paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/evaluation-measures-for-hierarchical
|
Evaluation Measures for Hierarchical Classification: a unified view and novel approaches
|
1306.6802
|
http://arxiv.org/abs/1306.6802v2
|
http://arxiv.org/pdf/1306.6802v2.pdf
|
https://github.com/globality-corp/sklearn-hierarchical-classification
| false | false | true |
none
|
https://paperswithcode.com/paper/computed-tomography-reconstruction-using-deep
|
Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods
|
2003.04989
|
https://arxiv.org/abs/2003.04989v2
|
https://arxiv.org/pdf/2003.04989v2.pdf
|
https://github.com/oterobaguer/dip-ct-benchmark
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/reform-fast-and-adaptive-solution-for-subteam
|
REFORM: Fast and Adaptive Solution for Subteam Replacement
|
2101.11070
|
https://arxiv.org/abs/2101.11070v2
|
https://arxiv.org/pdf/2101.11070v2.pdf
|
https://github.com/BillyZhaohengLi/subteam_replacement_paper
| true | false | true |
none
|
https://paperswithcode.com/paper/explaining-adversarial-vulnerability-with-a
|
Explaining Adversarial Vulnerability with a Data Sparsity Hypothesis
|
2103.00778
|
https://arxiv.org/abs/2103.00778v3
|
https://arxiv.org/pdf/2103.00778v3.pdf
|
https://github.com/MahsaPaknezhad/AdversariallyRobustTraining
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/interaction-networks-for-the-identification
|
Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
|
1909.12285
|
https://arxiv.org/abs/1909.12285v2
|
https://arxiv.org/pdf/1909.12285v2.pdf
|
https://github.com/thongonary/HbbIN
| false | false | true |
tf
|
https://paperswithcode.com/paper/show-attend-and-tell-neural-image-caption
|
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
|
1502.03044
|
http://arxiv.org/abs/1502.03044v3
|
http://arxiv.org/pdf/1502.03044v3.pdf
|
https://github.com/RichardChangCA/CSI_5386_NLP_Project
| false | false | true |
tf
|
https://paperswithcode.com/paper/precise-synthetic-image-and-lidar-presil
|
Precise Synthetic Image and LiDAR (PreSIL) Dataset for Autonomous Vehicle Perception
|
1905.00160
|
https://arxiv.org/abs/1905.00160v2
|
https://arxiv.org/pdf/1905.00160v2.pdf
|
https://github.com/bradenhurl/GTAVisionExport-DepthExtractor
| false | false | true |
none
|
https://paperswithcode.com/paper/graph-neural-networks-for-social
|
Graph Neural Networks for Social Recommendation
|
1902.07243
|
https://arxiv.org/abs/1902.07243v2
|
https://arxiv.org/pdf/1902.07243v2.pdf
|
https://github.com/Wang-Shuo/GraphRec_PyTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deepar-probabilistic-forecasting-with
|
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
|
1704.04110
|
http://arxiv.org/abs/1704.04110v3
|
http://arxiv.org/pdf/1704.04110v3.pdf
|
https://github.com/ucl-exoplanets/deepARTransit
| false | false | true |
tf
|
https://paperswithcode.com/paper/skep-sentiment-knowledge-enhanced-pre
|
SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis
|
2005.05635
|
https://arxiv.org/abs/2005.05635v2
|
https://arxiv.org/pdf/2005.05635v2.pdf
|
https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/sentiment_analysis/skep
| false | false | false |
paddle
|
https://paperswithcode.com/paper/faster-boosting-with-smaller-memory
|
Faster Boosting with Smaller Memory
|
1901.09047
|
https://arxiv.org/abs/1901.09047v3
|
https://arxiv.org/pdf/1901.09047v3.pdf
|
https://github.com/arapat/sparrow
| true | true | true |
none
|
https://paperswithcode.com/paper/dancing-links
|
Dancing links
|
cs/0011047
|
https://arxiv.org/abs/cs/0011047v1
|
https://arxiv.org/pdf/cs/0011047v1.pdf
|
https://github.com/farhiongit/dancing-links
| false | false | true |
none
|
https://paperswithcode.com/paper/a-simple-yet-effective-baseline-for-non
|
