paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/dynamic-programming-based-failure-tolerant
|
Dynamic-Programming-Based Failure-Tolerant Control for Satellite with Thrusters in 6-DOF Motion
|
2110.00783
|
https://arxiv.org/abs/2110.00783v1
|
https://arxiv.org/pdf/2110.00783v1.pdf
|
https://github.com/abdolrezat/SPHERES-DPcontrol
| true | false | false |
none
|
https://paperswithcode.com/paper/improving-multi-turn-dialogue-modelling-with
|
Improving Multi-turn Dialogue Modelling with Utterance ReWriter
|
1906.07004
|
https://arxiv.org/abs/1906.07004v1
|
https://arxiv.org/pdf/1906.07004v1.pdf
|
https://github.com/chin-gyou/dialogue-utterance-rewriter
| false | false | true |
tf
|
https://paperswithcode.com/paper/the-wili-benchmark-dataset-for-written
|
The WiLI benchmark dataset for written language identification
|
1801.07779
|
http://arxiv.org/abs/1801.07779v1
|
http://arxiv.org/pdf/1801.07779v1.pdf
|
https://github.com/LauraRuis/LanguageIdentification
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adam-a-method-for-stochastic-optimization
|
Adam: A Method for Stochastic Optimization
|
1412.6980
|
http://arxiv.org/abs/1412.6980v9
|
http://arxiv.org/pdf/1412.6980v9.pdf
|
https://github.com/MalayAgr/DeepNeuralNetwork-Scratch
| false | false | false |
tf
|
https://paperswithcode.com/paper/pysbd-pragmatic-sentence-boundary
|
PySBD: Pragmatic Sentence Boundary Disambiguation
|
2010.09657
|
https://arxiv.org/abs/2010.09657v1
|
https://arxiv.org/pdf/2010.09657v1.pdf
|
https://github.com/nipunsadvilkar/pySBD
| true | true | true |
none
|
https://paperswithcode.com/paper/mask-gvae-blind-denoising-graphs-via
|
Mask-GVAE: Blind Denoising Graphs via Partition
|
2102.04228
|
https://arxiv.org/abs/2102.04228v1
|
https://arxiv.org/pdf/2102.04228v1.pdf
|
https://github.com/halimiqi/www21
| false | false | false |
tf
|
https://paperswithcode.com/paper/bootstrapping-relation-extractors-using
|
Bootstrapping Relation Extractors using Syntactic Search by Examples
|
2102.05007
|
https://arxiv.org/abs/2102.05007v1
|
https://arxiv.org/pdf/2102.05007v1.pdf
|
https://github.com/mataney/BootstrappingRelationExtractors
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/hold-me-tight-influence-of-discriminative
|
Hold me tight! Influence of discriminative features on deep network boundaries
|
2002.06349
|
https://arxiv.org/abs/2002.06349v4
|
https://arxiv.org/pdf/2002.06349v4.pdf
|
https://github.com/LTS4/hold-me-tight
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/on-the-cross-lingual-transferability-of
|
On the Cross-lingual Transferability of Monolingual Representations
|
1910.11856
|
https://arxiv.org/abs/1910.11856v3
|
https://arxiv.org/pdf/1910.11856v3.pdf
|
https://github.com/alon-albalak/xor-covid
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-expressive-graph-representation
|
Towards Expressive Graph Representation
|
2010.05427
|
https://arxiv.org/abs/2010.05427v1
|
https://arxiv.org/pdf/2010.05427v1.pdf
|
https://github.com/mocherson/Exp_GNN
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/hint3-raising-the-bar-for-intent-detection-in
|
HINT3: Raising the bar for Intent Detection in the Wild
|
2009.13833
|
https://arxiv.org/abs/2009.13833v2
|
https://arxiv.org/pdf/2009.13833v2.pdf
|
https://github.com/hellohaptik/HINT3
| true | true | true |
none
|
https://paperswithcode.com/paper/knowledge-enhanced-personalized-review
|
Knowledge-Enhanced Personalized Review Generation with Capsule Graph Neural Network
|
2010.01480
|
https://arxiv.org/abs/2010.01480v1
|
https://arxiv.org/pdf/2010.01480v1.pdf
|
https://github.com/turboLJY/CapsGNN-Review-Generation
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/cad2render-a-modular-toolkit-for-gpu
|
CAD2Render: A Modular Toolkit for GPU-accelerated Photorealistic Synthetic Data Generation for the Manufacturing Industry
|
2211.14054
|
https://arxiv.org/abs/2211.14054v1
|
https://arxiv.org/pdf/2211.14054v1.pdf
|
https://github.com/edm-research/cad2render
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-evaluating-the-robustness-of-neural
|
