paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/sequential-copying-networks
|
Sequential Copying Networks
|
1807.02301
|
http://arxiv.org/abs/1807.02301v1
|
http://arxiv.org/pdf/1807.02301v1.pdf
|
https://github.com/jiaruncao/BioCopyMechanism
| false | false | true |
none
|
https://paperswithcode.com/paper/unified-language-model-pre-training-for
|
Unified Language Model Pre-training for Natural Language Understanding and Generation
|
1905.03197
|
https://arxiv.org/abs/1905.03197v3
|
https://arxiv.org/pdf/1905.03197v3.pdf
|
https://github.com/jiaruncao/BioCopyMechanism
| false | false | true |
none
|
https://paperswithcode.com/paper/analysis-of-nested-multilevel-monte-carlo
|
Analysis of nested multilevel Monte Carlo using approximate Normal random variables
|
2102.08164
|
https://arxiv.org/abs/2102.08164v1
|
https://arxiv.org/pdf/2102.08164v1.pdf
|
https://github.com/oliversheridanmethven/nested_mlmc_analysis
| true | false | false |
none
|
https://paperswithcode.com/paper/facets-tiers-and-gems-ontology-patterns-for
|
Facets, Tiers and Gems: Ontology Patterns for Hypernormalisation
|
1711.07273
|
http://arxiv.org/abs/1711.07273v1
|
http://arxiv.org/pdf/1711.07273v1.pdf
|
https://github.com/phillord/hyper-go
| false | false | true |
none
|
https://paperswithcode.com/paper/navigating-the-landscape-for-real-time
|
Navigating the Landscape for Real-time Localisation and Mapping for Robotics and Virtual and Augmented Reality
|
1808.06352
|
http://arxiv.org/abs/1808.06352v1
|
http://arxiv.org/pdf/1808.06352v1.pdf
|
https://github.com/dannofield/Particle-Filter-Kidnapped-Vehicle
| false | false | true |
none
|
https://paperswithcode.com/paper/modular-interactive-video-object-segmentation
|
Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
|
2103.07941
|
https://arxiv.org/abs/2103.07941v3
|
https://arxiv.org/pdf/2103.07941v3.pdf
|
https://github.com/Vujas-Eteph/CiVOS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/diffeomorphic-registration-of-discrete
|
Diffeomorphic registration of discrete geometric distributions
|
1801.09778
|
https://arxiv.org/abs/1801.09778v2
|
https://arxiv.org/pdf/1801.09778v2.pdf
|
https://github.com/charoncode/Var_LDDMM
| true | false | false |
none
|
https://paperswithcode.com/paper/the-something-something-video-database-for
|
The "something something" video database for learning and evaluating visual common sense
|
1706.04261
|
http://arxiv.org/abs/1706.04261v2
|
http://arxiv.org/pdf/1706.04261v2.pdf
|
https://github.com/latte488/smth-smth-v2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-machine-translation-by-jointly
|
Neural Machine Translation by Jointly Learning to Align and Translate
|
1409.0473
|
http://arxiv.org/abs/1409.0473v7
|
http://arxiv.org/pdf/1409.0473v7.pdf
|
https://github.com/IpastorSan/seq2seq-with-attention-OCR-translation
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-qubo-formulation-for-qubit-allocation
|
A QUBO Formulation for Qubit Allocation
|
2009.00140
|
https://arxiv.org/abs/2009.00140v1
|
https://arxiv.org/pdf/2009.00140v1.pdf
|
https://github.com/bdury/QUBO-for-Qubit-Allocation
| true | true | true |
none
|
https://paperswithcode.com/paper/deepfacelab-a-simple-flexible-and-extensible
|
DeepFaceLab: Integrated, flexible and extensible face-swapping framework
|
2005.05535
|
https://arxiv.org/abs/2005.05535v5
|
https://arxiv.org/pdf/2005.05535v5.pdf
|
https://github.com/RoninTheKid/yessir
| false | false | true |
tf
|
https://paperswithcode.com/paper/air-a-light-weight-yet-high-performance
|
AIR: A Light-Weight Yet High-Performance Dataflow Engine based on Asynchronous Iterative Routing
|
2001.00164
|
https://arxiv.org/abs/2001.00164v2
|
https://arxiv.org/pdf/2001.00164v2.pdf
|
