paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/generalized-measures-of-anticipation-and
|
Generalized Measures of Anticipation and Responsivity in Online Language Processing
|
2409.10728
|
https://arxiv.org/abs/2409.10728v2
|
https://arxiv.org/pdf/2409.10728v2.pdf
|
https://github.com/rycolab/generalized-surprisal
| true | true | true |
none
|
https://paperswithcode.com/paper/a-simple-baseline-for-multi-object-tracking
|
FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking
|
2004.01888
|
https://arxiv.org/abs/2004.01888v6
|
https://arxiv.org/pdf/2004.01888v6.pdf
|
https://github.com/ydhcg-bobo/stcmot
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/can-graph-reordering-speed-up-graph-neural
|
Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study
|
2409.11129
|
https://arxiv.org/abs/2409.11129v1
|
https://arxiv.org/pdf/2409.11129v1.pdf
|
https://github.com/nikolaimerkel/reordering
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/stcmot-spatio-temporal-cohesion-learning-for
|
STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking
|
2409.11234
|
https://arxiv.org/abs/2409.11234v1
|
https://arxiv.org/pdf/2409.11234v1.pdf
|
https://github.com/ydhcg-bobo/stcmot
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/unsupervised-hybrid-framework-for-anomaly
|
Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to Screening Mammogram
|
2409.11534
|
https://arxiv.org/abs/2409.11534v1
|
https://arxiv.org/pdf/2409.11534v1.pdf
|
https://github.com/zheminzhang96/hand_mammo
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/feature-re-embedding-towards-foundation-model
|
Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology
|
2402.17228
|
https://arxiv.org/abs/2402.17228v4
|
https://arxiv.org/pdf/2402.17228v4.pdf
|
https://github.com/dearcaat/rrt-mil
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/self-supervised-diffusion-mri-denoising-via
|
Self-Supervised Diffusion MRI Denoising via Iterative and Stable Refinement
|
2501.13514
|
https://arxiv.org/abs/2501.13514v3
|
https://arxiv.org/pdf/2501.13514v3.pdf
|
https://github.com/fouierl/di-fusion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-end-to-end-learning-with-slide
|
Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology
|
2506.02408
|
https://arxiv.org/abs/2506.02408v1
|
https://arxiv.org/pdf/2506.02408v1.pdf
|
https://github.com/dearcaat/rrt-mil
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vista3d-unravel-the-3d-darkside-of-a-single
|
Vista3D: Unravel the 3D Darkside of a Single Image
|
2409.12193
|
https://arxiv.org/abs/2409.12193v1
|
https://arxiv.org/pdf/2409.12193v1.pdf
|
https://github.com/florinshen/vista3d
| true | true | false |
none
|
https://paperswithcode.com/paper/volvo-discovery-challenge-at-ecml-pkdd-2024
|
Volvo Discovery Challenge at ECML-PKDD 2024
|
2409.11446
|
https://arxiv.org/abs/2409.11446v1
|
https://arxiv.org/pdf/2409.11446v1.pdf
|
https://github.com/mal-to/volvo-discovery-challenge-ecml-pkdd-2024
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/three-dimensional-particle-in-cell
|
Three-Dimensional Particle-In-Cell Simulations of Two-Dimensional Bernstein-Greene-Kruskal Modes
|
2410.16585
|
https://arxiv.org/abs/2410.16585v1
|
https://arxiv.org/pdf/2410.16585v1.pdf
|
https://github.com/psc-code/psc
| true | false | false |
none
|
https://paperswithcode.com/paper/high-resolution-particle-in-cell-simulations
|
High-Resolution Particle-In-Cell Simulations of Two-Dimensional Bernstein-Greene-Kruskal Modes
|
2311.08613
|
https://arxiv.org/abs/2311.08613v1
|
https://arxiv.org/pdf/2311.08613v1.pdf
|
https://github.com/psc-code/psc
| true | false | false |
none
|
https://paperswithcode.com/paper/sum-of-parts-models-faithful-attributions-for
|
Sum-of-Parts: Faithful Attributions for Groups of Features
|
2310.16316
|
https://arxiv.org/abs/2310.16316v2
|
https://arxiv.org/pdf/2310.16316v2.pdf
|
https://github.com/debugml/sop
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/quantifying-the-individual-differences-of
