paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/vmamba-visual-state-space-model
|
VMamba: Visual State Space Model
|
2401.10166
|
https://arxiv.org/abs/2401.10166v4
|
https://arxiv.org/pdf/2401.10166v4.pdf
|
https://github.com/mzeromiko/vmamba
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/personality-alignment-of-large-language
|
Personality Alignment of Large Language Models
|
2408.11779
|
https://arxiv.org/abs/2408.11779v1
|
https://arxiv.org/pdf/2408.11779v1.pdf
|
https://github.com/zhu-minjun/palign
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/general-complex-polynomial-root-solver-and
|
General Complex Polynomial Root Solver and Its Further Optimization for Binary Microlenses
|
1203.1034
|
http://arxiv.org/abs/1203.1034v1
|
http://arxiv.org/pdf/1203.1034v1.pdf
|
https://github.com/valboz/VBBinaryLensing
| false | false | true |
none
|
https://paperswithcode.com/paper/medmae-a-self-supervised-backbone-for-medical
|
MedMAE: A Self-Supervised Backbone for Medical Imaging Tasks
|
2407.14784
|
https://arxiv.org/abs/2407.14784v1
|
https://arxiv.org/pdf/2407.14784v1.pdf
|
https://github.com/islamosmanubc/MedMAE
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/fedgs-federated-gradient-scaling-for
|
FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation
|
2408.11701
|
https://arxiv.org/abs/2408.11701v1
|
https://arxiv.org/pdf/2408.11701v1.pdf
|
https://github.com/trustworthy-ai-uu-nki/federated-learning-disentanglement
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gaussian-deja-vu-creating-controllable-3d
|
Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities
|
2409.16147
|
https://arxiv.org/abs/2409.16147v3
|
https://arxiv.org/pdf/2409.16147v3.pdf
|
https://github.com/peizhiyan/flame-head-tracker
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/integrating-ytopt-and-libensemble-to-autotune
|
Integrating ytopt and libEnsemble to Autotune OpenMC
|
2402.09222
|
https://arxiv.org/abs/2402.09222v2
|
https://arxiv.org/pdf/2402.09222v2.pdf
|
https://github.com/ytopt-team/ytopt-libensemble
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/avm-slam-semantic-visual-slam-with-multi
|
AVM-SLAM: Semantic Visual SLAM with Multi-Sensor Fusion in a Bird's Eye View for Automated Valet Parking
|
2309.08180
|
https://arxiv.org/abs/2309.08180v2
|
https://arxiv.org/pdf/2309.08180v2.pdf
|
https://github.com/yale-cv/avm-slam_dataset
| true | true | true |
none
|
https://paperswithcode.com/paper/tackling-hybrid-heterogeneity-on-federated
|
On the Power of Adaptive Weighted Aggregation in Heterogeneous Federated Learning and Beyond
|
2310.02702
|
https://arxiv.org/abs/2310.02702v4
|
https://arxiv.org/pdf/2310.02702v4.pdf
|
https://github.com/dunzeng/fedaware
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/seed-data-edit-technical-report-a-hybrid
|
SEED-Data-Edit Technical Report: A Hybrid Dataset for Instructional Image Editing
|
2405.04007
|
https://arxiv.org/abs/2405.04007v1
|
https://arxiv.org/pdf/2405.04007v1.pdf
|
https://github.com/ailab-cvc/seed-x
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cure4rec-a-benchmark-for-recommendation
|
CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence
|
2408.14393
|
https://arxiv.org/abs/2408.14393v2
|
https://arxiv.org/pdf/2408.14393v2.pdf
|
https://github.com/xiye7lai/cure4rec
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/attencraft-attention-guided-disentanglement
|
AttenCraft: Attention-guided Disentanglement of Multiple Concepts for Text-to-Image Customization
|
2405.17965
|
https://arxiv.org/abs/2405.17965v1
|
https://arxiv.org/pdf/2405.17965v1.pdf
|
https://github.com/junjie-shentu/attencraft
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/large-language-models-for-depression
|
Large Language Models for Depression Recognition in Spoken Language Integrating Psychological Knowledge
|
2505.22863
|