A simple yet effective baseline for non-attributed graph classification
|
1811.03508
|
https://arxiv.org/abs/1811.03508v3
|
https://arxiv.org/pdf/1811.03508v3.pdf
|
https://github.com/Chen-Cai-OSU/LDP
| true | true | true |
none
|
https://paperswithcode.com/paper/style-transfer-in-text-exploration-and
|
Style Transfer in Text: Exploration and Evaluation
|
1711.06861
|
http://arxiv.org/abs/1711.06861v2
|
http://arxiv.org/pdf/1711.06861v2.pdf
|
https://github.com/rj-IIITH18/style_transfer_in_text
| false | false | true |
none
|
https://paperswithcode.com/paper/why-so-down-the-role-of-negative-and-positive
|
Why So Down? The Role of Negative (and Positive) Pointwise Mutual Information in Distributional Semantics
|
1908.06941
|
https://arxiv.org/abs/1908.06941v1
|
https://arxiv.org/pdf/1908.06941v1.pdf
|
https://github.com/alexandres/lexvec
| true | true | true |
none
|
https://paperswithcode.com/paper/russian-natural-language-generation-creation
|
Russian Natural Language Generation: Creation of a Language Modelling Dataset and Evaluation with Modern Neural Architectures
|
2005.02470
|
https://arxiv.org/abs/2005.02470v1
|
https://arxiv.org/pdf/2005.02470v1.pdf
|
https://github.com/zeinsh/lenta_short_sentences
| true | true | false |
none
|
https://paperswithcode.com/paper/efficient-neighbourhood-consensus-networks
|
Efficient Neighbourhood Consensus Networks via Submanifold Sparse Convolutions
|
2004.10566
|
https://arxiv.org/abs/2004.10566v1
|
https://arxiv.org/pdf/2004.10566v1.pdf
|
https://github.com/ignacio-rocco/sparse-ncnet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/butterfly-transform-an-efficient-fft-based
|
Butterfly Transform: An Efficient FFT Based Neural Architecture Design
|
1906.02256
|
https://arxiv.org/abs/1906.02256v2
|
https://arxiv.org/pdf/1906.02256v2.pdf
|
https://github.com/keivanalizadeh/ButterflyTransform
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-architectures-for-named-entity
|
Neural Architectures for Named Entity Recognition
|
1603.01360
|
http://arxiv.org/abs/1603.01360v3
|
http://arxiv.org/pdf/1603.01360v3.pdf
|
https://github.com/deepmipt/ner
| false | false | true |
tf
|
https://paperswithcode.com/paper/global-health-science-leverages-established
|
Global health science leverages established collaboration network to fight COVID-19
|
2102.00298
|
https://arxiv.org/abs/2102.00298v1
|
https://arxiv.org/pdf/2102.00298v1.pdf
|
https://github.com/P-Pelletier/Global-health-sciences-response-to-COVID-19
| true | true | false |
none
|
https://paperswithcode.com/paper/objects-as-points
|
Objects as Points
|
1904.07850
|
http://arxiv.org/abs/1904.07850v2
|
http://arxiv.org/pdf/1904.07850v2.pdf
|
https://github.com/voidrank/SaccadeNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-reinforcement-learning-for-turbulent
|
Deep reinforcement learning for turbulent drag reduction in channel flows
|
2301.09889
|
https://arxiv.org/abs/2301.09889v3
|
https://arxiv.org/pdf/2301.09889v3.pdf
|
https://github.com/kth-flowai/marl-drag-reduction-in-wall-bounded-flows
| true | true | true |
none
|
https://paperswithcode.com/paper/mind-the-gap-a-balanced-corpus-of-gendered
|
Mind the GAP: A Balanced Corpus of Gendered Ambiguous Pronouns
|
1810.05201
|
http://arxiv.org/abs/1810.05201v1
|
http://arxiv.org/pdf/1810.05201v1.pdf
|
https://github.com/vid-koci/weightingGAP
| false | false | true |
none
|
https://paperswithcode.com/paper/asynchronous-methods-for-deep-reinforcement
|
Asynchronous Methods for Deep Reinforcement Learning
|
1602.01783
|
http://arxiv.org/abs/1602.01783v2
|
http://arxiv.org/pdf/1602.01783v2.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/proximal-policy-optimization-algorithms
|
Proximal Policy Optimization Algorithms
|
1707.06347