Towards Evaluating the Robustness of Neural Networks
|
1608.04644
|
http://arxiv.org/abs/1608.04644v2
|
http://arxiv.org/pdf/1608.04644v2.pdf
|
https://github.com/SifatMd/Research-Papers
| false | false | true |
none
|
https://paperswithcode.com/paper/morphable-detector-for-object-detection-on-1
|
Morphable Detector for Object Detection on Demand
|
2110.04917
|
https://arxiv.org/abs/2110.04917v1
|
https://arxiv.org/pdf/2110.04917v1.pdf
|
https://github.com/zhaoxiangyun/morphable-detector
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/continuous-control-with-deep-reinforcement
|
Continuous control with deep reinforcement learning
|
1509.02971
|
https://arxiv.org/abs/1509.02971v6
|
https://arxiv.org/pdf/1509.02971v6.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/u-2-net-going-deeper-with-nested-u-structure
|
U$^2$-Net: Going Deeper with Nested U-Structure for Salient Object Detection
|
2005.09007
|
https://arxiv.org/abs/2005.09007v3
|
https://arxiv.org/pdf/2005.09007v3.pdf
|
https://github.com/xuebinqin/U-2-Net
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/low-dimensional-manifolds-support-multiplexed
|
Low-Dimensional Manifolds Support Multiplexed Integrations in Recurrent Neural Networks
|
2011.10435
|
https://arxiv.org/abs/2011.10435v1
|
https://arxiv.org/pdf/2011.10435v1.pdf
|
https://github.com/AFanthomme/ManifoldsSupportRNI
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-simple-neural-network-module-for-relational
|
A simple neural network module for relational reasoning
|
1706.01427
|
http://arxiv.org/abs/1706.01427v1
|
http://arxiv.org/pdf/1706.01427v1.pdf
|
https://github.com/jaehyunnn/RelationalNetwork_pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/language-through-a-prism-a-spectral-approach
|
Language Through a Prism: A Spectral Approach for Multiscale Language Representations
|
2011.04823
|
https://arxiv.org/abs/2011.04823v1
|
https://arxiv.org/pdf/2011.04823v1.pdf
|
https://github.com/zh217/torch-dct
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/you2me-inferring-body-pose-in-egocentric
|
You2Me: Inferring Body Pose in Egocentric Video via First and Second Person Interactions
|
1904.09882
|
https://arxiv.org/abs/1904.09882v2
|
https://arxiv.org/pdf/1904.09882v2.pdf
|
https://github.com/facebookresearch/you2me
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/adam-a-method-for-stochastic-optimization
|
Adam: A Method for Stochastic Optimization
|
1412.6980
|
http://arxiv.org/abs/1412.6980v9
|
http://arxiv.org/pdf/1412.6980v9.pdf
|
https://github.com/zhuchen03/maxva
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/reducing-bert-pre-training-time-from-3-days
|
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
|
1904.00962
|
https://arxiv.org/abs/1904.00962v5
|
https://arxiv.org/pdf/1904.00962v5.pdf
|
https://github.com/zhuchen03/maxva
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-codec-language-models-are-zero-shot
|
Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers
|
2301.02111
|
https://arxiv.org/abs/2301.02111v1
|
https://arxiv.org/pdf/2301.02111v1.pdf
|
https://github.com/enhuiz/vall-e
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/kervolutional-neural-networks
|
Kervolutional Neural Networks
|
1904.03955
|
https://arxiv.org/abs/1904.03955v2
|
https://arxiv.org/pdf/1904.03955v2.pdf
|
https://github.com/liuch37/Kerception
| false | false | true |
tf
|
https://paperswithcode.com/paper/what-did-you-think-would-happen-explaining
|
What Did You Think Would Happen? Explaining Agent Behaviour Through Intended Outcomes
|
2011.05064
|
https://arxiv.org/abs/2011.05064v1
|
https://arxiv.org/pdf/2011.05064v1.pdf
|
https://github.com/hmhyau/rl-intention
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/coarse-to-fine-pre-training-for-named-entity
|
Coarse-to-Fine Pre-training for Named Entity Recognition
|
2010.08210
|
https://arxiv.org/abs/2010.08210v1
|
https://arxiv.org/pdf/2010.08210v1.pdf
|
https://github.com/strawberryx/CoFEE
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generative-adversarial-network-to-learn-valid
|
