paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/construction-of-large-scale-english-verbal
|
Construction of Large-scale English Verbal Multiword Expression Annotated Corpus
| null |
https://aclanthology.org/L18-1396
|
https://aclanthology.org/L18-1396.pdf
|
https://github.com/naist-cl-parsing/Verbal-MWE-annotations
| true | true | false |
none
|
https://paperswithcode.com/paper/astronomaly-protege-discovery-through-human
|
Astronomaly Protege: Discovery Through Human-Machine Collaboration
|
2411.04188
|
https://arxiv.org/abs/2411.04188v3
|
https://arxiv.org/pdf/2411.04188v3.pdf
|
https://github.com/michellelochner/mgcls.protege
| true | true | true |
none
|
https://paperswithcode.com/paper/traffic4cast-large-scale-traffic-prediction
|
Traffic4cast -- Large-scale Traffic Prediction using 3DResNet and Sparse-UNet
|
2111.05990
|
https://arxiv.org/abs/2111.05990v1
|
https://arxiv.org/pdf/2111.05990v1.pdf
|
https://github.com/resuly/traffic4cast-2021
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-deep-generative-framework-for-paraphrase
|
A Deep Generative Framework for Paraphrase Generation
|
1709.05074
|
http://arxiv.org/abs/1709.05074v1
|
http://arxiv.org/pdf/1709.05074v1.pdf
|
https://github.com/arvind385801/paraphrasegen
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/frank-wolfe-methods-with-an-unbounded
|
Frank-Wolfe Methods with an Unbounded Feasible Region and Applications to Structured Learning
|
2012.15361
|
https://arxiv.org/abs/2012.15361v2
|
https://arxiv.org/pdf/2012.15361v2.pdf
|
https://github.com/wanghaoyue123/frank-wolfe-with-unbounded-constraints
| true | true | false |
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
|
Deep Reinforcement Learning with Double Q-learning
|
1509.06461
|
http://arxiv.org/abs/1509.06461v3
|
http://arxiv.org/pdf/1509.06461v3.pdf
|
https://github.com/ianlimle/ItsMeMario
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-factored-neural-network-model-for
|
A Factored Neural Network Model for Characterizing Online Discussions in Vector Space
| null |
https://aclanthology.org/D17-1243
|
https://aclanthology.org/D17-1243.pdf
|
https://github.com/hao-cheng/factored_neural
| true | true | false |
tf
|
https://paperswithcode.com/paper/implicit-neural-representations-with-periodic
|
Implicit Neural Representations with Periodic Activation Functions
|
2006.09661
|
https://arxiv.org/abs/2006.09661v1
|
https://arxiv.org/pdf/2006.09661v1.pdf
|
https://github.com/TalFurman/Implict_neural_representation_of_images
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/what-were-they-thinking-pharmacologic-priors
|
What Were They Thinking? Pharmacologic priors implicit in a choice of 3+3 dose-escalation design
|
2012.05301
|
https://arxiv.org/abs/2012.05301v2
|
https://arxiv.org/pdf/2012.05301v2.pdf
|
https://github.com/dcnorris/precautionary
| false | false | true |
none
|
https://paperswithcode.com/paper/retrospective-analysis-of-a-fatal-dose
|
Retrospective analysis of a fatal dose-finding trial
|
2004.12755
|
http://arxiv.org/abs/2004.12755v1
|
http://arxiv.org/pdf/2004.12755v1.pdf
|
https://github.com/dcnorris/precautionary
| false | false | true |
none
|
https://paperswithcode.com/paper/need-for-speed-a-benchmark-for-higher-frame
|
Need for Speed: A Benchmark for Higher Frame Rate Object Tracking
|
1703.05884
|
http://arxiv.org/abs/1703.05884v2
|
http://arxiv.org/pdf/1703.05884v2.pdf
|
https://github.com/susomena/DeepSlowMotion
| false | false | true |
tf
|
https://paperswithcode.com/paper/feature-importance-aware-transferable
|
Feature Importance-aware Transferable Adversarial Attacks
|
2107.14185
|
https://arxiv.org/abs/2107.14185v3
|
https://arxiv.org/pdf/2107.14185v3.pdf
|