|
Quantifying the Individual Differences of Driver' Risk Perception with Just Four Interpretable Parameters
|
2211.10907
|
https://arxiv.org/abs/2211.10907v1
|
https://arxiv.org/pdf/2211.10907v1.pdf
|
https://github.com/ChenChenGith/PODAR_individual_modeling_code
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/covomix-advancing-zero-shot-speech-generation
|
CoVoMix: Advancing Zero-Shot Speech Generation for Human-like Multi-talker Conversations
|
2404.06690
|
https://arxiv.org/abs/2404.06690v3
|
https://arxiv.org/pdf/2404.06690v3.pdf
|
https://github.com/vivian556123/neurips2024-covomix
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/kernel-methods-for-the-approximation-of-the
|
Kernel Methods for the Approximation of the Eigenfunctions of the Koopman Operator
|
2412.16588
|
https://arxiv.org/abs/2412.16588v1
|
https://arxiv.org/pdf/2412.16588v1.pdf
|
https://github.com/jonghyeon1998/koopman
| true | true | false |
none
|
https://paperswithcode.com/paper/less-is-more-a-simple-yet-effective-token
|
Less is More: A Simple yet Effective Token Reduction Method for Efficient Multi-modal LLMs
|
2409.10994
|
https://arxiv.org/abs/2409.10994v3
|
https://arxiv.org/pdf/2409.10994v3.pdf
|
https://github.com/freedomintelligence/trim
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/scanning-tables-for-the-layer-groups
|
Symmetries of all lines in monolayer crystals
|
2410.18750
|
https://arxiv.org/abs/2410.18750v2
|
https://arxiv.org/pdf/2410.18750v2.pdf
|
https://github.com/Griffin-Group/scanning-tables-layer-group-data
| true | false | false |
none
|
https://paperswithcode.com/paper/reward-modeling-with-weak-supervision-for
|
Reward Modeling with Weak Supervision for Language Models
|
2410.20869
|
https://arxiv.org/abs/2410.20869v1
|
https://arxiv.org/pdf/2410.20869v1.pdf
|
https://github.com/DFKI-NLP/weak-supervision-rlhf
| true | false | false |
none
|
https://paperswithcode.com/paper/conditional-variational-autoencoder-with
|
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
|
2106.06103
|
https://arxiv.org/abs/2106.06103v1
|
https://arxiv.org/pdf/2106.06103v1.pdf
|
https://github.com/pwc-1/Paper-9/tree/main/1/vits
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/simple-and-fast-distillation-of-diffusion
|
Simple and Fast Distillation of Diffusion Models
|
2409.19681
|
https://arxiv.org/abs/2409.19681v1
|
https://arxiv.org/pdf/2409.19681v1.pdf
|
https://github.com/zhyzhouu/amed-solver
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/experience-and-evidence-are-the-eyes-of-an
|
Experience and Evidence are the eyes of an excellent summarizer! Towards Knowledge Infused Multi-modal Clinical Conversation Summarization
|
2309.15739
|
https://arxiv.org/abs/2309.15739v1
|
https://arxiv.org/pdf/2309.15739v1.pdf
|
https://github.com/nlp-rl/mm-cliconsummation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/seeding-with-differentially-private-network
|
Seeding with Differentially Private Network Information
|
2305.16590
|
https://arxiv.org/abs/2305.16590v4
|
https://arxiv.org/pdf/2305.16590v4.pdf
|
https://github.com/aminrahimian/dp-inf-max
| true | true | false |
none
|
https://paperswithcode.com/paper/where-s-ben-nevis-a-2d-optimisation-benchmark
|
Where's Ben Nevis? A 2D optimisation benchmark with 957,174 local optima based on Great Britain terrain data
|
2410.02422
|
https://arxiv.org/abs/2410.02422v1
|
https://arxiv.org/pdf/2410.02422v1.pdf
|
https://github.com/CardiacModelling/BenNevis
| true | false | false |
none
|
https://paperswithcode.com/paper/personalized-topology-informed-12-lead-ecg
|
Personalized Topology-Informed Localization of Standard 12-Lead ECG Electrode Placement from Incomplete Cardiac MRIs for Efficient Cardiac Digital Twins
|
2408.13945
|
https://arxiv.org/abs/2408.13945v2
|
https://arxiv.org/pdf/2408.13945v2.pdf
|
https://github.com/lileitech/12lead_ecg_electrode_localizer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/small-models-big-tasks-an-exploratory
