paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/lightgcn-simplifying-and-powering-graph
|
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
|
2002.02126
|
https://arxiv.org/abs/2002.02126v4
|
https://arxiv.org/pdf/2002.02126v4.pdf
|
https://github.com/lucapantea/LightGCN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/labelbench-a-comprehensive-framework-for
|
LabelBench: A Comprehensive Framework for Benchmarking Adaptive Label-Efficient Learning
|
2306.09910
|
https://arxiv.org/abs/2306.09910v4
|
https://arxiv.org/pdf/2306.09910v4.pdf
|
https://github.com/efficienttraining/labelbench
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/exploring-the-impact-of-human-evaluator-group
|
Exploring the Impact of Human Evaluator Group on Chat-Oriented Dialogue Evaluation
|
2309.07998
|
https://arxiv.org/abs/2309.07998v1
|
https://arxiv.org/pdf/2309.07998v1.pdf
|
https://github.com/sfillwo/dialogueeval-annotatorimpact
| true | true | true |
none
|
https://paperswithcode.com/paper/the-hidden-dance-of-phonemes-and-visage
|
The Hidden Dance of Phonemes and Visage: Unveiling the Enigmatic Link between Phonemes and Facial Features
|
2307.13953
|
https://arxiv.org/abs/2307.13953v1
|
https://arxiv.org/pdf/2307.13953v1.pdf
|
https://github.com/Oscarwasoccupied/Interspeech23_Phonemes_and_Visage
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/jen-1-composer-a-unified-framework-for-high
|
JEN-1 Composer: A Unified Framework for High-Fidelity Multi-Track Music Generation
|
2310.19180
|
https://arxiv.org/abs/2310.19180v4
|
https://arxiv.org/pdf/2310.19180v4.pdf
|
https://github.com/0417keito/JEN-1-COMPOSER-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-estimate-critical-gait-parameters
|
Learning to Estimate Critical Gait Parameters from Single-View RGB Videos with Transformer-Based Attention Network
|
2312.00398
|
https://arxiv.org/abs/2312.00398v2
|
https://arxiv.org/pdf/2312.00398v2.pdf
|
https://github.com/vinuni-vishc/transformer-gait-analysis
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/comprehensive-generative-replay-for-task
|
Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting
|
2406.19796
|
https://arxiv.org/abs/2406.19796v1
|
https://arxiv.org/pdf/2406.19796v1.pdf
|
https://github.com/jingyzhang/cgr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/toxicity-detection-for-free
|
Toxicity Detection for Free
|
2405.18822
|
https://arxiv.org/abs/2405.18822v2
|
https://arxiv.org/pdf/2405.18822v2.pdf
|
https://github.com/whothu/detection_logits
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/machine-learning-classification-of-fast-radio
|
Machine learning classification of CHIME fast radio bursts: II. Unsupervised Methods
|
2210.02471
|
https://arxiv.org/abs/2210.02471v3
|
https://arxiv.org/pdf/2210.02471v3.pdf
|
https://github.com/jiamingzhuge/frb_ml_unsp
| true | true | true |
none
|
https://paperswithcode.com/paper/machine-learning-classification-of-fast-radio-1
|
Machine learning classification of CHIME fast radio bursts -- I. Supervised methods
|
2210.02463
|
https://arxiv.org/abs/2210.02463v2
|
https://arxiv.org/pdf/2210.02463v2.pdf
|
https://github.com/jiamingzhuge/frb_ml_unsp
| false | false | true |
none
|
https://paperswithcode.com/paper/flexible-conformal-highest-predictive
|
Flexible Conformal Highest Predictive Conditional Density Sets
|
2406.18052
|
https://arxiv.org/abs/2406.18052v3
|
https://arxiv.org/pdf/2406.18052v3.pdf
|
https://github.com/maxsampson/CHCDS_HappyA
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/attribute-guided-multi-level-attention
|
Attribute-Guided Multi-Level Attention Network for Fine-Grained Fashion Retrieval
|
2301.13014
|
https://arxiv.org/abs/2301.13014v2
|
https://arxiv.org/pdf/2301.13014v2.pdf
|
https://github.com/dr-lingxiao/ag-man
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/conditional-similarity-networks
|
Conditional Similarity Networks
|
1603.07810
|