https://arxiv.org/abs/2505.22863v1
|
https://arxiv.org/pdf/2505.22863v1.pdf
|
https://github.com/myxp-lyp/depression-detection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rankability-enhanced-revenue-uplift-modeling
|
Rankability-enhanced Revenue Uplift Modeling Framework for Online Marketing
|
2405.15301
|
https://arxiv.org/abs/2405.15301v2
|
https://arxiv.org/pdf/2405.15301v2.pdf
|
https://github.com/BokwaiHo/revenue_uplift
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bayesian-detector-combination-for-object
|
Bayesian Detector Combination for Object Detection with Crowdsourced Annotations
|
2407.07958
|
https://arxiv.org/abs/2407.07958v1
|
https://arxiv.org/pdf/2407.07958v1.pdf
|
https://github.com/zhiqin1998/bdc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/novel-clustered-federated-learning-based-on
|
Novel clustered federated learning based on local loss
|
2407.09360
|
https://arxiv.org/abs/2407.09360v1
|
https://arxiv.org/pdf/2407.09360v1.pdf
|
https://github.com/wenh06/LCFL
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/llm-maybe-longlm-self-extend-llm-context
|
LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning
|
2401.01325
|
https://arxiv.org/abs/2401.01325v3
|
https://arxiv.org/pdf/2401.01325v3.pdf
|
https://github.com/datamllab/LongLM
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-spectral-clustering-via-joint-spectral
|
Deep Spectral Clustering via Joint Spectral Embedding and Kmeans
|
2412.11080
|
https://arxiv.org/abs/2412.11080v1
|
https://arxiv.org/pdf/2412.11080v1.pdf
|
https://github.com/spdj2271/dsc
| true | true | false |
tf
|
https://paperswithcode.com/paper/quasioptimal-alternating-projections-and
|
Quasioptimal alternating projections and their use in low-rank approximation of matrices and tensors
|
2308.16097
|
https://arxiv.org/abs/2308.16097v3
|
https://arxiv.org/pdf/2308.16097v3.pdf
|
https://github.com/sbudzinskiy/low-rank-big-data
| false | false | true |
none
|
https://paperswithcode.com/paper/on-discovery-of-local-independence-over
|
On Discovery of Local Independence over Continuous Variables via Neural Contextual Decomposition
|
2405.07220
|
https://arxiv.org/abs/2405.07220v1
|
https://arxiv.org/pdf/2405.07220v1.pdf
|
https://github.com/iwhwang/ncd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/protboost-protein-function-prediction-with-py
|
ProtBoost: protein function prediction with Py-Boost and Graph Neural Networks -- CAFA5 top2 solution
|
2412.04529
|
https://arxiv.org/abs/2412.04529v1
|
https://arxiv.org/pdf/2412.04529v1.pdf
|
https://github.com/btbpanda/cafa5-protein-function-prediction-2nd-place
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/isfl-trustworthy-federated-learning-for-non-i
|
ISFL: Federated Learning for Non-i.i.d. Data with Local Importance Sampling
|
2210.02119
|
https://arxiv.org/abs/2210.02119v3
|
https://arxiv.org/pdf/2210.02119v3.pdf
|
https://github.com/zhuzzq/isfl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/tunes-a-temporal-u-net-with-self-attention
|
TUNeS: A Temporal U-Net with Self-Attention for Video-based Surgical Phase Recognition
|
2307.09997
|
https://arxiv.org/abs/2307.09997v6
|
https://arxiv.org/pdf/2307.09997v6.pdf
|
https://gitlab.com/nct_tso_public/tunes
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/straightpcf-straight-point-cloud-filtering
|
StraightPCF: Straight Point Cloud Filtering
|
2405.08322
|
https://arxiv.org/abs/2405.08322v1
|
https://arxiv.org/pdf/2405.08322v1.pdf
|
https://github.com/ddsediri/straightpcf
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/conformal-prediction-for-causal-effects-of
|
Conformal Prediction for Causal Effects of Continuous Treatments
|
2407.03094
|
https://arxiv.org/abs/2407.03094v3
|
https://arxiv.org/pdf/2407.03094v3.pdf
|
https://github.com/m-schroder/continuouscausalcp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-cnns-for-trajectory-similarity