|
Small Models, Big Tasks: An Exploratory Empirical Study on Small Language Models for Function Calling
|
2504.19277
|
https://arxiv.org/abs/2504.19277v1
|
https://arxiv.org/pdf/2504.19277v1.pdf
|
https://github.com/Raghav010/Small-Models-Big-Tasks
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/controlled-evaluation-of-syntactic-knowledge
|
Controlled Evaluation of Syntactic Knowledge in Multilingual Language Models
|
2411.07474
|
https://arxiv.org/abs/2411.07474v2
|
https://arxiv.org/pdf/2411.07474v2.pdf
|
https://github.com/dariakryvosheieva/syntactic_generalization_multilingual
| true | false | true |
none
|
https://paperswithcode.com/paper/a-general-purpose-multimodal-foundation-model
|
A Multimodal Vision Foundation Model for Clinical Dermatology
|
2410.15038
|
https://arxiv.org/abs/2410.15038v2
|
https://arxiv.org/pdf/2410.15038v2.pdf
|
https://github.com/SiyuanYan1/PanDerm
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/unraveling-cross-modality-knowledge-conflict
|
Unraveling Cross-Modality Knowledge Conflicts in Large Vision-Language Models
|
2410.03659
|
https://arxiv.org/abs/2410.03659v2
|
https://arxiv.org/pdf/2410.03659v2.pdf
|
https://github.com/luka-group/vlm-knowledge-conflict
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/stacked-conditional-generative-adversarial
|
Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal
|
1712.02478
|
http://arxiv.org/abs/1712.02478v1
|
http://arxiv.org/pdf/1712.02478v1.pdf
|
https://github.com/Param-Raval/shadow-sight
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/federated-learning-with-label-masking
|
Federated Learning with Label-Masking Distillation
|
2409.13136
|
https://arxiv.org/abs/2409.13136v1
|
https://arxiv.org/pdf/2409.13136v1.pdf
|
https://github.com/wnma3mz/fedlmd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/policy-improvement-using-language-feedback
|
Policy Improvement using Language Feedback Models
|
2402.07876
|
https://arxiv.org/abs/2402.07876v6
|
https://arxiv.org/pdf/2402.07876v6.pdf
|
https://github.com/vzhong/language_feedback_models
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-simple-image-segmentation-framework-via-in
|
A Simple Image Segmentation Framework via In-Context Examples
|
2410.04842
|
https://arxiv.org/abs/2410.04842v2
|
https://arxiv.org/pdf/2410.04842v2.pdf
|
https://github.com/aim-uofa/sine
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/llava-prumerge-adaptive-token-reduction-for
|
LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models
|
2403.15388
|
https://arxiv.org/abs/2403.15388v5
|
https://arxiv.org/pdf/2403.15388v5.pdf
|
https://github.com/42Shawn/LLaVA-PruMerge
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/swin-transformer-hierarchical-vision
|
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
|
2103.14030
|
https://arxiv.org/abs/2103.14030v2
|
https://arxiv.org/pdf/2103.14030v2.pdf
|
https://github.com/yangyucheng000/University/tree/main/model-3/swin
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/on-the-detectability-and-parameterisation-of
|
On the detectability and parameterisation of binary stars through spectral energy distributions
|
2412.05606
|
https://arxiv.org/abs/2412.05606v1
|
https://arxiv.org/pdf/2412.05606v1.pdf
|
https://github.com/jikrant3/sed-analysis-tools
| true | true | false |
none
|
https://paperswithcode.com/paper/tetrahedral-diffusion-models-for-3d-shape
|
TetraDiffusion: Tetrahedral Diffusion Models for 3D Shape Generation
|
2211.13220
|
https://arxiv.org/abs/2211.13220v3
|
https://arxiv.org/pdf/2211.13220v3.pdf
|
https://github.com/PeterTor/TetraDiffusion
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/streamgen-connecting-populations-of-streams
|
StreamGen: Connecting Populations of Streams and Shells to Their Host Galaxies
|
2409.13810
|
https://arxiv.org/abs/2409.13810v1
|
https://arxiv.org/pdf/2409.13810v1.pdf
|
https://github.com/adropulic/streamgen