|
http://arxiv.org/abs/1707.06347v2
|
http://arxiv.org/pdf/1707.06347v2.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/soft-actor-critic-off-policy-maximum-entropy
|
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
|
1801.01290
|
http://arxiv.org/abs/1801.01290v2
|
http://arxiv.org/pdf/1801.01290v2.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/soft-actor-critic-algorithms-and-applications
|
Soft Actor-Critic Algorithms and Applications
|
1812.05905
|
http://arxiv.org/abs/1812.05905v2
|
http://arxiv.org/pdf/1812.05905v2.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/semantic-correspondence-via-2d-3d-2d-cycle
|
Semantic Correspondence via 2D-3D-2D Cycle
|
2004.09061
|
https://arxiv.org/abs/2004.09061v2
|
https://arxiv.org/pdf/2004.09061v2.pdf
|
https://github.com/qq456cvb/SemanticTransfer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/graph-structured-referring-expression
|
Graph-Structured Referring Expression Reasoning in The Wild
|
2004.08814
|
https://arxiv.org/abs/2004.08814v1
|
https://arxiv.org/pdf/2004.08814v1.pdf
|
https://github.com/sibeiyang/sgmn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/going-deeper-with-convolutions
|
Going Deeper with Convolutions
|
1409.4842
|
http://arxiv.org/abs/1409.4842v1
|
http://arxiv.org/pdf/1409.4842v1.pdf
|
https://github.com/kaseris/ILSVRCPlus
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/kaseris/ILSVRCPlus
| false | false | true |
none
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/kaseris/ILSVRCPlus
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-to-interpret-satellite-images-in
|
Learning to Interpret Satellite Images in Global Scale Using Wikipedia
|
1905.02506
|
https://arxiv.org/abs/1905.02506v3
|
https://arxiv.org/pdf/1905.02506v3.pdf
|
https://github.com/buzkent86/WikiSatNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adaptive-graph-convolutional-network-with
|
Adaptive Graph Convolutional Network with Attention Graph Clustering for Co-saliency Detection
|
2003.06167
|
https://arxiv.org/abs/2003.06167v1
|
https://arxiv.org/pdf/2003.06167v1.pdf
|
https://github.com/ltp1995/GCAGC-CVPR2020
| false | false | false |
none
|
https://paperswithcode.com/paper/cross-lingual-alignment-of-contextual-word
|
Cross-Lingual Alignment of Contextual Word Embeddings, with Applications to Zero-shot Dependency Parsing
|
1902.09492
|
http://arxiv.org/abs/1902.09492v2
|
http://arxiv.org/pdf/1902.09492v2.pdf
|
https://github.com/TalSchuster/CrossLingualELMo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/identity-mappings-in-deep-residual-networks
|
Identity Mappings in Deep Residual Networks
|
1603.05027
|
http://arxiv.org/abs/1603.05027v3
|
http://arxiv.org/pdf/1603.05027v3.pdf
|
https://github.com/kaseris/ILSVRCPlus
| false | false | true |
none
|
https://paperswithcode.com/paper/character-level-convolutional-networks-for
|
Character-level Convolutional Networks for Text Classification
|
1509.01626
|
http://arxiv.org/abs/1509.01626v3
|
http://arxiv.org/pdf/1509.01626v3.pdf
|
https://github.com/paper-cat/Sentence-Classifications
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-unified-non-negative-matrix-factorization
|
A Unified Non-Negative Matrix Factorization Framework for Semi-Supervised Learning on Graphs
| null |
https://epubs.siam.org/doi/10.1137/1.9781611976236.55
|
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976236.55
|
https://github.com/sonaidgr8/USS_NMF
| false | true | false |
none
|
https://paperswithcode.com/paper/shock-identification-and-classification-in-2d
|
Shock identification and classification in 2D MHD compressible turbulence -- Orszag-Tang vortex
|
2111.02242
|
https://arxiv.org/abs/2111.02242v1
|
https://arxiv.org/pdf/2111.02242v1.pdf
|
