paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/efficient-learning-of-generative-models-via
|
Efficient Learning of Generative Models via Finite-Difference Score Matching
|
2007.03317
|
https://arxiv.org/abs/2007.03317v2
|
https://arxiv.org/pdf/2007.03317v2.pdf
|
https://github.com/taufikxu/FD-ScoreMatching
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-individualized-treatment-rules-with
|
Learning Individualized Treatment Rules with Estimated Translated Inverse Propensity Score
|
2007.01083
|
https://arxiv.org/abs/2007.01083v1
|
https://arxiv.org/pdf/2007.01083v1.pdf
|
https://github.com/ZhiliangWu/etips
| true | true | true |
tf
|
https://paperswithcode.com/paper/gradient-temporal-difference-learning-with
|
Gradient Temporal-Difference Learning with Regularized Corrections
|
2007.00611
|
https://arxiv.org/abs/2007.00611v4
|
https://arxiv.org/pdf/2007.00611v4.pdf
|
https://github.com/rlai-lab/Regularized-GradientTD
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-bayesian-quadrature-policy-optimization
|
Deep Bayesian Quadrature Policy Optimization
|
2006.15637
|
https://arxiv.org/abs/2006.15637v3
|
https://arxiv.org/pdf/2006.15637v3.pdf
|
https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/gnn3dmot-graph-neural-network-for-3d-multi-1
|
GNN3DMOT: Graph Neural Network for 3D Multi-Object Tracking with Multi-Feature Learning
|
2006.07327
|
https://arxiv.org/abs/2006.07327v1
|
https://arxiv.org/pdf/2006.07327v1.pdf
|
https://github.com/xinshuoweng/GNN3DMOT
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rethinking-the-truly-unsupervised-image-to
|
Rethinking the Truly Unsupervised Image-to-Image Translation
|
2006.06500
|
https://arxiv.org/abs/2006.06500v2
|
https://arxiv.org/pdf/2006.06500v2.pdf
|
https://github.com/clovaai/tunit
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/compositional-convolutional-neural-networks-a
|
Compositional Convolutional Neural Networks: A Deep Architecture with Innate Robustness to Partial Occlusion
|
2003.04490
|
https://arxiv.org/abs/2003.04490v3
|
https://arxiv.org/pdf/2003.04490v3.pdf
|
https://github.com/AdamKortylewski/CompositionalNets
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/intra-3d-intracranial-aneurysm-dataset-for
|
IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning
|
2003.02920
|
https://arxiv.org/abs/2003.02920v2
|
https://arxiv.org/pdf/2003.02920v2.pdf
|
https://github.com/intra3d2019/IntrA
| true | true | true |
none
|
https://paperswithcode.com/paper/few-shot-learning-on-graphs-via-super-classes-1
|
Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral Measures
|
2002.12815
|
https://arxiv.org/abs/2002.12815v1
|
https://arxiv.org/pdf/2002.12815v1.pdf
|
https://github.com/chauhanjatin10/GraphsFewShot
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/roto-translation-equivariant-convolutional
|
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
|
2002.08725
|
https://arxiv.org/abs/2002.08725v1
|
https://arxiv.org/pdf/2002.08725v1.pdf
|
https://github.com/tueimage/se2cnn
| true | true | false |
tf
|
https://paperswithcode.com/paper/efficient-policy-learning-from-surrogate-loss
|
Efficient Policy Learning from Surrogate-Loss Classification Reductions
|
2002.05153
|
https://arxiv.org/abs/2002.05153v1
|
https://arxiv.org/pdf/2002.05153v1.pdf
|
https://github.com/CausalML/ESPRM
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/detecting-stable-communities-in-link-streams
|
Detecting Stable Communities in Link Streams at Multiple Temporal Scales
|
1907.10453
|
https://arxiv.org/abs/1907.10453v1
|
https://arxiv.org/pdf/1907.10453v1.pdf
|
https://github.com/Yquetzal/ECML_PKDD_2019
| true | true | false |
none
|
https://paperswithcode.com/paper/reinforcement-learning-enhanced-quantum
|
Reinforcement Learning Enhanced Quantum-inspired Algorithm for Combinatorial Optimization
|
2002.04676
|
