text
stringlengths
0
1.05M
meta
dict
from __future__ import absolute_import, division, print_function import numpy as np import h5py from multipledispatch import MDNotImplementedError from datashape import DataShape, to_numpy from ..partition import partitions, partition_get, partition_set, flatten from ..expr import Reduction, Field, Projection, Broadcast, Selection, Symbol from ..expr import Distinct, Sort, Head, Label, ReLabel, Union, Expr, Slice from ..expr import std, var, count, nunique from ..expr import BinOp, UnaryOp, USub, Not from ..expr import path from ..expr.split import split from .core import base, compute from ..dispatch import dispatch from ..api.into import into from ..partition import partitions, partition_get, partition_set __all__ = [] @dispatch(Slice, h5py.Dataset) def compute_up(expr, data, **kwargs): return data[expr.index] @dispatch(Expr, h5py.Dataset) def compute_down(expr, data, **kwargs): """ Compute expressions on H5Py datasets by operating on chunks This uses blaze.expr.split to break a full-array-computation into a per-chunk computation and a on-aggregate computation. This uses blaze.partition to pick out chunks from the h5py dataset, uses compute(numpy) to compute on each chunk and then uses blaze.partition to aggregate these (hopefully smaller) intermediate results into a local numpy array. It then performs a second operation (again given by blaze.expr.split) on this intermediate aggregate The expression must contain some sort of Reduction. Both the intermediate result and the final result are assumed to fit into memory """ leaf = expr._leaves()[0] if not any(isinstance(node, Reduction) for node in path(expr, leaf)): raise MDNotImplementedError() # Compute chunksize (this should be improved) chunksize = kwargs.get('chunksize', data.chunks) # Split expression into per-chunk and on-aggregate pieces chunk = Symbol('chunk', DataShape(*(chunksize + (leaf.dshape.measure,)))) (chunk, chunk_expr), (agg, agg_expr) = \ split(leaf, expr, chunk=chunk) # Create numpy array to hold intermediate aggregate shape, dtype = to_numpy(agg.dshape) intermediate = np.empty(shape=shape, dtype=dtype) # Compute partitions data_partitions = partitions(data, chunksize=chunksize) int_partitions = partitions(intermediate, chunksize=chunk_expr.shape) # For each partition, compute chunk->chunk_expr # Insert into intermediate # This could be parallelized for d, i in zip(data_partitions, int_partitions): chunk_data = partition_get(data, d, chunksize=chunksize) result = compute(chunk_expr, {chunk: chunk_data}) partition_set(intermediate, i, result, chunksize=chunk_expr.shape) # Compute on the aggregate return compute(agg_expr, {agg: intermediate})
{ "repo_name": "vitan/blaze", "path": "blaze/compute/h5py.py", "copies": "1", "size": "2844", "license": "bsd-3-clause", "hash": -7568301141289312000, "line_mean": 37.4324324324, "line_max": 78, "alpha_frac": 0.7281997187, "autogenerated": false, "ratio": 3.99438202247191, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00031426775612822125, "num_lines": 74 }
from __future__ import absolute_import, division, print_function import numpy as np import h5py import pytest from blaze import compute from blaze.expr import Symbol from datashape import discover from blaze.utils import tmpfile from blaze.compute.h5py import * def eq(a, b): return (a == b).all() x = np.arange(20*24, dtype='f4').reshape((20, 24)) @pytest.yield_fixture def data(): with tmpfile('.h5') as filename: f = h5py.File(filename) d = f.create_dataset('/x', shape=x.shape, dtype=x.dtype, fillvalue=0.0, chunks=(4, 6)) d[:] = x yield d f.close() rec = np.empty(shape=(20, 24), dtype=[('x', 'i4'), ('y', 'i4')]) rec['x'] = 1 rec['y'] = 2 @pytest.yield_fixture def recdata(): with tmpfile('.h5') as filename: f = h5py.File(filename) d = f.create_dataset('/x', shape=rec.shape, dtype=rec.dtype, chunks=(4, 6)) d['x'] = rec['x'] d['y'] = rec['y'] yield d f.close() s = Symbol('s', discover(x)) def test_slicing(data): for idx in [0, 1, (0, 1), slice(1, 3), (0, slice(1, 5, 2))]: assert eq(compute(s[idx], data), x[idx]) def test_reductions(data): assert eq(compute(s.sum(), data), x.sum()) assert eq(compute(s.sum(axis=1), data), x.sum(axis=1)) assert eq(compute(s.sum(axis=0), data), x.sum(axis=0)) def test_mixed(recdata): s = Symbol('s', discover(recdata)) expr = (s.x + 1).sum(axis=1) assert eq(compute(expr, recdata), compute(expr, rec)) def test_uneven_chunk_size(data): assert eq(compute(s.sum(axis=1), data, chunksize=(7, 7)), x.sum(axis=1))
{ "repo_name": "vitan/blaze", "path": "blaze/compute/tests/test_h5py.py", "copies": "1", "size": "1776", "license": "bsd-3-clause", "hash": 2020718357220294400, "line_mean": 23, "line_max": 64, "alpha_frac": 0.5433558559, "autogenerated": false, "ratio": 3.041095890410959, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4084451746310959, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import json from collections import OrderedDict import copy import math from atom.api import Atom, Str, observe, Typed, Int, Dict, List, Float, Bool from skbeam.fluorescence import XrfElement as Element from skbeam.core.fitting.xrf_model import ( ParamController, compute_escape_peak, trim, construct_linear_model, linear_spectrum_fitting, ) from skbeam.core.fitting.xrf_model import K_LINE, L_LINE, M_LINE from ..core.map_processing import snip_method_numba from ..core.xrf_utils import check_if_eline_supported, get_eline_parameters, get_element_atomic_number from ..core.utils import gaussian_sigma_to_fwhm, gaussian_fwhm_to_sigma import logging logger = logging.getLogger(__name__) bound_options = ["none", "lohi", "fixed", "lo", "hi"] fit_strategy_list = [ "fit_with_tail", "free_more", "e_calibration", "linear", "adjust_element1", "adjust_element2", "adjust_element3", ] autofit_param = ["e_offset", "e_linear", "fwhm_offset", "fwhm_fanoprime"] class PreFitStatus(Atom): """ Data structure for pre fit analysis. Attributes ---------- z : str z number of element spectrum : array spectrum of given element status : bool True as plot is visible stat_copy : bool copy of status maxv : float max value of a spectrum norm : float norm value in respect to the strongest peak lbd_stat : bool define plotting status under a threshold value """ z = Str() energy = Str() area = Float() spectrum = Typed(np.ndarray) status = Bool(False) stat_copy = Bool(False) maxv = Float() norm = Float() lbd_stat = Bool(False) class ElementController(object): """ This class performs basic ways to rank elements, show elements, calculate normed intensity, and etc. """ def __init__(self): self.element_dict = OrderedDict() def delete_item(self, k): try: del self.element_dict[k] self.update_norm() logger.debug("Item {} is deleted.".format(k)) except KeyError: pass def order(self, option="z"): """ Order dict in different ways. """ if option == "z": self.element_dict = OrderedDict(sorted(self.element_dict.items(), key=lambda t: t[1].z)) elif option == "energy": self.element_dict = OrderedDict(sorted(self.element_dict.items(), key=lambda t: t[1].energy)) elif option == "name": self.element_dict = OrderedDict(sorted(self.element_dict.items(), key=lambda t: t[0])) elif option == "maxv": self.element_dict = OrderedDict( sorted(self.element_dict.items(), key=lambda t: t[1].maxv, reverse=True) ) def add_to_dict(self, dictv): """ This function updates the dictionary element if it already exists. """ self.element_dict.update(dictv) logger.debug("Item {} is added.".format(list(dictv.keys()))) self.update_norm() def update_norm(self, threshv=0.0): """ Calculate the normalized intensity for each element peak. Parameters ---------- threshv : float No value is shown when smaller than the threshold value """ # Do nothing if no elements are selected if not self.element_dict: return max_dict = np.max([v.maxv for v in self.element_dict.values()]) for v in self.element_dict.values(): v.norm = v.maxv / max_dict * 100 v.lbd_stat = bool(v.norm > threshv) # also delete smaller values # there is some bugs in plotting when values < 0.0 self.delete_peaks_below_threshold(threshv=threshv) def delete_all(self): self.element_dict.clear() def is_element_in_list(self, element_line_name): """ Check if element 'k' is in the list of selected elements """ if element_line_name in self.element_dict.keys(): return True else: return False def get_element_list(self): current_elements = [v for v in self.element_dict.keys() if (v.lower() != v)] # logger.info('Current Elements for ' # 'fitting are {}'.format(current_elements)) return current_elements def update_peak_ratio(self): """ If 'maxv' is modified, then the values of 'area' and 'spectrum' are adjusted accordingly: (1) maximum of spectrum is set equal to 'maxv'; (2) 'area' is scaled proportionally. It is important that only 'maxv' is changed before this function is called. """ for v in self.element_dict.values(): max_spectrum = np.max(v.spectrum) if not math.isclose(max_spectrum, 0.0, abs_tol=1e-20): factor = v.maxv / max_spectrum else: factor = 0.0 v.spectrum *= factor v.area *= factor self.update_norm() def turn_on_all(self, option=True): """ Set plotting status on for all lines. """ if option is True: _plot = option else: _plot = False for v in self.element_dict.values(): v.status = _plot def delete_peaks_below_threshold(self, threshv=0.1): """ Delete elements smaller than threshold value. Non element peaks are not included. """ remove_list = [] non_element = ["compton", "elastic", "background"] for k, v in self.element_dict.items(): if math.isnan(v.norm) or (v.norm >= threshv) or (k in non_element): continue # We don't want to delete userpeaks or pileup peaks (they are always added manually). if ("-" in k) or (k.lower().startswith("userpeak")): continue remove_list.append(k) for name in remove_list: del self.element_dict[name] return remove_list def delete_unselected_items(self): remove_list = [] non_element = ["compton", "elastic", "background"] for k, v in self.element_dict.items(): if k in non_element: continue if v.status is False: remove_list.append(k) for name in remove_list: del self.element_dict[name] return remove_list class ParamModel(Atom): """ The module used for maintain the set of fitting parameters. Attributes ---------- parameters : `atom.Dict` A list of `Parameter` objects, subclassed from the `Atom` base class. These `Parameter` objects hold all relevant xrf information. data : array 1D array of spectrum prefit_x : array xX axis with range defined by low and high limits. param_d : dict Parameters can be transferred into this dictionary. param_new : dict More information are saved, such as element position and width. total_y : dict Results from k lines total_y_l : dict Results from l lines total_y_m : dict Results from l lines e_list : str All elements used for fitting. file_path : str The path where file is saved. element_list : list The list of element lines selected for fitting n_selected_elines_for_fitting : Int The number of element lines selected for fitting n_selected_pure_elines_for_fitting : Int The number of element lines selected for fitting excluding pileup peaks and user defined peaks. Only 'pure' lines like Ca_K, K_K etc. """ # Reference to FileIOModel object io_model = Typed(object) default_parameters = Dict() # data = Typed(np.ndarray) prefit_x = Typed(object) result_dict_names = List() param_new = Dict() total_y = Typed(object) # total_l = Dict() # total_m = Dict() # total_pileup = Dict() e_name = Str() # Element line name selected in combo box add_element_intensity = Float(1000.0) element_list = List() # data_sets = Typed(OrderedDict) EC = Typed(object) x0 = Typed(np.ndarray) y0 = Typed(np.ndarray) max_area_dig = Int(2) auto_fit_all = Dict() bound_val = Float(1.0) energy_bound_high_buf = Float(0.0) energy_bound_low_buf = Float(0.0) n_selected_elines_for_fitting = Int(0) n_selected_pure_elines_for_fitting = Int(0) parameters_changed_cb = List() def __init__(self, *, default_parameters, io_model): try: self.io_model = io_model self.default_parameters = default_parameters self.param_new = copy.deepcopy(default_parameters) # TODO: do we set 'element_list' as a list of keys of 'EC.element_dict' self.element_list = get_element_list(self.param_new) except ValueError: logger.info("No default parameter files are chosen.") self.EC = ElementController() # The following line is part of the fix for automated updating of the energy bound # in 'Automatic Element Finding' dialog box self.energy_bound_high_buf = self.param_new["non_fitting_values"]["energy_bound_high"]["value"] self.energy_bound_low_buf = self.param_new["non_fitting_values"]["energy_bound_low"]["value"] def add_parameters_changed_cb(self, cb): """ Add callback to the list of callback function that are called after parameters are updated. """ self.parameters_changed_cb.append(cb) def remove_parameters_changed_cb(self, cb): """ Remove reference from the list of callback functions. """ self.parameters_changed_cb = [_ for _ in self.parameters_changed_cb if _ != cb] def parameters_changed(self): """ Run callback functions in the list. This method is expected to be called after the parameters are update to initiate necessary updates in the GUI. """ for cb in self.parameters_changed_cb: cb() def default_param_update(self, default_parameters): """ Replace the reference to the dictionary of default parameters. Parameters ---------- default_parameters : dict Reference to complete and valid dictionary of default parameters. """ self.default_parameters = default_parameters # The following function is part of the fix for automated updating of the energy bound # in 'Automatic Element Finding' dialog box @observe("energy_bound_high_buf") def _update_energy_bound_high_buf(self, change): self.param_new["non_fitting_values"]["energy_bound_high"]["value"] = change["value"] self.define_range() @observe("energy_bound_low_buf") def _update_energy_bound_high_low(self, change): self.param_new["non_fitting_values"]["energy_bound_low"]["value"] = change["value"] self.define_range() def get_new_param_from_file(self, param_path): """ Update parameters if new param_path is given. Parameters ---------- param_path : str path to save the file """ with open(param_path, "r") as json_data: self.param_new = json.load(json_data) self.create_spectrum_from_param_dict(reset=True) logger.info("Elements read from file are: {}".format(self.element_list)) def update_new_param(self, param, reset=True): """ Update the parameters based on the dictionary of parameters. Set ``reset=False`` if selection status of elemental lines should be kept. Parameters ---------- param : dict new dictionary of parameters reset : boolean reset (``True``) or clear (``False``) selection status of the element lines. """ self.param_new = param self.create_spectrum_from_param_dict(reset=reset) @observe("bound_val") def _update_bound(self, change): if change["type"] != "create": logger.info(f"Peaks with values than the threshold {self.bound_val} will be removed from the list.") def define_range(self): """ Cut x range according to values define in param_dict. """ if self.io_model.data is None: return lowv = self.param_new["non_fitting_values"]["energy_bound_low"]["value"] highv = self.param_new["non_fitting_values"]["energy_bound_high"]["value"] self.x0, self.y0 = define_range( self.io_model.data, lowv, highv, self.param_new["e_offset"]["value"], self.param_new["e_linear"]["value"], ) def create_spectrum_from_param_dict(self, reset=True): """ Create spectrum profile with based on the current set of parameters. (``self.param_new`` -> ``self.EC`` and ``self.element_list``). Typical use: update self.param_new, then call this function. Set ``reset=False`` to keep selection status of the elemental lines. Parameters ---------- reset : boolean clear or keep status of the elemental lines (in ``self.EC``). """ param_dict = self.param_new self.element_list = get_element_list(param_dict) self.define_range() self.prefit_x, pre_dict, area_dict = calculate_profile(self.x0, self.y0, param_dict, self.element_list) # add escape peak if param_dict["non_fitting_values"]["escape_ratio"] > 0: pre_dict["escape"] = trim_escape_peak(self.io_model.data, param_dict, len(self.y0)) temp_dict = OrderedDict() for e in pre_dict.keys(): if e in ["background", "escape"]: spectrum = pre_dict[e] # summed spectrum here is not correct, # as the interval is assumed as 1, not energy interval # however area of background and escape is not used elsewhere, not important area = np.sum(spectrum) ps = PreFitStatus( z=get_Z(e), energy=get_energy(e), area=float(area), spectrum=spectrum, maxv=float(np.around(np.max(spectrum), self.max_area_dig)), norm=-1, status=True, lbd_stat=False, ) temp_dict[e] = ps elif "-" in e: # pileup peaks energy = self.get_pileup_peak_energy(e) energy = f"{energy:.4f}" spectrum = pre_dict[e] area = area_dict[e] ps = PreFitStatus( z=get_Z(e), energy=str(energy), area=area, spectrum=spectrum, maxv=np.around(np.max(spectrum), self.max_area_dig), norm=-1, status=True, lbd_stat=False, ) temp_dict[e] = ps else: ename = e.split("_")[0] for k, v in param_dict.items(): energy = get_energy(e) # For all peaks except Userpeaks if ename in k and "area" in k: spectrum = pre_dict[e] area = area_dict[e] elif ename == "compton" and k == "compton_amplitude": spectrum = pre_dict[e] area = area_dict[e] elif ename == "elastic" and k == "coherent_sct_amplitude": spectrum = pre_dict[e] area = area_dict[e] elif self.get_eline_name_category(ename) == "userpeak": key = ename + "_delta_center" energy = param_dict[key]["value"] + 5.0 energy = f"{energy:.4f}" else: continue ps = PreFitStatus( z=get_Z(ename), energy=energy, area=area, spectrum=spectrum, maxv=np.around(np.max(spectrum), self.max_area_dig), norm=-1, status=True, lbd_stat=False, ) temp_dict[e] = ps # Copy element status if not reset: element_status = {_: self.EC.element_dict[_].status for _ in self.EC.element_dict} self.EC.delete_all() self.EC.add_to_dict(temp_dict) if not reset: for key in self.EC.element_dict.keys(): if key in element_status: self.EC.element_dict[key].status = element_status[key] self.result_dict_names = list(self.EC.element_dict.keys()) def get_selected_eline_energy_fwhm(self, eline): """ Returns values of energy and fwhm for the peak 'eline' from the dictionary `self.param_new`. The emission line must exist in the dictionary. Primarily intended for use with user-defined peaks. Parameters ---------- eline: str emission line (e.g. Ca_K) or peak name (e.g. Userpeak2, V_Ka1-Co_Ka1) """ if eline not in self.EC.element_dict: raise ValueError(f"Emission line '{eline}' is not in the list of selected lines.") keys = self._generate_param_keys(eline) if not keys["key_dcenter"] or not keys["key_dsigma"]: raise ValueError(f"Failed to generate keys for the emission line '{eline}'.") energy = self.param_new[keys["key_dcenter"]]["value"] + 5.0 dsigma = self.param_new[keys["key_dsigma"]]["value"] fwhm = gaussian_sigma_to_fwhm(dsigma) + self._compute_fwhm_base(energy) return energy, fwhm def get_pileup_peak_energy(self, eline): """ Returns the energy (center) of pileup peak. Returns None if there is an error. Parameters ---------- eline: str Name of the pileup peak, e.g. V_Ka1-Co_Ka1 Returns ------- float or None Energy in keV or None """ incident_energy = self.param_new["coherent_sct_energy"]["value"] try: element_line1, element_line2 = eline.split("-") e1_cen = get_eline_parameters(element_line1, incident_energy)["energy"] e2_cen = get_eline_parameters(element_line2, incident_energy)["energy"] en = e1_cen + e2_cen except Exception: en = None return en def add_peak_manual(self, userpeak_center=2.5): """ Manually add an emission line (or peak). Parameters ---------- userpeak_center: float Center of the user defined peak. Ignored if emission line other than 'userpeak' is added """ self._manual_input(userpeak_center=userpeak_center) self.update_name_list() self.data_for_plot() def remove_peak_manual(self): """ Manually add an emission line (or peak). The name emission line (peak) to be deleted must be writtent to `self.e_name` before calling the function. """ if self.e_name not in self.EC.element_dict: msg = ( f"Line '{self.e_name}' is not in the list of selected lines,\n" f"therefore it can not be deleted from the list." ) raise RuntimeError(msg) # Update parameter list self._remove_parameters_for_eline(self.e_name) # Update EC self.EC.delete_item(self.e_name) self.EC.update_peak_ratio() self.update_name_list() self.data_for_plot() def remove_elements_below_threshold(self, threshv=None): if threshv is None: threshv = self.bound_val deleted_elements = self.EC.delete_peaks_below_threshold(threshv=threshv) for eline in deleted_elements: self._remove_parameters_for_eline(eline) self.EC.update_peak_ratio() self.update_name_list() self.data_for_plot() def remove_elements_unselected(self): deleted_elements = self.EC.delete_unselected_items() for eline in deleted_elements: self._remove_parameters_for_eline(eline) self.EC.update_peak_ratio() self.update_name_list() self.data_for_plot() def _remove_parameters_for_eline(self, eline): """Remove entries for `eline` from the dictionary `self.param_new`""" if self.get_eline_name_category(eline) == "pileup": key_prefix = "pileup_" + self.e_name.replace("-", "_") else: key_prefix = eline # It is sufficient to compare using lowercase. It could be more reliable. key_prefix = key_prefix.lower() keys_to_delete = [_ for _ in self.param_new.keys() if _.lower().startswith(key_prefix)] for key in keys_to_delete: del self.param_new[key] # Add name to the name list _remove_element_from_list(eline, self.param_new) def _manual_input(self, userpeak_center=2.5): """ Manually add an emission line (or peak). Parameters ---------- userpeak_center: float Center of the user defined peak. Ignored if emission line other than 'userpeak' is added """ if self.e_name in self.EC.element_dict: msg = f"Line '{self.e_name}' is in the list of selected lines. \nDuplicate entries are not allowed." raise RuntimeError(msg) default_area = 1e2 # Add the new data entry to the parameter dictionary. This operation is necessary for 'userpeak' # lines, because they need to be placed to the specific position (by setting 'delta_center' # parameter, while regular element lines are placed to their default positions. d_energy = userpeak_center - 5.0 # PC.params will contain a deepcopy of 'self.param_new' with the new line added PC = ParamController(self.param_new, [self.e_name]) if self.get_eline_name_category(self.e_name) == "userpeak": energy = userpeak_center # Default values for 'delta_center' dc = copy.deepcopy(PC.params[f"{self.e_name}_delta_center"]) # Modify the default values in the dictionary of parameters PC.params[f"{self.e_name}_delta_center"]["value"] = d_energy PC.params[f"{self.e_name}_delta_center"]["min"] = d_energy - (dc["value"] - dc["min"]) PC.params[f"{self.e_name}_delta_center"]["max"] = d_energy + (dc["max"] - dc["value"]) elif self.get_eline_name_category(self.e_name) == "pileup": energy = self.get_pileup_peak_energy(self.e_name) else: energy = get_energy(self.e_name) param_tmp = PC.params param_tmp = create_full_dict(param_tmp, fit_strategy_list) # Add name to the name list _add_element_to_list(self.e_name, param_tmp) # 'self.param_new' is used to provide 'hint' values for the model, but all active # emission lines in 'elemental_lines' will be included in the model. # The model will contain lines in 'elemental_lines', Compton and elastic x, data_out, area_dict = calculate_profile( self.x0, self.y0, param_tmp, elemental_lines=[self.e_name], default_area=default_area ) # Check if element profile was calculated successfully. # Calculation may fail if the selected line is not activated. # The calculation is performed using ``xraylib` library, so there is no # control over it. if self.e_name not in data_out: raise Exception(f"Failed to add the emission line '{self.e_name}': line is not activated.") # If model was generated successfully (the emission line was successfully added), then # make temporary parameters permanent self.param_new = param_tmp ratio_v = self.add_element_intensity / np.max(data_out[self.e_name]) ps = PreFitStatus( z=get_Z(self.e_name), energy=energy if isinstance(energy, str) else f"{energy:.4f}", area=area_dict[self.e_name] * ratio_v, spectrum=data_out[self.e_name] * ratio_v, maxv=self.add_element_intensity, norm=-1, status=True, # for plotting lbd_stat=False, ) self.EC.add_to_dict({self.e_name: ps}) self.EC.update_peak_ratio() def _generate_param_keys(self, eline): """ Returns prefix of the key from `param_new` dictionary based on emission line name If eline is actual emission line (like Ca_K), then the `key_dcenter` and `key_dsigma` point to 'a1' line (Ca_ka1). Function has to be extended if access to specific lines is required. Function is primarily intended for use with user-defined peaks. """ category = self.get_eline_name_category(eline) if category == "pileup": eline = eline.replace("-", "_") key_area = "pileup_" + eline + "_area" key_dcenter = "pileup_" + eline + "delta_center" key_dsigma = "pileup_" + eline + "delta_sigma" elif category == "eline": eline = eline[:-1] + eline[-1].lower() key_area = eline + "a1_area" key_dcenter = eline + "a1_delta_center" key_dsigma = eline + "a1_delta_sigma" elif category == "userpeak": key_area = eline + "_area" key_dcenter = eline + "_delta_center" key_dsigma = eline + "_delta_sigma" elif eline == "compton": key_area = eline + "_amplitude" key_dcenter, key_dsigma = "", "" else: # No key exists (for "background", "escape", "elastic") key_area, key_dcenter, key_dsigma = "", "", "" return {"key_area": key_area, "key_dcenter": key_dcenter, "key_dsigma": key_dsigma} def modify_peak_height(self, maxv_new): """ Modify the height of the emission line. Parameters ---------- new_maxv: float New maximum value for the emission line `self.e_name` """ ignored_peaks = {"escape"} if self.e_name in ignored_peaks: msg = f"Height of the '{self.e_name}' peak can not be changed." raise RuntimeError(msg) if self.e_name not in self.EC.element_dict: msg = ( f"Attempt to modify maximum value for the emission line '{self.e_name},'\n" f"which is not currently selected." ) raise RuntimeError(msg) key = self._generate_param_keys(self.e_name)["key_area"] maxv_current = self.EC.element_dict[self.e_name].maxv coef = maxv_new / maxv_current if maxv_current > 0 else 0 # Only 'maxv' needs to be updated. self.EC.element_dict[self.e_name].maxv = maxv_new # The following function updates 'spectrum', 'area' and 'norm'. self.EC.update_peak_ratio() # Some of the parameters are represented only in EC, not in 'self.param_new'. # (particularly "background" and "elastic") if key: self.param_new[key]["value"] *= coef def _compute_fwhm_base(self, energy): # Computes 'sigma' value based on default parameters and peak energy (for Userpeaks) # does not include corrections for fwhm. # If both peak center (energy) and fwhm is updated, energy needs to be set first, # since it is used in computation of ``fwhm_base`` sigma = gaussian_fwhm_to_sigma(self.param_new["fwhm_offset"]["value"]) sigma_sqr = energy + 5.0 # center sigma_sqr *= self.param_new["non_fitting_values"]["epsilon"] # epsilon sigma_sqr *= self.param_new["fwhm_fanoprime"]["value"] # fanoprime sigma_sqr += sigma * sigma # We have computed the expression under sqrt sigma_total = np.sqrt(sigma_sqr) return gaussian_sigma_to_fwhm(sigma_total) def _update_userpeak_energy(self, eline, energy_new, fwhm_new): """ Set new center for the user-defined peak at 'new_energy' """ # According to the accepted peak model, as energy of the peak center grows, # the peak becomes wider. The most user friendly solution is to automatically # increase FWHM as the peak moves along the energy axis to the right and # decrease otherwise. So generally, the user should first place the peak # center at the desired energy, and then adjust FWHM. # We change energy, so we will have to change FWHM as well # so before updating energy we will save the difference between # the default (base) FWHM and the displayed FWHM name_userpeak_dcenter = eline + "_delta_center" old_energy = self.param_new[name_userpeak_dcenter]["value"] # This difference represents the required change in fwhm fwhm_difference = fwhm_new - self._compute_fwhm_base(old_energy) # Now we change energy. denergy = energy_new - 5.0 v_center = self.param_new[name_userpeak_dcenter]["value"] v_max = self.param_new[name_userpeak_dcenter]["max"] v_min = self.param_new[name_userpeak_dcenter]["min"] # Keep the possible range for value change the same self.param_new[name_userpeak_dcenter]["value"] = denergy self.param_new[name_userpeak_dcenter]["max"] = denergy + v_max - v_center self.param_new[name_userpeak_dcenter]["min"] = denergy - (v_center - v_min) # The base value is updated now (since the energy has changed) fwhm_base = self._compute_fwhm_base(energy_new) fwhm = fwhm_difference + fwhm_base return fwhm def _update_userpeak_fwhm(self, eline, energy_new, fwhm_new): name_userpeak_dsigma = eline + "_delta_sigma" fwhm_base = self._compute_fwhm_base(energy_new) dfwhm = fwhm_new - fwhm_base dsigma = gaussian_fwhm_to_sigma(dfwhm) v_center = self.param_new[name_userpeak_dsigma]["value"] v_max = self.param_new[name_userpeak_dsigma]["max"] v_min = self.param_new[name_userpeak_dsigma]["min"] # Keep the possible range for value change the same self.param_new[name_userpeak_dsigma]["value"] = dsigma self.param_new[name_userpeak_dsigma]["max"] = dsigma + v_max - v_center self.param_new[name_userpeak_dsigma]["min"] = dsigma - (v_center - v_min) def _update_userpeak_energy_fwhm(self, eline, fwhm_new, energy_new): """ Update energy and fwhm of the user-defined peak 'eline'. The 'delta_center' and 'delta_sigma' parameters in the `self.param_new` dictionary are updated. `area` should be updated after call to this function. This function also doesn't change entries in the `EC` dictionary. """ # Ensure, that the values are greater than some small value to ensure that # there is no computational problems. # Energy resolution for the existing beamlines is 0.01 keV, so 0.001 is small # enough both for center energy and FWHM. energy_small_value = 0.001 energy_new = max(energy_new, energy_small_value) fwhm_new = max(fwhm_new, energy_small_value) fwhm_new = self._update_userpeak_energy(eline, energy_new, fwhm_new) self._update_userpeak_fwhm(eline, energy_new, fwhm_new) def modify_userpeak_params(self, maxv_new, fwhm_new, energy_new): if self.get_eline_name_category(self.e_name) != "userpeak": msg = ( f"Hight and width can be modified only for a user defined peak.