https://github.com/ZOMIN28/FIA-pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/flipda-effective-and-robust-data-augmentation
|
FlipDA: Effective and Robust Data Augmentation for Few-Shot Learning
|
2108.06332
|
https://arxiv.org/abs/2108.06332v2
|
https://arxiv.org/pdf/2108.06332v2.pdf
|
https://github.com/zhouj8553/flipda
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/robustfill-neural-program-learning-under
|
RobustFill: Neural Program Learning under Noisy I/O
|
1703.07469
|
http://arxiv.org/abs/1703.07469v1
|
http://arxiv.org/pdf/1703.07469v1.pdf
|
https://github.com/amitz25/PCCoder
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/overfitting-the-data-compact-neural-video
|
Overfitting the Data: Compact Neural Video Delivery via Content-aware Feature Modulation
|
2108.08202
|
https://arxiv.org/abs/2108.08202v2
|
https://arxiv.org/pdf/2108.08202v2.pdf
|
https://github.com/neural-video-delivery/cafm-pytorch-iccv2021
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/out-of-distribution-detection-using-outlier
|
Out-of-Distribution Detection Using Outlier Detection Methods
|
2108.08218
|
https://arxiv.org/abs/2108.08218v2
|
https://arxiv.org/pdf/2108.08218v2.pdf
|
https://github.com/jandiers/ood-detection
| true | true | false |
tf
|
https://paperswithcode.com/paper/offline-meta-reinforcement-learning-with-1
|
Offline Meta-Reinforcement Learning with Online Self-Supervision
|
2107.03974
|
https://arxiv.org/abs/2107.03974v4
|
https://arxiv.org/pdf/2107.03974v4.pdf
|
https://github.com/anair13/bullet-manipulation-affordances
| false | false | true |
none
|
https://paperswithcode.com/paper/model-change-active-learning-in-graph-based
|
Model-Change Active Learning in Graph-Based Semi-Supervised Learning
|
2110.07739
|
https://arxiv.org/abs/2110.07739v2
|
https://arxiv.org/pdf/2110.07739v2.pdf
|
https://github.com/millerk22/model-change-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/monotonic-chunkwise-attention
|
Monotonic Chunkwise Attention
|
1712.05382
|
http://arxiv.org/abs/1712.05382v2
|
http://arxiv.org/pdf/1712.05382v2.pdf
|
https://github.com/craffel/mocha
| true | true | true |
tf
|
https://paperswithcode.com/paper/what-can-i-do-here-learning-new-skills-by
|
What Can I Do Here? Learning New Skills by Imagining Visual Affordances
|
2106.00671
|
https://arxiv.org/abs/2106.00671v2
|
https://arxiv.org/pdf/2106.00671v2.pdf
|
https://github.com/anair13/bullet-manipulation-affordances
| false | false | true |
none
|
https://paperswithcode.com/paper/keynet-keypoint-detection-by-handcrafted-and
|
Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters
|
1904.00889
|
https://arxiv.org/abs/1904.00889v3
|
https://arxiv.org/pdf/1904.00889v3.pdf
|
https://github.com/bluedream1121/Key.Net_PyTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/plan-attend-generate-character-level-neural-1
|
Plan, Attend, Generate: Character-level Neural Machine Translation with Planning in the Decoder
|
1706.05087
|
http://arxiv.org/abs/1706.05087v2
|
http://arxiv.org/pdf/1706.05087v2.pdf
|
https://github.com/nyu-dl/dl4mt-cdec
| true | true | false |
none
|
https://paperswithcode.com/paper/automated-coronal-hole-identification-via
|
Automated Coronal Hole Identification via Multi-Thermal Intensity Segmentation
|
1711.11476
|
http://arxiv.org/abs/1711.11476v1
|
http://arxiv.org/pdf/1711.11476v1.pdf
|
https://github.com/GartontT/CHIMERA
| false | false | true |
none
|
https://paperswithcode.com/paper/benchmarking-relief-based-feature-selection
|
Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data Mining
|
1711.08477
|
http://arxiv.org/abs/1711.08477v2
|
http://arxiv.org/pdf/1711.08477v2.pdf
|
https://github.com/EpistasisLab/ReBATE
| true | true | true |
none
|
