound including a fine plaster material, such as stucco, a material which imparts internal strength and workability to the joint compound, such as methyl cellulose, and a material for retaining water, such as perlite. Additional examples of joint compounds are provided in the Brown U.S. Pat. No. 4,294,622; the Mudd U.S. Pat. No. 4,370,167; the Williams U.S. Pat. No. 4,454,267; the Struss et al. U.S. Pat. No. 4,686,253; the Attard et al. U.S. Pat. No. 5,336,318; and the Patel U.S. Pat. No. 5,779,786. A spackling compound is disclosed in the Deer et al. U.S. Pat. No. 4,391,647. While joint compound and spackling compound do many of the same things and are both smeared onto walls to hide flaws, spackling compound is generally lighter, dries more quickly, sands more easily, and is more expensive than joint compound. For simplicity, joint compound, drywall joint compound, and like expressions are used throughout this specification to refer to wall repair compounds generally, including joint compound and spackling compound. Sanding hardened joint compound can be accomplished using conventional techniques including power sanders, abrasive screens, or manual sanders which consist simply of a supporting block and a piece of abrasive paper mounted on the block. Sanding the joint compound, however, produces a large quantity of an extremely fine powder which tends to become suspended in air for a long period of time. The airborne particles settle on everything in the vicinity of the sanding site and usually require several cleanings before they can all be collected, thereby making cleanup a time consuming and tedious process. The particles may also present a serious health hazard to the worker. The airborne particles are highly pervasive and can enter the nose, lungs, eyes and even the pores of the skin. Results from a study conducted by the National Institute for Occupational Safety and Health found that dust levels in 9 out of 10 test samples taken at test sites where workers were finishing drywall with joint compound were higher than the limits set by OSHA. The report also said that the dust may not be safe even when it falls within the recommended limits. In addition, the study found that several dust samples contained silica and kaolin, a material found in clay, which have been found to cause permanent lung damage. The report recommended the use of local exhaust ventilation, wet finishing techniques, and personal protective equipment to reduce the hazard. In an effort to reduce the dust generation and cleanup problems associated with the sanding of conventional joint compounds, various attempts have been made to develop specialized dustless drywall sanders. The Matechuk U.S. Pat. No. 4,782,632, for example, discloses a drywall sander including a sanding head designed to minimize the release of dust and further discloses attaching a vacuum cleaner to the sanding head to collect the dust. The Krumholz U.S. Pat. No. 4,955,748 discloses a dustless drywall finisher which uses a wet sponge to prevent the formation of airborne dust. Dust remains a problem, however, when conventional power sanders or hand sanders are used to sand conventional joint compounds. A need therefore exists for a joint compound that can be sanded using conventional sanders without producing a large quantity of fine particles capable of becoming suspended in air. It would also be desirable to provide an additive that could be mixed with commercially available joint compounds to inhibit the formation of airborne particles during the sanding procedure without otherwise interfering with the properties of the joint compound. SUMMARY OF THE INVENTION The present invention provides a wall repair compound, such as a joint compound or spackling compound which, when sanded, generates a lower lever of airborne particles than conventional joint compounds. More specifically, the present invention provides a wall repair compound which includes a dust reducing additive. Generally, the wall repair or joint compound includes a sufficient amount of the dust reducing additive so that when the joint compound is tested as described in this specification, it generates a lower quantity of airborne dust than the joint compound would produce if it did not contain the dust reducing additive. The dust reducing additive can be pre-mixed into the wet joint compound prior to application or applied as a coating to the hardened joint compound after application. Generally, the dust reducing additive reduces the quantity of airborne dust particles having a size of less than or equal to 10 microns to less than 50% of the quantity that would be generated without the additive. In certain embodiments, the quantity of airborne dust particles is reduced by at least 75% compared to a mixture without the additive. Most preferably, the level of airborne dust is reduced by more than 90%. In one embodiment, the quantity of airborne particles generated by sanding the hardened joint compound of the present invention was less than 50 mg/m3 and, in certain other embodiments, less than about 15 mg/m3. The quantity of airborne particles generated by sanding the hardened joint compound is preferably less than 5 mg/m3. It is desirable that the dust reducing additive serve to suppress the formation of airborne particles without significantly interfering with the desired characteristics of the joint compound. Suitable dust reducing additives include oils, such as mineral oils, vegetable oils and animal oils, surfactants, oleoresinous mixtures, pitch, solvents, paraffins, waxes, including natural and synthetic wax, glycols, and other petroleum derivatives. Other materials which do not fit within the above categories may also effectively reduce the quantity of dust generated by a joint compound. The joint compound formulations include a conventional filler material and a binder material, such as a resin. The joint compound can also include a surfactant, which may or may not serve to suppress airborne dust formation, and a thickening agent. Prior to hardening, the joint compound preferably includes a sufficient amount of water to form a mud-like spreadable material which can be applied to the wall surface. The present invention further provides an additive which can be admixed with conventional joint compounds to reduce the quantity of dust generated during sanding. The dust reducing additive can be used with both drying type (i.e. ready mixed) or setting type joint compounds. The present invention also provides a method of reducing the quantity of airborne dust generated by sanding a fully hardened joint compound which includes mixing a sufficient quantity of a dust reducing additive with the joint compound prior to applying the joint compound to a wall surface. It is also desirable that the present invention provide a joint compound having good plasticity, water retention, cohesiveness, viscosity stability, resistance to cracking, sandability, minimal shrinkage, good paint adherence, light weight, low cost, good hardening properties, and other properties comparable to those offered by conventional joint compounds. These and other features and advantages of the invention will be apparent to those skilled in the art when considered in view of the following detailed description. BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a perspective view of the testing enclosure used to measure the quantity of airborne dust generated by sanding the wall repair compounds of the present invention. DETAILED DESCRIPTION According to the present invention, there are provided compositions suitable for filling and repairing cracks, holes, or other imperfections in a wall surface, such as the joints between adjacent wallboard panels. The compositions of the present invention include a dust reducing additive combined with conventional wall repair compound materials including a filler and a binder to form a low dust wall repair compound. Dust reducing additive refers to any ingredient capable of preventing, minimizing, suppressing, reducing, or inhibiting the formation of particles capable of becoming airborne. The expressions “airborne particles” or “airborne dust particles” refer to fine particles generated during the sanding or abrading of the compound which are capable of being carried by or through the air. Wall repair compound refers generally to compositions useful for filling and repairing cracks, holes, and other imperfections in surfaces such as drywall, wood, plaster, and masonry. Wall repair compounds include interior finishing and patch compounds such as joint compound, spackling compound, wood fillers, plasters, stucco, and the like. The joint compound can also include a thickener, and other materials found in conventional joint compounds. Any conventional filler material can be used in the present invention. Suitable fillers include calcium carbonate (CaCO3) and calcium sulfate dihydrate (CaSO4-2H2O commonly referred to as gypsum) for ready mixed type joint compounds, and calcium sulfate hemihydrate (CaSO4-½ H2O) for setting type joint compounds. The joint compound can also include one or more secondary fillers such as glass micro bubbles, mica, perlite, talc, limestone, pyrophyllite, silica, and diatomaceous earth. The filler generally comprises from about 25% to about 95% of the weight of the joint compound based on the total wet weight of the formulation (i.e. including water). More preferably, the filler comprises from about 55% to about 75% of the total wet weight, and most preferably, from about 60% to about 70%. Another ingredient usually present in joint compounds is a binder or resin. Suitable binders include polyvinyl acetate, polyvinyl alcohol, ethylene vinyl acetate co-polymer, vinylacrylic co-polymer, styrenebutadiene, polyacrylamide, other acrylic polymers, other latex emulsions, natural and synthetic starch, and casein. These binders can be used alone or in combination with one another. The amount of binder can range from about 1% to about 45% of the joint compound total wet weight. More preferably, the binder comprises from about 1% to about 20% of the total wet weight, and most preferably, from about 4% to about 14%. Preferred binders are Rhoplex HG 74M and Rhoplex AC 417M acrylic copolymers available from Rohm and Haas, Philadelphia, Pa. A surfactant can also be included in the joint compound formulation, particularly when the dust reducing additive includes an oil. Certain surfactants have also been found to act as dust reducing additives by themselves. A preferred surfactant is Triton X-405, a nonionic surfactant available from Union Carbide Chemicals and Plastics Co. Inc., Danbury, Conn. The surfactant generally comprises less than about 3.5% of the joint compound total wet weight, and preferably less than about 0.25%. Many joint compound formulations also contain a cellulosic thickener, usually a cellulosic ether. Suitable thickeners include methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl hydroxypropyl cellulose, ethylhydroxyethyl cellulose, and sodium carboxymethyl cellulose (CMC). These thickeners can be used alone or in combination with one another. The amount of cellulosic thickener can range from about 0.1% to about 2% by weight of the joint compound. A preferred thickener is hydroxypropyl methyl cellulose available from Dow Chemical Company under the trade designation Methocel. Another ingredient that can be included in the joint compound of the invention is a non-leveling agent. Suitable non-leveling agents include clays such as attapulgus clay, bentonite, illite, kaolin and sepiolite, and clays mixed with starches. Thickeners, such as those described above, can also function as non-leveling agents. To provide a lighter weight joint compound, glass bubbles or a specially treated expanded perlite can be added as described in U.S. Pat. No. 4,454,267. Additional ingredients which can be utilized in the joint compound are preservatives, fungicides, anti-freeze, wetting agents, defoamers, flocculents, such as polyacrylamide resin, and plasticizers, such as dipropylene glycol dibenzoate. In accordance with a characterizing feature of the present invention, the joint compound includes an ingredient which serves to minimize the quantity of airborne particles generated during sanding of the hardened joint compound. The additive generally comprises less than 20% of the joint compound total wet weight. More preferably, the dust reducing additive comprises between about 0.1% and about 10% of the joint compound by wet weight percent and, most preferably, between about 1.5% and about 6%. Many ingredients have been found to effectively reduce the quantity of airborne particles generated when sanding the joint compound including oils such as animal, vegetable, and mineral oils (saturated and unsaturated), and oils derived from petroleum, pitch, natural and synthetic waxes, paraffins, solvents which evaporate slower than water, terpenes, glycols, surfactants, and mixtures thereof A preferred dust reducing additive is a mixture of mineral oil and an unsaturated oil, such as corn oil, comprising from about 1.5% to about 6% of the joint compound total wet weight, and a surfactant comprising from about 0.15% to about 0.40% of the joint compound total wet weight. It has also been found that increasing the level of resin in the joint compound may serve to reduce the level of airborne dust generated during sanding. While the manner by which each additive serves to suppress the formation of particles capable of becoming airborne is not fully understood, some general observations have been made. For example, it was observed that the joint compounds containing a dust reducing additive seemed to produce particles which were larger and heavier than the particles produced by joint compounds without a dust reducing additive. Thus, the dust reducing additive may cause the dust particles to agglomerate or stick together, thereby forming large heavy particles which tend not to become or remain airborne. The invention, however, is not intended to be limited to any particular mechanism. The relative quantity of the various ingredients can vary substantially in accordance with the invention. Table 1 shows the general range of each ingredient for either a setting type joint compound or a ready-mixed type joint compound in its wet condition: TABLE 1 Percent by Weight (Wet) Filler 25-95% Binder 1-45% Thickener <2% Water 2-45% Dust Reducing Additive <20% Test Procedure The test procedure for measuring the quantity of airborne particles generated when sanding the hardened joint compound was as follows. First, each test specimen was prepared according to a specific formulation. The specific formulations for the various joint compounds are described more fully below along with the method used to prepare the specimens. The test specimens were approximately five inches long, one and one-half inches wide, and one quarter of an inch thick (5″ by 1½″ by ¼″). Before sanding, each test specimen was allowed to completely harden for at least twenty four hours at room temperature in an environment where the relative humidity generally ranged from about 25% to about 75%. Referring to FIG. 1, there is shown the test enclosure 2 that was used to sand the test specimens 4a, 4b, 4c and measure the quantity of airborne dust particles generated. The enclosure 2 was a rectangular box six feet high, four feet wide, and two feet wide (6′×4′×2′). The top 6, bottom 8, side 10, and rear walls 12 of the enclosure 2 were constructed of wood, and the front wall 14 was constructed of transparent Plexiglas. A generally triangular access opening 16 located about one foot above the bottom wall 8 was provided in the front wall 14 to allow the individual conducting the test to insert his or her hand and arm into the enclosure and sand the specimen. The access opening 16 had a base dimension of about 7½ inches and a height of about 8½ inches. A movable cover member 18 was provided to allow the enclosure 2 to be completely sealed when sanding was completed. To sand the specimens 4a, 4b, 4c, the cover 18 was arranged in its up position as shown by the solid lines in FIG. 1. When sanding was completed, the cover 18 was pivoted downwardly to completely cover the access opening 16 as shown in phantom 18′. As shown, three specimens 4a, 4b, 4c of joint compound were prepared on a section of wallboard 20 and the section of wallboard 20 was clamped to a mounting block 22 arranged within the enclosure 2. When tested, the specimens were located about twelve inches above the bottom wall 8 of the enclosure. Each specimen was tested individually and after each test, the enclosure was cleaned so that the quantity of airborne dust particles measured less than 0.05 mg/M3. A particle counter 24 for measuring the quantity of airborne particles was mounted in the right side wall about forty eight inches above the center of the specimens 4a, 4b, and 4c. The test specimens were sanded using a model B04552 power palm sander available from Makita Corporation of America, Buford, Ga. The sander included a 42×4 inch pad equipped with a 120 grit mesh sanding screen mounted over a 5×3½×¾ inch open, semi-rigid, non-woven, heavy duty, stripping, backing pad available from Minnesota Mining and Manufacturing Company, St. Paul Minn. Sanding was performed at a sanding speed of approximately 14,000 OPM (orbits per minute) using ordinary sanding pressure. Ordinary sanding pressure is defined as the amount of pressure typically required to sand a hardened joint compound. Sanding pressure, therefore, is the manual pressure typically applied by an ordinary person when sanding a joint compound. It will be recognized that the sanding pressure can vary depending on the hardness of the joint compound. Sanding was continued until the specimen was completely sanded. That is, the entire thickness of the specimen was sanded so that a generally smooth wall surface was produced. Care was taken to ensure that sanding was discontinued before the drywall itself was sanded. The amount of time required to sand each specimen varied depending on the hardness of the joint compound and the sanding pressure. The quantity of airborne dust particles was measured starting from the time sanding was initiated until several minutes after sanding was discontinued. In general, the level of airborne dust was measured until the level decreased to less than 50% of its peak level. The quantity of airborne dust was measured using a DUSTTRAK™ aerosol monitor model 8520 available from TSI Incorporated, St. Paul, Minn. The particle counter measures the number of particles having a size of less than or equal to 10 microns. In the Examples, the peak or highest level of airborne dust measured during the test is presented. Ingredients A summary of the various ingredients used to prepare the joint compounds in each of the Examples is provided below: Fillers Calcium Carbonate—Marble Dust available from ECC International, Sylacauga, Ala. Calcium Sulfate Dihydrate—available from J. T. Baker Chemical Co., Phillipsburg, N.J. Mica—Mica AMC available from Kraft Chemical Co., Melrose Park, Ill. Mica prevents cracks from forming as the joint compound hardens. Kaolin—Aldrich Chemical Co., Milwaukee, Wis. Glass Bubbles—K1 (177 microns—0.14 g/cm3) glass bubbles available from Minnesota Mining and Manufacturing Company, St. Paul, Minn. Glass bubbles improve the sandability of the joint compound and help to form a lighter weight joint compound. Binders Rhoplex HG 74M, Rhoplex HG 74P, Rhoplex AC 417M, Rhoplex 2620, and Rhoplex EC-2848—acrylic resins available from Rohm & Haas, Philadelphia, Penn. Airflex RP-226—vinyl acetate-ethylene copolymer available from Air Products and Chemicals, Inc., Allentown, Penn. Waxes Octowax 321—available from Tiarco Chemical Div., Textile Robber & Chemical Co., Dalton, Ga. Boler 1070—a paraffin wax available from Boler Inc., Wayne Penn. Carbowax 540—synthetic wax available from Union Carbide Corp., Danbury, Conn. Oils Corn Oil—conventional corn oil. A suitable corn oil is available from Eastman Kodak Co., Rochester, N.Y. Linoleic Acid—an unsaturated oil, available from Eastman Kodak Co., Rochester, N.Y. Castor Oil—an unsaturated vegetable oil available from Aldrich Chemical Co., Milwaukee, Wis. Tung Oil—an unsaturated vegetable oil available from Woodworkers Store, Medina, Minn. Mineral Oil—Carnation light mineral oil available from Witco Corporation, Sonneborn Division, New York, N.Y. Surfactants Surfactants were generally included in the joint compound formulations when the dust reducing additive included an oil to help emulsify the oil and combine it with a water based joint compound. Certain surfactants, however, were found to have a dust reducing effect when used by themselves. FC 430—a nonionic surfactant available from Minnesota Mining and Manufacturing Company, Industrial Chemicals, St. Paul, Minn. Triton X-405—a nonionic surfactant (octylphenoxy polyethoxy ethanol) available from Union Carbide Chemicals and Plastics Co. Inc., Danbury, Conn. Variquat B-200—a cationic surfactant (benzyl trimethyl ammonium chloride 60%) available from Sherex Chemical Co. Inc., Dublin, Ohio. Steol KS 460—an anionic surfactant (alkyl ether sulfate sodium salt 60%) available from Stephon Chemical Co., Northfield, Ill. Span 85—a nonionic surfactant (sorbitan trioleate) available from ICI Americas Inc., Wilmington, Del. Tween 80—nonionic surfactant (polysorbate 80) available from ICI Americas Inc., Wilmington, Del. Solvents Isopar M—an aliphatic hydrocarbon available from Exxon Chemical Co., Houston, Tex. Norpar 15—a normal paraffin available from Exxon Chemical Co., Houston, Tex. Heptane—available from Aldrich Chemical Co, Milwaukee, Wis. Isopropanol—available from Aldrich Chemical Co, Milwaukee, Wis. Propylene carbonate—available from Arco Chemical Co., Newton Square, Penn., under the trade designation Arconate HP. Tripropylene glycol methyl ether available from Dow Chemical Co., Midland, Mich. Tripropylene glycol-n-butyl ether available from Dow Chemical Co., Midland, Mich. Ethylene glycol phenyl ether available from Dow Chemical Co., Midland, Mich. D. Limonene—a terpene available from SCM Glidden Organics, Jacksonville, Fla. Exxsol D-110—an aliphatic hydrocarbon available from Exxon Chemical Co., Houston, Tex. Exxate 1300—C13 alkyl acetate available from Exxon Chemical Co., Houston, Tex. Glycerol—available from J. T. Baker Chemical Co, Phillipsburg, N.J. Thickener Methocel 311—hydroxypropyl methylcellulose available from Dow Chemical Co., Midland, Mich. EXAMPLES The invention is illustrated by the following examples which present various embodiments of the invention. In general, the joint compounds were prepared by: (1) mixing the water and thickener, if any, with the binder; (2) adding the dust reducing additive; and (3) adding the fillers, mixing continuously. If the formulation contained a dust reducing additive in the form of an oil and a surfactant, the surfactant was typically added before the oil. More specific procedures used to prepare certain joint compound formulations are described more fully below. Table 2 presents the test results for a control joint compound formulation which did not contain a dust reducing additive, along with the formulation and test results for Examples 1-3, each of which contained a dust reducing additive in the form of a wax. Each formulation is presented by wet weight percent of each ingredient, that is, including water. TABLE 2 WAXES Formulations by Wet Weight Percent Ingredient Control 1 2 3 Calcium carbonate 64.3 61.24 44.0 63.34 Mica 2.7 Kaolin 1.0 2.1 1.04 Glass Bubbles 4.7 6.0 1.73 Rhoplex AC 417 M 10.1 9.8 17.0 Airflex RP-226 5.23 Triton X-405 0.13 0.2 0.16 Stearic Acid 0.75 28% Ammonium 0.38 Hydroxide Water 19.9 16.9 24.17 24.87 Octowax 321 7.13 Boler 1070 7.5 Carbowax 540 3.63 Airborne Dust 72 mg/m3 28 mg/m3 3.5 mg/m3 5 mg/m3 Drying Time 1 day 1 day 1 day 1 day The control formulation included a binder (Rhoplex AC 417 M), fillers (calcium carbonate, kaolin, and glass bubbles), and water. After being allowed to dry for one day, the specimen having the control formulation was sanded and found to produce a peak quantity of airborne dust particles having a size of less than or equal to 10 microns of 72 mg/m3. In Example 1, the formulation includes approximately 7% by weight wax (Octowax 321) which reduced the quantity of airborne dust to 28 mg/M3. In Example 2, the secondary fillers mica and kaolin have been replaced by glass bubbles, and a paraffin wax (Boler 321) was added. The quantity of dust generated by the resulting formulation was reduced to 3.5 mg/M3. The formulation of Example 2 was prepared by combining the wax and stearic acid and heating them to 170° F. until a clear liquid was formed. Approximately half of the water was then heated to 170° F. and added to the ammonium hydroxide. The wax-stearic acid mixture was then combined with the water-ammonium hydroxide mixture, and this mixture was cooled to room temperature while mixing continuously. In turn, the Rhoplex AC 417M, the Triton X-405, the remaining quantity of water, the calcium carbonate, and the glass bubbles were added and mixed to produce a uniform mixture. The joint compound formulation in Example 3 contains a vinyl acetate binder (Airflex RP-226) and a wax (Carbowax 540—polyethylene glycol). This joint compound formulation exhibited a dust level of 5 mg/m3. Carbowax is synthetic wax which is soluble or miscible in water. While paraffins and Carbowax are both considered waxes, they are believed to represent dissimilar waxes. Table 3A presents the formulations and test results for Examples 4-9, each of which contains one oil and a surfactant which serve to suppress the formation of airborne dust particles during sanding. TABLE 3A OILS Formulations by Wet Weight Percent Ingredient 4 5 6 7 8 9 Calcium Carbonate 54.94 54.72 54.72 55.15 56.41 56.6 Glass Bubbles 8.9 10.8 10.8 8.55 8.25 6.32 Rhoplex AC 417M 15.63 15.57 15.57 15.69 25.77 26.31 Triton X-405 0.39 0.39 0.39 0.39 0.21 0.21 Water 15.5 15.44 15.44 15.56 6.19 6.32 Corn oil 4.64 Linoleic acid 3.08 3.08 Castor oil 4.66 Mineral oil 3.17 Tung oil 4.24 Airborne Dust 2.3 mg/m3 3.5 mg/m3 45 mg/m3 2.5 mg/m3 7 mg/m3 13 mg/m3 Drying Time 1 day 1 day 30 days 2 days 1 day 2 days In each example, the oil significantly reduced the quantity of airborne particles produced during sanding. It will be noted that Examples 5 and 6 had similar formulations. In Example 5, however, the specimen was permitted to dry for only 1 day and in Example 6, the specimen was permitted to dry for 30 days. By increasing the drying time from 1 day to 30 days, the quantity of airborne dust generated having a size less than or equal to 10 microns increased from 3.5 to 45 mg/M3. It has generally been observed that unsaturated oils, such as unsaturated vegetable oils and linoleic acid, reduce the quantity of airborne particles generated after a short drying time (e.g. 1 day) without significantly affecting the adhesive properties of the joint compound. In addition, the joint compound can be sanded quite easily. After an extended drying time (e.g. 30 days), however, it has been observed that the joint compound becomes more difficult to sand and the quantity of airborne dust particles increases. As shown in Example 8, mineral oil by itself was also found to significantly reduce airborne dust levels after a short drying time. In addition, mineral oil has been found to reduce airborne dust levels over an extended period of time. Mineral oil, however, was found to adversely affect the adhesive properties of the joint compound. Table 3B presents the formulations and test results for Examples 10-15, each of which includes a dust reducing additive comprising a mixture of corn oil and mineral oil, and a surfactant. In each Example, the mineral oil and corn oil were premixed. TABLE 3B OIL MIXTURES Formulations by Wet Weight Percent Ingredient 10 11 12 13 14 15 Calcium Carbonate 68.65 63.69 63.69 58.07 61.05 61.05 Glass Bubbles 4.8 4.8 5.0 5.25 5.25 Mica 3.0 Kaolin 2.4 0.99 0.99 3.0 3.0 Rhoplex AC 417M 11.0 9.9 9.9 Rhoplex HG 74M 15.13 11.0 11.0 Triton X-405 0.15 0.15 0.15 Variquat B-200 0.20 Steol KS-460 0.20 FC 430 0.15 Methocel 311 0.14 Water 11.3 15.5 15.5 18.01 17.0 17.0 Corn oil 0.5 0.99 0.99 0.5 0.5 0.5 Mineral oil 3.0 3.98 3.98 3.0 2.0 2.0 Airborne Dust 5 mg/m3 1.5 mg/m3 5.5 mg/m3 2.5 mg/m3 10 mg/m3 7 mg/m3 Drying Time 1 day 1 day 19 days 4 days 4 days 4 days The combination of mineral oil and an unsaturated oil, such as linoleic acid or corn oil which contains some linoleic acid, was found to be a low dust additive that did not significantly adversely affect the adhesive properties of the joint compound and also reduced airborne dust levels over an extended period of time. Examples 11 and 12 have similar formulations but in Example 12, the drying time was increased to 19 days. As shown, the quantity of dust generated after 19 days increased only slightly. Thus, the dust reducing capability of the corn oil—mineral oil mixture remained much more stable over time than the formulations including linoleic acid presented in Examples 5 and 6. Example 13 shows that significant dust reduction is also achieved when using a combination additive of corn oil and mineral oil in a joint compound that contains a thickener (i.e. Methocel 311). Example 13 was prepared by premixing the Methocel 311 with the water until a clear liquid was formed. The surfactant FC 430 and resin Rhoplex HG 74M were then added. Next, the mineral oil and corn oil were premixed and added to the other ingredients, mixing continuously. The calcium carbonate and glass bubbles were then added. The formulations of the joint compounds in Examples 14 and 15 were similar but Example 14 included a cationic surfactant (Variquat B-200) and Example 15 included an anionic surfactant (Steol KS-460). In both examples, the mixture of corn oil and mineral oil together with the surfactant significantly reduced the quantity of airborne dust generated. Tables 4A and 4B present the formulations and test results for Examples 16-28. These examples demonstrate the dust reducing effect of various solvents. TABLE 4A SOLVENTS Formulation by Wet Weight Percent Ingredient 16 17 18 19 20 21 Calcium Carbonate 61.18 69.69 63.12 60.18 48.90 60.49 Glass Bubbles 3.81 2.97 3.62 3.91 7.96 6.03 Kaolin 1.0 Rhoplex AC 417 13.09 10.22 12.44 13.43 30.8 Rhoplex HG 74M 12.0 Triton X-405 0.24 0.19 0.22 0.25 0.15 FC 430 0.12 Water 18.02 14.07 17.12 18.48 7.7 16.86 Propylene carbonate 3.66 Tripropylene glycol methyl ether 2.86 Tripropylene glycol-n butyl ether 3.48 Ethylene glycol phenyl ether 3.75 D. limonene 4.52 Glycerol 3.47 Airborne Dust 14 mg/m3 7.5 mg/m3 3.5 mg/m3 4.5 mg/m3 5 5 mg/m3 19.5 mg/m3 Drying Time 2 days 3 days 2 days 2 days 1 day 1 day TABLE 4B SOLVENTS Formulations by Wet Weight Percent Ingredient 22 23 24 25 26 27 28 Calcium carbonate 69.95 69.95 68.31 68.31 70.69 68.65 69.95 Mica 3.0 3.0 3.0 3.0 Kaolin 2.4 2.4 2.4 2.4 Glass Bubbles 3.1 3.1 2.86 Rhoplex AC 417 M 7.0 7.0 10.6 10.6 9.82 11.0 7.0 Triton X-405 0.15 0.15 0.19 0.19 0.18 0.15 0.15 Water 14.0 14.0 14.6 14.6 13.5 11.3 14.0 Heptane 3.5 Isopropanol 3.5 Isopar M 3.2 3.2 Norpar 15 2.95 Exxsol D-110 3.5 Exxate 1300 3.5 Airborne Dust 105 mg/m3 160 mg/m3 7.5 mg/m3 110 mg/m3 27 mg/m3 15 mg/m3 12.8 mg/m3 Drying Time 1 day 1 day 1 day 5 days 5 days 1 day 1 day As shown in Examples 22 and 23, not all solvents are effective at reducing the quantity of airborne dust. In addition, Examples 24 and 25 demonstrate that an additive may be effective at reducing the quantity of dust generated for a given period of time, but that the level of dust will increase over time as the additive evaporates. Such a formulation may be desirable since the additive, depending on its volatility, can provide dust reduction for a predetermined period of time but will dissipate from the joint compound, thereby leaving a joint compound having properties similar to joint compounds without any dust reducing additive. Table 5 presents the test results for Examples 29-33 which show the level of airborne dust generated by formulations containing different surfactants. TABLE 5 SURFACTANTS Formulations by Wet Weight Percent Ingredient 29 30 31 32 33 Calcium 63.91 61.05 61.05 62.98 62.57 Carbonate Kaolin 3.0 3.0 1.03 1.03 Glass 5.01 5.25 5.25 4.02 4.61 Bubbles Rhoplex 11.03 11.0 11.0 11.35 11.28 HG 74M Water 17.04 17.0 17.0 17.53 17.43 Triton X-405 3.01 Variquat 2.7 B-200 Steol 2.7 KS-460 Span 85 3.09 Tween 80 3.08 Airborne 65 mg/m3 63 mg/m3 42 mg/m3 10 mg/m3 8.5 mg/m3 Dust Drying Time 1 day 4 days 4 days 5 days 5 days It will be noted that in Examples 29-33, the percentage of surfactant added to the joint compound formulations was significantly greater than the quantity used to emulsify the oil in Examples 4-15 which ranged from 0.15 to 0.39 percent by weight. In Example 29, the nonionic surfactant Triton X-405 was found to only slightly reduce the quantity of airborne dust compared to the control formulation. Similarly, in Example 30, the cationic surfactant Variquat B-200 was found to slightly reduce the quantity of airborne dust. In Example 31, the anionic surfactant Steol KS-460 was found to moderately reduce the quantity of airborne dust. It was noted that each of the surfactants in Examples 29-31 was initially solid materials which had to be solubilized in water. In Examples 32 and 33, the surfactants were liquids which did not dry easily. In Example 32, the nonionic surfactant Span 85, which is insoluble in water and has an HLB of 1.8, was found to have a significant dust reducing effect. In Example 33, Tween 80, which is soluble in water and has an HLB of 15, was found to have a significant dust reducing effect. It was therefore observed from Examples 32 and 33 that liquid surfactants which do not dry quickly may themselves serve as effective dust reducing additives. Table 6A presents the formulations and test results of Examples 34-36 which show the effect that different resins had on dust generation. TABLE 6A DIFFERENT RESINS Formulations by Wet Weight Percent Ingredient 34 35 36 Calcium Carbonate 63.45 64.05 62.23 Kaolin 1.0 1.0 2.91 Glass Bubbles 5.5 4.9 5.10 Triton X-405 0.45 0.15 0.15 Water 19.6 19.8 16.5 Rhoplex AC 417M 10.0 Rhoplex HG 74M 10.1 10.68 Corn oil 0.49 Mineral oil 1.94 Airborne Dust 51 mg/m3 81 mg/m3 7 mg/m3 Drying Time 1 day 1 day 1 day Examples 34 and 35 show that Rhoplex AC 417M, a softer resin than Rhoplex HG 74M, may slightly reduce the level of airborne dust. In Example 36, when a dust reducing additive in the form of a corn oil mineral oil mixture was added, the level of dust generated was reduced significantly. Table 6B presents the formulations and test results for Examples 37-39 which contained a high level of resin. TABLE 6B HIGH RESIN LEVELS Formulations by Wet Weight Percent Ingredient 37 38 39 Calcium Carbonate 58.29 61.02 59.61 Kaolin 0.96 1.01 1.02 Glass Bubbles 5.6 1.11 3.41 Triton X-405 0.15 0.16 0.15 Rhoplex HG 74M 35.0 Rhoplex 2620 36.7 Rhoplex EC-2848 35.81 Airborne Dust 30 mg/m3 6 mg/m3* 6.5 mg/m3* Drying Time 1 day 1 day 1 day *test discontinued prior to complete sanding of specimen In each formulation, the quantity of resin was at least 35% by weight. While each of the resins included approximately 50% by weight water, it will be noted that no additional water was added to any of the joint compound formulations. Rhoplex HG 74M is a harder resin than Rhoplex 2620 and EC-2848. The quantity of airborne dust generated for the formulations in Examples 37-39 was found to be less than the quantity of airborne dust generated by the control joint compound formulation in Table 2, but the formulations in Examples 37-39 were found to have objectionable sanding properties. During the testing of the specimens of Examples 38 and 39, only half of the specimen could be sanded due to the rubbery nature of the joint compound. Table 6C presents the formulations and test results for joint compounds containing a vinyl acetate binder (Airflex RP-226). The control formulation contains a small quantity of surfactant which may serve to slightly reduce dust generation but is otherwise free of a dust reducing additive. Example 40 contains a dust reducing additive in the form of a mixture of corn oil and mineral oil which was found to significantly reduce the quantity of dust generated. TABLE 6C VINYL ACETATE BINDER Formulations by Wet Weight Percent Ingredient Control 40 Calcium Carbonate 63.01 62.87 Kaolin 1.03 1.03 Glass Bubbles 2.07 2.45 Triton X-405 0.15 0.15 Water 28.54 24.7 Airflex RP-226 5.2 5.19 Corn Oil 0.52 Mineral Oil 3.09 Airborne Dust 84 mg/m3 3 mg/m3 Drying Time 1 day 1 day Table 7 presents the results for tests conducted by applying the dust reducing additive as a coating to a fully hardened joint compound. In each test, a specimen formed of Light Weight All Purpose Joint Compound available from United States Gypsum Co., Chicago, Ill. was prepared and allowed to harden for 4 days. The hardened joint compound was then saturated with the dust reducing additive and allowed to dry for an additional period of time, either 7 hours or 24 hours. The specimens were then sanded. It was found that when applied as a coating, the dust reducing additive served to significantly reduce the quantity of airborne dust particles generated by the joint compound. TABLE 7 DUST REDUCING ADDITIVE APPLIED AS A COATING Exxsol D 110 Isopar M Airborne Dust 4 mg/m3 7.5 mg/m3 (Dried 7 hours) Airborne Dust 4 mg/m3 27 mg/m3 (Dried 24 hours) Table 8 presents the formulations and test results for joint compound formulations containing a calcium sulfate dihydrate filler material. In Example 41, a significant reduction in airborne dust generation was achieved by including a dust reducing additive comprising a mixture of surfactant, corn oil, and mineral oil in the joint compound. TABLE 8 CALCIUM SULFATE DIHYDRATE FILLER Formulations by Wet Weight Percent Ingredient Control 41 Calcium Sulfate Dihydrate 70.36 66.6 Rhoplex HG 74M 8.64 9.7 Water 21 19.3 Triton X-405 0.2 Corn oil 0.7 Mineral oil 3.5 Airborne Dust 225 mg/m3 20 mg/m3 Drying Time 1 day 1 day Table 9 presents test results obtained using several commercially available joint compounds. TABLE 9 CONVENTIONAL JOINT COMPOUNDS - NO ADDITIVE Conventional Joint Compound Airborne Dust Drying Time All Purpose Joint Compound 100 mg/m3 3 days Light weight All Purpose Joint Compound 155 mg/m3 3 days Gold Bond Pro Form Prof. Lite Joint 90 mg/m3 4 days Compound Easy Sand 90 Setting Joint Compound 280 mg/m3 3 days The first three joint compounds are ready-mixed type joint compounds manufactured and marketed by United States Gypsum Co., Chicago, Ill., and Easy Sand 90 is a setting type joint compound manufactured by National Gypsum Co., Charlotte, N.C. Table 10 shows the effect of adding a dust reducing additive to the conventional joint compounds of Table 9. TABLE 10 CONVENTIONAL JOINT COMPOUND WITH ADDITIVE Formulations by Wet Weight Percent Gold Bond Pro Light weight All Formula Easy Sand 90 All Purpose Joint Purpose Joint Professional Lite Setting Joint Ingredient Compound Compound Joint Compound Compound Joint Compound 96.35 96.35 96.35 67.74 Corn oil 0.5 0.5 0.5 0.51 Mineral oil 3.0 3.0 3.0 4.1 Triton X-405 0.15 0.15 0.15 0.15 Water 27.5 Airborne Dust 2 mg/m3 12 mg/m3 5 mg/m3 13 mg/m3 Drying Time 3 days 1 day 1 day 2 days In each case, a premixed dust reducing additive including corn oil, mineral oil, and the surfactant Triton X-405 was added to each of the conventional joint compounds just prior to preparing the specimens, thereby serving to significantly reduce the quantity of airborne dust generated by sanding the hardened joint compound. Table 11 presents the results obtained when a conventional spackling compound, also referred to as a wall repair compound, was tested. TABLE 11 SPACKLING COMPOUND Control 42 Spakfast 100 95.35 Corn oil 0.5 Mineral oil 4.0 Triton X-405 0.15 Airborne Dust 11 mg/m3 3 mg/m3 Spakfast is a wall repair compound available from Minnesota Mining and Manufacturing Company, St. Paul, Minn. Spakfast contains a high level of resin and exhibits a relatively low level of airborne dust. The level of airborne dust generated, however, was found to be significantly reduced when a dust reducing additive including corn oil, mineral oil, and a surfactant was added to the Spakfast formulation. Thus, according to the present invention, a dust reducing additive can be added to a conventional spackling compound to significantly reduce the quantity of airborne dust generated by the spackling compound. While the formulations of each example has been presented in terms of the weight percent of each ingredient, it will be recognized that the formulations can also be presented in terms of the volume percent of each ingredient. By way of example, Table 12 presents two representative formulations in terms of both percent by weight and percent by volume. TABLE 12 FORMULATION IN WEIGHT VOLUME PERCENT Formulation 1 Formulation 2 Ingredient % by Wt % by Vol % by Wt % by Vol Calcium Carbonate 62.23 25.66 54.73 14.82 Glass Bubbles 5.10 40.55 10.8 59.12 Kaolin 2.91 1.47 1 0.34 Rhoplex HG 74P 10.68 10.8 15.57 11.69 Triton X-405 0.15 0.15 0.15 0.11 Water 16.5 18.37 15.25 11.68 Corn oil 0.49 0.60 0.5 0.42 Mineral oil 1.94 2.40 2 1.82 Since glass bubbles have a low density and calcium carbonate has a high density, the percentage of glass bubbles increases significantly while the percentage of calcium carbonate decreases significantly when converting the formulation from one based on weight to one based on volume. The patents, patent documents, and patent applications cited herein are incorporated by reference in their entirety as if each were individually incorporated by reference. It will be apparent to those of ordinary skill in the art that various changes and modifications may be made without deviating from the inventive concept set forth above. Thus, the scope of the present invention should not be limited to the structures described in this application, but only by the structures described by the language of the claims and the equivalents of those structures. | <SOH> BACKGROUND OF THE INVENTION <EOH>Interior walls of residential and commercial buildings are often constructed using gypsum wallboard panels, often referred to simply as “wallboard” or “drywall.” The wallboard panels are attached to studs using nails or other fasteners, and the joints between adjacent wallboard panels are filled using a specially formulated adhesive composition called joint compound to conceal the joints. The procedure for concealing the joint between adjacent wallboards, and thereby producing a smooth seamless wall surface, typically includes applying soft wet joint compound within the joint or seam formed by the abutting edges of adjacent wallboard panels using a trowel or the like. A fiberglass, cloth, or paper reinforcing tape material is then embedded within the wet joint compound, and the compound is allowed to harden. After the joint compound has hardened, a second layer of joint compound is applied over the joint and tape to completely fill the joint and provide a smooth surface. This layer is also allowed to harden. Upon hardening, the joint compound is sanded smooth to eliminate surface irregularities. Paint or a wall covering, such as wall paper, can then be applied over the joint compound so that the joint and the drywall compound are imperceptible under the paint or wall covering. The same joint compound can also be used to conceal defects caused by the nails or screws used to affix the wallboard panels to the studs, or to repair other imperfections in the wallboard panels, so as to impart a continuously smooth appearance to the wall surface. Various drywall joint compounds are known for concealing joints between adjacent wallboard panels. Conventional joint compounds typically include a filler material and a binder. Conventional fillers are calcium carbonate and calcium sulfate dihydrate (gypsum), which are used in “ready mixed” joint compounds, and calcium sulfate hemihydrate (CaSO 4 -½ H 2 O; also referred to as plaster of Paris or calcined gypsum), which is used in “setting type” joint compounds. Ready mixed joint compounds, which are also referred to as pre-mixed or drying type joint compounds, are pre-mixed with water during manufacturing and require little or no addition of water at the job site. Such joint compounds harden when the water evaporates and the compound dries. Setting type joint compounds, on the other hand, harden upon being mixed with water, thereby causing dihydrate crystals to form and interlock. Setting type joint compounds are therefore typically supplied to the job site in the form of a dry powder to which the user then adds a sufficient amount of water to give the compound a suitable consistency. The Koltisko, Jr. et al. U.S. Pat. No. 4,972,013 provides an example of a ready-mixed (wet) joint compound including a filler, binder, thickener, non-leveling agent, and water. The McInnis U.S. Pat. No. 5,277,712 provides an example of a setting (dry mix-type) joint compound including a fine plaster material, such as stucco, a material which imparts internal strength and workability to the joint compound, such as methyl cellulose, and a material for retaining water, such as perlite. Additional examples of joint compounds are provided in the Brown U.S. Pat. No. 4,294,622; the Mudd U.S. Pat. No. 4,370,167; the Williams U.S. Pat. No. 4,454,267; the Struss et al. U.S. Pat. No. 4,686,253; the Attard et al. U.S. Pat. No. 5,336,318; and the Patel U.S. Pat. No. 5,779,786. A spackling compound is disclosed in the Deer et al. U.S. Pat. No. 4,391,647. While joint compound and spackling compound do many of the same things and are both smeared onto walls to hide flaws, spackling compound is generally lighter, dries more quickly, sands more easily, and is more expensive than joint compound. For simplicity, joint compound, drywall joint compound, and like expressions are used throughout this specification to refer to wall repair compounds generally, including joint compound and spackling compound. Sanding hardened joint compound can be accomplished using conventional techniques including power sanders, abrasive screens, or manual sanders which consist simply of a supporting block and a piece of abrasive paper mounted on the block. Sanding the joint compound, however, produces a large quantity of an extremely fine powder which tends to become suspended in air for a long period of time. The airborne particles settle on everything in the vicinity of the sanding site and usually require several cleanings before they can all be collected, thereby making cleanup a time consuming and tedious process. The particles may also present a serious health hazard to the worker. The airborne particles are highly pervasive and can enter the nose, lungs, eyes and even the pores of the skin. Results from a study conducted by the National Institute for Occupational Safety and Health found that dust levels in 9 out of 10 test samples taken at test sites where workers were finishing drywall with joint compound were higher than the limits set by OSHA. The report also said that the dust may not be safe even when it falls within the recommended limits. In addition, the study found that several dust samples contained silica and kaolin, a material found in clay, which have been found to cause permanent lung damage. The report recommended the use of local exhaust ventilation, wet finishing techniques, and personal protective equipment to reduce the hazard. In an effort to reduce the dust generation and cleanup problems associated with the sanding of conventional joint compounds, various attempts have been made to develop specialized dustless drywall sanders. The Matechuk U.S. Pat. No. 4,782,632, for example, discloses a drywall sander including a sanding head designed to minimize the release of dust and further discloses attaching a vacuum cleaner to the sanding head to collect the dust. The Krumholz U.S. Pat. No. 4,955,748 discloses a dustless drywall finisher which uses a wet sponge to prevent the formation of airborne dust. Dust remains a problem, however, when conventional power sanders or hand sanders are used to sand conventional joint compounds. A need therefore exists for a joint compound that can be sanded using conventional sanders without producing a large quantity of fine particles capable of becoming suspended in air. It would also be desirable to provide an additive that could be mixed with commercially available joint compounds to inhibit the formation of airborne particles during the sanding procedure without otherwise interfering with the properties of the joint compound. | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a wall repair compound, such as a joint compound or spackling compound which, when sanded, generates a lower lever of airborne particles than conventional joint compounds. More specifically, the present invention provides a wall repair compound which includes a dust reducing additive. Generally, the wall repair or joint compound includes a sufficient amount of the dust reducing additive so that when the joint compound is tested as described in this specification, it generates a lower quantity of airborne dust than the joint compound would produce if it did not contain the dust reducing additive. The dust reducing additive can be pre-mixed into the wet joint compound prior to application or applied as a coating to the hardened joint compound after application. Generally, the dust reducing additive reduces the quantity of airborne dust particles having a size of less than or equal to 10 microns to less than 50% of the quantity that would be generated without the additive. In certain embodiments, the quantity of airborne dust particles is reduced by at least 75% compared to a mixture without the additive. Most preferably, the level of airborne dust is reduced by more than 90%. In one embodiment, the quantity of airborne particles generated by sanding the hardened joint compound of the present invention was less than 50 mg/m 3 and, in certain other embodiments, less than about 15 mg/m 3 . The quantity of airborne particles generated by sanding the hardened joint compound is preferably less than 5 mg/m 3 . It is desirable that the dust reducing additive serve to suppress the formation of airborne particles without significantly interfering with the desired characteristics of the joint compound. Suitable dust reducing additives include oils, such as mineral oils, vegetable oils and animal oils, surfactants, oleoresinous mixtures, pitch, solvents, paraffins, waxes, including natural and synthetic wax, glycols, and other petroleum derivatives. Other materials which do not fit within the above categories may also effectively reduce the quantity of dust generated by a joint compound. The joint compound formulations include a conventional filler material and a binder material, such as a resin. The joint compound can also include a surfactant, which may or may not serve to suppress airborne dust formation, and a thickening agent. Prior to hardening, the joint compound preferably includes a sufficient amount of water to form a mud-like spreadable material which can be applied to the wall surface. The present invention further provides an additive which can be admixed with conventional joint compounds to reduce the quantity of dust generated during sanding. The dust reducing additive can be used with both drying type (i.e. ready mixed) or setting type joint compounds. The present invention also provides a method of reducing the quantity of airborne dust generated by sanding a fully hardened joint compound which includes mixing a sufficient quantity of a dust reducing additive with the joint compound prior to applying the joint compound to a wall surface. It is also desirable that the present invention provide a joint compound having good plasticity, water retention, cohesiveness, viscosity stability, resistance to cracking, sandability, minimal shrinkage, good paint adherence, light weight, low cost, good hardening properties, and other properties comparable to those offered by conventional joint compounds. These and other features and advantages of the invention will be apparent to those skilled in the art when considered in view of the following detailed description. | 20050105 | 20060530 | 20050602 | 98278.0 | 2 | EGWIM, KELECHI CHIDI | LOW DUST WALL REPAIR COMPOUND | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,029,780 | ACCEPTED | Error monitoring of partitions in a computer system using supervisor partitions | A method and computer program product for error monitoring partitions in a computer system. A global supervisor mapping (GSM) associates each supervised partition with a supervisor partition that monitors the supervised partition. A partition status buffer (PSB) denotes a status (GOOD, BAD, NOCARE) of the partition. The BAD status denotes that the partition has encountered at least one error that is currently unrepaired. The supervisor partition determines its supervised partition from the GSM and ascertains the status of its supervised partition from the PSB. If the status of the supervised partition is BAD then a recovery procedure is performed by the supervisor partition. The recovery procedure: obtains a grant of access to physical and logical resources of the supervised partition which contains error data of the supervised partition; gathers | 1. A method for error monitoring of a plurality of partitions in a computer system, each partition having its own operating system, said computer system comprising a hypervisor that mediates between or among said operating systems, said method comprising executing a computer readable program code stored on at least one computer usable medium of the computer system, said executing comprising: providing a global supervisor mapping (GSM) that associates each partition with a supervisor partition selected from the plurality of partitions in a one-to-one mapping; providing a partition status buffer (PSB) for each partition of the plurality of partitions, said partition status buffer denoting a status of the partition, said status being selected from a group of statuses that comprises a BAD status and a NOCARE status, said BAD denoting that the partition has encountered at least one error that is currently unrepaired; determining, by a first supervisor partition of the supervisor partitions, the partition that is associated with the first supervisor partition in the global supervisor mapping, said partition associated with the first supervisor partition being denoted as a supervised partition; ascertaining, from the partition status buffer, the status of the supervised partition; if said ascertaining ascertains that the status of the supervised partition is not the BAD status then exiting from the method, else performing a recovery procedure comprising: obtaining by the first supervisor partition a grant of access to physical and logical resources of the supervised partition; gathering by the first supervisor partition error data relating to the supervised partition, said gathering being from said physical and logical resources of the supervised partition; and setting the status of the supervised partition to the NOCARE status in the partition status buffer. 2. The method of claim 1, wherein the method further comprises storing in an error log area of the first supervisor partition information relating to the error data gathered from said physical and logical resources of the supervised partition, said storing being performed by the first supervisor partition. 3. The method of claim 2, and wherein the method further comprises: scanning the error log area of the first supervisor partition for an existence of one or more error entries comprising the information relating to the error data gathered from said physical and logical resources of the supervised partition; and reporting information comprising each error entry of the one or more error entries determined to exist by said scanning. 4. The method of claim 3, wherein each partition of the plurality of partitions has an event scanning routine, and wherein said scanning and reporting are performed by the event scanning routine of the first supervisor partition. 5. The method of claim 3, wherein said reporting comprises reporting said information to the operating system of the first supervisor partition. 6. The method of claim 1, wherein the method further comprises initializing the partition status buffer when the plurality of partitions are booted up. 7. The method of claim 1, wherein the method further comprises updating the partition status buffer when the status of a partition of the plurality of partitions is changed. 8. The method of claim 1, wherein the partition status buffer consists of one byte of memory for each partition of the plurality of partitions. 9. The method of claim 1, wherein said ascertaining comprises invoking by the first supervisor partition a partition status firmware routine of the hypervisor. 10. The method of claim 9, wherein each partition of the plurality of partitions has an event scanning routine, and wherein said invoking is performed by the event scanning routine of the first supervisor partition. 11. The method of claim 1, wherein that global supervisor mapping is an ascending sequential partition number mapping. 12. The method of claim 1, wherein the method further comprises changing the global supervisor mapping when a partition of the plurality of partitions acquires the BAD status. 13. The method of claim 1, wherein said obtaining the grant of access comprises invoking an access granting firmware routine of the hypervisor. 14. The method of claim 1, wherein the global supervisor mapping is embodied in a data structure, and wherein the data structure is located in a shared memory resource of the computer system. 15. The method of claim 14, wherein the shared memory resource comprises a Non Volatile Random Access Memory (NVRAM). 16. A computer program product, comprising at least one computer usable medium having a computer readable program code embodied therein, said computer readable program code comprising an algorithm adapted to implement a method for monitoring a plurality of partitions in a computer system, each partition having its own operating system, said computer system comprising a hypervisor that mediates between or among said operating systems, said method comprising: providing a global supervisor mapping (GSM) that associates each partition with a supervisor partition selected from the plurality of partitions in a one-to-one mapping; providing a partition status buffer (PSB) for each partition of the plurality of partitions, said partition status buffer denoting a status of the partition, said status being selected from a group of statuses that comprises a BAD status and a NOCARE status, said BAD denoting that the partition has encountered at least one error that is currently unrepaired; determining, by a first supervisor partition of the supervisor partitions, the partition that is associated with the first supervisor partition in the global supervisor mapping, said partition associated with the first supervisor partition being denoted as a supervised partition; ascertaining, from the partition status buffer, the status of the supervised partition; if said ascertaining ascertains that the status of the supervised partition is not the BAD status then exiting from the method, else performing a recovery procedure comprising: obtaining by the first supervisor partition a grant of access to physical and logical resources of the supervised partition; gathering by the first supervisor partition error data relating to the supervised partition, said gathering being from said physical and logical resources of the supervised partition; and setting the status of the supervised partition to the NOCARE status in the partition status buffer. 17. The computer program product of claim 16, wherein the method further comprises storing in an error log area of the first supervisor partition information relating to the error data gathered from said physical and logical resources of the supervised partition, said storing being performed by the first supervisor partition. 18. The computer program product of claim 17, and wherein the method further comprises: scanning the error log area of the first supervisor partition for an existence of one or more error entries comprising the information relating to the error data gathered from said physical and logical resources of the supervised partition; and reporting information comprising each error entry of the one or more error entries determined to exist by said scanning. 19. The computer program product of claim 18, wherein each partition of the plurality of partitions has an event scanning routine, and wherein said scanning and reporting are performed by the event scanning routine of the first supervisor partition. 20. The computer program product of claim 18, wherein said reporting comprises reporting said information to the operating system of the first supervisor partition. 21. The computer program product of claim 16, wherein the method further comprises initializing the partition status buffer when the plurality of partitions are booted up. 22. The computer program product of claim 16, wherein the method further comprises updating the partition status buffer when the status of a partition of the plurality of partitions is changed. 23. The computer program product of claim 16, wherein the partition status buffer consists of one byte of memory for each partition of the plurality of partitions. 24. The computer program product of claim 16, wherein said ascertaining comprises invoking by the first supervisor partition a partition status firmware routine of the hypervisor. 25. The computer program product of claim 24, wherein each partition of the plurality of partitions has an event scanning routine, and wherein said invoking is performed by the event scanning routine of the first supervisor partition. 26. The computer program product of claim 16, wherein that global supervisor mapping is an ascending sequential partition number mapping. 27. The computer program product of claim 16, wherein the method further comprises changing the global supervisor mapping when a partition of the plurality of partitions acquires the BAD status. 28. The computer program product of claim 16, wherein said obtaining the grant of access comprises invoking an access granting firmware routine of the hypervisor. 29. The computer program product of claim 16, wherein the global supervisor mapping is embodied in a data structure, and wherein the data structure is located in a shared memory resource of the computer system. 30. The computer program product of claim 29, wherein the shared memory resource comprises a Non Volatile Random Access Memory (NVRAM). | BACKGROUND OF THE INVENTION 1. Technical Field The present invention relates to error monitoring of partitions in a computer system 2. Related Art In a data processing system with plurality of partitions, if a partition has stopped due to error(s), information about the nature and cause of the error(s) is not immediately or soon available. Hence a successful recovery from the error(s) may be difficult or may have to be postponed till the next successful reboot of the partition. Thus, there is a need for a method that promotes timely recovery of the partition from the error(s). SUMMARY OF THE INVENTION The present invention provides a method for error monitoring of a plurality of partitions in a computer system, each partition having its own operating system, said computer system comprising a hypervisor that mediates between or among said operating systems, said method comprising executing a computer readable program code stored on at least one computer usable medium of the computer system, said executing comprising: providing a global supervisor mapping (GSM) that associates each partition with a supervisor partition selected from the plurality of partitions in a one-to-one mapping; providing a partition status buffer (PSB) for each partition of the plurality of partitions, said partition status buffer denoting a status of the partition, said status being selected from a group of statuses that comprises a BAD status and a NOCARE status, said BAD denoting that the partition has encountered at least one error that is currently unrepaired; determining, by a first supervisor partition of the supervisor partitions, the partition that is associated with the first supervisor partition in the global supervisor mapping, said partition associated with the first supervisor partition being denoted as a supervised partition; ascertaining, from the partition status buffer, the status of the supervised partition; if said ascertaining ascertains that the status of the supervised partition is not the BAD status then exiting from the method, else performing a recovery procedure comprising: obtaining by the first supervisor partition a grant of access to physical and logical resources of the supervised partition; gathering by the first supervisor partition error data relating to the supervised partition, said gathering being from said physical and logical resources of the supervised partition; and setting the status of the supervised partition to the NOCARE status in the partition status buffer. The present invention provides a computer program product, comprising at least one computer usable medium having a computer readable program code embodied therein, said computer readable program code comprising an algorithm adapted to implement a method for monitoring a plurality of partitions in a computer system, each partition having its own operating system, said computer system comprising a hypervisor that mediates between or among said operating systems, said method comprising: providing a global supervisor mapping (GSM) that associates each partition with a supervisor partition selected from the plurality of partitions in a one-to-one mapping; providing a partition status buffer (PSB) for each partition of the plurality of partitions, said partition status buffer denoting a status of the partition, said status being selected from a group of statuses that comprises a BAD status and a NOCARE status, said BAD denoting that the partition has encountered at least one error that is currently unrepaired; determining, by a first supervisor partition of the supervisor partitions, the partition that is associated with the first supervisor partition in the global supervisor mapping, said partition associated with the first supervisor partition being denoted as a supervised partition; ascertaining, from the partition status buffer, the status of the supervised partition; if said ascertaining ascertains that the status of the supervised partition is not the BAD status then exiting from the method, else performing a recovery procedure comprising: obtaining by the first supervisor partition a grant of access to physical and logical resources of the supervised partition; gathering by the first supervisor partition error data relating to the supervised partition, said gathering being from said physical and logical resources of the supervised partition; and setting the status of the supervised partition to the NOCARE status in the partition status buffer. The present invention advantageously promotes timely recovery of a partition of a computer system from an error relating to the partition. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates partitions, a hypervisor, and a shared memory resource of a computer system, in accordance with embodiments of the present invention. FIG. 2 illustrates the hypervisor of FIG. 1, in accordance with embodiments of the present invention. FIG. 3 illustrates a partition of FIG. 1, in accordance with embodiments of the present invention. FIG. 4 illustrates the shared memory resource of FIG. 1 which comprises a global supervisor mapping and error log areas, in accordance with embodiments of the present invention. FIG. 5 illustrates an error log area of FIG. 4 having error entries therein, in accordance with embodiments of the present invention. FIG. 6 depicts content in an error entry of FIG. 5, in accordance with embodiments of the present invention. FIG. 7 illustrates the global supervisor mapping of FIG. 4, in accordance with embodiments of the present invention. FIG. 8 illustrates the partition status buffer of FIG. 2, in accordance with embodiments of the present invention. FIG. 9 illustrates a computer system used in conjunction with error monitoring of partitions, in accordance with embodiments of the present invention. FIGS. 10-13 depict flow charts collectively describing a method for error monitoring of partitions in a computer system, in accordance with embodiments of the present invention. DETAILED DESCRIPTION OF THE INVENTION The present invention describes a partition error monitoring method that includes detecting and reporting partition errors. Said errors may cause the partition to fail (i.e., become inoperative). FIGS. 1-9 describe hardware, software, and data structures which are fundamental to the present invention. FIGS. 10-13 depict flow charts which collectively describe methods of the present invention for an error monitoring of partitions in a computer system. FIG. 1 illustrates N partitions, a hypervisor 12, and a shared memory resource 36, of a computer system 10, in accordance with embodiments of the present invention. The computer system 10 also has a hardware configuration (i.e., processor, memory devices, input/output devices, etc.) such as, inter alia, the hardware configuration shown in the computer system 90 in FIG. 9, described infra. In -FIG. 1, the partitions are denoted as partition 1, partition 2, . . . , partition N, wherein N is at least 2. Each partition shares resources (processor, memory, input/output, etc.) of the overall computer system 10 such that the partition is adapted to functions as an autonomous computer system having its own operating system. The hypervisor 12 mediates data movement between the partitions, controls data access between the partitions, and protect one partition's memory from corruption by errors in other partitions. The hypervisor 12 is used in conjunction with the partition error monitoring method of the present invention, as will be described infra. The shared memory resource 36 may comprise, inter alia, a Non Volatile Random Access Memory (NVRAM). The shared memory resource 36 is outside of the N partitions and is shared by the N partitions. The content of the shared memory resource 36 will be described infra in conjunction with FIG. 4. Each partition has a status, selected from a group of statuses comprising a GOOD status, a BAD status, and a NOCARE status. At any given time, a partition has exactly one status. The status of each partition is stored in the partition status buffer (PSB) 26 of FIGS. 2 and 8, as described infra. A partition having the GOOD status has not encountered an error that is currently unrepaired. A partition having the BAD status has encountered at least one error that is currently unrepaired. A partition having the NOCARE status has been assigned the NOCARE status (see step 64 of FIG. 12, described infra) in response to a determination that the partition has the BAD status (see step 53 of FIG. 11, described infra). An event scanning routine of a partition having the NOCARE status will not execute the algorithm of FIG. 13, wherein FIG. 13 is described infra. Thus, a partition having encountered at least one error that is currently unrepaired may have either the BAD status (prior to execution of step 64 of FIG. 12) or the NOCARE status (upon execution of step 64 of FIG. 12). Upon repair of the at least one error encountered by a partition having the NOCARE status, the partition is assigned the GOOD status which replaces the NOCARE status. The status of each partition is stored in a partition status buffer 26 within the hypervisor 12 (see FIG. 2, described infra). The partition status buffer 26 includes N storage areas respectively corresponding to the N partitions, such that storage area K of the N storage areas stores the status of partition K for K=1, 2, . . . , N. FIG. 8 depicts an example of the partition status buffer 26 for a case of 20 partitions (i.e., N=20), wherein the status (GOOD, BAD, or NOCARE) of each of the 20 partitions is stored, in accordance with embodiments of the present invention. The statuses stored in the partition status buffer 26 may be in any format. For example, the N storage areas may each encompass one byte of memory for each partition. Each such byte of memory consists of enough bits to represent the maximum number of possible statuses (e.g., each byte consists of at least 2 bits for the 3 statuses of GOOD, BAD, and NOCARE which may respectively be represented as 00, 01, and 02). As another example, the statuses may be represented by character strings (e.g., the statuses of GOOD, BAD, and NOCARE may be represented as “G”, “B”, or “N”, respectively, or as “GOOD”, “BAD”, or “NOCARE”, respectively). When the computer system 10 (see FIG. 1) is booted, the status of the N partitions are initially assigned to the partition status buffer 26 by the hypervisor 12. The partition status buffer 26 is updated when a change in the status of a partition is detected by the hypervisor 12. In the present invention, each partition is supervised (i.e., monitored) by another partition called “the supervisor partition”. In other words, a “supervisor partition” supervises (i.e., monitors) the “supervised partition” to determine which status (e.g., GOOD, BAD, or NOCARE) the supervised partition has. There may be a one-to-one correspondence (i.e., mapping) between the supervised partitions and the associated supervisor partitions, as designated in a global supervisor mapping (GSM) 24 within the shared memory resource 36 of FIG. 4, described infra. The global supervisor mapping 24 may be expressed in any format such as an algorithm or a data structure. The algorithm is adapted to generate the mapping relationships between supervised partitions and corresponding supervisor partitions in the global supervisor mapping 24. The data structure may comprise a file, table, algorithm, etc. For example, FIG. 7, illustrates the global supervisor mapping 24 as a table showing an exemplary one-to-one relationship between the supervised partitions and the associated supervisor partitions, in accordance with embodiments of the present invention. The global supervisor mapping 24 depicted in FIG. 7 is an embodiment of an “ascending sequential partition number mapping”. The global supervisor mapping 24 in FIG. 7 may be changed dynamically for any reason such as, inter alia, to account for a partition that goes down and can no longer serve as a supervisor partition. For example, the global supervisor mapping 24 in FIG. 7 may be changed dynamically when a partition acquires the BAD status. As another example, the global supervisor mapping 24 in FIG. 7 may be changed dynamically to a more general embodiment of an “ascending sequential partition number mapping”, wherein supervisor partitions are assigned dynamically from lower to higher number such that the next higher number partition becomes the supervisor for the previous lower number GOOD partition (i.e., a partition having the GOOD status), and the highest number GOOD partition has the lowest number GOOD partition as its supervisor. FIG. 2 illustrates the hypervisor 12 of FIG. 1, in accordance with embodiments of the present invention. The hypervisor 12 comprises the partition status buffer 26 (described supra), a partition status firmware routine 16, and an access granting firmware routinel4. The partition status buffer 26 ascertains the status (e.g., GOOD, BAD, NOCARE) of partitions 1, 2, . . . , N in accordance with step 52 of FIG. 11, described infra. The hypervisor 12 further comprises an access granting firmware routinel4 that grants access to a “supervisor” partition (which may be any of partitions 1, 2, . . . , N) to resources of a “supervised” partition in accordance with step 61 of FIG. 12, described infra. FIG. 3 illustrates a partition 30 representing any partition of the N partitions of FIG. 1, in accordance with embodiments of the present invention. The partition 30 comprises, inter alia, hardware 32, an operating system 33, and an event scan routine 34. The hardware 32 (i.e., processor, memory, input/output, etc.) is sufficient, together with necessary software, to enable the partition 30 to function as an autonomous computer system. The hardware 32 of the partition 30 will be related to hardware of a computer system 90 in a discussion infra of FIG. 9. The operating system 33 is part of a software package that, together with the hardware 32, enables the partition 30 to function as an autonomous computer system. The event scan routine 34 is used in conjunction with the partition error monitoring method of the present invention, as will be described infra. FIG. 4 illustrates the shared memory resource 36 of FIG. 1. The shared memory resource 36 comprises a global supervisor mapping 24 and N error log areas (ELAs), in accordance with embodiments of the present invention. The shared memory resource 36 may comprise a storage area of one physical data storage device for storing the global supervisor mapping 24 and the N error log areas. The shared memory resource 36 may alternatively store the global supervisor mapping 24 and the N error log areas in storage areas of a plurality of physical data storage devices. FIG. 7 provides an example illustrating the global supervisor mapping 24, described supra. In FIG. 4, the N error log areas are denoted as Error Log Area(1), Error Log Area(2), . . . , Error Log Area(N) which are respectively associated with Partition 1, Partition 2, . . . , Partition N of FIG. 1. The Error Log Area(1) comprises information relating to one or more errors previously detected for partition I (wherein I=1, 2, . . . , N) and/or one or more errors relating to a failed partition supervised by partition I as described infra. The N error log areas in FIG. 4 may each be in any data format that stores data (i.e., file format, record format, etc.). Each of the N error log areas in FIG. 4 may be stored contiguously within the shared memory resource 36. The N error log areas in FIG. 4 may alternatively be stored non-contiguously within the shared memory resource 36 (e.g., with a fixed address offset for successive error entries, via a pointer from an error entry to a next successive error entry, etc.). The content of each of the N error log areas is disclosed infra in conjunction with FIGS. 5 and 6. FIG. 5 illustrates an error log area (ELA) 38 representing any of the N error log areas of FIG. 4, in accordance with embodiments of the present invention. The error log area 38 has M error entries Entry(1), Entry(2), . . . , Entry (M), wherein M=0 or M is a positive integer. If M=0 then the error log area 38 is empty; i.e., the error log area 38 does not comprise any error entries. The M error entries in FIG. 5 may be in any data format that stores data (i.e., file format, record format, Common Hardware Reference Platform (CHRP) format, etc.) and distributed contiguously or non-contiguously within the error log area 38. Each error entry in the error log area 38 pertains to a single detected error condition in the partition associated with the error log area 38. The single detected error condition may pertain to an error in a partition causing the partition to fail, or to an error in the partition not causing the partition to fail. FIG. 6 depicts data content in any of the M error entries of FIG. 5, in accordance with embodiments of the present invention. FIG. 6 shows that the error entry comprises the items of: partition identifier (PI) and error descriptor (ED). The items of PI and ED may be distributed contiguously or non-contiguously within the error log area 38. The partition identifier (PI) identifies the partition having the detected error. The error descriptor (ED) describes the detected error for the partition. The error descriptor may be in any format for describing the detected error. For example, the error descriptor may consist of a single ASCII character that stands for a particular error condition. As another example, the error descriptor may comprise a first part identifying the error generally (e.g., a input/output error) and a second part containing text describing the error more specifically (e.g., power disabled to a specified input/output data storage device such as an optical disc drive). FIG. 9 illustrates a computer system used in conjunction with error monitoring of partitions, in accordance with embodiments of the present invention. The computer system 90 comprises the hardware 32 of the partition 30 of FIG. 3. The computer system 90 comprises a processor 91, an input device 92 coupled to the processor 91, an output device 93 coupled to the processor 91, and memory devices 94 and 95 each coupled to the processor 91. The input device 92 may be, inter alia, a keyboard, a mouse, etc. The output device 93 may be, inter alia, a printer, a plotter, a computer screen, a magnetic tape, a removable hard disk, a floppy disk, etc. The memory devices 94 and 95 may be, inter alia, a hard disk, a floppy disk, a magnetic tape, an optical storage such as a compact disc (CD) or a digital video disc (DVD), a dynamic random access memory (DRAM), a read-only memory (ROM), etc. The memory device 95 includes a computer code 97. The computer code 97 includes an algorithm used in conjunction with error monitoring of partitions. The processor 91 executes the computer code 97. The memory device 94 includes input data 96. The input data 96 includes input required by the computer code 97. The output device 93 displays output from the computer code 97. Either or both memory devices 94 and 95 (or one or more additional memory devices not shown in FIG. 9) may be used as a computer usable medium (or a computer readable medium or a program storage device) having a computer readable program code embodied therein and/or having other data stored therein, wherein the computer readable program code comprises the computer code 97. Generally, a computer program product (or, alternatively, an article of manufacture) of the computer system 90 may comprise said computer usable medium (or said program storage device). While FIG. 9 shows the computer system 90 as a particular configuration of hardware and software, any configuration of hardware and software, as would be known to a person of ordinary skill in the art, may be utilized for the purposes stated supra in conjunction with the particular computer system 90 of FIG. 9. For example, the memory devices 94 and 95 may be portions of a single memory device rather than separate memory devices. The computer system 90 of FIG. 9 describes the hardware configuration of the overall computer system 10 of FIG. 1, wherein the overall computer system 10 of FIG. 1 comprises the N partitions, and wherein the computer code 97 in FIG. 9 represents any software used by the overall computer system 10 of FIG. 1 (e.g., the hypevisor 12 of FIG. 1). The computer system 90 of FIG. 9 also describes the hardware 32 of the partition 30 of FIG. 3, wherein the computer code 97 in FIG. 9 represents any software used by the partition 30 of FIG. 3 (e.g., the operating system 33 and event scan routine 34 in FIG. 3). Thus, the overall computer code or software that collectively implements the partition error monitoring method of the present invention may be in at least one computer usable medium. The N partitions of FIG. 1 may share some of the hardware resources shown in FIG. 9 (e.g., the shared memory resource 36 in FIG. 1, which may be represented by at least one of the memory devices 94 and 95 of FIG. 9). FIGS. 10-13 depict flow charts collectively describing a method for error monitoring of partitions in a computer system, in accordance with embodiments of the present invention. The algorithms associated with FIGS. 10-13 are implemented by the computer code(s) 97 of FIG. 7. FIG. 10 is a flow chart comprising steps 41-43 which initialize the partition error monitoring method of the present invention. Step 41 provides the global supervisor mapping 24 which has been described supra in conjunction with FIGS. 4 and 7. As explained supra, the global supervisor mapping 24 may be changed dynamically subsequent to being initially generated in step 41. Step 42 provides the partition status buffer 26 which has been described supra in conjunction with FIGS. 2 and 8. As explained supra, the partition status buffer 26 is updated when the status of a partition is detected by the hypervisor 12. Step 43 provides the N error log areas (i.e., Error Log Area(1), Error Log Area(2), . . . , Error Log Area(N)) which has been described supra in conjunction with FIGS. 4-6. After the initialization steps 41-43 of FIG. 10 are performed, each supervisor partition is periodically executed, or executed according to a scheduling algorithm, in accordance with FIG. 11. FIG. 11 is a flow chart comprising steps 51-53 which are executed by each supervisor partition. In step, 51 the supervisor partition invokes its event scanning routine to determine the supervised partition that the supervisor partition is assigned to supervise. The supervisor partition determines the supervised partition from the global supervisor mapping 24 (see FIGS. 4 and 7) by analyzing the global supervisor mapping 24 directly or by invoking a method (e.g., calling a subprogram of the hypervisor 12 of FIG. 1) to determine the supervised partition from an analysis of the global supervisor mapping 24. In step 52 of FIG. 11, the supervisor partition ascertains the status (e.g., GOOD, BAD, or NOCARE status) of the supervised partition. To ascertain the status of the supervised partition, the event scanning routine of the supervisor partition invokes the partition status firmware routine 16 (see FIG. 2) of the hypervisor 12. The partition status firmware routine 16 ascertains the status of the supervised partition from analysis of the partition status buffer 26 (see FIGS. 2 and 8). Step 53 determines whether or not the status of the supervised partition is the BAD status. If it is determined that the status of the supervised partition is not the BAD status, then the method of FIG. 12 exits. If it is determined that the status of the supervised partition is the BAD status, then the recovery process of FIG. 12 is next executed. FIG. 12 is a flow chart comprising steps 61-64 for implementing a recovery process due to the determination in step 53 of FIG. 11 that the supervised partition has the BAD status, which means that the supervised partition has encountered at least one error that is currently unrepaired. The recovery process of FIG. 12 facilitates repair of said at least one error, by having the supervisor partition access pertinent data from resources of the supervised partition. In step 61, the supervisor partition calls an access granting firmware routine 14 of the hypervisor 12 (see FIG. 2) to obtain a grant of access to physical and logical resources (e.g., memory, hardware registers, etc.) of the supervised partition. Upon being granted said access, the supervised partition enters a supervisory mode such that the supervisor partition is treated as a supervised partition by the hypervisor 12. In step 62, the supervisor partition in the supervisory mode performs error checking by looking at the physical and logical resources (e.g., memory and registers) of the supervised partition having the BAD status. After gathering the relevant error data from the physical and logical resources (e.g., memory data and register dumps) of the supervised partition, the supervisor partition exits from the supervisory mode and transfers said error data to itself (i.e., to the supervisor partition). In step 63, the supervisor partition generates an error log (e.g., in CHRP format or other applicable format) in the error log area of the supervisor partition. The generated error log includes information relating to the failed supervised partition as derived from the relevant error data gathered in step 62 from the physical and logical resources resources of the supervised partition. For example, the generated log may include, inter alia, a subset of the relevant error data gathered in step 62 and/or an identification thereof. The generated error log is utilized in conjunction with steps 71-72 of FIG. 13 as described infra. In step 64, the supervisor partition sets the status of the supervised partition to the NOCARE status to prevent the supervisor partition from entering into the supervisory mode. FIG. 13 is a flow chart comprising steps 71-72 which are executed by the error scan routine of the supervisor partition to obtain and report content from the entries in the error log area of the supervisor partition relating to the error log generated in step 63 of the recovery process in FIG. 12 as described supra. Step 71 of FIG. 13 scans the error log area of the supervisor partition to find the error log of the supervised partition that had been generated in the error log area of the supervisor partition in step 63 of FIG. 12. Step 71 identifies error entries relating to the supervised partition. Step 72 of FIG. 13 reports each error entry relating to the supervised partition (as determined from step 71) to the operating system of the supervisor partition. Said reporting of the error entries enables an administrator or user to take corrective action to fix the error that caused the supervised partition to acquire BAD status. This enables the detail of the errors in the error descriptor (ED) of the error entry (see FIG. 6) to be available soon after an error was encountered for the supervised partition. While embodiments of the present invention have been described herein for purposes of illustration, many modifications and changes will become apparent to those skilled in the art. Accordingly, the appended claims are intended to encompass all such modifications and changes as fall within the true spirit and scope of this invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Technical Field The present invention relates to error monitoring of partitions in a computer system 2. Related Art In a data processing system with plurality of partitions, if a partition has stopped due to error(s), information about the nature and cause of the error(s) is not immediately or soon available. Hence a successful recovery from the error(s) may be difficult or may have to be postponed till the next successful reboot of the partition. Thus, there is a need for a method that promotes timely recovery of the partition from the error(s). | <SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a method for error monitoring of a plurality of partitions in a computer system, each partition having its own operating system, said computer system comprising a hypervisor that mediates between or among said operating systems, said method comprising executing a computer readable program code stored on at least one computer usable medium of the computer system, said executing comprising: providing a global supervisor mapping (GSM) that associates each partition with a supervisor partition selected from the plurality of partitions in a one-to-one mapping; providing a partition status buffer (PSB) for each partition of the plurality of partitions, said partition status buffer denoting a status of the partition, said status being selected from a group of statuses that comprises a BAD status and a NOCARE status, said BAD denoting that the partition has encountered at least one error that is currently unrepaired; determining, by a first supervisor partition of the supervisor partitions, the partition that is associated with the first supervisor partition in the global supervisor mapping, said partition associated with the first supervisor partition being denoted as a supervised partition; ascertaining, from the partition status buffer, the status of the supervised partition; if said ascertaining ascertains that the status of the supervised partition is not the BAD status then exiting from the method, else performing a recovery procedure comprising: obtaining by the first supervisor partition a grant of access to physical and logical resources of the supervised partition; gathering by the first supervisor partition error data relating to the supervised partition, said gathering being from said physical and logical resources of the supervised partition; and setting the status of the supervised partition to the NOCARE status in the partition status buffer. The present invention provides a computer program product, comprising at least one computer usable medium having a computer readable program code embodied therein, said computer readable program code comprising an algorithm adapted to implement a method for monitoring a plurality of partitions in a computer system, each partition having its own operating system, said computer system comprising a hypervisor that mediates between or among said operating systems, said method comprising: providing a global supervisor mapping (GSM) that associates each partition with a supervisor partition selected from the plurality of partitions in a one-to-one mapping; providing a partition status buffer (PSB) for each partition of the plurality of partitions, said partition status buffer denoting a status of the partition, said status being selected from a group of statuses that comprises a BAD status and a NOCARE status, said BAD denoting that the partition has encountered at least one error that is currently unrepaired; determining, by a first supervisor partition of the supervisor partitions, the partition that is associated with the first supervisor partition in the global supervisor mapping, said partition associated with the first supervisor partition being denoted as a supervised partition; ascertaining, from the partition status buffer, the status of the supervised partition; if said ascertaining ascertains that the status of the supervised partition is not the BAD status then exiting from the method, else performing a recovery procedure comprising: obtaining by the first supervisor partition a grant of access to physical and logical resources of the supervised partition; gathering by the first supervisor partition error data relating to the supervised partition, said gathering being from said physical and logical resources of the supervised partition; and setting the status of the supervised partition to the NOCARE status in the partition status buffer. The present invention advantageously promotes timely recovery of a partition of a computer system from an error relating to the partition. | 20050104 | 20080129 | 20060706 | 74153.0 | G06F1100 | 0 | BONZO, BRYCE P | ERROR MONITORING OF PARTITIONS IN A COMPUTER SYSTEM USING SUPERVISOR PARTITIONS | UNDISCOUNTED | 0 | ACCEPTED | G06F | 2,005 |
|
11,029,800 | ACCEPTED | Splittable hemostasis valve | The present invention is a splittable multi-piece hemostasis valve that is held together in an assembled condition via a binder formed about the assembled valve. The binder may be a sleeve of thin polymer material shrink-wrapped about the valve. When the valve needs to be split in order to clear a medical device such as a pacemaker lead, the sleeve is split and the valve is disassembled. | 1. A splittable hemostasis valve comprising: a first valve wall mated together in an assembled condition with a second valve wall; and a binder routed around an outer surface of the walls and maintaining the walls in the assembled condition. 2. The valve of claim 1, wherein the binder is a thin layer of polymer shrink-wrapped about the outer surface of the valve walls. 3. The valve of claim 1, wherein the binder is adapted to fail at a specific location. 4. The valve of claim 3, wherein the binder includes a scored or perforated line. 5. The valve of claim 1, further comprising a mechanism for causing the binder to tear or split. 6. The valve of claim 5, wherein the mechanism is a first flange adjacent to the first valve wall and a second flange adjacent to the second valve wall. 7. The valve of claim 6, wherein forcing the flanges apart causes the binder to tear or split. 8. The valve of claim 5, wherein the mechanism is a pull tab extending from the binder. 9. The valve of claim 1, further comprising a first flexible membrane extending between the valve walls. 10. The valve of claim 9, further comprising a second flexible membrane extending between the valve walls and stacked on top of the first flexible membrane. 11. The valve of claim 10, wherein each flexible membrane includes a slit extending across a portion of the membrane, and the slits are radially offset and intersect at a point along their lengths. 12. The valve of claim 1, wherein the first valve wall includes a first integral flexible membrane extending from the first valve wall to the second valve wall, and the first valve wall and the first flexible membrane are made from the same material. 13. The valve of claim 12, wherein the second valve wall includes a second integral flexible membrane extending from the second valve wall to the first valve wall, and the second valve wall and the second flexible membrane are made from the same material. 14. The valve of claim 13, wherein each flexible membrane includes a slit extending across a portion of the membrane, and the slits are radially offset and intersect at a point along their lengths. 15. The valve of claim 1, further comprising a seat in the outer surface of the first valve wall, the seat adapted to receive a tap and including a hole through the first valve wall for placing an internal chamber defined by the first and second valve walls in fluid communication with a bore through the tap. 16. A method of manufacturing a splittable hemostasis valve, the method comprising: mating a first valve wall with a second valve wall, the valve walls defining an interior chamber of the valve; and wrapping a binder about an outer surface of the valve walls to maintain the valve walls in a mated condition. 17. The method of claim 16, wherein the binder is a thin layer of polymer shrink-wrapped about the outer surface of the valve walls. 18. The method of claim 16, further comprising adapting the binder to fail at a specific location. 19. The method of claim 18, wherein adapting the binder to fail at a specific location entails making a scored or perforated line along a portion of the binder. 20. The method of claim 16, further comprising providing the valve with a mechanism for causing the binder to tear or split. 21. The method of claim 20, wherein the mechanism is a first flange positioned adjacent to the first valve wall and a second flange positioned adjacent to the second valve wall. 22. The method of claim 21, wherein the flanges are positioned on the valve such that forcing the flanges apart causes the binder to tear or split. 23. The method of claim 20, wherein the mechanism is a pull tab extending from the binder. 24. The method of claim 16, further comprising extending a first flexible membrane between the valve walls. 25. The method of claim 24, further comprising extending a second flexible membrane between the valve walls such that the second flexible membrane is stacked on top of the first flexible membrane. 26. The method of claim 25, further comprising forming a slit in each flexible membrane such that the slit extends across a portion of the membrane, and the slits are radially offset and intersect at a point along their lengths. 27. The method of claim 26, wherein the flexible membranes are integrally formed with their respective valve walls and made from the same material. 28. A method of splitting a splittable hemostasis valve to allow the removal of a medical device from within the valve, the method comprising: splitting or tearing a binder wrapped around an outer surface of a first valve wall and a second valve wall held in an assembled condition by the binder; removing the split or torn binder from the outer surface of the valve walls; and disassembling the valve walls from each other. 29. The method of claim 28, further comprising spreading a pair of flanges apart in order to split or tear the binder. 30. The method of claim 28, further comprising pulling a tab extending from, or otherwise coupled to, the binder to split or tear the binder. 31. The method of claim 28, further comprising tearing a portion of a flexible membrane between an end of a slit in the membrane and an edge of the membrane to allow the medical device to pass through the edge of the membrane. 32. The method of claim 28, further comprising passing the medical device through the edge of a membrane via a slit in the membrane that extends to the edge of the membrane. 33. A splittable hemostasis valve comprising: a first valve wall mated together in an assembled condition with a second valve wall; and a first membrane extending between the first and second valve walls and including a planar surface; and a second membrane extending between the first and second valve walls and including a planar surface abutted against the planar surface of the first membrane. 34. The valve of claim 33, wherein the first membrane includes a conical surface opposite the planar surface of the first membrane. 35. The valve of claim 34, wherein the second membrane includes a conical surface opposite the planar surface of the second membrane. 36. The valve of claim 33, wherein the first membrane includes a slit that passes through the first membrane at an angle that is approximately 45 degrees from being perpendicular to the planar surface. 37. The valve of claim 33, wherein the first and second membranes each include a slit and the slits are radially offset from each other. 38. The valve of claim 33, wherein the first and second valve walls are maintained in the assembled condition via a binder routed around an outer surface of the walls. 39. The valve of claim 33, wherein the first valve wall includes a female structure and the second valve wall includes a male structure for being received in the female structure and maintaining the first and second valve walls in the assembled condition. 40. A splittable hemostasis valve comprising a first valve wall mated together in an assembled condition with a second valve wall via a mechanically coupled separation joint. 41. The valve of claim 40, wherein the mechanically coupled separation joint includes a male structure on an end face of the first valve wall and a female structure on an end face of the second valve wall for receiving the male structure. 42. The valve of claim 40, wherein the mechanically coupled separation joint is formed by press-fitting the first valve wall into engagement with the second valve wall. 43. The valve of claim 40, wherein the mechanically coupled separation joint is separated by sliding the first and second valve walls in directions that are opposite to each other and parallel to the mechanically coupled separation joint. 44. The valve of claim 43, wherein each valve wall includes a flange that is oriented generally perpendicular to the mechanically coupled separation joint. 45. The valve of claim 44, wherein one flange is curved upward and the other flange is curved downward. 46. A splittable hemostasis valve for coupling to a splittable catheter or sheath, the valve comprising: a first valve wall including an end adapted to couple to the catheter or sheath and including an integral sealing ring extending along an outer surface of said end; a second valve wall including an end adapted to couple to the catheter or sheath and including an integral sealing ring extending along an outer surface of said end; a feature for maintaining the valve walls in an assembled condition; and a membrane extending between the valve walls, wherein the membrane, sealing rings and at least a portion of the valve walls are formed from the same resilient material. 47. The valve of claim 46, wherein the feature for maintaining the valve walls in an assembled condition is a binder extending about an outer surface of the valve walls. 48. The valve of claim 46, wherein the feature for maintaining the valve walls in an assembled condition is mechanically coupled joint. | FIELD OF THE INVENTION The present invention relates to hemostasis valves and methods of making and using such valves. More particularly, the present invention relates to splittable hemostasis valves and methods of making and using such valves. BACKGROUND OF THE INVENTION Splittable hemostasis valves are known in the art. However, these prior art valves have two disadvantages. First, the prior art valves can be overly difficult to split. Second, the prior art valves typically involve complex mold geometry and/or bonding methods such as sonic welding. Thus, the prior art valves are expensive to manufacture. There is a need in the art for a splittable hemostasis valve that requires less effort to split and is less expensive to manufacture. There is also a need in the art for a method of manufacturing and a method of splitting such a valve. BRIEF SUMMARY OF THE INVENTION The present invention, in one embodiment, is a splittable hemostasis valve. The valve comprises a first valve wall, a second valve wall, and a binder. The first valve wall is mated together in an assembled condition with a second valve wall, thereby defining a chamber within the valve. The binder is routed around an outer surface of the walls and maintains the walls in the assembled condition. In one embodiment, the binder is a thin layer of polymer shrink-wrapped about the outer surface of the valve walls. In one embodiment, the binder is adapted to fail at a specific location. For example, in one embodiment, the binder includes a scored or perforated line along which the binder will separate. In one embodiment, the valve includes a mechanism for causing the binder to tear or split. In one embodiment, the mechanism is a first flange adjacent to the first valve wall and a second flange adjacent to the second valve wall, and forcing the flanges apart causes the binder to tear or split. In one embodiment, the mechanism is a pull-tab extending from the binder. In one embodiment, the valve includes a first flexible membrane that extends between the valve walls. In another embodiment, the valve also includes a second flexible membrane that extends between the valve walls and is stacked on top of the first flexible membrane. In one embodiment, each flexible membrane includes a slit extending across a portion of the membrane. The slits radially offset from each other and intersect at a point along their lengths. In one embodiment, the first valve wall includes a first integral flexible membrane that extends from the first valve wall to the second valve wall, and the first valve wall and the first flexible membrane are made from the same material. In another embodiment, the second valve wall also includes a second integral flexible membrane that extends from the second valve wall to the first valve wall and is stacked on top of the first flexible membrane. The second valve wall and the second flexible membrane are made from the same material. In one embodiment, each flexible membrane includes a slit that extends across a portion of the membrane, and the slits are radially offset and intersect at a point along their lengths. In one embodiment, the valve includes a seat in the outer surface of the first valve wall. The seat is adapted to receive a tap and includes a hole through the first valve wall. The hole is for placing an internal chamber defined by the first and second valve walls in fluid communication with a bore through the tap. The present invention, in one embodiment, is a method of manufacturing a splittable hemostasis valve. The method comprises mating a first valve wall with a second valve wall such that the valve walls define an interior chamber of the valve. A binder is then wrapped about an outer surface of the valve walls to maintain the valve walls in a mated condition. The present invention, in one embodiment, is a method of splitting a splittable hemostasis valve to allow the removal of a medical device from within the valve. The method comprises splitting or tearing a binder that is wrapped around an outer surface of two valve walls that are held in an assembled condition by the binder. The split or torn binder is then removed from the outer surface of the valve walls, and the valve walls are disassembled from each other. In one embodiment, a pair of flanges is spread apart in order to split or tear the binder. In one embodiment, a tab that extends from, or is otherwise coupled with, the binder is pulled to split or tear the binder. In one embodiment, a portion of a flexible membrane between an end of a slit in the membrane and an edge of the membrane is torn to allow the medical device to pass through the edge of the membrane. In one embodiment, the medical device is passed through the edge of a membrane via a slit in the membrane that extends to the edge of the membrane. The present invention, in one embodiment, is a splittable hemostasis valve. The valve comprises a first valve wall, a second valve wall, a first membrane, and a second membrane. The first valve wall is mated together in an assembled condition with the second valve wall. The first membrane extends between the first and second valve walls and includes a planar surface. The second membrane extends between the first and second valve walls and includes a planar surface abutted against the planar surface of the first membrane. In one embodiment, the first membrane includes a conical surface opposite the planar surface of the first membrane, and the second membrane includes a conical surface opposite the planar surface of the second membrane. In one embodiment, the first membrane includes a slit that passes through the first membrane at an angle that is approximately 45 degrees from being perpendicular to the planar surface. In one embodiment, the first and second membranes each include a slit and the slits are radially offset from each other. The present invention, in one embodiment, is a splittable hemostasis valve. The valve comprises a first valve wall mated together in an assembled condition with a second valve wall via a mechanically coupled separation joint. In one embodiment, the mechanically coupled separation joint includes a male structure on an end face of the first valve wall and a female structure on an end face of the second valve wall for receiving the male structure. In one embodiment, the mechanically coupled separation joint is formed by press-fitting the first valve wall into engagement with the second valve wall. In one embodiment, the mechanically coupled separation joint is separated by sliding the first and second valve walls in directions that are opposite to each other and parallel to the mechanically coupled separation joint. In one embodiment, each valve wall includes a flange that is oriented generally perpendicular to the mechanically coupled separation joint. In one embodiment, one flange is curved upward and the other flange is curved downward. The present invention, in one embodiment, is a splittable hemostasis valve for coupling to a splittable catheter or sheath. The valve includes a first valve wall, a second valve wall, a feature for maintaining the valve walls in an assembled condition, and a membrane. The first valve wall includes an end adapted to couple to the catheter or sheath. The end includes an integral sealing ring extending along an outer circumferential surface of said end. The second valve wall includes an end adapted to couple to the catheter or sheath. The end includes an integral sealing ring extending along an outer circumferential surface of said end. The membrane extends between the valve walls. The membrane, sealing rings and at least a portion of the valve walls are formed from the same resilient material. In one embodiment, the feature for maintaining the valve walls in an assembled condition is a binder extending about an outer circumferential surface of the valve walls. In another embodiment, the feature for maintaining the valve walls in an assembled condition is a mechanically coupled joint. While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an isometric view of one embodiment of the present invention, which is a splittable multi-piece hemostasis valve FIG. 2 is an exploded isometric view of the valve depicted in FIG. 1. FIG. 3 is a cross-section elevation taken along section line AA in FIG. 1. FIG. 4 is a top view of the assembled valve depicted in FIG. 1. FIG. 5 is a cross-section elevation taken along section line AA in FIG. 1. FIG. 6 is a cross-section elevation taken along section line AA in FIG. 1. FIG. 7 is an exploded isometric view of another embodiment of the valve. FIG. 8 is an elevation of the valve wherein the valve walls are decoupled from each other. FIG. 9 is a top plan view of the valve wherein the valve walls are decoupled from each other. DETAILED DESCRIPTION FIG. 1 is an isometric view of one embodiment of the present invention, which is a splittable multi-piece hemostasis valve 5 that is held together in an assembled condition via a sleeve 10 formed about the assembled valve 5. In one embodiment, the sleeve 10 is a thin polymer material shrink-wrapped about the valve 5. When the valve 5 needs to be split in order to clear a device (e.g., a pacemaker lead or other medical device), the sleeve 10 is split and the valve 5 is disassembled. The valve 5 is advantageous for multiple reasons. First, because the valve 5 is assembled from multiple pieces and then shrink-wrapped together, it offers reduced manufacturing costs as compared to prior art splittable hemostasis valves. Second, the valve requires less effort to split than prior art splittable hemostasis valves. As shown in FIG. 1, the valve 5 includes an entry end 15, a generally cylindrical body portion 20, and an attachment end 25. The entry end 15 has an opening 30 for receiving a catheter or other similar tubular medical device. The attachment end 25 is adapted to connect to a sheath 35 via a connector 40, both of which are shown in phantom in FIG. 1. For a detailed description of the pieces comprising the splittable multi-piece hemostasis valve 5, reference is now made to FIGS. 2, 3 and 4. FIG. 2 is an exploded isometric view of the valve 5 depicted in FIG. 1. FIG. 3 is a cross-section elevation taken along section line AA in FIG. 1. FIG. 4 is a top view of the assembled valve 5 depicted in FIG. 1. As shown in FIG. 2, the valve 5 is formed from multiple separate pieces. In one embodiment, the multiple separate pieces are right and left valve walls 45, 46, right and left flanges 50, 51, a tap 55 and the sleeve 10. As shown in FIG. 2 and FIG. 3, in one embodiment, each valve wall 45, 46 has a body portion 45a, 46a and an attachment portion 45b, 46b. The body portions 45a, 46a taper as they transition into the attachment portions 45b, 46b. Each attachment portion has sealing rings 60 about its outer circumference. In one embodiment, each valve wall 45, 46 is formed from a generally rigid, hard material (e.g., acrylonitrile-butadiene-styrene “ABS”, polyether block amides “PEBAX”, high density polyethylene “HDPE”, polycarbonate, nylon, etc.). Where the valve walls 45, 46 are formed from such a generally rigid, hard material, the sealing rings 60 will be formed from a generally resilient, soft material (e.g., silicone, polyether block amides “PEBAX”, poly biphenyl compounds “PBC”, santaprene, neoprene, latex, etc.) that is separately applied to the attachment portions 45b, 46b. In another embodiment, each valve wall 45, 46 is formed from a generally resilient, soft material (e.g., silicone, polyether block amides “PEBAX”, poly biphenyl compounds “PBC”, santaprene, neoprene, latex, etc.). Where the valve walls 45, 46 are formed from such a generally resilient, soft material, the sealing rings 60 are integral to the attachment portions 45b, 46b. In one embodiment, as indicated in FIG. 5, which is a cross-section elevation taken along section line AA in FIG. 1, each valve wall 45, 46 (including, in one embodiment, the respective flanges 50, 51, flexible membranes and other features of each valve wall) is a sandwich of materials. For example, each valve wall 45, 46 has an interior supportive structure (i.e., an endoskeleton 62) formed from a generally rigid, hard material (e.g., acrylonitrile-butadiene-styrene “ABS”, polyether block amides “PEBAX”, high density polyethylene “HDPE”, polycarbonate, nylon, etc.). The endoskeleton 62 of each valve wall 45, 46 forms and maintains the general shape of each valve wall 45, 46. The endoskeleton 62 is covered by a layer 64 of generally resilient, soft material (e.g., silicone, polyether block amides “PEBAX”, poly biphenyl compounds “PBC”, santaprene, neoprene, latex, etc.) that provides, and defines, the surfaces of the valve 5. As can be understood from FIGS. 2, 3 and 4, in one embodiment, each valve wall 45, 46 (shown in FIG. 4 by hidden lines) is semicircular. Thus, when the right semicircular valve wall 45 is mated with the left semicircular valve wall 46 to form the assembled valve 5 as shown in FIGS. 1, 3 and 4, a separation joint 65 forms between the two semicircular valve walls 45, 46, and a generally cylindrical interior chamber 70 is defined by the valve walls 45, 46. As illustrated in FIGS. 1 and 3, in one embodiment, the exterior surface of the body portion 45a of the right valve wall 45 has a recessed seat 75 for receiving the base 80 of the tap 55. A hole 85 is generally centered in the seat 75 and passes through the right valve wall 45 to place the interior chamber 70 in fluid communication with a bore 90 passing through the tap 55. As indicated in FIG. 1, a flexible tube 95 runs from the bore 90 to a two-way shut-off valve 96. In one embodiment, the tap 55 is formed from a generally rigid, hard material (e.g., acrylonitrile-butadiene-styrene “ABS”, polyether block amides “PEBAX”, high density polyethylene “HDPE”, polycarbonate, nylon, etc.). In another embodiment, the tap 55 is formed from a generally resilient, soft material (e.g., silicone, polyether block amides “PEBAX”, poly biphenyl compounds “PBC”, santaprene, neoprene, latex, etc.). As shown in FIGS. 2, 3 and 4, each valve wall 45, 46 has a flexible membrane 100, 101 and a groove ring 105, 106. Each membrane 100, 101 extends across the opening 30 in the entry end 15 of the valve 5 from its respective valve wall 45, 46 and seats in the groove ring 105, 106 of the opposite valve wall 45, 46. As illustrated in FIG. 3, in one embodiment, each membrane 100, 101 has an upper and lower generally planar surface. Thus, in one embodiment, each membrane 100, 101 is a generally planar disc. As shown in FIG. 3, the adjacent planar surfaces of the membranes 100, 101 abut such that the one membrane 101 is stacked on the other membrane 100. As indicated in FIGS. 2, 3 and 4, each flexible membrane 100, 101 includes a slit 110, 111 running from or near one side of the membrane 100, 101 towards the opposite side of the membrane 100, 101. As shown in FIG. 4, the slits 110, 111 are radially offset from each other such that they crisscross to form an intersection 112. As indicated in FIG. 6, which is a cross-section elevation taken along section line AA in FIG. 1, in one embodiment, each membrane 100, 101 has a generally conical side 100a, 101a and a generally planar side 100b, 101b. As shown in FIG. 6, in one embodiment, the membranes 100, 101 are arranged such that one membrane 101 is stacked on the other membrane 100 with the planar sides 100b, 101b abutting each other and the conical sides 100a, 101a facing away from each other. Each membrane 100, 101 includes a slit 110, 111 as previously described. Again, in one embodiment, the slits 110, 111 are radially offset from each other. In one embodiment, each slit 110, 111 passes through it respective membrane 100, 101 at an angle that is approximately 45 degrees from being perpendicular to the membrane's planar face 100b, 101b. In one embodiment, where the valve walls 45, 46 are formed from a generally rigid, hard material as discussed above, each flexible membrane 100, 101 will be formed from a generally resilient, soft material (e.g., silicone, polyether block amides “PEBAX”, poly biphenyl compounds “PBC”, santaprene, neoprene, latex, etc.) and applied separately to reside in a groove ring in its respective valve wall 45, 46. In another embodiment, where the valve walls 45, 46 are formed from a generally resilient, soft material as discussed above, each flexible membrane 100, 101 will be integrally formed with its respective valve wall 45, 46. In another embodiment, the flexible membranes 100, 101 have an endoskeleton 62 with a layer 64 formed over the endoskeleton 62 as discussed above in reference to FIG. 5. As shown in FIGS. 2 and 3, in one embodiment, each flange 50, 51 extends from a collar 115, 116 that is adjacent to, and generally defines, the opening 30 at the entry end 10. In one embodiment, a flange side 120, 121 extends from each collar 115, 116 along the exterior surfaces of the valve walls 45, 46, and the right flange side includes and an opening 122 that coincides with the seat 75 for receiving the base 80 of the tap 55. In one embodiment each flange side 45, 46 includes a bayonet-type lock element 125, 126 for locking the valve 5 to the connector 40 as illustrated in FIG. 1. In one embodiment, the flanges 50, 51, collars 115, 116 and the flange sides 120, 121 are formed from a generally rigid, hard material (e.g., acrylonitrile-butadiene-styrene “ABS”, polyether block amides “PEBAX”, high density polyethylene “HDPE”, polycarbonate, nylon, etc.). In one embodiment, where the valve walls 45, 46 are formed from a generally rigid, hard material as discussed above, the flanges 50, 51, collars 115, 116 and the flange sides 120, 121 may be integrally formed with the valve walls 45, 46. As indicated in FIG. 7, which is an exploded isometric view of another embodiment of the valve 5, each flange 50, 51 extends from a collar 115, 116, but no collar 115, 116 has a flange side 120, 121 extending therefrom. In such an embodiment, the bayonet-type lock elements 125, 126 are integrally formed with the attachment portions 45b, 46b of the valve walls 45, 46. In one embodiment, the bayonet-type lock elements 125, 126 are exposed extensions of the endoskeleton 62 discussed above in reference to FIG. 5. In one embodiment, the flanges 50, 51 and collars 115, 116 are formed from a generally rigid, hard material (e.g., acrylonitrile-butadiene-styrene “ABS”, polyether block amides “PEBAX”, high density polyethylene “HDPE”, polycarbonate, nylon, etc.). In one embodiment, where the valve walls 45, 46 are formed from a generally rigid, hard material as discussed above, the flanges 50, 51 and collars 115, 116 may be integrally formed with their respective valve walls 45, 46. In one embodiment, the flanges 50, 51 have an endoskeleton 62 with a layer 64 formed over the endoskeleton 62 as discussed above in reference to FIG. 5. As shown in FIGS. 1-3, in one embodiment, once the valve 5 is assembled, a binder or binding system 10 is used to maintain the valve 5 in the assembled state by routing the binding system 10 about the outer circumferential surface of the valve's body portion 20. In one embodiment, the binding system 10 is a sleeve 10 formed from a thin layer of material (e.g., a polymer) that is heat-shrunk about the valve's body portion 20. In another embodiment, the binding system 10 is a sleeve 10 formed from a thin layer of material that is wrapped around the valve's body portion 20 and secured with an adhesive. In another embodiment, the binding system 10 is a sleeve 10 formed from a thin layer of elastic material that is slipped over one end of the valve 5 and onto the valve's body portion 20. In one embodiment, the binding system 10 is one or more bands or rings of material routed about the outer circumferential surface of the valve's body portion 20. In such an embodiment, the bands or rings may be rigid or elastic. The bands or rings may be secured about the valve's body portion 20 via heat-shrinking or an adhesive. As illustrated in FIGS. 2 and 7, in one embodiment, the binder or binding system 10 is adapted to be removable from the valve 5 in order to allow the valve 5 to be disassembled. In one embodiment, where the binding system 10 is secured to the valve 5 via an adhesive, the binding system 10 may be pealed away from the valve 5 to allow the valve 5 to be disassembled. In one embodiment, where the binding system is a sleeve 10 that has been heat-shrunk about the valve 5, the sleeve 10 may be split or cut. For example, a physician may cut the sleeve 10 with a scalpel and pull the sleeve 10 away from the valve 5 to allow the valve 5 to be disassembled. Alternatively, the physician may force the flanges 50, 51 apart to cause the sleeve 10 to split, thereby allowing the sleeve 10 to be removed and the valve 5 to be disassembled. As shown in FIG. 7, in one embodiment, the sleeve 10 is provided with a wing or tab 135 that may be grasped and used to cause the sleeve 10 to peel, tear or split away from the valve 5. In one embodiment, because the sleeve 10 is equipped with the wing or tab 135, the flanges 50, 51 are not required in order to cause the sleeve 10 to split or tear. As a result, the flanges 50, 51 are not provided. In one embodiment, a binder or binding system 10, such as a sleeve 10, band or ring, may be adapted to fail at a specific point along its circumferential surface. For example, as indicated in FIGS. 2 and 7, the sleeve 10 may have a scored or perforated line 130 that allows the sleeve to fail along the line's length when the valve walls 45, 46 or flanges 50, 51 are sufficiently forced apart. For a discussion of an embodiment of the valve 5 wherein the above discussed binder 10 has been replaced with mechanical coupling seams for coupling the two valve walls 45, 46 together, reference is now made to FIGS. 8 and 9. FIG. 8 is an elevation of the valve 5 wherein the valve walls 45, 46 are decoupled from each other. FIG. 9 is a top plan view of the valve 5 wherein the valve walls 45, 46 are decoupled from each other. As indicated in FIGS. 8 and 9, the valve walls 45, 46 are generally the same as those previously described, except with respect the to orientation of the flanges 50, 51 and the arrangement utilized to couple the valve walls 45, 46 together. For example, as shown in FIGS. 8 and 9, in one embodiment, the end faces 200 of each valve wall 45, 46, which abut to form the separation joints 65 (see FIG. 1), have features or structures 202, 204 that engage with each other to form mechanically coupled separation joints. As illustrated in FIGS. 8 and 9, in one embodiment, each end face 200 of the right valve wall 45 is equipped with a female feature or structure 202 for receiving and mechanically coupling with a male feature or structure 204 of the corresponding end face 200 of the left valve wall 46. In one embodiment, the end faces 200 of the left valve wall 46 are equipped with female structures 202, and the end faces 200 of the right valve wall 45 are equipped with male structures 204. In one embodiment, one end face 200 of the left valve wall 46 will have a female structure 202 and the other end face 200 will have a male structure 204. Similarly, in the same embodiment, the right valve wall 45 have female and male structures 202, 204 that correspond to those on the left valve wall 46. As shown in FIGS. 8 and 9, in one embodiment, each male structure 204 includes a ridge 206 running the length of the male structure 204. Each female structure 202 includes a lip 208 that helps to define a groove 210. Each lip 208 and groove 210 run the length of the respective female structure 202. As can be understood from FIG. 9, in one embodiment, the mechanically coupled separation joints are formed by press-fitting together the end faces 200 of the valve walls 45, 46. For example, when the male structures 204 are inserted into the corresponding female structures 202, the lip 208 of each female structure 202 deflects to allow sufficient space for the ridge 206 to pass the lip 208 and be received in the groove 210. Once the ridge 206 has cleared the lip 208, the lip 208 returns to its non-deflected configuration to hold the ridge 206 within the groove 210. In one embodiment, to split the valve 5 and separate the valve walls 45, 46 from each other, a user simply forces the flanges 50, 51 apart as if attempting to split a binder 10, as previously described in reference to FIGS. 2 and 7. This causes the lips 208 to deflect as necessary to allow the ridges 206 to escape their corresponding grooves 210. In another embodiment, as can be understood from FIGS. 8 and 9, the valve walls 45, 46 are displaced oppositely along the separation joint 65 (see FIG. 1). In other words, a user forces the flanges 50, 51 oppositely from each other in directions that are parallel to the separation joints 65 of the valve 5. This causes the valve walls 45, 46 to displace oppositely such that their respective end faces 200 slideably displace against each other in opposite directions. This allows the ridge 206 of each male structure 204 to slide out of the groove 210 of the respective female structure 202. Once the ridges 206 are free of their respective grooves 210, the valve walls 45, 46 may be separated. In one embodiment, the aforementioned process is reversed to join the valve walls 45, 46 together. In other words, the ridges 206 are slid into their respective grooves 210 until the bottom and top ends of the right valve wall 45 align with the corresponding ends of the left valve wall 46. In one embodiment, as shown in FIGS. 8 and 9, the flanges 50, 51 are configured to facilitate the sliding of one valve wall 45 relative to the other valve wall 46. For example, in one embodiment, the flanges 50, 51 extend generally perpendicularly to the end faces 200 of their respective valve walls 45, 46. In one embodiment, the right flange 50 is slightly curved downward to ergonomically receive the user's downward pressing finger, and the left flange 51 is slightly curved upward to ergonomically receive the user's upward pressing finger. In one embodiment, the end faces 200 and female and male structures 202, 204 are formed from a generally rigid, hard material (e.g., acrylonitrile-butadiene-styrene “ABS”, polyether block amides “PEBAX”, high density polyethylene “HDPE”, polycarbonate, nylon, etc.). In another embodiment, the end faces 200 and female and male structures 202, 204 are formed from a generally resilient, soft material (e.g., silicone, polyether block amides “PEBAX”, poly biphenyl compounds “PBC”, santaprene, neoprene, latex, etc.). In one embodiment, the end faces 200 and structures 202, 204 of one of the valve walls 45, 46 are formed from one of the aforementioned generally resilient, soft materials, and the end faces 200 and structures 202, 204 of the other valve wall 45, 46 are formed from one of the aforementioned generally rigid, hard materials. In one embodiment, end faces 200 are formed from one of the aforementioned generally resilient, soft materials, and the female and male structures 202, 204 are formed from one of the aforementioned generally rigid, hard materials. For example, in one embodiment, the female and male structures 202, 204 are an exposed part of the generally rigid, hard endoskeleton 62 and the end faces 200 are a generally resilient, soft layer 64 formed over the endoskeleton 62, as discussed above in reference to FIG. 5. A method of utilizing the valve 5 is now provided while referring to FIGS. 1-4 and 7. A valve 5 is provided in the assembled configuration shown in FIG. 1. The attachment end 25 of the valve 5 is inserted into the connector 40 and the bayonet-type lock elements 125, 126 are engaged with their counterparts in the connector 40 to secure the valve 5 to the connector 40 and the sheath 35 extending therefrom. The sheath 35 is introduced into a body lumen of a patient via means well known in the art. Once the sheath 35 is positioned properly within the patient, a catheter (or guidewire) is then inserted through the opening 30, the slits 110, 111 in the membranes 100, 101, the internal chamber 70, and into the sheath 35. The membranes 100, 101 seal fluidly tight about the catheter to prevent blood from leaking out of the valve's opening 30. After the catheter procedure is completed, the catheter is withdrawn from the sheath 35 and the valve 5, and the membranes 100, 101 reseal to prevent blood leakage. A pacemaker lead is then inserted through the membranes 100, 101 of the valve 5 and into the sheath 35. The distal ends of the pacemaker leads are implanted within the patient. The sheath 35 is then removed from the patient while leaving the pacemaker leads in place. However, to allow the sheath 35 to clear the proximal ends of the pacemaker leads, the valve 5 and the sheath 35 must be split. At this time, the physician splits the valve's binding system 10 to facilitate the disassembly of the valve 5. In one embodiment, the physician places his thumbs on the flanges 50, 51 and sufficiently forces them apart to cause the sleeve 10 to split at the perforated line 130. The split sleeve 10 is then removed from the valve 5 and the valve 5 is disassembled into right and left sections as indicated in FIG. 2. At this time, the pacemaker lead is removed from the slits 110, 111 in the membranes 100, 101. To remove the pacemaker lead from the slits 110, 111 of the membranes 100, 101, the pacemaker lead is moved along the slits 110, 111 towards a location on each membrane 100, 101 where each slit 110, 111 intersects or nearly intersects the edge of the membrane 100, 101. Once the pacemaker lead has reached the edge of the membrane 100, 101, the pacemaker lead can be removed from the slit 110, 111. Where the slit 110, 111 does not quite reach the edge of the membrane 100, 101, the last remaining edge portion of the membrane 100, 101 between the end of the slit 110, 111 and the edge of the membrane 100, 101 is simply torn or cut to extend the slit 110, 111 to the edge and allow the pacemaker lead to pass through the membrane edge portion. The proximal ends of the pacemaker leads may now be cleared and, as a result, the sheath 35 may be removed from the patient. Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>Splittable hemostasis valves are known in the art. However, these prior art valves have two disadvantages. First, the prior art valves can be overly difficult to split. Second, the prior art valves typically involve complex mold geometry and/or bonding methods such as sonic welding. Thus, the prior art valves are expensive to manufacture. There is a need in the art for a splittable hemostasis valve that requires less effort to split and is less expensive to manufacture. There is also a need in the art for a method of manufacturing and a method of splitting such a valve. | <SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The present invention, in one embodiment, is a splittable hemostasis valve. The valve comprises a first valve wall, a second valve wall, and a binder. The first valve wall is mated together in an assembled condition with a second valve wall, thereby defining a chamber within the valve. The binder is routed around an outer surface of the walls and maintains the walls in the assembled condition. In one embodiment, the binder is a thin layer of polymer shrink-wrapped about the outer surface of the valve walls. In one embodiment, the binder is adapted to fail at a specific location. For example, in one embodiment, the binder includes a scored or perforated line along which the binder will separate. In one embodiment, the valve includes a mechanism for causing the binder to tear or split. In one embodiment, the mechanism is a first flange adjacent to the first valve wall and a second flange adjacent to the second valve wall, and forcing the flanges apart causes the binder to tear or split. In one embodiment, the mechanism is a pull-tab extending from the binder. In one embodiment, the valve includes a first flexible membrane that extends between the valve walls. In another embodiment, the valve also includes a second flexible membrane that extends between the valve walls and is stacked on top of the first flexible membrane. In one embodiment, each flexible membrane includes a slit extending across a portion of the membrane. The slits radially offset from each other and intersect at a point along their lengths. In one embodiment, the first valve wall includes a first integral flexible membrane that extends from the first valve wall to the second valve wall, and the first valve wall and the first flexible membrane are made from the same material. In another embodiment, the second valve wall also includes a second integral flexible membrane that extends from the second valve wall to the first valve wall and is stacked on top of the first flexible membrane. The second valve wall and the second flexible membrane are made from the same material. In one embodiment, each flexible membrane includes a slit that extends across a portion of the membrane, and the slits are radially offset and intersect at a point along their lengths. In one embodiment, the valve includes a seat in the outer surface of the first valve wall. The seat is adapted to receive a tap and includes a hole through the first valve wall. The hole is for placing an internal chamber defined by the first and second valve walls in fluid communication with a bore through the tap. The present invention, in one embodiment, is a method of manufacturing a splittable hemostasis valve. The method comprises mating a first valve wall with a second valve wall such that the valve walls define an interior chamber of the valve. A binder is then wrapped about an outer surface of the valve walls to maintain the valve walls in a mated condition. The present invention, in one embodiment, is a method of splitting a splittable hemostasis valve to allow the removal of a medical device from within the valve. The method comprises splitting or tearing a binder that is wrapped around an outer surface of two valve walls that are held in an assembled condition by the binder. The split or torn binder is then removed from the outer surface of the valve walls, and the valve walls are disassembled from each other. In one embodiment, a pair of flanges is spread apart in order to split or tear the binder. In one embodiment, a tab that extends from, or is otherwise coupled with, the binder is pulled to split or tear the binder. In one embodiment, a portion of a flexible membrane between an end of a slit in the membrane and an edge of the membrane is torn to allow the medical device to pass through the edge of the membrane. In one embodiment, the medical device is passed through the edge of a membrane via a slit in the membrane that extends to the edge of the membrane. The present invention, in one embodiment, is a splittable hemostasis valve. The valve comprises a first valve wall, a second valve wall, a first membrane, and a second membrane. The first valve wall is mated together in an assembled condition with the second valve wall. The first membrane extends between the first and second valve walls and includes a planar surface. The second membrane extends between the first and second valve walls and includes a planar surface abutted against the planar surface of the first membrane. In one embodiment, the first membrane includes a conical surface opposite the planar surface of the first membrane, and the second membrane includes a conical surface opposite the planar surface of the second membrane. In one embodiment, the first membrane includes a slit that passes through the first membrane at an angle that is approximately 45 degrees from being perpendicular to the planar surface. In one embodiment, the first and second membranes each include a slit and the slits are radially offset from each other. The present invention, in one embodiment, is a splittable hemostasis valve. The valve comprises a first valve wall mated together in an assembled condition with a second valve wall via a mechanically coupled separation joint. In one embodiment, the mechanically coupled separation joint includes a male structure on an end face of the first valve wall and a female structure on an end face of the second valve wall for receiving the male structure. In one embodiment, the mechanically coupled separation joint is formed by press-fitting the first valve wall into engagement with the second valve wall. In one embodiment, the mechanically coupled separation joint is separated by sliding the first and second valve walls in directions that are opposite to each other and parallel to the mechanically coupled separation joint. In one embodiment, each valve wall includes a flange that is oriented generally perpendicular to the mechanically coupled separation joint. In one embodiment, one flange is curved upward and the other flange is curved downward. The present invention, in one embodiment, is a splittable hemostasis valve for coupling to a splittable catheter or sheath. The valve includes a first valve wall, a second valve wall, a feature for maintaining the valve walls in an assembled condition, and a membrane. The first valve wall includes an end adapted to couple to the catheter or sheath. The end includes an integral sealing ring extending along an outer circumferential surface of said end. The second valve wall includes an end adapted to couple to the catheter or sheath. The end includes an integral sealing ring extending along an outer circumferential surface of said end. The membrane extends between the valve walls. The membrane, sealing rings and at least a portion of the valve walls are formed from the same resilient material. In one embodiment, the feature for maintaining the valve walls in an assembled condition is a binder extending about an outer circumferential surface of the valve walls. In another embodiment, the feature for maintaining the valve walls in an assembled condition is a mechanically coupled joint. While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive. | 20050104 | 20130212 | 20060706 | 91491.0 | F16K100 | 0 | ROST, ANDREW J | Splittable hemostasis valve | UNDISCOUNTED | 0 | ACCEPTED | F16K | 2,005 |
|