\n" f"The function was called for '{self.e_name}' peak" ) raise RuntimeError(msg) if self.e_name not in self.EC.element_dict: msg = ( f"Attempt to modify maximum value for the emission line '{self.e_name},'\n" f"which is not currently selected." ) raise RuntimeError(msg) # Some checks of the input values if maxv_new <= 0.0: raise ValueError("Peak height must be a positive number greater than 0.001.") if energy_new <= 0.0: raise ValueError("User peak energy must be a positive number greater than 0.001.") if fwhm_new <= 0: raise ValueError("User peak FWHM must be a positive number.") # Make sure that the energy of the user peak is within the selected fitting range energy_bound_high = self.param_new["non_fitting_values"]["energy_bound_high"]["value"] energy_bound_low = self.param_new["non_fitting_values"]["energy_bound_low"]["value"] if energy_new > energy_bound_high or energy_new < energy_bound_low: raise ValueError("User peak energy is outside the selected range.") # This updates 'delta_center' and 'delta_sigma' entries of the 'self.param_new' dictionary self._update_userpeak_energy_fwhm(self.e_name, fwhm_new, energy_new) default_area = 1e2 key = self._generate_param_keys(self.e_name)["key_area"] # Set area to default area, change it later once the area is computed self.param_new[key]["value"] = default_area # 'self.param_new' is used to provide 'hint' values for the model, but all active # emission lines in 'elemental_lines' will be included in the model. # The model will contain lines in 'elemental_lines', Compton and elastic x, data_out, area_dict = calculate_profile( self.x0, self.y0, self.param_new, elemental_lines=[self.e_name], default_area=default_area ) ratio_v = maxv_new / np.max(data_out[self.e_name]) area = area_dict[self.e_name] * ratio_v self.param_new[key]["value"] = area ps = PreFitStatus( z=get_Z(self.e_name), energy=f"{energy_new:.4f}", area=area, spectrum=data_out[self.e_name] * ratio_v, maxv=maxv_new, norm=-1, status=True, # for plotting lbd_stat=False, ) self.EC.element_dict[self.e_name] = ps logger.debug( f"The parameters of the user defined peak. The new values:\n" f" Energy: {energy_new} keV, FWHM: {fwhm_new}, Maximum: {maxv_new}\n" ) def generate_pileup_peak_name(self, name1, name2): """ Returns name for the pileup peak. The element line with the lowest energy is placed first in the name. """ incident_energy = self.param_new["coherent_sct_energy"]["value"] e1 = get_eline_parameters(name1, incident_energy)["energy"] e2 = get_eline_parameters(name2, incident_energy)["energy"] if e1 > e2: name1, name2 = name2, name1 return name1 + "-" + name2 def update_name_list(self): """ When result_dict_names change, the looper in enaml will update. """ # need to clean list first, in order to refresh the list in GUI self.result_dict_names = [] self.result_dict_names = list(self.EC.element_dict.keys()) self.element_list = get_element_list(self.param_new) peak_list = self.get_user_peak_list() # Create the list of selected emission lines such as Ca_K, K_K, etc. # No pileup or user peaks pure_peak_list = [n for n in self.result_dict_names if n in peak_list] self.n_selected_elines_for_fitting = len(self.result_dict_names) self.n_selected_pure_elines_for_fitting = len(pure_peak_list) logger.info(f"The update list of emission lines: {self.result_dict_names}") def get_eline_name_category(self, eline_name): """ Returns the category to which `eline_name` belongs: `eline`, `userpeak`, `pileup` or `other`. Parameters ---------- eline_name: str Name to be analyzed Returns ------- str category: one of `("eline", "userpeak", "pileup" or "other")` """ if check_if_eline_supported(eline_name): return "eline" elif eline_name.lower().startswith("userpeak"): return "userpeak" elif "-" in eline_name: # This is specific to currently accepted naming convention return "pileup" else: return "other" def _sort_eline_list(self, element_list): """ Sort the list of elements """ names_elines, names_userpeaks, names_pileup_peaks, names_other = [], [], [], [] for name in element_list: if self.get_eline_name_category(name) == "eline": try: z = get_element_atomic_number(name.split("_")[0]) except Exception: z = 0 names_elines.append([name, z]) elif self.get_eline_name_category(name) == "userpeak": names_userpeaks.append(name) elif self.get_eline_name_category(name) == "pileup": names_pileup_peaks.append(name) else: names_other.append(name) names_elines.sort(key=lambda v: int(v[1])) # Sort by Z (atomic number) names_elines = [_[0] for _ in names_elines] # Get rid of Z names_userpeaks.sort() names_pileup_peaks.sort() names_other.sort() return names_elines + names_userpeaks + names_pileup_peaks + names_other def get_sorted_result_dict_names(self): """ The function returns the list of selected emission lines. The emission lines are sorted in the following order: emission line names (sorted in the order of growing atomic number Z), userpeaks (in alphabetic order), pileup peaks (in alphabetic order), other peaks (in alphabetic order). Returns ------- list(str) the list if emission line names """ return self._sort_eline_list(self.result_dict_names) def get_sorted_element_list(self): """ Returns sorted ``element_list``. """ return self._sort_eline_list(self.element_list) def read_param_from_file(self, param_path): """ Update parameters if new param_path is given. Parameters ---------- param_path : str path to save the file """ with open(param_path, "r") as json_data: param = json.load(json_data) self.update_new_param(param, reset=True) def find_peak(self, *, threshv=0.1, elemental_lines=None): """ Run automatic peak finding, and save results as dict of object. Parameters ---------- threshv: float The value will not be shown on GUI if it is smaller than the threshold. elemental_lines: list(str) The list of elemental lines to find. If ``None``, then all supported lines (K, L and M) are searched. """ self.define_range() # in case the energy calibraiton changes self.prefit_x, out_dict, area_dict = linear_spectrum_fitting( self.x0, self.y0, self.param_new, elemental_lines=elemental_lines ) logger.info( "Energy range: {}, {}".format( self.param_new["non_fitting_values"]["energy_bound_low"]["value"], self.param_new["non_fitting_values"]["energy_bound_high"]["value"], ) ) prefit_dict = OrderedDict() for k, v in out_dict.items(): ps = PreFitStatus( z=get_Z(k), energy=get_energy(k), area=area_dict[k], spectrum=v, maxv=np.around(np.max(v), self.max_area_dig), norm=-1, lbd_stat=False, ) prefit_dict.update({k: ps}) logger.info("Automatic Peak Finding found elements as : {}".format(list(prefit_dict.keys()))) self.EC.delete_all() self.EC.add_to_dict(prefit_dict) self.create_full_param() def create_full_param(self): """ Update current ``self.param_new`` with elements from ``self.EC`` (delete elements that are not in ``self.EC`` and update the existing elements. """ self.define_range() # We set 'self.element_list' from 'EC' (because we want to set elements of 'self.param_new' # from 'EC.element_dict' self.element_list = self.EC.get_element_list() self.param_new = update_param_from_element(self.param_new, self.element_list) element_temp = [e for e in self.element_list if len(e) <= 4] pileup_temp = [e for e in self.element_list if "-" in e] userpeak_temp = [e for e in self.element_list if "user" in e.lower()] # update area values in param_new according to results saved in ElementController if len(self.EC.element_dict): for k, v in self.param_new.items(): if "area" in k: if "pileup" in k: name_cut = k[7:-5] # remove pileup_ and _area for p in pileup_temp: if name_cut == p.replace("-", "_"): v["value"] = self.EC.element_dict[p].area elif "user" in k.lower(): for p in userpeak_temp: if p in k: v["value"] = self.EC.element_dict[p].area else: for e in element_temp: k_name, k_line, _ = k.split("_") e_name, e_line = e.split("_") if k_name == e_name and e_line.lower() == k_line[0]: # attention: S_k and As_k v["value"] = self.EC.element_dict[e].area if "compton" in self.EC.element_dict: self.param_new["compton_amplitude"]["value"] = self.EC.element_dict["compton"].area if "coherent_sct_amplitude" in self.EC.element_dict: self.param_new["coherent_sct_amplitude"]["value"] = self.EC.element_dict["elastic"].area if "escape" in self.EC.element_dict: self.param_new["non_fitting_values"]["escape_ratio"] = self.EC.element_dict[ "escape" ].maxv / np.max(self.y0) else: self.param_new["non_fitting_values"]["escape_ratio"] = 0.0 def data_for_plot(self): """ Save data in terms of K, L, M lines for plot. """ self.total_y = None self.auto_fit_all = {} for k, v in self.EC.element_dict.items(): if v.status is True: self.auto_fit_all[k] = v.spectrum if self.total_y is None: self.total_y = np.array(v.spectrum) # need to copy an array else: self.total_y += v.spectrum # for k, v in new_dict.items(): # if '-' in k: # pileup # self.total_pileup[k] = self.EC.element_dict[k].spectrum # elif 'K' in k: # self.total_y[k] = self.EC.element_dict[k].spectrum # elif 'L' in k: # self.total_l[k] = self.EC.element_dict[k].spectrum # elif 'M' in k: # self.total_m[k] = self.EC.element_dict[k].spectrum # else: # self.total_y[k] = self.EC.element_dict[k].spectrum def get_user_peak_list(self): """ Returns the list of element emission peaks """ return K_LINE + L_LINE + M_LINE def get_selected_emission_line_data(self): """ Assembles the full emission line data for processing. Returns ------- list(dict) Each dictionary includes the following data: "name" (e.g. Ca_ka1 etc.), "area" (estimated peak area based on current fitting results), "ratio" (ratio such as Ca_ka2/Ca_ka1) """ # Full list of supported emission lines (such as Ca_K) supported_elines = self.get_user_peak_list() # Parameter keys start with full emission line name (eg. Ca_ka1) param_keys = list(self.param_new.keys()) incident_energy = self.param_new["coherent_sct_energy"]["value"] full_line_list = [] for eline in self.EC.element_dict.keys(): if eline not in supported_elines: continue area = self.EC.element_dict[eline].area lines = [_ for _ in param_keys if _.lower().startswith(eline.lower())] lines = set(["_".join(_.split("_")[:2]) for _ in lines]) for ln in lines: eline_info = get_eline_parameters(ln, incident_energy) data = {"name": ln, "area": area, "ratio": eline_info["ratio"], "energy": eline_info["energy"]} full_line_list.append(data) return full_line_list def guess_pileup_peak_components(self, energy, tolerance=0.05): """ Provides a guess on components of pileup peak based on the set of selected emission lines, and selected energy. Parameters ---------- energy: float Approximate (selected) energy of pileup peak location tolerance: float Allowed deviation of the sum of component energies from the selected energy, keV Returns ------- tuple(str, str, float) Component emission lines (such as Ca_ka1, K_ka1 etc) and the energy of the resulting pileup peak. """ line_data = self.get_selected_emission_line_data() energy_min, energy_max = energy - tolerance, energy + tolerance # Not very efficient algorithm, which tries all combinations of lines pileup_components, areas = [], [] for n1, line1 in enumerate(line_data): for n2 in range(n1, len(line_data)): line2 = line_data[n2] if energy_min < line1["energy"] + line2["energy"] < energy_max: if line1 == line2: area = line1["area"] * line1["ratio"] else: area = line1["area"] * line1["ratio"] + line2["area"] * line2["ratio"] pileup_components.append((line1["name"], line2["name"], line1["energy"] + line2["energy"])) areas.append(area) if len(areas): # Find index with maximum area n = areas.index(max(areas)) return pileup_components[n] else: return None def save_as(file_path, data): """ Save full param dict into a file. """ with open(file_path, "w") as outfile: json.dump(data, outfile, sort_keys=True, indent=4) def define_range(data, low, high, a0, a1): """ Cut x range according to values define in param_dict. Parameters ---------- data : array raw spectrum low : float low bound in KeV high : float high bound in KeV a0 : float offset term of energy calibration a1 : float linear term of energy calibration Returns ------- x : array trimmed channel number y : array trimmed spectrum according to x """ x = np.arange(data.size) # ratio to transfer energy value back to channel value # approx_ratio = 100 low_new = int(np.around((low - a0) / a1)) high_new = int(np.around((high - a0) / a1)) x0, y0 = trim(x, data, low_new, high_new) return x0, y0 def calculate_profile(x, y, param, elemental_lines, default_area=1e5): """ Calculate the spectrum profile based on given parameters. Use function construct_linear_model from xrf_model. Parameters ---------- x : array channel array y : array spectrum intensity param : dict parameters elemental_lines : list such as Si_K, Pt_M default_area : float default value for the gaussian area of each element Returns ------- x : array trimmed energy range temp_d : dict dict of array area_dict : dict dict of area for elements and other peaks """ # Need to use deepcopy here to avoid unexpected change on parameter dict fitting_parameters = copy.deepcopy(param) total_list, matv, area_dict = construct_linear_model( x, fitting_parameters, elemental_lines, default_area=default_area ) temp_d = {k: v for (k, v) in zip(total_list, matv.transpose())} # add background bg = snip_method_numba( y, fitting_parameters["e_offset"]["value"], fitting_parameters["e_linear"]["value"], fitting_parameters["e_quadratic"]["value"], width=fitting_parameters["non_fitting_values"]["background_width"], ) temp_d["background"] = bg x_energy = ( fitting_parameters["e_offset"]["value"] + fitting_parameters["e_linear"]["value"] * x + fitting_parameters["e_quadratic"]["value"] * x ** 2 ) return x_energy, temp_d, area_dict def trim_escape_peak(data, param_dict, y_size): """ Calculate escape peak within required range. Parameters ---------- data : array raw spectrum param_dict : dict parameters for fitting y_size : int the size of trimmed spectrum Returns ------- array : trimmed escape peak spectrum """ ratio = param_dict["non_fitting_values"]["escape_ratio"] xe, ye = compute_escape_peak(data, ratio, param_dict) lowv = param_dict["non_fitting_values"]["energy_bound_low"]["value"] highv = param_dict["non_fitting_values"]["energy_bound_high"]["value"] xe, es_peak = trim(xe, ye, lowv, highv) logger.info("Escape peak is considered with ratio {}".format(ratio)) # align to the same length if y_size > es_peak.size: temp = es_peak es_peak = np.zeros(y_size) es_peak[: temp.size] = temp else: es_peak = es_peak[:y_size] return es_peak def create_full_dict(param, name_list, fixed_list=["adjust_element2", "adjust_element3"]): """ Create full param dict so each item has the same nested dict. This is for GUI purpose only. Pamameters ---------- param : dict all parameters including element name_list : list strategy names Returns ------- dict: with update """ param_new = copy.deepcopy(param) for n in name_list: for k, v in param_new.items(): if k == "non_fitting_values": continue if n not in v: # enforce newly created parameter to be fixed # for strategy in fixed_list if n in fixed_list: v.update({n: "fixed"}) else: v.update({n: v["bound_type"]}) return param_new def strip_line(ename): return ename.split("_")[0] def get_Z(ename): """ Return element's Z number. Parameters ---------- ename : str element name Returns ------- int or None element Z number """ non_element = ["compton", "elastic", "background", "escape"] if (ename.lower() in non_element) or "-" in ename or "user" in ename.lower(): return "-" else: e = Element(strip_line(ename)) return str(e.Z) def get_energy(ename): """ Return energy value by given elemental name. Need to consider non-elemental case. """ non_element = ["compton", "elastic", "background", "escape"] if (ename.lower() in non_element) or "user" in ename.lower(): return "-" else: e = Element(strip_line(ename)) ename = ename.lower() if "_k" in ename: energy = e.emission_line["ka1"] elif "_l" in ename: energy = e.emission_line["la1"] elif "_m" in ename: energy = e.emission_line["ma1"] return str(np.around(energy, 4)) def get_element_list(param): """Extract elements from parameter class object""" element_list = param["non_fitting_values"]["element_list"] element_list = [e.strip(" ") for e in element_list.split(",")] # Unfortunately, "".split(",") returns [""] instead of [], but we need [] !!! if element_list == [""]: element_list = [] return element_list def _set_element_list(element_list, param): element_list = ", ".join(element_list) param["non_fitting_values"]["element_list"] = element_list def _add_element_to_list(eline, param): """Add element to list in the parameter class object""" elist = get_element_list(param) elist_lower = [_.lower() for _ in elist] if eline.lower() not in elist_lower: elist.append(eline) _set_element_list(elist, param) def _remove_element_from_list(eline, param): """Add element to list in the parameter class object""" elist = get_element_list(param) elist_lower = [_.lower() for _ in elist] try: index = elist_lower.index(eline.lower()) elist.pop(index) _set_element_list(elist, param) except ValueError: pass def param_dict_cleaner(parameter, element_list): """ Make sure param only contains element from element_list. Parameters ---------- parameter : dict fitting parameters element_list : list list of elemental lines Returns ------- dict : new param dict containing given elements """ param = copy.deepcopy(parameter) param_new = {} elines_list = [e for e in element_list if len(e) <= 4] elines_lower = [e.lower() for e in elines_list] pileup_list = [e for e in element_list if "-" in e] userpeak_list = [e for e in element_list if "user" in e.lower()] new_element_set = set() for k, v in param.items(): if k == "non_fitting_values" or k == k.lower(): param_new.update({k: v}) elif "pileup" in k: for p in pileup_list: if p.replace("-", "_") in k: param_new.update({k: v}) new_element_set.add(p) elif "user" in k.lower(): for p in userpeak_list: if p in k: param_new.update({k: v}) new_element_set.add(p) elif k[:3].lower() in elines_lower: index = elines_lower.index(k[:3].lower()) param_new.update({k: v}) new_element_set.add(elines_list[index]) elif k[:4].lower() in elines_lower: index = elines_lower.index(k[:4].lower()) param_new.update({k: v}) new_element_set.add(elines_list[index]) new_element_list = list(new_element_set) _set_element_list(new_element_list, param_new) return param_new def update_param_from_element(param, element_list): """ Clean up or extend param according to new element list. Parameters ---------- param : dict fitting parameters element_list : list list of elemental lines Returns ------- dict """ param_new = copy.deepcopy(param) for eline in element_list: _add_element_to_list(eline, param_new) # first remove some items not included in element_list param_new = param_dict_cleaner(param_new, element_list) # second add some elements to a full parameter dict # create full parameter list including elements PC = ParamController(param_new, element_list) # parameter values not updated based on param_new, so redo it param_temp = PC.params # enforce adjust_element area to be fixed, # while bound_type in xrf_model is defined as none for area # for k, v in param_temp.items(): # if '_area' in k: # v['bound_type'] = 'fixed' for k, v in param_temp.items(): if k == "non_fitting_values": continue if k in param_new: param_temp[k] = param_new[k] # for k1 in v.keys(): # v[k1] = param_new[k][k1] param_new = param_temp # to create full param dict, for GUI only param_new = create_full_dict(param_new, fit_strategy_list) return param_new
{ "repo_name": "NSLS-II/PyXRF", "path": "pyxrf/model/parameters.py", "copies": "1", "size": "57227", "license": "bsd-3-clause", "hash": 7991104755529701000, "line_mean": 35.0598613737, "line_max": 112, "alpha_frac": 0.5709367956, "autogenerated": false, "ratio": 3.8158965126358604, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.488683330823586, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import math from functools import partial from matplotlib.figure import Figure, Axes import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.ticker as mticker from mpl_toolkits.axes_grid1.axes_rgb import make_rgb_axes from atom.api import Atom, Str, Typed, Int, List, Dict, Bool from ..core.utils import normalize_data_by_scaler, grid_interpolate from ..core.xrf_utils import check_if_eline_supported from .draw_image import DrawImageAdvanced import logging logger = logging.getLogger(__name__) np.seterr(divide="ignore", invalid="ignore") # turn off warning on invalid division class DrawImageRGB(Atom): """ This class draws RGB image. Attributes ---------- fig : object matplotlib Figure ax : Axes The `Axes` object of matplotlib ax_r : Axes The `Axes` object to add the artist too ax_g : Axes The `Axes` object to add the artist too ax_b : Axes The `Axes` object to add the artist too file_name : str stat_dict : dict determine which image to show img_dict : dict multiple data sets to plot, such as fit data, or roi data img_dict_keys : list data_opt : int index to show which data is chosen to plot dict_to_plot : dict selected data dict to plot, i.e., fitting data or roi is selected map_keys : list keys of dict_to_plot color_opt : str orange or gray plot scaler_norm_dict : dict scaler normalization data, from img_dict scaler_items : list keys of scaler_norm_dict scaler_name_index : int index to select on GUI level scaler_data : None or numpy selected scaler data pixel_or_pos : int index to choose plot with pixel (== 0) or with positions (== 1) grid_interpolate: bool choose to interpolate 2D image in terms of x,y or not plot_all : Bool to control plot all of the data or not """ # Reference to FileIOMOdel io_model = Typed(object) fig = Typed(Figure) ax = Typed(Axes) ax_r = Typed(Axes) ax_g = Typed(Axes) ax_b = Typed(Axes) data_opt = Int(0) img_title = Str() # plot_opt = Int(0) # plot_item = Str() dict_to_plot = Dict() map_keys = List() scaler_norm_dict = Dict() scaler_items = List() scaler_name_index = Int() scaler_data = Typed(object) pixel_or_pos = Int(0) grid_interpolate = Bool(False) plot_all = Bool(False) limit_dict = Dict() range_dict = Dict() # 'stat_dict' is legacy from 'DrawImageAdvanced' class. It is not used here, # but it may be repurposed in the future if multicolor map presentation is developed stat_dict = Dict() # Contains dictionary {"red": <key>, "green": <key>, "blue": <key>}, key is the key # from the dictionary 'self.dict_to_plot' or None. rgb_keys = List(str) # The list of keys in 'rgb_dict' rgb_dict = Dict() # Reference used to access some fields img_model_adv = Typed(DrawImageAdvanced) # Variable that indicates whether quanitative normalization should be applied to data # Associated with 'Quantitative' checkbox quantitative_normalization = Bool(False) rgb_name_list = List() # List of names for RGB channels printed on the plot rgb_limit = Dict() name_not_scalable = List() def __init__(self, *, io_model, img_model_adv): self.io_model = io_model self.img_model_adv = img_model_adv self.fig = plt.figure(figsize=(3, 2)) self.rgb_name_list = ["R", "G", "B"] # Do not apply scaler norm on following data self.name_not_scalable = [ "r2_adjust", "r_factor", "alive", "dead", "elapsed_time", "scaler_alive", "i0_time", "time", "time_diff", "dwell_time", ] self.rgb_keys = ["red", "green", "blue"] self._init_rgb_dict() def img_dict_updated(self, change): """ Observer function to be connected to the fileio model in the top-level gui.py startup Parameters ---------- changed : bool True - 'io_model.img_dict` was updated, False - ignore """ if change["value"]: self.select_dataset(self.io_model.img_dict_default_selected_item) self.init_plot_status() def init_plot_status(self): # init of pos values self.set_pixel_or_pos(0) # init of scaler for normalization self.scaler_name_index = 0 scaler_groups = [v for v in list(self.io_model.img_dict.keys()) if "scaler" in v] if len(scaler_groups) > 0: # self.scaler_group_name = scaler_groups[0] self.scaler_norm_dict = self.io_model.img_dict[scaler_groups[0]] # for GUI purpose only self.scaler_items = [] self.scaler_items = list(self.scaler_norm_dict.keys()) self.scaler_items.sort() self.scaler_data = None logger.debug( "The following groups are included for RGB image display: {}".format(self.io_model.img_dict_keys) ) self.show_image() def select_dataset(self, dataset_index): """ Select dataset. Meaning of the index: 0 - no dataset is selected, 1, 2, ... datasets with index 0, 1, ... is selected Parameters ---------- dataset_index: int index of the selected dataset """ self.data_opt = dataset_index try: if self.data_opt == 0: self.dict_to_plot = {} self.map_keys.clear() self.init_limits_and_stat() self.img_title = "" elif self.data_opt > 0: plot_item = self._get_current_plot_item() self.img_title = str(plot_item) self.dict_to_plot = self.io_model.img_dict[plot_item] # for GUI purpose only self.set_map_keys() self.init_limits_and_stat() # Select the first 3 entries for RGB display for n in range(min(len(self.rgb_keys), len(self.map_keys))): self.rgb_dict[self.rgb_keys[n]] = self.map_keys[n] except IndexError: pass # Redraw image self.show_image() def set_map_keys(self): """ Create sorted list of map keys. The list starts with sorted sequence of emission lines, followed by the sorted list of scalers and other maps. """ self.map_keys.clear() # The key to use with 'img_dict', the name of the current dataset. plot_item = self._get_current_plot_item() keys_unsorted = list(self.io_model.img_dict[plot_item].keys()) if len(keys_unsorted) != len(set(keys_unsorted)): logger.warning( f"DrawImageAdvanced:set_map_keys(): repeated keys in the dictionary 'img_dict': {keys_unsorted}" ) keys_elines, keys_scalers = [], [] for key in keys_unsorted: if check_if_eline_supported(key): # Check if 'key' is an emission line (such as "Ca_K") keys_elines.append(key) else: keys_scalers.append(key) keys_elines.sort() keys_scalers.sort() self.map_keys = keys_elines + keys_scalers def get_selected_scaler_name(self): if self.scaler_name_index == 0: return None else: return self.scaler_items[self.scaler_name_index - 1] def set_scaler_index(self, scaler_index): self.scaler_name_index = scaler_index if self.scaler_name_index == 0: self.scaler_data = None else: try: scaler_name = self.scaler_items[self.scaler_name_index - 1] except IndexError: scaler_name = None if scaler_name: self.scaler_data = self.scaler_norm_dict[scaler_name] logger.info( "Use scaler data to normalize, " "and the shape of scaler data is {}, " "with (low, high) as ({}, {})".format( self.scaler_data.shape, np.min(self.scaler_data), np.max(self.scaler_data) ) ) self.set_low_high_value() # reset low high values based on normalization self.show_image() def _get_current_plot_item(self): """Get the key for the current plot item (use in dictionary 'img_dict')""" return self.io_model.img_dict_keys[self.data_opt - 1] def set_pixel_or_pos(self, pixel_or_pos): self.pixel_or_pos = pixel_or_pos self.show_image() def set_grid_interpolate(self, grid_interpolate): self.grid_interpolate = grid_interpolate self.show_image() def enable_quantitative_normalization(self, enable): """ Enable/Disable quantitative normalization. Parameters ---------- enable: bool Enable quantitative normalization if True, disable if False. """ self.quantitative_normalization = bool(enable) self.set_low_high_value() # reset low high values based on normalization self.show_image() def set_low_high_value(self): """Set default low and high values based on normalization for each image.""" # do not apply scaler norm on not scalable data self.range_dict.clear() for data_name in self.dict_to_plot.keys(): if self.quantitative_normalization: # Quantitative normalization data_arr, _ = self.img_model_adv.param_quant_analysis.apply_quantitative_normalization( data_in=self.dict_to_plot[data_name], scaler_dict=self.scaler_norm_dict, scaler_name_default=self.get_selected_scaler_name(), data_name=data_name, name_not_scalable=self.name_not_scalable, ) else: # Normalize by the selected scaler in a regular way data_arr = normalize_data_by_scaler( data_in=self.dict_to_plot[data_name], scaler=self.scaler_data, data_name=data_name, name_not_scalable=self.name_not_scalable, ) lowv, highv = np.min(data_arr), np.max(data_arr) # Create some 'artificially' small range in case the array is constant if lowv == highv: lowv -= 0.005 highv += 0.005 self.range_dict[data_name] = {"low": lowv, "low_default": lowv, "high": highv, "high_default": highv} def reset_low_high(self, name): """Reset low and high value to default based on normalization.""" self.range_dict[name]["low"] = self.range_dict[name]["low_default"] self.range_dict[name]["high"] = self.range_dict[name]["high_default"] self.limit_dict[name]["low"] = 0.0 self.limit_dict[name]["high"] = 100.0 self.show_image() def _init_rgb_dict(self): self.rgb_dict = {_: None for _ in self.rgb_keys} def init_limits_and_stat(self): """ Set plotting status for all the 2D images. Note: 'self.map_keys' must be updated before calling this function! """ self.stat_dict.clear() self.stat_dict = {k: False for k in self.map_keys} self._init_rgb_dict() self.limit_dict.clear() self.limit_dict = {k: {"low": 0.0, "high": 100.0} for k in self.map_keys} self.set_low_high_value() def preprocess_data(self): """ Normalize data or prepare for linear/log plot. """ selected_data = [] selected_name = [] quant_norm_applied = [] rgb_color_to_keys = self.get_rgb_items_for_plot() for data_key in rgb_color_to_keys.values(): if data_key in self.dict_to_plot: selected_name.append(data_key) if self.scaler_data is not None: if np.count_nonzero(self.scaler_data) == 0: logger.warning("scaler is zero - scaling was not applied") elif len(self.scaler_data[self.scaler_data == 0]) > 0: logger.warning("scaler data has zero values") for i, k in enumerate(selected_name): q_norm_applied = False if self.quantitative_normalization: # Quantitative normalization ( data_arr, q_norm_applied, ) = self.img_model_adv.param_quant_analysis.apply_quantitative_normalization( data_in=self.dict_to_plot[k], scaler_dict=self.scaler_norm_dict, scaler_name_default=self.get_selected_scaler_name(), data_name=k, name_not_scalable=self.name_not_scalable, ) else: # Normalize by the selected scaler in a regular way data_arr = normalize_data_by_scaler( data_in=self.dict_to_plot[k], scaler=self.scaler_data, data_name=k, name_not_scalable=self.name_not_scalable, ) selected_data.append(data_arr) quant_norm_applied.append(q_norm_applied) return selected_data, selected_name, rgb_color_to_keys, quant_norm_applied def show_image(self): # Don't plot the image if dictionary is empty (causes a lot of issues) if not self.io_model.img_dict: return self.fig.clf() self.ax = self.fig.add_subplot(111) self.ax_r, self.ax_g, self.ax_b = make_rgb_axes(self.ax, pad=0.02) # Check if positions data is available. Positions data may be unavailable # (not recorded in HDF5 file) if experiment is has not been completed. # While the data from the completed part of experiment may still be used, # plotting vs. x-y or scatter plot may not be displayed. positions_data_available = False if "positions" in self.io_model.img_dict.keys(): positions_data_available = True # Create local copy of self.pixel_or_pos and self.grid_interpolate pixel_or_pos_local = self.pixel_or_pos grid_interpolate_local = self.grid_interpolate # Disable plotting vs x-y coordinates if 'positions' data is not available if not positions_data_available: if pixel_or_pos_local: pixel_or_pos_local = 0 # Switch to plotting vs. pixel number logger.error("'Positions' data is not available. Plotting vs. x-y coordinates is disabled") if grid_interpolate_local: grid_interpolate_local = False # Switch to plotting vs. pixel number logger.error("'Positions' data is not available. Interpolation is disabled.") selected_data, selected_names, rgb_color_to_keys, quant_norm_applied = self.preprocess_data() selected_data = np.asarray(selected_data) # Hide unused axes if rgb_color_to_keys["red"] is None: self.ax_r.set_visible(False) if rgb_color_to_keys["green"] is None: self.ax_g.set_visible(False) if rgb_color_to_keys["blue"] is None: self.ax_b.set_visible(False) if selected_data.ndim != 3: # There is no data to display. Hide the last axis and exit self.ax.set_visible(False) return def _compute_equal_axes_ranges(x_min, x_max, y_min, y_max): """ Compute ranges for x- and y- axes of the plot. Make sure that the ranges for x- and y-axes are always equal and fit the maximum of the ranges for x and y values: max(abs(x_max-x_min), abs(y_max-y_min)) The ranges are set so that the data is always centered in the middle of the ranges Parameters ---------- x_min, x_max, y_min, y_max : float lower and upper boundaries of the x and y values Returns ------- x_axis_min, x_axis_max, y_axis_min, y_axis_max : float lower and upper boundaries of the x- and y-axes ranges """ x_axis_min, x_axis_max, y_axis_min, y_axis_max = x_min, x_max, y_min, y_max x_range, y_range = abs(x_max - x_min), abs(y_max - y_min) if x_range > y_range: y_center = (y_max + y_min) / 2 y_axis_max = y_center + x_range / 2 y_axis_min = y_center - x_range / 2 else: x_center = (x_max + x_min) / 2 x_axis_max = x_center + y_range / 2 x_axis_min = x_center - y_range / 2 return x_axis_min, x_axis_max, y_axis_min, y_axis_max def _adjust_data_range_using_min_ratio(c_min, c_max, c_axis_range, *, min_ratio=0.01): """ Adjust the range for plotted data along one axis (x or y). The adjusted range is applied to the 'extent' attribute of imshow(). The adjusted range is always greater than 'axis_range * min_ratio'. Such transformation has no physical meaning and performed for aesthetic reasons: stretching the image presentation of a scan with only a few lines (1-3) greatly improves visibility of data. Parameters ---------- c_min, c_max : float boundaries of the data range (along x or y axis) c_axis_range : float range presented along the same axis Returns ------- cmin, c_max : float adjusted boundaries of the data range """ c_range = c_max - c_min if c_range < c_axis_range * min_ratio: c_center = (c_max + c_min) / 2 c_new_range = c_axis_range * min_ratio c_min = c_center - c_new_range / 2 c_max = c_center + c_new_range / 2 return c_min, c_max if pixel_or_pos_local: # xd_min, xd_max, yd_min, yd_max = min(self.x_pos), max(self.x_pos), # min(self.y_pos), max(self.y_pos) x_pos_2D = self.io_model.img_dict["positions"]["x_pos"] y_pos_2D = self.io_model.img_dict["positions"]["y_pos"] xd_min, xd_max, yd_min, yd_max = x_pos_2D.min(), x_pos_2D.max(), y_pos_2D.min(), y_pos_2D.max() xd_axis_min, xd_axis_max, yd_axis_min, yd_axis_max = _compute_equal_axes_ranges( xd_min, xd_max, yd_min, yd_max ) xd_min, xd_max = _adjust_data_range_using_min_ratio(xd_min, xd_max, xd_axis_max - xd_axis_min) yd_min, yd_max = _adjust_data_range_using_min_ratio(yd_min, yd_max, yd_axis_max - yd_axis_min) # Adjust the direction of each axis depending on the direction in which encoder values changed # during the experiment. Data is plotted starting from the upper-right corner of the plot if x_pos_2D[0, 0] > x_pos_2D[0, -1]: xd_min, xd_max, xd_axis_min, xd_axis_max = xd_max, xd_min, xd_axis_max, xd_axis_min if y_pos_2D[0, 0] > y_pos_2D[-1, 0]: yd_min, yd_max, yd_axis_min, yd_axis_max = yd_max, yd_min, yd_axis_max, yd_axis_min else: if selected_data.ndim == 3: # Set equal ranges for the axes data yd, xd = selected_data.shape[1], selected_data.shape[2] xd_min, xd_max, yd_min, yd_max = 0, xd, 0, yd # Select minimum range for data if (yd <= math.floor(xd / 100)) and (xd >= 200): yd_min, yd_max = -math.floor(xd / 200), math.ceil(xd / 200) if (xd <= math.floor(yd / 100)) and (yd >= 200): xd_min, xd_max = -math.floor(yd / 200), math.ceil(yd / 200) xd_axis_min, xd_axis_max, yd_axis_min, yd_axis_max = _compute_equal_axes_ranges( xd_min, xd_max, yd_min, yd_max ) name_r, data_r, limits_r = "", None, {"low": 0, "high": 100.0} name_g, data_g, limits_g = "", None, {"low": 0, "high": 100.0} name_b, data_b, limits_b = "", None, {"low": 0, "high": 100.0} for color, name in rgb_color_to_keys.items(): if name: try: ind = selected_names.index(name) name_label = name if quant_norm_applied[ind]: name_label += " - Q" # Add suffix to name if quantitative normalization was applied if color == "red": name_r, data_r = name_label, selected_data[ind] limits_r = self.limit_dict[name] elif color == "green": name_g, data_g = name_label, selected_data[ind] limits_g = self.limit_dict[name] elif color == "blue": name_b, data_b = name_label, selected_data[ind] limits_b = self.limit_dict[name] except ValueError: pass def _norm_data(data): """ Normalize data between (0, 1). Parameters ---------- data : 2D array """ if data is None: return data data_min = np.min(data) c_norm = np.max(data) - data_min return (data - data_min) / c_norm if (c_norm != 0) else (data - data_min) def _stretch_range(data_in, v_low, v_high): # 'data is already normalized, so that the values are in the range 0..1 # v_low, v_high are in the range 0..100 if data_in is None: return data_in if (v_low <= 0) and (v_high >= 100): return data_in if v_high - v_low < 1: # This should not happen in practice, but check just in case v_high = v_low + 1 v_low, v_high = v_low / 100.0, v_high / 100.0 c = 1.0 / (v_high - v_low) data_out = (data_in - v_low) * c return np.clip(data_out, 0, 1.0) # Interpolate non-uniformly spaced data to uniform grid if grid_interpolate_local: data_r, _, _ = grid_interpolate( data_r, self.io_model.img_dict["positions"]["x_pos"], self.io_model.img_dict["positions"]["y_pos"] ) data_g, _, _ = grid_interpolate( data_g, self.io_model.img_dict["positions"]["x_pos"], self.io_model.img_dict["positions"]["y_pos"] ) data_b, _, _ = grid_interpolate( data_b, self.io_model.img_dict["positions"]["x_pos"], self.io_model.img_dict["positions"]["y_pos"] ) # The dictionaries 'rgb_view_data' and 'pos_limits' are used for monitoring # the map values at current cursor positions. rgb_view_data = {_: None for _ in self.rgb_keys} if data_r is not None: rgb_view_data["red"] = data_r if data_g is not None: rgb_view_data["green"] = data_g if data_b is not None: rgb_view_data["blue"] = data_b pos_limits = {"x_low": xd_min, "x_high": xd_max, "y_low": yd_min, "y_high": yd_max} # Normalize data data_r_norm = _norm_data(data_r) data_g_norm = _norm_data(data_g) data_b_norm = _norm_data(data_b) data_r_norm = _stretch_range(data_r_norm, limits_r["low"], limits_r["high"]) data_g_norm = _stretch_range(data_g_norm, limits_g["low"], limits_g["high"]) data_b_norm = _stretch_range(data_b_norm, limits_b["low"], limits_b["high"]) R, G, B, RGB = make_cube(data_r_norm, data_g_norm, data_b_norm) red_patch = mpatches.Patch(color="red", label=name_r) green_patch = mpatches.Patch(color="green", label=name_g) blue_patch = mpatches.Patch(color="blue", label=name_b) def format_coord_func(x, y, *, pixel_or_pos, rgb_color_to_keys, rgb_view_data, pos_limits, colors=None): x0, y0 = pos_limits["x_low"], pos_limits["y_low"] if colors is None: colors = list(rgb_color_to_keys.keys()) s = "" for n, color in enumerate(self.rgb_keys): if (color not in colors) or (rgb_color_to_keys[color] is None) or (rgb_view_data[color] is None): continue map = rgb_view_data[color] ny, nx = map.shape dy = (pos_limits["y_high"] - y0) / ny if ny else 0 dx = (pos_limits["x_high"] - x0) / nx if nx else 0 cy = 1 / dy if dy else 1 cx = 1 / dx if dx else 1 x_pixel = math.floor((x - x0) * cx) y_pixel = math.floor((y - y0) * cy) if (0 <= x_pixel < nx) and (0 <= y_pixel < ny): # The following line is extremely useful for debugging the feature. Keep it. # s += f" <b>{rgb_color_to_keys[color]}</b>: {x_pixel} {y_pixel}" s += f" <b>{rgb_color_to_keys[color]}</b>: {map[y_pixel, x_pixel]:.5g}" s = " - " + s if s else s # Add dash if something is to be printed if pixel_or_pos: # Spatial coordinates (double) s_coord = f"({x:.5g}, {y:.5g})" else: # Pixel coordinates (int) s_coord = f"({int(x)}, {int(y)})" return s_coord + s format_coord = partial( format_coord_func, pixel_or_pos=pixel_or_pos_local, rgb_color_to_keys=rgb_color_to_keys, rgb_view_data=rgb_view_data, pos_limits=pos_limits, ) def format_cursor_data(data): return "" # Print nothing kwargs = dict(origin="upper", interpolation="nearest", extent=(xd_min, xd_max, yd_max, yd_min)) if RGB is not None: img = self.ax.imshow(RGB, **kwargs) self.ax.format_coord = format_coord img.format_cursor_data = format_cursor_data self.ax.set_xlim(xd_axis_min, xd_axis_max) self.ax.set_ylim(yd_axis_max, yd_axis_min) if R is not None: img = self.ax_r.imshow(R, **kwargs) self.ax_r.set_xlim(xd_axis_min, xd_axis_max) self.ax_r.set_ylim(yd_axis_max, yd_axis_min) format_coord_r = partial(format_coord, colors=["red"]) self.ax_r.format_coord = format_coord_r img.format_cursor_data = format_cursor_data if G is not None: img = self.ax_g.imshow(G, **kwargs) self.ax_g.set_xlim(xd_axis_min, xd_axis_max) self.ax_g.set_ylim(yd_axis_max, yd_axis_min) format_coord_g = partial(format_coord, colors=["green"]) self.ax_g.format_coord = format_coord_g img.format_cursor_data = format_cursor_data if B is not None: img = self.ax_b.imshow(B, **kwargs) self.ax_b.set_xlim(xd_axis_min, xd_axis_max) self.ax_b.set_ylim(yd_axis_max, yd_axis_min) format_coord_b = partial(format_coord, colors=["blue"]) self.ax_b.format_coord = format_coord_b img.format_cursor_data = format_cursor_data self.ax.xaxis.set_major_locator(mticker.MaxNLocator(nbins="auto")) self.ax.yaxis.set_major_locator(mticker.MaxNLocator(nbins="auto")) plt.setp(self.ax_r.get_xticklabels(), visible=False) plt.setp(self.ax_r.get_yticklabels(), visible=False) plt.setp(self.ax_g.get_xticklabels(), visible=False) plt.setp(self.ax_g.get_yticklabels(), visible=False) plt.setp(self.ax_b.get_xticklabels(), visible=False) plt.setp(self.ax_b.get_yticklabels(), visible=False) # self.ax_r.set_xticklabels([]) # self.ax_r.set_yticklabels([]) # sb_x = 38 # sb_y = 46 # sb_length = 10 # sb_height = 1 # ax.add_patch(mpatches.Rectangle(( sb_x, sb_y), sb_length, sb_height, color='white')) # ax.text(sb_x + sb_length /2, sb_y - 1*sb_height, '100 nm', color='w', ha='center', # va='bottom', backgroundcolor='black', fontsize=18) self.ax_r.legend( loc="upper left", bbox_to_anchor=(1.1, 0), frameon=False, handles=[red_patch, green_patch, blue_patch], mode="expand", ) # self.fig.tight_layout(pad=4.0, w_pad=0.8, h_pad=0.8) # self.fig.tight_layout() # self.fig.canvas.draw_idle() # self.fig.suptitle(self.img_title, fontsize=20) self.fig.canvas.draw_idle() def get_selected_items_for_plot(self): """Collect the selected items for plotting.""" # We want the dictionary to be sorted the same way as 'map_keys' sdict = self.stat_dict selected_keys = [_ for _ in self.map_keys if (_ in sdict) and (sdict[_] is True)] return selected_keys def get_rgb_items_for_plot(self): # Verify integrity of the dictionary if len(self.rgb_dict) != 3: raise ValueError( "DrawImageRGB.get_rgb_items_for_plot: dictionary 'rgb_dict' has " f"{len(self.rgb_dict)} elements. Expected number of elements: " f"{len(self.rgb_keys)}." ) for key in self.rgb_keys: if key not in self.rgb_dict: raise ValueError( "DrawImageRGB.get_rgb_items_for_plot: dictionary 'rgb_dict' is " f"incomplete or contains incorrect set of keys: {list(self.rgb_dict.keys())}. " f"Expected keys: {self.rgb_keys}: " ) return self.rgb_dict def make_cube(r, g, b): """ Create 3D array for rgb image. Parameters ---------- r : 2D array g : 2D array b : 2D array """ if r is None and g is None and b is None: logger.error("'make_cube': 'r', 'g' and 'b' input arrays are all None") R, G, B, RGB = None else: for arr in [r, g, b]: if arr is not None: ny, nx = arr.shape break R = np.zeros([ny, nx, 3]) R[:, :, 0] = r G = np.zeros_like(R) G[:, :, 1] = g B = np.zeros_like(R) B[:, :, 2] = b RGB = R + G + B return R, G, B, RGB
{ "repo_name": "NSLS-II/PyXRF", "path": "pyxrf/model/draw_image_rgb.py", "copies": "1", "size": "31070", "license": "bsd-3-clause", "hash": -6549786174653489000, "line_mean": 37.452970297, "line_max": 114, "alpha_frac": 0.5438043128, "autogenerated": false, "ratio": 3.5923228118857673, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4636127124685767, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import commah def runcommand(cosmology='WMAP5'): """ Example interface commands """ # Return the WMAP5 cosmology concentration predicted for # z=0 range of masses Mi = [1e8, 1e9, 1e10] zi = 0 print("Concentrations for haloes of mass %s at z=%s" % (Mi, zi)) output = commah.run(cosmology=cosmology, zi=zi, Mi=Mi) print(output['c'].flatten()) # Return the WMAP5 cosmology concentration predicted for # z=0 range of masses AND cosmological parameters Mi = [1e8, 1e9, 1e10] zi = 0 print("Concentrations for haloes of mass %s at z=%s" % (Mi, zi)) output, cosmo = commah.run(cosmology=cosmology, zi=zi, Mi=Mi, retcosmo=True) print(output['c'].flatten()) print(cosmo) # Return the WMAP5 cosmology concentration predicted for MW # mass (2e12 Msol) across redshift Mi = 2e12 z = [0, 0.5, 1, 1.5, 2, 2.5] output = commah.run(cosmology=cosmology, zi=0, Mi=Mi, z=z) for zval in z: print("M(z=0)=%s has c(z=%s)=%s" % (Mi, zval, output[output['z'] == zval]['c'].flatten())) # Return the WMAP5 cosmology concentration predicted for MW # mass (2e12 Msol) across redshift Mi = 2e12 zi = [0, 0.5, 1, 1.5, 2, 2.5] output = commah.run(cosmology=cosmology, zi=zi, Mi=Mi) for zval in zi: print("M(z=%s)=%s has concentration %s" % (zval, Mi, output[(output['zi'] == zval) & (output['z'] == zval)]['c'].flatten())) # Return the WMAP5 cosmology concentration and # rarity of high-z cluster Mi = 2e14 zi = 6 output = commah.run(cosmology=cosmology, zi=zi, Mi=Mi) print("Concentrations for haloes of mass %s at z=%s" % (Mi, zi)) print(output['c'].flatten()) print("Mass variance sigma of haloes of mass %s at z=%s" % (Mi, zi)) print(output['sig'].flatten()) print("Fluctuation for haloes of mass %s at z=%s" % (Mi, zi)) print(output['nu'].flatten()) # Return the WMAP5 cosmology accretion rate prediction # for haloes at range of redshift and mass Mi = [1e8, 1e9, 1e10] zi = [0] z = [0, 0.5, 1, 1.5, 2, 2.5] output = commah.run(cosmology=cosmology, zi=zi, Mi=Mi, z=z) for Mval in Mi: print("dM/dt for halo of mass %s at z=%s across redshift %s is: " % (Mval, zi, z)) print(output[output['Mi'] == Mval]['dMdt'].flatten()) # Return the WMAP5 cosmology Halo Mass History for haloes with M(z=0) = 1e8 M = [1e8] z = [0, 0.5, 1, 1.5, 2, 2.5] print("Halo Mass History for z=0 mass of %s across z=%s" % (M, z)) output = commah.run(cosmology=cosmology, zi=0, Mi=M, z=z) print(output['Mz'].flatten()) # Return the WMAP5 cosmology formation redshifts for haloes at # range of redshift and mass M = [1e8, 1e9, 1e10] z = [0] print("Formation Redshifts for haloes of mass %s at z=%s" % (M, z)) output = commah.run(cosmology=cosmology, zi=0, Mi=M, z=z) for Mval in M: print(output[output['Mi'] == Mval]['zf'].flatten()) return("Done") def plotcommand(cosmology='WMAP5', plotname=None): """ Example ways to interrogate the dataset and plot the commah output """ # Plot the c-M relation as a functon of redshift xarray = 10**(np.arange(1, 15, 0.2)) yval = 'c' # Specify the redshift range zarray = np.arange(0, 5, 0.5) xtitle = r"Halo Mass (M$_{sol}$)" ytitle = r"Concentration" linelabel = "z=" fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) plt.ylim([2, 30]) colors = cm.rainbow(np.linspace(0, 1, len(zarray))) for zind, zval in enumerate(zarray): output = commah.run(cosmology=cosmology, zi=zval, Mi=xarray) # Access the column yval from the data file yarray = output[yval].flatten() # Plot each line in turn with different colour ax.plot(xarray, yarray, label=linelabel+str(zval), color=colors[zind]) # Overplot the D08 predictions in black ax.plot(xarray, commah.commah.cduffy(zval, xarray), color="black") ax.set_xscale('log') ax.set_yscale('log') leg = ax.legend(loc=1) # Make box totally transparent leg.get_frame().set_alpha(0) leg.get_frame().set_edgecolor('white') for label in leg.get_texts(): label.set_fontsize('small') # the font size for label in leg.get_lines(): label.set_linewidth(4) # the legend line width if plotname: fig.tight_layout(pad=0.2) print("Plotting to '%s_CM_relation.png'" % (plotname)) fig.savefig(plotname+"_CM_relation.png", dpi=fig.dpi*5) else: plt.show() # Plot the c-z relation as a function of mass (so always Mz=M0) xarray = 10**(np.arange(0, 1, 0.05)) - 1 yval = 'c' # Specify the mass range zarray = 10**np.arange(6, 14, 2) xtitle = r"Redshift" ytitle = r"NFW Concentration" linelabel = r"log$_{10}$ M$_{z}$(M$_{sol}$)=" fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) colors = cm.rainbow(np.linspace(0, 1, len(zarray))) for zind, zval in enumerate(zarray): output = commah.run(cosmology=cosmology, zi=xarray, Mi=zval) # Access the column yval from the data file yarray = output[yval].flatten() # Plot each line in turn with different colours ax.plot(xarray, yarray, label=linelabel+"{0:.1f}".format(np.log10(zval)), color=colors[zind],) leg = ax.legend(loc=1) # Make box totally transparent leg.get_frame().set_alpha(0) leg.get_frame().set_edgecolor('white') for label in leg.get_texts(): label.set_fontsize('small') # the font size for label in leg.get_lines(): label.set_linewidth(4) # the legend line width if plotname: fig.tight_layout(pad=0.2) print("Plotting to '%s_Cz_relation.png'" % (plotname)) fig.savefig(plotname+"_Cz_relation.png", dpi=fig.dpi*5) else: plt.show() # Plot the zf-z relation for different masses (so always Mz=M0) xarray = 10**(np.arange(0, 1, 0.05)) - 1 yval = 'zf' # Specify the mass range zarray = 10**np.arange(6, 14, 2) xtitle = r"Redshift" ytitle = r"Formation Redshift" linelabel = r"log$_{10}$ M$_{z}$(M$_{sol}$)=" fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) colors = cm.rainbow(np.linspace(0, 1, len(zarray))) for zind, zval in enumerate(zarray): output = commah.run(cosmology=cosmology, zi=xarray, Mi=zval) yarray = output[yval].flatten() # Plot each line in turn with different colour ax.plot(xarray, yarray, label=linelabel+"{0:.1f}".format(np.log10(zval)), color=colors[zind],) leg = ax.legend(loc=2) # Make box totally transparent leg.get_frame().set_alpha(0) leg.get_frame().set_edgecolor('white') for label in leg.get_texts(): label.set_fontsize('small') # the font size for label in leg.get_lines(): label.set_linewidth(4) # the legend line width if plotname: fig.tight_layout(pad=0.2) print("Plotting to '%s_zfz_relation.png'" % (plotname)) fig.savefig(plotname+"_zfz_relation.png", dpi=fig.dpi*5) else: plt.show() # Plot the dM/dt-z relation for different masses (so always Mz=M0) xarray = 10**(np.arange(0, 1, 0.05)) - 1 yval = 'dMdt' # Specify the mass range zarray = 10**np.arange(10, 14, 0.5) xtitle = r"log$_{10}$ (1+z)" ytitle = r"log$_{10}$ Accretion Rate M$_{sol}$ yr$^{-1}$" linelabel = r"log$_{10}$ M$_z$(M$_{sol}$)=" fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) colors = cm.rainbow(np.linspace(0, 1, len(zarray))) cosmo = commah.getcosmo(cosmology) for zind, zval in enumerate(zarray): output = commah.run(cosmology=cosmology, zi=xarray, Mi=zval, com=False, mah=True) yarray = output[yval].flatten() # Plot each line in turn with different colour ax.plot(np.log10(xarray+1.), np.log10(yarray), label=linelabel+"{0:.1f}".format(np.log10(zval)), color=colors[zind],) # Plot the semi-analytic approximate formula from Correa et al 2015b semianalytic_approx = 71.6 * (zval / 1e12) * (cosmo['h'] / 0.7) *\ (-0.24 + 0.75 * (xarray + 1)) * np.sqrt( cosmo['omega_M_0'] * (xarray + 1)**3 + cosmo['omega_lambda_0']) ax.plot(np.log10(xarray + 1), np.log10(semianalytic_approx), color='black') leg = ax.legend(loc=2) # Make box totally transparent leg.get_frame().set_alpha(0) leg.get_frame().set_edgecolor('white') for label in leg.get_texts(): label.set_fontsize('small') # the font size for label in leg.get_lines(): label.set_linewidth(4) # the legend line width if plotname: fig.tight_layout(pad=0.2) print("Plotting to '%s_dMdtz_relation.png'" % (plotname)) fig.savefig(plotname+"_dMdtz_relation.png", dpi=fig.dpi*5) else: plt.show() # Plot the dMdt-M relation as a function of redshift xarray = 10**(np.arange(10, 14, 0.5)) yval = 'dMdt' # Specify the redshift range zarray = np.arange(0, 5, 0.5) xtitle = r"Halo Mass M$_{sol}$" ytitle = r"Accretion Rate M$_{sol}$ yr$^{-1}$" linelabel = "z=" fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) colors = cm.rainbow(np.linspace(0, 1, len(zarray))) for zind, zval in enumerate(zarray): output = commah.run(cosmology=cosmology, zi=zval, Mi=xarray, com=False, mah=True) yarray = output[yval].flatten() # Plot each line in turn with different colour ax.plot(xarray, yarray, label=linelabel+str(zval), color=colors[zind],) ax.set_xscale('log') ax.set_yscale('log') leg = ax.legend(loc=2) # Make box totally transparent leg.get_frame().set_alpha(0) leg.get_frame().set_edgecolor('white') for label in leg.get_texts(): label.set_fontsize('small') # the font size for label in leg.get_lines(): label.set_linewidth(4) # the legend line width if plotname: fig.tight_layout(pad=0.2) print("Plotting to '%s_MAH_M_relation.png'" % (plotname)) fig.savefig(plotname+"_MAH_M_relation.png", dpi=fig.dpi*5) else: plt.show() # Plot the (dM/M)dt-M relation as a function of redshift xarray = 10**(np.arange(10, 14, 0.5)) yval = 'dMdt' # Specify the redshift range zarray = np.arange(0, 5, 0.5) xtitle = r"Halo Mass M$_{sol}$" ytitle = r"Specific Accretion Rate yr$^{-1}$" linelabel = "z=" fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) colors = cm.rainbow(np.linspace(0, 1, len(zarray))) for zind, zval in enumerate(zarray): output = commah.run(cosmology=cosmology, zi=zval, Mi=xarray, mah=True, com=False) yarray = output[yval].flatten() # Plot each line in turn with different colour ax.plot(xarray, yarray/xarray, label=linelabel+str(zval), color=colors[zind],) ax.set_xscale('log') ax.set_yscale('log') leg = ax.legend(loc=1) # Make box totally transparent leg.get_frame().set_alpha(0) leg.get_frame().set_edgecolor('white') for label in leg.get_texts(): label.set_fontsize('small') # the font size for label in leg.get_lines(): label.set_linewidth(4) # the legend line width if plotname: fig.tight_layout(pad=0.2) print("Plotting to '%s_specificMAH_M_relation.png'" % (plotname)) fig.savefig(plotname+"_specificMAH_M_relation.png", dpi=fig.dpi*5) else: plt.show() # Plot the Mz-z relation as a function of mass # (so mass is decreasing to zero as z-> inf) xarray = 10**(np.arange(0, 1, 0.05)) - 1 yval = 'Mz' # Specify the mass range zarray = 10**np.arange(10, 14, 0.5) xtitle = r"Redshift" ytitle = r"M(z) (M$_{sol}$)" linelabel = r"log$_{10}$ M$_{0}$(M$_{sol}$)=" fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) colors = cm.rainbow(np.linspace(0, 1, len(zarray))) for zind, zval in enumerate(zarray): output = commah.run(cosmology=cosmology, zi=0, Mi=zval, z=xarray) yarray = output[yval].flatten() # Plot each line in turn with different colour ax.plot(xarray, yarray, label=linelabel+"{0:.1f}".format(np.log10(zval)), color=colors[zind],) ax.set_yscale('log') leg = ax.legend(loc=1) # Make box totally transparent leg.get_frame().set_alpha(0) leg.get_frame().set_edgecolor('white') for label in leg.get_texts(): label.set_fontsize('small') # the font size for label in leg.get_lines(): label.set_linewidth(4) # the legend line width if plotname: fig.tight_layout(pad=0.2) print("Plotting to '%s_Mzz_relation.png'" % (plotname)) fig.savefig(plotname+"_Mzz_relation.png", dpi=fig.dpi*5) else: plt.show() # Plot the Mz/M0-z relation as a function of mass xarray = 10**(np.arange(0, 1, 0.02)) - 1 yval = 'Mz' # Specify the mass range zarray = 10**np.arange(10, 14, 0.5) xtitle = r"Redshift" ytitle = r"log$_{10}$ M(z)/M$_{0}$" linelabel = r"log$_{10}$ M$_{0}$(M$_{sol}$)=" fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) colors = cm.rainbow(np.linspace(0, 1, len(zarray))) for zind, zval in enumerate(zarray): output = commah.run(cosmology=cosmology, zi=0, Mi=zval, z=xarray) yarray = output[yval].flatten() # Plot each line in turn with different colour ax.plot(xarray, np.log10(yarray/zval), label=linelabel+"{0:.1f}".format(np.log10(zval)), color=colors[zind],) leg = ax.legend(loc=3) # Make box totally transparent leg.get_frame().set_alpha(0) leg.get_frame().set_edgecolor('white') for label in leg.get_texts(): label.set_fontsize('small') # the font size for label in leg.get_lines(): label.set_linewidth(4) # the legend line width if plotname: fig.tight_layout(pad=0.2) print("Plotting to '%s_MzM0z_relation.png'" % (plotname)) fig.savefig(plotname+"_MzM0z_relation.png", dpi=fig.dpi*5) else: plt.show() return("Done")
{ "repo_name": "astroduff/commah", "path": "examples.py", "copies": "1", "size": "15060", "license": "bsd-3-clause", "hash": -3090736719894958000, "line_mean": 31.3175965665, "line_max": 79, "alpha_frac": 0.5928286853, "autogenerated": false, "ratio": 2.9396837790357213, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9032512464335721, "avg_score": 0, "num_lines": 466 }
from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt __all__ = ['TaylorDiagram'] class TaylorDiagram(object): """ Taylor diagram: plot model standard deviation and correlation to reference (data) sample in a single-quadrant polar plot, with r=stddev and theta=arccos(correlation). Taylor diagram (Taylor, 2001) test implementation. http://www-pcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.htm https://gist.github.com/ycopin/3342888 """ def __init__(self, refstd, fig=None, rect=111, label='_'): """ Set up Taylor diagram axes, i.e. single quadrant polar plot, using mpl_toolkits.axisartist.floating_axes. refstd is the reference standard deviation to be compared to. """ from matplotlib.projections import PolarAxes from mpl_toolkits.axisartist import floating_axes from mpl_toolkits.axisartist import grid_finder self.refstd = refstd # Reference standard deviation. tr = PolarAxes.PolarTransform() # Correlation labels. rlocs = np.concatenate((np.arange(10)/10., [0.95, 0.99])) tlocs = np.arccos(rlocs) # Conversion to polar angles. gl1 = grid_finder.FixedLocator(tlocs) # Positions. dict_formatter = dict(list(zip(tlocs, map(str, rlocs)))) tf1 = grid_finder.DictFormatter(dict_formatter) # Standard deviation axis extent. self.smin = 0 self.smax = 1.5*self.refstd extremes = (0, np.pi/2, # 1st quadrant. self.smin, self.smax) ghelper = floating_axes.GridHelperCurveLinear(tr, extremes=extremes, grid_locator1=gl1, tick_formatter1=tf1) if fig is None: fig = plt.figure() ax = floating_axes.FloatingSubplot(fig, rect, grid_helper=ghelper) fig.add_subplot(ax) # Adjust axes. ax.axis["top"].set_axis_direction("bottom") # "Angle axis". ax.axis["top"].toggle(ticklabels=True, label=True) ax.axis["top"].major_ticklabels.set_axis_direction("top") ax.axis["top"].label.set_axis_direction("top") ax.axis["top"].label.set_text("Correlation") ax.axis["left"].set_axis_direction("bottom") # "X axis". ax.axis["left"].label.set_text("Standard deviation") ax.axis["right"].set_axis_direction("top") # "Y axis". ax.axis["right"].toggle(ticklabels=True) ax.axis["right"].major_ticklabels.set_axis_direction("left") ax.axis["bottom"].set_visible(False) # Useless. # Contours along standard deviations. ax.grid(False) self._ax = ax # Graphical axes. self.ax = ax.get_aux_axes(tr) # Polar coordinates. # Add reference point and stddev contour. l, = self.ax.plot([0], self.refstd, 'ko', ls='', ms=10, label=label) t = np.linspace(0, np.pi/2) r = np.zeros_like(t) + self.refstd self.ax.plot(t, r, 'k--', label='_') # Collect sample points for latter use (e.g. legend). self.samplePoints = [l] def add_sample(self, stddev, corrcoef, *args, **kwargs): """ Add sample (stddev, corrcoeff) to the Taylor diagram. args and kwargs are directly propagated to the Figure.plot command. """ l, = self.ax.plot(np.arccos(corrcoef), stddev, *args, **kwargs) # (theta, radius). self.samplePoints.append(l) return l def add_contours(self, levels=5, **kwargs): """ Add constant centered RMS difference contours. """ rs, ts = np.meshgrid(np.linspace(self.smin, self.smax), np.linspace(0, np.pi/2)) # Compute centered RMS difference. rms = np.sqrt(self.refstd**2 + rs**2 - 2*self.refstd*rs*np.cos(ts)) contours = self.ax.contour(ts, rs, rms, levels, **kwargs) return contours if __name__ == '__main__': # Reference dataset. x = np.linspace(0, 4*np.pi, 100) data = np.sin(x) refstd = data.std(ddof=1) # Reference standard deviation. # Models. m1 = data + 0.2*np.random.randn(len(x)) # Model 1. m2 = 0.8*data + 0.1*np.random.randn(len(x)) # Model 2. m3 = np.sin(x-np.pi/10) # Model 3. # Compute stddev and correlation coefficient of models. samples = np.array([[m.std(ddof=1), np.corrcoef(data, m)[0, 1]] for m in (m1, m2, m3)]) fig = plt.figure(figsize=(10, 4)) ax1 = fig.add_subplot(1, 2, 1, xlabel='X', ylabel='Y') # Taylor diagram. dia = TaylorDiagram(refstd, fig=fig, rect=122, label="Reference") colors = plt.matplotlib.cm.jet(np.linspace(0, 1, len(samples))) ax1.plot(x, data, 'ko', label='Data') for k, m in enumerate([m1, m2, m3]): ax1.plot(x, m, c=colors[k], label='Model %d' % (k+1)) ax1.legend(numpoints=1, prop=dict(size='small'), loc='best') # Add samples to Taylor diagram. for k, (stddev, corrcoef) in enumerate(samples): dia.add_sample(stddev, corrcoef, marker='s', ls='', c=colors[k], label="Model %d" % (k+1)) # Add RMS contours, and label them. contours = dia.add_contours(colors='0.5') plt.clabel(contours, inline=1, fontsize=10) # Add a figure legend. fig.legend(dia.samplePoints, [p.get_label() for p in dia.samplePoints], numpoints=1, prop=dict(size='small'), loc='upper right') plt.show()