https://arxiv.org/abs/2002.04676v2
|
https://arxiv.org/pdf/2002.04676v2.pdf
|
https://github.com/BeloborodovDS/SIMCIM-RL
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-probabilistic-formulation-of-unsupervised-1
|
A Probabilistic Formulation of Unsupervised Text Style Transfer
|
2002.03912
|
https://arxiv.org/abs/2002.03912v3
|
https://arxiv.org/pdf/2002.03912v3.pdf
|
https://github.com/cindyxinyiwang/deep-latent-sequence-model
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/correcting-knowledge-base-assertions
|
Correcting Knowledge Base Assertions
|
2001.06917
|
https://arxiv.org/abs/2001.06917v1
|
https://arxiv.org/pdf/2001.06917v1.pdf
|
https://github.com/ChenJiaoyan/KG_Curation
| true | true | false |
tf
|
https://paperswithcode.com/paper/nonparametric-estimation-of-population
|
Nonparametric Estimation of Population Average Dose-Response Curves using Entropy Balancing Weights for Continuous Exposures
|
2003.02938
|
https://arxiv.org/abs/2003.02938v1
|
https://arxiv.org/pdf/2003.02938v1.pdf
|
https://github.com/EddieYang211/ebal-python
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-fairness-in-multi-agent-systems
|
Learning Fairness in Multi-Agent Systems
|
1910.14472
|
https://arxiv.org/abs/1910.14472v1
|
https://arxiv.org/pdf/1910.14472v1.pdf
|
https://github.com/PKU-AI-Edge/FEN
| true | true | false |
tf
|
https://paperswithcode.com/paper/a-holistic-approach-to-polyphonic-music
|
A holistic approach to polyphonic music transcription with neural networks
|
1910.12086
|
https://arxiv.org/abs/1910.12086v1
|
https://arxiv.org/pdf/1910.12086v1.pdf
|
https://github.com/mangelroman/audio2score
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/inherent-weight-normalization-in-stochastic
|
Inherent Weight Normalization in Stochastic Neural Networks
|
1910.12316
|
https://arxiv.org/abs/1910.12316v1
|
https://arxiv.org/pdf/1910.12316v1.pdf
|
https://github.com/nmi-lab/neural_sampling_machines
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bottom-up-meta-policy-search
|
Bottom-Up Meta-Policy Search
|
1910.10232
|
https://arxiv.org/abs/1910.10232v2
|
https://arxiv.org/pdf/1910.10232v2.pdf
|
https://github.com/luckeciano/bumps
| true | true | false |
tf
|
https://paperswithcode.com/paper/meme-generating-rnn-model-explanations-via-1
|
MEME: Generating RNN Model Explanations via Model Extraction
| null |
https://openreview.net/forum?id=0beaSUVK_n4
|
https://openreview.net/pdf?id=0beaSUVK_n4
|
https://github.com/dmitrykazhdan/MEME-RNN-XAI
| true | true | false |
tf
|
https://paperswithcode.com/paper/compacting-picking-and-growing-for
|
Compacting, Picking and Growing for Unforgetting Continual Learning
|
1910.06562
|
https://arxiv.org/abs/1910.06562v3
|
https://arxiv.org/pdf/1910.06562v3.pdf
|
https://github.com/ivclab/CPG
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/how-does-language-influence-documentation
|
How Does Language Influence Documentation Workflow? Unsupervised Word Discovery Using Translations in Multiple Languages
|
1910.05154
|
https://arxiv.org/abs/1910.05154v1
|
https://arxiv.org/pdf/1910.05154v1.pdf
|
https://github.com/mzboito/mmboshi
| true | true | true |
none
|
https://paperswithcode.com/paper/smoothfool-an-efficient-framework-for
|
SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations
|
1910.03624
|
https://arxiv.org/abs/1910.03624v1
|
https://arxiv.org/pdf/1910.03624v1.pdf
|
https://github.com/alldbi/SmoothFool
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/epca-high-dimensional-exponential-family-pca
|
$e$PCA: High Dimensional Exponential Family PCA
|
1611.05550
|
https://arxiv.org/abs/1611.05550v2
|
https://arxiv.org/pdf/1611.05550v2.pdf
|
https://github.com/lydiatliu/epca
| true | true | true |
none
|
https://paperswithcode.com/paper/biobert-a-pre-trained-biomedical-language
|
BioBERT: a pre-trained biomedical language representation model for biomedical text mining
