paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/rthn-a-rnn-transformer-hierarchical-network
|
RTHN: A RNN-Transformer Hierarchical Network for Emotion Cause Extraction
|
1906.01236
|
https://arxiv.org/abs/1906.01236v1
|
https://arxiv.org/pdf/1906.01236v1.pdf
|
https://github.com/NUSTM/RTHN
| true | true | true |
tf
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/dstein64/pastiche
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/report-of-the-iau-commission-4-working-group
|
Report of the IAU Commission 4 Working Group on Standardizing Access to Ephemerides and File Format Specification
|
1507.04291
|
http://arxiv.org/abs/1507.04291v1
|
http://arxiv.org/pdf/1507.04291v1.pdf
|
https://github.com/plb97/jpl
| false | false | true |
none
|
https://paperswithcode.com/paper/paying-attention-to-multi-word-expressions-in
|
Paying Attention to Multi-Word Expressions in Neural Machine Translation
|
1710.06313
|
https://arxiv.org/abs/1710.06313v2
|
https://arxiv.org/pdf/1710.06313v2.pdf
|
https://github.com/M4t1ss/MWE-Tools
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-to-refer-informatively-by-amortizing
|
Learning to refer informatively by amortizing pragmatic reasoning
|
2006.00418
|
https://arxiv.org/abs/2006.00418v1
|
https://arxiv.org/pdf/2006.00418v1.pdf
|
https://github.com/juliaiwhite/amortized-rsa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-energy-based-inpainting-for-optical
|
Learning Energy Based Inpainting for Optical Flow
|
1811.03721
|
http://arxiv.org/abs/1811.03721v1
|
http://arxiv.org/pdf/1811.03721v1.pdf
|
https://github.com/vogechri/CustomNetworkLayers
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/exploiting-explicit-paths-for-multi-hop
|
Exploiting Explicit Paths for Multi-hop Reading Comprehension
|
1811.01127
|
https://arxiv.org/abs/1811.01127v2
|
https://arxiv.org/pdf/1811.01127v2.pdf
|
https://github.com/allenai/PathNet
| true | true | true |
none
|
https://paperswithcode.com/paper/qatm-quality-aware-template-matching-for-deep
|
QATM: Quality-Aware Template Matching For Deep Learning
|
1903.07254
|
http://arxiv.org/abs/1903.07254v2
|
http://arxiv.org/pdf/1903.07254v2.pdf
|
https://github.com/kamata1729/QATM_pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/meta-learning-curiosity-algorithms-1
|
Meta-learning curiosity algorithms
|
2003.05325
|
https://arxiv.org/abs/2003.05325v1
|
https://arxiv.org/pdf/2003.05325v1.pdf
|
https://github.com/mfranzs/meta-learning-curiosity-algorithms
| true | true | false |
tf
|
https://paperswithcode.com/paper/batch-normalization-orthogonalizes
|
Batch Normalization Orthogonalizes Representations in Deep Random Networks
|
2106.03970
|
https://arxiv.org/abs/2106.03970v1
|
https://arxiv.org/pdf/2106.03970v1.pdf
|
https://github.com/hadidaneshmand/batchnorm21
| true | true | false |
none
|
https://paperswithcode.com/paper/uncovering-divergent-linguistic-information
|
Uncovering divergent linguistic information in word embeddings with lessons for intrinsic and extrinsic evaluation
|
1809.02094
|
http://arxiv.org/abs/1809.02094v1
|
http://arxiv.org/pdf/1809.02094v1.pdf
|
https://github.com/artetxem/uncovec
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dualsmoke-sketch-based-smoke-illustration
|
DualSmoke: Sketch-Based Smoke Illustration Design with Two-Stage Generative Model
|
2208.10906
|
https://arxiv.org/abs/2208.10906v1
|
https://arxiv.org/pdf/2208.10906v1.pdf
|
https://github.com/shasph/dualsmoke
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pc-darts-partial-channel-connections-for
|
PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search
|
1907.05737
|
https://arxiv.org/abs/1907.05737v4
|
https://arxiv.org/pdf/1907.05737v4.pdf
|
https://github.com/yuhuixu1993/PC-DARTS
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/variational-reasoning-for-question-answering