{ "repo_name": "pyoceans/utilities", "path": "utilities/taylor_diagram.py", "copies": "2", "size": "5767", "license": "mit", "hash": 8563092671907484000, "line_mean": 34.3803680982, "line_max": 77, "alpha_frac": 0.576382868, "autogenerated": false, "ratio": 3.3883666274970623, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4964749495497062, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt dab = plt.imread('parametric_dab.png') print(dab.shape) l = dab[500, :, 3] #plt.plot(l, label="opacity") r = np.hstack((np.linspace(1, 0, 500), np.linspace(0, 1, 500)[1:])) #plt.plot(r, label="$r$") rr = r**2 o = 1.0-rr #plt.plot(o, label="$1-r^2$") for i in [1, 2]: plt.figure(i) hardness = 0.3 for hardness in [0.1, 0.3, 0.7]: if i == 2: rr = np.linspace(0, 1, 1000) opa = rr.copy() opa[rr < hardness] = rr[rr < hardness] + 1-(rr[rr < hardness]/hardness) opa[rr >= hardness] = hardness/(1-hardness)*(1-rr[rr >= hardness]) plt.plot(opa, label="h=%.1f" % hardness) if i == 2: plt.xlabel("$r^2$") plt.legend(loc='best') else: plt.xlabel("$d$") plt.legend(loc='lower center') plt.ylabel('pixel opacity') plt.xticks([500], [0]) plt.title("Dab Shape (for different hardness values)") plt.show()
{ "repo_name": "achadwick/libmypaint", "path": "doc/scripts/dab_hardness_plot.py", "copies": "4", "size": "1057", "license": "isc", "hash": -17189576301207340, "line_mean": 24.1666666667, "line_max": 79, "alpha_frac": 0.5534531693, "autogenerated": false, "ratio": 2.759791122715405, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0037561853351327033, "num_lines": 42 }
from __future__ import absolute_import, division, print_function import numpy as np import numpy.ma as ma from pandas import DataFrame __all__ = ['both_valid', 'mean_bias', 'median_bias', 'rmse', 'r2', 'apply_skill', 'low_pass'] def both_valid(x, y): """ Returns a mask where both series are valid. Examples -------- >>> import numpy as np >>> x = [np.NaN, 1, 2, 3, 4, 5] >>> y = [0, 1, np.NaN, 3, 4, 5] >>> both_valid(x, y) array([False, True, False, True, True, True], dtype=bool) """ mask_x = np.isnan(x) mask_y = np.isnan(y) return np.logical_and(~mask_x, ~mask_y) def mean_bias(obs, model): from sklearn.metrics import mean_absolute_error return mean_absolute_error(obs, model) def median_bias(obs, model): from sklearn.metrics import median_absolute_error return median_absolute_error(obs, model) def rmse(obs, model): """ Compute root mean square between the observed data (`obs`) and the modeled data (`model`). >>> obs = [3, -0.5, 2, 7] >>> model = [2.5, 0.0, 2, 8] >>> rmse(obs, model) 0.61237243569579447 >>> obs = [[0.5, 1],[-1, 1],[7, -6]] >>> model = [[0, 2],[-1, 2],[8, -5]] >>> rmse(obs, model) 0.84162541153017323 """ from sklearn.metrics import mean_squared_error return np.sqrt(mean_squared_error(obs, model)) def r2(x, y): from sklearn.metrics import r2_score return r2_score(x, y) def apply_skill(dfs, function, remove_mean=True, filter_tides=False): skills = dict() for station, df in dfs.iteritems(): if filter_tides: df = df.apply(low_pass) skill = dict() obs = df.pop('OBS_DATA') if obs.isnull().all(): # No observations. skills.update({station: np.NaN}) continue for model, y in df.iteritems(): # No models. if y.isnull().all(): skills.update({station: np.NaN}) continue mask = both_valid(obs, y) x, y = obs[mask], y[mask] if remove_mean: x, y = x-x.mean(), y-y.mean() if x.size: ret = function(x, y) else: ret = np.NaN skill.update({model: ret}) skills.update({station: skill}) return DataFrame.from_dict(skills) def low_pass(series, window_size=193, T=40, dt=360): """ This function applies a lanczos filter on a pandas time-series and returns the low pass data series. series : Pandas series window_size : Size of the filter windows (default is 96+1+96). T : Period of the filter. (The default of 40 hours filter should get rid of all tides.) dt : time_delta in seconds. Default is 360 (6 minutes). """ from oceans import lanc T *= 60*60. # To seconds. freq = dt/T mask = np.isnan(series) avg = series.mean() series = series - avg series.interpolate(inplace=True) wt = lanc(window_size, freq) low = np.convolve(wt, series, mode='same') low = ma.masked_array(low, mask) return low+avg if __name__ == '__main__': import doctest doctest.testmod()
{ "repo_name": "pyoceans/utilities", "path": "utilities/skill_score.py", "copies": "2", "size": "3278", "license": "mit", "hash": -5608686416070957000, "line_mean": 25.224, "line_max": 78, "alpha_frac": 0.5555216595, "autogenerated": false, "ratio": 3.3517382413087935, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49072599008087936, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import numpy.ma as ma from pandas.tseries.frequencies import to_offset from pandas import DatetimeIndex, Series, rolling_median __all__ = ['has_time_gaps', 'is_monotonically_increasing', 'is_flatline', 'is_spike', 'threshold_series', 'filter_spikes', 'tukey53H'] def has_time_gaps(times, freq): """ Check for gaps in a series time-stamp `times`. The `freq` can be a string or a pandas offset object. Note the `freq` cannot be an ambiguous offset (like week, months, etc), in those case reduce it to the smallest unambiguous unit (i.e.: 1 month -> 30 days). Example ------- >>> import numpy as np >>> from pandas import date_range >>> times = date_range('1980-01-19', periods=48, freq='1H') >>> has_time_gaps(times, freq='6min') True >>> has_time_gaps(times, freq='1H') False """ freq = to_offset(freq) if hasattr(freq, 'delta'): times = DatetimeIndex(times) else: raise ValueError('Cannot interpret freq {!r} delta'.format(freq)) return (np.diff(times) > freq.delta.to_timedelta64()).any() def is_monotonically_increasing(series): """ Check if a given list or array is monotonically increasing. Examples -------- >>> from pandas import date_range >>> times = date_range('1980-01-19', periods=10) >>> all(is_monotonically_increasing(times)) True >>> import numpy as np >>> all(is_monotonically_increasing(np.r_[times[-2:-1], times])) False """ return [x < y for x, y in zip(series, series[1:])] def is_flatline(series, reps=10, eps=None): """ Check for consecutively repeated values (`reps`) in `series` within a tolerance `eps`. Examples -------- >>> series = np.r_[np.random.rand(10), [10]*15, np.random.rand(10)] >>> is_flatline(series, reps=10) array([False, False, False, False, False, False, False, False, False, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, False, False, False, False, False, False, False, False, False, False], dtype=bool) """ series = np.asanyarray(series) if not eps: eps = np.finfo(float).eps if reps < 2: reps = 2 mask = np.zeros_like(series, dtype='bool') flatline = 1 for k, current in enumerate(series): if np.abs(series[k-1] - current) < eps: flatline += 1 else: if flatline >= reps: mask[k-flatline:k] = True flatline = 1 return mask def is_spike(series, window_size=3, threshold=3, scale=True): """ Flags spikes in an array-like object using a median filter of `window_size` and a `threshold` for the median difference. If `scale=False` the differences are not scale by the data standard deviation and the masking is "aggressive." Examples -------- >>> from pandas import Series, date_range >>> series = [33.43, 33.45, 34.45, 90.0, 35.67, 34.9, 43.5, 34.6, 33.7] >>> series = Series(series, index=date_range('1980-01-19', ... periods=len(series))) >>> series[is_spike(series, window_size=3, threshold=3, scale=False)] 1980-01-22 90.0 1980-01-25 43.5 dtype: float64 >>> series[is_spike(series, window_size=3, threshold=3, scale=True)] 1980-01-22 90.0 Freq: D, dtype: float64 """ # bfill+ffil needs a series and won't affect the median. series = Series(series) medians = rolling_median(series, window=window_size, center=True) medians = medians.fillna(method='bfill').fillna(method='ffill') difference = np.abs(series - medians).values if scale: return difference > (threshold*difference.std()) return difference > threshold def threshold_series(series, vmin=None, vmax=None): """ Threshold an series by flagging with NaN values below `vmin` and above `vmax`. Examples -------- >>> series = [0.1, 20, 30, 35.5, 34.9, 43.5, 34.6, 40] >>> threshold_series(series, vmin=30, vmax=40) masked_array(data = [-- -- 30.0 35.5 34.9 -- 34.6 40.0], mask = [ True True False False False True False False], fill_value = 1e+20) <BLANKLINE> >>> from pandas import Series, date_range >>> series = Series(series, index=date_range('1980-01-19', ... periods=len(series))) >>> threshold_series(series, vmin=30, vmax=40) 1980-01-19 NaN 1980-01-20 NaN 1980-01-21 30.0 1980-01-22 35.5 1980-01-23 34.9 1980-01-24 NaN 1980-01-25 34.6 1980-01-26 40.0 Freq: D, dtype: float64 """ if not vmin: vmin = min(series) if not vmax: vmax = max(series) masked = ma.masked_outside(series, vmin, vmax) if masked.mask.any(): if isinstance(series, Series): series[masked.mask] = np.NaN return series return masked def filter_spikes(series, window_size=3, threshold=3, scale=True): """ Filter an array-like object using a median filter and a `threshold` for the median difference. Examples -------- >>> from pandas import Series, date_range >>> series = [33.43, 33.45, 34.45, 90.0, 35.67, 34.9, 43.5, 34.6, 33.7] >>> series = Series(series, index=date_range('1980-01-19', ... periods=len(series))) >>> filter_spikes(series) 1980-01-19 33.43 1980-01-20 33.45 1980-01-21 34.45 1980-01-22 NaN 1980-01-23 35.67 1980-01-24 34.90 1980-01-25 43.50 1980-01-26 34.60 1980-01-27 33.70 Freq: D, dtype: float64 """ outlier_idx = is_spike(series, window_size=window_size, threshold=threshold, scale=scale) if not isinstance(series, Series): series = np.asanyarray(series) series[outlier_idx] = np.NaN return series def _high_pass(data, alpha=0.5): """ Runs a high pass RC filter over the given data. Parameters ---------- data : array_like alpha : float Smoothing factor between 0.0 (exclusive) and 1.0 (inclusive). A lower value means more filtering. A value of 1.0 equals no filtering. Defaults is 0.5. Returns ------- hpf : array_like Filtered data. Based on http://en.wikipedia.org/wiki/High-pass_filter """ mean = data.mean() data = data - mean hpf = data.copy() for k in range(1, len(data)): hpf[k] = alpha * hpf[k-1] + alpha * (data[k] - data[k-1]) return hpf + mean def tukey53H(series, k=1.5): """ Flags suspicious spikes values in `series` using Tukey 53H criteria. References ---------- .. [1] Goring, Derek G., and Vladimir I. Nikora. "Despiking acoustic Doppler velocimeter data." Journal of Hydraulic Engineering 128.1 (2002): 117-126. http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117) Examples -------- >>> from pandas import Series, date_range >>> series = [33.43, 33.45, 34.45, 90.0, 35.67, 34.9, 43.5, 34.6, 33.7] >>> series = Series(series, index=date_range('1980-01-19', ... periods=len(series))) >>> series[tukey53H(series, k=1.5)] 1980-01-22 90.0 Freq: D, dtype: float64 """ series = np.asanyarray(series) series = _high_pass(series, 0.99) series = series - series.mean() N = len(series) stddev = series.std() u1 = np.zeros_like(series) for n in range(N-4): if series[n:n+5].any(): u1[n+2] = np.median(series[n:n+5]) u2 = np.zeros_like(series) for n in range(N-2): if u1[n:n+3].any(): u2[n+1] = np.median(u1[n:n+3]) u3 = np.zeros_like(series) u3[1:-1] = 0.25*(u2[:-2] + 2*u2[1:-1] + u2[2:]) delta = np.abs(series-u3) return delta > k*stddev if __name__ == '__main__': import doctest doctest.testmod()
{ "repo_name": "ocefpaf/utilities", "path": "utilities/qaqc.py", "copies": "2", "size": "8159", "license": "mit", "hash": 72616337327250240, "line_mean": 28.2437275986, "line_max": 79, "alpha_frac": 0.5797279078, "autogenerated": false, "ratio": 3.218540433925049, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4798268341725049, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from datashape.predicates import isscalar from toolz import concat, curry, partition_all from collections import Iterator, Iterable import datashape from .core import NetworkDispatcher, ooc_types from .chunks import chunks, Chunks from .numpy_dtype import dshape_to_numpy from .utils import records_to_tuples convert = NetworkDispatcher('convert') @convert.register(np.ndarray, pd.DataFrame, cost=0.2) def dataframe_to_numpy(df, dshape=None, **kwargs): dtype = dshape_to_numpy(dshape) x = df.to_records(index=False) if x.dtype != dtype: x = x.astype(dtype) return x @convert.register(pd.DataFrame, np.ndarray, cost=1.0) def numpy_to_dataframe(x, **kwargs): return pd.DataFrame(x) @convert.register(pd.Series, np.ndarray, cost=1.0) def numpy_to_series(x, **kwargs): return pd.Series(x) @convert.register(pd.Series, pd.DataFrame, cost=0.1) def DataFrame_to_Series(x, **kwargs): assert len(x.columns) == 1 return x[x.columns[0]] @convert.register(pd.DataFrame, pd.Series, cost=0.1) def series_to_dataframe(x, **kwargs): return x.to_frame() @convert.register(np.recarray, np.ndarray, cost=0.0) def ndarray_to_recarray(x, **kwargs): return x.view(np.recarray) @convert.register(np.ndarray, np.recarray, cost=0.0) def recarray_to_ndarray(x, **kwargs): return x.view(np.ndarray) higher_precision_freqs = frozenset(('ns', 'ps', 'fs', 'as')) @convert.register(np.ndarray, pd.Series, cost=0.1) def series_to_array(s, dshape=None, **kwargs): dtype = datashape.to_numpy_dtype(datashape.dshape(dshape)) sdtype = s.dtype values = s.values # don't lose precision of datetime64 more precise than microseconds if ((issubclass(sdtype.type, np.datetime64) and np.datetime_data(sdtype)[0] in higher_precision_freqs) or s.dtype == dtype): return values try: return values.astype(dtype) except ValueError: # object series and record dshape, e.g., a frame row return values @convert.register(list, np.ndarray, cost=10.0) def numpy_to_list(x, **kwargs): dt = None if x.dtype == 'M8[ns]': dt = 'M8[us]' # lose precision when going to Python datetime if x.dtype.fields and any(x.dtype[n] == 'M8[ns]' for n in x.dtype.names): dt = [(n, 'M8[us]' if x.dtype[n] == 'M8[ns]' else x.dtype[n]) for n in x.dtype.names] if dt: return x.astype(dt).tolist() else: return x.tolist() @convert.register(np.ndarray, chunks(np.ndarray), cost=1.0) def numpy_chunks_to_numpy(c, **kwargs): return np.concatenate(list(c)) @convert.register(chunks(np.ndarray), np.ndarray, cost=0.5) def numpy_to_chunks_numpy(x, chunksize=2**20, **kwargs): return chunks(np.ndarray)( lambda: (x[i:i+chunksize] for i in range(0, x.shape[0], chunksize))) @convert.register(pd.DataFrame, chunks(pd.DataFrame), cost=1.0) def chunks_dataframe_to_dataframe(c, **kwargs): c = list(c) if not c: # empty case return pd.DataFrame(columns=kwargs.get('dshape').measure.names) else: return pd.concat(c, axis=0, ignore_index=True) @convert.register(chunks(pd.DataFrame), pd.DataFrame, cost=0.5) def dataframe_to_chunks_dataframe(x, chunksize=2**20, **kwargs): return chunks(pd.DataFrame)( lambda: (x.iloc[i:i+chunksize] for i in range(0, x.shape[0], chunksize))) def ishashable(x): try: hash(x) return True except: return False @convert.register(set, (list, tuple), cost=5.0) def iterable_to_set(x, **kwargs): if x and isinstance(x[0], Iterable) and not ishashable(x): x = map(tuple, x) return set(x) @convert.register(list, (tuple, set), cost=1.0) def iterable_to_list(x, **kwargs): return list(x) @convert.register(tuple, (list, set), cost=1.0) def iterable_to_tuple(x, **kwargs): return tuple(x) def element_of(seq): """ >>> element_of([1, 2, 3]) 1 >>> element_of([[1, 2], [3, 4]]) 1 """ while isinstance(seq, list) and seq: seq = seq[0] return seq @convert.register(np.ndarray, list, cost=10.0) def list_to_numpy(seq, dshape=None, **kwargs): if isinstance(element_of(seq), dict): seq = list(records_to_tuples(dshape, seq)) if (seq and isinstance(seq[0], Iterable) and not ishashable(seq[0]) and not isscalar(dshape)): seq = list(map(tuple, seq)) dtype = dshape_to_numpy(dshape) return np.array(seq, dtype=dtype) @convert.register(Iterator, list, cost=0.001) def list_to_iterator(L, **kwargs): return iter(L) @convert.register(list, Iterator, cost=1.0) def iterator_to_list(seq, **kwargs): return list(seq) @convert.register(Iterator, (chunks(pd.DataFrame), chunks(np.ndarray)), cost=10.0) def numpy_chunks_to_iterator(c, **kwargs): return concat(convert(Iterator, chunk, **kwargs) for chunk in c) @convert.register(chunks(np.ndarray), Iterator, cost=10.0) def iterator_to_numpy_chunks(seq, chunksize=1024, **kwargs): seq2 = partition_all(chunksize, seq) first, rest = next(seq2), seq2 x = convert(np.ndarray, first, **kwargs) def _(): yield x for i in rest: yield convert(np.ndarray, i, **kwargs) return chunks(np.ndarray)(_) @convert.register(chunks(pd.DataFrame), Iterator, cost=10.0) def iterator_to_DataFrame_chunks(seq, chunksize=1024, **kwargs): seq2 = partition_all(chunksize, seq) try: first, rest = next(seq2), seq2 except StopIteration: return chunks(pd.DataFrame)([]) df = convert(pd.DataFrame, first, **kwargs) def _(): yield df for i in rest: yield convert(pd.DataFrame, i, **kwargs) return chunks(pd.DataFrame)(_) @convert.register(tuple, np.record) def numpy_record_to_tuple(rec, **kwargs): return rec.tolist() @convert.register(chunks(np.ndarray), chunks(pd.DataFrame), cost=0.5) def chunked_pandas_to_chunked_numpy(c, **kwargs): return chunks(np.ndarray)(lambda: (convert(np.ndarray, chunk, **kwargs) for chunk in c)) @convert.register(chunks(pd.DataFrame), chunks(np.ndarray), cost=0.5) def chunked_numpy_to_chunked_pandas(c, **kwargs): return chunks(pd.DataFrame)(lambda: (convert(pd.DataFrame, chunk, **kwargs) for chunk in c)) @convert.register(chunks(np.ndarray), chunks(list), cost=10.0) def chunked_list_to_chunked_numpy(c, **kwargs): return chunks(np.ndarray)(lambda: (convert(np.ndarray, chunk, **kwargs) for chunk in c)) @convert.register(chunks(list), chunks(np.ndarray), cost=10.0) def chunked_numpy_to_chunked_list(c, **kwargs): return chunks(list)(lambda: (convert(list, chunk, **kwargs) for chunk in c)) @convert.register(chunks(Iterator), chunks(list), cost=0.1) def chunked_list_to_chunked_iterator(c, **kwargs): return chunks(Iterator)(c.data) @convert.register(chunks(list), chunks(Iterator), cost=0.1) def chunked_Iterator_to_chunked_list(c, **kwargs): return chunks(Iterator)(lambda: (convert(Iterator, chunk, **kwargs) for chunk in c)) @convert.register(Iterator, chunks(Iterator), cost=0.1) def chunked_iterator_to_iterator(c, **kwargs): return concat(c) ooc_types |= set([Iterator, Chunks])
{ "repo_name": "mrocklin/into", "path": "into/convert.py", "copies": "1", "size": "7301", "license": "bsd-3-clause", "hash": -4992610469792644000, "line_mean": 29.1694214876, "line_max": 96, "alpha_frac": 0.6659361731, "autogenerated": false, "ratio": 3.122754491017964, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9277487862177973, "avg_score": 0.0022405603879980755, "num_lines": 242 }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from datashape.predicates import isscalar from toolz import concat, partition_all, compose from collections import Iterator, Iterable import datashape from datashape import discover from .core import NetworkDispatcher, ooc_types from .chunks import chunks, Chunks from .numpy_dtype import dshape_to_numpy from .utils import records_to_tuples from functools import partial convert = NetworkDispatcher('convert') @convert.register(np.ndarray, pd.DataFrame, cost=0.2) def dataframe_to_numpy(df, dshape=None, **kwargs): dtype = dshape_to_numpy(dshape or discover(df)) x = df.to_records(index=False) if x.dtype != dtype: x = x.astype(dtype) return x @convert.register(pd.DataFrame, np.ndarray, cost=1.0) def numpy_to_dataframe(x, dshape, **kwargs): dtype = x.dtype names = dtype.names if names is None: if dtype.kind == 'm': # pandas does not do this conversion for us but doesn't work # with non 'ns' unit timedeltas x = x.astype('m8[ns]') else: fields = dtype.fields new_dtype = [] should_astype = False for name in names: original_field_value = fields[name][0] if original_field_value.kind == 'm': # pandas does not do this conversion for us but doesn't work # with non 'ns' unit timedeltas new_dtype.append((name, 'm8[ns]')) # perform the astype at the end of the loop should_astype = True else: new_dtype.append((name, original_field_value)) if should_astype: x = x.astype(new_dtype) df = pd.DataFrame(x, columns=getattr(dshape.measure, 'names', names)) return df @convert.register(pd.Series, np.ndarray, cost=1.0) def numpy_to_series(x, **kwargs): names = x.dtype.names if names is not None: if len(names) > 1: raise ValueError('passed in an ndarray with more than 1 column') name, = names return pd.Series(x[name], name=name) return pd.Series(x) @convert.register(pd.Series, pd.DataFrame, cost=0.1) def DataFrame_to_Series(x, **kwargs): assert len(x.columns) == 1 return x[x.columns[0]] @convert.register(pd.DataFrame, pd.Series, cost=0.1) def series_to_dataframe(x, **kwargs): return x.to_frame() @convert.register(np.recarray, np.ndarray, cost=0.0) def ndarray_to_recarray(x, **kwargs): return x.view(np.recarray) @convert.register(np.ndarray, np.recarray, cost=0.0) def recarray_to_ndarray(x, **kwargs): return x.view(np.ndarray) higher_precision_freqs = frozenset(('ns', 'ps', 'fs', 'as')) @convert.register(np.ndarray, pd.Series, cost=0.1) def series_to_array(s, dshape=None, **kwargs): # if we come from a node that can't be discovered we need to discover # on s dtype = dshape_to_numpy(datashape.dshape(dshape or discover(s))) sdtype = s.dtype values = s.values # don't lose precision of datetime64 more precise than microseconds if ((issubclass(sdtype.type, np.datetime64) and np.datetime_data(sdtype)[0] in higher_precision_freqs) or s.dtype == dtype): return values try: return values.astype(dtype) except ValueError: # object series and record dshape, e.g., a frame row return values @convert.register(list, np.ndarray, cost=10.0) def numpy_to_list(x, **kwargs): dt = None if x.dtype == 'M8[ns]': dt = 'M8[us]' # lose precision when going to Python datetime if x.dtype.fields and any(x.dtype[n] == 'M8[ns]' for n in x.dtype.names): dt = [(n, 'M8[us]' if x.dtype[n] == 'M8[ns]' else x.dtype[n]) for n in x.dtype.names] if dt: return x.astype(dt).tolist() else: return x.tolist() @convert.register(np.ndarray, chunks(np.ndarray), cost=1.0) def numpy_chunks_to_numpy(c, **kwargs): return np.concatenate(list(c)) @convert.register(chunks(np.ndarray), np.ndarray, cost=0.5) def numpy_to_chunks_numpy(x, chunksize=2**20, **kwargs): return chunks(np.ndarray)( lambda: (x[i:i+chunksize] for i in range(0, x.shape[0], chunksize))) @convert.register(pd.DataFrame, chunks(pd.DataFrame), cost=1.0) def chunks_dataframe_to_dataframe(c, **kwargs): c = list(c) if not c: # empty case return pd.DataFrame(columns=kwargs.get('dshape').measure.names) else: return pd.concat(c, axis=0, ignore_index=True) @convert.register(chunks(pd.DataFrame), pd.DataFrame, cost=0.5) def dataframe_to_chunks_dataframe(x, chunksize=2**20, **kwargs): return chunks(pd.DataFrame)( lambda: (x.iloc[i:i+chunksize] for i in range(0, x.shape[0], chunksize))) def ishashable(x): try: hash(x) return True except: return False @convert.register(set, (list, tuple), cost=5.0) def iterable_to_set(x, **kwargs): if x and isinstance(x[0], (tuple, list)) and not ishashable(x): x = map(tuple, x) return set(x) @convert.register(list, (tuple, set), cost=1.0) def iterable_to_list(x, **kwargs): return list(x) @convert.register(tuple, (list, set), cost=1.0) def iterable_to_tuple(x, **kwargs): return tuple(x) def element_of(seq): """ >>> element_of([1, 2, 3]) 1 >>> element_of([[1, 2], [3, 4]]) 1 """ while isinstance(seq, list) and seq: seq = seq[0] return seq @convert.register(np.ndarray, list, cost=10.0) def list_to_numpy(seq, dshape=None, **kwargs): if isinstance(element_of(seq), dict): seq = list(records_to_tuples(dshape, seq)) if (seq and isinstance(seq[0], Iterable) and not ishashable(seq[0]) and not isscalar(dshape)): seq = list(map(tuple, seq)) return np.array(seq, dtype=dshape_to_numpy(dshape)) @convert.register(Iterator, list, cost=0.001) def list_to_iterator(L, **kwargs): return iter(L) @convert.register(list, Iterator, cost=1.0) def iterator_to_list(seq, **kwargs): return list(seq) @convert.register(Iterator, (chunks(pd.DataFrame), chunks(np.ndarray)), cost=10.0) def numpy_chunks_to_iterator(c, **kwargs): return concat(convert(Iterator, chunk, **kwargs) for chunk in c) @convert.register(chunks(np.ndarray), Iterator, cost=10.0) def iterator_to_numpy_chunks(seq, chunksize=1024, **kwargs): seq2 = partition_all(chunksize, seq) try: first, rest = next(seq2), seq2 except StopIteration: # seq is empty def _(): yield convert(np.ndarray, [], **kwargs) else: x = convert(np.ndarray, first, **kwargs) def _(): yield x for i in rest: yield convert(np.ndarray, i, **kwargs) return chunks(np.ndarray)(_) @convert.register(chunks(pd.DataFrame), Iterator, cost=10.0) def iterator_to_DataFrame_chunks(seq, chunksize=1024, **kwargs): seq2 = partition_all(chunksize, seq) add_index = kwargs.get('add_index', False) if not add_index: # Simple, we can dispatch to dask... f = lambda d: convert(pd.DataFrame, d, **kwargs) data = [partial(f, d) for d in seq2] if not data: data = [convert(pd.DataFrame, [], **kwargs)] return chunks(pd.DataFrame)(data) # TODO: Decide whether we should support the `add_index` flag at all. # If so, we need to post-process the converted DataFrame objects sequencially, # so we can't parallelize the process. try: first, rest = next(seq2), seq2 except StopIteration: def _(): yield convert(pd.DataFrame, [], **kwargs) else: df = convert(pd.DataFrame, first, **kwargs) df1, n1 = _add_index(df, 0) def _(): n = n1 yield df1 for i in rest: df = convert(pd.DataFrame, i, **kwargs) df, n = _add_index(df, n) yield df return chunks(pd.DataFrame)(_) def _add_index(df, start, _idx_type=getattr(pd, 'RangeIndex', compose(pd.Index, np.arange))): stop = start + len(df) idx = _idx_type(start=start, stop=stop) df.index = idx return df, stop @convert.register(tuple, np.record) def numpy_record_to_tuple(rec, **kwargs): return rec.tolist() @convert.register(chunks(np.ndarray), chunks(pd.DataFrame), cost=0.5) def chunked_pandas_to_chunked_numpy(c, **kwargs): return chunks(np.ndarray)(lambda: (convert(np.ndarray, chunk, **kwargs) for chunk in c)) @convert.register(chunks(pd.DataFrame), chunks(np.ndarray), cost=0.5) def chunked_numpy_to_chunked_pandas(c, **kwargs): return chunks(pd.DataFrame)(lambda: (convert(pd.DataFrame, chunk, **kwargs) for chunk in c)) @convert.register(chunks(np.ndarray), chunks(list), cost=10.0) def chunked_list_to_chunked_numpy(c, **kwargs): return chunks(np.ndarray)(lambda: (convert(np.ndarray, chunk, **kwargs) for chunk in c)) @convert.register(chunks(list), chunks(np.ndarray), cost=10.0) def chunked_numpy_to_chunked_list(c, **kwargs): return chunks(list)(lambda: (convert(list, chunk, **kwargs) for chunk in c)) @convert.register(chunks(Iterator), chunks(list), cost=0.1) def chunked_list_to_chunked_iterator(c, **kwargs): return chunks(Iterator)(c.data) @convert.register(chunks(list), chunks(Iterator), cost=0.1) def chunked_Iterator_to_chunked_list(c, **kwargs): return chunks(Iterator)(lambda: (convert(Iterator, chunk, **kwargs) for chunk in c)) @convert.register(Iterator, chunks(Iterator), cost=0.1) def chunked_iterator_to_iterator(c, **kwargs): return concat(c) ooc_types |= set([Iterator, Chunks])