| true | true | true |
jax
|
https://paperswithcode.com/paper/to-glue-or-not-to-glue-classical-vs-learned
|
To Glue or Not to Glue? Classical vs Learned Image Matching for Mobile Mapping Cameras to Textured Semantic 3D Building Models
|
2505.17973
|
https://arxiv.org/abs/2505.17973v1
|
https://arxiv.org/pdf/2505.17973v1.pdf
|
https://github.com/simbauer/to_glue_or_not_to_glue
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/simulating-the-two-dimensional-t-j-model-at
|
Simulating the two-dimensional $t-J$ model at finite doping with neural quantum states
|
2411.10430
|
https://arxiv.org/abs/2411.10430v2
|
https://arxiv.org/pdf/2411.10430v2.pdf
|
https://github.com/HannahLange/HFDSfortJ
| true | false | true |
jax
|
https://paperswithcode.com/paper/flame-financial-large-language-model
|
FLAME: Financial Large-Language Model Assessment and Metrics Evaluation
|
2501.06211
|
https://arxiv.org/abs/2501.06211v1
|
https://arxiv.org/pdf/2501.06211v1.pdf
|
https://github.com/flame-ruc/flame
| true | true | false |
none
|
https://paperswithcode.com/paper/first-experiments-with-neural-cvc5
|
First Experiments with Neural cvc5
|
2501.09379
|
https://arxiv.org/abs/2501.09379v1
|
https://arxiv.org/pdf/2501.09379v1.pdf
|
https://github.com/jellepiepenbrock/mlcvc5-lpar
| true | true | false |
none
|
https://paperswithcode.com/paper/scaling-up-your-kernels-large-kernel-design
|
Scaling Up Your Kernels: Large Kernel Design in ConvNets towards Universal Representations
|
2410.08049
|
https://arxiv.org/abs/2410.08049v1
|
https://arxiv.org/pdf/2410.08049v1.pdf
|
https://github.com/ailab-cvc/unireplknet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optimal-state-dynamics-estimation-for-physics
|
Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos
|
2410.07795
|
https://arxiv.org/abs/2410.07795v4
|
https://arxiv.org/pdf/2410.07795v4.pdf
|
https://github.com/cuongle1206/osdcap
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/memsduino-an-arduino-based-mems-switch
|
MEMSDuino: An Arduino-Based MEMS Switch Controller
|
2501.03340
|
https://arxiv.org/abs/2501.03340v1
|
https://arxiv.org/pdf/2501.03340v1.pdf
|
https://github.com/lafefspietz/memsduino
| true | true | true |
none
|
https://paperswithcode.com/paper/query-enhanced-knowledge-intensive
|
Query Enhanced Knowledge-Intensive Conversation via Unsupervised Joint Modeling
|
2212.09588
|
https://arxiv.org/abs/2212.09588v2
|
https://arxiv.org/pdf/2212.09588v2.pdf
|
https://github.com/MindCode-4/code-12/tree/main/model-conversion-via
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/pyramidal-flow-matching-for-efficient-video
|
Pyramidal Flow Matching for Efficient Video Generative Modeling
|
2410.05954
|
https://arxiv.org/abs/2410.05954v1
|
https://arxiv.org/pdf/2410.05954v1.pdf
|
https://github.com/jy0205/Pyramid-Flow
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/aligning-few-step-diffusion-models-with-dense
|
Aligning Few-Step Diffusion Models with Dense Reward Difference Learning
|
2411.11727
|
https://arxiv.org/abs/2411.11727v1
|
https://arxiv.org/pdf/2411.11727v1.pdf
|
https://github.com/ziyizhang27/sdpo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/identifying-memorization-of-diffusion-models
|
Identifying Memorization of Diffusion Models through p-Laplace Analysis
|
2505.08246
|
https://arxiv.org/abs/2505.08246v1
|
https://arxiv.org/pdf/2505.08246v1.pdf
|
https://github.com/jonathanbrok/identifying-memorization-of-diffusion-models-through-p-laplace-analysis
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/extreme-values-of-the-mass-distribution
|
Extreme values of the mass distribution associated with $d$-quasi-copulas via linear programming
|
2410.19339
|
https://arxiv.org/abs/2410.19339v2
|
https://arxiv.org/pdf/2410.19339v2.pdf
|
https://gitlab.com/mrcinv/quasicopula.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/physics-informed-neural-networks-for-22
|