http://arxiv.org/abs/1603.07810v3
|
http://arxiv.org/pdf/1603.07810v3.pdf
|
https://github.com/dr-lingxiao/ag-man
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/filling-holes-in-lod2-building-models
|
Filling holes in LoD2 building models
|
2404.15892
|
https://arxiv.org/abs/2404.15892v1
|
https://arxiv.org/pdf/2404.15892v1.pdf
|
https://github.com/tudelft3d/automatic-repair-of-lod2-building-models
| true | true | true |
none
|
https://paperswithcode.com/paper/is-less-more-quality-quantity-and-context-in
|
Is Less More? Quality, Quantity and Context in Idiom Processing with Natural Language Models
|
2405.08497
|
https://arxiv.org/abs/2405.08497v1
|
https://arxiv.org/pdf/2405.08497v1.pdf
|
https://github.com/agneknie/com4520DarwinProject
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/merging-uncertainty-sets-via-majority-vote
|
Merging uncertainty sets via majority vote
|
2401.09379
|
https://arxiv.org/abs/2401.09379v5
|
https://arxiv.org/pdf/2401.09379v5.pdf
|
https://github.com/matteogaspa/merginguncertaintysets
| true | true | true |
none
|
https://paperswithcode.com/paper/mixture-of-attention-heads-selecting
|
Mixture of Attention Heads: Selecting Attention Heads Per Token
|
2210.05144
|
https://arxiv.org/abs/2210.05144v1
|
https://arxiv.org/pdf/2210.05144v1.pdf
|
https://github.com/yikangshen/megablocks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generalized-population-based-training-for
|
Generalized Population-Based Training for Hyperparameter Optimization in Reinforcement Learning
|
2404.08233
|
https://arxiv.org/abs/2404.08233v2
|
https://arxiv.org/pdf/2404.08233v2.pdf
|
https://github.com/emi-group/gpbt-pl
| true | true | true |
none
|
https://paperswithcode.com/paper/joint-diagnostic-test-of-regression
|
A unified test for regression discontinuity designs
|
2205.04345
|
https://arxiv.org/abs/2205.04345v5
|
https://arxiv.org/pdf/2205.04345v5.pdf
|
https://github.com/smasa11/rdtest
| true | true | true |
none
|
https://paperswithcode.com/paper/knowledge-based-in-silico-models-and-dataset-1
|
Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses
|
2310.18494
|
https://arxiv.org/abs/2310.18494v1
|
https://arxiv.org/pdf/2310.18494v1.pdf
|
https://github.com/didsr/msynth-release
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-learning-algorithms-for-fbsdes-with
|
Deep learning algorithms for FBSDEs with jumps: Applications to option pricing and a MFG model for smart grids
|
2401.03245
|
https://arxiv.org/abs/2401.03245v2
|
https://arxiv.org/pdf/2401.03245v2.pdf
|
https://github.com/zakariabensaid/deepfbsdejsolvers
| true | true | false |
tf
|
https://paperswithcode.com/paper/auto-train-once-controller-network-guided
|
Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch
|
2403.14729
|
https://arxiv.org/abs/2403.14729v1
|
https://arxiv.org/pdf/2403.14729v1.pdf
|
https://github.com/xidongwu/autotrainonce
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-low-bending-and-low-distortion-1
|
Convergent autoencoder approximation of low bending and low distortion manifold embeddings
|
2208.10193
|
https://arxiv.org/abs/2208.10193v2
|
https://arxiv.org/pdf/2208.10193v2.pdf
|
https://gitlab.com/jubrau/lbd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/depicting-beyond-scores-advancing-image
|
Depicting Beyond Scores: Advancing Image Quality Assessment through Multi-modal Language Models
|
2312.08962
|
https://arxiv.org/abs/2312.08962v3
|
https://arxiv.org/pdf/2312.08962v3.pdf
|
https://github.com/XPixelGroup/DepictQA
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/descriptive-image-quality-assessment-in-the
|
Descriptive Image Quality Assessment in the Wild
|
2405.18842
|
https://arxiv.org/abs/2405.18842v2
|
https://arxiv.org/pdf/2405.18842v2.pdf
|
https://github.com/XPixelGroup/DepictQA
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/hiprompt-tuning-free-higher-resolution
|
HiPrompt: Tuning-free Higher-Resolution Generation with Hierarchical MLLM Prompts