{ "repo_name": "ContinuumIO/odo", "path": "odo/convert.py", "copies": "4", "size": "9752", "license": "bsd-3-clause", "hash": -4664313578508826000, "line_mean": 30.2564102564, "line_max": 96, "alpha_frac": 0.6350492207, "autogenerated": false, "ratio": 3.2957080094626563, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0011448466766080714, "num_lines": 312 }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from datashape.predicates import isscalar from toolz import concat, partition_all from collections import Iterator, Iterable import datashape from datashape import discover from .core import NetworkDispatcher, ooc_types from .chunks import chunks, Chunks from .numpy_dtype import dshape_to_numpy from .utils import records_to_tuples convert = NetworkDispatcher('convert') @convert.register(np.ndarray, pd.DataFrame, cost=0.2) def dataframe_to_numpy(df, dshape=None, **kwargs): dtype = dshape_to_numpy(dshape or discover(df)) x = df.to_records(index=False) if x.dtype != dtype: x = x.astype(dtype) return x @convert.register(pd.DataFrame, np.ndarray, cost=1.0) def numpy_to_dataframe(x, dshape, **kwargs): return pd.DataFrame(x, columns=getattr(dshape.measure, 'names', None)) @convert.register(pd.Series, np.ndarray, cost=1.0) def numpy_to_series(x, **kwargs): names = x.dtype.names if names is not None: if len(names) > 1: raise ValueError('passed in an ndarray with more than 1 column') name, = names return pd.Series(x[name], name=name) return pd.Series(x) @convert.register(pd.Series, pd.DataFrame, cost=0.1) def DataFrame_to_Series(x, **kwargs): assert len(x.columns) == 1 return x[x.columns[0]] @convert.register(pd.DataFrame, pd.Series, cost=0.1) def series_to_dataframe(x, **kwargs): return x.to_frame() @convert.register(np.recarray, np.ndarray, cost=0.0) def ndarray_to_recarray(x, **kwargs): return x.view(np.recarray) @convert.register(np.ndarray, np.recarray, cost=0.0) def recarray_to_ndarray(x, **kwargs): return x.view(np.ndarray) higher_precision_freqs = frozenset(('ns', 'ps', 'fs', 'as')) @convert.register(np.ndarray, pd.Series, cost=0.1) def series_to_array(s, dshape=None, **kwargs): # if we come from a node that can't be discovered we need to discover # on s dtype = dshape_to_numpy(datashape.dshape(dshape or discover(s))) sdtype = s.dtype values = s.values # don't lose precision of datetime64 more precise than microseconds if ((issubclass(sdtype.type, np.datetime64) and np.datetime_data(sdtype)[0] in higher_precision_freqs) or s.dtype == dtype): return values try: return values.astype(dtype) except ValueError: # object series and record dshape, e.g., a frame row return values @convert.register(list, np.ndarray, cost=10.0) def numpy_to_list(x, **kwargs): dt = None if x.dtype == 'M8[ns]': dt = 'M8[us]' # lose precision when going to Python datetime if x.dtype.fields and any(x.dtype[n] == 'M8[ns]' for n in x.dtype.names): dt = [(n, 'M8[us]' if x.dtype[n] == 'M8[ns]' else x.dtype[n]) for n in x.dtype.names] if dt: return x.astype(dt).tolist() else: return x.tolist() @convert.register(np.ndarray, chunks(np.ndarray), cost=1.0) def numpy_chunks_to_numpy(c, **kwargs): return np.concatenate(list(c)) @convert.register(chunks(np.ndarray), np.ndarray, cost=0.5) def numpy_to_chunks_numpy(x, chunksize=2**20, **kwargs): return chunks(np.ndarray)( lambda: (x[i:i+chunksize] for i in range(0, x.shape[0], chunksize))) @convert.register(pd.DataFrame, chunks(pd.DataFrame), cost=1.0) def chunks_dataframe_to_dataframe(c, **kwargs): c = list(c) if not c: # empty case return pd.DataFrame(columns=kwargs.get('dshape').measure.names) else: return pd.concat(c, axis=0, ignore_index=True) @convert.register(chunks(pd.DataFrame), pd.DataFrame, cost=0.5) def dataframe_to_chunks_dataframe(x, chunksize=2**20, **kwargs): return chunks(pd.DataFrame)( lambda: (x.iloc[i:i+chunksize] for i in range(0, x.shape[0], chunksize))) def ishashable(x): try: hash(x) return True except: return False @convert.register(set, (list, tuple), cost=5.0) def iterable_to_set(x, **kwargs): if x and isinstance(x[0], (tuple, list)) and not ishashable(x): x = map(tuple, x) return set(x) @convert.register(list, (tuple, set), cost=1.0) def iterable_to_list(x, **kwargs): return list(x) @convert.register(tuple, (list, set), cost=1.0) def iterable_to_tuple(x, **kwargs): return tuple(x) def element_of(seq): """ >>> element_of([1, 2, 3]) 1 >>> element_of([[1, 2], [3, 4]]) 1 """ while isinstance(seq, list) and seq: seq = seq[0] return seq @convert.register(np.ndarray, list, cost=10.0) def list_to_numpy(seq, dshape=None, **kwargs): if isinstance(element_of(seq), dict): seq = list(records_to_tuples(dshape, seq)) if (seq and isinstance(seq[0], Iterable) and not ishashable(seq[0]) and not isscalar(dshape)): seq = list(map(tuple, seq)) return np.array(seq, dtype=dshape_to_numpy(dshape)) @convert.register(Iterator, list, cost=0.001) def list_to_iterator(L, **kwargs): return iter(L) @convert.register(list, Iterator, cost=1.0) def iterator_to_list(seq, **kwargs): return list(seq) @convert.register(Iterator, (chunks(pd.DataFrame), chunks(np.ndarray)), cost=10.0) def numpy_chunks_to_iterator(c, **kwargs): return concat(convert(Iterator, chunk, **kwargs) for chunk in c) @convert.register(chunks(np.ndarray), Iterator, cost=10.0) def iterator_to_numpy_chunks(seq, chunksize=1024, **kwargs): seq2 = partition_all(chunksize, seq) try: first, rest = next(seq2), seq2 except StopIteration: # seq is empty def _(): yield convert(np.ndarray, [], **kwargs) else: x = convert(np.ndarray, first, **kwargs) def _(): yield x for i in rest: yield convert(np.ndarray, i, **kwargs) return chunks(np.ndarray)(_) @convert.register(chunks(pd.DataFrame), Iterator, cost=10.0) def iterator_to_DataFrame_chunks(seq, chunksize=1024, **kwargs): seq2 = partition_all(chunksize, seq) try: first, rest = next(seq2), seq2 except StopIteration: def _(): yield convert(pd.DataFrame, [], **kwargs) else: df = convert(pd.DataFrame, first, **kwargs) def _(): yield df for i in rest: yield convert(pd.DataFrame, i, **kwargs) return chunks(pd.DataFrame)(_) @convert.register(tuple, np.record) def numpy_record_to_tuple(rec, **kwargs): return rec.tolist() @convert.register(chunks(np.ndarray), chunks(pd.DataFrame), cost=0.5) def chunked_pandas_to_chunked_numpy(c, **kwargs): return chunks(np.ndarray)(lambda: (convert(np.ndarray, chunk, **kwargs) for chunk in c)) @convert.register(chunks(pd.DataFrame), chunks(np.ndarray), cost=0.5) def chunked_numpy_to_chunked_pandas(c, **kwargs): return chunks(pd.DataFrame)(lambda: (convert(pd.DataFrame, chunk, **kwargs) for chunk in c)) @convert.register(chunks(np.ndarray), chunks(list), cost=10.0) def chunked_list_to_chunked_numpy(c, **kwargs): return chunks(np.ndarray)(lambda: (convert(np.ndarray, chunk, **kwargs) for chunk in c)) @convert.register(chunks(list), chunks(np.ndarray), cost=10.0) def chunked_numpy_to_chunked_list(c, **kwargs): return chunks(list)(lambda: (convert(list, chunk, **kwargs) for chunk in c)) @convert.register(chunks(Iterator), chunks(list), cost=0.1) def chunked_list_to_chunked_iterator(c, **kwargs): return chunks(Iterator)(c.data) @convert.register(chunks(list), chunks(Iterator), cost=0.1) def chunked_Iterator_to_chunked_list(c, **kwargs): return chunks(Iterator)(lambda: (convert(Iterator, chunk, **kwargs) for chunk in c)) @convert.register(Iterator, chunks(Iterator), cost=0.1) def chunked_iterator_to_iterator(c, **kwargs): return concat(c) ooc_types |= set([Iterator, Chunks])
{ "repo_name": "cowlicks/odo", "path": "odo/convert.py", "copies": "5", "size": "7903", "license": "bsd-3-clause", "hash": -3659851321642578400, "line_mean": 29.5135135135, "line_max": 96, "alpha_frac": 0.6575983804, "autogenerated": false, "ratio": 3.1854091092301493, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6343007489630149, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from toolz import first, partial from ..core import DataFrame, Series from ..utils import UNKNOWN_CATEGORIES from ...base import tokenize, normalize_token from ...compatibility import PY3 from ...delayed import delayed from ...bytes.core import get_fs_paths_myopen try: import fastparquet from fastparquet import parquet_thrift from fastparquet.core import read_row_group_file from fastparquet.api import _pre_allocate from fastparquet.util import check_column_names default_encoding = parquet_thrift.Encoding.PLAIN except: fastparquet = False default_encoding = None def read_parquet(path, columns=None, filters=None, categories=None, index=None, storage_options=None): """ Read ParquetFile into a Dask DataFrame This reads a directory of Parquet data into a Dask.dataframe, one file per partition. It selects the index among the sorted columns if any exist. This uses the fastparquet project: http://fastparquet.readthedocs.io/en/latest Parameters ---------- path : string Source directory for data. May be a glob string. Prepend with protocol like ``s3://`` or ``hdfs://`` for remote data. columns: list or None List of column names to load filters: list List of filters to apply, like ``[('x', '>' 0), ...]`` index: string or None (default) or False Name of index column to use if that column is sorted; False to force dask to not use any column as the index categories: list, dict or None For any fields listed here, if the parquet encoding is Dictionary, the column will be created with dtype category. Use only if it is guaranteed that the column is encoded as dictionary in all row-groups. If a list, assumes up to 2**16-1 labels; if a dict, specify the number of labels expected; if None, will load categories automatically for data written by dask/fastparquet, not otherwise. storage_options : dict Key/value pairs to be passed on to the file-system backend, if any. Examples -------- >>> df = read_parquet('s3://bucket/my-parquet-data') # doctest: +SKIP See Also -------- to_parquet """ if fastparquet is False: raise ImportError("fastparquet not installed") if filters is None: filters = [] fs, paths, myopen = get_fs_paths_myopen(path, None, 'rb', **(storage_options or {})) if isinstance(columns, list): columns = tuple(columns) if len(paths) > 1: pf = fastparquet.ParquetFile(paths, open_with=myopen, sep=myopen.fs.sep) else: try: pf = fastparquet.ParquetFile(paths[0] + fs.sep + '_metadata', open_with=myopen, sep=fs.sep) except: pf = fastparquet.ParquetFile(paths[0], open_with=myopen, sep=fs.sep) check_column_names(pf.columns, categories) name = 'read-parquet-' + tokenize(pf, columns, categories) rgs = [rg for rg in pf.row_groups if not(fastparquet.api.filter_out_stats(rg, filters, pf.schema)) and not(fastparquet.api.filter_out_cats(rg, filters))] # Find an index among the partially sorted columns minmax = fastparquet.api.sorted_partitioned_columns(pf) if index is False: index_col = None elif len(minmax) == 1: index_col = first(minmax) elif len(minmax) > 1: if index: index_col = index elif 'index' in minmax: index_col = 'index' else: raise ValueError("Multiple possible indexes exist: %s. " "Please select one with index='index-name'" % sorted(minmax)) else: index_col = None if columns is None: all_columns = tuple(pf.columns + list(pf.cats)) else: all_columns = columns if not isinstance(all_columns, tuple): out_type = Series all_columns = (all_columns,) else: out_type = DataFrame if index_col and index_col not in all_columns: all_columns = all_columns + (index_col,) if categories is None: categories = pf.categories dtypes = pf._dtypes(categories) meta = pd.DataFrame({c: pd.Series([], dtype=d) for (c, d) in dtypes.items()}, columns=[c for c in pf.columns if c in dtypes]) meta = meta[list(all_columns)] for cat in categories: meta[cat] = pd.Series(pd.Categorical([], categories=[UNKNOWN_CATEGORIES])) if index_col: meta = meta.set_index(index_col) if out_type == Series: assert len(meta.columns) == 1 meta = meta[meta.columns[0]] dsk = {(name, i): (_read_parquet_row_group, myopen, pf.row_group_filename(rg), index_col, all_columns, rg, out_type == Series, categories, pf.schema, pf.cats, pf.dtypes) for i, rg in enumerate(rgs)} if index_col: divisions = list(minmax[index_col]['min']) + [minmax[index_col]['max'][-1]] else: divisions = (None,) * (len(rgs) + 1) if isinstance(divisions[0], np.datetime64): divisions = [pd.Timestamp(d) for d in divisions] return out_type(dsk, name, meta, divisions) def _read_parquet_row_group(open, fn, index, columns, rg, series, categories, schema, cs, dt, *args): if not isinstance(columns, (tuple, list)): columns = (columns,) series = True if index and index not in columns: columns = columns + type(columns)([index]) df, views = _pre_allocate(rg.num_rows, columns, categories, index, cs, dt) read_row_group_file(fn, rg, columns, categories, schema, cs, open=open, assign=views) if series: return df[df.columns[0]] else: return df def to_parquet(path, df, compression=None, write_index=None, has_nulls=None, fixed_text=None, object_encoding=None, storage_options=None, append=False, ignore_divisions=False): """ Store Dask.dataframe to Parquet files Notes ----- Each partition will be written to a separate file. Parameters ---------- path : string Destination directory for data. Prepend with protocol like ``s3://`` or ``hdfs://`` for remote data. df : Dask.dataframe compression : string or dict Either a string like "SNAPPY" or a dictionary mapping column names to compressors like ``{"name": "GZIP", "values": "SNAPPY"}`` write_index : boolean Whether or not to write the index. Defaults to True *if* divisions are known. has_nulls : bool, list or None Specifies whether to write NULLs information for columns. If bools, apply to all columns, if list, use for only the named columns, if None, use only for columns which don't have a sentinel NULL marker (currently object columns only). fixed_text : dict {col: int} For column types that are written as bytes (bytes, utf8 strings, or json and bson-encoded objects), if a column is included here, the data will be written in fixed-length format, which should be faster but can potentially result in truncation. object_encoding : dict {col: bytes|utf8|json|bson} or str For object columns, specify how to encode to bytes. If a str, same encoding is applied to all object columns. storage_options : dict Key/value pairs to be passed on to the file-system backend, if any. append: bool (False) If False, construct data-set from scratch; if True, add new row-group(s) to existing data-set. In the latter case, the data-set must exist, and the schema must match the input data. ignore_divisions: bool (False) If False raises error when previous divisions overlap with the new appended divisions. Ignored if append=False. This uses the fastparquet project: http://fastparquet.readthedocs.io/en/latest Examples -------- >>> df = dd.read_csv(...) # doctest: +SKIP >>> to_parquet('/path/to/output/', df, compression='SNAPPY') # doctest: +SKIP See Also -------- read_parquet: Read parquet data to dask.dataframe """ if fastparquet is False: raise ImportError("fastparquet not installed") fs, paths, myopen = get_fs_paths_myopen(path, None, 'wb', **(storage_options or {})) fs.mkdirs(path) sep = fs.sep metadata_fn = sep.join([path, '_metadata']) if write_index is True or write_index is None and df.known_divisions: new_divisions = df.divisions df = df.reset_index() index_col = df.columns[0] else: ignore_divisions = True object_encoding = object_encoding or 'utf8' if object_encoding == 'infer' or (isinstance(object_encoding, dict) and 'infer' in object_encoding.values()): raise ValueError('"infer" not allowed as object encoding, ' 'because this required data in memory.') fmd = fastparquet.writer.make_metadata(df._meta, has_nulls=has_nulls, fixed_text=fixed_text, object_encoding=object_encoding) if append: pf = fastparquet.api.ParquetFile(path, open_with=myopen, sep=sep) if pf.file_scheme != 'hive': raise ValueError('Requested file scheme is hive, ' 'but existing file scheme is not.') elif set(pf.columns) != set(df.columns): raise ValueError('Appended columns not the same.\n' 'New: {} | Previous: {}' .format(pf.columns, list(df.columns))) elif set(pf.dtypes.items()) != set(df.dtypes.iteritems()): raise ValueError('Appended dtypes differ.\n{}' .format(set(pf.dtypes.items()) ^ set(df.dtypes.iteritems()))) # elif fmd.schema != pf.fmd.schema: # raise ValueError('Appended schema differs.') else: df = df[pf.columns] fmd = pf.fmd i_offset = fastparquet.writer.find_max_part(fmd.row_groups) if not ignore_divisions: minmax = fastparquet.api.sorted_partitioned_columns(pf) divisions = list(minmax[index_col]['min']) + [ minmax[index_col]['max'][-1]] if new_divisions[0] < divisions[-1]: raise ValueError( 'Appended divisions overlapping with the previous ones.\n' 'New: {} | Previous: {}' .format(divisions[-1], new_divisions[0])) else: i_offset = 0 partitions = df.to_delayed() filenames = ['part.%i.parquet' % i for i in range(i_offset, len(partitions) + i_offset)] outfiles = [sep.join([path, fn]) for fn in filenames] writes = [delayed(fastparquet.writer.make_part_file)( myopen(outfile, 'wb'), partition, fmd.schema, compression=compression) for outfile, partition in zip(outfiles, partitions)] out = delayed(writes).compute() for fn, rg in zip(filenames, out): if rg is not None: for chunk in rg.columns: chunk.file_path = fn fmd.row_groups.append(rg) if len(fmd.row_groups) == 0: raise ValueError("All partitions were empty") fastparquet.writer.write_common_metadata(metadata_fn, fmd, open_with=myopen, no_row_groups=False) fn = sep.join([path, '_common_metadata']) fastparquet.writer.write_common_metadata(fn, fmd, open_with=myopen) if fastparquet: @partial(normalize_token.register, fastparquet.ParquetFile) def normalize_ParquetFile(pf): return (type(pf), pf.fn, pf.sep) + normalize_token(pf.open) if PY3: DataFrame.to_parquet.__doc__ = to_parquet.__doc__
{ "repo_name": "cpcloud/dask", "path": "dask/dataframe/io/parquet.py", "copies": "1", "size": "12388", "license": "bsd-3-clause", "hash": 4908770258497190000, "line_mean": 37, "line_max": 83, "alpha_frac": 0.597513723, "autogenerated": false, "ratio": 3.984560952074622, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5082074675074622, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from toolz import partial def maybe_wrap_pandas(obj, x): if isinstance(x, np.ndarray): if isinstance(obj, pd.Series): return pd.Series(x, index=obj.index, dtype=x.dtype) return pd.Index(x) return x class Accessor(object): """ Base class for pandas Accessor objects cat, dt, and str. Notes ----- Subclasses should define the following attributes: * _accessor * _accessor_name """ def __init__(self, series): from .core import Series if not isinstance(series, Series): raise ValueError('Accessor cannot be initialized') self._validate(series) self._series = series def _validate(self, series): pass @staticmethod def _delegate_property(obj, accessor, attr): out = getattr(getattr(obj, accessor, obj), attr) return maybe_wrap_pandas(obj, out) @staticmethod def _delegate_method(obj, accessor, attr, args, kwargs): out = getattr(getattr(obj, accessor, obj), attr)(*args, **kwargs) return maybe_wrap_pandas(obj, out) def _property_map(self, attr): meta = self._delegate_property(self._series._meta, self._accessor_name, attr) token = '%s-%s' % (self._accessor_name, attr) return self._series.map_partitions(self._delegate_property, self._accessor_name, attr, token=token, meta=meta) def _function_map(self, attr, *args, **kwargs): meta = self._delegate_method(self._series._meta_nonempty, self._accessor_name, attr, args, kwargs) token = '%s-%s' % (self._accessor_name, attr) return self._series.map_partitions(self._delegate_method, self._accessor_name, attr, args, kwargs, meta=meta, token=token) def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + dir(self._accessor))) def __getattr__(self, key): if key in dir(self._accessor): if isinstance(getattr(self._accessor, key), property): return self._property_map(key) else: return partial(self._function_map, key) else: raise AttributeError(key) class DatetimeAccessor(Accessor): """ Accessor object for datetimelike properties of the Series values. Examples -------- >>> s.dt.microsecond # doctest: +SKIP """ _accessor = pd.Series.dt _accessor_name = 'dt' class StringAccessor(Accessor): """ Accessor object for string properties of the Series values. Examples -------- >>> s.str.lower() # doctest: +SKIP """ _accessor = pd.Series.str _accessor_name = 'str' def _validate(self, series): if not series.dtype == 'object': raise AttributeError("Can only use .str accessor with object dtype")
{ "repo_name": "mraspaud/dask", "path": "dask/dataframe/accessor.py", "copies": "2", "size": "3172", "license": "bsd-3-clause", "hash": -6503069859536104000, "line_mean": 30.0980392157, "line_max": 80, "alpha_frac": 0.5674653216, "autogenerated": false, "ratio": 4.280701754385965, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5848167075985965, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd import gsd.hoomd import sklearn import scipy.optimize as opt import os import os.path import pdb from sklearn.neighbors import BallTree from sklearn.neighbors import radius_neighbors_graph from scipy.spatial.distance import cdist,pdist from scipy.special import erf from scipy.sparse.csgraph import connected_components from scipy.sparse import csr_matrix,lil_matrix,coo_matrix #from .due import due, Doi from .smoluchowski import massAvSize from mpi4py import MPI from cdistances import conOptDistanceCython,alignDistancesCython,subsquashRNG from cdistances import squashRNGCOOCython __all__ = ["ClusterSnapshot", "ContactClusterSnapshot", "OpticalClusterSnapshot","AlignedClusterSnapshot", "ContactClusterSnapshotXTC","OpticalClusterSnapshotXTC", "SnapSystem", "conOptDistance","conOptDistanceC","alignedDistance", "alignedDistanceC","fixMisplacedArom","checkSymmetry", "squashRNG","squashRNGCython","squashRNGPy","squashRNGCOO", "squashRNGCOOCython"] # Use duecredit (duecredit.org) to provide a citation to relevant work to # be cited. This does nothing, unless the user has duecredit installed, # And calls this with duecredit (as in `python -m duecredit script.py`): ''' due.cite(Doi("10.1167/13.9.30"), description="Simple data analysis for clustering application", tags=["data-analysis","clustering"], path='clustering') ''' def checkSymmetry(csr): """ Checks whether a matrix in CSR sparse format is symmetric. Parameters ---------- csr: matrix in CSR format Returns ------- symyes: bool True if symmetric, False if not """ symyes = not (csr!=csr.transpose()).max() return symyes def squashRNG(rng,apermol): """ Reduces radius neighbors graph to a new graph based on molecules instead of atoms. Parameters ---------- rng: a graph in CSR format as produced by a BallTree apermol: int the number of atoms in a molecule Returns ------- molrng: a new graph in CSR format Raises ------ RuntimeError: if the original rng is not symmetric """ if not checkSymmetry(rng): raise RuntimeError("Graph is non-symmetrical") sh = rng.shape rng = rng.toarray() newsh = (int(sh[0]/apermol),int(sh[1]/apermol)) #pdb.set_trace() #molrng = lil_matrix(newsh) molrng = np.zeros(newsh) for i in range(0,newsh[0]): for j in range(i+1,newsh[1]): subrng = rng[apermol*i:apermol*(i+1),apermol*j:apermol*(j+1)] if subrng.max(): molrng[i,j] = 1.0 molrng[j,i] = 1.0 return csr_matrix(molrng) def squashRNGCOO(rng,apermol): """ Reduces radius neighbors graph to a new graph based on molecules instead of atoms. Uses COO format Parameters ---------- rng: a graph in CSR format as produced by a BallTree apermol: int the number of atoms in a molecule Returns ------- molrng: a new graph in CSR format Raises ------ RuntimeError: if the original rng is not symmetric """ if not checkSymmetry(rng): raise RuntimeError("Graph is non-symmetrical") sh = rng.shape newsh = (int(sh[0]/apermol),int(sh[1]/apermol)) molrng = lil_matrix(newsh) rng = coo_matrix(rng) rows = rng.row//apermol cols = rng.col//apermol rowcols = rows * molrng.shape[1] + cols urowcols = np.unique(rowcols) rows = urowcols // molrng.shape[1] cols = urowcols % molrng.shape[1] #pdb.set_trace() for i in range(len(rows)): row = rows[i] col = cols[i] if col > row: molrng[row,col] = 1 #pdb.set_trace() return csr_matrix(molrng) def squashRNGCython(rng,apermol): """ Reduces radius neighbors graph to a new graph based on molecules instead of atoms, but uses Cython code to improve speed. Parameters ---------- rng: a graph in CSR format as produced by a BallTree apermol: int the number of atoms in a molecule Returns ------- molrng: a new graph in CSR format Raises ------ RuntimeError: if the original rng is not symmetric """ if not checkSymmetry(rng): raise RuntimeError("Graph is non-symmetrical") sh = rng.shape rng = rng.toarray() newsh = (int(sh[0]/apermol),int(sh[1]/apermol)) #pdb.set_trace() #molrng = lil_matrix(newsh) molrng = np.zeros(newsh) molrng = subsquashRNG(rng,molrng,apermol) return csr_matrix(molrng) def squashRNGPy(rng,apermol): """ Reduces radius neighbors graph to a new graph based on molecules instead of atoms. Dummy python debug test of Cython algorithm. Parameters ---------- rng: a graph in CSR format as produced by a BallTree apermol: int the number of atoms in a molecule Returns ------- molrng: a new graph in CSR format Raises ------ RuntimeError: if the original rng is not symmetric """ if not checkSymmetry(rng): raise RuntimeError("Graph is non-symmetrical") sh = rng.shape rng = rng.toarray() newsh = (int(sh[0]/apermol),int(sh[1]/apermol)) #pdb.set_trace() #molrng = lil_matrix(newsh) molrng = np.zeros(newsh) molrng = subsquashRNGPy(rng,molrng,apermol) #pdb.set_trace() return csr_matrix(molrng) def subsquashRNGPy(rng,molrng,apermol): """ Python version of c algorithm that sets the block to 0 when all are 0 and 1 if at least 1 is 1 Parameters ---------- rng: a numpy array as produced by a BallTree apermol: int the number of atoms in a molecule Returns ------- molrng: a new graph """ dim = np.shape(molrng)[0] sz = np.shape(rng) rng = rng.reshape((1,sz[0]*sz[1]))[0] molrng = molrng.reshape((1,dim*dim))[0] for i in range(dim): for j in range(i+1,dim): istart = apermol*i; iend = apermol*(i+1); jstart = apermol*j; jend = apermol*(j+1); curr = 0; #pdb.set_trace() for k in range(istart,iend): for m in range(jstart,jend): if (rng[k*dim*apermol+m] != 0.): curr = 1; #pdb.set_trace() if (curr == 1): molrng[dim*i+j] = 1.0; molrng[dim*j+i] = 1.0; molrng = molrng.reshape((dim,dim)) return molrng def fixMisplacedArom(gsdfile,gsdout,idMiss,idPartner,idNotMiss,idNotPartner ,molno,ats,ts): """ opens a gsd file, gets the trajectory, then writes out in place with the incorrectly placed aromatic placed correctly Parameters ---------- gsdfile: string filename of the file to be rewritten gsdout: string where to write new stuff idMiss: the id of the misplaced aromatic within the molecule idPartner: the id of the partner to the misplaced aromatic within the mol idNotMiss: the complementary correctly placed aromatic idNotPartner: idNotMiss's partner ts: which timesteps of the trajectory to rewrite Notes ----- pos(idMiss) = pos(idPartner) + (pos(idNotMiss) - pos(idNotPartner)) """ traj = gsd.hoomd.open(gsdfile) trajnew = gsd.hoomd.open(gsdout,'wb') offset = molno idMisses = offset+idMiss + np.arange(0,molno*(ats-1),ats-1) idPartners = offset + idPartner + np.arange(0,molno*(ats-1),ats-1) idNotMisses = offset + idNotMiss + np.arange(0,molno*(ats-1),ats-1) idNotPartners = offset + idNotPartner + np.arange(0,molno*(ats-1),ats-1) for t in ts: snapshot = traj[t] box = snapshot.configuration.box[0:3] pos = snapshot.particles.position pds = pos[idNotMisses] - pos[idNotPartners] pds = pds - np.around(pds / box) * box pos[idMisses] = pos[idPartners] + pds snapnew = snapshot snapnew.particles.position = pos trajnew.append(snapnew) def conOptDistance(x,y): """ Function that computes the distance between molecules for contact or optical clusters Parameters: ----------- x : array The 1D array of size 3*ats representing the first molecule y : array The 1D array of size 3*ats representing the second molecule Returns ------- r : float The distance between x and y computed as the minimum distance between any two beads in the molecules """ if len(x) % 3 != 0 or len(y) % 3 != 0: raise RuntimeError("3D array has a number of entries not divisible \ by 3.") ats = len(x)/3 xa = np.reshape(x,[ats,3]) ya = np.reshape(y,[ats,3]) #return np.min(euclidean_distances(xa,ya,squared=True)) return np.min(cdist(xa,ya,metric='sqeuclidean')) def conOptDistanceC(x,y): """ Function that computes the distance between molecules for contact or optical clusters Parameters: ----------- x : array The 1D array of size 3*ats representing the first molecule y : array The 1D array of size 3*ats representing the second molecule Returns ------- r : float The distance between x and y computed as the minimum distance between any two beads in the molecules Notes ----- Uses scipy.weave to incorporate a little bit of C code to see if that will speed things up """ if len(x) % 3 != 0 or len(y) % 3 != 0: raise RuntimeError("3D array has a number of entries not divisible \ by 3.") #xa = np.reshape(x,[ats,3]) #ya = np.reshape(y,[ats,3]) mind = 10000.0 support = '#include <math.h>' code = """ int i,j; return_val = 0; double d; for (i = 0; i < Nx[0]/3; i++) { for (j = 0; j < Nx[0]/3; j++) { d = (x[3*i] - y[3*j]) * (x[3*i] - y[3*j]) + (x[3*i + 1] - y[3*j + 1]) * (x[3*i + 1] - y[3*j + 1]) + (x[3*i + 2] - y[3*j + 2]) * (x[3*i + 2] - y[3*j + 2]); if (d < mind){ mind = d; } } } return_val = mind; """ mind = weave.inline(code,['x', 'y', 'mind'], support_code = support, libraries = ['m']) #return np.min(euclidean_distances(xa,ya,squared=True)) return mind def alignedDistance(x,y): """ Function that computes the distances between molecules for aligned clusters Parameters: ----------- x : array The 1D array of size 3*ats representing the first molecule y : array The 1D array of size 3*ats representing the second molecule Returns ------- r : float The distance between x and y computed as the minimum distance between any two beads in the molecules Raises ------ RuntimeError if the array does not have a number of entries divisible by three because it's supposed to be a flattened array of positions Notes ----- Compute the minimum distance of each COM to another COM Take the three minimum distances of this list Return the maximum of these three """ if len(x) % 3 != 0 or len(y) % 3 != 0: raise RuntimeError("3D array has a number of entries not divisible \ by 3.") ats = int(len(x)/3) xa = np.reshape(x,[ats,3]) ya = np.reshape(y,[ats,3]) distmat = cdist(xa,ya,metric='sqeuclidean') dists = np.zeros([ats * ats, 3]) dind = 0 for i in range(ats): for j in range(ats): dists[dind,0] = distmat[i,j] dists[dind,1] = i dists[dind,2] = j dind += 1 sdists = dists[dists[:,0].argsort()] i1 = sdists[0,1] j1 = sdists[0,2] i2 = i1 j2 = j1 ind2 = 1 while (i2 == i1) or (j2 == j1): i2 = sdists[ind2,1] j2 = sdists[ind2,2] ind2 += 1 ind3 = ind2 i3 = sdists[ind3,1] j3 = sdists[ind3,2] while (i3 == i1) or (i3 == i2) or (j3 == j1) or (j3 == j2): i3 = sdists[ind3,1] j3 = sdists[ind3,2] ind3 += 1 return sdists[ind3-1,0] def alignedDistanceC(x,y): """ Function that computes the distances between molecules for aligned clusters Parameters: ----------- x : array The 1D array of size 3*ats representing the first molecule y : array The 1D array of size 3*ats representing the second molecule Returns ------- r : float The distance between x and y computed as