Physics-informed Neural Networks for Functional Differential Equations: Cylindrical Approximation and Its Convergence Guarantees
|
2410.18153
|
https://arxiv.org/abs/2410.18153v1
|
https://arxiv.org/pdf/2410.18153v1.pdf
|
https://github.com/taikimiyagawa/functionalpinn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-joint-learning-framework-with-feature
|
A Joint Learning Framework with Feature Reconstruction and Prediction for Incomplete Satellite Image Time Series in Agricultural Semantic Segmentation
|
2505.19159
|
https://arxiv.org/abs/2505.19159v1
|
https://arxiv.org/pdf/2505.19159v1.pdf
|
https://github.com/wangyuze-csu/joint_frp
| true | true | false |
none
|
https://paperswithcode.com/paper/a-survey-of-medical-vision-and-language
|
A Survey of Medical Vision-and-Language Applications and Their Techniques
|
2411.12195
|
https://arxiv.org/abs/2411.12195v1
|
https://arxiv.org/pdf/2411.12195v1.pdf
|
https://github.com/ytongxie/medical-vision-and-language-tasks-and-methodologies-a-survey
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/local-and-global-decoding-in-text-generation
|
Local and Global Decoding in Text Generation
|
2410.10810
|
https://arxiv.org/abs/2410.10810v1
|
https://arxiv.org/pdf/2410.10810v1.pdf
|
https://github.com/lowlypalace/global-decoding
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bbsea-an-exploration-of-brain-body
|
BBSEA: An Exploration of Brain-Body Synchronization for Embodied Agents
|
2402.08212
|
https://arxiv.org/abs/2402.08212v1
|
https://arxiv.org/pdf/2402.08212v1.pdf
|
https://github.com/yangsizhe/bbsea
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/multi-type-preference-learning-empowering
|
Multi-Type Preference Learning: Empowering Preference-Based Reinforcement Learning with Equal Preferences
|
2409.07268
|
https://arxiv.org/abs/2409.07268v2
|
https://arxiv.org/pdf/2409.07268v2.pdf
|
https://github.com/feicuilengmmbb/paper_mtpl
| true | true | true |
none
|
https://paperswithcode.com/paper/towards-better-multi-head-attention-via
|
Towards Better Multi-head Attention via Channel-wise Sample Permutation
|
2410.10914
|
https://arxiv.org/abs/2410.10914v1
|
https://arxiv.org/pdf/2410.10914v1.pdf
|
https://github.com/dashenzi721/csp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/automato-a-parameter-free-persistence-based
|
AuToMATo: An Out-Of-The-Box Persistence-Based Clustering Algorithm
|
2408.06958
|
https://arxiv.org/abs/2408.06958v2
|
https://arxiv.org/pdf/2408.06958v2.pdf
|
https://github.com/m-a-huber/AuToMATo
| true | false | false |
none
|
https://paperswithcode.com/paper/denial-of-service-poisoning-attacks-against
|
Denial-of-Service Poisoning Attacks against Large Language Models
|
2410.10760
|
https://arxiv.org/abs/2410.10760v1
|
https://arxiv.org/pdf/2410.10760v1.pdf
|
https://github.com/sail-sg/p-dos
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ar-tta-a-simple-method-for-real-world
|
AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation
|
2309.10109
|
https://arxiv.org/abs/2309.10109v2
|
https://arxiv.org/pdf/2309.10109v2.pdf
|
https://github.com/dmn-sjk/ar-tta
| true | true | true |
none
|
https://paperswithcode.com/paper/v2m-visual-2-dimensional-mamba-for-image
|
V2M: Visual 2-Dimensional Mamba for Image Representation Learning
|
2410.10382
|
https://arxiv.org/abs/2410.10382v1
|
https://arxiv.org/pdf/2410.10382v1.pdf
|
https://github.com/wangck20/v2m
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/finetuning-pretrained-transformers-into-rnns
|
Finetuning Pretrained Transformers into RNNs
|
2103.13076
|
https://arxiv.org/abs/2103.13076v2
|
https://arxiv.org/pdf/2103.13076v2.pdf
|
https://github.com/hazyresearch/lolcats
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-hedgehog-the-porcupine-expressive-linear
|
The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry
|
2402.04347
|
https://arxiv.org/abs/2402.04347v1
|
https://arxiv.org/pdf/2402.04347v1.pdf
|
https://github.com/hazyresearch/lolcats
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/geometry-informed-neural-networks