|
2409.02919
|
https://arxiv.org/abs/2409.02919v3
|
https://arxiv.org/pdf/2409.02919v3.pdf
|
https://github.com/Liuxinyv/HiPrompt
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/q-instruct-improving-low-level-visual
|
Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models
|
2311.06783
|
https://arxiv.org/abs/2311.06783v1
|
https://arxiv.org/pdf/2311.06783v1.pdf
|
https://github.com/XPixelGroup/DepictQA
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/efficient-deformable-convnets-rethinking
|
Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications
|
2401.06197
|
https://arxiv.org/abs/2401.06197v1
|
https://arxiv.org/pdf/2401.06197v1.pdf
|
https://github.com/opengvlab/dcnv4
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/premier-taco-pretraining-multitask
|
Premier-TACO is a Few-Shot Policy Learner: Pretraining Multitask Representation via Temporal Action-Driven Contrastive Loss
|
2402.06187
|
https://arxiv.org/abs/2402.06187v4
|
https://arxiv.org/pdf/2402.06187v4.pdf
|
https://github.com/premiertaco/premier-taco
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/m3dsynth-a-dataset-of-medical-3d-images-with
|
M3Dsynth: A dataset of medical 3D images with AI-generated local manipulations
|
2309.07973
|
https://arxiv.org/abs/2309.07973v2
|
https://arxiv.org/pdf/2309.07973v2.pdf
|
https://github.com/grip-unina/m3dsynth
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tttrlib-modular-software-for-integrating
|
tttrlib: modular software for integrating fluorescence spectroscopy, imaging, and molecular modeling
|
2402.17252
|
https://arxiv.org/abs/2402.17252v2
|
https://arxiv.org/pdf/2402.17252v2.pdf
|
https://github.com/fluorescence-tools/tttrlib
| true | true | true |
none
|
https://paperswithcode.com/paper/how-we-refute-claims-automatic-fact-checking
|
How We Refute Claims: Automatic Fact-Checking through Flaw Identification and Explanation
|
2401.15312
|
https://arxiv.org/abs/2401.15312v1
|
https://arxiv.org/pdf/2401.15312v1.pdf
|
https://github.com/nycu-nlp-lab/flawcheck
| true | true | true |
none
|
https://paperswithcode.com/paper/a-verified-optimizer-for-quantum-circuits
|
A Verified Optimizer for Quantum Circuits
|
1912.02250
|
https://arxiv.org/abs/1912.02250v3
|
https://arxiv.org/pdf/1912.02250v3.pdf
|
https://github.com/inqwire/pyvoqc
| false | false | true |
none
|
https://paperswithcode.com/paper/voiceloop-voice-fitting-and-synthesis-via-a
|
VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop
|
1707.06588
|
http://arxiv.org/abs/1707.06588v3
|
http://arxiv.org/pdf/1707.06588v3.pdf
|
https://github.com/jasminsternkopf/mel_cepstral_distance
| false | false | true |
none
|
https://paperswithcode.com/paper/df-pagerank-improved-incrementally-expanding
|
DF* PageRank: Improved Incrementally Expanding Approaches for Updating PageRank on Dynamic Graphs
|
2401.15870
|
https://arxiv.org/abs/2401.15870v2
|
https://arxiv.org/pdf/2401.15870v2.pdf
|
https://github.com/puzzlef/pagerank-openmp-dynamic
| true | false | true |
none
|
https://paperswithcode.com/paper/immunohistochemistry-guided-segmentation-of
|
Immunohistochemistry guided segmentation of benign epithelial cells, in situ lesions, and invasive epithelial cells in breast cancer slides
|
2311.13261
|
https://arxiv.org/abs/2311.13261v4
|
https://arxiv.org/pdf/2311.13261v4.pdf
|
https://github.com/aican-research/breast-epithelium-segmentation
| true | true | true |
tf
|
https://paperswithcode.com/paper/vi-pann-harnessing-transfer-learning-and
|
VI-PANN: Harnessing Transfer Learning and Uncertainty-Aware Variational Inference for Improved Generalization in Audio Pattern Recognition
|
2401.05531
|
https://arxiv.org/abs/2401.05531v2
|
https://arxiv.org/pdf/2401.05531v2.pdf
|
https://github.com/marko-orescanin-nps/vi-pann
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/direct-side-information-learning-for-zero
|