https://paperswithcode.com/paper/readers-vs-writers-vs-texts-coping-with
|
Readers vs. Writers vs. Texts: Coping with Different Perspectives of Text Understanding in Emotion Annotation
| null |
https://aclanthology.org/W17-0801
|
https://aclanthology.org/W17-0801.pdf
|
https://github.com/JULIELab/EmoBank
| true | true | false |
none
|
https://paperswithcode.com/paper/automating-the-search-for-a-patents-prior-art
|
Automating the search for a patent's prior art with a full text similarity search
|
1901.03136
|
http://arxiv.org/abs/1901.03136v2
|
http://arxiv.org/pdf/1901.03136v2.pdf
|
https://github.com/helmersl/patent_similarity_search
| true | true | false |
tf
|
https://paperswithcode.com/paper/continuous-cutting-plane-algorithms-in
|
Continuous cutting plane algorithms in integer programming
|
2204.09122
|
https://arxiv.org/abs/2204.09122v3
|
https://arxiv.org/pdf/2204.09122v3.pdf
|
https://github.com/dchetelat/subadditive
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adaptive-convolution-kernel-for-artificial
|
Adaptive Convolution Kernel for Artificial Neural Networks
|
2009.06385
|
https://arxiv.org/abs/2009.06385v1
|
https://arxiv.org/pdf/2009.06385v1.pdf
|
https://github.com/btekgit/AdaptiveCNN
| true | true | true |
tf
|
https://paperswithcode.com/paper/shield-fast-practical-defense-and-vaccination
|
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
|
1802.06816
|
http://arxiv.org/abs/1802.06816v1
|
http://arxiv.org/pdf/1802.06816v1.pdf
|
https://github.com/Yuxin33/unmask
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/unmask-adversarial-detection-and-defense
|
UnMask: Adversarial Detection and Defense Through Robust Feature Alignment
|
2002.09576
|
https://arxiv.org/abs/2002.09576v2
|
https://arxiv.org/pdf/2002.09576v2.pdf
|
https://github.com/Yuxin33/unmask
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-numerics-of-gans
|
The Numerics of GANs
|
1705.10461
|
http://arxiv.org/abs/1705.10461v3
|
http://arxiv.org/pdf/1705.10461v3.pdf
|
https://github.com/nhynes/abc
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/ddajing/multilayer-cnn-text-classification
| false | false | true |
tf
|
https://paperswithcode.com/paper/task-aware-information-routing-from-common
|
Task-Aware Information Routing from Common Representation Space in Lifelong Learning
|
2302.11346
|
https://arxiv.org/abs/2302.11346v1
|
https://arxiv.org/pdf/2302.11346v1.pdf
|
https://github.com/neurai-lab/tamil
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/efficientvit-enhanced-linear-attention-for
|
EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
|
2205.14756
|
https://arxiv.org/abs/2205.14756v6
|
https://arxiv.org/pdf/2205.14756v6.pdf
|
https://github.com/2023-MindSpore-4/Code10/tree/main/Efficientnet
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/developing-a-unified-pipeline-for-large-scale-2
|
Developing a unified pipeline for large-scale structure data analysis with angular power spectra -- III. Implementing the multi-tracer technique to constrain neutrino masses
|
2009.05584
|
http://arxiv.org/abs/2009.05584v2
|
http://arxiv.org/pdf/2009.05584v2.pdf
|
https://github.com/ktanidis/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
| true | true | true |
none
|
https://paperswithcode.com/paper/plato-xl-exploring-the-large-scale-pre
|
PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation
|
2109.09519
|
https://arxiv.org/abs/2109.09519v2
|
https://arxiv.org/pdf/2109.09519v2.pdf
|
https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/plato-xl
| false | false | false |
paddle
|
https://paperswithcode.com/paper/an-upper-bound-for-the-number-of-chess
|
An upper bound for the number of chess diagrams without promotion
|
2112.09386
|
https://arxiv.org/abs/2112.09386v2
|