https://github.com/bda-uni-lu/AIR
| false | false | true |
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/pingheng001/Cnn-Bert
| false | false | true |
tf
|
https://paperswithcode.com/paper/quantum-hypothesis-testing-in-many-body
|
Quantum hypothesis testing in many-body systems
|
2007.11711
|
https://arxiv.org/abs/2007.11711v3
|
https://arxiv.org/pdf/2007.11711v3.pdf
|
https://github.com/victorgodet/quantum-hypothesis-testing
| true | true | true |
none
|
https://paperswithcode.com/paper/measuring-earth-s-magnetic-field-using-a
|
Measuring Earth's Magnetic Field Using a Smartphone Magnetometer
|
1901.00857
|
https://arxiv.org/abs/1901.00857v1
|
https://arxiv.org/pdf/1901.00857v1.pdf
|
https://github.com/pyKuga/lab6turma8cgrupo4
| false | false | true |
none
|
https://paperswithcode.com/paper/3d-r2n2-a-unified-approach-for-single-and
|
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
|
1604.00449
|
http://arxiv.org/abs/1604.00449v1
|
http://arxiv.org/pdf/1604.00449v1.pdf
|
https://github.com/pranavbajoria93/3D_Reconstruction_3DR2N2
| false | false | true |
none
|
https://paperswithcode.com/paper/weakly-supervised-3d-reconstruction-with
|
Weakly supervised 3D Reconstruction with Adversarial Constraint
|
1705.10904
|
http://arxiv.org/abs/1705.10904v2
|
http://arxiv.org/pdf/1705.10904v2.pdf
|
https://github.com/pranavbajoria93/3D_Reconstruction_3DR2N2
| false | false | true |
none
|
https://paperswithcode.com/paper/no-frills-human-object-interaction-detection
|
No-Frills Human-Object Interaction Detection: Factorization, Layout Encodings, and Training Techniques
|
1811.05967
|
https://arxiv.org/abs/1811.05967v2
|
https://arxiv.org/pdf/1811.05967v2.pdf
|
https://github.com/IreneMahhy/no_frills_hoi_det-mod-master
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/quantum-chemistry-in-the-age-of-quantum
|
Quantum Chemistry in the Age of Quantum Computing
|
1812.09976
|
http://arxiv.org/abs/1812.09976v2
|
http://arxiv.org/pdf/1812.09976v2.pdf
|
https://github.com/olgOk/CDL_Cohort_Project_Week2
| false | false | true |
none
|
https://paperswithcode.com/paper/autoscale-learning-to-scale-for-crowd
|
AutoScale: Learning to Scale for Crowd Counting and Localization
|
1912.09632
|
https://arxiv.org/abs/1912.09632v4
|
https://arxiv.org/pdf/1912.09632v4.pdf
|
https://github.com/dk-liang/AutoScale_regression
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/high-quality-monocular-depth-estimation-via
|
High Quality Monocular Depth Estimation via Transfer Learning
|
1812.11941
|
http://arxiv.org/abs/1812.11941v2
|
http://arxiv.org/pdf/1812.11941v2.pdf
|
https://github.com/NSR9/DenseDepth
| false | false | true |
tf
|
https://paperswithcode.com/paper/heterogeneity-in-susceptibility-dictates-the
|
Heterogeneity in susceptibility dictates the order of epidemiological models
|
2005.04704
|
https://arxiv.org/abs/2005.04704v2
|
https://arxiv.org/pdf/2005.04704v2.pdf
|
https://github.com/aapeterson/powerlaw-figures
| false | false | true |
none
|
https://paperswithcode.com/paper/treating-keywords-as-outliers-a-keyphrase
|
Unsupervised Keyphrase Extraction from Scientific Publications
|
1808.03712
|
https://arxiv.org/abs/1808.03712v3
|
https://arxiv.org/pdf/1808.03712v3.pdf
|
https://github.com/epapagia/LocalVectors_AKE
| false | false | true |
none
|
https://paperswithcode.com/paper/instance-based-generalization-in
|
Instance based Generalization in Reinforcement Learning
|
2011.01089
|
https://arxiv.org/abs/2011.01089v1
|
https://arxiv.org/pdf/2011.01089v1.pdf
|
https://github.com/MartinBertran/InstanceAgnosticPolicyEnsembles
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/l-1-ball-prior-uncertainty-quantification
|
Bayesian Inference with the l1-ball Prior: Solving Combinatorial Problems with Exact Zeros