https://github.com/AstroSnow/PIP
| true | true | false |
none
|
https://paperswithcode.com/paper/integrated-hardware-architecture-and-device
|
Integrated Hardware Architecture and Device Placement Search
|
2407.13143
|
https://arxiv.org/abs/2407.13143v1
|
https://arxiv.org/pdf/2407.13143v1.pdf
|
https://github.com/msr-fiddle/phaze
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-confidence-for-transformer-based
|
Learning Confidence for Transformer-based Neural Machine Translation
|
2203.11413
|
https://arxiv.org/abs/2203.11413v1
|
https://arxiv.org/pdf/2203.11413v1.pdf
|
https://github.com/yulu-dada/learned-conf-nmt
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/n-beats-neural-basis-expansion-analysis-for
|
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
|
1905.10437
|
https://arxiv.org/abs/1905.10437v4
|
https://arxiv.org/pdf/1905.10437v4.pdf
|
https://github.com/Y9008/NBEATS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/prioritized-experience-replay
|
Prioritized Experience Replay
|
1511.05952
|
http://arxiv.org/abs/1511.05952v4
|
http://arxiv.org/pdf/1511.05952v4.pdf
|
https://github.com/Brandon-Rozek/DeepRL
| false | false | true |
none
|
https://paperswithcode.com/paper/named-entities-troubling-your-neural-methods
|
NE-Table: A Neural key-value table for Named Entities
|
1804.09540
|
https://arxiv.org/abs/1804.09540v2
|
https://arxiv.org/pdf/1804.09540v2.pdf
|
https://github.com/IBM/ne-table-datasets
| true | true | true |
none
|
https://paperswithcode.com/paper/deep-learning-with-4d-spatio-temporal-data
|
Deep learning with 4D spatio-temporal data representations for OCT-based force estimation
|
2005.10033
|
https://arxiv.org/abs/2005.10033v1
|
https://arxiv.org/pdf/2005.10033v1.pdf
|
https://github.com/ngessert/4d_deep_learning
| true | true | true |
tf
|
https://paperswithcode.com/paper/a-study-of-performance-of-optimal-transport
|
A Study of Performance of Optimal Transport
|
2005.01182
|
https://arxiv.org/abs/2005.01182v1
|
https://arxiv.org/pdf/2005.01182v1.pdf
|
https://github.com/twistedcubic/fast_ot
| true | true | true |
none
|
https://paperswithcode.com/paper/pixel-deconvolutional-networks
|
Pixel Deconvolutional Networks
|
1705.06820
|
http://arxiv.org/abs/1705.06820v4
|
http://arxiv.org/pdf/1705.06820v4.pdf
|
https://github.com/zhengyang-wang/Unet_3D
| false | false | true |
tf
|
https://paperswithcode.com/paper/detecting-anomalies-in-image-classification
|
Detecting Anomalies in Image Classification by Means of Semantic Relationships
| null |
https://iris.polito.it/retrieve/handle/11583/2749672/268557/SAD_AIKE_2019_camera_ready.pdf
|
https://iris.polito.it/retrieve/handle/11583/2749672/268557/SAD_AIKE_2019_camera_ready.pdf
|
https://github.com/AndreaPasini/SAD2019
| false | true | false |
none
|
https://paperswithcode.com/paper/learning-to-detect-rfi-in-radio-astronomy
|
Learning to detect RFI in radio astronomy without seeing it
|
2207.00351
|
https://arxiv.org/abs/2207.00351v2
|
https://arxiv.org/pdf/2207.00351v2.pdf
|
https://github.com/mesarcik/rfi-nln
| true | true | true |
tf
|
https://paperswithcode.com/paper/slide-in-defense-of-smart-algorithms-over
|
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems
|
1903.03129
|
https://arxiv.org/abs/1903.03129v2
|
https://arxiv.org/pdf/1903.03129v2.pdf
|
https://github.com/keroro824/HashingDeepLearning
| true | true | true |
tf
|
https://paperswithcode.com/paper/on-the-delta-method-for-uncertainty
|
Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method
|
1912.00832
|
https://arxiv.org/abs/1912.00832v2
|
https://arxiv.org/pdf/1912.00832v2.pdf
|
https://github.com/gknilsen/pydeepdelta
| true | true | true |
tf
|
https://paperswithcode.com/paper/videobert-a-joint-model-for-video-and