|
Revisiting CNNs for Trajectory Similarity Learning
|
2405.19761
|
https://arxiv.org/abs/2405.19761v2
|
https://arxiv.org/pdf/2405.19761v2.pdf
|
https://github.com/proudc/convtraj
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multivariate-probabilistic-time-series
|
Multivariate Probabilistic Time Series Forecasting with Correlated Errors
|
2402.01000
|
https://arxiv.org/abs/2402.01000v4
|
https://arxiv.org/pdf/2402.01000v4.pdf
|
https://github.com/rottenivy/mv_pts_correlatederr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pokerkit-a-comprehensive-python-library-for
|
PokerKit: A Comprehensive Python Library for Fine-Grained Multi-Variant Poker Game Simulations
|
2308.07327
|
https://arxiv.org/abs/2308.07327v6
|
https://arxiv.org/pdf/2308.07327v6.pdf
|
https://github.com/uoftcprg/pokerkit
| true | true | false |
none
|
https://paperswithcode.com/paper/inline-photometrically-calibrated-hybrid
|
Inline Photometrically Calibrated Hybrid Visual SLAM
|
2409.16810
|
https://arxiv.org/abs/2409.16810v1
|
https://arxiv.org/pdf/2409.16810v1.pdf
|
https://github.com/AUBVRL/HSLAM_docker
| true | false | false |
none
|
https://paperswithcode.com/paper/crafting-interpretable-embeddings-by-asking
|
Crafting Interpretable Embeddings by Asking LLMs Questions
|
2405.16714
|
https://arxiv.org/abs/2405.16714v1
|
https://arxiv.org/pdf/2405.16714v1.pdf
|
https://github.com/csinva/interpretable-embeddings
| true | false | true |
none
|
https://paperswithcode.com/paper/causalconceptts-causal-attributions-for-time
|
CausalConceptTS: Causal Attributions for Time Series Classification using High Fidelity Diffusion Models
|
2405.15871
|
https://arxiv.org/abs/2405.15871v1
|
https://arxiv.org/pdf/2405.15871v1.pdf
|
https://github.com/ai4healthuol/causalconceptts
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/we-should-identify-and-mitigate-third-party
|
We Should Identify and Mitigate Third-Party Safety Risks in MCP-Powered Agent Systems
|
2506.13666
|
https://arxiv.org/abs/2506.13666v1
|
https://arxiv.org/pdf/2506.13666v1.pdf
|
https://github.com/littlelittlenine/safemcp
| true | true | false |
none
|
https://paperswithcode.com/paper/do-not-answer-a-dataset-for-evaluating
|
Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
|
2308.13387
|
https://arxiv.org/abs/2308.13387v2
|
https://arxiv.org/pdf/2308.13387v2.pdf
|
https://github.com/libr-ai/do-not-answer
| true | true | true |
none
|
https://paperswithcode.com/paper/3d-unsupervised-learning-by-distilling-2d
|
3D Annotation-Free Learning by Distilling 2D Open-Vocabulary Segmentation Models for Autonomous Driving
|
2405.15286
|
https://arxiv.org/abs/2405.15286v3
|
https://arxiv.org/pdf/2405.15286v3.pdf
|
https://github.com/sbysbysbys/afov
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/on-fairness-of-medical-image-classification
|
On Fairness of Medical Image Classification with Multiple Sensitive Attributes via Learning Orthogonal Representations
|
2301.01481
|
https://arxiv.org/abs/2301.01481v3
|
https://arxiv.org/pdf/2301.01481v3.pdf
|
https://github.com/ubc-tea/fcro-fair-classification-orthogonal-representation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/detectorless-3d-terahertz-imaging-achieving
|
Detectorless 3D terahertz imaging: achieving subwavelength resolution with reflectance confocal interferometric microscopy
|
2412.18403
|
https://arxiv.org/abs/2412.18403v4
|
https://arxiv.org/pdf/2412.18403v4.pdf
|
https://github.com/jrgsilv/beam-propagation
| true | true | false |
none
|
https://paperswithcode.com/paper/cross-view-masked-diffusion-transformers-for
|
Cross-view Masked Diffusion Transformers for Person Image Synthesis
|
2402.01516
|
https://arxiv.org/abs/2402.01516v2
|
https://arxiv.org/pdf/2402.01516v2.pdf
|
https://github.com/trungpx/xmdpt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/text2ac-zero-consistent-synthesis-of-animated