|
2006.01340
|
https://arxiv.org/abs/2006.01340v5
|
https://arxiv.org/pdf/2006.01340v5.pdf
|
https://github.com/moran-xu/l1ball_R
| false | false | true |
none
|
https://paperswithcode.com/paper/pifuhd-multi-level-pixel-aligned-implicit
|
PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization
|
2004.00452
|
https://arxiv.org/abs/2004.00452v1
|
https://arxiv.org/pdf/2004.00452v1.pdf
|
https://github.com/cardboard-q/pifuhd_demo_model_test
| false | false | true |
none
|
https://paperswithcode.com/paper/a-tutorial-on-spectral-clustering
|
A Tutorial on Spectral Clustering
|
0711.0189
|
http://arxiv.org/abs/0711.0189v1
|
http://arxiv.org/pdf/0711.0189v1.pdf
|
https://github.com/devpouya/FastSpectralClustering
| false | false | true |
none
|
https://paperswithcode.com/paper/stochastic-variational-inference
|
Stochastic Variational Inference
|
1206.7051
|
http://arxiv.org/abs/1206.7051v3
|
http://arxiv.org/pdf/1206.7051v3.pdf
|
https://github.com/dfm/arxiv-analysis
| false | false | true |
none
|
https://paperswithcode.com/paper/training-triplet-networks-with-gan
|
Training Triplet Networks with GAN
|
1704.02227
|
http://arxiv.org/abs/1704.02227v1
|
http://arxiv.org/pdf/1704.02227v1.pdf
|
https://github.com/sedflix/tripletgan.pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/knowledge-distillation-via-instance
|
Knowledge Distillation via Instance Relationship Graph
| null |
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdf
|
https://github.com/yufanLIU/IRG
| false | false | false |
none
|
https://paperswithcode.com/paper/general-method-to-calculate-the-elastic
|
General method to calculate the elastic deformation and X-ray diffraction properties of bent crystal wafers
|
2006.04952
|
https://arxiv.org/abs/2006.04952v1
|
https://arxiv.org/pdf/2006.04952v1.pdf
|
https://github.com/aripekka/pyTTE
| true | true | true |
none
|
https://paperswithcode.com/paper/deep-predictive-coding-networks-for-video
|
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
|
1605.08104
|
http://arxiv.org/abs/1605.08104v5
|
http://arxiv.org/pdf/1605.08104v5.pdf
|
https://github.com/zahra-bk/MLOps_VideoAnomalyDetection
| false | false | true |
tf
|
https://paperswithcode.com/paper/continuous-control-with-deep-reinforcement
|
Continuous control with deep reinforcement learning
|
1509.02971
|
https://arxiv.org/abs/1509.02971v6
|
https://arxiv.org/pdf/1509.02971v6.pdf
|
https://github.com/denizmguen/IANNWTF2019-Project
| false | false | true |
tf
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/Se-Hun/GAN_Study
| false | false | true |
none
|
https://paperswithcode.com/paper/confet-an-english-sentence-to-emojis
|
CoNFET: An English Sentence to Emojis Translation Algorithm
| null |
https://www.alexday.me/pdf/emoji.pdf
|
https://www.alexday.me/pdf/emoji.pdf
|
https://github.com/AlexanderDavid/Sentence-to-Emoji-Translation
| true | true | false |
none
|
https://paperswithcode.com/paper/disrupting-deepfakes-adversarial-attacks
|
Disrupting Deepfakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems
|
2003.01279
|
https://arxiv.org/abs/2003.01279v3
|
https://arxiv.org/pdf/2003.01279v3.pdf
|
https://github.com/ndb796/test2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-smoothing-and-inference-for-topic-models
|
On Smoothing and Inference for Topic Models
|
1205.2662
|
https://arxiv.org/abs/1205.2662v1
|
https://arxiv.org/pdf/1205.2662v1.pdf
|
https://github.com/AhmedHlel/soen691-topk-topics
| false | false | true |
none
|
https://paperswithcode.com/paper/probabilistic-end-to-end-noise-correction-for
|
Probabilistic End-to-end Noise Correction for Learning with Noisy Labels
|
1903.07788
|
http://arxiv.org/abs/1903.07788v1
|
http://arxiv.org/pdf/1903.07788v1.pdf