|
Variational Reasoning for Question Answering with Knowledge Graph
|
1709.04071
|
http://arxiv.org/abs/1709.04071v5
|
http://arxiv.org/pdf/1709.04071v5.pdf
|
https://github.com/yuyuz/Variational-Reasoning-Networks
| false | false | false |
none
|
https://paperswithcode.com/paper/arcface-additive-angular-margin-loss-for-deep
|
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
|
1801.07698
|
https://arxiv.org/abs/1801.07698v4
|
https://arxiv.org/pdf/1801.07698v4.pdf
|
https://github.com/rikichou/face_recognition_insight_face
| false | false | true |
mxnet
|
https://paperswithcode.com/paper/you-only-look-once-unified-real-time-object
|
You Only Look Once: Unified, Real-Time Object Detection
|
1506.02640
|
http://arxiv.org/abs/1506.02640v5
|
http://arxiv.org/pdf/1506.02640v5.pdf
|
https://github.com/ankitAMD/Darkflow-object-detection
| false | false | true |
tf
|
https://paperswithcode.com/paper/yolo9000-better-faster-stronger
|
YOLO9000: Better, Faster, Stronger
|
1612.08242
|
http://arxiv.org/abs/1612.08242v1
|
http://arxiv.org/pdf/1612.08242v1.pdf
|
https://github.com/ankitAMD/Darkflow-object-detection
| false | false | true |
tf
|
https://paperswithcode.com/paper/on-the-sample-complexity-of-graphical-model
|
On the Sample Complexity of Graphical Model Selection for Non-Stationary Processes
|
1701.04724
|
https://arxiv.org/abs/1701.04724v5
|
https://arxiv.org/pdf/1701.04724v5.pdf
|
https://github.com/alexjungaalto/ResearchPublic
| true | true | false |
none
|
https://paperswithcode.com/paper/global-diagnostics-of-ionospheric-absorption
|
Global diagnostics of ionospheric absorption during X-ray solar flares based on 8-20MHz noise measured by over-the-horizon radars
|
1812.08878
|
http://arxiv.org/abs/1812.08878v1
|
http://arxiv.org/pdf/1812.08878v1.pdf
|
https://github.com/berng/sdGsRange
| false | false | true |
none
|
https://paperswithcode.com/paper/a-joint-detection-classification-model-for
|
A Joint Detection-Classification Model for Audio Tagging of Weakly Labelled Data
|
1610.01797
|
http://arxiv.org/abs/1610.01797v1
|
http://arxiv.org/pdf/1610.01797v1.pdf
|
https://github.com/qiuqiangkong/audio_tagging_jdc
| true | false | true |
none
|
https://paperswithcode.com/paper/yolact-real-time-instance-segmentation
|
YOLACT: Real-time Instance Segmentation
|
1904.02689
|
https://arxiv.org/abs/1904.02689v2
|
https://arxiv.org/pdf/1904.02689v2.pdf
|
https://github.com/IntelligenceDatum/ICCV2019_Model_Compression
| false | false | true |
none
|
https://paperswithcode.com/paper/efficientad-accurate-visual-anomaly-detection
|
EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies
|
2303.14535
|
https://arxiv.org/abs/2303.14535v3
|
https://arxiv.org/pdf/2303.14535v3.pdf
|
https://github.com/danielsoy/EfficientAD
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/subword-semantic-hashing-for-intent
|
Subword Semantic Hashing for Intent Classification on Small Datasets
|
1810.07150
|
https://arxiv.org/abs/1810.07150v3
|
https://arxiv.org/pdf/1810.07150v3.pdf
|
https://github.com/martinambition/IntentClassificationBenchmark
| false | false | true |
tf
|
https://paperswithcode.com/paper/progressive-pose-attention-transfer-for
|
Progressive Pose Attention Transfer for Person Image Generation
|
1904.03349
|
https://arxiv.org/abs/1904.03349v3
|
https://arxiv.org/pdf/1904.03349v3.pdf
|
https://github.com/zsypotter/pose_transfer_keypoint
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/natural-language-inference-with-hierarchical
|
Sentence Embeddings in NLI with Iterative Refinement Encoders
|
1808.08762
|
https://arxiv.org/abs/1808.08762v2
|
https://arxiv.org/pdf/1808.08762v2.pdf
|
https://github.com/Helsinki-NLP/HBMP
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/imagechd-a-3d-computed-tomography-image
|