|
VideoBERT: A Joint Model for Video and Language Representation Learning
|
1904.01766
|
https://arxiv.org/abs/1904.01766v2
|
https://arxiv.org/pdf/1904.01766v2.pdf
|
https://github.com/MDSKUL/MasterProject
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generalized-focal-loss-learning-qualified-and
|
Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection
|
2006.04388
|
https://arxiv.org/abs/2006.04388v1
|
https://arxiv.org/pdf/2006.04388v1.pdf
|
https://github.com/implus/GFocal
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/noise2self-blind-denoising-by-self
|
Noise2Self: Blind Denoising by Self-Supervision
|
1901.11365
|
https://arxiv.org/abs/1901.11365v2
|
https://arxiv.org/pdf/1901.11365v2.pdf
|
https://github.com/royerlab/ssi-code
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/conversational-question-answering-over
|
Conversational Question Answering over Passages by Leveraging Word Proximity Networks
|
2004.13117
|
https://arxiv.org/abs/2004.13117v3
|
https://arxiv.org/pdf/2004.13117v3.pdf
|
https://github.com/magkai/CROWN
| true | true | true |
none
|
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
|
Efficient Estimation of Word Representations in Vector Space
|
1301.3781
|
http://arxiv.org/abs/1301.3781v3
|
http://arxiv.org/pdf/1301.3781v3.pdf
|
https://github.com/PaddlePaddle/PaddleRec/tree/release/2.1.0/models/recall/word2vec
| false | false | false |
paddle
|
https://paperswithcode.com/paper/on-the-minimization-of-sobolev-norms-of-time
|
On the Minimization of Sobolev Norms of Time-Varying Graph Signals: Estimation of New Coronavirus Disease 2019 Cases
|
2007.00336
|
https://arxiv.org/abs/2007.00336v1
|
https://arxiv.org/pdf/2007.00336v1.pdf
|
https://github.com/jhonygiraldo/Sobolev_COVID19
| false | false | false |
none
|
https://paperswithcode.com/paper/dynamic-routing-between-capsules
|
Dynamic Routing Between Capsules
|
1710.09829
|
http://arxiv.org/abs/1710.09829v2
|
http://arxiv.org/pdf/1710.09829v2.pdf
|
https://github.com/leoniloris/CapsNet
| false | false | true |
tf
|
https://paperswithcode.com/paper/fairface-face-attribute-dataset-for-balanced
|
FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age
|
1908.04913
|
https://arxiv.org/abs/1908.04913v1
|
https://arxiv.org/pdf/1908.04913v1.pdf
|
https://github.com/dchen236/FairFace
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mafid-moving-average-equipped-fusion-in
|
MAFiD: Moving Average Equipped Fusion-in-Decoder for Question Answering over Tabular and Textual Data
| null |
https://aclanthology.org/2023.findings-eacl.177/
|
https://aclanthology.org/2023.findings-eacl.177.pdf
|
https://github.com/ZIZUN/MAFiD
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/show-and-tell-a-neural-image-caption
|
Show and Tell: A Neural Image Caption Generator
|
1411.4555
|
http://arxiv.org/abs/1411.4555v2
|
http://arxiv.org/pdf/1411.4555v2.pdf
|
https://github.com/Pillercottrer/radcap_project
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/red-deep-recurrent-neural-networks-for-sleep
|
RED: Deep Recurrent Neural Networks for Sleep EEG Event Detection
|
2005.07795
|
https://arxiv.org/abs/2005.07795v2
|
https://arxiv.org/pdf/2005.07795v2.pdf
|
https://github.com/nicolasigor/cmorlet-tensorflow
| false | false | true |
tf
|
https://paperswithcode.com/paper/robust-learning-with-jacobian-regularization
|
Robust Learning with Jacobian Regularization
|
1908.02729
|
https://arxiv.org/abs/1908.02729v1
|
https://arxiv.org/pdf/1908.02729v1.pdf
|
https://github.com/Fadeich/HotFlip-CNN-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/word-discriminations-for-vocabulary-inventory
|
Word Discriminations for Vocabulary Inventory Prediction
| null |
https://aclanthology.org/2021.ranlp-main.134