the minimum distance between any two beads in the molecules Raises ------ RuntimeError if the array does not have a number of entries divisible by three because it's supposed to be a flattened array of positions Notes ----- Compute the minimum distance of each COM to another COM Take the three minimum distances of this list Return the maximum of these three Use scipy.weave and C++ to speed things up """ if len(x) % 3 != 0 or len(y) % 3 != 0: raise RuntimeError("3D array has a number of entries not divisible \ by 3.") ats = int(len(x)/3) dists = np.zeros([ats * ats]) distsA = np.zeros([ats * ats]) distsB = np.zeros([ats * ats]) support = '#include <math.h>' code = """ int i,j,dind = 0; return_val = 0; for (i = 0; i < ats; i++){ for (j = 0; j < ats; j++){ dists[dind] = (x[3 * i] - y[3 * j]) * (x[3 * i] - y[3 * j]) + (x[3 * i + 1] - y[3 * j + 1]) * (x[3 * i + 1] - y[3 * j + 1]) + (x[3 * i + 2] - y[3 * j + 2]) * (x[3 * i + 2] - y[3 * j + 2]); distsA[dind] = i; distsB[dind] = j; dind++; } } double mind = 10000.0; int mindi, mindj; for (int k = 0; k < ats * ats; k++){ if (dists[k] < mind){ mind = dists[k]; mindi = distsA[k]; mindj = distsB[k]; } } double mind2 = 10000.0; int mind2i, mind2j; for (int k = 0; k < ats * ats; k++){ if ((dists[k] < mind2) && (distsA[k] != mindi) && (distsB[k] != mindj)) { mind2 = dists[k]; mind2i = distsA[k]; mind2j = distsB[k]; } } double mind3 = 10000.0; for (int k = 0; k < ats * ats; k++){ if ((dists[k] < mind3) && (distsA[k] != mindi) && (distsB[k] != mindj) && (distsA[k] != mind2i) && (distsB[k] != mind2j)){ mind3 = dists[k]; } } return_val = mind3; """ mind3 = weave.inline(code,['x', 'y','dists','distsA','distsB','ats'], support_code = support, libraries = ['m']) return mind3 def fixCoords(pos,posinit,box): """ fixes all coords based on the initial coordinate and the periodic boundary conditions Parameters ---------- pos: 1 x 3*ats numpy array positions of all the beads in the molecule posinit: 1 x 3 numpy array initial position on which the fixing is based box: 1 x 3 numpy array box dimensions """ for i in range(int(len(pos)/3)): #pdb.set_trace() dr = pos[3*i:3*i+3] - posinit dr = dr - box*np.round(dr/box) pos[3*i:3*i+3] = dr + posinit return pos class SnapSystem(object): """Class for running the full suite of analysis software """ def __init__(self, traj, ats, molno, cldict, clfunc={'contact':conOptDistanceCython, 'optical':conOptDistanceCython, 'aligned':alignDistancesCython}, compairs=np.array([[0,6],[1,7],[2,8],[3,9],[4,10],[5,11]]), atype=u'LS',ttotal=-1,tstart=0,tpr=None,outGro='conf'): """ Initialize a full system of gsd snapshots over a trajectory. Parameters ---------- traj: a gsd.hoomd trajectory or a gro or an xtc file name ats: dictionary the number of beads in a single molecule for each cluster type molno: int the number of molecules in the system cldict: dictionary keys are strings representing cluster types, ie contact, optical, aligned. values are cutoffs clfunc: dictionary keys are strings representing cluster types. values are functions for distance computation compairs: numpy array for finding COM of aromatics for aligned clusters atype: label referring to how the aromatic beads are labeled in the trajectory ttotal: int the total length of the trajectory to be studied if -1, assume it is the same as the length of the provided trajectory tstart: int timestep to start at, defaults to zero (last timestep = tstart + ttotal) tpr: string name of tpr file, used only with xtc trajectory outGro: string name of file to safe individual gro files to Attributes ---------- mpi: bool True if the system can run in MPI, false if it has to run serially trajectory: gsd.hoomd trajectory the trajectory of snapshots in the system ats: int the number of beads per molecule molno: int the number of molecules in the system cldict: dict keys are strings representing cluster types, ie contact, optical, aligned. values are cutoffs clsnaps: list of lists of clusterSnapshots a list for each cluster type in the dictionary each list is the snapshot at each timestep of the appropriate type. If mpi is True, then this list is padded with dummy clusters with NaN positions to make Scatter work correctly. atype = label referring to how aromatic beads are labeled in the trajectory comm: MPI communicator ------ Raises ------ NotImplementedError: - if traj isn't a hoomd trajectory or a file ending in xtc or gro - if self.mpi is set to true for non hoomd stuff ValueError: - if tpr is set to None with an xtc file Notes ----- Allows for MPI implementation of system if the size of the MPI communicator is greater than 1 AND it's a gsd system rather than an XTC one """ comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() self.comm = comm if size > 1: self.mpi = True else: self.mpi = False #pdb.set_trace() if (type(traj) is not str) and (type(traj) is not gsd.hoomd.HOOMDTrajectory): raise NotImplementedError("Invalid trajectory type") if (type(traj) is gsd.hoomd.HOOMDTrajectory): if self.mpi: raise NotImplementedError("MPI is only available for HOOMD trajectory types") if (type(traj) is str): spl = traj.split('.') ext = spl[len(spl)-1] if ext != 'gro' and ext != 'xtc': raise NotImplementedError("Invalid trajectory type") if ext == 'xtc' and tpr is None: raise ValueError("tpr must have a value for xtc trajectories") self.trajectory = traj self.ats = ats self.molno = molno self.cldict = cldict self.clfunc = clfunc self.clsnaps = {} self.atype = atype if ttotal == -1: ttotal = len(traj) if self.mpi: rank = comm.Get_rank() num = int(np.floor(ttotal / size)) rem = ttotal % size if rank == 0: tslist = np.zeros((num + 1) * size).astype(int) currid = 0 for r in range(size): if rem != 0: if r < rem: ts = r * (num + 1) + np.arange(num + 1) + tstart tslist[currid:(len(ts)+currid)] = ts else: ts = r * (num + 1) - (r - rem) + np.arange(num) + tstart tslist[currid:(len(ts)+currid)] = ts tslist[(len(ts)+currid):(len(ts) \ + currid + (r-rem)+1)] = -1 currid += num + 1 else: tslist = np.arange(num * size) + tstart for ctype in cldict.keys(): if ctype == 'contact': clusters = [ContactClusterSnapshot(t,traj,ats[ctype], molno) \ for t in tslist] elif ctype == 'optical': clusters = [OpticalClusterSnapshot(t,traj,ats[ctype], molno, atype=atype) \ for t in tslist] elif ctype == 'aligned': clusters = [AlignedClusterSnapshot(t,traj,ats[ctype], molno, compairs=compairs, atype=atype) \ for t in tslist] else: raise NotImplementedError("Unknown cluster type") self.clsnaps[ctype] = clusters else: for ctype in cldict.keys(): if ctype == 'contact': if type(traj) is str: if ext == 'gro': clusters = [ContactClusterSnapshotXTC(t, traj, ats, molno) \ for t in range(tstart,ttotal+tstart)] else: pdb.set_trace() flag = False for t in range(tstart,ttotal+tstart): if not os.path.isfile(outGro+str(t)+'.gro'): flag = True break if flag: grocall = \ 'echo 0 | trjconv -s {0} -f {1} -o {2}.gro -sep'.format(tpr,traj,outGro) os.system(grocall) clusters = [ContactClusterSnapshotXTC(t, 'conf'+str(t)+'.gro',ats,molno) \ for t in range(tstart,ttotal+tstart)] else: clusters = \ [ContactClusterSnapshot(t,traj,ats[ctype],molno) \ for t in range(tstart,ttotal+tstart)] elif ctype == 'optical': if type(traj) is str: if ext == 'gro': clusters = [OpticalClusterSnapshotXTC(t,traj,ats, molno,compairs) \ for t in range(tstart,ttotal+tstart)] else: flag = False for t in range(tstart,ttotal+tstart): if not os.path.isfile(outGro+str(t)+'.gro'): flag = True break if flag: grocall = \ 'echo 0 | trjconv -s {0} -f {1} -o {2}.gro -sep'.format(tpr,traj,outGro) os.system(grocall) clusters = [OpticalClusterSnapshotXTC(t, 'conf'+str(t)+'.gro',ats,molno, compairs) \ for t in range(tstart,ttotal+tstart)] else: clusters = \ [OpticalClusterSnapshot(t,traj,ats[ctype],molno, atype=atype) \ for t in range(tstart,ttotal+tstart)] elif ctype == 'aligned': if type(traj) is str: raise NotImplementedError("Aligned cluster only available for HOOMD type trajectories") else: clusters = \ [AlignedClusterSnapshot(t,traj,ats[ctype],molno, compairs=compairs, atype=atype) \ for t in range(tstart,ttotal+tstart)] else: raise NotImplementedError("Unknown cluster type") self.clsnaps[ctype] = clusters def get_clusters_mpi(self,ctype,ttotal=-1): """ Compute the clusters in each snapshot of the trajectory, using MPI parallelization. Parameters ---------- ctype: string cluster type (contact, optical, aligned, etc) ttotal: int number of timesteps to compute for Raises ------ NotImplementedError If the cluster type isn't one that's been programmed yet. Notes ------ Partition up the snapshots, turn them into numpy arrays of relevant data, and have each processor compute the cluster IDs, which is the only step that takes ages right now. Once computed, gather them all back up at root. """ rank = self.comm.Get_rank() size = self.comm.Get_size() if ttotal == -1: ttotal = len(self.trajectory) num = int(np.floor(ttotal / size)) rem = ttotal % size traj = self.trajectory ats = self.ats molno = self.molno atype = self.atype if ctype not in ['contact','optical','aligned']: raise NotImplementedError('Unknown cluster type \ in get_clusters_mpi') cutoff = self.cldict[ctype] if rank == 0: clusters = self.clsnaps[ctype] carraylen = clusters[0].getCArrayLen() clusterarray = np.zeros(carraylen * len(clusters)) cind = 0 for cls in clusters: carray = cls.toArray() clusterarray[(cind * carraylen):(cind * carraylen + carraylen)]\ = carray cind += 1 else: if ctype == 'contact': tCSnap = ContactClusterSnapshot(0,traj,ats[ctype],molno) elif ctype == 'optical': tCSnap = OpticalClusterSnapshot(0,traj,ats[ctype],molno, atype=atype) elif ctype == 'aligned': tCSnap = AlignedClusterSnapshot(0,traj,ats[ctype],molno, atype=atype) else: tCSnap = ClusterSnapshot(0,traj,ats) carraylen = tCSnap.getCArrayLen() clusterarray = None if rem == 0: ncsnaps = num else: ncsnaps = num + 1 carray_local = np.zeros(ncsnaps * carraylen) self.comm.Scatter(clusterarray,carray_local,root=0) #for each local cluster array, turn it into a cluster, compute the #clusterIDs, pack the whole thing up as an array again, and send back #to root for i in range(ncsnaps): carrayi = carray_local[carraylen * i : (carraylen * i + carraylen)] #print("From rank {0}, snap {1}, array{2}".format(rank,i,carrayi)) if not np.isnan(carrayi[4]): if ctype == 'contact': clustSnap = ContactClusterSnapshot(0,carrayi,ats[ctype], molno) elif ctype == 'optical': clustSnap = OpticalClusterSnapshot(0,carrayi,ats[ctype], molno,atype=atype) elif ctype == 'aligned': clustSnap = AlignedClusterSnapshot(0,carrayi,ats[ctype], molno,atype=atype) clustSnap.setClusterID(cutoff) try: carray_local[carraylen * i : (carraylen * i + carraylen)]\ = clustSnap.toArray() except: pdb.set_trace() #print("Part 2: From rank {0}, snap {1}, array{2}".format(rank,i,carrayi)) self.comm.Barrier() self.comm.Gather(carray_local,clusterarray,root=0) if rank == 0: ind = 0 nind = 0 while ind < ttotal: carrayi = clusterarray[(carraylen * nind) : \ (carraylen * nind + carraylen)] if not np.isnan(carrayi[4]): if ctype == 'contact': clustSnap = ContactClusterSnapshot(0,carrayi, ats[ctype],molno) elif ctype == 'optical': clustSnap = OpticalClusterSnapshot(0,carrayi, ats[ctype],molno, atype=atype) elif ctype == 'aligned': clustSnap = AlignedClusterSnapshot(0,carrayi, ats[ctype],molno, atype=atype) self.clsnaps[ctype][nind].clusterIDs = clustSnap.clusterIDs #print("current pos: ",clustSnap.pos[0]) #print("current csizes: ",clustSnap.idsToSizes()) ind += 1 nind +=1 def get_clusters_serial(self,ctype,box,lcompute=None): """ Compute the clusters in each snapshot of the trajectory, doing so simply in serial. Parameters ---------- ctype: string cluster type (contact, optical, aligned, etc) box: 3 x 1 numpy array box side lengths lcompute: string or None if a string, this is the filename to write the length distributions to after computation Raises ------ NotImplementedError If the cluster type isn't one that's been programmed yet. """ if ctype not in self.cldict.keys(): raise NotImplementedError("Unknown cluster type \ in get_clusters_serial.") clusters = self.clsnaps[ctype] cutoff = self.cldict[ctype] func = self.clfunc[ctype] if lcompute is not None: lfile = open(lcompute,'w') tstep = 0 for clustSnap in clusters: tstep +=1 BT = clustSnap.setClusterID(cutoff) if lcompute is not None: ldistrib = clustSnap.getLengthDistribution(cutoff,box,func, BT=BT) for lmol in ldistrib: lfile.write('{0} '.format(lmol)) lfile.write('\n') if lcompute is not None: lfile.close() self.clsnaps[ctype] = clusters def get_clusters_from_file(self,ctype,fname): """ Compute the clusters in each snapshot of the trajectory from a given file name, assuming serial. Parameters ---------- ctype: string cluster type (contact, optical, aligned, etc) fname: string file name where the cluster ID data is saved Raises ------ NotImplementedError If the cluster type isn't one that's been programmed yet """ if ctype not in self.cldict.keys(): raise NotImplementedError("Unknown cluster type \ in get_clusters_from_file.") clusters = self.clsnaps[ctype] for clustSnap in clusters: clustSnap.setClusterIDFromFile(fname) self.clsnaps[ctype] = clusters def getLengthDistribution(self,ctype,cutoff,box,func=conOptDistanceCython,writegsd=None, writeldistrib=None): """ Gets the length distribution at each timestep and optionally writes it out to file. Parameters ---------- ctype: string cluster type (contact, optical, aligned, etc) cutoff: float Cutoff for BallTree computation for unwrapping box: 1x3 numpy array box side lengths func: python function distance metric for BallTree computation writegsd: string or None used as the base filename to write out all clusters as separate gsd files. Mostly useful for debugging purposes. writeldistrib: string or None the filename to write out the length distributions of the clusters Returns ------- ldistribt: T x molno numpy array contains the approximate end-end length that the cluster each molecule participates in is at each timestep Raises ------ NotImplementedError If the cluster type isn't one that's been programmed yet Notes ----- Computes an approximation to the end-end length as the largest distance between two participating COM beads. This is not the best approximation if the aggregates are not very linear or if they are linear but curl up a lot. It fails for a spanning cluster. """ if ctype not in self.cldict.keys(): raise NotImplementedError("Unknown cluster type \ in get_clusters_from_file.") clusters = self.clsnaps[ctype] ldistribt = np.zeros([len(self.trajectory),self.molno]) ind = 0 if writeldistrib is not None: f = open(writeldistrib,'w') for clustSnap in clusters: ldistrib = clustSnap.getLengthDistribution(cutoff,box,func, writegsd=writegsd) ldistribt[ind,:] = ldistrib if writeldistrib is not None: for endendl in ldistrib: f.write('{0} '.format(endendl)) f.write('\n') ind += 1 if writeldistrib is not None: f.close() return ldistribt def getMassAvVsTime(self,ctype,tstep=1): """ Returns a numpy array of two columns, with time on the left and mass-averaged cluster size on the right. Parameters ---------- ctype: string refers to cluster type for which to calculate this tstep: float converts timestep to some non-reduced value if desired default is just 1 Returns ------- mu2vtime: numpy array Raises ------ NotImplementedError If the cluster type is one that hasn't been programmed yet """ if self.comm.Get_rank() == 0: if ctype not in self.cldict.keys(): raise NotImplementedError("Unknown cluster type.") clsnaps = self.clsnaps[ctype] mu2vtime = float('NaN')*np.ones([2,len(clsnaps)]) ind = 0 for clsnap in clsnaps: if not np.isnan(clsnap.pos[0][0]): mu2vtime[0,ind] = ind * tstep mu2vtime[1,ind] = massAvSize(clsnap.idsToSizes()) ind += 1 m1 = mu2vtime[0,np.where(~np.isnan(mu2vtime[0]))[0]] m2 = mu2vtime[1,np.where(~np.isnan(mu2vtime[0]))[0]] mu2vtime = np.array([m1,m2]) return mu2vtime def writeCIDs(self,ctype,fname): """ Write out the cluster indices as a file that can be opened and loaded later Parameters ---------- ctype: string cluster type fname: string file name to write to Raises ------ NotImplementedError If the cluster type is one that hasn't been programmed yet """ if ctype not in self.clsnaps.keys(): raise NotImplementedError("Unknown cluster type in writeCIDs.") if self.comm.Get_rank() == 0: fid = open(fname,'w') clsnaps = self.clsnaps[ctype] for clsnap in clsnaps: if not np.isnan(clsnap.pos[0][0]): cids = clsnap.clusterIDs for cid in cids: fid.write('{0} '.format(cid)) fid.write('\n') fid.close() def writeSizes(self,ctype,fname): """ Write out the cluster sizes as a file that can be opened and loaded later Parameters ---------- ctype: string cluster type fname: string file name to write to Raises ------ NotImplementedError If the cluster type is one that hasn't been programmed yet """ if ctype not in self.clsnaps.keys(): raise NotImplementedError("Unknown cluster type in writeSizes") if self.comm.Get_rank() == 0: fid = open(fname,'w') clsnaps = self.clsnaps[ctype] for clsnap in clsnaps: if not np.isnan(clsnap.pos[0][0]): csizes = clsnap.idsToSizes() for csize in csizes: fid.write('{0} '.format(csize)) fid.write('\n') fid.close() class ClusterSnapshot(object): """Class for tracking the location of clusters at each time step""" def __init__(self, t, traj, ats): """ Initialize a ClusterSnapshot object. Parameters ---------- t: timestep traj: a gsd.hoomd trajectory ats: the number of beads in a single molecule Raises ------ RuntimeError if the number of particles doesn't divide evenly into molecules """ snapshot = traj[t] self.timestep = t self.ats = ats binds = np.argsort(snapshot.particles.body) self.pos = snapshot.particles.position[binds] sz = np.shape(self.pos) if sz[0] % ats != 0: raise RuntimeError("Number of particles not divisible by number \ of beads per molecules.") self.nclusts = ats self.clusterIDs = np.zeros(sz[0]/ats) class ContactClusterSnapshot(ClusterSnapshot): """Class for tracking the location of contact clusters at each time step Attributes ---------- timestep: float timestep ats: int number of beads per molecule nclusts: int number of clusters in the snapshot pos: numpy array [M x 3*ats] locations of molecules and beads within molecules each molecule is its own line and then the locations of beads are flattened within that clusterIDs: list [len M] """ def __init__(self, t, trajectory, ats, molno): """ Initialize a ClusterSnapshot object. Parameters ---------- t: timestep trajectory: gsd.hoomd trajectory or numpy array numpy array is of size 4 + 3 * ats * molno (ats is different for optical and aligned clusters) ats: the number of beads in a single molecule molno: the number of molecules in the system Raises ------ RuntimeError if the number of particles does not divide evenly up into molecules Notes ----- You can create a ClusterSnapshot object from either an array (for use with MPI) or from a HOOMD trajectory """ self.timestep = t self.ats = ats if type(trajectory) is np.ndarray: carray = trajectory self.timestep = int(carray[0]) self.ats = int(carray[2]) self.nclusts = carray[1] pend = 4 + 3 * ats * molno self.pos = np.reshape(carray[4:pend],[molno,3*ats]) self.clusterIDs = carray[pend:len(carray)] else: if t != -1: snapshot = trajectory[t] binds = np.argsort(snapshot.particles.body) self.pos = snapshot.particles.position[binds] sz = np.shape(self.pos) if sz[0] % ats != 0: raise RuntimeError("Number of particles not divisible by \ number of beads per molecules.") #pdb.set_trace() self.pos = np.reshape(self.pos,[sz[0] / ats , 3 * ats]) else:#create a dummy object to help with mpi scattering snapshot = trajectory[0] self.pos = snapshot.particles.position sz = np.shape(self.pos) self.pos = np.reshape(self.pos,[sz[0] / ats , 3 * ats]) self.pos = float('NaN') * self.pos self.nclusts = molno self.clusterIDs = range(int(sz[0] / ats)) def getCArrayLen(self): """ returns the numpy length of an array made by toArray Returns ------- carrayLen: int that is the length of the numpy array made by the toArray fcn """ sz = np.shape(self.pos) molno = sz[0] carrayLen = 4 + 3 * self.ats * molno + molno return carrayLen def toArray(self): """ Put all the cluster information into a numpy array, for use with mpi4py Returns ------- carray: numpy array containing all information in a specific order Can be turned back into a cluster by calling the arrayToCluster function in this module Notes ----- Contains: [timestep (size 1) nclusts (size 1) ats (size 1) positions (size 3 * ats * molno) clusterIDs (size molno)] """ sz = np.shape(self.pos) carray = np.zeros(4 + 3 * self.ats * sz[0] + sz[0]) carray[0] = self.timestep carray[1] = self.nclusts carray[2] = self.ats molno = sz[0] carray[3] = molno pend = 4 + 3 * self.ats * molno carray[4:pend] = np.reshape(self.pos,[1,3*self.ats*molno]) clen = molno carray[pend:(pend + clen)] = self.clusterIDs return carray def setClusterID(self,cutoff): """ Set the cluster IDs using getClusterID Parameters ---------- cutoff: the squared distance molecules have to be within to be part of the same cluster Returns ------- BT: BallTree of the system """ (nclusts,clusterIDs,BT) = \ self.getClusterID(self.pos,cutoff,conOptDistanceCython) self.nclusts = nclusts self.clusterIDs = clusterIDs return BT def setClusterIDFromFile(self,fname): """ Set the cluster IDs by opening a file and checking what they are Parameters ---------- fname: string the name of the file that contains the clusterIDs Returns ------- None, just sets clusterIDs Notes ----- File format is as written out by this code package """ f = open(fname) lines = f.readlines() f.close() line = self.timestep cIDs = lines[line].split() self.clusterIDs = np.array([int(float(cID)) for cID in cIDs]) def getClusterID(self, positions,cutoff,func): """ Find the ID of which cluster each molecule is in Parameters ---------- cutoff: the squared distance molecules have to be within to be part of the same cluster Returns ------- clusterIDs: numpy array of the cluster index of the cluster that each molecule occupies nclusts: number of clusters BT: BallTree for possible other computations """ sz = np.shape(positions) pos3 = positions.reshape((int(sz[0]*sz[1]/3),3)) BT = BallTree(pos3,metric='euclidean') rng = radius_neighbors_graph(BT,np.sqrt(cutoff)) rng = squashRNGCOOCython(rng,int(sz[1]/3)) (nclusts,clusterIDs) = connected_components(rng,directed=False, return_labels=True, connection='weak') #pdb.set_trace() return (nclusts,clusterIDs,BT) def idsToSizes(self): """ Takes the cluster IDs and returns a list that for each molecule gives the size of the cluster it is participating in Returns ------- clustSizes: numpy array """ clustSizes = np.arange(len(self.clusterIDs)) u,counts = np.unique(self.clusterIDs,return_counts=True) dcounts = dict(zip(u,counts)) for cid in range(len(self.clusterIDs)): clustSizes[cid] = dcounts[self.clusterIDs[cid]] return clustSizes def fixPBC(self,cID,cutoff,box,func,writegsd=None,BT=None): """ return positions for a particular cluster fixed across PBCs for calculation of structural metrics like end-to-end length Parameters ---------- cID: int the cluster index for this particular cluster cutoff: float distance within which to search for neighbors writegsd: bool if not none, write out a gsd file to this name that shows the resultant cluster box: 1x3 numpy array box side lengths func: python function distance metric for BallTree computation BT: precomputed BallTree for cluster if this is none, recompute the BallTree Returns ------- pos: numpy array of floats the resultant positions of the cluster Raises ------ RuntimeError: if there is more than one connected component Notes ----- Currently origin is in the center of the box; for these purposes, all positions are reset such that the origin is at the corner. """ inds = np.where(self.clusterIDs==cID)[0] positions = self.pos[inds,:] sz = np.shape(positions) fixedXYZ = positions.copy() potInds = range(1,int(sz[0])) #if BT is None: BT = BallTree(positions.reshape((int(sz[0]*sz[1]/3),3)), metric='euclidean') rng = radius_neighbors_graph(BT,np.sqrt(cutoff)) rng = squashRNGCOOCython(rng,int(sz[1]/3)) (nCC,CC) = connected_components(rng,connection='weak') if nCC != 1: raise RuntimeError("This isn't a fully connected cluster.") fixedXYZ[0,:] = fixCoords(fixedXYZ[0,:].copy(),fixedXYZ[0,0:3].copy(), box) correctInds = [0] while len(correctInds) > 0: mol = correctInds.pop() #neighs = BT.query_radius(positions[mol,:].reshape(1,-1),r=cutoff)[0] #neighs = neighs.remove(mol) neighs = np.where(rng[mol,:].toarray()[0]==1)[0] for n in neighs: #pdb.set_trace() if n in potInds: potInds.remove(n) correctInds.append(n) fixedXYZ[n,:] = fixCoords(fixedXYZ[n,:].copy(), fixedXYZ[mol,0:3].copy(),box) else: continue if writegsd is not None: f = gsd.hoomd.open(writegsd,'wb') s = gsd.hoomd.Snapshot() s.particles.N = sz[0]*sz[1]/3 s.particles.position = fixedXYZ s.configuration.box = np.concatenate((box,[0,0,0])) f.append(s) return fixedXYZ def getLengthDistribution(self,cutoff,box,func=conOptDistanceCython, writegsd=None,BT=None): """ Finds the end-to-end cluster length distribution Parameters ---------- cutoff: float Cutoff for BallTree computation for unwrapping box: 1x3 numpy array box side lengths func: python function distance metric for BallTree computation writegsd: string or None used as the base filename to write out all clusters as separate gsd files. Mostly useful for debugging purposes. BT: None or BallTree BallTree for cluster computation Recomputes if None Returns ------- ldistrib: 1 x molno numpy array length of the cluster each molecule belongs to """ ldistrib = np.zeros(len(self.pos)) for cID in range(self.nclusts): inds = np.where(self.clusterIDs==cID)[0] if len(inds) > 1: if writegsd is not None: cIDpos = self.fixPBC(cID,cutoff,box,func, writegsd=writegsd+str(cID)+'.gsd', BT=BT) else: cIDpos = self.fixPBC(cID,cutoff,box,func,BT=BT) sz = np.shape(cIDpos) #extract COM positions xcom = np.sum(cIDpos[:,range(0,sz[1],3)],axis=1)/(sz[1]/3.) ycom = np.sum(cIDpos[:,range(1,sz[1],3)],axis=1)/(sz[1]/3.) zcom = np.sum(cIDpos[:,range(2,sz[1],3)],axis=1)/(sz[1]/3.) cIDposcom = np.array([xcom,ycom,zcom]) endendl = np.sqrt(max(pdist(cIDposcom.transpose(),metric='sqeuclidean'))) ldistrib[inds] = endendl return ldistrib class OpticalClusterSnapshot(ContactClusterSnapshot): """Class for tracking the location of optical clusters at each time step""" def __init__(self, t, trajectory, ats, molno, atype=u'LS'): """ Initialize a ClusterSnapshot object. Parameters ---------- t: timestep trajectory: gsd.hoomd trajectory or numpy array numpy array is of size 4 + 3 * ats * molno (ats is different for optical and aligned clusters) ats: the number of aromatics in a single molecule molno: the number of molecules in the system compairs: m x n numpy array these are the comparative indices of the beads making up each aromatic group, where m is the number of aromatics and n is the number of beads in the group, eg for two beads representing a ring in the 3-core model, this should be [[0,6],[1,7],[2,8],[3,9],[4,10],[5,11]] atype: hoomd bead type should be the type referring to the aromatic beads Raises ------ RuntimeError if the number of particles does not divide evenly up into molecules Notes ----- You can create a ClusterSnapshot object from either an array (for use with MPI) or from a HOOMD trajectory An optical cluster snapshot tracks the positions of the COMs of the optical clusters, rather than the positions of the separate beads, as the contact cluster does """ self.timestep = t self.ats = ats if type(trajectory) is np.ndarray: carray = trajectory self.timestep = int(carray[0]) self.ats = int(carray[2]) self.nclusts = carray[1] pend = 4 + 3 * ats * molno self.pos = np.reshape(carray[4:pend],[molno,3*ats]) self.clusterIDs = carray[pend:len(carray)] else: if t != -1: snapshot = trajectory[t] #self.pos = self.getComs(compairs,atype,trajectory[t],molno) tind = snapshot.particles.types.index(atype) types = snapshot.particles.typeid self.pos = \ snapshot.particles.position[np.where(types==tind)[0]] sz = np.shape(self.pos) if sz[0] % ats != 0: raise RuntimeError("Number of particles not divisible by \ number of beads per molecules.") self.pos = np.reshape(self.pos,[sz[0] / ats , 3 * ats]) else:#create a dummy object to help with mpi scattering snapshot = trajectory[0] #self.pos = self.getComs(compairs,atype,snapshot,molno) tind = snapshot.particles.types.index(atype) types = snapshot.particles.typeid self.pos = \ snapshot.particles.position[np.where(types==tind)[0]] sz = np.shape(self.pos) self.pos = np.reshape(self.pos,[sz[0] / ats , 3 * ats]) self.pos = float('NaN') * self.pos self.nclusts = molno self.clusterIDs = range(int(sz[0] / ats)) class AlignedClusterSnapshot(OpticalClusterSnapshot): """Class for tracking the location of aligned clusters at each time step""" def getComsGeneral(self,compairs,atype,snapshot,molno): """Helper function to get the COMs of a subset of beads Parameters ---------- compairs: m x n numpy array these are the comparative indices of the beads making up each aromatic group, where m is the number of aromatics and n is the number of beads in the group, eg for two beads representing a ring in the 3-core model, this should be [[0,6],[1,7],[2,8],[3,9],[4,10],[5,11]] atype: hoomd bead type should be the type referring to the aromatic beads snapshot: gsd snapshot at the particular time of interest molno: int number of molecules in snapshot Returns ------- aCOMS: nPairs x 3 numpy array array of COM positions for each bead Raises ------ RuntimeError if the number of beads in the aromatics isn't equal to the total number of aromatics * beads in an aromatic Notes ----- This is the more general way of finding COM and can be used in the future but currently should not be called. """ tind = snapshot.particles.types.index(atype) types = snapshot.particles.typeid ats = self.ats aBeads = snapshot.particles.position[np.where(types==tind)[0]] pairShape = np.shape(compairs) nPairs = pairShape[0] aromSize = pairShape[1] beadNo = np.shape(aBeads)[0] if nPairs * aromSize != beadNo / molno: raise RuntimeError("number of beads ({0} in {1} molecules)\ does not divide