Learning Constrained Distributions of Robot Configurations with Generative Adversarial Network
|
2011.05717
|
https://arxiv.org/abs/2011.05717v2
|
https://arxiv.org/pdf/2011.05717v2.pdf
|
https://github.com/teguhSL/learning_distribution_gan
| true | true | false |
tf
|
https://paperswithcode.com/paper/fc-dcnn-a-densely-connected-neural-network
|
FC-DCNN: A densely connected neural network for stereo estimation
|
2010.06950
|
https://arxiv.org/abs/2010.06950v1
|
https://arxiv.org/pdf/2010.06950v1.pdf
|
https://github.com/thedodo/FC-DCNN2
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/acorns-an-easy-to-use-code-generator-for
|
ACORNS: An Easy-To-Use Code Generator for Gradients and Hessians
|
2007.05094
|
https://arxiv.org/abs/2007.05094v1
|
https://arxiv.org/pdf/2007.05094v1.pdf
|
https://github.com/deshanadesai/acorns
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-practical-control-of-singular-values
|
Towards Practical Control of Singular Values of Convolutional Layers
|
2211.13771
|
https://arxiv.org/abs/2211.13771v1
|
https://arxiv.org/pdf/2211.13771v1.pdf
|
https://github.com/whiteteadragon/practical_svd_conv
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-simple-framework-for-contrastive-learning
|
A Simple Framework for Contrastive Learning of Visual Representations
|
2002.05709
|
https://arxiv.org/abs/2002.05709v3
|
https://arxiv.org/pdf/2002.05709v3.pdf
|
https://github.com/danielzgsilva/MOT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/solving-geometry-problems-combining-text-and
|
Solving Geometry Problems: Combining Text and Diagram Interpretation
| null |
https://aclanthology.org/D15-1171
|
https://aclanthology.org/D15-1171.pdf
|
https://github.com/uwnlp/geosolver
| true | false | false |
none
|
https://paperswithcode.com/paper/recfa-resilient-control-flow-attestation
|
ReCFA: Resilient Control-Flow Attestation
|
2110.11603
|
https://arxiv.org/abs/2110.11603v3
|
https://arxiv.org/pdf/2110.11603v3.pdf
|
https://github.com/suncongxd/recfa
| true | true | false |
none
|
https://paperswithcode.com/paper/image-classification-by-reinforcement
|
Image Classification by Reinforcement Learning with Two-State Q-Learning
|
2007.01298
|
https://arxiv.org/abs/2007.01298v3
|
https://arxiv.org/pdf/2007.01298v3.pdf
|
https://github.com/ilonatommy/DLR_FacialEmotionRecognition
| false | false | true |
none
|
https://paperswithcode.com/paper/end-user-programming-of-low-and-high-level
|
End-User Programming of Low- and High-Level Actions for Robotic Task Planning
|
2103.14342
|
https://arxiv.org/abs/2103.14342v1
|
https://arxiv.org/pdf/2103.14342v1.pdf
|
https://github.com/ysl208/iRoPro
| true | true | false |
none
|
https://paperswithcode.com/paper/out-of-distribution-detection-with-semantic
|
Out-of-Distribution Detection with Semantic Mismatch under Masking
|
2208.00446
|
https://arxiv.org/abs/2208.00446v1
|
https://arxiv.org/pdf/2208.00446v1.pdf
|
https://github.com/cure-lab/moodcat
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/meld-a-multimodal-multi-party-dataset-for
|
MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations
|
1810.02508
|
https://arxiv.org/abs/1810.02508v6
|
https://arxiv.org/pdf/1810.02508v6.pdf
|
https://github.com/songys/KosentimentalTreebank
| false | false | true |
none
|
https://paperswithcode.com/paper/generative-adversarial-imitation-learning
|
Generative Adversarial Imitation Learning
|
1606.03476
|
http://arxiv.org/abs/1606.03476v1
|
http://arxiv.org/pdf/1606.03476v1.pdf
|
https://github.com/opendilab/DI-engine/blob/main/ding/reward_model/gail_irl_model.py
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/topologically-driven-methods-for-construction
|
Topologically Driven Methods for Construction Of Multi-Edge Type (Multigraph with nodes puncturing) Quasi-Cyclic Low-density Parity-check Codes for Wireless Channel, WDM Long-Haul and Archival Holographic Memory
|
2011.14753
|
https://arxiv.org/abs/2011.14753v3
|
https://arxiv.org/pdf/2011.14753v3.pdf
|
https://github.com/Lcrypto/-Greedy-Guess-and-Test-method-for-construction-QC-LDPC-codes-with-CPM-of-weigth-more-than-1.