11,029,839 | ACCEPTED | Engineered material buoyancy system and device | There is provided a buoyancy system for a structure having at least one component being substantially stationary with respect to the bottom of a water covered area. The system comprises a set of buoyancy modules of engineered materials to apply an identified amount of buoyancy. The set of buoyancy modules is attached to the structure at a set of buoyancy load transfer locations. The set of buoyancy modules comprises layers of the engineered materials. The engineered materials comprise a substantially reinforced axial layer, a substantially reinforced hoop layer; and a leak prevention layer. | 1-9. (canceled) 10. Apparatus for providing buoyancy to a submerged riser attached at its lower end to a well head on the sea floor, the apparatus comprising: a plurality of submerged buoyancy modules associated with the riser for imparting an upward buoyancy force to the riser, wherein each buoyancy module is hollow and has an elongated shape with a longitudinal axis and is vertically oriented, the longitudinal axis of the buoyancy module being generally parallel to the longitudinal axis of the riser, at least some of the buoyancy modules being disposed at different vertical elevations along the riser in an arrangement so as to provide improved hydrodynamic performance to the riser, each buoyancy module providing a fraction of the total buoyancy from all the modules for purposes of redundancy. 11. The apparatus of claim 10, wherein the cross sectional shape of the buoyancy module on a plane perpendicular to the longitudinal axis is a shape selected from the group consisting of a circle, a triangle, a square, a polygon, a hexagon, a truncated pie slice, and a saddle. 12. The apparatus of claim 10, wherein at least some of the submerged buoyancy modules are disposed at the same vertical elevation on the riser, but are distributed uniformly around the outer circumference of the riser in a geometrical arrangement so as to provide improved hydrodynamic performance to the riser. 13. The apparatus of claim 10, wherein at least some of the submerged buoyancy modules are disposed in a stacked arrangement along a common vertical axis, and wherein the ends of adjacent pairs of modules are connected together by skirts conforming to the shapes of the ends of the modules. 14-28. (canceled) 29. The apparatus of claim 10, wherein the submerged buoyancy modules comprise a material selected from the group consisting of composite material and steel. 30. The apparatus of claim 13, wherein the skirts comprise elastomeric material. 31. A buoyancy system for an offshore floating platform comprising: a riser; and a plurality of composite buoyancy modules, said modules being positioned around said riser to form a spiral wrapped arrangement and fixed axially along said riser, said modules being made of a material selected from the group consisting of one or more of glass fiber/polymeric resin, carbon fiber/polymeric resin, hybrid glass/carbon fiber polymeric resin, rubber reinforced with nylon fibers, and rubber reinforced with steel fibers, wherein said plurality of composite buoyancy modules provides a redundancy in the required buoyancy to support the riser. 32. The buoyancy system of claim 31, further comprising a thrust plate assembly connected to said riser at a joint for transferring buoyancy forces from said composite buoyancy modules to said riser. 33. The buoyancy system of claim 31, further comprising a stopper assembly connected to said riser for preventing said composite buoyancy modules from shifting axially down said riser. | CROSS-REFERENCES TO RELATED APPLICATIONS This application is a continuation application of U.S. patent application Ser. No. 09/643,185 filed Aug. 21, 2000. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable. BACKGROUND OF THE INVENTION The present invention relates to the application of buoyancy to objects used in large vessel and platform operations. Vast oil reservoirs have recently been discovered in very deep waters around the world, principally in the Gulf of Mexico, Brazil and West Africa. Water depths for these discoveries range from 1500 ft to nearly 10,000 ft. Conventional offshore oil production methods using a fixed truss type platform are not suitable for these water depths. These platforms become dynamically active (flexible) in these water depths. Stiffening them to avoid excessive and damaging dynamic responses to wave forces is prohibitively expensive. Deep water oil and gas production has thus turned to new technologies based on floating production systems. These systems come in several forms, but all of them rely on buoyancy for support and some form of a mooring system for lateral restraint against the environmental forces of wind, waves and current. These floating production systems (FPS) sometimes are used for drilling as well as production. They are also sometimes used for storing oil for offloading to a tanker. This is most common in Brazil and West Africa, but not in Gulf of Mexico as of yet. In the Gulf of Mexico, oil and gas are exported through pipelines to shore. Drilling, production, and export of hydrocarbons all require some form of vertical conduit through the water column between the sea floor and the FPS. These conduits are usually in the form of pipes which are called “risers.” Typical risers are either vertical (or nearly vertical) pipes held up at the surface by tensioning devices; flexible pipes which are supported at the top and formed in a modified catenary shape to the sea bed; or steel pipe which is also supported at the top and configured in a catenary to the sea bed (Steel Catenary Risers—commonly known as SCRs). The flexible and SCR type risers may in most cases be directly attached to the floating vessel. Their catenary shapes allow them to comply with the motions of the FPS due to environmental forces. These motions can be as much as 10%-20% of the water depth horizontally, and 10's of ft vertically, depending on the type of vessel, mooring and location. Top Tensioned risers (TTRs) typically need to have higher tensions than the flexible risers, and the vertical motions of the vessel need to be isolated from the risers. TTRs have significant advantages for production over the other forms of risers, however, because they allow the wells to be drilled directly from the FPS, avoiding an expensive separate floating drilling rig. Also, wellhead control valves placed on board the FPS allow for the wells to be maintained from the FPS. Flexible and SCR type production risers require the wellhead control valves to be placed on the seabed where access and maintenance is expensive. These surface wellhead and subsurface wellhead systems are commonly referred to as “Dry tree” and “Wet Tree” types of production systems, respectively. Drilling risers must be of the TTR type to allow for drill pipe rotation within the riser. Export risers may be of either type. TTR tensioning systems are a technical challenge, especially in very deep water where the required top tensions can be 1000 kips or more. Some types of FPS vessels, e.g. ship shaped hulls, have extreme motions which are too large for TTRS. These types of vessels are only suitable for flexible risers. Other, low heave (vertical motion), FPS designs are suitable for TTRS. This includes Tension Leg Platform (TLP), Semi-submersibles, and Spars, all of which are in service today. Of these, only the TLP and Spar platforms use TTR production risers. Semi-submersibles use TTRs for drilling risers, but these must be disconnected in extreme weather. Production risers need to be designed to remain connected to the seabed in extreme events, typically the 100 year return period storm. Only very stable vessels are suitable for this. Early TTR designs employed on semi-submersibles and TLPs used active hydraulic Pensioners to support the risers. FIG. 10 illustrates a TLP riser system 150 with tensioners 160. As tensions and stroke requirements grow, these active tensioners become prohibitively expensive. They also require large deck area, and the loads have to be carried by the FPS structure. Spar type platforms recently used in the Gulf of Mexico use a passive means for tensioning the risers. These type platforms have a very deep draft with a central shaft, or centerwell, through which the risers pass. Buoyancy cans inside the centerwell provide the top tension for the risers. These cans are more reliable and less costly than active tensioners. FIGS. 11 and 12 respectively show the arrangement of the risers in two types of spars: the Caisson Spar 200 (cylindrical) and the “Truss” spar 210, respectively. There may be as many as forty production risers passing through a single centerwell. Buoyancy cans 220, typically cylindrical, are located on the risers, and they are separated from each other by a rectangular grid structure referred to as riser guides 230. These guides are attached to the hull. As the hull moves the risers are deflected horizontally with the guides. However, the risers are tied to the seafloor, hence as the vessel heaves the guides slide up and down relative to the risers (from the viewpoint of a person on the vessel it appears as if the risers are sliding in the guides). FIG. 13 shows the arrangement for a single spar production riser 300. A wellhead 310 at the sea floor connects the well casing 320 (below the sea floor) to the riser with a special tieback connector 330. The riser, typically 9″-14″ pipe, passes from the tieback connector through the bottom of the spar and into the centerwell. Inside the centerwell the riser passes through a stem pipe 340, or conduit, which goes through the center of the buoyancy cans. This stem extends above the buoyancy cans themselves and supports the platform to which the riser and the surface wellhead are attached. The buoyancy cans need to provide enough buoyancy to support the required top tension in the risers, the weight of the cans and stem, and the weight of the surface wellhead. FIG. 14 illustrates buoyancy cans and guides in a spar centerwell. FIGS. 15 and 16 illustrate a typical buoyancy can design showing an outer shell 240 surrounding the stem 340. Since the surface wellhead (“dry tree”) move up and down relative to the vessel, flexible jumper lines 400 (FIG. 13) connect the wellhead to a manifold 500 which carries the product to a processing facility to separate water, oil and gas from the well stream. Spacing between risers is determined by the size of the buoyancy cans. This is an important variable in the design of the spar vessel, since the riser spacing determines the centerwell size which in turn contributes to the size of the entire spar structure. This issue becomes increasingly more critical as production moves to deeper water because the amount of buoyancy required increases with water depth. The challenge is to achieve the buoyancy needed while keeping the length of the cans within the confines of the centerwell, and the diameters to reasonable values. The efficiency of the buoyancy cans is compromised by several factors, as follows: Internal Stem The internal stem is typically flooded and provides no buoyancy. Its size is dictated by the diameter of the seafloor tieback connector, which is deployed through the stem. These connectors can be up to 50″ in diameter. Solutions to this loss of buoyancy include: 1. Adding compressed air to the annulus between the riser and the stem wall after the riser is installed, and 2. Making the buoyancy cans integral with the riser so they are deployed after the tieback connector is installed. Adding air to the annulus is efficient use of the stem volume, but the amount of buoyancy can be so large that if a leak occurs there could be damage to a riser. The buoyancy tanks are usually subdivided so that leakage and flooding of any one, or even two, compartments will not cause damage. Making the buoyancy cans integral with the risers has been used, but this requires a relatively small can diameter for deployment with the surface rig, and the structural connections between the cans and the riser are difficult to design. Circular Cans The circular geometry of the cans leaves areas of the centerwell between cans flooded which could provide buoyancy if the cans were rectangular. Studies have shown, however, that rectangular or square cans have a greater structural weight and that the net buoyancy, i.e. the difference of the buoyancy and the can weight, is actually greater with the structurally more efficient circular shape. Weight of the Cans The buoyancy cans are typically constructed out of steel and their weight can be a significant design issue. The first spar buoyancy cans were designed to withstand the full hydrostatic head of the sea, and their weight reflected the thicker walls necessary to meet this requirement. Subsequent designs were based on the cans being open to the sea at their lower end, with compressed air injected inside to evacuate the water. These cans only have to be designed for the hydrostatic pressure corresponding to the can length, and this is an internal pressure requirement rather than the more onerous external pressure requirement. Recently, studies have suggested that buoyancy cans could be fabricated from composite materials at costs which would be competitive with steel cans, and which would reduce the can weight significantly. These composite buoyancy modules (CBMs) are the subject of a separate patent application entitled Composite Buoyancy Module, filed Jul. 20, 2000 having a docket number T8803PROV. The subject of this invention is a method for cost effective utilization of the space between the riser and the stem wall, and the flooded volumes between the circular buoyancy cans and the riser guides. The method uses specially designed composite modules, which are configured to straddle the riser pipe and steel buoyancy modules in a way to use the available flooded volume for additional buoyancy. Other methods than those proposed here are feasible: in particular it is possible to shape and install closed cell syntactic foam modules in these areas to provide additional buoyancy. Syntactic foam modules are commonly used, especially on drilling risers, to add buoyancy to the risers and reduce the top tension requirement. The primary advantages of the proposed invention over this more conventional means of adding buoyancy include: 1. Syntactic foam density is about 2-3 times as expensive as that derived from the proposed composite cans (based on cost per unit of net buoyancy), and 2. Low density foam which is more cost effective in the shallow water applications such as the spar centerwell is subject to some water absorption and loss of buoyancy with time. While the above discussion focused on the problem of utilizing flooded volume for buoyancy on a spar type riser system, this invention has other similar applications, for example, as a replacement for syntactic foam on drilling risers, or free standing production risers. The arrangement of CBMs around a pipe can be such as to enhance the pipes hydrodynamic behavior in currents and waves. For example, arranging the CBMs in a spiral wrapped arrangement would have an effect similar to helical strakes to mitigate Vortex Induced Vibrations of pipes exposed to current or waves. Alternatively, placing the CBMs on one side would have an effect similar to fairing the pipe to reduce drag. BRIEF SUMMARY OF THE INVENTION The present invention relates to methods of designing, constructing, attaching and using buoyancy systems for water covered areas. Various objects of invention are addressed in the above-mentioned problems. For example, according to one aspect of the invention, a buoyancy system for a structure having at least one component being substantially stationary with respect to the bottom of a water covered area is employed. This system comprises a set of buoyancy modules of engineered materials to apply an identified amount of buoyancy. The set of buoyancy modules are attached to the structure at a set of buoyancy load transfer locations. According to another aspect of the invention, a buoyant riser comprises a set of engineered-material buoyancy modules connected to the riser. In a further example embodiment of the invention, a system of applying buoyancy to a member is adopted. This system comprises means for constraining a plurality of engineered material buoyancy members in a metal container, wherein said constraining is arranged to assert a buoyant force, and means for applying the buoyancy force of the metal container to the member. Another aspect of the invention involves a system of applying buoyancy to a riser. That system comprises means for asserting a first portion of the buoyancy force required to lift the riser at a first buoyancy load location on the riser with a first buoyancy member, means for protecting the first buoyancy member from entry of fluid, means for asserting a second portion of the buoyancy force required to lift the riser at a second buoyancy load location on the riser with a second buoyancy member, and means for protecting the second buoyancy member from entry of fluid. Some embodiments of the invention utilize a system of applying buoyancy to a member. This system comprises means for resiliently constraining a mass having a density less than water and means for asserting, with the resiliently constrained mass, at least a portion of the buoyancy force required to lift the member at a buoyancy load location on the member. Still another embodiment of the invention applies a method of designing a buoyancy system for a structure having at least one component being substantially stationary with respect to the bottom of a water covered area. Some of such methods comprise identifying the amount of buoyancy required by the buoyancy system, wherein an identified amount of buoyancy results, identifying a set of buoyancy modules of engineered material to apply the identified amount of buoyancy, and identifying a location with respect to the structure for the set of buoyancy modules. In accordance with another embodiment, the invention comprises a method of increasing the redundancy of a buoyancy in a stem pipe for a riser. In this embodiment, the method comprises applying a set of engineered-material buoyancy modules to the riser, and inserting the riser with the set of engineered-material buoyancy modules attached to the stem pipe. A still further example of the present invention comprises a method of applying buoyancy to a member. The method comprises constraining a plurality of engineered material buoyancy members in a metal container, wherein said constraining is arranged to assert a buoyant force, and applying the buoyancy force of the metal container to the member. In addition some embodiments of the invention comprise a method of applying buoyancy to a riser. A number of such methods comprise asserting a first portion of the buoyancy force required to lift the riser at a first buoyancy load location on the riser with a first buoyancy member, protecting the first buoyancy member from entry of fluid, asserting a second portion of the buoyancy force required to lift the riser at a second buoyancy load location on the riser with a second buoyancy member, and protecting the second buoyancy member from entry of fluid. Yet another embodiment of the invention comprises a method of applying buoyancy to a member. That method comprises resiliently constraining a mass having a density less than water and asserting, with the resiliently constrained mass, at least a portion of the buoyancy force required to lift the member at a buoyancy load location on the member. In accordance with various embodiments, the invention comprises an apparatus for providing buoyancy to a submerged riser attached at its lower end to a well head on the sea floor. This apparatus comprises a plurality of submerged buoyancy modules associated with the riser for imparting an upward buoyancy force to the riser, wherein the buoyancy modules comprise lightweight material selected from a group consisting of glass fiber/polymeric resin, carbon fiber/polymeric resin, hybrid glass/carbon fiber polymeric resin, rubber reinforced with nylon fibers, and rubber reinforced with steel fibers. Further embodiments comprise an apparatus for providing buoyancy to a submerged riser attached at its lower end to a well head on the sea floor. That apparatus comprises a plurality of submerged buoyancy modules associated with the riser for imparting an upward buoyancy force to the riser, wherein each buoyancy module is hollow and has an elongated shape with a longitudinal axis and is vertically oriented, the longitudinal axis of the buoyancy module being generally parallel to the longitudinal axis of the riser, some of the buoyancy modules being disposed at different vertical elevations along the riser in an arrangement so as to provide improved hydrodynamic performance to the riser, wherein each buoyancy module comprises a layered exterior wall, wherein each layer of the wall has a specific function, and wherein the layers include one or more of hoop layers to resist internal and external pressure, axial layers to carry axial loads, polymeric liners to prevent fluid leakage through the wall, and selective reinforcing layers to provide damage tolerance at assembly contact locations and at buoyancy load transfer locations, and straps for attaching the buoyancy modules to the riser, the straps passing around the outer circumference of the buoyancy modules. These and many other embodiments and advantages of the present invention will be obvious to one of ordinary skill in the art upon review of the Detailed Description in conjunction with the following figures. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS FIG. 1 depicts a composite buoyancy module. FIG. 1a depicts detailed illustrations of layering of engineered materials. FIG. 1b is a partial view at one end of a composite buoyancy module, illustrating selective reinforcement for buoyancy load transfer. FIG. 2a is a cross-sectional view taken through a composite buoyancy module having a circular cross-sectional shape. FIG. 2b is a cross-sectional view taken through a composite buoyancy module having a polygonal cross-sectional shape. FIG. 2c is a cross-sectional view taken through a composite buoyancy module having a saddle shaped cross-section. FIG. 2d is a cross-sectional view taken through a composite buoyancy module having a pie shaped cross-section. FIG. 2e is a cross-sectional view taken through a composite buoyancy module having a triangular cross-sectional shape. FIG. 3a depicts an example air containment system wherein the mass is held by a manufactured material having an open bottom with a substantially constant pressure supplied by a vessel. FIG. 3b depicts an example air containment system wherein the mass is held by a manufactured material having an open bottom with a substantially constant pressure supplied by an attached object. FIG. 3c depicts an example pressured and enclosed mass containment system. FIG. 3d depicts an example enclosed mass containment system. FIGS. 4a-4e depict aspects of the invention comprising various buoyancy module configurations with improved hydrodynamic properties. FIGS. 5a-5c depict example buoyancy load transfer systems. FIGS. 6a-6c depict aspects of the invention comprising various buoyancy module configurations and shapes with associated water current patterns. FIGS. 7a-7e depict aspects of the invention comprising various riser applications. FIGS. 8a-8b depict various center stem, riser, and buoyancy can applications. FIG. 9a depicts an example assembly of five CBM's on a riser joint. FIGS. 9b-9d depict various details of the example assembly of five CBM's on a riser joint. FIG. 10 illustrates a TLP riser system with tensioners. FIG. 11 illustrates a riser arrangement in a caisson spar platform. FIG. 12 illustrates a riser arrangement in a truss spar platform. FIG. 13 illustrates a single spar production riser. FIG. 14 illustrates buoyancy cans and guides in a spar platform centerwell. FIGS. 15 and 16 illustrate a typical buoyancy can design showing the outer shell and stem. DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS OF THE INVENTION According to one example embodiment of the invention, airtight composite buoyancy modules (CBMs) provide buoyancy to attached objects submerged underwater. Different sizes and shapes of CBMs are attached in various embodiments to, for example, production risers, drilling riser, catenary risers, air cans, and stem pipe. In the example embodiments illustrated, buoyancy is provided by trapping air inside structures of engineered materials (for example: glass fiber/polymeric resin, carbon fiber/polymeric resin, hybrid glass/carbon fiber polymeric resin, engineered rubber reinforced with nylon or steel fibers). Referring now to FIG. 1, a CBM 10 is seen, having a wall 12 of layers 12a-12n (seen in FIG. 1a) of engineered materials. Various of the layers 12a-12n have differing functions. For example, some of the layers 12b and 12d comprise substantially reinforced hoop layers (substantially horizontal orientation of fiber) to resist internal and external pressure. Other layers 12a and 12c comprise substantially reinforced axial layers (substantially vertical fibers) to carry axial loads. Still other layers (not illustrated) comprise internal polymeric liners to prevent air leakage to outside and water leakage to inside, outside polymeric liners to prevent water leakage to inside and air leakage to outside, layers to provide damage tolerance (e.g. thick, but un-reinforced layers and/or layers of materials differing from those of the adjacent layers, or layers having differing microstructures from other layers—honeycomb layers, etc.), and selective reinforcing layers 14 (FIG. 1) at the contact/assembly locations. Further, in accordance with a more specific embodiment of the invention, fiber optic 26 is manufactured in or between layers 12a-12n for use in monitoring the state of the CBM 10. Any variety of combinations of layers are used in alternative embodiments of the invention, there being no particular layer combination that must be used in all embodiments of the invention. Further, there is no particular single layer type that must be used in every embodiment of the invention. Referring again to FIG. 1, selective reinforcement at the buoyancy load transfer locations 16 is provided in some embodiments. In one such embodiment, seen in FIG. 1b, reinforcing member 18 (for example, a metal or other load-bearing material, in a more specific example, corrosion-resistant alloy (“CRA”)) is provided to support wall 12. Optional selective reinforcement 20 is seen for further load transfer aid. Referring again to FIG. 1, an example penetration 22 is seen, which is provided in some embodiments for air pressurization. A further penetration 26 is seen for passing of fiber optic 26. It will be noted that the location of penetrations is dependant upon the use of the penetration, and, while shown both on the side and at the end of CBM 10, penetrations at the end of CBM 10 are preferable for many applications. Other uses of such penetrations include water purging and other functions that will occur to those of skill in the art. Multiple penetrations are contemplated in various embodiments; however, in some embodiments single or no penetrations are used. Also seen in FIG. 1 is a bulkhead 24, used on some embodiments to increase the collapse resistance of the CBM 10. Bulkhead 24 is also used on some embodiments to add redundancy. In many embodiments of the invention wall 12 of CBM 10 is designed to leak before collapse or burst. In still further embodiments, the functional status of the CBM 10 is detected by monitoring the pressurizing system and/or air flow rate into the system. In still further embodiments, wall 12 is designed such that, in the case of burst, the CBM is not shattered into large pieces. In an even further embodiment, when the CBMs fail due to leakage of water inside the chamber, the structural integrity of the CBM is maintained such that it can carry axial loads without providing buoyancy. In some embodiments, CBM 10 is filled with a low density material, such as closed cell syntactic foam or flowable microspheres 25. Also, in some embodiments, CBM 10 includes a sensor 40 for sensing buoyancy module failure. In various embodiments, sensor 40 is an interior-exterior pressure difference sensor, an interior pressure sensor, an interior temperature sensor, or an interior moisture sensor. In another embodiment, CBM 10 includes a buoyancy force transfer monitor 42 on its exterior wall 12 for sensing buoyancy module failure. Referring now to FIGS. 2a-2e, CBM 10 has, in alternative embodiments, a cross section of circular, polygonal, saddle, pie, or triangular shape. Other shapes will occur to those of ordinary skill without departing from the spirit of the invention. Also, length of the CBM 10 is variable (for example, between 1 ft to 50 ft), depending on the manufacturing process or the attachment requirements. Referring now to FIGS. 3a-3d, in still further embodiments, air, or any other material that is less dense than water, is trapped inside the CBM 10. In FIG. 3a, the CBM 10 is open to water 27 at the bottom 10a. The amount of water inside the CBM is varied by supplying air from a supply line 30 connected to a supply (not shown) located at the surface facilities (not shown). Alternatively, as seen in FIG. 3b, air is plumbed through supply 34 from the object 32 (e.g., a steel air can, neighboring CBM, etc.) to which the CBM 10 is attached. In embodiments providing for pressure supply, the buoyancy of the system is adjusted, both on location and during installation. Thus, for example, during installation the buoyancy is adjusted in some embodiments so that the CBM 10 does not provide upward thrust. Referring now to the embodiment of FIG. 3c, the CBM 10 is designed for internal pressure loads. In one example use embodiment of the invention, CBM 10 is pressurized through penetration 39 on the surface. Then, when CBM 10 is submerged, hydrostatic pressure Po works against the internal pressure Pi and balances the load, simplifying the design of wall 12. In such cases, less material/layers (or weaker material/layers) is needed than in embodiments in which there is a high external pressure differential. In further embodiments, the internal pressure is used to test the CBM for leaks. Referring now to FIG. 3d, a more simple embodiment is seen in which internal pressure Pi in CBM 10 is below that of the pressure Po outside CBM 10 (for example, one atmosphere), and CBM 10 is constructed without a penetration and with sufficient strength to take the full hydrostatic pressure loads. In still a further embodiment, CBM 10, from what ever drawing mentioned above, comprises a rubber wall 12. In a more specific embodiment, wall 12 comprises a reinforced rubber walls allowing for deflection, reducing the potential for damage of CBM 10. Referring now to FIGS. 4a-4e, various system embodiments of the invention are seen, in which various numbers, sizes, and/or shapes of CBMs 10 are attached to an object 32 to which added buoyancy is desired. The CBM 10 increases the effective hydrodynamic diameter of the attached object. By arranging the CBM assembly to different shapes the drag and lift coefficients of the system can be optimized. Referring now to FIGS. 6a-6c, embodiments are seen in which hydrodynamic performance is adjusted. In the embodiment of FIG. 6a, for example, in which CBM 10a is a size different from CBM size 10b, the current 60 is disrupted from the pattern it would normally take around the shape of the attached object 32 on which additional buoyancy is desired. A variety of patterns is available through selection of size and orientation of the CBMS. In FIG. 6b, an example embodiment is seen in which CBMs 10a-10d are attached to member 32 such that current 60 passes both around CBMs 10a-10d and between CBMs 10a-10d and member 32. Again, various patterns are available through selection of the size, number, and orientation of the CBMS. Likewise, shape of the CBMs affects the hydrodynamic performance. As seen in FIG. 6c, CBMs 10a-10d are of a non-circular cross-sectional shape, in this case a triangle. Again, variation in number, relative size and orientation also are combined in even further alternative embodiments. Likewise, other shapes are also within the scope of the invention. Referring now to FIG. 9b a more specific example of an assembly of 5 CBMs 10a-10e on a riser joint 90 is seen, suitable for installation in (as seen in FIG. 9b) a 51″ stem pipe 92. Referring to FIG. 9a, the CBMs 10a-10e are attached to riser joint 90 with retaining rings 94. A thrust plate assembly 91, with gussets 91a-91e, transfers the buoyancy forces from the CBMs 10a-10e to riser joint 90. Stopper assembly 93 prevents CBMs 10a-10e from shifting axially down riser joint 90. Alternative embodiments of thrust plate assembly 91 and stopper 93 will occur to those of ordinary skill in the art. Referring now to FIGS. 9b-9d, retaining ring 94 holds CBMs 10a-10e concentrically around riser 90 with spacers 98 to centralize the CBMs 10a-10e, avoid damage to the CBMS. Acceptable materials for spacers 98 include: rubber, HDPE, Teflon, extruded polymers, and other materials that will occur to those of skill in the art. Bumpers 96 prevent the CBMs from being damaged during installation. Acceptable materials for bumpers 96 include: rubber HDPE, Teflon, extruded polymers, and other materials that will occur to those of skill in the art. Retaining ring 94 comprises semi-rings 94a and 94b, attached by flange, nut, and bolt assemblies 96a and 96b. Other attachments of semi-rings 94a and 94b will occur to those of skill in the art (e.g. welds, rivets, clamps, locking tabs, etc.). Further, other ring assemblies will occur to those of skill in the art without departing from the spirit of the invention. In some specific embodiments, the material of ring 94 comprises material such as, for example: CRA alloys, Kevlar straps, and other tension bearing members and/or fabrics. Referring now to FIGS. 5a-5b, various example embodiments are seen of CBMs 10 attached to members or attached objects 32 to provide buoyancy to members or attached objects 32. In FIG. 5a, for example, a single, long CBM 10 is attached with thrust plate 91 and rings 94. To add redundancy and reduce the danger of the loss of any single CBM causing insufficient buoyancy, FIG. 5b shows the same amount of buoyancy for the member 40 by using multiple CBMS. In FIG. 5b, a load transfer member 99 transfers the buoyancy forces between CBMs 10a-10c to thrust plate 91. The use of modular CBMs in an overall CBM system with load transfer members 99 results in the replacement of the single CBM of the example of FIG. 5a. Thus, if CBM 10b leaks and provides no buoyancy, the structure of CBM 10b is sufficient to transfer the buoyancy load of CBM 10c to CBM 10a and to thrust plate 91. According to an even further embodiment of the invention, the CBM assembly of FIG. 5b is assembled in modular form, wherein a damaged part is removed and replaced, again obtaining advantages over the embodiment of FIG. 5a or the earlier air cans. In still a further embodiment, seen in FIG. 5c, a single CBM or even a CBM assembly such as what is seen in FIG. 5b, is attached to member 32 with clamps 100, and the buoyancy load is transferred to member 32 through the friction interaction between the CBM assembly, the clamps, and the surface of the member. According to various embodiments of the invention, various manufacturing processes are used to make the CBMs and CBM assembles discussed above. For example, one such method comprises filament winding of CBMs (most suitable for cylindrical uniform cross-section elements). Another acceptable method comprises resin transfer molding (suitable for non-symmetric cross-section elements). Hand lay-up walls on “pultruded” composite elements would constitute yet a further acceptable manufacturing embodiment. Other manufacturing processes will occur to those of skill in the art. According to an even further embodiment of the invention, systems are configured with a large number of CBMs such that each CBM will supply only a small fraction of total required buoyancy. By dividing the buoyancy elements into smaller units overall system redundancy is increased. The CBMs are designed to be inspectable and easily repairable/disposable. FIGS. 7a-7d illustrate more specific embodiments in which CBMs are applied to top tension risers. The CBMs are placed at different locations along the riser, rather than using a few large buoyancy elements. In still a further embodiment, FIG. 8a is an application of CBMs for a spar riser system. A large portion of the buoyancy required by the system is provided by the steel air can, divided into multiple chambers 110a-110c. Without CBMs, the interior of stem 112 is not normally counted upon for buoyancy, because it is too large and uncompartmentalized. A leak in the stem, anywhere, results in a loss of all of the buoyancy. Attachment of the CBMs 10 to the riser 40 as shown allows the stem interior to be used, reliably, for buoyancy. The loss of one or even many of the CBMs 10 in such an embodiment does not mean the loss of all of the buoyancy of the stem. Likewise, the loss of air pressure within the stem itself does not affect the buoyancy provided by the CBMs. Therefore, the FIG. 8a buoyancy system is designed for failure of several chambers. Likewise, the compartments 110a-110c of the air can 110 are large, and a small leak can cause the loss of buoyancy of all of the compartment. Therefore, in still a further embodiment, seen in FIG. 8b, multiple CBMs are applied to the interior of air can compartments 110a-110c, again to add redundancy. | <SOH> BACKGROUND OF THE INVENTION <EOH>The present invention relates to the application of buoyancy to objects used in large vessel and platform operations. Vast oil reservoirs have recently been discovered in very deep waters around the world, principally in the Gulf of Mexico, Brazil and West Africa. Water depths for these discoveries range from 1500 ft to nearly 10,000 ft. Conventional offshore oil production methods using a fixed truss type platform are not suitable for these water depths. These platforms become dynamically active (flexible) in these water depths. Stiffening them to avoid excessive and damaging dynamic responses to wave forces is prohibitively expensive. Deep water oil and gas production has thus turned to new technologies based on floating production systems. These systems come in several forms, but all of them rely on buoyancy for support and some form of a mooring system for lateral restraint against the environmental forces of wind, waves and current. These floating production systems (FPS) sometimes are used for drilling as well as production. They are also sometimes used for storing oil for offloading to a tanker. This is most common in Brazil and West Africa, but not in Gulf of Mexico as of yet. In the Gulf of Mexico, oil and gas are exported through pipelines to shore. Drilling, production, and export of hydrocarbons all require some form of vertical conduit through the water column between the sea floor and the FPS. These conduits are usually in the form of pipes which are called “risers.” Typical risers are either vertical (or nearly vertical) pipes held up at the surface by tensioning devices; flexible pipes which are supported at the top and formed in a modified catenary shape to the sea bed; or steel pipe which is also supported at the top and configured in a catenary to the sea bed (Steel Catenary Risers—commonly known as SCRs). The flexible and SCR type risers may in most cases be directly attached to the floating vessel. Their catenary shapes allow them to comply with the motions of the FPS due to environmental forces. These motions can be as much as 10%-20% of the water depth horizontally, and 10's of ft vertically, depending on the type of vessel, mooring and location. Top Tensioned risers (TTRs) typically need to have higher tensions than the flexible risers, and the vertical motions of the vessel need to be isolated from the risers. TTRs have significant advantages for production over the other forms of risers, however, because they allow the wells to be drilled directly from the FPS, avoiding an expensive separate floating drilling rig. Also, wellhead control valves placed on board the FPS allow for the wells to be maintained from the FPS. Flexible and SCR type production risers require the wellhead control valves to be placed on the seabed where access and maintenance is expensive. These surface wellhead and subsurface wellhead systems are commonly referred to as “Dry tree” and “Wet Tree” types of production systems, respectively. Drilling risers must be of the TTR type to allow for drill pipe rotation within the riser. Export risers may be of either type. TTR tensioning systems are a technical challenge, especially in very deep water where the required top tensions can be 1000 kips or more. Some types of FPS vessels, e.g. ship shaped hulls, have extreme motions which are too large for TTRS. These types of vessels are only suitable for flexible risers. Other, low heave (vertical motion), FPS designs are suitable for TTRS. This includes Tension Leg Platform (TLP), Semi-submersibles, and Spars, all of which are in service today. Of these, only the TLP and Spar platforms use TTR production risers. Semi-submersibles use TTRs for drilling risers, but these must be disconnected in extreme weather. Production risers need to be designed to remain connected to the seabed in extreme events, typically the 100 year return period storm. Only very stable vessels are suitable for this. Early TTR designs employed on semi-submersibles and TLPs used active hydraulic Pensioners to support the risers. FIG. 10 illustrates a TLP riser system 150 with tensioners 160 . As tensions and stroke requirements grow, these active tensioners become prohibitively expensive. They also require large deck area, and the loads have to be carried by the FPS structure. Spar type platforms recently used in the Gulf of Mexico use a passive means for tensioning the risers. These type platforms have a very deep draft with a central shaft, or centerwell, through which the risers pass. Buoyancy cans inside the centerwell provide the top tension for the risers. These cans are more reliable and less costly than active tensioners. FIGS. 11 and 12 respectively show the arrangement of the risers in two types of spars: the Caisson Spar 200 (cylindrical) and the “Truss” spar 210 , respectively. There may be as many as forty production risers passing through a single centerwell. Buoyancy cans 220 , typically cylindrical, are located on the risers, and they are separated from each other by a rectangular grid structure referred to as riser guides 230 . These guides are attached to the hull. As the hull moves the risers are deflected horizontally with the guides. However, the risers are tied to the seafloor, hence as the vessel heaves the guides slide up and down relative to the risers (from the viewpoint of a person on the vessel it appears as if the risers are sliding in the guides). FIG. 13 shows the arrangement for a single spar production riser 300 . A wellhead 310 at the sea floor connects the well casing 320 (below the sea floor) to the riser with a special tieback connector 330 . The riser, typically 9″-14″ pipe, passes from the tieback connector through the bottom of the spar and into the centerwell. Inside the centerwell the riser passes through a stem pipe 340 , or conduit, which goes through the center of the buoyancy cans. This stem extends above the buoyancy cans themselves and supports the platform to which the riser and the surface wellhead are attached. The buoyancy cans need to provide enough buoyancy to support the required top tension in the risers, the weight of the cans and stem, and the weight of the surface wellhead. FIG. 14 illustrates buoyancy cans and guides in a spar centerwell. FIGS. 15 and 16 illustrate a typical buoyancy can design showing an outer shell 240 surrounding the stem 340 . Since the surface wellhead (“dry tree”) move up and down relative to the vessel, flexible jumper lines 400 ( FIG. 13 ) connect the wellhead to a manifold 500 which carries the product to a processing facility to separate water, oil and gas from the well stream. Spacing between risers is determined by the size of the buoyancy cans. This is an important variable in the design of the spar vessel, since the riser spacing determines the centerwell size which in turn contributes to the size of the entire spar structure. This issue becomes increasingly more critical as production moves to deeper water because the amount of buoyancy required increases with water depth. The challenge is to achieve the buoyancy needed while keeping the length of the cans within the confines of the centerwell, and the diameters to reasonable values. The efficiency of the buoyancy cans is compromised by several factors, as follows: | <SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The present invention relates to methods of designing, constructing, attaching and using buoyancy systems for water covered areas. Various objects of invention are addressed in the above-mentioned problems. For example, according to one aspect of the invention, a buoyancy system for a structure having at least one component being substantially stationary with respect to the bottom of a water covered area is employed. This system comprises a set of buoyancy modules of engineered materials to apply an identified amount of buoyancy. The set of buoyancy modules are attached to the structure at a set of buoyancy load transfer locations. According to another aspect of the invention, a buoyant riser comprises a set of engineered-material buoyancy modules connected to the riser. In a further example embodiment of the invention, a system of applying buoyancy to a member is adopted. This system comprises means for constraining a plurality of engineered material buoyancy members in a metal container, wherein said constraining is arranged to assert a buoyant force, and means for applying the buoyancy force of the metal container to the member. Another aspect of the invention involves a system of applying buoyancy to a riser. That system comprises means for asserting a first portion of the buoyancy force required to lift the riser at a first buoyancy load location on the riser with a first buoyancy member, means for protecting the first buoyancy member from entry of fluid, means for asserting a second portion of the buoyancy force required to lift the riser at a second buoyancy load location on the riser with a second buoyancy member, and means for protecting the second buoyancy member from entry of fluid. Some embodiments of the invention utilize a system of applying buoyancy to a member. This system comprises means for resiliently constraining a mass having a density less than water and means for asserting, with the resiliently constrained mass, at least a portion of the buoyancy force required to lift the member at a buoyancy load location on the member. Still another embodiment of the invention applies a method of designing a buoyancy system for a structure having at least one component being substantially stationary with respect to the bottom of a water covered area. Some of such methods comprise identifying the amount of buoyancy required by the buoyancy system, wherein an identified amount of buoyancy results, identifying a set of buoyancy modules of engineered material to apply the identified amount of buoyancy, and identifying a location with respect to the structure for the set of buoyancy modules. In accordance with another embodiment, the invention comprises a method of increasing the redundancy of a buoyancy in a stem pipe for a riser. In this embodiment, the method comprises applying a set of engineered-material buoyancy modules to the riser, and inserting the riser with the set of engineered-material buoyancy modules attached to the stem pipe. A still further example of the present invention comprises a method of applying buoyancy to a member. The method comprises constraining a plurality of engineered material buoyancy members in a metal container, wherein said constraining is arranged to assert a buoyant force, and applying the buoyancy force of the metal container to the member. In addition some embodiments of the invention comprise a method of applying buoyancy to a riser. A number of such methods comprise asserting a first portion of the buoyancy force required to lift the riser at a first buoyancy load location on the riser with a first buoyancy member, protecting the first buoyancy member from entry of fluid, asserting a second portion of the buoyancy force required to lift the riser at a second buoyancy load location on the riser with a second buoyancy member, and protecting the second buoyancy member from entry of fluid. Yet another embodiment of the invention comprises a method of applying buoyancy to a member. That method comprises resiliently constraining a mass having a density less than water and asserting, with the resiliently constrained mass, at least a portion of the buoyancy force required to lift the member at a buoyancy load location on the member. In accordance with various embodiments, the invention comprises an apparatus for providing buoyancy to a submerged riser attached at its lower end to a well head on the sea floor. This apparatus comprises a plurality of submerged buoyancy modules associated with the riser for imparting an upward buoyancy force to the riser, wherein the buoyancy modules comprise lightweight material selected from a group consisting of glass fiber/polymeric resin, carbon fiber/polymeric resin, hybrid glass/carbon fiber polymeric resin, rubber reinforced with nylon fibers, and rubber reinforced with steel fibers. Further embodiments comprise an apparatus for providing buoyancy to a submerged riser attached at its lower end to a well head on the sea floor. That apparatus comprises a plurality of submerged buoyancy modules associated with the riser for imparting an upward buoyancy force to the riser, wherein each buoyancy module is hollow and has an elongated shape with a longitudinal axis and is vertically oriented, the longitudinal axis of the buoyancy module being generally parallel to the longitudinal axis of the riser, some of the buoyancy modules being disposed at different vertical elevations along the riser in an arrangement so as to provide improved hydrodynamic performance to the riser, wherein each buoyancy module comprises a layered exterior wall, wherein each layer of the wall has a specific function, and wherein the layers include one or more of hoop layers to resist internal and external pressure, axial layers to carry axial loads, polymeric liners to prevent fluid leakage through the wall, and selective reinforcing layers to provide damage tolerance at assembly contact locations and at buoyancy load transfer locations, and straps for attaching the buoyancy modules to the riser, the straps passing around the outer circumference of the buoyancy modules. These and many other embodiments and advantages of the present invention will be obvious to one of ordinary skill in the art upon review of the Detailed Description in conjunction with the following figures. | 20050105 | 20060829 | 20050602 | 98450.0 | 0 | LEE, JONG SUK | ENGINEERED MATERIAL BUOYANCY SYSTEM AND DEVICE | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,029,870 | ACCEPTED | Crossbow | A crossbow having an increased powerstroke and reduced noise. The powerstroke is increased by inverting the limb orientation from the standard crossbow arrangement and locating string guides at least partially forward and rearward of the ends of the limbs. The bowstring is drawn from the tops of the string guides to maximize the powerstroke, reducing noise and increasing the retained and delivered energy over existing crossbows. | 1. A shooting bow comprising: (a) a frame; (b) a first limb; (c) a second limb; (d) wherein said first limb and said second limb are coupled to said frame in a manner in which said first limb and said second limb extend outwardly away from one another in a direction of shooting; (e) a first string guide; (f) means for journaling said first string guide to said first limb; (g) a second string guide; (h) means for journaling said second string guide to said second limb; (i) a first string coupled to said first string guide and to said second string guide; (j) a second string coupled from a first point on said first string guide forward of said first journaling means to a second point on said second string guide forward of said second journaling means; (k) means for retaining said second string in a cocked position; and (l) trigger means for causing said retaining means to release said second string. 2. The shooting bow of claim 1, wherein said first string is integrally formed with said second string. 3. The shooting bow of claim 1, further comprising a third string coupled to said first string guide and said second string guide. 4. The shooting bow of claim 1, further comprising a projectile track provided on said frame. 5. The shooting bow of claim 4, wherein said retaining means is located within five centimeters of one end of said projectile track. 6. The shooting bow of claim 1, wherein said first string guide is journaled directly to said first limb. 7. The shooting bow of claim 1, wherein said first limb and said second limb are coupled to said frame by a riser. 8. The shooting bow of claim 1, wherein said first string guide is a cam. 9. The shooting bow of claim 8, wherein said second string guide is a pulley. 10. The shooting bow of claim 1, further comprising a projectile track provided on said frame, wherein said projectile track is at least forty centimeters in length. 11. A shooting bow comprising: (a) a frame; (b) a first limb; (c) a second limb; (d) a first string guide; (e) means for journaling said first string guide to said first limb in a manner in which at least a portion of said first string guide extends at least partially forward of, and through, said first limb; (f) a second string guide; (g) means for journaling said second string guide to said second limb in a manner in which at least a portion of said second string guide extends forward of, and through, said second limb; (h) a string coupled from a forward portion of said first string guide to a forward portion of said second string guide; and (i) means for retaining said string in a cocked position. 12. The shooting bow of claim 11, further comprising a second string coupled between said first string guide and said second string guide. 13. The shooting bow of claim 12, further comprising a third string coupled between said first string guide and said second string guide. 14. The shooting bow of claim 11, further comprising a projectile track provided on said frame, wherein said retaining means is provided within five centimeters of one end of said track. 15. The shooting bow of claim 11, wherein said first string guide is journaled directly to said first limb. 16. The shooting bow of claim 11, wherein said first limb and said second limb are coupled to said frame by a riser. 17. The shooting bow of claim 11, wherein said first string guide is a cam. 18. The shooting bow of claim 17, wherein said second string guide is a pulley. 19. A shooting bow comprising: (a) a frame having a front and a back; (b) a first limb; (c) a second limb; (d) wherein said first limb and said second limb are coupled to said frame in a manner in which said first limb and said second limb diverge from one another in a forward direction; (e) a projectile having a front and a back; (f) a first string guide journaled to said first limb; (g) a second string guide journaled to said second limb; (h) means for mounting said projectile on said frame; (i) a first string extending from said first string guide to a point behind at least one-half the length of said projectile, and engaged with said second string guide; and (j) a second string extending from said first string guide to said second string guide. 20. The shooting bow of claim 19, wherein said first string guide is a cam and wherein said second string guide is a pulley. | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates in general to an improved crossbow and, more particularly, to a crossbow having improved speed and reduced noise characteristics. 2. Description of the Prior Art Crossbows have been known for centuries. By allowing the shooter to mechanically retain the bow in the cocked position, the shooter is provided an advantage over a traditional archer who must utilize muscular force to retain the bow in the cocked position. While crossbow design remained substantially unchanged until the twentieth century, crossbow design has been subject to many recent developments which have dramatically increased performance. One improvement has been the provision of cams on the crossbow to increase the mechanical advantage associated with the draw of the bowstring. One drawback associated with such cams is the requirement that the cams be “synchronized” to prevent lateral travel-of the rear of the projectile during launch. While such problems are less dramatic in crossbows than in traditional bows, developments such as the utilization of a single cam arrangement, such as that described in McPherson, U.S. Pat. Patent No. 6,267,108, substantially reduces the problems associated with “synchronization.” Such crossbows still have several drawbacks. As with crossbows of the past, these newer crossbows still locate the limbs of the bows near the forward most portion of the crossbow rail. This orientation positions the bowstring substantially further back along the rail, drastically decreasing the draw length of the crossbow, simultaneously sacrificing speed, and necessarily increasing the draw weight required to obtain desired performance. As described in Nishioka, U.S. Pat. No. 4,879,987, it is known to reverse the positioning of the limbs in a crossbow to place the bowstring closer to the end of the rail, thereby increasing draw length and the associated power of the crossbow. However, although such devices provide for an increased draw length, by drawing the bowstring from the rear of the cams located on the limbs, the draw length is still not effectively maximized. Additionally, utilizing brackets to locate the cams inward and short of the ends of the limbs, further decreases the potential power of such devices. Still another drawback with such devices is the inclusion of additional cams located on the frame, which increases cost, weight and maintenance of such devices, as well as adding additional friction to further diminish the potential power of the crossbow. As shown in Nizov, U.S. Pat. No. 5,630,405, it is known in the art to position the cams closer to the ends of the limbs to further increase the power of the crossbow. Such devices also have drawbacks, however, including the pulling of the bowstring from the rear of the cams, which reduces the draw length of the crossbow. Additionally, Nizov fails to position the bowstring at the end of the rail, thereby sacrificing overall draw length and power. Nizov also requires that the majority of the projectile be positioned behind the cocked position of the bowstring. Such an orientation increases the required length of the rail, while failing to provide any concomitant increase in draw length. It would be desirable to increase the utilization of the rail to increase power and reduce the weight and bulkiness of the crossbow. As described in Nishioka, U.S. Pat. No. 4,766,874, it is known in the art to provide a crossbow with the above described reverse limb orientation to increase draw length, and to further draw the bowstring from the forward portion of the cams to additionally increase draw length, and the associated power stroke. One drawback associated with such devices, however, is the decrease in draw length associated with providing brackets which locate the limb cams rearwardly and inwardly of the limbs. An additional drawback is that such devices locate the bowstring substantially rearward of the end of the crossbow rail, substantially reducing the draw length and power stroke. Still another drawback associated with such devices is the inclusion of pulleys located below the rail of the crossbow. This additional feature increases the weight, cost and maintenance of such devices, while adding additional friction, further decreasing the potential speed of the crossbow. It would be advantageous to eliminate these additional frictional elements and to increase the power stroke to exploit the full length of the rail in imparting power to the projectile. As noted above, while there have been several advancements in the field of crossbows, the existing prior art evidences numerous drawbacks, including the failure to utilize the entire potential power stroke of both the forward and rearward ends of the rail, undesirable location of pulleys and cams, and the inclusion of additional frictional parts, further robbing the crossbow projectile of additional speed. The difficulties encountered in the prior art discussed hereinabove are substantially eliminated by the present invention. SUMMARY OF THE INVENTION In an advantage provided by this invention, a crossbow is provided which is of a low-cost, simple manufacture. Advantageously, this invention provides a crossbow of a compact, lightweight construction. Advantageously, this invention provides a crossbow with reduced maintenance requirements. Advantageously, this invention provides a crossbow with an increased power stroke. Advantageously, this invention provides a crossbow which reduces the force required to draw the bowstring. Advantageously, this invention provides a crossbow which reduces noise associated with launch of a projectile. Advantageously, this invention provides a crossbow with an increased draw length, allowing the utilization of standard arrows. Advantageously, in the preferred embodiment of this invention, a shooting bow is provided with a frame coupled to two limbs extending outwardly away from one another in the direction of shooting. A first string guide member is journaled to the first limb, and a second string guide member is journaled to the second limb. The first string is coupled to the first string guide and the second string guide. A second string is coupled from a first point on the first string guide, forward of the point where the first string guide is journaled to the first limb and to a second point on the second string guide, forward of the point where the second string guide is journaled to the second limb. Means are provided for retaining the second string in a cocked position, and trigger means are provided for causing the retaining means to release the second string. Preferably, the first string guide is a cam and the second string guide is a pulley, each positioned at the ends of their respective limbs. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will now be described, by way of example, with reference to the accompanying drawings in which: FIG. 1 illustrates a top plan view of the crossbow of the present invention; FIG. 2 illustrates a side elevation of the crossbow of FIG. 1; FIG. 3 illustrates a bottom plan view of the cam associated with the crossbow of FIG. 1; FIG. 4 illustrates a side perspective view of the locking mechanism of the present invention; FIG. 5 illustrates a side elevation in cross-section of the locking mechanism of the present invention, shown with the bowstring drawn between the string retainers; FIG. 6 illustrates a side elevation in cross-section of the lock assembly of FIG. 5, shown with the string engaging the rear of the retainer bar; FIG. 7 illustrates a side elevation in cross-section of the locking mechanism of FIG. 5, shown with the locking mechanism in the cocked position; FIG. 8 illustrates a side elevation in cross-section of the locking mechanism of FIG. 5, shown with a projectile positioned between the string retainers and the safety released; FIG. 9 illustrates a side elevation in cross-section of the locking mechanism of FIG. 5, shown with the trigger actuated and the bowstring released from the string retainer. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A crossbow according to the present invention is shown generally as (10) in FIG. 1. As shown in FIGS. 1 and 2, the crossbow (10) is provided with a frame (12) which includes a stock (14) and a rail (16). Although the stock (14) and rail (16) may be of any type known in the art, in the preferred embodiment the stock (14) is of a composite material construction, and the rail (16) is constructed of aluminum. Alternatively, the crossbow (10) may be of a “railless” design, such as those known in the art. The crossbow (10) is provided with a pivotable foot stirrup (18) to facilitate cocking of the crossbow (10). As shown in FIG. 1, the crossbow (10) is also provided with a pair of risers (20) and (22) secured to the rail (16). The risers (20) and (22) are preferably constructed of aluminum to reduce weight. Coupled to the risers (20) and (22) are limbs (24) and (26). The limbs (24) and (26) are constructed and coupled to the risers (20) and (22) in a manner such as that known in the art. Coupled to the first limb (24) is a first string guide, which in the preferred embodiment is a pulley (28), having an outer track (30) and an inner track (32). The pulley (28) is preferably journaled to the end of the limb (24) by an axle (34). The pulley (28) is preferably journaled to the limb (24) in a manner which positions a portion of the pulley (28) forward and outward of the space defined between the limbs (24) and (26). As shown in FIG. 1, a second string guide, which in the preferred embodiment is a cam (36), is journaled to the second limb (26) by an axle (38). The cam (36) is also journaled to the second limb (26) so that at least a portion of the cam (36) extends forward and outward of the area defined between the limbs (24) and (26). The cam (36) is preferably constructed as shown in FIG. 3, but may be constructed in a manner known in the art. If desired, two synchronized cams (not shown) may be used in place of the cam (36) and pulley (28). The cam (36) and pulley (28) may be coupled to a bowstring (48) and, if desired, one or more cables in any manner known in the art, but the bowstring (48) is preferably located, as shown in FIG. 1, forward of the points on the limbs (24) and (26) where the cam (36) and pulley (28) are journaled to the limbs (24) and (26). As shown in FIG. 1, the foregoing orientation of the pulley (28), cam (36), cable (44) and bowstring (48) positions the bowstring (48) very close to the forward end (52) of the rail (16). As shown in FIG. 2, secured above the rail (16) is a scope (54). Releasably secured to the stock (14) is a cocker mechanism (56), such as those known in the art. Alternatively, a cocker mechanism may be integrated into the frame (12). Extending from the cocker mechanism (56) is a band (58) used to draw the bowstring (48). As shown in FIG. 4, however, unlike prior art cocking strings, the band (58) is provided with a single attachment point hook (60) to engage the bowstring (48). The cocker mechanism (56) may be of an ordinary dog and pawl construction, or any similarly suitable construction designed to retract the band (58). As shown in FIG. 4, the cocker mechanism (56) draws the band (58) over a locking assembly (62). The locking assembly (62) includes a retainer bar (64), a safety assembly (88), a dryfire bar (104) and a trigger assembly (116). The retainer bar (64) is pivotally mounted to the frame (12) by an axle (66). FIGS. 2 and 4. The retainer bar (64) is preferably constructed of hardened steel and is journaled to the frame (12) preferably at a point at least ten centimeters, more preferably at least twelve centimeters, and most preferably at least fourteen centimeters from the sear (68) which forms the end of the retainer bar (64). As shown in FIG. 4, the retainer bar (64) is provided with a slot (70) defined by a left wall (72) and a right wall (74). The left wall (72) includes a left string retainer (76) and a left string engager (78). The string retainer (76) and string engager (78) define a left string slot (80) therebetween. Similarly, the right wall (74) includes a right string retainer (82) and a right string engager (84) coacting to define a right string slot (86). As shown in FIG. 4, the safety assembly (88) is pivotally coupled to the frame (12) by an axle (90). The safety assembly (88) includes a hardened steel safety bar (92) coupled to an actuation pin (94) which extends through a slot (96) provided in the stock (14). FIGS. 2 and 4. As shown in FIG. 5, the safety bar (92) defines a dryfire catch (98) and a trigger bar sear (100). The dryfire catch (98) is preferably provided with an arcuate surface as shown in FIG. 5 to accommodate the curved end (102) of the dryfire bar (104). As shown in FIGS. 4 and 5, the dryfire bar (104) is pivotally coupled to the retainer bar (64) by an axle (106). The dryfire bar (104) preferably rests within the slot (70) defined by a left wall (72) and right wall (74) of the locking assembly (62). (FIGS. 4-5). As shown in FIG. 5, a torsion spring (108) may be secured to the left wall (72) and right wall (74). As shown, the torsion spring (108) wraps around the axle (106) on either side of the dryfire bar (104) and wraps around the back (110) of the dryfire bar (104) to motivate the dryfire bar (104) toward an upright position. Any type of spring, or even gravity, may be utilized to motivate the dryfire bar (104) toward an upright position. As shown in FIG. 5, the dryfire bar (104) is provided on one end with a projectile engager (112) and on the opposite end with a hook (114). As shown in FIG. 5, the trigger assembly includes a trigger bar (118), a safety engager (120), a sear engager (122) and a trigger (124), all integrally formed from a single piece of hardened steel. The trigger assembly (116) is journaled to the frame (12) by an axle (126). FIGS. 2 and 5. The extended length of the retainer bar (64) and trigger bar (I 18) are preferred as this construction reduces wear on the sears (68) and (100), extends the life of the parts, and provides a lighter trigger pull, while still maintaining safety of the mechanism. Additionally, by locating the string retainers (76) and (82) rearward of the trigger (124), an increased power stroke is available, allowing the crossbow (10) to store and deliver more energy to a projectile. As shown in FIG. 5, the trigger assembly (116) is journaled to the frame (12) in a manner which motivates the trigger assembly (116) in a counterclockwise rotation, given the weight distribution of the elements of the trigger assembly (116) relative to the axle (126). Preferably, the trigger assembly (116) is provided with a set screw (not shown) to allow for trigger pull adjustment in a manner such as that known in the art. When it is desired to load and fire the crossbow (10), the cocker mechanism (56) is released to allow the band (58) and hook (60) to be extended and engaged with the bowstring (48). The cocker mechanism (56) is thereafter actuated utilizing the handle (130), a power drill (not shown), or any other suitable means known in the art to begin retracting the band (58) and hook (60) toward the cocker mechanism (56). As shown in FIG. 4, as the cocker mechanism (56) draws the bowstring (48) rearward, the band (58) passes between the downwardly rotated string retainers (76) and (82). As shown in FIG. 5, as the cocker mechanism (56) retracts the bowstring (48), the trigger assembly (116) is in the fired position, having previously released the sear (68) from the sear engager (122). This causes the retainer bar (64) to pivot downward, creating the required clearance between the hook (60) and the tops of the string retainers (76) and (82). As shown, the safety assembly (88) is disengaged, allowing the trigger bar (118) to pivot past the trigger bar sear (100) and to allow the curved end (102) of the dryfire bar (104) to move past the dryfire catch (98). As shown in FIG. 6, as the cocker mechanism (56) continues to draw the bowstring (48) rearward, the bowstring (48) contacts the string engagers (78) and (84). (FIGS. 4 and 6). As the cocker mechanism (56) continues to exert force against the string engagers (78) and (84) via the bowstring (48), the retainer bar (64) begins to rotate counterclockwise, raising the sear (68) above the sear engager (122). The weight of the trigger assembly (116) rotates the sear engager (122) under the sear (68). Additionally, the hook (114) associated with the dryfire bar (104) engages the safety bar (92). Thereafter, as the cocker mechanism (56) is actuated to release the bowstring (48), the band (58), hook (60) and bowstring (48) move forward as shown in FIG. 7. As pressure is released from the string engagers (78) and (84), the retainer bar (64) rotates clockwise under the force of gravity to move the sear (68) into engagement with the sear engager (122) and to cause the trigger bar sear (100) to move into engagement with the safety engager (100). Additionally, the curved end (102) of the dryfire bar (104) moves into engagement with the dryfire catch (98). In this orientation, the safety assembly (188) prevents actuation of the trigger assembly (116) as the bowstring (48) continues to move forward into contact with the string retainers (76) and (82). Because there are two retainers (76) and (82), located on either side of the hook (60), a single hook may be utilized instead of prior art utilization of a dual hook assembly. This orientation not only reduces parts and increases the repeatability of the draw, it also reduces stress on the nock point of the bowstring (48). After the crossbow (10) has been cocked as described above, a projectile such as an arrow (130) is positioned along the rail (16) as shown in FIG. 8. (FIGS. 1 and 8.) Given the increased power stroke of the present invention, standard arrows may be used in place of standard crossbow bolts. As shown, placement of the arrow (130) between the left wall (72) and right wall (74) of the locking assembly (62) forces the projectile engager (112) portion of the dryfire bar (104) downward and rearward, causing the dryfire bar (104) to rotate out of engagement with the safety assembly (88). FIGS. 4 and 8). Thereafter, the actuation pin (94) of the safety assembly (88) may be actuated to rotate the safety assembly (88) from the safe position to the fire position as shown in FIG. 8. When it is desired to fire the crossbow (10), the trigger (124) is moved rearward, causing the sear engager (122) of the trigger assembly (116) to rotate out of engagement with the sear (68), and allowing the retainer bar (64) to rotate clockwise, thereby allowing the bowstring (48) to release from the string engagers (78) and (84) and propel the arrow (130) forward. Although the invention has been described with respect to a preferred embodiment thereof, it also to be understood it is not to be so limited, since changes and modifications can be made therein which are within the full, intended scope of this invention as defined by the appended claims. As an example, the locking mechanism described above may be constructed of any suitable parts and any suitable dimensions. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates in general to an improved crossbow and, more particularly, to a crossbow having improved speed and reduced noise characteristics. 2. Description of the Prior Art Crossbows have been known for centuries. By allowing the shooter to mechanically retain the bow in the cocked position, the shooter is provided an advantage over a traditional archer who must utilize muscular force to retain the bow in the cocked position. While crossbow design remained substantially unchanged until the twentieth century, crossbow design has been subject to many recent developments which have dramatically increased performance. One improvement has been the provision of cams on the crossbow to increase the mechanical advantage associated with the draw of the bowstring. One drawback associated with such cams is the requirement that the cams be “synchronized” to prevent lateral travel-of the rear of the projectile during launch. While such problems are less dramatic in crossbows than in traditional bows, developments such as the utilization of a single cam arrangement, such as that described in McPherson, U.S. Pat. Patent No. 6,267,108, substantially reduces the problems associated with “synchronization.” Such crossbows still have several drawbacks. As with crossbows of the past, these newer crossbows still locate the limbs of the bows near the forward most portion of the crossbow rail. This orientation positions the bowstring substantially further back along the rail, drastically decreasing the draw length of the crossbow, simultaneously sacrificing speed, and necessarily increasing the draw weight required to obtain desired performance. As described in Nishioka, U.S. Pat. No. 4,879,987, it is known to reverse the positioning of the limbs in a crossbow to place the bowstring closer to the end of the rail, thereby increasing draw length and the associated power of the crossbow. However, although such devices provide for an increased draw length, by drawing the bowstring from the rear of the cams located on the limbs, the draw length is still not effectively maximized. Additionally, utilizing brackets to locate the cams inward and short of the ends of the limbs, further decreases the potential power of such devices. Still another drawback with such devices is the inclusion of additional cams located on the frame, which increases cost, weight and maintenance of such devices, as well as adding additional friction to further diminish the potential power of the crossbow. As shown in Nizov, U.S. Pat. No. 5,630,405, it is known in the art to position the cams closer to the ends of the limbs to further increase the power of the crossbow. Such devices also have drawbacks, however, including the pulling of the bowstring from the rear of the cams, which reduces the draw length of the crossbow. Additionally, Nizov fails to position the bowstring at the end of the rail, thereby sacrificing overall draw length and power. Nizov also requires that the majority of the projectile be positioned behind the cocked position of the bowstring. Such an orientation increases the required length of the rail, while failing to provide any concomitant increase in draw length. It would be desirable to increase the utilization of the rail to increase power and reduce the weight and bulkiness of the crossbow. As described in Nishioka, U.S. Pat. No. 4,766,874, it is known in the art to provide a crossbow with the above described reverse limb orientation to increase draw length, and to further draw the bowstring from the forward portion of the cams to additionally increase draw length, and the associated power stroke. One drawback associated with such devices, however, is the decrease in draw length associated with providing brackets which locate the limb cams rearwardly and inwardly of the limbs. An additional drawback is that such devices locate the bowstring substantially rearward of the end of the crossbow rail, substantially reducing the draw length and power stroke. Still another drawback associated with such devices is the inclusion of pulleys located below the rail of the crossbow. This additional feature increases the weight, cost and maintenance of such devices, while adding additional friction, further decreasing the potential speed of the crossbow. It would be advantageous to eliminate these additional frictional elements and to increase the power stroke to exploit the full length of the rail in imparting power to the projectile. As noted above, while there have been several advancements in the field of crossbows, the existing prior art evidences numerous drawbacks, including the failure to utilize the entire potential power stroke of both the forward and rearward ends of the rail, undesirable location of pulleys and cams, and the inclusion of additional frictional parts, further robbing the crossbow projectile of additional speed. The difficulties encountered in the prior art discussed hereinabove are substantially eliminated by the present invention. | <SOH> SUMMARY OF THE INVENTION <EOH>In an advantage provided by this invention, a crossbow is provided which is of a low-cost, simple manufacture. Advantageously, this invention provides a crossbow of a compact, lightweight construction. Advantageously, this invention provides a crossbow with reduced maintenance requirements. Advantageously, this invention provides a crossbow with an increased power stroke. Advantageously, this invention provides a crossbow which reduces the force required to draw the bowstring. Advantageously, this invention provides a crossbow which reduces noise associated with launch of a projectile. Advantageously, this invention provides a crossbow with an increased draw length, allowing the utilization of standard arrows. Advantageously, in the preferred embodiment of this invention, a shooting bow is provided with a frame coupled to two limbs extending outwardly away from one another in the direction of shooting. A first string guide member is journaled to the first limb, and a second string guide member is journaled to the second limb. The first string is coupled to the first string guide and the second string guide. A second string is coupled from a first point on the first string guide, forward of the point where the first string guide is journaled to the first limb and to a second point on the second string guide, forward of the point where the second string guide is journaled to the second limb. Means are provided for retaining the second string in a cocked position, and trigger means are provided for causing the retaining means to release the second string. Preferably, the first string guide is a cam and the second string guide is a pulley, each positioned at the ends of their respective limbs. | 20050105 | 20080429 | 20060706 | 63514.0 | F41B512 | 2 | RICCI, JOHN A | CROSSBOW | SMALL | 0 | ACCEPTED | F41B | 2,005 |
|
11,029,913 | ACCEPTED | Method and system for learning-based quality assessment of images | A method and system for learning-based assessment of the quality of an image is provided. An image quality assessment system trains an image classifier based on a training set of sample images that have quality ratings. To train the classifier, the assessment system generates a feature vector for each sample image representing various attributes of the image. The assessment system may train the classifier using an adaptive boosting technique to calculate a quality score for an image. Once the classifier is trained, the assessment system may calculate the quality of an image by generating a feature vector for that image and applying the trained classifier to the feature vector to calculate the quality score for the image. | 1. A method in a computer system for assessing quality of an image, the method comprising: providing a first set of images, each image having a quality rating; training a classifier to indicate quality of images using the first set of images and their quality ratings; and applying the trained classifier to assess the quality of the image. 2. The method of claim 1 wherein the classifier is an adaptive boosting classifier. 3. The method of claim 1 wherein the quality ratings are high-quality and low-quality. 4. The method of claim 1 wherein the trained classifier provides a quality score. 5. The method of claim 1 including generating a feature vector for each image of the first set wherein the classifier is trained using the generated feature vectors. 6. The method of claim 5 including generating a feature vector for the image wherein the trained classifier is applied to the generated feature vector. 7. The method of claim 5 wherein the features indicate a distortion evaluation. 8. The method of claim 5 wherein the features indicate a holistic quality evaluation. 9. The method of claim 8 wherein a feature is colorfulness. 10. The method of claim 8 wherein a feature is blurness. 11. The method of claim 8 wherein a feature is contrast. 12. The method of claim 8 wherein a feature is saliency. 13. The method of claim 1 including: providing a second set of images; providing a first quality score for each image of the second set; generating a second quality score for each image of the second set by applying the trained classifier; and generating a mapping function based on the first and second quality scores for the second set of images. 14. The method of claim 13 wherein the mapping function is represented as: Ps(j)=α+β·Qm(j)γ where Ps(j) is the quality score for image j, Qm(j) is the quality score generated by the classifier, and α, β, and γ are mapping parameters. 15. The method of claim 14 wherein the mapping parameters are selected to minimize MSE = 1 N aho ∑ j = 1 N aho ( Ps ( j ) - Mhs ( j ) ) 2 where Mhs(j) is the mean human observer score of image j and Naho is the number of images used to determine the parameters. 16. The method of claim 1 wherein images produced by a professional have a quality rating of high and images of a non-professional have a quality rating of low. 17. A computer-readable medium containing instructions for controlling a computer system to assess quality of an image, by a method comprising: providing a first set and a second set of images; providing a quality rating for each image of the first set; providing a first quality score for each image of the second set; training a classifier to indicate quality of images using the first set of images and their quality ratings; calculating a second quality score for each image of the second set using the trained classifier; and generating a mapping function based on the trained classifiers and the first and second quality scores; wherein a quality score for the image is calculated using the trained classifier and generated mapping function. 18. The computer-readable medium of claim 17 wherein the first and second sets of images are the same images. 19. The computer-readable medium of claim 17 wherein the classifier is an adaptive boosting classifier. 20. The computer-readable medium of claim 17 wherein the quality ratings are high-quality and low-quality. 21. The computer-readable medium of claim 17 including generating a feature vector for each image of the first set wherein the classifier is trained using the generated feature vectors. 22. The computer-readable medium of claim 21 wherein the features indicate a distortion evaluation. 23. The computer-readable medium of claim 21 wherein the features indicate a holistic quality evaluation. 24. The computer-readable medium of claim 17 wherein the mapping function is represented as: Ps(j)=α+β·Qm(j)γ where Ps(j) is the quality score for image j, Qm(j) is the quality score generated by the classifier, and α, β, and γ are mapping parameters. 25. The computer-readable medium of claim 24 wherein the mapping parameters are selected to minimize MSE = 1 N aho ∑ j = 1 N aho ( Ps ( j ) - Mhs ( j ) ) 2 where Mhs(j) is the mean human observer score of image j and Naho is the number of images used to determine the parameters. 26. The computer-readable medium of claim 17 wherein images produced by a professional have a quality rating of high and images of a non-professional have a quality rating of low. 27. A computer system for assessing quality of an image, comprising: a component that trains a classifier to indicate quality of images, the training based on a first set of images and their quality ratings; and a component that calculates a quality score for the image by applying the trained classifier. 28. The system of claim 27 wherein the classifier is an adaptive boosting classifier. 29. The system of claim 27 wherein the quality ratings are high-quality and low-quality. 30. The system of claim 27 including a component that generates feature vectors for images, the feature vectors being used for training and calculating the quality score. 31. The system of claim 30 wherein the features indicate a distortion evaluation. 32. The system of claim 30 wherein the features indicate a holistic quality evaluation. 33. The system of claim 27 including a component that generates a mapping function based on first and second quality scores for a second set of images, the first quality scores indicating human evaluation of quality and the second quality scores being generated using the trained classifier. 34. The system of claim 33 wherein the mapping function is represented as: Ps(j)=α+β·Qm(j)γ where Ps(j) is the quality score for image j, Qm(j) is the quality score generated by the classifier, and α, β, and γ are mapping parameters. 35. The system of claim 34 wherein the mapping parameters are selected to minimize MSE = 1 N aho ∑ j = 1 N aho ( Ps ( j ) - Mhs ( j ) ) 2 where Mhs(j) is the mean human observer score of image j and Naho is the number of images used to determine the parameters. 36. The system of claim 27 wherein images produced by a professional have a quality rating of high and images of a non-professional have a quality rating of low. | TECHNICAL FIELD The described technology relates generally to assessing the quality of an image and particularly to no-reference quality assessment of an image. BACKGROUND Because of the popularity of digital photography, a rapidly increasing number of images in digital form are being created by both professionals and non-professionals. Many software tools are available to assist a photographer in the processing of these digital images. A photographer can use these software tools to manipulate digital images in various ways, such as adjusting the tint, brightness, contrast, size, and so on, to arrive at a high-quality image. To help evaluate the quality of images, photographers and others would like a software tool that could automatically, accurately, and objectively assess image quality. Such an assessment of image quality could be used for quality control by professional photographers to evaluate image processing systems, to optimize algorithms and parameter settings for image processing, and to help non-professional photographers manage their digital images and assess their expertise. Prior quality assessment techniques can be categorized as full-reference, reduced-reference, or no-reference techniques. A full-reference technique assesses the quality of a copy of an image based on analysis of differences from the original image. A reduced-reference technique assesses the quality of a copy of an image based on analysis of certain features derived from the original image. A no-reference technique assesses the quality of an image without any reference information. Although human observers can easily assess image quality without reference information, it can be complex and difficult for a software tool to assess image quality without any reference information. Typical no-reference techniques focus on measuring the distortion within an image. Generally, these no-reference techniques identify a discriminative local feature of each pixel, assess the local distortion of that feature, and average the local distortions over the entire image. These no-reference techniques then use the average distortions to predict image quality that is consistent with a human observer. The local features used by these techniques include blurring, ringing, and blocking. These local features, however, do not adequately represent the “holistic” image quality assessment performed by human observers. In particular, human observers rely on cognitive and aesthetic information within images, and not solely on distortion, to assess image quality. Research has indicated that scene composition and location as well as the people and their expressions are important attributes for assessing image quality. Because of the difficulty in assessing such subjective aspects of image quality, the no-reference techniques rely on features that can be physically measured such as contrast, sharpness, colorfulness, saturation, and depth of field when assessing image quality. These techniques, however, do not provide an image quality assessment that accurately reflects that of a human observer. It would be desirable to have a no-reference technique that would accurately reflect the subjective image quality of a human observer using objective measurements of an image. SUMMARY A method and system for learning-based assessment of the quality of an image is provided. An image quality assessment system trains an image classifier based on a training set of sample images that have quality ratings. To train the classifier, the assessment system generates a feature vector for each sample image representing various attributes of the image. The assessment system then trains the classifier to calculate a quality score for an image. Once the classifier is trained, the assessment system may calculate the quality of an image by generating a feature vector for that image and applying the trained classifier to the feature vector to calculate a quality score for the image. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram that illustrates components of the assessment system in one embodiment. FIG. 2 is a flow diagram that illustrates the processing of the generate quality assessor component in one embodiment. FIG. 3 is a flow diagram that illustrates the processing of the prepare training set component in one embodiment. FIG. 4 is a flow diagram that illustrates the processing of the train classifier component in one embodiment. FIG. 5 is a flow diagram that illustrates the processing of the generate mapping function component in one embodiment. FIG. 6 is a flow diagram that illustrates the processing of the assess quality component in one embodiment. DETAILED DESCRIPTION A method and system for learning-based assessment of the quality of an image is provided. In one embodiment, an image quality assessment system trains an image classifier based on a training set of sample images that have quality ratings. The quality ratings of an image may be “high-quality” or “low-quality,” although other rating scales may be used. To train the classifier, the assessment system generates a feature vector for each sample image representing various attributes (e.g., contrast and colorfulness) of the image. The assessment system may train the classifier using an adaptive boosting technique to calculate a quality score for an image. Once the classifier is trained, the assessment system may calculate the quality of an image by generating a feature vector for that image and applying the trained classifier to the feature vector to calculate the quality score for the image. In one embodiment, the assessment system may map the initial quality scores of the classifier to more closely reflect the scores of human observers. The assessment system may generate the mapping to minimize differences between quality scores calculated by the classifier and quality scores assigned by human observers on a set of evaluation images. In this way, the assessment system can automatically learn features of images with high-quality ratings and can accurately and objectively assess the quality of images by calculating quality scores. To train the classifier in one embodiment, the assessment system generates a training set of sample images that includes high-quality and low-quality images. The training set may be represented by E(i), where i=1,2, . . . ,N and N is the total number of sample images. The high-quality images are represented by E+(i), where i=1,2, . . . ,N+ and N+ is the total number of high-quality images. The low-quality images are represented by E−(i), where i=1,2, . . . ,N−, N− is the total number of low-quality images, and N++N−=N. In one embodiment, the assessment system may assume that images taken by professional photographers are high-quality and that images taken by photographers who are not professionals are low-quality. The assumption saves the overhead of having a large number of human observers provide their assessment of image quality for a larger number of images and the overhead of establishing image quality when the assessments vary significantly. The assessment system represents each image by a feature vector represented by the following equation: E(i)→F(i)(i=1, 2, . . . , N) (1) where F(i) represents the feature vector for image i. The assessment system may use different types of features to emphasize different types of image quality assessment. For example, the assessment system may base image quality assessment on low-level distortion of the image or on a “holistic” evaluation of the images as is done by a human observer. When assessing image quality based on low-level distortion, the assessment system uses features that are representative of various distortions such as blurring, ringing, and blocking. The assessment system can identify these distortions based on analysis of pixels close to the distortion. For example, blurring is detectable around edges, ringing is detectable near sharp edges, and blocking is detectable at the boundary of two adjacent blocks (e.g., JPEG blocks). The assessment system in one embodiment selects features based on edge points or based on blocks within an image. When features are selected based on edge points, the assessment system views each edge point of an image as a separate training sample. For example, if there are 1000 sample images in the training set and each image has an average of 20 edge points, then there will be 20,000 training samples. The assessment system may set the feature vector for a training sample to a vector of pixels within a block surrounding the edge point. If the size of the block is r (e.g., 10 pixels), then the feature vector is of size r2 (e.g., 100 pixels). When the features are selected based on blocks, the assessment system views each block of an image as a separate training sample. The assessment system may set the feature vector for a training sample to a vector of the pixels within the block. If the size of the block is r, then the feature vector is of size r2. In one embodiment, the assessment system uses features that are representative of “holistic” human-observer evaluation such as a blurness, contrast, colorfulness, and saliency. The assessment system may represent blurness as a two-dimensional feature bluri32 [ib,be]T to indicate whether the ith image is blurred (ib) and to what extent it is blurred (be). (See, Tong, H. H., et al., “Blur Detection for Digital Images Using Wavelet Transform,” Proc. IEEE Int. Conf. on Multimedia and Expo 2004.) The assessment system may represent contrast as a two-dimensional feature contrasti=[[Pu,Pl]T to indicate whether the ith image is over-bright (Pu) or over-dark (Pl), where Pu is the percentage of the pixels whose gray value is greater than an up-threshold up_th and Pl is the percentage of the pixels whose gray value is less than a low-threshold low_th. The assessment system may extract both bluri and contrasti on a gray-level image. The assessment system represents colorfulness of the ith image as a one-dimensional feature colorfuli. (See, Hasler, D., and Süsstrunk, S., “Measuring Colorfulness in Real Images,” Proc. IS&T/SPIE Electronic Imaging 2003: Human Vision and Electronic Imaging VIII, SPIE, vol. 5007, pp. 87-95, 2003.) The assessment system represents saliency as a three-dimensional feature saliencyi=[S1,S2,S3]T to indicate the saliency of the ith image, where S1, S2, and S3 are the mean, variance, and third-order moment, respectively, of its saliency map. (See, Ma, Y. F., et al., “A User Attention Model for Video Summarization,” Proc. of the 10th ACM Int. Conf. on Multimedia, pp. 533-542, 2002.) The assessment system may also use various features to represent the relationship between image quality and low-level image features. In one embodiment, the assessment system uses the lower-level features of Table 1. TABLE 1 General-purpose low-level features Category Name Dimension Color Band Difference 1 Color Moment 9 Color Histogram 64 Lab Coherence 128 Luv Coherence 128 HSV Coherence 128 Correlogram 144 Energy DFT Moment 6 DCT Moment 6 Texture MRSAR 15 Tamura 18 Wavelet 18 WaveletPwt 24 WaveletTwt 104 Shape Canny Histogram 15 Sobel Histogram 15 Laplace Histogram 15 “Band Difference” is described in Athitsos, V., et al., “Distinguishing Photographs and Graphics on the World Wide Web,” IEEE Workshop on Content-Based Access of Image and Video Libraries (1997); “Color Moment” is described in Stricker, M., et al., “Similarity of Color Images,” Storage and Retrieval for Image and Video Databases, Proc. SPIE 2420, pp. 381-392 (1995); “Color Histogram” is described in Swain, M., et al., “Color Indexing,” Int. Journal of Computer Vision, 7(1): 11-32 (1991); “Lab Coherence,” “Luv Coherence,” and “HSV Coherence” are described in Pass, G., “Comparing Images Using Color Coherence Vectors,” Proc. the 4th ACM Int. Conf. on Multimedia, pp. 65-73 (1997); “Correlogram” is described in Huang, J., et al., “Image Indexing Using Color Correlograms,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 762-768 (1997); “DFT Moment” contains the mean and variance of the coefficients of Discrete Fourier Transformation (DFT) for red, green, and blue channels; “DCT Moment” contains the mean and variance of the coefficients of Discrete Cosine Transformation (DCT) for red, green, and blue channels; “MRSAR” is described in Mao, J., et al., “Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models,” Pattern Recognition, vol. 25, pp. 173-188 (1992); “Tamura” is described in Tamura, H., et al., “Texture Features Corresponding to Visual Perception,” IEEE Trans. on SMC, vol. 8, pp. 460-473 (1978); “WaveletTwt” is described in Wang, J. Z., et al., “Content-Based Image Indexing and Searching Using Daubechies' Wavelets,” Int. Journal of Digital Libraries, vol. 1, no. 4, pp. 311-328 (1998); “WaveletPwt” is described in Mallat, S. G., “A Theory for Multiresolution Signal Decomposition: the Wavelet Representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674-693 (1989); “WaveletTwt” is described in Chang, T. and Kuo, C. C., “Texture Analysis and Classification with Tree-Structured Wavelet Transform,” IEEE Trans. on Image Proc., vol. 2, pp. 429-441 (1993); “Canny Histogram” is described in He, J. R., et al., “W-Boost and Its Application to Web Image Classification,” Proc. IEEE Int. Conf. on Pattern Recognition 2004; and “Sobel Histogram” and “Laplace Histogram” are modified versions of “Canny Histogram” that use Sobel and Laplace operators to detect edges instead of a Canny operator. After the feature vectors are generated, the assessment system trains a binary classifier using {F(i), Y(i)} (i=1,2, . . . ,N) to separate the positive and negative samples as far as possible, where Y(i)=+1 if E(i)εE+(i) and Y(i)=−1 otherwise. In one embodiment, the classifier is an adaptive boosting classifier. Alternatively, the classifier may be a support vector machine, Bayesian classifier, and so on. Adaptive boosting is an iterative process that runs multiple tests on a collection of training samples. Adaptive boosting transforms a weak learning algorithm (an algorithm that performs at a level only slightly better than chance) into a strong learning algorithm (an algorithm that displays a low error rate). The weak learning algorithm or classifier is run on training samples. The algorithm concentrates more and more on those training samples in which its predecessor weak learning algorithm tended to show errors. The algorithm corrects the errors made by earlier weak classifiers (i.e., sub-classifiers). The algorithm is adaptive because it adjusts to the error rates of its predecessors. Adaptive boosting combines rough and moderately inaccurate rules of thumb to create a high-performance algorithm. Adaptive boosting combines the results (i.e., sub-classifiers) of each separately run test into a single, very accurate classifier. In one embodiment, the assessment system uses a “real adaptive boosting” algorithm as described by Schapire, R. E., et al., “Boosting and Rocchio Applied to Text Filtering,” Proc. ACM Int. Conf. on R&D in Information Retrieval, ACM Press, New York, N.Y., pp. 215-223 (1998). The assessment system initializes the weight for each training sample according to the following equation: Wl(i)=1/N (2) where W is the weight for the i-th training sample for the first sub-classifier and N is the number of training samples. The assessment system thus starts out giving each training sample an equal weight. The assessment system then generates each sub-classifier gt where t=1, . . . , T and T is the number of sub-classifiers. The assessment system generates a sub-classifier gt using weights Wt(i) in a probability class as represented by the following equation: Pt(i)={circumflex over (P)}(Y(i)=1|i)ε[0,1] (3) where Pt(i) is probability that sample i is high-quality. The assessment system then maps the probability to a real value according to the following equation: g t ( i ) = 1 2 log P t ( i ) 1 - P t ( i ) ∈ R ( 4 ) where gt(i) is the real value representing the quality of the sample i. The assessment system calculates the new weights for the next iteration according to the equation: Wt+1(i)=Wt(i)·e−Y(t)gt(i) (5) The assessment system then outputs the trained classifier as represented by the following equation: Q m ( i ) = ∑ t = 1 T g t ( i ) ( 6 ) The assessment system then maps the initial quality scores of the classifier to quality scores consistent with those assigned by human observers. The assessment system represents the mapping by a mapping function represented by the following equation: Ps(j)=α+β·Qm(j)γ (7) Where Ps(j) is the score for the image j and α, β, and γ are mapping parameters. The assessment system generates the mapping parameters by minimizing the mean-square-error between the classifier-calculated initial quality scores and the mean human observer quality scores as represented by the following equation: MSE = 1 N aho ∑ j = 1 N aho ( Ps ( j ) - Mhs ( j ) ) 2 ( 8 ) where Mhs(j) is the mean human observer score of image j and Naho is the number of images used to determine the parameters. After the assessment system generates the classifier and the mapping function, the quality of images can be automatically calculated. To calculate the quality of an image, the assessment system generates a feature vector for an image. The assessment system then applies the trained classifier of Equation 6 to the feature vector to calculate the initial quality score. The assessment system then applies the mapping function of Equation 7 to the initial quality score to generate the final quality score for the image. FIG. 1 is a block diagram that illustrates components of the assessment system in one embodiment. The assessment system includes a generate quality assessor component 101, a prepare training set component 102, a train classifier component 103, a generate mapping function component 104, an assess quality component 105, and a generate feature vector component 106. The assessment system also includes a training set store 107, an evaluation set store 108, a sub-classifier store 109, and a mapping parameters store 110. The generate quality assessor component invokes the prepare training set component to prepare the training samples for training the classifier. The prepare training set component invokes the generate feature vector component to generate the feature vectors for the training samples. The generate quality assessor component then invokes the train classifier component to train the classifier. After the classifier is trained, the generate quality assessor component invokes the generate mapping function component to generate the mapping function from the initial quality scores and those of the human observers for the images of the evaluation set. The generate mapping function component stores the mapping parameters in the mapping parameters store. The training set store contains the set of training images along with a quality rating of each image. The evaluation set store contains the evaluation images along with their mean quality scores as assigned by human observers. The sub-classifier store contains the parameters for the sub-classifiers generated by the train classifier component. The assess quality component calculates the quality scores for images using the trained classifier and the mapping function. The assess quality component invokes the generate feature vector component to generate the feature vector for an image whose quality is to be assessed. The assess quality component then invokes the classifier to calculate an initial quality score for the image from its feature vector. The assess quality component then uses the mapping function to map the initial quality score to a final quality score. The computing device on which the assessment system is implemented may include a central processing unit, memory, input devices (e.g., keyboard and pointing devices), output devices (e.g., display devices), and storage devices (e.g., disk drives). The memory and storage devices are computer-readable media that may contain instructions that implement the assessment system. In addition, the data structures and message structures may be stored or transmitted via a data transmission medium, such as a signal on a communications link. Various communications links may be used, such as the Internet, a local area network, a wide area network, a point-to-point dial-up connection, a cell phone network, and so on. Embodiments of the assessment system may be implemented in various operating environments that include personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, digital cameras, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and so on. The computer systems may be cell phones, personal digital assistants, smart phones, personal computers, programmable consumer electronics, digital cameras, and so on. The assessment system may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, and so on that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments. FIG. 2 is a flow diagram that illustrates the processing of the generate quality assessor component in one embodiment. The component coordinates the training of the image assessment classifier and the generation of the mapping function. In block 201, the component invokes the prepare training set component. In block 202, the component invokes the train classifier component. In block 203, the component invokes the generate mapping function component and then completes. FIG. 3 is a flow diagram that illustrates the processing of the prepare training set component in one embodiment. The component collects high-quality and low-quality images and then generates their feature vectors based on high-level features and low-level features. The assessment system may assume that images by professionals are high-quality and all others are low-quality. In this embodiment, the component generates the feature vectors for the features representative of the “holistic assessment.” In block 301, the component collects the high-quality images. In block 302, the component collects the low-quality images. In blocks 303-306, the component loops generating the feature vector for each image. In block 303, the component selects the next image. In decision block 304, if all the images have already been selected, then the component returns, else the component continues at block 305. In block 305, the component generates the feature vector elements for the high-level features. In block 306, the component generates the feature vector elements for the low-level features. The component then loops to block 303 to select the next image. FIG. 4 is a flow diagram that illustrates the processing of the train classifier component in one embodiment. In this embodiment, the component trains the classifier using a real adaptive boosting technique. In block 401, the component generates the initial weights for each training sample as indicated by Equation 2. In blocks 402-407, the component loops generating a sub-classifier for each iteration and updating the weights for each training sample at each iteration. In block 402, the component starts the next iteration. In decision block 403, if all the iterations have already been completed, then the component continues at block 408, else the component continues at block 404. In block 404, the component generates a probability function based on the weights, the feature vectors, and the quality ratings as indicated by Equation 3. In block 405, the component generates a sub-classifier from the probability function as indicated by Equation 4. In block 406, the component updates the weights as indicated by Equation 5. In block 407, the component normalizes the weights so they sum to 1. The component then loops to block 402 to start the next iteration. In block 408, the component outputs the classifier of Equation 6 and then returns. FIG. 5 is a flow diagram that illustrates the processing of the generate mapping function component in one embodiment. The component generates mapping parameters to map the initial quality scores of the classifier to be consistent with the quality scores assigned by human observers. In block 501, the component selects the evaluation sample set of images. In block 502, the component inputs the quality scores for the human observers for the images of the evaluation sample set. In block 503, the component calculates the initial quality score of each image by applying the trained classifier to the feature vector of each image. In block 504, the component calculates the mapping parameters to minimize the error between the initial quality scores and the human observer quality scores for the images of the evaluation sample set as indicated by Equation 8. In block 505, the component outputs mapping function as indicated by Equation 7 and then completes. FIG. 6 is a flow diagram that illustrates the processing of the assess quality component in one embodiment. The assess quality component is passed an image and calculates a quality score for that image. In block 601, the component generates a feature vector for the passed image. In block 602, the component applies the trained classifier to the feature vector to calculate an initial quality score. In block 603, the component applies the mapping function to generate a final quality score for the passed image and then completes. From the foregoing, it will be appreciated that specific embodiments of the assessment system have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims. | <SOH> BACKGROUND <EOH>Because of the popularity of digital photography, a rapidly increasing number of images in digital form are being created by both professionals and non-professionals. Many software tools are available to assist a photographer in the processing of these digital images. A photographer can use these software tools to manipulate digital images in various ways, such as adjusting the tint, brightness, contrast, size, and so on, to arrive at a high-quality image. To help evaluate the quality of images, photographers and others would like a software tool that could automatically, accurately, and objectively assess image quality. Such an assessment of image quality could be used for quality control by professional photographers to evaluate image processing systems, to optimize algorithms and parameter settings for image processing, and to help non-professional photographers manage their digital images and assess their expertise. Prior quality assessment techniques can be categorized as full-reference, reduced-reference, or no-reference techniques. A full-reference technique assesses the quality of a copy of an image based on analysis of differences from the original image. A reduced-reference technique assesses the quality of a copy of an image based on analysis of certain features derived from the original image. A no-reference technique assesses the quality of an image without any reference information. Although human observers can easily assess image quality without reference information, it can be complex and difficult for a software tool to assess image quality without any reference information. Typical no-reference techniques focus on measuring the distortion within an image. Generally, these no-reference techniques identify a discriminative local feature of each pixel, assess the local distortion of that feature, and average the local distortions over the entire image. These no-reference techniques then use the average distortions to predict image quality that is consistent with a human observer. The local features used by these techniques include blurring, ringing, and blocking. These local features, however, do not adequately represent the “holistic” image quality assessment performed by human observers. In particular, human observers rely on cognitive and aesthetic information within images, and not solely on distortion, to assess image quality. Research has indicated that scene composition and location as well as the people and their expressions are important attributes for assessing image quality. Because of the difficulty in assessing such subjective aspects of image quality, the no-reference techniques rely on features that can be physically measured such as contrast, sharpness, colorfulness, saturation, and depth of field when assessing image quality. These techniques, however, do not provide an image quality assessment that accurately reflects that of a human observer. It would be desirable to have a no-reference technique that would accurately reflect the subjective image quality of a human observer using objective measurements of an image. | <SOH> SUMMARY <EOH>A method and system for learning-based assessment of the quality of an image is provided. An image quality assessment system trains an image classifier based on a training set of sample images that have quality ratings. To train the classifier, the assessment system generates a feature vector for each sample image representing various attributes of the image. The assessment system then trains the classifier to calculate a quality score for an image. Once the classifier is trained, the assessment system may calculate the quality of an image by generating a feature vector for that image and applying the trained classifier to the feature vector to calculate a quality score for the image. | 20050104 | 20090609 | 20060706 | 67133.0 | G06K962 | 0 | RAHMJOO, MANUCHEHR | METHOD AND SYSTEM FOR LEARNING-BASED QUALITY ASSESSMENT OF IMAGES | UNDISCOUNTED | 0 | ACCEPTED | G06K | 2,005 |
|
11,029,951 | ACCEPTED | Microelectromechanical (MEM) device with a protective cap that functions as a motion stop | A microelectromechanical (MEM) device includes a substrate, a structure, a travel stop, and a protective cap. The substrate has a surface, and the structure is coupled to, and movably suspended above, the substrate surface. The structure has at least an outer surface, and the travel stop coupled to the structure outer surface and movable therewith. The travel stop includes at least an inner peripheral surface that defines a cavity. The protective cap is coupled to the substrate and includes a stop section that is disposed at least partially within the travel stop cavity and is spaced apart from the travel stop inner peripheral surface. The travel stop and the protective cap stop section together limit movement of the structure in at least three orthogonal axes. | 1. A microelectromechanical (MEM) device, comprising: a substrate having a surface; a structure coupled to, and movably suspended above, the substrate surface; a first stop element coupled to the structure and movable therewith; and a protective cap coupled to the substrate and including a second stop element, the second stop element spaced apart from the first stop element, whereby the first and second stop elements together limit movement of the structure in at least three orthogonal axes. 2. The MEM device of claim 1, wherein: the first stop structure defines a travel stop that includes at least an inner peripheral surface that defines a cavity; and the second stop structure defines a protective cap stop section, the protective cap stop section disposed at least partially within the travel stop cavity and spaced apart from the travel stop inner peripheral surface, 3. The MEM device of claim 2, wherein the protective cap stop section is spaced: a first predetermined distance from the travel stop inner peripheral surface along a first of the three orthogonal axes; a second predetermined distance from the travel stop inner peripheral surface along a second of the three orthogonal axes; and a third predetermined distance from the travel stop inner peripheral surface along a third of the three orthogonal axes. 4. The MEM device of claim 3, wherein at least the first and second predetermined distances are substantially equivalent. 5. The MEM device of claim 3, wherein the first, second, and third predetermined distances are substantially equivalent. 6. The MEM device of claim 1, wherein: the MEM device is an accelerometer; and the structure is a seismic mass. 7. The MEM device of claim 1, wherein: the structure includes an outer surface; and the first stop element is formed on the structure outer surface. 8. The MEM device of claim 1, wherein the first stop element is integrally formed as part of the structure. 9. The MEM device of claim 2, wherein the protective cap stop section is spaced a predetermined distance from the travel stop inner peripheral surface. 10. The MEM device of claim 9, wherein the predetermined distance is defined by a thickness of a layer of sacrificial material removed from between the travel stop and the protective cap stop section. 11. The MEM device of claim 1, further comprising: a layer of an electrical isolation material disposed between the protective cap and the substrate. 12. A method of forming a microelectromechanical (MEM) device on a substrate including a handle layer, an active layer, and a sacrificial layer disposed at least partially therebetween, the method comprising the steps of: forming at least a structure in the active layer; removing at least a portion of the sacrificial layer to thereby release the structure from the substrate; forming a first stop element on the structure; and forming a protective cap over at least a portion of the travel stop, the protective cap including a second stop element spaced apart from the first stop element. 13. The method of claim 12, wherein: the first stop element defines a travel stop that includes at least an inner peripheral surface that defines a cavity; and the second stop element defines stop section disposed at least partially within the travel stop cavity. 14. The method of claim 12, further comprising: forming a plurality of etch openings in the active layer to thereby form the structure therein; forming a layer of sacrificial material into the etch openings and over a portion of the structure outer surface; and following formation of the first stop element, exposing the formed layer of sacrificial material and the sacrificial layer to an etchant, whereby the first layer of sacrificial material and the sacrificial layer are removed. 14. The method of claim 12, further comprising: forming a layer of sacrificial material over at least a portion of the first stop element, the layer of sacrificial material having a predetermined thickness that, upon removal thereof, defines a predetermined distance between the first and second stop elements. 15. The method of claim 11, further comprising: forming a layer of electrical isolation material on at least a portion of the active layer; forming the protective cap on the layer of electrical isolation material. 16. The method of claim 12, further comprising: forming a plurality of etch openings in the active layer to thereby form the structure therein; forming a first layer of sacrificial material in the etch openings and over a portion of the structure outer surface; following formation of the first stop element, forming a second layer of sacrificial material over the first layer of sacrificial material and over a portion of the first stop element; forming a third layer of sacrificial material over the second layer of sacrificial material, the third layer of sacrificial material having a predetermined thickness that, upon removal thereof, defines a predetermined distance between the first and second stop elements; and following formation of the first stop element, exposing the first, second, and third layers of sacrificial material and the sacrificial layer to an etchant, whereby the first, second, and third layers of sacrificial material and the sacrificial layer are removed. 17. The method of claim 13, wherein the protective cap stop section is spaced: a first predetermined distance from the travel stop inner peripheral surface along a first of the three orthogonal axes; a second predetermined distance from the travel stop inner peripheral surface along a second of the three orthogonal axes; and a third predetermined distance from the travel stop inner peripheral surface along a third of the three orthogonal axes. 18. The method of claim 17, wherein at least the first and second predetermined distances are substantially equivalent. 19. The method of claim 17, wherein the first, second, and third predetermined distances are substantially equivalent. 20. The method of claim 12, wherein: the MEM device is an accelerometer; and the structure is a seismic mass. 21. The method of claim 12, wherein: the formed structure includes an outer surface; and the first stop element is formed on the structure outer surface. 22. A microelectromechanical (MEM) device, comprising: a substrate having a surface; a structure coupled to, and movably suspended above, the substrate surface; a travel stop coupled to the structure and movable therewith, the travel stop including at least an inner peripheral surface that defines a cavity; and a protective cap coupled to the substrate and including a stop section, the protective cap stop section disposed at least partially within the travel stop cavity and spaced apart from the travel stop inner peripheral surface, whereby the travel stop and the protective cap stop section together limit movement of the structure in at least three orthogonal axes. | TECHNICAL FIELD The present invention generally relates to microelectromechanical (MEM) devices and, more particularly, to a MEM device that uses a wafer-level protective cap as a motion stop. BACKGROUND Many devices and systems include various numbers and types of sensors. The varied number and types of sensors are used to perform various monitoring and/or control functions. Advancements in micromachining and other microfabrication techniques and associated processes have enabled manufacture of a wide variety of microelectromechanical (MEM) devices, including various types of sensors. Thus, in recent years, many of the sensors that are used to perform monitoring and/or control functions are implemented using MEM sensors. One particular type of MEM sensor that is used in various applications is an accelerometer. Typically, a MEM accelerometer includes, among other component parts, a proof mass that is resiliently suspended by one or more suspension springs. If the MEM accelerometer experiences an acceleration, the proof mass moves. The motion of the proof mass may then be converted into an electrical signal having a parameter magnitude (e.g., voltage, current, frequency, etc.) that is proportional to the acceleration. If a MEM device, such as the above-described MEM accelerometer, experiences a relatively high acceleration, or is exposed to a relatively high force, the proof mass and/or other portions that make up the MEM device can move beyond a desired distance. In some instances, such movement can potentially damage the MEM device; Moreover, the MEM device can exhibit unstable behavior if the proof mass and/or other portions of the MEM device travel too far when a voltage is supplied to the MEM device. Thus, many MEM devices include one or more types of over travel stops or motion limiters that are configured to limit the movement of the proof mass and/or other portions of the MEM device. Such over travel stops include, for example, bumpers formed on the outer perimeter of the proof mass and/or other portions of the MEM device, and/or additional non-device structure. Although presently-known devices and methods for limiting the travel of MEM device components are generally safe, reliably, and robust, these devices and methods do suffer certain drawbacks. For example, these devices and methods can be fairly complex and costly, and/or can consume an unwanted amount of surface area within the MEM device, and/or can only limit travel in one or two orthogonal axes. Hence, there is a need for a MEM device, such as an accelerometer, and a method of making the same, that addresses one or more of the above-noted drawbacks. Namely, a device and method that limits over travel in a MEM device and that is less complex and/or costly as compared to present devices and methods, and/or consumes less surface area within the MEM device as compared to present devices and methods, and/or limits travel in at least three orthogonal axes. The present invention addresses one or more of these needs. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein: FIG. 1 is a simplified cross section view of an exemplary MEM device that may be made in accordance with an embodiment of the present invention; FIG. 2 is a top view of a physical implementation of the MEM device shown in FIG. 1 that may be manufactured according the exemplary inventive process of the present invention; FIG. 3 is a close-up view of a portion of the MEM device shown in FIG. 1, showing an exemplary embodiment of an over travel stop according to an embodiment of the present invention; and FIGS. 4-12 are simplified cross section views of the MEM device shown in FIG. 1, illustrating the various exemplary methodological steps that are used to make various MEM devices in accordance with an embodiment of the present invention. DETAILED DESCRIPTION The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. In this regard, although the invention is depicted and described in the context of an accelerometer, it will be appreciated that the invention at least could be used for any one of numerous devices that include a proof mass movably suspended above a substrate surface. Turning now to the description, and with reference first to FIG. 1, an exemplary microelectromechanical (MEM) device 100 is depicted. The depicted MEM device 100, which is shown in simplified cross section form, is an inertial sensor, such as an accelerometer, and includes an field region 102 and a sensor region 104 formed on an SOI (semiconductor-on-insulator) wafer 106. The SOI wafer 106, as is generally known, includes a handle layer 108, an active layer 112, and a sacrificial layer 114 disposed between the handle layer 108 and the active layer 112. The field region 102 and sensor region 104 are both formed in the active layer 112. The field region 102 is a region of the active layer 112 that remains affixed to the handle layer 108, via the sacrificial layer 114. Conversely, the sensor region 104, while being coupled to the field region 102, is also partially released from the handle layer 108. As will be described more fully below, during a release process, the sensor region 104 is partially undercut by removing portions the sacrificial layer 114 below the sensor region 104. This undercut forms a release trench 116, and releases portions of the sensor region 104 from the handle layer 108. The released portions of the sensor region 104 are thus suspended above the wafer 106. The sensor region 104 includes a plurality of sensor elements, which may vary depending, for example, on the particular MEM sensor 100 being implemented. However, in the depicted embodiment, in which the MEM sensor 100 is an accelerometer, the sensor elements include a suspension spring 122, a structure 124, which in this case is a seismic mass, a moving electrode 126, and a fixed electrode 128. As is generally known, the suspension spring 122 resiliently suspends the seismic mass 124 and the moving electrode 126 above the handle layer 108. As was mentioned above, and will be described more fully below, during a release process, when the release trench 116 is formed in the wafer 106, the suspension spring 122, the seismic mass 124, and the moving electrode 126 are all released from the wafer 106, but the fixed electrode 128 remains affixed to the wafer 106. Thus, the suspension spring 122, seismic mass 124, and moving electrode 126 are suspended above the wafer. For clarity and ease of illustration, it will be appreciated that the sensor region 104 is depicted in FIG. 1 to include only a single suspension spring 122, a single moving electrode 126, and a single fixed electrode 128. However, in a particular physical implementation, which is shown more clearly in FIG. 2, and which will now be described in more detail, the sensor region 104 includes a pair of suspension springs 122, a plurality of moving electrodes 126, and a plurality of fixed electrodes 128. The suspension springs 122 are each coupled between the field region 102 and the seismic mass 124 and, as was previously noted, resiliently suspend the seismic mass 124, when released, above the wafer 106. The moving electrodes 126 are each coupled to the seismic mass 124, and thus are also, when released, suspended above wafer 106. As FIG. 2 also shows, the moving electrodes 126 are each disposed between two fixed electrodes 128. The fixed electrodes 128, as was noted above, are not released. Rather, the fixed electrodes 128 remain anchored to the wafer 106, via a plurality of anchors 202. Returning once again to FIG. 1, it is seen that the MEM device 100 additionally includes a protective cap 132. The protective cap 132 is coupled to the wafer 106, and extends over at least the sensor region 104 to provide physical protection thereof. In the depicted embodiment, the protective cap 132 is coupled to the field region 102 and/or one or more non-movable portions of the sensor region 104, such as one or more fixed electrodes 128, via a cap anchor 134. As will also be described more fully further below, following its formation, the protective cap 132 is partially spaced-apart from the sensor region 104 during the same release process that releases the sensor region 104. The MEM devices 100, 200 constructed as shown in FIGS. 1 and 2, are implemented as capacitance type accelerometers. That is, when the device 100, 200 experiences an acceleration, the seismic mass 124 will move, due to the flexibility of the suspension springs 122, a distance that is proportional to the magnitude of the acceleration being experienced. The moving electrodes 126 are connected to the seismic mass 124, and will thus move the same distance as the seismic mass 124. The moving electrodes 126 and the fixed electrodes 128 adjacent each moving electrode 126 together form a variable differential capacitor. Thus, when the accelerometer 100, 200 experiences an acceleration, each moving electrode 126 will move toward one of the adjacent fixed electrodes 128 and away from another of the adjacent fixed electrodes 128. The distance that the moving electrodes 126 move will result in a proportional change in capacitance between the fixed electrodes 126 and the moving electrodes 128. This change in capacitance may be measured and used to determine the magnitude of the acceleration. As was previously noted, if the MEM device 100, 200 experiences a relatively high acceleration, or is exposed to a relatively high force, the seismic mass 124 and/or other moveable portions of the MEM device 100, 200 can move beyond a desired distance. In some instances, this movement can potentially damage the MEM device 100, 200 or cause the MEM device 100, 200 to exhibit unstable behavior. Thus, with reference once again to FIG. 1, it is seen that the MEM device 100 additionally includes an over travel stop 140. The over travel stop 140 is configured to limit the movement of the seismic mass 124, and thus other movable components of the MEM device 100, 200, such as the suspension springs 122, and the moving electrodes 126. A close-up view of the over travel stop 140 is shown in FIG. 3, and will now be described in more detail. The over travel stop 140 includes two elements, a first stop element 302 and a second stop element 304. In the depicted embodiment, the first stop element 302 is referred to herein as a travel stop, and the second stop element 304 is a section of the protective cap 132, and is referred to herein as the stop section. The travel stop 302 is preferably coupled to the seismic mass 124. In this regard, it will be appreciated that the travel stop 302 may be formed on an outer surface 125 of the seismic mass 124 or be formed as an integral part of the seismic mass 124. It will additionally be appreciated that travel stop 302 could instead, or additionally, be formed on (or integrally with) any numerous other movable components in the sensor region 104. The travel stop 302, when formed, includes an inner peripheral surface 306 that defines a cavity 308. It will be appreciated that the travel stop cavity 308 may be configured into any one of numerous shapes, but in a preferred embodiment, it is substantially frusto-conically shaped or substantially cylindrically shaped. The protective cap stop section 304 extends within the travel stop cavity 308, and is spaced a predetermined distance from the travel stop inner peripheral surface 306 to form a gap 312, both vertically 312a and laterally 312b, between the protective cap stop section 304 and the travel stop inner peripheral surface 306. Thus, the over travel stop 140 limits both vertical and lateral movement (i.e., movement along the orthogonal X-, Y-, and the Z-axes) of the seismic mass 124. The size of the vertical and lateral gaps 312a, 312b may vary depending, for example, on the particular MEM device 100 being implemented, its end use, and the amount of travel that needs to be limited in a particular direction. In one particular embodiment, in which the MEM device 100 is implemented as an accelerometer, the vertical gap 312a is about 0.5-1.0 μm and the lateral gap 312b is about 0.3-0.6 μm. It will additionally be appreciated that the lateral gap 312b may differ along the two horizontal orthogonal axes (i.e., the X-axis and Y-axis), or be equal along these two orthogonal axes. In the above-described embodiment, the travel stop 302 is formed on (or otherwise coupled to) the seismic mass 124 (or other movable structure), and the stop section 304 is formed as part of (or otherwise coupled to) the protective cap 132. It will be appreciated that the over travel stop 140 could instead be implemented such that the travel stop 302 is formed as part of (or otherwise coupled to) the protective cap 132, and the stop section 304 is formed on (or otherwise coupled to) the seismic mass 124 (or other movable structure). Having described an embodiment of a MEM device 100, 200 from a structural standpoint, a particular preferred process of forming the described MEM device 100, 200 will now be described. In doing so reference should be made, as appropriate, to FIGS. 4-12. It will be appreciated that, for clarity and ease of explanation, the process will be depicted and described using a simplified cross section view, similar to that shown in FIG. 1. However, it will be further appreciated that the process is applicable to the actual physical MEM device 200 illustrated in FIG. 2 and described above, as well as any one of numerous other MEM sensors that may be implemented. It will additionally be appreciated that although the method is, for convenience, described using a particular order of steps, the method could also be performed in a different order or using different types of steps than what is described below. With the above background in mind, and with reference first to FIG. 4, it is seen that the preferred starting material 402 for the process is an SOI wafer 106. Alternatively, the starting material 402 may be any one of numerous other articles including articles with a handle layer 108, an active layer 112, and an interposed sacrificial layer 114. No matter the specific type of starting material, the handle layer 108 and active layer 112 are each preferably made of silicon, though it will be appreciated that these layers could be made of other materials. It will be appreciated that the active layer 112 may be, for example, epitaxial silicon, or any other material from which the MEM sensor elements may be formed. The sacrificial layer 114 is preferably made of a material, such as silicon oxide, doped oxide, and doped silicate glass, just to name a few, that can be readily etched to release at least some of the sensor elements from the handle layer 108. It will be appreciated that the starting material 402 may include the handle layer 108, the active layer 112, and sacrificial layer 114 when obtained, or one or more of these layers may be formed as part of the overall process. Having obtained (or prepared) the starting material 402, and as shown in FIG. 5, the active layer 112 is then patterned and etched to define the field region 102 and the sensor region 104 therein. It will be appreciated that any one of numerous patterning and etching processes may be used; however, in a preferred embodiment, a dry reactive ion etch (DRIE) process is used. No matter the specific process that is used, it results in a plurality of etch openings 502 being formed in the sensor region 104, which define the structural features of the individual sensor elements. One or more etch openings 502 may also be formed in selected ones of the sensor elements, such as the suspension spring 122, and the seismic mass 124. It will be appreciated that for clarity and ease of explanation, an etch opening 502 in the seismic mass 124 is not depicted. No matter the specific location, the etch holes 502 each provide access to the sacrificial layer 114, whereby the release of a portion of the sensor region 104 is effected. The size and number of etch openings 502, both in and between the sensor elements, are at least partially selected to implement the desired sequence and/or timing of the release of the sensor elements. Moreover, the number and spacing of the etch openings 502 in the seismic mass 124 are selected to achieve, among other things, desired response characteristics. Once the etch openings 502 in the sensor region 104 are formed, as is shown more clearly in FIG. 6, a first layer of electrical isolation material 602 is deposited onto at least the field region 102 and, if necessary, selectively patterned or etched. The first layer of electrical isolation material 602 is used to provide electrical isolation between the protective cap 132 and the field region 102. In a particular preferred embodiment, the first layer of electrical isolation material 602 comprises silicon nitride. However, it will be appreciated that the first layer of electrical isolation material 602 may be implemented using any one of numerous suitable materials now known or developed in the future including, for example, low stress silicon rich silicon nitride. Thereafter, and with reference to FIG. 7, a sacrificial material 702 is deposited (or formed) in each of the etch openings 502, over portions of the first layer of electrical isolation material 602, and over selected portions of the sensor region 104. For example, in the depicted embodiment, the sacrificial material 702 is deposited over the suspension spring 122, the moving electrode 126, portions of the fixed electrode 128, and portions of the seismic mass 124. The first layer of sacrificial material 702 may comprise any one of numerous types of readily etchable materials such as, for example, SiO2, borosilicate glass (BSG), borophosphosilicate glass (BPSG), tetraethoxysilicate (TEOS), and undoped silicon glass (USG). Moreover, it will be appreciated that in some embodiments the first layer of sacrificial material 702 may comprise the same material as that of the sacrificial layer 114. However, in the preferred embodiment, the first layer of sacrificial material 702 is phosphosilicate glass (PSG). Nonetheless, it will be further appreciated that the exact choice of material for the first layer of sacrificial material 702 for a given application may depend, for example, on such factors as the composition of the various sensor components 102 and other structural features that will be present on the MEM device 100, 200 at the time that the release of the sensor region 104 is carried out, the specific etchant that is used, and the selectivity of the etchant to the materials of these features or components 102. Those portions of the seismic mass 124 and fixed electrode 128 that do not include the first layer of sacrificial material 702 define regions on which a layer of an additional material 802 will be deposited (or formed). As shown in FIG. 8, this layer of additional material 802 is used to define the travel stop 302 and the cap anchor 134 the layer of additional material 802 may comprise any one of numerous known materials that are compatible with the substrate active layer 112. For example, the layer of additional material 802 may comprise a metal or an intermetallic such as, for example, aluminum, copper, tungsten, titanium, gold, nickel, or permalloy. In a particular preferred embodiment, however, the layer of additional material 802 comprises polycrystalline silicon, which may be doped as-deposited or doped after being deposited. No matter the particular material that is used for this layer of additional material 802, following is deposition (or formation) it is preferably patterned or etched into the desired shapes for the travel stop 302 and cap anchor 134. With the travel stop 302 and cap anchor 134 shapes appropriately patterned into layer 802, a second layer of electrical isolation material 902, which is shown in FIG. 9, is deposited (or formed) onto at least the cap anchor 134 and, if necessary, selectively patterned or etched. The second layer of electrical isolation material 902 is used to provide electrical isolation between the protective cap 132 and the cap anchor 134. In a particular preferred embodiment, the second layer of electrical isolation material 902 comprises the same material as the first layer of electrical isolation material 602. However, as with the first layer of electrical isolation material 602, it will be appreciated that it could be implemented using any one of numerous suitable materials now known or developed in the future. Following deposition of the second layer of electrical isolation material 902, and as shown in FIG. 10, two additional layers of sacrificial material 1002, 1004 are deposited (or formed) and, if necessary, patterned or etched. The second and third layers of sacrificial material 1002, 1004, when subsequently removed, selectively release the protective cap 132 from portions of the field region 102, the suspension spring 122, the moving electrode 126, the cap anchor 134, and portions of the travel stop 302. In addition, it is seen that the third layer of sacrificial material 1004 is preferably deposited (or formed) substantially uniformly over the second layer of sacrificial material 1002 and over that portion of the layer of additional material 802 that defines the travel stop 302. As such, the third layer of sacrificial material 1004 defines the dimensions of the vertical and lateral gaps 312a, 312b l , and thus the predetermined distance between the travel stop 302 and the protective cap stop section 304. The second and third layers of sacrificial material 1002, 1004 are preferably each similar to the first layer of sacrificial material 702, and as such preferably comprise PSG. Nonetheless, it will be appreciated that one or both of these layers 1002, 1004 could comprise any one of numerous other sacrificial materials. With reference now to FIG. 11, a top layer of, for example, polycrystalline silicon 1102, which may be doped as-deposited or doped after being deposited, is deposited over the third layer of sacrificial material 1004. This top layer of polycrystalline silicon 1102, which is partially released upon removal of the first, second, and third layers of sacrificial material 702, 1002, 1004, defines the protective cap 132. As FIG. 11 also shows, the top layer of polycrystalline silicon 1102 is deposited to include a plurality of etch holes 1104, through which an etchant may flow to thereby selectively etch away the first, second, and third layers of sacrificial material 702, 1002, and 1004. Various etch processes could be used to etch away the first, second, and third layers of sacrificial material 702, 1002, and 1004. For example, a wet etch process or a vapor phase etch process could be used. In a preferred embodiment, a wet etch process is used, and a wet etch solution, such as an aqueous hydrofluoric acid (HF) solution, is introduced into the etch holes 1104 in the top layer of polycrystalline silicon 1102. No matter the specific etch process that is implemented, upon completion of the etch process, and as shown in FIG. 12, the MEM device 100 is formed, in which a portion of the protective cap 132 forms part of the over travel stop 140. It will be appreciated that additional process steps may be implemented to complete device 100 formation. However, the description of these additional steps is not needed to enable or understand the present invention and will, therefore, not be further described. As was previously noted, although the above-described MEM devices 100, 200 are accelerometers, the manufacturing process described herein is not limited to accelerometers or any other type of sensor. But is applicable to any one of numerous MEM devices that include some type of structure that is movably suspended by one or more springs. Non-limiting examples of such devices include various types of gyroscopes and switches. While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention as set forth in the appended claims and the legal equivalents thereof. | <SOH> BACKGROUND <EOH>Many devices and systems include various numbers and types of sensors. The varied number and types of sensors are used to perform various monitoring and/or control functions. Advancements in micromachining and other microfabrication techniques and associated processes have enabled manufacture of a wide variety of microelectromechanical (MEM) devices, including various types of sensors. Thus, in recent years, many of the sensors that are used to perform monitoring and/or control functions are implemented using MEM sensors. One particular type of MEM sensor that is used in various applications is an accelerometer. Typically, a MEM accelerometer includes, among other component parts, a proof mass that is resiliently suspended by one or more suspension springs. If the MEM accelerometer experiences an acceleration, the proof mass moves. The motion of the proof mass may then be converted into an electrical signal having a parameter magnitude (e.g., voltage, current, frequency, etc.) that is proportional to the acceleration. If a MEM device, such as the above-described MEM accelerometer, experiences a relatively high acceleration, or is exposed to a relatively high force, the proof mass and/or other portions that make up the MEM device can move beyond a desired distance. In some instances, such movement can potentially damage the MEM device; Moreover, the MEM device can exhibit unstable behavior if the proof mass and/or other portions of the MEM device travel too far when a voltage is supplied to the MEM device. Thus, many MEM devices include one or more types of over travel stops or motion limiters that are configured to limit the movement of the proof mass and/or other portions of the MEM device. Such over travel stops include, for example, bumpers formed on the outer perimeter of the proof mass and/or other portions of the MEM device, and/or additional non-device structure. Although presently-known devices and methods for limiting the travel of MEM device components are generally safe, reliably, and robust, these devices and methods do suffer certain drawbacks. For example, these devices and methods can be fairly complex and costly, and/or can consume an unwanted amount of surface area within the MEM device, and/or can only limit travel in one or two orthogonal axes. Hence, there is a need for a MEM device, such as an accelerometer, and a method of making the same, that addresses one or more of the above-noted drawbacks. Namely, a device and method that limits over travel in a MEM device and that is less complex and/or costly as compared to present devices and methods, and/or consumes less surface area within the MEM device as compared to present devices and methods, and/or limits travel in at least three orthogonal axes. The present invention addresses one or more of these needs. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background. | <SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein: FIG. 1 is a simplified cross section view of an exemplary MEM device that may be made in accordance with an embodiment of the present invention; FIG. 2 is a top view of a physical implementation of the MEM device shown in FIG. 1 that may be manufactured according the exemplary inventive process of the present invention; FIG. 3 is a close-up view of a portion of the MEM device shown in FIG. 1 , showing an exemplary embodiment of an over travel stop according to an embodiment of the present invention; and FIGS. 4-12 are simplified cross section views of the MEM device shown in FIG. 1 , illustrating the various exemplary methodological steps that are used to make various MEM devices in accordance with an embodiment of the present invention. detailed-description description="Detailed Description" end="lead"? | 20050104 | 20070619 | 20060706 | 90312.0 | G01P344 | 0 | CHAPMAN JR, JOHN E | MICROELECTROMECHANICAL (MEM) DEVICE WITH A PROTECTIVE CAP THAT FUNCTIONS AS A MOTION STOP | UNDISCOUNTED | 0 | ACCEPTED | G01P | 2,005 |
|