ImageCHD: A 3D Computed Tomography Image Dataset for Classification of Congenital Heart Disease
|
2101.10799
|
https://arxiv.org/abs/2101.10799v2
|
https://arxiv.org/pdf/2101.10799v2.pdf
|
https://github.com/XiaoweiXu/ImageCHD-A-3D-Computed-Tomography-Image-Dataset-for-Classification-of-Congenital-Heart-Disease
| true | true | false |
none
|
https://paperswithcode.com/paper/ampersand-argument-mining-for-persuasive-1
|
AMPERSAND: Argument Mining for PERSuAsive oNline Discussions
|
2004.14677
|
https://arxiv.org/abs/2004.14677v1
|
https://arxiv.org/pdf/2004.14677v1.pdf
|
https://github.com/tuhinjubcse/AMPERSAND-EMNLP2019
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/end-to-end-learning-of-motion-representation
|
End-to-End Learning of Motion Representation for Video Understanding
|
1804.00413
|
http://arxiv.org/abs/1804.00413v1
|
http://arxiv.org/pdf/1804.00413v1.pdf
|
https://github.com/LijieFan/tvnet
| false | false | false |
tf
|
https://paperswithcode.com/paper/spike-and-slab-variable-selection-frequentist
|
Spike and slab variable selection: Frequentist and Bayesian strategies
|
math/0505633
|
https://arxiv.org/abs/math/0505633v1
|
https://arxiv.org/pdf/math/0505633v1.pdf
|
https://github.com/jskracht/MultiTimeModeling
| false | false | true |
tf
|
https://paperswithcode.com/paper/subword-semantic-hashing-for-intent
|
Subword Semantic Hashing for Intent Classification on Small Datasets
|
1810.07150
|
https://arxiv.org/abs/1810.07150v3
|
https://arxiv.org/pdf/1810.07150v3.pdf
|
https://github.com/kumar-shridhar/Know-Your-Intent
| true | true | true |
none
|
https://paperswithcode.com/paper/cellulyzer-automated-analysis-and-interactive
|
Cellulyzer - Automated analysis and interactive visualization/simulation of select cellular processes
|
1703.02611
|
http://arxiv.org/abs/1703.02611v1
|
http://arxiv.org/pdf/1703.02611v1.pdf
|
https://github.com/nurlicht/CellulyzerDemo
| true | true | true |
none
|
https://paperswithcode.com/paper/seeing-things-from-a-different
|
Seeing Things from a Different Angle:Discovering Diverse Perspectives about Claims
| null |
https://aclanthology.org/N19-1053
|
https://aclanthology.org/N19-1053.pdf
|
https://github.com/CogComp/perspectrum
| true | true | false |
none
|
https://paperswithcode.com/paper/multiple-context-features-in-siamese-networks
|
Multiple Context Features in Siamese Networks for Visual Object Tracking
| null |
http://thoth.inrialpes.fr/people/hmorimit/publications.php
|
http://openaccess.thecvf.com/content_ECCVW_2018/papers/11129/Morimitsu_Multiple_Context_Features_in_Siamese_Networks_for_Visual_Object_Tracking_ECCVW_2018_paper.pdf
|
https://github.com/hmorimitsu/siam-mcf
| false | false | false |
tf
|
https://paperswithcode.com/paper/neural-fine-grained-entity-type
|
Neural Fine-Grained Entity Type Classification with Hierarchy-Aware Loss
|
1803.03378
|
http://arxiv.org/abs/1803.03378v2
|
http://arxiv.org/pdf/1803.03378v2.pdf
|
https://github.com/billy-inn/NFETC
| true | true | true |
tf
|
https://paperswithcode.com/paper/getting-to-know-low-light-images-with-the
|
Getting to Know Low-light Images with The Exclusively Dark Dataset
|
1805.11227
|
http://arxiv.org/abs/1805.11227v1
|
http://arxiv.org/pdf/1805.11227v1.pdf
|
https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
| true | true | true |
none
|
https://paperswithcode.com/paper/design-of-optical-neural-networks-with
|
Design of optical neural networks with component imprecisions
|
2001.01681
|
https://arxiv.org/abs/2001.01681v1
|
https://arxiv.org/pdf/2001.01681v1.pdf
|
https://github.com/mike-fang/imprecise_optical_neural_network
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/artifact-disentanglement-network-for
|
Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
|
1906.01806
|
https://arxiv.org/abs/1906.01806v5
|
https://arxiv.org/pdf/1906.01806v5.pdf