| true | false | false |
none
|
https://paperswithcode.com/paper/inferring-networks-of-substitutable-and
|
Inferring Networks of Substitutable and Complementary Products
|
1506.08839
|
http://arxiv.org/abs/1506.08839v1
|
http://arxiv.org/pdf/1506.08839v1.pdf
|
https://github.com/snap-stanford/snap
| true | false | false |
none
|
https://paperswithcode.com/paper/towards-low-resource-harmful-meme-detection
|
Towards Low-Resource Harmful Meme Detection with LMM Agents
|
2411.05383
|
https://arxiv.org/abs/2411.05383v1
|
https://arxiv.org/pdf/2411.05383v1.pdf
|
https://github.com/jianzhao-huang/lorehm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/developers-perception-fixed-bugs-often
|
Developers' Perception: Fixed Bugs Often Overlooked as Quality Contributions
|
2403.10806
|
https://arxiv.org/abs/2403.10806v1
|
https://arxiv.org/pdf/2403.10806v1.pdf
|
https://github.com/system205/questionnairedata
| true | true | false |
none
|
https://paperswithcode.com/paper/recurrent-rational-networks
|
Adaptive Rational Activations to Boost Deep Reinforcement Learning
|
2102.09407
|
https://arxiv.org/abs/2102.09407v5
|
https://arxiv.org/pdf/2102.09407v5.pdf
|
https://github.com/ml-research/rational_sl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/darf-a-data-reduced-fade-version-for
|
DARF: A data-reduced FADE version for simulations of speech recognition thresholds with real hearing aids
|
2007.05378
|
https://arxiv.org/abs/2007.05378v3
|
https://arxiv.org/pdf/2007.05378v3.pdf
|
https://github.com/m-r-s/fade
| true | false | false |
none
|
https://paperswithcode.com/paper/data-efficient-reinforcement-learning-with
|
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
|
1706.06491
|
http://arxiv.org/abs/1706.06491v2
|
http://arxiv.org/pdf/1706.06491v2.pdf
|
https://github.com/SimonRennotte/Data-Efficient-Reinforcement-Learning-with-Probabilistic-Model-Predictive-Control
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/elixir-learning-from-user-feedback-on
|
ELIXIR: Learning from User Feedback on Explanations to Improve Recommender Models
|
2102.09388
|
https://arxiv.org/abs/2102.09388v3
|
https://arxiv.org/pdf/2102.09388v3.pdf
|
https://github.com/azinmatin/elixir
| true | true | false |
none
|
https://paperswithcode.com/paper/unveiling-the-potential-of-structure
|
Unveiling the Potential of Structure Preserving for Weakly Supervised Object Localization
|
2103.04523
|
https://arxiv.org/abs/2103.04523v2
|
https://arxiv.org/pdf/2103.04523v2.pdf
|
https://github.com/Panxjia/SPA_CVPR2021
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/tlmote-a-topic-based-language-modelling
|
TLMOTE: A Topic-based Language Modelling Approach for Text Oversampling
| null |
https://journals.flvc.org/FLAIRS/article/view/130676
|
https://journals.flvc.org/FLAIRS/article/view/130676/133877
|
https://github.com/Arjun7m/TLMOTE
| true | false | false |
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/teghub/TurkishNER-BERT
| false | false | true |
tf
|
https://paperswithcode.com/paper/ladder-variational-autoencoders
|
Ladder Variational Autoencoders
|
1602.02282
|
http://arxiv.org/abs/1602.02282v3
|
http://arxiv.org/pdf/1602.02282v3.pdf
|
https://github.com/addtt/ladder-vae-pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/multi-study-factor-analysis
|
Multi-study Factor Analysis
|
1611.06350
|
http://arxiv.org/abs/1611.06350v3
|
http://arxiv.org/pdf/1611.06350v3.pdf
|
https://github.com/rdevito/MSFA
| true | true | false |
none
|
https://paperswithcode.com/paper/accelerating-cross-validation-with-total
|
Accelerating cross-validation with total variation and its application to super-resolution imaging
|
1611.07197
|
http://arxiv.org/abs/1611.07197v2
|