cleanly \ among aromatics ({2}) of size {3}".format(beadNo,molno,nPairs, aromSize)) aCOMs = np.zeros([nPairs * molno,3]) for moli in range(molno): aBeadsMol = aBeads[(moli * beadNo / molno):(moli * beadNo / molno)\ + beadNo / molno,:] for m in range(nPairs): aCOMs[moli*nPairs + m,:] = np.mean(aBeadsMol[compairs[m]], axis=0) return aCOMs def __init__(self, t, trajectory, ats, molno, compairs=np.array([[0,6],[1,7],[2,8],[3,9],[4,10],[5,11]]), atype=u'LS'): """ Initialize a ClusterSnapshot object. Parameters ---------- t: timestep trajectory: gsd.hoomd trajectory or numpy array numpy array is of size 4 + 3 * ats * molno (ats is different for optical and aligned clusters) ats: the number of aromatics in a single molecule molno: the number of molecules in the system compairs: m x n numpy array these are the comparative indices of the beads making up each aromatic group, where m is the number of aromatics and n is the number of beads in the group, eg for two beads representing a ring in the 3-core model, this should be [[0,6],[1,7],[2,8],[3,9],[4,10],[5,11]] atype: hoomd bead type should be the type referring to the aromatic beads Raises ------ RuntimeError if the number of particles does not divide evenly up into molecules Notes ----- You can create a ClusterSnapshot object from either an array (for use with MPI) or from a HOOMD trajectory An aligned cluster snapshot just uses a different distance metric from an optical cluster snapshot """ self.timestep = t self.ats = ats if type(trajectory) is np.ndarray: carray = trajectory self.timestep = int(carray[0]) self.ats = int(carray[2]) self.nclusts = carray[1] pend = 4 + 3 * ats * molno self.pos = np.reshape(carray[4:pend],[molno,3*ats]) self.clusterIDs = carray[pend:len(carray)] self.box = None else: if t != -1: snapshot = trajectory[t] self.box = snapshot.configuration.box self.pos = self.getComs(compairs,atype,trajectory[t],molno) sz = np.shape(self.pos) if sz[0] % ats != 0: raise RuntimeError("Number of particles not divisible by \ number of beads per molecules.") self.pos = np.reshape(self.pos,[sz[0] / ats , 3 * ats]) else:#create a dummy object to help with mpi scattering snapshot = trajectory[0] self.box = snapshot.configuration.box self.pos = self.getComs(compairs,atype,snapshot,molno) sz = np.shape(self.pos) self.pos = np.reshape(self.pos,[sz[0] / ats , 3 * ats]) self.pos = float('NaN') * self.pos self.nclusts = molno self.clusterIDs = range(int(sz[0] / ats)) def getComs(self,compairs,atype,snapshot,molno,missingID=None): """Helper function to get the COMs of a subset of beads Parameters ---------- compairs: m x n numpy array these are the comparative indices of the beads making up each aromatic group, where m is the number of aromatics and n is the number of beads in the group, eg for two beads representing a ring in the 3-core model, this should be [[0,6],[1,7],[2,8],[3,9],[4,10],[5,11]] atype: hoomd bead type should be the type referring to the aromatic beads snapshot: gsd snapshot at the particular time of interest molno: int number of molecules in snapshot Returns ------- aCOMS: nPairs x 3 numpy array array of COM positions for each bead Raises ------ RuntimeError if the number of beads in the aromatics isn't equal to the total number of aromatics * beads in an aromatic RuntimeError if the pairs aren't pairs -> that requires a DIFFERENT KIND OF CLUSTER NotImplementedError if box isn't set Notes ----- For this type of cluster, we check the vector pointing between the first bead pair and assume that the COM is located at bead1 + 1/2(vec) for all three COMs This will *only* work for COM pairs of beads and you need to know which way rvec should be going! (which depends on which bead is missing, if any of them are.) If there is a bead missing from the pairs you MUST check which one it is and pass in whether rvec should be reversed. """ if self.box is None: raise NotImplementedError("You are running on a cluster created from an array, which does not yet support box type analysis.") tind = snapshot.particles.types.index(atype) types = snapshot.particles.typeid aBeads = snapshot.particles.position[np.where(types==tind)[0]] pairShape = np.shape(compairs) nPairs = pairShape[0] aromSize = pairShape[1] if pairShape[1] != 2: raise RuntimeError("Not pairs. Call the general getCOM function") beadNo = np.shape(aBeads)[0] if nPairs * aromSize != beadNo / molno: raise RuntimeError("number of beads ({0} in {1} molecules)\ does not divide cleanly \ among aromatics ({2}) of size {3}".format(beadNo,molno,nPairs, aromSize)) aCOMs = np.zeros([nPairs * molno,3]) for moli in range(molno): aBeadsMol = aBeads[(moli * beadNo / molno):(moli * beadNo / molno)\ + beadNo / molno,:] #pdb.set_trace() rvec = (aBeadsMol[compairs[0][1]] - aBeadsMol[compairs[0][0]])/2 rvec = rvec - np.around(rvec/self.box[0:3])*self.box[0:3] for m in range(nPairs): if compairs[m][1] == missingID: rvec = (aBeadsMol[compairs[0][1]] \ - aBeadsMol[compairs[0][0]])/2 rvec = rvec - np.around(rvec/self.box[0:3])*self.box[0:3] comloc = aBeadsMol[compairs[m][0]]+rvec #pdb.set_trace() elif compairs[m][0] == missingID: rvec = (aBeadsMol[compairs[0][0]] \ - aBeadsMol[compairs[0][1]])/2 rvec = rvec - np.around(rvec/self.box[0:3])*self.box[0:3] comloc = aBeadsMol[compairs[m][0]]+rvec #pdb.set_trace() else: cv = aBeadsMol[compairs[m][0]] - aBeadsMol[compairs[m][1]] cv = cv - np.around(cv/self.box[0:3])*self.box[0:3] comloc = aBeadsMol[compairs[m][1]]+cv/2 #comloc = np.mean(aBeadsMol[compairs[m]],axis=0) #pdb.set_trace() if np.isclose(comloc,np.array([9.360982,-1.270450,1.375538])).all(): pdb.set_trace() aCOMs[moli*nPairs + m,:] = comloc return aCOMs def writeCOMsGSD(self,gsdname): """ Write out a GSD file of this snapshot that shows the locations of the aligned COMs after initialization Parameters ---------- gsdname: string what name to save the file to """ try: gsdf = gsd.hoomd.open(gsdname,'ab') except IOError: gsdf = gsd.hoomd.open(gsdname,'wb') sz = np.shape(self.pos) molno = sz[0] pos = np.reshape(self.pos,[sz[0]*self.ats,3]) #pdb.set_trace() pN = sz[0]*self.ats ptypes = ['A'] ptypeid = np.zeros(molno*self.ats).astype(int) pbox = self.box s = gsd.hoomd.Snapshot() s.particles.N = pN s.configuration.step = self.timestep s.particles.types = ptypes s.particles.typeid = ptypeid s.configuration.box = pbox s.particles.position = pos gsdf.append(s) def setClusterID(self,cutoff): """ Set the cluster IDs using getClusterID Parameters ---------- cutoff: the squared distance molecules have to be within to be part of the same cluster Returns ------- BT: BallTree for length computation """ (nclusts,clusterIDs,BT) = \ self.getClusterID(self.pos,cutoff,alignDistancesCython) self.nclusts = nclusts self.clusterIDs = clusterIDs return BT def getClusterID(self, positions,cutoff,func): """ Find the ID of which cluster each molecule is in Parameters ---------- cutoff: the squared distance molecules have to be within to be part of the same cluster Returns ------- clusterIDs: numpy array of the cluster index of the cluster that each molecule occupies nclusts: number of clusters BT: BallTree for possible other computations """ BT = BallTree(positions,metric='pyfunc', func=func) rng = radius_neighbors_graph(BT,cutoff) (nclusts,clusterIDs) = connected_components(rng,directed=False, return_labels=True) return (nclusts,clusterIDs,BT) class ContactClusterSnapshotXTC(ContactClusterSnapshot): """ Class for tracking contact cluster locations that are initialized from an xtc/Gromacs file instead of a HOOMD one Attributes ---------- timestep: float timestep ats: int number of beads per molecule nclusts: int number of clusters in the snapshot pos: numpy array [M x 3*ats] locations of molecules and beads within molecules each molecule is its own line and then the locations of beads are flattened within that clusterIDs: list [len M] """ def readGro(self,fName): """ Get a list of positions from a Gromacs .gro file Parameters ---------- fname: string name of .gro file Returns ------- pos: numpy vector [len 3 * molecules * ats] 1D list of positions in .gro file """ with open(fName, 'r') as myF: myLns = myF.read().splitlines() boxL1 = float(myLns[len(myLns)-1].split()[0]) boxL2 = float(myLns[len(myLns)-1].split()[1]) boxL3 = float(myLns[len(myLns)-1].split()[2]) return (np.array([[float(myLns[i][20:].split()[0]), float(myLns[i][20:].split()[1]), float(myLns[i][20:].split()[2])]\ for i in range(2, len(myLns)-1)]).flatten(), np.array([boxL1,boxL2,boxL3])) def __init__(self, t, trj, ats, molno): """ Initialize a ContactClusterSnapshotXTC object. Parameters ---------- t: timestep trj: Gromacs trajectory name (xtc format) tpr: Gromacs run file name (tpr format) outGro: name for an output Gromacs .gro file (no file extension) ats: the number of beads in a single molecule molno: the number of molecules in the system the index of the cluster that each molecule belongs to Raises ------ RuntimeError if the number of particles does not divide evenly up into molecules Notes ----- You can create a ClusterSnapshot object from either an array (for use with MPI) or from a HOOMD trajectory """ self.timestep = t self.ats = ats self.nclusts = molno self.clusterIDs = np.zeros(molno) self.pos = self.readGro(trj)[0] if len(self.pos) != 3 * molno * ats: raise RuntimeError("incorrect number of atoms or molecules") #pdb.set_trace() self.pos = np.reshape(self.pos,[molno,3*ats]) class OpticalClusterSnapshotXTC(ContactClusterSnapshotXTC): """ Class for tracking optical cluster locations that are initialized from an xtc/Gromacs file instead of a HOOMD one Attributes ---------- timestep: float timestep ats: int number of beads per molecule nclusts: int number of clusters in the snapshot pos: numpy array [M x 3*ats] locations of molecules and beads within molecules each molecule is its own line and then the locations of beads are flattened within that clusterIDs: list [len M] """ def __init__(self, t, trj, ats, molno, comIDs): """ Initialize a ContactClusterSnapshotXTC object. Parameters ---------- t: timestep trj: Gromacs trajectory name (xtc format) tpr: Gromacs run file name (tpr format) outGro: name for an output Gromacs .gro file ats: the number of beads in a single molecule molno: the number of molecules in the system the index of the cluster that each molecule belongs to comIDs: N x M numpy array of ints bead IDs of the beads in the N cores with M participating beads each Raises ------ RuntimeError if the number of particles does not divide evenly up into molecules Notes ----- You can create a ClusterSnapshot object from either an array (for use with MPI) or from a HOOMD trajectory """ self.timestep = t self.ats = ats self.nclusts = molno self.clusterIDs = np.zeros(molno) self.pos = self.readGro(trj)[0] if len(self.pos) != 3 * molno * ats: raise RuntimeError("incorrect number of atoms or molecules") #pdb.set_trace() self.pos = np.reshape(self.pos,[molno,3*ats]) M = np.shape(comIDs)[1] pos = np.zeros((molno,3*np.shape(comIDs)[0])) for mol in range(molno): for com in range(np.shape(comIDs)[0]): inds = comIDs[com,:] compos = np.array([self.pos[mol,3*inds+i].sum()/M \ for i in range(3)]) pos[mol,3*com:(3*com+3)] = compos self.pos = pos
{ "repo_name": "ramansbach/cluster_analysis", "path": "clustering/scripts/old-scripts/clustering_temp.py", "copies": "1", "size": "73255", "license": "mit", "hash": -7672692854043939000, "line_mean": 34.6298638132, "line_max": 138, "alpha_frac": 0.5161831957, "autogenerated": false, "ratio": 4.178121257058119, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5194304452758118, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from .common import is_np_datetime_like, _contains_datetime_like_objects from .pycompat import dask_array_type def _season_from_months(months): """Compute season (DJF, MAM, JJA, SON) from month ordinal """ # TODO: Move "season" accessor upstream into pandas seasons = np.array(['DJF', 'MAM', 'JJA', 'SON']) months = np.asarray(months) return seasons[(months // 3) % 4] def _access_through_cftimeindex(values, name): """Coerce an array of datetime-like values to a CFTimeIndex and access requested datetime component """ from ..coding.cftimeindex import CFTimeIndex values_as_cftimeindex = CFTimeIndex(values.ravel()) if name == 'season': months = values_as_cftimeindex.month field_values = _season_from_months(months) else: field_values = getattr(values_as_cftimeindex, name) return field_values.reshape(values.shape) def _access_through_series(values, name): """Coerce an array of datetime-like values to a pandas Series and access requested datetime component """ values_as_series = pd.Series(values.ravel()) if name == "season": months = values_as_series.dt.month.values field_values = _season_from_months(months) else: field_values = getattr(values_as_series.dt, name).values return field_values.reshape(values.shape) def _get_date_field(values, name, dtype): """Indirectly access pandas' libts.get_date_field by wrapping data as a Series and calling through `.dt` attribute. Parameters ---------- values : np.ndarray or dask.array-like Array-like container of datetime-like values name : str Name of datetime field to access dtype : dtype-like dtype for output date field values Returns ------- datetime_fields : same type as values Array-like of datetime fields accessed for each element in values """ if is_np_datetime_like(values.dtype): access_method = _access_through_series else: access_method = _access_through_cftimeindex if isinstance(values, dask_array_type): from dask.array import map_blocks return map_blocks(access_method, values, name, dtype=dtype) else: return access_method(values, name) def _round_series(values, name, freq): """Coerce an array of datetime-like values to a pandas Series and apply requested rounding """ values_as_series = pd.Series(values.ravel()) method = getattr(values_as_series.dt, name) field_values = method(freq=freq).values return field_values.reshape(values.shape) def _round_field(values, name, freq): """Indirectly access pandas rounding functions by wrapping data as a Series and calling through `.dt` attribute. Parameters ---------- values : np.ndarray or dask.array-like Array-like container of datetime-like values name : str (ceil, floor, round) Name of rounding function freq : a freq string indicating the rounding resolution Returns ------- rounded timestamps : same type as values Array-like of datetime fields accessed for each element in values """ if isinstance(values, dask_array_type): from dask.array import map_blocks return map_blocks(_round_series, values, name, freq=freq, dtype=np.datetime64) else: return _round_series(values, name, freq) class DatetimeAccessor(object): """Access datetime fields for DataArrays with datetime-like dtypes. Similar to pandas, fields can be accessed through the `.dt` attribute for applicable DataArrays: >>> ds = xarray.Dataset({'time': pd.date_range(start='2000/01/01', ... freq='D', periods=100)}) >>> ds.time.dt <xarray.core.accessors.DatetimeAccessor at 0x10c369f60> >>> ds.time.dt.dayofyear[:5] <xarray.DataArray 'dayofyear' (time: 5)> array([1, 2, 3, 4, 5], dtype=int32) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ... All of the pandas fields are accessible here. Note that these fields are not calendar-aware; if your datetimes are encoded with a non-Gregorian calendar (e.g. a 360-day calendar) using cftime, then some fields like `dayofyear` may not be accurate. """ def __init__(self, xarray_obj): if not _contains_datetime_like_objects(xarray_obj): raise TypeError("'dt' accessor only available for " "DataArray with datetime64 timedelta64 dtype or " "for arrays containing cftime datetime " "objects.") self._obj = xarray_obj def _tslib_field_accessor(name, docstring=None, dtype=None): def f(self, dtype=dtype): if dtype is None: dtype = self._obj.dtype obj_type = type(self._obj) result = _get_date_field(self._obj.data, name, dtype) return obj_type(result, name=name, coords=self._obj.coords, dims=self._obj.dims) f.__name__ = name f.__doc__ = docstring return property(f) year = _tslib_field_accessor('year', "The year of the datetime", np.int64) month = _tslib_field_accessor( 'month', "The month as January=1, December=12", np.int64 ) day = _tslib_field_accessor('day', "The days of the datetime", np.int64) hour = _tslib_field_accessor('hour', "The hours of the datetime", np.int64) minute = _tslib_field_accessor( 'minute', "The minutes of the datetime", np.int64 ) second = _tslib_field_accessor( 'second', "The seconds of the datetime", np.int64 ) microsecond = _tslib_field_accessor( 'microsecond', "The microseconds of the datetime", np.int64 ) nanosecond = _tslib_field_accessor( 'nanosecond', "The nanoseconds of the datetime", np.int64 ) weekofyear = _tslib_field_accessor( 'weekofyear', "The week ordinal of the year", np.int64 ) week = weekofyear dayofweek = _tslib_field_accessor( 'dayofweek', "The day of the week with Monday=0, Sunday=6", np.int64 ) weekday = dayofweek weekday_name = _tslib_field_accessor( 'weekday_name', "The name of day in a week (ex: Friday)", object ) dayofyear = _tslib_field_accessor( 'dayofyear', "The ordinal day of the year", np.int64 ) quarter = _tslib_field_accessor('quarter', "The quarter of the date") days_in_month = _tslib_field_accessor( 'days_in_month', "The number of days in the month", np.int64 ) daysinmonth = days_in_month season = _tslib_field_accessor( "season", "Season of the year (ex: DJF)", object ) time = _tslib_field_accessor( "time", "Timestamps corresponding to datetimes", object ) def _tslib_round_accessor(self, name, freq): obj_type = type(self._obj) result = _round_field(self._obj.data, name, freq) return obj_type(result, name=name, coords=self._obj.coords, dims=self._obj.dims) def floor(self, freq): ''' Round timestamps downward to specified frequency resolution. Parameters ---------- freq : a freq string indicating the rounding resolution e.g. 'D' for daily resolution Returns ------- floor-ed timestamps : same type as values Array-like of datetime fields accessed for each element in values ''' return self._tslib_round_accessor("floor", freq) def ceil(self, freq): ''' Round timestamps upward to specified frequency resolution. Parameters ---------- freq : a freq string indicating the rounding resolution e.g. 'D' for daily resolution Returns ------- ceil-ed timestamps : same type as values Array-like of datetime fields accessed for each element in values ''' return self._tslib_round_accessor("ceil", freq) def round(self, freq): ''' Round timestamps to specified frequency resolution. Parameters ---------- freq : a freq string indicating the rounding resolution e.g. 'D' for daily resolution Returns ------- rounded timestamps : same type as values Array-like of datetime fields accessed for each element in values ''' return self._tslib_round_accessor("round", freq)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/accessors.py", "copies": "1", "size": "8808", "license": "apache-2.0", "hash": -1113364668170456800, "line_mean": 32.8769230769, "line_max": 79, "alpha_frac": 0.6192098093, "autogenerated": false, "ratio": 3.9927470534904805, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5111956862790481, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from .core import Series, DataFrame, map_partitions, apply_concat_apply from . import methods from .utils import is_categorical_dtype, is_scalar, has_known_categories ############################################################### # Dummies ############################################################### def get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False): """ Convert categorical variable into dummy/indicator variables. Data must have category dtype to infer result's ``columns`` Parameters ---------- data : Series or DataFrame with category dtype prefix : string, list of strings, or dict of strings, default None String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternativly, `prefix` can be a dictionary mapping column names to prefixes. prefix_sep : string, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix.` dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `category` dtype will be converted. drop_first : bool, default False Whether to get k-1 dummies out of k categorical levels by removing the first level. Returns ------- dummies : DataFrame """ if isinstance(data, (pd.Series, pd.DataFrame)): return pd.get_dummies(data, prefix=prefix, prefix_sep=prefix_sep, dummy_na=dummy_na, columns=columns, sparse=sparse, drop_first=drop_first) not_cat_msg = ("`get_dummies` with non-categorical dtypes is not " "supported. Please use `df.categorize()` beforehand to " "convert to categorical dtype.") unknown_cat_msg = ("`get_dummies` with unknown categories is not " "supported. Please use `column.cat.as_known()` or " "`df.categorize()` beforehand to ensure known " "categories") if isinstance(data, Series): if not is_categorical_dtype(data): raise NotImplementedError(not_cat_msg) if not has_known_categories(data): raise NotImplementedError(unknown_cat_msg) elif isinstance(data, DataFrame): if columns is None: if (data.dtypes == 'object').any(): raise NotImplementedError(not_cat_msg) columns = data._meta.select_dtypes(include=['category']).columns else: if not all(is_categorical_dtype(data[c]) for c in columns): raise NotImplementedError(not_cat_msg) if not all(has_known_categories(data[c]) for c in columns): raise NotImplementedError(unknown_cat_msg) if sparse: raise NotImplementedError('sparse=True is not supported') return map_partitions(pd.get_dummies, data, prefix=prefix, prefix_sep=prefix_sep, dummy_na=dummy_na, columns=columns, sparse=sparse, drop_first=drop_first) ############################################################### # Pivot table ############################################################### def pivot_table(df, index=None, columns=None, values=None, aggfunc='mean'): """ Create a spreadsheet-style pivot table as a DataFrame. Target ``columns`` must have category dtype to infer result's ``columns``. ``index``, ``columns``, ``values`` and ``aggfunc`` must be all scalar. Parameters ---------- data : DataFrame values : scalar column to aggregate index : scalar column to be index columns : scalar column to be columns aggfunc : {'mean', 'sum', 'count'}, default 'mean' Returns ------- table : DataFrame """ if not is_scalar(index) or index is None: raise ValueError("'index' must be the name of an existing column") if not is_scalar(columns) or columns is None: raise ValueError("'columns' must be the name of an existing column") if not is_categorical_dtype(df[columns]): raise ValueError("'columns' must be category dtype") if not has_known_categories(df[columns]): raise ValueError("'columns' must have known categories. Please use " "`df[columns].cat.as_known()` beforehand to ensure " "known categories") if not is_scalar(values) or values is None: raise ValueError("'values' must be the name of an existing column") if not is_scalar(aggfunc) or aggfunc not in ('mean', 'sum', 'count'): raise ValueError("aggfunc must be either 'mean', 'sum' or 'count'") # _emulate can't work for empty data # the result must have CategoricalIndex columns new_columns = pd.CategoricalIndex(df[columns].cat.categories, name=columns) meta = pd.DataFrame(columns=new_columns, dtype=np.float64) kwargs = {'index': index, 'columns': columns, 'values': values} pv_sum = apply_concat_apply([df], chunk=methods.pivot_sum, aggregate=methods.pivot_agg, meta=meta, token='pivot_table_sum', chunk_kwargs=kwargs) pv_count = apply_concat_apply([df], chunk=methods.pivot_count, aggregate=methods.pivot_agg, meta=meta, token='pivot_table_count', chunk_kwargs=kwargs) if aggfunc == 'sum': return pv_sum elif aggfunc == 'count': return pv_count elif aggfunc == 'mean': return pv_sum / pv_count else: raise ValueError ############################################################### # Melt ############################################################### def melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None): from dask.dataframe.core import no_default return frame.map_partitions(pd.melt, meta=no_default, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, token='melt')
{ "repo_name": "cpcloud/dask", "path": "dask/dataframe/reshape.py", "copies": "1", "size": "6863", "license": "bsd-3-clause", "hash": 4905754351346982000, "line_mean": 38.4425287356, "line_max": 79, "alpha_frac": 0.5568993152, "autogenerated": false, "ratio": 4.646580907244414, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5703480222444415, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from ..external.six import string_types __all__ = ['unique', 'shape_to_string', 'view_shape', 'stack_view', 'coerce_numeric', 'check_sorted'] def unique(array): """ Return the unique elements of the array U, as well as the index array I such that U[I] == array :param array: The array to use :returns: U, I :rtype: tuple of arrays """ # numpy.unique doesn't handle mixed-types on python3, # so we use pandas U, I = pd.factorize(array, sort=True) return I, U def shape_to_string(shape): """ On Windows, shape tuples use long ints which results in formatted shapes such as (2L, 3L). This function ensures that the shape is always formatted without the Ls. """ return "({0})".format(", ".join(str(int(item)) for item in shape)) def view_shape(shape, view): """Return the shape of a view of an array :param shape: Tuple describing shape of the array :param view: View object -- a valid index into a numpy array, or None Returns equivalent of np.zeros(shape)[view].shape """ if view is None: return shape shp = tuple(slice(0, s, 1) for s in shape) xy = np.broadcast_arrays(*np.ogrid[shp]) assert xy[0].shape == shape return xy[0][view].shape def stack_view(shape, *views): shp = tuple(slice(0, s, 1) for s in shape) result = np.broadcast_arrays(*np.ogrid[shp]) for v in views: if isinstance(v, string_types) and v == 'transpose': result = [r.T for r in result] continue result = [r[v] for r in result] return tuple(result) def coerce_numeric(arr): """Coerce an array into a numeric array, replacing non-numeric elements with nans. If the array is already a numeric type, it is returned unchanged :param arr: array to coerce :type arr: :class:`numpy.ndarray` :returns: array. """ # already numeric type if np.issubdtype(arr.dtype, np.number): return arr if np.issubdtype(arr.dtype, np.bool_): return arr.astype(np.int) # a string dtype, or anything else return pd.Series(arr).convert_objects(convert_numeric=True).values def check_sorted(array): """ Return True if the array is sorted, False otherwise. """ # this ignores NANs, and does the right thing if nans # are concentrated at beginning or end of array # otherwise, it will miss things at nan/finite boundaries array = np.asarray(array) return not (array[:-1] > array[1:]).any()
{ "repo_name": "JudoWill/glue", "path": "glue/utils/array.py", "copies": "1", "size": "2656", "license": "bsd-3-clause", "hash": 1656557842688455000, "line_mean": 26.6666666667, "line_max": 78, "alpha_frac": 0.6381777108, "autogenerated": false, "ratio": 3.6685082872928176, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4806685998092818, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from glue.external.six import string_types __all__ = ['unique', 'shape_to_string', 'view_shape', 'stack_view', 'coerce_numeric', 'check_sorted', 'broadcast_to'] def unique(array): """ Return the unique elements of the array U, as well as the index array I such that U[I] == array Parameters ---------- array : `numpy.ndarray` The array to use Returns ------- U : `numpy.ndarray` The unique elements of the array I : `numpy.ndarray` The indices such that ``U[I] == array`` """ # numpy.unique doesn't handle mixed-types on python3, # so we use pandas U, I = pd.factorize(array, sort=True) return I, U def shape_to_string(shape): """ On Windows, shape tuples use long ints which results in formatted shapes such as (2L, 3L). This function ensures that the shape is always formatted without the Ls. """ return "({0})".format(", ".join(str(int(item)) for item in shape)) def view_shape(shape, view): """ Return the shape of a view of an array. Returns equivalent of ``np.zeros(shape)[view].shape`` Parameters ---------- shape : tuple The shape of the array view : slice A valid index into a Numpy array, or None """ if view is None: return shape shp = tuple(slice(0, s, 1) for s in shape) xy = np.broadcast_arrays(*np.ogrid[shp]) assert xy[0].shape == shape return xy[0][view].shape def stack_view(shape, *views): shp = tuple(slice(0, s, 1) for s in shape) result = np.broadcast_arrays(*np.ogrid[shp]) for v in views: if isinstance(v, string_types) and v == 'transpose': result = [r.T for r in result] continue result = [r[v] for r in result] return tuple(result) def coerce_numeric(arr): """ Coerce an array into a numeric array, replacing non-numeric elements with nans. If the array is already a numeric type, it is returned unchanged Parameters ---------- arr : `numpy.ndarray` The array to coerce """ # already numeric type if np.issubdtype(arr.dtype, np.number): return arr if np.issubdtype(arr.dtype, np.bool_): return arr.astype(np.int) # a string dtype, or anything else try: return pd.to_numeric(arr, errors='coerce') except AttributeError: # older versions of pandas return pd.Series(arr).convert_objects(convert_numeric=True).values def check_sorted(array): """ Return `True` if the array is sorted, `False` otherwise. """ # this ignores NANs, and does the right thing if nans # are concentrated at beginning or end of array # otherwise, it will miss things at nan/finite boundaries array = np.asarray(array) return not (array[:-1] > array[1:]).any() def pretty_number(numbers): """ Convert a list/array of numbers into a nice list of strings Parameters ---------- numbers : list The numbers to convert """ try: return [pretty_number(n) for n in numbers] except TypeError: pass n = numbers if n == 0: result = '0' elif (abs(n) < 1e-3) or (abs(n) > 1e3): result = "%0.3e" % n elif abs(int(n) - n) < 1e-3 and int(n) != 0: result = "%i" % n else: result = "%0.3f" % n if result.find('.') != -1: result = result.rstrip('0') return result def broadcast_to(array, shape): """ Compatibility function - can be removed once we support only Numpy 1.10 and above """ try: return np.broadcast_to(array, shape) except AttributeError: return array * np.ones(shape, array.dtype)