|
1901.08746
|
https://arxiv.org/abs/1901.08746v4
|
https://arxiv.org/pdf/1901.08746v4.pdf
|
https://github.com/jpablou/Matching-The-Blanks-Ths
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generalized-inner-loop-meta-learning
|
Generalized Inner Loop Meta-Learning
|
1910.01727
|
https://arxiv.org/abs/1910.01727v2
|
https://arxiv.org/pdf/1910.01727v2.pdf
|
https://github.com/facebookresearch/higher
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/albert-a-lite-bert-for-self-supervised
|
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
|
1909.11942
|
https://arxiv.org/abs/1909.11942v6
|
https://arxiv.org/pdf/1909.11942v6.pdf
|
https://github.com/jpablou/Matching-The-Blanks-Ths
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mtab-matching-tabular-data-to-knowledge-graph
|
MTab: Matching Tabular Data to Knowledge Graph using Probability Models
|
1910.00246
|
https://arxiv.org/abs/1910.00246v2
|
https://arxiv.org/pdf/1910.00246v2.pdf
|
https://github.com/phucty/MTab
| true | true | true |
none
|
https://paperswithcode.com/paper/matching-the-blanks-distributional-similarity
|
Matching the Blanks: Distributional Similarity for Relation Learning
|
1906.03158
|
https://arxiv.org/abs/1906.03158v1
|
https://arxiv.org/pdf/1906.03158v1.pdf
|
https://github.com/jpablou/Matching-The-Blanks-Ths
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/well-calibrated-model-uncertainty-with
|
Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference
|
1909.13550
|
https://arxiv.org/abs/1909.13550v3
|
https://arxiv.org/pdf/1909.13550v3.pdf
|
https://github.com/mlaves/bayesian-temperature-scaling
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/social-and-scene-aware-trajectory-prediction
|
Social and Scene-Aware Trajectory Prediction in Crowded Spaces
|
1909.08840
|
https://arxiv.org/abs/1909.08840v1
|
https://arxiv.org/pdf/1909.08840v1.pdf
|
https://github.com/Oghma/sns-lstm
| true | true | false |
tf
|
https://paperswithcode.com/paper/revealing-the-importance-of-semantic
|
Revealing the Importance of Semantic Retrieval for Machine Reading at Scale
|
1909.08041
|
https://arxiv.org/abs/1909.08041v1
|
https://arxiv.org/pdf/1909.08041v1.pdf
|
https://github.com/easonnie/semanticRetrievalMRS
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/stacking-models-for-nearly-optimal-link
|
Stacking Models for Nearly Optimal Link Prediction in Complex Networks
|
1909.07578
|
https://arxiv.org/abs/1909.07578v1
|
https://arxiv.org/pdf/1909.07578v1.pdf
|
https://github.com/Aghasemian/OptimalLinkPrediction
| true | true | true |
none
|
https://paperswithcode.com/paper/say-anything-automatic-semantic-infelicity
|
Say Anything: Automatic Semantic Infelicity Detection in L2 English Indefinite Pronouns
|
1909.07928
|
https://arxiv.org/abs/1909.07928v1
|
https://arxiv.org/pdf/1909.07928v1.pdf
|
https://github.com/ellarabi/indefinite-pronouns
| true | true | false |
none
|
https://paperswithcode.com/paper/basketballgan-generating-basketball-play
|
BasketballGAN: Generating Basketball Play Simulation Through Sketching
|
1909.07088
|
https://arxiv.org/abs/1909.07088v2
|
https://arxiv.org/pdf/1909.07088v2.pdf
|
https://github.com/chychen/BasketballGAN
| true | true | true |
tf
|
https://paperswithcode.com/paper/efficient-low-rank-gaussian-variational
|
Efficient Low Rank Gaussian Variational Inference for Neural Networks
| null |
http://proceedings.neurips.cc/paper/2020/hash/310cc7ca5a76a446f85c1a0d641ba96d-Abstract.html
|
http://proceedings.neurips.cc/paper/2020/file/310cc7ca5a76a446f85c1a0d641ba96d-Paper.pdf
|
https://github.com/marctom/elrgvi
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/neural-abstractive-text-summarization-with
|
Neural Abstractive Text Summarization with Sequence-to-Sequence Models
|
1812.02303
|
https://arxiv.org/abs/1812.02303v4
|
https://arxiv.org/pdf/1812.02303v4.pdf
|