Direct side information learning for zero-shot regression
|
2402.01264
|
https://arxiv.org/abs/2402.01264v1
|
https://arxiv.org/pdf/2402.01264v1.pdf
|
https://github.com/uo231492/dsilzsr
| true | true | false |
none
|
https://paperswithcode.com/paper/ai-generated-images-introduce-invisible
|
Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images
|
2311.14084
|
https://arxiv.org/abs/2311.14084v4
|
https://arxiv.org/pdf/2311.14084v4.pdf
|
https://github.com/xsc1234/invisible-relevance-bias
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/magdi-structured-distillation-of-multi-agent
|
MAGDi: Structured Distillation of Multi-Agent Interaction Graphs Improves Reasoning in Smaller Language Models
|
2402.01620
|
https://arxiv.org/abs/2402.01620v2
|
https://arxiv.org/pdf/2402.01620v2.pdf
|
https://github.com/dinobby/magdi
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/global-and-local-attention-networks-for
|
Learning what and where to attend
|
1805.08819
|
https://arxiv.org/abs/1805.08819v4
|
https://arxiv.org/pdf/1805.08819v4.pdf
|
https://github.com/serre-lab/harmonization
| false | false | true |
tf
|
https://paperswithcode.com/paper/harmonizing-the-object-recognition-strategies
|
Harmonizing the object recognition strategies of deep neural networks with humans
|
2211.04533
|
https://arxiv.org/abs/2211.04533v2
|
https://arxiv.org/pdf/2211.04533v2.pdf
|
https://github.com/serre-lab/harmonization
| false | false | true |
tf
|
https://paperswithcode.com/paper/learning-explicitly-conditioned-sparsifying
|
Learning Explicitly Conditioned Sparsifying Transforms
|
2403.03168
|
https://arxiv.org/abs/2403.03168v1
|
https://arxiv.org/pdf/2403.03168v1.pdf
|
https://github.com/pirofti/conditionedtransformlearning
| true | true | true |
none
|
https://paperswithcode.com/paper/gerea-question-aware-prompt-captions-for
|
GeReA: Question-Aware Prompt Captions for Knowledge-based Visual Question Answering
|
2402.02503
|
https://arxiv.org/abs/2402.02503v1
|
https://arxiv.org/pdf/2402.02503v1.pdf
|
https://github.com/upper9527/gerea
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/feel-a-framework-for-evaluating-emotional
|
FEEL: A Framework for Evaluating Emotional Support Capability with Large Language Models
|
2403.15699
|
https://arxiv.org/abs/2403.15699v3
|
https://arxiv.org/pdf/2403.15699v3.pdf
|
https://github.com/ansisy/feel
| true | true | false |
none
|
https://paperswithcode.com/paper/edge-parallel-graph-encoder-embedding
|
Edge-Parallel Graph Encoder Embedding
|
2402.04403
|
https://arxiv.org/abs/2402.04403v1
|
https://arxiv.org/pdf/2402.04403v1.pdf
|
https://github.com/ariellubonja/graph-encoder-embedding
| true | true | false |
tf
|
https://paperswithcode.com/paper/sumrec-a-framework-for-recommendation-using
|
SumRec: A Framework for Recommendation using Open-Domain Dialogue
|
2402.04523
|
https://arxiv.org/abs/2402.04523v1
|
https://arxiv.org/pdf/2402.04523v1.pdf
|
https://github.com/ryutaro-a/sumrec
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/improving-whispered-speech-recognition
|
Improving Whispered Speech Recognition Performance using Pseudo-whispered based Data Augmentation
|
2311.05179
|
https://arxiv.org/abs/2311.05179v1
|
https://arxiv.org/pdf/2311.05179v1.pdf
|
https://github.com/chaufanglin/Normal2Whisper
| true | false | true |
none
|
https://paperswithcode.com/paper/simplifying-stabilizing-and-scaling
|
Simplifying, Stabilizing and Scaling Continuous-Time Consistency Models
|
2410.11081
|
https://arxiv.org/abs/2410.11081v1
|
https://arxiv.org/pdf/2410.11081v1.pdf
|
https://github.com/xandergos/sCM-mnist
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/lsk3dnet-towards-effective-and-efficient-3d
|
LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels
|
2403.15173
|
https://arxiv.org/abs/2403.15173v1
|
https://arxiv.org/pdf/2403.15173v1.pdf
|
https://github.com/fengzicai/lsk3dnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/tflex-temporal-feature-logic-embedding-1