|
LatentMan: Generating Consistent Animated Characters using Image Diffusion Models
|
2312.07133
|
https://arxiv.org/abs/2312.07133v2
|
https://arxiv.org/pdf/2312.07133v2.pdf
|
https://github.com/abdo-eldesokey/latentman
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pose-guidance-by-supervision-a-framework-for
|
PGDS: Pose-Guidance Deep Supervision for Mitigating Clothes-Changing in Person Re-Identification
|
2312.05634
|
https://arxiv.org/abs/2312.05634v3
|
https://arxiv.org/pdf/2312.05634v3.pdf
|
https://github.com/huyquoctrinh/pgds
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/alirector-alignment-enhanced-chinese
|
Alirector: Alignment-Enhanced Chinese Grammatical Error Corrector
|
2402.04601
|
https://arxiv.org/abs/2402.04601v2
|
https://arxiv.org/pdf/2402.04601v2.pdf
|
https://github.com/yanghh2000/alirector
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gift-generative-interpretable-fine-tuning
|
Generative Parameter-Efficient Fine-Tuning
|
2312.00700
|
https://arxiv.org/abs/2312.00700v4
|
https://arxiv.org/pdf/2312.00700v4.pdf
|
https://github.com/savadikarc/gift
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/phase-aware-speech-enhancement-with-deep-1
|
Phase-aware Speech Enhancement with Deep Complex U-Net
|
1903.03107
|
http://arxiv.org/abs/1903.03107v2
|
http://arxiv.org/pdf/1903.03107v2.pdf
|
https://github.com/ContigoAI/tf1-phase-aware-speech-enhancement
| false | false | false |
tf
|
https://paperswithcode.com/paper/grootvl-tree-topology-is-all-you-need-in
|
GrootVL: Tree Topology is All You Need in State Space Model
|
2406.02395
|
https://arxiv.org/abs/2406.02395v1
|
https://arxiv.org/pdf/2406.02395v1.pdf
|
https://github.com/easonxiao-888/grootvl
| true | true | true |
jax
|
https://paperswithcode.com/paper/factgenius-combining-zero-shot-prompting-and
|
FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining to Improve Fact Verification with Knowledge Graphs
|
2406.01311
|
https://arxiv.org/abs/2406.01311v1
|
https://arxiv.org/pdf/2406.01311v1.pdf
|
https://github.com/sushantgautam/factgenius
| true | true | false |
none
|
https://paperswithcode.com/paper/eit-enhanced-interactive-transformer
|
EIT: Enhanced Interactive Transformer
|
2212.10197
|
https://arxiv.org/abs/2212.10197v2
|
https://arxiv.org/pdf/2212.10197v2.pdf
|
https://github.com/zhengkid/eit-enhanced-interactive-transformer
| true | true | false |
none
|
https://paperswithcode.com/paper/densegnn-universal-and-scalable-deeper-graph
|
DenseGNN: universal and scalable deeper graph neural networks for high-performance property prediction in crystals and molecules
|
2501.03278
|
https://arxiv.org/abs/2501.03278v1
|
https://arxiv.org/pdf/2501.03278v1.pdf
|
https://github.com/dhw059/densegnn
| true | true | false |
tf
|
https://paperswithcode.com/paper/multifaceteval-multifaceted-evaluation-to
|
MultifacetEval: Multifaceted Evaluation to Probe LLMs in Mastering Medical Knowledge
|
2406.02919
|
https://arxiv.org/abs/2406.02919v1
|
https://arxiv.org/pdf/2406.02919v1.pdf
|
https://github.com/thumlp/multifaceteval
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/spikelm-towards-general-spike-driven-language
|
SpikeLM: Towards General Spike-Driven Language Modeling via Elastic Bi-Spiking Mechanisms
|
2406.03287
|
https://arxiv.org/abs/2406.03287v1
|
https://arxiv.org/pdf/2406.03287v1.pdf
|
https://github.com/xingrun-xing/spikelm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/specexec-massively-parallel-speculative
|
SpecExec: Massively Parallel Speculative Decoding for Interactive LLM Inference on Consumer Devices
|
2406.02532
|
https://arxiv.org/abs/2406.02532v3
|
https://arxiv.org/pdf/2406.02532v3.pdf
|
https://github.com/yandex-research/specexec
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/zero-shot-machine-unlearning-at-scale-via
|
An Information Theoretic Approach to Machine Unlearning