http://arxiv.org/pdf/1611.07197v2.pdf
|
https://github.com/T-Obuchi/AcceleratedCVon2DTVLR
| true | true | false |
none
|
https://paperswithcode.com/paper/generalized-sampling-in-julia
|
Generalized Sampling in Julia
|
1607.04091
|
http://arxiv.org/abs/1607.04091v2
|
http://arxiv.org/pdf/1607.04091v2.pdf
|
https://github.com/robertdj/GeneralizedSampling.jl
| true | true | false |
none
|
https://paperswithcode.com/paper/pinpointing-delay-and-forwarding-anomalies
|
Pinpointing Delay and Forwarding Anomalies Using Large-Scale Traceroute Measurements
|
1605.04784
|
http://arxiv.org/abs/1605.04784v2
|
http://arxiv.org/pdf/1605.04784v2.pdf
|
https://github.com/romain-fontugne/tartiflette
| true | true | false |
none
|
https://paperswithcode.com/paper/applying-bayesian-parameter-estimation-to
|
Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium
|
1605.03954
|
http://arxiv.org/abs/1605.03954v2
|
http://arxiv.org/pdf/1605.03954v2.pdf
|
https://github.com/Duke-QCD/trento-paper-2
| true | true | false |
none
|
https://paperswithcode.com/paper/a-context-oriented-extension-of-f
|
A Context-Oriented Extension of F#
|
1512.07681
|
http://arxiv.org/abs/1512.07681v1
|
http://arxiv.org/pdf/1512.07681v1.pdf
|
https://github.com/vslab/fscoda
| true | true | false |
none
|
https://paperswithcode.com/paper/190100897
|
Please Forget Where I Was Last Summer: The Privacy Risks of Public Location (Meta)Data
|
1901.00897
|
http://arxiv.org/abs/1901.00897v1
|
http://arxiv.org/pdf/1901.00897v1.pdf
|
https://github.com/r3mlab/tweetsmapper
| false | false | true |
none
|
https://paperswithcode.com/paper/observables-of-qcd-diffraction
|
Observables of QCD Diffraction
|
1612.00980
|
http://arxiv.org/abs/1612.00980v2
|
http://arxiv.org/pdf/1612.00980v2.pdf
|
https://github.com/mieskolainen/Diffractive-Combinatorics
| false | false | true |
none
|
https://paperswithcode.com/paper/190412818
|
A planetary system around the nearby M dwarf Gl 357 including a transiting hot Earth-sized planet optimal for atmospheric characterisation
|
1904.12818
|
http://arxiv.org/abs/1904.12818v1
|
http://arxiv.org/pdf/1904.12818v1.pdf
|
https://github.com/hpparvi/Gl_357_TTV_analysis
| false | false | true |
none
|
https://paperswithcode.com/paper/stability-of-surface-contacts-for-humanoid
|
Stability of Surface Contacts for Humanoid Robots: Closed-Form Formulae of the Contact Wrench Cone for Rectangular Support Areas
|
1501.04719
|
http://arxiv.org/abs/1501.04719v1
|
http://arxiv.org/pdf/1501.04719v1.pdf
|
https://github.com/stephane-caron/analytical-wrench-cone
| false | false | true |
none
|
https://paperswithcode.com/paper/betting-and-belief-prediction-markets-and
|
Betting and Belief: Prediction Markets and Attribution of Climate Change
|
1603.08961
|
http://arxiv.org/abs/1603.08961v3
|
http://arxiv.org/pdf/1603.08961v3.pdf
|
https://github.com/JohnNay/predMarket
| true | true | true |
none
|
https://paperswithcode.com/paper/yolox-pai-an-improved-yolox-version-by-pai
|
YOLOX-PAI: An Improved YOLOX, Stronger and Faster than YOLOv6
|
2208.13040
|
https://arxiv.org/abs/2208.13040v3
|
https://arxiv.org/pdf/2208.13040v3.pdf
|
https://github.com/code-implementation1/Code9/tree/main/YOLOX
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/zmp-support-areas-for-multi-contact-mobility
|
ZMP support areas for multi-contact mobility under frictional constraints
|
1510.03232
|
http://arxiv.org/abs/1510.03232v2
|
http://arxiv.org/pdf/1510.03232v2.pdf
|
https://github.com/stephane-caron/tro-2016
| true | true | true |
none
|
https://paperswithcode.com/paper/robust-parameter-determination-in-epidemic
|
Robust parameter determination in epidemic models with analytical descriptions of uncertainties
|