https://arxiv.org/pdf/2112.09386v2.pdf
|
https://github.com/DanielGourion/ChessDiagrams
| true | false | false |
none
|
https://paperswithcode.com/paper/learning-to-diversify-for-single-domain
|
Learning to Diversify for Single Domain Generalization
|
2108.11726
|
https://arxiv.org/abs/2108.11726v3
|
https://arxiv.org/pdf/2108.11726v3.pdf
|
https://github.com/busername/learning_to_diversify
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/njoy-ncrystal-an-open-source-tool-for
|
NJOY+NCrystal: an open-source tool for creating thermal neutron scattering libraries
|
2108.11737
|
https://arxiv.org/abs/2108.11737v2
|
https://arxiv.org/pdf/2108.11737v2.pdf
|
https://github.com/highness-eu/njoy-ncrystal-library
| true | true | false |
none
|
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic
|
Fully Convolutional Networks for Semantic Segmentation
|
1605.06211
|
http://arxiv.org/abs/1605.06211v1
|
http://arxiv.org/pdf/1605.06211v1.pdf
|
https://github.com/2023-MindSpore-4/Code10/tree/main/FCN8s
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/micromechanical-fatigue-experiments-for
|
Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models
|
2112.04342
|
https://arxiv.org/abs/2112.04342v1
|
https://arxiv.org/pdf/2112.04342v1.pdf
|
https://github.com/boschresearch/vitemi
| true | true | false |
none
|
https://paperswithcode.com/paper/lyra-a-benchmark-for-turducken-style-code
|
Lyra: A Benchmark for Turducken-Style Code Generation
|
2108.12144
|
https://arxiv.org/abs/2108.12144v3
|
https://arxiv.org/pdf/2108.12144v3.pdf
|
https://github.com/liangqingyuan/lyra
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/exploiting-anticommutation-in-hamiltonian
|
Exploiting anticommutation in Hamiltonian simulation
|
2103.07988
|
https://arxiv.org/abs/2103.07988v2
|
https://arxiv.org/pdf/2103.07988v2.pdf
|
https://github.com/zhaoqthu/anticommuHamiltonian
| true | false | false |
none
|
https://paperswithcode.com/paper/an-efficient-lstm-neural-network-based
|
An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting
| null |
https://doi.org/10.1109/TITS.2023.3247993
|
https://scholar.google.com/scholar_url?url=https://ieeexplore.ieee.org/iel7/6979/4358928/10073952.pdf%3Fcasa_token%3Dn7JSzcTZI-YAAAAA:tfrTPUg5tvRJlwMG3EvMTr_TsZw-QlE71AFzpGLJcTU3E5gavmIam3ei0d3vwT7SbbfIW8Rd5Q&hl=el&sa=T&oi=ucasa&ct=ucasa&ei=cT8xZKqfF_6Sy9YPxfKx8A0&scisig=AJ9-iYufiQelQanCZCKIqoqoN2fr
|
https://github.com/eva-chon/VLF_VRF
| false | false | false |
tf
|
https://paperswithcode.com/paper/emotion-prediction-oriented-method-with
|
Emotion Prediction Oriented method with Multiple Supervisions for Emotion-Cause Pair Extraction
|
2302.12417
|
https://arxiv.org/abs/2302.12417v1
|
https://arxiv.org/pdf/2302.12417v1.pdf
|
https://github.com/lemei/epo-ecpe
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mlp-mixer-an-all-mlp-architecture-for-vision
|
MLP-Mixer: An all-MLP Architecture for Vision
|
2105.01601
|
https://arxiv.org/abs/2105.01601v4
|
https://arxiv.org/pdf/2105.01601v4.pdf
|
https://github.com/BR-IDL/PaddleViT/blob/main/image_classification/MLP-Mixer
| false | false | false |
paddle
|
https://paperswithcode.com/paper/a-new-procedure-for-selective-inference-with
|
SIGLE: a valid procedure for Selective Inference with the Generalized Linear Lasso
|
2203.15348
|
https://arxiv.org/abs/2203.15348v3
|
https://arxiv.org/pdf/2203.15348v3.pdf
|
https://github.com/quentin-duchemin/sigle
| true | true | false |
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/Bhavnicksm/vanilla-transformer-jax
| false | false | true |
jax
|
https://paperswithcode.com/paper/topic-aware-abstractive-text-summarization
|
Topic-Guided Abstractive Text Summarization: a Joint Learning Approach
|
2010.10323
|