11,029,953 | ACCEPTED | Prescribed navigation using topology metadata and navigation path | The subject invention provides a system and/or method that facilitates prescribing a navigation within an application utilizing a topology and a navigation path. The topology is created based upon received metadata and is a network of node objects and link objects. The navigation path is a sequential list over the topology that represents a sub-graph thereof. A prescribing component can create the topology and navigation path such that a prescribed navigation can be utilized by an application during navigation (e.g., exploration) during runtime. | 1. A system that facilitates developing an application, comprising: a topology component that creates a topology that is a network of a node object and a link object based on received metadata; and a navigation component that creates a navigation path that is a sequential list of links over the topology to represent a sub-graph thereof, wherein the topology and navigation path are utilized by an application during runtime for navigation. 2. The system of claim 1, wherein the topology and the navigation path are created during design time of the application using metadata. 3. The system of claim 1, the node object represents a state of navigation containing a list of links to another node and associated data contents. 4. The system of claim 1, the node object is at least one of the following: an entity; an entity cube; a query; a task, and information source that is query-able from a provider. 5. The system of claim 1, the link object does one of the following: references to a source and a destination node; and requests to a provider that offers access to a destination node. 6. The system of claim 1, further comprising a model editor that creates the navigation path from the topology by identifying a root node and pruning the sub-graph. 7. The system of claim 1, further comprising a filter that creates the navigation path by filtering the node in the topology with a navigation path expression. 8. The system of claim 7, the navigation path expression is an object model created during the design time of the application based on the topology and associated code. 9. The system of claim 1, the navigation path is persisted as a set of metadata describing a navigation route, wherein the set of metadata is utilized to generate code including a navigation path expression composed in a strong typed manner. 10. The system of claim 1, further comprising a user interface tool that provides for manual generation of the topology. 11. The system of claim 1, further comprising an automatic component that automatically creates the topology by utilizing at least one of: an entity graph, a business intelligence metadata, and a business intelligence journal. 12. The system of claim 1, further comprising a navigation path provider infrastructure that manages communication between a client application and at least one navigation path provider and enables the generation of the topology metadata in design time. 13. The system of claim 12, the navigation path provider infrastructure includes a navigation path provider that provides a navigation path service and accesses a context node through a transformation and/or an information retrieval mechanism. 14. The system of claim 13, the information retrieval mechanism is at least one of the following: a meta-model provider for the entity; a drill function for the business intelligence; a task for operation, and information that is query-able from a navigation path provider. 15. The system of claim 1, further comprising one of the following: a journal that records a history of navigation; and a user interface binding that enables a binding to a user interface driven by metadata. 16. A computer readable medium having stored thereon the components of claim 1. 17. A computer-implemented method that facilitates prescribing a navigation within an application, comprising: receiving metadata; creating a topology based upon metadata; establishing a sub-graph of the topology as a navigation path; code generating a navigation path for the strongly typed navigation expression; and utilizing the navigation path and topology as a prescribed navigation for an application. 18. The method of claim 17, wherein the topology is a network of a node object and a link object representing a subset of traversable objects and paths and the navigation path is a sequential list of links over the topology. 19. A data packet that communicates between the topology component and the navigation component, the data packet facilitates the method of claim 17. 20. A computer implemented system that facilitates prescribing a navigation within an application, comprising: means for receiving metadata; means for creating a topology based upon metadata; means for establishing a sub-graph of the topology as a navigation path; means for code generating a navigation path for the strongly typed navigation path expression; and means for utilizing the navigation path and topology as a prescribed navigation for an application. | TECHNICAL FIELD The subject invention generally relates to computer programming, and more particularly to systems and methods that facilitate developing an application. BACKGROUND OF THE INVENTION There is a growing trend to provide business application software to a plurality of industries in order to simplify business procedures and/or forecasts. Business application software provides navigation and/or exploration across heterogeneous business data, which can be related explicitly and/or implicitly. Business applications typically are assorted with an overwhelming amount of information, wherein an essentially endless amount of this information contains inter-relationships. For example, a typical middle market application can contain forms, tables, inventory, charts, graphs, etc., wherein a majority of data is intertwined explicitly and implicitly. Specifically, data (e.g., billing forms, employee tables, order forms, etc.) can be utilized in conjunction with business applications involving, for example, payroll applications, sales analysis, shipping applications, bonus reports, cost analysis, etc. Conventionally, hypermedia systems are utilized to discover and/or navigate through the enormous quantities of information within a business application. Such hypermedia systems are information systems in which data access and exploration is accomplished through navigation rather than traditional con text querying. Additionally, such systems create and maintain links within an application or to external applications and resources. These links provide users with the ability to retrieve additional information related to the query results. For instance, a query for a list of customer names can also provide a link to another query that retrieves a list of orders for a particular customer. One benefit associated with hypermedia systems is the ability to store complex, cross referenced bodies of information as a network of nodes and links (e.g., a hierarchical database model that links records together in a tree structure). Querying within navigation can be defined as a query for data access and a query for correlation. For instance, a query for data access can be utilized to provide data access to certain type of node where resources are data. Whereas a query for correlation provides the correlation of the data based upon, for example, metadata and/or keywords. In other words, the term “query” refers to getting data (e.g., projects data), whereas the term “navigation” refers to getting related data (e.g., projects relationships and data). This navigational projection of relationships between data can also be referred to as a “non-linear” exploration of data. During non-linear exploration of data within a hypermedia system, a user typically can become lost and/or disorientated by the extensive cognitive overhead. Essentially, users can be overwhelmed by the vast amount of related links discovered during a navigational data exploration search. Moreover, navigation within hypermedia systems has traditionally been performed during runtime. A majority of the code is imperative, yielding modules with a single use, which in turn results in a very inefficient and slow application during runtime. In view of at least the foregoing, there is a need to improve navigation within related data in business applications. SUMMARY OF THE INVENTION The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later. The subject invention relates to systems and/or methods that facilitate developing an application by utilizing a prescribed navigation. The prescribed navigation utilizes a topology that is based upon received metadata, wherein a navigation path is employed to represent a sub-graph of the topology. A prescribing component can receive data during design time, wherein such data can be metadata (e.g., metadata related to a business framework). During the design of an application, the prescribing component can create a topology with an associated navigation path based upon the received data. The topology and the navigation path (e.g., NPath) can provide the employment of a prescribed navigation in design time that streamlines the development of an application. Furthermore, the prescribing component can provide navigation such as linear, star, and/or tree. In accordance with one aspect of the subject invention, the prescribing component utilizes a navigation path provider infrastructure including at least one navigation path provider that can provide services to an application and/or navigation path client. In other words, the navigation path provider infrastructure manages communication between client applications and various navigation path providers. Moreover, the navigation path provider(s) can be a variety of resource providers that access a context node either through transformation and/or information retrieval mechanism. In accordance with still another aspect of the subject invention, the creation of the topology can be automatic, manual, or a combination thereof. The prescribing component receives data (e.g., entity graph, business intelligence metadata, business intelligence journal, . . . ) that is utilized automatically in topology creation. Moreover, the topology can be created manual by utilizing a user interface tool that adds a link to represent a logical association between two entities. Additionally, the topology can also be created using a combination of automatic and manual techniques. In accordance with yet another aspect of the subject invention, a navigation path expression can be created based upon the topology, wherein the navigation path expression is an object model. Elements and filters can be added to the navigation path expression, wherein such filters provide exclusion or inclusion for various sub-trees. Furthermore, navigation path expressions can be added to an element to programmatically prune the navigation path. In addition, code can be generated such that the navigation path is persisted as a set of metadata describing navigation route(s). The set of metadata can be utilized to generate code, wherein the navigation path expression can be composed in a strong typed manner. In accordance with yet another aspect of the subject invention, the prescribing component interacts with a navigation path client application programmable interface (API) that can provide communications between computer software. The navigation path API can utilize user interface (UI) binding that enables a binding between an NPath element, or called Node, and user interface components, managed by metadata. Moreover, navigation path client API can utilize a journal that records a history of navigation for an application. The journal records the history of navigation regardless of the navigation path utilized. Thus, a complex history of navigation within a topology can provide various details and insight into navigation (e.g., discovery) of data within an application. The journal can be utilized as bases for a topology in order to provide a prescribed navigation for an application. The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed and the subject invention is intended to include all such aspects and their equivalents. Other advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a block diagram of an exemplary system that facilitates developing an application utilizing prescribed navigation. FIG. 2 illustrates a block diagram of an exemplary system that facilitates developing an application utilizing prescribed navigation. FIG. 3 illustrates a block diagram of an exemplary architecture that facilitates developing an application utilizing prescribed navigation. FIG. 4 illustrates a block diagram of an exemplary system that facilitates developing an application utilizing prescribed navigation. FIG. 5 illustrates a block diagram of an exemplary system that facilitates prescribing navigation within an application. FIG. 6 illustrates diagram containing a starting node and associated links. FIG. 7 illustrates a block diagram of customer forms with nodes that facilitates developing an application utilizing prescribed navigation. FIG. 8 illustrates a block diagram of an object model that facilitates developing an application utilizing prescribed navigation. FIG. 9 illustrates a block diagram of an object model that facilitates developing an application utilizing prescribed navigation. FIG. 10 illustrates a block diagram of an object model that facilitates developing an application utilizing prescribed navigation. FIG. 11 illustrates a block diagram of an object model that facilitates developing an application utilizing prescribed navigation. FIG. 12 illustrates a flow chart of an exemplary methodology that facilitates developing an application utilizing prescribed navigation. FIG. 13 illustrates a flow chart of an exemplary methodology that facilitates developing an application utilizing prescribed navigation. FIG. 14 illustrates a flow chart of an exemplary methodology that facilitates developing an application utilizing prescribed navigation. FIG. 15 illustrates an exemplary networking environment, wherein the novel aspects of the subject invention can be employed. FIG. 16 illustrates an exemplary operating environment, wherein the novel aspects of the subject invention can be employed. DESCRIPTION OF THE INVENTION As utilized in this application, terms “component,” “system,” and the like are intended to refer to a computer-related entity, either hardware, software (e.g., in execution), and/or firmware. For example, a component can be a process running on a processor, a processor, an object, an executable, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components can reside within a process and a component can be localized on one computer and/or distributed between two or more computers. The subject invention is described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the subject invention. It may be evident, however, that the subject invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the subject invention. FIG. 1 illustrates a system 100 that facilitates developing an application during design time by utilizing prescribed navigation. A prescribing component 102 can receive data during design time, wherein such data can be metadata (e.g., metadata related to a business framework). During design of an application(s) 104, the prescribing component 102 can create a topology with an associated navigation path based upon the received data. The topology and the navigation path (e.g., NPath) can provide for employment of prescribed navigation in design time that streamlines development of the applications 104. The topology can for example be a metadata instance of a uniquely named collection of links, which is a network of node and link objects—this network represents a subset of traversable objects in paths in the metadata model. Such node or link can reference back to the original metadata. Once a topology is created by the prescribing component 102, the navigation path, which is a collection of acts to navigate the information topology for a specific application(s) 104 purpose, is employed. The navigation path is a sequential list of links over the topology that represents a sub-graph of a general topology created from the received data. The content of the navigation path defines a graph, while the physical sequence of link objects in the list represents a linear navigation path. It is to be appreciated that the applications 104 can utilize navigation paths by filtering nodes within the topology with an expression. Moreover, such navigation paths typically include a root node, a sequence to support a next functionality (e.g., exploring the next node within a navigation path), a user interface (UI) presentation binding, and a notion of navigation type (e.g., linear, star, or tree). A topology with a navigation path contains various nodes with associated links. A node is an object that represents a state of navigation, wherein a list of links to other nodes and data contents during navigation is contained. It is to be appreciated that the node within the topology and navigation path can be associated to a model element such as, but not limited to, Entity or EntityCube (discussed infra) where contents are provided. Each node contains node content, which is data bound to a specific node. Moreover, it is to be appreciated the data bound to a node is not limited to a particular node. For instance, data “A” can be bound to node “A”, and node “B”. Furthermore, the node content can be an entity, EntityCube, and/or query that returns a collection of data or simply a resource upon access. The node content further provides a value and type information, wherein the type content is dynamically assigned at run time when the node value is retrieved. The links between nodes inter-relate one another. A link can contain a unified resource identifier (URI) and references to source and destination nodes. A link object is instantiated, similarly to associated end nodes. The topology and navigation path created, based upon the data, facilitate use of prescriptive navigation within the application(s) 104. The prescribed navigation during design time shifts the discovery process from run time to design time. By utilizing a topology based on received data and a navigation path, application developers can prescribe navigation paths for an end user such that the user would likely navigate through the content of the application(s) 104. Thus, the topology and navigation paths created by the prescribing component 102 facilitate developing the application(s) 104 by prescribing data exploration/discovery/search into specific paths rather than allowing a user to roam aimlessly. It is to be appreciated that the applications 104 can be, but not limited to, a business application, an application on a computer-readable medium, an application within a business framework, etc. FIG. 2 illustrates a system 200 that facilitates developing an application by prescribing a navigation and/or data exploration within related data. A prescribing component 202 can receive data such as metadata (e.g., metadata related to an application, metadata related to a business framework, . . . ) that facilitates creating a prescribed navigation for an application. Prescribed navigation based upon metadata in design time provides application developers a streamlined development effort using a navigational view. Furthermore, by utilizing a prescribed navigation path within the topology provides that re-usability of modules for a plurality of applications. The prescribing component 202 creates the topology and the navigation path such that the discovery of relationships between data and traversing such data points are done in design time. Traditional navigation technique provide a run time discovery of such relationships and traversing of such data points. Thus, the novelty of the subject invention provides application developers an architecture in which a prescribed navigation facilitates developing an application. The prescribing component 202 further includes a topology component 204 that creates a topology based upon data such as metadata related to an application. A topology is a metadata instance on uniquely labeled link collection, which is a network of at least one node and at least one link object. The topology component 204 creates the topology such that the network of node and link objects represents a subset of traversable objects and paths. It is to be appreciated that the topology created is a reflection of a conceptual model for a specific application component. Upon creation, the topology can be re-usable. For instance, the topology component 204 can create a topology based on data, wherein such topology is re-usable by an application and/or a plurality of applications. Moreover, the topology can be re-used by various parts and/or components of an application (e.g., by utilizing a different path for the navigation logic in the application). In one example, the topology component 204 can create a topology such that an application “Salary” and an application “Bonus Report” utilize the substantially similar topology. The topology contains nodes and associated links. A node is an object to represent a state of navigation containing a list of links to at least another node with data contents. For instance, the nodes can be entities, entity cubes, queries, tasks, and other resources. A link contains a uniform resource identifier (URI) that references to a source and destination node. It is to be appreciated that the topology component 204 can create a topology manually and/or automatically. Thus, the topology component can create a topology based on a user interface (UI) (e.g., manually) or based on a provider(s) (e.g., automatically) or a combination thereof. The topology component 204 creates a topology allowing a navigation path to be created thereupon that provides the prescribed navigation for an application. The navigation path is created by an npath component 206, wherein the navigation path is a sequential list of links over the topology (e.g., created by the topology component 204) to represent a sub-graph of such topology. For instance, a topology can consist of a plurality of nodes and links, wherein an exploration through a series of related nodes via links can be a navigation path. The content of the navigation path defines the sub-graph while a physical sequence of link object in the list represents a linear navigation path. The following example is for explanatory purpose, and is not to be a limitation construed on the subject invention. A topology can be created wherein the topology is a transportation network containing stops (e.g., nodes) and connecting roads/streets (e.g., links). A navigation path within the topology can be a specific route from point “A” to point “B.” The creation of such prescribed navigation provides a “guided tour” of the transportation network that facilitates moving people from one location to another. The npath component 206 creates the navigation path such that a sub-set of the topology is utilized. It is to be appreciated that although a sub-set of the topology is prescribed, the sub-set can include the entire topology. Furthermore, the npath component 206 creates the navigation path such that the composition is at least one link and at least one node. The navigation path also contains a root node, a sequence to support next, a user interface (UI) presentation binding, and a user interface (UI) binding metadata (e.g., inherited from the source topology but can be overridden). In addition, the navigation path supports a plurality of navigation and/or exploration types (e.g., linear, star, tree traversal, . . . ). The various navigation types drive navigation path application programmable interfaces (API's) behavior in the runtime for the application. For instance, linear navigation can be utilized, wherein the links to nodes are sequential in a linear path. In another example, a star navigation type can be utilized. Star navigation, also known as hub and spoke, consists of a number of links jutting outward from a central node. The distribution is routed through the central node (e.g., hub) before reaching the final destination via links to other nodes. Another navigation type supported by the navigation path is, for example, tree traversal. Tree traversal is the process of visiting each node in a tree data structure, wherein a sequential procession of each node is provided. It is to be appreciated that the traversals can be characterized by the order in which the nodes are visited. Referring still to FIG. 2, the npath component 206 creates the navigation path during design time providing a prescribed navigation within the topology. During design time, the npath component can utilized to create a navigation path out of the topology by identifying a root node and pruning (e.g., deleting) the associated graph (e.g., links and/or nodes). Moreover, during run time applications can create additional navigation path(s) and/or utilize the design time created navigation path. When the application creates the navigation path during runtime, filters are utilized in order to filter node(s) yielding a runtime created navigation path. The prescribing component 202 provides prescribed navigation utilizing a topology and a navigation path that facilitates developing an application. The navigation path (e.g., sub-graph of the topology) can be populated (e.g., populate nodes and/or links) by a navigation path (e.g., npath) provider infrastructure 208 which includes at least one provider to an Nth provider where N is an integer. The navigation path provider can be a resource provider that accesses a context node via, for example, a transformation and/or information retrieval mechanism (e.g., a meta-model provider for entities, a drill up/down/through/across for Business Intelligence (BI), a task operation or workflow, . . . ). The navigation path providers (e.g., Provider1 to ProviderN) have basic capabilities that provide appropriate functionality to the overall navigation path provider infrastructure 208. The navigation path provider responds to a request with a data context providing node(s) with data (e.g., populated the metadata). The navigation path provider also implements the ability to respond with a set of return types (e.g., DataSets, Objects, XMLs, etc.). Moreover, linking capabilities are provided such as link context (e.g., wherein the provider produces links with a context) and link type (e.g., wherein identity is given to a specific type of providers). It is to be appreciated that the navigation providers (e.g., Provider1 to ProviderN) can provide additional capabilities such as, for example, security token and/or filters (discussed infra). The security token provided can be employed in order to verify and/or authenticate navigation path providers within the navigation path provider infrastructure 208. For instance, a topology can be created based on a metadata, wherein a navigation path is representative of a sub-set of the topology. In order to provide data context to the nodes (e.g., which contain metadata), a navigation path provider can access a context node with a transformation and/or information retrieval mechanism. However, in order to provide security, authenticity, and/or verification, the navigation path provider can utilize a security token. The navigation path provider infrastructure 208 can include at least one navigation provider, wherein the infrastructure 208 manages communication between client application and at least one navigation path provider. It is to be appreciated that the navigation path provider infrastructure 208 can manage communication between a plurality of client applications and a plurality of navigation path providers. The navigation path provider infrastructure 208 provides plug-ability, extensibility, and/or delegation capabilities wherein navigation requests are delegated to specific set of providers when the type information is provided. However, when type information is not provided, the infrastructure 208 requests responses by broadcasting requests to Provider1 to ProviderN. Furthermore, the navigation path provider infrastructure 208 can provide instantiation for the topology and the navigation path. It is to be appreciated that the instantiation for the topology is for resolving navigation path expression and navigation path are in run time. In addition, it is to be appreciated that code can be generated such that the navigation path is persisted as a set of metadata describing navigation route(s). The set of metadata can be utilized to generate code, wherein the navigation path expression can be composed in a strong typed manner. Turning now to FIG. 3, an architecture 300 is illustrated that facilitates developing an application during design time by utilizing a prescribed navigation. By creating a topology and a navigation path (e.g., sub-set of the topology) based on metadata received, a prescribed navigation can be implemented allowing streamlined development of an application. The architecture 300 establishes design points such as, but not limited to, enabling high degree of plug-ability and extensibility, focusing on developer and application needs, long-term stability of application programmable interfaces (API's), providing a high level of prescriptive-ness for a business framework navigation, and maximizing business intelligence (BI) and entity metadata values. The architecture 300 includes a workspace tier 302 and a service layer 304. Within the service layer 304, an npath core 306 is included that facilitates creating a prescribed navigation for an application. The npath core 306 further includes a topology 308, a session 310, and an instantiation 312. The npath core 306 instantiates a topology 308 based upon received data. For instance, the topology 308 can be created based on metadata contained in a metadata store (not shown). As will be discussed in more detail infra the topology 308 can also be created manually or automatically or a combination thereof. Once the topology 308 is instantiated, the npath core 306 instantiates a navigation path 314 (e.g., also referred to as the NPath) from the topology instance by utilizing the instantiation 312. In other words, the instantiation 312 can instantiate the topology 308 and/or the navigation path 314 (e.g., also referred to as the NPath). In one example, the navigation path can be instantiated from the topology instance utilizing a navigation path expression, also referred to as an NPath expression. In yet another instance, code can be generated such that the navigation path is persisted as a set of metadata describing navigation route(s). The set of metadata can be utilized to generate code, wherein the navigation path expression can be composed in a strong typed manner. Also, it is to be appreciated that the navigation path created has a client side and a service side, wherein the navigation path 314 represents the client side, and the navigation path is on the service side (not shown). Furthermore, the npath core 306 can create a service session for an npath client allowing for a prescriptive navigation within the workspace tier. It is to be appreciated the npath core 306 represents a service layer for the npath client to delegate requests to a provider infrastructure 324. It is to be appreciated the provider infrastructure 324 is the service layer that manages communication between client applications and navigation path providers as discussed supra (e.g., request/response, delegation/broadcasting, registration, . . . ). The npath 314 resides in the workspace tier, wherein the NPath 314 (e.g., navigation path 314) can utilize a journal 316, a path 318, an expression 320, and a user interface (UI) binding 322. The navigation path client side 314 provides functionality for client applications, such as, for instance: expression 320 contains a strong typed expression to compose an NPath expression to create an instance of a path out of the topology instance in the service; UI binding 322 enables a navigation context sensitive binding between a node and UI components, which is persisted as part of metadata; path 318 contains a programming model that enables navigation on links in the navigation path; and journal 316 provides a journaling functionality to track user navigation and/or the history associated thereto. In one example, the journal 316 provides a log and/or record to track user navigation within an application. The journal 316 can be utilized in order to prescribe navigation within an application and to facilitate developing a topology with navigation path(s) to better discover relationships and traverse data points. For example, the journal 316 can track a particular user's navigation within a topology, or possibly outside of the topology due to run time ad hoc exploration, during a session such that a log and/or record are created wherein such record and/or log can facilitate developing an application. FIG. 4 illustrates a system 400 that facilitates developing an application by utilizing a prescribed navigation including a topology and a navigation path. The topology component 402 creates the topology either by utilizing an automatic component 404 or a manual component 406 or a combination thereof. The automatic component 404 receives data, wherein a topology can be created. The shape and collection of links and nodes can be determined by a provider and/or a plurality of providers. For instance, the topology can be created from an entity graph (e.g., topology created directly from metadata). The topology can be created from an entity model by examining entity metadata in information management system (IMS). It is to be appreciated that entity types are nodes, wherein associations and compositions form the links among such nodes. The business entity provider is responsible for these nodes and links. In another example, the topology can be automatically created from business intelligence (BI) data. Thus, cubes, dimensions, and measures are nodes, with the addition of a business criteria instance (e.g., a multidimensional expression (MDX) statement) is also a node. The links among the above nodes can be, for instance, drill-up, drill-down, drill-across, etc. as implemented by at least one business intelligence (BI) provider. It is to be appreciated that the topology automatically created also covers the relationship between business intelligence (BI) metadata and entity metadata. Moreover, in different example, the automatic component 404 can create the topology based on a business intelligence (BI) journal. The journal can be, but not limited to, submitted to the navigation service wherein a topology can be created by converting the journal by removing duplicate entries. The manual component 406 can receive a user input via user interface tools allowing the topology to be created and/or modified manually. For example, a link can be added to represent a logical associated between two entities with the following code: Topology myTopology = new Topology(“myTopologyName”, typeof(Order)); //add a link between Order and Customer with a link category “Entity” myTopology.AddLink(typeof(Order), typeof(Customer), “Entity”); //add a link between Order and OrderLine with a link category “Entity” myTopology.AddLink(typeof(Order), typeof(OrderLine), “Entity”); //add a link between OrderLine and Product with a link category “Entity” myTopology.AddLink(typeof(OrderLine), typeof(Product), “Entity”); //add a link between Order and SalesEntityCube with a link category “DrillUp” myTopology.AddLink(typeof(Order), typeof(SalesEntityCube), “DrillUp”); //add a link between SalesEntityCube and ProductEntityCube with a link category “DrillAcross” myTopology.AddLink(typeof(SalesEntityCube),typeof(ProductEntityCube), “DrillAcross”); ... //save the topology back to server side myTopology.Save( ); The code above creates a topology with the name “myTopologyName,” with a root node having the type Order. Throughout the code, various links are added between nodes, and then the topology is saved back to a server side. It is to be appreciated that the code above is commented, wherein such comments are prefaced with “//.” It is to be appreciated that the manual component 406 and the automatic component 404 can be utilized in conjunction in order to create a topology. For instance, the topology can be provided automatically based on the techniques described above, yet a user can utilize a user interface to edit the automatically provided topology. Thus, customization of a topology is possible and available to specifically tailor to an individual. The topology created can then be utilized to create a navigation path by the npath component 408. The navigation path created is a sequential list of links over the topology to represent a sub-graph of the topology (e.g., created automatically by the automatic component 404, created manually by the manual component 406, or a combination thereof). It is to be appreciated that a navigation path can be created utilizing a persisted journal, wherein the journal is automatically utilized and/or manually utilized. The content of the npath defines a graph while the physical sequence of link object in list represents a linear navigation path. Furthermore, the navigation path and the topology path facilitate developing an application by utilizing prescriptive navigation within such application. FIG. 5 illustrates a system 500 that facilitates prescribing navigation within an application. An npath service 502 can include a topology with a navigation path(s) 504 wherein a prescribed navigation path is determined. However, before initialization, a navigational path contains only metadata (e.g., from which the topology is based upon) and no data. The root of the node must have data instances in order to be traversed. An application must utilize an npath client application programmable interface (API) 506 to get a data instance, wherein the application provides the context and submits such context to the npath service 502. The npath service 502 can provide a root node data value to the npath client API 506 which provides the application with such value. It is to be appreciated the root node value is the initial context for the navigation path to be navigated. Once application sets the initial context, the typed context can be obtained by an npath provider 508. The root node can be initialized with a data view in a variety of techniques. For example, an injection of a link to the root node can provide the initial context as seen in the following code: NPath navPath = NPath.CreateInstance(...); OPath opath = “CustomerID=1234”; NavLink initLin = navPath.CreateLink(Navigate://entity.provider?...Querytype=”Opath”, Query = opath ...”); navPath.RootNode.GetData( initLink, null); It is to be appreciated that the notion of injecting links is beneficial when views of the context node in an application are dynamically changing. Moreover, the links can transform the view from one to the other using the same context node. The npath client API 506 provides a variety of functionality to the system 500 in order to facilitate prescribing navigation within an application. The npath client API 506 includes a navigate 510 that provides a plurality of navigation. The navigate 510 can provide an npath sequential navigation, wherein the npath sequential navigation allows the application to sequentially travel down the navigation path with minimal path discovery. It is to be appreciated that the interaction with the npath service 502 is to obtain node contents by calling a TraverseLink( ). For instance, once a connection can be established allowing a client to connect to the npath service 502. The navigation path is then instantiated by calling the npath service 502 with a topology name, a starting node, an npath expression, and a traversal strategy to get the instance of the navigation path. The application can then navigate utilizing “Next” on the navigation path from the starting node. The sample code below is a typical example of an application: NPath myPath = new NPath(“myTopologyName”, myExpression); //Next Button Click handler ... NextButtonOnClick(...) { //traverse the next link myPath.Next( ).Traverse(dataContext); } Furthermore, navigate 510 can provide an npath sub-tree navigation, wherein the application navigates within the links of direct children in the given npath context node. It is to be appreciated that there is no path discovery, and the interaction with npath service 502 allows the reception of node contents. The client connects to the npath service 502, wherein an npath is instantiated that allows navigation when the application calls Traverse( ). It is to be further appreciated that typical examples are form-based applications with hot-links on displayed data and/or button controls. Hot-links, for instance, are dynamically activated when a path exists from a starting node to a link destination node. Referring to briefly to FIG. 6, an online order application can include the forms: customer, sales report, order, orderline, and product. The navigation path for an application can be [<customer, report>, <customer, order>, <order, orderline>, <orderline, product>]. The navigation path is depicted in FIG. 6, containing the forms. The npath service 502 can return the navigation path based on the topology and expression specified by the application. In another example, the application can utilize a set of disconnected user interface (UI) elements (e.g., Winform) at a client side, wherein the elements are bound to at least one node in a navigation path individually. Referring to FIG. 7 briefly, the user interface (UI) elements 700 can be a design time illustration of a customer order form 702 and a run time illustration of a customer order form 704. For example, a Customer form UI can be bound to the Customer node in the navigation path independent of a specific application but specific to a navigation context, such as, data source type, the navigation link type, or user inputs of any form. Insides this Customer form example, UI controls are dynamically generated based on the npath in metadata. In this example, the two navigation path button controls in the customer order forms can be prescribed to bind the node data to UI controls such as report chart, order form, orderline datagrid, etc. During run time, traversing a customer node activates the form that matches the given navigation context, wherein the node data is presented and links that are traverse-able form the source are populated in the navigation control area 706. Continuing with the above example, a report button 708 can be created by an application developer and/or by an npath client API automatically. When the report button 708 is activated, the link <customer, report> link is traversed. The npath can then load report data and display the report chart user interface (UI). The report chart can be, for instance, a modal dialog box, a modeless form, and/or an in-place docked control. Additionally, the order form can have various controls to display order detail collections (e.g., derivatives of data grid controls). The order detail control can be a child of the order form so that the link <order, orderline> is traversed automatically as order is traversed. The existence of link <orderline, product> enables a hypertext link on the product column of order lines. The above can be demonstrated by the following code: NPath myPath = new NPath(“myTopologyName”, myExpression); //get all the out bound links from root within the NPath List<Link> outBoundLinks = myPath.Root.OutBoundLinks; //traverse the 5th link outBoundLinks[4].Traverse(dataContext); Referring back to FIG. 5, the navigate 510 can provide topology navigation, wherein an application explicitly requests discovery of links outside a navigation path but within the given topology. The navigate 510 can utilizing GetPath( ) on a known node. The application can call GetPath( ) on a node to obtain the links that are in scope of the topology without the accessing an npath provider 508. The links returned are in a form of a new npath instance. It is to be appreciated the application can add returned links into a journal 512 selectively (discussed infra). The above can be demonstrated by the following sample of code: NPath myPath = new NPath(“myTopologyName”, myExpression); //get all the out bound links from root within the NPath List<Link> outBoundLinks = myPath. myPath.Root.OutBoundLinks; //traverse 5th Link from outBoundLinks outBoundLinks[4].Traverse(dataContext); //adhoc get links from current topology NPath adhocPath = outBoundLinks[4].Destination.GetPath(someExpression, SearchScope.CurrentTopoloy); //traverse the 1st adhocLink, and this link navigation information will be kept in journal adhocPath.Links[0].Traverse(newDataContext); An ad-hoc navigation is substantially similar to topology navigation, yet the discovery scope is at a npath provider level. The ad-hoc navigation can be implemented by the navigate 510 by the following code sample: NPath myPath = new NPath(“myTopologyName”, myExpression); //get all the out bound links from root within the NPath List<Link> outBoundLinks = myPath. myPath.Root.OutBoundLinks; //traverse 5th Link from outBoundLinks outBoundLinks[4].Traverse(dataContext); //adhoc get links from current topology NPathadhocPath=outBoundsLinks[4],Destination.GetPath(someExpression, SearchScope.UniversalTopology); //traverse the 1st adhocLink, and this link navigation information will be kept in journal adhocPath.Links[0].Traverse(newDataContext); The npath client API 506 can further include a journal 512 that allows the recordation of history of navigation. The journal 512 can record the history of a navigation regardless of the navigation path used. The journal 512 can be opened to allow the recording of the navigations which proceed until the journal 512 is closed. The journal 512 can be saved in, for instance, a local file upon closing. In one example, an application upon activation can determine whether a journal file is located in a configuration file in order to load the journal history. When such application is de-activated, the journal 512 can be saved in the substantially similar file. Furthermore, the journal 512 contents can be uploaded into a topology, wherein such journal contents can append, replace, or override the topology. It is to be appreciated that the connection can have right to write onto metadata. For instance, a journal 512 can create a history of navigation for a user wherein such history can be the basis of the topology and navigation path creation allowing the prescribed navigation to facilitate developing an application. The journal 512 can be updated by navigation activity upon activation; thus all navigation activity is recorded. The main functions for a journal 512 are “Back” and “Forward.” Referring briefly to FIG. 8, a design overview is given for a journal, wherein the journal object model 800 encapsulates the pages navigated/visited by a user. The journal object model 800 contains a Journal object which provides a variety of attributes and operations. A back attribute provides the links the user can navigate backwards to and can be implemented as an array rather than a stack for flexibility. A forward attribute allows the links the user can navigate forward to, which also can be implemented as an array instead of a stack for flexibility. Another attribute, current provides the current link or page that is currently being visited (e.g., it does not belong to either the forward or back list of links). The journal object further provides operations such as, for instance, journal (e.g., construct a journal object), journal (e.g., copy constructor), traverse (e.g., navigate to a new link or page where the current page is pushed onto the back stack and the current page is set to the new page), back (e.g., go backwards one page), back (e.g., go backwards the number of pages specified), forward (e.g., go forward one page), forward (e.g., go forward the number of pages specified), serialize (e.g., save the journal to an XML stream), deserialize (e.g., load the journal form an XML stream), backstack (e.g., return the array of pages in the back array, which does not include the current page), and forwardstack (return the array of pages in the forward array, which does not include the current page). Moreover, the journal object model 800 contains a JournalLink obect that encapsulates the information needed to recreate a page visited by the user. For instance, the JournalLink object contains a name (e.g., the name of the page which can be used to display the journal nodes to a user) and a URI attribute (e.g., the URI that describes the link the user traversed to get to this page, wherein the URI contains the context data). The JournalLink object provides operations such as, for example, name (e.g., return the name of the page) and URI (e.g., return the URI that created the page, wherein the UR page type together with the URI can recreate the page). The npath client API 506 can further include a UI binding 514. The graphic user interface (GUI) application can be based on the navigation path substantiated; yet displaying the user interface (UI) for a node upon navigation is done with the npath client API 506. For example, a developer can write a user interface control (e.g., a page) in a client component over npath client API 506 can bind it to a type described in the business framework metadata. The page can implement an interface to communicate to the npath client API 506. It is to be appreciated the traversal of the navigation path occurs from the data instance of the root node. Yet, application(s) need to provide the context data, which is done by a construct data search criteria of the types specified by the navigation path. When a page binds to a node in the topology via the UI binding 514, the view of a node content is determined. Moreover, a binding determines the particular page run-time behavior, such as how it is activated or the relationship with other controls on display. For example, a binding determines if the user interface (UI) control is modal or modeless, or in-place control. It is to be appreciated that the page can have other in-place pages as child pages (e.g., provided the nodes of child page are reachable from the parent page node). The traversal can take place when the parent page is loaded. The UI binding 514 provides the registration of pages (e.g., registration with, for instance, a navigation manager), default UI binding (e.g., one for single data instance that is property page-like and one for collections that is a data grid), type based UI binding (e.g., registering a page as a type based binding that overrides the default binding), node based UI binding (e.g., page matching to the type and node id when there is more than one page available), link based UI binding (e.g., page matching to the type, node id, and link when there are multiple pages available), binding context (e.g., registration of pages and providing a binding context allowing multiple pages to be registered for one type or one node). The npath client API 506 can include a navigation session manager 516 that facilitates navigating services. The navigation session manager 516 is a singleton object in npath client API 506 that can manage navigation path(s), journal 512, pages, and UI binding 514 at a presentation tier. Upon initialization of an application, the npath client API 506 can connect to a navigation service (not shown) for the application, wherein the connection requires input parameters such as, for instance, business framework account name, password, etc. Once authentication of the user is provided by the service side, the connection handle/object for the session is returned. It is to be appreciated that the authentication can be provided by the business framework. The navigation session manager 516 can call the npath service 502 to get a navigation path instance returned. In order to instantiate a navigation path, the application provides, for example, the following parameters: a topology name, a starting node instance, a navigation strategy, and an expression string or object model (OM). The topology name is a unique name of a topology. A nameless topology is simply a returned navigation path containing only the starting node and the first level child nodes as a result of discovery. A starting node instance provides the starting point for a node. The starting node instance is not necessary if criterion can uniquely identify the starting node of an absolute path from the root. Yet, an application may not contain information regarding the topology nor the absolute path to a node, in which can the node is identified first. The navigation strategy is the technique utilized in navigation. With a list of links, the connectivity of a graph is fixed, yet traversing from the starting node is different. In other words, two or more navigation paths utilize the substantially similar links yet different navigation sequence provided by the application. For instance, possible sequences are depth first (linear on a sequentially connected links), breadth first, or star (e.g., use connectivity rather than sequence). The expression string or object model (OM) is an XPath-like expression with object model support to identify the path over a topology. FIG. 9 illustrates an object model 900 that facilitates developing an application by utilizing prescribed navigation. The object model contains an NPathExpression class which implements an ISerializable interface to support serialization to XML. The NPathExpression class contains a chain or tree of element objects with various attributes and operations. For instance, attributes associated to NPathExpression is name (e.g., the name for the path which is unique), start (e.g., the first element of the path which can refer to a relative path or absolute path depending on the element properties). The NPathExpression can utilize operations such as, but not limited to, NPathExpression (e.g., constructor), start (e.g., property, sets or returns the first element of path), and ToString (e.g., returns an XPath-like expression string representation of the NPathExpression). The object model 900 further includes an Element class wherein, the Element class implements the ISerializable interface to support serialization to XML. Moreover, the element class encapsulates an XPath's element and contains a filter and a chain or tree of other element objects. Element contains attributes such as, but not limited to, entity (e.g., the business intelligence entity, where if null and first element in the path it is a relative path; if null and the element is not the first node it is a parent node), children (e.g., the next element in the path), parent (e.g., the parent to this element), and filter (e.g., the filter expression to filter subsequent sub-trees). The Element class can provide operations such as, for instance, element (e.g., constructor), filter (e.g., return the filter), add (e.g., append an element to the path, wherein the element is added to the children attribute of the current element), add (e.g., append an array of elements to the path, thus to create union of sub-trees), include (e.g., help function to include an element and its sub-tree to the path), exclude (e.g., help function to exclude an element and its sub-tree to the path), children (e.g., read-only property that returns the children array), parent (e.g., read only property that returns the parent of the element), and ToString (e.g., returns an XPath-like expression representation of the element and can be called recursively by NPathExpression). Furthermore the object model 900 contains a filter class which implements the ISerializable interface to support serialization to XML. A filter contains a stack of terms, operators and functions that make up the filter expression. The filter calls can contain the stack attribute which provides a stack representative of the post-fix order of the filter expression. The filter class can also provide operations such as, for example, filter (e.g., constructor), equalsto (e.g., helper method), notequalsto (e.g., helper method), push (e.g., internal use that pushes the term or operator onto the post-fix stack), pop (e.g., inter use that removes the top term or operator from the post-fix stack), isempty (e.g., returns true if the stack is empty), and tostring (e.g., return an XPath-like expression representation of this filter and can be called recursively by element). FIGS. 10 and 11 illustrate object models 1000 and 1100 that facilitate developing an application by employing a prescribed navigation, wherein topology generation services are utilized. The object model 1000 contains a topology class that is derived from MarshalByRefObject based in part upon the topology residing on the server and client-reference accessibility. A navigation path is derived from ISerializable, wherein value can be passed around. It is to be appreciated that if navigation path resided on server, navigation path's MoveNext ( ) function call would be remote and performance would be lacking causing a plurality of issues. Utilizing the object model 1000 and 1100, a topology can be created from an entity cube wizard. A topology can be created, stored, and then loaded by a client. The following code illustrates the creation, storing and loading by a client: Topology toplogy = Topology.CreateInstance(“MyTopologyName”, modelElements); topology.Save(store); //or Topology.Save(store, topology); Load topology by client. Topology toplogy = navSession.LoadTopology(“MyTopologyName”); A navigation path can be created, wherein a navigation instance can be created from, for example, a model viewer. The topology can be created, a root node can be located, and a navigation path expression can be created utilizing the navigation path and navigation type. Upon creation, the navigation path can be obtained, and saved back to the store. It is to be appreciated that code can be generated such that the navigation path is persisted as a set of metadata describing navigation route(s). The set of metadata can be utilized to generate code, wherein the navigation path expression can be composed in a strong typed manner. The navigation path can be loaded by the client. The above can be illustrated by the following code: Topology toplogy = Topology.Load(“MyTopologyName”, store); Node root = topology.FindNode(nodeRegex); NPathExpression expression = ...; NPath path = topology.GetNPath(root, expression); path.Save(store, “myPath”); NPath path = navSession.LoadNPath(“MyTopologyName”, “MyPathName”); FIGS. 12-14 illustrate methodologies in accordance with the subject invention. For simplicity of explanation, the methodologies are depicted and described as a series of acts. It is to be understood and appreciated that the subject invention is not limited by the acts illustrated and/or by the order of acts, for example acts can occur in various orders and/or concurrently, and with other acts not presented and described herein. Furthermore, not all illustrated acts may be required to implement the methodologies in accordance with the subject invention. In addition, those skilled in the art will understand and appreciate that the methodologies could alternatively be represented as a series of interrelated states via a state diagram or events. FIG. 12 illustrates a methodology 1000 that facilitates prescribing navigation by utilizing a topology and a navigation path. At 1202, metadata is received during a design time, from which a topology is created at 1204. The topology is a metadata instance of uniquely named collection of links (e.g., a network of node and link objects). For instance, a topology can be created automatically (e.g., from an entity graph, business intelligence metadata, business intelligence journal, . . . ) or manually (e.g., with the assistance of user interface tools, . . . ) or a combination thereof. Next at 1206, a navigation path is established within the topology. A navigation path is a sequential list of links over the topology created at 1204 to represent a sub-graph of such topology. The content of the navigation path defines a graph while the sequence of link objects in the list represents a linear navigation path. At 1208, the navigation path and topology is utilized for prescribed navigation for an application. The navigation path and topology can be utilized by, for instance, a navigation path service including a navigation path provider further including a provider infrastructure. The navigation path contains a root node that is populated with data instances by the navigation service. Once populated, the application can utilize the navigation path and topology for navigation (e.g., wherein the navigation is based on the prescribed navigation). Such navigation can be, for example, sequential navigation, navigation sub-tree navigation, ad-hoc navigation, topology navigation, journal navigation, etc. Furthermore, the navigation path and topology can be utilized in conjunction with a navigation path expression (e.g., object model created during design time). The navigation path expression contains elements and filters, wherein sub-trees can be added or excluded from the path. It is to be appreciated that expressions can be added to each element to programmatically prune the path. In addition, code can be generated such that the navigation path is persisted as a set of metadata describing navigation route(s). The set of metadata can be utilized to generate code, wherein the navigation path expression can be composed in a strong typed manner. FIG. 13 illustrates a methodology 1300 that facilitates prescribing navigation by utilizing a topology and a navigation path. At 1302, metadata is obtained, for instance, during a design time. At 1304, a topology is created based at least upon the metadata obtained. The topology is a metadata instance of uniquely named collection of links (e.g., a network of node and link objects). In one example, a topology can be created automatically (e.g., from an entity graph, business intelligence metadata, business intelligence journal, . . . ) or manually (e.g., with the assistance of user interface tools, . . . ) or a combination thereof. Next at 1306, a navigation path is established within the topology. A navigation path is a sequential list of links over the topology created at 1304 to represent a sub-graph of such topology. The content of the navigation path defines a graph while the sequence of link objects in the list represents a linear navigation path. At 1308, a connection to a navigation path service (e.g., a navigation path provider having a navigation path provider infrastructure) is provided wherein a variety of services can be offered to an application. For instance, the application can connect to the navigation path service that verifies, and provides contextual data to the navigation path and topology (e.g., a root node is populated with data instances by the navigation service). Once connected and/or verified to a navigation path provider and/or navigation path service, the navigation path and/or topology is utilized as a prescribed navigation for an application at 1310. Such navigation can be, for example, sequential navigation, navigation sub-tree navigation, ad-hoc navigation, topology navigation, journal navigation, etc. Furthermore, the navigation path and topology can be utilized in conjunction with a navigation path expression (e.g., object model created during design time). The navigation path expression contains elements and filters, wherein sub-trees can be added or excluded from the path. It is to be appreciated that expressions can be added to each element to programmatically prune the path. In addition, code can be generated such that the navigation path is persisted as a set of metadata describing navigation route(s). The set of metadata can be utilized to generate code, wherein the navigation path expression can be composed in a strong typed manner. FIG. 14 illustrates a methodology 1400 that that facilitates prescribing navigation by utilizing a topology and a navigation path. At 1402, metadata is obtained, wherein a topology can be based. At 1404, a determination is made whether the topology is created automatically. If automatic creation of the topology is determined, the method proceeds to 1406, where topology is obtained from a secured provider. If automatic topology is not determined, the topology is manually created at 1408. It is to be appreciated that the methodology can provide a combination of a manual created topology with an automatic created topology. At 1410, a navigation path is established within the topology created (e.g., automatically, manually, or a combination thereof). Once established, navigation path providers (e.g., navigation path services) are secured and/or authenticated at 1412 providing the population of the navigation path and topology at 1414. Once connected and/or verified and/or populated, the navigation path and topology is utilized as a prescribed navigation for an application at 1416. Such navigation can be, for example, sequential navigation, navigation sub-tree navigation, ad-hoc navigation, topology navigation, journal navigation, etc. Furthermore, the navigation path and topology can be utilized in conjunction with a navigation path expression (e.g., object model created during design time). In addition, code can be generated such that the navigation path is persisted as a set of metadata describing navigation route(s). The set of metadata can be utilized to generate code, wherein the navigation path expression can be composed in a strong typed manner. The navigation path expression contains elements and filters, wherein sub-trees can be added or excluded from the path. It is to be appreciated that expressions can be added to each element to programmatically prune the path. In order to provide additional context for implementing various aspects of the subject invention, FIGS. 15-16 and the following discussion is intended to provide a brief, general description of a suitable computing environment in which the various aspects of the subject invention may be implemented. While the invention has been described above in the general context of computer-executable instructions of a computer program that runs on a local computer and/or remote computer, those skilled in the art will recognize that the invention also may be implemented in combination with other program modules. Generally, program modules include routines, programs, components, data structures, etc., that perform particular tasks and/or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive methods may be practiced with other computer system configurations, including single-processor or multi-processor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based and/or programmable consumer electronics, and the like, each of which may operatively communicate with one or more associated devices. The illustrated aspects of the invention may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. However, some, if not all, aspects of the invention may be practiced on stand-alone computers. In a distributed computing environment, program modules may be located in local and/or remote memory storage devices. FIG. 15 is a schematic block diagram of a sample-computing environment 1500 with which the subject invention can interact. The system 1500 includes one or more client(s) 1510. The client(s) 1510 can be hardware and/or software (e.g., threads, processes, computing devices). The system 1500 also includes one or more server(s) 1520. The server(s) 1520 can be hardware and/or software (e.g., threads, processes, computing devices). The servers 1520 can house threads to perform transformations by employing the subject invention, for example. One possible communication between a client 1510 and a server 1520 can be in the form of a data packet adapted to be transmitted between two or more computer processes. The system 1500 includes a communication framework 1540 that can be employed to facilitate communications between the client(s) 1510 and the server(s) 1520. The client(s) 1510 are operably connected to one or more client data store(s) 1550 that can be employed to store information local to the client(s) 1510. Similarly, the server(s) 1520 are operably connected to one or more server data store(s) 1530 that can be employed to store information local to the servers 1540. With reference to FIG. 16, an exemplary environment 1600 for implementing various aspects of the invention includes a computer 1612. The computer 1612 includes a processing unit 1614, a system memory 1616, and a system bus 1618. The system bus 1618 couples system components including, but not limited to, the system memory 1616 to the processing unit 1614. The processing unit 1614 can be any of various available processors. Dual microprocessors and other multiprocessor architectures also can be employed as the processing unit 1614. The system bus 1618 can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Card Bus, Universal Serial Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), Firewire (IEEE 1394), and Small Computer Systems Interface (SCSI). The system memory 1616 includes volatile memory 1620 and nonvolatile memory 1622. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer 1612, such as during start-up, is stored in nonvolatile memory 1622. By way of illustration, and not limitation, nonvolatile memory 1622 can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory 1620 includes random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Computer 1612 also includes removable/non-removable, volatile/non-volatile computer storage media. FIG. 16 illustrates, for example a disk storage 1624. Disk storage 1624 includes, but is not limited to, devices like a magnetic disk drive, floppy disk drive, tape drive, Jaz drive, Zip drive, LS-100 drive, flash memory card, or memory stick. In addition, disk storage 1624 can include storage media separately or in combination with other storage media including, but not limited to, an optical disk drive such as a compact disk ROM device (CD-ROM), CD recordable drive (CD-R Drive), CD rewritable drive (CD-RW Drive) or a digital versatile disk ROM drive (DVD-ROM). To facilitate connection of the disk storage devices 1624 to the system bus 1618, a removable or non-removable interface is typically used such as interface 1626. It is to be appreciated that FIG. 16 describes software that acts as an intermediary between users and the basic computer resources described in the suitable operating environment 1600. Such software includes an operating system 1628. Operating system 1628, which can be stored on disk storage 1624, acts to control and allocate resources of the computer system 1612. System applications 1630 take advantage of the management of resources by operating system 1628 through program modules 1632 and program data 1634 stored either in system memory 1616 or on disk storage 1624. It is to be appreciated that the subject invention can be implemented with various operating systems or combinations of operating systems. A user enters commands or information into the computer 1612 through input device(s) 1636. Input devices 1636 include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processing unit 1614 through the system bus 1618 via interface port(s) 1638. Interface port(s) 1638 include, for example, a serial port, a parallel port, a game port, and a universal serial bus (USB). Output device(s) 1640 use some of the same type of ports as input device(s) 1636. Thus, for example, a USB port may be used to provide input to computer 1612, and to output information from computer 1612 to an output device 1640. Output adapter 1642 is provided to illustrate that there are some output devices 1640 like monitors, speakers, and printers, among other output devices 1640, which require special adapters. The output adapters 1642 include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device 1640 and the system bus 1618. It should be noted that other devices and/or systems of devices provide both input and output capabilities such as remote computer(s) 1644. Computer 1612 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 1644. The remote computer(s) 1644 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device or other common network node and the like, and typically includes many or all of the elements described relative to computer 1612. For purposes of brevity, only a memory storage device 1646 is illustrated with remote computer(s) 1644. Remote computer(s) 1644 is logically connected to computer 1612 through a network interface 1648 and then physically connected via communication connection 1650. Network interface 1648 encompasses wire and/or wireless communication networks such as local-area networks (LAN) and wide-area networks (WAN). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet, Token Ring and the like. WAN technologies include, but are not limited to, point-to-point links, circuit switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet switching networks, and Digital Subscriber Lines (DSL). Communication connection(s) 1650 refers to the hardware/software employed to connect the network interface 1648 to the bus 1618. While communication connection 1650 is shown for illustrative clarity inside computer 1612, it can also be external to computer 1612. The hardware/software necessary for connection to the network interface 1648 includes, for exemplary purposes only, internal and external technologies such as, modems including regular telephone grade modems, cable modems and DSL modems, ISDN adapters, and Ethernet cards. What has been described above includes examples of the subject invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the subject invention, but one of ordinary skill in the art may recognize that many further combinations and permutations of the subject invention are possible. Accordingly, the subject invention is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims. In particular and in regard to the various functions performed by the above described components, devices, circuits, systems and the like, the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., a functional equivalent), even though not structurally equivalent to the disclosed structure, which performs the function in the herein illustrated exemplary aspects of the invention. In this regard, it will also be recognized that the invention includes a system as well as a computer-readable medium having computer-executable instructions for performing the acts and/or events of the various methods of the invention. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms “includes,” and “including” and variants thereof are used in either the detailed description or the claims, these terms are intended to be inclusive in a manner similar to the term “comprising.” | <SOH> BACKGROUND OF THE INVENTION <EOH>There is a growing trend to provide business application software to a plurality of industries in order to simplify business procedures and/or forecasts. Business application software provides navigation and/or exploration across heterogeneous business data, which can be related explicitly and/or implicitly. Business applications typically are assorted with an overwhelming amount of information, wherein an essentially endless amount of this information contains inter-relationships. For example, a typical middle market application can contain forms, tables, inventory, charts, graphs, etc., wherein a majority of data is intertwined explicitly and implicitly. Specifically, data (e.g., billing forms, employee tables, order forms, etc.) can be utilized in conjunction with business applications involving, for example, payroll applications, sales analysis, shipping applications, bonus reports, cost analysis, etc. Conventionally, hypermedia systems are utilized to discover and/or navigate through the enormous quantities of information within a business application. Such hypermedia systems are information systems in which data access and exploration is accomplished through navigation rather than traditional con text querying. Additionally, such systems create and maintain links within an application or to external applications and resources. These links provide users with the ability to retrieve additional information related to the query results. For instance, a query for a list of customer names can also provide a link to another query that retrieves a list of orders for a particular customer. One benefit associated with hypermedia systems is the ability to store complex, cross referenced bodies of information as a network of nodes and links (e.g., a hierarchical database model that links records together in a tree structure). Querying within navigation can be defined as a query for data access and a query for correlation. For instance, a query for data access can be utilized to provide data access to certain type of node where resources are data. Whereas a query for correlation provides the correlation of the data based upon, for example, metadata and/or keywords. In other words, the term “query” refers to getting data (e.g., projects data), whereas the term “navigation” refers to getting related data (e.g., projects relationships and data). This navigational projection of relationships between data can also be referred to as a “non-linear” exploration of data. During non-linear exploration of data within a hypermedia system, a user typically can become lost and/or disorientated by the extensive cognitive overhead. Essentially, users can be overwhelmed by the vast amount of related links discovered during a navigational data exploration search. Moreover, navigation within hypermedia systems has traditionally been performed during runtime. A majority of the code is imperative, yielding modules with a single use, which in turn results in a very inefficient and slow application during runtime. In view of at least the foregoing, there is a need to improve navigation within related data in business applications. | <SOH> SUMMARY OF THE INVENTION <EOH>The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later. The subject invention relates to systems and/or methods that facilitate developing an application by utilizing a prescribed navigation. The prescribed navigation utilizes a topology that is based upon received metadata, wherein a navigation path is employed to represent a sub-graph of the topology. A prescribing component can receive data during design time, wherein such data can be metadata (e.g., metadata related to a business framework). During the design of an application, the prescribing component can create a topology with an associated navigation path based upon the received data. The topology and the navigation path (e.g., NPath) can provide the employment of a prescribed navigation in design time that streamlines the development of an application. Furthermore, the prescribing component can provide navigation such as linear, star, and/or tree. In accordance with one aspect of the subject invention, the prescribing component utilizes a navigation path provider infrastructure including at least one navigation path provider that can provide services to an application and/or navigation path client. In other words, the navigation path provider infrastructure manages communication between client applications and various navigation path providers. Moreover, the navigation path provider(s) can be a variety of resource providers that access a context node either through transformation and/or information retrieval mechanism. In accordance with still another aspect of the subject invention, the creation of the topology can be automatic, manual, or a combination thereof. The prescribing component receives data (e.g., entity graph, business intelligence metadata, business intelligence journal, . . . ) that is utilized automatically in topology creation. Moreover, the topology can be created manual by utilizing a user interface tool that adds a link to represent a logical association between two entities. Additionally, the topology can also be created using a combination of automatic and manual techniques. In accordance with yet another aspect of the subject invention, a navigation path expression can be created based upon the topology, wherein the navigation path expression is an object model. Elements and filters can be added to the navigation path expression, wherein such filters provide exclusion or inclusion for various sub-trees. Furthermore, navigation path expressions can be added to an element to programmatically prune the navigation path. In addition, code can be generated such that the navigation path is persisted as a set of metadata describing navigation route(s). The set of metadata can be utilized to generate code, wherein the navigation path expression can be composed in a strong typed manner. In accordance with yet another aspect of the subject invention, the prescribing component interacts with a navigation path client application programmable interface (API) that can provide communications between computer software. The navigation path API can utilize user interface (UI) binding that enables a binding between an NPath element, or called Node, and user interface components, managed by metadata. Moreover, navigation path client API can utilize a journal that records a history of navigation for an application. The journal records the history of navigation regardless of the navigation path utilized. Thus, a complex history of navigation within a topology can provide various details and insight into navigation (e.g., discovery) of data within an application. The journal can be utilized as bases for a topology in order to provide a prescribed navigation for an application. The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed and the subject invention is intended to include all such aspects and their equivalents. Other advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings. | 20050105 | 20100119 | 20060706 | 98933.0 | G06F1730 | 0 | HWA, SHYUE JIUNN | PRESCRIBED NAVIGATION USING TOPOLOGY METADATA AND NAVIGATION PATH | UNDISCOUNTED | 0 | ACCEPTED | G06F | 2,005 |
|
11,030,125 | ACCEPTED | Phase insulation paper and electric motor provided with phase insulation paper | Three-dimensional portions are made of the same PET resin as are flat portions, only thicker. That is, the three-dimensional portions are more rigid than the flat portions. The three-dimensional portions are bonded to the flat portions at cutout portions thereof by a thermo-compression sheet or adhesive tape or the like. Connecting portions are made of PET resin that is thinner than the PET resin of which the flat portions are made. A phase insulation paper is provided in which the connecting portions are bonded at both ends to the flat portions, and an electric motor is provided in which the phase insulation paper is inserted between stator coils. | 1. A phase insulation paper that insulates two adjacent phases of coil ends formed by a plurality of stator coils at an end face of a stator core in a rotational axis direction, comprising: a three-dimensional portion provided corresponding to a first portion near where the coil ends enter/exit the stator core, the three-dimensional portion having a three-dimensional shape corresponding to the shape of the first portion when the coil ends have been press-formed to the end face; and a flat portion provided corresponding to a second portion of the coil ends in a direction away from the stator core, wherein the flat portion is formed of a first member and the three-dimensional portion is formed of a second member of higher rigidity than the first member. 2. The phase insulation paper according to claim 1, wherein the second member is made of the same material as the first member and is thicker than the first member. 3. The phase insulation paper according to claim 1, wherein the second member is different than the first member, is made of a material that is more rigid than the first member, and is thinner than the first member. 4. A phase insulation paper that insulates two adjacent phases of coil ends formed by a plurality of stator coils at both end faces of a stator core in a rotational axis direction, comprising: a first flat portion and a first three-dimensional portion provided corresponding to the coil ends at one of the end faces, the first flat portion being formed from a first member and the first three-dimensional portion being formed from a second member that is more rigid than the first member; a second flat portion and a second three-dimensional portion provided corresponding to the coil ends at the other end face, the second flat portion being formed from the first member and the second three-dimensional portion being formed from the second member; and a connecting portion that connects the first flat portion and the second flat portion together and which is inserted into a slot of the stator core, wherein the first three-dimensional portion and the second three-dimensional portion are both provided corresponding to a first portion near where the corresponding coil ends enter/exit the stator core, the first three-dimensional portion and the second three-dimensional portion both having a three-dimensional shape that corresponds with the shape of the first portion when the corresponding coil ends have been press-formed to the corresponding end face, and wherein the first flat portion and the second flat portion are both provided corresponding to a second portion of the corresponding coil ends in a direction away from the stator core. 5. The phase insulation paper according to claim 4, wherein the connecting portion is formed of a third member which is thinner than the first member. 6. The phase insulation paper according to claim 4, wherein the second member is formed of the same material as the first member and is thicker than the first member. 7. The phase insulation paper according to claim 4, wherein the second member is different than the first member, is formed of material that is more rigid than the first member, and is thinner than the first member. 8. An electric motor comprising: a stator; a plurality of stator coils, each stator coil being provided corresponding to a respective one of a plurality of phases and being wound around the stator; and a plurality of phase insulation papers, each of which is inserted between adjacent stator coils, and which is the phase insulation paper according to claim 1. 9. The electric motor according to claim 8, wherein the plurality of phase insulation papers includes a first phase insulation paper and a second phase insulation paper; the first phase insulation paper is arranged above the second phase insulation paper when coil ends formed by the plurality of stator coils at an end face of the stator core in the rotational axis direction are press-formed to the end face; and a three-dimensional portion of the first phase insulation paper is wider than a three-dimensional portion of the second phase insulation paper. 10. An electric motor comprising: a stator; a plurality of stator coils, each stator coil being provided corresponding to a respective one of a plurality of phases and being wound around the stator; and a plurality of phase insulation papers, each of which is inserted between adjacent stator coils, and which is the phase insulation paper according to claim 4. 11. The electric motor according to claim 10, wherein the plurality of phase insulation papers includes a first phase insulation paper and a second phase insulation paper; the first phase insulation paper is arranged, on an end face, in a rotational axis direction, of a stator core, above the second phase insulation paper when the coil ends formed by the plurality of stator coils are press-formed to the end face; and a three-dimensional portion of the first phase insulation paper is wider than a three-dimensional portion of the second phase insulation paper. | INCORPORATION BY REFERENCE The disclosure of Japanese Patent Application No. 2004-024079 filed on Jan. 30, 2004 including the specification, drawings and abstract is incorporated herein by reference in its entirety. BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a phase insulation paper and an electric motor provided with the phase insulation paper. More particularly, this invention relates to a phase insulation paper that phase insulates coil ends of phase stator coils, and an electric motor which is phase insulated by that phase insulation paper. 2. Description of the Related Art A stator in an electric motor typically has a stator core with a plurality of teeth on the inside surface, and coils wound around the teeth while forming coil ends at both end faces of the stator core. When the electric motor is a multiple phase alternating current motor, different phase coils must be phase insulated at the end face of the stator core where the coil ends of the phase coils come together. As described in JP(A) 63-314151, phase insulation of the coil ends corresponding to the phase coils is typically performed by inserting a sheet of phase insulation paper between adjacent coil ends. Electric motors and the like used in vehicles must be small. In order to make these electric motors more compact, the coil ends are press-formed to the stator core end face after the phase coils and phase insulation paper have been attached to the stator. During this press-forming, the coils deform greatly, particularly at a portion where they rise from slots (between adjacent teeth), such that the phase insulation paper greatly deforms three dimensionally. The phase insulation paper disclosed in JP(A) SHO 63-314151 above does not take this large deformation that occurs during press-forming of the coil ends into consideration. As a result, when the coil ends are press-formed in order to make the electric motor more compact, the phase insulation paper becomes offset or damaged, which may result in poor phase insulation. SUMMARY OF THE INVENTION In view of the foregoing problems, this invention thus provides a phase insulation paper which has sufficient strength and which will not become offset, torn, or punctured from press-forming coil ends. The invention also provides a compact electric motor provided with a phase insulation paper that increases insulation quality due to the fact that it has sufficient strength and will not become offset, torn, or punctured from press-forming coil ends. One aspect of the invention relates to a phase insulation paper that insulates two adjacent phases of coil ends formed by a plurality of stator coils at an end face of a stator core in a rotational axis direction. This phase insulation paper includes i) a three-dimensional portion provided corresponding to a first portion near where the coil ends enter/exit the stator core, the three-dimensional portion having a three-dimensional shape corresponding to the shape of the first portion when the coil ends have been press-formed to the end face, and ii) a flat portion provided corresponding to a second portion of the coil ends in a direction away from the stator core. The flat portion is formed of a first member and the three-dimensional portion is formed of a second member of higher rigidity than the first member. Another aspect of the invention relates to a phase insulation paper that insulates two adjacent phases of coil ends formed by a plurality of stator coils at both end faces of a stator core in a rotational axis direction. This phase insulation paper includes a first flat portion and a first three-dimensional portion provided corresponding to the coil ends at one of the end faces, the first flat portion being formed from a first member and the first three-dimensional portion being formed from a second member that is more rigid than the first member; a second flat portion and a second three-dimensional portion provided corresponding to the coil ends at the other end face, the second flat portion being formed from the first member and the second three-dimensional portion being formed from the second member; and a connecting portion that connects the first flat portion and the second flat portion together and which is inserted into a slot of the stator core. The first three-dimensional portion and the second three-dimensional portion are both provided corresponding to a first portion near where the corresponding coil ends enter/exit the stator core, the first three-dimensional portion and the second three-dimensional portion both having a three-dimensional shape that corresponds with the shape of the first portion when the corresponding coil ends have been press-formed to the corresponding end face. The first flat portion and the second flat portion are both provided corresponding to a second portion of the corresponding coil ends in a direction away from the stator core. During press-forming of the coil ends, the portions near where the corresponding coil ends enter/exit the stator core are subject to the most deformation and stress. According to the phase insulation papers described above, however, three-dimensional portions, or the first and second three-dimensional portions, are provided corresponding to the portion where the coils enter/exit the stator core and taking the shape and rigidity into account. Accordingly, the phase insulation papers described above has sufficient strength and will not become offset from press-forming the coil ends. Still another aspect of the invention relates to an electric motor that includes a stator; a plurality of stator coils, each stator coil being provided corresponding to a respective one of a plurality of phases and being wound around the stator; and a plurality of phase insulation papers, each of which is inserted between adjacent stator coils, which are the phase insulation papers described above. Since the electric motor described above is provided with phase insulation papers that have sufficient strength and will not become offset from press-forming the coil ends, the electric motor is able to be made more compact while ensuring the insulation quality of the electric motor. Furthermore, this electric motor improves the manufacturing yield during press-forming of the coil ends when manufacturing the electric motor. BRIEF DESCRIPTION OF THE DRAWINGS The above-mentioned and other objects, features, advantages, technical and industrial significance of this invention will be better understood by reading the following detailed description of preferred embodiments of the invention, when considered in connection with the accompanying drawings, in which: FIG. 1 is a sectional view schematically showing a cross-section of an electric motor, including its rotational axis, according to one exemplary embodiment of the invention; FIG. 2 is a plan view of a stator core shown in FIG. 1 as viewed from an end face 42A side; FIG. 3 is a projection plan view of a phase insulation paper to be inserted between a coil end of a U phase coil and a coil end of a V phase coil; FIG. 4 is a projection plan view of a phase insulation paper to be inserted between a coil end of a V phase coil and a coil end of a W phase coil; FIG. 5 is a perspective view illustrating one example of how the phase insulation paper shown in FIG. 3 is attached to the stator core shown in FIG. 2; FIG. 6 is a plan view corresponding to FIG. 5, as viewed from the end face 42A side of the stator core; FIG. 7 is a plan view illustrating one example of how the phase insulation paper shown in FIG. 4 is attached to the stator core shown in FIG. 2; FIG. 8 is a plan view of flat portions shown in FIG. 3 during their manufacture; FIG. 9 is a plan view of nose portions shown in FIG. 3 during their manufacture; FIG. 10 is a plan view of leg portions shown in FIG. 3 during their manufacture; FIG. 11 is a first process drawing illustrating a manufacturing method of a phase insulation sheet formed by the flat portions and the leg portions shown in FIGS. 8 and 10, respectively; and FIG. 12 is a second process drawing illustrating a manufacturing method of the phase insulation sheet formed by the flat portions, the nose portions, and the leg portions shown in FIGS. 8 to 10, respectively. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description and the accompanying drawings, the present invention will be described in more detail with reference to exemplary embodiments. Like or corresponding portions in the drawings will be denoted by the same reference numerals and descriptions thereof will not be repeated. FIG. 1 is a sectional view schematically showing a cross-section of an electric motor 100, including its rotational axis, according to one exemplary embodiment of the invention. Referring to FIG. 1, the electric motor 100 includes a rotor shaft 10, a rotor core 20, magnets 30 and 32, a stator core 40, coils 50 and 52, and phase insulation papers 60 to 66. The coil 50 includes a U phase coil 51A, a V phase coil 51B, and a W phase coil 51C. The coil 52 includes a U phase coil 53A, a V phase coil 53B, and a W phase coil 53C. The rotor core 20 is formed by stacking electromagnetic steel plates in the direction of the rotational axis and crimping them together. The steel plates have holes in an outer peripheral portion into which the magnets 30 and 32, which form rotor magnetic poles, are inserted. The rotor core 20 is provided around, and fixed to, the rotor shaft 10. Accordingly, the rotor core 20 rotates around the rotational axis together with the rotor shaft 10. The stator core 40 is formed by stacking the electromagnetic steel plates in the direction of the rotational axis and crimping them together. The stator core 40 is then arranged around the outer periphery of the rotor core 20 with a gap therebetween, and fixed to a housing (not shown) of the electric motor 100. The U phase coils 51A and 53A, the V phase coils 51B and 53B, and the W phase coils 51C and 53C are each wound around the stator core 40, thus forming stator magnetic poles. The phase insulation paper 60 is then inserted between the coil end of the U phase coil 51A and the coil end of the V phase coil 51B at the end faces 42A and 42B of the stator core 40, thereby insulating the V phase coil 51B from the U phase coil 51A. The phase insulation paper 62 is inserted between the coil end of the V phase coil 51B and the coil end of the W phase coil 51C, thereby insulating the W phase coil 51C from the V phase coil 51B. Similarly, the phase insulation paper 64 is inserted between the coil end of the U phase coil 53A and the coil end of the V phase coil 53B, thereby insulating the V phase coil 53B from the U phase coil 53A. The phase insulation paper 66 is inserted between the coil end of the V phase coil 53B and the coil end of the W phase coil 53C, thereby insulating the W phase coil 53C from the V phase coil 53B. After the U phase coils 51A and 53A, the V phase coils 51B and 53B, and the W phase coils 51C and 53C have been wound around the stator core 40 and the phase insulation papers 60 to 66 inserted, they are then press-formed to the end faces 42A and 42B of the stator core 40 such that the coil ends extend to the outer peripheral sides of the stator core 40. Press-forming the coil ends of the U phase coils 51A and 53A, the V phase coils 51B and 53B, and the W phase coils 51C and 53C here does deform the phase insulation papers 60 to 66. As will be described later, however, the phase insulation papers 60 to 66 have a three-dimensional nose shape that corresponds to a portion of each coil that rises from the stator core 40, where deformation will be particularly great. The three-dimensional nose shape takes into account the shape of that rising portion after press-forming. Furthermore, that portion (i.e., the nose shaped portion) is formed of a separate material which has a higher rigidity than the other portions. Therefore, the phase insulation papers 60 to 66 will not become offset or damaged by press-forming of the coil ends in this electric motor 100. As a result, the electric motor 100 is able to be made compact by press-forming the coil ends while maintaining insulation performance between the phase coils. FIG. 2 is a plan view of the stator core 40 shown in FIG. 1 as viewed from the end face 42A side. Referring to FIG. 2, coils 511 to 518 constitute the U phase coils 51A and 53A, coils 521 to 528 constitute the V phase coils 51B and 53B, and coils 531 to 538 constitute the W phase coils 51C and 53C. The coils 511 to 518 are arranged on the outermost periphery. The coils 521 to 528 are arranged in positions to the inner peripheral side of the coils 511 to 518 and offset by a predetermined distance in the circumferential direction with respect to the coils 511 to 518. Similarly, the coils 531 to 538 are arranged in positions to the inner peripheral side of the coils 521 to 528 and offset by a predetermined distance in the circumferential direction with respect to the coils 521 to 528. The phase insulation paper 60 and 64 are inserted between the coils 511 to 518 and the coils 521 to 528. In FIG. 2, the phase insulation papers 60 and 64 appear to be continuous in the circumferential direction. In actuality, however, they are divided into a plurality of sheets of phase insulation paper including the phase insulation papers 60 and 64. Similarly, the phase insulation papers 62 and 66 are inserted between the coils 521 to 528 and the coils 531 to 538. In the drawing, the phase insulation papers 62 and 66 also appear to be continuous in the circumferential direction. In actuality, however, they are divided into a plurality of sheets of phase insulation paper including the phase insulation papers 62 and 66. The coils 511 to 518, 521 to 528, and 531 to 538 are all wound around a plurality of corresponding teeth. For example, the coil 537 is formed corresponding to teeth 2 to 6 and is wound a predetermined number of times around all of the teeth 2 to 6. The other coils as well are also formed wound a predetermined number times around all of the corresponding plurality of teeth, just like the coil 537. The coils 511 to 514 are connected in series, with one end being a terminal U1 and the other end being a neutral point UN1. The coils 515 to 518 are also connected in series, with one end being a terminal U2 and the other end being a neutral point UN2. The coils 521 to 524 are also connected in series, with one end being a terminal V1 and the other end being a neutral point VN1. The coils 525 to 528 are also connected in series, with one end being a terminal V2 and the other end being a neutral point VN2. The coils 531 to 534 are connected in series, with one end being a terminal W1 and the other end being a neutral point WN1. The coils 535 to 538 are also connected in series, with one end being a terminal W2 and the other end being a neutral point WN2. FIG. 3 is a projection plan view of the phase insulation papers 60 and 64 inserted between the coil end of the U phase coil and the coil end of the V phase coil. Referring to FIG. 3, each phase insulation paper 60 and 64 includes flat portions 601 and 602, nose portions 603 and 604, and leg portions 605 and 606. The flat portions 601 and 602 are made of polyethylene terephthalate (hereinafter also referred to simply as “PET resin”), for example. This PET resin has excellent heat resistance and insulation properties in addition to having plasticity and a constant rigidity. Also, portions of the flat portions 601 and 602 which correspond to the nose portions 603 and 604 are cut out. The nose portions 603 and 604 are separate members from the flat portions 601 and 602, but are formed of the same material (PET resin) as the flat portions 601 and 602, only thicker. The nose portions 603 and 604 are bonded to the flat portions 601 and 602 at the cutout portions. The nose portions 603 and 604 are firmly attached to the flat portions 601 and 602, respectively, with a thermo-compression sheet or adhesive tape, for example. The nose portions 603 and 604 are attached such that the portion of the coil rising from the stator core 40 at the coil end is covered from the inner peripheral side of the stator core 40, as will be described later. The leg portions 605 and 606 are made of the same material (i.e., PET resin) as the flat portions 601 and 602, only thinner. The leg portions 605 and 606 are bonded at both ends to the flat portions 601 and 602, respectively, at both ends of the flat portions 601 and 602. These leg portions 605 and 606 are inserted into slots in the stator core 40. A gap H1 between the flat portions 601 and 602 that is determined by the leg portions 605 and 606 corresponds to the length, in the direction of the rotational axis, of the stator core 40. The flat portion 601 constitutes a “first flat portion” and the flat portion 602 constitutes a “second flat portion”. The nose portion 603 constitutes a “first three-dimensional portion” and the nose portion 604 constitutes a “second three-dimensional portion”. The leg portions 605 and 606 both constitute “connecting portions”. With each of the phase insulation papers 60 and 64, the leg portions 605 and 606 are inserted into the slots in the stator core 40, and the flat portion 601 and the nose portion 603 are inserted between the coil ends of the U phase coil and the V phase coil at the end face 42A of the stator core 40. Similarly, the flat portion 602 and the nose portion 604 are inserted between the coil ends of the U phase coil and the V phase coil at the end face 42B of the stator core 40. At that time, the phase insulation papers 60 and 64 are attached so that the nose portions 603 and 604 correspond to the portion of the U phase coil rising from the stator core 40 and so that the protruding side of the nose portions 603 and 604 are on the inner peripheral side of the stator core 40. FIG. 4 is a projection plan view of the phase insulation papers 62 and 66 inserted between the coil end of the V phase coil and the coil end of the W phase coil. Referring to FIG. 4, each of the phase insulation papers 60 and 64 includes flat portions 621 and 622, nose portions 623 and 624, and leg portions 625 and 626. The basic structure of the phase insulation papers 62 and 66 is substantially the same as that of the phase insulation papers 60 and 64 shown in FIG. 3. That is, the flat portions 621 and 622, the nose portions 623 and 624, and the leg portions 625 and 626 are each made of PET resin, for example, the nose portions 623 and 624 are thicker than the flat portions 621 and 622 and the leg portions 625 and 626 are thinner than the flat portions 621 and 622, and the nose portions 623 and 624 and the leg portions 625 and 626 are then bonded to the flat portions 621 and 622. The phase insulation papers 62 and 66 differ from the phase insulation papers 60 and 64 shown in FIG. 3 in that the width of the nose portions is different. That is, the width of the nose portions 623 and 624 on the phase insulation papers 62 and 66 inserted between the coil end of the V phase coil and the coil end of the W phase coil is wider than the width of the nose portions 603 and 604 on the phase insulation papers 60 and 64 inserted between the coil end of the U phase coil and the coil end of the V phase coil. This is because when the coil ends are press-formed, the U phase coil is first formed on the outermost peripheral side, the V phase coil is formed to the inner peripheral side of the U phase coil, and the W phase coil is formed to the inner peripheral side of the V phase coil. Accordingly, the closer the coil is to the inner peripheral side, the earlier the portion of that coil that rises from the slot deforms in the circumferential direction. A gap H2 between the flat portions 621 and 622 determined by the leg portions 625 and 626 is designed to be somewhat wider than the gap H1 in the phase insulation papers 60 and 64, taking into consideration the fact that the phase insulation papers 62 and 66 are arranged above the phase insulation papers 60 and 64 via the V phase coils at the end faces 42A and 42B of the stator core 40. FIG. 5 is a perspective view illustrating one example of how the phase insulation paper 60 shown in FIG. 3 is attached to the stator core 40 shown in FIG. 2. FIG. 6 is a plan view corresponding to FIG. 5, as viewed from the end face 42A side of the stator core 40. In FIG. 6, the area near the teeth 1 to 6 of the stator core 40 shown in FIG. 2 is shown expanded; the stator coil is not shown. Also, in FIGS. 5 and 6, a case is shown in which one sheet of the phase insulation paper 60 covers a portion of the coil end. In actuality, however, a plurality of sheets of the phase insulation paper 60 is provided with no gaps in between in the circumferential direction of the stator core 40. Referring to FIGS. 5 and 6, the U phase coils 511 and 518 (the U phase coil 511 is not shown) are inserted into slots 16 and 15, respectively. After they rise up from the slots 16 and 15, they are then extended and press-formed to the outermost peripheral side of the end face 42A of the stator core 40. The leg portions 605 and 606 of the phase insulation paper 60 are inserted into slots 12 and 18, respectively, such that the nose portion 603 is arranged corresponding to the slots 16 and 15 into which the U phase coils 511 and 518 have been inserted. Then, when the V phase coils 527 and 528 (not shown) provided farther to the inner peripheral side than the phase insulation paper 60 are extended and press-formed, the phase insulation paper 60 is formed together with the V phase coils 527 and 528, and sandwiched between the U phase coils 511 and 518 and the V phase coils 527 and 528 in the shape shown in the drawing. A mountain fold is made in the flat portion 601 along line A of the nose portion 603. The coil end of the U phase coil 518 is formed generally planar at the portion in the circumferential direction of the stator core 40, but then greatly deforms three-dimensionally at the portion where it rises from the slot 15. Here, the nose portions 603 and 604 are provided on the phase insulation paper 60 taking into account in advance the shape of the rising portion of the coil after this kind of three-dimensional deformation. These nose portions 603 and 604 are separate members which are extremely rigid, taking into account the fact that they are subject to a large amount of deformation stress. As a result, the phase insulation paper will not become offset or damaged at the nose portions 603 and 604 during press-forming of the coil ends. Further, as described above, the nose portions 603 and 604 and the flat portions 601 and 602 are formed as separate members on the phase insulation paper 60. The rigidity of the flat portions 601 and 602 corresponding to the portions where the coil ends are formed planar is not made unnecessarily high. This is because increasing the rigidity of the phase insulation paper adversely affects the ability to prevent the phase insulation paper from becoming offset, and if the rigidity of the flat portions 601 and 602 is increased like that of the nose portions 603 and 604, the amount of the phase insulation paper sticking out from the coil ends would increase, making it difficult to make the electric motor compact. Therefore, a large offset of the phase insulation paper at the flat portions 601 and 602 during press-forming is able to be avoided. Further, the flat portions 601 and 602 do not affect the ability to make the electric motor 100 compact. Furthermore, the leg portions 605 and 606 and the flat portions 601 and 602 of the phase insulation sheet 60 are different members and the leg portions 605 and 606 that are inserted into the slots are made as thin as possible. As a result, the leg portions 605 and 606 do not impair the lamination factor of the coil inside the slots so the performance of the electric motor 100 will not degrade. FIG. 7 is a view illustrating one example of how the phase insulation paper 62 shown in FIG. 4 is attached to the stator core 40 shown in FIG. 2. In FIG. 7, a case is shown in which the phase insulation paper 62 is attached after the phase insulation paper 60 has been attached. Also, in FIG. 7 as well, a case is shown in which one sheet of the phase insulation paper 62 covers a portion of the coil end. In actuality, however, a plurality of sheets of the phase insulation paper 62 is provided with no gaps in between in the circumferential direction of the stator core 40. Referring to FIG. 7, the V phase coils 527 and 528, not shown, are inserted into slots 13 and 14, respectively. After they rise up from the slots 13 and 14 (i.e., in the direction vertically upward from the paper on which the drawing is made), they are then extended and press-formed at the end face 42A of the stator core 40 on the inner peripheral side of the U phase coils 511 and 518. The leg portions 625 and 626 of the phase insulation paper 62 are inserted into slots 11 and 17, respectively, such that the nose portion 623 is arranged corresponding to both the slots 13 and 14 into which the V phase coils 527 and 528 have been inserted, and the nose portion 603 of the phase insulation paper 60. Then, when the W phase coils 536 and 537 (not shown) provided on the inner peripheral side of the phase insulation paper 62 are extended and press-formed, the phase insulation paper 62 is formed together with the W phase coils 536 and 537, and sandwiched between the V phase coils 527 and 528 and the W phase coils 536 and 537. A mountain fold is made in the flat portion 621 along line B of the nose portion 623. The coil ends of the V phase coil 527 and 528 are formed relatively planar at the portion in the circumferential direction of the stator core 40, but then greatly deform three-dimensionally at the portion where they rise from the slots 13 and 14. Here, the nose portions 623 and 624 are provided on the phase insulation paper 62 taking into account in advance the shape of the rising portion of the coil after this kind of three-dimensional deformation, just like the phase insulation paper 60. These nose portions 623 and 624 are also separate members which are extremely rigid, taking into account the fact that they are subject to a large amount of deformation stress. As a result, the phase insulation paper will not become offset or damaged at the nose portions 623 and 624 during press-forming of the coil ends. Further, as described above, the V phase coil after being formed is formed farther to the inner peripheral side than the U phase coil, so it deforms from the portion that rises from the slot earlier tahn the U phase coil does in the circumferential direction of the stator core 40. Therefore, the V phase coil falls on the nose portion 603 of the phase insulation paper 60. Further, the W phase coil after being formed is formed farther to the inner peripheral side than the V phase coil, so it deforms from the portion that rises from the slot even earlier than the V phase coil does in the circumferential direction of the stator core 40. Here, since the wide nose portion 623 is provided on the phase insulation paper 62 so as to also cover the nose portion 603 of the phase insulation paper 60 taking into account both the shape of the portion of the V phase coil that rises up and the arrangement of the W phase coil on the innermost peripheral side, the coil end of the W phase coil is able to be reliably insulated from the coil end of the V phase coil. FIGS. 8 to 12 are views to facilitate understanding of the manufacturing method of the phase insulation papers 60 and 64 shown in FIG. 3. FIG. 8 is a plan view showing the flat portions 601 and 602 shown in FIG. 3 during manufacture. FIG. 9 is a plan view of the nose portions 603 and 604 shown in FIG. 3 during manufacture. FIG. 10 is a plan view of the leg portions 605 and 606 shown in FIG. 3 during manufacture. Also, FIGS. 11 and 12 are first and second process drawings, respectively, showing the manufacturing method of the phase insulation paper 60 formed by the flat portions 601 and 602 shown in FIG. 8, the nose portions 603 and 604 shown in FIG. 9, and the leg portions 605 and 606 shown in FIG. 10. Referring to FIGS. 8 to 10, the flat portions 601 and 602 are formed by being punched out of a sheet of PET resin 651. A rectangular portion is cut out of each of the flat portions 601 and 602. The nose portions 603 and 604 are formed by being punched out of a sheet of extremely rigid PET resin 652 that is thicker than the PET resin 651. Valley folds are then made along the broken lines and mountain folds are made along the chained line. The leg portions 605 and 606 are formed by being punched out of a sheet of PET resin 653 that is thinner than the PET resin 651. Referring to FIG. 11, after forming the flat portions 601 and 602 from the PET resin 651 and the leg portions 605 and 606 from the PET resin 653, one end of the leg portion 605 is bonded to one end of the flat portion 601 and the other end of the leg portion 605 is bonded to one end of the flat portion 602. Similarly, one end of the leg portion 606 is bonded to the other end of the flat portion 601 and the other end of the leg portion 606 is bonded to the other end of the flat portion 602. The flat portions 601 and 602 are arranged so that their cutout portions face one another and the gap between the flat portions 601 and 602 is the gap H1 corresponding to the length, in the rotational axis direction, of the stator core 40. Bonding is done using a thermo-compression sheet or adhesive tape or the like which has sufficient adhesive force. Referring to FIG. 12, after the leg portions 605 and 606 have been bonded to the flat portions 601 and 602, the nose portions 603 and 604 are then bonded to the flat portions 601 and 602, respectively, at the cutout portions. Bonding is done using a thermo-compression sheet or adhesive tape or the like which has sufficient adhesive force, just like the bonding of the leg portions 605 and 606 to the flat portions 601 and 602. Accordingly, the flat portions 601 and 602, the nose portions 603 and 604, and the leg portions 605 and 606 of the phase insulation papers 60 and 64 are each separate members, which makes it possible to select the material rigidity and thickness appropriate for each portion of the phase insulation papers 60 and 64. Here, if the thickness of the leg portions 605 and 606 does not pose a large problem with respect to the coil lamination factor in the slot, the flat portions 601 and 602 and the leg portions 605 and 606 can also be integrally formed from the PET resin 651. In this case, the nose portions 603 and 604 can be formed from the unused area surrounded by the flat portions 601 and 602 and the leg portions 605 and 606, which would improve the manufacturing yield. In this exemplary embodiment, however, the nose portions 603 and 604 are made as separate members from the flat portions 601 and 602 and the leg portions 605 and 606 in order to increase rigidity, and so are unable to be made from the unused area. Unless the nose portions 603 and 604 are able to be made from the unused area, forming the flat portions 601 and 602 and the leg portions 605 and 606 integrally would reduce the yield drastically. In contrast, the yield is greater when the leg portions 605 and 606 and the flat portions 601 and 602 are formed separately and then bonded them together, as shown in FIGS. 8 to 10, than when the flat portions 601 and 602 and the leg portions 605 and 606 are formed integrally. The bonded structure described above is also favorable because the rigidity and thickness of the member of each portion, including the nose portions 603 and 604, can be designed appropriately. In the foregoing description, the leg portions 605 and 606 are bonded to the flat portions 601 and 602 first and the nose portions 603 and 604 are then bonded to the flat portions 601 and 602. Alternatively, however, the order in which the leg portions 605 and 606 and the nose portions 603 and 604 are bonded to the flat portions 601 and 602 may also be reversed. Although not particularly shown in the drawings, the manufacturing method of the phase insulation papers 62 and 66 shown in FIG. 4 is the same as the manufacturing method of the phase insulation papers 60 and 64 described above. As described above, according to this exemplary embodiment, the phase insulation papers 60 and 64 (62 and 66) are provided with the nose portions 603 and 604 (623 and 624) which have a higher rigidity than do the flat portions 601 and 602 (621 and 622) considering the distortion shape of the coil ends during press-forming. This inhibits the phase insulation papers 60 and 64 (62 and 66) from becoming offset or damaged during press-forming. Accordingly, the electric motor 100 is able to be made more compact while ensuring the quality of insulation therein. In addition, the manufacturing yield during press-forming is also able to be improved. Further, the leg portions 605 and 606 (625 and 626) are made of thinner material than the flat portions 601 and 602 (621 and 622). As a result, the leg portions 605 and 606 (625 and 626) do not impair the lamination factor of the stator coil filled in the slot. Accordingly, using the phase insulation papers 60 and 64 (62 and 66) will help to keep the performance of the electric motor 100 from degrading. Also according to this exemplary embodiment, the flat portions 601 and 602 (621 and 622) and the nose portions 603 and 604 (623 and 624) are made with the same material, but the nose portions 603 and 604 (623 and 624) are thicker than the flat portions 601 and 602 (621 and 622). This makes it possible to ensure the rigidity of the nose portions 603 and 604 (623 and 624). Accordingly, material costs can be reduced by using the same material for the members that make up the phase insulation papers 60 and 64 (62 and 66). Also according to this exemplary embodiment, the width of the nose portions 623 and 624 of the phase insulation papers 62 and 66, which are upper layers when the coil ends are press-formed, are made wider than the nose portions 603 and 604 of the phase insulation papers 60 and 64, which are lower layers when the coil ends are press-formed, taking into account the coil end shape of each phase coil during press-forming. As a result, the highly rigid nose portions 623 and 624 can be reliably placed at portions that deform greatly. Accordingly, the electric motor 100 which includes three phases can be made more compact while more reliably ensuring the insulation quality. In the foregoing exemplary embodiment, the flat portions 601 and 602 (621 and 622) and the nose portions 603 and 604 (623 and 624) are made with the same material (i.e., with the same PET resin), but the nose portions 603 and 604 (623 and 624) are thicker than the flat portions 601 and 602 (621 and 622) for increased rigidity. Alternatively, however, a member of different material which has higher rigidity than the PET resin used for the flat portions 601 and 602 (621 and 622) may be used for the nose portions 603 and 604 (623 and 624). In this case, it is not always necessary that the thickness of the members that make up the nose portions 603 and 604 (623 and 624) be greater than the thickness of the members that make up the flat portions 601 and 602 (621 and 622); in fact, it can be thinner than the flat portions 601 and 602 (621 and 622). This makes it possible to further inhibit the phase insulation papers 60 and 64 (62 and 66) from becoming offset at the nose portions 603 and 604 (623 and 624). Also, the amount that the phase insulation papers 60 and 64 (62 and 66) stick out from the coil ends is suppressed, thus enabling the electric motor 100 to be made even more compact. Also, the material of the leg portions 605 and 606 (625 and 626) does not need to be the same material as that of the flat portions 601 and 602 (621 and 622) and the nose portions 603 and 604 (623 and 624). Further, in the foregoing exemplary embodiment, the phase insulation papers 60 to 66 are made of the PET resin. However, the material of the phase insulation papers is not limited in this invention to being PET resin. For example, the phase insulation papers 60 to 66 may be made of another material that has excellent insulation properties, a constant heat resistance, plasticity, and rigidity. The flat portions 601, 602, 621, and 622, the nose portions 603, 604, 623, and 624, and the leg portions 605, 606, 625, and 626 may also be made of, for example, PEN (polyethylene naphthalate), mica, Nomex (R), or a sheet which combines these in a layered construction. The electric motor 100 provided with the phase insulation paper according to this invention is preferably used in, for example, a hybrid vehicle or an electric vehicle or the like which have become the focus of much attention in recent years. That is, at a time when there is a great demand for compactness, reliability, and low cost in these kinds of vehicle systems, this electric motor 100 helps to make the vehicles more compact because the electric motor 100 itself is compact due to the coil ends being press-formed. Also, because the phase insulation paper is provided with the nose portions and the rigidity thereof is further increased, poor phase insulation of the coil ends in the electric motor 100 is able to be minimized, thereby improving reliability of the vehicle. Moreover, this electric motor 100 improves the manufacturing yield as described above, and thereby contributes to reducing vehicle costs. While the invention has been described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the exemplary embodiments or constructions. To the contrary, the invention is intended to cover various modifications and equivalent arrangements. In addition, while the various elements of the exemplary embodiments are shown in various combinations and configurations, which are exemplary, other combinations and configurations, including more, less or only a single element, are also within the spirit and scope of the invention. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The invention relates to a phase insulation paper and an electric motor provided with the phase insulation paper. More particularly, this invention relates to a phase insulation paper that phase insulates coil ends of phase stator coils, and an electric motor which is phase insulated by that phase insulation paper. 2. Description of the Related Art A stator in an electric motor typically has a stator core with a plurality of teeth on the inside surface, and coils wound around the teeth while forming coil ends at both end faces of the stator core. When the electric motor is a multiple phase alternating current motor, different phase coils must be phase insulated at the end face of the stator core where the coil ends of the phase coils come together. As described in JP(A) 63-314151, phase insulation of the coil ends corresponding to the phase coils is typically performed by inserting a sheet of phase insulation paper between adjacent coil ends. Electric motors and the like used in vehicles must be small. In order to make these electric motors more compact, the coil ends are press-formed to the stator core end face after the phase coils and phase insulation paper have been attached to the stator. During this press-forming, the coils deform greatly, particularly at a portion where they rise from slots (between adjacent teeth), such that the phase insulation paper greatly deforms three dimensionally. The phase insulation paper disclosed in JP(A) SHO 63-314151 above does not take this large deformation that occurs during press-forming of the coil ends into consideration. As a result, when the coil ends are press-formed in order to make the electric motor more compact, the phase insulation paper becomes offset or damaged, which may result in poor phase insulation. | <SOH> SUMMARY OF THE INVENTION <EOH>In view of the foregoing problems, this invention thus provides a phase insulation paper which has sufficient strength and which will not become offset, torn, or punctured from press-forming coil ends. The invention also provides a compact electric motor provided with a phase insulation paper that increases insulation quality due to the fact that it has sufficient strength and will not become offset, torn, or punctured from press-forming coil ends. One aspect of the invention relates to a phase insulation paper that insulates two adjacent phases of coil ends formed by a plurality of stator coils at an end face of a stator core in a rotational axis direction. This phase insulation paper includes i) a three-dimensional portion provided corresponding to a first portion near where the coil ends enter/exit the stator core, the three-dimensional portion having a three-dimensional shape corresponding to the shape of the first portion when the coil ends have been press-formed to the end face, and ii) a flat portion provided corresponding to a second portion of the coil ends in a direction away from the stator core. The flat portion is formed of a first member and the three-dimensional portion is formed of a second member of higher rigidity than the first member. Another aspect of the invention relates to a phase insulation paper that insulates two adjacent phases of coil ends formed by a plurality of stator coils at both end faces of a stator core in a rotational axis direction. This phase insulation paper includes a first flat portion and a first three-dimensional portion provided corresponding to the coil ends at one of the end faces, the first flat portion being formed from a first member and the first three-dimensional portion being formed from a second member that is more rigid than the first member; a second flat portion and a second three-dimensional portion provided corresponding to the coil ends at the other end face, the second flat portion being formed from the first member and the second three-dimensional portion being formed from the second member; and a connecting portion that connects the first flat portion and the second flat portion together and which is inserted into a slot of the stator core. The first three-dimensional portion and the second three-dimensional portion are both provided corresponding to a first portion near where the corresponding coil ends enter/exit the stator core, the first three-dimensional portion and the second three-dimensional portion both having a three-dimensional shape that corresponds with the shape of the first portion when the corresponding coil ends have been press-formed to the corresponding end face. The first flat portion and the second flat portion are both provided corresponding to a second portion of the corresponding coil ends in a direction away from the stator core. During press-forming of the coil ends, the portions near where the corresponding coil ends enter/exit the stator core are subject to the most deformation and stress. According to the phase insulation papers described above, however, three-dimensional portions, or the first and second three-dimensional portions, are provided corresponding to the portion where the coils enter/exit the stator core and taking the shape and rigidity into account. Accordingly, the phase insulation papers described above has sufficient strength and will not become offset from press-forming the coil ends. Still another aspect of the invention relates to an electric motor that includes a stator; a plurality of stator coils, each stator coil being provided corresponding to a respective one of a plurality of phases and being wound around the stator; and a plurality of phase insulation papers, each of which is inserted between adjacent stator coils, which are the phase insulation papers described above. Since the electric motor described above is provided with phase insulation papers that have sufficient strength and will not become offset from press-forming the coil ends, the electric motor is able to be made more compact while ensuring the insulation quality of the electric motor. Furthermore, this electric motor improves the manufacturing yield during press-forming of the coil ends when manufacturing the electric motor. | 20050107 | 20061017 | 20050804 | 99245.0 | 0 | NGUYEN, TRAN N | PHASE INSULATION PAPER AND ELECTRIC MOTOR PROVIDED WITH PHASE INSULATION PAPER | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,030,221 | ACCEPTED | Reversible polarity LED lamp module using current regulator and method therefor | A lamp module has a base with first and second electrical contacts for inserting into a socket in alternate orientations. A printed circuit board is mounted to the base and has a reverse polarity circuit coupled to the first and second electrical contacts for converting a DC potential across the first and second electrical contacts to a power supply voltage. A current regulator has a first terminal receiving the DC power supply voltage from the reverse polarity circuit. A programming circuit provides a programming current to a second terminal of the current regulator to generate an output current in response to the programming current. An LED matrix is mounted to the base and has an input coupled for receiving the output current of the current regulator. The LED matrix has interconnected LEDs which emit a light intensity in response to the output current of the current regulator. | 1. A light emitting diode (LED) lamp module, comprising: a reverse polarity circuit having inputs coupled to first and second electrical contacts for receiving a DC voltage and an output providing a DC power supply voltage; an electronic current regulator having a power supply terminal coupled to an output of the reverse polarity circuit; an LED matrix having an input coupled to an output of the electronic current regulator; and a programming circuit providing a programming signal to a programming input of the electronic current regulator to generate an output current to the LED matrix, the programming circuit including a first diode and resistor serially coupled between the first electrical contact and the programming input of the electronic current regulator. 2. The LED lamp module of claim 1, wherein the programming circuit further includes a second diode having a first terminal coupled to the second electrical contact and a second terminal coupled to an interconnection between the first diode and the resistor. 3. The LED lamp module of claim 1, wherein the electronic current regulator generates an output current in response to the programming signal from the programming circuit. 4. The LED lamp module of claim 1, wherein the LED matrix includes a plurality of serially coupled columns of LEDs which emit a light intensity in response to the output current of the electronic current regulator. 5. The LED lamp module of claim 4, wherein a row of LEDs in the LED matrix is coupled to the LEDs in an adjacent row of LEDs. 6. The LED lamp module of claim 1, further including a voltage regulator having an input coupled to the first electrical contact and an output coupled to the programming circuit. 7. A lamp module, comprising: a base having first and second electrical contacts adapted for inserting into a socket in alternate orientations; a printed circuit board mounted to the base, the printed circuit board including, (a) a reverse polarity circuit coupled to the first and second electrical contacts for converting a DC potential across the first and second electrical contacts to a DC power supply voltage, (b) a current regulator having a first terminal coupled for receiving the DC power supply voltage from the reverse polarity circuit, and (c) a programming circuit providing a programming signal to a second terminal of the current regulator to generate an output current; and an LED matrix mounted to the base and having an input coupled for receiving the output current of the current regulator. 8. The lamp module of claim 7, wherein the programming circuit includes a first diode and resistor serially coupled between the first electrical contact and the second terminal of the current regulator. 9. The lamp module of claim 8, wherein the programming circuit further includes a second diode having a first terminal coupled to the second electrical contact and a second terminal coupled to an interconnection between the first diode and the resistor. 10. The lamp module of claim 7, wherein the programming circuit includes a transistor having a control terminal coupled to the first electrical contact and a conduction path coupled between a power source and the second terminal of the current regulator. 11. The lamp module of claim 7, wherein the current regulator generates an output current in response to the programming signal from the programming circuit. 12. The lamp module of claim 7, wherein the LED matrix includes a plurality of interconnected LEDs which emit a light intensity in response to the output current of the current regulator. 13. A light emitting diode (LED) lamp module having first and second electrical contacts, comprising: a current regulator having a first terminal coupled for receiving a DC power supply voltage; a programming circuit providing a programming signal to a second terminal of the current regulator to generate an output current; and an LED matrix having an input coupled for receiving the output current of the current regulator. 14. The LED lamp module of claim 13, further including a reverse polarity circuit having inputs coupled to the first and second electrical contacts for receiving a DC voltage and an output providing the DC power supply voltage. 15. The LED lamp module of claim 15, wherein the programming circuit includes a first diode and resistor serially coupled between the first electrical contact and the second terminal of the current regulator. 16. The LED lamp module of claim 15, wherein the programming circuit further includes a second diode having a first terminal coupled to the second electrical contact and a second terminal coupled to an interconnection between the first diode and the resistor. 17. The LED lamp module of claim 13, wherein the current regulator generates an output current in response to the programming signal from the programming circuit. 18. The LED lamp module of claim 13, wherein the LED matrix includes a plurality of interconnected LEDs which emit a light intensity in response to the output current of the current regulator. 19. A method making a light emitting diode (LED) lamp module, comprising: providing a base having first and second electrical contacts adapted for inserting into a socket in alternate orientations; providing a printed circuit board mounted to the base, the printed circuit board being capable of, (a) converting a DC potential across the first and second electrical contacts to a DC power supply voltage, (b) generating a programming signal, (c) supplying the DC power supply voltage to a current regulator, and (d) generating an output current from the current regulator in response to the programming signal; and providing an LED matrix mounted to the base which emits a light in response to the output current of the current regulator. 20. The method of claim 19, wherein the LED matrix includes a plurality of interconnected LEDs which emit a light intensity in response to the output current of the electronic current regulator. | FIELD OF THE INVENTION The present invention relates in general to lamp modules and, more particularly, to a reversible polarity light emitting diode (LED) lamp module using a current regulator. BACKGROUND OF THE INVENTION LED lamp modules are used in many applications. Motor vehicles use a number of lamps and light bulbs to signal driver intention, warnings, and other status of the vehicle. The light bulbs may be located inside or external to the vehicle, and are typically inserted into sockets which are electrically coupled to the vehicle power supply in a controlled manner. For example, the light bulb may be used as an external front, side, or rear turn signal indicator. The light bulb can also be used for headlights, tail lights, back-up lights, brake lights, emergency flashers, and the like. Most, if not all, state and local ordinances require external lights on motor vehicles for visibility and safety. In other cases, light bulbs are used to illuminate the instrument panel, interior compartment, open door, footing area outside vehicle, vanity mirror, cargo area, and trunk. Lighting for various end products has long been embodied as incandescent light bulbs. The light bulbs operate using various power supply sources, some producing DC voltage as found in most vehicles, and others operate from an AC voltage such as the light bulbs typically found in houses and buildings. Most vehicles operate from a 12 volt DC power supply to the vehicle. As a tail light, when the tail light switch is turned to the ON position, the vehicle's 12 volt DC power supply is applied to the tail light bulb to illuminate the filament. The tail light bulb emits an intensity of light. In the case of a brake light, when the driver depresses the brake pedal, the 12 volt DC power supply is applied to the brake light bulb to illuminate the filament. The brake light bulb emits an intensity of light, greater than the intensity of the tail light. The incandescent light bulb is known to consume significant power, burn hot, and have a relatively short lifespan. More recently, LEDs lamp modules have been used in lieu of the incandescent light bulbs. Examples of the LED lamp modules are found in U.S. Pat. Nos. 6,371,636 and 6,786,625. The LEDs typically operate at voltages between 1.7 and 2.2 volts, and must be able to produce a light intensity suitable for human perception and recognition from a distance. Since light bulbs are typically operated at higher voltages, the current and voltage must be controlled in order to prevent damage to the LEDs. When used in light bulbs, the LEDs are usually arranged in a matrix or array in the lamp module. Generally, all LEDs in the matrix emit light at the same time. The LEDs emit an intensity of light as a function of the current supplied to the LED matrix. In the prior art LED lamp modules used in dual intensity applications such as brake lights, turn signals and other dual intensity light bulb applications, when the operator turns on the tail lights, pulls the turn signal lever, depresses the brake pedal, or otherwise activates the light circuit, a DC voltage is applied through a power resistor to the LED matrix. The power resistor converts the DC voltage to an appropriate current for driving the LED matrix. The value of the power resistor determines the magnitude of the current flow to the LED matrix and accordingly, the intensity of illumination of the LEDs. The dim circuit signal path will have a first value of resistance between the DC power supply and the LED matrix. The bright circuit signal path will have a second value of resistance between the DC power supply and the LED matrix. The first value of resistance sets a first current level and illuminates the LED matrix with a first intensity corresponding to a dimmer light. The second value of resistance sets a second current level and illuminates the LED matrix with a second intensity corresponding to a brighter light, e.g., a brake light or turn signal light in a vehicle. The LED lamp module may also have an electronic switching circuit to connect and disconnect the resistor supplied current to the LED matrix. The switching circuit switches on and off at predetermined frequency to permit the LED matrix to flash, for a turn signal function or emergency flasher function. The LED voltage drop is a function of the temperature of the LED. When power resistors are used for current control, they cannot adapt to changing temperatures. As a result, the LEDs do not always receive an optimal flow of current. The LEDs may be over-driven which will shorten their life, or under-driven which causes them to appear dim. The power resistors also reduce the life span of the LED and may not allow the LED light module to operate at peak performance over the range of temperatures. Another problem associated with using power resistors in LED matrix lamp modules is that they are unable to adapt to a variation in DC supply voltage. Although sources of power to buildings and vehicle voltages are set to operate at nominal voltages, the actual voltage may vary considerably. The LEDs are more vulnerable to these variations, since they are not designed to function at the higher voltage. The use of power resistors to control LED light intensity is problematic. If the LED lamp module is set up with a power resistor that will protect the LED at a higher voltage, 14 volts, then the LED will appear dimmer than desired if the supply voltage drops, to 12 volts. If the same LED lamp module is set up with power resistors to operate at full brightness at lower voltage, 12 volts, then the LEDs will burn out prematurely if the system voltage is slightly higher, 14 volts. The use of power resistors in LED lamp modules often results in the premature burn out of the LEDs and/or LED light modules that are unable to operate at optimal peak intensities. LEDs and multi-LED light bulbs are manufactured in such a manner as to require a particular polarity when used in DC circuits such as an automobile lighting and other DC applications, whereas conventional incandescent light bulbs will function regardless of plus or minus (+/−) polarity in the DC circuit. As a result, many of the conventional sockets commonly used do not key the bulb to ensure that proper polarity is assigned when the bulb is inserted. While this is not a problem with the ambipolar incandescent bulbs, it is a problem with existing LED light bulbs causing the bulb to not function if the polarity happens to be reversed. A need exists for an LED lamp module which provides substantially consistent brightness over variation in the supply voltage, and temperatures. A need also exists to eliminate the ambiguity of polarity in DC sockets so that LED lamp modules will operate in the DC circuit regardless of the polarity of the wiring connected to the socket, and regardless which way the bulb is inserted into the socket. The LED lamp module design needs to provide for mistake proof installation. SUMMARY OF THE INVENTION In one embodiment, the present invention is a light emitting diode (LED) lamp module comprising a reverse polarity circuit having inputs coupled to first and second electrical contacts for receiving a DC voltage and an output providing a DC power supply voltage. An electronic current regulator has a power supply terminal coupled to an output of the reverse polarity circuit. An LED matrix has an input coupled to an output of the electronic current regulator. A programming circuit provides a programming signal to a programming input of the electronic current regulator to generate an output current to the LED matrix. The programming circuit includes a first diode and resistor serially coupled between the first electrical contact and the programming input of the electronic current regulator. In another embodiment, the present invention is a lamp module comprising a base having first and second electrical contacts adapted for inserting into a socket in alternate orientations. A printed circuit board is mounted to the base. The printed circuit board includes a reverse polarity circuit coupled to the first and second electrical contacts for converting a DC potential across the first and second electrical contacts to a DC power supply voltage, a current regulator having a first terminal coupled for receiving the DC power supply voltage from the reverse polarity circuit, and a programming circuit providing a programming signal to a second terminal of the current regulator to generate an output current. An LED matrix is mounted to the base and has an input coupled for receiving the output current of the current regulator. In another embodiment, the present invention is an LED lamp module having first and second electrical contacts. A current regulator has a first terminal coupled for receiving a DC power supply voltage a current regulator having a first terminal coupled for receiving a DC power supply voltage. A programming circuit provides a programming signal to a second terminal of the current regulator to generate an output current. An LED matrix has an input coupled for receiving the output current of the current regulator. In another embodiment, the present invention is a method making a light emitting diode (LED) lamp module comprising providing a base having first and second electrical contacts adapted for inserting into a socket in alternate orientations, providing a printed circuit board mounted to the base, the printed circuit board being capable of converting a DC potential across the first and second electrical contacts to a DC power supply voltage, generating a programming signal, supplying the DC power supply voltage to a current regulator, and generating an output current from the current regulator in response to the programming signal, and providing an LED matrix mounted to the base which emits a light in response to the output current of the current regulator. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an automobile containing an LED lamp module; FIGS. 2a-2g illustrate a variety of form factors for the LED lamp module; FIG. 3 is a block diagram of the LED lamp module having a single programming intensity of the LED matrix; FIG. 4 illustrates further detail of the current regulator of the LED lamp module; FIG. 5 is a graph of programming resistance versus output current of the current regulator; FIG. 6 illustrates further detail of the LED matrix; FIG. 7 illustrates an alternate embodiment of the LED matrix; FIG. 8 is a block diagram of the LED lamp module having three electrical contacts providing dual intensity of the LED matrix; FIG. 9 is another block diagram of the LED lamp module having three electrical contacts providing dual intensity of the LED matrix; FIG. 10 is a block diagram of the LED lamp module having four electrical contacts providing dual intensity of the LED matrix; FIG. 11 illustrates the LED lamp module with the programming current source implemented as transistors; FIG. 12 illustrates the LED lamp module with a multiplexer supplying the programming current sources; FIG. 13 illustrates the LED lamp module with dual current regulators; and FIG. 14 illustrates the LED lamp module with voltage regulator. DETAILED DESCRIPTION OF THE DRAWINGS The present invention is described in one or more embodiments in the following description with reference to the Figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings. Referring to FIG. 1, a rear portion of motor vehicle 10 is shown with tail light assemblies 12. Each tail light assembly 12 contains a light emitting diode (LED) lamp module. The LED lamp module is controlled by the operator of motor vehicle 10 to emit a beam having a first intensity for a tail light function and/or a second intensity for a brake light function. The LED lamp module can be set to blink on and off for turn signal and emergency flasher functions. By turning on the tail light switch, the operator causes the tail light to illuminate with the first intensity. By depressing on the brake pedal, the operator causes the brake light to illuminate with the second intensity, which is greater than the first intensity. By turning on the turn signal indicator, the operator causes the lamp module to flash on and off at a predetermined frequency. A similar LED lamp module can be used for interior lighting, instrument lighting, exterior decorative lighting, warning lights, street lighting, household lighting, etc. The LED lamp module is also applicable to marine, aviation, motorcycles, recreational vehicles, trailers, bicycles, off-road vehicles, electric power chairs, public transportation, general transportation needs, street lighting, landscape lighting, household and building lighting. Turning to FIG. 2a, LED lamp module 20 is shown having electrical contacts 22 and 24, base structure 26, printed circuit board 28, LED matrix 30, and protective cover 32. In one embodiment, LED matrix 30 has 8 individual LEDs. The number of LEDs, the direction and orientation of the LEDS in LED matrix 30 is a design choice and can vary depending on the end application. LED lamp module 20 is inserted into a mating socket in vehicle 10 to supply power to electrical contacts 22 and 24. Another LED lamp module 33 is shown in FIG. 2b, which is designed to insert into a corresponding mating socket on motor vehicle 10. FIGS. 2c-2g illustrates other LED lamp modules 34, 35, 36, 37, and 38 designed for various applications. Each LED lamp module may include electrical contact(s), base structure, printed circuit board, LED matrix, and protective cover similar to that described in FIG. 2a. An electrical block diagram of LED module 20 is shown in FIG. 3. The electrical block diagram functions as a single illumination device with two electrical contacts. The electrical block diagram includes a reverse polarity circuit, programming circuit, and electronic current regulator mounted to printed circuit board 28. A DC voltage is applied between electrical contacts 22 and 24. The DC voltage may have first or second polarities depending on the physical orientation of the LED lamp module in the socket. The reverse polarity circuit senses the polarity of the DC voltage and provides a positive DC voltage to the electronic current regulator. The reverse polarity circuit includes diode 40 having an anode coupled to electrical contact 22 and a cathode coupled to conductor 42. Diode 44 has a cathode coupled to electrical contact 22 and an anode coupled to ground conductor 48. Diode 46 has an anode coupled to electrical contact 24 and a cathode coupled to conductor 42. Diode 50 has a cathode coupled to electrical contact 24 and an anode coupled to ground conductor 48. Diodes 40, 44, 46, and 50 are semiconductor devices having P/N junctions which allows current to flow in one direction (anode to cathode) and blocks current flow in the other direction (cathode to anode) when reverse biased. Current regulator 54 is an integrated circuit (IC) having a plurality of electrical pins or terminals. Further detail of electronic current regulator 54 is shown in FIG. 4. Pin 56 is the DC power supply to the IC. Pin 58 is the current programming terminal for the IC. Pin(s) 60 is the current source output terminal of current regulator 54. Pin 62 of current regulator 54 is connected to ground conductor 48. Current regulator 54 receives a programming signal (voltage or current) on pin 58. In the present embodiment, the programming signal is shown as a current level. The programming current sets a current output level in control circuit 68, which in turn controls current source 70 to source a current to pin(s) 60. The output current ILED Of current regulator 54 is supplied to an input of LED matrix 78. An output of LED matrix 78 is coupled to ground conductor 48. The magnitude of the current ILED of current regulator 54 sets the light intensity level of LED matrix 78. In one embodiment, current regulator IC 54 may be part number NUD4001 manufactured by ON Semiconductor LLC. Returning to FIG. 3, the power supply voltage on conductor 42 is applied to pin 56. Pin(s) 60 of current regulator 54 are coupled to an input of LED matrix 78. Diode 80 has an anode coupled to conductor 22 and a cathode coupled to a first terminal of resistor 82. Diode 84 has an anode coupled to conductor 24 and a cathode coupled to the interconnection of diode 80 and resistor 82. The second terminal of resistor 82 is coupled in common to pin 58 of current regulator 54. Accordingly, diode 80 and resistor 82 are serially coupled between conductor 22 and pin 58 of current regulator 54. The operation of LED lamp module 20 proceeds as follows: LED lamp module 20 has electrical contacts 22 and 24 receiving a DC voltage. The electrical contacts are reversible allowing LED lamp module 20 to be inserted into the socket on motor vehicle 10 in either electrical orientation. In one orientation, when LED lamp module 20 is inserted in its socket, electrical contact 22 connects to a controlled 12 volt DC power supply and electrical contact 24 connects to the vehicle ground terminal. When the operator turns on the tail light switch or depresses the brake pedal, the 12 volt DC power supply to electrical contact 22 is energized. The potential on electrical contact 22 is positive with respect to the potential on conductor 42. Diode 40 is forward biased and diode 44 is reversed biased. The potential on conductor 48 is positive with respect to the potential on electrical contact 24. Diode 50 is forward biased and diode 46 is reversed biased. The conduction path through diodes 40 and 50 is enabled or conducting while the conduction path through diodes 44 and 46 is disabled or blocked. The 12 volt DC power supply is routed from electrical contact 22 to pin 56 of power current regulator 54. The conduction path through diode 80 is enabled or conducting while the conduction path through diode 84 is disabled or blocked. The 12 volt DC power supply from electrical contact 22 is applied to resistor 82 which causes a programming current to flow into pin 58 of current regulator 54. The diodes 80, 84 and resistor 82 represents one embodiment of a programming circuit. The value of resistor 82 is selected to create the desired programming current from the 12 volt DC power supply. If LED lamp module is designed to be a tail light, then resistor 82 is selected to have a first value. If LED lamp module is designed to be a brake light, then resistor 82 is selected to have a second value, which is less than the first value. The programming current is routed to control circuit 68, which in turn controls current source 70 to set the output current of current regulator 54. The output current of current regulator 54 determines the light intensity of LED matrix 78. The relationship between programming resistance (current) and output current is shown graphically as plot 72 in FIG. 5. Current regulator 54 has a number of advantages over the prior art power resistors. Current regulator 54 is a precision electronic current source which provides a precise control over its output current. The output current of current regulator 54 is selected by choosing a corresponding programming resistance or current according to plot 72 of FIG. 5. The programming current is selected by the values of resistor 82. The conduction path through resistor 82 conducts very little current. As such, resistor 82 may be made a low power, precision device. Precision low power resistors are more cost effective than precision power resistors. Resistor 82 may have a resistance tolerance of less than 1%. The precision low power resistor 82 can accurately and consistently control the output current of current regulator 54. Since resistor 82 is a low power device, the power dissipation associated with the LED current control feature for LED lamp module 20 is much less than using power resistors for the current control function to the LED matrix. Moreover, current regulator 54 is less sensitive to variation in the DC power supply, while providing a consistent and precision current to LED matrix 78 over temperature. In another embodiment, resistor 82 may be custom trimmed or programmed during the manufacturing process to achieve even higher precision. The precision value of resistor 82 generates a highly accurate programming current to current regulator 54 and correspondingly precise output current to drive LED matrix 78. With precision resistor 82 the intensity of LED lamp module 20 is consistent across manufacturing lots and variations in supply voltage and temperature. In the opposite orientation, when LED lamp module 20 is inserted in its socket, electrical contact 24 connects to a controlled 12 volt DC power supply and electrical contact 22 connects to the vehicle ground terminal. When the operator turns on the tail light switch or depresses the brake pedal, the 12 volt DC power supply to electrical contact 24 is energized. The potential on electrical contact 24 is positive with respect to the potential on conductor 42. Diode 46 is forward biased and diode 50 is reversed biased. The potential on conductor 48 is positive with respect to the potential on electrical contact 22. Diode 44 is forward biased and diode 40 is reversed biased. The conduction path through diodes 44 and 46 is enabled or conducting while the conduction path through diodes 40 and 50 is disabled or blocked. The 12 volt DC power supply is routed from electrical contact 24 to pin 56 of power current regulator 54. The reverse polarity circuit formed of diodes 40, 44, 46, and 50 converts or routes opposite polarities on the electrical contact 22 and 24 to a fixed positive power supply potential for current regulator 54. The conduction path through diode 84 is enabled or conducting while the conduction path through diode 80 is disabled or blocked. The 12 volt DC power supply from electrical contact 24 is applied to resistor 82 which causes a programming current to flow into pin 58 of current regulator 54. Resistor 82 is selected to create the desired programming current from the 12 volt DC power supply. The programming current is routed to control circuit 68, which in turn controls current source 70 to set the output current of current regulator 54. The output current of current regulator 54 determines the light intensity of LED matrix 78. In FIG. 6, LED matrix 78 is shown having a plurality of LEDs 90. The LED matrix includes multiple columns of LEDs 90. There are multiple LEDs 90 serially connected in each column. An alternate embodiment of LED matrix 78 is shown in FIG. 7. The LED matrix includes multiple columns of LEDs 92, with multiple LEDs 92 in each column. The cathodes of LEDs 92 in one row are connected to the anodes of LEDs 92 in the following row. If one or more LEDs 92 in one row burns out or malfunctions, then the LEDs in the same column of the following row are energized by the remaining functional LEDs from the above row. FIG. 8 shows the LED lamp module with three electrical contacts 100, 102, and 104 for dim, bright, and ground terminal functions. Circuit components having a similar function are assigned the same reference number used in the prior figures. Again the electrical contacts are reversible allowing the LED lamp module to be inserted into the socket of the motor vehicle in alternate physical orientations. A DC voltage is applied between electrical contacts 100 and 102. In one orientation, the 12 volt DC power supply for the dim function is connected to electrical contact 100. The ground terminal is connected to electrical contact 102. The 12 volt DC power supply for the bright function is connected to electrical contact 104. When the tail light is activated, electrical contact 100 is positive with respect to conductor 42. Diode 106 is forward biased and diode 108 is reverse biased. With the ground connection on electrical contact 102, diode 110 is forward biased and diode 112 is reverse biased. Diode 114 is forward biased and diode 116 is reverse biased. The 12 volt DC power supply for the tail light is routed through diode 106 to pin 56 of current regulator 54 to power the IC. The 12 volt DC power supply for the tail light is also routed through diode 114 to resistor 118 to generate the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78. When the bright switch is activated, electrical contact 104 is positive with respect to conductor 42. Diode 120 is forward biased and diode 122 is reverse biased. Diode 124 is forward biased. The 12 volt DC power supply for the bright function is routed through diode 120 to pin 56 of current regulator 54 to power the IC. The 12 volt DC power supply for the bright function is also routed through diode 124 to resistor 126 to generate the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78, in the brighter mode. In the other physical orientation, the 12 volt DC power supply for the dim mode function is connected to electrical contact 102. The ground terminal is connected to electrical contact 100. The 12 volt DC power supply for the bright mode function is connected to electrical contact 104. When the dim mode switch is activated, electrical contact 102 is positive with respect to conductor 42. Diode 112 is forward biased and diode 110 is reverse biased. With the ground connection on electrical contact 100, diode 108 is forward biased and diode 106 is reverse biased. Diode 116 is forward biased and diode 114 is reverse biased. The 12 volt DC power supply for the dim mode function is routed through diode 112 to pin 56 of current regulator 54 to power the IC. The 12 volt DC power supply for the dim function is also routed through diode 116 to resistor 118 to generate the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 in the dim mode. FIG. 9 shows the LED lamp module with three electrical contacts 100, 102, and 104 for dim, bright, and ground terminal functions. Circuit components having a similar function are assigned the same reference number used in the prior figures. The embodiment shown in FIG. 9 does not use the reverse polarity circuit 106-112, 120-122. Instead, the DC voltage for current regulator 54 is received through diode 114 or through diode 125, depending upon whether dim or bright is activated. Otherwise, the LED lamp module operates as described above for FIG. 8. FIG. 10 shows the LED lamp module with four electrical contacts 100, 102, 104, and 105 for dim, bright, and ground terminal functions. Circuit components having a similar function are assigned the same reference number used in the prior figures. Again the electrical contacts are reversible allowing the LED lamp module to be inserted into the mating socket in alternate physical orientations. A first DC voltage is applied between electrical contacts 100 and 102. A second DC voltage is applied between electrical contacts 104 and 105. In one orientation, the 12 volt DC power supply for the dim circuit function is connected to electrical contact 100. The 12 volt DC power supply for the bright mode function is connected to electrical contact 104. The ground terminal is connected to electrical contacts 102 and 105. When the bright mode is switched on, electrical contact 100 is positive with respect to conductor 42. Diode 106 is forward biased and diode 108 is reverse biased. With the ground connection on electrical contact 102, diode 110 is forward biased and diode 112 is reverse biased. Diode 114 is forward biased and diode 116 is reverse biased. The 12 volt DC power supply for the dim mode function is routed through diode 106 to pin 56 of current regulator 54 to power the IC. The 12 volt DC power supply for the dim mode function is also routed through diode 114 to resistor 118 to generate the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 in the dim mode. When the bright mode is switched on, electrical contact 104 is positive with respect to conductor 42. Diode 120 is forward biased and diode 122 is reverse biased. With the ground connection on electrical contact 102, diode 130 is forward biased and diode 132 is reverse biased. Diode 124 is forward biased and diode 134 is reverse biased. The 12 volt DC power supply for the bright mode function is routed through diode 120 to pin 56 of current regulator 54 to power the IC. The 12 volt DC power supply for the bright mode is also routed through diode 124 to resistor 126 to generate the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 for the bright mode, which is brighter than the dim mode. In the other physical orientation, the 12 volt DC power supply for the dim mode function is connected to electrical contact 102. The 12 volt DC power supply for the bright mode light function is connected to electrical contact 105. The ground terminal is connected to electrical contacts 100 and 104. When the bright mode is switched on, electrical contact 102 is positive with respect to conductor 42. Diode 112 is forward biased and diode 110 is reverse biased. With the ground connection on electrical contact 100, diode 108 is forward biased and diode 106 is reverse biased. Diode 116 is forward biased and diode 114 is reverse biased. The 12 volt DC power supply for the dim mode function is routed through diode 112 to pin 56 of current regulator 54 to power the IC. The 12 volt DC power supply for the tail light is also routed through diode 116 to resistor 118 to generate the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 for the dim mode. When the bright mode is switched on, electrical contact 105 is positive with respect to conductor 42. Diode 132 is forward biased and diode 130 is reverse biased. With the ground connection on electrical contact 104, diode 122 is forward biased and diode 120 is reverse biased. Diode 134 is forward biased and diode 124 is reverse biased. The 12 volt DC power supply for the bright mode function is routed through diode 132 to pin 56 of current regulator 54 to power the IC. The 12 volt DC power supply for the bright mode is also routed through diode 134 to resistor 126 to generate the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 in the bright mode, which is brighter than the dim mode. In FIG. 11, reverse polarity circuit 140 represents diodes 106, 108, 110, and 112 and diodes 120, 122, 130, and 132. Other components having a similar function are assigned the same reference numbers used in the prior figures. In this case, current source bipolar transistors 142 and 144 generate the programming current to pin 58 of current regulator 54. Bipolar transistor 142 has a collector coupled to conductor 42 and an emitter coupled to pin 58. The electrical contact 100 is coupled through resistor 146 to the base of transistor 142. Bipolar transistor 144 has a collector coupled to conductor 42 and an emitter coupled to pin 58. The electrical contact 102 is coupled through resistor 148 to the base of transistor 144. When the dim mode function is activated, electrical contact 100 is energized with the 12 volt DC power supply associated with the dim mode. A base current flows through resistor 146 and causes a collector-emitter current to flow through transistor 142 as a function of the base current. Accordingly, current source transistor 142 generates the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 for the dim mode. When the bright mode function is activated, electrical contact 104 is energized with the 12 volt DC power supply associated with the bright mode. A base current flows through resistor 148 and causes a collector-emitter current to flow through transistor 144 as a function of the base current. Accordingly, current source transistor 144 generates the programming current into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 for the bright mode, which is brighter than the dim mode. In FIG. 12, components having a similar function are assigned the same reference numbers used in the prior figures. In this case, multiplexer 150 is used to routed the programming current to pin 58 of current regulator 54. Electrical contact 100 is coupled to a first control input of multiplexer 150. Electrical contact 104 is coupled to a second control input of multiplexer 150. Resistor 152 is coupled between conductor 42 and a first conduction channel of multiplexer 150. Resistor 154 is coupled between conductor 42 and a second conduction channel of multiplexer 150. When the dim mode function is activated, electrical contact 100 is energized with the 12 volt DC power supply associated with the dim mode. The first control input of multiplexer 150 enables the first conduction channel to connect resistor 152 to pin 58. Resistor 152 provides the programming current through the first conduction path of multiplexer 150 into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 for the dim mode. When the bright mode function is activated, electrical contact 104 is energized with the 12 volt DC power supply associated with the bright mode. The second control input of multiplexer 150 enables the second conduction channel to connect resistor 154 to pin 58. Resistor 154 provides the programming current through the second conduction path of multiplexer 150 into pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78 for the bright mode, which is brighter than the dim mode. Another embodiment of the LED lamp module is shown in FIG. 13. Components having a similar function are assigned the same reference numbers used in the prior figures. The programming resistor 118 is connected to pin 58 of current regulator 54a. The programming resistor 126 is connected to pin 58 of current regulator 54b. When the dim mode function is activated, resistor 118 generates the programming current for current regulator 54a. When the brake light function is activated, resistor 126 generates the programming current for current regulator 54b. Current regulators 54a and 54b are programmed according to plot 72 in FIG. 5. Current regulators 54a and 54b provide current ILED to illuminate LED matrix 78 for the dim mode or bright mode. FIG. 14 illustrates the LED lamp module with voltage regulator 160. Components having a similar function are assigned the same reference numbers used in the prior figures. The voltage regulator establishes a fixed voltage independent of the 12 volt DC power supply variation in the motor vehicle to generate a more accurate programming current through resistor 162 to pin 58 of current regulator 54. Current regulator 54 is programmed according to plot 72 in FIG. 5. Current regulator 54 provides current ILED to illuminate LED matrix 78. While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>LED lamp modules are used in many applications. Motor vehicles use a number of lamps and light bulbs to signal driver intention, warnings, and other status of the vehicle. The light bulbs may be located inside or external to the vehicle, and are typically inserted into sockets which are electrically coupled to the vehicle power supply in a controlled manner. For example, the light bulb may be used as an external front, side, or rear turn signal indicator. The light bulb can also be used for headlights, tail lights, back-up lights, brake lights, emergency flashers, and the like. Most, if not all, state and local ordinances require external lights on motor vehicles for visibility and safety. In other cases, light bulbs are used to illuminate the instrument panel, interior compartment, open door, footing area outside vehicle, vanity mirror, cargo area, and trunk. Lighting for various end products has long been embodied as incandescent light bulbs. The light bulbs operate using various power supply sources, some producing DC voltage as found in most vehicles, and others operate from an AC voltage such as the light bulbs typically found in houses and buildings. Most vehicles operate from a 12 volt DC power supply to the vehicle. As a tail light, when the tail light switch is turned to the ON position, the vehicle's 12 volt DC power supply is applied to the tail light bulb to illuminate the filament. The tail light bulb emits an intensity of light. In the case of a brake light, when the driver depresses the brake pedal, the 12 volt DC power supply is applied to the brake light bulb to illuminate the filament. The brake light bulb emits an intensity of light, greater than the intensity of the tail light. The incandescent light bulb is known to consume significant power, burn hot, and have a relatively short lifespan. More recently, LEDs lamp modules have been used in lieu of the incandescent light bulbs. Examples of the LED lamp modules are found in U.S. Pat. Nos. 6,371,636 and 6,786,625. The LEDs typically operate at voltages between 1.7 and 2.2 volts, and must be able to produce a light intensity suitable for human perception and recognition from a distance. Since light bulbs are typically operated at higher voltages, the current and voltage must be controlled in order to prevent damage to the LEDs. When used in light bulbs, the LEDs are usually arranged in a matrix or array in the lamp module. Generally, all LEDs in the matrix emit light at the same time. The LEDs emit an intensity of light as a function of the current supplied to the LED matrix. In the prior art LED lamp modules used in dual intensity applications such as brake lights, turn signals and other dual intensity light bulb applications, when the operator turns on the tail lights, pulls the turn signal lever, depresses the brake pedal, or otherwise activates the light circuit, a DC voltage is applied through a power resistor to the LED matrix. The power resistor converts the DC voltage to an appropriate current for driving the LED matrix. The value of the power resistor determines the magnitude of the current flow to the LED matrix and accordingly, the intensity of illumination of the LEDs. The dim circuit signal path will have a first value of resistance between the DC power supply and the LED matrix. The bright circuit signal path will have a second value of resistance between the DC power supply and the LED matrix. The first value of resistance sets a first current level and illuminates the LED matrix with a first intensity corresponding to a dimmer light. The second value of resistance sets a second current level and illuminates the LED matrix with a second intensity corresponding to a brighter light, e.g., a brake light or turn signal light in a vehicle. The LED lamp module may also have an electronic switching circuit to connect and disconnect the resistor supplied current to the LED matrix. The switching circuit switches on and off at predetermined frequency to permit the LED matrix to flash, for a turn signal function or emergency flasher function. The LED voltage drop is a function of the temperature of the LED. When power resistors are used for current control, they cannot adapt to changing temperatures. As a result, the LEDs do not always receive an optimal flow of current. The LEDs may be over-driven which will shorten their life, or under-driven which causes them to appear dim. The power resistors also reduce the life span of the LED and may not allow the LED light module to operate at peak performance over the range of temperatures. Another problem associated with using power resistors in LED matrix lamp modules is that they are unable to adapt to a variation in DC supply voltage. Although sources of power to buildings and vehicle voltages are set to operate at nominal voltages, the actual voltage may vary considerably. The LEDs are more vulnerable to these variations, since they are not designed to function at the higher voltage. The use of power resistors to control LED light intensity is problematic. If the LED lamp module is set up with a power resistor that will protect the LED at a higher voltage, 14 volts, then the LED will appear dimmer than desired if the supply voltage drops, to 12 volts. If the same LED lamp module is set up with power resistors to operate at full brightness at lower voltage, 12 volts, then the LEDs will burn out prematurely if the system voltage is slightly higher, 14 volts. The use of power resistors in LED lamp modules often results in the premature burn out of the LEDs and/or LED light modules that are unable to operate at optimal peak intensities. LEDs and multi-LED light bulbs are manufactured in such a manner as to require a particular polarity when used in DC circuits such as an automobile lighting and other DC applications, whereas conventional incandescent light bulbs will function regardless of plus or minus (+/−) polarity in the DC circuit. As a result, many of the conventional sockets commonly used do not key the bulb to ensure that proper polarity is assigned when the bulb is inserted. While this is not a problem with the ambipolar incandescent bulbs, it is a problem with existing LED light bulbs causing the bulb to not function if the polarity happens to be reversed. A need exists for an LED lamp module which provides substantially consistent brightness over variation in the supply voltage, and temperatures. A need also exists to eliminate the ambiguity of polarity in DC sockets so that LED lamp modules will operate in the DC circuit regardless of the polarity of the wiring connected to the socket, and regardless which way the bulb is inserted into the socket. The LED lamp module design needs to provide for mistake proof installation. | <SOH> SUMMARY OF THE INVENTION <EOH>In one embodiment, the present invention is a light emitting diode (LED) lamp module comprising a reverse polarity circuit having inputs coupled to first and second electrical contacts for receiving a DC voltage and an output providing a DC power supply voltage. An electronic current regulator has a power supply terminal coupled to an output of the reverse polarity circuit. An LED matrix has an input coupled to an output of the electronic current regulator. A programming circuit provides a programming signal to a programming input of the electronic current regulator to generate an output current to the LED matrix. The programming circuit includes a first diode and resistor serially coupled between the first electrical contact and the programming input of the electronic current regulator. In another embodiment, the present invention is a lamp module comprising a base having first and second electrical contacts adapted for inserting into a socket in alternate orientations. A printed circuit board is mounted to the base. The printed circuit board includes a reverse polarity circuit coupled to the first and second electrical contacts for converting a DC potential across the first and second electrical contacts to a DC power supply voltage, a current regulator having a first terminal coupled for receiving the DC power supply voltage from the reverse polarity circuit, and a programming circuit providing a programming signal to a second terminal of the current regulator to generate an output current. An LED matrix is mounted to the base and has an input coupled for receiving the output current of the current regulator. In another embodiment, the present invention is an LED lamp module having first and second electrical contacts. A current regulator has a first terminal coupled for receiving a DC power supply voltage a current regulator having a first terminal coupled for receiving a DC power supply voltage. A programming circuit provides a programming signal to a second terminal of the current regulator to generate an output current. An LED matrix has an input coupled for receiving the output current of the current regulator. In another embodiment, the present invention is a method making a light emitting diode (LED) lamp module comprising providing a base having first and second electrical contacts adapted for inserting into a socket in alternate orientations, providing a printed circuit board mounted to the base, the printed circuit board being capable of converting a DC potential across the first and second electrical contacts to a DC power supply voltage, generating a programming signal, supplying the DC power supply voltage to a current regulator, and generating an output current from the current regulator in response to the programming signal, and providing an LED matrix mounted to the base which emits a light in response to the output current of the current regulator. | 20050105 | 20080318 | 20060706 | 64436.0 | H05B3900 | 1 | VU, JIMMY T | REVERSIBLE POLARITY LED LAMP MODULE USING CURRENT REGULATOR AND METHOD THEREFOR | SMALL | 0 | ACCEPTED | H05B | 2,005 |
|
11,030,285 | ACCEPTED | Method for playing Blackjack with a three card poker wager ("21+3") | Card games that combine the play of Blackjack (“21”) with a 3-card Poker wager or side bet (“21+3”). Each player places a basic Blackjack wager and an optional 3-card Poker wager before the cards are dealt. Each player is then dealt a card with the dealer receiving a face-up card. Each player is dealt a second card. At this point, the outcome of each 3-card Poker hand is determined, where a 3-card Poker hand consists of the 2-card hand dealt to that player and the dealer's face-up card. After settling the Poker wagers, the game of Blackjack continues in a typical fashion. The invention advantageously retains all the features and advantages of Blackjack as well as provides the dynamics of 3-card Poker, without interfering with the card sequence, for enhanced player anticipation and enjoyment. | 1-7. (canceled) 8. A method of playing a card game, comprising the steps of: providing at least one deck of playing cards; dealing two cards to a player, and dealing at least one non-player card; forming a first player hand, wherein said first player hand includes said two cards dealt to said player and said non-player card; resolving said first player hand in accordance with predetermined rules; and after resolving said first player hand continuing with a blackjack game. 9. A method according to claim 8, wherein the step of dealing at least one non-player card comprises dealing at least one card to a dealer. 10. A method according to claim 8, wherein said first player hand is a poker hand and said blackjack game is a variant blackjack game. 11. A method according to claim 8, further comprising the steps of: receiving a first wager from said player; and receiving a second wager from said player. 12. A method according to claim 11, wherein said first wager is a poker wager and said second wager is a blackjack wager. 13. A method according to claim 11, wherein said resolving step includes using a predetermined payoff scale. 14. A method according to claim 13, wherein said first player hand is a three card poker hand. 15. A method according to claim 8, wherein said method is a casino card game. 16. A method of playing a card game, comprising the steps of: providing at least one deck of playing cards; a player placing a blackjack wager; said player placing a three card poker wager; dealing two cards to said player, and dealing at least one non-player card; forming a three card poker hand with said two cards dealt to said player and said non-player card; resolving said three card poker hand in accordance with predetermined rules and a predetermined payoff scale; after resolving said poker hand playing a blackjack game; and resolving said blackjack wager. 17. A method of playing a card game, the method embodied in a computer program product for use with a computer system, the computer program product comprising a computer usable medium having computer readable program code means embodied in the medium for performing the steps of the method, the method comprising the steps of: providing at least one deck of playing cards; dealing two cards to a player, and dealing at least one non-player card; forming a first player hand, wherein said first player hand includes said two cards dealt to said player and said non-player card; resolving said first player hand in accordance with predetermined rules; and after resolving said first player hand, continuing with a blackjack game. | CROSS-REFERENCES TO RELATED APPLICATIONS This is a continuation of U.S. patent application Ser. No. 10/281,113, filed Oct. 28, 2002, pending; which is a continuation of U.S. patent application Ser. No. 09/845,312, filed May 1, 2001, now U.S. Pat. No. 6,481,719; which is a continuation-in-part (CIP) of U.S. patent application Ser. No. 09/464,778, filed Dec. 16, 1999, now U.S. Pat. No. 6,371,867; which is a CIP of U.S. patent application Ser. No. 09/118,067, filed Jul. 17, 1998, now U.S. Pat. No. 6,012,719; which is a CIP of U.S. patent application Ser. No. 08/889,919, filed Jul. 10, 1997, now U.S. Pat. No.6,056,641; which is a division of U.S. patent application Ser. No. 08/504,023, filed Jul. 19, 1995, now U.S. Pat. No. 5,685,774, the entire contents of which are hereby incorporated by reference in this application. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT (NOT APPLICABLE) BACKGROUND OF THE INVENTION The invention relates to card games. More particularly, the invention relates to Blackjack variant card games. With the expansion of gaming and the increase in competition, casinos are striving to offer a wider variety of games. The growth in slot machine popularity and the increase in variety of specialty games has resulted in the overall reduction in conventional Blackjack (“21”) tables. Many casinos, however, are reluctant to further reduce the number of Blackjack tables because of the inherent game attractiveness to both players and casinos. The game is based on simple concepts and procedures that are readily understood by casual and regular players alike. In addition, the game allows players to use basic strategies that provide some degree of player control and that allow for heightened excitement. For the casino operators, the game requires relatively low overhead to facilitate and monitor. In an attempt to accommodate the desire for variety and the retention of a significant Blackjack presence, several Blackjack variant games have been introduced. These games include Multiple Action Blackjack, Spanish 21, Face-Up 21, and Royal Match. See, e.g., U.S. Pat. No. 5,673,917 to Vancura. Although Blackjack variants typically provide additional waging options, these games tend to either negatively alter the flow of the Blackjack game or add very little game dynamics. Another Blackjack variant is Action Gaming's 21 Stud. In this game, each player has the option of placing a side wager in addition to the basic Blackjack wager. The side wager is a bet that a dealer's 5-card hand will be above a certain rank and has a variable payoff scale according to rank. Since a Blackjack player may be satisfied with a hand before being dealt 5-cards (e.g., when the player is dealt an Ace and a Jack for the first two cards), 21 Stud provides for a dealer settling all Blackjack wagers after standing or busting. The game then allows the dealer to draw extra cards, if necessary until having a total of 5 cards. The dealer's first 5 cards form a Poker hand. A standing hand occurs on the odd occasions that more than 5 cards were required for the dealer to reach 17 or more. 21 Stud, however, has several drawbacks. Firstly, because all players with the side wager are betting on the same outcome, the game is very volatile. Secondly, with the range of payoff odds required with a 5-card game, there is a risk of a high payoff amount. Accordingly, the game will likely never be offered with a $1 side bet and may require extra surveillance. Thirdly, the Blackjack hand is the primary part of the game for the majority of players. However, Blackjack wagers are settled first, so the potential anticipatory thrill time is lower on the primary wager. Fourthly, when 5-card hands are dealt face-up, one at a time, there is usually very little excitement because after 3 cards it is often obvious that a premium hand cannot be created. For example when the first 3 cards dealt are 10, 5, and 2 (off-suit), no straight, flush, full house or better are possible. Fifthly, and probably most significantly, the dealer is usually required to take extra cards. This aspect of the game is particularly problematic because it slows the game down and deters potential players who are generally adverse to waiting for other players or the dealer from taking additional cards and those potential players who do not like the run of cards to be altered. BRIEF SUMMARY OF THE INVENTION The invention provides card games that combine the play of Blackjack (“21”) with a 3-card Poker wager (“21+3”). In a casino embodiment, the invention can be played in conjunction with a conventional Blackjack casino-type table and a single standard deck of 52 playing cards. The table surface not only has the regular Blackjack bet area, but also an extra bet area for an optional 3-card Poker side wager. In such an embodiment, the table also displays a payoff scale on the side wager and further instructional and promotional information. At the beginning of a game, each player places a basic Blackjack wager and an optional 3-card Poker wager. A dealer deals each player a card, with the dealer receiving a face-up card. Each player also receives a second card. A player's 3-card hand consists of the 2-card hand dealt to that player and the dealer's face-up card. At this point, the outcomes of the 3-card Poker hands are determined. In one embodiment of the invention, a pair or better (“Pair Plus”) constitutes a winning hand. After settling the Poker wagers, the game of Blackjack continues. The invention advantageously retains all the features and advantages of Blackjack (and Blackjack variants) as well as provides the dynamics of 3-card Poker, without interfering with the card sequence, for enhanced player anticipation and enjoyment. The invention thus benefits the player who desires a Pair Plus type of game as well as the player who does not want to leave a Blackjack game, but desires some variety. In addition, the invention provides casino operators with added revenue generating features without requiring additional casino tables, space, or extra game surveillance. Another feature of the invention is that it can be practiced with a variety of Blackjack deck modes including double deck, four-deck, six-deck, and eight-deck, with each mode having an appropriate payoff scale. With the 21+3 scenario, mathematical probability principles dictate that as the number of decks increases, the frequency of different hand ranks varies. For example, with an increasing number of decks, the relative frequencies of a straight flush and a straight decreases, whereas the relative frequency of three of a kind, flush and pair increases, while the overall frequency of a pair or better also increases. It is thus difficult to have a standard payoff scale for each of the common varieties of Blackjack, including single deck, double deck, four-deck, six-deck and eight-deck. Such varying payoff scales are not desirable to casino operators, and players may be disenchanted with the lower multiple deck payoff scales. Moreover, a game incorporating more generous payoff scales with fewer decks may be susceptible to player skill techniques such as card counting, shuffle tracking and card locating. Thus, a payoff scale that is constant irrespective of the number of decks would satisfy casino operators' concerns. With the standard bet payoff, the house advantage would be readily adjusted according to the number of decks; that is, higher for fewer decks and lower for more decks. As a consequence, as vulnerability to skill techniques increases with the smaller number of decks, the house advantage also increases and vice versa. Vulnerability to skill techniques could also be eliminated by using a constant shuffling machine. The invention can be readily implemented in a wide variety of additional forms and media including, single player slot video machines, multi-player slot video machines, electronic games and devices, lottery terminals, scratch-card formats, software as well as in-flight, home, and Internet entertainment. Moreover, the invention can be readily implemented in software, which can be stored on a disk (e.g., magnetic disk, compact disc (CD), etc.) and used with a computer system. The foregoing, and other features and advantages of the invention, will be apparent from the following, more particular description of the preferred embodiments of the invention, the accompanying drawing, and the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS These and other aspects and advantages of the present invention will be described in detail with reference to the accompanying drawings, in which: FIG. 1 illustrates a playing surface (layout) of a casino-type table in accordance with the invention. DETAILED DESCRIPTION OF THE INVENTION The preferred embodiments of the invention are now described with reference to the figure where like reference numbers indicate like elements. The invention provides card games that combine the play of Blackjack (“21”) with a 3-card Poker wager or side bet (“21+3”). The first preferred embodiment of the invention is used in connection with a casino-type Blackjack table and a single standard deck of 52 playing cards. FIG. 1 illustrates a playing surface (layout) 10 of the Blackjack table which includes a primary betting area 12 for each of a plurality of players, which in this embodiment is seven players. Primary betting area 12 is used for the placement of a Blackjack wager. Play surface 10 also includes a secondary betting area 14, corresponding with each area 12, for an optional 3-card Poker wager. In addition, playing surface 10 includes a dealer area 16, displays of a predetermined payoff scale 20, and displays of predetermined game rules 18. As would be apparent to one skilled in the relevant art, the predetermined payoff scales and game rules used in a particular embodiment can be based on the teachings of the invention and well known gaming principles and casino specific requirements. Other wager areas and/or information can be displayed on playing surface 10, such as the “21+3” promotional markings illustrated in FIG. 1. In this preferred embodiment, each player must place a Blackjack wager at betting area 12 in order to participate in the game. Each player, however, has the option to place an additional 3-card Poker wager at betting area 14. In another embodiment of the invention, both the Blackjack and Poker wagers are required and in yet another embodiment only the Poker wager is required. Additional wagers and wager features can be practiced with the invention. The allowable limit of the 3-card Poker wager (placed in area 14) is both governed by predetermined game rules 20 and relative to the Blackjack wager (placed in area 12). For example, with each player having a separate hand and with a payoff scale with a highest payoff similar to Craps or Roulette, an embodiment of the invention can be operated with a minimum 3-card Poker wager equal to a table minimum for Blackjack, typically $5 or more. In addition, a maximum 3-card Poker wager for a player can be set to the first hand 3-card Poker wager made by that player after each shuffle or at the beginning of that shoe. This would negate the impact of well known techniques such as card counting, shuffle tracking, and card locating used by proficient players. Once the wagers have been placed, a dealer then deals, in rotation, each player a first card and the dealer receives a face-up card. Each player, again in rotation, is then dealt a second card and the dealer receives a second card face-down. Alternatively, the second face-down card can be retained in the deck. In accordance with the invention, a 3-card Poker hand consists of the 2-card hand that player was dealt and the dealer's face-up card. Thus at this point, the outcomes of the 3-card Poker wagers are determined and settled prior to continuing with the Blackjack game. In this preferred embodiment, a player wins the 3-card Poker bet with a pair or better (“Pair Plus”), as disclosed in U.S. Pat. No. 6,056,641, the disclosure of which is incorporated herein by reference. The following delineates hand ranking of this embodiment (wherein Ace, King, Queen, Jack, and 10 are represented as “A”, “K”, “Q”, “J”, and “T”, respectively; “sss” indicates that the three cards are of the same suit (i.e., all diamonds, hearts, spades, or clubs); and the reference “in sequence” does not denote the order in which the cards were received by a player, but the actual relationship of the three cards together): Winning 3-Card Hands Straight Three cards of one suit in sequence (e.g., A K Q sss; T 9 8 Flush sss; 3 2 A sss) Three of Three cards of the same rank, whether suited or not (e.g., J a Kind J J; 4, 4, 4; or 7 7 7 sss with multiple deck embodiments) Straight Three cards in sequence (e.g., A K Q; 6 5 4; 3 2 A) Flush Three cards of the same suit (including pairs or not, but not including three of a kind) (e.g., T 8 6 sss; K Q 3 sss; or 5 5 9 sss with multiple deck embodiments) Pair Two cards of the same rank (but not when all three are suited with multiple deck embodiments) (e.g., 9 9 5; 8 8 T; 6 6 7) Losing 3-Card Hands High Card Only None of the Above (e.g., K Q 2; J T 3). The 3-card Poker wagers are now settled. If the player has a losing 3-card Poker hand, their bet (from area 14) is removed. If the player has a winning 3-card Poker hand, they are paid in accordance the predetermined game rules, predetermined payoff scale, and the amount of their bet placed in area 14. In this single deck preferred embodiment, the payoff scale is as follows: Straight Flush 35 to 1 Three of a Kind 33 to 1 Straight 6 to 1 Flush 4 to 1 Pair 1 to 1. As would be apparent to one skilled in the relevant art, alternative payoff scales (e.g., in accordance with the particular casino requirements) can be practiced with the invention. In addition, multiple decks including double deck, four-deck, six-deck, and eight-deck modes can be used with appropriate predetermined payoff scales. For multiple deck embodiments of the invention, exact hand rankings should be determined for two-way hands. The following illustrates a couple of instances of two-way hands: Two-Way Hands Examples A) The 3-card Poker hand consisting of King Diamonds, King Diamonds, and Queen Diamonds, could be either: Option 1: Pair, Option 2: Flush, or Option 3: Flush/Pair. B) The 3-card Poker hand consisting of King Diamonds, King Diamonds, and King Diamonds, could either: Option 1: Flush, Option 2: Three of a Kind, or Option 3: Flush/Three of a Kind. In each instance, the 3-card Poker hand constitutes any of the options. Within a particular game, however, the two-way should be consistently resolved. For example, the same option (i.e., Option 1, 2, or 3) should be used in both instances A and B above. In another preferred embodiment of the invention, the superior of the two regular hand ranks (i.e., Option 2 for both instances above) is chosen to avoid creating additional hand ranks. As would be apparent to one skilled in the relevant art, a wide range of payoff scales for multiple deck games can be used with the present invention. In an alternative embodiment of the invention, a player wins the 3-card Poker bet only upon the occurrence of a flush or better. As a consequence of the operating mode according to this embodiment of the invention, a constant payoff scale can be set irrespective of the number of decks played. In a first version, the 3-card Poker wager pays 9 to 1 for a flush or better. In an alternative version, a flush or better pays 7 to 1 for the 3-card Poker wager, and a pair pushes the wager. In another alternative operating mode of the invention, a Pair or better for the 3-card poker hand wins 5 to 2. In this mode, the house advantage decreases as the number of decks increases, i.e., the house advantage is higher with a single deck than with two decks and higher with two decks than with four decks, etc. After settling the 3-card Poker wagers, the dealer proceeds with a Blackjack game. In this embodiment, the Blackjack game is conventional. However, other variant Blackjack games can be practiced with the invention. The Blackjack wagers are settled in accordance with well known principles and the particular aspects of the Blackjack (or Blackjack variant) game. The invention advantageously retains all of the features and advantages of Blackjack as well as provides the dynamics of 3-card Poker, without interfering with the card sequence, for enhanced player anticipation and enjoyment. The invention thus benefits the player who desires a Poker type of game as well as the player who does not want to leave a Blackjack game, but desires some variety. In addition, the invention provides casino operators with additional revenue generating features for Blackjack with acceptable volatility. Another predominate feature of the invention is that casino embodiments of invention do not require additional space or tables to practice the invention, rather the invention can be practiced with existing tables, preferably modified as illustrated in FIG. 1. An additional feature is that the invention does not require any more game surveillance than a conventional Blackjack game. As would be apparent to one skilled in the relevant art, the invention can be embodied in a wide variety of forms and media including, but not limited to, single player slot video machines, multi-player slot video machines, electronic games and devices, lottery terminals, scratch-card formats, software as well as in-flight, home, and Internet entertainment. In addition, the invention can be readily implemented as a computer program product (e.g., floppy disk, compact disc (CD), etc.) comprising a computer readable medium having control logic recorded therein to implement the features of the invention as described in relation to the other preferred embodiments. The control logic can be loaded into the memory of a computer and executed by a central processing unit (CPU) to perform the operations described herein. Although the invention has been particularly shown and described with reference to several preferred embodiments thereof, it will be understood by those skilled in the relevant art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>The invention relates to card games. More particularly, the invention relates to Blackjack variant card games. With the expansion of gaming and the increase in competition, casinos are striving to offer a wider variety of games. The growth in slot machine popularity and the increase in variety of specialty games has resulted in the overall reduction in conventional Blackjack (“21”) tables. Many casinos, however, are reluctant to further reduce the number of Blackjack tables because of the inherent game attractiveness to both players and casinos. The game is based on simple concepts and procedures that are readily understood by casual and regular players alike. In addition, the game allows players to use basic strategies that provide some degree of player control and that allow for heightened excitement. For the casino operators, the game requires relatively low overhead to facilitate and monitor. In an attempt to accommodate the desire for variety and the retention of a significant Blackjack presence, several Blackjack variant games have been introduced. These games include Multiple Action Blackjack, Spanish 21, Face-Up 21, and Royal Match. See, e.g., U.S. Pat. No. 5,673,917 to Vancura. Although Blackjack variants typically provide additional waging options, these games tend to either negatively alter the flow of the Blackjack game or add very little game dynamics. Another Blackjack variant is Action Gaming's 21 Stud. In this game, each player has the option of placing a side wager in addition to the basic Blackjack wager. The side wager is a bet that a dealer's 5-card hand will be above a certain rank and has a variable payoff scale according to rank. Since a Blackjack player may be satisfied with a hand before being dealt 5-cards (e.g., when the player is dealt an Ace and a Jack for the first two cards), 21 Stud provides for a dealer settling all Blackjack wagers after standing or busting. The game then allows the dealer to draw extra cards, if necessary until having a total of 5 cards. The dealer's first 5 cards form a Poker hand. A standing hand occurs on the odd occasions that more than 5 cards were required for the dealer to reach 17 or more. 21 Stud, however, has several drawbacks. Firstly, because all players with the side wager are betting on the same outcome, the game is very volatile. Secondly, with the range of payoff odds required with a 5-card game, there is a risk of a high payoff amount. Accordingly, the game will likely never be offered with a $1 side bet and may require extra surveillance. Thirdly, the Blackjack hand is the primary part of the game for the majority of players. However, Blackjack wagers are settled first, so the potential anticipatory thrill time is lower on the primary wager. Fourthly, when 5-card hands are dealt face-up, one at a time, there is usually very little excitement because after 3 cards it is often obvious that a premium hand cannot be created. For example when the first 3 cards dealt are 10, 5, and 2 (off-suit), no straight, flush, full house or better are possible. Fifthly, and probably most significantly, the dealer is usually required to take extra cards. This aspect of the game is particularly problematic because it slows the game down and deters potential players who are generally adverse to waiting for other players or the dealer from taking additional cards and those potential players who do not like the run of cards to be altered. | <SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The invention provides card games that combine the play of Blackjack (“21”) with a 3-card Poker wager (“21+3”). In a casino embodiment, the invention can be played in conjunction with a conventional Blackjack casino-type table and a single standard deck of 52 playing cards. The table surface not only has the regular Blackjack bet area, but also an extra bet area for an optional 3-card Poker side wager. In such an embodiment, the table also displays a payoff scale on the side wager and further instructional and promotional information. At the beginning of a game, each player places a basic Blackjack wager and an optional 3-card Poker wager. A dealer deals each player a card, with the dealer receiving a face-up card. Each player also receives a second card. A player's 3-card hand consists of the 2-card hand dealt to that player and the dealer's face-up card. At this point, the outcomes of the 3-card Poker hands are determined. In one embodiment of the invention, a pair or better (“Pair Plus”) constitutes a winning hand. After settling the Poker wagers, the game of Blackjack continues. The invention advantageously retains all the features and advantages of Blackjack (and Blackjack variants) as well as provides the dynamics of 3-card Poker, without interfering with the card sequence, for enhanced player anticipation and enjoyment. The invention thus benefits the player who desires a Pair Plus type of game as well as the player who does not want to leave a Blackjack game, but desires some variety. In addition, the invention provides casino operators with added revenue generating features without requiring additional casino tables, space, or extra game surveillance. Another feature of the invention is that it can be practiced with a variety of Blackjack deck modes including double deck, four-deck, six-deck, and eight-deck, with each mode having an appropriate payoff scale. With the 21+3 scenario, mathematical probability principles dictate that as the number of decks increases, the frequency of different hand ranks varies. For example, with an increasing number of decks, the relative frequencies of a straight flush and a straight decreases, whereas the relative frequency of three of a kind, flush and pair increases, while the overall frequency of a pair or better also increases. It is thus difficult to have a standard payoff scale for each of the common varieties of Blackjack, including single deck, double deck, four-deck, six-deck and eight-deck. Such varying payoff scales are not desirable to casino operators, and players may be disenchanted with the lower multiple deck payoff scales. Moreover, a game incorporating more generous payoff scales with fewer decks may be susceptible to player skill techniques such as card counting, shuffle tracking and card locating. Thus, a payoff scale that is constant irrespective of the number of decks would satisfy casino operators' concerns. With the standard bet payoff, the house advantage would be readily adjusted according to the number of decks; that is, higher for fewer decks and lower for more decks. As a consequence, as vulnerability to skill techniques increases with the smaller number of decks, the house advantage also increases and vice versa. Vulnerability to skill techniques could also be eliminated by using a constant shuffling machine. The invention can be readily implemented in a wide variety of additional forms and media including, single player slot video machines, multi-player slot video machines, electronic games and devices, lottery terminals, scratch-card formats, software as well as in-flight, home, and Internet entertainment. Moreover, the invention can be readily implemented in software, which can be stored on a disk (e.g., magnetic disk, compact disc (CD), etc.) and used with a computer system. The foregoing, and other features and advantages of the invention, will be apparent from the following, more particular description of the preferred embodiments of the invention, the accompanying drawing, and the appended claims. | 20050107 | 20070213 | 20050609 | 62380.0 | 1 | COLLINS, DOLORES R | METHOD FOR PLAYING BLACKJACK WITH A THREE CARD POKER WAGER ("21+3") | SMALL | 1 | CONT-ACCEPTED | 2,005 |
|||
11,030,394 | ACCEPTED | Fractionating apparatus | The probe has a triple tube structure, in which an eluate from a liquid chromatograph flows through an innermost flow passage, a matrix solution flows through a flow passage outside the innermost flow passage, and the air or acetone flows through an outermost flow passage. Before analysis, acetone is flowed to rinse the matrix compound deposited in the previous analysis and clean the tip portion of the probe, and then the air is flowed to evaporate the rinsing solution. | 1. A fractionating apparatus comprising: a probe for dripping a sample liquid fed from a liquid feed mechanism, with an additive agent solution, from a tip portion of the probe onto a plate, wherein said probe comprises a rinsing solution flow passage for feeding a rinsing solution for dissolving a deposit from said additive agent solution to said tip portion of said probe. 2. The fractionating apparatus according to claim 1, wherein the tip portion of said probe has a triple tube structure with an innermost tube, an intermediate tube and an outermost tube, wherein said sample solution flows through the innermost tube, said additive agent solution flows through the intermediate tube outside the innermost tube, and the outermost tube is said rinsing solution flow passage. 3. The fractionating apparatus according to claim 1, wherein said probe has a gas supply flow passage for supplying a gas to said tip portion to dry said tip portion of said probe. 4. The fractionating apparatus according to claim 3, wherein the tip portion of said probe has a triple tube structure with an innermost tube, an intermediate tube and an outermost tube, wherein said sample solution flows through the innermost tube, said additive agent solution flows through the intermediate tube outside the innermost tube, and the outermost tube is used as said rinsing solution flow passage and said gas supply flow passage. 5. The fractionating apparatus according to claim 1, wherein said additive agent solution is a solution of matrix compound for producing a sample to be analyzed by a mass spectrometry with matrix assisted laser desorption ionization, and said rinsing solution is an organic solvent dissolving said matrix compound. 6. The fractionating apparatus according to claim 1, wherein said liquid feed mechanism is a liquid chromatograph. | BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fractionating apparatus comprising a probe for dripping a sample liquid fed from a liquid feed mechanism such as an HPLC (High Performance Liquid Chromatograph), with an additive agent solution, from a tip portion of the probe onto a plate such as a microplate or sample plate to move a sample, in which the fractionating apparatus prepares the sample to be analyzed by MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry). 2. Description of the Related Art In the field of a proteohm analysis for elucidating the structure or action of protein or peptide, the MALDI-TOF-MS, which has lately gained attention, is employed for analysis. The MALDI-TOF-MS is a method for adding a matrix solution to a biosample and drying it to have a sample, then applying laser beam to the sample and ionizing it, and making the mass spectroscopy, in which the used amount of sample is as small as several μL. A fat-soluble material is employed as the matrix compound, and a matrix solution is produced by dissolving the matrix compound in a solvent at high concentration. The matrix compound is excellently dissolved in an organic solvent of acetonitrile. However, in the case where the biosample is separated and eluted by the liquid chromatograph, the matrix solution is added simultaneously, and the sample solution is dripped for fractionation, the fractionation time is usually 10 minutes or more. Since the matrix solution of high concentration is always contact with the atmosphere at the tip portion of the probe, the solvent evaporates with the passage of time, so that the matrix compound deposits at the tip portion of the probe. When the matrix compound deposits at the tip portion of the probe, the distance between the tip portion of the probe and the sample plate is not kept constant, and the dripping position is not determined, whereby it is difficult to produce the uniform liquid droplet. Moreover, the measurement constituents separated and eluted from the HPLC are taken into the deposited matrix, making the analysis incorrect. Therefore, in the related art, before dripping for fractionation, the tip portion of the probe is manually rinsed with a solvent of acetone, using a cylinder, to remove the matrix compound deposited at the tip portion of the probe. The operation for manually washing the tip portion of the probe before fractionation operation is troublesome, and poor in workability. SUMMARY OF THE INVENTION Thus, it is an object of the invention to provide a fractionating apparatus for automatically rinsing away the deposit at the tip portion of the probe when the additive agent solution is added. The present invention provides a fractionating apparatus comprising a probe for dripping a sample liquid fed from a liquid feed mechanism such as a liquid chromatograph, with an additive agent solution, from a tip portion of the probe onto a plate. In the fractionating apparatus, the probe comprises a rinsing solution flow passage for feeding a rinsing solution dissolving the deposit from the additive agent solution to the tip portion at any time. In a preferred form, the tip portion of the probe has a triple tube structure, in which the sample solution flows through the innermost tube, the additive agent solution flows through an intermediate tube outside it, and the outermost tube is the rinsing solution flow passage. The probe may have a gas supply flow passage for supplying a gas to the tip portion to dry the tip portion at any time. In a preferred form of this case, the tip portion of the probe has a triple tube structure, in which the sample solution flows through the innermost tune, the additive agent solution flows through an intermediate tube outside it, and the outermost tube is used as the rinsing solution flow passage and the gas supply flow passage. One example of the additive agent solution is a solution of matrix compound for producing a sample to be analyzed by a mass spectrometry with matrix assisted laser desorption ionization, in which the rinsing solution is an organic solvent dissolving the matrix compound. In this invention, since the rinsing solution flow passage is provided to feed the rinsing solution to the tip portion of the probe, the matrix compound deposited at the tip portion of the probe is automatically removed. With the method for removing the rinsing solution remaining at the tip portion with a cloth, the cloth may be touched with the probe to shift the probe position and make the dripping position inaccurate. However, if a gas is blown from the tip portion of the probe to dry and evaporate the rinsing solution remaining at the tip portion of the probe, after washing, the dripping position of liquid droplet is not shifted, and subsequently the biosample is uniformly fractionated. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a liquid chromatograph a fractionating apparatus according to one embodiment of the invention; and FIG. 2 is a longitudinal cross-sectional view showing in detail the structure of a probe in the embodiment. DETAILED DESCRIPTION OF THE INVENTION One embodiment of the present invention will be described below. The high performance liquid chromatograph comprises a pump 48 for feeding eluate, an injector 46 for injecting a sample, a column 44 for separating the sample constituents, and a detector 42, which are disposed along the flow passage of eluate. A probe 1 for dripping the liquid droplet is connected via a capillary 2 downstream of the detector 42. The probe 1 comprises the T-type three-way joints J1 and J2, in which an upstream joint J1 connects the capillary 2 for feeding the eluate and a tube 16 for feeding a matrix solution, and a downstream joint J2 connects the capillary 2 and a tube 18 for supplying the air and acetone as rinsing solution, in which a tip portion on the exit side of the probe 1 forms a triple tube structure. The eluate is fed by the pump 48, and a sample is injected from the injector 46. The sample injected from the injector 46 is separated for each constituent by the column 44, and detected by the detector 42. The eluate is passed through the capillary 2, dripped from the probe 1 onto a sample plate S and captured. One example of additive agent added to the eluate is a matrix solution. Examples of the matrix compound include nicotinic acid, 2-pyrazine carboxylic acid, sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid), 2,5-dihydroxybenzoic acid, 5-methoxysalicylic acid, α-cyano-4-hydroxycinnamic acid (CHCA), 3-hydroxypicolinic acid, diaminonaphthalene, 2-(4-hydroxyphenylazo) benzoic acid, dislanol, succinic acid, 5-(trifluoromethyl) uracil, and glycerin. The rinsing solution for dissolving the matrix compound may be an organic solvent such as acetone or acetonitrile. Herein, the matrix solution employs a saturated solution (10 mg/mL) in which CHCA (α-cyano-4-hydroxycinnamic acid) is dissolved by a mixed solution of water and acetonitrile, and the rinsing solution employs acetone, for example. The matrix solution is fed through the tube 16 connected to the capillary 2 via a T-type three-way joint J1 by a pump 49, flowed outside the capillary 2, and dripped together with the eluate containing the sample constituents from the tip portion of the probe 1. An air supply tube 24 and a rinsing solution supply tube 26 are joined by a T-type three-way joint J3, and a pipe 18 as a common flow passage is connected to the capillary 2 through which the eluate flows and the tube through which the matrix solution flows via a T-type three-way joint J2, whereby the air and rinsing solution flow further outside the tube through which the matrix solution flows. The rinsing solution employs acetone, for example. A valve 28 is attached to the air supply tube 24, in which the supply of the air is controlled by opening and closing the valve 28. A pump 30 is provided in the rinsing solution supply tube 26, whereby the rinsing solution of acetone is supplied through the rinsing solution supply tube 26 into the probe 1 by operating the pump 30. In dripping the eluate from the liquid chromatograph, the matrix solution is dripped, together with the eluate, from the tip portion of the probe 1 onto the sample plate S. After dripping the liquid, the matrix compound may deposit on the tip portion of the probe 1, whereby the rinsing solution of acetone is supplied through the rinsing solution supply tube 26 to the tip portion of the probe 1 to rinse the tip portion of the probe 1. To prevent the rinsing solution from remaining on the tip portion after rinsing the tip portion of the probe 1, the valve 28 is opened to supply the air to the tip portion of the probe 1 of the probe 1, and evaporate the rinsing solution remaining on the tip portion of the probe 1. FIG. 2 is a longitudinal cross-sectional view showing in detail the structure of a probe in the embodiment. Two joints a and b, not orthogonal, of the first T-type three-way joint J1 on the upstream side are traversed by the slenderest capillary 2 through which the eluate from the high performance liquid chromatograph is fed. A joint a on the upstream side is tightly sealed via a sleeve 12 by a pipe fitting 10a such as a male nut. An orthogonal joint c of the T-type three-way joint J1 is connected to the pipe 16 through which the matrix solution is fed, and tightly sealed by a pipe fitting 10c such as a male nut. In a joint b from which the slenderest capillary 2 extends, a capillary 4 is covered over the capillary 2 with a clearance, and tightly sealed via a sleeve 22 by a pipe fitting 10b such as a male nut. The capillaries 2 and 4 are inserted into the T-type three-way joint J2 on the downstream side from a joint a on the upstream side, and tightly sealed via a sleeve 32 by a pipe fitting 20a such as a male nut. The joint c orthogonal to the capillaries 2 and 4 is connected to the tube 18 for supplying the air and the rinsing solution of acetone, and tightly sealed by a pipe fitting 20c such as a male nut. In a joint b on the most downstream side, a pipe 8 is covered over the capillaries 2 and 4 with a clearance, and tightly sealed by a pipe fitting 20b such as a male nut. The air supply tube 24 from a joint a, the pipe 18 connected to the T-type three-way joint J2 from a joint b and the rinsing solution supply tube 26 from a joint c are inserted into the T-type three-way joint J3 located sideways of the T-type three-way joint J2, and tightly sealed by the pipe fittings 30a, 30b and 30c such as male nuts. The air supply tube 24 is provided with the valve 28, whereby the supply of the air to the tip portion of the probe 1 is switched on or off by opening or closing the valve 28. The rinsing solution supply tube 26 is provided with the pump 29, whereby the supply of acetone through the pipe 18 to the tip portion of the probe 1 is switched on or off by turning on or off the operation of the pump 29. Since the matrix solution is the solution in which the matrix compound of fat-soluble matter is dissolved in solvent at high concentration, if the sample is separated and eluted by the liquid chromatograph, the matrix solution is added simultaneously, and the sample solution is dripped for fractionation, the matrix solution is contact with the atmosphere and the solvent is evaporated at the tip portion of the probe, so that the matrix compound is deposited at the tip portion of the probe. Thus, the pump 29 is activated to feed acetone by 200 μL, for example, after the end of analysis or before the next analysis, thereby washing the tip portion of the probe 1. Acetone fed by the pump 29 is flowed via the T-type joint J3 for connection with a drying evaporating gas line between the double tube and the triple tube of the probe 1 to rinse away the matrix compound fixed to the tip portion of the probe 1. Thereafter, the drying evaporating gas valve 28 is opened to evaporate residual acetone. In this embodiment, the air supply tube 24 and the rinsing solution supply tube 26 are manually connected using the T-type joint, in which it is preferable to adjust the flow passage resistance to prevent the rinsing solution of acetone from flowing back to the gas valve 28. For example, the air supply tube 24 may have an inner diameter of 0.1 mm, and a length of about 100 mm. A three-way electromagnetic valve may be employed, instead of the T-type joint J3, in which it is unnecessary to consider that the rinsing solution flows back to the gas valve 28. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a fractionating apparatus comprising a probe for dripping a sample liquid fed from a liquid feed mechanism such as an HPLC (High Performance Liquid Chromatograph), with an additive agent solution, from a tip portion of the probe onto a plate such as a microplate or sample plate to move a sample, in which the fractionating apparatus prepares the sample to be analyzed by MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry). 2. Description of the Related Art In the field of a proteohm analysis for elucidating the structure or action of protein or peptide, the MALDI-TOF-MS, which has lately gained attention, is employed for analysis. The MALDI-TOF-MS is a method for adding a matrix solution to a biosample and drying it to have a sample, then applying laser beam to the sample and ionizing it, and making the mass spectroscopy, in which the used amount of sample is as small as several μL. A fat-soluble material is employed as the matrix compound, and a matrix solution is produced by dissolving the matrix compound in a solvent at high concentration. The matrix compound is excellently dissolved in an organic solvent of acetonitrile. However, in the case where the biosample is separated and eluted by the liquid chromatograph, the matrix solution is added simultaneously, and the sample solution is dripped for fractionation, the fractionation time is usually 10 minutes or more. Since the matrix solution of high concentration is always contact with the atmosphere at the tip portion of the probe, the solvent evaporates with the passage of time, so that the matrix compound deposits at the tip portion of the probe. When the matrix compound deposits at the tip portion of the probe, the distance between the tip portion of the probe and the sample plate is not kept constant, and the dripping position is not determined, whereby it is difficult to produce the uniform liquid droplet. Moreover, the measurement constituents separated and eluted from the HPLC are taken into the deposited matrix, making the analysis incorrect. Therefore, in the related art, before dripping for fractionation, the tip portion of the probe is manually rinsed with a solvent of acetone, using a cylinder, to remove the matrix compound deposited at the tip portion of the probe. The operation for manually washing the tip portion of the probe before fractionation operation is troublesome, and poor in workability. | <SOH> SUMMARY OF THE INVENTION <EOH>Thus, it is an object of the invention to provide a fractionating apparatus for automatically rinsing away the deposit at the tip portion of the probe when the additive agent solution is added. The present invention provides a fractionating apparatus comprising a probe for dripping a sample liquid fed from a liquid feed mechanism such as a liquid chromatograph, with an additive agent solution, from a tip portion of the probe onto a plate. In the fractionating apparatus, the probe comprises a rinsing solution flow passage for feeding a rinsing solution dissolving the deposit from the additive agent solution to the tip portion at any time. In a preferred form, the tip portion of the probe has a triple tube structure, in which the sample solution flows through the innermost tube, the additive agent solution flows through an intermediate tube outside it, and the outermost tube is the rinsing solution flow passage. The probe may have a gas supply flow passage for supplying a gas to the tip portion to dry the tip portion at any time. In a preferred form of this case, the tip portion of the probe has a triple tube structure, in which the sample solution flows through the innermost tune, the additive agent solution flows through an intermediate tube outside it, and the outermost tube is used as the rinsing solution flow passage and the gas supply flow passage. One example of the additive agent solution is a solution of matrix compound for producing a sample to be analyzed by a mass spectrometry with matrix assisted laser desorption ionization, in which the rinsing solution is an organic solvent dissolving the matrix compound. In this invention, since the rinsing solution flow passage is provided to feed the rinsing solution to the tip portion of the probe, the matrix compound deposited at the tip portion of the probe is automatically removed. With the method for removing the rinsing solution remaining at the tip portion with a cloth, the cloth may be touched with the probe to shift the probe position and make the dripping position inaccurate. However, if a gas is blown from the tip portion of the probe to dry and evaporate the rinsing solution remaining at the tip portion of the probe, after washing, the dripping position of liquid droplet is not shifted, and subsequently the biosample is uniformly fractionated. | 20050105 | 20070227 | 20050721 | 90999.0 | 0 | THERKORN, ERNEST G | FRACTIONATING APPARATUS | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,030,427 | ACCEPTED | Portable folding chair | A lightweight, inexpensive folding chair may have a seat with an interference fit support bracket may be provided. The seat may have a lightweight seat member constructed of a lightweight material, such as a blow-molded plastic, that is generally supported by two such support brackets. The support brackets may be affixed to the lightweight seat member by sliding the lightweight seat member into interference engagement with the support brackets. Thus, the lightweight seat member is supported against bending when the chair is in use, in a way that does not concentrate stresses in the lightweight seat member to cause deformation and failure. The support brackets may have an enclosing shape so that the lightweight seat member is unable to move laterally or transversely out of engagement with the support brackets. The support brackets may thus have lips extending into the lightweight seat member to provide the enclosing shape. The support brackets may also have an arcuate shape to strengthen the support brackets against bending. | 1. A folding chair that is capable of being moved between a first position for supporting a person and a second position for storage, the folding chair comprising: a first leg assembly including a first leg and a second leg; a first link at least partially interconnecting the first leg and the second leg of the first leg assembly, the first link being sized and configured to allow the chair to be moved between the first position and the second position; a second leg assembly including a first leg and a second leg; a second link at least partially interconnecting the first leg and the second leg of the second leg assembly, the second link being sized and configured to allow the chair to be moved between the first position and the second position; a seat constructed from plastic and being at least partially disposed between the first leg assembly and the second leg assembly, the seat comprising: a first section disposed proximate the first leg assembly, the first section including a first portion and a second portion; and a second section disposed proximate the second leg assembly, the second section including a first portion and a second portion; a first support bracket connected to the first leg and the second leg of the first leg assembly, the first support bracket including a first portion and a second portion; and a second support bracket connected to the first leg and the second leg of the second leg assembly, the second support bracket including a first portion and a second portion; wherein at least a portion of the first support bracket, the first leg of the first leg assembly, the first link and the second leg of the first leg assembly are pivotally connected as part of a four-pivot linkage to permit the chair to be moved between the first position and the second position; and wherein at least a portion of the second support bracket, the first leg of the second leg assembly, the second link and the second leg of the second leg assembly are pivotally connected as part of a four-pivot linkage to permit the chair to be moved between the first position and the second position. 2. The folding chair as in claim 1, further comprising one or more engaging portions between the first portion of the first section of the seat and the first portion of the first support bracket; further comprising one or more engaging portions between the second portion of the first section of the seat and the second portion of the first support bracket; further comprising one or more engaging portions between the first portion of the second section of the seat and the first portion of the second support bracket; and further comprising one or more engaging portions between the second portion of the second section of the seat and the second portion of the second support bracket. 3. The folding chair as in claim 1, wherein at least a portion of the first portion of the first section of the seat contacts at least a portion the first portion of the first support bracket to help restrict relative motion between the seat and the first support bracket; wherein at least a portion of the second portion of the first section of the seat contacts at least a portion of the second portion of the first support bracket to help restrict relative motion between the seat and the first support bracket; wherein at least a portion of the first portion of the second section of the seat contacts at least a portion of the first portion of the second support bracket to help restrict relative motion between the seat and the second support bracket; and wherein at least a portion of the second portion of the second section of the seat contacts at least a portion of the second portion of the second support bracket to help restrict relative motion between the seat and the support bracket 4. The folding chair as in claim 1, further comprising a first projection extending from the first portion of the first support bracket and a second projection extending from the second portion of the first support bracket; and further comprising a first receiving portion in the seat that is sized and configured to receive the first projection extending from the first portion of the first support bracket and a second receiving portion in the seat that is sized and configured to receive the second projection extending from the second portion of the first support bracket; further comprising a first projection extending from the first portion of the second support bracket and a second projection extending from the second portion of the second support bracket; and further comprising a first receiving portion in the seat that is sized and configured to receive the first projection extending from the first portion of the second support bracket and a second receiving portion in the seat that is sized and configured to receive the second projection extending from the second portion of the second support bracket. 5. The folding chair as in claim 1, wherein the seat is constructed from blow-molded plastic and includes a hollow interior chamber that is formed during the blow-molding process. 6. The folding chair as in claim 1, wherein no mechanical fasteners are required to connect the seat to the first support bracket and to the second support bracket. 7. The folding chair as in claim 1, wherein the first leg assembly and the second leg assembly are constructed from metal; and wherein the first leg assembly and the second leg assembly have a generally elliptical cross-section. 8. The folding chair as in claim 1, further comprising a first tab that extends from the first support bracket and a second tab that extends from the second support bracket; and further comprising a first tab receiving portion in the seat and a second tab receiving portion in the seat; wherein the first tab is sized and configured to be inserted into the first tab receiving portion and the second tab is sized and configured to be inserted into the second tab receiving portion to help prevent unintended removal of the seat from the first support bracket and the second support bracket. 9. The folding chair as in claim 1, wherein at least a portion of the first support bracket at least partially encloses a portion of the seat to facilitate attachment of the first support bracket to the seat; and wherein at least a portion of the second support bracket at least partially encloses a portion of the seat to facilitate attachment of the second support bracket to the seat. 10. A folding chair that is capable of being moved between a first position for supporting a person and a second position for storage, the folding chair comprising: a first leg assembly including a first leg and a second leg; a first link at least partially interconnecting the first leg and the second leg of the first leg assembly, the first link being sized and configured to allow the chair to be moved between the first position and the second position; a second leg assembly including a first leg and a second leg; a second link at least partially interconnecting the first leg and the second leg of the second leg assembly, the second link being sized and configured to allow the chair to be moved between the first position and the second position; a seat constructed from blow-molded plastic and including a hollow interior portion that is formed during the blow-molding process, the seat including a first section disposed proximate the first leg assembly and a second section disposed proximate the second leg assembly; a first support bracket connected to the first leg and the second leg of the first leg assembly, the first support bracket including a first portion with an inwardly extending projection and a second portion with an inwardly extending projection, at least a portion of the first portion of the first support bracket being sized and configured to abut at least a portion of the first section of the seat and the inwardly extending projection being sized and configured to be inserted into a receiving portion in the seat, at least a portion of the second portion of the first support bracket being sized and configured to abut at least a portion of the first section of the seat and the inwardly extending projection being sized and configured to be inserted into a receiving portion in the seat; and a second support bracket connected to the first leg and the second leg of the second leg assembly, the second support bracket including a first portion with an inwardly extending projection and a second portion with an inwardly extending projection, at least a portion of the first portion of the second support bracket being sized and configured to abut at least a portion of the second section of the seat and the inwardly extending projection being sized and configured to be inserted into a receiving portion in the seat, at least a portion of the second portion of the second support bracket being sized and configured to abut at least a portion of the second section of the seat and the inwardly extending projection being sized and configured to be inserted into a receiving portion in the second section of the seat. 11. The folding chair as in claim 10, wherein no mechanical fasteners are required to connect the seat to the first support bracket and to the second support bracket. 12. The folding chair as in claim 10, wherein the first leg assembly and the second leg assembly are constructed from metal; and wherein the first leg assembly and the second leg assembly have a generally elliptical cross-section. 13. The folding chair as in claim 10, further comprising a first tab that extends generally inward from the first support bracket and a second tab that extends generally inward from the second support bracket; and further comprising a first tab receiving portion in the seat and a second tab receiving portion in the seat; wherein the first tab is sized and configured to be inserted into the first tab receiving portion and the second tab is sized and configured to be inserted into the second tab receiving portion to prevent the unintended removal of the seat from the first support bracket and the second support bracket. 14. The folding chair as in claim 10, wherein at least a portion of the first support bracket at least partially encloses a portion of the seat to facilitate attachment of the first support bracket to the seat; and wherein at least a portion of the second support bracket at least partially encloses a portion of the seat to facilitate attachment of the second support bracket to the seat. 15. A folding chair that is capable of being moved between a first position for supporting a person and a second position for storage, the chair comprising: a first front leg and a second front leg; a first rear leg and a second rear leg; a first link at least partially interconnecting the first front leg and the first rear leg; a second link at least partially interconnecting the second front leg and the second rear leg; a first bracket including a first attachment portion and a second attachment portion, the first bracket at least partially interconnecting the first front leg and the first rear leg, at least a portion of the first front leg, the first rear leg, the first link and the first bracket form at least a portion of a four-bar, four-pivot linkage; a second bracket including a first attachment portion and a second attachment portion, the second bracket at least partially interconnecting the second front leg and the second rear leg, at least a portion of the second front leg, the second rear leg, the second link and the second bracket form at least a portion of a four-bar, four-pivot linkage; and a seat constructed from blow-molded plastic and including a generally hollow interior portion formed during the blow-molding process, the seat including a first section with a first attachment portion and a second attachment portion, and a second section with a first attachment portion and a second attachment portion; wherein the first attachment portion and the second attachment portion of the first bracket are sized and configured to engage at least a portion of the first attachment portion and the second attachment portion of the first section of the seat; and wherein the first attachment portion and the second attachment portion of the second bracket are sized and configured to engage at least a portion of the first attachment portion and the second attachment portion of the second section of the seat. 16. The folding chair as in claim 15, wherein no mechanical fasteners are required to connect the seat to the first bracket or to the second bracket. 17. The folding chair as in claim 15, wherein the first front leg, the second front leg, the first rear leg and the second rear leg are constructed from metal; and wherein the first front leg, the second front leg, the first rear leg and the second rear leg have a generally elliptical cross-section. 18. The folding chair as in claim 15, further comprising a first tab that extends generally inward from the first bracket and a second tab that extends generally inward from the second bracket; and further comprising a first tab receiving portion in the seat and a second tab receiving portion in the seat; wherein the first tab is sized and configured to be inserted into the first tab receiving portion and the second tab is sized and configured to be inserted into the second tab receiving portion to prevent the unintended removal of the seat from the first bracket and the second bracket. 19. The folding chair as in claim 15, wherein at least a portion of the first bracket at least partially encloses a portion of the seat to facilitate attachment of the first bracket to the seat; and wherein at least a portion of the second bracket at least partially encloses a portion of the seat to facilitate attachment of the second bracket to the seat. 20. The folding chair as in claim 16, further comprising a first projection extending from the first attachment portion of the first bracket and a second projection extending from the second attachment portion of the first bracket; and further comprising a first receiving portion in the seat that is sized and configured to receive the first projection extending from the first attachment portion of the first bracket and a second receiving portion in the seat that is sized and configured to receive the second projection extending from the second attachment portion of the first bracket; further comprising a first projection extending from the first attachment portion of the second bracket and a second projection extending from the second attachment portion of the second bracket; and further comprising a first receiving portion in the seat that is sized and configured to receive the first projection extending from the first attachment portion of the second bracket and a second receiving portion in the seat that is sized and configured to receive the second projection extending from the second attachment portion of the second bracket. | RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 10/390,312, entitled PORTABLE FOLDING CHAIR, filed on Mar. 17, 2003, which is a continuation of U.S. patent application Ser. No. 09/774,405, entitled INTERFERENCE FIT SUPPORT BRACKET FOR A PORTABLE FOLDING CHAIR, filed on Jan. 31, 2001, now U.S. Pat. No. 6,543,842, which claims priority to and the benefit of U.S. provisional patent application Ser. No. 60/180,417, entitled FOLDING CHAIR WITH DOUBLE-WALLED SEAT, filed Feb. 3, 2000, each of which are incorporated by reference in their entireties. BACKGROUND OF THE INVENTION 1. The Field of the Invention The present invention relates to portable furniture and, more particularly, to novel systems and methods for providing comfortable, compact, inexpensive, and lightweight seating for easy transportation and storage. 2. The Relevant Technology Throughout history, people have sought more comfortable seating arrangements. Chairs, stools, and the like allow people to relieve stress on the legs and feet, while remaining alert and performing tasks that do not require a great deal of motion. In the twentieth century, folding chairs have made it possible for people to keep a space clear when necessary, and to erect suitable seating for gatherings or special events. However, current folding chairs possess a number of drawbacks. For example, folding chairs are often somewhat heavy. The chair must reliably support the weight of even a fairly large person. The bending stress on any member is proportional to the length of the member multiplied by the force acting upon it. Therefore, the length of the seat effectively multiplies the forces tending to bend or break the seat. Typically, seats for folding chairs have been made from stronger (and heavier) materials, such as steel, to overcome the effect of these bending stresses. The resulting chairs are heavier and therefore cost more to ship, and require more effort to move, fold, and unfold. Thus, it is desirable to use lightweight materials such as plastics to reduce the weight of folding chairs. However, many known folding chairs, especially those that incorporate lightweight materials, do not stand up to repetitive use. Groups such as the Business and Institutional Furniture Manufacturers' Association (B.I.F.M.A.) have set up standards for portable furniture. Such standards typically require that portable chairs be designed to receive a given weight loading to simulate use for a specified number of cycles, often on the order of 100,000. Many known folding chairs bend or break after only a few thousand cycles, and therefore can be expected to have a relatively short useful life. Certain known chairs use metal to reinforce lightweight materials. The seat may, for example, be supported by a frame encircling the seat or by metal rods threaded through the lightweight material. In addition to increasing the weight of the folding chair, such reinforcing measures add to manufacturing time because the supporting structure must be properly aligned with the seat, and possibly with the legs as well. In general, many known folding chairs are somewhat expensive to produce because the manner in which they are assembled requires the use of a great deal of manual labor. The legs must often be properly aligned with the seat so that mechanical fasteners can be attached to the legs and the seat. If metal supporting parts are to be threaded through the lightweight seat member to connect the legs, the lightweight seat member may have to be aligned with each leg assembly so that the threading operation can be carried out. Often, the various fasteners involved must be installed at locations that are not easily accessible for machinery. Thus, the fasteners must often be installed by hand. Accordingly, a need exists for a portable, folding chair that is lightweight and comfortable, and yet folds to a thin, stackable configuration. Such a chair must safely support the weight of a fairly heavy person. In addition, the chair should be inexpensive to produce in large quantities with a minimum of parts and assembly. BRIEF SUMMARY OF THE INVENTION The apparatus of the present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available folding chairs. Thus, it is an overall objective of the present invention to provide an inexpensive, lightweight, comfortable, chair capable of folding to fit within a small volume. To achieve the foregoing objects, and in accordance with the invention as embodied and broadly described herein in the preferred embodiment, a folding chair with an interference fit support bracket is provided. According to selected embodiments, the folding chair may comprise a pair of symmetrical leg assemblies, each of which includes a front leg and a rear leg. Each of the legs may have a lower end in contact with the ground or floor, and an upper end extending upward from the lower end. A seat may be suspended between the leg assemblies. The upper end of the front legs may also be extended to retain a backrest between the leg assemblies. The seat may be pivotally attached to the front leg and the rear leg of each of the leg assemblies. Each of the leg assemblies may also have a strut pivotally attached to the front leg and the rear leg, so that the strut, front leg, rear leg, and seat form a four-bar, four-pivot linkage. The chair may thus be folded by rotating the seat with respect to the front legs, so that the seat and rear legs fold into a position substantially parallel to the front legs. The seat may comprise a lightweight seat member constructed of a lightweight material, such as plastic, and a pair of support brackets constructed of a stronger material such as a metal. The lightweight seat member may be hollow and may be formed through a suitable process such as injection or blow molding. Each support bracket may be elongated in the longitudinal direction, with a generally enclosing cross-sectional shape designed to grip the lightweight seat member to restrict relative motion of the support bracket and lightweight seat member perpendicular to the length of the support bracket. The lightweight seat member may, in turn, have engaging features such as a lateral ridge and a slot to receive each bracket. The lightweight seat member may be generally configured to make contact with each of the support brackets in several places so that lateral and transverse relative motion of the lightweight seat member and support brackets can be fully prevented. Each support bracket preferably grips the seat with a retention force sufficient to ensure that the support bracket cannot slide relative to the lightweight seat member in the longitudinal direction during normal use of the folding chair. To install the support brackets on the lightweight seat member, each support bracket is preferably aligned with the corresponding engaging features of the lightweight seat member and pressed with an installation force similar in magnitude to the retention force. Each support bracket may also have a tab designed to be bent into engagement with a corresponding tab engagement slot formed in the lightweight seat member after the support bracket has been properly positioned with respect to the lightweight seat member. The tabs operate in conjunction with the retention force of the support bracket to ensure that the brackets cannot slide longitudinally off of the seat. The folding chair maybe easily assembled by, first, assembling the leg assemblies, and then affixing a support bracket to each leg assembly through the use of mechanical fasteners such as rivets, bolts, shafts with locking pins, or the like. The backrest may be affixed to the legs by any suitable fastening mechanism. The leg assemblies may then be aligned relative to each other to receive the lightweight seat member, and the lightweight seat member may be pressed into engagement with the brackets. Thus, the folding chair of the present invention provides a number of unique advantages over the prior art. For example, a minimum of metal material may be used to affix the lightweight seat member to the leg assemblies. No metal supports, such as rods or backing plates, need be affixed to or threaded through the lightweight seat member. Additionally, fixation is accomplished without forming holes in the lightweight seat member; thus, there are no stress concentrations to weaken the seat under repeated use. The folding chair can be easily assembled with actions that can generally be performed rapidly by machine. These and other objects, features, and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter. BRIEF DESCRIPTION OF THE DRAWINGS In order that the manner in which the above-recited and other advantages and objects of the invention are obtained will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which: FIG. 1 is a perspective view of one embodiment of a folding chair with a lightweight seat member supported by interference fit support brackets in accordance with the invention; FIG. 2 is an exploded, perspective view depicting one possible mode of the assembly of the folding chair of claim 1; FIG. 3, is a bottom elevation view of the underside of the lightweight seat member of FIG. 1; and FIG. 4 is a cutaway, sectioned view of part of the lightweight seat member and one of the support brackets of FIG. 1, depicting one possible manner in which the support bracket may engage the lightweight seat member. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The presently preferred embodiments of the present invention will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the apparatus, system, and method of the present invention, as represented in FIGS. 1 through 4, is not intended to limit the scope of the invention, as claimed, but is merely representative of presently preferred embodiments of the invention. Referring to FIG. 1, one embodiment of a folding chair 10 according to the invention is shown. The folding chair 10 has a longitudinal direction 12, a lateral direction 14, and a transverse direction 16. The folding chair 10 has a seat 18 designed to comfortably support the weight of a user. The seat 18 may be contoured as shown, with a recessed portion toward the middle to distribute a user's weight evenly along the seat, thereby enhancing the user's comfort. Preferably, the folding chair 10 has an unfolded configuration, in which the seat 18 is horizontally disposed at a height suitable for sitting, and a folded configuration in which the folding chair 10 is more compact and stackable. The seat 18 may be supported by a first front leg 20, a second front leg 22, a first rear leg 24, and a second rear leg 26. Preferably, the legs 20, 22, 24, 26 are hollow so that higher buckling resistance can be obtained without increasing the weight of the legs 20, 22, 24, 26. The cross-sectional shape of the legs 20, 22, 24, 26 may be further modified to enhance buckling resistance along the axis of greatest bending stress. For example, the legs 20, 22, 24, 26 may have a generally elliptical cross-section with the major (longer) axis oriented near the longitudinal direction 12. Thus, the legs 20, 22, 24, 26 can be fortified against bending moments occurring around the lateral direction 14, as would be applied by a user sitting in the folding chair 10. The legs 20, 22, 24, 26 may be constructed of a relatively strong, stiff material such as aluminum or steel. The legs 20, 22, 24, 26 may be surface hardened and made more resistant against damaging environmental effects such as rust and ultraviolet radiation through a method such as powder coating, in which a resin or plastic powder is applied to the surface of the metal and then heated to harden the surface. The front legs 20, 22 may also be upwardly extended to support a backrest 28 at a height comfortable for a user. The backrest 28 may be contoured to comfortably fit the back of a user, and may be constructed of a lightweight material such as plastic with a hollow configuration to provide a larger sectional modulus to enhance bending resistance. The backrest 28 may be manufactured through a comparatively simple production process such as blow molding, injection molding, or the like. As depicted in FIG. 1, the first front leg 20 and the first rear leg 24 are connected together to form a linkage. The first front leg 20 and the first rear leg 24 may thus be collectively referred to as a first leg assembly 30. Similarly, the second front leg 22 and the second rear leg 26, together, form parallel linkage that may be termed a second leg assembly 32. In FIG. 1, the leg assemblies 30, 32 are shown on opposite lateral sides of the folding chair 10. However, a folding chair according to the invention could, for example, have symmetrical leg assemblies disposed at the front and rear of the chair. The front legs 20, 22 may each have a lower end 40 in contact with flooring, pavement, or some other supporting surface, and an upper end 42 extending above the seat 18 to receive the backrest 28. Each of the front legs 20, 22 may also have an intermediate portion 44 disposed generally between the lower end 40 and the upper end 42, at the approximate elevation of the seat 18. Each of the rear legs 24, 26 may have a lower end 46 in contact with a supporting surface and an upper end 48 at the approximate elevation of the seat 18. A front strut 50 may connect the first front leg 20 with the second front leg 22, and a rear strut 52 may connect the first rear leg 24 with the second rear leg 26. The front and rear struts 50 and 52 provide alignment and mutual support between the first and second leg assemblies 30, 32. The legs 20, 22, 24, 26 and the struts 50, 52 are preferably constructed of a stiff, strong material such as steel, aluminum, or a composite. The first front leg 20 may be connected to the first rear leg 24 by a first link 60 pivotally attached to the first front leg 20 and to the first rear leg 24. Similarly, the second front leg 22 and the second rear leg 26 may be connected by a second link 62. Thus, the first link 60 may be part of the first leg assembly 30, and the second link 62 may be part of the second leg assembly 32. The legs 20, 22, 24, 26 may be attached to the links 60, 62 by fasteners 64 and to the seat 18 by fasteners 66, each of which permits relative pivotal motion. Thus, each of the first and second leg assemblies 30, 32 forms a four-bar, four-pivot linkage when connected to the seat 18 to permit the rear legs 24, 26 and the seat 18 to fold into a configuration substantially parallel to the front legs 20, 22 and the backrest 28. Thus, the folding chair 10 may be folded and stored in are relatively compact fashion. Referring to FIG. 2, an exploded view of the folding chair 10 of FIG. 1 is depicted, along with lines of assembly depicting one suitable way to assemble the various parts of the folding chair 10. The seat 18 may include a lightweight seat member 72, a first support bracket 74, and a second support bracket 76. The lightweight seat member 72, like the backrest 28, is preferably constructed of a lightweight, somewhat flexible material such as a plastic. Many manufacturing methods may be used to produce the lightweight seat member 72. For example, top and bottom portions of the lightweight seat member 72 may be constructed separately, through stamping, injection molding, or other simple processes, and then attached together. The top and bottom portions may be attached by molding fasteners into the parts, using separate fasteners, or joining the parts using a heat-based technique such as welding. Other processes, such as tumble molding, roller molding, and blow molding may also be utilized to create the seat 12 as a single unitary piece. Blow molding is presently preferred. The novel construction of the folding chair 10 is especially well-adapted for use with a lightweight seat member 72 constructed of such a lightweight material because the lightweight seat member 72 can be attached to the folding chair 10 in a way that does not subject the lightweight seat member 72 to highly-localized stresses. Plastics generally have a much lower yield point (maximum stress before permanent deformation occurs) than metals. Additionally, plastics tend to experience “creep,” or permanent deformation over prolonged loading, at comparatively low stresses. Consequently, it is important to ensure that no part of the lightweight seat member will be subjected to high or prolonged stresses. A number of features found in known chair seats tend to concentrate stresses at parts of the seat that could later become failure points in a seat constructed of weaker, lightweight material. For example, many chairs have fasteners that must be inserted through holes formed in the lightweight seat member. Any hole in a load-bearing member has a smaller cross-section than adjacent regions. Since stress is defined as force (tensile, compressive, or shear) divided by the area of material across which the force acts, the smaller area surrounding the hole is subjected to increased stresses as a result of the hole. Thus, holes, narrow regions, shelves, and the like are referred to in the art as “stress concentrations” or “stress risers.” The effect of such stress concentrations is multiplied by the nature of the loading applied to the lightweight seat member. A typical user will not simply sit still in a chair for a lengthy period of time; rather, most users will move considerably and shift their weight from one portion of the chair to another. Thus, the lightweight seat member is subjected to “fatigue” loading, or stress that increases, decreases, or even changes direction (from tensile to compressive or from compressive to tensile) many times during the life of the chair. Fatigue loading conditions accelerate the deformation and eventual failure of materials, especially those with a comparatively high degree of ductility, such as plastics. In the case of a fastener threaded through a plastic hole, the result is that the hole will be gradually widened by pressure against the fastener over time, so that more and more play, or “slop,” is present in the folding chair. Finally, the hole may fail to retain the fastener altogether, and the chair may collapse as a result. Other forms of attachment may similarly concentrate stresses that tend to cause accelerated failure in a plastic seat member. The support brackets 74, 76 of the present invention represent a significant improvement over the prior art because they are attached to the lightweight seat member 72 in such a way that stresses are relatively evenly spread over the lightweight seat member 72 when the folding chair 10 is in use. According to certain embodiments, the support brackets 74, 76 provide such an even distribution of stresses through an interference fit engagement with lightweight seat member 72 that will be described in further detail subsequently. Each of the support brackets 74, 76 may have a front end 77, a rear end 78, and an intermediate portion 79. The fasteners 64, 66 used to attach the leg assemblies 30, 32 to the struts 60, 62 and the support brackets 74, 76 may have a wide variety of configurations including screws, bolts, nuts, rivets, clips, clamps, shafts with locking pins, or the like. As depicted in FIG. 2, each of the fasteners 64, 66 comprises a rivet. Generally, each of the rivets 64, 66 may have a button 80 affixed to a shank 82 sized somewhat narrower than the button 80. Each of the rivets 64, 66 may also have a cap 84 configured to fit onto the shank 82 and to be compressed for permanent attachment to the shank 82 by a method such as crimping. Each of the legs 20 22, 24, 26 may have a hole 86 sized to receive a shank 82 of a rivet 64 for pivotal attachment to one of the links 60, 62. Similarly, each of the legs 20, 22, 24, 26 may have a hole 88 sized to receive a shank 82 of a rivet 66 for pivotal attachment to one of the support brackets 74, 76. Each of the support brackets 74, 76 may have a rear hole 90 surrounded by a rear indentation 92 and a front hole 94 surrounded by a front indentation 96. The indentations 92, 96 are preferably each shaped to contain a button 80 of a rivet 66. Thus, the buttons 80 can be retained on the inside of the support brackets 74, 76 without protruding inward to interfere with the lightweight seat member 72. Preferably, the shanks 82 of the rivets 64, 66 fit with clearance through the holes 86, 88, 90, 94 to permit free relative rotation. Additionally, the buttons 80 and caps 84 of the rivets 64, 66 should be sized too large to fit through the holes 90, 94 and 86, 88, respectively, so that the rivets 64, 66 are unable to slip out of the holes 86, 88. The legs 20, 22, 24, 26 may each have an alcove 97 facing inward and located toward the first end 40, 46 into which the struts 50, 52 can be inserted. If desired, the struts 50, 52 may be welded, crimped, or otherwise affixed in place within the alcoves 97 to fix the displacement of the leg assemblies 30, 32 with respect to each other. The backrest 28 may also bridge the gap between the first and second leg assemblies 30, 32 upper ends 42 of which may be attached to mating surfaces 98 of the backrest 28. Each of the support brackets 74, 76 may have a tab 99 configured to lock the lightweight seat member 72 into place once installed within the support brackets 74, 76. The tab 99 preferably comprises a rectangular portion of each of the support brackets 74, 76, three sides of which have been cut through so that the tab 99 can be lifted by folding the tab 99 along the remaining side of the rectangle. The tabs 99 may be preformed in a bent position, and may flex upon contact with the lightweight seat member 72 and snap into place within grooves of the lightweight seat member 72, which will be depicted subsequently. The tabs 99 may alternatively be formed in a straight position and bent into engagement after installation on the lightweight seat member 72. The support brackets 74, 76 are preferably made of a comparatively stiff, strong metal such as aluminum or steel. The support brackets 74, 76 may also be surface treated by a method such as powder coating, like the legs 20, 22, 24, 26. Pre-flexing of the tabs 99 helps to prevent cracking of the tabs 99 when they are bent during assembly. The lightweight seat member 72 may generally have a first side 100 disposed near the first leg assembly 30, and a second side 102 disposed near the second leg assembly 32. Additionally, the lightweight seat member 72 may have a front surface 104, a rear surface 106, a top surface 108, and a bottom surface 110. A lateral ridge 120 maybe formed on each of the first and second sides 100, 102. Each lateral ridge 120 may comprise a longitudinally elongated bulge with a lateral engagement surface 122, an engagement groove 124, and an abutment 126. The lateral engagement surface 122 is preferably oriented substantially perpendicular to the lateral direction 14. Preferably, each of the lateral ridges 120 has a substantially uniform cross-sectional shape, as viewed along the longitudinal direction 12, so that the lateral ridges 120 engage the support brackets 74, 76 uniformly along their length. The engagement groove 124 may take the form of a trough extending downward and inward, running along the top of each lateral ridge 120. Each of the abutments 126 may simply consist of a rearward-facing portion material jutting outward from each lateral ridge 120. The abutments 126 serve to limit motion of the support brackets 74, 76 over the lateral ridges 120 to ensure that the support brackets 74, 76 do not slide too far with respect to the lightweight seat member 72. The backrest 28 may be attached to the upper ends 42 of the front legs 20, 22, for example, through the use of studs 128 affixed to the mating surfaces 98 of the backrest 28. The studs 128 may be generally mushroom-shaped, with an enlarged head atop a narrower stem. Corresponding keyholes 130 may be formed in the upper ends 42 of the front legs 20, 22 to receive the studs 128. Each of the keyholes 130 may generally have a larger opening into which a head of a stud 128 can pass with clearance, and a slot configured to receive the stem of the stud 128 when the backrest 28 is pressed downward with respect to the front legs 20, 22. Other fastening techniques, such as thermal, radio frequency, or frictional welding, chemical or adhesive bonding, or the like may be utilized to ensure that the studs 128 remain firmly installed within the keyholes 130. Referring to FIG. 3, the bottom surface 110 of the lightweight seat member 72 is depicted. Each of the lateral ridges 120 may have a transverse engagement surface 140 facing generally downward. Slots 142 may run parallel to the lateral ridges 120 to provide tighter engagement of the support brackets 74, 76. The slots 142 may simply take the form of rectangular recesses extending longitudinally along the bottom surface 110. A tab engagement slot 144, in the form of a roughly rectangular indentation, may be formed in each of the transverse engagement surfaces C<(, 140 to receive the tabs 99. The bottom surface 110 may also have a plurality of troughs 150 oriented in the lateral direction 14. The troughs 150 preferably do not extend upward far enough to contact the top surface 108 of the lightweight seat member 72. The troughs 150 serve to increase the section modulus of the lightweight seat member 72 by providing transversely-oriented, or substantially vertically-oriented sections of material that do not bend easily about the longitudinal axis 12. Thus, the lightweight seat member 72 resists bending in a way that would tend to raise or lower the first and second sides 100, 102 of the lightweight seat member 72 with respect to the remainder of the lightweight seat member 72. The troughs 150 may also provide handholds for a user so that the chair 10 can easily be folded, unfolded, and carried by a user. In embodiments in which the lightweight seat member 72 is hollow, as with a blow-molded lightweight seat member 72, kiss-throughs 152 may be formed within the troughs 150 to connect the top and bottom surfaces 108, 110 of the lightweight seat member 72. The kiss-throughs 152 keep the top surface 108 from being pressed into the hollow interior of the lightweight seat member 72 under a user's weight. However, the kiss-throughs 152 may be positioned around the center of the lightweight seat member 72 to permit slight deformation so that the lightweight seat member 72 has a somewhat soft feel. Styling lines 154 may also be provided in the bottom surface 110 of the lightweight seat member 72 to add aesthetic to the chair 10 in the folded configuration. An injection hole 156 may remain in the bottom surface 110 where a nozzle was inserted into a mold to inject air. The kiss-throughs 152 and the troughs 150, as depicted in FIG. 3, have been arranged to increase the structural rigidity and overall strength of the lightweight seat member 72. Although other configurations may be used, the embodiment depicted in FIG. 3 is presently preferred because it provides good support while adding a minimum of material to the seat 72. Consequently, the overall weight of the folding chair 10 is kept at a minimum. Referring to FIG. 4, a sectioned view of a portion of the seat 18, including the first side 100 of the lightweight seat member 72 and the first support bracket 74, is depicted, taken from behind the seat 18. The support brackets 74, 76 preferably have a cross-sectional shape configured to interlock with the lightweight seat member 72 to restrict motion parallel to the cross-section (in the lateral or transverse directions 14, 16). More specifically, the support brackets 74, 76 preferably have an enclosing cross-sectional shape. An “enclosing” cross sectional shape is a shape in which an opening of the cross section is narrower than the widest expanse of a structure, parallel to the opening, that can be contained within the cross section. An enclosing structure with a shape conforming generally to the enclosing shape is therefore unable to escape through the opening. Although the enclosing shape is one preferred method of obtaining interlocking between the support brackets 74, 76 and the lightweight seat member 72, the support brackets 74, 76 need not have an enclosing shape to engage the lightweight seat member 72 in interlocking fashion. The support brackets 74, 76 may, for example, have outwardly extending edges (not shown) engaged within corresponding slots or grooves of the lightweight seat member 72. As shown in FIG. 4, the first bracket 74 preferably takes the form of an L-shaped member with lips extending toward the interior of the L to form an enclosing shape. More specifically, the first support bracket 74 may have a supporting flange 160 positioned underneath the transverse engagement surface 140 of the lightweight seat member 72. The supporting flange 160 may simply comprise a comparatively flat piece of material perpendicular to the transverse direction 16, extending along the length of the lightweight seat member 72 in the longitudinal direction 12. An attachment flange 162 may extend in a substantially transverse direction from the supporting flange 160 to cover the lateral engagement surface 122 of the lateral ridge 120, and may also extend along the length of the lightweight seat member 72 in the longitudinal direction 12. Thus, the attachment flange 162 is preferably substantially perpendicular (at a near 90° angle) to the support flange 160. Furthermore, an upper lip 164 may extend inward from the attachment flange 162 and into the engagement groove 124. The upper lip 164 may advantageously form an acute angle with respect to the attachment flange 162 so that the attachment flange 162 extends both inward and downward to grip the edges of the engagement groove 124. The upper lip 164 may, for example, be positioned at a 40° to 600 angle with respect to the attachment flange 162. An angle of 50°may be preferred. A lower lip 166 may extend upward, substantially perpendicular to the supporting flange 160 to engage the slot 142. Between the lips 164, 166 of the cross-section, an opening exists in the cross-sectional shape of the first support bracket 74. Since the lips 164, 166 are directed generally inward, the opening is not large enough to permit the first support bracket 74 to slip out of engagement with the lightweight seat member 72 in the lateral or transverse directions 14, 16. Consequently, the cross-sectional shape of the first support bracket 74, as embodied in FIG. 4, is enclosing. Although the L-shape depicted in FIG. 4 is preferred, the cross-section of the support brackets 74, 76 may have any other suitable enclosing or partially-enclosing shape, such as a C-shape. Alternatively, the support brackets 74, 76 need not have an enclosing shape, and the sides 100, 102 of the lightweight seat member 72 may instead each have an enclosing shape configured to hold the support brackets 74, 76 in place. The configuration of FIG. 4 may, however, have significant manufacturing benefits over these alternatives. The enclosing cross-sectional shape shown in FIG. 4 provides counterbalancing forces in both the lateral direction 14 and the transverse direction 16 to prevent relative motion between the first support bracket 74 and the lightweight seat member 72 in those directions. The supporting flange 160, the attachment flange 162, the upper lip 164, and the lower lip 166 need not contact the lightweight seat member 72 uniformly across an entire surface to provide those counterbalancing forces. If desired, the lightweight seat member 72 may instead contact each of the flanges 160, 162 and the lips 164, 166 at a contact point extending in the longitudinal direction 12 along the length of the first support bracket 74. For example, the supporting flange 160 may contact the bottom surface 110 of the lightweight seat member 72 at a first contact point 170. The attachment flange 162 may contact the lateral engagement surface 122 at a second contact point 172. Similarly, the second lip 166 may contact the slot 142 at a third contact point 174, and the first lip 164 may contact the engagement groove 124 at a fourth contact point 176. At each of the contact points 170, 172, 174, 176, the first support bracket 74 may exert a force against the lightweight seat member 72 perpendicular to the surface of the first support bracket 74 at which the contact point 170, 172, 174, 176 exists. Thus, a first restraining force 180 may be applied by the supporting flange 160 at the first contact point 170, in an upward direction, perpendicular to the supporting flange 160. The second, third, and fourth contact points 172, 174, 176 may each have an associated restraining force 182, 184, 186 perpendicular to the attachment flange 162, the lower lip 166, and the upper lip 164, respectively. The second restraining force 182 acts inward along the lateral axis 14, and the third restraining force 184 acts outward along the lateral axis 14 to oppose the second restraining force 182. The fourth restraining force 186 also has a component lying along the lateral axis 14 that resists the second restraining force 182. Similarly, the first restraining force 180 is pressed upward along the transverse axis 16, and the fourth restraining force 186 has a component along the transverse axis 16 that presses downward to oppose the first restraining force 180. The restraining forces 180, 182, 184, 186 act to keep the first support bracket 74 and the lightweight seat member 72 in static equilibrium with respect to the lateral and transverse directions 14, 16. Thus, relative motion between the first support bracket 74 and the lightweight seat member 72 in any direction within the plane formed by the lateral and transverse directions 14, 16 is restricted. The restraining forces 180, 182, 184, 186 also restrain relative motion between the first support bracket 74 and the lightweight seat member 72 in the longitudinal direction 12. When two objects are in contact with one another, static friction tends to keep them from moving relative to each other in a direction parallel to the surfaces at which contact exists. Static friction is generally proportional to the normal force, or force pressing the objects together, and the frictional coefficient, which is related to the size and roughness of the contacting surfaces. The restraining forces 180, 182, 184, 186 therefore produce a frictional force acting to resist relative motion in the longitudinal direction 12. Preferably, the frictional force is large enough to resist relative motion of the support brackets 74, 76 and the lightweight seat member 72, even if the tabs 99 are somehow disengaged from the tab engagement slots 144. However, the frictional force is preferably not so great that insertion of the lightweight seat member 72 in engagement with the brackets 74, 76 is made overly difficult. Thus, the geometries of the lightweight seat member 72 and the brackets 74, 76 are preferably designed- to ensure that the restraining forces 180, 182, 184, 186 have a magnitude that will induce the appropriate level of frictional force. The frictional force may also be modified by adjusting the contact points 170, 172, 174, 176 to create larger or smaller surface areas in contact with each other. Additionally, the frictional force may be adjusted by increasing or decreasing the surface roughness of the lateral ridge 120 and/or the support brackets 74, 76. The application of frictional force to keep the support brackets 74, 76 attached to the lightweight seat member 72 may be referred to as “engagement,” or “gripping engagement.” The force required to produce engagement between the support brackets 74, 76 and the lightweight seat member 72 is the “engagement force.” Typically, the “disengagement force,” or force required to disengage the support brackets 74, 76 from the lightweight seat member 72 (with the tabs 99 disengaged), will be about the same as the engagement force. The disengagement force may even be somewhat greater than the engagement force because the disengagement force must overcome the static friction between the support brackets 74, 76 and the lightweight seat member 72. The static friction is typically larger than the dynamic friction that resists the engagement force. The restraining forces 180, 182, 184, 186 enable the support brackets 74, 76 to grip the lightweight seat member 72 without the use of mechanical fasteners. “Mechanical fasteners,” as used in this application, refers to rigid devices used to connect two separate members together. Thus, screws, nuts, bolts, rivets, locking pins, and the like are all mechanical fasteners. However, non-rigid attachment mechanisms, such as glues, epoxies, and the like, are not mechanical fasteners. The first support bracket 74 would still have an enclosing shape if the upper lip 164 were perpendicular to the attachment flange 162. However, the acute angle of the upper lip 164, as depicted, may provide a more lasting engagement between the first support bracket 74 and the lightweight seat member 72. More specifically, with brief reference to FIG. 1, a user sitting toward the front surface of the lightweight seat member 72 of the folding chair 10 may induce a bending moment in the seat 18 that must be resisted by the rivet 66 connecting the first support bracket 74 to the first rear leg 24. Thus, the rivet 66 may pull downward on the rear end 78 of the first support bracket 74 to resist the downward force of the user against the forward part of the seat 18. The rear end 78 of the first support bracket 74, in return, pulls downward against the lateral ridge 120 of the lightweight seat member 72. As a result, the upper lip 164 is pressed into the engagement groove 124. This pressure tends to resist inward pivoting of the walls of the engagement groove 124 that may result in bending of the lightweight seat member 72 under a user's weight. If the angle between the upper lip 164 and the attachment flange 162 were formed or bent into an obtuse configuration, the pressure between the upper lip 164 and the sides of the engagement groove 124 would tend to bend the upper lip 164 further, bend the attachment flange 162 outward, and/or deform the lateral ridge 120 inward. As a result, the upper lip 164 maybe moved sufficiently in the lateral direction 14 with respect to the engagement groove 124 to disengage the upper lip 164 from the engagement groove 124. The probable result of such disengagement would be failure of the folding chair 10 due to complete disengagement of the lightweight seat member 72 from the first support bracket 74, extreme deformation of the lightweight seat member 74, or the like. As a result of the acute angle, pressure of the sides of the engagement groove 124 upward against the upper lip 164 is directed toward the point at which the upper lip 164 meets the attachment flange 162. Thus, the moment arm tending to bend the upper lip 164 upward is reduced, and the upper lip 164 is drawn inward into tighter engagement with the engagement groove 124. Consequently, with the acute angle, the weight of a user on the seat 18 tends to simply tighten the engagement of the upper lip 162 of the rear end 78 of the first support bracket 74 within the engagement groove 124. Preferably, each of the support brackets 72, 74 comprises an arcuate shape in the longitudinal direction 12, as shown in FIGS. 1 and 2. An “arcuate” shape refers to a member formed into an overall curve with a substantially constant radius along the entire length of the member. Preferably, the lateral ridge 120 has an arcuate shape with a radius substantially equal to that of the first support bracket 74. The arcuate shape is beneficial because it discourages bending of the support brackets 74, 76 without adding a great deal of material. In effect, the arcuate shape increases the sectional modulus of the support brackets 74, 76 by displacing material from the longitudinal axis of the support brackets 74, 76. More specifically, the front and rear ends 77, 78 of the support brackets 74, 76 are raised up with respect to the intermediate portion 79. The intermediate portion 79 lies generally below the longitudinal axis of the support brackets 74, 76, while the ends 77, 78 are positioned above the longitudinal axis. Thus, the support brackets 74, 76 have a much higher sectional modulus with the arcuate shape than a straight shape would provide. Bending of the seat 18 in the longitudinal direction 12, or from front-to-back, is therefore resisted. The support brackets 74, 76 may be easily manufactured through a number of different process including extrusion, stamping, casting, and the like. According to a preferred method, a large, circular piece of metal is first punched out and separated into arcuate sections in a die, such as a 14 station die. Each arcuate section may then be bent to form the L-shape depicted in FIG. 14, and bent again to form each of the lips 164, 166. Bending may be performed against a circular edge so that the arcuate shape of each section is preserved. With reference again to FIG. 2, the folding chair 10 may be assembled 0<v comparatively easily, with a minimum of manual labor. According to one presently preferred method of assembly, the first and second leg assemblies 30, 32 are first assembled. Thus, the first front leg 20 and the first rear leg 24 may each be pivotally connected to the first link 60 with the rivets 64, and pivotally connected to the first support bracket 74 with the rivets 66 to form the first leg assembly 30. The second leg assembly 32 may be similarly created by pivotally connecting the second front leg 22 and the second rear leg 26 to the second link 62 with the rivets 64, and to the second support bracket 76 with the rivets 66. Once the leg assemblies 30, 32 have been assembled, the front and rear struts 50, 52 may be affixed within the alcoves 97 to attach the leg assemblies 30, 32 together. The backrest 28 may then be inserted between the upper ends 42 of the front legs 20, 22 by bending the upper ends 42 outward slightly in the lateral direction 14, if necessary. The backrest 28 may be fixed in place between the upper ends by inserting the studs 128 into the keyholes 130, and then pressing the backrest 28 downward so that the studs 128 are engaged within the slots of the keyholes 130. If desired, the lightweight seat member 72 maybe installed last. The support brackets 74, 76 maybe rotated into a suitable position to receive the lightweight seat member 72, and then the lightweight seat member 72 may be aligned with the support brackets 74, 76 so that the lateral ridge 120 is positioned to enter the front end 77 of the first support bracket 74. Pressure may then be applied against the lightweight seat member 72 by, for example, pressing against the front surface 104 to slide the lightweight seat member 72 into engagement with the support brackets 74, 76. The pressure may be applied continuously until the front end 77 of the brackets 74, 76 abuts the abutment 126 on the first and second sides 100, 102 of the lightweight seat member 72. Pressure may be applied against the lightweight seat member 72 by hand, or by using a machine. For example, a simple press (not shown) may be configured to exert pressure against the front surface 104 or grip the lightweight seat member 72 for insertion into the support brackets 74, 76. As long as the support brackets 74, 76 and the lightweight seat member 72 are consistently manufactured from one chair to the next, the press may be configured to provide a preset pressure against the lightweight seat member 72. This pressure may, for example, range from about 10 pounds to about 1,000 pounds. Preferably, the pressure is relatively low, such as 50 pounds, so that the probability of damaging any part of the folding chair 10 through malfunction of the press or improper dimensioning or alignment of the lightweight seat member 72 or support brackets 74, 76 is low. The pressure may be applied continuously, and may be varied to move the lightweight seat member 72 in an arcuate path corresponding to its longitudinal shape. After the abutments 126 of the lightweight seat member 72 are seated against the front ends 77 of the support brackets 74, 76, pressure need no longer be applied. Since the tabs 99 are aligned with the tab engagement slots 144, they will snap into engagement with the tab engagement slots 144 as they return to their preformed, bent position. In the alternative, if the tabs 99 were formed parallel to the supporting flange 160, the tabs 99 may be folded into position within the tab engagement slots 144. The tabs 99 may not be necessary to keep the lightweight seat member 72 securely engaged within the support brackets 74, 76, but may be used in any case to provide an added measure of safety under abnormal usage conditions. Such a method of assembly alleviates problems present in the prior art. There are no supporting structures extending from one side of the lightweight seat member 72 to the other. For example, instead of long front and tear thru-rods, separate rivets 64, 66 for each side are used to connect the leg assemblies 30, 32 to the seat 18. This permits assembly of the folding chair 10 without the problem of aligning the leg assemblies 30, 32 with the single rod. In addition, the absence of any horizontal rods extending through the hollow interior of the lightweight seat member 72 is beneficial because supporting structures, such as the troughs 150 and kiss-throughs 152 shown in FIG. 3, may be formed directly in the material of the lightweight seat member 72 without interference from foreign structures inside the lightweight seat member 72. The absence of any type of metal plate spanning the width of the lightweight seat member 72 serves to decrease the weight of the folding chair 10. Additionally, the interference fit configuration of the present invention is beneficial because the lightweight seat member 72 is securely supported in a way that distributes stresses comparatively evenly to avoid creating failure points. The unique shape of the support brackets 74, 76 also supports the lightweight seat member 72 against bending with the addition of a minimal amount of heavier material so that the overall weight of the folding chair 10 is kept to a minimum. Thus, the folding chair 10 of the present invention is generally inexpensive, easy to manufacture, lightweight, easy to use, and comfortable. The present invention may be embodied in other specific forms without departing from its structures, methods, or other essential characteristics as broadly described herein and claimed hereinafter. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. The Field of the Invention The present invention relates to portable furniture and, more particularly, to novel systems and methods for providing comfortable, compact, inexpensive, and lightweight seating for easy transportation and storage. 2. The Relevant Technology Throughout history, people have sought more comfortable seating arrangements. Chairs, stools, and the like allow people to relieve stress on the legs and feet, while remaining alert and performing tasks that do not require a great deal of motion. In the twentieth century, folding chairs have made it possible for people to keep a space clear when necessary, and to erect suitable seating for gatherings or special events. However, current folding chairs possess a number of drawbacks. For example, folding chairs are often somewhat heavy. The chair must reliably support the weight of even a fairly large person. The bending stress on any member is proportional to the length of the member multiplied by the force acting upon it. Therefore, the length of the seat effectively multiplies the forces tending to bend or break the seat. Typically, seats for folding chairs have been made from stronger (and heavier) materials, such as steel, to overcome the effect of these bending stresses. The resulting chairs are heavier and therefore cost more to ship, and require more effort to move, fold, and unfold. Thus, it is desirable to use lightweight materials such as plastics to reduce the weight of folding chairs. However, many known folding chairs, especially those that incorporate lightweight materials, do not stand up to repetitive use. Groups such as the Business and Institutional Furniture Manufacturers' Association (B.I.F.M.A.) have set up standards for portable furniture. Such standards typically require that portable chairs be designed to receive a given weight loading to simulate use for a specified number of cycles, often on the order of 100,000. Many known folding chairs bend or break after only a few thousand cycles, and therefore can be expected to have a relatively short useful life. Certain known chairs use metal to reinforce lightweight materials. The seat may, for example, be supported by a frame encircling the seat or by metal rods threaded through the lightweight material. In addition to increasing the weight of the folding chair, such reinforcing measures add to manufacturing time because the supporting structure must be properly aligned with the seat, and possibly with the legs as well. In general, many known folding chairs are somewhat expensive to produce because the manner in which they are assembled requires the use of a great deal of manual labor. The legs must often be properly aligned with the seat so that mechanical fasteners can be attached to the legs and the seat. If metal supporting parts are to be threaded through the lightweight seat member to connect the legs, the lightweight seat member may have to be aligned with each leg assembly so that the threading operation can be carried out. Often, the various fasteners involved must be installed at locations that are not easily accessible for machinery. Thus, the fasteners must often be installed by hand. Accordingly, a need exists for a portable, folding chair that is lightweight and comfortable, and yet folds to a thin, stackable configuration. Such a chair must safely support the weight of a fairly heavy person. In addition, the chair should be inexpensive to produce in large quantities with a minimum of parts and assembly. | <SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The apparatus of the present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available folding chairs. Thus, it is an overall objective of the present invention to provide an inexpensive, lightweight, comfortable, chair capable of folding to fit within a small volume. To achieve the foregoing objects, and in accordance with the invention as embodied and broadly described herein in the preferred embodiment, a folding chair with an interference fit support bracket is provided. According to selected embodiments, the folding chair may comprise a pair of symmetrical leg assemblies, each of which includes a front leg and a rear leg. Each of the legs may have a lower end in contact with the ground or floor, and an upper end extending upward from the lower end. A seat may be suspended between the leg assemblies. The upper end of the front legs may also be extended to retain a backrest between the leg assemblies. The seat may be pivotally attached to the front leg and the rear leg of each of the leg assemblies. Each of the leg assemblies may also have a strut pivotally attached to the front leg and the rear leg, so that the strut, front leg, rear leg, and seat form a four-bar, four-pivot linkage. The chair may thus be folded by rotating the seat with respect to the front legs, so that the seat and rear legs fold into a position substantially parallel to the front legs. The seat may comprise a lightweight seat member constructed of a lightweight material, such as plastic, and a pair of support brackets constructed of a stronger material such as a metal. The lightweight seat member may be hollow and may be formed through a suitable process such as injection or blow molding. Each support bracket may be elongated in the longitudinal direction, with a generally enclosing cross-sectional shape designed to grip the lightweight seat member to restrict relative motion of the support bracket and lightweight seat member perpendicular to the length of the support bracket. The lightweight seat member may, in turn, have engaging features such as a lateral ridge and a slot to receive each bracket. The lightweight seat member may be generally configured to make contact with each of the support brackets in several places so that lateral and transverse relative motion of the lightweight seat member and support brackets can be fully prevented. Each support bracket preferably grips the seat with a retention force sufficient to ensure that the support bracket cannot slide relative to the lightweight seat member in the longitudinal direction during normal use of the folding chair. To install the support brackets on the lightweight seat member, each support bracket is preferably aligned with the corresponding engaging features of the lightweight seat member and pressed with an installation force similar in magnitude to the retention force. Each support bracket may also have a tab designed to be bent into engagement with a corresponding tab engagement slot formed in the lightweight seat member after the support bracket has been properly positioned with respect to the lightweight seat member. The tabs operate in conjunction with the retention force of the support bracket to ensure that the brackets cannot slide longitudinally off of the seat. The folding chair maybe easily assembled by, first, assembling the leg assemblies, and then affixing a support bracket to each leg assembly through the use of mechanical fasteners such as rivets, bolts, shafts with locking pins, or the like. The backrest may be affixed to the legs by any suitable fastening mechanism. The leg assemblies may then be aligned relative to each other to receive the lightweight seat member, and the lightweight seat member may be pressed into engagement with the brackets. Thus, the folding chair of the present invention provides a number of unique advantages over the prior art. For example, a minimum of metal material may be used to affix the lightweight seat member to the leg assemblies. No metal supports, such as rods or backing plates, need be affixed to or threaded through the lightweight seat member. Additionally, fixation is accomplished without forming holes in the lightweight seat member; thus, there are no stress concentrations to weaken the seat under repeated use. The folding chair can be easily assembled with actions that can generally be performed rapidly by machine. These and other objects, features, and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter. | 20050106 | 20060321 | 20050609 | 92108.0 | 1 | CRANMER, LAURIE K | PORTABLE FOLDING CHAIR | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,030,697 | ACCEPTED | Methods for reducing the viscosity of treatment fluids | In one embodiment, the present invention provides a method of treating a subterranean formation comprising providing a viscosified treatment fluid that comprises a base fluid and a gelling agent, providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises a metal and a protein, allowing the viscosified treatment fluid to interact with the breaker composition, treating the subterranean formation with the viscosified treatment fluid, and allowing a viscosity of the viscosified treatment fluid to be reduced. Embodiments of the invention also provide methods of reducing the viscosity of a viscosified treatment fluids and methods of activating oxidizing breakers. | 1. A method of treating a subterranean formation comprising: providing a viscosified treatment fluid that comprises a base fluid and a gelling agent; providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises a metal and a protein; allowing the viscosified treatment fluid to interact with the breaker composition; treating the subterranean formation with the viscosified treatment fluid; and allowing a viscosity of the viscosified treatment fluid to be reduced. 