|
https://aclanthology.org/2021.ranlp-main.134.pdf
|
https://github.com/frankier/vocabirt
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/searching-towards-class-aware-generators-for
|
Searching towards Class-Aware Generators for Conditional Generative Adversarial Networks
|
2006.14208
|
https://arxiv.org/abs/2006.14208v2
|
https://arxiv.org/pdf/2006.14208v2.pdf
|
https://github.com/PeterouZh/NAS_cGAN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/identification-of-crystal-symmetry-from-noisy
|
Identification of Crystal Symmetry from Noisy Diffraction Patterns by A Shape Analysis and Deep Learning
|
2005.12476
|
https://arxiv.org/abs/2005.12476v1
|
https://arxiv.org/pdf/2005.12476v1.pdf
|
https://github.com/tiongleslie/crystal-structure-classification
| true | true | true |
tf
|
https://paperswithcode.com/paper/constant-time-predictive-distributions-for
|
Constant-Time Predictive Distributions for Gaussian Processes
|
1803.06058
|
http://arxiv.org/abs/1803.06058v4
|
http://arxiv.org/pdf/1803.06058v4.pdf
|
https://github.com/cornellius-gp/gpytorch/blob/master/examples/02_Scalable_Exact_GPs/Simple_GP_Regression_With_LOVE_Fast_Variances_and_Sampling.ipynb
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-20-liter-test-stand-with-gas-purification
|
A 20-Liter Test Stand with Gas Purification for Liquid Argon Research
|
1602.01884
|
http://arxiv.org/abs/1602.01884v2
|
http://arxiv.org/pdf/1602.01884v2.pdf
|
https://github.com/dombarker30/LArPMT_Study
| false | false | true |
none
|
https://paperswithcode.com/paper/wav2kws-transfer-learning-from-speech
|
Wav2KWS: Transfer Learning from Speech Representations for Keyword Spotting
| null |
https://ieeexplore.ieee.org/document/9427206
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9427206
|
https://github.com/qute012/Wav2Keyword
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/190409324
|
Mask-Predict: Parallel Decoding of Conditional Masked Language Models
|
1904.09324
|
https://arxiv.org/abs/1904.09324v2
|
https://arxiv.org/pdf/1904.09324v2.pdf
|
https://github.com/facebookresearch/DisCo
| false | false | true |
none
|
https://paperswithcode.com/paper/grammar-compressed-indexes-with-logarithmic
|
Grammar-Compressed Indexes with Logarithmic Search Time
|
2004.01032
|
https://arxiv.org/abs/2004.01032v1
|
https://arxiv.org/pdf/2004.01032v1.pdf
|
https://github.com/apachecom/grammar_improved_index
| true | true | true |
none
|
https://paperswithcode.com/paper/end-to-end-learning-for-self-driving-cars
|
End to End Learning for Self-Driving Cars
|
1604.07316
|
http://arxiv.org/abs/1604.07316v1
|
http://arxiv.org/pdf/1604.07316v1.pdf
|
https://github.com/heechul/picar
| false | false | true |
tf
|
https://paperswithcode.com/paper/stability-of-low-rank-tensor-representations
|
Stability of Low-Rank Tensor Representations and Structured Multilevel Preconditioning for Elliptic PDEs
|
1802.09062
|
http://arxiv.org/abs/1802.09062v1
|
http://arxiv.org/pdf/1802.09062v1.pdf
|
https://github.com/mbachmayr/TensorTrains.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/communication-efficient-learning-of-deep
|
Communication-Efficient Learning of Deep Networks from Decentralized Data
|
1602.05629
|
https://arxiv.org/abs/1602.05629v4
|
https://arxiv.org/pdf/1602.05629v4.pdf
|
https://github.com/TinfoilHat0/Defending-Against-Backdoors-with-Robust-Learning-Rate
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/gradient-surgery-for-multi-task-learning-1
|
Gradient Surgery for Multi-Task Learning
|
2001.06782
|
https://arxiv.org/abs/2001.06782v4
|
https://arxiv.org/pdf/2001.06782v4.pdf
|
https://github.com/rangwani-harsh/PC_Grad_Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adamm-anomaly-detection-of-attributed-multi