https://arxiv.org/abs/2010.10323v2
|
https://arxiv.org/pdf/2010.10323v2.pdf
|
https://github.com/chz816/tas
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/federated-reconnaissance-efficient
|
Federated Reconnaissance: Efficient, Distributed, Class-Incremental Learning
|
2109.00150
|
https://arxiv.org/abs/2109.00150v1
|
https://arxiv.org/pdf/2109.00150v1.pdf
|
https://github.com/ml4ai/fed-recon
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/improving-multimodal-fusion-with-hierarchical
|
Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis
|
2109.00412
|
https://arxiv.org/abs/2109.00412v2
|
https://arxiv.org/pdf/2109.00412v2.pdf
|
https://github.com/declare-lab/multimodal-infomax
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/torchaudio-building-blocks-for-audio-and
|
TorchAudio: Building Blocks for Audio and Speech Processing
|
2110.15018
|
https://arxiv.org/abs/2110.15018v2
|
https://arxiv.org/pdf/2110.15018v2.pdf
|
https://github.com/pytorch/audio
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/modular-retrieval-for-generalization-and
|
Modular Retrieval for Generalization and Interpretation
|
2303.13419
|
https://arxiv.org/abs/2303.13419v1
|
https://arxiv.org/pdf/2303.13419v1.pdf
|
https://github.com/freedomintelligence/remop
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/creative-diversity-patterns-in-the-creative
|
Creative Diversity: Patterns in the Creative Habits of ~10,000 People
|
2108.12759
|
https://arxiv.org/abs/2108.12759v2
|
https://arxiv.org/pdf/2108.12759v2.pdf
|
https://github.com/ericberlow/creative-diversity
| true | false | false |
none
|
https://paperswithcode.com/paper/have-i-done-enough-planning-or-should-i-plan
|
Have I done enough planning or should I plan more?
|
2201.00764
|
https://arxiv.org/abs/2201.00764v1
|
https://arxiv.org/pdf/2201.00764v1.pdf
|
https://github.com/reeche/planningamount
| true | true | false |
none
|
https://paperswithcode.com/paper/when-does-classical-chinese-help-quantifying
|
When Does Classical Chinese Help? Quantifying Cross-Lingual Transfer in Hanja and Kanbun
|
2411.04822
|
https://arxiv.org/abs/2411.04822v1
|
https://arxiv.org/pdf/2411.04822v1.pdf
|
https://github.com/seyoungsong/classical-chinese-transfer
| true | false | true |
none
|
https://paperswithcode.com/paper/the-newspaper-navigator-dataset-extracting
|
The Newspaper Navigator Dataset: Extracting And Analyzing Visual Content from 16 Million Historic Newspaper Pages in Chronicling America
|
2005.01583
|
https://arxiv.org/abs/2005.01583v1
|
https://arxiv.org/pdf/2005.01583v1.pdf
|
https://github.com/parthasarathy-ss/newspaper-navigator
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/online-generalized-method-of-moments-for-time
|
Online Generalized Method of Moments for Time Series
|
2502.00751
|
https://arxiv.org/abs/2502.00751v1
|
https://arxiv.org/pdf/2502.00751v1.pdf
|
https://github.com/hemanlmf/gmwm
| true | true | false |
none
|
https://paperswithcode.com/paper/bert-assisted-semantic-annotation-correction
|
BERT-Assisted Semantic Annotation Correction for Emotion-Related Questions
|
2204.00916
|
https://arxiv.org/abs/2204.00916v1
|
https://arxiv.org/pdf/2204.00916v1.pdf
|
https://github.com/abecode/emo20q
| true | true | false |
none
|
https://paperswithcode.com/paper/scalable-feature-matching-across-large-data
|
Scalable Feature Matching Across Large Data Collections
|
2101.02035
|
https://arxiv.org/abs/2101.02035v1
|
https://arxiv.org/pdf/2101.02035v1.pdf
|
https://github.com/ddegras/matchFeat
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-phrase-representations-using-rnn
|
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
|
1406.1078
|
http://arxiv.org/abs/1406.1078v3
|
http://arxiv.org/pdf/1406.1078v3.pdf
|