|
TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph
|
2205.14307
|
https://arxiv.org/abs/2205.14307v3
|
https://arxiv.org/pdf/2205.14307v3.pdf
|
https://github.com/linxueyuanstdio/tflex
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/visual-in-context-prompting
|
Visual In-Context Prompting
|
2311.13601
|
https://arxiv.org/abs/2311.13601v1
|
https://arxiv.org/pdf/2311.13601v1.pdf
|
https://github.com/idea-research/t-rex
| false | false | true |
none
|
https://paperswithcode.com/paper/splitting-probabilities-are-optimal
|
Splitting probabilities as optimal controllers of rare reactive events
|
2402.05414
|
https://arxiv.org/abs/2402.05414v3
|
https://arxiv.org/pdf/2402.05414v3.pdf
|
https://github.com/ansingh1214/splitting-optimal
| true | true | true |
none
|
https://paperswithcode.com/paper/conceptmath-a-bilingual-concept-wise
|
ConceptMath: A Bilingual Concept-wise Benchmark for Measuring Mathematical Reasoning of Large Language Models
|
2402.14660
|
https://arxiv.org/abs/2402.14660v2
|
https://arxiv.org/pdf/2402.14660v2.pdf
|
https://github.com/conceptmath/conceptmath
| true | true | true |
none
|
https://paperswithcode.com/paper/a-geometric-perspective-on-diffusion-models
|
A Geometric Perspective on Diffusion Models
|
2305.19947
|
https://arxiv.org/abs/2305.19947v3
|
https://arxiv.org/pdf/2305.19947v3.pdf
|
https://github.com/zhyzhouu/amed-solver
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fast-ode-based-sampling-for-diffusion-models
|
Fast ODE-based Sampling for Diffusion Models in Around 5 Steps
|
2312.00094
|
https://arxiv.org/abs/2312.00094v3
|
https://arxiv.org/pdf/2312.00094v3.pdf
|
https://github.com/zhyzhouu/amed-solver
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/not-understanding-latin-poetic-style-with
|
(Not) Understanding Latin Poetic Style with Deep Learning
|
2404.06150
|
https://arxiv.org/abs/2404.06150v1
|
https://arxiv.org/pdf/2404.06150v1.pdf
|
https://github.com/bnagy/fail-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/on-the-effectiveness-of-distillation-in
|
On the Effectiveness of Distillation in Mitigating Backdoors in Pre-trained Encoder
|
2403.03846
|
https://arxiv.org/abs/2403.03846v1
|
https://arxiv.org/pdf/2403.03846v1.pdf
|
https://github.com/wssun/sslbackdoormitigation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-multi-agent-reinforcement-learning-study-of-1
|
A Multi-agent Reinforcement Learning Study of Evolution of Communication and Teaching under Libertarian and Utilitarian Governing Systems
|
2403.02369
|
https://arxiv.org/abs/2403.02369v1
|
https://arxiv.org/pdf/2403.02369v1.pdf
|
https://github.com/aslansd/modified-ai-economist-wt
| true | true | false |
none
|
https://paperswithcode.com/paper/large-scale-exploit-of-github-repository
|
Large-Scale-Exploit of GitHub Repository Metadata and Preventive Measures
|
1908.05354
|
https://arxiv.org/abs/1908.05354v2
|
https://arxiv.org/pdf/1908.05354v2.pdf
|
https://github.com/cirosantilli/all-github-commit-emails
| true | true | true |
none
|
https://paperswithcode.com/paper/deep-heterogeneous-contrastive-hyper-graph
|
Deep Heterogeneous Contrastive Hyper-Graph Learning for In-the-Wild Context-Aware Human Activity Recognition
|
2409.18481
|
https://arxiv.org/abs/2409.18481v1
|
https://arxiv.org/pdf/2409.18481v1.pdf
|
https://github.com/GMouYes/DHC_HGL
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/you-only-read-once-constituency-oriented
|
You Only Read Once: Constituency-Oriented Relational Graph Convolutional Network for Multi-Aspect Multi-Sentiment Classification
| null |
https://ojs.aaai.org/index.php/AAAI/article/view/29945
|
https://ojs.aaai.org/index.php/AAAI/article/download/29945/31652
|
https://github.com/gdufsnlp/YORO
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/beyond-film-subtitles-is-youtube-the-best
|
Beyond Film Subtitles: Is YouTube the Best Approximation of Spoken Vocabulary?