1807.05301
|
http://arxiv.org/abs/1807.05301v1
|
http://arxiv.org/pdf/1807.05301v1.pdf
|
https://github.com/GallupGovt/multivac
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/time-domain-neural-audio-style-transfer
|
Time Domain Neural Audio Style Transfer
|
1711.11160
|
http://arxiv.org/abs/1711.11160v1
|
http://arxiv.org/pdf/1711.11160v1.pdf
|
https://github.com/pkmital/time-domain-neural-audio-style-transfer
| false | false | true |
tf
|
https://paperswithcode.com/paper/fast-penalized-regression-and-cross
|
Fast Penalized Regression and Cross Validation for Tall Data with the oem Package
|
1801.09661
|
http://arxiv.org/abs/1801.09661v1
|
http://arxiv.org/pdf/1801.09661v1.pdf
|
https://github.com/jaredhuling/oem
| false | false | true |
none
|
https://paperswithcode.com/paper/discovery-and-validation-of-a-high-density
|
Discovery and Validation of a High-Density sub-Neptune from the K2 Mission
|
1601.07608
|
http://arxiv.org/abs/1601.07608v2
|
http://arxiv.org/pdf/1601.07608v2.pdf
|
https://github.com/nespinoza/exonailer
| true | true | true |
none
|
https://paperswithcode.com/paper/markov-chain-monte-carlo-population-synthesis
|
Markov chain Monte Carlo population synthesis of single radio pulsars in the Galaxy
|
1803.02397
|
http://arxiv.org/abs/1803.02397v1
|
http://arxiv.org/pdf/1803.02397v1.pdf
|
https://github.com/cieslar/Indri
| true | true | true |
none
|
https://paperswithcode.com/paper/full-covariance-of-cmb-and-lensing
|
Full covariance of CMB and lensing reconstruction power spectra
|
1611.01446
|
http://arxiv.org/abs/1611.01446v2
|
http://arxiv.org/pdf/1611.01446v2.pdf
|
https://github.com/JulienPeloton/lenscov
| true | true | true |
none
|
https://paperswithcode.com/paper/matrix-factorization-at-scale-a-comparison-of
|
Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies
|
1607.01335
|
http://arxiv.org/abs/1607.01335v3
|
http://arxiv.org/pdf/1607.01335v3.pdf
|
https://github.com/wushanshan/MatrixProductPCA
| false | false | true |
none
|
https://paperswithcode.com/paper/cognitive-capabilities-for-the-caai-in-cyber
|
Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems
|
2012.01823
|
https://arxiv.org/abs/2012.01823v1
|
https://arxiv.org/pdf/2012.01823v1.pdf
|
https://github.com/janstrohschein/KOARCH
| true | true | false |
none
|
https://paperswithcode.com/paper/peer-to-peer-hate-hate-speech-instigators-and
|
Peer to Peer Hate: Hate Speech Instigators and Their Targets
|
1804.04649
|
http://arxiv.org/abs/1804.04649v1
|
http://arxiv.org/pdf/1804.04649v1.pdf
|
https://github.com/mayelsherif/hate_speech_icwsm18
| true | true | false |
none
|
https://paperswithcode.com/paper/modelfactory-a-matlab-octave-based-toolbox-to
|
ModelFactory: A Matlab/Octave based toolbox to create human body models
|
1804.03407
|
http://arxiv.org/abs/1804.03407v2
|
http://arxiv.org/pdf/1804.03407v2.pdf
|
https://github.com/manishsreenivasa/ModelFactory
| true | true | false |
none
|
https://paperswithcode.com/paper/the-impact-of-automated-parameter
|
The Impact of Automated Parameter Optimization on Defect Prediction Models
|
1801.10270
|
http://arxiv.org/abs/1801.10270v1
|
http://arxiv.org/pdf/1801.10270v1.pdf
|
https://github.com/klainfo/ScottKnottESD
| true | true | false |
none
|
https://paperswithcode.com/paper/solving-systems-of-phaseless-equations-via
|
Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study
|
1502.01822
|
http://arxiv.org/abs/1502.01822v3
|
http://arxiv.org/pdf/1502.01822v3.pdf
|
https://github.com/makwei/phase-kacz
| true | true | false |
none
|
https://paperswithcode.com/paper/bayesian-spike-inference-from-calcium-imaging
|
Bayesian spike inference from calcium imaging data
|
1311.6864
|
http://arxiv.org/abs/1311.6864v1