|
https://github.com/liaohaofu/adn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/east-an-efficient-and-accurate-scene-text
|
EAST: An Efficient and Accurate Scene Text Detector
|
1704.03155
|
http://arxiv.org/abs/1704.03155v2
|
http://arxiv.org/pdf/1704.03155v2.pdf
|
https://github.com/Chris10M/RFB-Text-Detection
| false | false | true |
tf
|
https://paperswithcode.com/paper/receptive-field-block-net-for-accurate-and
|
Receptive Field Block Net for Accurate and Fast Object Detection
|
1711.07767
|
http://arxiv.org/abs/1711.07767v3
|
http://arxiv.org/pdf/1711.07767v3.pdf
|
https://github.com/Chris10M/RFB-Text-Detection
| false | false | true |
tf
|
https://paperswithcode.com/paper/end-to-end-object-detection-with-transformers
|
End-to-End Object Detection with Transformers
|
2005.12872
|
https://arxiv.org/abs/2005.12872v3
|
https://arxiv.org/pdf/2005.12872v3.pdf
|
https://github.com/tahmid0007/DETR_FineTune
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/recurrent-neural-networks-in-linguistic
|
Recurrent Neural Networks in Linguistic Theory: Revisiting Pinker and Prince (1988) and the Past Tense Debate
|
1807.04783
|
https://arxiv.org/abs/1807.04783v2
|
https://arxiv.org/pdf/1807.04783v2.pdf
|
https://github.com/ckirov/RevisitPinkerAndPrince
| true | true | false |
none
|
https://paperswithcode.com/paper/neural-module-networks
|
Neural Module Networks
|
1511.02799
|
http://arxiv.org/abs/1511.02799v4
|
http://arxiv.org/pdf/1511.02799v4.pdf
|
https://github.com/jacobandreas/nmn2
| false | false | true |
none
|
https://paperswithcode.com/paper/what-does-my-qa-model-know-devising
|
What Does My QA Model Know? Devising Controlled Probes using Expert Knowledge
|
1912.13337
|
https://arxiv.org/abs/1912.13337v2
|
https://arxiv.org/pdf/1912.13337v2.pdf
|
https://github.com/allenai/semantic_fragments
| true | true | true |
none
|
https://paperswithcode.com/paper/a-new-primal-dual-algorithm-for-minimizing
|
A new primal-dual algorithm for minimizing the sum of three functions with a linear operator
|
1611.09805
|
http://arxiv.org/abs/1611.09805v4
|
http://arxiv.org/pdf/1611.09805v4.pdf
|
https://github.com/mingyan08/PD3O
| true | true | false |
none
|
https://paperswithcode.com/paper/you-only-look-once-unified-real-time-object
|
You Only Look Once: Unified, Real-Time Object Detection
|
1506.02640
|
http://arxiv.org/abs/1506.02640v5
|
http://arxiv.org/pdf/1506.02640v5.pdf
|
https://github.com/abajaj945/Ship-Detection-using-Tensorflow
| false | false | true |
tf
|
https://paperswithcode.com/paper/lane-detection-and-classification-using
|
Lane Detection and Classification using Cascaded CNNs
|
1907.01294
|
https://arxiv.org/abs/1907.01294v2
|
https://arxiv.org/pdf/1907.01294v2.pdf
|
https://github.com/fabvio/Cascade-LD
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-fine-grained-image-similarity-with
|
Learning Fine-grained Image Similarity with Deep Ranking
|
1404.4661
|
http://arxiv.org/abs/1404.4661v1
|
http://arxiv.org/pdf/1404.4661v1.pdf
|
https://github.com/ArkinDharawat/DeepImageRanking
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/a-strong-baseline-and-batch-normalization
|
A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification
|
1906.08332
|
https://arxiv.org/abs/1906.08332v2
|
https://arxiv.org/pdf/1906.08332v2.pdf
|
https://github.com/NIRVANALAN/magnifiernet_reid
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/yolo9000-better-faster-stronger
|
YOLO9000: Better, Faster, Stronger
|
1612.08242
|
http://arxiv.org/abs/1612.08242v1
|
http://arxiv.org/pdf/1612.08242v1.pdf
|
https://github.com/gary-kaitung/data-science-portfolio
| false | false | true |
tf
|
https://paperswithcode.com/paper/once-for-all-train-one-network-and-specialize
|
Once-for-All: Train One Network and Specialize it for Efficient Deployment
|