|
2402.01401
|
https://arxiv.org/abs/2402.01401v4
|
https://arxiv.org/pdf/2402.01401v4.pdf
|
https://github.com/jwf40/information-theoretic-unlearning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adaptive-slot-attention-object-discovery-with-1
|
Adaptive Slot Attention: Object Discovery with Dynamic Slot Number
|
2406.09196
|
https://arxiv.org/abs/2406.09196v1
|
https://arxiv.org/pdf/2406.09196v1.pdf
|
https://github.com/lucidrains/slot-attention
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/transformers-are-sample-efficient-world
|
Transformers are Sample-Efficient World Models
|
2209.00588
|
https://arxiv.org/abs/2209.00588v2
|
https://arxiv.org/pdf/2209.00588v2.pdf
|
https://github.com/vmicheli/delta-iris
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/topviewrs-vision-language-models-as-top-view
|
TopViewRS: Vision-Language Models as Top-View Spatial Reasoners
|
2406.02537
|
https://arxiv.org/abs/2406.02537v1
|
https://arxiv.org/pdf/2406.02537v1.pdf
|
https://github.com/cambridgeltl/topviewrs
| true | true | true |
none
|
https://paperswithcode.com/paper/dwnet-dense-warp-based-network-for-pose
|
DwNet: Dense warp-based network for pose-guided human video generation
|
1910.09139
|
https://arxiv.org/abs/1910.09139v1
|
https://arxiv.org/pdf/1910.09139v1.pdf
|
https://github.com/ai-med/stablepose
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/humansd-a-native-skeleton-guided-diffusion
|
HumanSD: A Native Skeleton-Guided Diffusion Model for Human Image Generation
|
2304.04269
|
https://arxiv.org/abs/2304.04269v1
|
https://arxiv.org/pdf/2304.04269v1.pdf
|
https://github.com/ai-med/stablepose
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tackling-non-stationarity-in-reinforcement
|
Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation
|
2306.02747
|
https://arxiv.org/abs/2306.02747v3
|
https://arxiv.org/pdf/2306.02747v3.pdf
|
https://github.com/pku-rl/corep
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adafisher-adaptive-second-order-optimization
|
AdaFisher: Adaptive Second Order Optimization via Fisher Information
|
2405.16397
|
https://arxiv.org/abs/2405.16397v3
|
https://arxiv.org/pdf/2405.16397v3.pdf
|
https://github.com/AtlasAnalyticsLab/AdaFisher
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/automated-focused-feedback-generation-for
|
Automated Focused Feedback Generation for Scientific Writing Assistance
|
2405.20477
|
https://arxiv.org/abs/2405.20477v2
|
https://arxiv.org/pdf/2405.20477v2.pdf
|
https://github.com/ericchamoun/FocusedFeedbackGeneration
| true | true | true |
none
|
https://paperswithcode.com/paper/ttm-re-memory-augmented-document-level
|
TTM-RE: Memory-Augmented Document-Level Relation Extraction
|
2406.05906
|
https://arxiv.org/abs/2406.05906v1
|
https://arxiv.org/pdf/2406.05906v1.pdf
|
https://github.com/chufangao/ttm-re
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-swap-k-means
|
Multi-Swap $k$-Means++
|
2309.16384
|
https://arxiv.org/abs/2309.16384v2
|
https://arxiv.org/pdf/2309.16384v2.pdf
|
https://github.com/lorenzo2beretta/multi-swap-k-means-pp
| true | true | true |
none
|
https://paperswithcode.com/paper/trusting-your-evidence-hallucinate-less-with
|
Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
|
2305.14739
|
https://arxiv.org/abs/2305.14739v1
|
https://arxiv.org/pdf/2305.14739v1.pdf
|
https://github.com/danshi777/ircan
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/score-based-causal-representation-learning-1
|
Score-based Causal Representation Learning: Linear and General Transformations
|
2402.00849
|
https://arxiv.org/abs/2402.00849v3
|
https://arxiv.org/pdf/2402.00849v3.pdf
|
https://github.com/acarturk-e/score-based-crl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/general-identifiability-and-achievability-for
|
General Identifiability and Achievability for Causal Representation Learning