2. The method of claim 1 wherein the breaker composition is a component of the viscosified treatment fluid. 3. The method of claim 1 wherein introducing the breaker composition to the viscosified treatment fluid occurs after treating the subterranean formation with the viscosified treatment fluid. 4. The method of claim 1 wherein the method of treating the subterranean formation comprises a stimulation operation. 5. The method of claim 1 wherein the method of treating a subterranean formation comprises completing a well or drilling a well bore. 6. The method of claim 1 wherein the method of treating a subterranean formation comprises a fracturing operation or a sand control operation. 7. The method of claim 1 wherein the gelling agent comprises a biopolymer, a synthetic polymer, or a combination thereof. 8. The method of claim 1 wherein the gelling agent comprises a polysaccharide. 9. The method of claim 1 wherein the gelling agent comprises at least one of the following: guar, hydroxypropyl guar, carboxymethyl guar, carboxymethylhydroxypropyl guar, xanthan, galactomannan gum, cellulose, hydroxyethylcellulose, carboxymethylcellulose, succinoglycan, a derivative thereof, or combinations thereof. 10. The method of claim 1 wherein the oxidizing breaker comprises one of the followed: a peroxide, a persulfate, a perborate, an oxyacid of a halogen, an oxyanion of a halogen, chlorous acid, hypochlorous acid, a derivative thereof, or a combination thereof. 11. The method of claim 1 wherein the metal comprises a transition metal, a semi-metal, or a metalloid. 12. The method of claim 1 wherein the metal comprises iron. 13. The method of claim 1 wherein the protein comprises a polyamino acid, a polyamino acid with acidic side chains, or a dicarboxylic acid. 14. The method of claim 1 wherein the protein comprises a polyaspartic acid, a polyglutamic acid, a derivative of polysuccinimide, or a combination thereof. 15. The method of claim 1 wherein the metal comprises iron and the protein comprises polyaspartic acid. 16. The method of claim 1 wherein the gelling agent comprises a crosslinked gelling agent, the crosslinked gelling agent being formed by a reaction comprising a gelling agent and at least one of the following crosslinkers: a zirconium compound, a titanium compound, an aluminum compound, an antimony compound, a chromium compound, an iron compound, a copper compound, a zinc compound, a boron compound, or an organic linker. 17. The method of claim 1 wherein the treatment fluid further comprises at least one of the following: a weighting agent, an H2O soluble salt, a wetting agent, a fluid loss agent, a thinning agent, a lubricant, an anti-oxidant, a Ph control agent, a bactericide, a clay stabilizer, a surfactant, a corrosion inhibitor, proppant particulates, gravel particulates, or a scale inhibitor. 18. A method of reducing the viscosity of a viscosified treatment fluid comprising: providing a viscosified treatment fluid that comprises a base fluid and a gelling agent; providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises iron; allowing the breaker composition to interact with the viscosified treatment fluid; and allowing a viscosity of the viscosified treatment fluid to be reduced. 19. The method of claim 18, wherein the breaker activator further comprises a protein. 20. A method of activating an oxidizing breaker comprising: providing an oxidizing breaker and a breaker activator that comprises iron; and allowing the oxidizing breaker and the breaker activator to interact so as to activate the oxidizing breaker. | BACKGROUND The present invention relates to methods and compositions for treating subterranean formations, and more specifically, to improved methods and compositions for reducing the viscosity of viscosified treatment fluids. Viscosified treatment fluids are used in a variety of operations in subterranean formations. For example, viscosified treatment fluids have been used as drilling fluids, fracturing fluids, diverting fluids, and gravel packing fluids. Viscosified treatment fluids generally have a viscosity that is sufficiently high to suspend particulates for a desired period of time, to transfer hydraulic pressure to divert treatment fluids to another part of a formation, and/or to prevent undesired leak-off of fluids into a formation from the buildup of filter cakes. Most viscosified treatment fluids include gelling agents that may increase a treatment fluid's viscosity. The gelling agents typically used in viscosified treatment fluids usually comprise biopolymers or synthetic polymers. Common gelling agents include, inter alia, galactomannan gums, such as guar and locust bean gum, cellulosic polymers, and other polysaccharides. In some applications, e.g., in subterranean well operations, after a viscosified treatment fluid has performed its desired function, the fluid may be “broken,” wherein its viscosity is reduced. Breaking a viscosified treatment fluid may make it easier to remove the viscosified treatment fluid from the subterranean formation, a step that generally is completed before the well is returned to production. Breaking of viscosified treatment fluids is usually accomplished by incorporating “breakers” into the viscosified treatment fluids. Traditional breakers include, inter alia, enzymes, oxidizers, and acids. As an aside, a viscosified treatment fluid may break naturally if given enough time and/or exposure to a sufficient temperature. Such an approach is generally not practical though as it may increase the amount of time before the well may be returned to production. Oxidizing breakers, such as peroxides, persulfates, perborates, oxyacids of halogens and oxyanions of halogens, are typically used to break viscosified treatment fluids at temperatures above 200° F., e.g., by oxidative depolymerization of the polymer backbone. However, in lower temperature regimes these oxidizing agents may be ineffective for breaking the viscosity within a desirable time period. For example, when using a chlorous acid oxidizing breaker below about 200° F., a breaker activator is required to break the polymer in a desirable time period. Previous solutions have used a cupric ion chelated with ethylenediaminetetraacetic acid (EDTA) or iron citrate to activate the breaker; however, these compounds can have numerous disadvantages. For example, EDTA may be associated with potential detrimental effects on ocean species. Additionally, citrate compounds may have less desirable solubility characteristics. Also, the iron and citrate may be weakly chelated, which can allow the iron to precipitate into the environment. SUMMARY The present invention relates to methods and compositions for treating subterranean formations, and more specifically, to improved methods and compositions for reducing the viscosity of viscosified treatment fluids. In one embodiment, the present invention provides a method of treating a subterranean formation comprising: providing a viscosified treatment fluid that comprises a base fluid and a gelling agent; providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises a metal and a protein; allowing the viscosified treatment fluid to interact with the breaker composition; treating the subterranean formation with the viscosified treatment fluid; and allowing a viscosity of the viscosified treatment fluid to be reduced. In one embodiment, the present invention provides a method of reducing the viscosity of a viscosified treatment fluid comprising: providing a viscosified treatment fluid that comprises a base fluid and a gelling agent; providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises iron; allowing the breaker composition to interact with the viscosified treatment fluid; and allowing a viscosity of the viscosified treatment fluid to be reduced. In another embodiment, the present invention provides a method of activating an oxidizing breaker comprising: providing an oxidizing breaker and a breaker activator that comprises iron; and allowing the oxidizing breaker and the breaker activator to interact so as to activate the oxidizing breaker. The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments that follows. BRIEF DESCRIPTION OF THE DRAWINGS A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying schematics, in which like reference numbers indicate like features, and wherein: FIG. 1 illustrates a graph of a dynamic fluid rheology test between a control sample and a sample embodiment of this present invention. FIG. 2 illustrates a graph of viscometer flow times v. elapsed times for various oxidizing breakers and breaker activators of the present invention. While the present invention is susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the graph depicted and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. DESCRIPTION The present invention relates to methods and compositions for treating subterranean formations, and more specifically, to improved methods and compositions for reducing the viscosity of viscosified treatment fluids. The present invention provides improved breaker compositions for use in any application in which a breaker composition may be suitable, e.g., to reduce the viscosity of a viscosified treatment fluid such as those used in subterranean operations. The breaker compositions of the present invention may avoid many of the problems associated with traditional breaker compositions. In certain embodiments, these breaker compositions may operate more efficiently at lower temperatures than traditional breaker compositions, which may be desirable in certain applications. In other embodiments, these compositions may be more environmentally benign in some environments because they comprise proteins that are generally viewed as environmentally compatible. The breaker compositions of the present invention generally comprise an oxidizing breaker and a breaker activator. The oxidizing breaker acts to reduce the viscosity of a viscosified treatment fluid. Suitable examples of oxidizing breakers that may be used in the breaker compositions of the present invention include, but are not limited to, peroxides, persulfates, perborates, and oxyacids and oxyanions of halogens. Oxyacids and oxyanions of chlorine, for example, are hypochlorous acid and hypochlorites, chlorous acid and chlorites, chloric acid and chlorates, and perchloric acid and perchlorate. In certain exemplary embodiments, the oxidizing breaker may comprise chlorous acid or hypochlorous acid. Chlorous acid is available commercially under the tradename “VICON™” from Halliburton Energy Services of Duncan, OK. In other exemplary embodiments, the oxidizing breaker comprises a peroxide. Suitable peroxides are available commercially under the tradename “Oxol™” breaker from Halliburton Energy Services of Duncan, OK. The amount of an oxidizing breaker that may be used in the breaker compositions of the present invention may depend on several factors, including, but not limited to, the injection time desired, the gelling agent and its concentration, the formation temperature and other factors. The oxidizing breaker is preferably present in the aqueous treating fluid in an amount in the range of from about 0.001% to about 2.0% by weight thereof. More preferably, to achieve a break in the fluid viscosity in from about 1 to about 24 hours, the oxidizing breaker concentration should be in the range of from about 0.01% to about 0.2%. The breaker compositions of the present invention further comprise a breaker activator. Below about 200° F., oxidizing breakers may require activation to operate in a timely fashion. The breaker activator may encourage the redox cycle that activates the oxidizing breaker. In some embodiments of the present invention, the breaker activator comprises iron. Iron may include iron and iron salts. In other embodiments of the present invention, the breaker activators of the present invention comprise a metal and a protein. The metal may serve to encourage activation of the oxidizing breaker at lower temperatures. Metals having high binding constants (which measure the binding strength between the metal and the chelant) may have enhanced stability and solubility characteristics. The high binding constants of iron make iron a preferred metal. The high binding constant for iron is preferred since it inhibits the precipitation of iron in a high pH environment. Iron may also be advantageous because iron naturally occurs in high abundance in the environment. Therefore the use of iron in the environment typically does not adversely affect the natural environmental balance. Suitable metals of the present invention may include transition metals, semi-metals, and metalloids. Suitable transition metals may include those elements listed in Groups 3-12 of the Periodic Table of the Elements. Suitable metals include iron. Zinc may also serve as a suitable metal. Other metals, such as chromium, copper, manganese, cobalt, nickel, and vanadium may be suitable metals because of favorable breaker activation characteristics, but may not possess as environmentally desirable characteristics as iron. Suitable semi-metals may include aluminum. Suitable metalloids may include boron. In certain exemplary embodiments of the present invention, the metal may comprise iron. One skilled in the art, with the benefit of this disclosure, will recognize other suitable metals to be used in breaker activators of the present invention. The breaker activator also comprises a protein. The proteins of the present invention generally are capable of sequestering or chelating metals. The protein provides, inter alia, an organic chelant that can bind to the metal. The protein also may enhance the solubility characteristics of the breaker activator in aqueous environments. Suitable examples of suitable proteins include polyamino acids. Polyamino acid binding agents are advantageous to the environment because when they hydrolyze, they decompose to naturally occurring amino acids. In certain exemplary embodiments of the present invention, the protein may comprise a polyamino acid with acidic side chains. In other exemplary embodiments, the protein may comprise dicarboxylic acids. In certain exemplary embodiments, the protein may comprise polyaspartic acids. In other exemplary embodiments, the protein may comprise polyglutamic acids, derivatives of polysuccinimide, or combinations thereof. Polyaspartic acid is a preferred protein because of the protein's enhanced stability and solubility characteristics. Polyaspartic acid is available commercially under the tradename “Reactin Series™ Polymers” from Folia Inc. of Birmingham, Ala. One skilled in the art, with the benefit of this disclosure, will recognize other suitable proteins to be used in the breaker activators of the present invention. The amount of breaker activator that should be included in the breaker composition is that amount required to sufficiently activate the oxidizing breaker for a particular purpose. In certain exemplary embodiments, the breaker activator will be present in the viscosified treatment fluid in an amount in the range of from about 0.05% to about 1.0% by weight of the viscosified treatment fluid. Factors including the injection time desired, the gelling agent and its concentration, the formation temperature as well as other considerations known to those skilled in the art may guide the decision of the amount to include. The breaker compositions of the present invention may be used in any suitable form. For instance, the breaker composition may be in the form of a liquid, a gel, an emulsion, or a solid. In certain applications, a liquid form may be useful, e.g., when a faster break is desired. In certain embodiments, the breaker compositions of the present invention may be used in a form that allows for a delayed release of the breaker composition into a viscosified treatment fluid. A delayed release of the breaker composition may be desirable, for instance, when the subterranean operation will involve a long pump time. To provide a delayed release of the breaker composition, in certain exemplary embodiments, the breaker composition may be encapsulated or enclosed within an outer coating that is capable of degrading at a desired time. A number of encapsulation methods are suitable for at least partially coating the breaker compositions in accordance with the present invention. Generally, the encapsulation methods of the present invention are capable of delaying the release of the breaker composition for at least about 30 minutes, preferably about one hour. Some suitable encapsulation methods comprise known microencapsulation techniques including known fluidized bed processes. One such fluidized bed process is known in the art as the Wtirster process. A modification of this process uses a top spray method. Equipment to effect such microencapsulation is available from, for example, Glatt Air Techniques, Inc., Ramsey, N.J. Additional methods of coating may be found in U.S. Pat. No. 6,123,965 issued to Jacob, et al. Typically, these encapsulation methods are used to apply a coating of from about 20% by weight to about 30% by weight, but they may be used to apply a coating anywhere ranging from about 1% by weight to about 50% by weight. Generally, the amount of coating depends on the chosen coating material and the purpose of that material. Other methods of encapsulation may include agglomerating or pelletizing the breaker composition prior to coating the breaker composition with the degradable material. This agglomeration or pelletization allows breaker compositions that may not typically be compatible with traditional encapsulation methods (e.g., breaker compositions in powdered form or those lacking a smooth exterior) to be encapsulated using traditional methods. A number of agglomeration and/or pelletization methods are suitable for use in the present invention. One suitable method involves using a Glatt machine along with a binder. The binder may be water, an oil, a surfactant, a polymer, or any other material that can be sprayed and cause the particles to stick together, either temporarily or permanently. Generally, when a temporary binder (such as water) is used the agglomeration process is followed by a sprayed-on coating process to coat the pelletized breaker composition with a degradable material. Another method of coating the breaker composition within a degradable material is to physically mix the breaker composition with the degradable material and to form a single, solid particle comprising both materials. One way of accomplishing such a task is to take a powder form breaker composition and to mix it with a melted degradable polymer and then to extrude the mixture into the form of pellets. The mixture can be formed by any number of means commonly employed to produce mixtures of thermoplastics and other components, for example by using a single screw or twin screw extruder, roll mill, Banbury mixer, or the like. The mixture can be made by melting the degradable material and adding the breaker composition as a solid or a liquid, or the components can be added simultaneously. The breaker composition can be present in the particle as either a homogeneous solid state solution or as discrete particles of breaker composition in the degradable particle. The particles may be washed in water or some other solvent in order to remove particles of breaker composition on the surface of the pellet. The viscosified treatment fluids suitable for use in conjunction with the breaker compositions of the present invention generally comprise a base fluid and a gelling agent. As used herein, the term “treatment fluid” refers to any fluid that may be used in a subterranean application in conjunction with a desired function and/or for a desired purpose. The term “treatment fluid” does not imply any particular action by the fluid or any component thereof. A breaker composition of the present invention that comprises an oxidizing breaker and a breaker activator may be added to the viscosified treatment fluid at a chosen time. The base fluid of the viscosified treatment fluids may comprise an aqueous-based fluid, an oil-based fluid, a foam or a carbon dioxide commingled fluid, or an emulsion. The base fluid may be from any source provided that it does not contain compounds that may adversely affect other components in the viscosified treatment fluid. The base fluid may comprise a fluid from a natural or synthetic source. In certain exemplary embodiments of the present invention, an aqueous-based base fluid may comprise fresh water or salt water depending upon the particular density of the composition required. The term “salt water” as used herein may include unsaturated salt water or saturated salt water. Generally speaking, the base fluid will be present in the viscosified treatment fluid in an amount in the range of from about 50% to about 99.9% by weight. In other exemplary embodiments, the base fluid will be present in the viscosified treatment fluid in an amount in the range of from about 90% to about 99% by weight. One of ordinary skill in the art, with the benefit of this disclosure, will recognize an appropriate base fluid and the appropriate amount of base fluid to use for a chosen application. Typical gelling agents that may be included in the viscosified treatment fluids that may be used in connection with the present invention typically comprise biopolymers, synthetic polymers, or a combination thereof. The gelling agents may serve to increase the viscosity of the viscosified treatment fluid. A variety of gelling agents can be used in conjunction with the methods and compositions of the present invention, including, but not limited to, hydratable polymers that contain one or more functional groups such as hydroxyl, cis-hydroxyl, carboxylic acids, sulfates, sulfonates, phosphates, phosphonates, aminos, amides, or derivatives thereof. The gelling agents may be biopolymers comprising natural, modified and derivatized polysaccharides, and derivatives thereof, that contain one or more of these monosaccharide units: galactose, mannose, glucoside, glucose, xylose, arabinose, fructose, glucuronic acid, or pyranosyl sulfate. Suitable gelling agents include, but are not limited to, guar, hydroxypropyl guar, carboxymethyl guar, carboxymethylhydroxypropyl guar, other derivatives of guar gum, xanthan, galactomannan gums, cellulose, hydroxyethylcellulose, carboxymethylcellulose, succinoglycan and other cellulose derivatives. Additionally, synthetic polymers and copolymers that contain the above-mentioned functional groups may be used. Examples of such synthetic polymers include, but are not limited to, polyacrylate, polymethacrylate, polyacrylamide, polyvinyl alcohol, and polyvinylpyrrolidone. The chemistry and materials involved in the preparation of gelling agents of the type described above are well understood by those skilled in the art. In another embodiment of the present invention, the gelling agent may comprise a crosslinked gelling agent. The crosslinked gelling agent may be formed by the reaction of a gelling agent with a crosslinker. Examples of suitable crosslinkers include borates, zirconium, titanium, aluminum, calcium, magnesium, and any of the transition metal ions and organic linkers like glutaraldehyde that are capable of crosslinking molecules of the particular gelling agent utilized. Typically the amount of a gelling agent that may be included in a viscosified treatment fluid depends on the viscosity desired. Thus, the amount to include will be an amount effective to achieve a desired viscosity effect. In certain exemplary embodiments of the present invention, the gelling agent may be present in the viscosified treatment fluid in an amount in the range of from about 0.1% to about 10% by weight of the viscosified treatment fluid. In other exemplary embodiments, the gelling agent may be present in the range of from about 0.1% to about 2% by weight of the viscosified treatment fluid. One skilled in the art, with the benefit of this disclosure, will recognize the appropriate gelling agent and amount of the gelling agent to use for a particular application. Optionally, the viscosified treatment fluids of the present invention may comprise commonly used additives such as proppant particulates, and/or gravel particulates. Proppant particulates, inter alia, fill voids, cavities, crevices, channels behind casing strings, or channels within the subterranean formation. After a fracture has been created or enhanced, the fracture may have the tendency to revert to its original state. By lodging in these fractures, proppants may be able to keep the fractures open. Suitable proppant particulates include, but are not limited to, ground walnut hulls, polymer particles, microspheres, glass particles, ceramic particles, silica particles, rubber particles, cintered bauxite, quartz, combinations thereof, and the like. Gravel particulates used in accordance with the present invention are generally of a size such that formation particulates that may migrate with produced fluids are prevented from being produced from the subterranean formation. Suitable gravel particulates may include, but are not limited to, graded sand, bauxite, ceramic materials, glass materials, walnut hulls, polymer beads, and the like. Generally, the gravel particulates have a size in the range of from about 4 to about 400 mesh, U.S. Sieve Series. Optionally, other additives may be included in the viscosified treatment fluids if it is desirable to do so. These may include, but are not limited to, weighting agents, water soluble salts, wetting agents, fluid loss agents, thinning agents, lubricants, anti-oxidants, pH control agents, bactericides, clay stabilizers, surfactants, corrosion inhibitors, scale inhibitors, fines stabilizers and the like that do not adversely react with the other constituents of this invention. One of ordinary skill in the art with the benefit of this disclosure will recognize the appropriate type of additive for a particular application. The viscosified treatment fluids that may be used in conjunction with the present invention may be used in any subterranean operation wherein a viscosified treatment fluid is appropriate and where the viscosity of that treatment fluid will be reduced. Treating subterranean formations may involve drilling a well bore, completing a well, stimulating a subterranean formation with treatments such as a fracturing or acidizing (such as a matrix acidizing process or an acid fracturing process), or carrying out a sand control treatment (such as a gravel packing treatment) or a diverting fluid. Certain exemplary embodiments of the methods of the present invention include a method of treating a subterranean formation comprising providing a viscosified treatment fluid that comprises a base fluid and a gelling agent, providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises a metal and a protein, allowing the viscosified treatment fluid to interact with the breaker composition, treating the subterranean formation with the viscosified treatment fluid, and allowing the viscosity of the viscosified treatment fluid to be reduced. An example method of the present invention includes a method of reducing the viscosity of a viscosified treatment fluid comprising: providing a viscosified treatment fluid that comprises a base fluid and a gelling agent; providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises iron; allowing the breaker composition to interact with the viscosified treatment fluid; and allowing a viscosity of the viscosified treatment fluid to be reduced. Another example method of the present invention includes a method of activating an oxidizing breaker comprising: providing an oxidizing breaker and a breaker activator that comprises iron, and allowing the oxidizing breaker and the breaker activator to interact so as to activate the oxidizing breaker. To facilitate a better understanding of the present invention, the following examples of preferred embodiments are given. In no way should the following examples be read to limit or define the scope of the invention. EXAMPLES Example 1 Preparation of Iron-Polyaspartic Acid Complex For the following Examples, all chemicals mentioned are commercially available from Halliburton Energy Services, Inc. of Duncan, OK unless stated otherwise. The procedure for the preparation of iron-polyaspartic acid complex was as follows: iron (II) chloride tetrahydrate (1.08 g, 198.81 g/mol) was weighed out then 116 g of polyaspartic acid (PASP) (sample # HB033, Folia, Inc., Birmingham, Ala.) was added to form a mixture. The mixture was stirred until dissolution was complete. The pH of the mixture, as measured by paper (pHydrion, MicroEssentials Laboratory, Brooklyn, N.Y.) was 6.5-7.5. The mixture was decanted to a 200 mL volumetric flask, then diluted to volume with distilled water. 4.32 g L × 0.001 L = 4.32 × 10 - 3 g Addition of 1 mL standard solution 1.08 g .250 L = 4.32 g Fe Cl 2 , 4 H 2 0 L Standard solution concentration 4.32 × 10 - 3 .250 L = 0.017 g L Final concentration of sample in 200 mL crosslinked fluid Example 2 Static Screening Test Demonstrating the Breaking of The Gelling Agent Backbone A 30 pounds per thousand gallons (lbs./Mgal) Hybor G30™ fluid gel was prepared from WG-35™ fast hydrating guar by adding 3.6 grams (g) of WG-35™ to 1 liter (L) of Duncan, OK tap water containing 2% KCl. After hydration, 2 gallons (gal)/Mgal of BA-40L™ was added to the gel and pH was recorded with a calibrated Orion® series A, Model 250 pH meter (Thermo Electron Corporation, Waltham, Ma.). The samples measured 10.20 pH even after the highest concentration of the PASP solution with chelated iron(II) was added. A base gel viscosity was measured to be 25 centipoise (cP) at 76.8° F. on a Fannrm Model 35A Viscometer (Fann Instrument Corp., Houston, Tex.) at 300 revolutions per minute (rpm), and fitted with a B1 bob, S1 sleeve, and F1 spring which correlates to shear rate of 511 sec−1. VICON™ (1 lb./gal) breaker was freshly prepared in deionized water. The Hybor G30™ fluid gel was split into five 200 milliliter (mL) aliquots. An aliquot was placed into a 500 mL Waringg Blender jar (Waring Products, Inc., New Hartford, Conn.) and the attached Variac™ (variable motor transformer) (Instrument Service & Equipment, Inc., Cleveland, Ohio) was set to stir fluid moderately, but not entrain air. Table 1 shows varying concentrations of iron(II)/PASP catalyzing the break of the fluid which was added to the five aliquots. Each sample was crosslinked with 0.9 gal/Mgal CL-28M™ crosslinker. These samples were placed in a constant temperature bath at 180° F. and were evaluated periodically to observe the extent of crosslinking with time. In Table 1, C=crosslinked, WC=weakly crosslinked, and numbers are in cP. The fluids in Tests 4 and 5 had lower cP values than Test 1 after 24 hours. This suggests that the catalyst has broke the backbone of the gelling agent. TABLE 1 Static Break Tests with Hybor G30 ™ Fluid and Iron (II)/PASP Test No 1 2 3 4 5 VICON ™ NF (gal/Mgal) 10 10 10 10 10 lbs Fe/Mgal (activity) 0 .18 .36 .72 1.1 Apparent Viscosity cP measured on a Model 35A Fann Viscometer, Time (hr) B1 bob, S1 sleeve, F1 Spring, @ 300 rpm 0.5 C C C C C 1 C C C C C 1.5 C C C C C 2 C C C C C 2.5 C C C C C 3 C C C C C 3.5 C C C C C 4 C C C C C 4.5 C C C C C 5 C C C C C 5.5 C C C C C 6 C C C C C 6.5 C C C C C 7 C C C C C 24 2.5 2 1.5 1.5 1.5 HOT Cooled to R.T. C C WC 13 2.5 Example 3 Dynamic Fluid Rheology Test A 30 lbs./Mgal Hybor G30™ fluid was prepared from WG-35™ fast hydrating guar by adding 3.6 g of WG-35™ to 1 L of Duncan, OK tap water containing 2% KCl. After hydration, 2 gal/Mgal of BA-40L™ was added to the gel and pH was recorded with a calibrated Oriong series A, Model 250 pH meter (Thermo Electron Corporation, Waltham, Mass.). The initial pH of the gel was measured to be 10.4, then 10 gal/Mgal VICON™ was added to the solution. The solution was split into a control sample and an iron (Fe) Catalyst sample. The Fe Catalyst sample was the same as the control sample except it had 6 gal/Mgal of the catalyst solution. The crosslinked gel samples were evaluated on a Fannrm Model 50 Viscometer (Fann Instrument Corp., Houston, Tex.). The samples were crosslinked with 0.9 gal/Mgal CL-28M, then measured at 180° F. The results at 95 rpm are listed in Table 2. FIG. 1 shows a graphic representation of the results. TABLE 2 Dynamic Fluid Rheology Test time, Viscosity, cP Viscosity, cP time, Viscosity, cP Viscosity, cP min temp, F. Fe Catalyst Control min temp, F. Fe Catalyst Control 1 80 91 27 200 177 262 464 10 163 590 537 210 178 200 437 20 174 456 507 220 178 228 441 30 176 401 469 230 178 220 443 40 177 370 431 240 178 201 445 50 177 392 382 200 178 191 457 60 177 352 429 260 178 167 431 70 177 406 416 270 178 140 437 80 177 422 405 280 178 118 414 90 178 398 400 290 178 101 406 100 177 372 386 300 178 92 385 110 177 374 389 310 178 76 389 120 177 374 384 320 178 51 372 130 177 370 370 330 178 43 353 140 177 376 368 340 178 37 348 150 177 369 426 350 178 12 304 160 177 365 377 360 178 7 283 170 177 328 357 370 178 4 262 180 177 308 399 377 178 0 253 190 177 294 467 Example 4 Experimental Procedure The control fracturing treatment fluid used in Examples 5 and 6 was prepared by adding 25 lbs./Mgal WG-19™ to Duncan, OK tap water treated with 7% KCl. The following additives were mixed to the fluid: 0.2 gal/Mgal BA-20™ as buffering agent, 3 gal/Mgal BC-140™ as crosslinker, and 2.0 gal LOSURF-200™ as surfactant. This fluid was the control experiment. The preferred embodiment of the protein chelated iron was prepared by adding 1 g of iron(II) chloride tetrahydrate to 116 g of hydrolyzed Reactin™ Series Polymer (Folia, Inc., Birmingham, Ala.) then diluting to volume of 0.25 L with distilled water. This mixture hence referred to as Fe-PASP. Example 5 Fluid Breaking Compositions at 140° F. To demonstrate the chelated iron as a catalyst for VICON™ at 140° F., Table 3 shows different treatment mixtures. These fluids were evaluated on a Fann™ Model 50 Viscometer (Fann Instrument Corp., Houston, Tex) fitted with a B5X bob at 140° F. TABLE 3 Fluid Breaking Composition at 140° F. Elapsed Time, Ave Sample Sample Sample Sample Sample min Temp, ° F. I II III IV V 1 90 1500.1 786.6 493.8 123.1 202.3 10 141 553.1 500.8 456.7 242.2 384.5 20 141 390.5 461.0 472.6 199.8 313.6 30 141 361.9 422.8 498.5 191.4 298.7 40 141 322.8 369.3 396.4 191.5 297.0 50 141 311.9 398.4 277.4 166.5 256.8 60 141 333.5 395.0 303.0 133.5 205.1 70 141 379.5 399.6 341.5 101.6 155.2 80 141 372.1 385.1 340.1 86.3 131.1 90 141 387.8 358.2 369.2 67.6 102.3 100 141 385.1 332.8 387.5 50.4 75.8 110 141 386.5 329.4 391.2 36.8 55.1 120 141 382.8 316.9 381.7 25.3 37.7 Each of the reported samples in Table 3 contained the following formulation: 25 lb WG-19™, 3.0 gal BC-140™, 5.0 gal VICON™, 0.2 gal BA-20™, 2.0 gal LOSURF™, 95 rpm (81 sec−1). Sample I contained the control treatment fluid. Sample II contained the control treatment fluid and 5.0 gal/Mgal VICON™. Sample III contained the control treatment fluid, 5.0 gal/Mgal VICON™, and 0.32 lbs./Mgal FeCl2. Sample IV contained the control treatment fluid, 5.0 gal/Mgal VICON™, and Fe-PASP 0.32 lbs./Mgal. Sample V contained the control treatment fluid, 5.0 gaVMgal VICON™, and 0.64 lbs./Mgal FeCl2. Example 6 Fluid Breaking Compositions at 160° F. To demonstrate the chelated iron as a catalyst for VICON™ at 160° F., Table 4 shows different treatment mixtures. These fluids were evaluated on a Fann™ Model 50 Viscometer (Fann Instrument Corp., Houston, Tex.) fitted with a BSX bob at 160° F. TABLE 4 Fluid Breaking Composition at 160° F. Elapsed Time, min Ave Temp, deg F. Sample I Sample II Sample III 1 79 281.5 631.9 956.6 10 160 409.6 527.2 432.4 20 160 451.8 322.8 268.0 30 160 329.7 314.8 229.5 40 160 331.9 302.9 176.4 50 160 333.2 295.2 115.4 60 160 357.9 285.7 79.0 70 160 375.7 252.9 56.8 80 160 363.9 227.4 41.9 90 160 369.5 208.2 32.4 Each of the reported samples in Table 4 contained the following formulation: 25 lb WG-19™, 3.0 gal BC-140™, 5.0 gal VICON™, 0.2 gal BA-20™, 2.0 gal LOSURF™, 95 rpm (81 sec−1). Sample I contained the control treatment fluid. Sample II contained the control treatment fluid, 5.0 gal/Mgal VICON™, and 0.5 lbs. FeCl2. Sample III contained the control treatment fluid, 5.0 gal/Mgal VICON™, and 0.32 lbs./Mgal Fe—PASP. Example 7 Fluid Breaking Composition in a Horizontal Gravel Pack Application A base fluid was prepared as follows: 1000 mL of stirred distilled water was placed in a beaker, and the pH was adjusted to less than 3 with 20° Baume HCl. 120 mg of WG-24™ was sprinkled in the solution and then the pH of the solution was raised to greater than 8 with 50% NaOH. The solution was stirred for 5 minutes before placing the beaker in a 160° F. water bath for 15 minutes. Then the pH was adjusted to 3.0 with 20° Baume HCl. 15 mL of the solution was pipeted into a capillary flow viscometer (Ubbelohde Viscometer (Paragon Scientific Limited, Birkenhead, Wirral, United Kingdom)) and viscometer readings were recorded every 5 minutes. The change in flow was determined by measuring the flow rate with time. The temperature was held steady at 135° F. The capillary flow viscometer readings demonstrate the gradual break of a base fluid in a horizontal gravel pack application. Viscometer readings were conducted on 10 separate fluids. The control fluids measured were water and the base fluid. Three base fluids were measured with hydrogen peroxide as the oxidizing breaker. With these hydrogen peroxide samples, one sample had no breaker activator, one sample had iron(II) chloride as a breaker activator, and another sample had Fe(III) as a breaker activator. Three base fluids with persulfate as the oxidizing breaker were measured. With the persulfate samples, one sample had no breaker activator, one sample had Fe(II) as a breaker activator, and another sample had Fe(III) as a breaker activator. Also two base fluids with HT™-Breaker as the oxidizing breaker were measured. One HT™-Breaker sample had Co(II) as a breaker activator and another sample had Fe(II) as a breaker activator. For the non-control fluid experiments, to the base fluid was added the oxidizing breaker while stirring optionally, 72 mg of breaker activator (Fe(II)Cl2, Fe(II), Fe(III), or Co(II)), then the pH was adjusted to 3.0. The fluid was transferred to the capillary viscometer. FIG. 2 shows the graph of the viscometer flow times v. elapsed times for various oxidizing breakers and breaker activators described above. Therefore, the present invention is well-adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. | <SOH> BACKGROUND <EOH>The present invention relates to methods and compositions for treating subterranean formations, and more specifically, to improved methods and compositions for reducing the viscosity of viscosified treatment fluids. Viscosified treatment fluids are used in a variety of operations in subterranean formations. For example, viscosified treatment fluids have been used as drilling fluids, fracturing fluids, diverting fluids, and gravel packing fluids. Viscosified treatment fluids generally have a viscosity that is sufficiently high to suspend particulates for a desired period of time, to transfer hydraulic pressure to divert treatment fluids to another part of a formation, and/or to prevent undesired leak-off of fluids into a formation from the buildup of filter cakes. Most viscosified treatment fluids include gelling agents that may increase a treatment fluid's viscosity. The gelling agents typically used in viscosified treatment fluids usually comprise biopolymers or synthetic polymers. Common gelling agents include, inter alia, galactomannan gums, such as guar and locust bean gum, cellulosic polymers, and other polysaccharides. In some applications, e.g., in subterranean well operations, after a viscosified treatment fluid has performed its desired function, the fluid may be “broken,” wherein its viscosity is reduced. Breaking a viscosified treatment fluid may make it easier to remove the viscosified treatment fluid from the subterranean formation, a step that generally is completed before the well is returned to production. Breaking of viscosified treatment fluids is usually accomplished by incorporating “breakers” into the viscosified treatment fluids. Traditional breakers include, inter alia, enzymes, oxidizers, and acids. As an aside, a viscosified treatment fluid may break naturally if given enough time and/or exposure to a sufficient temperature. Such an approach is generally not practical though as it may increase the amount of time before the well may be returned to production. Oxidizing breakers, such as peroxides, persulfates, perborates, oxyacids of halogens and oxyanions of halogens, are typically used to break viscosified treatment fluids at temperatures above 200° F., e.g., by oxidative depolymerization of the polymer backbone. However, in lower temperature regimes these oxidizing agents may be ineffective for breaking the viscosity within a desirable time period. For example, when using a chlorous acid oxidizing breaker below about 200° F., a breaker activator is required to break the polymer in a desirable time period. Previous solutions have used a cupric ion chelated with ethylenediaminetetraacetic acid (EDTA) or iron citrate to activate the breaker; however, these compounds can have numerous disadvantages. For example, EDTA may be associated with potential detrimental effects on ocean species. Additionally, citrate compounds may have less desirable solubility characteristics. Also, the iron and citrate may be weakly chelated, which can allow the iron to precipitate into the environment. | <SOH> SUMMARY <EOH>The present invention relates to methods and compositions for treating subterranean formations, and more specifically, to improved methods and compositions for reducing the viscosity of viscosified treatment fluids. In one embodiment, the present invention provides a method of treating a subterranean formation comprising: providing a viscosified treatment fluid that comprises a base fluid and a gelling agent; providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises a metal and a protein; allowing the viscosified treatment fluid to interact with the breaker composition; treating the subterranean formation with the viscosified treatment fluid; and allowing a viscosity of the viscosified treatment fluid to be reduced. In one embodiment, the present invention provides a method of reducing the viscosity of a viscosified treatment fluid comprising: providing a viscosified treatment fluid that comprises a base fluid and a gelling agent; providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises iron; allowing the breaker composition to interact with the viscosified treatment fluid; and allowing a viscosity of the viscosified treatment fluid to be reduced. In another embodiment, the present invention provides a method of activating an oxidizing breaker comprising: providing an oxidizing breaker and a breaker activator that comprises iron; and allowing the oxidizing breaker and the breaker activator to interact so as to activate the oxidizing breaker. The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments that follows. | 20050106 | 20080226 | 20060706 | 67332.0 | E21B4326 | 0 | LEFF, ANGELA MARIE DITRAN | METHODS FOR REDUCING THE VISCOSITY OF TREATMENT FLUIDS | UNDISCOUNTED | 0 | ACCEPTED | E21B | 2,005 |
|
11,030,864 | ACCEPTED | Adjustable resource based speech recognition system | A real-time speech recognition system includes distributed processing across a client and server for recognizing a spoken query by a user. Both the client and server can dedicate a variable number of processing resources for performing speech recognition functions. In some implementations the partitioning of responsibility for speech recognition operations can be done on a client by client or query by query basis. | 1. A method of recognizing a speech utterance from a user at a network server system comprising the steps of: a) evaluating an amount of computing resources available at the network server system for performing speech recognition operations on speech related data transmitted by a client device being used by the user; wherein said speech related data corresponds to partially recognized speech data; b) specifying a first set of speech recognition operations to be performed by the network server system on said speech related data from the client device in response to step (a); wherein said first set of speech recognition operations are specified during an initialization period and are configurable on a connection-by-connection basis with each client device; further wherein full recognition of the speech utterance is performed across a distributed client—server system. 2. The method of claim 1, wherein said partially recognized speech data includes a byte stream of mel frequency cepstrum coefficients (MFCC). 3. The method of claim 1, wherein the client device is configured to perform a second set of speech recognition operations based on evaluating an amount of computing resources available at the client device. 4. The method of claim 1, wherein said first set of speech recognition operations are configured based on an application executing on the client device. 5. The method of claim 1, wherein said speech related data is communicated under control of an INTERNET browser over an INTERNET connection to the network server system. 6. The method of claim 1 wherein said speech utterance is mapped to a predefined query/answer pair stored in a query database maintained by an operator of the network server system. 7. A method of performing recognition of a speech utterance at a network server system comprising the steps of: a) evaluating an amount of computing resources available at the network server system for performing speech recognition operations on speech related data; b) specifying a first set of speech recognition operations to be performed by the network server system on said speech related data in response to step (a); c) receiving first speech data through a communications interface of the network server system, said first speech data being associated with a partial recognition of the speech utterance completed by a client device; d) completing recognition of the speech utterance using software routines executing at the network server system which implement said first set of speech recognition operations. 8. The method of claim 7 including the steps of: (e): evaluating an amount of computing resources available at the client device for performing speech recognition operations on speech data; and (f) specifying a second number of speech recognition operations to be performed by the client device on said speech data in response to step (e). 9. The method of claim 8, wherein said computing resources include computers and memory. 10. The method of claim 7 wherein said first set of speech recognition operations can be changed for a subsequent speech utterance. 11. The method of claim 7 wherein said first set of speech recognition operations is changed in response to changes in said amount of computing resources. 12. The method of claim 7 further including a step: performing natural language processing of said speech utterance to recognize a meaning of a sentence of words contained therein. 13. The method of claim 12 wherein said network server system includes a plurality of separate natural language engines. 14. The method of claim 7 wherein said network server system includes a plurality of separate servers. 15. The method of claim 7 further including a step: dynamically switching a grammar at the network server system in response to the speech utterance, which grammar includes words correlated to a status of a user within an application program. 16. The method of claim 7 further including the steps: identifying a natural language used in the speech utterance and providing an audible response in said natural language. 17. The method of claim 1 further including a step: providing an electronic agent to present interactive real-time responses to the speech utterance in a same language as said speech utterance, said electronic agent being adapted to mimic behavior and responses of a human agent. 18. The method of claim 17 wherein said electronic agent has a visual appearance and natural language speech output correlated to a context experienced by a user providing the speech utterance, an environment experienced by said user, and/or a group associated with said user. 19. The method of claim 17 wherein a different electronic agent can be presented to different users providing speech utterances received by the network server system. 20. The method of claim 17 wherein characteristics of said electronic agent, including visual appearance parameters and/or vocal parameters can be controlled by a user of the client device. 21. The method of claim 7 wherein said first speech data is received as a byte stream. 22. The method of claim 21 wherein said first speech data is received from a browser program running on the client device and connected over the INTERNET to the network server system. 23. The method of claim 7 wherein said first speech data is received continuously during a speech utterance. 24. The method of claim 23 wherein said first speech data is received continuously until silence is detected. 25. A method of performing query recognition at a network server system comprising the steps of: a) evaluating an amount of computing resources available at a client device for performing query recognition operations on speech utterance data received from a user; b) evaluating an amount of computing resources available at the network server system for performing query recognition operations on speech related data received over an INTERNET connection from the client device; c) specifying a first set of query recognition operations to be performed by the client device, and a second set of query recognition operations to be performed by the network server system in response to steps (a) and (b); wherein partitioning of query recognition operations between the client device and network server system is performed on a client device-by-client device basis; c) receiving first speech data through a communications interface of the network server system, said first speech data being associated with a partial recognition of the speech utterance completed by the client device; d) completing recognition of the speech utterance using software routines executing at the network server system which implement said first set of speech recognition operations to generate a set of words associated with the speech utterance; wherein grammars used for recognizing said speech utterance are dynamically switched by the network server system based on identifying a computer application which the user is interacting with during the speech utterance; e) processing said set of words using one or more natural language engines operating at the network server system to complete recognition of a user query. 26. The method of claim 25, wherein a predefined query/answer pair database selected for said computer application is also dynamically switched to recognize said user query. 27. A system for recognizing a speech utterance from a user at a network server system comprising: a) a first routine adapted for evaluating an amount of computing resources available at the network server system for performing speech recognition operations on speech related data transmitted by a client device being used by the user; wherein said speech related data corresponds to partially recognized speech data; b) a second routine adapted for performing a first set of speech recognition operations at the network server system on said speech related data from the client device in response to step (a); wherein said first set of speech recognition operations are specified during an initialization period and are configurable on a connection-by-connection basis with each client device; further wherein full recognition of the speech utterance is performed across a distributed client-server system. 28. The system of claim 27, wherein said first routine is included as part of an INTERNET web browser program executing on the client device. 29. The system of claim 27, wherein the client device is a portable electronic appliance adapted for INTERNET communications. 30. The system of claim 29, wherein said speech related data is transmitted using a byte stream that is continuous during non-silent periods. 31. A system for performing recognition of a speech utterance at a network server system comprising: a) a first routine adapted to evaluate an amount of computing resources available at the network server system for performing speech recognition operations on speech related data; wherein a first set of speech recognition operations are performed by the network server system on said speech related data in response to step (a); c) a second routine adapted to receive first speech data through a communications interface of the network server system, said first speech data being associated with a partial recognition of the speech utterance completed by a client device; d) a third routine adapted to complete recognition of the speech utterance based on said first set of speech recognition operations. | RELATED APPLICATIONS The present application claims priority to and is a continuation of Ser. No. 10/684,357 filed Oct. 10, 2003—which in turn is a continuation of Ser. No. 09/439,145 filed Nov. 12,1999 (now U.S. Pat. No. 6,633,846). Both applications are hereby incorporated by reference herein. FIELD OF THE INVENTION The invention relates to a system and an interactive method for responding to speech based user inputs and queries presented over a distributed network such as the INTERNET or local intranet. This interactive system when implemented over the World-Wide Web services (WWW) of the INTERNET, functions so that a client or user can ask a question in a natural language such as English, French, German, Spanish or Japanese and receive the appropriate answer at his or her computer or accessory also in his or her native natural language. The system has particular applicability to such applications as remote learning, e-commerce, technical e-support services, INTERNET searching, etc. BACKGROUND OF THE INVENTION The INTERNET, and in particular, the World-Wide Web (WWW), is growing in popularity and usage for both commercial and recreational purposes, and this trend is expected to continue. This phenomenon is being driven, in part, by the increasing and widespread use of personal computer systems and the availability of low cost INTERNET access. The emergence of inexpensive INTERNET access devices and high speed access techniques such as ADSL, cable modems, satellite modems, and the like, are expected to further accelerate the mass usage of the WWW. Accordingly, it is expected that the number of entities offering services, products, etc., over the WWW will increase dramatically over the coming years. Until now, however, the INTERNET “experience” for users has been limited mostly to non-voice based input/output devices, such as keyboards, intelligent electronic pads, mice, trackballs, printers, monitors, etc. This presents somewhat of a bottleneck for interacting over the WWW for a variety of reasons. First, there is the issue of familiarity. Many kinds of applications lend themselves much more naturally and fluently to a voice-based environment. For instance, most people shopping for audio recordings are very comfortable with asking a live sales clerk in a record store for information on titles by a particular author, where they can be found in the store, etc. While it is often possible to browse and search on one's own to locate items of interest, it is usually easier and more efficient to get some form of human assistance first, and, with few exceptions, this request for assistance is presented in the form of a oral query. In addition, many persons cannot or will not, because of physical or psychological barriers, use any of the aforementioned conventional I/O devices. For example, many older persons cannot easily read the text presented on WWW pages, or understand the layout/hierarchy of menus, or manipulate a mouse to make finely coordinated movements to indicate their selections. Many others are intimidated by the look and complexity of computer systems, WWW pages, etc., and therefore do not attempt to use online services for this reason as well. Thus, applications which can mimic normal human interactions are likely to be preferred by potential on-line shoppers and persons looking for information over the WWW. It is also expected that the use of voice-based systems will increase the universe of persons willing to engage in e-commerce, e-learning, etc. To date, however, there are very few systems, if any, which permit this type of interaction, and, if they do, it is very limited. For example, various commercial programs sold by IBM (VIAVOICE™) and Kurzweil (DRAGON™) permit some user control of the interface (opening, closing files) and searching (by using previously trained URLs) but they do not present a flexible solution that can be used by a number of users across multiple cultures and without time consuming voice training. Typical prior efforts to implement voice based functionality in an INTERNET context can be seen in U.S. Pat. No. 5,819,220 incorporated by reference herein. Another issue presented by the lack of voice-based systems is efficiency. Many companies are now offering technical support over the INTERNET, and some even offer live operator assistance for such queries. While this is very advantageous (for the reasons mentioned above) it is also extremely costly and inefficient, because a real person must be employed to handle such queries. This presents a practical limit that results in long wait times for responses or high labor overheads. An example of this approach can be seen U.S. Pat. No. 5,802,526 also incorporated by reference herein. In general, a service presented over the WWW is far more desirable if it is “scalable,” or, in other words, able to handle an increasing amount of user traffic with little if any perceived delay or troubles by a prospective user. In a similar context, while remote learning has become an increasingly popular option for many students, it is practically impossible for an instructor to be able to field questions from more than one person at a time. Even then, such interaction usually takes place for only a limited period of time because of other instructor time constraints. To date, however, there is no practical way for students to continue a human-like question and answer type dialog after the learning session is over, or without the presence of the instructor to personally address such queries. Conversely, another aspect of emulating a human-like dialog involves the use of oral feedback. In other words, many persons prefer to receive answers and information in audible form. While a form of this functionality is used by some websites to communicate information to visitors, it is not performed in a real-time, interactive question-answer dialog fashion so its effectiveness and usefulness is limited. Yet another area that could benefit from speech-based interaction involves so-called “search” engines used by INTERNET users to locate information of interest at web sites, such as the those available at YAHOO®.com, METACRAWLER®.com, EXCITE®.com, etc. These tools permit the user to form a search query using either combinations of keywords or metacategories to search through a web page database containing text indices associated with one or more distinct web pages. After processing the user's request, therefore, the search engine returns a number of hits which correspond, generally, to URL pointers and text excerpts from the web pages that represent the closest match made by such search engine for the particular user query based on the search processing logic used by search engine. The structure and operation of such prior art search engines, including the mechanism by which they build the web page database, and parse the search query, are well known in the art. To date, applicant is unaware of any such search engine that can easily and reliably search and retrieve information based on speech input from a user. There are a number of reasons why the above environments (e-commerce, e-support, remote learning, INTERNET searching, etc.) do not utilize speech-based interfaces, despite the many benefits that would otherwise flow from such capability. First, there is obviously a requirement that the output of the speech recognizer be as accurate as possible. One of the more reliable approaches to speech recognition used at this time is based on the Hidden Markov Model (HMM)—a model used to mathematically describe any time series. A conventional usage of this technique is disclosed, for example, in U.S. Pat. No. 4,587,670 incorporated by reference herein. Because speech is considered to have an underlying sequence of one or more symbols, the HMM models corresponding to each symbol are trained on vectors from the speech waveforms. The Hidden Markov Model is a finite set of states, each of which is associated with a (generally multi-dimensional) probability distribution. Transitions among the states are governed by a set of probabilities called transition probabilities. In a particular state an outcome or observation can be generated, according to the associated probability distribution. This finite state machine changes state once every time unit, and each time t such that a state j is entered, a spectral parameter vector Ot is generated with probability density Bj(Ot). It is only the outcome, not the state visible to an external observer and therefore states are “hidden” to the outside; hence the name Hidden Markov Model. The basic theory of HMMs was published in a series of classic papers by Baum and his colleagues in the late 1960's and early 1970's. HMMs were first used in speech applications by Baker at Carnegie Mellon, by Jelenik and colleagues at IBM in the late 1970's and by Steve Young and colleagues at Cambridge University, UK in the 1990's. Some typical papers and texts are as follows: 1. L. E. Baum, T. Petrie, “Statistical inference for probabilistic functions for finite state Markov chains”, Ann. Math. Stat., 37: 1554-1563, 1966 2. L. E. Baum, “An inequality and associated maximation technique in statistical estimation for probabilistic functions of Markov processes”, Inequalities 3: 1-8, 1972 3. J. H. Baker, “The dragon system—An Overview”, IEEE Trans. on ASSP Proc., ASSP-23(1):24-29, Feb. 1975 4. F. Jeninek et al, “Continuous Speech Recognition: Statistical methods” in Handbook of Statistics, II, P. R. Kristnaiad, Ed. Amsterdam, The Netherlands, North-Holland, 1982 5. L. R. Bahl, F. Jeninek, R. L. Mercer, “A maximum likelihood approach to continuous speech recognition”, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-5:179-190,1983 6. J. D. Ferguson, “Hidden Markov Analysis: An Introduction”, in Hidden Markov Models for Speech, Institute of Defense Analyses, Princeton, N.J. 1980. 7. H. R. Rabiner and B. H. Juang, “Fundamentals of Speech Recognition”, Prentice Hall, 1993 8. H. R. Rabiner, “Digital Processing of Speech Signals”, Prentice Hall, 1978 More recently research has progressed in extending HMM and combining HMMs with neural networks to speech recognition applications at various laboratories. The following is a representative paper: 9. Nelson Morgan, Herve Bourlard, Steve Renals, Michael Cohen and Horacio Franco (1993), Hybrid Neural Network/Hidden Markov Model Systems for Continuous Speech Recognition. Journal of Pattern Recognition and Artificial Intelligence, Vol. 7, No. 4 pp. 899-916. Also in I. Guyon and P. Wang editors, Advances in Pattern Recognition Systems using Neural Networks, Vol. 7 of a Series in Machine Perception and Artificial Intelligence. World Scientific, February 1994. All of the above are hereby incorporated by reference. While the HMM-based speech recognition yields very good results, contemporary variations of this technique cannot guarantee a word accuracy requirement of 100% exactly and consistently, as will be required for WWW applications for all possible all user and environment conditions. Thus, although speech recognition technology has been available for several years, and has improved significantly, the technical requirements have placed severe restrictions on the specifications for the speech recognition accuracy that is required for an application that combines speech recognition and natural language processing to work satisfactorily. In contrast to word recognition, Natural language processing (NLP) is concerned with the parsing, understanding and indexing of transcribed utterances and larger linguistic units. Because spontaneous speech contains many surface phenomena such as disfluencies, -hesitations, repairs and restarts, discourse markers such as ‘well’ and other elements which cannot be handled by the typical speech recognizer, it is the problem and the source of the large gap that separates speech recognition and natural language processing technologies. Except for silence between utterances, another problem is the absence of any marked punctuation available for segmenting the speech input into meaningful units such as utterances. For optimal NLP performance, these types of phenomena should be annotated at its input. However, most continuous speech recognition systems produce only a raw sequence of words. Examples of conventional systems using NLP are shown in U.S. Pat. Nos. 4,991,094, 5,068,789, 5,146,405 and 5,680,628, all of which are incorporated by reference herein. Second, most of the very reliable voice recognition systems are speaker-dependent, requiring that the interface be “trained” with the user's voice, which takes a lot of time, and is thus very undesirable from the perspective of a WWW environment, where a user may interact only a few times with a particular website. Furthermore, speaker-dependent systems usually require a large user dictionary (one for each unique user) which reduces the speed of recognition. This makes it much harder to implement a real-time dialog interface with satisfactory response capability (i.e., something that mirrors normal conversation—on the order of 3-5 seconds is probably ideal). At present, the typical shrink-wrapped speech recognition application software include offerings from IBM (VIAVOICE™) and Dragon Systems (DRAGON™). While most of these applications are adequate for dictation and other transcribing applications, they are woefully inadequate for applications such as NLQS where the word error rate must be close to 0%. In addition these offerings require long training times and are typically are non client-server configurations. Other types of trained systems are discussed in U.S. Pat. No. 5,231,670 assigned to Kurzweil, and which is also incorporated by reference herein. Another significant problem faced in a distributed voice-based system is a lack of uniformity/control in the speech recognition process. In a typical stand-alone implementation of a speech recognition system, the entire SR engine runs on a single client. A well-known system of this type is depicted in U.S. Pat. No. 4,991,217 incorporated by reference herein. These clients can take numerous forms (desktop PC, laptop PC, PDA, etc.) having varying speech signal processing and communications capability. Thus, from the server side perspective, it is not easy to assure uniform treatment of all users accessing a voice-enabled web page, since such users may have significantly disparate word recognition and error rate performances. While a prior art reference to Gould et al. —U.S. Pat. No. 5,915,236—discusses generally the notion of tailoring a recognition process to a set of available computational resources, it does not address or attempt to solve the issue of how to optimize resources in a distributed environment such as a client-server model. Again, to enable such voice-based technologies on a wide-spread scale it is far more preferable to have a system that harmonizes and accounts for discrepancies in individual systems so that even the thinnest client is supportable, and so that all users are able to interact in a satisfactory manner with the remote server running the e-commerce, e-support and/or remote learning application. Two references that refer to a distributed approach for speech recognition include U.S. Pat. Nos. 5,956,683 and 5,960,399 incorporated by reference herein. In the first of these, U.S. Pat. No. 5,956,683—Distributed Voice Recognition System (assigned to Qualcomm) an implementation of a distributed voice recognition system between a telephony-based handset and a remote station is described. In this implementation, all of the word recognition operations seem to take place at the handset. This is done since the patent describes the benefits that result from locating of the system for acoustic feature extraction at the portable or cellular phone in order to limit degradation of the acoustic features due to quantization distortion resulting from the narrow bandwidth telephony channel. This reference therefore does not address the issue of how to ensure adequate performance for a very thin client platform. Moreover, it is difficult to determine, how, if at all, the system can perform real-time word recognition, and there is no meaningful description of how to integrate the system with a natural language processor. The second of these references—U.S. Pat. No. 5,960,399—Client/Server Speech Processor/Recognizer (assigned to GTE) describes the implementation of a HMM-based distributed speech recognition system. This reference is not instructive in many respects, however, including how to optimize acoustic feature extraction for a variety of client platforms, such as by performing a partial word recognition process where appropriate. Most importantly, there is only a description of a primitive server-based recognizer that only recognizes the user's speech and simply returns certain keywords such as the user's name and travel destination to fill out a dedicated form on the user's machine. Also, the streaming of the acoustic parameters does not appear to be implemented in real-time as it can only take place after silence is detected. Finally, while the reference mentions the possible use of natural language processing (column 9) there is no explanation of how such function might be implemented in a real-time fashion to provide an interactive feel for the user. SUMMARY OF THE INVENTION An object of the present invention, therefore, is to provide an improved system and method for overcoming the limitations of the prior art noted above; A primary object of the present invention is to provide a word and phrase recognition system that is flexibly and optimally distributed across a client/platform computing architecture, so that improved accuracy, speed and uniformity can be achieved for a wide group of users; A further object of the present invention is to provide a speech recognition system that efficiently integrates a distributed word recognition system with a natural language processing system, so that both individual words and entire speech utterances can be quickly and accurately recognized in any number of possible languages; A related object of the present invention is to provide an efficient query response system so that an extremely accurate, real-time set of appropriate answers can be given in response to speech-based queries; Yet another object of the present invention is to provide an interactive, real-time instructional/learning system that is distributed across a client/server architecture, and permits a real-time question/answer session with an interactive character; A related object of the present invention is to implement such interactive character with an articulated response capability so that the user experiences a human-like interaction; Still a further object of the present invention is to provide an INTERNET website with speech processing capability so that voice based data and commands can be used to interact with such site, thus enabling voice-based e-commerce and e-support services to be easily scaleable; Another object is to implement a distributed speech recognition system that utilizes environmental variables as part of the recognition process to improve accuracy and speed; A further object is to provide a scaleable query/response database system, to support any number of query topics and users as needed for a particular application and instantaneous demand; Yet another object of the present invention is to provide a query recognition system that employs a two-step approach, including a relatively rapid first step to narrow down the list of potential responses to a smaller candidate set, and a second more computationally intensive second step to identify the best choice to be returned in response to the query from the candidate set; A further object of the present invention is to provide a natural language processing system that facilitates query recognition by extracting lexical components of speech utterances, which components can be used for rapidly identifying a candidate set of potential responses appropriate for such speech utterances; Another related object of the present invention is to provide a natural language processing system that facilitates query recognition by comparing lexical components of speech utterances with a candidate set of potential response to provide an extremely accurate best response to such query. One general aspect of the present invention, therefore, relates to a natural language query system (NLQS) that offers a fully interactive method for answering user's questions over a distributed network such as the INTERNET or a local intranet. This interactive system when implemented over the worldwide web (WWW) services of the INTERNET functions so that a client or user can ask a question in a natural language such as English, French, German or Spanish and receive the appropriate answer at his or her personal computer also in his or her native natural language. The system is distributed and consists of a set of integrated software modules at the client's machine and another set of integrated software programs resident on a server or set of servers. The client-side software program is comprised of a speech recognition program, an agent and its control program, and a communication program. The server-side program is comprised of a communication program, a natural language engine (NLE), a database processor (DBProcess), an interface program for interfacing the DBProcess with the NLE, and a SQL database. In addition, the client's machine is equipped with a microphone and a speaker. Processing of the speech utterance is divided between the client and server side so as to optimize processing and transmission latencies, and so as to provide support for even very thin client platforms. In the context of an interactive learning application, the system is specifically used to provide a single-best answer to a user's question. The question that is asked at the client's machine is articulated by the speaker and captured by a microphone that is built in as in the case of a notebook computer or is supplied as a standard peripheral attachment. Once the question is captured, the question is processed partially by NLQS client-side software resident in the client's machine. The output of this partial processing is a set of speech vectors that are transported to the server via the INTERNET to complete the recognition of the user's questions. This recognized speech is then converted to text at the server. After the user's question is decoded by the speech recognition engine (SRE) located at the server, the question is converted to a structured query language (SQL) query. This query is then simultaneously presented to a software process within the server called DBProcess for preliminary processing and to a Natural Language Engine (NLE) module for extracting the noun phrases (NP) of the user's question. During the process of extracting the noun phrase within the NLE, the tokens of the users' question are tagged. The tagged tokens are then grouped so that the NP list can be determined. This information is stored and sent to the DBProcess process. In the DBProcess, the SQL query is fully customized using the NP extracted from the user's question and other environment variables that are relevant to the application. For example, in a training application, the user's selection of course, chapter and or section would constitute the environment variables. The SQL query is constructed using the extended SQL Full-Text predicates—CONTAINS, FREETEXT, NEAR, AND. The SQL query is next sent to the Full-Text search engine within the SQL database, where a Full-Text search procedure is initiated. The result of this search procedure is record set of answers. This record set contains stored questions that are similar linguistically to the user's question. Each of these stored questions has a paired answer stored in a separate text file, whose path is stored in a table of the database. The entire record set of returned stored answers is then returned to the NLE engine in the form of an array. Each stored question of the array is then linguistically processed sequentially one by one. This linguistic processing constitutes the second step of a 2-step algorithm to determine the single best answer to the user's question. This second step proceeds as follows: for each stored question that is returned in the record set, a NP of the stored question is compared with the NP of the user's question. After all stored questions of the array are compared with the user's question, the stored question that yields the maximum match with the user's question is selected as the best possible stored question that matches the user's question. The metric that is used to determine the best possible stored question is the number of noun phrases. The stored answer that is paired to the best-stored question is selected as the one that answers the user's question. The ID tag of the question is then passed to the DBProcess. This DBProcess returns the answer which is stored in a file. A communication link is again established to send the answer back to the client in compressed form. The answer once received by the client is decompressed and articulated to the user by the text-to-speech engine. Thus, the invention can be used in any number of different applications involving interactive learning systems, INTERNET related commerce sites, INTERNET search engines, etc. Computer-assisted instruction environments often require the assistance of mentors or live teachers to answer questions from students. This assistance often takes the form of organizing a separate pre-arranged forum or meeting time that is set aside for chat sessions or live call-in sessions so that at a scheduled time answers to questions may be provided. Because of the time immediacy and the on-demand or asynchronous nature of on-line training where a student may log on and take instruction at any time and at any location, it is important that answers to questions be provided in a timely and cost-effective manner so that the user or student can derive the maximum benefit from the material presented. This invention addresses the above issues. It provides the user or student with answers to questions that are normally channeled to a live teacher or mentor. This invention provides a single-best answer to questions asked by the student. The student asks the question in his or her own voice in the language of choice. The speech is recognized and the answer to the question is found using a number of technologies including distributed speech recognition, full-text search database processing, natural language processing and text-to-speech technologies. The answer is presented to the user, as in the case of a live teacher, in an articulated manner by an agent that mimics the mentor or teacher, and in the language of choice—English, French, German, Japanese or other natural spoken language. The user can choose the agent's gender as well as several speech parameters such as pitch, volume and speed of the character's voice. Other applications that benefit from NLQS are e-commerce applications. In this application, the user's query for a price of a book, compact disk or for the availability of any item that is to be purchased can be retrieved without the need to pick through various lists on successive web pages. Instead, the answer is provided directly to the user without any additional user input. Similarly, it is envisioned that this system can be used to provide answers to frequently-asked questions (FAQs), and as a diagnostic service tool for e-support. These questions are typical of a give web site and are provided to help the user find information related to a payment procedure or the specifications of, or problems experienced with a product/service. In all of these applications, the NLQS architecture can be applied. A number of inventive methods associated with these architectures are also beneficially used in a variety of INTERNET related applications. Although the inventions are described below in a set of preferred embodiments, it will be apparent to those skilled in the art the present inventions could be beneficially used in many environments where it is necessary to implement fast, accurate speech recognition, and/or to provide a human-like dialog capability to an intelligent system. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a preferred embodiment of a natural language query system (NLQS) of the present invention, which is distributed across a client/server computing architecture, and can be used as an interactive learning system, an e-commerce system, an e-support system, and the like; FIGS. 2A-2C are a block diagram of a preferred embodiment of a client side system, including speech capturing modules, partial speech processing modules, encoding modules, transmission modules, agent control modules, and answer/voice feedback modules that can be used in the aforementioned NLQS; FIG. 2D is a block diagram of a preferred embodiment of a set of initialization routines and procedures used for the client side system of FIG. 2A-2C; FIG. 3 is a block diagram of a preferred embodiment of a set of routines and procedures used for handling an iterated set of speech utterances on the client side system of FIG. 2A-2C, transmitting speech data for such utterances to a remote server, and receiving appropriate responses back from such server; FIG. 4 is a block diagram of a preferred embodiment of a set of initialization routines and procedures used for un-initializing the client side system of FIGS. 2A-2C; FIG. 4A is a block diagram of a preferred embodiment of a set of routines and procedures used for implementing a distributed component of a speech recognition module for the server side system of FIG. 5; FIG. 4B is a block diagram of a preferred set of routines and procedures used for implementing an SQL query builder for the server side system of FIG. 5; FIG. 4C is a block diagram of a preferred embodiment of a set of routines and procedures used for implementing a database control process module for the server side system of FIG. 5; FIG. 4D is a block diagram of a preferred embodiment of a set of routines and procedures used for implementing a natural language engine that provides query formulation support, a query response module, and an interface to the database control process module for the server side system of FIG. 5; FIG. 5 is a block diagram of a preferred embodiment of a server side system, including a speech recognition module to complete processing of the speech utterances, environmental and grammar control modules, query formulation modules, a natural language engine, a database control module, and a query response module that can be used in the aforementioned NLQS; FIG. 6 illustrates the organization of a full-text database used as part of server side system shown in FIG. 5; FIG. 7A illustrates the organization of a full-text database course table used as part of server side system shown in FIG. 5 for an interactive learning embodiment of the present invention; FIG. 7B illustrates the organization of a full-text database chapter table used as part of server side system shown in FIG. 5 for an interactive learning embodiment of the present invention; FIG. 7C describes the fields used in a chapter table used as part of server side system shown in FIG. 5 for an interactive learning embodiment of the present invention; FIG. 7D describes the fields used in a section table used as part of server side system shown in FIG. 5 for an interactive learning embodiment of the present invention; FIG. 8 is a flow diagram of a first set of operations performed by a preferred embodiment of a natural language engine on a speech utterance including Tokenization, Tagging and Grouping; FIG. 9 is a flow diagram of the operations performed by a preferred embodiment of a natural language engine on a speech utterance including stemming and Lexical Analysis FIG. 10 is a block diagram of a preferred embodiment of a SQL database search and support system for the present invention; FIGS. 11A-11C are flow diagrams illustrating steps performed in a preferred two step process implemented for query recognition by the NLQS of FIG. 2; FIG. 12 is an illustration of another embodiment of the present invention implemented as part of a Web-based speech based learning/training System; FIGS. 13-17 are illustrations of another embodiment of the present invention implemented as part of a Web-based e-commerce system; FIG. 18 is an illustration of another embodiment of the present invention implemented as part of a voice-based Help Page for an E-Commerce Web Site. DETAILED DESCRIPTION OF THE INVENTION Overview As alluded to above, the present inventions allow a user to ask a question in a natural language such as English, French, German, Spanish or Japanese at a client computing system (which can be as simple as a personal digital assistant or cell-phone, or as sophisticated as a high end desktop PC) and receive an appropriate answer from a remote server also in his or her native natural language. As such, the embodiment of the invention shown in FIG. 1 is beneficially used in what can be generally described as a Natural Language Query System (NLQS) 100, which is configured to interact on a real-time basis to give a human-like dialog capability/experience for e-commerce, e-support, and e-learning applications. The processing for NLQS 100 is generally distributed across a client side system 150, a data link 160, and a server-side system 180. These components are well known in the art, and in a preferred embodiment include a personal computer system 150, an INTERNET connection 160A, 160B, and a larger scale computing system 180. It will be understood by those skilled in the art that these are merely exemplary components, and that the present invention is by no means limited to any particular implementation or combination of such systems. For example, client-side system 150 could also be implemented as a computer peripheral, a PDA, as part of a cell-phone, as part of an INTERNET-adapted appliance, an INTERNET linked kiosk, etc. Similarly, while an INTERNET connection is depicted for data link 160A, it is apparent that any channel that is suitable for carrying data between client system 150 and server system 180 will suffice, including a wireless link, an RF link, an IR link, a LAN, and the like. Finally, it will be further appreciated that server system 180 may be a single, large-scale system, or a collection of smaller systems interlinked to support a number of potential network users. Initially speech input is provided in the form of a question or query articulated by the speaker at the client's machine or personal accessory as a speech utterance. This speech utterance is captured and partially processed by NLQS client-side software 155 resident in the client's machine. To facilitate and enhance the human-like aspects of the interaction, the question is presented in the presence of an animated character 157 visible to the user who assists the user as a personal information retriever/agent. The agent can also interact with the user using both visible text output on a monitor/display (not shown) and/or in audible form using a text to speech engine 159. The output of the partial processing done by SRE 155 is a set of speech vectors that are transmitted over communication channel 160 that links the user's machine or personal accessory to a server or servers via the INTERNET or a wireless gateway that is linked to the INTERNET as explained above. At server 180, the partially processed speech signal data is handled by a server-side SRE 182, which then outputs recognized speech text corresponding to the user's question. Based on this user question related text, a text-to-query converter 184 formulates a suitable query that is used as input to a database processor 186. Based on the query, database processor 186 then locates and retrieves an appropriate answer using a customized SQL query from database 188. A Natural Language Engine 190 facilitates structuring the query to database 188. After a matching answer to the user's question is found, the former is transmitted in text form across data link 160B, where it is converted into speech by text to speech engine 159, and thus expressed as oral feedback by animated character agent 157. Because the speech processing is broken up in this fashion, it is possible to achieve real-time, interactive, human-like dialog consisting of a large, controllable set of questions/answers. The assistance of the animated agent 157 further enhances the experience, making it more natural and comfortable for even novice users. To make the speech recognition process more reliable, context-specific grammars and dictionaries are used, as well as natural language processing routines at NLE 190, to analyze user questions lexically. While context-specific processing of speech data is known in the art (see e.g., U.S. Pat. Nos. 5,960,394, 5,867,817, 5,758,322 and 5,384,892 incorporated by reference herein) the present inventors are unaware of any such implementation as embodied in the present inventions. The text of the user's question is compared against text of other questions to identify the question posed by the user by DB processor/engine (DBE) 186. By optimizing the interaction and relationship of the SR engines 155 and 182, the NLP routines 190, and the dictionaries and grammars, an extremely fast and accurate match can be made, so that a unique and responsive answer can be provided to the user. On the server side 180, interleaved processing further accelerates the speech recognition process. In simplified terms, the query is presented simultaneously both to NLE 190 after the query is formulated, as well as to DBE 186. NLE 190 and SRE 182 perform complementary functions in the overall recognition process. In general, SRE 182 is primarily responsible for determining the identity of the words articulated by the user, while NLE 190 is responsible for the linguistic morphological analysis of both the user's query and the search results returned after the database query. After the user's query is analyzed by NLE 190 some parameters are extracted and sent to the DBProcess. Additional statistics are stored in an array for the 2nd step of processing. During the 2nd step of 2-step algorithm, the record set of preliminary search results are sent to the NLE 160 for processing. At the end of this 2nd step, the single question that matches the user's query is sent to the DBProcess where further processing yields the paired answer that is paired with the single best stored question. Thus, the present invention uses a form of natural language processing (NLP) to achieve optimal performance in a speech based web application system. While NLP is known in the art, prior efforts in Natural Language Processing (NLP) work nonetheless have not been well integrated with Speech Recognition (SR) technologies to achieve reasonable results in a web-based application environment. In speech recognition, the result is typically a lattice of possible recognized words each with some probability of fit with the speech recognizer. As described before, the input to a typical NLP system is typically a large linguistic unit. The NLP system is then charged with the parsing, understanding and indexing of this large linguistic unit or set of transcribed utterances. The result of this NLP process is to understand lexically or morphologically the entire linguistic unit as opposed to word recognition. Put another way, the linguistic unit or sentence of connected words output by the SRE has to be understood lexically, as opposed to just being “recognized”. As indicated earlier, although speech recognition technology has been available for several years, the technical requirements for the NLQS invention have placed severe restrictions on the specifications for the speech recognition accuracy that is required for an application that combines speech recognition and natural language processing to work satisfactorily. In realizing that even with the best of conditions, it might be not be possible to achieve the perfect 100% speech recognition accuracy that is required, the present invention employs an algorithm that balances the potential risk of the speech recognition process with the requirements of the natural language processing so that even in cases where perfect speech recognition accuracy is not achieved for each word in the query, the entire query itself is nonetheless recognized with sufficient accuracy. This recognition accuracy is achieved even while meeting very stringent user constraints, such as short latency periods of 3 to 5 seconds (ideally—ignoring transmission latencies which can vary) for responding to a speech-based query, and for a potential set of 100-250 query questions. This quick response time gives the overall appearance and experience of a real-time discourse that is more natural and pleasant from the user's perspective. Of course, non-real time applications, such as translation services for example, can also benefit from the present teachings as well, since a centralized set of HMMs, grammars, dictionaries, etc., are maintained. General Aspects of Speech Recognition used in the Present Inventions General background information on speech recognition can be found in the prior art references discussed above and incorporated by reference herein. Nonetheless, a discussion of some particular exemplary forms of speech recognition structures and techniques that are well-suited for NLQS 100 is provided next to better illustrate some of the characteristics, qualities and features of the present inventions. Speech recognition technology is typically of two types—speaker independent and speaker dependent. In speaker-dependent speech recognition technology, each user has a voice file in which a sample of each potentially recognized word is stored. Speaker-dependent speech recognition systems typically have large vocabularies and dictionaries making them suitable for applications as dictation and text transcribing. It follows also that the memory and processor resource requirements for the speaker-dependent can be and are typically large and intensive. Conversely speaker-independent speech recognition technology allows a large group of users to use a single vocabulary file. It follows then that the degree of accuracy that can be achieved is a function of the size and complexity of the grammars and dictionaries that can be supported for a given language. Given the context of applications for which NLQS, the use of small grammars and dictionaries allow speaker independent speech recognition technology to be implemented in NLQS. The key issues or requirements for either type—speaker-independent or speaker-dependent, are accuracy and speed. As the size of the user dictionaries increase, the speech recognition accuracy metric—word error rate (WER) and the speed of recognition decreases. This is so because the search time increases and the pronunciation match becomes more complex as the size of the dictionary increases. The basis. of the NLQS speech recognition system is a series of Hidden Markov Models (HMM), which, as alluded to earlier, are mathematical models used to characterize any time varying signal. Because parts of speech are considered to be based on an underlying sequence of one or more symbols, the HMM models corresponding to each symbol are trained on vectors from the speech waveforms. The Hidden Markov Model is a finite set of states, each of which is associated with a (generally multi-dimensional) probability distribution. Transitions among the states are governed by a set of probabilities called transition probabilities. In a particular state an outcome or observation can be generated, according to an associated probability distribution. This finite state machine changes state once every time unit, and each time t such that a state j is entered, a spectral parameter vector Ot is generated with probability density Bj(Ot). It is only the outcome, not the state which is visible to an external observer and therefore states are “hidden” to the outside; hence the name Hidden Markov Model. In isolated speech recognition, it is assumed that the sequence of observed speech vectors corresponding to each word can each be described by a Markov model as follows: O=o1,o2, . . . oT (1-1) where ot is a speech vector observed at time t. The isolated word recognition then is to compute: arg max {P(wi|O)} (1-2) By using Bayes' Rule, {P(wi|O)}=[P(O|wi) P(wi)]/P(O) (1-3) In the general case, the Markov model when applied to speech also assumes a finite state machine which changes state once every time unit and each time that a state j is entered, a speech vector ot is generated from the probability density bj (ot). Furthermore, the transition from state i to state j is also probabilistic and is governed by the discrete probability aij. For a state sequence X, the joint probability that O is generated by the model M moving through a state sequence X is the product of the transition probabilities and the output probabilities. Only the observation sequence is known—the state sequence is hidden as mentioned before. Given that X is unknown, the required likelihood is computed by summing over all possible state sequences X=x(1), x(2), x(3) , . . . x(T), that is P(O|M)=Σ{ax(0)x(1)Πb(x)(ot)ax(t)x(t+1)} Given a set of models Mi, corresponding to words wi equation 1-2 is solved by using 1-3 and also by assuming that: P(O|wi)=P(O|Mi) All of this assumes that the parameters {aij} and {bj(ot)} are known for each model Mi. This can be done, as explained earlier, by using a set of training examples corresponding to a particular model. Thereafter, the parameters of that model can be determined automatically by a robust and efficient re-estimation procedure. So if a sufficient number of representative examples of each word are collected, then a HMM can be constructed which simply models all of the many sources of variability inherent in real speech. This training is well-known in the art, so it is not described at length herein, except to note that the distributed architecture of the present invention enhances the quality of HMMs, since they are derived and constituted at the server side, rather than the client side. In this way, appropriate samples from users of different geographical areas can be easily compiled and analyzed to optimize the possible variations expected to be seen across a particular language to be recognized. Uniformity of the speech recognition process is also well-maintained, and error diagnostics are simplified, since each prospective user is using the same set of HMMs during the recognition process. To determine the parameters of a HMM from a set of training samples, the first step typically is to make a rough guess as to what they might be. Then a refinement is done using the Baum-Welch estimation formulae. By these formulae, the maximum likelihood estimates of μj (where μj is mean vector and Σj is covariance matrix) is: μjΣTt=1Lj(t)ot/[ΣTt=1Lj(t)ot] A forward-backward algorithm is next used to calculate the probability of state occupation Lj(t). If the forward probability αj (t) for some model M with N states is defined as: αj(t)=P(o1, . . . , ot,x(t)=j|M) This probability can be calculated using the recursion: αj(t)=[ΣN−1i−2α(t−1)aij]bj(ot) Similarly the backward probability can be computed using the recursion: βj(t)=ΣN−1j=2aijbj(ot+1(t+1) Realizing that the forward probability is a joint probability and the backward probability is a conditional probability, the probability of state occupation is the product of the two probabilities: αj(t)βj(t)=P(O, x(t)=j|M) Hence the probability of being in state j at a time t is: Lj(t)=1/P[αj(t)βj(t)] where P=P(O|M) To generalize the above for continuous speech recognition, we assume the maximum likelihood state sequence where the summation is replaced by a maximum operation. Thus for a given model M, let φj (t) represent the maximum likelihood of observing speech vectors o1 to ot and being used in state j at time t: φj(t)=max{φj(t)(t−1)αij}βj(ot) Expressing this logarithmically to avoid underflow, this likelihood becomes: ψj(t)=max{ψi(t−1)+log(αij)}+log(bj(ot) This is also known as the Viterbi algorithm. It can be visualized as finding the best path through a matrix where the vertical dimension represents the states of the HMM and horizontal dimension represents frames of speech i.e. time. To complete the extension to connected speech recognition, it is further assumed that each HMM representing the underlying sequence is connected. Thus the training data for continuous speech recognition should consist of connected utterances; however, the boundaries between words do not have to be known. To improve computational speed/efficiency, the Viterbi algorithm is sometimes extended to achieve convergence by using what is known as a Token Passing Model. The token passing model represents a partial match between the observation sequence o1 to ot and a particular model, subject to the constraint that the model is in state j at time t. This token passing model can be extended easily to connected speech environments as well if we allow the sequence of HMMs to be defined as a finite state network. A composite network that includes both phoneme-based HMMs and complete words can be constructed so that a single-best word can be recognized to form connected speech using word N-best extraction from the lattice of possibilities. This composite form of HMM-based connected speech recognizer is the basis of the NLQS speech recognizer module. Nonetheless, the present invention is not limited as such to such specific forms of speech recognizers, and can employ other techniques for speech recognition if they are otherwise compatible with the present architecture and meet necessary performance criteria for accuracy and speed to provide a real-time dialog experience for users. The representation of speech for the present invention's HMM-based speech recognition system assumes that speech is essentially either a quasi-periodic pulse train (for voiced speech sounds) or a random noise source (for unvoiced sounds). It may be modeled as two sources—one a impulse train generator with pitch period P and a random noise generator which is controlled by a voice/unvoiced switch. The output of the switch is then fed into a gain function estimated from the speech signal and scaled to feed a digital filter H(z) controlled by the vocal tract parameter characteristics of the speech being produced. All of the parameters for this model—the voiced/unvoiced switching, the pitch period for voiced sounds, the gain parameter for the speech signal and the coefficient of the digital filter, vary slowly with time. In extracting the acoustic parameters from the user's speech input so that it can evaluated in light of a set of HMMs, cepstral analysis is typically used to separate the vocal tract information from the excitation information. The cepstrum of a signal is computed by taking the Fourier (or similar) transform of the log spectrum. The principal advantage of extracting cepstral coefficients is that they are de-correlated and the diagonal covariances can be used with HMMs. Since the human ear resolves frequencies non-linearly across the audio spectrum, it has been shown that a front-end that operates in a similar non-linear way improves speech recognition performance. Accordingly, instead of a typical linear prediction-based analysis, the front-end of the NLQS speech recognition engine implements a simple, fast Fourier transform based filter bank designed to give approximately equal resolution on the Mel-scale. To implement this filter bank, a window of speech data (for a particular time frame) is transformed using a software based Fourier transform and the magnitude taken. Each FFT magnitude is then multiplied by the corresponding filter gain and the results accumulated. The cepstral coefficients that are derived from this filter-bank analysis at the front end are calculated during a first partial processing phase of the speech signal by using a Discrete Cosine Transform of the log filter bank amplitudes. These cepstral coefficients are called Mel-Frequency Cepstral Coefficients (MFCC) and they represent some of the speech parameters transferred from the client side to characterize the acoustic features of the user's speech signal. These parameters are chosen for a number of reasons, including the fact that they can be quickly and consistently derived even across systems of disparate capabilities (i.e., for everything from a low power PDA to a high powered desktop system), they give good discrimination, they lend themselves to a number of useful recognition related manipulations, and they are relatively small and compact in size so that they can be transported rapidly across even a relatively narrow band link. Thus, these parameters represent the least amount of information that can be used by a subsequent server side system to adequately and quickly complete the recognition process. To augment the speech parameters an energy term in the form of the logarithm of the signal energy is added. Accordingly, RMS energy is added to the 12 MFCC's to make 13 coefficients. These coefficients together make up the partially processed speech data transmitted in compressed form from the user's client system to the remote server side. The performance of the present speech recognition system is enhanced significantly by computing and adding time derivatives to the basic static MFCC parameters at the server side. These two other sets of coefficients—the delta and acceleration coefficients representing change in each of the 13 values from frame to frame (actually measured across several frames), are computed during a second partial speech signal processing phase to complete the initial processing of the speech signal, and are added to the original set of coefficients after the latter are received. These MFCCs together with the delta and acceleration coefficients constitute the observation vector Ot mentioned above that is used for determining the appropriate HMM for the speech data. The delta and acceleration coefficients are computed using the following regression formula: dt=Σθθ=1[ct+θ−ct−θ]/2Σθθ=1θ2 where dt is a delta coefficient at time t computed in terms of the corresponding static coefficients: dt=[ct+θ−ct−θ]/2θ In a typical stand-alone implementation of a speech recognition system, the entire SR engine runs on a single client. In other words, both the first and second partial processing phases above are executed by the same DSP (or microprocessor) running a ROM or software code routine at the client's computing machine. In contrast, because of several considerations, specifically—cost, technical performance, and client hardware uniformity, the present NLQS system uses a partitioned or distributed approach. While some processing occurs on the client side, the main speech recognition engine runs on a centrally located server or number of servers. More specifically, as noted earlier, capture of the speech signals, MFCC vector extraction and compression are implemented on the client's machine during a first partial processing phase. The routine is thus streamlined and simple enough to be implemented within a browser program (as a plug in module, or a downloadable applet for example) for maximum ease of use and utility. Accordingly, even very “thin” client platforms can be supported, which enables the use of the present system across a greater number of potential sites. The primary MFCCs are then transmitted to the server over the channel, which, for example, can include a dial-up INTERNET connection, a LAN connection, a wireless connection and the like. After decompression, the delta and acceleration coefficients are computed at the server to complete the initial speech processing phase, and the resulting observation vectors Ot are also determined. General Aspects of Speech Recognition Engine The speech recognition engine is also located on the server, and is based on a HTK-based recognition network compiled from a word-level network, a dictionary and a set of HMMs. The recognition network consists of a set of nodes connected by arcs. Each node is either a HMM model instance or a word end. Each model node is itself a network consisting of states connected by arcs. Thus when fully compiled, a speech recognition network consists of HMM states connected by transitions. For an unknown input utterance with T frames, every path from the start node to the exit node of the network passes through T HMM states. Each of these paths has log probability which is computed by summing the log probability of each individual transition in the path and the log probability of each emitting state generating the corresponding observation. The function of the Viterbi decoder is find those paths through the network which have the highest log probability. This is found using the Token Passing algorithm. In a network that has many nodes, the computation time is reduced by only allowing propagation of those tokens which will have some chance of becoming winners. This process is called pruning. Natural Language Processor In a typical natural language interface to a database, the user enters a question in his/her natural language, for example, English. The system parses it and translates it to a query language expression. The system then uses the query language expression to process the query and if the search is successful, a record set representing the results is displayed in English either formatted as raw text or in a graphical form. For a natural language interface to work well involves a number of technical requirements. For example, it needs to be robust—in the sentence ‘What's the departments turnover’ it needs to decide that the word whats=what's =what is. And it also has to determine that departments=department's. In addition to being robust, the natural language interface has to distinguish between the several possible forms of ambiguity that may exist in the natural language—lexical, structural, reference and ellipsis ambiguity. All of these requirements, in addition to the general ability to perform basic linguistic morphological operations of tokenization, tagging and grouping, are implemented within the present invention. Tokenization is implemented by a text analyzer which treats the text as a series of tokens or useful meaningful units that are larger than individual characters, but smaller than phrases and sentences. These include words, separable parts of words, and punctuation. Each token is associated with an offset and a length. The first phase of tokenization is the process of segmentation which extracts the individual tokens from the input text and keeps track of the offset where each token originated in the input text. The tokenizer output lists the offset and category for each token. In the next phase of the text analysis, the tagger uses a built-in morphological analyzer to look up each word/token in a phrase or sentence and internally lists all parts of speech. The output is the input string with each token tagged with a parts of speech notation. Finally the grouper which functions as a phrase extractor or phrase analyzer, determines which groups of words form phrases. These three operations which are the foundations for any modern linguistic processing schemes, are fully implemented in optimized algorithms for determining the single-best possible answer to the user's question. SQL Database and Full-Text Query Another key component of present system is a SQL-database. This database is used to store text, specifically the answer-question pairs are stored in full-text tables of the database. Additionally, the full-text search capability of the database allows full-text searches to be carried out. While a large portion of all digitally stored information is in the form of unstructured data, primarily text, it is now possible to store this textual data in traditional database systems in character-based columns such as varchar and text. In order to effectively retrieve textual data from the database, techniques have to be implemented to issue queries against textual data and to retrieve the answers in a meaningful way where it provides the answers as in the case of the NLQS system. There are two major types of textual searches: Property—This search technology first applies filters to documents in order to extract properties such as author, subject, type, word count, printed page count, and time last written, and then issues searches against those properties; Full-text—this search technology first creates indexes of all non-noise words in the documents, and then uses these indexes to support linguistic searches and proximity searches. Two additional technologies are also implemented in this particular RDBMs: SQL Server also have been integrated: A Search service—a full-text indexing and search service that is called both index engine and search, and a parser that accepts full-text SQL extensions and maps them into a form that can be processed by the search engine. The four major aspects involved in implementing full-text retrieval of plain-text data from a full-text-capable database are: Managing the definition of the tables and columns that are registered for full-text searches; Indexing the data in registered columns—the indexing process scans the character streams, determines the word boundaries (this is called word breaking), removes all noise words (this also is called stop words), and then populates a full-text index with the remaining words; Issuing queries against registered columns for populated full-text indexes; Ensuring that subsequent changes to the data in registered columns gets propagated to the index engine to keep the full-text indexes synchronized. The underlying design principle for the indexing, querying, and synchronizing processes is the presence of a full-text unique key column (or single-column primary key) on all tables registered for full-text searches. The full-text index contains an entry for the non-noise words in each row together with the value of the key column for each row. When processing a full-text search, the search engine returns to the database the key values of the rows that match the search criteria. The full-text administration process starts by designating a table and its columns of interest for full-text search. Customized NLQS stored procedures are used first to register tables and columns as eligible for full-text search. After that, a separate request by means of a stored procedure is issued to populate the full-text indexes. The result is that the underlying index engine gets invoked and asynchronous index population begins. Full-text indexing tracks which significant words are used and where they are located. For example, a full-text index might indicate that the word “NLQS” is found at word number 423 and word number 982 in the Abstract column of the DevTools table for the row associated with a ProductID of 6. This index structure supports an efficient search for all items containing indexed words as well as advanced search operations, such as phrase searches and proximity searches. (An example of a phrase search is looking for “white elephant,” where “white” is followed by “elephant”. An example of a proximity search is looking for “big” and “house” where “big” occurs near “house”.) To prevent the full-text index from becoming bloated, noise words such as “a,” “and,” and “the” are ignored. Extensions to the Transact-SQL language are used to construct full-text queries. The two key predicates that are used in the NLQS are CONTAINS and FREETEXT. The CONTAINS predicate is used to determine whether or not values in full-text registered columns contain certain words and phrases. Specifically, this predicate is used to search for: A word or phrase. The prefix of a word or phrase. A word or phrase that is near another. A word that is an inflectional form of another (for example, “drive” is the inflectional stem of “drives,” “drove,” “driving,” and “driven”). A set of words or phrases, each of which is assigned a different weighting. The relational engine within SQL Server recognizes the CONTAINS and FREETEXT predicates and performs some minimal syntax and semantic checking, such as ensuring that the column referenced in the predicate has been registered for full-text searches. During query execution, a full-text predicate and other relevant information are passed to the full-text search component. After further syntax and semantic validation, the search engine is invoked and returns the set of unique key values identifying those rows in the table that satisfy the full-text search condition. In addition to the FREETEXT and CONTAINS, other predicates such as AND, LIKE, NEAR are combined to create the customized NLQS SQL construct. Full-Text Query Architecture of the SQL Database The full-text query architecture is comprised of the following several components—Full-Text Query component, the SQL Server Relational Engine, the Full-Text provider and the Search Engine. The Full-Text Query component of the SQL database accept a full-text predicate or rowset-valued function from the SQL Server; transform parts of the predicate into an internal format, and sends it to Search Service, which returns the matches in a rowset. The rowset is then sent back to SQL Server. SQL Server uses this information to create the resultset that is then returned to the submitter of the query. The SQL Server Relational Engine accepts the CONTAINS and FREETEXT predicates as well as the CONTAINSTABLE() and FREETEXTTABLE() rowset-valued functions. During parse time, this code checks for conditions such as attempting to query a column that has not been registered for full-text search. If valid, then at run time, the ft_search_condition and context information is sent to the full-text provider. Eventually, the full-text provider returns a rowset to SQL Server, which is used in any joins (specified or implied) in the original query. The Full-Text Provider parses and validates the ft_search_condition, constructs the appropriate internal representation of the full-text search condition, and then passes it to the search engine. The result is returned to the relational engine by means of a rowset of rows that satisfy ft_search_condition. Client Side System 150 The architecture of client-side system 150 of Natural Language Query System 100 is illustrated in greater detail in FIGS. 2A-2C. Referring to FIG. 2A, the three main processes effectuated by Client System 150 are illustrated as follows: Initialization process 200A consisting of SRE 201, Communication 202 and Microsoft (MS) Agent 203 routines; at FIG. 2B an iterative process 200B consisting of two sub-routines: a) Receive User Speech 208—made up of SRE 204 and Communication 205; and b) Receive Answer from Server 207—made up of MS Speak Agent 206, Communication 209, Voice data file 210 and Text to Speech Engine 211. Finally, in FIG. 2C un-initialization process 200C is made up of three sub-routines: SRE 212, Communication 213, and MS Agent 214. Each of the above three processes are described in detail in the following paragraphs. It will be appreciated by those skilled in the art that the particular implementation for such processes and routines will vary from client platform to platform, so that in some environments such processes may be embodied in hard-coded routines executed by a dedicated DSP, while in others they may be embodied as software routines executed by a shared host processor, and in still others a combination of the two may be used. Initialization at Client System 150 The initialization of the Client System 150 is illustrated in FIG. 2D and is comprised generally of 3 separate initializing processes: client-side Speech Recognition Engine 220A, MS Agent 220B and Communication processes 220C. Initialization of Speech Recognition Engine 220A Speech Recognition Engine 155 is initialized and configured using the routines shown in 220A. First, an SRE COM Library is initialized. Next, memory 220 is allocated to hold Source and Coder objects, are created by a routine 221. Loading of configuration file 221A from configuration data file 221B also takes place at the same time that the SRE Library is initialized. In configuration file 221B, the type of the input of Coder and the type of the output of the Coder are declared. The structure, operation, etc. of such routines are well-known in the art, and they can be implemented using a number of fairly straightforward approaches. Accordingly, they are not discussed in detail herein. Next, Speech and Silence components of an utterance are calibrated using a routine 222, in a procedure that is also well-known in the art. To calibrate the speech and silence components, the user preferably articulates a sentence that is displayed in a text box on the screen. The SRE library then estimates the noise and other parameters required to find e silence and speech elements of future user utterances. Initialization of MS Agent 220B The software code used to initialize and set up a MS Agent 220B is also illustrated in FIG. 2D. The MS Agent 220B routine is responsible for coordinating and handling the actions of the animated agent 157 (FIG. 1). This initialization thus consists of the following steps: 1. Initialize COM library 223. This part of the code initializes the COM library, which is required to use ActiveX Controls, which controls are well-known in the art. 2. Create instance of Agent Server 224—this part of the code creates an instance of Agent ActiveX control. 3. Loading of MS Agent 225—this part of the code loads MS Agent character from a specified file 225A containing general parameter data for the Agent Character, such as the overall appearance, shape, size, etc. 4. Get Character Interface 226—this part of the code gets an appropriate interface for the specified character; for example, characters may have different control/interaction capabilities that can be presented to the user. 5. Add Commands to Agent Character Option 227—this part of the code adds commands to an Agent Properties sheet, which sheet can be accessed by clicking on the icon that appears in the system tray, when the Agent character is loaded e.g., that the character can Speak, how he/she moves, TTS Properties, etc. 6. Show the Agent Character 228—this part of the code displays the Agent character on the screen so it can be seen by the user; 7. AgentNotifySink—to handle events. This part of the code creates AgentNotifySink object 229, registers it at 230 and then gets the Agent Properties interface 231. The property sheet for the Agent character is assigned using routine 232. 8. Do Character Animations 233—This part of the code plays specified character animations to welcome the user to NLQS 100. The above then constitutes the entire sequence required to initialize the MS Agent. As with the SRE routines, the MS Agent routines can be implemented in any suitable and conventional fashion by those skilled in the art based on the present teachings. The particular structure, operation, etc. of such routines is not critical, and thus they are not discussed in detail herein. In a preferred embodiment, the MS Agent is configured to have an appearance and capabilities that are appropriate for the particular application. For instance, in a remote learning application, the agent has the visual form and mannerisms/attitude/gestures of a college professor. Other visual props (blackboard, textbook, etc.) may be used by the agent and presented to the user to bring to mind the experience of being in an actual educational environment. The characteristics of the agent may be configured at the client side 150, and/or as part of code executed by a browser program (not shown) in response to configuration data and commands from a particular web page. For example, a particular website offering medical services may prefer to use a visual image of a doctor. These and many other variations will be apparent to those skilled in the art for enhancing the human-like, real-time dialog experience for users. Initialization of Communication Link 160A The initialization of Communication Link 160A is shown with reference to process 220C FIG. 2D. Referring to FIG. 2D, this initialization consists of the following code components: Open INTERNET Connection 234—this part of the code opens an INTERNET Connection and sets the parameter for the connection. Then Set Callback Status routine 235 sets the callback status so as to inform the user of the status of connection. Finally Start New HTTP INTERNET Session 236 starts a new INTERNET session. The details of Communications Link 160 and the set up process 220C are not critical, and will vary from platform to platform. Again, in some cases, users may use a low-speed dial-up connection, a dedicated high speed switched connection (T1 for example), an always-on xDSL connection, a wireless connection, and the like. Iterative Processing of Queries/Answers As illustrated in FIG. 3, once initialization is complete, an iterative query/answer process is launched when the user presses the Start Button to initiate a query. Referring to FIG. 3, the iterative query/answer process consists of two main sub-processes implemented as routines on the client side system 150: Receive User Speech 240 and Receive User Answer 243. The Receive User Speech 240 routine receives speech from the user (or another audio input source), while the Receive User Answer 243 routine receives an answer to the user's question in the form of text from the server so that it can be converted to speech for the user by text-to-speech engine 159. As used herein, the term “query” is referred to in the broadest sense to refer, to either a question, a command, or some form of input used as a control variable by the system. For example, a query may consist of a question directed to a particular topic, such as “what is a network” in the context of a remote learning application. In an e-commerce application a query might consist of a command to “list all books by Mark Twain” for example. Similarly, while the answer in a remote learning application consists of text that is rendered into audible form by the text to speech engine 159, it could also be returned as another form of multi-media information, such as a graphic image, a sound file, a video file, etc. depending on the requirements of the particular application. Again, given the present teachings concerning the necessary structure, operation, functions, performance, etc., of the client-side Receive User Speech 240 and Receiver User Answer 243 routines, one of ordinary skill in the art could implement such in a variety of ways. Receive User Speech—As illustrated in FIG. 3, the Receive User Speech routine 240 consists of a SRE 241 and a Communication 242 process, both implemented again as routines on the client side system 150 for receiving and partially processing the user's utterance. SRE routine 241 uses a coder 248 which is prepared so that a coder object receives speech data from a source object. Next the Start Source 249 routine is initiated. This part of the code initiates data retrieval using the source Object which will in turn be given to the Coder object. Next, MFCC vectors 250 are extracted from the Speech utterance continuously until silence is detected. As alluded to earlier, this represents the first phase of processing of the input speech signal, and in a preferred embodiment, it is intentionally restricted to merely computing the MFCC vectors for the reasons already expressed above. These vectors include the 12 cepstral coefficients and the RMS energy term, for a total of 13 separate numerical values for the partially processed speech signal. In some environments, nonetheless, it is conceivable that the MFCC delta parameters and MFCC acceleration parameters can also be computed at client side system 150, depending on the computation resources available, the transmission bandwidth in data link 160A available to server side system 180, the speed of a transceiver used for carrying data in the data link, etc. These parameters can be determined automatically by client side system upon initializing SRE 155 (using some type of calibration routine to measure resources), or by direct user control, so that the partitioning of signal processing responsibilities can be optimized on a case-by-case basis. In some applications, too, server side system 180 may lack the appropriate resources or routines for completing the processing of the speech input signal. Therefore, for some applications, the allocation of signal processing responsibilities may be partitioned differently, to the point where in fact both phases of the speech signal processing may take place at client side system 150 so that the speech signal is completely—rather than partially—processed and transmitted for conversion into a query at server side system 180. Again in a preferred embodiment, to ensure reasonable accuracy and real-time performance from a query/response perspective, sufficient resources are made available in a client side system so that 100 frames per second of speech data can be partially processed and transmitted through link 160A. Since the least amount of information that is necessary to complete the speech recognition process (only 13 coefficients) is sent, the system achieves a real-time performance that is believed to be highly optimized, because other latencies (i.e., client-side computational latencies, packet formation latencies, transmission latencies) are minimized. It will be apparent that the principles of the present invention can be extended to other SR applications where some other methodology is used for breaking down the speech input signal by an SRE (i.e., non-MFCC based). The only criteria is that the SR processing be similarly dividable into multiple phases, and with the responsibility for different phases being handled on opposite sides of link 160A depending on overall system performance goals, requirements and the like. This functionality of the present invention can thus be achieved on a system-by-system basis, with an expected and typical amount of optimization being necessary for each particular implementation. Thus, the present invention achieves a response rate performance that is tailored in accordance with the amount of information that is computed, coded and transmitted by the client side system 150. So in applications where real-time performance is most critical, the least possible amount of extracted speech data is transmitted to reduce these latencies, and, in other applications, the amount of extracted speech data that is processed, coded and transmitted can be varied. Communication—transmit communication module 242 is used to implement the transport of data from the client to the server over the data link 160A, which in a preferred embodiment is the INTERNET. As explained above, the data consists of encoded MFCC vectors that will be used at then server-side of the Speech Recognition engine to complete the speech recognition decoding. The sequence of the communication is as follows: OpenHTTPRequest 251—this part of the code first converts MFCC vectors to a stream of bytes, and then processes the bytes so that it is compatible with a protocol known as HTTP. This protocol is well-known in the art, and it is apparent that for other data links another suitable protocol would be used. 1. Encode MFCC Byte Stream 251—this part of the code encodes the MFCC vectors, so that they can be sent to the server via HTTP. 2. Send data 252—this part of the code sends MFCC vectors to the server using the INTERNET connection and the HTTP protocol. Wait for the Server Response 253—this part of the code monitors the data link 160A a response from server side system 180 arrives. In summary, the MFCC parameters are extracted or observed on-the-fly from the input speech signal. They are then encoded to a HTTP byte stream and sent in a streaming fashion to the server before the silence is detected—i.e. sent to server side system 180 before the utterance is complete. This aspect of the invention also facilitates a real-time behavior, since data can be transmitted and processed even while the user is still speaking. Receive Answer from Server 243 is comprised of the following modules as shown in FIG. 3.: MS Agent 244, Text-to-Speech Engine 245 and receive communication modules 246. All three modules interact to receive the answer from server side system 180. As illustrated in FIG. 3, the receive communication process consists of three separate processes implemented as a receive routine on client side system 150: a Receive the Best Answer 258 receives the best answer over data link 160B (the HTTP communication channel). The answer is de-compressed at 259 and then the answer is passed by code 260 to the MS Agent 244, where it is received by code portion 254. A routine 255 then articulates the answer using text-to-speech engine 257. Of course, the text can also be displayed for additional feedback purposes on a monitor used with client side system 150. The text to speech engine uses a natural language voice data file 256 associated with it that is appropriate for the particular language application (i.e., English, French, German, Japanese, etc.). As explained earlier when the answer is something more than text, it can be treated as desired to provide responsive information to the user, such as with a graphics image, a sound, a video clip, etc. Uninitialization The un-initialization routines and processes are illustrated in FIG. 4. Three functional modules are used for un-initializing the primary components of the client side system 150; these include SRE 270, Communications 271 and MS Agent 272 un-initializing routines. To un-initialize SRE 220A, memory that was allocated in the initialization phase is de-allocated by code 273 and objects created during such initialization phase are deleted by code 274. Similarly, as illustrated in FIG. 4, to un-initialize Communications module 220C the INTERNET connection previously established with the server is closed by code portion 275 of the Communication Un-initialization routine 271. Next the INTERNET session created at the time of initialization is also closed by routine 276. For the un-initialization of the MS Agent 220B, as illustrated in FIG. 4, MS Agent Un-initialization routine 272 first releases the Commands Interface 227 using routine 277. This releases the commands added to the property sheet during loading of the agent character by routine 225. Next the Character Interface initialized by routine 226 is released by routine 278 and the Agent is unloaded at 279. The Sink Object Interface is then also released 280 followed by the release of the Property Sheet Interface 281. The Agent Notify Sink 282 then un-registers the Agent and finally the Agent Interface 283 is released which releases all the resources allocated during initialization steps identified in FIG. 2D. It will be appreciated by those skilled in the art that the particular implementation for such un-initialization processes and routines in FIG. 4 will vary from client platform to client platform, as for the other routines discussed above. The structure, operation, etc. of such routines are well-known in the art, and they can be implemented using a number of fairly straightforward approaches without undue effort. Accordingly, they are not discussed in detail herein. Description of Server Side System 180 Introduction A high level flow diagram of the set of preferred processes implemented on server side system 180 of Natural Language Query System 100 is illustrated in FIGS. 11A through FIG. 11C. In a preferred embodiment, this process consists of a two step algorithm for completing the processing of the speech input signal, recognizing the meaning of the user's query, and retrieving an appropriate answer/response for such query. The 1st step as illustrated in FIG. 11A can be considered a high-speed first-cut pruning mechanism, and includes the following operations: after completing processing of the speech input signal, the user's query is recognized at step 1101, so that the text of the query is simultaneously sent to Natural Language Engine 190 (FIG. 1) at step 1107, and to DB Engine 186 (also FIG. 1) at step 1102. By “recognized” in this context it is meant that the user's query is converted into a text string of distinct native language words through the HMM technique discussed earlier. At NLE 190, the text string undergoes morphological linguistic processing at step 1108: the string is tokenized the tags are tagged and the tagged tokens are grouped Next the noun phrases (NP) of the string are stored at 1109, and also copied and transferred for use by DB Engine 186 during a DB Process at step 1110. As illustrated in FIG. 11A, the string corresponding to the user's query which was sent to the DB Engine 186 at 1102, is used together with the NP received from NLE 190 to construct an SQL Query at step 1103. Next, the SQL query is executed at step 1104, and a record set of potential questions corresponding to the user's query are received as a result of a full-text search at 1105, which are then sent back to NLE 190 in the form of an array at step 1106. As can be seen from the above, this first step on the server side processing acts as an efficient and fast pruning mechanism so that the universe of potential “hits” corresponding to the user's actual query is narrowed down very quickly to a manageable set of likely candidates in a very short period of time. Referring to FIG. 11B, in contrast to the first step above, the 2nd step can be considered as the more precise selection portion of the recognition process. It begins with linguistic processing of each of the stored questions in the array returned by the full-text search process as possible candidates representing the user's query. Processing of these stored questions continues in NLE 190 as follows: each question in the array of questions corresponding to the record set returned by the SQL full-text search undergoes morphological linguistic processing at step 1111: in this operation, a text string corresponding to the retrieved candidate question is tokenized, the tags are tagged and the tagged tokens are grouped. Next, noun phrases of the string are computed and stored at step 1112. This process continues iteratively at point 1113, and the sequence of steps at 1118,1111, 1112, 1113 are repeated so that an NP for each retrieved candidate question is computed and stored. Once an NP is computed for each of the retrieved candidate questions of the array, a comparison is made between each such retrieved candidate question and the user's query based on the magnitude of the NP value at step 1114. This process is also iterative in that steps 1114, 1115, 1116, 1119 are repeated so that the comparison of the NP for each retrieved candidate question with that of the NP of the user's query is completed. When there are no more stored questions in the array to be processed at step 1117, the stored question that has the maximum NP relative to the user's query, is identified at 1117A as the stored question which best matches the user's query. Notably, it can be seen that the second step of the recognition process is much more computationally intensive than the first step above, because several text strings are tokenized, and a comparison is made of several NPs. This would not be practical, nonetheless, if it were not for the fact that the first step has already quickly and efficiently reduced the candidates to be evaluated to a significant degree. Thus, this more computationally intensive aspect of the present invention is extremely valuable, however because it yields extremely high accuracy in the overall query recognition process. In this regard, therefore, this second step of the query recognition helps to ensure the overall accuracy of the system, while the first step helps to maintain a satisfactory speed that provides a real-time feel for the user. As illustrated in FIG. 11C, the last part of the query/response process occurs by providing an appropriate matching answer/response to the user. Thus, an identity of a matching stored question is completed at step 1120. Next a file path corresponding to an answer of the identified matching question is extracted at step 1121. Processing continues so that the answer is extracted from the file path at 1122 and finally the answer is compressed and sent to client side system 150 at step 1123. The discussion above is intended to convey a general overview of the primary components, operations, functions and characteristics of those portions of NLQS system 100 that reside on server side system 180. The discussion that follows describes in more detail the respective sub-systems. Software Modules used in Server Side System 180 The key software modules used on server-side system 180 of the NLQS system are illustrated in FIG. 5. These include generally the following components: a Communication module 500—identified as CommunicationServer ISAPI 500A (which is executed by SRE Server-side 182—FIG. 1 and is explained in more detail below), and a database process DBProcess module 501 (executed by DB Engine 186—FIG. 1). Natural language engine module 500C (executed by NLE 190—FIG. 1) and an interface 500B between the NLE process module 500C and the DBProcess module 500B. As shown here, CommunicationServerISAPI 500A includes a server-side speech recognition engine and appropriate communication interfaces required between client side system 150 and server side system 180. As further illustrated in FIG. 5, server-side logic of Natural Language Query System 100 also can be characterized as including two dynamic link library components: CommunicationServerISAPI 500 and DBProcess 501. The CommunicationServerIASPI 500 is comprised of 3 sub-modules: Server-side Speech Recognition Engine module 500A; Interface module 500B between Natural Language Engine modules 500C and DBProcess 501; and the Natural Language Engine modules 500C. DB Process 501 is a module whose primary function is to connect to a SQL database and to execute an SQL query that is composed in response to the user's query. In addition, this module interfaces with logic that fetches the correct answer from a file path once this answer is passed to it from the Natural Language Engine module 500C. Speech Recognition Sub-System 182 on Server-Side System 180 The server side speech recognition engine module 500A is a set of distributed components that perform the necessary functions and operations of speech recognition engine 182 (FIG. 1) at server-side 180. These components can be implemented as software routines that are executed by server side 180 in conventional fashion. Referring to FIG. 4A, a more detailed break out of the operation of the speech recognition components 600 at the server-side can be seen as follows: Within a portion 601 of the server side SRE module 500A, the binary MFCC vector byte stream corresponding to the speech signal's acoustic features extracted at client side system 150 and sent over the communication channel 160 is received. The MFCC acoustic vectors are decoded from the encoded HTTP byte stream as follows: Since the MFCC vectors contain embedded NULL characters, they cannot be transferred in this form to server side system 180 as such using HTTP protocol. Thus the MFCC vectors are first encoded at client-side 150 before transmission in such a way that all the speech data is converted into a stream of bytes without embedded NULL characters in the data. At the very end of the byte stream a single NULL character is introduced to indicate the termination of the stream of bytes to be transferred to the server over the INTERNET 160A using HTTP protocol. As explained earlier, to conserve latency time between the client and server, a smaller number of bytes Oust the 13 MFCC coefficients) are sent from client side system 150 to server side system 180. This is done automatically for each platform to ensure uniformity, or can be tailored by the particular application environment—i.e., such as where it is determined that it will take less time to compute the delta and acceleration coefficients at the server (26 more calculations), than it would take to encode them at the client, transmit them, and then decode them from the HTTP stream. In general, since server side system 180 is usually better equipped to calculate the MFCC delta and acceleration parameters, this is a preferable choice. Furthermore, there is generally more control over server resources compared to the client's resources, which means that future upgrades, optimizations, etc., can be disseminated and shared by all to make overall system performance more reliable and predictable. So, the present invention can accommodate even the worst-case scenario where the client's machine may be quite thin and may just have enough resources to capture the speech input data and do minimal processing. Dictionary Preparation & Grammar Files Referring to FIG. 4A, within code block 605, various options selected by the user (or gleaned from the user's status within a particular application) are received. For instance, in the case of a preferred remote learning system, Course, Chapter and/or Section data items are communicated. In the case of other applications (such as e-commerce) other data options are communicated, such as the Product Class, Product Category, Product Brand, etc. loaded for viewing within his/her browser. These selected options are based on the context experienced by the user during an interactive process, and thus help to limit and define the scope—i.e. grammars and dictionaries that will be dynamically loaded to speech recognition engine 182 (FIG. 1) for Viterbi decoding during processing of the user speech utterance. For speech recognition to be optimized both grammar and dictionary files are used in a preferred embodiment. A Grammar file supplies the universe of available user queries; i.e., all the possible words that are to be recognized. The Dictionary file provides phonemes (the information of how a word is pronounced—this depends on the specific native language files that are installed—for example, UK English or US English) of each word contained in the grammar file. It is apparent that if all the sentences for a given environment that can be recognized were contained in a single grammar file then recognition accuracy would be deteriorated and the loading time alone for such grammar and dictionary files would impair the speed of the speech recognition process. To avoid these problems, specific grammars are dynamically loaded or actively configured as the current grammar according to the user's context, i.e., as in the case of a remote learning system, the Course, Chapter and/or Section selected. Thus the grammar and dictionary files are loaded dynamically according to the given Course, Chapter and/or Section as dictated by the user, or as determined automatically by an application program executed by the user. The second code block 602 implements the initialization of Speech Recognition engine 182 (FIG. 1). The MFCC vectors received from client side system 150 along with the grammar filename and the dictionary file names are introduced to this block to initialize the speech decoder. As illustrated in FIG. 4A, the initialization process 602 uses the following sub-routines: A routine 602a for loading an SRE library. This then allows the creation of an object identified as External Source with code 602b using the received MFCC vectors. Code 602c allocates memory to hold the recognition objects. Routine 602d then also creates and initializes objects that are required for the recognition such as: Source, Coder, Recognizer and Results Loading of the Dictionary created by code 602e, Hidden Markov Models (HMMs) generated with code 602f; and Loading of the Grammar file generated by routine 602g. Speech Recognition 603 is the next routine invoked as illustrated in FIG. 4A, and is generally responsible for completing the processing of the user speech signals input on the client side 150, which, as mentioned above, are preferably only partially processed (i.e., only MFCC vectors are computed during the first phase) when they are transmitted across link 160. Using the functions created in External Source by subroutine 602b, this code reads MFCC vectors, one at a time from an External Source 603a, and processes them in block 603b to realize the words in the speech pattern that are symbolized by the MFCC vectors captured at the client. During this second phase, an additional 13 delta coefficients and an additional 13 acceleration coefficients are computed as part of the recognition process to obtain a total of 39 observation vectors Ot referred to earlier. Then, using a set of previously defined Hidden Markov Models (HMMs), the words corresponding to the user's speech utterance are determined in the manner described earlier. This completes the word “recognition” aspect of the query processing, which results are used further below to complete the query processing operations. It will be appreciated by those skilled in the art that the distributed nature and rapid performance of the word recognition process, by itself, is extremely useful and may be implemented in connection with other environments that do not implicate or require additional query processing operations. For example, some applications may simply use individual recognized words for filling in data items on a computer generated form, and the aforementioned systems and processes can provide a rapid, reliable mechanism for doing so. Once the user's speech is recognized, the flow of SRE 182 passes to Un-initialize SRE routine 604 where the speech engine is un-initialized as illustrated. In this block all the objects created in the initialization block are deleted by routine 604a, and memory allocated in the initialization block during the initialization phase are removed by routine 604b. Again, it should be emphasized that the above are merely illustrative of embodiments for implementing the particular routines used on a server side speech recognition system of the present invention. Other variations of the same that achieve the desired functionality and objectives of the present invention will be apparent from the present teachings. Database Processor 186 Operation—DBProcess Construction of an SQL Query used as part of the user query processing is illustrated in FIG. 4B, a SELECT SQL statement is preferably constructed using a conventional CONTAINS predicate. Module 950 constructs the SQL query based on this SELECT SQL statement, which query is used for retrieving the best suitable question stored in the database corresponding to the user's articulated query, (designated as Question here). A routine 951 then concatenates a table name with the constructed SELECT statement. Next, the number of words present in each Noun Phrase of Question asked by the user is calculated by routine 952. Then memory is allocated by routine 953 as needed to accommodate all the words present in the NP. Next a word List (identifying all the distinct words present in the NP) is obtained by routine 954. After this, this set of distinct words are concatenated by routine 955 to the SQL Query separated with a NEAR () keyword. Next, the AND keyword is concatenated to the SQL Query by routine 956 after each NP. Finally memory resources are freed by code 957 so as to allocate memory to store the words received from NP for any next iteration. Thus, at the end of this process, a completed SQL Query corresponding to the user's articulated question is generated. Connection to SOL Server—As illustrated in FIG. 4C, after the SQL Query is constructed by routine 710, a routine 711 implements a connection to the query database 717 to continue processing of the user query. The connection sequence and the subsequent retrieved record set is implemented using routines 700 which include the following: 1. Server and database names are assigned by routine 711A to a DBProcess member variable 2. A connection string is established by routine 711 B; 3. The SQL Server database is connected under control of code 711 C 4. The SQL Query is received by routine 712A 5. The SQL Query is executed by code 712B 6. Extract the total number of records retrieved by the query—713 7. Allocate the memory to store the total number of paired questions—713 8. Store the entire number of paired questions into an array—713 Once the Best Answer ID is received at 716 FIG. 4C, from the NLE 14 (FIG. 5), the code corresponding 716C receives it passes it to code in 716B where the path of the Answer file is determined using the record number. Then the file is opened 716C using the path passed to it and the contents of the file corresponding to the answer is read. Then the answer is compressed by code in 716D and prepared for transmission over the communication channel 160B (FIG. 1). NLOS Database 188—Table Organization FIG. 6 illustrates a preferred embodiment of a logical structure of tables used in a typical NLQS database 188 (FIG. 1). When NLOS database 188 is used as part of NLQS query system 100 implemented as a remote learning/training environment, this database will include an organizational multi-level hierarchy that consists typically of a Course 701, which is made of several chapters 702, 703, 704. Each of these chapters can have one or more Sections 705, 706, 707 as shown for Chapter 1. A similar structure can exist for Chapter 2, Chapter 3 . . . Chapter N. Each section has a set of one or more question—answer pairs 708 stored in tables described in more detail below. While this is an appropriate and preferable arrangement for a training/learning application, it is apparent that other implementations would be possible and perhaps more suitable for other applications such as e-commerce, e-support, INTERNET browsing, etc., depending on overall system parameters. It can be seen that the NLQS database 188 organization is intricately linked to the switched grammar architecture described earlier. In other words, the context (or environment) experienced by the user can be determined at any moment in time based at the selection made at the section level, so that only a limited subset of question-answer pairs 708 for example are appropriate for section 705. This in turn means that only a particular appropriate grammar for such question-answer pairs may be switched in for handling user queries while the user is experiencing such context. In a similar fashion, an e-commerce application for an INTERNET based business may consist of a hierarchy that includes a first level “home” page 701 identifying user selectable options (product types, services, contact information, etc.), a second level may include one or more “product types” pages 702, 703, 704, a third page may include particular product models 705, 706, 707, etc., and with appropriate question-answer pairs 708 and grammars customized for handling queries for such product models. Again, the particular implementation will vary from application to application, depending on the needs and desires of such business, and a typical amount of routine optimization will be necessary for each such application. Table Organization In a preferred embodiment, an independent database is used for each Course. Each database in turn can include three types of tables as follows: a Master Table as illustrated in FIG. 7A, at least one Chapter Table as illustrated in FIG. 7B and at least one Section Table as illustrated in FIG. 7C. As illustrated in FIG. 7A, a preferred embodiment of a Master Table has six columns—Field Name 701 A, Data Type 702A, Size 703A, Null 704A, Primary Key 705A and Indexed 706A. These parameters are well-known in the art of database design and structure. The Master Table has only two fields—Chapter Name 707A and Section Name 708A. Both ChapterName and Section Name are commonly indexed. A preferred embodiment of a Chapter Table is illustrated in FIG. 7B. As with the Master Table, the Chapter Table has six (6) columns—Field Name 720, Data Type 721, Size 722, Null 723, Primary Key 724 and Indexed 725. There are nine (9) rows of data however, in this case, —Chapter_ID 726, Answer_ID 727, Section Name 728, Answer_Title 729, PairedQuestion 730, AnswerPath 731, Creator 732, Date of Creation 733 and Date of Modification 734. An explanation of the Chapter Table fields is provided in FIG. 7C. Each of the eight (8) Fields 720 has a description 735 and stores data corresponding to: AnswerID 727—an integer that is automatically incremented for each answer given for user convenience Section_Name 728—the name of the section to which the particular record belongs. This field along with the AnswerID is used as the primary key Answer_Title 729—A short description of the title of the answer to the user query PairedQuestion 730—Contains one or more combinations of questions for the related answers whose path is stored in the next column AnswerPath AnswerPath 731—contains the path of a file, which contains the answer to the related questions stored in the previous column; in the case of a pure question/answer application, this file is a text file, but, as mentioned above, could be a multi-media file of any kind transportable over the data link 160 Creator 732—Name of Content Creator Date_of_Creation 733—Date on which content was created Date of Modification 734—Date on which content was changed or modified A preferred embodiment of a Section Table is illustrated in FIG. 7D. The Section Table has six (6) columns—Field Name 740, Data Type 741, Size 742, Null 743, Primary Key 744 and Indexed 745. There are seven (7) rows of data—Answer_ID 746, Answer_Title 747, PairedQuestion 748, AnswerPath 749, Creator 750, Date of Creation 751 and Date of Modification 752. These names correspond to the same fields, columns already described above for the Master Table and Chapter Table. Again, this is a preferred approach for the specific type of learning/training application described herein. Since the number of potential applications for the present invention is quite large, and each application can be customized, it is expected that other applications (including other learning/training applications) will require and/or be better accommodated by another table, column, and field structure/hierarchy. Search Service and Search Engine—A query text search service is performed by an SQL Search System 1000 shown in FIG. 10. This system provides querying support to process full-text searches. This is where full-text indexes reside. In general, SQL Search System determines which entries in a database index meet selection criteria specified by a particular text query that is constructed in accordance with an articulated user speech utterance. The Index Engine 1011 B is the entity that populates the Full-Text Index tables with indexes which correspond to the indexable units of text for the stored questions and corresponding answers. It scans through character strings, determines word boundaries, removes all noise words and then populates the full-text index with the remaining words. For each entry in the full text database that meets the selection criteria, a unique key column value and a ranking value are returned as well. Catalog set 1013 is a file-system directory that is accessible only by an Administrator and Search Service 1010. Full-text indexes 1014 are organized into full-text catalogs, which are referenced by easy to handle names. Typically, full-text index data for an entire database is placed into a single full-text catalog. The schema for the full-text database as described (FIG. 7, FIG. 7A, FIG. 7B, FIG. 7C, FIG. 7D) is stored in the tables 1006 shown in FIG. 10. Take for example, the tables required to describe the structure the stored question/answer pairs required for a particular course. For each table—Course Table, Chapter Table, Section Table, there are fields—column information that define each parameters that make up the logical structure of the table. This information is stored in User and System tables 1006. The key values corresponding to those tables are stored as Full-Text catalogs 1013. So when processing a full-text search, the search engine returns to the SQL Server the key values of the rows that match the search criteria. The relational engine then uses this information to respond to the query. As illustrated in FIG. 10, a Full-Text Query Process is implemented as follows: 1. A query 1001 that uses a SQL full-text construct generated by DB processor 186 is submitted to SQL Relational Engine 1002. 