1908.09791
|
https://arxiv.org/abs/1908.09791v5
|
https://arxiv.org/pdf/1908.09791v5.pdf
|
https://github.com/MaximIntegratedAI/ai8x-training
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-sensitivity-analysis-of-and-practitioners
|
A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification
|
1510.03820
|
http://arxiv.org/abs/1510.03820v4
|
http://arxiv.org/pdf/1510.03820v4.pdf
|
https://github.com/jeonghunyoon/Text-classification-tensorflow
| false | false | true |
tf
|
https://paperswithcode.com/paper/mixture-based-multiple-imputation-models-for
|
Mixture-based Multiple Imputation Model for Clinical Data with a Temporal Dimension
|
1908.04209
|
https://arxiv.org/abs/1908.04209v3
|
https://arxiv.org/pdf/1908.04209v3.pdf
|
https://github.com/y-xue/MixMI
| true | true | true |
none
|
https://paperswithcode.com/paper/rule-applicability-on-rdf-triplestore-schemas
|
Rule Applicability on RDF Triplestore Schemas
|
1907.01627
|
https://arxiv.org/abs/1907.01627v1
|
https://arxiv.org/pdf/1907.01627v1.pdf
|
https://github.com/paolo7/ap2
| true | true | false |
none
|
https://paperswithcode.com/paper/reasoning-and-generalization-in-rl-a-tool-use
|
Reasoning and Generalization in RL: A Tool Use Perspective
|
1907.02050
|
https://arxiv.org/abs/1907.02050v1
|
https://arxiv.org/pdf/1907.02050v1.pdf
|
https://github.com/fomorians/gym_tool_use
| true | true | false |
none
|
https://paperswithcode.com/paper/an-attention-mechanism-for-musical-instrument
|
An Attention Mechanism for Musical Instrument Recognition
|
1907.04294
|
https://arxiv.org/abs/1907.04294v1
|
https://arxiv.org/pdf/1907.04294v1.pdf
|
https://github.com/SiddGururani/AttentionMIC
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-mixture-of-experts-model-for-antonym
|
A Mixture-of-Experts Model for Antonym-Synonym Discrimination
| null |
https://aclanthology.org/2021.acl-short.71
|
https://aclanthology.org/2021.acl-short.71.pdf
|
https://github.com/zengnan1997/moe-asd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-to-learn-stochastic-gradient-descent
|
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
|
1903.10399
|
http://arxiv.org/abs/1903.10399v1
|
http://arxiv.org/pdf/1903.10399v1.pdf
|
https://github.com/prolearner/onlineLTL
| true | true | true |
none
|
https://paperswithcode.com/paper/errudite-scalable-reproducible-and-testable
|
Errudite: Scalable, Reproducible, and Testable Error Analysis
| null |
https://aclanthology.org/P19-1073
|
https://aclanthology.org/P19-1073.pdf
|
https://github.com/uwdata/errudite
| true | true | false |
none
|
https://paperswithcode.com/paper/deep-knowledge-tracing
|
Deep Knowledge Tracing
|
1506.05908
|
http://arxiv.org/abs/1506.05908v1
|
http://arxiv.org/pdf/1506.05908v1.pdf
|
https://github.com/jarviszhb/KnowledgeTracing
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/well-read-students-learn-better-the-impact-of
|
Well-Read Students Learn Better: On the Importance of Pre-training Compact Models
|
1908.08962
|
https://arxiv.org/abs/1908.08962v2
|
https://arxiv.org/pdf/1908.08962v2.pdf
|
https://github.com/google-research/bleurt
| false | false | true |
tf
|
https://paperswithcode.com/paper/towards-digital-retina-in-smart-cities-a
|
Towards Digital Retina in Smart Cities: A Model Generation, Utilization and Communication Paradigm
|
1907.13368
|
https://arxiv.org/abs/1907.13368v1
|
https://arxiv.org/pdf/1907.13368v1.pdf
|
https://github.com/PKU-IMRE/Retina
| true | true | false |
none
|
https://paperswithcode.com/paper/iterative-machine-teaching
|
Iterative Machine Teaching
|
1705.10470
|
http://arxiv.org/abs/1705.10470v3
|
http://arxiv.org/pdf/1705.10470v3.pdf
|
https://github.com/bariqi/Iterative-Mahine-Teaching-AML-Class
| false | false | true |
none
|
https://paperswithcode.com/paper/bmn-boundary-matching-network-for-temporal
|