https://github.com/freeflyxiaoma/pycorrector
| false | false | true |
tf
|
https://paperswithcode.com/paper/distributional-policy-optimization-an
|
Distributional Policy Optimization: An Alternative Approach for Continuous Control
|
1905.09855
|
https://arxiv.org/abs/1905.09855v2
|
https://arxiv.org/pdf/1905.09855v2.pdf
|
https://github.com/tesslerc/GAC
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-language-correction-with-character
|
Neural Language Correction with Character-Based Attention
|
1603.09727
|
http://arxiv.org/abs/1603.09727v1
|
http://arxiv.org/pdf/1603.09727v1.pdf
|
https://github.com/freeflyxiaoma/pycorrector
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-zeroth-order-block-coordinate-descent
|
A Zeroth-Order Block Coordinate Descent Algorithm for Huge-Scale Black-Box Optimization
|
2102.10707
|
https://arxiv.org/abs/2102.10707v2
|
https://arxiv.org/pdf/2102.10707v2.pdf
|
https://github.com/YuchenLou/ZO-BCD
| true | true | false |
none
|
https://paperswithcode.com/paper/when-a-good-translation-is-wrong-in-context
|
When a Good Translation is Wrong in Context: Context-Aware Machine Translation Improves on Deixis, Ellipsis, and Lexical Cohesion
|
1905.05979
|
https://arxiv.org/abs/1905.05979v2
|
https://arxiv.org/pdf/1905.05979v2.pdf
|
https://github.com/lena-voita/good-translation-wrong-in-context
| true | true | false |
tf
|
https://paperswithcode.com/paper/190503706
|
Accurate Visual Localization for Automotive Applications
|
1905.03706
|
http://arxiv.org/abs/1905.03706v1
|
http://arxiv.org/pdf/1905.03706v1.pdf
|
https://github.com/getnexar/Nexar-Visual-Localization
| true | true | true |
none
|
https://paperswithcode.com/paper/lifelong-sequential-modeling-with
|
Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction
|
1905.00758
|
https://arxiv.org/abs/1905.00758v2
|
https://arxiv.org/pdf/1905.00758v2.pdf
|
https://github.com/alimamarankgroup/HPMN
| true | true | true |
tf
|
https://paperswithcode.com/paper/data-hand-fostering-visual-exploration-of
|
Data@Hand: Fostering Visual Exploration of Personal Data on Smartphones Leveraging Speech and Touch Interaction
|
2101.06283
|
https://arxiv.org/abs/2101.06283v1
|
https://arxiv.org/pdf/2101.06283v1.pdf
|
https://github.com/umdsquare/data-at-hand-mobile
| true | false | false |
none
|
https://paperswithcode.com/paper/190411800
|
Adaptive Matrix Completion for the Users and the Items in Tail
|
1904.11800
|
https://arxiv.org/abs/1904.11800v2
|
https://arxiv.org/pdf/1904.11800v2.pdf
|
https://github.com/mohit-shrma/matfac
| true | true | false |
none
|
https://paperswithcode.com/paper/190409324
|
Mask-Predict: Parallel Decoding of Conditional Masked Language Models
|
1904.09324
|
https://arxiv.org/abs/1904.09324v2
|
https://arxiv.org/pdf/1904.09324v2.pdf
|
https://github.com/facebookresearch/Mask-Predict
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/neural-message-passing-for-multi-label-1
|
Neural Message Passing for Multi-Label Classification
|
1904.08049
|
http://arxiv.org/abs/1904.08049v1
|
http://arxiv.org/pdf/1904.08049v1.pdf
|
https://github.com/QData/LaMP
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/difficulty-aware-image-super-resolution-via
|
Difficulty-aware Image Super Resolution via Deep Adaptive Dual-Network
|
1904.05802
|
http://arxiv.org/abs/1904.05802v2
|
http://arxiv.org/pdf/1904.05802v2.pdf
|
https://github.com/xzwlx/Difficulty-SR
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/remasc-realistic-replay-attack-corpus-for
|
ReMASC: Realistic Replay Attack Corpus for Voice Controlled Systems
|
1904.03365
|
https://arxiv.org/abs/1904.03365v2
|
https://arxiv.org/pdf/1904.03365v2.pdf
|
https://github.com/YuanGongND/ReMASC
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-open-source-toolkit-for-the-tracking
|
An open source toolkit for the tracking, termination and recovery of high altitude balloon flights and payloads