|
2410.03240
|
https://arxiv.org/abs/2410.03240v2
|
https://arxiv.org/pdf/2410.03240v2.pdf
|
https://github.com/naist-nlp/tubelex
| true | true | true |
none
|
https://paperswithcode.com/paper/zero-shot-text-to-image-generation
|
Zero-Shot Text-to-Image Generation
|
2102.12092
|
https://arxiv.org/abs/2102.12092v2
|
https://arxiv.org/pdf/2102.12092v2.pdf
|
https://github.com/neonbjb/tortoise-tts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/icp-flow-lidar-scene-flow-estimation-with-icp
|
ICP-Flow: LiDAR Scene Flow Estimation with ICP
|
2402.17351
|
https://arxiv.org/abs/2402.17351v2
|
https://arxiv.org/pdf/2402.17351v2.pdf
|
https://github.com/yanconglin/icp-flow
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/when-do-generative-query-and-document
|
When do Generative Query and Document Expansions Fail? A Comprehensive Study Across Methods, Retrievers, and Datasets
|
2309.08541
|
https://arxiv.org/abs/2309.08541v2
|
https://arxiv.org/pdf/2309.08541v2.pdf
|
https://github.com/orionw/lm-expansions
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/heysquad-a-spoken-question-answering-dataset
|
HeySQuAD: A Spoken Question Answering Dataset
|
2304.13689
|
https://arxiv.org/abs/2304.13689v2
|
https://arxiv.org/pdf/2304.13689v2.pdf
|
https://github.com/yijingjoanna/heysquad
| true | true | true |
none
|
https://paperswithcode.com/paper/padellm-ner-parallel-decoding-in-large
|
PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity Recognition
|
2402.04838
|
https://arxiv.org/abs/2402.04838v5
|
https://arxiv.org/pdf/2402.04838v5.pdf
|
https://github.com/GeorgeLuImmortal/PaDeLLM_NER
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/can-github-issues-be-solved-with-tree-of
|
Can Github issues be solved with Tree Of Thoughts?
|
2405.13057
|
https://arxiv.org/abs/2405.13057v1
|
https://arxiv.org/pdf/2405.13057v1.pdf
|
https://github.com/ricardo-larosa/tree-of-thought-llm
| true | false | false |
none
|
https://paperswithcode.com/paper/dispersion-measures-as-predictors-of-lexical
|
Dispersion Measures as Predictors of Lexical Decision Time, Word Familiarity, and Lexical Complexity
|
2501.06536
|
https://arxiv.org/abs/2501.06536v1
|
https://arxiv.org/pdf/2501.06536v1.pdf
|
https://github.com/naist-nlp/tubelex
| false | false | true |
none
|
https://paperswithcode.com/paper/a-comprehensive-calculation-of-the-primakoff
|
A comprehensive calculation of the Primakoff process and the solar axion flux
|
2402.16083
|
https://arxiv.org/abs/2402.16083v2
|
https://arxiv.org/pdf/2402.16083v2.pdf
|
https://github.com/fenyutanchan/solar-axion-primakoff-flux
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/drm-mastering-visual-reinforcement-learning
|
DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization
|
2310.19668
|
https://arxiv.org/abs/2310.19668v2
|
https://arxiv.org/pdf/2310.19668v2.pdf
|
https://github.com/premiertaco/premier-taco
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/qmix-monotonic-value-function-factorisation
|
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
|
1803.11485
|
http://arxiv.org/abs/1803.11485v2
|
http://arxiv.org/pdf/1803.11485v2.pdf
|
https://github.com/nju-rl/acorm
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-surprising-effectiveness-of-mappo-in
|
The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
|
2103.01955
|
https://arxiv.org/abs/2103.01955v4
|
https://arxiv.org/pdf/2103.01955v4.pdf
|
https://github.com/nju-rl/acorm
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/layoutllm-t2i-eliciting-layout-guidance-from
|
LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation
|
2308.05095
|
https://arxiv.org/abs/2308.05095v2
|
https://arxiv.org/pdf/2308.05095v2.pdf
|
https://github.com/layoutllm-t2i/layoutllm-t2i
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/panoptic-segformer
|
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