2. Queries containing either a CONTAINS or FREETEXT predicate are rewritten by routine 1003 so that a responsive rowset returned later from Full-Text Provider 1007 will be automatically joined to the table that the predicate is acting upon. This rewrite is a mechanism used to ensure that these predicates are a seamless extension to a traditional SQL Server. After the compiled query is internally rewritten and checked for correctness in item 1003, the query is passed to RUN TIME module 1004. The function of module 1004 is to convert the rewritten SQL construct to a validated run-time process before it is sent to the Full-Text Provider, 1007. 3. After this, Full-Text Provider 1007 is invoked, passing the following information for the query: a. A ft search_condition parameter (this is a logical flag indicating a full text search condition) b. A name of a full-text catalog where a full-text index of a table resides c. A locale ID to be used for language (for example, word breaking) d. Identities of a database, table, and column to be used in the query e. If the query is comprised of more than one full-text construct; when this is the case Full-text provider 1007 is invoked separately for each construct. 4. SQL Relational Engine 1002 does not examine the contents of ft search_condition. Instead, this information is passed along to Full-text provider 1007, which verifies the validity of the query and then creates an appropriate internal representation of the full-text search condition. 5. The query request/command 1008 is then passed to Querying Support 1011A. 6. Querying Support 1012 returns a rowset 1009 from Full-Text Catalog 1013 that contains unique key column values for any rows that match the full-text search criteria. A rank value also is returned for each row. 7. The rowset of key column values 1009 is passed to SQL Relational Engine 1002. If processing of the query implicates either a CONTAINSTABLE( ) or FREETEXTTABLE( ) function, RANK values are returned; otherwise, any rank value is filtered out. 8. The rowset values 1009 are plugged into the initial query with values obtained from relational database 1006, and a resultset 1015 is then returned for further processing to yield a response to the user. At this stage of the query recognition process, the speech utterance by the user has already been rapidly converted into a carefully crafted text query, and this text query has been initially processed so that an initial matching set of results can be further evaluated for a final determination of the appropriate matching question/answer pair. The underlying principle that makes this possible is the presence of a full-text unique key column for each table that is registered for full-text searches. Thus when processing a full-text search, SQL Search Service 1010 returns to SQL server 1002 the key values of the rows that match the database. In maintaining these full-text databases 1013 and full text indexes 1014, the present invention has the unique characteristic that the full-text indices 1014 are not updated instantly when the full-text registered columns are updated. This operation is eliminated, again, to reduce recognition latency, increase response speed, etc. Thus, as compared to other database architectures, this updating of the full-text index tables, which would otherwise take a significant time, is instead done asynchronously at a more convenient time. Interface Between NLE 190 and DB Processor 188 The resultset 1015 of candidate questions corresponding to the user query utterance are presented to NLE 190 for further processing as shown in FIG. 4D to determine a “best” matching question/answer pair. An NLE/DBProcessor interface module coordinates the handling of user queries, analysis of noun-phrases (NPs) of retrieved questions sets from the SQL query based on the user query, comparing the retrieved question NPs with the user query NP, etc. between NLE 190 and DB Processor 188. So, this part of the server side code contains functions, which interface processes resident in both NLE block 190 and DB Processor block 188. The functions are illustrated in FIG. 4D; As seen here, code routine 880 implements functions to extract the Noun Phrase (NP) list from the user's question. This part of the code interacts with NLE 190 and gets the list of Noun Phrases in a sentence articulated by the user. Similarly, Routine 813 retrieves an NP list from the list of corresponding candidate/paired questions 1015 and stores these questions into an (ranked by NP value) array. Thus, at this point, NP data has been generated for the user query, as well as for the candidate questions 1015. As an example of determining the noun phrases of a sentence such as: “What issues have guided the President in considering the impact of foreign trade policy on American businesses?” NLE 190 would return the following as noun phrases: President, issues, impact of foreign trade policy, American businesses, impact, impact of foreign trade, foreign trade, foreign trade policy, trade, trade policy, policy, businesses. The methodology used by NLE 190 will thus be apparent to those skilled in the art from this set of noun phrases and noun sub-phrases generated in response to the example query. Next, a function identified as Get Best Answer ID 815 is implemented. This part of the code gets a best answer ID corresponding to the user's query. To do this, routines 813A, 813B first find out the number of Noun phrases for each entry in the retrieved set 1015 that match with the Noun phrases in the user's query. Then routine 815a selects a final result record from the candidate retrieved set 1015 that contains the maximum number of matching Noun phrases. Conventionally, nouns are commonly thought of as “naming” words, and specifically as the names of “people, places, or things”. Nouns such as John, London, and computer certainly fit this description, but the types of words classified by the present invention as nouns is much broader than this. Nouns can also denote abstract and intangible concepts such as birth, happiness, evolution, technology, management, imagination, revenge, politics, hope, cookery, sport, and literacy. Because of the enormous diversity of nouns compared to other parts of speech, the Applicant has found that it is much more relevant to consider the noun phrase as a key linguistic metric. So, the great variety of items classified as nouns by the present invention helps to discriminate and identify individual speech utterances much easier and faster than prior techniques disclosed in the art. Following this same thought, the present invention also adopts and implements another linguistic entity—the word phrase—to facilitate speech query recognition. The basic structure of a word phrase—whether it be a noun phrase, verb phrase, adjective phrase—is three parts—[pre-Head string],[Head] and [post-Head string]. For example, in the minimal noun phrase—“the children,” “children” is classified as the Head of the noun phrase. In summary, because of the diversity and frequency of noun phrases, the choice of noun phrase as the metric by which stored answer is linguistically chosen, has a solid justification in applying this technique to the English natural language as well as other natural languages. So, in sum, the total noun phrases in a speech utterance taken together operate extremely well as unique type of speech query fingerprint. The ID corresponding to the best answer corresponding to the selected final result record question is then generated by routine 815 which then returns it to DB Process shown in FIG. 4C. As seen there, a Best Answer ID I is received by routine 716A, and used by a routine 716B to retrieve an answer file path. Routine 716C then opens and reads the answer file, and communicates the substance of the same to routine 71 6D. The latter then compresses the answer file data, and sends it over data link 160 to client side system 150 for processing as noted earlier (i.e., to be rendered into audible feedback, visual text/graphics, etc.). Again, in the context of a learning/instructional application, the answer file may consist solely of a single text phrase, but in other applications the substance and format will be tailored to a specific question in an appropriate fashion. For instance, an “answer” may consist of a list of multiple entries corresponding to a list of responsive category items (i.e., a list of books to a particular author) etc. Other variations will be apparent depending on the particular environment. Natural Language Engine 190 Again referring to FIG. 4D, the general structure of NL engine 190 is depicted. This engine implements the word analysis or morphological analysis of words that make up the user's query, as well as phrase analysis of phrases extracted from the query. As illustrated in FIG. 9, the functions used in a morphological analysis include tokenizers 802A, stemmers 804A and morphological analyzers 806A. The functions that comprise the phrase analysis include tokenizers, taggers and groupers, and their relationship is shown in FIG. 8. Tokenizer 802A is a software module that functions to break up text of an input sentence 801A into a list of tokens 803A. In performing this function, tokenizer 802A goes through input text 801 A and treats it as a series of tokens or useful meaningful units that are typically larger than individual characters, but smaller than phrases and sentences. These tokens 803A can include words, separable parts of word and punctuation. Each token 803A is given an offset and a length. The first phase of tokenization is segmentation, which extracts the individual tokens from the input text and keeps track of the offset where each token originated from in the input text. Next, categories are associated with each token, based on its shape. The process of tokenization is well-known in the art, so it can be performed by any convenient application suitable for the present invention. Following tokenization, a stemmer process 804A is executed, which can include two separate forms—inflectional and derivational, for analyzing the tokens to determine their respective stems 805A. An inflectional stemmer recognizes affixes and returns the word which is the stem. A derivational stemmer on the other hand recognizes derivational affixes and returns the root word or words. While stemmer 804A associates an input word with its stem, it does not have parts of speech information. Analyzer 806B takes a word independent of context, and returns a set of possible parts of speech 806A. As illustrated in FIG. 8, phrase analysis 800 is the next step that is performed after tokenization. A tokenizer 802 generates tokens from input text 801. Tokens 803 are assigned to parts of a speech tag by a tagger routine 804, and a grouper routine 806 recognizes groups of words as phrases of a certain syntactic type. These syntactic types include for example the noun phrases mentioned earlier, but could include other types if desired such as verb phrases and adjective phrases. Specifically, tagger 804 is a parts-of-speech disambiguator, which analyzes words in context. It has a built-in morphological analyzer (not shown) that allows it to identify all possible parts of speech for each token. The output of tagger 804 is a string with each token tagged with a parts-of-speech label 805. The final step in the linguistic process 800 is the grouping of words to form phrases 807. This function is performed by the grouper 806, and is very dependent, of course, on the performance and output of tagger component 804. Accordingly, at the end of linguistic processing 800, a list of noun phrases (NP) 807 is generated in accordance with the user's query utterance. This set of NPs generated by NLE 190 helps significantly to refine the search for the best answer, so that a single-best answer can be later provided for the user's question. The particular components of NLE 190 are shown in FIG. 4D, and include several components. Each of these components implement the several different functions required in NLE 190 as now explained. Initialize Grouper Resources Object and the Library 900—this routine initializes the structure variables required to create grouper resource object and library. Specifically, it initializes a particular natural language used by NLE 190 to create a Noun Phrase, for example the English natural language is initialized for a system that serves the English language market. In turn, it also creates the objects (routines) required for Tokenizer, Tagger and Grouper (discussed above) with routines 900A, 900B, 900C and 900D respectively, and initializes these objects with appropriate values. It also allocates memory to store all the recognized Noun Phrases for the retrieved question pairs. Tokenizing of the words from the given text (from the query or the paired questions) is performed with routine 909B—here all the words are tokenized with the help of a local dictionary used by NLE 190 resources. The resultant tokenized words are passed to a Tagger routine 909C. At routine 909C, tagging of all the tokens is done and the output is passed to a Grouper routine 909D. The Grouping of all tagged token to form NP list is implemented by routine 909D so that the Grouper groups all the tagged token words and outputs the Noun Phrases. Un-initializing of the grouper resources object and freeing of the resources, is performed by routines 909EA, 909EB and 909EC. These include Token Resources, Tagger Resources and Grouper Resources respectively. After initialization, the resources are freed. The memory that was used to store all Noun Phrases are also de-allocated. Additional Embodiments In an e-commerce embodiment of the present invention as illustrated in FIG. 13, a web page 1300 contains typical visible links such as Books 1310, Music 1320 so that on clicking the appropriate link the customer is taken to those pages. The web page may be implemented using HTML, a Java applet, or similar coding techniques which interact with the user's browser. For example, if customer wants to buy an album C by Artist Albert, he traverses several web pages as follows: he first clicks on Music (FIG. 13,1360), which brings up page 1400 where he/she then clicks on Records (FIG. 14, 1450). Alternatively, he/she could select CDs 1460, Videos 1470, or other categories of books 1410, music 1420 or help 1430. As illustrated in FIG. 15, this brings up another web page 1500 with links for Records 1550, with sub-categories—Artist 1560, Song 1570, Title 1580, Genre 1590. The customer must then click on Artist 1560 to select the artist of choice. This displays another web page 1600 as illustrated in FIG. 16. On this page the various artists 1650 are listed as illustrated—Albert 1650, Brooks 1660, Charlie 1670, Whyte 1690 are listed under the category Artists 1650. The customer must now click on Albert 1660 to view the albums available for Albert. When this is done, another web page is displayed as shown in FIG. 17. Again this web page 1700 displays a similar look and feel, but with the albums available 1760,1770, 1780 listed under the heading Titles 1750. The customer can also read additional information 1790 for each album. This album information is similar to the liner notes of a shrink-wrapped album purchased at a retail store. One Album A is identified, the customer must click on the Album A 1760. This typically brings up another text box with the information about its availability, price, shipping and handling charges etc. When web page 1300 is provided with functionality of a NLQS of the type described above, the web page interacts with the client side and server side speech recognition modules described above. In this case, the user initiates an inquiry by simply clicking on a button designated Contact Me for Help 1480 (this can be a link button on the screen, or a key on the keyboard for example) and is then told by character 1440 about how to elicit the information required. If the user wants Album A by artist Albert, the user could articulate “Is Album A by Brooks available?” in much the same way they would ask the question of a human clerk at a brick and mortar facility. Because of the rapid recognition performance of the present invention, the user's query would be answered in real-time by character 1440 speaking out the answer in the user's native language. If desired, a readable word balloon 1490 could also be displayed to see the character's answer and so that save/print options can also be implemented. Similar appropriate question/answer pairs for each page of the website can be constructed in accordance with the present teachings, so that the customer is provided with an environment that emulates a normal conversational human-like question and answer dialog for all aspects of the web site. Character 1440 can be adjusted and tailored according to the particular commercial application, or by the user's own preferences, etc. to have a particular voice style (man, woman, young, old, etc.) to enhance the customer's experience. In a similar fashion, an articulated user query might be received as part of a conventional search engine query, to locate information of interest on the INTERNET in a similar manner as done with conventional text queries. If a reasonably close question/answer pair is not available at the server side (for instance, if it does not reach a certain confidence level as an appropriate match to the user's question) the user could be presented with the option of increasing the scope so that the query would then be presented simultaneously to one or more different NLEs across a number of servers, to improve the likelihood of finding an appropriate matching question/answer pair. Furthermore, if desired, more than one “match” could be found, in the same fashion that conventional search engines can return a number of potential “hits” corresponding to the user's query. For some such queries, of course, it is likely that real-time performance will not be possible (because of the disseminated and distributed processing) but the advantage presented by extensive supplemental question/answer database systems may be desirable for some users. It is apparent as well that the NLQS of the present invention is very natural and saves much time for the user and the e-commerce operator as well. In an e-support embodiment, the customer can retrieve information quickly and efficiently, and without need for a live customer agent. For example, at a consumer computer system vendor related support site, a simple diagnostic page might be presented for the user, along with a visible support character to assist him/her. The user could then select items from a “symptoms” page (i.e., a “monitor” problem, a “keyboard” problem, a “printer” problem, etc.) simply by articulating such symptoms in response to prompting from the support character. Thereafter, the system will direct the user on a real-time basis to more specific sub-menus, potential solutions, etc. for the particular recognized complaint. The use of a programmable character thus allows the web site to be scaled to accommodate a large number of hits or customers without any corresponding need to increase the number of human resources and its attendant training issues. As an additional embodiment, the searching for information on a particular web site may be accelerated with the use of the NLQS of the present invention. Additionally, a significant benefit is that the information is provided in a user-friendly manner through the natural interface of speech. The majority of web sites presently employ lists of frequently asked questions which the user typically wades item by item in order to obtain an answer to a question or issue. For example, as displayed in FIG. 13, the customer clicks on Help 1330 to initiate the interface with a set of lists. Other options include computer related items at 1370 and frequently asked questions (FAQ) at 1380. As illustrated in FIG. 18, a web site plan for typical web page is displayed. This illustrates the number of pages that have to be traversed in order to reach the list of Frequently-Asked Questions. Once at this page, the user has to scroll and manually identify the question that matches his/her query. This process is typically a laborious task and may or may not yield the information that answers the user's query. The present art for displaying this information is illustrated in FIG. 18. This figure identifies how the information on a typical web site is organized: the Help link (FIG. 13, 1330) typically shown on the home page of the web page is illustrated shown on FIG. 18 as 1800. Again referring to FIG. 18, each sub-category of information is listed on a separate page. For example, 1810 lists sub-topics such as ‘First Time Visitors’, ‘search Tips’, ‘Ordering’, ‘shipping’, ‘Your Account’ etc. Other pages deal with ‘Account information’ 1860, ‘Rates and Policies’ 1850 etc. Down another level, there are pages that deal exclusively with a sub-sub topics on a specific page such as ‘First Time Visitors’ 1960, ‘Frequently Asked Questions’ 1950, ‘safe Shopping Guarantee’ 1940, etc. So if a customer has a query that is best answered by going to the Frequently Asked Questions link, he or she has to traverse three levels of busy and cluttered screen pages to get to the Frequently Asked Questions page 1950. Typically, there are many lists of questions 1980 that have to be manually scrolled through. While scrolling visually, the customer then has to visually and mentally match his or her question with each listed question. If a possible match is sighted, then that question is clicked and the answer then appears in text form which then is read. In contrast, the process of obtaining an answer to a question using a web page enabled with the present NLQS can be achieved much less laboriously and efficiently. The user would articulate the word “Help” (FIG. 13, 1330). This would immediately cause a character (FIG. 13, 1340) to appear with the friendly response “May I be of assistance. Please state your question?”. Once the customer states the question, the character would then perform an animation or reply “Thank you, I will be back with the answer soon”. After a short period time (preferably not exceeding 5-7 seconds) the character would then speak out the answer to the user's question. As illustrated in FIG. 18 the answer would be the answer 1990 returned to the user in the form of speech is the answer that is paired with the question 1950. For example, the answer 1990: “We accept Visa, MasterCard and Discover credit cards”, would be the response to the query 2000 “What forms of payments do you accept?” Another embodiment of the invention is illustrated in FIG. 12. This web page illustrates a typical website that employs NLQS in a web-based learning environment. As illustrated in FIG. 12, the web page in browser 1200, is divided into two or more frames. A character 1210 in the likeness of an instructor is available on the screen and appears when the student initiates the query mode either by speaking the word “Help” into a microphone (FIG. 2B, 215) or by clicking on the link ‘Click to Speak’ (FIG. 12, 1280). Character 1210 would then prompt the student to select a course 1220 from the drop down list 1230. If the user selects the course ‘CPlusPlus’, the character would then confirm verbally that the course “CPlusPlus” was selected. The character would then direct the student to make the next selection from the drop-down list 1250 that contains the selections for the chapters 1240 from which questions are available. Again, after the student makes the selection, the character 1210 confirms the selection by speaking. Next character 1210 prompts the student to select ‘section’ 1260 of the chapter from which questions are available from the drop down list 1270. Again, after the student makes the selection, character 1210 confirms the selection by articulating the ‘Section’ 1260 chosen. As a prompt to the student, a list of possible questions appear in the list box 1291. In addition, tips 1290 for using the system are displayed. Once the selections are all made, the student is prompted by the character to ask the question as follows: “Please ask your query now”. The student then speaks his query and after a short period of time, the character responds with the answer preceded by the question as follows: “The answer to your question . . . is as follows: . . . ”. This procedure allows the student to quickly retrieve answers to questions about any section of the course and replaces the tedium of consulting books, and references or indices. In short, it is can serve a number of uses from being a virtual teacher answering questions on-the-fly or a flash card substitute. From preliminary data available to the inventors, it is estimate that the system can easily accommodate 100-250 question/answer pairs while still achieving a real-time feel and appearance to the user (i.e., less than 10 seconds of latency, not counting transmission) using the above described structures and methods. It is expected, of course, that these figures will improve as additional processing speed becomes available, and routine optimizations are employed to the various components noted for each particular environment. Again, the above are merely illustrative of the many possible applications of the present invention, and it is expected that many more web-based enterprises, as well as other consumer applications (such as intelligent, interactive toys) can utilize the present teachings. Although the present invention has been described in terms of a preferred embodiment, it will be apparent to those skilled in the art that many alterations and modifications may be made to such embodiments without departing from the teachings of the present invention. It will also be apparent to those skilled in the art that many aspects of the present discussion have been simplified to give appropriate weight and focus to the more germane aspects of the present invention. The microcode and software routines executed to effectuate the inventive methods may be embodied in various forms, including in a permanent magnetic media, a non-volatile ROM, a CD-ROM, or any other suitable machine-readable format. Accordingly, it is intended that the all such alterations and modifications be included within the scope and spirit of the invention as defined by the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>The INTERNET, and in particular, the World-Wide Web (WWW), is growing in popularity and usage for both commercial and recreational purposes, and this trend is expected to continue. This phenomenon is being driven, in part, by the increasing and widespread use of personal computer systems and the availability of low cost INTERNET access. The emergence of inexpensive INTERNET access devices and high speed access techniques such as ADSL, cable modems, satellite modems, and the like, are expected to further accelerate the mass usage of the WWW. Accordingly, it is expected that the number of entities offering services, products, etc., over the WWW will increase dramatically over the coming years. Until now, however, the INTERNET “experience” for users has been limited mostly to non-voice based input/output devices, such as keyboards, intelligent electronic pads, mice, trackballs, printers, monitors, etc. This presents somewhat of a bottleneck for interacting over the WWW for a variety of reasons. First, there is the issue of familiarity. Many kinds of applications lend themselves much more naturally and fluently to a voice-based environment. For instance, most people shopping for audio recordings are very comfortable with asking a live sales clerk in a record store for information on titles by a particular author, where they can be found in the store, etc. While it is often possible to browse and search on one's own to locate items of interest, it is usually easier and more efficient to get some form of human assistance first, and, with few exceptions, this request for assistance is presented in the form of a oral query. In addition, many persons cannot or will not, because of physical or psychological barriers, use any of the aforementioned conventional I/O devices. For example, many older persons cannot easily read the text presented on WWW pages, or understand the layout/hierarchy of menus, or manipulate a mouse to make finely coordinated movements to indicate their selections. Many others are intimidated by the look and complexity of computer systems, WWW pages, etc., and therefore do not attempt to use online services for this reason as well. Thus, applications which can mimic normal human interactions are likely to be preferred by potential on-line shoppers and persons looking for information over the WWW. It is also expected that the use of voice-based systems will increase the universe of persons willing to engage in e-commerce, e-learning, etc. To date, however, there are very few systems, if any, which permit this type of interaction, and, if they do, it is very limited. For example, various commercial programs sold by IBM (VIAVOICE™) and Kurzweil (DRAGON™) permit some user control of the interface (opening, closing files) and searching (by using previously trained URLs) but they do not present a flexible solution that can be used by a number of users across multiple cultures and without time consuming voice training. Typical prior efforts to implement voice based functionality in an INTERNET context can be seen in U.S. Pat. No. 5,819,220 incorporated by reference herein. Another issue presented by the lack of voice-based systems is efficiency. Many companies are now offering technical support over the INTERNET, and some even offer live operator assistance for such queries. While this is very advantageous (for the reasons mentioned above) it is also extremely costly and inefficient, because a real person must be employed to handle such queries. This presents a practical limit that results in long wait times for responses or high labor overheads. An example of this approach can be seen U.S. Pat. No. 5,802,526 also incorporated by reference herein. In general, a service presented over the WWW is far more desirable if it is “scalable,” or, in other words, able to handle an increasing amount of user traffic with little if any perceived delay or troubles by a prospective user. In a similar context, while remote learning has become an increasingly popular option for many students, it is practically impossible for an instructor to be able to field questions from more than one person at a time. Even then, such interaction usually takes place for only a limited period of time because of other instructor time constraints. To date, however, there is no practical way for students to continue a human-like question and answer type dialog after the learning session is over, or without the presence of the instructor to personally address such queries. Conversely, another aspect of emulating a human-like dialog involves the use of oral feedback. In other words, many persons prefer to receive answers and information in audible form. While a form of this functionality is used by some websites to communicate information to visitors, it is not performed in a real-time, interactive question-answer dialog fashion so its effectiveness and usefulness is limited. Yet another area that could benefit from speech-based interaction involves so-called “search” engines used by INTERNET users to locate information of interest at web sites, such as the those available at YAHOO®.com, METACRAWLER®.com, EXCITE®.com, etc. These tools permit the user to form a search query using either combinations of keywords or metacategories to search through a web page database containing text indices associated with one or more distinct web pages. After processing the user's request, therefore, the search engine returns a number of hits which correspond, generally, to URL pointers and text excerpts from the web pages that represent the closest match made by such search engine for the particular user query based on the search processing logic used by search engine. The structure and operation of such prior art search engines, including the mechanism by which they build the web page database, and parse the search query, are well known in the art. To date, applicant is unaware of any such search engine that can easily and reliably search and retrieve information based on speech input from a user. There are a number of reasons why the above environments (e-commerce, e-support, remote learning, INTERNET searching, etc.) do not utilize speech-based interfaces, despite the many benefits that would otherwise flow from such capability. First, there is obviously a requirement that the output of the speech recognizer be as accurate as possible. One of the more reliable approaches to speech recognition used at this time is based on the Hidden Markov Model (HMM)—a model used to mathematically describe any time series. A conventional usage of this technique is disclosed, for example, in U.S. Pat. No. 4,587,670 incorporated by reference herein. Because speech is considered to have an underlying sequence of one or more symbols, the HMM models corresponding to each symbol are trained on vectors from the speech waveforms. The Hidden Markov Model is a finite set of states, each of which is associated with a (generally multi-dimensional) probability distribution. Transitions among the states are governed by a set of probabilities called transition probabilities. In a particular state an outcome or observation can be generated, according to the associated probability distribution. This finite state machine changes state once every time unit, and each time t such that a state j is entered, a spectral parameter vector O t is generated with probability density B j (O t ). It is only the outcome, not the state visible to an external observer and therefore states are “hidden” to the outside; hence the name Hidden Markov Model. The basic theory of HMMs was published in a series of classic papers by Baum and his colleagues in the late 1960's and early 1970's. HMMs were first used in speech applications by Baker at Carnegie Mellon, by Jelenik and colleagues at IBM in the late 1970's and by Steve Young and colleagues at Cambridge University, UK in the 1990's. Some typical papers and texts are as follows: 1. L. E. Baum, T. Petrie, “Statistical inference for probabilistic functions for finite state Markov chains”, Ann. Math. Stat., 37: 1554-1563, 1966 2. L. E. Baum, “An inequality and associated maximation technique in statistical estimation for probabilistic functions of Markov processes”, Inequalities 3: 1-8, 1972 3. J. H. Baker, “The dragon system—An Overview”, IEEE Trans. on ASSP Proc., ASSP-23(1):24-29, Feb. 1975 4. F. Jeninek et al, “Continuous Speech Recognition: Statistical methods” in Handbook of Statistics, II, P. R. Kristnaiad, Ed. Amsterdam, The Netherlands, North-Holland, 1982 5. L. R. Bahl, F. Jeninek, R. L. Mercer, “A maximum likelihood approach to continuous speech recognition”, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-5:179-190,1983 6. J. D. Ferguson, “Hidden Markov Analysis: An Introduction”, in Hidden Markov Models for Speech, Institute of Defense Analyses, Princeton, N.J. 1980. 7. H. R. Rabiner and B. H. Juang, “Fundamentals of Speech Recognition”, Prentice Hall, 1993 8 . H. R. Rabiner, “Digital Processing of Speech Signals”, Prentice Hall, 1978 More recently research has progressed in extending HMM and combining HMMs with neural networks to speech recognition applications at various laboratories. The following is a representative paper: 9. Nelson Morgan, Herve Bourlard, Steve Renals, Michael Cohen and Horacio Franco (1993), Hybrid Neural Network/Hidden Markov Model Systems for Continuous Speech Recognition. Journal of Pattern Recognition and Artificial Intelligence , Vol. 7, No. 4 pp. 899-916. Also in I. Guyon and P. Wang editors, Advances in Pattern Recognition Systems using Neural Networks, Vol. 7 of a Series in Machine Perception and Artificial Intelligence. World Scientific, February 1994. All of the above are hereby incorporated by reference. While the HMM-based speech recognition yields very good results, contemporary variations of this technique cannot guarantee a word accuracy requirement of 100% exactly and consistently, as will be required for WWW applications for all possible all user and environment conditions. Thus, although speech recognition technology has been available for several years, and has improved significantly, the technical requirements have placed severe restrictions on the specifications for the speech recognition accuracy that is required for an application that combines speech recognition and natural language processing to work satisfactorily. In contrast to word recognition, Natural language processing (NLP) is concerned with the parsing, understanding and indexing of transcribed utterances and larger linguistic units. Because spontaneous speech contains many surface phenomena such as disfluencies, -hesitations, repairs and restarts, discourse markers such as ‘well’ and other elements which cannot be handled by the typical speech recognizer, it is the problem and the source of the large gap that separates speech recognition and natural language processing technologies. Except for silence between utterances, another problem is the absence of any marked punctuation available for segmenting the speech input into meaningful units such as utterances. For optimal NLP performance, these types of phenomena should be annotated at its input. However, most continuous speech recognition systems produce only a raw sequence of words. Examples of conventional systems using NLP are shown in U.S. Pat. Nos. 4,991,094, 5,068,789, 5,146,405 and 5,680,628, all of which are incorporated by reference herein. Second, most of the very reliable voice recognition systems are speaker-dependent, requiring that the interface be “trained” with the user's voice, which takes a lot of time, and is thus very undesirable from the perspective of a WWW environment, where a user may interact only a few times with a particular website. Furthermore, speaker-dependent systems usually require a large user dictionary (one for each unique user) which reduces the speed of recognition. This makes it much harder to implement a real-time dialog interface with satisfactory response capability (i.e., something that mirrors normal conversation—on the order of 3-5 seconds is probably ideal). At present, the typical shrink-wrapped speech recognition application software include offerings from IBM (VIAVOICE™) and Dragon Systems (DRAGON™). While most of these applications are adequate for dictation and other transcribing applications, they are woefully inadequate for applications such as NLQS where the word error rate must be close to 0%. In addition these offerings require long training times and are typically are non client-server configurations. Other types of trained systems are discussed in U.S. Pat. No. 5,231,670 assigned to Kurzweil, and which is also incorporated by reference herein. Another significant problem faced in a distributed voice-based system is a lack of uniformity/control in the speech recognition process. In a typical stand-alone implementation of a speech recognition system, the entire SR engine runs on a single client. A well-known system of this type is depicted in U.S. Pat. No. 4,991,217 incorporated by reference herein. These clients can take numerous forms (desktop PC, laptop PC, PDA, etc.) having varying speech signal processing and communications capability. Thus, from the server side perspective, it is not easy to assure uniform treatment of all users accessing a voice-enabled web page, since such users may have significantly disparate word recognition and error rate performances. While a prior art reference to Gould et al. —U.S. Pat. No. 5,915,236—discusses generally the notion of tailoring a recognition process to a set of available computational resources, it does not address or attempt to solve the issue of how to optimize resources in a distributed environment such as a client-server model. Again, to enable such voice-based technologies on a wide-spread scale it is far more preferable to have a system that harmonizes and accounts for discrepancies in individual systems so that even the thinnest client is supportable, and so that all users are able to interact in a satisfactory manner with the remote server running the e-commerce, e-support and/or remote learning application. Two references that refer to a distributed approach for speech recognition include U.S. Pat. Nos. 5,956,683 and 5,960,399 incorporated by reference herein. In the first of these, U.S. Pat. No. 5,956,683—Distributed Voice Recognition System (assigned to Qualcomm) an implementation of a distributed voice recognition system between a telephony-based handset and a remote station is described. In this implementation, all of the word recognition operations seem to take place at the handset. This is done since the patent describes the benefits that result from locating of the system for acoustic feature extraction at the portable or cellular phone in order to limit degradation of the acoustic features due to quantization distortion resulting from the narrow bandwidth telephony channel. This reference therefore does not address the issue of how to ensure adequate performance for a very thin client platform. Moreover, it is difficult to determine, how, if at all, the system can perform real-time word recognition, and there is no meaningful description of how to integrate the system with a natural language processor. The second of these references—U.S. Pat. No. 5,960,399—Client/Server Speech Processor/Recognizer (assigned to GTE) describes the implementation of a HMM-based distributed speech recognition system. This reference is not instructive in many respects, however, including how to optimize acoustic feature extraction for a variety of client platforms, such as by performing a partial word recognition process where appropriate. Most importantly, there is only a description of a primitive server-based recognizer that only recognizes the user's speech and simply returns certain keywords such as the user's name and travel destination to fill out a dedicated form on the user's machine. Also, the streaming of the acoustic parameters does not appear to be implemented in real-time as it can only take place after silence is detected. Finally, while the reference mentions the possible use of natural language processing (column 9) there is no explanation of how such function might be implemented in a real-time fashion to provide an interactive feel for the user. | <SOH> SUMMARY OF THE INVENTION <EOH>An object of the present invention, therefore, is to provide an improved system and method for overcoming the limitations of the prior art noted above; A primary object of the present invention is to provide a word and phrase recognition system that is flexibly and optimally distributed across a client/platform computing architecture, so that improved accuracy, speed and uniformity can be achieved for a wide group of users; A further object of the present invention is to provide a speech recognition system that efficiently integrates a distributed word recognition system with a natural language processing system, so that both individual words and entire speech utterances can be quickly and accurately recognized in any number of possible languages; A related object of the present invention is to provide an efficient query response system so that an extremely accurate, real-time set of appropriate answers can be given in response to speech-based queries; Yet another object of the present invention is to provide an interactive, real-time instructional/learning system that is distributed across a client/server architecture, and permits a real-time question/answer session with an interactive character; A related object of the present invention is to implement such interactive character with an articulated response capability so that the user experiences a human-like interaction; Still a further object of the present invention is to provide an INTERNET website with speech processing capability so that voice based data and commands can be used to interact with such site, thus enabling voice-based e-commerce and e-support services to be easily scaleable; Another object is to implement a distributed speech recognition system that utilizes environmental variables as part of the recognition process to improve accuracy and speed; A further object is to provide a scaleable query/response database system, to support any number of query topics and users as needed for a particular application and instantaneous demand; Yet another object of the present invention is to provide a query recognition system that employs a two-step approach, including a relatively rapid first step to narrow down the list of potential responses to a smaller candidate set, and a second more computationally intensive second step to identify the best choice to be returned in response to the query from the candidate set; A further object of the present invention is to provide a natural language processing system that facilitates query recognition by extracting lexical components of speech utterances, which components can be used for rapidly identifying a candidate set of potential responses appropriate for such speech utterances; Another related object of the present invention is to provide a natural language processing system that facilitates query recognition by comparing lexical components of speech utterances with a candidate set of potential response to provide an extremely accurate best response to such query. One general aspect of the present invention, therefore, relates to a natural language query system (NLQS) that offers a fully interactive method for answering user's questions over a distributed network such as the INTERNET or a local intranet. This interactive system when implemented over the worldwide web (WWW) services of the INTERNET functions so that a client or user can ask a question in a natural language such as English, French, German or Spanish and receive the appropriate answer at his or her personal computer also in his or her native natural language. The system is distributed and consists of a set of integrated software modules at the client's machine and another set of integrated software programs resident on a server or set of servers. The client-side software program is comprised of a speech recognition program, an agent and its control program, and a communication program. The server-side program is comprised of a communication program, a natural language engine (NLE), a database processor (DBProcess), an interface program for interfacing the DBProcess with the NLE, and a SQL database. In addition, the client's machine is equipped with a microphone and a speaker. Processing of the speech utterance is divided between the client and server side so as to optimize processing and transmission latencies, and so as to provide support for even very thin client platforms. In the context of an interactive learning application, the system is specifically used to provide a single-best answer to a user's question. The question that is asked at the client's machine is articulated by the speaker and captured by a microphone that is built in as in the case of a notebook computer or is supplied as a standard peripheral attachment. Once the question is captured, the question is processed partially by NLQS client-side software resident in the client's machine. The output of this partial processing is a set of speech vectors that are transported to the server via the INTERNET to complete the recognition of the user's questions. This recognized speech is then converted to text at the server. After the user's question is decoded by the speech recognition engine (SRE) located at the server, the question is converted to a structured query language (SQL) query. This query is then simultaneously presented to a software process within the server called DBProcess for preliminary processing and to a Natural Language Engine (NLE) module for extracting the noun phrases (NP) of the user's question. During the process of extracting the noun phrase within the NLE, the tokens of the users' question are tagged. The tagged tokens are then grouped so that the NP list can be determined. This information is stored and sent to the DBProcess process. In the DBProcess, the SQL query is fully customized using the NP extracted from the user's question and other environment variables that are relevant to the application. For example, in a training application, the user's selection of course, chapter and or section would constitute the environment variables. The SQL query is constructed using the extended SQL Full-Text predicates—CONTAINS, FREETEXT, NEAR, AND. The SQL query is next sent to the Full-Text search engine within the SQL database, where a Full-Text search procedure is initiated. The result of this search procedure is record set of answers. This record set contains stored questions that are similar linguistically to the user's question. Each of these stored questions has a paired answer stored in a separate text file, whose path is stored in a table of the database. The entire record set of returned stored answers is then returned to the NLE engine in the form of an array. Each stored question of the array is then linguistically processed sequentially one by one. This linguistic processing constitutes the second step of a 2-step algorithm to determine the single best answer to the user's question. This second step proceeds as follows: for each stored question that is returned in the record set, a NP of the stored question is compared with the NP of the user's question. After all stored questions of the array are compared with the user's question, the stored question that yields the maximum match with the user's question is selected as the best possible stored question that matches the user's question. The metric that is used to determine the best possible stored question is the number of noun phrases. The stored answer that is paired to the best-stored question is selected as the one that answers the user's question. The ID tag of the question is then passed to the DBProcess. This DBProcess returns the answer which is stored in a file. A communication link is again established to send the answer back to the client in compressed form. The answer once received by the client is decompressed and articulated to the user by the text-to-speech engine. Thus, the invention can be used in any number of different applications involving interactive learning systems, INTERNET related commerce sites, INTERNET search engines, etc. Computer-assisted instruction environments often require the assistance of mentors or live teachers to answer questions from students. This assistance often takes the form of organizing a separate pre-arranged forum or meeting time that is set aside for chat sessions or live call-in sessions so that at a scheduled time answers to questions may be provided. Because of the time immediacy and the on-demand or asynchronous nature of on-line training where a student may log on and take instruction at any time and at any location, it is important that answers to questions be provided in a timely and cost-effective manner so that the user or student can derive the maximum benefit from the material presented. This invention addresses the above issues. It provides the user or student with answers to questions that are normally channeled to a live teacher or mentor. This invention provides a single-best answer to questions asked by the student. The student asks the question in his or her own voice in the language of choice. The speech is recognized and the answer to the question is found using a number of technologies including distributed speech recognition, full-text search database processing, natural language processing and text-to-speech technologies. The answer is presented to the user, as in the case of a live teacher, in an articulated manner by an agent that mimics the mentor or teacher, and in the language of choice—English, French, German, Japanese or other natural spoken language. The user can choose the agent's gender as well as several speech parameters such as pitch, volume and speed of the character's voice. Other applications that benefit from NLQS are e-commerce applications. In this application, the user's query for a price of a book, compact disk or for the availability of any item that is to be purchased can be retrieved without the need to pick through various lists on successive web pages. Instead, the answer is provided directly to the user without any additional user input. Similarly, it is envisioned that this system can be used to provide answers to frequently-asked questions (FAQs), and as a diagnostic service tool for e-support. These questions are typical of a give web site and are provided to help the user find information related to a payment procedure or the specifications of, or problems experienced with a product/service. In all of these applications, the NLQS architecture can be applied. A number of inventive methods associated with these architectures are also beneficially used in a variety of INTERNET related applications. Although the inventions are described below in a set of preferred embodiments, it will be apparent to those skilled in the art the present inventions could be beneficially used in many environments where it is necessary to implement fast, accurate speech recognition, and/or to provide a human-like dialog capability to an intelligent system. | 20050107 | 20061121 | 20050602 | 92111.0 | 2 | LERNER, MARTIN | ADJUSTABLE RESOURCE BASED SPEECH RECOGNITION SYSTEM | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,030,994 | ACCEPTED | Disk drive with disk cartridge mounted therein | A disk drive including a tray and an opener. The tray includes a disk cartridge mounted thereon and is loaded into and unloaded from a main body. The opener is installed in the main body and elastically contacts a guide formed on the tray. The opener includes a second gear and a first protrusion. The second gear rotates a rotating wheel when in contact with a first gear. The first protrusion formed on a first end of the second gear temporarily rotates the rotating wheel so that the first and second gears can mesh. The guide has a first cam that moves the opener such that the first protrusion does not interfere with the latch when the tray is loaded/unloaded. | 1. A disk drive in which a disk cartridge is mounted, the disk cartridge including a case having an aperture, a disk placed inside the case, a rotating wheel with a first gear on an outer circumference to rotate the rotating wheel to open and close the aperture, and a latch that locks the rotating wheel when the aperture is closed, the disk drive comprising: a main body; a tray on which the disk cartridge is mounted, the tray being loaded into and unloaded from the main body; a guide formed on the tray; and an opener installed in the main body, and elastically contacting the guide, the opener comprising: a second gear to rotate the rotating wheel while being coupled to the first gear, and a first protrusion formed at a first end of the second gear, the first protrusion temporarily rotating the rotating wheel such that the first and second gears mesh, wherein the guide includes a first cam to move the opener such that the first protrusion does not interfere with the latch when the tray is loaded/unloaded. 2. The disk drive of claim 1, wherein the first cam moves the opener such that the first end of the second gear does not come into contact with the latch. 3. The disk drive of claim 1, wherein the guide further comprises a second cam that moves the opener such that the second gear pushes the latch and unlocks the rotating wheel. 4. The disk drive of claim 3, wherein the second cam is disposed such that a tooth crest of the second gear pushes the latch when the first end of the second gear is adjacent to the latch. 5. The disk drive of claim 3, wherein the first protrusion starts to rotate the rotating wheel when the latch is uncoupled. 6. The disk drive of claim 1, wherein the opener further comprises a second protrusion formed on a second end of the second gear, the second protrusion locking the rotating wheel when the aperture is opened. 7. The disk drive of claim 1, wherein the opener moves in a direction that is perpendicular to a direction in which the tray loads/unloads into and from the main body. 8. The disk drive of claim 7, further comprising an elastic member elastically contacting the opener to the guide. 9. The disk drive of claim 1, wherein the opener further comprises a second protrusion at a second end of the second gear, the second protrusion elastically contacting the guide, and the opener being installed to be able to pivot in the main body. 10. The disk drive of claim 9, further comprising an elastic member elastically contacting the second protrusion to the guide. 11. The disk drive of claim 9, wherein the second protrusion is formed on an elastic arm extending from the second gear, and elastically contacts the guide due to an elastic force of the elastic arm. 12. The disk drive of claim 9, wherein the second protrusion locks the rotating wheel while the aperture is opened. 13. The disk drive of claim 1, wherein the tray further comprises a cartridge guide to elastically fix the disk cartridge to the tray, wherein the guide is formed on the cartridge guide. 14. A disk drive on which a disk cartridge, including a case having an aperture, a disk placed inside the case, an opening and closing unit including a first gear and opens and closes an aperture, and a latch that locks the opening and closing unit when the aperture is closed, is mounted, the disk drive comprising: a main body; a tray on which the disk cartridge is mounted on, the tray being loaded into and unloaded from the main body; a guide formed on the tray; and an opener pivotably installed in the main body, comprising: a second gear operating the opening and the closing unit while being coupled to the first gear; a first protrusion formed at a first end of the second gear, the first protrusion temporarily operating the opening and closing unit such that the first and second gears mesh; and a second protrusion formed at a second end of the second gear, and elastically contacting the guide, wherein the guide includes a first cam that pivots the opener such that the first protrusion does not interfere with the latch when the tray is loaded/unloaded. 15. The disk drive of claim 14, wherein the first cam pivots the opener such that the first end of the second gear does not come in contact with the latch; and the guide further includes a second cam that moves the opener such that a tooth crest of the second gear pushes the latch and unlocks the rotating wheel when the first end of the second gear is adjacent to the latch. 16. The disk drive of claim 15, wherein the first protrusion starts to rotate the rotating wheel. as soon as the latch is uncoupled. 17. The disk drive of claim 14, wherein the second protrusion locks the opening and closing unit while the aperture is opened. 18. A disk drive to mount a cartridge, the cartridge including a case having an aperture, a wheel with a first gear on an outer circumference thereof to rotate the wheel so as to open/close the aperture, and a latch that locks the wheel when the aperture is closed, the disk drive comprising: a tray to mount the cartridge, which is loaded/unloaded into/from a body; and an opener installed in the body to elastically pivot while contacting a guide on the tray, the opener comprising: a second gear to rotate the wheel when coupled to the first gear; a first protrusion, at a first end of the second gear, to temporarily rotate the wheel such that the first and second gears mesh; and a first cam formed in the guide to move the opener such that the first protrusion does not interfere with the latch when the tray is loaded/unloaded. | CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of Korean Application No. 2004-2921, filed on Jan. 15, 2004, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disk drive on which is mounted a disk cartridge to accommodate a disk, which is an information recording/reproducing medium, so as to protect a recording surface of the disk from contamination sources such as dust and fingerprints. 2. Description of the Related Art As disk capacity increases, information has to be recorded with a higher density in order to accommodate more information on a disk using a similar surface area as that of previous disks. As recording density increases, recording and reproducing information are more easily affected when the recording surface of the disk is contaminated with, as an example, dust and fingerprints. Thus, the usage of a disk cartridge to protect the recording surface of the disk from contamination is likely to become popular. Such a disk cartridge has an aperture to allow a spindle motor to rotate the disk and an optical pickup to record information to or read information from the recording surface. Additionally, the disk cartridge has a shutter that closes and opens the aperture. Furthermore, the disk cartridge has a latch that locks the shutter so that the shutter does not open due to an external impact when the aperture is closed. As described above, a disk drive in which the disk cartridge, mounted to record/reproduce information, has to unlock the latch and open the aperture when the disk cartridge is loaded in order to gain access to the disk and/or the information thereon. In addition, the disk drive should be able to lock the shutter so that the shutter does not open after closing the aperture when the disk cartridge is unloaded. That is, if the shutter is not locked firmly, the aperture may be inadvertently opened while moving the disk cartridge and the recording surface of the disk may be contaminated with, for example, dust and fingerprints. SUMMARY OF THE INVENTION Therefore, the present invention provides a disk drive that mounts a disk cartridge therein. The present invention also provides a disk cartridge that firmly closes an aperture in the disk cartridge when the disk cartridge is unloaded. According to an aspect of the present invention, a disk cartridge, including a case having an aperture, a disk placed inside the case, a rotating wheel with a first gear on an outer circumference for rotating the rotating wheel to open and close the aperture, and a latch that locks the rotating wheel when the aperture is closed, is mounted in a disk drive. The disk drive includes a main body; a tray on which the disk cartridge is mounted, the tray being loaded into and unloaded from the main body; a guide formed on the tray; and an opener installed in the main body and elastically contacting the guide. The opener comprises a second gear that rotates the rotating wheel while being coupled to the first gear; and a first protrusion formed at a first end of the second gear, the first protrusion temporarily rotating the rotating wheel such that the first and second gears can mesh. The guide includes a first cam that moves the opener such that the first protrusion does not interfere with the latch when the tray is loaded/unloaded. According to another aspect of the present invention, a disk cartridge, including a case having an aperture, a disk placed inside the case, an opening and closing unit including a first gear and opens and closes an aperture, and a latch that locks the opening and closing unit when the aperture is closed, is mounted in a disk drive. The disk drive includes a main body; a tray on which the disk cartridge is mounted on, the tray being loaded into and unloaded from the main body; a guide formed on the tray; and an opener pivotably installed in the main body. The opener incluides a second gear operating the opening and the closing unit while being coupled to the first gear; a first protrusion formed at a first end of the second gear, the first protrusion temporarily operating the opening and closing unit such that the first and second gears can mesh; and a second protrusion formed at a second end of the second gear, and elastically contacting the guide. The guide includes a first cam that pivots the opener such that the first protrusion does not interfere with the latch when the tray is loaded/unloaded. Additional and/or other aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The above and/or other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which: FIG. 1 is an exploded perspective view of a disk cartridge according to an embodiment of the present invention; FIGS. 2 and 3 are plan views showing closed and opened states of an aperture of the disk cartridge of FIG. 1, respectively; FIG. 4 is a perspective view of a disk drive according to an embodiment of the present invention; FIG. 5 is a plan view of a region “B” of FIG. 4; FIG. 6 is a plan view of another embodiment of a guide; FIGS. 7 through 11 are plan views illustrating a process of loading/unloading the disk cartridge in the disk drive of FIG. 4; FIG. 12 is a plan view of a disk drive according to another embodiment of the present invention; and FIG. 13 is a plan view of a disk cartridge mounted in a disk drive according to another embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures. FIG. 1 is an exploded perspective view of a disk cartridge according to an embodiment of the present invention. FIGS. 2 and 3 are plan views showing closed and opened states of an aperture of the disk cartridge of FIG. 1, respectively. Referring to FIG. 1, a case that accommodates a disk D includes a top case 110 and a bottom case 120 connected together. An aperture 121 is formed in the bottom case 120. The disk D is placed in the case such that a recording surface of the disk D faces the aperture 121. A disk cartridge 100 has an opening and closing unit to open and close the aperture 121. For example, the opening and closing unit includes a pair of shutters 130A and 130B, a rotating wheel 140, and a latch 150. The pair of shutters 130A and 130B are installed such that they pivot about protrusions 126A and 126B, which protrude from the bottom cover 120. The rotating wheel 140 is located on the shutters 130A and 130B. Another pair of protrusions 141A and 141B are formed on the bottom surface of the rotating wheel 140. The pair of protrusions 141A and 141B are inserted into a pair of trajectory paths 131A and 131B formed on the pair of shutters 130A and 130B, respectively. A first gear 141 is formed on the outer circumference of the rotating wheel 140. In addition, first and second coupling grooves 142 and 143 are formed at both ends of the first gear 141 on the outer circumference of the rotating wheel 140. The latch 150 is installed such that the latch pivots about a protrusion 127 that protrudes from the bottom cover 120. The latch 150 selectively locks the rotating wheel 140, thereby selectively allowing the entire opening and closing unit to operate. The latch 150 has a hook 151 which is coupled to the second coupling groove 143. An elastic arm 152 is elastically biased in the direction the hook 151 is coupled to the second coupling groove 143. The elastic arm 152 pushes against a wall of the bottom cover 120. A first slot 122, which is opened to allow external access to the first gear unit 141 and first and second coupling grooves 142 and 143, and a second slot 123, which is opened to allow external access to the latch 150, are formed on one side of the bottom cover 120. When the aperture 121 is closed, as shown in FIG. 2, the hook 151 of the latch 150 is coupled to the second coupling groove 143, thereby locking the rotating wheel 140. At this time, the first coupling groove 142 of the rotating wheel 140 and a first end 153 of the latch 150 are externally exposed through the first and second slots 122 and 123, respectively. When the rotating wheel 140 rotates after accessing the latch 150 and the rotating wheel 140 is accessible through the first and second slots 122 and 123, the protrusions 141A and 141B move along the trajectory paths 131A and 131B, and the shutters 130A and 130B move. As a result, the aperture 121, as shown in FIG. 3, is opened. FIG. 4 is a perspective view of a disk drive according to another embodiment of the present invention. Referring to FIG. 4, the disk drive includes a main body 200 including a turntable 210 where a disk D is placed and an optical pickup 230 that performs recording/reproducing to/from the disk D. A tray 240 accommodates the disk D or a disk cartridge 100 with the disk D placed inside and installed to be able to slide into and out of the main body 200. A cover 201 covers the main body 200. A clamper 220 clamping the disk D on the turntable 210 is installed on the cover 201. Arrows A1 and A2, shown in FIG. 4, indicate directions the tray 240 slides in order to be loaded/unloaded. The tray 240 further includes a cartridge guide 250 which elastically fixes the disk cartridge with the disk D inside to the tray 240 or guides a bare disk D without the disk cartridge 100. The cartridge guide 250 is elastically supported in the tray 240 by a spring 260. The disk cartridge 100 is placed on a first placing surface 241 of the tray 240 and is elastically fixed to the tray 240 by an elastic force produced by the spring 260. In this position, the disk cartridge 100 is able to push the cartridge guide 250 to the location shown in dotted lines in FIG. 4. Meanwhile, when the disk cartridge 100 is removed from the tray 240, the cartridge guide 250 returns to the original location thereof (shown in solid lines in FIG. 4) by the elastic force produced by the spring 260. Further, a curved portion 251 on a front end of the cartridge guide 250 has a curvature, which is almost identical to that of the outer circumference of a second placing surface 242. Therefore, when the bare disk D is placed on the second placing surface 242, the bare disk D is guided by the outer circumference of the second placing surface 242 and the curved portion 251 of the cartridge guide 250. FIG. 5 is a plan view of a region “B” of FIG. 4. Referring to FIG. 5, an opener 310, which operates the opening and closing unit, is installed on one side of the main body 200. In the present embodiment, the opener 310 pivots in the direction of arrows C1 and C2 about a hinge 311. The opener 310 has two slots 312. Two bosses 201, in the form of protrusions, are formed on the main body 200 and are inserted into the two slots 312 to prevent the opener 310 from over-pivoting. Thus, the pivoting direction of the opener 310 is limited by the length of the slots 312. The opener 310 has a second gear 313 that interacts with the first gear 141 (shown if FIG. 1) so as to rotate the rotating wheel 140. A first protrusion 314 is formed at a first end of the second gear 313. The first protrusion 314 couples with the first coupling groove 142 of the rotating wheel 140 and causes the rotating wheel 140 to rotate temporarily until the second gear 313 is coupled with the first gear 141 after the latch 150 is unlocked. The opener 310 contacts a guide 320. The guide 320 may be formed on one side of the cartridge guide 250, as shown in FIG. 5, or may be formed on one side of the tray 240, as shown in FIG. 6. The case in which the guide 320 is formed on one side of the cartridge guide 250 will be described. The opener 310 of the present embodiment includes a second protrusion 315 at a second end of the second gear 313. The second protrusion 315 elastically contacts the guide 320. The second protrusion 315 may also lock the rotating wheel 140 by coupling with the second coupling groove 143 of the rotating wheel 140 when the aperture 121 of the disk cartridge 100 is opened. Meanwhile, the guide 320 includes a first cam 321. The first cam 321 is slanted so that when the tray 240 slides in the direction of arrow Al, the opener 310 rotates in the direction of arrow C1, which is opposite the direction of arrow C2. The guide 320 may also include a second cam 322. The second cam 322 is slanted so that when the tray 240 slides in the direction of arrow A1, the opener 310 rotates in the direction of arrow C2. An elastic member 330 elastically forces the second protrusion 315 toward the guide 320. The opener 310 may be typically made of a plastic with elasticity. The second protrusion 315 may also be formed on one side of an elastic arm 316 that extends from the end of the second gear 313, as indicated by the dotted lines in FIGS. 5 and 6. Thus, the opener 310 is elastically connected to the guide 320 by the elastic force of the elastic arm 316. The process of loading/unloading of the disk cartridge 100 will now be described in accordance with the above noted embodiments of the invention. As such, FIGS. 7 through 11, which are plan views to illustrate a process of loading/unloading the disk cartridge 100 in the disk drive of FIG. 4, will be referred to. The disk cartridge 100 is mounted in the tray 240, slides in the direction of arrow A1, and is loaded into the main body 200. As shown in FIG. 7, when the tray 240 slides in the direction of arrow A1 the second protrusion 315 and the first cam 321 come in contact, and the opener 310 rotates in the direction of arrow C1 due to the elastic force of the elastic member 330. As the tray 240 continues to slide in the direction of arrow A1 and the second protrusion 315 comes into contact with the second cam 322, the opener 310 rotates in the direction of arrow C2. To remove the disk cartridge 100, the tray 240 slides in the direction of arrow A2 to be unloaded from the main body 200. When the tray 240 slides in the direction of arrow A2, the second protrusion 315 contacts the second cam 322 and then the first cam 321. In this case, the opener 310 rotates in the direction of arrow C1 due to the elastic force of the elastic member 330, then in the direction of arrow C2. The cartridge guide 250 moves to the location shown in dotted lines in FIG. 4 when the disk cartridge 100 is mounted on the first placing surface 241 of the tray 240. The disk cartridge 100 is elastically fixed to the tray 240 by the elastic force of the spring 260. At this time, the rotating wheel 140 does not rotate since the hook 151 of the latch 150 is coupled to the second coupling groove 143 of the rotating wheel 140. Also, the first coupling groove 142 of the rotating wheel 140 and the first end 153 of the latch 150 are externally exposed through the first and second slots 122 and 123, respectively. When the tray 240 slides in the direction of arrow Al and is loaded into the main body 200, the first end 153 of the latch 150 approaches the first protrusion 314 of the opener 310. Here, as shown in FIG. 7, the opener 310 rotates in the direction of arrow C1 due to the elastic force of the elastic member 330 when the second protrusion 315 of the opener 310 comes in contact with the first cam 321. At this time, the first protrusion 314 is disposed such that the first end 153 of the latch 150 does not contact the first protrusion 314, as shown in FIG. 7, and the rotating wheel 140 is maintained in a locked state. Also, the shape of the first cam 321 causes the opener 310 to pivot such that the first end of the second gear 313 of the opener 310 does not contact the first end 153 of the latch 150. As the tray 240 continues to slide in the direction of arrow A1, the first end 153 of the latch 150 approaches the second gear 313 of the opener 310. Since the opener 310 is rotated in the direction of arrow C1, the top end of the second gear 313 does not contact the first end 153 of the latch 150, as shown in FIG. 8. When the first end of the second gear 313 is adjacent to the first end 153 of the latch 150, the second protrusion 315 contacts the second cam 322, and the opener 310 starts to rotate in the direction of arrow C2. Then, the second gear 313 contacts the first end 153 of the latch 150, and starts to pivot the latch 150 in the direction of arrow D1. When the second protrusion 315 passes the second cam 322, the latch 150 pivots in the direction of arrow D1 until the hook 512 is uncoupled from the second coupling groove 143 of the rotating wheel 140, as shown in FIG. 9. Therefore, the rotating wheel 140 is unlocked. At the same time, the first protrusion 314 of the opener 310 is coupled to the first coupling groove 142 of the rotating wheel 140 through the first slot 122 of the disk cartridge 100, and the rotating wheel 140 starts to rotate, opening the aperture 121, as the tray 240 continues to slide in the direction of arrow A1. Here, in conventional disk drives, a tooth flank 313A of a second gear 313 would contact a first end 153 of a latch 150 first. This phenomenon tends to produce an annoying contacting noise and may cause damage to the teeth of the second gear 313. However, according to the structure described above, a tooth crest 313B of the second gear 313 comes in contact with the first end 153 of the latch 150. As a result a contacting noise caused by the first gear 141 and the latch 150 is prevented. Thus, damage to the teeth of the second gear 313 is also prevented. The first protrusion 314 rotates the rotating wheel 140 until the second gear 313 couples with the first gear 141 of the rotating wheel 140. As the tray 240 continues to slide in the direction of arrow A1, the rotating wheel 140 rotates, the shutters 130A and 130B pivots in the direction of arrow E1, as shown in FIG. 10, and the aperture 121 starts to open. When the loading of the tray 240 is completed, the second protrusion 315 is coupled to the second coupling groove 143 of the rotating wheel 140, thereby locking the rotating wheel 140, as shown in FIG. 11. Consequently, the aperture 121 remains an open state when the tray 240 with the disk cartridge 100 mounted thereon is completely loaded into the main body 200. The process of unloading the tray 240 by sliding the tray 240 in the direction of arrow A2, as shown in FIGS. 4 and 6, is the reverse of the loading process. Following the processes illustrated in FIGS. 11,10, and 9, the shutters 130A and 130B pivot in the direction of arrow E2 so as to close the aperture 121. When the second protrusion 315 starts to contact the second cam 322, the opener 310 rotates in the direction of arrow Cl due to the elastic force of the elastic member 330, the latch 150 pivots in the direction of arrow D2 due to the elastic force of the elastic arm 152, as shown in FIGS. 9 and 8. As a result, the hook 151 is coupled to the second coupling groove 143. Consequently, the rotating wheel 140 is locked. As the tray 240 continues to slide in the direction of arrow A2, the first protrusion 34 of the opener 310 does not come into contact with the latch 150. If the first protrusion 314 of the opener 310 does come in contact with the latch 150, the latch 150 could pivot in the direction of arrow D1 and unlock the rotating wheel 140. Then, the disk cartridge 100 could be removed from the tray 240 while the rotating wheel 140 is not locked. When moving the disk cartridge 100 in such a state, foreign substances such as dust could enter the disk cartridge 100 through the aperture 121 because the shutters 130A and 130B would be opened. However, according to the present embodiment, in the process of loading/unloading the tray 240 with the disk cartridge 100 mounted thereon, the first protrusion 314 does not contact the latch 150. Thus, the disk cartridge 100 can be removed from the tray 240 while the rotating wheel 140 is firmly locked. FIG. 12 is a plan view of a disk drive according to another embodiment of the present invention. An opener 310 of the disk drive moves in a direction perpendicular to the direction in which a tray 240 moves. Elements with substantially the same function as elements illustrated in FIGS. 1 through 11 have like reference numerals, and their descriptions will not be repeated. Referring to FIG. 12, the opener 310 is installed on one side of a main body 200. The opener 310 is installed such that the opener is able to move in the direction of arrows F1 and F2, i.e., move in a direction perpendicular to a loading/unloading direction of arrows A1 and A2. To this end, the opener 310 includes two slots 312. Two bosses 201, in the form of protrusions, are formed on the main body 200 and protrude therefrom so as to be inserted into the two slots 312. The opener 310 also includes a second gear 313. A first protrusion 314 is formed at a first end of the second gear 313. A second protrusion 315 may be formed on a second end of the second gear 313. As is described above, the second protrusion 315 is coupled to a second coupling groove 143 of a rotating wheel 140 and locks the rotating wheel 140 while an aperture 121 is opened after a disk cartridge 100 is loaded. A guide 320 is formed on the tray 240. The opener 310 comes in contact with the guide 320. The guide 320 may be formed on one side of a cartridge guide 250 or one side of the tray 240, as described above. The case in which the guide 320 is formed on one side of the cartridge guide 250 will be described. In the present embodiment, a contact portion 318 protruding in the direction of arrow Fl is formed on the opener 310. An elastic member 330 elastically biases the opener 310 such that the contact portion 318 contacts the guide 320, i.e., in the direction of arrow F1. The guide 320 includes a first cam 321. The first cam 321 is slanted so that when the tray 240 slides in the direction of arrow A1, the opener 310 moves in the direction of arrow F1. The guide 320 can further have a second cam 322. The second cam 322 is slanted so that as the tray 240 continues to slide in the direction of arrow A1, the opener 310 moves in the direction of arrow F2. The process of loading/unloading the tray 240 with the disk cartridge 100 mounted thereon is the same as the process described with reference to FIGS. 4 through 11, apart from the opener 310 moving in a direction of arrows F1 and F2, and thus will be omitted. FIG. 13 is a plan view of a disk cartridge mounted in a disk drive according to yet another embodiment of the present invention. A disk cartridge 100A is similar to the cartridge 100 illustrated in FIGS. 1 through 3, except that a rotating wheel 140A with a second aperture 144 is installed on top of a bottom cover 120, a disk D (not shown) is placed on top of the rotating wheel 140A, and shutters 130A and 130B are not included. An aperture 121 may be opened or closed by rotating the rotating wheel 140A in the direction of arrow G using the opener 310, which causes the second aperture 144 and the aperture 121 on the bottom cover 120 to align and form an opening or separate and close the opening. The disk cartridge that may be mounted on the disk drive according to embodiments of the present invention is not limited to the embodiments illustrated in FIGS. 1 through 3 and FIG. 13. The disk drive according to the embodiments of the present invention may mount a disk cartridge having various types of latches and rotating wheels. As is described above, according to embodiments of the present invention, an aperture of a disk cartridge may be completely closed and locked when the disk cartridge is unloaded. Thus, foreign substances such as dust do not enter the disk cartridge through an aperture. Also, damage to a second gear or a latch and contacting noise can be prevented since a tooth crest of the second gear of an opener pushes the latch and unlocks a rotating wheel. Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents. | <SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a disk drive on which is mounted a disk cartridge to accommodate a disk, which is an information recording/reproducing medium, so as to protect a recording surface of the disk from contamination sources such as dust and fingerprints. 2. Description of the Related Art As disk capacity increases, information has to be recorded with a higher density in order to accommodate more information on a disk using a similar surface area as that of previous disks. As recording density increases, recording and reproducing information are more easily affected when the recording surface of the disk is contaminated with, as an example, dust and fingerprints. Thus, the usage of a disk cartridge to protect the recording surface of the disk from contamination is likely to become popular. Such a disk cartridge has an aperture to allow a spindle motor to rotate the disk and an optical pickup to record information to or read information from the recording surface. Additionally, the disk cartridge has a shutter that closes and opens the aperture. Furthermore, the disk cartridge has a latch that locks the shutter so that the shutter does not open due to an external impact when the aperture is closed. As described above, a disk drive in which the disk cartridge, mounted to record/reproduce information, has to unlock the latch and open the aperture when the disk cartridge is loaded in order to gain access to the disk and/or the information thereon. In addition, the disk drive should be able to lock the shutter so that the shutter does not open after closing the aperture when the disk cartridge is unloaded. That is, if the shutter is not locked firmly, the aperture may be inadvertently opened while moving the disk cartridge and the recording surface of the disk may be contaminated with, for example, dust and fingerprints. | <SOH> SUMMARY OF THE INVENTION <EOH>Therefore, the present invention provides a disk drive that mounts a disk cartridge therein. The present invention also provides a disk cartridge that firmly closes an aperture in the disk cartridge when the disk cartridge is unloaded. According to an aspect of the present invention, a disk cartridge, including a case having an aperture, a disk placed inside the case, a rotating wheel with a first gear on an outer circumference for rotating the rotating wheel to open and close the aperture, and a latch that locks the rotating wheel when the aperture is closed, is mounted in a disk drive. The disk drive includes a main body; a tray on which the disk cartridge is mounted, the tray being loaded into and unloaded from the main body; a guide formed on the tray; and an opener installed in the main body and elastically contacting the guide. The opener comprises a second gear that rotates the rotating wheel while being coupled to the first gear; and a first protrusion formed at a first end of the second gear, the first protrusion temporarily rotating the rotating wheel such that the first and second gears can mesh. The guide includes a first cam that moves the opener such that the first protrusion does not interfere with the latch when the tray is loaded/unloaded. According to another aspect of the present invention, a disk cartridge, including a case having an aperture, a disk placed inside the case, an opening and closing unit including a first gear and opens and closes an aperture, and a latch that locks the opening and closing unit when the aperture is closed, is mounted in a disk drive. The disk drive includes a main body; a tray on which the disk cartridge is mounted on, the tray being loaded into and unloaded from the main body; a guide formed on the tray; and an opener pivotably installed in the main body. The opener incluides a second gear operating the opening and the closing unit while being coupled to the first gear; a first protrusion formed at a first end of the second gear, the first protrusion temporarily operating the opening and closing unit such that the first and second gears can mesh; and a second protrusion formed at a second end of the second gear, and elastically contacting the guide. The guide includes a first cam that pivots the opener such that the first protrusion does not interfere with the latch when the tray is loaded/unloaded. Additional and/or other aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention. | 20050110 | 20090120 | 20050721 | 76726.0 | 0 | DRAVININKAS, ADAM B | DISK DRIVE WITH DISK CARTRIDGE MOUNTED THEREIN | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,031,057 | ACCEPTED | Benzimidazole derivative and use thereof | The present invention relates to a compound represented by the formula (I) wherein R1 is a group represented by the formula wherein R2, R3, R4, R5, R6, R7 and R8 are each independently a hydrogen atom or a C1-6 alkyl, or a salt thereof. The compound of the present invention is useful as an agent for the prophylaxis or treatment of circulatory diseases such as hypertension and the like and metabolic diseases such as diabetes and the like. | 1. (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1 h-benzimidazole-7-carboxylate or a pharmaceutically acceptable salt thereof. 2. (5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate potassium salt. | TECHNICAL FIELD OF THE INVENTION The present invention relates to a novel benzimidazole derivative having superior properties of a pharmaceutical agent. More particularly, the present invention relates to a prodrug of a benzimidazole derivative having a particular structure, which has a strong and long lasting angiotensin II antagonistic activity and hypotensive action, and an insulin sensitizing activity, and which is useful as an agent for the prophylaxis or treatment of circulatory diseases such as hypertension, cardiac diseases (cardiac hypertrophy, cardiac failure, cardiac infarction and the like), nephritis, stroke and the like and metabolic diseases such as diabetes and the like, and use thereof. BACKGROUND OF THE INVENTION Angiotensin II causes vasoconstriction via an angiotensin II receptor on the cell membrane and elevates blood pressure. Therefore, an angiotensin II receptor antagonist can be an effective therapeutic drug for circulatory diseases such as hypertension and the like. As a preferable chemical structure to express strong angiotensin II antagonistic activity, a structure having an acidic group such as a tetrazolyl group, a carboxyl group and the like on a biphenyl side chain is known, and, as a pharmaceutical compound having such structural characteristics, losartan, candesartan cilexetil, olmesartan medoxomil and the like have been clinically used (Ruth R. Wexler et al., Journal of Medicinal Chemistry, vol. 39, p. 625 (1996), JP-A-4-364171, JP-A-5-78328 and the like). JP-A-5-271228 describes that a compound wherein an acidic group on a biphenyl side chain is 5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl group exhibits a long lasting and strong angiotensin II antagonistic activity and hypotensive action by oral administration. In addition, WO 03/047573 describes that, of the benzimidazole derivatives described in JP-A-5-271228, a particular compound (2-ethoxy-1 {[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylic acid:compound A) has an insulin sensitizing activity in addition to an angiotensin II antagonistic activity. As one of the means for enhancing practical use of a pharmaceutical agent, conversion of a compound having a certain pharmacological activity to a prodrug is known. For example, as a prodrug of carboxylic acid, alkylcarbonyloxymethyl ester, 1-alkylcarbonyloxyethyl ester, alkyloxycarbonyloxymethyl ester, 1-alkyloxycarbonyloxyethyl ester and (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl ester have been widely used for a compound that shows insufficient expression of activity by oral administration in the development of pharmaceutical products to the present. In addition, Farnesol ester, which is a liposoluble substance of indomethacin, and ethyl ester as an ACE inhibitor are known to afford sustained activity and the like. As esters of compound A, methyl ester (compound B), 1-(cyclohexyloxycarbonyloxy)ethyl ester (compound C) and acetoxymethyl ester (compound D) are specifically described in JP-A-5-271228. The present invention aims at providing a novel compound superior as an agent for the prophylaxis or treatment of circulatory diseases such as hypertension and the like and metabolic diseases such as diabetes and the like. SUMMARY OF THE INVENTION The present inventors have conducted intensive studies to find a new compound which is more potent and superior in the duration of action by oral administration, thereby to provide a pharmaceutical agent clinically more useful as an agent for the prophylaxis or treatment of circulatory diseases such as hypertension and the like and metabolic diseases such as diabetes and the like. As a result, they have found that a prodrug compound having a particular structure, which is converted to compound A in the living body, is superior in safety and has extremely superior properties as a pharmaceutical agent, as evidenced by an unexpectedly strong and long lasting hypotensive action, possible stable control of blood pressure for a long time and the like, and completed the present invention. Accordingly, the present invention relates to (1) a compound represented by the formula (I) wherein R1 is a group represented by the formula wherein R2, R3, R4, R5, R6, R7 and R8 are each independently a hydrogen atom or a C1-6 alkyl, or a salt thereof; (2) the compound of the aforementioned (1), which is a salt; (3) the compound of the aforementioned (1), wherein R1 is a group represented by the formula wherein R2 is as defined above; (4) a compound selected from the group consisting of (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, 2-oxo-1,3-dioxolan-4-yl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, 4-methyl-2-oxo-1,3-dioxolan-4-yl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate and 5-oxotetrahydro-2-furanyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, or a salt thereof; (5) a (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate potassium salt; (6) A process for producing a compound represented by the formula wherein R2 is a hydrogen atom or a C1-6 alkyl, or a salt thereof, which comprises reacting a reactive derivative of 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl)-1H-benzimidazole-7-carboxylic acid or a salt thereof with a compound represented by the formula wherein R2 is as defined above, or a salt thereof; (7) a medicament comprising the compound of the aforementioned (1); (8) the medicament of the aforementioned (7), which is an angiotensin II antagonist; (9) the medicament of the aforementioned (7), which is an insulin sensitizer; (10) the medicament of the aforementioned (7), which is an agent for the prophylaxis or treatment of circulatory diseases; (11) a medicament comprising the compound of the aforementioned (1) in combination with a calcium antagonist or a diuretic agent; (12) the medicament of the aforementioned (11), which is an agent for the prophylaxis or treatment of circulatory diseases; (13) a method for antagonizing angiotensin II in a mammal, which comprises administering an effective amount of the compound of the aforementioned (1) to said mammal; (14) a method for improving insulin resistance in a mammal, which comprises administering an effective amount of the compound of the aforementioned (1) to said mammal; (15) a method for preventing or treating of circulatory diseases in a mammal, which comprises administering an effective amount of the compound of the aforementioned (1) to said mammal; (16) a method for preventing or treating of circulatory diseases in a mammal, which comprises administering an effective amount of the compound of the aforementioned (1) in combination with a calcium antagonist or a diuretic agent to said mammal; (17) use of the compound of the aforementioned (1) for manufacture of an angiotensin II antagonist; (18) use of the compound of the aforementioned (1) for manufacture of an insulin sensitizer; (19) use of the compound of the aforementioned (1) for manufacture of an agent for the prophylaxis or treatment of circulatory diseases; (20) use of the compound of the aforementioned (1) in combination with a calcium antagonist or a diuretic agent for manufacture of an agent for the prophylaxis or treatment of circulatory diseases; and the like. DETAILED DESCRIPTION OF THE INVENTION In the aforementioned formula, R1 is a group represented by wherein R2, R3, R4, R5, R6, R7 and R8 are each independently a hydrogen atom or a C1-6 alkyl, and as the C1-6 alkyl, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 2-ethylpropyl and the like can be mentioned. For R1, a group represented by the formula wherein R2 is as defined above, is preferable and for R2, methyl is preferable. In the aforementioned formula, the group represented by the formula (4,5-dihydro-5-oxo-1,2,4-oxadiazol-3-yl group) includes three tautomers (a′, b′ and c′) represented by the formulas and a 4,5-dihydro-5-oxo-1,2,4-oxadiazol-3-yl group encompasses all of the above-mentioned a′, b′ and c′. As a compound represented by the formula (I) of the present invention, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, 2-oxo-1,3-dioxolan-4-yl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, 4-methyl-2-oxo-1,3-dioxolan-4-yl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, 5-oxotetrahydro-2-furanyl 2-ethoxy-1-([2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate and the like are preferably used. Among them, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate is particularly preferably used. The salt of a compound represented by the formula (I) may be any as long as it is a pharmacologically acceptable salt. As such salt, salts of a compound represented by the formula (I) with an inorganic base (e.g., alkali metals such as sodium, potassium and the like; alkaline earth metals such as calcium, magnesium and the like; etc.), an organic base (e.g., organic amines such as tromethamine [tris(hydroxymethyl)methylamine], ethanolamine, trimethylamine, triethylamine, t-butylamine, pyridine, picoline, diethanolamine, triethanolamine, dicyclohexylamine, N,N′-dibenzylethylenediamine and the like; basic amino acids such as arginine, lysine, ornithine and the like; etc.), ammonia and the like, can be mentioned. As a salt of the compound represented by the formula (I), alkali metal salts of the compound represented by the formula (I) are preferable. Of these, a potassium salt is particularly preferable. The compound represented by the formula (I) may be labeled with an isotope (e.g., 3H, 14C, 35S, 125I and the like) and the like. As the compound represented by the formula (I) or a salt thereof (hereinafter sometimes to be referred to as compound (I) or the compound of the present invention), (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate potassium salt is particularly preferable. Production Methods Compound (I) can be produced by, for example, a method shown in the following or a method analogous thereto and the like. While the yield of compound (I) obtained by the following method may vary depending on the reaction conditions used, compound (I) can be obtained easily at a high purity by a conventional means of separation or purification (e.g., recrystallization, column chromatography and the like) from the product by such methods. Compound (I) can be produced by reacting a reactive derivative (for example, a mixed acid anhydride, an acid halide and the like) of the compound represented by the formula (II) (compound A) or a salt thereof (hereinafter sometimes to be referred to as compound (II)) with a corresponding alcohol (IV) (HO —R1) or a salt thereof. Method a wherein X is a halogen atom (chlorine, bromine, iodine etc.), Et is an ethyl, R12 is an alkyl (e.g., C1-6 alkyl such as methyl, ethyl, propyl, t-butyl and the like), an alkoxy (e.g., C1-6 alkoxy such as methoxy, ethoxy, isobutyloxy and the like) or a phenyl optionally substituted by halogen atom, C1-6 alkyl or nitro group and the like, R1 is as defined above. Method a comprises reacting compound (II) with an acylating agent (III) in the presence of a base to give a mixed acid anhydride and reacting the resulting compound with a corresponding alcohol (IV) (HO —R1) in the presence of a base to allow esterification. The mixed acid anhydride is produced using about 1-3 mol of a base and about 1-3 mol of an acylating agent relative to 1 mol of compound (II) in a solvent. Subsequently, the corresponding alcohol is added to allow reaction, or after once filtering off the salt (salt of the base with H—X), concentrating the filtrate, diluting the residue with a solvent and adding the corresponding alcohol and a base to allow reaction to perform esterification. As the base, triethylamine, diisopropylethylamine, DBU, 4-dimethylaminopyridine, sodium hydride, potassium t-butoxide, potassium carbonate and sodium carbonate and the like can be used. As the acylating agent, pivaloyl chloride, ethyl chlorocarbonate, isobutyl chlorocarbonate, or 2,4,6-trichlorobenzoyl chloride, 2,6-dichlorobenzoyl chloride, 2,4,6-tribromobenzoyl chloride, 2,3,6-trimethyl-4,5-dinitrobenzoyl chloride and the like described in Bulletin of the Chemical Society of Japan, vol. 52, 1989-1993 page (1979) are used. As the solvent, generally, dichloromethane, chloroform, 1,2-dichloroethane, ethyl acetate, tetrahydrofuran, toluene, acetonitrile, acetone, ethyl methyl ketone, dioxane, dimethylformamide, dimethylacetamide, dimethyl sulfoxide and the like can be used. While the reaction conditions for producing a mixed acid anhydride vary depending on the combination of the base, acylating agent and solvent to be used, the reaction is generally preferably carried out at about −30° C. to room temperature for about 1-10 hrs. While the reaction conditions for the esterification vary depending on the combination of the mixed acid anhydride produced and a solvent, the reaction is generally preferably carried out at about −30° C. to the solvent refluxing temperature for about 1-10 hrs. Method b wherein R1 is as defined above. Method b comprises reacting a compound represented by the formula (II) or a salt thereof with thionyl chloride or oxalyl chloride in the presence of a catalyst such as DMF and the like to give an acid chloride, and reacting the acid chloride with a corresponding alcohol (IV) in the presence of a base to allow esterification. The acid chloride is produced using about 1-3 mol of thionyl chloride or oxalyl chloride relative to 1 mol of compound (II) in the presence of a catalytic amount of DMF, in a solvent where necessary. After subsequent concentration, a solvent is added and then the corresponding alcohol (HO —R1) and the base to allow reaction to perform esterification. As the base, those similar to the bases used in Method a and the like are used. As the solvent, those similar to the solvents used in Method a and the like are used. While the reaction conditions for producing an acid chloride vary depending on the solvent to be used, the reaction is generally preferably carried out at about −30° C. to the refluxing temperature for about 10 min. to 5 hrs. The reaction conditions for the esterification vary depending on the combination of the acid chloride produced and the solvent, the reaction is generally preferably carried out at about −30° C. to the refluxing temperature of the solvent for about 1 to 10 hrs. Method c wherein X′ is a halogen atom (chlorine, bromine, iodine etc.) and R1 is as defined above. Method c comprises reacting a compound represented by the formula (II) or a salt thereof (e.g., salt with alkali metal such as sodium, potassium and the like; salt with alkaline earth metal such as calcium, magnesium and the like; etc.) with an alkylating agent (X′-R1) as necessary in the presence of a base to allow esterification. The esterification is carried out using about 1-3 mol of a base and about 1-3 mol of an alkylating agent relative to 1 mol of compound (II) in a solvent. As the base, those similar to the bases used in Method a and the like are used. As the solvent, those similar to the solvents used in Method a and the like are used. While the reaction conditions for the esterification vary depending on the combination of the base, alkylating agent and solvent to be used, the reaction is generally preferably carried out at about −30° C. to the refluxing temperature for about 30 min. to 10 hrs. Method d wherein R1 is as defined above. Method d comprises reacting compound (II) with the corresponding alcohol (IV) in the presence of a condensing agent to perform esterification. The esterification is carried out using about 1-3 mol of the condensing agent and about 1-3 mol of the corresponding alcohol (IV) relative to 1 mol of compound (II) in a solvent. As the condensing agent, DCC, WSC, Mitsunobu reagents and the like are used. As the solvent, those similar to the solvents used in Method a and the like are used. While the reaction conditions for the esterification vary depending on the combination of the condensing agent and solvent to be used, the reaction is generally preferably carried out at about −30° C. to the refluxing temperature for about 30 min. to 24 hrs. Compound (II) can be produced by the method described in JP-A-5-271228 and the like. When compound (I) is obtained as a free form, it can be converted to an object salt by a method known per se or a method analogous thereto. Conversely, when it is obtained as a salt, it can be converted to a free form or a different object salt by a method known per se or a method analogous thereto. When optical isomers of compound (I) exist, such individual optical isomers and a mixture thereof are all naturally encompassed in the scope of the present invention. Compound (I) may be a crystal, and may have a form of a single crystal or a form of a mixture of plural crystals. Crystals can be produced by crystallization according to a crystallization method known per se. Compound (I) is preferably a crystal. Compound (I) may be a solvate (e.g., hydrate etc.) and both solvate and non-solvate (e.g., non-hydrate etc.) are encompassed in the scope of the present invention. The compound of the present invention thus produced shows lower toxicity and is safe (in other words, more superior as a pharmaceutical agent from the aspects of acute toxicity, chronic toxicity, genetic toxicity, reproductive toxicity, cardiac toxicity, drug interaction, carcinogenicity and the like), and rapidly converted to compound A in the living body of an animal, particularly a mammal (e.g., human, monkey, cat, pig, horse, bovine, mouse, rat, guinea pig, dog, rabbit etc.). Since compound A normalizes the intracellular insulin signal transduction mechanism, which mainly causes insulin resistance, thereby reducing insulin resistance and enhancing insulin action, and has a glucose tolerance improvement action. Therefore, the compound of the present invention can be used for mammals (e.g., human, monkey, cat, pig, horse, bovine, mouse, rat, guinea pig, dog, rabbit etc.) as an improving agent or an agent for the prophylaxis and/or treatment of the diseases in which insulin resistance is involved. As such diseases, for example, insulin resistance, impaired glucose tolerance; diabetes such as noninsulin dependent diabetes, type II diabetes, type II diabetes associated with insulin resistance, type II diabetes associated with impaired glucose tolerance etc.; various complications such as hyperinsulinemia, hypertension associated with insulin resistance, hypertension associated with impaired glucose tolerance, hypertension associated with diabetes (e.g., type II diabetes etc.), hypertension occurring in association with hyperinsulinemia, insulin resistance occurring in association with hypertension, impaired glucose tolerance occurring in association with hypertension, diabetes occurring in association with hypertension, hyperinsulinemia occurring in association with hypertension, diabetic complications [e.g., microangiopathy, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cataract, large vessel disease, osteopenia, diabetic hyperosmolar coma, infectious diseases (e.g., respiratory infectious disease, urinary tract infectious disease, digestive infectious disease, infectious disease of dermal soft tissue, infectious disease of inferior limb etc.), diabetic gangrene, dry mouth, lowered sense of hearing, diabetic cerebrovascular disorder, diabetic peripheric hematogenous disorder, diabetic hypertension and the like], diabetic cachexia and the like; and the like can be mentioned. The compound of the present invention can also be used for treating patients of high normal blood pressure with diabetes. Since compound A has a strong angiotensin II antagonistic activity, the compound of the present invention is useful as an agent for the prophylaxis or treatment of a disease (or a disease whose onset is promoted) developed by the contraction or growth of blood vessels or organ disorder, which expresses via an angiotensin II receptor, or due to the presence of angiotensin II, or a factor induced by the presence of angiotensin II, in mammals (e.g., human, monkey, cat, pig, horse, bovine, mouse, rat, guinea pig, dog, rabbit etc.). As such diseases, for example, hypertension, blood pressure circadian rhythm abnormality, heart diseases (e.g., cardiac hypertrophy, acute heart failure and chronic heart failure including congestive heart failure, cardiac myopathy, angina pectoris, myocarditis, atrial fibrillation, arrhythmia, tachycardia, cardiac infraction etc.), cerebrovascular disorders (e.g., asymptomatic cerebrovascular disorder, transient cerebral ischemia, apoplexy, cerebrovascular dementia, hypertensive encephalopathy, cerebral infarction etc.), cerebral edema, cerebral circulatory disorder, recurrence and sequela of cerebrovascular disorders (e.g., neurotic symptom, psychic symptom, subjective symptom, disorder in daily living activities etc.), ischemic peripheral circulation disorder, myocardial ischemia, venous insufficiency, progression of cardiac insufficiency after cardiac infarction, renal diseases (e.g., nephritis, glomerulonephritis, glomerulosclerosis, renal failure, thrombotic vasculopathy, complication of dialysis, organ dysfunction including nephropathy by radiation damage etc.), arteriosclerosis including atherosclerosis (e.g., aneurysm, coronary arteriosclerosis, cerebral arteriosclerosis, peripheral arteriosclerosis etc.), vascular hypertrophy, vascular hypertrophy or obliteration and organ disorders after intervention (e.g., percutaneous transluminal coronary angioplasty, stenting, coronary angioscopy, intravascular ultrasound, dounce thrombolytic therapy etc.), vascular re-obliteration and restenosis after bypass, polycythemia, hypertension, organ disorder and vascular hypertrophy after transplantation, rejection after transplantation, ocular diseases (e.g., glaucoma, ocular hypertension etc.), thrombosis, multiple organ disorder, endothelial dysfunction, hypertensive tinnitus, other cardiovascular diseases (e.g., deep vein thrombosis, obstructive peripheral circulatory disorder, arteriosclerosis obliterans, obstructive thromboangiitis, ischemic cerebral circulatory disorder, Raynaud's disease, Berger disease etc.), metabolic and/or nutritional disorders (e.g., obesity, hyperlipidemia, hypercholesterolemia, hyperuricacidemia, hyperkalemia, hypernatremia etc.), nerve degeneration diseases (e.g., Alzheimer's disease, Parkinson's syndrome, amyotrophic lateral sclerosis, AIDS encephalopathy etc.), central nervous system disorders (e.g., cerebral hemorrhage, cerebral infarction, their sequela and complication, head injury, spinal injury, cerebral edema, sensory malfunction, sensory functional disorder, autonomic nervous system disorder, autonomic nervous system malfunction, multiple sclerosis etc.), dementia, defects of memory, disorder of consciousness, amnesia, anxiety symptom, catatonic symptom, discomfort mental state, psychopathies (e.g., depression, epilepsy, alcoholism etc.), inflammatory diseases (e.g., arthritis such as rheumatoid arthritis, osteoarthritis, rheumatoid myelitis, periostitis etc.; inflammation after operation and injury; remission of swelling; pharyngitis; cystitis; pneumonia; atopic dermatitis; inflammatory intestinal diseases such as Crohn's disease, ulcerative colitis etc.; meningitis; inflammatory ocular disease; inflammatory pulmonary disease such as pneumonia, pulmonary silicosis, pulmonary sarcoidosis, pulmonary tuberculosis etc.), allergic diseases (e.g., allergic rhinitis, conjunctivitis, gastrointestinal allergy, pollinosis, anaphylaxis etc.), chronic obstructive pulmonary disease, interstitial pneumonia, pneumocytis carinni pneumonia, collagen diseases (e.g., systemic lupus erythematodes, scleroderma, polyarteritis etc.), hepatic diseases (e.g., hepatitis including chronic hepatitis, hepatic cirrhosis etc.), portal hypertension, digestive system disorders (e.g., gastritis, gastric ulcer, gastric cancer, gastric disorder after operation, dyspepsia, esophageal ulcer, pancreatitis, colon polyp, cholelithiasis, hemorrhoidal disease, varices ruptures of esophagus and stomach etc.), blood and/or myelopoietic diseases (e.g., erythrocytosis, vascular purpura, autoimmune hemolytic anemia, disseminated intravascular coagulation syndrome, multiple myelopathy etc.), bone diseases (e.g., fracture, refracture, osteoporosis, osteomalacia, bone Paget's disease, sclerosing myelitis, rheumatoid arthritis, osteoarthritis of the knee and joint tissue dysfunction and the like caused by diseases similar to these etc.), solid tumor, tumors (e.g., malignant melanoma, malignant lymphoma, cancer of digestive organs (e.g., stomach, intestine etc.) etc.), cancer and cachexia following cancer, metastasis cancer, endocrinopathy (e.g., Addison's disease, Cushing's syndrome, pheochromocytoma, primary aldosteronism etc.), Creutzfeldt-Jakob disease, urinary organ and/or male genital diseases (e.g., cystitis, prostatic hypertrophy, prostatic cancer, sex infectious disease etc.), female disorders (e.g., climacteric disorder, gestosis, endometriosis, hysteromyoma, ovarian disease, breast disease, sex infectious disease etc.), disease relating to environment and occupational factors (e.g., radiation hazard, hazard by ultraviolet, infrared or laser beam, altitude sickness etc.), respiratory diseases (e.g., cold syndrome, pneumonia, asthma, pulmonary hypertension, pulmonary thrombosis and pulmonary embolism etc.), infectious diseases (e.g., viral infectious diseases with cytomegalovirus, influenza virus, herpes virus etc., rickettsiosis, bacterial infectious disease etc.), toxemias (e.g., sepsis, septic shock, endotoxin shock, Gram-negative sepsis, toxic shock syndrome etc.), otorhinolaryngological diseases (e.g., Meniere's syndrome, tinnitus, dysgeusia, vertigo, disequilibrium, dysphagia etc.), skin-diseases (e.g., keloid, hemangioma, psoriasis etc.), intradialytic hypotension, myasthenia gravis, systemic diseases such as chronic fatigue syndrome and the like can be mentioned. Since the compound of the present invention can maintain a constant hypotensive action both day and night, reduction of the dose and frequency is possible as compared to the administration of compound A. In addition, it can effectively suppress particularly problematic increase in the blood pressure before and after rising in patients with hypertension. In addition, by longer term sustained suppression of the action of angiotensin II, the compound of the present invention improves disorder or abnormality or suppresses promotion thereof in the biofunction and physiological action, that causes adult disorders and various diseases linked with aging and the like, which in turn leads to the primary and secondary prophylaxis of diseases or clinical conditions caused thereby or suppression of the progression thereof. As the disorder or abnormality in the biofunction and physiological action, for example, disorder or abnormality in automatic controlling capability of cerebral circulation and/or renal circulation, disorder of circulation (e.g., peripheral, cerebral, microcirculation etc.), disorder of blood-brain-barrier, salt susceptibility, abnormal state of coagulation and fibrinolysis system, abnormal state of blood and blood cell components (e.g., accentuation of platelet aggregation activity, erythrocyte deformability, accentuation of leukocyte adhesiveness, rise of blood viscosity etc.), production and function accentuation of growth factor and cytokines (e.g., PDGF, VEGF, FGF, interleukin, TNF-α, MCP-1 etc.), accentuation of proliferation and infiltration of inflammatory cells, accentuation of production of free radical, liposteatosis accentuation, endothelial function disorder, dysfunction of endothelium, cell and organ, edema, cell morphogenesis change of smooth muscle etc. (morphogenesis to proliferation type etc.), production and function accentuation of vasoactive substance and thrombosis inducers (e.g., endothelin, thromboxane A2 etc.), abnormal constriction of blood vessel etc., metabolic disorder (e.g., serum lipid abnormalities, dysglycemia etc.), abnormal growth of cell etc., angiogenesis (including abnormal vasculogenesis during abnormal capillary reticular formation in adventitial coat of arteriosclerosis) and the like can be mentioned. Of these, the present invention can be used as an agent for the primary and secondary prophylaxis or treatment of organ disorders associated with various diseases (e.g., cerebrovascular disorder and organ disorder associated therewith, organ disorder associated with cardiovascular disease, organ disorder associated with diabetes, organ disorder after intervention etc.). In particular, since compound A has an activity of inhibiting proteinuria, the compound of the present invention can be used as an agent for protecting kidney. Therefore, the compound of the present invention can be advantageously used when the patients with insulin resistance, impaired glucose tolerance, diabetes or hyperinsulinemia have concurrently developed the above-mentioned diseases or clinical condition. Since compound A has an activity of inhibiting body weight gain, the compound of the present invention can be used as a body weight gain inhibitor to mammals. Target mammals may be any mammals of which body weight gain is to be avoided. The mammals may have a risk of body weight gain genetically or may be suffering from lifestyle-related diseases such as diabetes, hypertension and/or hyperlipidemia etc. The body weight gain may be caused by excessive feeding or diet without nutrient balance, or may be derived from combination drug, for example, insulin sensitizers having PPARγ-agonistic activity such as troglitazone, rosiglitazone, englitazone, ciglitazone, pioglitazone etc. and the like. In addition, body weight gain may be preliminary to obesity, or may be body weight gain of obesity patients. Here, obesity is defined that BMI (body mass index; body weight (kg)/[height (m)]2) is at least twenty-five for Japanese (criterion by Japan Society for the Study of Obesity), or at least thirty for westerner (criterion by WHO). The new criteria were reported about diabetic criteria in 1999 by the Japan Diabetes Society. According to this report, diabetes is a condition herein the fasting blood glucose level (glucose concentration of venous plasma) is not less than 126 mg/dl, the 2-hour value (glucose concentration of venous plasma) of the 75 g oral glucose tolerance test (75 g OGTT) is not less than 200 mg/dl, or the casual blood glucose level (glucose concentration of venous plasma) is not less than 200 mg/dl. In addition, a condition which does not fall under the above-mentioned diabetes, and which is not a “condition where the fasting blood glucose level (glucose concentration of venous plasma) is less than 110 mg/dl or the 2-hour value (glucose concentration of venous plasma) of the 75 g oral glucose tolerance test (75 g OGTT) is less than 140 mg/dl ” (normal type), is called a “borderline type”. In addition, regarding diagnostic criteria for diabetes, new diagnostic criteria were reported by ADA (The American Diabetes Association) in 1997 and by WHO in 1998. According to these reports, diabetes is a condition where the fasting blood glucose level (glucose concentration in venous plasma) is not less than 126 mg/dl, and the 2-hour value (glucose concentration in venous plasma) of the 75 g oral glucose tolerance test is not less than 200 mg/dl. In addition, according to the above reports, impaired glucose tolerance is a condition where the fasting blood glucose level (glucose concentration in venous plasma) is less than 126 mg/dl, and the 2-hour value (glucose concentration in venous plasma) of the 75 g oral glucose tolerance test is not less than 140 mg/dl and less than 200 mg/dl. Furthermore, according to the ADA report, a condition where the fasting blood glucose level (glucose concentration in venous plasma) is not less than 110 mg/dl and less than 126 mg/dl, is called IFG (Impaired Fasting Glucose). On the other hand, according to the WHO report, of the conditions of IFG (Impaired Fasting Glucose), a condition where the 2-hour value (glucose concentration in venous plasma) of the 75 g oral glucose tolerance test is less than 140 mg/dl, is called IFG (Impaired Fasting Glycemia). The compound of the present invention can be used as an improving agent or an agent for the prophylaxis or treatment of diabetes, borderline type, impaired glucose tolerance, IFG (Impaired Fasting Glucose) and IFG (Impaired Fasting Glycemia) as defined by the above-mentioned new diagnostic criteria. Furthermore, the compound of the present invention can be also used as a therapeutic agent for hypertension of hypertensive patients showing a level not less than the above-mentioned diagnostic criteria (e.g., fasting blood glucose level of 126 mg/dl). Moreover, the compound of the present invention can be also used to prevent the progression of the borderline type, impaired glucose tolerance, IFG (Impaired Fasting Glucose) or IFG (Impaired Fasting Glycemia) to diabetes. The compound of the present invention is useful as an agent for the prophylaxis or treatment of metabolic syndrome. Because patients with metabolic syndrome have an extreme high incidence of cardiovascular diseases as compared to patients with single lifestyle-related diseases, the prophylaxis or treatment of metabolic syndrome is quite important to prevent cardiovascular diseases. Criteria for diagnosis of metabolic syndrome are announced by WHO in 1999, and by NCEP in 2001. According to the criterion of WHO, patients with at least two of abdominal obesity, dyslipidemia (high serum triglycerides or low HDL cholesterol), hypertension in addition to hyperinsulinemia or fasting blood glucose are diagnosed as metabolic syndrome (World Health Organization: Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part I: Diagnosis and Classification of Diabetes Mellitus, World Health Organization, Geneva, 1999). According to the criterion of Adult Treatment Panel III of National Cholesterol Education Program, that is an indicator for managing ischemic heart diseases in America, patients with at least three of abdominal obesity, high triglycerides, low HDL cholesterol, hypertension and fasting blood glucose are diagnosed as metabolic syndrome (National Cholesterol Education Program: Executive Summary of the Third Report of National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adults Treatment Panel III). The Journal of the American Medical Association, Vol. 285, 2486-2497, 2001). The compound of the present invention can be used for treating patients of high blood pressure with metabolic syndrome. Because compound A has an inflammatory action, the compound of the present invention can be used as an anti-inflammatory agent for preventing or treating inflammatory diseases. Examples of inflammatory diseases include inflammatory diseases due to various diseases such as arthritis (e.g. rheumatoid arthritis, osteoarthritis, rheumatoid myelitis, gouty arthritis, synovitis), asthma, allergic diseases, arteriosclerosis including atherosclerosis (aneurysm, coronary sclerosis, cerebral arterial sclerosis, peripheral arterial sclerosis etc.), digestive tract disease such as inflammatory intestine disease (e.g. Crohn's disease, ulcerative colitis), diabetic complication (diabetic nerves disorder, diabetic vascular disorder), atopic dermatitis, chronic obstructive pulmonary disease, systemic lupus erythematosus, visceral inflammatory disease (nephritic, hepatitis), autoimmune hemolytic anemia, psoriasis, nervous degenerative disease (e.g. Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, AIDS encephalopathy), central nervous disorder (e.g. cerebrovascular disorder such as cerebral hemorrhage and cerebral infarct, head trauma, spinal damage, cerebral edema, multiple sclerosis), meningitis, angina, cardiac infarct, congestive cardiac failure, vascular hypertrophy or occlusion and organ disorder after intervention (transdermal coronary plasty, stent indwelling, coronary endoscope, intravascular ultrasound, intracoronary thrombolysis etc), vascular reocculusion or restenosis after bypass operation, endothelial functional disorder, other circulatory disease (intermittent claudication, obstructive peripheral circulatory disorder, obstructive arteriosclerosis, obstructive thrombotic angitis, ischemic cerebral circulatory disorder, Leiner's disease, Verger's disease), inflammatory ocular disease, inflammatory pulmonary disease (e.g. chronic pneumonia, silicosis, pulmonary sarcoidosis, pulmonary tuberculosis), endometritis, toxemia (e.g. sepsis, septic shock, endotoxin shock, gram negative sepsis, toxin shock syndrome), cachexia (e.g. cachexia due to infection, carcinomatous cachexia, cachexia due to acquired immunodeficiency syndrome) cancer, Addison's disease, Creutzfeldt-Jakob disease, virus infection (e.g. infection of virus such as cytomegalovirus, influenza virus, herpes etc.), disseminated intravascular coagulation. In addition, because compound A has an analgesic action, the compound of the present invention can be also used as an analgesic agent for preventing or treating pain. Examples of pain diseases include acute pain due to inflammation, pain associated with chronic inflammation, pain associated with acute inflammation, pain after operation (pain of incisional, deep pain, organ pain, chronic pain after operation etc.), muscular pain (muscular pain associated with chronic pain disease, shoulder stiffness etc.), arthralgia, toothache, gnathicarthralgia, headache (migraine, catatonic headache, headache associated with fever, headache associated hypertension), organ pain (cardiac pain, angina pain, abdominal pain, renal pain, ureterane pain, bladder pain), pain in obstetrics area (mittelschmerz, dysmenorrheal, labor pain), neuralgia, (disc hernia, nerve root pain, neuralgia after herpes zoster, trigeminal neuralgia), carcinomatous pain, reflex sympathetic atrophy, complex local pain syndrome, and the like. The compound of the present invention is effective in alleviate directly and rapidly various pains such as nervous pain, carcinomatous pain and inflammatory pain, and exhibits the particularly excellent analgesic effect to patients and pathologies in which a pain sense threshold is lowered. The compound of the present invention is particularly useful as an analgesic agent for pain associated with chronic inflammation or pain associated with hypertension, or as an agent for preventing or treating inflammatory disease or pain due to (1) arteriosclerosis including atherosclerosis, (2) vascular hypertrophy, occlusion or organ disorder after intervention, (3) reocclusion, restenosis or endothelial functional disorder after bypass operation, (4) intermittent claudication, (5) occlusive peripheral circulatory disorder, (6) occlusive arteriosclerosis. The compound of the present invention can be used as a safe pharmaceutical agent to mammals (e.g., human, monkey, cat, swine, horse, bovine, mouse, rat, guinea pig, dog, rabbit and the like) in the form of the compound as it is or a pharmaceutical composition after admixing with a pharmacologically acceptable carrier according to a method known per se. As used herein, as the pharmacologically acceptable carrier, various organic or inorganic carrier substances conventionally used as materials for preparations can be used. For example, excipient, lubricant, binder and disintegrant for solid preparations; solvent, dissolution aids, suspending agent, isotonizing agent and buffer for liquid preparations; and the like can be mentioned. Where necessary, additives for preparation, such as preservative, antioxidant, coloring agent, sweetening agent and the like, can be also used. Preferable examples of excipient include lactose, sucrose, D-mannitol, D-sorbitol, starch, pregelatinized starch, dextrin, crystalline cellulose, low-substituted hydroxypropyl cellulose, carboxymethyl cellulose sodium, gum arabic, pullulan, light silicic anhydride, synthetic aluminum silicate, magnesium aluminometasilicate and the like. Preferable examples of lubricant include magnesium stearate, calcium stearate, talc, colloidal silica and the like. Preferable examples of binder include pregelatinized starch, sucrose, gelatin, gum arabic, methyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose sodium, crystalline cellulose, sucrose, D-mannitol, trehalose, dextrin, pullulan, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, polyvinylpyrrolidone and the like. Preferable examples of disintegrant include lactose, sucrose, starch, carboxymethyl cellulose, carboxymethyl cellulose calcium, croscarmellose sodium, carboxymethyl starch sodium, light silicic anhydride, low-substituted hydroxypropyl cellulose and the like. Preferable examples of solvent include water for injection, physiological brine, Ringer's solution, alcohol, propylene glycol, polyethylene glycol, sesame oil, corn oil, olive oil, cottonseed oil and the like. Preferable examples of dissolution aids include polyethylene glycol, propylene glycol, D-mannitol, trehalose, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate, sodium salicylate, sodium acetate and the like. Preferable examples of suspending agent include surfactants such as stearyltriethanolamine, sodium lauryl sulfate, lauryl aminopropionate, lecithin, benzalkonium chloride, benzethonium chloride, glycerol monostearate etc.; hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose sodium, ethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose etc.; polysorbates, polyoxyethylene hydrogenated castor oil and the like. Preferable examples of isotonizing agent include sodium chloride, glycerin, D-mannitol, D-sorbitol, glucose and the like. Preferable examples of buffer include buffers such as phosphate, acetate, carbonate, citrate etc., and the like. Preferable examples of preservative include p-oxybenzoate, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like. Preferable examples of antioxidant include sulfite, ascorbate and the like. Preferable examples of coloring agent include water-soluble edible tar dyes (e.g., food colors such as Food Red Nos. 2 and 3, Food Yellow Nos. 4 and 5, Food Blue Nos. 1 and 2 etc.), water-insoluble Lake dyes (e.g., aluminum salts of the aforementioned water-soluble edible tar dyes etc.), natural colors (e.g., β-carotene, chlorophyll, iron oxide red etc.) and the like. Preferable examples of sweetening agent include saccharin sodium, dipotassium glycyrrhizinate, aspartame, stevia and the like. The dosage form of the pharmaceutical composition includes, for example, oral agents such as tablet, capsule (including soft capsule and microcapsule), granule, powder, syrup, emulsion, suspension, sustained-release preparation and the like, which can be each safely administered orally. The pharmaceutical composition can be prepared by conventional methods in the field of pharmaceutical manufacturing technical field, such as methods described in the Japanese Pharmacopoeia, and the like. Specific production methods for such preparations are hereinafter described in detail. For example, a tablet is produced by adding, for example, excipients (e.g., lactose, sucrose, starch, D-mannitol etc.), disintegrants (e.g., carboxymethyl cellulose calcium etc.), binders (e.g., pregelatinized starch, gum arabic, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinylpyrrolidone etc.), lubricants (e.g., talc, magnesium stearate, polyethylene glycol 6000 etc.) and the like, to the active ingredient, compression-shaping, and, where necessary, applying a coating by a method known per se using coating base known per se for the purpose of achieving taste masking, enteric dissolution or sustained release. The capsule can be made as a hard capsule filled with a powder or granular pharmaceutical agent, or a soft capsule filled with a liquid or suspension liquid. The hard capsule is produced by mixing and/or granulating an active ingredient with, for example, an excipient (e.g., lactose, sucrose, starch, crystalline cellulose, D-mannitol and the like), a disintegrant (low substituted hydroxypropyl cellulose, carmellose calcium, corn starch, croscarmellose sodium and the like), a binder (hydroxypropyl cellulose, polyvinylpyrrolidone, hydroxypropylmethyl cellulose and the like), a lubricant (magnesium stearate and the like) and the like, and filling the mixture or granule in a capsule formed from the aforementioned gelatin, hydroxypropylmethyl cellulose and the like. The soft capsule is produced by dissolving or suspending the active ingredient in a base (soybean oil, cottonseed oil, medium chain fatty acid triglyceride, beeswax and the like) and sealing the prepared solution or suspension in a gelatin sheet using, for example, a rotary filling machine and the like. When compound (I) is a salt and avoidance of contact of compound (I) in the form of a salt with water is preferable, compound (I) is preferably dry-mixed with an excipient and the like to give a hard capsule. The content of compound (I) in a pharmaceutical composition is generally about 0.01-about 99.9 wt %, preferably about 0.1-about 50 wt %, relative to the entire preparation. The dose of compound (I) is determined in consideration of age, body weight, general health condition, sex, diet, administration time, administration method, clearance rate, combination of drugs, the level of disease for which the patient is under treatment then, and other factors. While the dose varies depending on the target disease, condition, subject of administration, administration method and the like, for oral administration as a therapeutic agent for essential hypertension in adult, the daily dose of 0.1-100 mg is preferably administered in a single dose or in 2 or 3 portions. In addition, because the compound of the present invention is superior in safety, it can be administered for a long period. The compound of the present invention can be used in combination with pharmaceutical agents such as a therapeutic agent for diabetes, a therapeutic agent for diabetic complications, an anti-hyperlipidemia agent, an anti-arteriosclerotic agent, an anti-hypertensive agent, an anti-obesity agent, a diuretic, an antigout agent, an antithrombotic agent, an anti-inflammatory agent, a chemotherapeutic agent, an immunotherapeutic agent, a therapeutic agent for osteoporosis, an anti-dementia agent, an erectile dysfunction amelioration agent, a therapeutic agent for urinary incontinence/urinary frequency and the like (hereinafter to be abbreviated as a combination drug). On such occasions, the timing of administration of the compound of the present invention and that of the combination drug is not limited, as long as the compound of the present invention and the combination drug are combined. As the mode of such administration, for example, (1) administration of a single preparation obtained by simultaneous formulation of the compound of the present invention and a combination drug, (2) simultaneous administration of two kinds of preparations obtained by separate formulation of the compound of the present invention and a combination drug, by a single administration route, (3) time staggered administration of two kinds of preparations obtained by separate formulation of the compound of the present invention and a combination drug, by the same administration route, (4) simultaneous administration of two kinds of preparations obtained by separate formulation of the compound of the present invention and a combination drug, by different administration routes, (5) time staggered administration of two kinds of preparations obtained by separate formulation of the compound of the present invention and a combination drug, by different administration routes, such as administration in the order of the compound of the present invention and then the combination drug, or administration in a reversed order, and the like can be mentioned. The dose of the combination drug can be appropriately determined based on the dose clinically employed. The mixing ratio of the compound of the present invention and the combination drug can be appropriately selected according to the administration subject, administration route, target disease, condition, combination, and other factors. In cases where the administration subject is human, for example, the combination drug may be used in an amount of 0.01 to 100 parts by weight per part by weight of the compound of the present invention. As the therapeutic agent for diabetes, for example, insulin preparations (e.g., animal insulin preparations extracted from the bovine or swine pancreas; human insulin preparations synthesized by a genetic engineering technique using E. coli or a yeast, and the like), other insulin sensitizers (e.g., pioglitazone hydrochloride, troglitazone, rosiglitazone, GI-262570, JTT-501, MCC-555, YM-440, KRP-297, CS-011, FK-614 etc.), a-glucosidase inhibitors (e.g., voglibose, acarbose, miglitol, emiglitate etc.), biguanides (e.g., phenformin, metformin, buformin etc.), insulin secretagogues [e.g., sulfonylureas (e.g., tolbutamide, glibenclamide, gliclazide, chlorpropamide, tolazamide, acetohexamide, glyclopyramide, glimepiride, glipizide, glybuzole etc.), repaglinide, senaglinide, nateglinide, mitiglinide or its calcium salt hydrate, GLP-1 etc.], amyrin agonists (e.g., pramlintide etc.), phosphotyrosine phosphatase inhibitors(e.g., vanadic acid etc.), dipeptidylpeptidase IV inhibitors (e.g., NVP-DPP-278, PT-100, P32/98 etc.), β3 agonists (e.g., CL-316243, SR-58611-A, UL-TG-307, SB-226552, AJ-9677, BMS-196085, AZ40140 etc.), gluconeogenesis inhibitors (e.g., glycogen phosphorylase inhibitor, glucose-6-phosphatase inhibitor, glucagon antagonist etc.), SGLT (sodium-glucose cotransporter) inhibitors (e.g., T-1095 etc.) and the like, can be mentioned. As the therapeutic agents for diabetic complications, for example, aldose reductase inhibitors (e.g., tolrestat, epalrestat, zenarestat, zopolrestat, minalrestat, fidarestat, SNK-860, CT-112 etc.), neurotrophic factors (e.g., NGF, NT-3, BDNF etc.), PKC inhibitors (e.g., LY-333531 etc.), AGE inhibitors (e.g., ALT946, pimagedine, pyratoxathine, N-phenacylthiazolium bromide (ALT766), EXO-226 etc.), active oxygen scavengers (e.g., thioctic acid etc.), cerebral vasodilators (e.g., tiapride, mexiletine etc.) and the like can be mentioned. As the anti-hyperlipidemia agents, for example, statin compounds which are cholesterol synthesis inhibitors (e.g., cerivastatin, pravastatin, simvastatin, lovastatin, atorvastatin, fluvastatin, itavastatin or salts thereof (e.g., sodium salt etc.) etc.), squalene synthetase inhibitors (e.g. TAK-475 etc.) or fibrate compounds having a triglyceride lowering effect (e.g., bezafibrate, clofibrate, simfibrate, clinofibrate etc.) and the like can be mentioned. As the anti-arteriosclerotic agents, for example, an acyl-Coenzyme A cholesterol acyltransferase (ACAT) inhibitor (e.g. melinamide, CS-505 etc.) and a lipid rich plaque regressing agent (e.g. compounds described in WO 02/06264, WO 03/059900 etc.) and the like can be mentioned. As the antihypertensive agents, for example, angiotensin converting enzyme inhibitors (e.g., captopril, enalapril, delapril etc.), angiotensin II antagonists (e.g., candesartan cilexetil, candesartan, losartan, losartan potassium, eprosartan, valsartan, termisartan, irbesartan, tasosartan, olmesartan, olmesartan medoxomil etc.), calcium antagonists (e.g., manidipine, nifedipine, amlodipine, efonidipine, nicardipine etc.), β-blocker (e.g., metoprolol, atenolol, propranolol, carvedilol, pindolol etc.), clonidine and the like can be mentioned. As the anti-obesity agents, for example, central acting anti-obesity agent (e.g., dexfenfluramine, fenfluramine, phentermine, sibutramine, amfepramone, dexamphetamine, mazindol, phenylpropanolamine, clobenzorex etc.), pancreatic lipase inhibitors (e.g., orlistat etc.), β3 agonist (e.g., CL-316243, SR-58611-A, UL-TG-307, SB-226552, AJ-9677, BMS-196085, AZ40140 etc.), anorectic peptides (e.g., leptin, CNTF (ciliary neurotropic factor) etc.), cholecystokinin agonists (e.g., lintitript, FPL-15849 etc.) and the like can be mentioned. As the diuretics, for example, xanthine derivatives (e.g., theobromine and sodium salicylate, theobromine and calcium salicylate etc.), thiazide preparations (e.g., ethiazide, cyclopenthiazide, trichlormethiazide, hydrochlorothiazide, hydroflumethiazide, benzylhydrochlorothiazide, penfluthiazide, poly 5 thiazide, methyclothiazide etc.), anti-aldosterone preparations (e.g., spironolactone, triamterene etc.), carbonic anhydrase inhibitors (e.g., acetazolamide etc.), chlorobenzenesulfonamide preparations (e.g., chlortalidone, mefruside, indapamide etc.), azosemide, isosorbide, ethacrynic acid, piretanide, bumetanide, furosemide and the like can be mentioned. As the antigout agents, for example, allopurinol, probenecid, colchicine, benzbromarone, febuxostat, citrate and the like can be mentioned. As the antithrombotic agents, for example, anticoagulating agent [e.g., heparin sodium, heparin potassium, warfarin potassium (warfarin), activated blood coagulation factor X inhibitor (e.g., compounds described in WO 2004/048363 etc.)], thrombolytic agent [e.g., tPA, urokinase], antiplatelet agent [e.g., aspirin, sulfinpyrazone (anturan), dipyridamole (persantin), ticlopidine (panaldine), cilostazol (pletal), GPIIb/IIIa antagonist (ReoPro), clopidogrel etc.], and the like can be mentioned. As the antiinflammatory agents, for example, non-steroidal antiinflammatory agents, such as acetaminophen, fenasetin, ethenzamide, sulpyrine, antipyrine, migrenin, aspirin, mefenamic acid, flufenamic acid, diclofenac sodium, loxoprofen sodium, phenylbutazone, indomethacin, ibuprofen, ketoprofen, naproxen, oxaprozin, flurbiprofen, fenbufen, pranoprofen, floctafenine, epirizol, tiaramide hydrochloride, zaltoprofen, gabexate mesilate, camostat mesilate, ulinastatin, colchicine, probenecid, sulfinpyrazone, benzbromarone, allopurinol, sodium gold thiomalate, sodium hyaluronate, sodium salicylate, morphine hydrochloride, salicylic acid, atropine, scopolamine, morphine, pethidine, levorphanol, ketoprofen, naproxen, oxymorphohe and their salts etc., and the like can be mentioned. As the chemotherapeutic agents, for example, alkylating agents (e.g., cyclophosphamide, ifosphamide etc.), metabolic antagonists (e.g., methotrexate, 5-fluorouracil etc.), anticancer antibiotics (e.g., mitomycin, adriamycin etc.), plant-derived anticancer agents (e.g., vincristine, vindesine, taxol etc.), cisplatin, carboplatin, etoposide and the like can be mentioned. Of these, furtulon, neofurtulon etc., which are 5-fluorouracil derivatives, and the like are preferable. As the immunotherapeutic agents, for example, microorganism or bacterial components (e.g., muramyl dipeptide derivative, picibanil etc.), polysaccharides having immunostimulant activity (e.g., lenthinan, schizophyllan, krestin etc.), cytokines obtained by genetic engineering techniques (e.g., interferon, interleukin (IL) etc.), colony stimulating factor (e.g., granulocyte-colony stimulating factor, erythropoietin etc.) and the like can be mentioned, with preference given to IL-1, IL-2, IL-12 and the like. As the therapeutic agents for osteoporosis, for example, alfacalcidol, calcitriol, elcaltonin, calcitonin salmon, estriol, ipriflavone, pamidronate disodium, alendronate sodium hydrate, incadronate disodium and the like can be mentioned. As the anti-dementia agents, for example, tacrine, donepezil, rivastigmine, galantamine and the like can be mentioned. As the erectile dysfunction amelioration agents, for example, apomorphine, sildenafil citrate and the like can be mentioned. As the therapeutic agent for urinary incontinence/urinary frequency, for example, flavoxate hydrochloride, oxybutynin hydrochloride, propiverine hydrochloride and the like can be mentioned. Moreover, pharmaceutical agents having a cachexia improving effect acknowledged in animal models and clinical situations, which include cyclooxygenase inhibitors (e.g., indomethacin etc.)[Cancer Research, Vol. 49, 5935-5939 pages, 1989], progesterone derivatives (e.g., megestrol acetate) [Journal of Clinical Oncology, Vol. 12, 213-225 pages, 1994], glucosteroid (e.g., dexamethasone etc.), metoclopramide pharmaceutical agents, tetrahydrocannabinol pharmaceutical agent (publications are the same as the above), fat metabolism improving agent (e.g., eicosapentanoic acid etc.)[British Journal of Cancer, Vol. 68, pp. 314-318, 1993], growth hormone, IGF-1, and antibodies against TNF-α, LIF, IL-6 and oncostatin M, which induce cachexia, and the like, can be also used in combination with the pharmaceutical agent of the present invention. The combination drug preferably includes a diuretic, an insulin preparation, an insulin sensitizer, an α-glucosidase inhibitor, a biguanide agent, an insulin secretagogue (preferably sulfonylurea agent) and the like. Particularly, a diuretic such as hydrochlorothiazide and the like and an insulin sensitizers such as pioglitazone hydrochloride and the like are preferable. The above-mentioned combination drug may be a combination of two or more kinds thereof combined at appropriate ratios. Since the compound of the present invention potentiates hypoglycemic activity of other insulin sensitizers, a combined use of the compound of the present invention and other insulin sensitizers (preferably pioglitazone hydrochloride) markedly enhances a prophylactic and/or therapeutic effect against diseases in which insulin resistance is involved, such as type II diabetes and the like. The compound of the present invention shows a superior prophylactic or therapeutic effect against circulatory diseases such as hypertension and the like and metabolic diseases such as diabetes and the like. EXAMPLES The present invention is explained in detail by referring to the following Examples, Preparation Examples and Experimental Examples. However, these Examples are mere practical embodiments and do not limit the present invention. The present invention may be modified as long as the scope of the invention is not deviated. The elution by column chromatography in Examples was performed under observation by TLC (thin-layer chromatography). In the TLC observation, 60F254 (Merck) was used as a TLC plate, the solvent used as an elution solvent in the column chromatography was used as a developing solvent, and UV detector was used for detection. As silica gel for column, Kieselgel 60 (70-230 mesh) or Kieselgel 60 (230-400 mesh) manufactured by Merck was used. NMR spectrum was measured using tetramethylsilane as an internal or external standard, and the chemical shift is expressed in δ value and the coupling constant is expressed in Hz. The symbols in the Examples mean the following. s: singlet d: doublet t: triplet q: quartet dd: double doublet m: multiplet J: coupling constant THF: tetrahydrofuran DMF: dimethylformamide DMSO: dimethyl sulfoxide DBU: 1,8-diazabicyclo[5.4.0]-7-undecene Example 1 (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate To a solution of disodium 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate (2.0 g) in DMF (20 mL) was added 4-chloromethyl-5-methyl-1,3-dioxol-2-one (0.99 g) and the mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated and the residue was dissolved in chloroform and 1N hydrochloric acid. The organic layer was separated, dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography to give the title compound (0.26 g, 14%) as a colorless solid. 1H NMR (300 MHz, CDCl3) δ: 1.43 (3H, t, J=7.1 Hz), 2.14 (3H, s), 4.46 (2H, q, J=7.1 Hz), 4.87 (2H, s), 5.63 (2H, s), 6.93 (2H, d, J=8.3 Hz), 7.07 (1H, t, J=7.9 Hz), 7.16 (2H, d, J=8.1 Hz), 7.32-7.37 (2H, m), 7.53-7.64 (3H, m), 7.83 (1H, dd, J=1.4 Hz, 7.6 Hz) Example 2 (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate To a solution of 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylic acid (5.0 g) and triethylamine (1.69 mL) in THF (50 mL) was added dropwise 2,4,6-trichlorobenzoyl chloride (1.81 mL) under ice-cooling. After stirring the mixture at room temperature for 12 hrs, insoluble material was filtered off and the filtrate was concentrated. The residue was dissolved in methylene chloride (50 mL), and 4-hydroxymethyl-5-methyl-1,3-dioxol-2-one (1.72 g) and N,N-dimethylaminopyridine (1.61 g) were added under ice-cooling. After stirring the mixture at room temperature for 4 hrs, the reaction mixture was diluted with chloroform (150 mL), washed with water, saturated aqueous sodium hydrogen carbonate, 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated. The residue was crystallized from diisopropyl ether to give crude crystals. The crude crystals were dissolved in ethanol (18 mL) with refluxing. Activated carbon (0.1 g) was added to the solution and the mixture was stirred with refluxing for 30 min. Insoluble material was filtered off and the filtrate was allowed to cool to room temperature. After 12 hrs., the precipitated crystals were collected by filtration and the crystals were washed with ice-cooled ethanol and dried under reduced pressure at room temperature to give the title compound (3.0 g, 50%). 4-Hydroxymethyl-5-methyl-1,3-dioxol-2-one was synthesized by the method described in Alpegiani, M.; Zarini, F.; Perrone, E. Synthetic Communication, Vol. 22, pp. 1277-1282 (1992). 1H NMR (300 MHz, DMSO-d6) δ: 1.37 (3H, t, J=7.2 Hz), 2.14 (3H, s), 4.58 (2H, q, J=7.2 Hz), 5.10 (2H, s), 5.53 (2H, s), 6.97 (2H, d, J=7.8 Hz), 7.17-7.22 (3H, m), 7.44-7.53 (3H, m), 7.61-7.73 (3H, m). Example 3 2-oxo-1,3-dioxolan-4-yl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate A solution of 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylic acid (1.0 g), 4-chloro-1,3-dioxolan-2-one (0.41 g) and triethylamine in DMF was stirred at 90° C. for 12 hrs. The reaction mixture was concentrated, and the residue was dissolved in chloroform and 1N hydrochloric acid. The organic layer was separated, dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography to give the title compound (0.20 g, 22%) as a colorless solid. 1H NMR (300 MHz, DMSO-d6) δ: 1.39 (3H, t, J=7.1 Hz), 4.52-4.65 (3H, m), 4.78 (1H, dd, J=5.8 Hz, 10.1 Hz), 5.55 (2H, d, J=2.6 Hz), 6.84 (1H, dd, J=2.1 Hz, 5.6 Hz), 7.03 (2H, d, J=8.3 Hz), 7.20-7.25 (3H, m), 7.43-7.57 (2H, m), 7.60-7.69 (3H, m), 7.77 (1H, dd, J=1.0 Hz, 7.8 Hz). Example 4 4-methyl-2-oxo-1,3-dioxolan-4-yl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate The title compound (0.21 g, 11%) was obtained from 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylic acid (2.0 g) and 4-chloro-4-methyl-1,3-dioxolan-2-one (1.2 g) according to a method similar to the method of Example 3. 4-Chloro-4-methyl-1,3-dioxolan-2-one was synthesized according to the method described in JP-A-62-290071. 1H NMR (300 MHz, CDCl3) δ: 1.41 (3H, t, J=7.1 Hz), 1.81 (3H, s), 4.53 (2H, d, J=3.6 Hz), 4.63 (2H, q, J=7.1 Hz), 5.57 (2H, d, J=6.4 Hz), 6.96 (2H, d, J=8.1 Hz), 7.20-7.28 (3H, m), 7.46 (1H, d, J=7.9 Hz), 7.54-7.69 (4H, m), 7.78 (1H, d, J=7.9 Hz). Example 5 (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate potassium salt The compound (0.55 g) obtained in Example 1 or 2 was dissolved in acetone (10 mL) at 50° C. The solution was ice-cooled and a solution of potassium 2-ethylhexanoate (0.17 g) in acetone (2 mL) was added dropwise. The mixture was left standing overnight in a refrigerator, and the precipitated crystals were collected by filtration and dried under reduced pressure at room temperature to give the title compound (0.37 g, 63%). melting point: 196° C. (dec.) 1H NMR (300 MHz, DMSO-d6) δ: 1.42 (3H, t, J=7.1 Hz), 2.17 (3H, s), 4.62 (2H, q, J=7.1 Hz), 5.11 (2H, s), 5.51 (2H, s), 6.85 (2H, d, J=8.3 Hz), 7.16-7.27 (4H, m), 7.30-7.42 (2H, m), 7.44-7.52 (2H, m), 7.72 (1H, dd, J=1.1 Hz, 7.9 Hz). Example 6 (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate sodium salt The compound (10 g) obtained in Example 1 or 2 was dissolved in THF (200 mL) at 50° C. The solution was ice-cooled and a solution of sodium 2-ethylhexanoate (2.93 g) in THF (2 mL) was added dropwise. The reaction mixture was concentrated and the residue was washed with diethyl ether and the crystals were collected by filtration. The crystals were dried under reduced pressure at 50° C. to give the title compound (8.52 g, 82%) as a colorless solid. 1H NMR (300 MHz, DMSO-d6) δ: 1.41 (3H, t, J=7.1 Hz), 2.16 (3H, s), 4.61 (2H, q, J=7.1 Hz), 5.11 (2H, s), 5.53 (2H, s), 6.91 (2H, d, J=8.4 Hz), 7.19-7.28 (4H, m), 7.29-7.68 (4H, m), 7.76 (1H, m) Example 7 (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate calcium salt adduct with calcium acetate The compound (1.0 g) obtained in Example 6 was dissolved in acetonitrile (10 mL) at room temperature. A solution of calcium acetate monohydrate (0.26 g) in acetonitrile (10 mL) was added dropwise to the solution at room temperature. The reaction mixture was stirred overnight and the precipitated crystals were collected by filtration. The crystals were dried under reduced pressure at 50° C. to give the title compound (0.78 g, 56%) as a colorless solid. 1H NMR (300 MHz, DMSO-d6) δ: 1.42 (3H, t, J=7.2 Hz), 1.78 (9H, S), 2.17 (3H, s), 4.62 (2H, q, J=7.2 Hz), 5.11 (1H, s), 5.51 (1H, s), 6.84 (2H, d, J=7.4 Hz), 7.18-7.23 (4H, m), 7.28-7.40 (2H, m), 7.47-7.50 (2H, m), 7.69-7.74 (1H, m). Example 8 5-oxotetrahydro-2-furanyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate To a solution of 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylic acid (4.0 g) and triethylamine (1.3 mL) in THF (50 mL) was added dropwise 2,4,6-trichlorobenzoyl chloride (1.4 mL) under ice-cooling. After stirring at room temperature for 12 hrs., insoluble material was filtered off and the filtrate was concentrated. The residue was dissolved in methylene chloride (50 mL) and 5-oxotetrahydro-2-furanyl (0.67 g) and N,N-dimethylaminopyridine (1.0 g) were added under ice-cooling. After stirring at room temperature for 4 hrs., the reaction mixture was diluted with chloroform (150 mL), washed with water, saturated aqueous sodium hydrogen carbonate, 1 N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography to give the title compound (0.16 g, 3.3%) as a colorless solid. 1H NMR (300 MHz, CDCl3) δ:1.48 (3H, t, J=7.1 Hz), 2.31-2.39 (1H, m), 2.45-2.66 (2H, m), 2.67-2.79 (1H, m), 4.63 (2H, q, J=7.1 Hz), 5.61 (1H, d, J=18 Hz), 5.81 (1H, d, J=18 Hz), 6.71-6.73 (1H, m), 6.98-7.01 (2H, m), 7.16-7.25 (3H, m), 7.36-7.38 (1H, m), 7.48-7.59 (3H, m), 7.69-7.80 (2H, m). Example 9 (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate To a solution of 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylic acid (9.0 g) and 4-hydroxymethyl-5-methyl-1,3-dioxol-2-one (3.08 g) in N,N-dimethylacetamide (100 mL) were added p-toluenesulfonyl chloride (4.13 g), N,N-dimethylaminopyridine (0.48 g) and potassium carbonate (3.54 g) under ice-cooling and the mixture was stirred at about 10° C. for 3 hrs. After adjusting the pH of the mixture to about 5, the mixture was crystallized by adding water (72 mL) to give crystals as a solvate. The isolated crystals were suspended in a mixture of water (63 mL) and acetone (27 mL) and the suspension was stirred at about 35° C. for 2 hrs. After stirring under ice-cooling for 2 hrs, the crystals were collected by filtration and the crystals were washed with water (18 mL) and dried under reduced pressure at 40° C. to give the title compound (10.6 g, 95%). 1H NMR (300 MHz, DMSO-d6) δ: 1.39 (3H, t, J=6.4 Hz), 2.17 (3H, s), 4.60 (2H, q, J=6.4 Hz), 5.12 (2H, s), 5.56 (2H, s), 7.00 (2H, d, J=7.0 Hz), 7.22-7.24 (3H, m), 7.46-7.57 (3H, m), 7.64-7.75 (3H, m). Formulation Examples When the compound of the present invention is used as a therapeutic agent for circulatory diseases such as hypertension, cardiac disease, stroke, nephritis and the like, for example, the following formulation can be used. In the following formulation, as the components (additive) other than the active ingredient, those listed in the Japanese Pharmacopoeia, the Japanese Pharmacopoeia quasi drugs or the pharmaceutical product additive standard, and the like can be used. 1. Tablet (1) Compound obtained in Example 1 10 mg (2) Lactose 35 mg (3) Corn starch 150 mg (4) Microcrystalline cellulose 30 mg (5) Magnesium stearate 5 mg 1 tablet 230 mg (1), (2), (3) and ⅔ of (4) are admixed and granulated. Thereto are added the remaining (4) and (5), and the mixture is compression formed to give tablets. 2. Capsule (1) Compound obtained in Example 5 10 mg (2) Lactose 69.5 mg (3) Light silicic anhydride 0.2 mg (4) Magnesium stearate 0.3 mg 1 capsule 80 mg (1), (2), (3) and (4) were dry mixed and filled in HPMC capsule (No. 3). 3. Tablet (1) Compound obtained in Example 1 10 mg (2) Amlodipine besilate 5 mg (3) Lactose 30 mg (4) Corn starch 150 mg (5) Microcrystalline cellulose 30 mg (6) Magnesium stearate 5 mg 1 tablet 230 mg (1), (2), (3), (4) and ⅔ of (5) are admixed and granulated. Thereto are added the remaining (5) and (6), and the mixture is compression formed to give tablets. (1) Compound obtained in Example 5 10 mg (2) Amlodipine besilate 5 mg (3) Lactose 64.5 mg (4) Light silicic anhydride 0.2 mg (5) Magnesium stearate 0.3 mg 1 capsule 80 mg (1), (2), (3), (4) and (5) were dry mixed and filled in HPMC capsule (No. 3). 5. Tablet (1) Compound obtained in Example 1 10 mg (2) Hydrochlorothiazide 12.5 mg (3) Lactose 22.5 mg (4) Corn starch 150 mg (5) Microcrystalline cellulose 30 mg (6) Magnesium stearate 5 mg 1 tablet 230 mg (1), (2), (3), (4) and ⅔ of (5) are admixed and granulated. Thereto are added the remaining (5) and (6), and the mixture is compression formed to give tablets. 6. Capsule (1) Compound obtained in Example 5 10 mg (2) Hydrochlorothiazide 12.5 mg (3) Lactose 57 mg (4) Light silicic anhydride 0.2 mg (5) Magnesium stearate 0.3 mg 1 capsule 80 mg (1), (2), (3), (4) and (5) were dry mixed and filled in HPMC capsule (No. 3). Experimental Example 1 Inhibitory Effects of Compounds of the Present Invention Against Angiotensin II Induced Pressor Response in Rats Male Sprague-Dawley rats (9-11 weeks old, CLEA Japan, Inc.) were anesthetized with pentobarbital (50 mg/kg, i.p.) and the femoral artery and vein were isolated and cannulated with polyethylene tubes filled with saline containing heparin (200 U/mL). The catheters were subcutaneously inserted to a site in the back of the neck and fixed. After recovery period, the rat was subjected to the experiment. The arterial catheter was connected to a pressure transducer coupled to a blood pressure monitor amplifier (2238, NEC San-ei Instruments) and the pressure was recorded on a recorder (RECTI-HORIZ 8K, NEC San-ei Instruments). After establishing angiotensin II (AII, 100 ng/kg, i.v.) induced pressor responses, a test compound at a dose corresponding to an equimolar amount of compound A (2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylic acid) was administered. AII was administered 24 hours later and increase in the blood pressure was measured, based on which the inhibition rate from the value before the administration was calculated. All compounds were suspended in 0.5% methylcellulose and orally administered at a volume of 2 mL/kg. The results are shown in mean±SEM (Table 1). The significance between the group administered with the compound obtained in Example 5 and the other groups was analyzed using Student's t-test (**: p>0.01, *: p>0.05). TABLE 1 24 hrs after administration Example 5 [0.13 mg/kg, p.o.(n = 5)] 32.7 ± 4.6 compound B [0.10 mg/kg, p.o.(n = 3)] 0.8 ± 4.9** compound C [0.14 mg/kg, p.o.(n = 5)] 9.3 ± 8.6* compound D [0.12 mg/kg, p.o.(n = 4)] 10.9 ± 5.6* compound B: methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate compound C: 1-(cyclohexyloxycarbonyloxy)ethyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate compound D: acetoxymethyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate As is clear from the results, the compound of the present invention shows a significantly long lasting and potent pharmacological action by oral administration, as compared with esters described in JP-A-5-271228. Experimental Example 2 Inhibitory effects of the compounds of the present invention against angiotensin II induced pressor response in dogs. For the experiment, male beagles (body weight 12.0-14.7 kg, KITAYAMA LABES, CO., LTD.) were used. They were anesthetized with sodium pentobarbital (50 mg/kg, i.p.), and a tracheal tube was inserted for management of the airway. The femoral region and the back of the neck were shaved, and a disinfectant (Isodine solution, MEIJI SEIKA KAISHA, LTD.) was applied. The dog was fixed at the dorsal position and the right femoral region was incised. A mirror catheter (5F, MILLER INDUSTRIES) was inserted and placed in the femoral artery and a polyurethane tube in the femoral vein. The catheter and tube were passed through subcutaneously and fixed at the back region. The incised region was sutured thereafter and penicillin G potassium (MEIJI SEIKA KAISHA, LTD., 40000 units) was intramuscularly administered to prevent infection. Beginning from the next day, penicillin G potassium (40000 units) was administered once a day for 3 days. After 3 days for recovery, the dog was subjected to the experiment. During the experiment, the dog was placed in a small metabolic cage. For measurement, the mirror catheter inserted in the femoral artery was connected to a transducer unit (MILLER INDUSTRIES), and the systemic blood pressure (average blood pressure) was recorded on a recorder (RECTI-HORIZ 8K, NEC San-ei Instruments) through a DC amplifier (N 4777, NEC San-ei Instruments) and a blood pressure monitor amplifier (N4441, NEC San-ei Instruments). The polyurethane tube inserted in the femoral vein was fixed outside the cage and used for administration of AII (PEPTIDE INSTITUTE, INC.). The experiment was conducted under fasting and AII (100 ng/kg, i.v.) was administered 3 or 4 times before administration of a test compound to confirm stabilization of the vasopressor response. A dose of the test compound corresponding to an equimolar amount of compound A was suspended in 0.5% ethylcellulose and orally administered at a volume of 2 mL/kg. After drug administration, AII was administered at each time point of measurement and increase in the blood pressure was measured, based on which the inhibition rate from the value before the administration was calculated. The results are shown in mean±SEM (Table 2). The significance between the group administered with the compound obtained in Example 5 and the group administered with compound A was analyzed using Student's t-test with Bonferroni correction (**: p>0.01, *: p>0.05). TABLE 2 10 hrs after 24 hrs after administration administration compound A [1 mg/kg, p.o.(n = 6)] 27.0 ± 3.2 19.6 ± 3.7 Example 2 [1.25 mg/kg, 35.9 ± 4.8 28.6 ± 4.7 p.o.(n = 6)] Example 5 [1.33 mg/kg, 55.6 ± 3.4** 40.3 ± 5.1* p.o.(n = 5)] As is clear from the results, the compound of the present invention shows a long lasting and potent pharmacological action by oral administration. The compound of the present invention is useful as an agent for the prophylaxis or treatment of circulatory diseases such as hypertension, and the like and metabolic diseases such as diabetes and the like. This application is based on a patent application No. 2004-048928 filed in Japan, the contents of which are hereby incorporated by reference. | <SOH> BACKGROUND OF THE INVENTION <EOH>Angiotensin II causes vasoconstriction via an angiotensin II receptor on the cell membrane and elevates blood pressure. Therefore, an angiotensin II receptor antagonist can be an effective therapeutic drug for circulatory diseases such as hypertension and the like. As a preferable chemical structure to express strong angiotensin II antagonistic activity, a structure having an acidic group such as a tetrazolyl group, a carboxyl group and the like on a biphenyl side chain is known, and, as a pharmaceutical compound having such structural characteristics, losartan, candesartan cilexetil, olmesartan medoxomil and the like have been clinically used (Ruth R. Wexler et al., Journal of Medicinal Chemistry, vol. 39, p. 625 (1996), JP-A-4-364171, JP-A-5-78328 and the like). JP-A-5-271228 describes that a compound wherein an acidic group on a biphenyl side chain is 5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl group exhibits a long lasting and strong angiotensin II antagonistic activity and hypotensive action by oral administration. In addition, WO 03/047573 describes that, of the benzimidazole derivatives described in JP-A-5-271228, a particular compound (2-ethoxy-1 {[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylic acid:compound A) has an insulin sensitizing activity in addition to an angiotensin II antagonistic activity. As one of the means for enhancing practical use of a pharmaceutical agent, conversion of a compound having a certain pharmacological activity to a prodrug is known. For example, as a prodrug of carboxylic acid, alkylcarbonyloxymethyl ester, 1-alkylcarbonyloxyethyl ester, alkyloxycarbonyloxymethyl ester, 1-alkyloxycarbonyloxyethyl ester and (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl ester have been widely used for a compound that shows insufficient expression of activity by oral administration in the development of pharmaceutical products to the present. In addition, Farnesol ester, which is a liposoluble substance of indomethacin, and ethyl ester as an ACE inhibitor are known to afford sustained activity and the like. As esters of compound A, methyl ester (compound B), 1-(cyclohexyloxycarbonyloxy)ethyl ester (compound C) and acetoxymethyl ester (compound D) are specifically described in JP-A-5-271228. The present invention aims at providing a novel compound superior as an agent for the prophylaxis or treatment of circulatory diseases such as hypertension and the like and metabolic diseases such as diabetes and the like. | <SOH> SUMMARY OF THE INVENTION <EOH>The present inventors have conducted intensive studies to find a new compound which is more potent and superior in the duration of action by oral administration, thereby to provide a pharmaceutical agent clinically more useful as an agent for the prophylaxis or treatment of circulatory diseases such as hypertension and the like and metabolic diseases such as diabetes and the like. As a result, they have found that a prodrug compound having a particular structure, which is converted to compound A in the living body, is superior in safety and has extremely superior properties as a pharmaceutical agent, as evidenced by an unexpectedly strong and long lasting hypotensive action, possible stable control of blood pressure for a long time and the like, and completed the present invention. Accordingly, the present invention relates to (1) a compound represented by the formula (I) wherein R 1 is a group represented by the formula wherein R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom or a C 1-6 alkyl, or a salt thereof; (2) the compound of the aforementioned (1), which is a salt; (3) the compound of the aforementioned (1), wherein R 1 is a group represented by the formula wherein R 2 is as defined above; (4) a compound selected from the group consisting of (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, 2-oxo-1,3-dioxolan-4-yl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, 4-methyl-2-oxo-1,3-dioxolan-4-yl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate and 5-oxotetrahydro-2-furanyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate, or a salt thereof; (5) a (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7-carboxylate potassium salt; (6) A process for producing a compound represented by the formula wherein R 2 is a hydrogen atom or a C 1-6 alkyl, or a salt thereof, which comprises reacting a reactive derivative of 2-ethoxy-1-{[2′-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl)-1H-benzimidazole-7-carboxylic acid or a salt thereof with a compound represented by the formula wherein R 2 is as defined above, or a salt thereof; (7) a medicament comprising the compound of the aforementioned (1); (8) the medicament of the aforementioned (7), which is an angiotensin II antagonist; (9) the medicament of the aforementioned (7), which is an insulin sensitizer; (10) the medicament of the aforementioned (7), which is an agent for the prophylaxis or treatment of circulatory diseases; (11) a medicament comprising the compound of the aforementioned (1) in combination with a calcium antagonist or a diuretic agent; (12) the medicament of the aforementioned (11), which is an agent for the prophylaxis or treatment of circulatory diseases; (13) a method for antagonizing angiotensin II in a mammal, which comprises administering an effective amount of the compound of the aforementioned (1) to said mammal; (14) a method for improving insulin resistance in a mammal, which comprises administering an effective amount of the compound of the aforementioned (1) to said mammal; (15) a method for preventing or treating of circulatory diseases in a mammal, which comprises administering an effective amount of the compound of the aforementioned (1) to said mammal; (16) a method for preventing or treating of circulatory diseases in a mammal, which comprises administering an effective amount of the compound of the aforementioned (1) in combination with a calcium antagonist or a diuretic agent to said mammal; (17) use of the compound of the aforementioned (1) for manufacture of an angiotensin II antagonist; (18) use of the compound of the aforementioned (1) for manufacture of an insulin sensitizer; (19) use of the compound of the aforementioned (1) for manufacture of an agent for the prophylaxis or treatment of circulatory diseases; (20) use of the compound of the aforementioned (1) in combination with a calcium antagonist or a diuretic agent for manufacture of an agent for the prophylaxis or treatment of circulatory diseases; and the like. detailed-description description="Detailed Description" end="lead"? | 20050107 | 20070102 | 20050825 | 64098.0 | 3 | GRAZIER, NYEEMAH A | BENZIMIDAZOLE DERIVATIVE AND USE THEREOF | UNDISCOUNTED | 0 | ACCEPTED | 2,005 |
|||
11,031,112 | ACCEPTED | Utility knife | A utility knife having a handle and a blade holder which is pivotally mounted on the handle for movement from an unfolded position to a folded position. The handle has a space adapted to receive the blade holder when the blade holder is in its folded position. The blade holder includes a main wall and guard wall pivotally mounted on the main wall to pivot from an open position to a closed position overlying the main wall. The main wall being adapted to hold a blade so that a blade is interposed between the main wall and guard wall when the guard wall is in its closed position. | 1. A utility knife comprises a handle and a blade holder, said blade holder being pivotally mounted on said handle for movement from an unfolded position to a folded position, said handle having a space adapted to receive at least a portion of said blade holder when the blade holder is in its folded position, said blade holder comprising a main wall and guard wall pivotally mounted on said main wall from an open position to a closed position overlying said main wall, said main wall having means to hold a blade thereon whereby a blade is interposed between said main wall and said guard wall when said guard wall is in its closed position. 2. A utility knife as set forth in claim 1 wherein said blade holder comprises a rear end and a front end, said front end comprising said guard wall and said main wall, said rear end being pivotally mounted to said handle and having upper and bottom edges. 3. A utility knife as set forth in claim 2 wherein said guard wall is pivotally mounted to said main wall on a pivot adjacent the bottom edge of said rear end. 4. A utility knife as set forth in claim 3 wherein a blade lock assembly is mounted for pivotal movement relative to said main and guard walls from an open position to a closed position overlying the main wall and the guard wall. 5. A utility knife as set forth in claim 4 wherein said blade lock assembly is pivotally mounted on said rear end adjacent to said upper edge. 6. A utility knife as set forth in claim 5 wherein said blade lock assembly comprises a unshaped clip having a top wall and a pair of side walls and wherein said side walls straddle said main wall and a guard wall when a clip is in its closed position. 7. A utility knife as set forth in claim 6 wherein said clip has a front finger extending therefrom. 8. A utility knife as set forth in claim 7 wherein said rear end has a finger knob extending therefrom. 9. A utility knife as set forth in claim 8 wherein said handle comprises a pair of spaced handle halves and wherein said handle has a pivoted lock lever assembly mounted in the said space in the handle and wherein said lock lever assembly has a front arm and a rear arm and a lock finger extending from its front arm. 10. A utility knife as set forth in claim 9 wherein said rear end of the blade holder has a groove therein adapted to receive said lock finger when the blade holder is in its unfolded position. 11. A utility knife as set forth in claim 10 wherein spring means are mounted beneath the rear arm of the lock lever assembly to bias the rear arm upwardly and to bias the front arm downwardly to permit the lock finger to enter the groove, whereby depressing the rear arm against the tension of the spring means will cause the front arm to rise and the lock finger to move out of the groove permitting the blade holder to pivot relative to the handle from an unfolded position to a folded position into the space in the handle. 12. A utility knife as set forth in claim 11, wherein the handle has a notch in its top edge and wherein the rear arm protrudes above the notch whereby depression of the rear arm at the notch permits the front end to be raised upwardly and cause the lock finger to move out of the lock groove. 13. A utility knife as set forth in claim 12, wherein the blade holding means comprise a pair of protrusions on the main wall of the blade holder, said protrusions being adapted to enter corresponding grooves in a blade. 14. A utility knife as set forth in claim 3, wherein threaded means are provided to hold the guard wall in place over the main wall when the guard wall is in its closed position. 15. A utility knife as set forth in claim 14, wherein said threaded means extend from the guard wall and into the main wall. 16. A utility knife as set forth in claim 14 wherein said handle comprises a pair of spaced handle halves and wherein said handle has a pivoted lock lever assembly mounted in the said space in the handle and wherein said lock lever assembly has a front arm and a rear arm and a lock finger extending from its front arm. 17. A utility knife as set forth in claim 16 wherein said rear end of the blade holder has a groove therein adapted to receive said lock finger when the blade holder is in its unfolded position. 18. A utility knife as set forth in claim 17 wherein spring means are mounted beneath the rear arm of the lock lever assembly to bias the rear arm upwardly and to bias the front arm downwardly to cause the lock finger to enter the groove, whereby depressing the rear arm against the tension of the spring means will cause the front arm to rise and the lock finger to move out of the groove permitting the blade holder to pivot relative to the handle from an unfolded position to a folded position into the space in the handle. 19. A utility knife as set forth in claim 18 wherein the handle has a notch in its top edge and wherein the rear arm protrudes above the notch whereby depression of the rear arm at the notch permits the front end to be raised upwardly and cause the lock finger to move out of the lock groove. 20. A utility knife as set forth in claim 19 wherein the blade holding means comprise a pair of protrusions on the main wall of the blade holder, said protrusions being adapted to enter corresponding grooves in a blade. | BACKGROUND The present invention relates to a utility knife and more particularly to a foldable utility knife in which the blade may be folded into the handle when the knife is not in use. Utility knives have been used for a number of years. Some of the utility knives in use have blades that are mounted on a blade holder which is foldable within a handle when the knife is not in use. However, some of these utility knives have many movable parts which makes them difficult to use and expensive to manufacture. In addition, in some of these utility knives replacement of the blade is a complicated operation any may require special tools. OBJECTS The present invention overcomes these problems and has for one its objects the provision of an improved utility knife in which the blade holder may be easily folded into a handle. Another object of the present invention is the provision of an improved utility knife in which the blade is held securely on the utility knife. Another object of the present invention is the provision of an improved utility knife in which improved means are provided for replacing the blade on the utility knife. Another object of the present invention is the provision of an improved utility knife which is simple to use and inexpensive to manufacture and maintain. Other and further objects of the invention will be obvious upon an understanding of the illustrative embodiment about to described, or will be indicated in the appended claims and various advantages not referred to herein will occur to one skilled in the art upon employment of the invention in practice. DRAWINGS A preferred embodiment of the invention has been chosen for purposes of illustration and description and is shown in the accompanying drawings forming a part of the specification, wherein: FIG. 1 is a perspective view of a utility knife made in accordance with the present invention. FIG. 2 is a top plan view thereof. FIG. 3 is a sectional view taken along the line 3-3 of FIG. 1. FIG. 4 is a sectional view similar to FIG. 3 showing the utility knife in a partially folded position. FIG. 5 is a sectional view similar to FIG. 3 showing the utility knife in a fully folded position. FIG. 6 is a plan view of one side of the utility knife showing the manner of removing and replacing the blade. FIG. 7 is a plan view of the opposite side of the utility knife. FIG. 8 is a perspective view of a modified version of the utility knife of the present invention. FIG. 9 is a top plan view thereof. FIG. 10 is a plan view of one side of the utility knife showing the manner of removing the blade. FIG. 11 is a plan view of the other side of the knife. DESCRIPTION Referring to the drawings and more particularly to the preferred embodiment of FIGS. 1 to 7, the utility knife 1 of the present invention comprises a handle 2 and a blade holder 3. The handle 2 comprises a pair of handle halves 2A and 2B each having an outer side wall 11 an upper edge 7 and a lever edge 9. A rear spacer 4 is provided between the handle halves 2A and 2B to maintain the handle halves 2A and 2B separated and to create a space 5 between handle halves 2A and 2B. The spacers 4 and the handle halves 2A and 2B are held together by fasteners 6 which pass through the spacer 4 and the handle halves 2A and 2B in order to hold them together. The upper edge 7 of the handle halves 2A and 2B (i.e. the handle 2) has a finger notch 8 and the lower edge 9 of the handle halves 2A and 2B (i.e. the handle 2) may be undulated in order to permit the user's fingers to grip the handle 2. If desired, a clip 10 may be mounted on a side wall 11 of the handle halves 2A and/or 2B to permit the utility knife 1 to be fastened onto the user's belt or other convenient place. Interposed between the handle halves at 2A and 2B and along the upper edges 7 of the handle halves 2A and 2B there is provided a lock lever assembly 15 (FIGS. 3 to 5) which is pivotally mounted between the handle halves 2A and 2B on a pivot pin 16 which extends through the two handle halves 2A and 2B and the lock lever assembly 15. The lock lever assembly 15 is a two arm lever having front and rear arms 17 and 18, respectively. The front arm 17 is provided with a downwardly extending lock finger 19. Below the rear arm 18 of the lock lever assembly 15 there is provided a spring 14 (which is v-shaped or unshaped) which normally bears against the bottom edge of the rear arm 18 to force the rear arm 18 upwardly and the front arm 17 downwardly around the pivot 16 so that rear arm 18 protrudes above the notch 8. It will be seen that when the rear arm 18 of the lock lever assembly 15 is pressed down manually through the notch 8 against the action of spring 14, the front arm 17 will be raised. The blade holder 3 of the present invention comprises a rear end 31 and a front end 32 which are integral with each other. The rear end 31 of the blade holder 3 has rear edge 31A bottom edge 31B and upper edge 31C. The blade holder 3 is pivotally mounted in the space 5 between handle halves 2A and 2B on a pivot pin 30. A finger knob 41 may be provided on the rear end 31 to facilitate the pivotal movement of the blade holder 3 relative to the handle 2. The upper edge 31C of the rear end 31 has a groove 33 into which the downwardly extending lock finger 19 of the lock assembly 15 is adapted to enter when the blade holder 3 is in its extended or unfolded position. The front end 32 of the blade holder 3 comprises a thin main wall 34 and a thin guard wall 35 pivotally mounted on the main wall 34 on pivot pin 36. The main wall 34 is adapted to hold a blade B which has a lower cutting edge 37 and spaced notches 38 in its upper edge 39. The main wall 34 has a pair of spaced protrusions 40 extending therefrom into which the upper notches 38 of the blade B are adapted to enter to hold the blade B in place on the main wall 34. It will be seen that when the guard wall 35 is in its closed raised position it covers and holds the blade B in place but when it is in its open downward position, it exposes the blade B. A blade lock assembly 45 is mounted along the top edge of the blade holder 30 and is pivotally mounted on the rear end 31 of the blade holder 30 on pivot pin 46. The blade lock assembly 45 is in the form of a u-shaped clip having a segmented or interrupted top wall 48, a pair of side walls 49 depending for the top wall 48 and a front finger tab 50 extending forwardly therefrom. When the blade lock assembly or clip 45 is pivoted downwardly around pivot 46, its side walls 49 straddle the walls 34 and 35 of the blade holder 3 and its top wall 48 overlies the walls 34 and 35 as well as the blade B in order to lock the blade B in place. When it is desired to remove and replace the blade B, the clip 45 is pivoted upwardly by means of its finger tab 50 to release the walls 34-35 and the blade B. This permits the guard wall 35 to be pivoted away from the blade B (as shown in FIG. 6) in order to expose the blade B and permit the blade B to be removed and replaced. In operation of the utility knife 1 shown in the preferred embodiment of FIGS. 1 to 7. the utility knife is placed in its operative unfolded position with the blade holder 3 unfolded and ready to be used. The blade B is held on the main wall 34 by protrusions 40 extending into notches 38 in the top edge 39 of the blade B. The lock finger 19 of the front arm 17 of the lock lever assembly 15 is i its lower position (because of the pressure of spring 14 on rear arm 18) and is positioned in the groove 33 in the blade holder 3 in order to hold the blade holder 3 in its unfolded position. The rear arm 18 of the lock lever assembly 15 is in its raised position and protrudes above the finger notch 8 at the top edge 7 of the handle 2. When it is desired to place the utility knife 1 into its folded inoperative position, the rear arm 18 of the lock assembly 15 is pressed down manually through the notch 8 against the bias of the spring 14. This causes the front arm 17 of the lock assembly 15 to be raised thereby moving the lock finger 19 out of the groove 33 to release the blade holder 3 and permit it to pivot downwardly around the pivot pin 30 (FIG. 4). This may be accomplished by pushing down on the finger grip 41. The blade holder 3 is then pivoted down completely into the space 5 between the handle halves 2A and 2B (FIG. 5). When pressure on rear arm 18 is released, the spring 14 moves the rear arm 18 back to its original raised position by the tension of the spring 14. This causes the lock finger 19 to bear against the rear edge 31A and lower edge 31B of the blade holder 3 thereby holding the blade holder 3 in its folded position. When it is desired to use the blade B, the reverse procedure is followed. The blade holder 3 is pivoted in the opposite direction. It may be desirable for the rear arm 18 of the lock lever assembly 5 to again be depressed manually to assist in unfolding the blade holder 3. The blade holder 3 is continued to be rotated counter-clockwise (as seen in FIG. 4) until the lock finger 19 of the front arm 17 enters into the groove 33 in the rear end 31 of the blade holder 3 in order to hold the blade holder 3 in its extended position. When it is desired to replace a blade B, the blade holder 3 is placed in its unfolded position (as shown in FIG. 6) and the clip 45 is lifted around pivot 46 by means of finger tab 50 thereby the releasing of guard wall 35 and permitting it to be pivoted downwardly around pivot 36 to expose the blade B. The blade B can then be moved out of the blade holder 3 and a new blade B can be placed therein. The guard wall 35 is again pivoted upwardly back into position over the blade B and the clip 45 is lowered to lock the blade B and the walls 34 and 35 in place. Referring to its embodiment of the utility knife 1 shown in FIGS. 8-11, this embodiment is similar to the embodiment of the utility knife shown in FIGS. 1-7 and like parts will be identified with the same reference numerals. In all respects the construction and operation of this embodiment is similar to the embodiment of FIGS. 1 to 7, however, in this embodiment, the pivotable guard wall 35 of blade holder 3 is held in place by a threaded member 55 which extends through the pivot guard wall 35 at 57 wall 35 into the main wall 56. When it is desired to remove the blade B, the threaded member 56 is removed and the guard wall 35 is pivoted downwardly around pivot 36 to expose the blade B which may then be removed and replaced. After replacing the blade B, the guard wall 35 is pivoted back up around its pivot 36 into its operative position over the blade B and the threaded member 55 may again be placed through the openings 57-56 to hold the guard wall 35 and the blade B in place. It will be seen that the present invention provides a utility knife in which the blade holder may be easily folded into a handle in which improved means are provided for securing the blade on the utility knife and for replacing the blade on the knife and which is simple to use and inexpensive to manufacture and maintain. As many and varied modifications of the subject matter of this invention will become apparent to those skilled in the art from the detailed description given hereinabove, it will be understood that the present invention is limited only as provided in the claims appended hereto. | <SOH> BACKGROUND <EOH>The present invention relates to a utility knife and more particularly to a foldable utility knife in which the blade may be folded into the handle when the knife is not in use. Utility knives have been used for a number of years. Some of the utility knives in use have blades that are mounted on a blade holder which is foldable within a handle when the knife is not in use. However, some of these utility knives have many movable parts which makes them difficult to use and expensive to manufacture. In addition, in some of these utility knives replacement of the blade is a complicated operation any may require special tools. | 20050107 | 20060307 | 20050630 | 99909.0 | 1 | BLAKE, CAROLYN T | UTILITY KNIFE | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
||||
11,031,154 | ACCEPTED | Thermal quenching of tissue | The present invention provides a system for achieving erythema and/or mild edema in an upper layer of skin, without causing blisters, and without the risk of high fluence levels or critical need for cooling. | 1. A method for treatment of skin, comprising: selecting a source of energy in which attenuation of the energy as it passes through the skin is a function of depth; heating the skin with the energy source for a predetermined time period and with a predetermined fluence such that the energy causes thermal mediated injury in skin below the epidermis resulting in transient erythema but does not blister the epidermis. 2. The method of claim 1, using light energy having a wavelength at about 1.3 microns. 3. The method of claim 1, wherein the treatment is repeated serially with more than one day between any successive treatments. 4. The method of claim 1, using light energy having a wavelength between 1100 nm and 270 nm. 5. The method of claim 1, in which the selective thermally mediated treatment of the target tissue or structures is for the treatment of vascular tissue. 6. The method of claim 1, in which the selective thermally mediated treatment of the target tissue or structures is for the treatment of tissue containing collagen. 7. The method of claim 1, in which the selective thermally mediated treatment of the target tissue or structures is for the treatment of cartilage. 8. The method of claim 1, in which the selective thermally mediated treatment of the target tissue or structures is for the treatment of tissue containing pigment. 9. The method of claim 1, in which the selective thermally mediated treatment of the target tissue or structures is for the hair removal treatment. 10. A method for treatment of acne scars in skin, comprising: heating the target skin portion with a source of energy which is uniformly attenuated with depth in skin for a predetermined time period and predetermined fluence such that the exposure time of the epidermis and the peak temperature reached by the epidermis are such that the epidermis does not blister; and causing thermally mediated injury in skin below the epidermis resulting in transient erythema to initiate a healing response which improves the appearance of the acne scars. 11. A method for treatment of photo damaged skin, comprising: heating the skin with a source of energy which is uniformly attenuated with depth in skin for a predetermined time period and predetermined fluence such that the exposure time of the epidermis and the peak temperature reached by the epidermis are such that the epidermis does not blister; and causing thermal mediated injury in skin below the epidermis resulting in transient erythema to initiate a healing response which improves the appearance of the photo damaged skin. 12. A method for treatment of wrinkled skin, comprising: heating the skin with a source of energy which is uniformly attenuated with depth in skin for a predetermined time period and predetermined fluence such that the exposure time of the epidermis and the peak temperature reached by the epidermis are such that the epidermis does not blister; and causing thermal mediated injury in skin below the epidermis resulting in transient erythema to initiate a healing response which improves the appearance of the wrinkled skin. 13. A method of thermal quenching of surface tissue during selective thermally mediated treatment of target tissue or structures, the method comprising the steps of: delivering energy to the target tissue or structures to increase the temperature of the target tissue or structures to a predetermined treatment temperature, thereby, resulting in transient erythema; and cooling the surface tissue or other tissue adjacent the target tissue or structures to prevent excessive heating of the surface tissue or other tissue adjacent the target tissue. 14. The method of claim 13 in which the step of cooling is initiated after elevation of the target tissue or structures to treatment temperature. 15. The method of claim 13 in which the step of cooling is initiated prior to elevation of the target tissue or structures to treatment temperature. 16. The method of claim 13 in which the step of cooling is initiated concurrently with elevation of the target tissue or structures to treatment temperature. 17. The method of claim 13 in which the step of cooling is initiated subsequent to an increase in the temperature of the surface tissue or other tissue adjacent the target tissue or structures. 18. The method of claim 13 in which the pulsed electromagnetic energy is delivered at a rate of between about 50 Joules per square centimeter and about 150 Joules per square centimeter. 19. The method of claim 13 in which the pulsed electromagnetic energy has a pulse width of between about 5 milliseconds and about 200 milliseconds. 20. The method of claim 13 in which the step of cooling includes delivery of refrigerant to the surface tissue for a period of between about 10 milliseconds and about 30 milliseconds. 21. The method of claim 13 in which the step of cooling the surface tissue or other tissue adjacent the target tissue or structures is performed using passive cooling means. 22. The method of claim 13 in which the step of cooling the surface tissue or other tissue adjacent the target tissue or structures is performed using dynamic cooling means. 23. The method of claim 13 wherein the target tissue or structures is veins and in which the treatment is vascular treatment. 24. The method of claim 13 wherein the target tissue or structures is hair follicles and wherein the treatment is hair removal. 25. The method of claim 22 wherein the dynamic cooling means cools the surface tissue or other tissue adjacent the target tissue or structures by delivering a liquid refrigerant to the surface tissue or other adjacent the target tissue or structures. 26. The method of claim 13 wherein the target tissue or structures is tissue containing pigmentation and in which the treatment is modification of the pigmentation. 27. The method of claim 22 in which the dynamic cooling means cools the surface tissue or other tissue adjacent the target tissue or structures by delivering a liquid refrigerant to the surface tissue or other tissue adjacent the target tissue or structures. 28. The method of claim 27 in which the liquid refrigerant is delivered to the surface tissue or other tissue adjacent the target tissue or structures for a period of time between about 10 milliseconds and about 30 milliseconds. | RELATED APPLICATIONS This Application is a Divisional of related pending U.S. patent application Ser. No. 10/160,579 filed May 31, 2002 entitled THERMAL QUENCHING OF TISSUE, which is incorporated herein by reference in its entirety, and claims any and all benefits to which it is entitled therefrom. It is also related to U.S. patent application Ser. No. 09/364,275 filed Jul. 29, 1999 and now U.S. Pat. No. 6,451,007 issued Sep. 17, 2002 entitled THERMAL QUENCHING OF TISSUE, which is incorporated herein by reference in its entirety, and claims any and all benefits to which it is entitled therefrom. FIELD OF THE INVENTION This invention is related to the delivery of laser or other source of thermal energy to biological or other tissue for treatment therein. BACKGROUND OF THE INVENTION It is sometimes desirable to cause heat affected changes in a selected structure in tissue, such as a vein or hair follicle without causing heat affected changes in tissue adjacent to the selected structure. Selective photothermalysis is a method of irradiating with a laser or pulsed light source that is preferentially absorbed by a pre-selected target. The amount of energy or fluence delivered to the target is chosen such that the temperature rise in the targeted region results in an intended thermal treatment of the target. Heating of the epidermis may occur during treatment of the target and several methods have been described for cooling the surface of skin during and prior to treatment to minimize the risk of thermal injury to tissue adjacent to the targeted veins. One early method included pre-cooling with ice for several minute prior to treatment. U.S. Pat. No. 5,282,797 issued Feb. 1, 1994 to Chess describes a method of circulating cooling fluid over a transparent plate in contact with the treatment area to cool the epidermis during treatment. U.S. Pat. No. 5,344,418 issued Sep. 6, 1994 to Ghaffari describes a method whereby a coolant is used for a predetermined time interval in coordination with the delivery of laser energy to optimize the cooling of the epidermis and minimize cooling of the targeted vessel. U.S. Pat. No. 5,814,040 issued Sep. 29, 1998 to Nelson et al. describes a cooling method whereby a cryogenic spurt is applied for a predetermined short time directly onto the skin in the target region. The time period for cooling is confined only to the epidermis while leaving the temperature of deeper port wine stains substantially unchanged. Many of the cooling methods may limit the amount of significant thermal damage to the epidermis during treatment. It may be desirable to shrink collagen in order to reduce the appearance of undesirable conditions of the skin such as acne scars and wrinkles. The following U.S. patents to Sand teach controlled thermal shrinkage of collagen fibers in the cornea using light at wavelengths between 1.8 and 2.55 microns: U.S. Pat. No. 4,976,709, Class No. 606/5, issued Dec. 11, 1990; U.S. Pat. No. 5,137,530; U.S. Pat. No. 5,304,169; U.S. Pat. No. 5,374,265; and U.S. Pat. 5,484,432. U.S. Pat. No. 5,810,801, class no. 606/9 issued Sep. 22, 1998 to Anderson et al. teaches a method and apparatus for treating wrinkles in skin by targeting tissue at a level between 100 microns and 1.2 millimeters below the surface, to thermally injure collagen without causing erythema, by using light at wavelengths between 1.3 and 1.8 microns. Because of the high scattering and absorption coefficients, precooling is utilized to prevent excess heat build up in the epidermis when targeting the region of 100 microns to 1.2 mm below the surface. Specific laser and cooling parameters are selected so as to avoid erythema and achieve improvement in wrinkles as the long term result of a treatment. ADVANTAGES AND SUMMARY OF THE INVENTION The present invention provides a system for achieving erythema and/or mild edema in an upper layer of skin, without causing blisters, and without the risk of high fluence levels or critical need for cooling. The invention uses a source of thermal energy, which may be infrared in the wavelength range of 1100 nm to 2.9 nm, to cause thermally mediated effects in skin. The systems and methods are directed toward heating the skin with a source of energy which is uniformly attenuated with depth in skin for a predetermined time period and predetermined fluence so that the exposure time of the epidermis and the peak temperature reached by the epidermis are such that the epidermis does not blister but the thermally mediated injury in the skin below the epidermis causes a transient erythema to initiate a healing response. By achieving erythema and/or mild edema in an upper layer of skin, the system precludes the risk of high fluence levels or critical need for cooling. The dosage and time period of application are adjusted to prevent excess accumulation of heat in the epidermis, which would cause tissue damage. Thermal quenching is used to remove latent heat from the treatment site to prevent thermal damage to the tissue. Collagen remodeling is induced by distributing the laser energy over a series of more benign treatments spaced weeks apart. It is therefore an advantage and an object of the present invention to provide an improved system for selectively cooling tissue during photothermal treatment. It is a further advantage of the present invention to provide such a system which uses dynamic cooling to quench heat build up during and after photothermal treatment. It is a further advantage of the present invention to provide such a system which selectively heats a subsurface structure in tissue and subsequently quenches heat build up in non-target tissue. It is a further advantage of the present invention to reduce the level of pulsed energy needed for treatment by minimizing precooling of the tissue. It is a further advantage of the present invention to provide such a system which selectively heats a subsurface structure in skin to cause thermal affected changes in said subsurface structure without significant epithelial damage due to subsequent heating from the target region. It is a further advantage of the present invention to provide such a system which selectively heats vascular lesions in tissue and quenches subsequent heat build up in epithelial tissue. It is a further advantage of the present invention to provide such a system which selectively heats hair follicles in tissue and quenches subsequent heat build up in epithelial tissue. It is a further advantage of the present invention to require less cooling of the target area than is typically required, resulting in more efficient heating of the selected target and less thermal damage to surrounding tissue. In a preferred embodiment, the system for generating light energy is a laser system such as but not limited to a solid-state laser, including but not limited to a neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser. In additional preferred embodiments, the system for generating light energy is a gas discharge flashlamp or an incandescent-type filament lamp. The energy from the generating system may be directed into or coupled to a delivery device such as but not limited to a fiber optic or articulated arm for transmitting the light energy to the target tissue. The light energy may be focused on tissue with a focusing lens or system of lenses. The surface of the tissue may be cooled with a cooling device including but not limited to an irrigating solution, a spray or flow of refrigerant or other cryogenic material, or a transparent window cooled by other active means, or other dynamic or passive cooling means. The tissue may be preheated with a heating device such as, but not limited to an intense light source, a flashlamp, a filament lamp, laser diode, other laser source, electrical current, or other electromagnetic or mechanical energy which penetrates into layers of tissue beneath the surface. The preheating can occur simultaneously or just prior to the surface cooling of tissue from the cooling device such that the tissue preheating results in a temperature rise in underlying layers of tissue, and a temperature profile results. The pulsed application of energy from the energy delivery device results in a temperature profile that preferentially heats a selected structure or target in tissue, and the post cooling prevents thermal damage to tissue adjacent to that structure. This also reduces the overall pulse energy level needed of the pulsed treatment device due to the fact that a desirable temperature profile exists prior to delivery of the pulsed treatment energy. The tissue may be post cooled with a dynamic cooling device such as, but not limited to a pulse, spray or other flow of refrigerant such that the post cooling occurs after a temperature rise in an underlying targeted structure and a temperature profile results such that the pulsed application of energy from the energy delivery device results in a temperature profile that preferential heats a selected structure in tissue without subsequent undesirable heating to tissue adjacent to that structure from thermal conduction. Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings. Various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components. Further objects and advantages of the present invention will be come apparent through the following descriptions, and will be included and incorporated herein. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a representative schematic block diagram of a preferred embodiment of a system for thermal quenching of tissue of the present invention. FIG. 2 is a more detailed representative schematic block diagram of a preferred embodiment of the delivery device shown in FIG. 1 of the present invention. FIG. 3 is a representative sample data plot of the temperature of surface tissue and target tissue achieved by methods and systems of the prior art having precooling. FIG. 4 is a representative sample data plot of the temperature of surface tissue and target tissue achieved by a preferred embodiment of the method and system of the present invention such as shown in FIGS. 1 and 2 having precooling. FIG. 5 is a representative sample data plot of the temperature of surface tissue and target tissue achieved by a preferred embodiment of the method and system of the present invention such as shown in FIGS. 1 and 2 without precooling. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The description that follows is presented to enable one skilled in the art to make and use the present invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be apparent to those skilled in the art, and the general principals discussed below may be applied to other embodiments and applications without departing from the scope and spirit of the invention. Therefore, the invention is not intended to be limited to the embodiments disclosed, but the invention is to be given the largest possible scope which is consistent with the principals and features described herein. It will be understood that in the event parts of different embodiments have similar functions or uses, they may have been given similar or identical reference numerals and descriptions. It will be understood that such duplication of reference numerals is intended solely for efficiency and ease of understanding the present invention, and are not to be construed as limiting in any way, or as implying that the various embodiments themselves are identical. The description that follows is presented to enable one skilled in the art to make and use the present invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be apparent to those skilled in the art, and the general principals discussed below may be applied to other embodiments and applications without departing from the scope and spirit of the invention. Therefore, the invention is not intended to be limited to the embodiments disclosed, but the invention is to be given the largest possible scope which is consistent with the principals and features described herein. FIG. 1 is a representative schematic block diagram of a preferred embodiment of a system 100 for thermal quenching of tissue of the present invention. Operation of energy source 102 to produce energy for delivery by the system 100 is controlled according to control signal 104 from control system 106. Control system 106 includes a physician interface 108 for operating the system. Said interface 108 optionally includes a footswitch for energy delivery, display and interactive and/or menu driven operation utilizing operator input, prompts, etc. Additional energy delivery control interface means shall be known to those skilled in the art. In a preferred embodiment, energy source 102 is a neodymium doped yttrium-aluminum-garnet (Nd:YAG) laser, energized by a flash-lamp or laser diode. Energy source 102 is controlled by control system 106 which comprises the software and electronics to monitor and control the laser system, and interface 108. The beam of laser energy I 10 from the energy source 102 is directed into a delivery device 112 which may be an optical fiber, a fiber bundle or articulated arm, etc. Modern instruments to provide dynamic cooling of the surface layers of tissue or other materials are well suited to these applications. A coolant spray can be provided through a handpiece or it could be provided with another separate device. Finally, a connection to a computer and the control system 106 of the energy source 102 will allow the system 100 to utilize electronic or other thermal sensing means and obtain feedback control signals for the handpiece. An optimum cooling strategy might be one that uses a post-irradiation cooling spurt that provides cooling or dissipation of the epidermal heat generated by absorption of energy in the non-isotropic skin, optionally containing various pigmentation levels. An appropriate cryogen spray would be liquid nitrogen or tetrafluoroethane, C.sub.2H.sub.2F.sub.4, an environmentally compatible, non-toxic, non-flammable freon substitute. In clinical application the distance between the aperture of the spray valve and the skin surface should be maintained at about 20 millimeters. In a preferred embodiment of the present invention, upon delivery of laser energy onto the surface and therethrough, the target tissue will be raised to the optimal treatment temperature and generally not any higher, in an adequately rapid process, with the surface temperature of the skin remaining at a temperature below the threshold for damage temperature. It will be understood that the threshold for damage temperature is the temperature below which the skin or other tissue can be elevated without causing temporary or permanent thermal damage, and above which the tissue may undergo either transient or long term thermally induced physiological change. As described, the wavelength of irradiated light energy is selectively absorbed by hemoglobin or hair follicles, or other tissue with pigmentation or chromophores of a certain type, but passes through the surface and overlying/adjacent tissue to the target tissue with minimal absorption. However, once the target tissue or structure becomes elevated in temperature, surrounding and adjacent tissue will become hot due to conduction of heat from the target tissue or structures. Post-irradiation cooling can then be initiated, and tissue other than the target tissue is prevented from increasing in temperature beyond the threshold of damage or adverse effect. Adverse effects of elevated tissue surface temperature include discomfort or pain, thermal denaturing of proteins and necrosis of individual cells at the surface only, or deeper tissue ablation potentially leading to hyperplasia, scarring, or hyperpigmentation, a proliferation of cells formed in response to the induced trauma. In a preferred embodiment of the method of the present invention, heating and subsequent post-cooling are performed in a predetermined timing sequence, optionally with the use of timer circuits and/or other controller means. Thus, it will be obvious to those skilled in the art that a passive heat sink includes glass or sapphire tip probes, and other types of devices to lay on the surface of the skin. It will also be obvious that a dynamic type of heat sink will refer to those actively cooled by flowing gas or liquid, jets or spurts of coolant such as freon, and other active types of heat exchangers suitable for surface cooling while irradiating sub-surface portions of collagen tissue. U.S. Pat. No. 5,820,626 issued Oct. 13, 1998 to Baumgardner and U.S. application Ser. No. 08/938,923 filed Sep. 26, 1997 by Baumgardner et al., both incorporated herein by reference in their entireties, teach a cooling laser handpiece with refillable coolant reservoir, and can be utilized as a handpiece for delivery device 112 and heat sink 114. FIG. 2 is a more detailed representative schematic block diagram of a preferred embodiment of the delivery device 112 shown in FIG. 1 of the present invention. The energy from the energy source 102 is directed into delivery device 112 via a delivery channel 130 which may be a fiber optic, articulated arm, or an electrical cable etc. At the distal end of delivery device 112 is a energy directing means 131 for directing the pulsed energy toward the surface tissue 116 and overlaying tissue 118 overlaying the target tissue or structure 120. A nozzle 134 is useful for directing coolant from reservoir 135 to the tissue 118, and a valve 136 for controlling the coolant interval. A temperature sensor 137 may be used to monitor the temperature rise of the target tissue 118. Control system 106 monitors the temperature signal from sensor 137 and controls valve 136 and energy source 102. Reservoir 135 may be in the delivery device 112 or elsewhere, and contains a refrigerant which may be applied to surface tissue 120 by spraying said refrigerant from cooling nozzle 124 in conjunction with delivery of pulsed treatment energy to the patient. FIG. 3 is a representative sample data plot of the temperature of surface tissue 116 and target tissue 120 achieved by methods and systems of the prior art having precooling. The waveforms are representative of oscilloscope-type traces which reproduce signals generated by one or more thermal detectors. In general, with precooling the coolant is applied just prior to the delivery to the pulsed energy. Waveform 240 indicates the periods of time and associated temperatures of the target tissue and the surface tissue during the processes of the prior art. Initially, as indicated by time period 241, the temperature of the surface tissue 116 as well as the target tissue 120, as shown in FIGS. 1 and 2, are at T.sub.s and T.sub.t respectively. It will be understood that typically the skin surface is at a temperature somewhat below actual body temperature. Typically, this range might be between about 28 and about 34 degrees Celsius. Furthermore, a target vein, hair follicle or other structure can be assumed to be at about or somewhat just below 37 degrees Celsius, or actual body temperature. Once the refrigerant is applied to surface tissue 116 by opening valve 136 during a subsequent time period 244, the temperature T.sub.s drops to a level determined by the length of time 244 for which the surface tissue 120 is exposed to the coolant. By way of example, for time periods of about 30 milliseconds, T.sub.s may drop from a typical temperature of about 32 degrees Celsius to just above 0 degrees Celsius. However, as the target tissues 120 is deeper than the surface 116, initially T.sub.t is not significantly affected and may drop by only a few degrees. A short delay 245 following delivery of refrigerant may be used, and is typically between 0 and 100 milliseconds. This allows time for cooling of at least a layer of epidermis to a depth of 50 to 250 micrometers. Following time periods 244 and optional period 245, the pulsed energy is applied over predetermined or other time period 246. The time period 246 depends on the size of the target and the fluence delivered, as indicated by principles of selective photothermalysis. For example, in experiments with an Nd:YAG laser operating at 1064 nanometers, one application of a 10 millisecond period and a fluence of 50 joules per square centimeter was sufficient to treat small blood vessels, and fluences of up to 150 joules per square centimeter and time periods of up to 200 milliseconds are useful for treating larger vessels of 1 to 3 millimeters in cross-section. During period 246 T.sub.t increases to a therapeutically effective value, whereas T.sub.s remains below the threshold indicated as 250 for patient discomfort or tissue damage. Subsequent to treatment, the target tissue 116 cools by conduction of thermal energy to adjacent overlaying tissue 118 including the surface tissue 116, with a resultant temperature rise in the target tissue 120 dependant on the size and depth of the target tissue 120. As T.sub.t equalizes with surrounding tissue, the T.sub.s may rise above the level of patient discomfort and even cause damage to surface tissue 116. FIG. 4 is a representative sample data plot of the temperature of surface tissue 116 and target tissue 120 achieved by a preferred embodiment of the method and system of the present invention such as shown in FIGS. 1 and 2 having precooling. The method of the present invention includes the process of precooling surface tissue 116 and target tissue 120 slightly, followed by a short time period 245 and subsequent delivery of thermal energy to the body during time period 246 such as shown in FIG. 3. In the present invention, however, refrigerant is also applied subsequent to the energy pulse by opening valve 136 as desired or as indicated, thus keeping T.sub.s below the threshold for damage temperature 250. FIG. 4 shows a pulse of coolant applied during time period 248 which is subsequent to the application of pulsed energy during period 246. This results in thermal quenching of the surface tissue 116. The thermal quenching pulse or other flow of refrigerant or other means for cooling is applied after the beginning of treatment period 246 and may be initiated before or after the end of time period 246. It is important that the peak or highest temperature of the surface tissue 116 never rise above the threshold for damage temperature 250. The time point at which the peak temperature in the surface tissue 116 is achieved is dependant on the size and depth of the target 120. In one experimental example, cryogenic fluid was applied to the surface tissue 116 within 10 milliseconds of the end of the energy pulse of time period 246 and for a duration 248 of 20 milliseconds. For vascular treatment with an Nd:YAG laser with pulse widths of 5 milliseconds to 200 milliseconds, the period of thermal quenching 248 preferably 10 milliseconds to 30 milliseconds immediately after the treatment energy. This sequence significantly reduced patient discomfort compared to treatment with out thermal quenching. The effect of thermal quenching is not dependant on pre-cooling and may be used as the only method of cooling in many cases. FIG. 5 is a representative sample data plot of the temperature of surface tissue and target tissue achieved by a preferred embodiment of the method and system of the present invention such as shown in FIGS. 1 and 2 without precooling. As in the method shown in FIG. 4, the thermal quenching pulse or other flow of refrigerant or other means for cooling over time period 248 is applied after the beginning of treatment period 246 and may be initiated before or after the end of time period 246. It is important that the peak or highest temperature of the surface tissue 116 never rise above the threshold for damage temperature 250. The present invention requires less cooling of the target tissue, structure or area during the treatment phase than is typically required, resulting in more efficient heating of the selected target and less thermal damage to surrounding tissue. It will be understood that while numerous preferred embodiments of the present invention are presented herein, numerous of the individual elements and functional aspects of the embodiments are similar. Therefore, it will be understood that structural elements of the numerous apparatus disclosed herein having similar or identical function may have like reference numerals associated therewith. In a preferred embodiment of the present invention, re-heating of tissue, especially target or subsurface tissue can be useful. U.S. application Ser. No. 09/185,490 filed Nov. 3, 1998 by Koop et al. entitled Subsurface Heating of Tissue teaches methods and systems for performing subsurface heating of material and tissue, and is incorporated herein by reference in its entirety. With these methods and apparatus, target or subsurface tissue is preheated to an elevated, non-destructive temperature which is somewhat below that of treatment. Thereafter, the temperature of the target tissue or structures is raised to treatment temperature. Once this second increase in temperature is achieved, the target tissue or structures will conduct heat into the body, especially to adjacent tissue and surface tissue, at which time the post-cooling of the present invention can be initiated so as to prevent damage to adjacent tissue or dermis or other surface tissue. In one embodiment the invention utilizes an Nd:YAG laser at 1320 nm wavelength, (such as the CoolTouch 130, CoolTouch Corp., Auburn Calif.) as the source of treatment energy. At 1320 nm the absorption depth in tissue is such that energy is deposited throughout the upper dermis, with most absorption in the epidermis and upper dermis, a region including the top 200 to 400 microns of tissue. The energy falls off approximately exponentially with the highest level of absorbed energy in the epidermis. Optical heating of skin follows exposure to the laser energy. If the time of exposure to the laser is very short compared to the time required for heat to diffuse out of the area exposed, the thermal relaxation time, than the temperature rise at any depth in the exposed tissue will be proportional to the energy absorbed at that depth. However, if the pulse width is comparable or longer to the thermal relaxation time of the exposed tissue than profile of temperature rise will not be as steep. Conduction of thermal energy occurs at a rate proportional to the temperature gradient in the exposed tissue. Lengthening the exposure time will reduce the maximum temperature rise in exposed tissue. For instance, at 1.3 microns the laser pulse width may be set to 30 milliseconds and fluence to less than 30 joules per square centimeter. This prevents excessive heat build up in the epidermis, which is approximately the top 100 microns in skin. The papillary dermis can then be heated to a therapeutic level without damage to the epidermis. The epidermis will reach a temperature higher than but close to that of the papillary dermis. The epidermis is more resilient in handling extremes of temperature than most other tissue in the human body. It is therefore possible to treat the papillary dermis in conjunction with the epidermis without scarring or blistering, by treating both layers with laser energy and allowing a long enough exposure time such that the thermal gradient between the epidermis and underlying layers remains low. In this way the underlying layers can be treated without thermal damage to the epidermis. It is known that thermal damage in tissue is time dependant and brief exposures to high temperature levels may be tolerated in situations where long exposures are lethal or injurious. Terminating the exposure of the epidermis to elevated temperatures will decrease the risk of damage to the epidermis. In this invention thermal quenching is used to terminate the exposure of the epidermis to elevated temperatures. In this embodiment cryogen spray cooling is use to reduce the epidermal temperature following the exposure to laser radiation. The laser heats the epidermis and lower layers simultaneously because of penetration of the laser energy into tissue. The cryogen cooling works from the top surface and heat flows out of the lower layers by conduction over a time period equivalent to the thermal relaxation time at each depth of tissue. As a result the epidermis is heated for a shorter time period than the papillary dermis or other deeper layers. In this invention a top layer of tissue can be protected by limiting the time of exposure to elevated temperatures, and deeper layers are protected by the attenuation of light energy in tissue water. The depth of protection due to cooling is determined by the degree of cooling and the time delay after laser exposure. In the embodiment described here 30 milliseconds of cooling spray is applied without delay, (within 5 milliseconds), after the termination of the laser exposure. The cooling may be delayed to cause longer thermal exposures of the surface. The amount of cooling is enough to reduce the temperature of the surface to non-therapeutic levels. Higher cooling levels will terminate heat build up deeper in tissue. A wavelength of 1.3 microns is used in this embodiment to treat the middle layers of skin. Other wavelengths such as 1.45 or 2.1 microns may by used to treat more superficial layers of skin by this method. It is important that the wavelength is chosen such that there is absorption in tissue water such that the energy attenuation versus depth is fairly uniform over an area of skin. The range of wavelengths longer than 1100 nm in the infrared have this property. It is important that the energy source used for this invention is uniformly attenuated with depth in tissue. Ultrasound, microwaves, and RF electrical current are examples. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Although any methods and materials similar or equivalent to those described can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications and patent documents referenced in the present invention are incorporated herein by reference. While the principles of the invention have been made clear in illustrative embodiments, there will be immediately obvious to those skilled in the art many modifications of structure, arrangement, proportions, the elements, materials, and components used in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from those principles. The appended claims are intended to cover and embrace any and all such modifications, with the limits only of the true purview, spirit and scope of the invention. The description that follows is presented to enable one skilled in the art to make and use the present invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be apparent to those skilled in the art, and the general principals discussed below may be applied to other embodiments and applications without departing from the scope and spirit of the invention. Therefore, the invention is not intended to be limited to the embodiments disclosed, but the invention is to be given the largest possible scope which is consistent with the principals and features described herein. In a preferred embodiment of the present invention, re-heating of tissue, especially target or subsurface tissue can be useful. U.S. application Ser. No. 09/185,490 filed Nov. 3, 1998 by Koop et al. teaches methods and systems for performing subsurface heating of material and in incorporated herein by reference in its entirety. In these methods, target or subsurface tissue is preheated to an elevated, non-destructive temperature which is somewhat below that of treatment. Thereafter, the temperature of the target tissue or structures is raised to treatment temperature. Once this second increase in temperature is achieved, the target tissue or structures will conduct heat into the body, especially to adjacent tissue and surface tissue, at which time the post-cooling of the present invention can be initiated so as to prevent damage to adjacent tissue or dermis or other surface tissue. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Although any methods and materials similar or equivalent to those described can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications and patent documents referenced in the present invention are incorporated herein by reference. While the principles of the invention have been made clear in illustrative embodiments, there will be immediately obvious to those skilled in the art many modifications of structure, arrangement, proportions, the elements, materials, and components used in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from those principles. The appended claims are intended to cover and embrace any and all such modifications, with the limits only of the true purview, spirit and scope of the invention.P Thus, specific embodiments and applications of thermal quenching of tissue have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. | <SOH> BACKGROUND OF THE INVENTION <EOH>It is sometimes desirable to cause heat affected changes in a selected structure in tissue, such as a vein or hair follicle without causing heat affected changes in tissue adjacent to the selected structure. Selective photothermalysis is a method of irradiating with a laser or pulsed light source that is preferentially absorbed by a pre-selected target. The amount of energy or fluence delivered to the target is chosen such that the temperature rise in the targeted region results in an intended thermal treatment of the target. Heating of the epidermis may occur during treatment of the target and several methods have been described for cooling the surface of skin during and prior to treatment to minimize the risk of thermal injury to tissue adjacent to the targeted veins. One early method included pre-cooling with ice for several minute prior to treatment. U.S. Pat. No. 5,282,797 issued Feb. 1, 1994 to Chess describes a method of circulating cooling fluid over a transparent plate in contact with the treatment area to cool the epidermis during treatment. U.S. Pat. No. 5,344,418 issued Sep. 6, 1994 to Ghaffari describes a method whereby a coolant is used for a predetermined time interval in coordination with the delivery of laser energy to optimize the cooling of the epidermis and minimize cooling of the targeted vessel. U.S. Pat. No. 5,814,040 issued Sep. 29, 1998 to Nelson et al. describes a cooling method whereby a cryogenic spurt is applied for a predetermined short time directly onto the skin in the target region. The time period for cooling is confined only to the epidermis while leaving the temperature of deeper port wine stains substantially unchanged. Many of the cooling methods may limit the amount of significant thermal damage to the epidermis during treatment. It may be desirable to shrink collagen in order to reduce the appearance of undesirable conditions of the skin such as acne scars and wrinkles. The following U.S. patents to Sand teach controlled thermal shrinkage of collagen fibers in the cornea using light at wavelengths between 1.8 and 2.55 microns: U.S. Pat. No. 4,976,709, Class No. 606/5, issued Dec. 11, 1990; U.S. Pat. No. 5,137,530; U.S. Pat. No. 5,304,169; U.S. Pat. No. 5,374,265; and U.S. Pat. 5,484,432. U.S. Pat. No. 5,810,801, class no. 606/9 issued Sep. 22, 1998 to Anderson et al. teaches a method and apparatus for treating wrinkles in skin by targeting tissue at a level between 100 microns and 1.2 millimeters below the surface, to thermally injure collagen without causing erythema, by using light at wavelengths between 1.3 and 1.8 microns. Because of the high scattering and absorption coefficients, precooling is utilized to prevent excess heat build up in the epidermis when targeting the region of 100 microns to 1.2 mm below the surface. Specific laser and cooling parameters are selected so as to avoid erythema and achieve improvement in wrinkles as the long term result of a treatment. | <SOH> ADVANTAGES AND SUMMARY OF THE INVENTION <EOH>The present invention provides a system for achieving erythema and/or mild edema in an upper layer of skin, without causing blisters, and without the risk of high fluence levels or critical need for cooling. The invention uses a source of thermal energy, which may be infrared in the wavelength range of 1100 nm to 2.9 nm, to cause thermally mediated effects in skin. The systems and methods are directed toward heating the skin with a source of energy which is uniformly attenuated with depth in skin for a predetermined time period and predetermined fluence so that the exposure time of the epidermis and the peak temperature reached by the epidermis are such that the epidermis does not blister but the thermally mediated injury in the skin below the epidermis causes a transient erythema to initiate a healing response. By achieving erythema and/or mild edema in an upper layer of skin, the system precludes the risk of high fluence levels or critical need for cooling. The dosage and time period of application are adjusted to prevent excess accumulation of heat in the epidermis, which would cause tissue damage. Thermal quenching is used to remove latent heat from the treatment site to prevent thermal damage to the tissue. Collagen remodeling is induced by distributing the laser energy over a series of more benign treatments spaced weeks apart. It is therefore an advantage and an object of the present invention to provide an improved system for selectively cooling tissue during photothermal treatment. It is a further advantage of the present invention to provide such a system which uses dynamic cooling to quench heat build up during and after photothermal treatment. It is a further advantage of the present invention to provide such a system which selectively heats a subsurface structure in tissue and subsequently quenches heat build up in non-target tissue. It is a further advantage of the present invention to reduce the level of pulsed energy needed for treatment by minimizing precooling of the tissue. It is a further advantage of the present invention to provide such a system which selectively heats a subsurface structure in skin to cause thermal affected changes in said subsurface structure without significant epithelial damage due to subsequent heating from the target region. It is a further advantage of the present invention to provide such a system which selectively heats vascular lesions in tissue and quenches subsequent heat build up in epithelial tissue. It is a further advantage of the present invention to provide such a system which selectively heats hair follicles in tissue and quenches subsequent heat build up in epithelial tissue. It is a further advantage of the present invention to require less cooling of the target area than is typically required, resulting in more efficient heating of the selected target and less thermal damage to surrounding tissue. In a preferred embodiment, the system for generating light energy is a laser system such as but not limited to a solid-state laser, including but not limited to a neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser. In additional preferred embodiments, the system for generating light energy is a gas discharge flashlamp or an incandescent-type filament lamp. The energy from the generating system may be directed into or coupled to a delivery device such as but not limited to a fiber optic or articulated arm for transmitting the light energy to the target tissue. The light energy may be focused on tissue with a focusing lens or system of lenses. The surface of the tissue may be cooled with a cooling device including but not limited to an irrigating solution, a spray or flow of refrigerant or other cryogenic material, or a transparent window cooled by other active means, or other dynamic or passive cooling means. The tissue may be preheated with a heating device such as, but not limited to an intense light source, a flashlamp, a filament lamp, laser diode, other laser source, electrical current, or other electromagnetic or mechanical energy which penetrates into layers of tissue beneath the surface. The preheating can occur simultaneously or just prior to the surface cooling of tissue from the cooling device such that the tissue preheating results in a temperature rise in underlying layers of tissue, and a temperature profile results. The pulsed application of energy from the energy delivery device results in a temperature profile that preferentially heats a selected structure or target in tissue, and the post cooling prevents thermal damage to tissue adjacent to that structure. This also reduces the overall pulse energy level needed of the pulsed treatment device due to the fact that a desirable temperature profile exists prior to delivery of the pulsed treatment energy. The tissue may be post cooled with a dynamic cooling device such as, but not limited to a pulse, spray or other flow of refrigerant such that the post cooling occurs after a temperature rise in an underlying targeted structure and a temperature profile results such that the pulsed application of energy from the energy delivery device results in a temperature profile that preferential heats a selected structure in tissue without subsequent undesirable heating to tissue adjacent to that structure from thermal conduction. Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings. Various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components. Further objects and advantages of the present invention will be come apparent through the following descriptions, and will be included and incorporated herein. | 20050107 | 20061017 | 20050714 | 73951.0 | 1 | FARAH, AHMED M | THERMAL QUENCHING OF TISSUE | SMALL | 1 | CONT-ACCEPTED | 2,005 |
|||
11,031,207 | ACCEPTED | Speech recognition system trained with regional speech characteristics | A speech recognition system uses speech recognition models which are specifically trained and optimized for users residing in a particular geographic area or region. The speech models are trained with samples of word variants expected to be used in a natural language by representative members of a population associated with the geographic region or community of users. The speech recognition system is configured to have a real-time response that imitates a dialogue with a human operator. | 1. A method of optimizing recognition of a speech utterance from a user with a distributed speech processing system comprising the steps of: (a) training one or more speech recognition models for recognizing speech utterances in a first natural language in a first training operation; wherein said speech recognition models are implemented as part of a speech recognition engine executing on a network server system of the distributed speech processing system; (b) training said one or more speech recognition models in a second training operation, said second training operation being based on additional samples of speech from a group of persons employing said first natural language and residing in geographic regions served by the distributed speech processing system; wherein recognition of speech utterances during a speech recognition process is optimized for a geographic region by using one or more speech models which include variants of words to be uttered by users of the distributed client-server system. 2. The method of claim 1, wherein said speech recognition models are Hidden Markov Models. 3. The method of claim 1, further including a step: recognizing a speech utterance from a user by selecting a speech model from said one more speech recognition models. 4. The method of claim 3, further including a step: providing a response to said speech utterance over a network connection to a client device employed by the user. 5. The method of claim 4, further including a step: converting said response to audible form using a text-to-speech engine. 6. The method of claim 5, wherein said response is voiced by an interactive electronic agent. 7. The method of claim 3, wherein said response to said speech utterance is provided to the user before said speech utterance is completely recognized. 8. The method of claim 3, further including a step: dynamically switching a grammar to be used by said speech model based on an application being used by the user at the time of said speech utterance. 9. The method of claim 8, further including a step: dynamically switching a dictionary to be used by said speech model based on an application being used by the user at the time of said speech utterance. 10. The method of claim 1, further including a step: configuring a set of speech recognition operations to be performed by the network server system based on computing resources available to such system. 11. The method of claim 3, further including a step: calibrating noise at the client device prior to recognizing the speech utterance. 12. A method of optimizing recognition of a speech utterance from a user with a distributed speech processing system comprising the steps of: (a) receiving first speech data from a client device in streaming packets through a network interface of a network server system and/or plurality of servers, said first speech data resulting from a first set of speech recognition operations being performed on the speech utterance by the client device; (b) completing recognition of the speech utterance using software routines executing at the network server system and/or plurality of servers which implement a second set of speech recognition operations; wherein said software routines at the network server system and/or plurality of servers use one or more speech recognition models that are trained based on speech characteristics of a group of persons residing in geographical regions served by the distributed client-server system; (c) providing a real-time response to the user based on the speech utterance as well as subsequent speech utterances from the user so that an interactive dialog is conducted by the distributed speech processing system. 13. The method of claim 12 wherein an electronic agent provides said real-time response, which electronic agent exhibits characteristics that are adjusted by said software routines executing at the network server system and/or plurality of servers based on a type of application interacting with the user. 14. The method of claim 12 wherein an electronic agent provides said real-time response, which electronic agent exhibits characteristics that are adjusted by said software routines executing at the network server system and/or plurality of servers based on an identity of the user. 15. The method of claim 12 wherein an electronic agent presented within a browser of the client system provides said real-time response, which electronic agent responds to user queries presented in speech form and assists the user to navigate and select items from an Internet web page. 16. The method of claim 15 wherein said electronic agent further provides one or more specific suggested queries to the user. 17. A speech processing system for recognizing a speech utterance from a user comprising: (a) a speech recognition engine; wherein said speech recognition engine executes on a network server system of a distributed speech processing system; (b) one or more speech recognition models useable by the speech recognition engine for recognizing speech utterances in a first language; wherein said one or more speech recognition models have been trained to include additional samples of speech from a group of persons employing said first language and residing in geographic regions served by the distributed speech processing system; further wherein recognition of speech utterances by the speech recognition engine is optimized for a geographic region by using one or more speech models which include variants of words to be uttered by users of the distributed client-server system. 18. The system of claim 17, further including a natural language engine coupled to the speech recognition engine for recognizing a meaning of said speech utterances. 19. The system of claim 18, further including a database containing query/answer pairs responsive to said speech utterances. 20. The system of claim 17, further including an electronic agent for conducting an interactive dialog with the users. | RELATED APPLICATIONS The present application claims priority to and is a continuation of Ser. No. 10/684,357 filed Oct. 10, 2003—which in turn is a continuation of Ser. No. 09/439,145 filed Nov. 12, 1999 (now U.S. Pat. No. 6,633,846). Both applications are hereby incorporated by reference herein. FIELD OF THE INVENTION The invention relates to a system and an interactive method for responding to speech based user inputs and queries presented over a distributed network such as the INTERNET or local intranet. This interactive system when implemented over the World-Wide Web services (WWW) of the INTERNET, functions so that a client or user can ask a question in a natural language such as English, French, German, Spanish or Japanese and receive the appropriate answer at his or her computer or accessory also in his or her native natural language. The system has particular applicability to such applications as remote learning, e-commerce, technical e-support services, INTERNET searching, etc. BACKGROUND OF THE INVENTION The INTERNET, and in particular, the World-Wide Web (WWW), is growing in popularity and usage for both commercial and recreational purposes, and this trend is expected to continue. This phenomenon is being driven, in part, by the increasing and widespread use of personal computer systems and the availability of low cost INTERNET access. The emergence of inexpensive INTERNET access devices and high speed access techniques such as ADSL, cable modems, satellite modems, and the like, are expected to further accelerate the mass usage of the WWW. Accordingly, it is expected that the number of entities offering services, products, etc., over the WWW will increase dramatically over the coming years. Until now, however, the INTERNET “experience” for users has been limited mostly to non-voice based input/output devices, such as keyboards, intelligent electronic pads, mice, trackballs, printers, monitors, etc. This presents somewhat of a bottleneck for interacting over the WWW for a variety of reasons. First, there is the issue of familiarity. Many kinds of applications lend themselves much more naturally and fluently to a voice-based environment. For instance, most people shopping for audio recordings are very comfortable with asking a live sales clerk in a record store for information on titles by a particular author, where they can be found in the store, etc. While it is often possible to browse and search on one's own to locate items of interest, it is usually easier and more efficient to get some form of human assistance first, and, with few exceptions, this request for assistance is presented in the form of a oral query. In addition, many persons cannot or will not, because of physical or psychological barriers, use any of the aforementioned conventional I/O devices. For example, many older persons cannot easily read the text presented on WWW pages, or understand the layout/hierarchy of menus, or manipulate a mouse to make finely coordinated movements to indicate their selections. Many others are intimidated by the look and complexity of computer systems, WWW pages, etc., and therefore do not attempt to use online services for this reason as well. Thus, applications which can mimic normal human interactions are likely to be preferred by potential on-line shoppers and persons looking for information over the WWW. It is also expected that the use of voice-based systems will increase the universe of persons willing to engage in e-commerce, e-learning, etc. To date, however, there are very few systems, if any, which permit this type of interaction, and, if they do, it is very limited. For example, various commercial programs sold by IBM (VIAVOICE™) and Kurzweil (DRAGON™) permit some user control of the interface (opening, closing files) and searching (by using previously trained URLs) but they do not present a flexible solution that can be used by a number of users across multiple cultures and without time consuming voice training. Typical prior efforts to implement voice based functionality in an INTERNET context can be seen in U.S. Pat. No. 5,819,220 incorporated by reference herein. Another issue presented by the lack of voice-based systems is efficiency. Many companies are now offering technical support over the INTERNET, and some even offer live operator assistance for such queries. While this is very advantageous (for the reasons mentioned above) it is also extremely costly and inefficient, because a real person must be employed to handle such queries. This presents a practical limit that results in long wait times for responses or high labor overheads. An example of this approach can be seen U.S. Pat. No. 5,802,526 also incorporated by reference herein. In general, a service presented over the WWW is far more desirable if it is “scalable,” or, in other words, able to handle an increasing amount of user traffic with little if any perceived delay or troubles by a prospective user. In a similar context, while remote learning has become an increasingly popular option for many students, it is practically impossible for an instructor to be able to field questions from more than one person at a time. Even then, such interaction usually takes place for only a limited period of time because of other instructor time constraints. To date, however, there is no practical way for students to continue a human-like question and answer type dialog after the learning session is over, or without the presence of the instructor to personally address such queries. Conversely, another aspect of emulating a human-like dialog involves the use of oral feedback. In other words, many persons prefer to receive answers and information in audible form. While a form of this functionality is used by some websites to communicate information to visitors, it is not performed in a real-time, interactive question-answer dialog fashion so its effectiveness and usefulness is limited. Yet another area that could benefit from speech-based interaction involves so-called “search” engines used by INTERNET users to locate information of interest at web sites, such as the those available at YAHOO®.com, METACRAWLER®.com, EXCITE®.com, etc. These tools permit the user to form a search query using either combinations of keywords or metacategories to search through a web page database containing text indices associated with one or more distinct web pages. After processing the user's request, therefore, the search engine returns a number of hits which correspond, generally, to URL pointers and text excerpts from the web pages that represent the closest match made by such search engine for the particular user query based on the search processing logic used by search engine. The structure and operation of such prior art search engines, including the mechanism by which they build the web page database, and parse the search query, are well known in the art. To date, applicant is unaware of any such search engine that can easily and reliably search and retrieve information based on speech input from a user. There are a number of reasons why the above environments (e-commerce, e-support, remote learning, INTERNET searching, etc.) do not utilize speech-based interfaces, despite the many benefits that would otherwise flow from such capability. First, there is obviously a requirement that the output of the speech recognizer be as accurate as possible. One of the more reliable approaches to speech recognition used at this time is based on the Hidden Markov Model (HMM)—a model used to mathematically describe any time series. A conventional usage of this technique is disclosed, for example, in U.S. Pat. No. 4,587,670 incorporated by reference herein. Because speech is considered to have an underlying sequence of one or more symbols, the HMM models corresponding to each symbol are trained on vectors from the speech waveforms. The Hidden Markov Model is a finite set of states, each of which is associated with a (generally multi-dimensional) probability distribution. Transitions among the states are governed by a set of probabilities called transition probabilities. In a particular state an outcome or observation can be generated, according to the associated probability distribution. This finite state machine changes state once every time unit, and each time t such that a state j is entered, a spectral parameter vector Ot is generated with probability density Bj(Ot). It is only the outcome, not the state visible to an external observer and therefore states are “hidden” to the outside; hence the name Hidden Markov Model. The basic theory of HMMs was published in a series of classic papers by Baum and his colleagues in the late 1960's and early 1970's. HMMs were first used in speech applications by Baker at Carnegie Mellon, by Jelenik and colleagues at IBM in the late 1970's and by Steve Young and colleagues at Cambridge University, UK in the 1990's. Some typical papers and texts are as follows: 1. L. E. Baum, T. Petrie, “Statistical inference for probabilistic functions for finite state Markov chains”, Ann. Math. Stat., 37: 1554-1563, 1966 2. L. E. Baum, “An inequality and associated maximation technique in statistical estimation for probabilistic functions of Markov processes”, Inequalities 3: 1-8, 1972 3. J. H. Baker, “The dragon system—An Overview”, IEEE Trans. on ASSP Proc., ASSP-23(1): 24-29, Feb. 1975 4. F. Jeninek et al, “Continuous Speech Recognition: Statistical methods” in Handbook of Statistics, II, P. R. Kristnaiad, Ed. Amsterdam, The Netherlands, North-Holland, 1982 5. L. R. Bahl, F. Jeninek, R. L. Mercer, “A maximum likelihood approach to continuous speech recognition”, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-5: 179-190, 1983 6. J. D. Ferguson, “Hidden Markov Analysis: An Introduction”, in Hidden Markov Models for Speech, Institute of Defense Analyses, Princeton, N.J. 1980. 7. H. R. Rabiner and B. H. Juang, “Fundamentals of Speech Recognition”, Prentice Hall, 1993 8. H. R. Rabiner, “Digital Processing of Speech Signals”, Prentice Hall, 1978 More recently research has progressed in extending HMM and combining HMMs with neural networks to speech recognition applications at various laboratories. The following is a representative paper: 9. Nelson Morgan, Hervé Bourlard, Steve Renals, Michael Cohen and Horacio Franco (1993), Hybrid Neural Network/Hidden Markov Model Systems for Continuous Speech Recognition. Journal of Pattern Recognition and Artificial Intelligence, Vol. 7, No. 4 pp. 899-916. Also in I. Guyon and P. Wang editors, Advances in Pattern Recognition Systems using Neural Networks, Vol. 7 of a Series in Machine Perception and Artificial Intelligence. World Scientific, February 1994. All of the above are hereby incorporated by reference. While the HMM-based speech recognition yields very good results, contemporary variations of this technique cannot guarantee a word accuracy requirement of 100% exactly and consistently, as will be required for WWW applications for all possible all user and environment conditions. Thus, although speech recognition technology has been available for several years, and has improved significantly, the technical requirements have placed severe restrictions on the specifications for the speech recognition accuracy that is required for an application that combines speech recognition and natural language processing to work satisfactorily. In contrast to word recognition, Natural language processing (NLP) is concerned with the parsing, understanding and indexing of transcribed utterances and larger linguistic units. Because spontaneous speech contains many surface phenomena such as disfluencies,—hesitations, repairs and restarts, discourse markers such as ‘well’ and other elements which cannot be handled by the typical speech recognizer, it is the problem and the source of the large gap that separates speech recognition and natural language processing technologies. Except for silence between utterances, another problem is the absence of any marked punctuation available for segmenting the speech input into meaningful units such as utterances. For optimal NLP performance, these types of phenomena should be annotated at its input. However, most continuous speech recognition systems produce only a raw sequence of words. Examples of conventional systems using NLP are shown in U.S. Pat. Nos. 4,991,094, 5,068,789, 5,146,405 and 5,680,628, all of which are incorporated by reference herein. Second, most of the very reliable voice recognition systems are speaker-dependent, requiring that the interface be “trained” with the user's voice, which takes a lot of time, and is thus very undesirable from the perspective of a WWW environment, where a user may interact only a few times with a particular website. Furthermore, speaker-dependent systems usually require a large user dictionary (one for each unique user) which reduces the speed of recognition. This makes it much harder to implement a real-time dialog interface with satisfactory response capability (i.e., something that mirrors normal conversation—on the order of 3-5 seconds is probably ideal). At present, the typical shrink-wrapped speech recognition application software include offerings from IBM (VIAVOICE™) and Dragon Systems (DRAGON™). While most of these applications are adequate for dictation and other transcribing applications, they are woefully inadequate for applications such as NLQS where the word error rate must be close to 0%. In addition these offerings require long training times and are typically are non client-server configurations. Other types of trained systems are discussed in U.S. Pat. No. 5,231,670 assigned to Kurzweil, and which is also incorporated by reference herein. Another significant problem faced in a distributed voice-based system is a lack of uniformity/control in the speech recognition process. In a typical stand-alone implementation of a speech recognition system, the entire SR engine runs on a single client. A well-known system of this type is depicted in U.S. Pat. No. 4,991,217 incorporated by reference herein. These clients can take numerous forms (desktop PC, laptop PC, PDA, etc.) having varying speech signal processing and communications capability. Thus, from the server side perspective, it is not easy to assure uniform treatment of all users accessing a voice-enabled web page, since such users may have significantly disparate word recognition and error rate performances. While a prior art reference to Gould et al.—U.S. Pat. No. 5,915,236—discusses generally the notion of tailoring a recognition process to a set of available computational resources, it does not address or attempt to solve the issue of how to optimize resources in a distributed environment such as a client-server model. Again, to enable such voice-based technologies on a wide-spread scale it is far more preferable to have a system that harmonizes and accounts for discrepancies in individual systems so that even the thinnest client is supportable, and so that all users are able to interact in a satisfactory manner with the remote server running the e-commerce, e-support and/or remote learning application. Two references that refer to a distributed approach for speech recognition include U.S. Pat. Nos. 5,956,683 and 5,960,399 incorporated by reference herein. In the first of these, U.S. Pat. No. 5,956,683—Distributed Voice Recognition System (assigned to Qualcomm) an implementation of a distributed voice recognition system between a telephony-based handset and a remote station is described. In this implementation, all of the word recognition operations seem to take place at the handset. This is done since the patent describes the benefits that result from locating of the system for acoustic feature extraction at the portable or cellular phone in order to limit degradation of the acoustic features due to quantization distortion resulting from the narrow bandwidth telephony channel. This reference therefore does not address the issue of how to ensure adequate performance for a very thin client platform. Moreover, it is difficult to determine, how, if at all, the system can perform real-time word recognition, and there is no meaningful description of how to integrate the system with a natural language processor. The second of these references—U.S. Pat. No. 5,960,399—Client/Server Speech Processor/Recognizer (assigned to GTE) describes the implementation of a HMM-based distributed speech recognition system. This reference is not instructive in many respects, however, including how to optimize acoustic feature extraction for a variety of client platforms, such as by performing a partial word recognition process where appropriate. Most importantly, there is only a description of a primitive server-based recognizer that only recognizes the user's speech and simply returns certain keywords such as the user's name and travel destination to fill out a dedicated form on the user's machine. Also, the streaming of the acoustic parameters does not appear to be implemented in real-time as it can only take place after silence is detected. Finally, while the reference mentions the possible use of natural language processing (column 9) there is no explanation of how such function might be implemented in a real-time fashion to provide an interactive feel for the user. SUMMARY OF THE INVENTION An object of the present invention, therefore, is to provide an improved system and method for overcoming the limitations of the prior art noted above; A primary object of the present invention is to provide a word and phrase recognition system that is flexibly and optimally distributed across a client/platform computing architecture, so that improved accuracy, speed and uniformity can be achieved for a wide group of users; A further object of the present invention is to provide a speech recognition system that efficiently integrates a distributed word recognition system with a natural language processing system, so that both individual words and entire speech utterances can be quickly and accurately recognized in any number of possible languages; A related object of the present invention is to provide an efficient query response system so that an extremely accurate, real-time set of appropriate answers can be given in response to speech-based queries; Yet another object of the present invention is to provide an interactive, real-time instructional/learning system that is distributed across a client/server architecture, and permits a real-time question/answer session with an interactive character; A related object of the present invention is to implement such interactive character with an articulated response capability so that the user experiences a human-like interaction; Still a further object of the present invention is to provide an INTERNET website with speech processing capability so that voice based data and commands can be used to interact with such site, thus enabling voice-based e-commerce and e-support services to be easily scaleable; Another object is to implement a distributed speech recognition system that utilizes environmental variables as part of the recognition process to improve accuracy and speed; A further object is to provide a scaleable query/response database system, to support any number of query topics and users as needed for a particular application and instantaneous demand; Yet another object of the present invention is to provide a query recognition system that employs a two-step approach, including a relatively rapid first step to narrow down the list of potential responses to a smaller candidate set, and a second more computationally intensive second step to identify the best choice to be returned in response to the query from the candidate set; A further object of the present invention is to provide a natural language processing system that facilitates query recognition by extracting lexical components of speech utterances, which components can be used for rapidly identifying a candidate set of potential responses appropriate for such speech utterances; Another related object of the present invention is to provide a natural language processing system that facilitates query recognition by comparing lexical components of speech utterances with a candidate set of potential response to provide an extremely accurate best response to such query. One general aspect of the present invention, therefore, relates to a natural language query system (NLQS) that offers a fully interactive method for answering user's questions over a distributed network such as the INTERNET or a local intranet. This interactive system when implemented over the worldwide web (WWW) services of the INTERNET functions so that a client or user can ask a question in a natural language such as English, French, German or Spanish and receive the appropriate answer at his or her personal computer also in his or her native natural language. The system is distributed and consists of a set of integrated software modules at the client's machine and another set of integrated software programs resident on a server or set of servers. The client-side software program is comprised of a speech recognition program, an agent and its control program, and a communication program. The server-side program is comprised of a communication program, a natural language engine (NLE), a database processor (DBProcess), an interface program for interfacing the DBProcess with the NLE, and a SQL database. In addition, the client's machine is equipped with a microphone and a speaker. Processing of the speech utterance is divided between the client and server side so as to optimize processing and transmission latencies, and so as to provide support for even very thin client platforms. In the context of an interactive learning application, the system is specifically used to provide a single-best answer to a user's question. The question that is asked at the client's machine is articulated by the speaker and captured by a microphone that is built in as in the case of a notebook computer or is supplied as a standard peripheral attachment. Once the question is captured, the question is processed partially by NLQS client-side software resident in the client's machine. The output of this partial processing is a set of speech vectors that are transported to the server via the INTERNET to complete the recognition of the user's questions. This recognized speech is then converted to text at the server. After the user's question is decoded by the speech recognition engine (SRE) located at the server, the question is converted to a structured query language (SQL) query. This query is then simultaneously presented to a software process within the server called DBProcess for preliminary processing and to a Natural Language Engine (NLE) module for extracting the noun phrases (NP) of the user's question. During the process of extracting the noun phrase within the NLE, the tokens of the users' question are tagged. The tagged tokens are then grouped so that the NP list can be determined. This information is stored and sent to the DBProcess process. In the DBProcess, the SQL query is fully customized using the NP extracted from the user's question and other environment variables that are relevant to the application. For example, in a training application, the user's selection of course, chapter and or section would constitute the environment variables. The SQL query is constructed using the extended SQL Full-Text predicates—CONTAINS, FREETEXT, NEAR, AND. The SQL query is next sent to the Full-Text search engine within the SQL database, where a Full-Text search procedure is initiated. The result of this search procedure is recordset of answers. This recordset contains stored questions that are similar linguistically to the user's question. Each of these stored questions has a paired answer stored in a separate text file, whose path is stored in a table of the database. The entire recordset of returned stored answers is then returned to the NLE engine in the form of an array. Each stored question of the array is then linguistically processed sequentially one by one. This linguistic processing constitutes the second step of a 2-step algorithm to determine the single best answer to the user's question. This second step proceeds as follows: for each stored question that is returned in the recordset, a NP of the stored question is compared with the NP of the user's question. After all stored questions of the array are compared with the user's question, the stored question that yields the maximum match with the user's question is selected as the best possible stored question that matches the user's question. The metric that is used to determine the best possible stored question is the number of noun-phrases. The stored answer that is paired to the best-stored question is selected as the one that answers the user's question. The ID tag of the question is then passed to the DBProcess. This DBProcess returns the answer which is stored in a file. A communication link is again established to send the answer back to the client in compressed form. The answer once received by the client is decompressed and articulated to the user by the text-to-speech engine. Thus, the invention can be used in any number of different applications involving interactive learning systems, INTERNET related commerce sites, INTERNET search engines, etc. Computer-assisted instruction environments often require the assistance of mentors or live teachers to answer questions from students. This assistance often takes the form of organizing a separate pre-arranged forum or meeting time that is set aside for chat sessions or live call-in sessions so that at a scheduled time answers to questions may be provided. Because of the time immediacy and the on-demand or asynchronous nature of on-line training where a student may log on and take instruction at any time and at any location, it is important that answers to questions be provided in a timely and cost-effective manner so that the user or student can derive the maximum benefit from the material presented. This invention addresses the above issues. It provides the user or student with answers to questions that are normally channeled to a live teacher or mentor. This invention provides a single-best answer to questions asked by the student. The student asks the question in his or her own voice in the language of choice. The speech is recognized and the answer to the question is found using a number of technologies including distributed speech recognition, full-text search database processing, natural language processing and text-to-speech technologies. The answer is presented to the user, as in the case of a live teacher, in an articulated manner by an agent that mimics the mentor or teacher, and in the language of choice—English, French, German, Japanese or other natural spoken language. The user can choose the agent's gender as well as several speech parameters such as pitch, volume and speed of the character's voice. Other applications that benefit from NLQS are e-commerce applications. In this application, the user's query for a price of a book, compact disk or for the availability of any item that is to be purchased can be retrieved without the need to pick through various lists on successive web pages. Instead, the answer is provided directly to the user without any additional user input. Similarly, it is envisioned that this system can be used to provide answers to frequently-asked questions (FAQs), and as a diagnostic service tool for e-support. These questions are typical of a give web site and are provided to help the user find information related to a payment procedure or the specifications of, or problems experienced with a product/service. In all of these applications, the NLQS architecture can be applied. A number of inventive methods associated with these architectures are also beneficially used in a variety of INTERNET related applications. Although the inventions are described below in a set of preferred embodiments, it will be apparent to those skilled in the art the present inventions could be beneficially used in many environments where it is necessary to implement fast, accurate speech recognition, and/or to provide a human-like dialog capability to an intelligent system. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a preferred embodiment of a natural language query system (NLQS) of the present invention, which is distributed across a client/server computing architecture, and can be used as an interactive learning system, an e-commerce system, an e-support system, and the like; FIGS. 2A-2C are a block diagram of a preferred embodiment of a client side system, including speech capturing modules, partial speech processing modules, encoding modules, transmission modules, agent control modules, and answer/voice feedback modules that can be used in the aforementioned NLQS; FIG. 2D is a block diagram of a preferred embodiment of a set of initialization routines and procedures used for the client side system of FIG. 2A-2C; FIG. 3 is a block diagram of a preferred embodiment of a set of routines and procedures used for handling an iterated set of speech utterances on the client side system of FIG. 2A-2C, transmitting speech data for such utterances to a remote server, and receiving appropriate responses back from such server; FIG. 4 is a block diagram of a preferred embodiment of a set of initialization routines and procedures used for un-initializing the client side system of FIGS. 2A-2C; FIG. 4A is a block diagram of a preferred embodiment of a set of routines and procedures used for implementing a distributed component of a speech recognition module for the server side system of FIG. 5; FIG. 4B is a block diagram of a preferred set of routines and procedures used for implementing an SQL query builder for the server side system of FIG. 5; FIG. 4C is a block diagram of a preferred embodiment of a set of routines and procedures used for implementing a database control process module for the server side system of FIG. 5; FIG. 4D is a block diagram of a preferred embodiment of a set of routines and procedures used for implementing a natural language engine that provides query formulation support, a query response module, and an interface to the database control process module for the server side system of FIG. 5; FIG. 5 is a block diagram of a preferred embodiment of a server side system, including a speech recognition module to complete processing of the speech utterances, environmental and grammar control modules, query formulation modules, a natural language engine, a database control module, and a query response module that can be used in the aforementioned NLQS; FIG. 6 illustrates the organization of a full-text database used as part of server side system shown in FIG. 5; FIG. 7A illustrates the organization of a full-text database course table used as part of server side system shown in FIG. 5 for an interactive learning embodiment of the present invention; FIG. 7B illustrates the organization of a full-text database chapter table used as part of server side system shown in FIG. 5 for an interactive learning embodiment of the present invention; FIG. 7C describes the fields used in a chapter table used as part of server side system shown in FIG. 5 for an interactive learning embodiment of the present invention; FIG. 7D describes the fields used in a section table used as part of server side system shown in FIG. 5 for an interactive learning embodiment of the present invention; FIG. 8 is a flow diagram of a first set of operations performed by a preferred embodiment of a natural language engine on a speech utterance including Tokenization, Tagging and Grouping; FIG. 9 is a flow diagram of the operations performed by a preferred embodiment of a natural language engine on a speech utterance including stemming and Lexical Analysis FIG. 10 is a block diagram of a preferred embodiment of a SQL database search and support system for the present invention; FIGS. 11A-11C are flow diagrams illustrating steps performed in a preferred two step process implemented for query recognition by the NLQS of FIG. 2; FIG. 12 is an illustration of another embodiment of the present invention implemented as part of a Web-based speech based learning/training System; FIGS. 13-17 are illustrations of another embodiment of the present invention implemented as part of a Web-based e-commerce system; FIG. 18 is an illustration of another embodiment of the present invention implemented as part of a voice-based Help Page for an E-Commerce Web Site. DETAILED DESCRIPTION OF THE INVENTION Overview As alluded to above, the present inventions allow a user to ask a question in a natural language such as English, French, German, Spanish or Japanese at a client computing system (which can be as simple as a personal digital assistant or cell-phone, or as sophisticated as a high end desktop PC) and receive an appropriate answer from a remote server also in his or her native natural language. As such, the embodiment of the invention shown in FIG. 1 is beneficially used in what can be generally described as a Natural Language Query System (NLQS) 100, which is configured to interact on a real-time basis to give a human-like dialog capability/experience for e-commerce, e-support, and e-learning applications. The processing for NLQS 100 is generally distributed across a client side system 150, a data link 160, and a server-side system 180. These components are well known in the art, and in a preferred embodiment include a personal computer system 150, an INTERNET connection 160A, 160B, and a larger scale computing system 180. It will be understood by those skilled in the art that these are merely exemplary components, and that the present invention is by no means limited to any particular implementation or combination of such systems. For example, client-side system 150 could also be implemented as a computer peripheral, a PDA, as part of a cell-phone, as part of an INTERNET-adapted appliance, an INTERNET linked kiosk, etc. Similarly, while an INTERNET connection is depicted for data link 160A, it is apparent that any channel that is suitable for carrying data between client system 150 and server system 180 will suffice, including a wireless link, an RF link, an IR link, a LAN, and the like. Finally, it will be further appreciated that server system 180 may be a single, large-scale system, or a collection of smaller systems interlinked to support a number of potential network users. Initially speech input is provided in the form of a question or query articulated by the speaker at the client's machine or personal accessory as a speech utterance. This speech utterance is captured and partially processed by NLQS client-side software 155 resident in the client's machine. To facilitate and enhance the human-like aspects of the interaction, the question is presented in the presence of an animated character 157 visible to the user who assists the user as a personal information retriever/agent. The agent can also interact with the user using both visible text output on a monitor/display (not shown) and/or in audible form using a text to speech engine 159. The output of the partial processing done by SRE 155 is a set of speech vectors that are transmitted over communication channel 160 that links the user's machine or personal accessory to a server or servers via the INTERNET or a wireless gateway that is linked to the INTERNET as explained above. At server 180, the partially processed speech signal data is handled by a server-side SRE 182, which then outputs recognized speech text corresponding to the user's question. Based on this user question related text, a text-to-query converter 184 formulates a suitable query that is used as input to a database processor 186. Based on the query, database processor 186 then locates and retrieves an appropriate answer using a customized SQL query from database 188. A Natural Language Engine 190 facilitates structuring the query to database 188. After a matching answer to the user's question is found, the former is transmitted in text form across data link 160B, where it is converted into speech by text to speech engine 159, and thus expressed as oral feedback by animated character agent 157. Because the speech processing is broken up in this fashion, it is possible to achieve real-time, interactive, human-like dialog consisting of a large, controllable set of questions/answers. The assistance of the animated agent 157 further enhances the experience, making it more natural and comfortable for even novice users. To make the speech recognition process more reliable, context-specific grammars and dictionaries are used, as well as natural language processing routines at NLE 190, to analyze user questions lexically. While context-specific processing of speech data is known in the art (see e.g., U.S. Pat. Nos. 5,960,394, 5,867,817, 5,758,322 and 5,384,892 incorporated by reference herein) the present inventors are unaware of any such implementation as embodied in the present inventions. The text of the user's question is compared against text of other questions to identify the question posed by the user by DB processor/engine (DBE) 186. By optimizing the interaction and relationship of the SR engines 155 and 182, the NLP routines 190, and the dictionaries and grammars, an extremely fast and accurate match can be made, so that a unique and responsive answer can be provided to the user. On the server side 180, interleaved processing further accelerates the speech recognition process. In simplified terms, the query is presented simultaneously both to NLE 190 after the query is formulated, as well as to DBE 186. NLE 190 and SRE 182 perform complementary functions in the overall recognition process. In general, SRE 182 is primarily responsible for determining the identity of the words articulated by the user, while NLE 190 is responsible for the linguistic morphological analysis of both the user's query and the search results returned after the database query. After the user's query is analyzed by NLE 190 some parameters are extracted and sent to the DBProcess. Additional statistics are stored in an array for the 2nd step of processing. During the 2nd step of 2-step algorithm, the recordset of preliminary search results are sent to the NLE 160 for processing. At the end of this 2nd step, the single question that matches the user's query is sent to the DBProcess where further processing yields the paired answer that is paired with the single best stored question. Thus, the present invention uses a form of natural language processing (NLP) to achieve optimal performance in a speech based web application system. While NLP is known in the art, prior efforts in Natural Language Processing (NLP) work nonetheless have not been well integrated with Speech Recognition (SR) technologies to achieve reasonable results in a web-based application environment. In speech recognition, the result is typically a lattice of possible recognized words each with some probability of fit with the speech recognizer. As described before, the input to a typical NLP system is typically a large linguistic unit. The NLP system is then charged with the parsing, understanding and indexing of this large linguistic unit or set of transcribed utterances. The result of this NLP process is to understand lexically or morphologically the entire linguistic unit as opposed to word recognition. Put another way, the linguistic unit or sentence of connected words output by the SRE has to be understood lexically, as opposed to just being “recognized”. As indicated earlier, although speech recognition technology has been available for several years, the technical requirements for the NLQS invention have placed severe restrictions on the specifications for the speech recognition accuracy that is required for an application that combines speech recognition and natural language processing to work satisfactorily. In realizing that even with the best of conditions, it might be not be possible to achieve the perfect 100% speech recognition accuracy that is required, the present invention employs an algorithm that balances the potential risk of the speech recognition process with the requirements of the natural language processing so that even in cases where perfect speech recognition accuracy is not achieved for each word in the query, the entire query itself is nonetheless recognized with sufficient accuracy. This recognition accuracy is achieved even while meeting very stringent user constraints, such as short latency periods of 3 to 5 seconds (ideally—ignoring transmission latencies which can vary) for responding to a speech-based query, and for a potential set of 100-250 query questions. This quick response time gives the overall appearance and experience of a real-time discourse that is more natural and pleasant from the user's perspective. Of course, non-real time applications, such as translation services for example, can also benefit from the present teachings as well, since a centralized set of HMMs, grammars, dictionaries, etc., are maintained. General Aspects of Speech Recognition Used in the Present Inventions General background information on speech recognition can be found in the prior art references discussed above and incorporated by reference herein. Nonetheless, a discussion of some particular exemplary forms of speech recognition structures and techniques that are well-suited for NLQS 100 is provided next to better illustrate some of the characteristics, qualities and features of the present inventions. Speech recognition technology is typically of two types—speaker independent and speaker dependent. In speaker-dependent speech recognition technology, each user has a voice file in which a sample of each potentially recognized word is stored. Speaker-dependent speech recognition systems typically have large vocabularies and dictionaries making them suitable for applications as dictation and text transcribing. It follows also that the memory and processor resource requirements for the speaker-dependent can be and are typically large and intensive. Conversely speaker-independent speech recognition technology allows a large group of users to use a single vocabulary file. It follows then that the degree of accuracy that can be achieved is a function of the size and complexity of the grammars and dictionaries that can be supported for a given language. Given the context of applications for which NLQS, the use of small grammars and dictionaries allow speaker independent speech recognition technology to be implemented in NLQS. The key issues or requirements for either type—speaker-independent or speaker-dependent, are accuracy and speed. As the size of the user dictionaries increase, the speech recognition accuracy metric—word error rate (WER) and the speed of recognition decreases. This is so because the search time increases and the pronunciation match becomes more complex as the size of the dictionary increases. The basis of the NLQS speech recognition system is a series of Hidden Markov Models (HMM), which, as alluded to earlier, are mathematical models used to characterize any time varying signal. Because parts of speech are considered to be based on an underlying sequence of one or more symbols, the HMM models corresponding to each symbol are trained on vectors from the speech waveforms. The Hidden Markov Model is a finite set of states, each of which is associated with a (generally multi-dimensional) probability distribution. Transitions among the states are governed by a set of probabilities called transition probabilities. In a particular state an outcome or observation can be generated, according to an associated probability distribution. This finite state machine changes state once every time unit, and each time t such that a state j is entered, a spectral parameter vector Ot is generated with probability density Bj(Ot). It is only the outcome, not the state which is visible to an external observer and therefore states are “hidden” to the outside; hence the name Hidden Markov Model. In isolated speech recognition, it is assumed that the sequence of observed speech vectors corresponding to each word can each be described by a Markov model as follows: O=o1, o2, . . . oT (1-1) where ot is a speech vector observed at time t. The isolated word recognition then is to compute: arg max{P(wi|O)} (1-2) By using Bayes' Rule, {P(wi|O)}=[P(O|wi)P(wi)]/P(O) (1-3) In the general case, the Markov model when applied to speech also assumes a finite state machine which changes state once every time unit and each time that a state j is entered, a speech vector ot is generated from the probability density bj (ot). Furthermore, the transition from state i to state j is also probabilistic and is governed by the discrete probability aij. For a state sequence X, the joint probability that O is generated by the model M moving through a state sequence X is the product of the transition probabilities and the output probabilities. Only the observation sequence is known—the state sequence is hidden as mentioned before. Given that X is unknown, the required likelihood is computed by summing over all possible state sequences X=x(1), x(2), x(3), . . . x(T), that is P(O|M)=Σ{ax(0) x(1)πb(x)(ot)ax(t) x(t+1)} Given a set of models Mi, corresponding to words wi equation 1-2 is solved by using 1-3 and also by assuming that: P(O|wi)=P(O|Mi) All of this assumes that the parameters {aij} and {bj(ot)} are known for each model Mi. This can be done, as explained earlier, by using a set of training examples corresponding to a particular model. Thereafter, the parameters of that model can be determined automatically by a robust and efficient re-estimation procedure. So if a sufficient number of representative examples of each word are collected, then a HMM can be constructed which simply models all of the many sources of variability inherent in real speech. This training is well-known in the art, so it is not described at length herein, except to note that the distributed architecture of the present invention enhances the quality of HMMs, since they are derived and constituted at the server side, rather than the client side. In this way, appropriate samples from users of different geographical areas can be easily compiled and analyzed to optimize the possible variations expected to be seen across a particular language to be recognized. Uniformity of the speech recognition process is also well-maintained, and error diagnostics are simplified, since each prospective user is using the same set of HMMs during the recognition process. To determine the parameters of a HMM from a set of training samples, the first step typically is to make a rough guess as to what they might be. Then a refinement is done using the Baum-Welch estimation formulae. By these formulae, the maximum likelihood estimates of μj (where μj is mean vector and Σj is covariance matrix) is: μj=ΣTt=1Lj(t)ot/[ΣTt=1Lj(t)ot] A forward-backward algorithm is next used to calculate the probability of state occupation Lj(t). If the forward probability αj(t) for some model M with N states is defined as: αj(t)=P(o1, . . . , ot, x(t)=j|M) This probability can be calculated using the recursion: αj(t)=[ΣN−1i=2α(t−1)aij]bj(ot) Similarly the backward probability can be computed using the recursion: βj(t)=ΣN−1j=2aijbj(ot+1)(t+1) Realizing that the forward probability is a joint probability and the backward probability is a conditional probability, the probability of state occupation is the product of the two probabilities: αj(t)βj(t)=P(O, x(t)=j|M) Hence the probability of being in state j at a time t is: Lj(t)=1/P[αj(t)βj(t)] where P=P(O|M) To generalize the above for continuous speech recognition, we assume the maximum likelihood state sequence where the summation is replaced by a maximum operation. Thus for a given model M, let φj(t) represent the maximum likelihood of observing speech vectors o1 to ot and being used in state j at time t: φj(t)=max{φj(t)(t−1)αij}βj(o/t) Expressing this logarithmically to avoid underflow, this likelihood becomes: ψj(t)=max {ψl(t−1)+log(αij)}+log(bj(ot) This is also known as the Viterbi algorithm. It can be visualized as finding the best path through a matrix where the vertical dimension represents the states of the HMM and horizontal dimension represents frames of speech i.e. time. To complete the extension to connected speech recognition, it is further assumed that each HMM representing the underlying sequence is connected. Thus the training data for continuous speech recognition should consist of connected utterances; however, the boundaries between words do not have to be known. To improve computational speed/efficiency, the Viterbi algorithm is sometimes extended to achieve convergence by using what is known as a Token Passing Model. The token passing model represents a partial match between the observation sequence o1 to ot and a particular model, subject to the constraint that the model is in state j at time t. This token passing model can be extended easily to connected speech environments as well if we allow the sequence of HMMs to be defined as a finite state network. A composite network that includes both phoneme-based HMMs and complete words can be constructed so that a single-best word can be recognized to form connected speech using word N-best extraction from the lattice of possibilities. This composite form of HMM-based connected speech recognizer is the basis of the NLQS speech recognizer module. Nonetheless, the present invention is not limited as such to such specific forms of speech recognizers, and can employ other techniques for speech recognition if they are otherwise compatible with the present architecture and meet necessary performance criteria for accuracy and speed to provide a real-time dialog experience for users. The representation of speech for the present invention's HMM-based speech recognition system assumes that speech is essentially either a quasi-periodic pulse train (for voiced speech sounds) or a random noise source (for unvoiced sounds). It may be modeled as two sources—one a impulse train generator with pitch period P and a random noise generator which is controlled by a voice/unvoiced switch. The output of the switch is then fed into a gain function estimated from the speech signal and scaled to feed a digital filter H(z) controlled by the vocal tract parameter characteristics of the speech being produced. All of the parameters for this model—the voiced/unvoiced switching, the pitch period for voiced sounds, the gain parameter for the speech signal and the coefficient of the digital filter, vary slowly with time. In extracting the acoustic parameters from the user's speech input so that it can evaluated in light of a set of HMMs, cepstral analysis is typically used to separate the vocal tract information from the excitation information. The cepstrum of a signal is computed by taking the Fourier (or similar) transform of the log spectrum. The principal advantage of extracting cepstral coefficients is that they are de-correlated and the diagonal covariances can be used with HMMs. Since the human ear resolves frequencies non-linearly across the audio spectrum, it has been shown that a front-end that operates in a similar non-linear way improves speech recognition performance. Accordingly, instead of a typical linear prediction-based analysis, the front-end of the NLQS speech recognition engine implements a simple, fast Fourier transform based filter bank designed to give approximately equal resolution on the Mel-scale. To implement this filter bank, a window of speech data (for a particular time frame) is transformed using a software based Fourier transform and the magnitude taken. Each FFT magnitude is then multiplied by the corresponding filter gain and the results accumulated. The cepstral coefficients that are derived from this filter-bank analysis at the front end are calculated during a first partial processing phase of the speech signal by using a Discrete Cosine Transform of the log filter bank amplitudes. These cepstral coefficients are called Mel-Frequency Cepstral Coefficients (MFCC) and they represent some of the speech parameters transferred from the client side to characterize the acoustic features of the user's speech signal. These parameters are chosen for a number of reasons, including the fact that they can be quickly and consistently derived even across systems of disparate capabilities (i.e., for everything from a low power PDA to a high powered desktop system), they give good discrimination, they lend themselves to a number of useful recognition related manipulations, and they are relatively small and compact in size so that they can be transported rapidly across even a relatively narrow band link. Thus, these parameters represent the least amount of information that can be used by a subsequent server side system to adequately and quickly complete the recognition process. To augment the speech parameters an energy term in the form of the logarithm of the signal energy is added. Accordingly, RMS energy is added to the 12 MFCC's to make 13 coefficients. These coefficients together make up the partially processed speech data transmitted in compressed form from the user's client system to the remote server side. The performance of the present speech recognition system is enhanced significantly by computing and adding time derivatives to the basic static MFCC parameters at the server side. These two other sets of coefficients—the delta and acceleration coefficients representing change in each of the 13 values from frame to frame (actually measured across several frames), are computed during a second partial speech signal processing phase to complete the initial processing of the speech signal, and are added to the original set of coefficients after the latter are received. These MFCCs together with the delta and acceleration coefficients constitute the observation vector Ot mentioned above that is used for determining the appropriate HMM for the speech data. The delta and acceleration coefficients are computed using the following regression formula: dt=Σθθ=1[ct+θ−ct−θ]/2Σθθ=1θ2 where dt is a delta coefficient at time t computed in terms of the corresponding static coefficients: dt=[ct+θ−ct−θ]/2θ In a typical stand-alone implementation of a speech recognition system, the entire SR engine runs on a single client. In other words, both the first and second partial processing phases above are executed by the same DSP (or microprocessor) running a ROM or software code routine at the client's computing machine. In contrast, because of several considerations, specifically—cost, technical performance, and client hardware uniformity, the present NLQS system uses a partitioned or distributed approach. While some processing occurs on the client side, the main speech recognition engine runs on a centrally located server or number of servers. More specifically, as noted earlier, capture of the speech signals, MFCC vector extraction and compression are implemented on the client's machine during a first partial processing phase. The routine is thus streamlined and simple enough to be implemented within a browser program (as a plug in module, or a downloadable applet for example) for maximum ease of use and utility. Accordingly, even very “thin” client platforms can be supported, which enables the use of the present system across a greater number of potential sites. The primary MFCCs are then transmitted to the server over the channel, which, for example, can include a dial-up INTERNET connection, a LAN connection, a wireless connection and the like. After decompression, the delta and acceleration coefficients are computed at the server to complete the initial speech processing phase, and the resulting observation vectors Ot are also determined. General Aspects of Speech Recognition Engine The speech recognition engine is also located on the server, and is based on a HTK-based recognition network compiled from a word-level network, a dictionary and a set of HMMs. The recognition network consists of a set of nodes connected by arcs. Each node is either a HMM model instance or a word end. Each model node is itself a network consisting of states connected by arcs. Thus when fully compiled, a speech recognition network consists of HMM states connected by transitions. For an unknown input utterance with T frames, every path from the start node to the exit node of the network passes through T HMM states. Each of these paths has log probability which is computed by summing the log probability of each individual transition in the path and the log probability of each emitting state generating the corresponding observation. The function of the Viterbi decoder is find those paths through the network which have the highest log probability. This is found using the Token Passing algorithm. In a network that has many nodes, the computation time is reduced by only allowing propagation of those tokens which will have some chance of becoming winners. This process is called pruning. Natural Language Processor In a typical natural language interface to a database, the user enters a question in his/her natural language, for example, English. The system parses it and translates it to a query language expression. The system then uses the query language expression to process the query and if the search is successful, a recordset representing the results is displayed in English either formatted as raw text or in a graphical form. For a natural language interface to work well involves a number of technical requirements. For example, it needs to be robust—in the sentence ‘What's the departments turnover’ it needs to decide that the word whats=what's=what is. And it also has to determine that departments=department's. In addition to being robust, the natural language interface has to distinguish between the several possible forms of ambiguity that may exist in the natural language—lexical, structural, reference and ellipsis ambiguity. All of these requirements, in addition to the general ability to perform basic linguistic morphological operations of tokenization, tagging and grouping, are implemented within the present invention. Tokenization is implemented by a text analyzer which treats the text as a series of tokens or useful meaningful units that are larger than individual characters, but smaller than phrases and sentences. These include words, separable parts of words, and punctuation. Each token is associated with an offset and a length. The first phase of tokenization is the process of segmentation which extracts the individual tokens from the input text and keeps track of the offset where each token originated in the input text. The tokenizer output lists the offset and category for each token. In the next phase of the text analysis, the tagger uses a built-in morphological analyzer to look up each word/token in a phrase or sentence and internally lists all parts of speech. The output is the input string with each token tagged with a parts of speech notation. Finally the grouper which functions as a phrase extractor or phrase analyzer, determines which groups of words form phrases. These three operations which are the foundations for any modern linguistic processing schemes, are fully implemented in optimized algorithms for determining the single-best possible answer to the user's question. SQL Database and Full-Text Query Another key component of present system is a SQL-database. This database is used to store text, specifically the answer-question pairs are stored in full-text tables of the database. Additionally, the full-text search capability of the database allows full-text searches to be carried out. While a large portion of all digitally stored information is in the form of unstructured data, primarily text, it is now possible to store this textual data in traditional database systems in character-based columns such as varchar and text. In order to effectively retrieve textual data from the database, techniques have to be implemented to issue queries against textual data and to retrieve the answers in a meaningful way where it provides the answers as in the case of the NLQS system. There are two major types of textual searches: Property—This search technology first applies filters to documents in order to extract properties such as author, subject, type, word count, printed page count, and time last written, and then issues searches against those properties; Full-text—this search technology first creates indexes of all non-noise words in the documents, and then uses these indexes to support linguistic searches and proximity searches. Two additional technologies are also implemented in this particular RDBMs: SQL Server also have been integrated: A Search service—a full-text indexing and search service that is called both index engine and search, and a parser that accepts full-text SQL extensions and maps them into a form that can be processed by the search engine. The four major aspects involved in implementing full-text retrieval of plain-text data from a full-text-capable database are: Managing the definition of the tables and columns that are registered for full-text searches; Indexing the data in registered columns—the indexing process scans the character streams, determines the word boundaries (this is called word breaking), removes all noise words (this also is called stop words), and then populates a full-text index with the remaining words; Issuing queries against registered columns for populated full-text indexes; Ensuring that subsequent changes to the data in registered columns gets propagated to the index engine to keep the full-text indexes synchronized. The underlying design principle for the indexing, querying, and synchronizing processes is the presence of a full-text unique key column (or single-column primary key) on all tables registered for full-text searches. The full-text index contains an entry for the non-noise words in each row together with the value of the key column for each row. When processing a full-text search, the search engine returns to the database the key values of the rows that match the search criteria. The full-text administration process starts by designating a table and its columns of interest for full-text search. Customized NLQS stored procedures are used first to register tables and columns as eligible for full-text search. After that, a separate request by means of a stored procedure is issued to populate the full-text indexes. The result is that the underlying index engine gets invoked and asynchronous index population begins. Full-text indexing tracks which significant words are used and where they are located. For example, a full-text index might indicate that the word “NLQS” is found at word number 423 and word number 982 in the Abstract column of the DevTools table for the row associated with a ProductID of 6. This index structure supports an efficient search for all items containing indexed words as well as advanced search operations, such as phrase searches and proximity searches. (An example of a phrase search is looking for “white elephant,” where “white” is followed by “elephant”. An example of a proximity search is looking for “big” and “house” where “big” occurs near “house”.) To prevent the full-text index from becoming bloated, noise words such as “a,” “and,” and “the” are ignored. Extensions to the Transact-SQL language are used to construct full-text queries. The two key predicates that are used in the NLQS are CONTAINS and FREETEXT. The CONTAINS predicate is used to determine whether or not values in full-text registered columns contain certain words and phrases. Specifically, this predicate is used to search for: A word or phrase. The prefix of a word or phrase. A word or phrase that is near another. A word that is an inflectional form of another (for example, “drive” is the inflectional stem of “drives,” “drove,” “driving,” and “driven”). A set of words or phrases, each of which is assigned a different weighting. The relational engine within SQL Server recognizes the CONTAINS and FREETEXT predicates and performs some minimal syntax and semantic checking, such as ensuring that the column referenced in the predicate has been registered for full-text searches. During query execution, a full-text predicate and other relevant information are passed to the full-text search component. After further syntax and semantic validation, the search engine is invoked and returns the set of unique key values identifying those rows in the table that satisfy the full-text search condition. In addition to the FREETEXT and CONTAINS, other predicates such as AND, LIKE, NEAR are combined to create the customized NLQS SQL construct. Full-Text Query Architecture of the SQL Database The full-text query architecture is comprised of the following several components—Full-Text Query component, the SQL Server Relational Engine, the Full-Text provider and the Search Engine. The Full-Text Query component of the SQL database accept a full-text predicate or rowset-valued function from the SQL Server; transform parts of the predicate into an internal format, and sends it to Search Service, which returns the matches in a rowset. The rowset is then sent back to SQL Server. SQL Server uses this information to create the resultset that is then returned to the submitter of the query. The SQL Server Relational Engine accepts the CONTAINS and FREETEXT predicates as well as the CONTAINSTABLE( ) and FREETEXTTABLE( ) rowset-valued functions. During parse time, this code checks for conditions such as attempting to query a column that has not been registered for full-text search. If valid, then at run time, the ft_search_condition and context information is sent to the full-text provider. Eventually, the full-text provider returns a rowset to SQL Server, which is used in any joins (specified or implied) in the original query. The Full-Text Provider parses and validates the ft_search_condition, constructs the appropriate internal representation of the full-text search condition, and then passes it to the search engine. The result is returned to the relational engine by means of a rowset of rows that satisfy ft_search_condition. Client Side System 150 The architecture of client-side system 150 of Natural Language Query System 100 is illustrated in greater detail in FIGS. 2A-2C. Referring to FIG. 2A, the three main processes effectuated by Client System 150 are illustrated as follows: Initialization process 200A consisting of SRE 201, Communication 202 and Microsoft (MS) Agent 203 routines; at FIG. 2B an iterative process 200B consisting of two sub-routines: a) Receive User Speech 208—made up of SRE 204 and Communication 205; and b) Receive Answer from Server 207—made up of MS Speak Agent 206, Communication 209, Voice data file 210 and Text to Speech Engine 211. Finally, in FIG. 2C un-initialization process 200C is made up of three sub-routines: SRE 212, Communication 213, and MS Agent 214. Each of the above three processes are described in detail in the following paragraphs. It will be appreciated by those skilled in the art that the particular implementation for such processes and routines will vary from client platform to platform, so that in some environments such processes may be embodied in hard-coded routines executed by a dedicated DSP, while in others they may be embodied as software routines executed by a shared host processor, and in still others a combination of the two may be used. Initialization at Client System 150 The initialization of the Client System 150 is illustrated in FIG. 2D and is comprised generally of 3 separate initializing processes: client-side Speech Recognition Engine 220A, MS Agent 220B and Communication processes 220C. Initialization of Speech Recognition Engine 220A Speech Recognition Engine 155 is initialized and configured using the routines shown in 220A. First, an SRE COM Library is initialized. Next, memory 220 is allocated to hold Source and Coder objects, are created by a routine 221. Loading of configuration file 221A from configuration data file 221B also takes place at the same time that the SRE Library is initialized. In configuration file 221B, the type of the input of Coder and the type of the output of the Coder are declared. The structure, operation, etc. of such routines are well-known in the art, and they can be implemented using a number of fairly straightforward approaches. Accordingly, they are not discussed in detail herein. Next, Speech and Silence components of an utterance are calibrated using a routine 222, in a procedure that is also well-known in the art. To calibrate the speech and silence components, the user preferably articulates a sentence that is displayed in a text box on the screen. The SRE library then estimates the noise and other parameters required to find silence and speech elements of future user utterances. Initialization of MS Agent 220B The software code used to initialize and set up a MS Agent 220B is also illustrated in FIG. 2D. The MS Agent 220B routine is responsible for coordinating and handling the actions of the animated agent 157 (FIG. 1). This initialization thus consists of the following steps: 1. Initialize COM library 223. This part of the code initializes the COM library, which is required to use ActiveX Controls, which controls are well-known in the art. 2. Create instance of Agent Server 224—this part of the code creates an instance of Agent ActiveX control. 3. Loading of MS Agent 225—this part of the code loads MS Agent character from a specified file 225A containing general parameter data for the Agent Character, such as the overall appearance, shape, size, etc. 4. Get Character Interface 226—this part of the code gets an appropriate interface for the specified character; for example, characters may have different control/interaction capabilities that can be presented to the user. 5. Add Commands to Agent Character Option 227—this part of the code adds commands to an Agent Properties sheet, which sheet can be accessed by clicking on the icon that appears in the system tray, when the Agent character is loaded e.g., that the character can Speak, how he/she moves, TTS Properties, etc. 6. Show the Agent Character 228—this part of the code displays the Agent character on the screen so it can be seen by the user; 7. AgentNotifySink—to handle events. This part of the code creates AgentNotifySink object 229, registers it at 230 and then gets the Agent Properties interface 231. The property sheet for the Agent character is assigned using routine 232. 8. Do Character Animations 233—This part of the code plays specified character animations to welcome the user to NLQS 100. The above then constitutes the entire sequence required to initialize the MS Agent. As with the SRE routines, the MS Agent routines can be implemented in any suitable and conventional fashion by those skilled in the art based on the present teachings. The particular structure, operation, etc. of such routines is not critical, and thus they are not discussed in detail herein. In a preferred embodiment, the MS Agent is configured to have an appearance and capabilities that are appropriate for the particular application. For instance, in a remote learning application, the agent has the visual form and mannerisms/attitude/gestures of a college professor. Other visual props (blackboard, textbook, etc.) may be used by the agent and presented to the user to bring to mind the experience of being in an actual educational environment. The characteristics of the agent may be configured at the client side 150, and/or as part of code executed by a browser program (not shown) in response to configuration data and commands from a particular web page. For example, a particular website offering medical services may prefer to use a visual image of a doctor. These and many other variations will be apparent to those skilled in the art for enhancing the human-like, real-time dialog experience for users. Initialization of Communication Link 160A The initialization of Communication Link 160A is shown with reference to process 220C FIG. 2D. Referring to FIG. 2D, this initialization consists of the following code components: Open INTERNET Connection 234—this part of the code opens an INTERNET Connection and sets the parameter for the connection. Then Set Callback Status routine 235 sets the callback status so as to inform the user of the status of connection. Finally Start New HTTP INTERNET Session 236 starts a new INTERNET session. The details of Communications Link 160 and the set up process 220C are not critical, and will vary from platform to platform. Again, in some cases, users may use a low-speed dial-up connection, a dedicated high speed switched connection (T1 for example), an always-on xDSL connection, a wireless connection, and the like. Iterative Processing of Queries/Answers As illustrated in FIG. 3, once initialization is complete, an iterative query/answer process is launched when the user presses the Start Button to initiate a query. Referring to FIG. 3, the iterative query/answer process consists of two main sub-processes implemented as routines on the client side system 150: Receive User Speech 240 and Receive User Answer 243. The Receive User Speech 240 routine receives speech from the user (or another audio input source), while the Receive User Answer 243 routine receives an answer to the user's question in the form of text from the server so that it can be converted to speech for the user by text-to-speech engine 159. As used herein, the term “query” is referred to in the broadest sense to refer, to either a question, a command, or some form of input used as a control variable by the system. For example, a query may consist of a question directed to a particular topic, such as “what is a network” in the context of a remote learning application. In an e-commerce application a query might consist of a command to “list all books by Mark Twain” for example. Similarly, while the answer in a remote learning application consists of text that is rendered into audible form by the text to speech engine 159, it could also be returned as another form of multi-media information, such as a graphic image, a sound file, a video file, etc. depending on the requirements of the particular application. Again, given the present teachings concerning the necessary structure, operation, functions, performance, etc., of the client-side Receive User Speech 240 and Receiver User Answer 243 routines, one of ordinary skill in the art could implement such in a variety of ways. Receive User Speech—As illustrated in FIG. 3, the Receive User Speech routine 240 consists of a SRE 241 and a Communication 242 process, both implemented again as routines on the client side system 150 for receiving and partially processing the user's utterance. SRE routine 241 uses a coder 248 which is prepared so that a coder object receives speech data from a source object. Next the Start Source 249 routine is initiated. This part of the code initiates data retrieval using the source Object which will in turn be given to the Coder object. Next, MFCC vectors 250 are extracted from the Speech utterance continuously until silence is detected. As alluded to earlier, this represents the first phase of processing of the input speech signal, and in a preferred embodiment, it is intentionally restricted to merely computing the MFCC vectors for the reasons already expressed above. These vectors include the 12 cepstral coefficients and the RMS energy term, for a total of 13 separate numerical values for the partially processed speech signal. In some environments, nonetheless, it is conceivable that the MFCC delta parameters and MFCC acceleration parameters can also be computed at client side system 150, depending on the computation resources available, the transmission bandwidth in data link 160A available to server side system 180, the speed of a transceiver used for carrying data in the data link, etc. These parameters can be determined automatically by client side system upon initializing SRE 155 (using some type of calibration routine to measure resources), or by direct user control, so that the partitioning of signal processing responsibilities can be optimized on a case-by-case basis. In some applications, too, server side system 180 may lack the appropriate resources or routines for completing the processing of the speech input signal. Therefore, for some applications, the allocation of signal processing responsibilities may be partitioned differently, to the point where in fact both phases of the speech signal processing may take place at client side system 150 so that the speech signal is completely—rather than partially—processed and transmitted for conversion into a query at server side system 180. Again in a preferred embodiment, to ensure reasonable accuracy and real-time performance from a query/response perspective, sufficient resources are made available in a client side system so that 100 frames per second of speech data can be partially processed and transmitted through link 160A. Since the least amount of information that is necessary to complete the speech recognition process (only 13 coefficients) is sent, the system achieves a real-time performance that is believed to be highly optimized, because other latencies (i.e., client-side computational latencies, packet formation latencies, transmission latencies) are minimized. It will be apparent that the principles of the present invention can be extended to other SR applications where some other methodology is used for breaking down the speech input signal by an SRE (i.e., non-MFCC based). The only criteria is that the SR processing be similarly dividable into multiple phases, and with the responsibility for different phases being handled on opposite sides of link 160A depending on overall system performance goals, requirements and the like. This functionality of the present invention can thus be achieved on a system-by-system basis, with an expected and typical amount of optimization being necessary for each particular implementation. Thus, the present invention achieves a response rate performance that is tailored in accordance with the amount of information that is computed, coded and transmitted by the client side system 150. So in applications where real-time performance is most critical, the least possible amount of extracted speech data is transmitted to reduce these latencies, and, in other applications, the amount of extracted speech data that is processed, coded and transmitted can be varied. Communication—transmit communication module 242 is used to implement the transport of data from the client to the server over the data link 160A, which in a preferred embodiment is the INTERNET. As explained above, the data consists of encoded MFCC vectors that will be used at then server-side of the Speech Recognition engine to complete the speech recognition decoding. The sequence of the communication is as follows: OpenHTTPRequest 251—this part of the code first converts MFCC vectors to a stream of bytes, and then processes the bytes so that it is compatible with a protocol known as HTTP. This protocol is well-known in the art, and it is apparent that for other data links another suitable protocol would be used. 1. Encode MFCC Byte Stream 251—this part of the code encodes the MFCC vectors, so that they can be sent to the server via HTTP. 2. Send data 252—this part of the code sends MFCC vectors to the server using the INTERNET connection and the HTTP protocol. Wait for the Server Response 253—this part of the code monitors the data link 160A a response from server side system 180 arrives. In summary, the MFCC parameters are extracted or observed on-the-fly from the input speech signal. They are then encoded to a HTTP byte stream and sent in a streaming fashion to the server before the silence is detected—i.e. sent to server side system 180 before the utterance is complete. This aspect of the invention also facilitates a real-time behavior, since data can be transmitted and processed even while the user is still speaking. Receive Answer from Server 243 is comprised of the following modules as shown in FIG. 3.: MS Agent 244, Text-to-Speech Engine 245 and receive communication modules 246. All three modules interact to receive the answer from server side system 180. As illustrated in FIG. 3, the receive communication process consists of three separate processes implemented as a receive routine on client side system 150: a Receive the Best Answer 258 receives the best answer over data link 160B (the HTTP communication channel). The answer is de-compressed at 259 and then the answer is passed by code 260 to the MS Agent 244, where it is received by code portion 254. A routine 255 then articulates the answer using text-to-speech engine 257. Of course, the text can also be displayed for additional feedback purposes on a monitor used with client side system 150. The text to speech engine uses a natural language voice data file 256 associated with it that is appropriate for the particular language application (i.e., English, French, German, Japanese, etc.). As explained earlier when the answer is something more than text, it can be treated as desired to provide responsive information to the user, such as with a graphics image, a sound, a video clip, etc. Uninitialization The un-initialization routines and processes are illustrated in FIG. 4. Three functional modules are used for un-initializing the primary components of the client side system 150; these include SRE 270, Communications 271 and MS Agent 272 un-initializing routines. To un-initialize SRE 220A, memory that was allocated in the initialization phase is de-allocated by code 273 and objects created during such initialization phase are deleted by code 274. Similarly, as illustrated in FIG. 4, to un-initialize Communications module 220C the INTERNET connection previously established with the server is closed by code portion 275 of the Communication Un-initialization routine 271. Next the INTERNET session created at the time of initialization is also closed by routine 276. For the un-initialization of the MS Agent 220B, as illustrated in FIG. 4, MS Agent Un-initialization routine 272 first releases the Commands Interface 227 using routine 277. This releases the commands added to the property sheet during loading of the agent character by routine 225. Next the Character Interface initialized by routine 226 is released by routine 278 and the Agent is unloaded at 279. The Sink Object Interface is then also released 280 followed by the release of the Property Sheet Interface 281. The Agent Notify Sink 282 then un-registers the Agent and finally the Agent Interface 283 is released which releases all the resources allocated during initialization steps identified in FIG. 2D. It will be appreciated by those skilled in the art that the particular implementation for such un-initialization processes and routines in FIG. 4 will vary from client platform to client platform, as for the other routines discussed above. The structure, operation, etc. of such routines are well-known in the art, and they can be implemented using a number of fairly straightforward approaches without undue effort. Accordingly, they are not discussed in detail herein. Description of Server Side System 180 Introduction A high level flow diagram of the set of preferred processes implemented on server side system 180 of Natural Language Query System 100 is illustrated in FIGS. 11A through FIG. 11C. In a preferred embodiment, this process consists of a two step algorithm for completing the processing of the speech input signal, recognizing the meaning of the user's query, and retrieving an appropriate answer/response for such query. The 1st step as illustrated in FIG. 11A can be considered a high-speed first-cut pruning mechanism, and includes the following operations: after completing processing of the speech input signal, the user's query is recognized at step 1101, so that the text of the query is simultaneously sent to Natural Language Engine 190 (FIG. 1) at step 1107, and to DB Engine 186 (also FIG. 1) at step 1102. By “recognized” in this context it is meant that the user's query is converted into a text string of distinct native language words through the HMM technique discussed earlier. At NLE 190, the text string undergoes morphological linguistic processing at step 1108: the string is tokenized the tags are tagged and the tagged tokens are grouped Next the noun phrases (NP) of the string are stored at 1109, and also copied and transferred for use by DB Engine 186 during a DB Process at step 1110. As illustrated in FIG. 11A, the string corresponding to the user's query which was sent to the DB Engine 186 at 1102, is used together with the NP received from NLE 190 to construct an SQL Query at step 1103. Next, the SQL query is executed at step 1104, and a record set of potential questions corresponding to the user's query are received as a result of a full-text search at 1105, which are then sent back to NLE 190 in the form of an array at step 1106. As can be seen from the above, this first step on the server side processing acts as an efficient and fast pruning mechanism so that the universe of potential “hits” corresponding to the user's actual query is narrowed down very quickly to a manageable set of likely candidates in a very short period of time. Referring to FIG. 11B, in contrast to the first step above, the 2nd step can be considered as the more precise selection portion of the recognition process. It begins with linguistic processing of each of the stored questions in the array returned by the full-text search process as possible candidates representing the user's query. Processing of these stored questions continues in NLE 190 as follows: each question in the array of questions corresponding to the record set returned by the SQL full-text search undergoes morphological linguistic processing at step 1111: in this operation, a text string corresponding to the retrieved candidate question is tokenized, the tags are tagged and the tagged tokens are grouped. Next, noun phrases of the string are computed and stored at step 1112. This process continues iteratively at point 1113, and the sequence of steps at 1118, 1111, 1112, 1113 are repeated so that an NP for each retrieved candidate question is computed and stored. Once an NP is computed for each of the retrieved candidate questions of the array, a comparison is made between each such retrieved candidate question and the user's query based on the magnitude of the NP value at step 1114. This process is also iterative in that steps 1114, 1115, 1116, 1119 are repeated so that the comparison of the NP for each retrieved candidate question with that of the NP of the user's query is completed. When there are no more stored questions in the array to be processed at step 1117, the stored question that has the maximum NP relative to the user's query, is identified at 1117A as the stored question which best matches the user's query. Notably, it can be seen that the second step of the recognition process is much more computationally intensive than the first step above, because several text strings are tokenized, and a comparison is made of several NPs. This would not be practical, nonetheless, if it were not for the fact that the first step has already quickly and efficiently reduced the candidates to be evaluated to a significant degree. Thus, this more computationally intensive aspect of the present invention is extremely valuable, however because it yields extremely high accuracy in the overall query recognition process. In this regard, therefore, this second step of the query recognition helps to ensure the overall accuracy of the system, while the first step helps to maintain a satisfactory speed that provides a real-time feel for the user. As illustrated in FIG. 11C, the last part of the query/response process occurs by providing an appropriate matching answer/response to the user. Thus, an identity of a matching stored question is completed at step 1120. Next a file path corresponding to an answer of the identified matching question is extracted at step 1121. Processing continues so that the answer is extracted from the file path at 1122 and finally the answer is compressed and sent to client side system 150 at step 1123. The discussion above is intended to convey a general overview of the primary components, operations, functions and characteristics of those portions of NLQS system 100 that reside on server side system 180. The discussion that follows describes in more detail the respective sub-systems. Software Modules Used in Server Side System 180 The key software modules used on server-side system 180 of the NLQS system are illustrated in FIG. 5. These include generally the following components: a Communication module 500—identified as CommunicationServer ISAPI 500A (which is executed by SRE Server-side 182—FIG. 1 and is explained in more detail below), and a database process DBProcess module 501 (executed by DB Engine 186—FIG. 1). Natural language engine module 500C (executed by NLE 190—FIG. 1) and an interface 500B between the NLE process module 500C and the DBProcess module 500B. As shown here, CommunicationServerISAPI 500A includes a server-side speech recognition engine and appropriate communication interfaces required between client side system 150 and server side system 180. As further illustrated in FIG. 5, server-side logic of Natural Language Query System 100 also can be characterized as including two dynamic link library components: CommunicationServerISAPI 500 and DBProcess 501. The CommunicationServerIASPI 500 is comprised of 3 sub-modules: Server-side Speech Recognition Engine module 500A; Interface module 500B between Natural Language Engine modules 500C and DBProcess 501; and the Natural Language Engine modules 500C. DB Process 501 is a module whose primary function is to connect to a SQL database and to execute an SQL query that is composed in response to the user's query. In addition, this module interfaces with logic that fetches the correct answer from a file path once this answer is passed to it from the Natural Language Engine module 500C. Speech Recognition Sub-System 182 on Server-Side System 180 The server side speech recognition engine module 500A is a set of distributed components that perform the necessary functions and operations of speech recognition engine 182 (FIG. 1) at server-side 180. These components can be implemented as software routines that are executed by server side 180 in conventional fashion. Referring to FIG. 4A, a more detailed break out of the operation of the speech recognition components 600 at the server-side can be seen as follows: Within a portion 601 of the server side SRE module 500A, the binary MFCC vector byte stream corresponding to the speech signal's acoustic features extracted at client side system 150 and sent over the communication channel 160 is received. The MFCC acoustic vectors are decoded from the encoded HTTP byte stream as follows: Since the MFCC vectors contain embedded NULL characters, they cannot be transferred in this form to server side system 180 as such using HTTP protocol. Thus the MFCC vectors are first encoded at client-side 150 before transmission in such a way that all the speech data is converted into a stream of bytes without embedded NULL characters in the data. At the very end of the byte stream a single NULL character is introduced to indicate the termination of the stream of bytes to be transferred to the server over the INTERNET 160A using HTTP protocol. As explained earlier, to conserve latency time between the client and server, a smaller number of bytes (just the 13 MFCC coefficients) are sent from client side system 150 to server side system 180. This is done automatically for each platform to ensure uniformity, or can be tailored by the particular application environment—i.e., such as where it is determined that it will take less time to compute the delta and acceleration coefficients at the server (26 more calculations), than it would take to encode them at the client, transmit them, and then decode them from the HTTP stream. In general, since server side system 180 is usually better equipped to calculate the MFCC delta and acceleration parameters, this is a preferable choice. Furthermore, there is generally more control over server resources compared to the client's resources, which means that future upgrades, optimizations, etc., can be disseminated and shared by all to make overall system performance more reliable and predictable. So, the present invention can accommodate even the worst-case scenario where the client's machine may be quite thin and may just have enough resources to capture the speech input data and do minimal processing. Dictionary Preparation & Grammar Files Referring to FIG. 4A, within code block 605, various options selected by the user (or gleaned from the user's status within a particular application) are received. For instance, in the case of a preferred remote learning system, Course, Chapter and/or Section data items are communicated. In the case of other applications (such as e-commerce) other data options are communicated, such as the Product Class, Product Category, Product Brand, etc. loaded for viewing within his/her browser. These selected options are based on the context experienced by the user during an interactive process, and thus help to limit and define the scope—i.e. grammars and dictionaries that will be dynamically loaded to speech recognition engine 182 (FIG. 1) for Viterbi decoding during processing of the user speech utterance. For speech recognition to be optimized both grammar and dictionary files are used in a preferred embodiment. A Grammar file supplies the universe of available user queries; i.e., all the possible words that are to be recognized. The Dictionary file provides phonemes (the information of how a word is pronounced—this depends on the specific native language files that are installed—for example, UK English or US English) of each word contained in the grammar file. It is apparent that if all the sentences for a given environment that can be recognized were contained in a single grammar file then recognition accuracy would be deteriorated and the loading time alone for such grammar and dictionary files would impair the speed of the speech recognition process. To avoid these problems, specific grammars are dynamically loaded or actively configured as the current grammar according to the user's context, i.e., as in the case of a remote learning system, the Course, Chapter and/or Section selected. Thus the grammar and dictionary files are loaded dynamically according to the given Course, Chapter and/or Section as dictated by the user, or as determined automatically by an application program executed by the user. The second code block 602 implements the initialization of Speech Recognition engine 182 (FIG. 1). The MFCC vectors received from client side system 150 along with the grammar filename and the dictionary file names are introduced to this block to initialize the speech decoder. As illustrated in FIG. 4A, the initialization process 602 uses the following sub-routines: A routine 602a for loading an SRE library. This then allows the creation of an object identified as External Source with code 602b using the received MFCC vectors. Code 602c allocates memory to hold the recognition objects. Routine 602d then also creates and initializes objects that are required for the recognition such as: Source, Coder, Recognizer and Results Loading of the Dictionary created by code 602e, Hidden Markov Models (HMMs) generated with code 602f; and Loading of the Grammar file generated by routine 602g. Speech Recognition 603 is the next routine invoked as illustrated in FIG. 4A, and is generally responsible for completing the processing of the user speech signals input on the client side 150, which, as mentioned above, are preferably only partially processed (i.e., only MFCC vectors are computed during the first phase) when they are transmitted across link 160. Using the functions created in External Source by subroutine 602b, this code reads MFCC vectors, one at a time from an External Source 603a, and processes them in block 603b to realize the words in the speech pattern that are symbolized by the MFCC vectors captured at the client. During this second phase, an additional 13 delta coefficients and an additional 13 acceleration coefficients are computed as part of the recognition process to obtain a total of 39 observation vectors Ot referred to earlier. Then, using a set of previously defined Hidden Markov Models (HMMs), the words corresponding to the user's speech utterance are determined in the manner described earlier. This completes the word “recognition” aspect of the query processing, which results are used further below to complete the query processing operations. It will be appreciated by those skilled in the art that the distributed nature and rapid performance of the word recognition process, by itself, is extremely useful and may be implemented in connection with other environments that do not implicate or require additional query processing operations. For example, some applications may simply use individual recognized words for filling in data items on a computer generated form, and the aforementioned systems and processes can provide a rapid, reliable mechanism for doing so. Once the user's speech is recognized, the flow of SRE 182 passes to Un-initialize SRE routine 604 where the speech engine is un-initialized as illustrated. In this block all the objects created in the initialization block are deleted by routine 604a, and memory allocated in the initialization block during the initialization phase are removed by routine 604b. Again, it should be emphasized that the above are merely illustrative of embodiments for implementing the particular routines used on a server side speech recognition system of the present invention. Other variations of the same that achieve the desired functionality and objectives of the present invention will be apparent from the present teachings. Database Processor 186 Operation—DBProcess Construction of an SQL Query used as part of the user query processing is illustrated in FIG. 4B, a SELECT SQL statement is preferably constructed using a conventional CONTAINS predicate. Module 950 constructs the SQL query based on this SELECT SQL statement, which query is used for retrieving the best suitable question stored in the database corresponding to the user's articulated query, (designated as Question here). A routine 951 then concatenates a table name with the constructed SELECT statement. Next, the number of words present in each Noun Phrase of Question asked by the user is calculated by routine 952. Then memory is allocated by routine 953 as needed to accommodate all the words present in the NP. Next a word List (identifying all the distinct words present in the NP) is obtained by routine 954. After this, this set of distinct words are concatenated by routine 955 to the SQL Query separated with a NEAR ( ) keyword. Next, the AND keyword is concatenated to the SQL Query by routine 956 after each NP. Finally memory resources are freed by code 957 so as to allocate memory to store the words received from NP for any next iteration. Thus, at the end of this process, a completed SQL Query corresponding to the user's articulated question is generated. Connection to SQL Server—As illustrated in FIG. 4C, after the SQL Query is constructed by routine 710, a routine 711 implements a connection to the query database 717 to continue processing of the user query. The connection sequence and the subsequent retrieved record set is implemented using routines 700 which include the following: 1. Server and database names are assigned by routine 711A to a DBProcess member variable 2. A connection string is established by routine 711B; 3. The SQL Server database is connected under control of code 711C 4. The SQL Query is received by routine 712A 5. The SQL Query is executed by code 712B 6. Extract the total number of records retrieved by the query—713 7. Allocate the memory to store the total number of paired questions—713 8. Store the entire number of paired questions into an array—713 Once the Best Answer ID is received at 716 FIG. 4C, from the NLE 14 (FIG. 5), the code corresponding 716C receives it passes it to code in 716B where the path of the Answer file is determined using the record number. Then the file is opened 716C using the path passed to it and the contents of the file corresponding to the answer is read. Then the answer is compressed by code in 716D and prepared for transmission over the communication channel 160B (FIG. 1). NLQS Database 188—Table Organization FIG. 6 illustrates a preferred embodiment of a logical structure of tables used in a typical NLQS database 188 (FIG. 1). When NLQS database 188 is used as part of NLQS query system 100 implemented as a remote learning/training environment, this database will include an organizational multi-level hierarchy that consists typically of a Course 701, which is made of several chapters 702, 703, 704. Each of these chapters can have one or more Sections 705, 706, 707 as shown for Chapter 1. A similar structure can exist for Chapter 2, Chapter 3 . . . Chapter N. Each section has a set of one or more question—answer pairs 708 stored in tables described in more detail below. While this is an appropriate and preferable arrangement for a training/learning application, it is apparent that other implementations would be possible and perhaps more suitable for other applications such as e-commerce, e-support, INTERNET browsing, etc., depending on overall system parameters. It can be seen that the NLQS database 188 organization is intricately linked to the switched grammar architecture described earlier. In other words, the context (or environment) experienced by the user can be determined at any moment in time based at the selection made at the section level, so that only a limited subset of question-answer pairs 708 for example are appropriate for section 705. This in turn means that only a particular appropriate grammar for such question-answer pairs may be switched in for handling user queries while the user is experiencing such context. In a similar fashion, an e-commerce application for an INTERNET based business may consist of a hierarchy that includes a first level “home” page 701 identifying user selectable options (product types, services, contact information, etc.), a second level may include one or more “product types” pages 702, 703, 704, a third page may include particular product models 705, 706, 707, etc., and with appropriate question-answer pairs 708 and grammars customized for handling queries for such product models. Again, the particular implementation will vary from application to application, depending on the needs and desires of such business, and a typical amount of routine optimization will be necessary for each such application. Table Organization In a preferred embodiment, an independent database is used for each Course. Each database in turn can include three types of tables as follows: a Master Table as illustrated in FIG. 7A, at least one Chapter Table as illustrated in FIG. 7B and at least one Section Table as illustrated in FIG. 7C. As illustrated in FIG. 7A, a preferred embodiment of a Master Table has six columns—Field Name 701A, Data Type 702A, Size 703A, Null 704A, Primary Key 705A and Indexed 706A. These parameters are well-known in the art of database design and structure. The Master Table has only two fields—Chapter Name 707A and Section Name 708A. Both ChapterName and Section Name are commonly indexed. A preferred embodiment of a Chapter Table is illustrated in FIG. 7B. As with the Master Table, the Chapter Table has six (6) columns—Field Name 720, Data Type 721, Size 722, Null 723, Primary Key 724 and Indexed 725. There are nine (9) rows of data however, in this case,—Chapter_ID 726, Answer_ID 727, Section Name 728, Answer_Title 729, PairedQuestion 730, AnswerPath 731, Creator 732, Date of Creation 733 and Date of Modification 734. An explanation of the Chapter Table fields is provided in FIG. 7C. Each of the eight (8) Fields 720 has a description 735 and stores data corresponding to: AnswerID 727—an integer that is automatically incremented for each answer given for user convenience Section_Name 728—the name of the section to which the particular record belongs. This field along with the AnswerID is used as the primary key Answer_Title 729—A short description of the title of the answer to the user query PairedQuestion 730—Contains one or more combinations of questions for the related answers whose path is stored in the next column AnswerPath AnswerPath 731—contains the path of a file, which contains the answer to the related questions stored in the previous column; in the case of a pure question/answer application, this file is a text file, but, as mentioned above, could be a multi-media file of any kind transportable over the data link 160 Creator 732—Name of Content Creator Date_of_Creation 733—Date on which content was created Date of Modification 734—Date on which content was changed or modified A preferred embodiment of a Section Table is illustrated in FIG. 7D. The Section Table has six (6) columns—Field Name 740, Data Type 741, Size 742, Null 743, Primary Key 744 and Indexed 745. There are seven (7) rows of data—Answer_ID 746, Answer_Title 747, PairedQuestion 748, AnswerPath 749, Creator 750, Date of Creation 751 and Date of Modification 752. These names correspond to the same fields, columns already described above for the Master Table and Chapter Table. Again, this is a preferred approach for the specific type of learning/training application described herein. Since the number of potential applications for the present invention is quite large, and each application can be customized, it is expected that other applications (including other learning/training applications) will require and/or be better accommodated by another table, column, and field structure/hierarchy. Search Service and Search Engine—A query text search service is performed by an SQL Search System 1000 shown in FIG. 10. This system provides querying support to process full-text searches. This is where full-text indexes reside. In general, SQL Search System determines which entries in a database index meet selection criteria specified by a particular text query that is constructed in accordance with an articulated user speech utterance. The Index Engine 1011B is the entity that populates the Full-Text Index tables with indexes which correspond to the indexable units of text for the stored questions and corresponding answers. It scans through character strings, determines word boundaries, removes all noise words and then populates the full-text index with the remaining words. For each entry in the full text database that meets the selection criteria, a unique key column value and a ranking value are returned as well. Catalog set 1013 is a file-system directory that is accessible only by an Administrator and Search Service 1010. Full-text indexes 1014 are organized into full-text catalogs, which are referenced by easy to handle names. Typically, full-text index data for an entire database is placed into a single full-text catalog. The schema for the full-text database as described (FIG. 7, FIG. 7A, FIG. 7B, FIG. 7C, FIG. 7D) is stored in the tables 1006 shown in FIG. 10. Take for example, the tables required to describe the structure the stored question/answer pairs required for a particular course. For each table—Course Table, Chapter Table, Section Table, there are fields—column information that define each parameters that make up the logical structure of the table. This information is stored in User and System tables 1006. The key values corresponding to those tables are stored as Full-Text catalogs 1013. So when processing a full-text search, the search engine returns to the SQL Server the key values of the rows that match the search criteria. The relational engine then uses this information to respond to the query. As illustrated in FIG. 10, a Full-Text Query Process is implemented as follows: 1. A query 1001 that uses a SQL full-text construct generated by DB processor 186 is submitted to SQL Relational Engine 1002. 2. Queries containing either a CONTAINS or FREETEXT predicate are rewritten by routine 1003 so that a responsive rowset returned later from Full-Text Provider 1007 will be automatically joined to the table that the predicate is acting upon. This rewrite is a mechanism used to ensure that these predicates are a seamless extension to a traditional SQL Server. After the compiled query is internally rewritten and checked for correctness in item 1003, the query is passed to RUN TIME module 1004. The function of module 1004 is to convert the rewritten SQL construct to a validated run-time process before it is sent to the Full-Text Provider, 1007. 3. After this, Full-Text Provider 1007 is invoked, passing the following information for the query: a. A ft_search_condition parameter (this is a logical flag indicating a full text search condition) b. A name of a full-text catalog where a full-text index of a table resides c. A locale ID to be used for language (for example, word breaking) d. Identities of a database, table, and column to be used in the query e. If the query is comprised of more than one full-text construct; when this is the case Full-text provider 1007 is invoked separately for each construct. 4. SQL Relational Engine 1002 does not examine the contents of ft_search_condition. Instead, this information is passed along to Full-text provider 1007, which verifies the validity of the query and then creates an appropriate internal representation of the full-text search condition. 5. The query request/command 1008 is then passed to Querying Support 1011A. 6. Querying Support 1012 returns a rowset 1009 from Full-Text Catalog 1013 that contains unique key column values for any rows that match the full-text search criteria. A rank value also is returned for each row. 7. The rowset of key column values 1009 is passed to SQL Relational Engine 1002. If processing of the query implicates either a CONTAINSTABLE( ) or FREETEXTTABLE( ) function, RANK values are returned; otherwise, any rank value is filtered out. 8. The rowset values 1009 are plugged into the initial query with values obtained from relational database 1006, and a result set 1015 is then returned for further processing to yield a response to the user. At this stage of the query recognition process, the speech utterance by the user has already been rapidly converted into a carefully crafted text query, and this text query has been initially processed so that an initial matching set of results can be further evaluated for a final determination of the appropriate matching question/answer pair. The underlying principle that makes this possible is the presence of a full-text unique key column for each table that is registered for full-text searches. Thus when processing a full-text search, SQL Search Service 1010 returns to SQL server 1002 the key values of the rows that match the database. In maintaining these full-text databases 1013 and full text indexes 1014, the present invention has the unique characteristic that the full-text indices 1014 are not updated instantly when the full-text registered columns are updated. This operation is eliminated, again, to reduce recognition latency, increase response speed, etc. Thus, as compared to other database architectures, this updating of the full-text index tables, which would otherwise take a significant time, is instead done asynchronously at a more convenient time. Interface between NLE 190 and DB Processor 188 The result set 1015 of candidate questions corresponding to the user query utterance are presented to NLE 190 for further processing as shown in FIG. 4D to determine a “best” matching question/answer pair. An NLE/DBProcessor interface module coordinates the handling of user queries, analysis of noun-phrases (NPs) of retrieved questions sets from the SQL query based on the user query, comparing the retrieved question NPs with the user query NP, etc. between NLE 190 and DB Processor 188. So, this part of the server side code contains functions, which interface processes resident in both NLE block 190 and DB Processor block 188. The functions are illustrated in FIG. 4D; As seen here, code routine 880 implements functions to extract the Noun Phrase (NP) list from the user's question. This part of the code interacts with NLE 190 and gets the list of Noun Phrases in a sentence articulated by the user. Similarly, Routine 813 retrieves an NP list from the list of corresponding candidate/paired questions 1015 and stores these questions into an (ranked by NP value) array. Thus, at this point, NP data has been generated for the user query, as well as for the candidate questions 1015. As an example of determining the noun phrases of a sentence such as: “What issues have guided the President in considering the impact of foreign trade policy on American businesses?” NLE 190 would return the following as noun phrases: President, issues, impact of foreign trade policy, American businesses, impact, impact of foreign trade, foreign trade, foreign trade policy, trade, trade policy, policy, businesses. The methodology used by NLE 190 will thus be apparent to those skilled in the art from this set of noun phrases and noun sub-phrases generated in response to the example query. Next, a function identified as Get Best Answer ID 815 is implemented. This part of the code gets a best answer ID corresponding to the user's query. To do this, routines 813A, 813B first find out the number of Noun phrases for each entry in the retrieved set 1015 that match with the Noun phrases in the user's query. Then routine 815a selects a final result record from the candidate retrieved set 1015 that contains the maximum number of matching Noun phrases. Conventionally, nouns are commonly thought of as “naming” words, and specifically as the names of “people, places, or things”. Nouns such as John, London, and computer certainly fit this description, but the types of words classified by the present invention as nouns is much broader than this. Nouns can also denote abstract and intangible concepts such as birth, happiness, evolution, technology, management, imagination, revenge, politics, hope, cookery, sport, and literacy. Because of the enormous diversity of nouns compared to other parts of speech, the Applicant has found that it is much more relevant to consider the noun phrase as a key linguistic metric. So, the great variety of items classified as nouns by the present invention helps to discriminate and identify individual speech utterances much easier and faster than prior techniques disclosed in the art. Following this same thought, the present invention also adopts and implements another linguistic entity—the word phrase—to facilitate speech query recognition. The basic structure of a word phrase—whether it be a noun phrase, verb phrase, adjective phrase—is three parts—[pre-Head string], [Head] and [post-Head string]. For example, in the minimal noun phrase—“the children,” “children” is classified as the Head of the noun phrase. In summary, because of the diversity and frequency of noun phrases, the choice of noun phrase as the metric by which stored answer is linguistically chosen, has a solid justification in applying this technique to the English natural language as well as other natural languages. So, in sum, the total noun phrases in a speech utterance taken together operate extremely well as unique type of speech query fingerprint. The ID corresponding to the best answer corresponding to the selected final result record question is then generated by routine 815 which then returns it to DB Process shown in FIG. 4C. As seen there, a Best Answer ID I is received by routine 716A, and used by a routine 716B to retrieve an answer file path. Routine 716C then opens and reads the answer file, and communicates the substance of the same to routine 716D. The latter then compresses the answer file data, and sends it over data link 160 to client side system 150 for processing as noted earlier (i.e., to be rendered into audible feedback, visual text/graphics, etc.). Again, in the context of a learning/instructional application, the answer file may consist solely of a single text phrase, but in other applications the substance and format will be tailored to a specific question in an appropriate fashion. For instance, an “answer” may consist of a list of multiple entries corresponding to a list of responsive category items (i.e., a list of books to a particular author) etc. Other variations will be apparent depending on the particular environment. Natural Language Engine 190 Again referring to FIG. 4D, the general structure of NL engine 190 is depicted. This engine implements the word analysis or morphological analysis of words that make up the user's query, as well as phrase analysis of phrases extracted from the query. As illustrated in FIG. 9, the functions used in a morphological analysis include tokenizers 802A, stemmers 804A and morphological analyzers 806A. The functions that comprise the phrase analysis include tokenizers, taggers and groupers, and their relationship is shown in FIG. 8. Tokenizer 802A is a software module that functions to break up text of an input sentence 801A into a list of tokens 803A. In performing this function, tokenizer 802A goes through input text 801A and treats it as a series of tokens or useful meaningful units that are typically larger than individual characters, but smaller than phrases and sentences. These tokens 803A can include words, separable parts of word and punctuation. Each token 803A is given an offset and a length. The first phase of tokenization is segmentation, which extracts the individual tokens from the input text and keeps track of the offset where each token originated from in the input text. Next, categories are associated with each token, based on its shape. The process of tokenization is well-known in the art, so it can be performed by any convenient application suitable for the present invention. Following tokenization, a stemmer process 804A is executed, which can include two separate forms—inflectional and derivational, for analyzing the tokens to determine their respective stems 805A. An inflectional stemmer recognizes affixes and returns the word which is the stem. A derivational stemmer on the other hand recognizes derivational affixes and returns the root word or words. While stemmer 804A associates an input word with its stem, it does not have parts of speech information. Analyzer 806B takes a word independent of context, and returns a set of possible parts of speech 806A. As illustrated in FIG. 8, phrase analysis 800 is the next step that is performed after tokenization. A tokenizer 802 generates tokens from input text 801. Tokens 803 are assigned to parts of a speech tag by a tagger routine 804, and a grouper routine 806 recognizes groups of words as phrases of a certain syntactic type. These syntactic types include for example the noun phrases mentioned earlier, but could include other types if desired such as verb phrases and adjective phrases. Specifically, tagger 804 is a parts-of-speech disambiguator, which analyzes words in context. It has a built-in morphological analyzer (not shown) that allows it to identify all possible parts of speech for each token. The output of tagger 804 is a string with each token tagged with a parts-of-speech label 805. The final step in the linguistic process 800 is the grouping of words to form phrases 807. This function is performed by the grouper 806, and is very dependent, of course, on the performance and output of tagger component 804. Accordingly, at the end of linguistic processing 800, a list of noun phrases (NP) 807 is generated in accordance with the user's query utterance. This set of NPs generated by NLE 190 helps significantly to refine the search for the best answer, so that a single-best answer can be later provided for the user's question. The particular components of NLE 190 are shown in FIG. 4D, and include several components. Each of these components implement the several different functions required in NLE 190 as now explained. Initialize Grouper Resources Object and the Library 900—this routine initializes the structure variables required to create grouper resource object and library. Specifically, it initializes a particular natural language used by NLE 190 to create a Noun Phrase, for example the English natural language is initialized for a system that serves the English language market. In turn, it also creates the objects (routines) required for Tokenizer, Tagger and Grouper (discussed above) with routines 900A, 900B, 900C and 900D respectively, and initializes these objects with appropriate values. It also allocates memory to store all the recognized Noun Phrases for the retrieved question pairs. Tokenizing of the words from the given text (from the query or the paired questions) is performed with routine 909B—here all the words are tokenized with the help of a local dictionary used by NLE 190 resources. The resultant tokenized words are passed to a Tagger routine 909C. At routine 909C, tagging of all the tokens is done and the output is passed to a Grouper routine 909D. The Grouping of all tagged token to form NP list is implemented by routine 909D so that the Grouper groups all the tagged token words and outputs the Noun Phrases. Un-initializing of the grouper resources object and freeing of the resources, is performed by routines 909EA, 909EB and 909EC. These include Token Resources, Tagger Resources and Grouper Resources respectively. After initialization, the resources are freed. The memory that was used to store all Noun Phrases are also de-allocated. Additional Embodiments In an e-commerce embodiment of the present invention as illustrated in FIG. 13, a web page 1300 contains typical visible links such as Books 1310, Music 1320 so that on clicking the appropriate link the customer is taken to those pages. The web page may be implemented using HTML, a Java applet, or similar coding techniques which interact with the user's browser. For example, if customer wants to buy an album C by Artist Albert, he traverses several web pages as follows: he first clicks on Music (FIG. 13, 1360), which brings up page 1400 where he/she then clicks on Records (FIG. 14, 1450). Alternatively, he/she could select CDs 1460, Videos 1470, or other categories of books 1410, music 1420 or help 1430. As illustrated in FIG. 15, this brings up another web page 1500 with links for Records 1550, with sub-categories—Artist 1560, Song 1570, Title 1580, Genre 1590. The customer must then click on Artist 1560 to select the artist of choice. This displays another web page 1600 as illustrated in FIG. 16. On this page the various artists 1650 are listed as illustrated—Albert 1650, Brooks 1660, Charlie 1670, Whyte 1690 are listed under the category Artists 1650. The customer must now click on Albert 1660 to view the albums available for Albert. When this is done, another web page is displayed as shown in FIG. 17. Again this web page 1700 displays a similar look and feel, but with the albums available 1760, 1770, 1780 listed under the heading Titles 1750. The customer can also read additional information 1790 for each album. This album information is similar to the liner notes of a shrink-wrapped album purchased at a retail store. One Album A is identified, the customer must click on the Album A 1760. This typically brings up another text box with the information about its availability, price, shipping and handling charges etc. When web page 1300 is provided with functionality of a NLQS of the type described above, the web page interacts with the client side and server side speech recognition modules described above. In this case, the user initiates an inquiry by simply clicking on a button designated Contact Me for Help 1480 (this can be a link button on the screen, or a key on the keyboard for example) and is then told by character 1440 about how to elicit the information required. If the user wants Album A by artist Albert, the user could articulate “Is Album A by Brooks available?” in much the same way they would ask the question of a human clerk at a brick and mortar facility. Because of the rapid recognition performance of the present invention, the user's query would be answered in real-time by character 1440 speaking out the answer in the user's native language. If desired, a readable word balloon 1490 could also be displayed to see the character's answer and so that save/print options can also be implemented. Similar appropriate question/answer pairs for each page of the website can be constructed in accordance with the present teachings, so that the customer is provided with an environment that emulates a normal conversational human-like question and answer dialog for all aspects of the web site. Character 1440 can be adjusted and tailored according to the particular commercial application, or by the user's own preferences, etc. to have a particular voice style (man, woman, young, old, etc.) to enhance the customer's experience. In a similar fashion, an articulated user query might be received as part of a conventional search engine query, to locate information of interest on the INTERNET in a similar manner as done with conventional text queries. If a reasonably close question/answer pair is not available at the server side (for instance, if it does not reach a certain confidence level as an appropriate match to the user's question) the user could be presented with the option of increasing the scope so that the query would then be presented simultaneously to one or more different NLEs across a number of servers, to improve the likelihood of finding an appropriate matching question/answer pair. Furthermore, if desired, more than one “match” could be found, in the same fashion that conventional search engines can return a number of potential “hits” corresponding to the user's query. For some such queries, of course, it is likely that real-time performance will not be possible (because of the disseminated and distributed processing) but the advantage presented by extensive supplemental question/answer database systems may be desirable for some users. It is apparent as well that the NLQS of the present invention is very natural and saves much time for the user and the e-commerce operator as well. In an e-support embodiment, the customer can retrieve information quickly and efficiently, and without need for a live customer agent. For example, at a consumer computer system vendor related support site, a simple diagnostic page might be presented for the user, along with a visible support character to assist him/her. The user could then select items from a “symptoms” page (i.e., a “monitor” problem, a “keyboard” problem, a “printer” problem, etc.) simply by articulating such symptoms in response to prompting from the support character. Thereafter, the system will direct the user on a real-time basis to more specific sub-menus, potential solutions, etc. for the particular recognized complaint. The use of a programmable character thus allows the web site to be scaled to accommodate a large number of hits or customers without any corresponding need to increase the number of human resources and its attendant training issues. As an additional embodiment, the searching for information on a particular web site may be accelerated with the use of the NLQS of the present invention. Additionally, a significant benefit is that the information is provided in a user-friendly manner through the natural interface of speech. The majority of web sites presently employ lists of frequently asked questions which the user typically wades item by item in order to obtain an answer to a question or issue. For example, as displayed in FIG. 13, the customer clicks on Help 1330 to initiate the interface with a set of lists. Other options include computer related items at 1370 and frequently asked questions (FAQ) at 1380. As illustrated in FIG. 18, a web site plan for typical web page is displayed. This illustrates the number of pages that have to be traversed in order to reach the list of Frequently-Asked Questions. Once at this page, the user has to scroll and manually identify the question that matches his/her query. This process is typically a laborious task and may or may not yield the information that answers the user's query. The present art for displaying this information is illustrated in FIG. 18. This figure identifies how the information on a typical web site is organized: the Help link (FIG. 13, 1330) typically shown on the home page of the web page is illustrated shown on FIG. 18 as 1800. Again referring to FIG. 18, each sub-category of information is listed on a separate page. For example, 1810 lists sub-topics such as ‘First Time Visitors’, ‘Search Tips’, ‘Ordering’, ‘Shipping’, ‘Your Account’ etc. Other pages deal with ‘Account information’ 1860, ‘Rates and Policies’ 1850 etc. Down another level, there are pages that deal exclusively with a sub-sub topics on a specific page such as ‘First Time Visitors’ 1960, ‘Frequently Asked Questions’ 1950, ‘Safe Shopping Guarantee’ 1940, etc. So if a customer has a query that is best answered by going to the Frequently Asked Questions link, he or she has to traverse three levels of busy and cluttered screen pages to get to the Frequently Asked Questions page 1950. Typically, there are many lists of questions 1980 that have to be manually scrolled through. While scrolling visually, the customer then has to visually and mentally match his or her question with each listed question. If a possible match is sighted, then that question is clicked and the answer then appears in text form which then is read. In contrast, the process of obtaining an answer to a question using a web page enabled with the present NLQS can be achieved much less laboriously and efficiently. The user would articulate the word “Help” (FIG. 13, 1330). This would immediately cause a character (FIG. 13, 1340) to appear with the friendly response “May I be of assistance. Please state your question?”. Once the customer states the question, the character would then perform an animation or reply “Thank you, I will be back with the answer soon”. After a short period time (preferably not exceeding 5-7 seconds) the character would then speak out the answer to the user's question. As illustrated in FIG. 18 the answer would be the answer 1990 returned to the user in the form of speech is the answer that is paired with the question 1950. For example, the answer 1990: “We accept Visa, MasterCard and Discover credit cards”, would be the response to the query 2000 “What forms of payments do you accept?” Another embodiment of the invention is illustrated in FIG. 12. This web page illustrates a typical website that employs NLQS in a web-based learning environment. As illustrated in FIG. 12, the web page in browser 1200, is divided into two or more frames. A character 1210 in the likeness of an instructor is available on the screen and appears when the student initiates the query mode either by speaking the word “Help” into a microphone (FIG. 2B, 215) or by clicking on the link ‘Click to Speak’ (FIG. 12, 1280). Character 1210 would then prompt the student to select a course 1220 from the drop down list 1230. If the user selects the course ‘CPlusPlus’, the character would then confirm verbally that the course “CPlusPlus” was selected. The character would then direct the student to make the next selection from the drop-down list 1250 that contains the selections for the chapters 1240 from which questions are available. Again, after the student makes the selection, the character 1210 confirms the selection by speaking. Next character 1210 prompts the student to select ‘Section’ 1260 of the chapter from which questions are available from the drop down list 1270. Again, after the student makes the selection, character 1210 confirms the selection by articulating the ‘Section’ 1260 chosen. As a prompt to the student, a list of possible questions appear in the list box 1291. In addition, tips 1290 for using the system are displayed. Once the selections are all made, the student is prompted by the character to ask the question as follows: “Please ask your query now”. The student then speaks his query and after a short period of time, the character responds with the answer preceded by the question as follows: “The answer to your question . . . is as follows: . . . ”. This procedure allows the student to quickly retrieve answers to questions about any section of the course and replaces the tedium of consulting books, and references or indices. In short, it is can serve a number of uses from being a virtual teacher answering questions on-the-fly or a flash card substitute. From preliminary data available to the inventors, it is estimate that the system can easily accommodate 100-250 question/answer pairs while still achieving a real-time feel and appearance to the user (i.e., less than 10 seconds of latency, not counting transmission) using the above described structures and methods. It is expected, of course, that these figures will improve as additional processing speed becomes available, and routine optimizations are employed to the various components noted for each particular environment. Again, the above are merely illustrative of the many possible applications of the present invention, and it is expected that many more web-based enterprises, as well as other consumer applications (such as intelligent, interactive toys) can utilize the present teachings. Although the present invention has been described in terms of a preferred embodiment, it will be apparent to those skilled in the art that many alterations and modifications may be made to such embodiments without departing from the teachings of the present invention. It will also be apparent to those skilled in the art that many aspects of the present discussion have been simplified to give appropriate weight and focus to the more germane aspects of the present invention. The microcode and software routines executed to effectuate the inventive methods may be embodied in various forms, including in a permanent magnetic media, a non-volatile ROM, a CD-ROM, or any other suitable machine-readable format. Accordingly, it is intended that the all such alterations and modifications be included within the scope and spirit of the invention as defined by the following claims. | <SOH> BACKGROUND OF THE INVENTION <EOH>The INTERNET, and in particular, the World-Wide Web (WWW), is growing in popularity and usage for both commercial and recreational purposes, and this trend is expected to continue. This phenomenon is being driven, in part, by the increasing and widespread use of personal computer systems and the availability of low cost INTERNET access. The emergence of inexpensive INTERNET access devices and high speed access techniques such as ADSL, cable modems, satellite modems, and the like, are expected to further accelerate the mass usage of the WWW. Accordingly, it is expected that the number of entities offering services, products, etc., over the WWW will increase dramatically over the coming years. Until now, however, the INTERNET “experience” for users has been limited mostly to non-voice based input/output devices, such as keyboards, intelligent electronic pads, mice, trackballs, printers, monitors, etc. This presents somewhat of a bottleneck for interacting over the WWW for a variety of reasons. First, there is the issue of familiarity. Many kinds of applications lend themselves much more naturally and fluently to a voice-based environment. For instance, most people shopping for audio recordings are very comfortable with asking a live sales clerk in a record store for information on titles by a particular author, where they can be found in the store, etc. While it is often possible to browse and search on one's own to locate items of interest, it is usually easier and more efficient to get some form of human assistance first, and, with few exceptions, this request for assistance is presented in the form of a oral query. In addition, many persons cannot or will not, because of physical or psychological barriers, use any of the aforementioned conventional I/O devices. For example, many older persons cannot easily read the text presented on WWW pages, or understand the layout/hierarchy of menus, or manipulate a mouse to make finely coordinated movements to indicate their selections. Many others are intimidated by the look and complexity of computer systems, WWW pages, etc., and therefore do not attempt to use online services for this reason as well. Thus, applications which can mimic normal human interactions are likely to be preferred by potential on-line shoppers and persons looking for information over the WWW. It is also expected that the use of voice-based systems will increase the universe of persons willing to engage in e-commerce, e-learning, etc. To date, however, there are very few systems, if any, which permit this type of interaction, and, if they do, it is very limited. For example, various commercial programs sold by IBM (VIAVOICE™) and Kurzweil (DRAGON™) permit some user control of the interface (opening, closing files) and searching (by using previously trained URLs) but they do not present a flexible solution that can be used by a number of users across multiple cultures and without time consuming voice training. Typical prior efforts to implement voice based functionality in an INTERNET context can be seen in U.S. Pat. No. 5,819,220 incorporated by reference herein. Another issue presented by the lack of voice-based systems is efficiency. Many companies are now offering technical support over the INTERNET, and some even offer live operator assistance for such queries. While this is very advantageous (for the reasons mentioned above) it is also extremely costly and inefficient, because a real person must be employed to handle such queries. This presents a practical limit that results in long wait times for responses or high labor overheads. An example of this approach can be seen U.S. Pat. No. 5,802,526 also incorporated by reference herein. In general, a service presented over the WWW is far more desirable if it is “scalable,” or, in other words, able to handle an increasing amount of user traffic with little if any perceived delay or troubles by a prospective user. In a similar context, while remote learning has become an increasingly popular option for many students, it is practically impossible for an instructor to be able to field questions from more than one person at a time. Even then, such interaction usually takes place for only a limited period of time because of other instructor time constraints. To date, however, there is no practical way for students to continue a human-like question and answer type dialog after the learning session is over, or without the presence of the instructor to personally address such queries. Conversely, another aspect of emulating a human-like dialog involves the use of oral feedback. In other words, many persons prefer to receive answers and information in audible form. While a form of this functionality is used by some websites to communicate information to visitors, it is not performed in a real-time, interactive question-answer dialog fashion so its effectiveness and usefulness is limited. Yet another area that could benefit from speech-based interaction involves so-called “search” engines used by INTERNET users to locate information of interest at web sites, such as the those available at YAHOO®.com, METACRAWLER®.com, EXCITE®.com, etc. These tools permit the user to form a search query using either combinations of keywords or metacategories to search through a web page database containing text indices associated with one or more distinct web pages. After processing the user's request, therefore, the search engine returns a number of hits which correspond, generally, to URL pointers and text excerpts from the web pages that represent the closest match made by such search engine for the particular user query based on the search processing logic used by search engine. The structure and operation of such prior art search engines, including the mechanism by which they build the web page database, and parse the search query, are well known in the art. To date, applicant is unaware of any such search engine that can easily and reliably search and retrieve information based on speech input from a user. There are a number of reasons why the above environments (e-commerce, e-support, remote learning, INTERNET searching, etc.) do not utilize speech-based interfaces, despite the many benefits that would otherwise flow from such capability. First, there is obviously a requirement that the output of the speech recognizer be as accurate as possible. One of the more reliable approaches to speech recognition used at this time is based on the Hidden Markov Model (HMM)—a model used to mathematically describe any time series. A conventional usage of this technique is disclosed, for example, in U.S. Pat. No. 4,587,670 incorporated by reference herein. Because speech is considered to have an underlying sequence of one or more symbols, the HMM models corresponding to each symbol are trained on vectors from the speech waveforms. The Hidden Markov Model is a finite set of states, each of which is associated with a (generally multi-dimensional) probability distribution. Transitions among the states are governed by a set of probabilities called transition probabilities. In a particular state an outcome or observation can be generated, according to the associated probability distribution. This finite state machine changes state once every time unit, and each time t such that a state j is entered, a spectral parameter vector O t is generated with probability density B j (O t ). It is only the outcome, not the state visible to an external observer and therefore states are “hidden” to the outside; hence the name Hidden Markov Model. The basic theory of HMMs was published in a series of classic papers by Baum and his colleagues in the late 1960's and early 1970's. HMMs were first used in speech applications by Baker at Carnegie Mellon, by Jelenik and colleagues at IBM in the late 1970's and by Steve Young and colleagues at Cambridge University, UK in the 1990's. Some typical papers and texts are as follows: 1. L. E. Baum, T. Petrie, “Statistical inference for probabilistic functions for finite state Markov chains”, Ann. Math. Stat., 37: 1554-1563, 1966 2. L. E. Baum, “An inequality and associated maximation technique in statistical estimation for probabilistic functions of Markov processes”, Inequalities 3: 1-8, 1972 3. J. H. Baker, “The dragon system—An Overview”, IEEE Trans. on ASSP Proc., ASSP-23(1): 24-29, Feb. 1975 4. F. Jeninek et al, “Continuous Speech Recognition: Statistical methods” in Handbook of Statistics, II, P. R. Kristnaiad, Ed. Amsterdam, The Netherlands, North-Holland, 1982 5. L. R. Bahl, F. Jeninek, R. L. Mercer, “A maximum likelihood approach to continuous speech recognition”, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-5: 179-190, 1983 6. J. D. Ferguson, “Hidden Markov Analysis: An Introduction”, in Hidden Markov Models for Speech, Institute of Defense Analyses, Princeton, N.J. 1980. 7. H. R. Rabiner and B. H. Juang, “Fundamentals of Speech Recognition”, Prentice Hall, 1993 8. H. R. Rabiner, “Digital Processing of Speech Signals”, Prentice Hall, 1978 More recently research has progressed in extending HMM and combining HMMs with neural networks to speech recognition applications at various laboratories. The following is a representative paper: 9. Nelson Morgan, Hervé Bourlard, Steve Renals, Michael Cohen and Horacio Franco (1993), Hybrid Neural Network/Hidden Markov Model Systems for Continuous Speech Recognition. Journal of Pattern Recognition and Artificial Intelligence , Vol. 7, No. 4 pp. 899-916. Also in I. Guyon and P. Wang editors, Advances in Pattern Recognition Systems using Neural Networks , Vol. 7 of a Series in Machine Perception and Artificial Intelligence. World Scientific, February 1994. All of the above are hereby incorporated by reference. While the HMM-based speech recognition yields very good results, contemporary variations of this technique cannot guarantee a word accuracy requirement of 100% exactly and consistently, as will be required for WWW applications for all possible all user and environment conditions. Thus, although speech recognition technology has been available for several years, and has improved significantly, the technical requirements have placed severe restrictions on the specifications for the speech recognition accuracy that is required for an application that combines speech recognition and natural language processing to work satisfactorily. In contrast to word recognition, Natural language processing (NLP) is concerned with the parsing, understanding and indexing of transcribed utterances and larger linguistic units. Because spontaneous speech contains many surface phenomena such as disfluencies,—hesitations, repairs and restarts, discourse markers such as ‘well’ and other elements which cannot be handled by the typical speech recognizer, it is the problem and the source of the large gap that separates speech recognition and natural language processing technologies. Except for silence between utterances, another problem is the absence of any marked punctuation available for segmenting the speech input into meaningful units such as utterances. For optimal NLP performance, these types of phenomena should be annotated at its input. However, most continuous speech recognition systems produce only a raw sequence of words. Examples of conventional systems using NLP are shown in U.S. Pat. Nos. 4,991,094, 5,068,789, 5,146,405 and 5,680,628, all of which are incorporated by reference herein. Second, most of the very reliable voice recognition systems are speaker-dependent, requiring that the interface be “trained” with the user's voice, which takes a lot of time, and is thus very undesirable from the perspective of a WWW environment, where a user may interact only a few times with a particular website. Furthermore, speaker-dependent systems usually require a large user dictionary (one for each unique user) which reduces the speed of recognition. This makes it much harder to implement a real-time dialog interface with satisfactory response capability (i.e., something that mirrors normal conversation—on the order of 3-5 seconds is probably ideal). At present, the typical shrink-wrapped speech recognition application software include offerings from IBM (VIAVOICE™) and Dragon Systems (DRAGON™). While most of these applications are adequate for dictation and other transcribing applications, they are woefully inadequate for applications such as NLQS where the word error rate must be close to 0%. In addition these offerings require long training times and are typically are non client-server configurations. Other types of trained systems are discussed in U.S. Pat. No. 5,231,670 assigned to Kurzweil, and which is also incorporated by reference herein. Another significant problem faced in a distributed voice-based system is a lack of uniformity/control in the speech recognition process. In a typical stand-alone implementation of a speech recognition system, the entire SR engine runs on a single client. A well-known system of this type is depicted in U.S. Pat. No. 4,991,217 incorporated by reference herein. These clients can take numerous forms (desktop PC, laptop PC, PDA, etc.) having varying speech signal processing and communications capability. Thus, from the server side perspective, it is not easy to assure uniform treatment of all users accessing a voice-enabled web page, since such users may have significantly disparate word recognition and error rate performances. While a prior art reference to Gould et al.—U.S. Pat. No. 5,915,236—discusses generally the notion of tailoring a recognition process to a set of available computational resources, it does not address or attempt to solve the issue of how to optimize resources in a distributed environment such as a client-server model. Again, to enable such voice-based technologies on a wide-spread scale it is far more preferable to have a system that harmonizes and accounts for discrepancies in individual systems so that even the thinnest client is supportable, and so that all users are able to interact in a satisfactory manner with the remote server running the e-commerce, e-support and/or remote learning application. Two references that refer to a distributed approach for speech recognition include U.S. Pat. Nos. 5,956,683 and 5,960,399 incorporated by reference herein. In the first of these, U.S. Pat. No. 5,956,683—Distributed Voice Recognition System (assigned to Qualcomm) an implementation of a distributed voice recognition system between a telephony-based handset and a remote station is described. In this implementation, all of the word recognition operations seem to take place at the handset. This is done since the patent describes the benefits that result from locating of the system for acoustic feature extraction at the portable or cellular phone in order to limit degradation of the acoustic features due to quantization distortion resulting from the narrow bandwidth telephony channel. This reference therefore does not address the issue of how to ensure adequate performance for a very thin client platform. Moreover, it is difficult to determine, how, if at all, the system can perform real-time word recognition, and there is no meaningful description of how to integrate the system with a natural language processor. The second of these references—U.S. Pat. No. 5,960,399—Client/Server Speech Processor/Recognizer (assigned to GTE) describes the implementation of a HMM-based distributed speech recognition system. This reference is not instructive in many respects, however, including how to optimize acoustic feature extraction for a variety of client platforms, such as by performing a partial word recognition process where appropriate. Most importantly, there is only a description of a primitive server-based recognizer that only recognizes the user's speech and simply returns certain keywords such as the user's name and travel destination to fill out a dedicated form on the user's machine. Also, the streaming of the acoustic parameters does not appear to be implemented in real-time as it can only take place after silence is detected. Finally, while the reference mentions the possible use of natural language processing (column 9) there is no explanation of how such function might be implemented in a real-time fashion to provide an interactive feel for the user. | <SOH> SUMMARY OF THE INVENTION <EOH>An object of the present invention, therefore, is to provide an improved system and method for overcoming the limitations of the prior art noted above; A primary object of the present invention is to provide a word and phrase recognition system that is flexibly and optimally distributed across a client/platform computing architecture, so that improved accuracy, speed and uniformity can be achieved for a wide group of users; A further object of the present invention is to provide a speech recognition system that efficiently integrates a distributed word recognition system with a natural language processing system, so that both individual words and entire speech utterances can be quickly and accurately recognized in any number of possible languages; A related object of the present invention is to provide an efficient query response system so that an extremely accurate, real-time set of appropriate answers can be given in response to speech-based queries; Yet another object of the present invention is to provide an interactive, real-time instructional/learning system that is distributed across a client/server architecture, and permits a real-time question/answer session with an interactive character; A related object of the present invention is to implement such interactive character with an articulated response capability so that the user experiences a human-like interaction; Still a further object of the present invention is to provide an INTERNET website with speech processing capability so that voice based data and commands can be used to interact with such site, thus enabling voice-based e-commerce and e-support services to be easily scaleable; Another object is to implement a distributed speech recognition system that utilizes environmental variables as part of the recognition process to improve accuracy and speed; A further object is to provide a scaleable query/response database system, to support any number of query topics and users as needed for a particular application and instantaneous demand; Yet another object of the present invention is to provide a query recognition system that employs a two-step approach, including a relatively rapid first step to narrow down the list of potential responses to a smaller candidate set, and a second more computationally intensive second step to identify the best choice to be returned in response to the query from the candidate set; A further object of the present invention is to provide a natural language processing system that facilitates query recognition by extracting lexical components of speech utterances, which components can be used for rapidly identifying a candidate set of potential responses appropriate for such speech utterances; Another related object of the present invention is to provide a natural language processing system that facilitates query recognition by comparing lexical components of speech utterances with a candidate set of potential response to provide an extremely accurate best response to such query. One general aspect of the present invention, therefore, relates to a natural language query system (NLQS) that offers a fully interactive method for answering user's questions over a distributed network such as the INTERNET or a local intranet. This interactive system when implemented over the worldwide web (WWW) services of the INTERNET functions so that a client or user can ask a question in a natural language such as English, French, German or Spanish and receive the appropriate answer at his or her personal computer also in his or her native natural language. The system is distributed and consists of a set of integrated software modules at the client's machine and another set of integrated software programs resident on a server or set of servers. The client-side software program is comprised of a speech recognition program, an agent and its control program, and a communication program. The server-side program is comprised of a communication program, a natural language engine (NLE), a database processor (DBProcess), an interface program for interfacing the DBProcess with the NLE, and a SQL database. In addition, the client's machine is equipped with a microphone and a speaker. Processing of the speech utterance is divided between the client and server side so as to optimize processing and transmission latencies, and so as to provide support for even very thin client platforms. In the context of an interactive learning application, the system is specifically used to provide a single-best answer to a user's question. The question that is asked at the client's machine is articulated by the speaker and captured by a microphone that is built in as in the case of a notebook computer or is supplied as a standard peripheral attachment. Once the question is captured, the question is processed partially by NLQS client-side software resident in the client's machine. The output of this partial processing is a set of speech vectors that are transported to the server via the INTERNET to complete the recognition of the user's questions. This recognized speech is then converted to text at the server. After the user's question is decoded by the speech recognition engine (SRE) located at the server, the question is converted to a structured query language (SQL) query. This query is then simultaneously presented to a software process within the server called DBProcess for preliminary processing and to a Natural Language Engine (NLE) module for extracting the noun phrases (NP) of the user's question. During the process of extracting the noun phrase within the NLE, the tokens of the users' question are tagged. The tagged tokens are then grouped so that the NP list can be determined. This information is stored and sent to the DBProcess process. In the DBProcess, the SQL query is fully customized using the NP extracted from the user's question and other environment variables that are relevant to the application. For example, in a training application, the user's selection of course, chapter and or section would constitute the environment variables. The SQL query is constructed using the extended SQL Full-Text predicates—CONTAINS, FREETEXT, NEAR, AND. The SQL query is next sent to the Full-Text search engine within the SQL database, where a Full-Text search procedure is initiated. The result of this search procedure is recordset of answers. This recordset contains stored questions that are similar linguistically to the user's question. Each of these stored questions has a paired answer stored in a separate text file, whose path is stored in a table of the database. The entire recordset of returned stored answers is then returned to the NLE engine in the form of an array. Each stored question of the array is then linguistically processed sequentially one by one. This linguistic processing constitutes the second step of a 2-step algorithm to determine the single best answer to the user's question. This second step proceeds as follows: for each stored question that is returned in the recordset, a NP of the stored question is compared with the NP of the user's question. After all stored questions of the array are compared with the user's question, the stored question that yields the maximum match with the user's question is selected as the best possible stored question that matches the user's question. The metric that is used to determine the best possible stored question is the number of noun-phrases. The stored answer that is paired to the best-stored question is selected as the one that answers the user's question. The ID tag of the question is then passed to the DBProcess. This DBProcess returns the answer which is stored in a file. A communication link is again established to send the answer back to the client in compressed form. The answer once received by the client is decompressed and articulated to the user by the text-to-speech engine. Thus, the invention can be used in any number of different applications involving interactive learning systems, INTERNET related commerce sites, INTERNET search engines, etc. Computer-assisted instruction environments often require the assistance of mentors or live teachers to answer questions from students. This assistance often takes the form of organizing a separate pre-arranged forum or meeting time that is set aside for chat sessions or live call-in sessions so that at a scheduled time answers to questions may be provided. Because of the time immediacy and the on-demand or asynchronous nature of on-line training where a student may log on and take instruction at any time and at any location, it is important that answers to questions be provided in a timely and cost-effective manner so that the user or student can derive the maximum benefit from the material presented. This invention addresses the above issues. It provides the user or student with answers to questions that are normally channeled to a live teacher or mentor. This invention provides a single-best answer to questions asked by the student. The student asks the question in his or her own voice in the language of choice. The speech is recognized and the answer to the question is found using a number of technologies including distributed speech recognition, full-text search database processing, natural language processing and text-to-speech technologies. The answer is presented to the user, as in the case of a live teacher, in an articulated manner by an agent that mimics the mentor or teacher, and in the language of choice—English, French, German, Japanese or other natural spoken language. The user can choose the agent's gender as well as several speech parameters such as pitch, volume and speed of the character's voice. Other applications that benefit from NLQS are e-commerce applications. In this application, the user's query for a price of a book, compact disk or for the availability of any item that is to be purchased can be retrieved without the need to pick through various lists on successive web pages. Instead, the answer is provided directly to the user without any additional user input. Similarly, it is envisioned that this system can be used to provide answers to frequently-asked questions (FAQs), and as a diagnostic service tool for e-support. These questions are typical of a give web site and are provided to help the user find information related to a payment procedure or the specifications of, or problems experienced with a product/service. In all of these applications, the NLQS architecture can be applied. A number of inventive methods associated with these architectures are also beneficially used in a variety of INTERNET related applications. Although the inventions are described below in a set of preferred embodiments, it will be apparent to those skilled in the art the present inventions could be beneficially used in many environments where it is necessary to implement fast, accurate speech recognition, and/or to provide a human-like dialog capability to an intelligent system. | 20050107 | 20070529 | 20050630 | 92111.0 | 3 | LERNER, MARTIN | SPEECH RECOGNITION SYSTEM TRAINED WITH REGIONAL SPEECH CHARACTERISTICS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
|||
11,031,214 | ACCEPTED | Method and apparatus for blow molding a bottle with a punched hole in a molded neck recess | A method for blow molding bottles having a hole formed in a molded interior recess extending from a top face of a bottle neck includes the steps of: (i) providing a mold having a neck forming cavity with an end flange surface therein; (ii) disposing a parison of molten material within the mold; (iii) introducing pressurized fluid into the parison to expand it against the mold walls, thereby forming a final shape of the bottle; (iv) forming the interior recess in the bottle by advancing a recess forming rod through a hole in the end flange surface and into the neck forming cavity; and (v) creating a dispensing hole in the interior recess by advancing a punch through a hole in an end face of the recess forming rod. | 1. A method for blow molding bottles having a hole formed in a molded interior recess extending from a top face of a bottle neck, said method comprising the steps of: providing a mold having a neck forming cavity with an end flange surface therein; disposing a parison of molten material within the mold; introducing pressurized fluid into the parison to expand it against the mold walls, thereby forming a final shape of the bottle; forming the interior recess in the bottle by advancing a recess forming rod through a hole in the end flange surface and into the neck forming cavity; and creating a dispensing hole in the interior recess by advancing a punch through a hole in an end face of the recess forming rod. 2. The method of claim 1 wherein said introducing and said forming steps are performed substantially simultaneously. 3. The method of claim 1 further comprising the steps of retracting the punch and allowing the recess forming rod to remain in its advanced position while the molded bottle cools and solidifies. 4. The method of claim 3 further comprising the step of withdrawing the recess forming rod and permitting pressurized air to drain from the bottle. 5. The method of claim 1 further comprising the step of retracting the punch while retaining a slug created during said creating step on an undercut in the punch thereby removing the slug from inside the bottle. 6. The method of claim 5 further comprising the step of injecting pressurized air through an inner channel in the punch in order to blow the slug off the end of the punch. 7. A method for blow molding bottles having a hole formed in a molded interior recess extending from a top face of a bottle neck, said method comprising the steps of: providing a mold having a neck forming cavity with an end flange surface therein; disposing a parison of molten material within the mold; introducing pressurized fluid into the parison to expand it against the mold walls, thereby forming a final shape of the bottle; forming the interior recess in the bottle by advancing a recess forming rod through a hole in the end flange surface and into the neck forming cavity; creating a dispensing hole in the interior recess by advancing a punch through a hole in an end face of the recess forming rod; allowing the recess forming rod to remain in its advanced position while the molded bottle cools and solidifies; retracting the punch while retaining a slug created during said creating step on an undercut in the punch thereby removing the slug from inside the bottle; injecting pressurized air through an inner channel in the punch in order to blow the slug off the end of the punch; and withdrawing the recess forming rod and permitting pressurized air to drain from the bottle. 8. The method of claim 7 wherein said introducing and said forming steps are performed substantially simultaneously. 9. The method of claim 7 wherein the pressurized fluid is introduced into the parison through the punch. | RELATED APPLICATIONS This patent application is a divisional of U.S. patent application Ser. No. 10/212,199 filed Aug. 2, 2002, which application is currently pending and which application claims the benefit of, under Title 35, United States Code, Section 119(e), U.S. Provisional Patent Application No. 60/334,523, filed Nov. 30, 2001. FIELD OF THE INVENTION The present invention relates to a method and apparatus for blow molding plastic bottles, and in particular to a method and apparatus for blow molding bottles having a hole formed in a molded interior recess extending from the top face of the bottle neck. BACKGROUND OF THE INVENTION In the blow molding of conventional bottles, most of the top face of the neck is open to permit easy pouring of the contents of the bottle. The open portion is surrounded by a flat flange, adjacent and perpendicular to the threaded sidewall of the neck, and this flange is used as a sealing surface for the underside of a threaded or crimped bottle cap. Many methods familiar to practitioners of the blow molding process are known for the formation of these neck openings and flanges. However, it is sometimes advantageous to form a molded recess extending from the top face of the neck and within the outer neck diameter, and to provide an opening within this recess through which to dispense the contents of the bottle. Referring to the attached figures, FIG. 1 shows a perspective view of such a bottle design. More specifically, FIG. 2 shows in section the neck and surrounding area of the bottle. The outer neck diameter 10 abuts a top flange 11 which in turn encircles a center recess 12 consisting of side walls 13, a bottom wall 14, and a dispensing hole 15 through the bottom wall 14. An example of such a construction is a bottle containing a liquid cleaner or protective coating which must be dispensed through an applicator attached to a cleaning or coating machine. In the example illustrated in FIG. 2, the center recess 12 retains a circular rubber gasket 16 with a hole through its center generally matching the hole 15 in the bottom wall 14 of the center recess 12. The bottle as shipped from the filler is typically closed by a screw cap (not shown), the underside of which seals off against flange 11. The user of the fluid in the bottle removes and sets aside the screw cap. He or she then affixes the bottle to the applicator tool, shown in section in FIG. 3, by twisting the bottle neck onto bayonet joint projections 17 molded on the inner sides 18 of the bottle neck receiving recess 19 of the applicator. Gasket 16 then engages and seals against a metering hub assembly 20 in the recess 19. Until the present time it has not been possible to mold such a bottle without a secondary operation. One choice has been to drill or punch the center hole after molding, increasing cost and introducing chips or other contamination into the bottle. An equally undesirable alternative has been to mold the center recess section separately and to attach it to the inner surface of the bottle neck, also increasing cost and introducing the risk of leakage. What is desired, therefore, is a method and apparatus for blow molding bottles having a hole formed in a molded interior recess extending from the top face of the bottle neck in which the complete neck and recess portion of the bottle, including the dispensing hole, are formed as a single operation during the molding cycle. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method and apparatus for blow molding bottles having a hole formed in a molded interior recess extending from the top face of the bottle neck. Another object of the present invention is to provide a method and apparatus for blow molding bottles having the above characteristics and which dispenses with the need for secondary operations. A further object of the present invention is to provide a method and apparatus for blow molding bottles having the above characteristics and which allows for the complete neck and recess portion of the bottle, including the dispensing hole, to be formed as a single operation during the molding cycle. These and other objects of the present invention are achieved by provision of an apparatus for blow molding bottles having a hole formed in a molded interior recess extending from a top face of a bottle neck. The apparatus includes a mold having a neck forming cavity defined by an outer peripheral wall and an end flange surface. The mold includes a hole in the end flange surface of the neck forming cavity. A recess forming rod is slideably disposed within the hole in the mold, the recess forming rod slideable within the hole in the mold from an initial position wherein a face of the recess forming rod is withdrawn into the hole in the mold to an extended position wherein the face of the recess forming rod protrudes into the neck forming cavity of the mold so as to create the molded interior recess in the top face of the bottle neck. The recess forming rod has a hole therein in which a punch is slideably disposed. The punch is slideable within the hole in the recess forming rod from an initial position wherein a face of the punch is withdrawn into the hole in the mold to an extended position wherein the face of the punch protrudes beyond the face of the recess forming rod into the neck forming cavity of the mold so as to create the hole in the interior recess in the top face of the bottle neck. Preferably, the punch has an undercut in the face thereof so as to retain a slug of material created as the hole in the interior recess in the top face of the bottle neck is created. It is also preferable that the punch has an inner channel formed therein to permit passage therethrough of pressurized air to eject the slug. The mold preferably includes a second hole in the end flange surface of the neck forming cavity in which a needle is slideably disposed. The needle is slideable within the second hole in the mold from an initial position wherein a tip of the needle is withdrawn into the second hole in the mold to an extended position wherein the tip of the needle protrudes into the neck forming cavity of the mold such that pressurized air is introduced into the bottle during molding. The face of the punch preferably protrudes beyond the face of the recess forming rod. In the initial position the face of the recess forming rod is most preferably withdrawn into the hole in the mold by about ¼ inch, and the face of the punch protrudes beyond the face of the recess forming rod by about {fraction (3/16)} inch. It is also preferable that a portion of the recess forming rod protruding into the neck forming cavity of the mold in the extended position is frustoconical in shape. Preferably, the recess forming rod and the punch are slideable along axes parallel to each other, and most preferably, the recess forming rod and the punch are coaxial. In the embodiment where a needle is provided, the needle, the recess forming rod and the punch are preferably slideable along axes parallel to each other. In another aspect of the invention a method for blow molding bottles having a hole formed in a molded interior recess extending from a top face of a bottle neck is provided. A parison of molten material is disposed within a mold having a neck forming cavity with an end flange surface therein, and pressurized fluid (such as air) is introduced into the parison to expand it against the mold walls, thereby forming a final shape of the bottle. The interior recess in the bottle is formed by advancing a recess forming rod through a hole in the end flange surface and into the neck forming cavity. Next, a dispensing hole is created in the interior recess by advancing a punch through a hole in an end face of the recess forming rod. The recess forming rod is allowed to remain in its advanced position while the molded bottle cools and solidifies. The punch is retracted while retaining a slug created during formation of the dispensing hole on an undercut in the punch thereby removing the slug from inside the bottle. The recess forming rod is retracted and pressurized air is permitted to drain from the bottle. Pressurized air is injected through an inner channel in the punch in order to blow the slug off the end of the punch. The invention and its particular features and advantages will become more apparent from the following detailed description considered with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a bottle having a hole formed in a molded interior recess extending from the top face of the bottle neck; FIG. 2 is a partially cross-sectional view of the neck portion of the bottle of FIG. 1; FIG. 3 is a partially cross-sectional view of the receiving recess portion of an applicator tool for receiving the bottle of FIG. 1; and FIGS. 4 and 5 are partially cross-sectional views illustrating a method and apparatus for blow molding the bottle of FIG. 1 in accordance with one embodiment of the present invention. DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION Referring now to FIGS. 4 and 5, a method and apparatus for blow molding bottles having a hole formed in a molded interior recess extending from the top face of the bottle neck in accordance with the present invention is shown. In FIG. 4, a schematic section of the mold 100 for forming the bottle is shown as it is closing. Molten plastic 102 in parison form rests generally inside the closed mold cavity which forms the outside shape of the bottle, or in two pinch-off relief areas 104 adjacent to the neck-forming cavity 106 in mold 100. Neck forming cavity 106 is defined by an outer peripheral wall 108 which is typically generally cylindrical and an end flange surface 110. Mold 100 includes a hole 112 therein adjacent to end flange surface 110 of neck-forming cavity 106, with a recess forming rod 114 slideably disposed therein such that recess forming rod 114 is slideable toward and away from neck-forming cavity 106. Recess forming rod 114 preferably includes a frustoconical end portion 116, and the face thereof is preferably recessed from flange surface 110, most preferably by about ¼ inch, when recess forming rod 114 is in an initial position (shown in FIG. 4). Recess forming rod 114 includes a hole 118 therein with a punch 120 slideably disposed therein such that punch 120 is slideable toward and away from neck-forming cavity 106. Preferably, recess forming rod 114 and punch 120 are slideable along axes parallel to each other. The face of punch 120 preferably extends beyond the face of recess forming rod 114, most preferably by about {fraction (3/16)} inch when punch 120 and recess forming rod 114 are in an initial position (shown in FIG. 4). Punch 120 is preferably hollow, including an inner channel 122, to permit passage through it of pressurized air which will subsequently be used to remove a punched slug from the face of punch 120 as is discussed more fully below. Punch 120 also preferably contains a slight interior undercut 124 to retain the punched slug in position for the removing air to act on it when the mold is opened again, also as is discussed more fully below. Mold 100 also includes a hole 126 therein adjacent to hole 112 and to end flange surface 110 of neck-forming cavity 106 with a needle 128 slideably disposed therein such that needle 128 is slideable toward and away from neck-forming cavity 106. Preferably, needle 128, recess forming rod 114 and punch 120 are slideable along axes parallel to each other. The tip of needle 128 is preferably withdrawn into hole 126 when needle 128 is in an initial position (shown in FIG. 4). Referring now to FIG. 5, after the mold closes, as the molding cycle proceeds, needle 128 pierces the wall of molten plastic 102 and introduces pressurized fluid into the parison and expand it against the cooled cavity walls, thereby forming the final shape of the bottle. Generally simultaneously, recess forming rod 114 is advanced, by fluid pressure, to a forward stop. Pressurized air blows molten plastic 102 around recess forming rod 114, forming the outline of the center recess of the bottle. Subsequent to this operation, punch 120 is advanced, also by fluid pressure, to punch out a slug 130 in the center of the center recess, thereby creating a dispensing hole. Punch 120 retracts almost immediately thereafter. Needle 128 and recess forming rod 114 remain in their respective extended positions, as shown in FIG. 5, while the molded part cools and solidifies, after which they are withdrawn, permitting pressurized air to drain from the part through hole in the part created by needle 128. The punched out slug 130 is retained on undercut 124 in punch 120, which further retracts with recess forming rod 114, thereby removing slug 130 from inside the bottle. The mold is then opened and the solidified part ejected. After ejection is complete, pressurized air is injected through the inner channel 122 in punch 120, blowing slug 130 off the end of punch 120. Slug 130 may then be reclaimed or discarded. After part and slug ejection is complete, punch 120 and recess forming rod 114 advance together until they reach their respective initial positions as shown in FIG. 4. Another molten plastic 102 parison is placed between the open cavity halves, and the mold is again closed to begin a second cycle. The present invention, therefore, provides a method and apparatus for blow molding bottles having a hole formed in a molded interior recess extending from the top face of the bottle neck which dispenses with the need for secondary operations, and which allows for the complete neck and recess portion of the bottle, including the dispensing hole, to be formed as a single operation during the molding cycle It will be seen that the present invention is in no way limited to the embodiments illustrated, and the particular arrangement of parts and features herein described are not intended to exhaust ail possible arrangements of parts and features. For example, the bottle could be blown through the center hole rather than through the vent hole; the punched slug could be ejected mechanically instead of by air pressure; various ratios of cross-section are obtainable; interference surfaces other than a bayonet joint can be utilized; and non-threaded bottle closures may be used. Indeed, many other modifications and variations will be ascertainable to those skilled in the art. | <SOH> BACKGROUND OF THE INVENTION <EOH>In the blow molding of conventional bottles, most of the top face of the neck is open to permit easy pouring of the contents of the bottle. The open portion is surrounded by a flat flange, adjacent and perpendicular to the threaded sidewall of the neck, and this flange is used as a sealing surface for the underside of a threaded or crimped bottle cap. Many methods familiar to practitioners of the blow molding process are known for the formation of these neck openings and flanges. However, it is sometimes advantageous to form a molded recess extending from the top face of the neck and within the outer neck diameter, and to provide an opening within this recess through which to dispense the contents of the bottle. Referring to the attached figures, FIG. 1 shows a perspective view of such a bottle design. More specifically, FIG. 2 shows in section the neck and surrounding area of the bottle. The outer neck diameter 10 abuts a top flange 11 which in turn encircles a center recess 12 consisting of side walls 13 , a bottom wall 14 , and a dispensing hole 15 through the bottom wall 14 . An example of such a construction is a bottle containing a liquid cleaner or protective coating which must be dispensed through an applicator attached to a cleaning or coating machine. In the example illustrated in FIG. 2 , the center recess 12 retains a circular rubber gasket 16 with a hole through its center generally matching the hole 15 in the bottom wall 14 of the center recess 12 . The bottle as shipped from the filler is typically closed by a screw cap (not shown), the underside of which seals off against flange 11 . The user of the fluid in the bottle removes and sets aside the screw cap. He or she then affixes the bottle to the applicator tool, shown in section in FIG. 3 , by twisting the bottle neck onto bayonet joint projections 17 molded on the inner sides 18 of the bottle neck receiving recess 19 of the applicator. Gasket 16 then engages and seals against a metering hub assembly 20 in the recess 19 . Until the present time it has not been possible to mold such a bottle without a secondary operation. One choice has been to drill or punch the center hole after molding, increasing cost and introducing chips or other contamination into the bottle. An equally undesirable alternative has been to mold the center recess section separately and to attach it to the inner surface of the bottle neck, also increasing cost and introducing the risk of leakage. What is desired, therefore, is a method and apparatus for blow molding bottles having a hole formed in a molded interior recess extending from the top face of the bottle neck in which the complete neck and recess portion of the bottle, including the dispensing hole, are formed as a single operation during the molding cycle. | <SOH> SUMMARY OF THE INVENTION <EOH>Accordingly, it is an object of the present invention to provide a method and apparatus for blow molding bottles having a hole formed in a molded interior recess extending from the top face of the bottle neck. Another object of the present invention is to provide a method and apparatus for blow molding bottles having the above characteristics and which dispenses with the need for secondary operations. A further object of the present invention is to provide a method and apparatus for blow molding bottles having the above characteristics and which allows for the complete neck and recess portion of the bottle, including the dispensing hole, to be formed as a single operation during the molding cycle. These and other objects of the present invention are achieved by provision of an apparatus for blow molding bottles having a hole formed in a molded interior recess extending from a top face of a bottle neck. The apparatus includes a mold having a neck forming cavity defined by an outer peripheral wall and an end flange surface. The mold includes a hole in the end flange surface of the neck forming cavity. A recess forming rod is slideably disposed within the hole in the mold, the recess forming rod slideable within the hole in the mold from an initial position wherein a face of the recess forming rod is withdrawn into the hole in the mold to an extended position wherein the face of the recess forming rod protrudes into the neck forming cavity of the mold so as to create the molded interior recess in the top face of the bottle neck. The recess forming rod has a hole therein in which a punch is slideably disposed. The punch is slideable within the hole in the recess forming rod from an initial position wherein a face of the punch is withdrawn into the hole in the mold to an extended position wherein the face of the punch protrudes beyond the face of the recess forming rod into the neck forming cavity of the mold so as to create the hole in the interior recess in the top face of the bottle neck. Preferably, the punch has an undercut in the face thereof so as to retain a slug of material created as the hole in the interior recess in the top face of the bottle neck is created. It is also preferable that the punch has an inner channel formed therein to permit passage therethrough of pressurized air to eject the slug. The mold preferably includes a second hole in the end flange surface of the neck forming cavity in which a needle is slideably disposed. The needle is slideable within the second hole in the mold from an initial position wherein a tip of the needle is withdrawn into the second hole in the mold to an extended position wherein the tip of the needle protrudes into the neck forming cavity of the mold such that pressurized air is introduced into the bottle during molding. The face of the punch preferably protrudes beyond the face of the recess forming rod. In the initial position the face of the recess forming rod is most preferably withdrawn into the hole in the mold by about ¼ inch, and the face of the punch protrudes beyond the face of the recess forming rod by about {fraction (3/16)} inch. It is also preferable that a portion of the recess forming rod protruding into the neck forming cavity of the mold in the extended position is frustoconical in shape. Preferably, the recess forming rod and the punch are slideable along axes parallel to each other, and most preferably, the recess forming rod and the punch are coaxial. In the embodiment where a needle is provided, the needle, the recess forming rod and the punch are preferably slideable along axes parallel to each other. In another aspect of the invention a method for blow molding bottles having a hole formed in a molded interior recess extending from a top face of a bottle neck is provided. A parison of molten material is disposed within a mold having a neck forming cavity with an end flange surface therein, and pressurized fluid (such as air) is introduced into the parison to expand it against the mold walls, thereby forming a final shape of the bottle. The interior recess in the bottle is formed by advancing a recess forming rod through a hole in the end flange surface and into the neck forming cavity. Next, a dispensing hole is created in the interior recess by advancing a punch through a hole in an end face of the recess forming rod. The recess forming rod is allowed to remain in its advanced position while the molded bottle cools and solidifies. The punch is retracted while retaining a slug created during formation of the dispensing hole on an undercut in the punch thereby removing the slug from inside the bottle. The recess forming rod is retracted and pressurized air is permitted to drain from the bottle. Pressurized air is injected through an inner channel in the punch in order to blow the slug off the end of the punch. The invention and its particular features and advantages will become more apparent from the following detailed description considered with reference to the accompanying drawings. | 20050107 | 20061128 | 20050609 | 67257.0 | 0 | MCDOWELL, SUZANNE E | METHOD AND APPARATUS FOR BLOW MOLDING A BOTTLE WITH A PUNCHED HOLE IN A MOLDED NECK RECESS | UNDISCOUNTED | 1 | CONT-ACCEPTED | 2,005 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.