|
https://github.com/JacobPfau/PENCIL
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/text-based-adventures-of-the-golovin-ai-agent
|
Text-based Adventures of the Golovin AI Agent
|
1705.05637
|
http://arxiv.org/abs/1705.05637v1
|
http://arxiv.org/pdf/1705.05637v1.pdf
|
https://github.com/asannasi/txt_adv_nlp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/textworld-a-learning-environment-for-text
|
TextWorld: A Learning Environment for Text-based Games
|
1806.11532
|
https://arxiv.org/abs/1806.11532v2
|
https://arxiv.org/pdf/1806.11532v2.pdf
|
https://github.com/asannasi/txt_adv_nlp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/playing-atari-with-deep-reinforcement
|
Playing Atari with Deep Reinforcement Learning
|
1312.5602
|
http://arxiv.org/abs/1312.5602v1
|
http://arxiv.org/pdf/1312.5602v1.pdf
|
https://github.com/yaxinchen666/dce_pricingRL
| false | false | true |
tf
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/elsa9421/cyclegan_readable
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/scalable-few-shot-learning-of-robust
|
Scalable Few-Shot Learning of Robust Biomedical Name Representations
| null |
https://aclanthology.org/2021.bionlp-1.3
|
https://aclanthology.org/2021.bionlp-1.3.pdf
|
https://github.com/clips/fewshot-biomedical-names
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/leveraging-neural-representations-for
|
Leveraging pre-trained representations to improve access to untranscribed speech from endangered languages
|
2103.14583
|
https://arxiv.org/abs/2103.14583v3
|
https://arxiv.org/pdf/2103.14583v3.pdf
|
https://github.com/fauxneticien/qbe-std_feats_eval
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generalization-properties-and-implicit
|
Generalization Properties and Implicit Regularization for Multiple Passes SGM
|
1605.08375
|
http://arxiv.org/abs/1605.08375v1
|
http://arxiv.org/pdf/1605.08375v1.pdf
|
https://github.com/Adeikalam/Generalization-Properties-of-Algorithms-in-ML
| false | false | true |
none
|
https://paperswithcode.com/paper/bidirectional-projection-network-for-cross
|
Bidirectional Projection Network for Cross Dimension Scene Understanding
|
2103.14326
|
https://arxiv.org/abs/2103.14326v1
|
https://arxiv.org/pdf/2103.14326v1.pdf
|
https://github.com/wbhu/BPNet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ad-hoc-table-retrieval-using-semantic
|
Ad Hoc Table Retrieval using Semantic Similarity
|
1802.06159
|
https://arxiv.org/abs/1802.06159v3
|
https://arxiv.org/pdf/1802.06159v3.pdf
|
https://github.com/Dahny/IN4325-Core-IR-Project
| false | false | true |
none
|
https://paperswithcode.com/paper/agsolt-a-tool-for-automated-test-case
|
Automated Test-Case Generation for Solidity Smart Contracts: the AGSolT Approach and its Evaluation
|
2102.08864
|
https://arxiv.org/abs/2102.08864v4
|
https://arxiv.org/pdf/2102.08864v4.pdf
|
https://github.com/AGSolT/AGSolT-2020-Submission
| true | true | true |
none
|
https://paperswithcode.com/paper/mmdetection-open-mmlab-detection-toolbox-and
|
MMDetection: Open MMLab Detection Toolbox and Benchmark
|
1906.07155
|
https://arxiv.org/abs/1906.07155v1
|
https://arxiv.org/pdf/1906.07155v1.pdf
|
https://github.com/hehehemin/DotaDetection
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/asyrovprog/cs230project
| false | false | true |
none
|
https://paperswithcode.com/paper/the-gap-benchmark-suite
|
The GAP Benchmark Suite
|
1508.03619
|
http://arxiv.org/abs/1508.03619v4
|
http://arxiv.org/pdf/1508.03619v4.pdf
|
https://github.com/tugsbayasgalan/experiment
| false | false | true |
none
|
https://paperswithcode.com/paper/typed-graph-networks
|
Typed Graph Networks
|
1901.07984
|
http://arxiv.org/abs/1901.07984v3
|
http://arxiv.org/pdf/1901.07984v3.pdf