|
2310.15450
|
https://arxiv.org/abs/2310.15450v2
|
https://arxiv.org/pdf/2310.15450v2.pdf
|
https://github.com/acarturk-e/score-based-crl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fine-tuning-wav2vec2-for-speaker-recognition
|
Fine-tuning wav2vec2 for speaker recognition
|
2109.15053
|
https://arxiv.org/abs/2109.15053v2
|
https://arxiv.org/pdf/2109.15053v2.pdf
|
https://github.com/MS-P3/code7/tree/main/wav2vec2
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/a-modelling-framework-for-the-analysis-of-the
|
A modelling framework for the analysis of the SARS-CoV2 transmission dynamics
|
2203.03773
|
https://arxiv.org/abs/2203.03773v3
|
https://arxiv.org/pdf/2203.03773v3.pdf
|
https://github.com/anastasiachtz/seir-gbm
| true | true | true |
none
|
https://paperswithcode.com/paper/reframing-the-relationship-in-out-of
|
Concept Matching with Agent for Out-of-Distribution Detection
|
2405.16766
|
https://arxiv.org/abs/2405.16766v2
|
https://arxiv.org/pdf/2405.16766v2.pdf
|
https://github.com/yuxiaoleemarks/cma
| true | true | false |
none
|
https://paperswithcode.com/paper/evaluating-extensions-to-lcdm-an-application
|
Evaluating extensions to LCDM: an application of Bayesian model averaging and selection
|
2403.02120
|
https://arxiv.org/abs/2403.02120v4
|
https://arxiv.org/pdf/2403.02120v4.pdf
|
https://github.com/simonpara/fast-mpc
| false | false | true |
none
|
https://paperswithcode.com/paper/dataset-condensation-for-time-series
|
Dataset Condensation for Time Series Classification via Dual Domain Matching
|
2403.07245
|
https://arxiv.org/abs/2403.07245v3
|
https://arxiv.org/pdf/2403.07245v3.pdf
|
https://github.com/zhyliu00/TimeSeriesCond
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sslam-enhancing-self-supervised-models-with-1
|
SSLAM: Enhancing Self-Supervised Models with Audio Mixtures for Polyphonic Soundscapes
|
2506.12222
|
https://arxiv.org/abs/2506.12222v1
|
https://arxiv.org/pdf/2506.12222v1.pdf
|
https://github.com/ta012/SSLAM
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/the-signaling-dimension-of-two-dimensional
|
The signaling dimension of two-dimensional and polytopic systems
|
2407.17725
|
https://arxiv.org/abs/2407.17725v1
|
https://arxiv.org/pdf/2407.17725v1.pdf
|
https://github.com/syu-shu/sigdim
| true | true | false |
none
|
https://paperswithcode.com/paper/togs-gaussian-splatting-with-temporal-opacity
|
TOGS: Gaussian Splatting with Temporal Opacity Offset for Real-Time 4D DSA Rendering
|
2403.19586
|
https://arxiv.org/abs/2403.19586v2
|
https://arxiv.org/pdf/2403.19586v2.pdf
|
https://github.com/hustvl/TOGS
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/xmem-long-term-video-object-segmentation-with
|
XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model
|
2207.07115
|
https://arxiv.org/abs/2207.07115v2
|
https://arxiv.org/pdf/2207.07115v2.pdf
|
https://github.com/tianyuan168326/videosemanticcompression-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vript-a-video-is-worth-thousands-of-words
|
Vript: A Video Is Worth Thousands of Words
|
2406.06040
|
https://arxiv.org/abs/2406.06040v2
|
https://arxiv.org/pdf/2406.06040v2.pdf
|
https://github.com/mutonix/vript
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/q-ground-image-quality-grounding-with-large
|
Q-Ground: Image Quality Grounding with Large Multi-modality Models
|
2407.17035
|
https://arxiv.org/abs/2407.17035v1
|
https://arxiv.org/pdf/2407.17035v1.pdf
|
https://github.com/q-future/q-ground
| true | true | true |
none
|
https://paperswithcode.com/paper/persistent-homology-for-structural
|
Persistent Homology for Structural Characterization in Disordered Systems
|
2411.14390
|
https://arxiv.org/abs/2411.14390v8
|
https://arxiv.org/pdf/2411.14390v8.pdf
|
https://github.com/anwanguow/PH_structural
| true | true | true |
none
|