|
1904.04321
|
http://arxiv.org/abs/1904.04321v1
|
http://arxiv.org/pdf/1904.04321v1.pdf
|
https://github.com/PaulZC/Balloon_Cut-Down_Device
| true | true | true |
none
|
https://paperswithcode.com/paper/vest-very-sparse-tucker-factorization-of
|
VeST: Very Sparse Tucker Factorization of Large-Scale Tensors
|
1904.02603
|
http://arxiv.org/abs/1904.02603v1
|
http://arxiv.org/pdf/1904.02603v1.pdf
|
https://github.com/leesael/VeST
| true | true | true |
none
|
https://paperswithcode.com/paper/et-bert-a-contextualized-datagram
|
ET-BERT: A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification
|
2202.06335
|
https://arxiv.org/abs/2202.06335v2
|
https://arxiv.org/pdf/2202.06335v2.pdf
|
https://github.com/linwhitehat/et-bert
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/robust-graph-learning-from-noisy-data
|
Robust Graph Learning from Noisy Data
|
1812.06673
|
http://arxiv.org/abs/1812.06673v1
|
http://arxiv.org/pdf/1812.06673v1.pdf
|
https://github.com/sckangz/RGC
| true | true | false |
none
|
https://paperswithcode.com/paper/lsicc-a-large-scale-informal-chinese-corpus
|
LSICC: A Large Scale Informal Chinese Corpus
|
1811.10167
|
http://arxiv.org/abs/1811.10167v1
|
http://arxiv.org/pdf/1811.10167v1.pdf
|
https://github.com/JaniceZhao/Chinese-Forum-Corpus
| true | true | false |
none
|
https://paperswithcode.com/paper/using-sentiment-induction-to-understand
|
Using Sentiment Induction to Understand Variation in Gendered Online Communities
|
1811.07061
|
http://arxiv.org/abs/1811.07061v1
|
http://arxiv.org/pdf/1811.07061v1.pdf
|
https://github.com/lucy3/reddit-sent
| true | true | false |
none
|
https://paperswithcode.com/paper/on-pruning-for-score-based-bayesian-network
|
On Pruning for Score-Based Bayesian Network Structure Learning
|
1905.09943
|
https://arxiv.org/abs/1905.09943v2
|
https://arxiv.org/pdf/1905.09943v2.pdf
|
https://github.com/AlCorreia/BDeu-Structure-Learning
| true | false | false |
none
|
https://paperswithcode.com/paper/derpn-taking-a-further-step-toward-more
|
DeRPN: Taking a further step toward more general object detection
|
1811.06700
|
http://arxiv.org/abs/1811.06700v1
|
http://arxiv.org/pdf/1811.06700v1.pdf
|
https://github.com/HCIILAB/DeRPN
| true | true | true |
none
|
https://paperswithcode.com/paper/counterfactual-learning-from-human
|
Counterfactual Learning from Human Proofreading Feedback for Semantic Parsing
|
1811.12239
|
http://arxiv.org/abs/1811.12239v1
|
http://arxiv.org/pdf/1811.12239v1.pdf
|
https://github.com/carolinlawrence/nematus
| true | false | false |
none
|
https://paperswithcode.com/paper/gated-hierarchical-attention-for-image
|
Gated Hierarchical Attention for Image Captioning
|
1810.12535
|
http://arxiv.org/abs/1810.12535v2
|
http://arxiv.org/pdf/1810.12535v2.pdf
|
https://github.com/qingzwang/GHA-ImageCaptioning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/global-deep-learning-methods-for
|
Non-local U-Net for Biomedical Image Segmentation
|
1812.04103
|
https://arxiv.org/abs/1812.04103v2
|
https://arxiv.org/pdf/1812.04103v2.pdf
|
https://github.com/divelab/Non-local-U-Nets
| true | true | false |
tf
|
https://paperswithcode.com/paper/context-dependent-word-representation-for
|
Context-Dependent Word Representation for Neural Machine Translation
|
1607.00578
|
http://arxiv.org/abs/1607.00578v1
|
http://arxiv.org/pdf/1607.00578v1.pdf
|
https://github.com/kyunghyuncho/WordVectorManifold
| true | true | false |
none
|
https://paperswithcode.com/paper/interactive-language-learning-by-question
|
Interactive Language Learning by Question Answering
|
1908.10909
|
https://arxiv.org/abs/1908.10909v1
|
https://arxiv.org/pdf/1908.10909v1.pdf
|
https://github.com/xingdi-eric-yuan/qait_public
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/building-a-hebrew-semantic-role-labeling
|