|
https://github.com/machine-reasoning-ufrgs/typed-graph-network
| true | true | true |
tf
|
https://paperswithcode.com/paper/spatially-supervised-recurrent-convolutional
|
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
|
1607.05781
|
http://arxiv.org/abs/1607.05781v1
|
http://arxiv.org/pdf/1607.05781v1.pdf
|
https://github.com/zhangxiutao/ROLO
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-novel-multi-stage-prompting-approach-for
|
A Novel Multi-Stage Prompting Approach for Language Agnostic MCQ Generation using GPT
|
2401.07098
|
https://arxiv.org/abs/2401.07098v1
|
https://arxiv.org/pdf/2401.07098v1.pdf
|
https://github.com/my625/cot-mcqgen
| true | true | false |
none
|
https://paperswithcode.com/paper/scanrefer-3d-object-localization-in-rgb-d
|
ScanRefer: 3D Object Localization in RGB-D Scans using Natural Language
|
1912.08830
|
https://arxiv.org/abs/1912.08830v3
|
https://arxiv.org/pdf/1912.08830v3.pdf
|
https://github.com/yuhaonankaka/adl_maskrcnn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/divide-and-conquer-from-complexity-to
|
Divide and Conquer: From Complexity to Simplicity for Lay Summarization
| null |
https://aclanthology.org/2020.sdp-1.40
|
https://aclanthology.org/2020.sdp-1.40.pdf
|
https://github.com/anuragjoshi3519/laysumm20
| true | true | false |
none
|
https://paperswithcode.com/paper/feature-critic-networks-for-heterogeneous
|
Feature-Critic Networks for Heterogeneous Domain Generalization
|
1901.11448
|
https://arxiv.org/abs/1901.11448v3
|
https://arxiv.org/pdf/1901.11448v3.pdf
|
https://github.com/Emma0118/domain-generalization
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fcos-fully-convolutional-one-stage-object
|
FCOS: Fully Convolutional One-Stage Object Detection
|
1904.01355
|
https://arxiv.org/abs/1904.01355v5
|
https://arxiv.org/pdf/1904.01355v5.pdf
|
https://github.com/neilctwu/FCOS-pytorch_Simplified
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/an-energy-and-gpu-computation-efficient
|
An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection
|
1904.09730
|
http://arxiv.org/abs/1904.09730v1
|
http://arxiv.org/pdf/1904.09730v1.pdf
|
https://github.com/neilctwu/FCOS-pytorch_Simplified
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-the-chern-numbers-of-the-generalised
|
On the Chern numbers of the generalised Kummer varieties
|
math/0204197
|
https://arxiv.org/abs/math/0204197v2
|
https://arxiv.org/pdf/math/0204197v2.pdf
|
https://github.com/8d1h/bott
| false | false | true |
none
|
https://paperswithcode.com/paper/distribution-free-pointwise-adjusted-p-values
|
Distribution-Free Pointwise Adjusted P-Values for Functional Hypotheses
|
1912.00360
|
https://arxiv.org/abs/1912.00360v1
|
https://arxiv.org/pdf/1912.00360v1.pdf
|
https://github.com/wtagr/pppvalue
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-from-past-mistakes-improving
|
Learning from Past Mistakes: Improving Automatic Speech Recognition Output via Noisy-Clean Phrase Context Modeling
|
1802.02607
|
http://arxiv.org/abs/1802.02607v2
|
http://arxiv.org/pdf/1802.02607v2.pdf
|
https://github.com/cassandra-lehmann/ensemble_methods_ASR_transcripts
| false | false | true |
none
|
https://paperswithcode.com/paper/an-end-to-end-trainable-neural-network-for
|
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
|
1507.05717
|
http://arxiv.org/abs/1507.05717v1
|
http://arxiv.org/pdf/1507.05717v1.pdf
|
https://github.com/bhavitvyamalik/OCR-using-CRNN
| false | false | true |
none
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/petermankowski510/facenet_test
| false | false | true |
tf
|
https://paperswithcode.com/paper/ctcmodel-a-keras-model-for-connectionist
|
CTCModel: a Keras Model for Connectionist Temporal Classification