BMN: Boundary-Matching Network for Temporal Action Proposal Generation
|
1907.09702
|
https://arxiv.org/abs/1907.09702v1
|
https://arxiv.org/pdf/1907.09702v1.pdf
|
https://github.com/xlliu7/BMN-Boundary-Matching-Network
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/memory-semantization-through-perturbed-and
|
Learning cortical representations through perturbed and adversarial dreaming
|
2109.04261
|
https://arxiv.org/abs/2109.04261v3
|
https://arxiv.org/pdf/2109.04261v3.pdf
|
https://github.com/NicoZenith/PAD
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/sheaves-cosheaves-and-applications
|
Sheaves, Cosheaves and Applications
|
1303.3255
|
http://arxiv.org/abs/1303.3255v2
|
http://arxiv.org/pdf/1303.3255v2.pdf
|
https://github.com/lkastner/cellularSheaves
| false | false | true |
none
|
https://paperswithcode.com/paper/probo-a-framework-for-using-probabilistic
|
ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language
|
1901.11515
|
https://arxiv.org/abs/1901.11515v2
|
https://arxiv.org/pdf/1901.11515v2.pdf
|
https://github.com/willieneis/ProBO
| true | true | true |
none
|
https://paperswithcode.com/paper/projective-latent-space-decluttering
|
Projective Latent Interventions for Understanding and Fine-tuning Classifiers
|
2006.12902
|
https://arxiv.org/abs/2006.12902v2
|
https://arxiv.org/pdf/2006.12902v2.pdf
|
https://github.com/einbandi/latent-projective-interventions
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/sarthaxxxxx/Attention-is-all-you-need
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/laplacian-steered-neural-style-transfer
|
Laplacian-Steered Neural Style Transfer
|
1707.01253
|
http://arxiv.org/abs/1707.01253v2
|
http://arxiv.org/pdf/1707.01253v2.pdf
|
https://github.com/samwatts98/Fast-Neural-Style-Transfer-with-Laplacian-Loss-TensorFlow-1.13
| false | false | true |
tf
|
https://paperswithcode.com/paper/phrase-based-neural-unsupervised-machine
|
Phrase-Based & Neural Unsupervised Machine Translation
|
1804.07755
|
http://arxiv.org/abs/1804.07755v2
|
http://arxiv.org/pdf/1804.07755v2.pdf
|
https://github.com/keleog/PidginUNMT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/loss-in-translation-learning-bilingual-word
|
Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion
|
1804.07745
|
http://arxiv.org/abs/1804.07745v3
|
http://arxiv.org/pdf/1804.07745v3.pdf
|
https://github.com/keleog/PidginUNMT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/unsupervised-machine-translation-using
|
Unsupervised Machine Translation Using Monolingual Corpora Only
|
1711.00043
|
http://arxiv.org/abs/1711.00043v2
|
http://arxiv.org/pdf/1711.00043v2.pdf
|
https://github.com/keleog/PidginUNMT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/pfld-a-practical-facial-landmark-detector
|
PFLD: A Practical Facial Landmark Detector
|
1902.10859
|
http://arxiv.org/abs/1902.10859v2
|
http://arxiv.org/pdf/1902.10859v2.pdf
|
https://github.com/guoqiangqi/PFLD
| false | false | true |
tf
|
https://paperswithcode.com/paper/viewcrafter-taming-video-diffusion-models-for
|
ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis
|
2409.02048
|
https://arxiv.org/abs/2409.02048v1
|
https://arxiv.org/pdf/2409.02048v1.pdf
|
https://github.com/drexubery/viewcrafter
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/explicable-reward-design-for-reinforcement
|
Explicable Reward Design for Reinforcement Learning Agents
| null |
http://proceedings.neurips.cc/paper/2021/hash/a7f0d2b95c60161b3f3c82f764b1d1c9-Abstract.html
|
http://proceedings.neurips.cc/paper/2021/file/a7f0d2b95c60161b3f3c82f764b1d1c9-Paper.pdf
|
https://github.com/adishs/neurips2021_explicable-reward-design_code
| true | true | false |
none
|
https://paperswithcode.com/paper/parameterized-quantum-circuits-as-machine
|
Parameterized quantum circuits as machine learning models