Building a Hebrew Semantic Role Labeling Lexical Resource from Parallel Movie Subtitles
|
2005.08206
|
https://arxiv.org/abs/2005.08206v1
|
https://arxiv.org/pdf/2005.08206v1.pdf
|
https://github.com/bgunlp/hebrew_srl
| true | true | false |
none
|
https://paperswithcode.com/paper/data-driven-meta-set-based-fine-grained
|
Data-driven Meta-set Based Fine-Grained Visual Classification
|
2008.02438
|
https://arxiv.org/abs/2008.02438v1
|
https://arxiv.org/pdf/2008.02438v1.pdf
|
https://github.com/NUST-Machine-Intelligence-Laboratory/dmbfgvr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/survae-flows-surjections-to-bridge-the-gap
|
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
|
2007.02731
|
https://arxiv.org/abs/2007.02731v2
|
https://arxiv.org/pdf/2007.02731v2.pdf
|
https://github.com/didriknielsen/survae_flows
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/foreground-segmentation-using-a-triplet
|
Foreground Segmentation Using a Triplet Convolutional Neural Network for Multiscale Feature Encoding
|
1801.02225
|
http://arxiv.org/abs/1801.02225v1
|
http://arxiv.org/pdf/1801.02225v1.pdf
|
https://github.com/lim-anggun/FgSegNet
| true | true | true |
tf
|
https://paperswithcode.com/paper/morphological-analyzer-and-generator-for
|
Morphological Analyzer and Generator for Russian and Ukrainian Languages
|
1503.07283
|
http://arxiv.org/abs/1503.07283v1
|
http://arxiv.org/pdf/1503.07283v1.pdf
|
https://github.com/kmike/pymorphy2
| true | true | true |
none
|
https://paperswithcode.com/paper/how-to-find-a-unicorn-a-novel-model-free
|
How to find a unicorn: a novel model-free, unsupervised anomaly detection method for time series
|
2004.11468
|
https://arxiv.org/abs/2004.11468v3
|
https://arxiv.org/pdf/2004.11468v3.pdf
|
https://github.com/phrenico/uniqed
| true | true | true |
none
|
https://paperswithcode.com/paper/image-to-image-translation-via-group-wise
|
Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation
|
1812.09912
|
https://arxiv.org/abs/1812.09912v2
|
https://arxiv.org/pdf/1812.09912v2.pdf
|
https://github.com/WonwoongCho/GDWCT
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/modular-representation-underlies-systematic
|
Neural Natural Language Inference Models Partially Embed Theories of Lexical Entailment and Negation
|
2004.14623
|
https://arxiv.org/abs/2004.14623v4
|
https://arxiv.org/pdf/2004.14623v4.pdf
|
https://github.com/atticusg/MoNLI
| true | true | false |
none
|
https://paperswithcode.com/paper/modelicagym-applying-reinforcement-learning
|
ModelicaGym: Applying Reinforcement Learning to Modelica Models
|
1909.08604
|
https://arxiv.org/abs/1909.08604v1
|
https://arxiv.org/pdf/1909.08604v1.pdf
|
https://github.com/ucuapps/modelicagym
| true | true | true |
none
|
https://paperswithcode.com/paper/finding-temporal-patterns-using-algebraic
|
Finding path motifs in large temporal graphs using algebraic fingerprints
|
2001.07158
|
https://arxiv.org/abs/2001.07158v4
|
https://arxiv.org/pdf/2001.07158v4.pdf
|
https://github.com/suhastheju/temporal-patterns-mk2
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-precise-completion-of-deformable
|
Towards Precise Completion of Deformable Shapes
| null |
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/4619_ECCV_2020_paper.php
|
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123690358.pdf
|
https://github.com/OshriHalimi/precise_shape_completion
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-compact-single-image-super-resolution
|
Towards Compact Single Image Super-Resolution via Contrastive Self-distillation
|
2105.11683
|
https://arxiv.org/abs/2105.11683v1
|
https://arxiv.org/pdf/2105.11683v1.pdf
|
https://github.com/mindspore-ai/contrib/tree/master/papers/CSD
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/eigendecompositions-of-transfer-operators-in
|
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
|
1712.01572
|
https://arxiv.org/abs/1712.01572v3