|
1901.07957
|
http://arxiv.org/abs/1901.07957v1
|
http://arxiv.org/pdf/1901.07957v1.pdf
|
https://github.com/bhavitvyamalik/OCR-using-CRNN
| false | false | true |
none
|
https://paperswithcode.com/paper/pp-yolo-an-effective-and-efficient
|
PP-YOLO: An Effective and Efficient Implementation of Object Detector
|
2007.12099
|
https://arxiv.org/abs/2007.12099v3
|
https://arxiv.org/pdf/2007.12099v3.pdf
|
https://github.com/wuzhihao7788/yolodet-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/nu-innet-thai-food-image-recognition-using
|
NU-InNet: Thai Food Image Recognition Using Convolutional Neural Networks on Smartphone
| null |
https://www.researchgate.net/publication/319122515_NU-InNet_Thai_Food_Image_Recognition_Using_Convolutional_Neural_Networks_on_Smartphone
|
https://www.researchgate.net/profile/Chakkrit_Termritthikun/publication/319122515_NU-InNet_Thai_Food_Image_Recognition_Using_Convolutional_Neural_Networks_on_Smartphone/links/5cdd0674299bf14d959c59c4/NU-InNet-Thai-Food-Image-Recognition-Using-Convolutional-Neural-Networks-on-Smartphone.pdf
|
https://github.com/chakkritte/NU-InNet
| false | false | false |
none
|
https://paperswithcode.com/paper/yolact-real-time-instance-segmentation
|
YOLACT: Real-time Instance Segmentation
|
1904.02689
|
https://arxiv.org/abs/1904.02689v2
|
https://arxiv.org/pdf/1904.02689v2.pdf
|
https://github.com/hz-ants/yolact
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/perceptual-losses-for-real-time-style
|
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
|
1603.08155
|
http://arxiv.org/abs/1603.08155v1
|
http://arxiv.org/pdf/1603.08155v1.pdf
|
https://github.com/gordicaleksa/pytorch-neural-style-transfer-fast
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/lswzjuer/caffe-adas
| false | false | true |
none
|
https://paperswithcode.com/paper/a-structured-matrix-factorization-framework
|
A structured matrix factorization framework for large scale calcium imaging data analysis
|
1409.2903
|
http://arxiv.org/abs/1409.2903v1
|
http://arxiv.org/pdf/1409.2903v1.pdf
|
https://github.com/jw3132/p_CNMF_E
| false | false | true |
tf
|
https://paperswithcode.com/paper/efficient-and-accurate-extraction-of-in-vivo
|
Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data
|
1605.07266
|
http://arxiv.org/abs/1605.07266v2
|
http://arxiv.org/pdf/1605.07266v2.pdf
|
https://github.com/jw3132/p_CNMF_E
| false | false | true |
tf
|
https://paperswithcode.com/paper/do-we-need-online-nlu-tools
|
Do We Need Online NLU Tools?
|
2011.09825
|
https://arxiv.org/abs/2011.09825v1
|
https://arxiv.org/pdf/2011.09825v1.pdf
|
https://github.com/petrLorenc/benchmark-intent-tools
| true | true | false |
none
|
https://paperswithcode.com/paper/recognizing-birds-from-sound-the-2018
|
Recognizing Birds from Sound - The 2018 BirdCLEF Baseline System
|
1804.07177
|
http://arxiv.org/abs/1804.07177v1
|
http://arxiv.org/pdf/1804.07177v1.pdf
|
https://github.com/Vish-Khadilkar/Bird_CNN
| false | false | true |
none
|
https://paperswithcode.com/paper/unity-a-general-platform-for-intelligent
|
Unity: A General Platform for Intelligent Agents
|
1809.02627
|
https://arxiv.org/abs/1809.02627v2
|
https://arxiv.org/pdf/1809.02627v2.pdf
|
https://github.com/maxiwoj/car_racer_ml_agents
| false | false | true |
tf
|
https://paperswithcode.com/paper/semi-supervised-sequence-learning
|
Semi-supervised Sequence Learning
|
1511.01432
|
http://arxiv.org/abs/1511.01432v1
|
http://arxiv.org/pdf/1511.01432v1.pdf
|
https://github.com/SamanJamalAbbasi/DRESS_DeepRL
| false | false | true |
tf
|
https://paperswithcode.com/paper/midv-500-a-dataset-for-identity-documents
|
MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream
|
1807.05786
|
https://arxiv.org/abs/1807.05786v4