|
Geometry-Informed Neural Networks
|
2402.14009
|
https://arxiv.org/abs/2402.14009v3
|
https://arxiv.org/pdf/2402.14009v3.pdf
|
https://github.com/ml-jku/ginns-geometry-informed-neural-networks
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/implicit-multi-spectral-transformer-an
|
Implicit Multi-Spectral Transformer: An Lightweight and Effective Visible to Infrared Image Translation Model
|
2404.07072
|
https://arxiv.org/abs/2404.07072v2
|
https://arxiv.org/pdf/2404.07072v2.pdf
|
https://github.com/CXH-Research/IRFormer
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/a-quick-primer-on-machine-learning-in
|
A Quick Primer on Machine Learning in Wireless Communications
|
2312.17713
|
https://arxiv.org/abs/2312.17713v6
|
https://arxiv.org/pdf/2312.17713v6.pdf
|
https://github.com/farismismar/eesc7v86-fall22
| true | true | true |
tf
|
https://paperswithcode.com/paper/subjective-and-objective-analysis-of-indian
|
Subjective and Objective Analysis of Indian Social Media Video Quality
|
2401.02794
|
https://arxiv.org/abs/2401.02794v1
|
https://arxiv.org/pdf/2401.02794v1.pdf
|
https://github.com/sandeep-sm/live-sc
| true | true | true |
none
|
https://paperswithcode.com/paper/inflation-of-test-accuracy-due-to-data
|
Inflation of test accuracy due to data leakage in deep learning-based classification of OCT images
|
2202.12267
|
https://arxiv.org/abs/2202.12267v2
|
https://arxiv.org/pdf/2202.12267v2.pdf
|
https://github.com/iulianemiltampu/split_properly_oct_data
| true | true | false |
tf
|
https://paperswithcode.com/paper/topa-extend-large-language-models-for-video
|
TOPA: Extending Large Language Models for Video Understanding via Text-Only Pre-Alignment
|
2405.13911
|
https://arxiv.org/abs/2405.13911v2
|
https://arxiv.org/pdf/2405.13911v2.pdf
|
https://github.com/dhg-wei/topa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/unsupervised-homography-estimation-on
|
Unsupervised Homography Estimation on Multimodal Image Pair via Alternating Optimization
|
2411.13036
|
https://arxiv.org/abs/2411.13036v1
|
https://arxiv.org/pdf/2411.13036v1.pdf
|
https://github.com/songsang7/alto
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/vista-dataset-do-vision-language-models
|
ViSTa Dataset: Do vision-language models understand sequential tasks?
|
2411.13211
|
https://arxiv.org/abs/2411.13211v2
|
https://arxiv.org/pdf/2411.13211v2.pdf
|
https://github.com/eugleo/vista-dataset
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/whales-a-multi-agent-scheduling-dataset-for
|
WHALES: A Multi-agent Scheduling Dataset for Enhanced Cooperation in Autonomous Driving
|
2411.13340
|
https://arxiv.org/abs/2411.13340v1
|
https://arxiv.org/pdf/2411.13340v1.pdf
|
https://github.com/chensiweithu/whales
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/teaching-vlms-to-localize-specific-objects
|
Teaching VLMs to Localize Specific Objects from In-context Examples
|
2411.13317
|
https://arxiv.org/abs/2411.13317v1
|
https://arxiv.org/pdf/2411.13317v1.pdf
|
https://github.com/sivandoveh/iploc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/joint-vision-language-social-bias-removal-for
|
Joint Vision-Language Social Bias Removal for CLIP
|
2411.12785
|
https://arxiv.org/abs/2411.12785v1
|
https://arxiv.org/pdf/2411.12785v1.pdf
|
https://github.com/haoyusimon/VL_Debiasing
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/fg-dfpn-flow-guided-deformable-frame
|
FG-DFPN: Flow Guided Deformable Frame Prediction Network
|
2503.11343
|
https://arxiv.org/abs/2503.11343v1
|
https://arxiv.org/pdf/2503.11343v1.pdf
|
https://github.com/KUIS-AI-Tekalp-Research-Group/frame-prediction
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/consistency-models
|
Consistency Models
|
2303.01469
|
https://arxiv.org/abs/2303.01469v2
|
https://arxiv.org/pdf/2303.01469v2.pdf
|
https://github.com/cloneofsimo/consistency_models
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/developing-a-top-tier-framework-in