|
ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach
|
2311.07355
|
https://arxiv.org/abs/2311.07355v2
|
https://arxiv.org/pdf/2311.07355v2.pdf
|
https://github.com/konsotirop/adamm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/text-coherence-analysis-based-on-deep-neural
|
Text Coherence Analysis Based on Deep Neural Network
|
1710.07770
|
http://arxiv.org/abs/1710.07770v1
|
http://arxiv.org/pdf/1710.07770v1.pdf
|
https://github.com/geekSiddharth/DeepCoherence
| false | false | true |
none
|
https://paperswithcode.com/paper/prioritized-experience-replay
|
Prioritized Experience Replay
|
1511.05952
|
http://arxiv.org/abs/1511.05952v4
|
http://arxiv.org/pdf/1511.05952v4.pdf
|
https://github.com/V0LsTeR/DQN_heap
| false | false | true |
tf
|
https://paperswithcode.com/paper/sibila-high-performance-computing-and
|
SIBILA: A novel interpretable ensemble of general-purpose machine learning models applied to medical contexts
|
2205.06234
|
https://arxiv.org/abs/2205.06234v2
|
https://arxiv.org/pdf/2205.06234v2.pdf
|
https://github.com/bio-hpc/sibila
| true | true | false |
none
|
https://paperswithcode.com/paper/recurrent-feature-reasoning-for-image-1
|
Recurrent Feature Reasoning for Image Inpainting
|
2008.03737
|
https://arxiv.org/abs/2008.03737v1
|
https://arxiv.org/pdf/2008.03737v1.pdf
|
https://github.com/jingyuanli001/RFR-Inpainting
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/light-field-spatial-super-resolution-via-deep
|
Light Field Spatial Super-resolution via Deep Combinatorial Geometry Embedding and Structural Consistency Regularization
|
2004.02215
|
https://arxiv.org/abs/2004.02215v1
|
https://arxiv.org/pdf/2004.02215v1.pdf
|
https://github.com/jingjin25/LFSSR-ATO
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pynsett-a-programmable-relation-extractor
|
Pynsett: A programmable relation extractor
|
2007.02100
|
https://arxiv.org/abs/2007.02100v2
|
https://arxiv.org/pdf/2007.02100v2.pdf
|
https://github.com/fractalego/pynsett
| true | true | false |
none
|
https://paperswithcode.com/paper/time-contrastive-networks-self-supervised
|
Time-Contrastive Networks: Self-Supervised Learning from Video
|
1704.06888
|
http://arxiv.org/abs/1704.06888v3
|
http://arxiv.org/pdf/1704.06888v3.pdf
|
https://github.com/tensorflow/models/tree/master/research/tcn
| false | false | true |
tf
|
https://paperswithcode.com/paper/virtualhome-simulating-household-activities
|
VirtualHome: Simulating Household Activities via Programs
|
1806.07011
|
http://arxiv.org/abs/1806.07011v1
|
http://arxiv.org/pdf/1806.07011v1.pdf
|
https://github.com/xavierpuigf/virtualhome
| false | false | true |
none
|
https://paperswithcode.com/paper/revisiting-representation-learning-for
|
Revisiting Representation Learning for Singing Voice Separation with Sinkhorn Distances
|
2007.02780
|
https://arxiv.org/abs/2007.02780v2
|
https://arxiv.org/pdf/2007.02780v2.pdf
|
https://github.com/Js-Mim/rl_singing_voice
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/LaurentBerger/neuralstyle
| false | false | true |
none
|
https://paperswithcode.com/paper/end-to-end-abstractive-summarization-for
|
A Hierarchical Network for Abstractive Meeting Summarization with Cross-Domain Pretraining
|
2004.02016
|
https://arxiv.org/abs/2004.02016v4
|
https://arxiv.org/pdf/2004.02016v4.pdf
|
https://github.com/JudeLee19/HMNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/model-agnostic-meta-learning-for-fast
|
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
|
1703.03400
|
http://arxiv.org/abs/1703.03400v3
|
http://arxiv.org/pdf/1703.03400v3.pdf
|
https://github.com/Mind23-2/MindCode-101/tree/main/MAML
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/removing-shadows-from-images-of-documents