|
https://arxiv.org/pdf/1807.05786v4.pdf
|
https://github.com/ashokpant/video_processing_opencv_cpp
| false | false | true |
none
|
https://paperswithcode.com/paper/meld-a-multimodal-multi-party-dataset-for
|
MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations
|
1810.02508
|
https://arxiv.org/abs/1810.02508v6
|
https://arxiv.org/pdf/1810.02508v6.pdf
|
https://github.com/aashutj/Multimodal-Multiparty-Emotion-Recognition-System-in-Conversation-Text-Mode-Only-
| false | false | true |
none
|
https://paperswithcode.com/paper/190412622
|
Talk Proposal: Towards the Realistic Evaluation of Evasion Attacks using CARLA
|
1904.12622
|
http://arxiv.org/abs/1904.12622v1
|
http://arxiv.org/pdf/1904.12622v1.pdf
|
https://github.com/eetkim/physatt
| false | false | true |
tf
|
https://paperswithcode.com/paper/shapeshifter-robust-physical-adversarial
|
ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector
|
1804.05810
|
http://arxiv.org/abs/1804.05810v3
|
http://arxiv.org/pdf/1804.05810v3.pdf
|
https://github.com/eetkim/physatt
| false | false | true |
tf
|
https://paperswithcode.com/paper/deep-learning-for-time-series-classification
|
Deep learning for time series classification: a review
|
1809.04356
|
https://arxiv.org/abs/1809.04356v4
|
https://arxiv.org/pdf/1809.04356v4.pdf
|
https://github.com/davislf2/dl-grf
| false | false | true |
tf
|
https://paperswithcode.com/paper/neural-collaborative-filtering-vs-matrix
|
Neural Collaborative Filtering vs. Matrix Factorization Revisited
|
2005.09683
|
https://arxiv.org/abs/2005.09683v2
|
https://arxiv.org/pdf/2005.09683v2.pdf
|
https://github.com/ashishdasari148/Recommender-Systems-using-Collaborative-Filtering
| false | false | true |
none
|
https://paperswithcode.com/paper/adversarial-feature-augmentation-for
|
Adversarial Feature Augmentation for Unsupervised Domain Adaptation
|
1711.08561
|
http://arxiv.org/abs/1711.08561v2
|
http://arxiv.org/pdf/1711.08561v2.pdf
|
https://github.com/ricvolpi/adversarial_feature_augmentation
| true | true | true |
tf
|
https://paperswithcode.com/paper/proper-measure-for-adversarial-robustness
|
Measuring Adversarial Robustness using a Voronoi-Epsilon Adversary
|
2005.02540
|
https://arxiv.org/abs/2005.02540v3
|
https://arxiv.org/pdf/2005.02540v3.pdf
|
https://github.com/hjk92g/proper_measure_robustness
| true | true | true |
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
|
Deep Reinforcement Learning with Double Q-learning
|
1509.06461
|
http://arxiv.org/abs/1509.06461v3
|
http://arxiv.org/pdf/1509.06461v3.pdf
|
https://github.com/yaxinchen666/dce_pricingRL
| false | false | true |
tf
|
https://paperswithcode.com/paper/batch-normalization-accelerating-deep-network
|
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
|
1502.03167
|
http://arxiv.org/abs/1502.03167v3
|
http://arxiv.org/pdf/1502.03167v3.pdf
|
https://github.com/sameervk/BatchNorm_Mechanics
| false | false | true |
tf
|
https://paperswithcode.com/paper/correlations-in-the-elastic-landau-level-of
|
Correlations in the elastic Landau level of spontaneously buckled graphene
|
2003.05163
|
https://arxiv.org/abs/2003.05163v4
|
https://arxiv.org/pdf/2003.05163v4.pdf
|
https://zenodo.org/record/3703337
| true | false | false |
none
|
https://paperswithcode.com/paper/deep-multi-frame-mvdr-filtering-for-single
|
Deep Multi-Frame MVDR Filtering for Single-Microphone Speech Enhancement
|
2011.10345
|
https://arxiv.org/abs/2011.10345v1
|
https://arxiv.org/pdf/2011.10345v1.pdf
|
https://gitlab.uni-oldenburg.de/hura4843/deep-mfmvdr
| true | false | false |
none
|
https://paperswithcode.com/paper/from-shadows-to-safety-occlusion-tracking-and
|
From Shadows to Safety: Occlusion Tracking and Risk Mitigation for Urban Autonomous Driving