|
Developing a Top-tier Framework in Naturalistic Conditions Challenge for Categorized Emotion Prediction: From Speech Foundation Models and Learning Objective to Data Augmentation and Engineering Choices
|
2505.22133
|
https://arxiv.org/abs/2505.22133v2
|
https://arxiv.org/pdf/2505.22133v2.pdf
|
https://github.com/tiantiaf0627/vox-profile-release
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gaze-guided-learning-avoiding-shortcut-bias
|
Gaze-Guided Learning: Avoiding Shortcut Bias in Visual Classification
|
2504.05583
|
https://arxiv.org/abs/2504.05583v1
|
https://arxiv.org/pdf/2504.05583v1.pdf
|
https://github.com/rekkles2/Gaze-CIFAR-10
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/trustworthy-deep-learning-via-proper
|
Better Uncertainty Calibration via Proper Scores for Classification and Beyond
|
2203.07835
|
https://arxiv.org/abs/2203.07835v4
|
https://arxiv.org/pdf/2203.07835v4.pdf
|
https://github.com/MLO-lab/better_uncertainty_calibration_via_proper_scores_for_classification_and_beyond
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/flipsketch-flipping-static-drawings-to-text
|
FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations
|
2411.10818
|
https://arxiv.org/abs/2411.10818v1
|
https://arxiv.org/pdf/2411.10818v1.pdf
|
https://github.com/hmrishavbandy/flipsketch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/intruding-with-words-towards-understanding
|
Intruding with Words: Towards Understanding Graph Injection Attacks at the Text Level
|
2405.16405
|
https://arxiv.org/abs/2405.16405v2
|
https://arxiv.org/pdf/2405.16405v2.pdf
|
https://github.com/leirunlin/text-level-graph-attack
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-llm-based-ranking-method-for-the-evaluation
|
A LLM-Based Ranking Method for the Evaluation of Automatic Counter-Narrative Generation
|
2406.15227
|
https://arxiv.org/abs/2406.15227v3
|
https://arxiv.org/pdf/2406.15227v3.pdf
|
https://github.com/hitz-zentroa/cn-eval
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adjointdeis-efficient-gradients-for-diffusion
|
AdjointDEIS: Efficient Gradients for Diffusion Models
|
2405.15020
|
https://arxiv.org/abs/2405.15020v3
|
https://arxiv.org/pdf/2405.15020v3.pdf
|
https://github.com/zblasingame/adjointdeis
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/simulation-of-nanorobots-with-artificial
|
Simulation of Nanorobots with Artificial Intelligence and Reinforcement Learning for Advanced Cancer Cell Detection and Tracking
|
2411.02345
|
https://arxiv.org/abs/2411.02345v1
|
https://arxiv.org/pdf/2411.02345v1.pdf
|
https://github.com/shahab-k93/cancer-and-smart-nanorobot
| true | true | false |
none
|
https://paperswithcode.com/paper/generative-ai-aided-optimization-for-ai
|
Diffusion-based Reinforcement Learning for Edge-enabled AI-Generated Content Services
|
2303.13052
|
https://arxiv.org/abs/2303.13052v3
|
https://arxiv.org/pdf/2303.13052v3.pdf
|
https://github.com/lizonghang/agod
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-audio-synthesis-of-musical-notes-with
|
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
|
1704.01279
|
http://arxiv.org/abs/1704.01279v1
|
http://arxiv.org/pdf/1704.01279v1.pdf
|
https://github.com/MindSpore-scientific/code-6/tree/main/neural-audio-synthesis-wavenet
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/normalization-layer-per-example-gradients-are
|
Normalization Layer Per-Example Gradients are Sufficient to Predict Gradient Noise Scale in Transformers
|
2411.00999
|
https://arxiv.org/abs/2411.00999v1
|
https://arxiv.org/pdf/2411.00999v1.pdf
|
https://github.com/cerebrasresearch/nanogns
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/interpreting-clip-with-sparse-linear-concept
|
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
|
2402.10376
|
https://arxiv.org/abs/2402.10376v2
|
https://arxiv.org/pdf/2402.10376v2.pdf
|
https://github.com/ai4life-group/splice