https://paperswithcode.com/paper/dynamics-of-quantum-turbulence-in-axially
|
Dynamics of quantum turbulence in axially rotating thermal counterflow
|
2407.06311
|
https://arxiv.org/abs/2407.06311v1
|
https://arxiv.org/pdf/2407.06311v1.pdf
|
https://bitbucket.org/emil_varga/openvort
| true | false | false |
none
|
https://paperswithcode.com/paper/open-vocabulary-calibration-for-vision
|
Open-Vocabulary Calibration for Fine-tuned CLIP
|
2402.04655
|
https://arxiv.org/abs/2402.04655v4
|
https://arxiv.org/pdf/2402.04655v4.pdf
|
https://github.com/ml-stat-Sustech/CLIP_Calibration
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/enhancing-end-to-end-autonomous-driving-with
|
Enhancing End-to-End Autonomous Driving with Latent World Model
|
2406.08481
|
https://arxiv.org/abs/2406.08481v1
|
https://arxiv.org/pdf/2406.08481v1.pdf
|
https://github.com/bravegroup/law
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/combining-graph-neural-network-and-mamba-to
|
Combining Graph Neural Network and Mamba to Capture Local and Global Tissue Spatial Relationships in Whole Slide Images
|
2406.04377
|
https://arxiv.org/abs/2406.04377v1
|
https://arxiv.org/pdf/2406.04377v1.pdf
|
https://github.com/rina-ding/gat-mamba
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-hetero-client-federated-multi-task
|
FedHCA$^2$: Towards Hetero-Client Federated Multi-Task Learning
|
2311.13250
|
https://arxiv.org/abs/2311.13250v2
|
https://arxiv.org/pdf/2311.13250v2.pdf
|
https://github.com/innovator-zero/fedhca2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/autoregressive-pretraining-with-mamba-in
|
Autoregressive Pretraining with Mamba in Vision
|
2406.07537
|
https://arxiv.org/abs/2406.07537v1
|
https://arxiv.org/pdf/2406.07537v1.pdf
|
https://github.com/oliverrensu/arm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/transact-transformer-based-realtime-user
|
TransAct: Transformer-based Realtime User Action Model for Recommendation at Pinterest
|
2306.00248
|
https://arxiv.org/abs/2306.00248v1
|
https://arxiv.org/pdf/2306.00248v1.pdf
|
https://github.com/reczoo/FuxiCTR
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/machine-learning-classification-of-fast-radio
|
Machine learning classification of CHIME fast radio bursts: II. Unsupervised Methods
|
2210.02471
|
https://arxiv.org/abs/2210.02471v3
|
https://arxiv.org/pdf/2210.02471v3.pdf
|
https://github.com/ArjunS07/pu-learning-for-frbs-2023
| false | false | true |
none
|
https://paperswithcode.com/paper/boosting-zero-shot-crosslingual-performance
|
Boosting Zero-Shot Crosslingual Performance using LLM-Based Augmentations with Effective Data Selection
|
2407.10582
|
https://arxiv.org/abs/2407.10582v1
|
https://arxiv.org/pdf/2407.10582v1.pdf
|
https://github.com/csalt-research/llm-based-augmentations-with-effective-data-selection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/active-learning-for-derivative-based-global
|
Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes
|
2407.09739
|
https://arxiv.org/abs/2407.09739v2
|
https://arxiv.org/pdf/2407.09739v2.pdf
|
https://github.com/belakaria/al-gsa-dgsms
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/no-train-all-gain-self-supervised-gradients
|
No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations
|
2407.10964
|
https://arxiv.org/abs/2407.10964v2
|
https://arxiv.org/pdf/2407.10964v2.pdf
|
https://github.com/waltersimoncini/fungivision
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/video-diffusion-alignment-via-reward
|
Video Diffusion Alignment via Reward Gradients
|
2407.08737
|
https://arxiv.org/abs/2407.08737v1
|
https://arxiv.org/pdf/2407.08737v1.pdf
|
https://github.com/mihirp1998/vader
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/securing-confidential-data-for-distributed
|
Securing Confidential Data For Distributed Software Development Teams: Encrypted Container File
|
2407.09142
|
https://arxiv.org/abs/2407.09142v1