|
Removing Shadows from Images of Documents
| null |
https://link.springer.com/chapter/10.1007/978-3-319-54187-7_12
|
https://link.springer.com/chapter/10.1007/978-3-319-54187-7_12
|
https://github.com/tigerdeeda/Removing-Shadows-from-Images-of-Documents-by-Steve-Bako
| true | false | false |
none
|
https://paperswithcode.com/paper/hahaha
|
Hahaha
| null |
https://link.springer.com/content/pdf/10.1007%2F978-3-319-99978-4_15.pdf
|
https://link.springer.com/content/pdf/10.1007%2F978-3-319-99978-4_10.pdf
|
https://github.com/biubug6/Pytorch_Retinaface
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/bearing-fault-diagnosis-base-on-multi-scale
|
Bearing Fault Diagnosis Base on Multi-scale CNN and LSTM Model
| null |
https://link.springer.com/article/10.1007/s10845-020-01600-2
|
https://link.springer.com/article/10.1007/s10845-020-01600-2
|
https://github.com/Mind23-2/MindCode-101/tree/main/MCNN
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/improving-model-choice-in-classification-an
|
Improving Model Choice in Classification: An Approach Based on Clustering of Covariance Matrices
|
2302.11487
|
https://arxiv.org/abs/2302.11487v2
|
https://arxiv.org/pdf/2302.11487v2.pdf
|
https://github.com/rvitores/improvingmodelchoice
| true | true | false |
none
|
https://paperswithcode.com/paper/bridge-byzantine-resilient-decentralized
|
BRIDGE: Byzantine-resilient Decentralized Gradient Descent
|
1908.08098
|
https://arxiv.org/abs/1908.08098v3
|
https://arxiv.org/pdf/1908.08098v3.pdf
|
https://github.com/INSPIRE-Lab-US/Byzantine_Experiments
| false | false | true |
tf
|
https://paperswithcode.com/paper/deep-semi-supervised-knowledge-distillation
|
Deep Semi-supervised Knowledge Distillation for Overlapping Cervical Cell Instance Segmentation
|
2007.10787
|
https://arxiv.org/abs/2007.10787v1
|
https://arxiv.org/pdf/2007.10787v1.pdf
|
https://github.com/SIAAAAAA/MMT-PSM
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/analyzing-machine-learning-workloads-using-a
|
Analyzing Machine Learning Workloads Using a Detailed GPU Simulator
|
1811.08933
|
http://arxiv.org/abs/1811.08933v1
|
http://arxiv.org/pdf/1811.08933v1.pdf
|
https://github.com/nikoguil1/gpusim_SMK
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-machine-translation-with-error
|
Neural Machine Translation with Error Correction
|
2007.10681
|
https://arxiv.org/abs/2007.10681v1
|
https://arxiv.org/pdf/2007.10681v1.pdf
|
https://github.com/StillKeepTry/ECM-NMT
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/modulating-early-visual-processing-by
|
Modulating early visual processing by language
|
1707.00683
|
http://arxiv.org/abs/1707.00683v3
|
http://arxiv.org/pdf/1707.00683v3.pdf
|
https://github.com/ap229997/Conditional-Batch-Norm
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/exploring-modern-gpu-memory-system-design
|
Exploring Modern GPU Memory System Design Challenges through Accurate Modeling
|
1810.07269
|
http://arxiv.org/abs/1810.07269v1
|
http://arxiv.org/pdf/1810.07269v1.pdf
|
https://github.com/nikoguil1/gpusim_SMK
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/physics-and-computing-performance-of-the-exa
|
Performance of a Geometric Deep Learning Pipeline for HL-LHC Particle Tracking
|
2103.06995
|
https://arxiv.org/abs/2103.06995v2
|
https://arxiv.org/pdf/2103.06995v2.pdf
|
https://github.com/HSF-reco-and-software-triggers/Tracking-ML-Exa.TrkX
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/funnel-activation-for-visual-recognition
|
Funnel Activation for Visual Recognition
|
2007.11824
|
https://arxiv.org/abs/2007.11824v2
|
https://arxiv.org/pdf/2007.11824v2.pdf
|
https://github.com/megvii-model/FunnelAct
| true | true | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.