https://github.com/mindspore-ai/models/tree/master/official/nlp/gru
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/wenet-production-first-and-production-ready
|
WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit
|
2102.01547
|
https://arxiv.org/abs/2102.01547v5
|
https://arxiv.org/pdf/2102.01547v5.pdf
|
https://github.com/wenet-e2e/wenet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/timetraveler-reinforcement-learning-for
|
TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph Forecasting
|
2109.04101
|
https://arxiv.org/abs/2109.04101v1
|
https://arxiv.org/pdf/2109.04101v1.pdf
|
https://github.com/jhl-hust/titer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sampling-in-dirichlet-process-mixture-models
|
Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data
|
2202.13312
|
https://arxiv.org/abs/2202.13312v1
|
https://arxiv.org/pdf/2202.13312v1.pdf
|
https://github.com/bgu-cs-vil/dpmmsubclustersstreaming.jl
| true | true | false |
none
|
https://paperswithcode.com/paper/consensus-learning-from-heterogeneous
|
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering
|
2202.13140
|
https://arxiv.org/abs/2202.13140v1
|
https://arxiv.org/pdf/2202.13140v1.pdf
|
https://github.com/seongku-kang/concf_www22
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/voxel-transformer-for-3d-object-detection
|
Voxel Transformer for 3D Object Detection
|
2109.02497
|
https://arxiv.org/abs/2109.02497v2
|
https://arxiv.org/pdf/2109.02497v2.pdf
|
https://github.com/PointsCoder/VOTR
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/transreid-transformer-based-object-re
|
TransReID: Transformer-based Object Re-Identification
|
2102.04378
|
https://arxiv.org/abs/2102.04378v2
|
https://arxiv.org/pdf/2102.04378v2.pdf
|
https://github.com/darrishabh/coviprox
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/darrishabh/coviprox
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/improved-latent-tree-induction-with-distant
|
Improved Latent Tree Induction with Distant Supervision via Span Constraints
|
2109.05112
|
https://arxiv.org/abs/2109.05112v2
|
https://arxiv.org/pdf/2109.05112v2.pdf
|
https://github.com/iesl/distantly-supervised-diora
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/exploring-the-role-of-bert-token
|
Exploring the Role of BERT Token Representations to Explain Sentence Probing Results
|
2104.01477
|
https://arxiv.org/abs/2104.01477v2
|
https://arxiv.org/pdf/2104.01477v2.pdf
|
https://github.com/hmohebbi/explain-probing-results
| true | true | true |
none
|
https://paperswithcode.com/paper/total-recall-a-customized-continual-learning
|
Total Recall: a Customized Continual Learning Method for Neural Semantic Parsers
|
2109.05186
|
https://arxiv.org/abs/2109.05186v2
|
https://arxiv.org/pdf/2109.05186v2.pdf
|
https://github.com/zhuang-li/cl_nsp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/squeezed-very-deep-convolutional-neural
|
Squeezed Very Deep Convolutional Neural Networks for Text Classification
|
1901.09821
|
http://arxiv.org/abs/1901.09821v1
|
http://arxiv.org/pdf/1901.09821v1.pdf
|
https://github.com/lazarotm/SVDCNN
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/on-multi-layer-basis-pursuit-efficient
|
On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks
|
1806.00701
|
http://arxiv.org/abs/1806.00701v5
|
http://arxiv.org/pdf/1806.00701v5.pdf
|
https://github.com/Sulam-Group/ml-ista
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/federated-learning-from-big-data-over
|
Federated Learning From Big Data Over Networks
|
2010.14159
|
https://arxiv.org/abs/2010.14159v1
|
https://arxiv.org/pdf/2010.14159v1.pdf
|
https://github.com/sahelyiyi/FederatedLearning