|
http://arxiv.org/pdf/1311.6864v1.pdf
|
https://github.com/epnev/continuous_time_ca_sampler
| false | false | true |
none
|
https://paperswithcode.com/paper/reconstructing-the-lensing-mass-in-the
|
Reconstructing the Lensing Mass in the Universe from Photometric Catalogue Data
|
1303.6564
|
https://arxiv.org/abs/1303.6564v1
|
https://arxiv.org/pdf/1303.6564v1.pdf
|
https://github.com/drphilmarshall/Pangloss
| true | true | true |
none
|
https://paperswithcode.com/paper/stability-approach-to-regularization-1
|
Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models
|
1006.3316
|
https://arxiv.org/abs/1006.3316v1
|
https://arxiv.org/pdf/1006.3316v1.pdf
|
https://github.com/zdk123/SpiecEasi
| false | false | true |
none
|
https://paperswithcode.com/paper/generalized-stability-approach-for
|
Generalized Stability Approach for Regularized Graphical Models
|
1605.07072
|
http://arxiv.org/abs/1605.07072v1
|
http://arxiv.org/pdf/1605.07072v1.pdf
|
https://github.com/zdk123/SpiecEasi
| false | false | true |
none
|
https://paperswithcode.com/paper/omni-gan-on-the-secrets-of-cgans-and-beyond
|
Omni-GAN: On the Secrets of cGANs and Beyond
|
2011.13074
|
https://arxiv.org/abs/2011.13074v3
|
https://arxiv.org/pdf/2011.13074v3.pdf
|
https://github.com/PeterouZh/Omni-GAN-PyTorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-new-model-to-predict-weak-lensing-peak-1
|
A new model to predict weak-lensing peak counts II. Parameter constraint strategies
|
1506.01076
|
http://arxiv.org/abs/1506.01076v2
|
http://arxiv.org/pdf/1506.01076v2.pdf
|
https://github.com/Linc-tw/camelus
| true | true | true |
none
|
https://paperswithcode.com/paper/a-new-model-to-predict-weak-lensing-peak-2
|
A new model to predict weak-lensing peak counts III. Filtering technique comparisons
|
1603.06773
|
http://arxiv.org/abs/1603.06773v2
|
http://arxiv.org/pdf/1603.06773v2.pdf
|
https://github.com/Linc-tw/camelus
| true | true | true |
none
|
https://paperswithcode.com/paper/multi-view-analysis-of-unregistered-medical
|
Multi-view analysis of unregistered medical images using cross-view transformers
|
2103.11390
|
https://arxiv.org/abs/2103.11390v2
|
https://arxiv.org/pdf/2103.11390v2.pdf
|
https://github.com/gvtulder/cross-view-transformers
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/sum-product-networks-for-robust-automatic
|
Sum-Product Networks for Robust Automatic Speaker Identification
|
1910.11969
|
http://arxiv.org/abs/1910.11969v3
|
http://arxiv.org/pdf/1910.11969v3.pdf
|
https://github.com/anicolson/SPN-ASI
| true | true | true |
tf
|
https://paperswithcode.com/paper/a-new-directional-algebraic-fast-multipole
|
A new Directional Algebraic Fast Multipole Method based iterative solver for the Lippmann-Schwinger equation accelerated with HODLR preconditioner
|
2204.00326
|
https://arxiv.org/abs/2204.00326v2
|
https://arxiv.org/pdf/2204.00326v2.pdf
|
https://github.com/vaishna77/lippmann_schwinger_solver
| true | true | false |
none
|
https://paperswithcode.com/paper/predrnn-towards-a-resolution-of-the-deep-in
|
PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning
|
1804.06300
|
http://arxiv.org/abs/1804.06300v2
|
http://arxiv.org/pdf/1804.06300v2.pdf
|
https://github.com/thuml/predrnn-pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/fast-and-accurate-voronoi-density-gridding
|
Fast and accurate Voronoi density gridding from Lagrangian hydrodynamics data
|
1710.07108
|
http://arxiv.org/abs/1710.07108v2
|
http://arxiv.org/pdf/1710.07108v2.pdf
|
https://github.com/mapetkova/kernel-integration
| true | true | true |
none
|
https://paperswithcode.com/paper/pulp-hd-accelerating-brain-inspired-high
|
PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform
|
1804.09123
|
http://arxiv.org/abs/1804.09123v1
|
http://arxiv.org/pdf/1804.09123v1.pdf
|
https://github.com/fabio-montagna/PULP-HD
| true | true | false |
none
|
https://paperswithcode.com/paper/a-data-driven-mcmillan-degree-lower-bound
|
A Data-Driven McMillan Degree Lower Bound
|
1803.00043
|
http://arxiv.org/abs/1803.00043v2
|
http://arxiv.org/pdf/1803.00043v2.pdf
|
https://github.com/jeffrey-hokanson/McMillanDegree
| true | true | false |
none
|
https://paperswithcode.com/paper/importance-sampling-for-partially-observed
|
Importance sampling for partially observed temporal epidemic models
|
1801.08244
|
http://arxiv.org/abs/1801.08244v2
|
http://arxiv.org/pdf/1801.08244v2.pdf
|
https://github.com/EpiStruct/Black-2018
| true | true | false |
none
|
https://paperswithcode.com/paper/accurate-and-efficient-surface-reconstruction
|
Accurate and efficient surface reconstruction from volume fraction data on general meshes
|
1801.05382
|
http://arxiv.org/abs/1801.05382v2
|
http://arxiv.org/pdf/1801.05382v2.pdf
|
https://github.com/DLR-RY/VoFLibrary
| true | true | false |
none
|
https://paperswithcode.com/paper/updating-probabilistic-knowledge-on-condition
|
Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks
|
1807.02566
|
http://arxiv.org/abs/1807.02566v1
|
http://arxiv.org/pdf/1807.02566v1.pdf
|
https://github.com/bencabrera/bayesian_nets_program
| true | true | false |
none
|
https://paperswithcode.com/paper/challenging-common-interpretability
|
Challenging common interpretability assumptions in feature attribution explanations
|
2012.02748
|
https://arxiv.org/abs/2012.02748v1
|
https://arxiv.org/pdf/2012.02748v1.pdf
|
https://git.sr.ht/~hyphaebeast/challenging-xai
| true | false | false |
none
|
https://paperswithcode.com/paper/a-novel-approach-for-ridge-detection-and-mode
|
A Novel Ridge Detector for Nonstationary Multicomponent Signals: Development and Application to Robust Mode Retrieval
|
2009.13123
|
https://arxiv.org/abs/2009.13123v2
|
https://arxiv.org/pdf/2009.13123v2.pdf
|
https://github.com/Nils-Laurent/RRP-RD
| true | true | false |
none
|
https://paperswithcode.com/paper/a-multiscale-scan-statistic-for-adaptive
|
A Multiscale Scan Statistic for Adaptive Submatrix Localization
|
1906.08884
|
http://arxiv.org/abs/1906.08884v1
|
http://arxiv.org/pdf/1906.08884v1.pdf
|
https://github.com/nozoeli/adaptiveBiclustering
| true | true | false |
none
|
https://paperswithcode.com/paper/buoyancy-driven-entrainment-in-dry-thermals
|
Buoyancy-Driven Entrainment in Dry Thermals
|
1906.07224
|
http://arxiv.org/abs/1906.07224v2
|
http://arxiv.org/pdf/1906.07224v2.pdf
|
https://github.com/mckimb/buoyant_entrainment
| true | true | false |
none
|
https://paperswithcode.com/paper/approximating-orthogonal-matrices-with
|
Approximating Orthogonal Matrices with Effective Givens Factorization
|
1905.05796
|
http://arxiv.org/abs/1905.05796v1
|
http://arxiv.org/pdf/1905.05796v1.pdf
|
https://github.com/tfrerix/givens-factorization
| true | true | false |
none
|
https://paperswithcode.com/paper/distributed-sampling-quantum-communication
|
Distributed sampling, quantum communication witnesses, and measurement incompatibility
|
1904.08435
|
http://arxiv.org/abs/1904.08435v4
|
http://arxiv.org/pdf/1904.08435v4.pdf
|
https://github.com/guerinileonardo/DS_QCwit_MI
| true | true | false |
none
|
https://paperswithcode.com/paper/collision-rates-of-planetesimals-near-mean
|
Collision rates of planetesimals near mean-motion resonances
|
2102.12537
|
https://arxiv.org/abs/2102.12537v1
|
https://arxiv.org/pdf/2102.12537v1.pdf
|
https://github.com/spencerw/planetesimal_coll_paper
| true | true | false |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.