|
https://arxiv.org/pdf/1712.01572v3.pdf
|
https://github.com/sklus/d3s
| true | true | false |
none
|
https://paperswithcode.com/paper/a-genre-aware-attention-model-to-improve-the
|
A Genre-Aware Attention Model to Improve the Likability Prediction of Books
| null |
https://aclanthology.org/D18-1375
|
https://aclanthology.org/D18-1375.pdf
|
https://github.com/sjmaharjan/genre_aware_attention
| true | true | false |
none
|
https://paperswithcode.com/paper/prema-principled-tensor-data-recovery-from
|
PREMA: Principled Tensor Data Recovery from Multiple Aggregated Views
|
1910.12001
|
https://arxiv.org/abs/1910.12001v2
|
https://arxiv.org/pdf/1910.12001v2.pdf
|
https://github.com/FaisalAlmutairi/Prema
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-to-generate-move-by-move-commentary
|
Learning to Generate Move-by-Move Commentary for Chess Games from Large-Scale Social Forum Data
| null |
https://aclanthology.org/P18-1154
|
https://aclanthology.org/P18-1154.pdf
|
https://github.com/harsh19/ChessCommentaryGeneration
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/interactive-text-ranking-with-bayesian
|
Interactive Text Ranking with Bayesian Optimisation: A Case Study on Community QA and Summarisation
|
1911.10183
|
https://arxiv.org/abs/1911.10183v3
|
https://arxiv.org/pdf/1911.10183v3.pdf
|
https://github.com/UKPLab/tacl2020-interactive-ranking
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/wavelet-integrated-cnns-for-noise-robust
|
Wavelet Integrated CNNs for Noise-Robust Image Classification
|
2005.03337
|
https://arxiv.org/abs/2005.03337v2
|
https://arxiv.org/pdf/2005.03337v2.pdf
|
https://github.com/LiQiufu/WaveCNet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generating-market-comments-referring-to
|
Generating Market Comments Referring to External Resources
| null |
https://aclanthology.org/W18-6515
|
https://aclanthology.org/W18-6515.pdf
|
https://github.com/aistairc/market-reporter
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/comment-on-androdet-an-adaptive-android
|
Comment on "AndrODet: An adaptive Android obfuscation detector"
|
1910.06192
|
https://arxiv.org/abs/1910.06192v2
|
https://arxiv.org/pdf/1910.06192v2.pdf
|
https://github.com/alirezamohammadinodooshan/androdet-se-eval
| true | true | false |
none
|
https://paperswithcode.com/paper/real-world-multiobject-multigrasp-detection
|
Real-world multiobject, multigrasp detection
| null |
https://arxiv.org/abs/1802.00520
|
https://arxiv.org/pdf/1802.00520.pdf
|
https://github.com/ivalab/grasp_multiObject
| true | true | false |
none
|
https://paperswithcode.com/paper/unsupervised-feature-learning-via-non-1
|
Unsupervised Feature Learning via Non-Parametric Instance Discrimination
| null |
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html
|
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.pdf
|
https://github.com/zhirongw/lemniscate.pytorch
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/zipper-logic
|
Zipper logic
|
1405.6095
|
https://arxiv.org/abs/1405.6095v1
|
https://arxiv.org/pdf/1405.6095v1.pdf
|
https://github.com/mbuliga/zss
| false | false | true |
none
|
https://paperswithcode.com/paper/mobilenets-efficient-convolutional-neural
|
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
1704.04861
|
http://arxiv.org/abs/1704.04861v1
|
http://arxiv.org/pdf/1704.04861v1.pdf
|
https://github.com/sivaole/Face_Detection
| false | false | true |
tf
|
https://paperswithcode.com/paper/reinforcement-learning-with-prototypical-1
|
Reinforcement Learning with Prototypical Representations
| null |
https://openreview.net/forum?id=NVd9b1sFO0R
|
https://openreview.net/pdf?id=NVd9b1sFO0R
|
https://github.com/denisyarats/proto
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/evaluating-bayesian-deep-learning-methods-for
|
Evaluating Bayesian Deep Learning Methods for Semantic Segmentation