|
2109.03814
|
https://arxiv.org/abs/2109.03814v4
|
https://arxiv.org/pdf/2109.03814v4.pdf
|
https://github.com/claud1234/fcn_transformer_object_segmentation
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/online-adaptation-of-language-models-with-a
|
Online Adaptation of Language Models with a Memory of Amortized Contexts
|
2403.04317
|
https://arxiv.org/abs/2403.04317v2
|
https://arxiv.org/pdf/2403.04317v2.pdf
|
https://github.com/jihoontack/mac
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bihmp-gan-bidirectional-3d-human-motion
|
BiHMP-GAN: Bidirectional 3D Human Motion Prediction GAN
|
1812.02591
|
http://arxiv.org/abs/1812.02591v1
|
http://arxiv.org/pdf/1812.02591v1.pdf
|
https://github.com/ThomasDupiereux/EnGAN
| false | false | true |
tf
|
https://paperswithcode.com/paper/unsupervised-feature-learning-of-human
|
Unsupervised Feature Learning of Human Actions as Trajectories in Pose Embedding Manifold
|
1812.02592
|
http://arxiv.org/abs/1812.02592v1
|
http://arxiv.org/pdf/1812.02592v1.pdf
|
https://github.com/ThomasDupiereux/EnGAN
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-faster-fourier-transform-computing-small
|
A Faster Fourier Transform? Computing Small-Scale Power Spectra and Bispectra for Cosmological Simulations in $\mathcal{O}(N^2)$ Time
|
2005.01739
|
https://arxiv.org/abs/2005.01739v3
|
https://arxiv.org/pdf/2005.01739v3.pdf
|
https://github.com/oliverphilcox/HIPSTER
| true | false | true |
none
|
https://paperswithcode.com/paper/computing-the-small-scale-galaxy-power
|
Computing the Small-Scale Galaxy Power Spectrum and Bispectrum in Configuration-Space
|
1912.01010
|
https://arxiv.org/abs/1912.01010v1
|
https://arxiv.org/pdf/1912.01010v1.pdf
|
https://github.com/oliverphilcox/HIPSTER
| false | false | true |
none
|
https://paperswithcode.com/paper/pecc-problem-extraction-and-coding-challenges
|
PECC: Problem Extraction and Coding Challenges
|
2404.18766
|
https://arxiv.org/abs/2404.18766v1
|
https://arxiv.org/pdf/2404.18766v1.pdf
|
https://github.com/hallerpatrick/pecc
| true | true | true |
none
|
https://paperswithcode.com/paper/mac-maximizing-algebraic-connectivity-for
|
MAC: Graph Sparsification by Maximizing Algebraic Connectivity
|
2403.19879
|
https://arxiv.org/abs/2403.19879v2
|
https://arxiv.org/pdf/2403.19879v2.pdf
|
https://github.com/MarineRoboticsGroup/mac
| true | true | true |
none
|
https://paperswithcode.com/paper/evaluating-the-effectiveness-of-predicting
|
Evaluating the effectiveness of predicting covariates in LSTM Networks for Time Series Forecasting
|
2404.18553
|
https://arxiv.org/abs/2404.18553v1
|
https://arxiv.org/pdf/2404.18553v1.pdf
|
https://github.com/garethmd/nnts
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/intactkv-improving-large-language-model
|
IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact
|
2403.01241
|
https://arxiv.org/abs/2403.01241v2
|
https://arxiv.org/pdf/2403.01241v2.pdf
|
https://github.com/ruikangliu/IntactKV
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/salute-the-classic-revisiting-challenges-of
|
Salute the Classic: Revisiting Challenges of Machine Translation in the Age of Large Language Models
|
2401.08350
|
https://arxiv.org/abs/2401.08350v2
|
https://arxiv.org/pdf/2401.08350v2.pdf
|
https://github.com/pangjh3/llm4mt
| true | true | true |
jax
|
https://paperswithcode.com/paper/enhanced-short-text-modeling-leveraging-large
|
Enhanced Short Text Modeling: Leveraging Large Language Models for Topic Refinement
|
2403.17706
|
https://arxiv.org/abs/2403.17706v1
|
https://arxiv.org/pdf/2403.17706v1.pdf
|
https://github.com/nguyentthong/CLNTM
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/assessing-image-quality-using-a-simple
|
Assessing Image Quality Using a Simple Generative Representation
|
2404.18178
|
https://arxiv.org/abs/2404.18178v1
|
https://arxiv.org/pdf/2404.18178v1.pdf