|
https://arxiv.org/pdf/2407.09142v1.pdf
|
https://github.com/hirnmoder/ecf
| true | true | false |
none
|
https://paperswithcode.com/paper/the-scandinavian-embedding-benchmarks
|
The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding
|
2406.02396
|
https://arxiv.org/abs/2406.02396v1
|
https://arxiv.org/pdf/2406.02396v1.pdf
|
https://github.com/kennethenevoldsen/scandinavian-embedding-benchmark
| true | true | true |
none
|
https://paperswithcode.com/paper/harp-a-large-scale-higher-order-ambisonic
|
HARP: A Large-Scale Higher-Order Ambisonic Room Impulse Response Dataset
|
2411.14207
|
https://arxiv.org/abs/2411.14207v2
|
https://arxiv.org/pdf/2411.14207v2.pdf
|
https://github.com/whojavumusic/harp
| true | true | true |
none
|
https://paperswithcode.com/paper/moat-evaluating-lmms-for-capability
|
MOAT: Evaluating LMMs for Capability Integration and Instruction Grounding
|
2503.09348
|
https://arxiv.org/abs/2503.09348v1
|
https://arxiv.org/pdf/2503.09348v1.pdf
|
https://github.com/Cambrian-yzt/MOAT
| true | false | true |
none
|
https://paperswithcode.com/paper/stranger-danger-identifying-and-avoiding
|
Stranger Danger! Identifying and Avoiding Unpredictable Pedestrians in RL-based Social Robot Navigation
|
2407.06056
|
https://arxiv.org/abs/2407.06056v1
|
https://arxiv.org/pdf/2407.06056v1.pdf
|
https://github.com/sarapohland/stranger-danger
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-empirical-comparison-of-vocabulary
|
An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models
|
2407.05841
|
https://arxiv.org/abs/2407.05841v2
|
https://arxiv.org/pdf/2407.05841v2.pdf
|
https://github.com/AI4Bharat/VocabAdaptation_LLM
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-computational-study-of-a-class-of-recursive
|
A computational study of a class of recursive inequalities
|
2207.14559
|
https://arxiv.org/abs/2207.14559v2
|
https://arxiv.org/pdf/2207.14559v2.pdf
|
https://github.com/Kejineri/Proof-mining-
| false | false | true |
none
|
https://paperswithcode.com/paper/p-icl-point-in-context-learning-for-named
|
P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language Models
|
2405.04960
|
https://arxiv.org/abs/2405.04960v2
|
https://arxiv.org/pdf/2405.04960v2.pdf
|
https://github.com/jiangguochaogg/p-icl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/protsolm-protein-solubility-prediction-with
|
ProtSolM: Protein Solubility Prediction with Multi-modal Features
|
2406.19744
|
https://arxiv.org/abs/2406.19744v1
|
https://arxiv.org/pdf/2406.19744v1.pdf
|
https://github.com/tyang816/ProtSolM
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/close-but-not-there-boosting-geographic
|
Close, But Not There: Boosting Geographic Distance Sensitivity in Visual Place Recognition
|
2407.02422
|
https://arxiv.org/abs/2407.02422v1
|
https://arxiv.org/pdf/2407.02422v1.pdf
|
https://github.com/serizba/cliquemining
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/ceci-n-est-pas-une-pomme-adversarial
|
Adversarial Illusions in Multi-Modal Embeddings
|
2308.11804
|
https://arxiv.org/abs/2308.11804v4
|
https://arxiv.org/pdf/2308.11804v4.pdf
|
https://github.com/ebagdasa/adversarial_illusions
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-neural-scaling-laws-for-foundation
|
Towards Neural Scaling Laws for Foundation Models on Temporal Graphs
|
2406.10426
|
https://arxiv.org/abs/2406.10426v2
|
https://arxiv.org/pdf/2406.10426v2.pdf
|
https://github.com/benjaminnNgo/ScalingTGNs
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/quantune-post-training-quantization-of
|
Quantune: Post-training Quantization of Convolutional Neural Networks using Extreme Gradient Boosting for Fast Deployment
|
2202.05048
|
https://arxiv.org/abs/2202.05048v2
|
https://arxiv.org/pdf/2202.05048v2.pdf
|
https://github.com/etri/nest-compiler
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.