|
1811.12709
|
http://arxiv.org/abs/1811.12709v2
|
http://arxiv.org/pdf/1811.12709v2.pdf
|
https://github.com/IntelLabs/AVUC
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/your-answer-is-incorrect-would-you-like-to-1
|
Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset
| null |
https://aclanthology.org/2022.acl-long.587
|
https://aclanthology.org/2022.acl-long.587.pdf
|
https://github.com/sebochs/saf
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/online-geolocalized-emotion-across-us-cities
|
Online geolocalized emotion across US cities during the COVID crisis: Universality, policy response, and connection with local mobility
|
2009.10461
|
https://arxiv.org/abs/2009.10461v1
|
https://arxiv.org/pdf/2009.10461v1.pdf
|
https://github.com/aleckirkley/US-covid-tweets-with-sentiments-and-geolocations
| true | true | true |
none
|
https://paperswithcode.com/paper/pre-training-auto-generated-volumetric-shapes
|
Pre-Training Auto-Generated Volumetric Shapes for 3D Medical Image Segmentation
| null |
https://openaccess.thecvf.com/content/CVPR2023W/ECV/html/Tadokoro_Pre-Training_Auto-Generated_Volumetric_Shapes_for_3D_Medical_Image_Segmentation_CVPRW_2023_paper.html
|
https://openaccess.thecvf.com/content/CVPR2023W/ECV/papers/Tadokoro_Pre-Training_Auto-Generated_Volumetric_Shapes_for_3D_Medical_Image_Segmentation_CVPRW_2023_paper.pdf
|
https://github.com/super-tadory/primgeoseg
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/comparison-by-conversion-reverse-engineering
|
Comparison by Conversion: Reverse-Engineering UCCA from Syntax and Lexical Semantics
|
2011.00834
|
https://arxiv.org/abs/2011.00834v1
|
https://arxiv.org/pdf/2011.00834v1.pdf
|
https://github.com/danielhers/hit-scir-ucca-parser
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bracketing-encodings-for-2-planar-dependency
|
Bracketing Encodings for 2-Planar Dependency Parsing
|
2011.00596
|
https://arxiv.org/abs/2011.00596v2
|
https://arxiv.org/pdf/2011.00596v2.pdf
|
https://github.com/mstrise/dep2label
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-unifying-theory-of-transition-based-and
|
A Unifying Theory of Transition-based and Sequence Labeling Parsing
|
2011.00584
|
https://arxiv.org/abs/2011.00584v1
|
https://arxiv.org/pdf/2011.00584v1.pdf
|
https://github.com/mstrise/dep2label
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/transitive-learning-exploring-the
|
Transitional Learning: Exploring the Transition States of Degradation for Blind Super-resolution
|
2103.15290
|
https://arxiv.org/abs/2103.15290v2
|
https://arxiv.org/pdf/2103.15290v2.pdf
|
https://github.com/YuanfeiHuang/TLSR
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-play-cup-and-ball-with-noisy
|
Learning to Play Cup-and-Ball with Noisy Camera Observations
|
2007.09562
|
https://arxiv.org/abs/2007.09562v1
|
https://arxiv.org/pdf/2007.09562v1.pdf
|
https://github.com/MPC-Berkeley/kendama
| true | true | true |
none
|
https://paperswithcode.com/paper/an-implementation-of-faster-rcnn-with-study
|
An Implementation of Faster RCNN with Study for Region Sampling
|
1702.02138
|
http://arxiv.org/abs/1702.02138v2
|
http://arxiv.org/pdf/1702.02138v2.pdf
|
https://github.com/tigerofmurder/tf-faster-rcnn
| false | false | true |
tf
|
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
|
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
1506.01497
|
http://arxiv.org/abs/1506.01497v3
|
http://arxiv.org/pdf/1506.01497v3.pdf
|
https://github.com/tigerofmurder/tf-faster-rcnn
| false | false | true |
tf
|
https://paperswithcode.com/paper/feature-pyramid-networks-for-object-detection
|
Feature Pyramid Networks for Object Detection
|
1612.03144
|
http://arxiv.org/abs/1612.03144v2
|
http://arxiv.org/pdf/1612.03144v2.pdf
|
https://github.com/tigerofmurder/tf-faster-rcnn
| false | false | true |
tf
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.