|
https://github.com/simonraviv/vae-qa
| true | true | false |
none
|
https://paperswithcode.com/paper/from-density-to-geometry-yolov8-instance
|
From Density to Geometry: YOLOv8 Instance Segmentation for Reverse Engineering of Optimized Structures
|
2404.18763
|
https://arxiv.org/abs/2404.18763v1
|
https://arxiv.org/pdf/2404.18763v1.pdf
|
https://github.com/cosim-lab/yolov8-to
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/where-the-really-hard-quadratic-assignment
|
Where the Really Hard Quadratic Assignment Problems Are: the QAP-SAT instances
|
2403.02783
|
https://arxiv.org/abs/2403.02783v1
|
https://arxiv.org/pdf/2403.02783v1.pdf
|
https://gitlab.com/verel/qap-sat
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-robust-recommendation-a-review-and-an
|
Towards Robust Recommendation: A Review and an Adversarial Robustness Evaluation Library
|
2404.17844
|
https://arxiv.org/abs/2404.17844v2
|
https://arxiv.org/pdf/2404.17844v2.pdf
|
https://github.com/chengleileilei/shillingrec
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/vitaev2-vision-transformer-advanced-by
|
ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond
|
2202.10108
|
https://arxiv.org/abs/2202.10108v2
|
https://arxiv.org/pdf/2202.10108v2.pdf
|
https://github.com/yangyucheng000/Paper-2/tree/main/STViT-Mindspore-main
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/uncertainty-quantification-for-molecular
|
Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search
|
2307.10438
|
https://arxiv.org/abs/2307.10438v3
|
https://arxiv.org/pdf/2307.10438v3.pdf
|
https://github.com/sjiang87/deephyper
| true | true | false |
none
|
https://paperswithcode.com/paper/lars-vsa-a-vector-symbolic-architecture-for
|
LARS-VSA: A Vector Symbolic Architecture For Learning with Abstract Rules
|
2405.14436
|
https://arxiv.org/abs/2405.14436v1
|
https://arxiv.org/pdf/2405.14436v1.pdf
|
https://github.com/mmejri3/lars-vsa
| true | true | false |
tf
|
https://paperswithcode.com/paper/ge-advgan-improving-the-transferability-of
|
GE-AdvGAN: Improving the transferability of adversarial samples by gradient editing-based adversarial generative model
|
2401.06031
|
https://arxiv.org/abs/2401.06031v2
|
https://arxiv.org/pdf/2401.06031v2.pdf
|
https://github.com/lmbtough/ge-advgan
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/solving-kernel-ridge-regression-with-gradient-1
|
Changing the Kernel During Training Leads to Double Descent in Kernel Regression
|
2311.01762
|
https://arxiv.org/abs/2311.01762v3
|
https://arxiv.org/pdf/2311.01762v3.pdf
|
https://github.com/allerbo/non_constant_kgd
| true | true | true |
jax
|
https://paperswithcode.com/paper/univnet-a-neural-vocoder-with-multi
|
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
|
2106.07889
|
https://arxiv.org/abs/2106.07889v1
|
https://arxiv.org/pdf/2106.07889v1.pdf
|
https://github.com/neonbjb/tortoise-tts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/peeb-part-based-image-classifiers-with-an
|
PEEB: Part-based Image Classifiers with an Explainable and Editable Language Bottleneck
|
2403.05297
|
https://arxiv.org/abs/2403.05297v3
|
https://arxiv.org/pdf/2403.05297v3.pdf
|
https://github.com/anguyen8/peeb
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/text-r-2-bench-benchmarking-the-robustness-of
|
$\text{R}^2$-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations
|
2403.04924
|
https://arxiv.org/abs/2403.04924v1
|
https://arxiv.org/pdf/2403.04924v1.pdf
|
https://github.com/lxa9867/r2bench
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-dual-control-variate-for-doubly-stochastic
|
Joint control variate for faster black-box variational inference
|
2210.07290
|
https://arxiv.org/abs/2210.07290v4
|
https://arxiv.org/pdf/2210.07290v4.pdf
|
https://github.com/xidulu/jointcv
| true | true | true |
jax
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.