|
1906.07682
|
https://arxiv.org/abs/1906.07682v2
|
https://arxiv.org/pdf/1906.07682v2.pdf
|
https://github.com/UnofficialJuliaMirrorSnapshots/Yao.jl-5872b779-8223-5990-8dd0-5abbb0748c8c
| false | false | true |
none
|
https://paperswithcode.com/paper/explanations-based-on-the-missing-towards
|
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
|
1802.07623
|
http://arxiv.org/abs/1802.07623v2
|
http://arxiv.org/pdf/1802.07623v2.pdf
|
https://github.com/SeldonIO/alibi
| false | false | false |
tf
|
https://paperswithcode.com/paper/pelee-a-real-time-object-detection-system-on-1
|
Pelee: A Real-Time Object Detection System on Mobile Devices
| null |
http://papers.nips.cc/paper/7466-pelee-a-real-time-object-detection-system-on-mobile-devices
|
http://papers.nips.cc/paper/7466-pelee-a-real-time-object-detection-system-on-mobile-devices.pdf
|
https://github.com/ginn24/Pelee-TensorRT
| false | false | false |
none
|
https://paperswithcode.com/paper/pelee-a-real-time-object-detection-system-on
|
Pelee: A Real-Time Object Detection System on Mobile Devices
|
1804.06882
|
http://arxiv.org/abs/1804.06882v3
|
http://arxiv.org/pdf/1804.06882v3.pdf
|
https://github.com/ginn24/Pelee-TensorRT
| false | false | false |
none
|
https://paperswithcode.com/paper/artistic-style-transfer-for-videos-and
|
Artistic style transfer for videos and spherical images
|
1708.04538
|
http://arxiv.org/abs/1708.04538v3
|
http://arxiv.org/pdf/1708.04538v3.pdf
|
https://github.com/TanguyJeanneau/white-mirror
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/residual-non-local-attention-networks-for-1
|
Residual Non-local Attention Networks for Image Restoration
|
1903.10082
|
http://arxiv.org/abs/1903.10082v1
|
http://arxiv.org/pdf/1903.10082v1.pdf
|
https://github.com/bruinxiong/RNAN
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/in-conclusion-not-repetition-comprehensive
|
In Conclusion Not Repetition: Comprehensive Abstractive Summarization With Diversified Attention Based On Determinantal Point Processes
|
1909.10852
|
https://arxiv.org/abs/1909.10852v2
|
https://arxiv.org/pdf/1909.10852v2.pdf
|
https://github.com/thinkwee/DPP_CNN_Summarization
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/polsar-image-classification-based-on-dilated
|
PolSAR Image Classification Based on Dilated Convolution and Pixel-Refining Parallel Mapping network in the Complex Domain
|
1909.10783
|
https://arxiv.org/abs/1909.10783v2
|
https://arxiv.org/pdf/1909.10783v2.pdf
|
https://github.com/PROoshio/CRPM-Net
| true | true | true |
tf
|
https://paperswithcode.com/paper/on-the-automatic-generation-of-medical
|
On the Automatic Generation of Medical Imaging Reports
|
1711.08195
|
http://arxiv.org/abs/1711.08195v3
|
http://arxiv.org/pdf/1711.08195v3.pdf
|
https://github.com/Pillercottrer/radcap_project
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-accurate-scene-text-recognition-with
|
Towards Accurate Scene Text Recognition with Semantic Reasoning Networks
|
2003.12294
|
https://arxiv.org/abs/2003.12294v1
|
https://arxiv.org/pdf/2003.12294v1.pdf
|
https://github.com/Media-Smart/vedastr
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/tagging-and-parsing-of-multidomain
|
Tagging and parsing of multidomain collections
| null |
http://www.dialog-21.ru/media/4961/sorokinaaplusetal-162.pdf
|
http://www.dialog-21.ru/media/4961/sorokinaaplusetal-162.pdf
|
https://github.com/AlexeySorokin/GramEval2020
| false | true | false |
none
|
https://paperswithcode.com/paper/intriguing-properties-of-neural-networks
|
Intriguing properties of neural networks
|
1312.6199
|
http://arxiv.org/abs/1312.6199v4
|
http://arxiv.org/pdf/1312.6199v4.pdf
|
https://github.com/huanzhang12/CROWN-Robustness-Certification
| false | false | true |
tf
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/miguel-rodrigo/dot-csv-pix2pix