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/fonbund-a-library-for-combining-cross-lingual
|
FonBund: A Library for Combining Cross-lingual Phonological Segment Data
| null |
https://aclanthology.org/L18-1353
|
https://aclanthology.org/L18-1353.pdf
|
https://github.com/googlei18n/language-resources
| true | true | false |
none
|
https://paperswithcode.com/paper/duluth-urop-at-semeval-2018-task-2
|
Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensemble Learning and Oversampling
|
1805.10267
|
http://arxiv.org/abs/1805.10267v1
|
http://arxiv.org/pdf/1805.10267v1.pdf
|
https://github.com/shuningjin/SemEval2018-Task2-EmojiDetection
| true | true | true |
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/adityarajsahu/UNet-Implementation
| false | false | true |
tf
|
https://paperswithcode.com/paper/hdr-image-reconstruction-from-a-single
|
HDR image reconstruction from a single exposure using deep CNNs
|
1710.07480
|
http://arxiv.org/abs/1710.07480v1
|
http://arxiv.org/pdf/1710.07480v1.pdf
|
https://github.com/mantiuk/pwcmp
| true | true | false |
none
|
https://paperswithcode.com/paper/voxelwise-nonlinear-regression-toolbox-for
|
Voxelwise nonlinear regression toolbox for neuroimage analysis: Application to aging and neurodegenerative disease modeling
|
1612.00667
|
http://arxiv.org/abs/1612.00667v3
|
http://arxiv.org/pdf/1612.00667v3.pdf
|
https://github.com/imatge-upc/VNeAT
| true | true | false |
none
|
https://paperswithcode.com/paper/deriving-consensus-for-multi-parallel-corpora
|
Deriving Consensus for Multi-Parallel Corpora: an English Bible Study
| null |
https://aclanthology.org/I17-2076
|
https://aclanthology.org/I17-2076.pdf
|
https://github.com/pitrack/monolign
| true | true | false |
none
|
https://paperswithcode.com/paper/a-general-optimization-framework-for-multi
|
A General Optimization Framework for Multi-Document Summarization Using Genetic Algorithms and Swarm Intelligence
| null |
https://aclanthology.org/C16-1024
|
https://aclanthology.org/C16-1024.pdf
|
https://github.com/UKPLab/coling2016-genetic-swarm-MDS
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-low-resource-neural-machine
|
Improving Low-Resource Neural Machine Translation with Filtered Pseudo-Parallel Corpus
| null |
https://aclanthology.org/W17-5704
|
https://aclanthology.org/W17-5704.pdf
|
https://github.com/aizhanti/filtered-pseudo-parallel-corpora
| true | true | false |
none
|
https://paperswithcode.com/paper/resnet-with-one-neuron-hidden-layers-is-a
|
ResNet with one-neuron hidden layers is a Universal Approximator
|
1806.10909
|
http://arxiv.org/abs/1806.10909v2
|
http://arxiv.org/pdf/1806.10909v2.pdf
|
https://github.com/sivakon/resnet-approximator
| false | false | true |
none
|
https://paperswithcode.com/paper/fourier-pca-and-robust-tensor-decomposition
|
Fourier PCA and Robust Tensor Decomposition
|
1306.5825
|
http://arxiv.org/abs/1306.5825v5
|
http://arxiv.org/pdf/1306.5825v5.pdf
|
https://github.com/yingusxiaous/libFPCA
| false | false | true |
none
|
https://paperswithcode.com/paper/non-convex-global-minimization-and-false
|
Non-convex Global Minimization and False Discovery Rate Control for the TREX
|
1604.06815
|
http://arxiv.org/abs/1604.06815v2
|
http://arxiv.org/pdf/1604.06815v2.pdf
|
https://github.com/muellsen/TREX
| true | true | false |
none
|
https://paperswithcode.com/paper/pruning-convolutional-neural-networks-for
|
Pruning Convolutional Neural Networks for Resource Efficient Inference
|
1611.06440
|
http://arxiv.org/abs/1611.06440v2
|
http://arxiv.org/pdf/1611.06440v2.pdf
|
https://github.com/dongkwan-kim/Adaptive-Forgetting
| false | false | true |
tf
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/GitHberChen/FCN-Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/automatic-skin-lesion-segmentation-on