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/flexchunk-enabling-100mx100m-out-of-core-spmv
|
FlexChunk: Enabling 100M×100M Out-of-Core SpMV (~1.8 min, ~1.7 GB RAM) with Near-Linear Scaling
| null |
https://www.lesswrong.com/posts/zpRhsdDkWygTDScxb/flexchunk-enabling-100m-100m-out-of-core-spmv-1-8-min-1-7-gb
|
https://github.com/DanielSwift1992/FlexChunk/blob/main/docs/lesswrong.com-FlexChunk.pdf
|
https://github.com/DanielSwift1992/FlexChunk
| false | false | false |
none
|
https://paperswithcode.com/paper/gateformer-advancing-multivariate-time-series
|
Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations
|
2505.00307
|
https://arxiv.org/abs/2505.00307v2
|
https://arxiv.org/pdf/2505.00307v2.pdf
|
https://github.com/nyuolab/gateformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/c-pmi-conditional-pointwise-mutual
|
C-PMI: Conditional Pointwise Mutual Information for Turn-level Dialogue Evaluation
|
2306.15245
|
https://arxiv.org/abs/2306.15245v3
|
https://arxiv.org/pdf/2306.15245v3.pdf
|
https://github.com/renll/c-pmi
| true | true | true |
none
|
https://paperswithcode.com/paper/tip-of-the-tongue-query-elicitation-for
|
Tip of the Tongue Query Elicitation for Simulated Evaluation
|
2502.17776
|
https://arxiv.org/abs/2502.17776v1
|
https://arxiv.org/pdf/2502.17776v1.pdf
|
https://github.com/kimdanny/human-tot-query-elicitation-mturk
| true | false | false |
none
|
https://paperswithcode.com/paper/luminance-attentive-networks-for-hdr-image
|
Luminance Attentive Networks for HDR Image and Panorama Reconstruction
|
2109.06688
|
https://arxiv.org/abs/2109.06688v1
|
https://arxiv.org/pdf/2109.06688v1.pdf
|
https://github.com/MindSpore-scientific/code-13/tree/main/Luminance-Guided-Chrominance-Enhancement-for-HEVC-Intra-Coding
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/in-context-learning-with-hypothesis-class
|
In-Context Learning with Hypothesis-Class Guidance
|
2502.19787
|
https://arxiv.org/abs/2502.19787v1
|
https://arxiv.org/pdf/2502.19787v1.pdf
|
https://github.com/uw-madison-lee-lab/icl-hcg
| true | true | false |
none
|
https://paperswithcode.com/paper/steerable-conditional-diffusion-for-out-of
|
Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction
|
2308.14409
|
https://arxiv.org/abs/2308.14409v3
|
https://arxiv.org/pdf/2308.14409v3.pdf
|
https://github.com/alexdenker/SteerableConditionalDiffusion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deft-efficient-finetuning-of-conditional
|
DEFT: Efficient Fine-Tuning of Diffusion Models by Learning the Generalised $h$-transform
|
2406.01781
|
https://arxiv.org/abs/2406.01781v5
|
https://arxiv.org/pdf/2406.01781v5.pdf
|
https://github.com/alexdenker/deft
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/strategic-learning-and-trading-in-broker
|
Strategic Learning and Trading in Broker-Mediated Markets
|
2412.20847
|
https://arxiv.org/abs/2412.20847v1
|
https://arxiv.org/pdf/2412.20847v1.pdf
|
https://github.com/muhammadalifaqsha/broker_informed_noise_filtering_game
| true | false | false |
none
|
https://paperswithcode.com/paper/the-bigger-the-better-accurate-molecular
|
The Bigger the Better? Accurate Molecular Potential Energy Surfaces from Minimalist Neural Networks
|
2411.18121
|
https://arxiv.org/abs/2411.18121v1
|
https://arxiv.org/pdf/2411.18121v1.pdf
|
https://github.com/MMunibas/KerNN
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/model-x-ray-detect-backdoored-models-via
|
Model X-ray:Detecting Backdoored Models via Decision Boundary
|
2402.17465
|
https://arxiv.org/abs/2402.17465v2
|
https://arxiv.org/pdf/2402.17465v2.pdf
|
https://github.com/SuYanghao/Model_X-ray
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/pruning-in-the-face-of-adversaries
|
Pruning in the Face of Adversaries
|
2108.08560
|
https://arxiv.org/abs/2108.08560v1
|
https://arxiv.org/pdf/2108.08560v1.pdf
|
https://github.com/FlorianMerkle/network-pruning-and-robustness
| false | false | true |
tf
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.