| false | false | true |
tf
|
https://paperswithcode.com/paper/understanding-the-interactions-of-workloads
|
Understanding the Interactions of Workloads and DRAM Types: A Comprehensive Experimental Study
|
1902.07609
|
https://arxiv.org/abs/1902.07609v4
|
https://arxiv.org/pdf/1902.07609v4.pdf
|
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator
| true | true | true |
none
|
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
|
1905.11946
|
https://arxiv.org/abs/1905.11946v5
|
https://arxiv.org/pdf/1905.11946v5.pdf
|
https://github.com/narumiruna/efficientnet-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/asynchronous-methods-for-deep-reinforcement
|
Asynchronous Methods for Deep Reinforcement Learning
|
1602.01783
|
http://arxiv.org/abs/1602.01783v2
|
http://arxiv.org/pdf/1602.01783v2.pdf
|
https://github.com/tensorpack/tensorpack/tree/master/examples/A3C-Gym
| false | false | true |
tf
|
https://paperswithcode.com/paper/anmm-ranking-short-answer-texts-with
|
aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model
|
1801.01641
|
https://arxiv.org/abs/1801.01641v2
|
https://arxiv.org/pdf/1801.01641v2.pdf
|
https://github.com/yangliuy/aNMM-CIKM16
| false | false | false |
tf
|
https://paperswithcode.com/paper/tree-boosted-varying-coefficient-models
|
Tree Boosted Varying Coefficient Models
|
1904.01058
|
https://arxiv.org/abs/1904.01058v1
|
https://arxiv.org/pdf/1904.01058v1.pdf
|
https://github.com/siriuz42/treeboostVCM
| false | false | true |
none
|
https://paperswithcode.com/paper/adaboost-neural-network-and-cyclopean-view
|
Adaboost Neural Network And Cyclopean View For No-reference Stereoscopic Image Quality Assessment
| null |
https://www.researchgate.net/publication/338455423_AdaBoost_neural_network_and_cyclopean_view_for_no-reference_stereoscopic_image_quality_assessment
|
https://www.researchgate.net/publication/338455423_AdaBoost_neural_network_and_cyclopean_view_for_no-reference_stereoscopic_image_quality_assessment
|
https://github.com/o-messai/3DBIQA-AdaBoost
| false | false | false |
none
|
https://paperswithcode.com/paper/implicit-competitive-regularization-in-gans-1
|
Implicit competitive regularization in GANs
|
1910.05852
|
https://arxiv.org/abs/1910.05852v4
|
https://arxiv.org/pdf/1910.05852v4.pdf
|
https://github.com/devzhk/Implicit-Competitive-Regularization
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/treelets-an-adaptive-multi-scale-basis-for
|
Treelets--An adaptive multi-scale basis for sparse unordered data
|
0707.0481
|
http://arxiv.org/abs/0707.0481v3
|
http://arxiv.org/pdf/0707.0481v3.pdf
|
https://github.com/hedixia/kernel_treelets
| false | false | true |
none
|
https://paperswithcode.com/paper/dynamic-computational-time-for-visual
|
Dynamic Computational Time for Visual Attention
|
1703.10332
|
http://arxiv.org/abs/1703.10332v3
|
http://arxiv.org/pdf/1703.10332v3.pdf
|
https://github.com/baidu-research/DT-RAM
| true | true | true |
torch
|
https://paperswithcode.com/paper/taper-time-aware-patient-ehr-representation
|
TAPER: Time-Aware Patient EHR Representation
|
1908.03971
|
https://arxiv.org/abs/1908.03971v4
|
https://arxiv.org/pdf/1908.03971v4.pdf
|
https://github.com/sajaddarabi/TAPER
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/side-window-filtering
|
Side Window Filtering
|
1905.07177
|
https://arxiv.org/abs/1905.07177v1
|
https://arxiv.org/pdf/1905.07177v1.pdf
|
https://github.com/wang-kangkang/SideWindowFilter-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/support-vector-guided-softmax-loss-for-face
|
Support Vector Guided Softmax Loss for Face Recognition
|
1812.11317
|
http://arxiv.org/abs/1812.11317v1
|
http://arxiv.org/pdf/1812.11317v1.pdf
|
https://github.com/SevenZhan/Pytorch
| false | false | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.