|
2504.01408
|
https://arxiv.org/abs/2504.01408v1
|
https://arxiv.org/pdf/2504.01408v1.pdf
|
https://github.com/tum-avs/occlusionawaremotionplanning
| true | true | false |
none
|
https://paperswithcode.com/paper/physnet-a-neural-network-for-predicting
|
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges
|
1902.08408
|
http://arxiv.org/abs/1902.08408v2
|
http://arxiv.org/pdf/1902.08408v2.pdf
|
https://github.com/MeuwlyGroup/PhysNet
| true | true | true |
tf
|
https://paperswithcode.com/paper/financial-trading-as-a-game-a-deep
|
Financial Trading as a Game: A Deep Reinforcement Learning Approach
|
1807.02787
|
http://arxiv.org/abs/1807.02787v1
|
http://arxiv.org/pdf/1807.02787v1.pdf
|
https://github.com/sachink2010/AutomatedStockTrading-DeepQ-Learning
| false | false | true |
none
|
https://paperswithcode.com/paper/adversarial-multiscale-feature-learning-for
|
Adversarial Multiscale Feature Learning for Overlapping Chromosome Segmentation
|
2012.11847
|
https://arxiv.org/abs/2012.11847v2
|
https://arxiv.org/pdf/2012.11847v2.pdf
|
https://github.com/liyemei/AFML
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/enforcing-consistency-in-weakly-supervised
|
Enforcing Consistency in Weakly Supervised Semantic Parsing
|
2107.05833
|
https://arxiv.org/abs/2107.05833v1
|
https://arxiv.org/pdf/2107.05833v1.pdf
|
https://github.com/nitishgupta/allennlp-semparse
| true | true | false |
none
|
https://paperswithcode.com/paper/estimating-the-number-of-clusters-via
|
Estimating the Number of Clusters via Normalized Cluster Instability
|
1608.07494
|
http://arxiv.org/abs/1608.07494v4
|
http://arxiv.org/pdf/1608.07494v4.pdf
|
https://github.com/jmbh/cstab
| false | false | true |
none
|
https://paperswithcode.com/paper/hooknet-multi-resolution-convolutional-neural
|
HookNet: multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images
|
2006.12230
|
https://arxiv.org/abs/2006.12230v1
|
https://arxiv.org/pdf/2006.12230v1.pdf
|
https://github.com/computationalpathologygroup/hooknet
| true | false | false |
tf
|
https://paperswithcode.com/paper/topologically-protected-localised-states-in
|
Topologically protected localised states in spin chains
|
1609.07516
|
http://arxiv.org/abs/1609.07516v3
|
http://arxiv.org/pdf/1609.07516v3.pdf
|
https://github.com/estaremp/spinchain
| false | false | true |
none
|
https://paperswithcode.com/paper/dynamic-graph-representation-learning-with
|
Dynamic Graph Representation Learning with Fourier Temporal State Embedding
| null |
https://openreview.net/forum?id=pBDwTjmdDo
|
https://openreview.net/pdf?id=pBDwTjmdDo
|
https://github.com/anonym-code/ICLR2021
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/spectral-synthesis-for-satellite-to-satellite-1
|
Spectral Synthesis for Satellite-to-Satellite Translation
|
2010.06045
|
https://arxiv.org/abs/2010.06045v1
|
https://arxiv.org/pdf/2010.06045v1.pdf
|
https://github.com/anonymous-ai-for-earth/satellite-to-satellite-translation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/theedhum-nandrum-dravidian-codemix-fire2020
|
Theedhum Nandrum@Dravidian-CodeMix-FIRE2020: A Sentiment Polarity Classifier for YouTube Comments with Code-switching between Tamil, Malayalam and English
|
2010.03189
|
https://arxiv.org/abs/2010.03189v2
|
https://arxiv.org/pdf/2010.03189v2.pdf
|
https://github.com/oligoglot/theedhum-nandrum
| true | true | true |
none
|
https://paperswithcode.com/paper/less-is-more-faster-and-better-music-version
|
Less is more: Faster and better music version identification with embedding distillation
|
2010.03284
|
https://arxiv.org/abs/2010.03284v1
|
https://arxiv.org/pdf/2010.03284v1.pdf
|
https://github.com/furkanyesiler/re-move
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.