|
Automatic skin lesion segmentation on dermoscopic images by the means of superpixel merging
|
1808.06759
|
http://arxiv.org/abs/1808.06759v1
|
http://arxiv.org/pdf/1808.06759v1.pdf
|
https://github.com/dipaco/mole-classification
| true | true | false |
none
|
https://paperswithcode.com/paper/detecting-gang-involved-escalation-on-social
|
Detecting Gang-Involved Escalation on Social Media Using Context
|
1809.03632
|
http://arxiv.org/abs/1809.03632v1
|
http://arxiv.org/pdf/1809.03632v1.pdf
|
https://github.com/serinachang5/contextifier
| true | true | false |
none
|
https://paperswithcode.com/paper/180602449
|
Joint Power Allocation in Interference-Limited Networks via Distributed Coordinated Learning
|
1806.02449
|
http://arxiv.org/abs/1806.02449v2
|
http://arxiv.org/pdf/1806.02449v2.pdf
|
https://github.com/roamiri/pa_intf_RL
| false | false | true |
none
|
https://paperswithcode.com/paper/dimspan-transactional-frequent-subgraph
|
DIMSpan - Transactional Frequent Subgraph Mining with Distributed In-Memory Dataflow Systems
|
1703.01910
|
http://arxiv.org/abs/1703.01910v1
|
http://arxiv.org/pdf/1703.01910v1.pdf
|
https://github.com/fuboertech/gradoop
| false | false | true |
none
|
https://paperswithcode.com/paper/rand-walk-a-latent-variable-model-approach-to
|
A Latent Variable Model Approach to PMI-based Word Embeddings
|
1502.03520
|
https://arxiv.org/abs/1502.03520v8
|
https://arxiv.org/pdf/1502.03520v8.pdf
|
https://github.com/LivNLP/Relational-Walk-for-Knowledge-Graphs
| false | false | true |
tf
|
https://paperswithcode.com/paper/proximal-policy-optimization-algorithms
|
Proximal Policy Optimization Algorithms
|
1707.06347
|
http://arxiv.org/abs/1707.06347v2
|
http://arxiv.org/pdf/1707.06347v2.pdf
|
https://github.com/sc2crazy/StarCrackRL
| false | false | true |
tf
|
https://paperswithcode.com/paper/fast-neural-architecture-search-of-compact
|
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
|
1810.10804
|
https://arxiv.org/abs/1810.10804v3
|
https://arxiv.org/pdf/1810.10804v3.pdf
|
https://github.com/drsleep/nas-segm-pytorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/east-an-efficient-and-accurate-scene-text
|
EAST: An Efficient and Accurate Scene Text Detector
|
1704.03155
|
http://arxiv.org/abs/1704.03155v2
|
http://arxiv.org/pdf/1704.03155v2.pdf
|
https://github.com/BruceChanJianLe/Image-Text-Recognition
| false | false | true |
none
|
https://paperswithcode.com/paper/visual-interpretability-for-deep-learning-a
|
Visual Interpretability for Deep Learning: a Survey
|
1802.00614
|
http://arxiv.org/abs/1802.00614v2
|
http://arxiv.org/pdf/1802.00614v2.pdf
|
https://github.com/JepsonWong/CNN_Visualization
| false | false | true |
none
|
https://paperswithcode.com/paper/perturbative-gan-gan-with-perturbation-layers
|
Perturbative GAN: GAN with Perturbation Layers
|
1902.01514
|
http://arxiv.org/abs/1902.01514v1
|
http://arxiv.org/pdf/1902.01514v1.pdf
|
https://github.com/obake2ai/Obake-GAN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ranger-a-fast-implementation-of-random
|
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
|
1508.04409
|
http://arxiv.org/abs/1508.04409v2
|
http://arxiv.org/pdf/1508.04409v2.pdf
|
https://github.com/mayer79/missRanger
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/alililia/ms_extend/tree/main/gpu_resnet
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/paying-attention-to-descriptions-generated-by
|
Paying Attention to Descriptions Generated by Image Captioning Models
|
1704.07434
|
http://arxiv.org/abs/1704.07434v3
|
http://arxiv.org/pdf/1704.07434v3.pdf
|
https://github.com/rakshithShetty/captionGAN
| false | false | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.