{ "repo_name": "saimn/glue", "path": "glue/utils/array.py", "copies": "1", "size": "3861", "license": "bsd-3-clause", "hash": -3558369945914845000, "line_mean": 24.0714285714, "line_max": 78, "alpha_frac": 0.598031598, "autogenerated": false, "ratio": 3.7089337175792507, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9806192279091929, "avg_score": 0.0001546072974644403, "num_lines": 154 }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from pandas.types.common import (is_categorical_dtype, is_numeric_dtype, is_datetime64_dtype, is_timedelta64_dtype) from pandas.lib import is_bool_array from .utils import PANDAS_VERSION # In Pandas 0.19.2, a function to hash pandas objects was introduced. Object # arrays are assumed to be strings, and are hashed with a cython implementation # of siphash. However, the version in 0.19.2 hashes categoricals based on their # integer codes, instead of taking into account the values they represent. This # is fixed in pandas > 0.19.2. To support versions 0.19.0 and up, we do do the # following: # # - For versions > 0.19.2, we use the provided `hash_pandas_object` function. # - For 0.19.0 through 0.19.2, we copy the definition of `hash_pandas_object` # from pandas master (will be released as 0.20.0). # - For 0.19.0 and 0.19.1, we use python's `hash` builtin to hash strings. # - For 0.19.2, we use the `hash_object_array` method provided in pandas # (an implementation of siphash) # # When dask drops support for pandas <= 0.19.2, all this can be removed. # XXX: Pandas uses release branches > 0.19.0, which doesn't play well with # versioneer, since the release tags aren't ancestors of master. As such, we # need to use this hacky awfulness to check if we're > 0.19.2. if PANDAS_VERSION not in ('0.19.1', '0.19.2') and PANDAS_VERSION > '0.19.0+340': from pandas.tools.hashing import hash_pandas_object else: if PANDAS_VERSION == '0.19.2': from pandas._hash import hash_object_array else: # 0.19.0 and 0.19.1 def hash_object_array(x, hash_key, encoding): return np.array([hash(i) for i in x], dtype=np.uint64) # 16 byte long hashing key _default_hash_key = '0123456789123456' def hash_pandas_object(obj, index=True, encoding='utf8', hash_key=None, categorize=True): if hash_key is None: hash_key = _default_hash_key def adder(h, hashed_to_add): h = np.multiply(h, np.uint(3), h) return np.add(h, hashed_to_add, h) if isinstance(obj, pd.Index): h = hash_array(obj.values, encoding, hash_key, categorize).astype('uint64') h = pd.Series(h, index=obj, dtype='uint64') elif isinstance(obj, pd.Series): h = hash_array(obj.values, encoding, hash_key, categorize).astype('uint64') if index: h = adder(h, hash_pandas_object(obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize).values) h = pd.Series(h, index=obj.index, dtype='uint64') elif isinstance(obj, pd.DataFrame): cols = obj.iteritems() first_series = next(cols)[1] h = hash_array(first_series.values, encoding, hash_key, categorize).astype('uint64') for _, col in cols: h = adder(h, hash_array(col.values, encoding, hash_key, categorize)) if index: h = adder(h, hash_pandas_object(obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize).values) h = pd.Series(h, index=obj.index, dtype='uint64') else: raise TypeError("Unexpected type for hashing %s" % type(obj)) return h def _hash_categorical(c, encoding, hash_key): cat_hashed = hash_array(c.categories.values, encoding, hash_key, categorize=False).astype(np.uint64, copy=False) return c.rename_categories(cat_hashed).astype(np.uint64) def hash_array(vals, encoding='utf8', hash_key=None, categorize=True): if hash_key is None: hash_key = _default_hash_key # For categoricals, we hash the categories, then remap the codes to the # hash values. (This check is above the complex check so that we don't # ask numpy if categorical is a subdtype of complex, as it will choke. if is_categorical_dtype(vals.dtype): return _hash_categorical(vals, encoding, hash_key) # we'll be working with everything as 64-bit values, so handle this # 128-bit value early if np.issubdtype(vals.dtype, np.complex128): return hash_array(vals.real) + 23 * hash_array(vals.imag) # First, turn whatever array this is into unsigned 64-bit ints, if we # can manage it. if is_bool_array(vals): vals = vals.astype('u8') elif ((is_datetime64_dtype(vals) or is_timedelta64_dtype(vals) or is_numeric_dtype(vals)) and vals.dtype.itemsize <= 8): vals = vals.view('u{}'.format(vals.dtype.itemsize)).astype('u8') else: # With repeated values, its MUCH faster to categorize object # dtypes, then hash and rename categories. We allow skipping the # categorization when the values are known/likely to be unique. if categorize: codes, categories = pd.factorize(vals, sort=False) cat = pd.Categorical(codes, pd.Index(categories), ordered=False, fastpath=True) return _hash_categorical(cat, encoding, hash_key) vals = hash_object_array(vals, hash_key, encoding) # Then, redistribute these 64-bit ints within the space of 64-bit ints vals ^= vals >> 30 vals *= np.uint64(0xbf58476d1ce4e5b9) vals ^= vals >> 27 vals *= np.uint64(0x94d049bb133111eb) vals ^= vals >> 31 return vals
{ "repo_name": "cpcloud/dask", "path": "dask/dataframe/hashing.py", "copies": "1", "size": "6179", "license": "bsd-3-clause", "hash": -8676651381093628000, "line_mean": 45.8106060606, "line_max": 80, "alpha_frac": 0.5766305227, "autogenerated": false, "ratio": 3.8739811912225703, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.495061171392257, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd import datashape from datashape import discover from ..append import append from ..convert import convert, ooc_types from ..chunks import chunks from ..resource import resource from ..utils import filter_kwargs @discover.register(pd.HDFStore) def discover_hdfstore(f): d = dict() for key in f.keys(): d2 = d key2 = key.lstrip('/') while '/' in key2: group, key2 = key2.split('/', 1) if group not in d2: d2[group] = dict() d2 = d2[group] d2[key2] = f.get_storer(key) return discover(d) @discover.register(pd.io.pytables.Fixed) def discover_hdfstore_storer(storer): f = storer.parent n = storer.shape if isinstance(n, list): n = n[0] measure = discover(f.select(storer.pathname, start=0, stop=10)).measure return n * measure @convert.register(chunks(pd.DataFrame), pd.io.pytables.AppendableFrameTable) def hdfstore_to_chunks_dataframes(data, chunksize=100000, **kwargs): if (isinstance(chunksize, (float, np.floating)) and not chunksize.is_integer()): raise TypeError('chunksize argument must be an integer, got %s' % chunksize) chunksize = int(chunksize) def f(): k = min(chunksize, 100) yield data.parent.select(data.pathname, start=0, stop=k) for chunk in data.parent.select(data.pathname, chunksize=chunksize, start=k): yield chunk return chunks(pd.DataFrame)(f) @convert.register(pd.DataFrame, (pd.io.pytables.AppendableFrameTable, pd.io.pytables.FrameFixed)) def hdfstore_to_chunks_dataframes(data, **kwargs): return data.read() pytables_h5py_explanation = """ You've run in to a conflict between the two HDF5 libraries in Python, H5Py and PyTables. You're trying to do something that requires PyTables but H5Py was loaded first and the two libraries don't share well. To resolve this you'll have to restart your Python process and ensure that you import tables before you import projects like odo or into or blaze.""" from collections import namedtuple EmptyHDFStoreDataset = namedtuple('EmptyHDFStoreDataset', 'parent,pathname,dshape') @resource.register('hdfstore://.+', priority=11) def resource_hdfstore(uri, datapath=None, dshape=None, **kwargs): # TODO: # 1. Support nested datashapes (e.g. groups) # 2. Try translating unicode to ascii? (PyTables fails here) fn = uri.split('://')[1] try: f = pd.HDFStore(fn, **filter_kwargs(pd.HDFStore, kwargs)) except RuntimeError as e: raise type(e)(pytables_h5py_explanation) if dshape is None: return f.get_storer(datapath) if datapath else f dshape = datashape.dshape(dshape) # Already exists, return it if datapath in f: return f.get_storer(datapath) # Need to create new dataset. # HDFStore doesn't support empty datasets, so we use a proxy object. return EmptyHDFStoreDataset(f, datapath, dshape) @append.register((pd.io.pytables.Fixed, EmptyHDFStoreDataset), pd.DataFrame) def append_dataframe_to_hdfstore(store, df, **kwargs): store.parent.append(store.pathname, df, append=True) return store.parent.get_storer(store.pathname) @append.register((pd.io.pytables.Fixed, EmptyHDFStoreDataset), chunks(pd.DataFrame)) def append_chunks_dataframe_to_hdfstore(store, c, **kwargs): parent = store.parent for chunk in c: parent.append(store.pathname, chunk) return parent.get_storer(store.pathname) @append.register((pd.io.pytables.Fixed, EmptyHDFStoreDataset), object) def append_object_to_hdfstore(store, o, **kwargs): return append(store, convert(chunks(pd.DataFrame), o, **kwargs), **kwargs) ooc_types.add(pd.io.pytables.AppendableFrameTable)
{ "repo_name": "cpcloud/odo", "path": "odo/backends/hdfstore.py", "copies": "9", "size": "3965", "license": "bsd-3-clause", "hash": -7413218275420359000, "line_mean": 31.2357723577, "line_max": 83, "alpha_frac": 0.6756620429, "autogenerated": false, "ratio": 3.58499095840868, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0004949947458658259, "num_lines": 123 }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd import xarray as xr from . import parameterized, randn, requires_dask nx = 3000 long_nx = 30000000 ny = 2000 nt = 1000 window = 20 randn_xy = randn((nx, ny), frac_nan=0.1) randn_xt = randn((nx, nt)) randn_t = randn((nt, )) randn_long = randn((long_nx, ), frac_nan=0.1) class Rolling: def setup(self, *args, **kwargs): self.ds = xr.Dataset( {'var1': (('x', 'y'), randn_xy), 'var2': (('x', 't'), randn_xt), 'var3': (('t', ), randn_t)}, coords={'x': np.arange(nx), 'y': np.linspace(0, 1, ny), 't': pd.date_range('1970-01-01', periods=nt, freq='D'), 'x_coords': ('x', np.linspace(1.1, 2.1, nx))}) self.da_long = xr.DataArray(randn_long, dims='x', coords={'x': np.arange(long_nx) * 0.1}) @parameterized(['func', 'center'], (['mean', 'count'], [True, False])) def time_rolling(self, func, center): getattr(self.ds.rolling(x=window, center=center), func)().load() @parameterized(['func', 'pandas'], (['mean', 'count'], [True, False])) def time_rolling_long(self, func, pandas): if pandas: se = self.da_long.to_series() getattr(se.rolling(window=window), func)() else: getattr(self.da_long.rolling(x=window), func)().load() @parameterized(['window_', 'min_periods'], ([20, 40], [5, None])) def time_rolling_np(self, window_, min_periods): self.ds.rolling(x=window_, center=False, min_periods=min_periods).reduce( getattr(np, 'nanmean')).load() @parameterized(['center', 'stride'], ([True, False], [1, 200])) def time_rolling_construct(self, center, stride): self.ds.rolling(x=window, center=center).construct( 'window_dim', stride=stride).mean(dim='window_dim').load() class RollingDask(Rolling): def setup(self, *args, **kwargs): requires_dask() super(RollingDask, self).setup(**kwargs) self.ds = self.ds.chunk({'x': 100, 'y': 50, 't': 50}) self.da_long = self.da_long.chunk({'x': 10000})
{ "repo_name": "shoyer/xray", "path": "asv_bench/benchmarks/rolling.py", "copies": "1", "size": "2349", "license": "apache-2.0", "hash": 7576704411820002000, "line_mean": 33.5441176471, "line_max": 75, "alpha_frac": 0.5291613453, "autogenerated": false, "ratio": 3.341394025604552, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4370555370904552, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd import xarray as xr from . import randint, randn, requires_dask nx = 3000 ny = 2000 nt = 1000 basic_indexes = { '1slice': {'x': slice(0, 3)}, '1slice-1scalar': {'x': 0, 'y': slice(None, None, 3)}, '2slicess-1scalar': {'x': slice(3, -3, 3), 'y': 1, 't': slice(None, -3, 3)} } basic_assignment_values = { '1slice': xr.DataArray(randn((3, ny), frac_nan=0.1), dims=['x', 'y']), '1slice-1scalar': xr.DataArray(randn(int(ny / 3) + 1, frac_nan=0.1), dims=['y']), '2slicess-1scalar': xr.DataArray(randn(int((nx - 6) / 3), frac_nan=0.1), dims=['x']) } outer_indexes = { '1d': {'x': randint(0, nx, 400)}, '2d': {'x': randint(0, nx, 500), 'y': randint(0, ny, 400)}, '2d-1scalar': {'x': randint(0, nx, 100), 'y': 1, 't': randint(0, nt, 400)} } outer_assignment_values = { '1d': xr.DataArray(randn((400, ny), frac_nan=0.1), dims=['x', 'y']), '2d': xr.DataArray(randn((500, 400), frac_nan=0.1), dims=['x', 'y']), '2d-1scalar': xr.DataArray(randn(100, frac_nan=0.1), dims=['x']) } vectorized_indexes = { '1-1d': {'x': xr.DataArray(randint(0, nx, 400), dims='a')}, '2-1d': {'x': xr.DataArray(randint(0, nx, 400), dims='a'), 'y': xr.DataArray(randint(0, ny, 400), dims='a')}, '3-2d': {'x': xr.DataArray(randint(0, nx, 400).reshape(4, 100), dims=['a', 'b']), 'y': xr.DataArray(randint(0, ny, 400).reshape(4, 100), dims=['a', 'b']), 't': xr.DataArray(randint(0, nt, 400).reshape(4, 100), dims=['a', 'b'])}, } vectorized_assignment_values = { '1-1d': xr.DataArray(randn((400, 2000)), dims=['a', 'y'], coords={'a': randn(400)}), '2-1d': xr.DataArray(randn(400), dims=['a', ], coords={'a': randn(400)}), '3-2d': xr.DataArray(randn((4, 100)), dims=['a', 'b'], coords={'a': randn(4), 'b': randn(100)}) } class Base(object): def setup(self, key): self.ds = xr.Dataset( {'var1': (('x', 'y'), randn((nx, ny), frac_nan=0.1)), 'var2': (('x', 't'), randn((nx, nt))), 'var3': (('t', ), randn(nt))}, coords={'x': np.arange(nx), 'y': np.linspace(0, 1, ny), 't': pd.date_range('1970-01-01', periods=nt, freq='D'), 'x_coords': ('x', np.linspace(1.1, 2.1, nx))}) class Indexing(Base): def time_indexing_basic(self, key): self.ds.isel(**basic_indexes[key]).load() time_indexing_basic.param_names = ['key'] time_indexing_basic.params = [list(basic_indexes.keys())] def time_indexing_outer(self, key): self.ds.isel(**outer_indexes[key]).load() time_indexing_outer.param_names = ['key'] time_indexing_outer.params = [list(outer_indexes.keys())] def time_indexing_vectorized(self, key): self.ds.isel(**vectorized_indexes[key]).load() time_indexing_vectorized.param_names = ['key'] time_indexing_vectorized.params = [list(vectorized_indexes.keys())] class Assignment(Base): def time_assignment_basic(self, key): ind = basic_indexes[key] val = basic_assignment_values[key] self.ds['var1'][ind.get('x', slice(None)), ind.get('y', slice(None))] = val time_assignment_basic.param_names = ['key'] time_assignment_basic.params = [list(basic_indexes.keys())] def time_assignment_outer(self, key): ind = outer_indexes[key] val = outer_assignment_values[key] self.ds['var1'][ind.get('x', slice(None)), ind.get('y', slice(None))] = val time_assignment_outer.param_names = ['key'] time_assignment_outer.params = [list(outer_indexes.keys())] def time_assignment_vectorized(self, key): ind = vectorized_indexes[key] val = vectorized_assignment_values[key] self.ds['var1'][ind.get('x', slice(None)), ind.get('y', slice(None))] = val time_assignment_vectorized.param_names = ['key'] time_assignment_vectorized.params = [list(vectorized_indexes.keys())] class IndexingDask(Indexing): def setup(self, key): requires_dask() super(IndexingDask, self).setup(key) self.ds = self.ds.chunk({'x': 100, 'y': 50, 't': 50})
{ "repo_name": "chunweiyuan/xarray", "path": "asv_bench/benchmarks/indexing.py", "copies": "2", "size": "4503", "license": "apache-2.0", "hash": -8966021481000969000, "line_mean": 34.7380952381, "line_max": 79, "alpha_frac": 0.5356429047, "autogenerated": false, "ratio": 3.0282447881640886, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4563887692864088, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pytest from blaze.compute.core import compute, compute_up from blaze.expr import Symbol, union, by, exp, Symbol from datashape import discover t = Symbol('t', 'var * {id: int, name: string, amount: int}') x = np.array([(1, 'Alice', 100), (2, 'Bob', -200), (3, 'Charlie', 300), (4, 'Denis', 400), (5, 'Edith', -500)], dtype=[('id', 'i8'), ('name', 'S7'), ('amount', 'i8')]) def eq(a, b): return (a == b).all() def test_symbol(): assert eq(compute(t, x), x) def test_eq(): assert eq(compute(t['amount'] == 100, x), x['amount'] == 100) def test_selection(): assert eq(compute(t[t['amount'] == 100], x), x[x['amount'] == 0]) assert eq(compute(t[t['amount'] < 0], x), x[x['amount'] < 0]) def test_arithmetic(): assert eq(compute(t['amount'] + t['id'], x), x['amount'] + x['id']) assert eq(compute(t['amount'] * t['id'], x), x['amount'] * x['id']) assert eq(compute(t['amount'] % t['id'], x), x['amount'] % x['id']) def test_UnaryOp(): assert eq(compute(exp(t['amount']), x), np.exp(x['amount'])) def test_Neg(): assert eq(compute(-t['amount'], x), -x['amount']) def test_invert_not(): assert eq(compute(~(t.amount > 0), x), ~(x['amount'] > 0)) def test_union_1d(): t = Symbol('t', 'var * int') x = np.array([1, 2, 3]) assert eq(compute(union(t, t), x), np.array([1, 2, 3, 1, 2, 3])) def test_union(): result = compute(union(t, t), x) assert result.shape == (x.shape[0] * 2,) assert eq(result[:5], x) assert eq(result[5:], x) result = compute(union(t.id, t.id), x) assert eq(result, np.array([1, 2, 3, 4, 5, 1, 2, 3, 4, 5])) def test_Reductions(): assert compute(t['amount'].mean(), x) == x['amount'].mean() assert compute(t['amount'].count(), x) == len(x['amount']) assert compute(t['amount'].sum(), x) == x['amount'].sum() assert compute(t['amount'].min(), x) == x['amount'].min() assert compute(t['amount'].max(), x) == x['amount'].max() assert compute(t['amount'].nunique(), x) == len(np.unique(x['amount'])) assert compute(t['amount'].var(), x) == x['amount'].var() assert compute(t['amount'].std(), x) == x['amount'].std() assert compute(t['amount'].var(unbiased=True), x) == x['amount'].var(ddof=1) assert compute(t['amount'].std(unbiased=True), x) == x['amount'].std(ddof=1) assert compute((t['amount'] > 150).any(), x) == True assert compute((t['amount'] > 250).all(), x) == False def test_count_nan(): t = Symbol('t', '3 * ?real') x = np.array([1.0, np.nan, 2.0]) assert compute(t.count(), x) == 2 def test_Distinct(): x = np.array([('Alice', 100), ('Alice', -200), ('Bob', 100), ('Bob', 100)], dtype=[('name', 'S5'), ('amount', 'i8')]) t = Symbol('t', 'var * {name: string, amount: int64}') assert eq(compute(t['name'].distinct(), x), np.unique(x['name'])) assert eq(compute(t.distinct(), x), np.unique(x)) def test_sort(): assert eq(compute(t.sort('amount'), x), np.sort(x, order='amount')) assert eq(compute(t.sort('amount', ascending=False), x), np.sort(x, order='amount')[::-1]) assert eq(compute(t.sort(['amount', 'id']), x), np.sort(x, order=['amount', 'id'])) def test_head(): assert eq(compute(t.head(2), x), x[:2]) def test_label(): expected = x['amount'] * 10 expected = np.array(expected, dtype=[('foo', 'i8')]) assert eq(compute((t['amount'] * 10).label('foo'), x), expected) def test_relabel(): expected = np.array(x, dtype=[('ID', 'i8'), ('NAME', 'S7'), ('amount', 'i8')]) result = compute(t.relabel({'name': 'NAME', 'id': 'ID'}), x) assert result.dtype.names == expected.dtype.names assert eq(result, expected) def test_by(): from blaze.api.into import into expr = by(t.amount > 0, t.id.count()) result = compute(expr, x) assert set(map(tuple, into([], result))) == set([(False, 2), (True, 3)]) def test_compute_up_field(): assert eq(compute(t['name'], x), x['name']) def test_compute_up_projection(): assert eq(compute_up(t[['name', 'amount']], x), x[['name', 'amount']]) def test_slice(): for s in [0, slice(2), slice(1, 3), slice(None, None, 2)]: assert (compute(t[s], x) == x[s]).all() ax = np.arange(30, dtype='f4').reshape((5, 3, 2)) a = Symbol('a', discover(ax)) def test_array_reductions(): for axis in [None, 0, 1, (0, 1), (2, 1)]: assert eq(compute(a.sum(axis=axis), ax), ax.sum(axis=axis)) def test_array_reductions_with_keepdims(): for axis in [None, 0, 1, (0, 1), (2, 1)]: assert eq(compute(a.sum(axis=axis, keepdims=True), ax), ax.sum(axis=axis, keepdims=True))
{ "repo_name": "vitan/blaze", "path": "blaze/compute/tests/test_numpy_compute.py", "copies": "1", "size": "5057", "license": "bsd-3-clause", "hash": -4378522455388237300, "line_mean": 27.4101123596, "line_max": 82, "alpha_frac": 0.5291674906, "autogenerated": false, "ratio": 3.029958058717795, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9051678351091303, "avg_score": 0.0014894396452983696, "num_lines": 178 }
from __future__ import (absolute_import, division, print_function) import numpy as np import re from addie.databases.oncat.oncat import pyoncatGetTemplate try: import pyoncat ONCAT_ENABLED = True except ImportError: print('pyoncat module not found. Functionality disabled') ONCAT_ENABLED = False class OncatTemplateRetriever: """Retrieves the up to date ONCat template of the given instrument. The needed information are then retrieved from the template such as column name and path to oncat database. The output of this class is a dictionary with those informations.""" template_information = {} # {'0': {'title': 'Run #', 'path': 'indexed.run_number'}, # '1': .... # } _oncat_default_template = {} def __init__(self, parent=None): self.parent = parent if self.parent.oncat: try: self.retrieve_template() self.isolate_relevant_information() except pyoncat.InvalidRefreshTokenError: self.template_information = {} return else: return None def retrieve_template(self): instrument = self.parent.instrument['short_name'] facility = self.parent.facility list_templates = pyoncatGetTemplate(oncat=self.parent.oncat, instrument=instrument, facility=facility) for template in list_templates: if hasattr(template, "default"): if template.default: self._oncat_default_template = template["columns"] return _default_template = list_templates[0]["columns"] self._oncat_default_template = _default_template def isolate_relevant_information(self): """from all the information provided by the ONCat template, we are only interested by the following infos [name, path and units]. We isolate those into the template_information dictionary""" def get_formula(oncat_formula): """will need to go from something like "${value/10e11}`" to something more pythonic "{value/10e11}""" regular_expression = r'\$(?P<formula>.+)\`' m = re.search(regular_expression, oncat_formula) if m: return m.group('formula') else: return "" template_information = {} for _index, _element in enumerate(self._oncat_default_template): _title = _element["name"] _path = _element["path"] if "units" in _element: _units = _element["units"] else: _units = "" if "transform" in _element: _formula = get_formula(_element["transform"]) else: _formula = "" template_information[_index] = {'title': _title, 'path': _path, 'units': _units, 'formula': _formula} self.template_information = template_information def get_template_information(self): return self.template_information @staticmethod def create_oncat_projection_from_template(with_location=False, template={}): """Using the ONCat template to create projection used by oncat to return full information""" projection = [] if with_location: projection = ['location'] nbr_columns = len(template) for _col in np.arange(nbr_columns): projection.append(template[_col]['path']) return projection
{ "repo_name": "neutrons/FastGR", "path": "addie/processing/mantid/master_table/import_from_database/oncat_template_retriever.py", "copies": "1", "size": "3873", "license": "mit", "hash": -6953795083008404000, "line_mean": 34.8611111111, "line_max": 113, "alpha_frac": 0.5450555125, "autogenerated": false, "ratio": 4.883984867591425, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5929040380091426, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import struct from six.moves import range class Alphabet(object): def __init__(self, config_file): self._config_file = config_file self._label_to_str = {} self._str_to_label = {} self._size = 0 if config_file: with open(config_file, 'r', encoding='utf-8') as fin: for line in fin: if line[0:2] == '\\#': line = '#\n' elif line[0] == '#': continue self._label_to_str[self._size] = line[:-1] # remove the line ending self._str_to_label[line[:-1]] = self._size self._size += 1 def _string_from_label(self, label): return self._label_to_str[label] def _label_from_string(self, string): try: return self._str_to_label[string] except KeyError as e: raise KeyError( 'ERROR: Your transcripts contain characters (e.g. \'{}\') which do not occur in \'{}\'! Use ' \ 'util/check_characters.py to see what characters are in your [train,dev,test].csv transcripts, and ' \ 'then add all these to \'{}\'.'.format(string, self._config_file, self._config_file) ).with_traceback(e.__traceback__) def has_char(self, char): return char in self._str_to_label def encode(self, string): res = [] for char in string: if char == '-': res.append(self._size) else: res.append(self._label_from_string(char)) return res def decode(self, labels): res = '' for label in labels: res += self._string_from_label(label) return res def serialize(self): # Serialization format is a sequence of (key, value) pairs, where key is # a uint16_t and value is a uint16_t length followed by `length` UTF-8 # encoded bytes with the label. res = bytearray() # We start by writing the number of pairs in the buffer as uint16_t. res += struct.pack('<H', self._size) for key, value in self._label_to_str.items(): value = value.encode('utf-8') # struct.pack only takes fixed length strings/buffers, so we have to # construct the correct format string with the length of the encoded # label. res += struct.pack('<HH{}s'.format(len(value)), key, len(value), value) return bytes(res) def size(self): return self._size def config_file(self): return self._config_file class UTF8Alphabet(object): @staticmethod def _string_from_label(_): assert False @staticmethod def _label_from_string(_): assert False @staticmethod def encode(string): # 0 never happens in the data, so we can shift values by one, use 255 for # the CTC blank, and keep the alphabet size = 256 return np.frombuffer(string.encode('utf-8'), np.uint8).astype(np.int32) - 1 @staticmethod def decode(labels): # And here we need to shift back up return bytes(np.asarray(labels, np.uint8) + 1).decode('utf-8', errors='replace') @staticmethod def size(): return 255 @staticmethod def serialize(): res = bytearray() res += struct.pack('<h', 255) for i in range(255): # Note that we also shift back up in the mapping constructed here # so that the native client sees the correct byte values when decoding. res += struct.pack('<hh1s', i, 1, bytes([i+1])) return bytes(res) @staticmethod def deserialize(buf): size = struct.unpack('<I', buf)[0] assert size == 255 return UTF8Alphabet() @staticmethod def config_file(): return '' def text_to_char_array(transcript, alphabet, context=''): r""" Given a transcript string, map characters to integers and return a numpy array representing the processed string. Use a string in `context` for adding text to raised exceptions. """ try: transcript = alphabet.encode(transcript) if len(transcript) == 0: raise ValueError('While processing {}: Found an empty transcript! ' 'You must include a transcript for all training data.' .format(context)) return transcript except KeyError as e: # Provide the row context (especially wav_filename) for alphabet errors raise ValueError('While processing: {}\n{}'.format(context, e)) # The following code is from: http://hetland.org/coding/python/levenshtein.py # This is a straightforward implementation of a well-known algorithm, and thus # probably shouldn't be covered by copyright to begin with. But in case it is, # the author (Magnus Lie Hetland) has, to the extent possible under law, # dedicated all copyright and related and neighboring rights to this software # to the public domain worldwide, by distributing it under the CC0 license, # version 1.0. This software is distributed without any warranty. For more # information, see <http://creativecommons.org/publicdomain/zero/1.0> def levenshtein(a, b): "Calculates the Levenshtein distance between a and b." n, m = len(a), len(b) if n > m: # Make sure n <= m, to use O(min(n,m)) space a, b = b, a n, m = m, n current = list(range(n+1)) for i in range(1, m+1): previous, current = current, [i]+[0]*n for j in range(1, n+1): add, delete = previous[j]+1, current[j-1]+1 change = previous[j-1] if a[j-1] != b[i-1]: change = change + 1 current[j] = min(add, delete, change) return current[n]
{ "repo_name": "googleinterns/deepspeech-reconstruction", "path": "src/deepspeech_training/util/text.py", "copies": "1", "size": "5957", "license": "apache-2.0", "hash": -8143314163359580000, "line_mean": 34.0411764706, "line_max": 118, "alpha_frac": 0.5820043646, "autogenerated": false, "ratio": 3.989953114534494, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0012767409217803044, "num_lines": 170 }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf #from tensorflow.contrib.data.python.ops.dataset_ops import Dataset from niftynet.engine.image_window import ImageWindow from niftynet.layer.base_layer import Layer from niftynet.layer.grid_warper import AffineGridWarperLayer from niftynet.layer.resampler import ResamplerLayer from niftynet.layer.linear_resize import LinearResizeLayer as Resize #from niftynet.layer.approximated_smoothing import SmoothingLayer as Smooth class PairwiseUniformSampler(Layer): def __init__(self, reader_0, reader_1, data_param, batch_size=1): Layer.__init__(self, name='pairwise_sampler_uniform') # reader for the fixed images self.reader_0 = reader_0 # reader for the moving images self.reader_1 = reader_1 # TODO: # 0) check the readers should have the same length file list # 1) detect window shape mismatches or defaulting # windows to the fixed image reader properties # 2) reshape images to (supporting multi-modal data) # [batch, x, y, channel] or [batch, x, y, z, channels] # 3) infer spatial rank # 4) make ``label`` optional self.batch_size = batch_size self.spatial_rank = 3 self.window = ImageWindow.from_data_reader_properties( self.reader_0.input_sources, self.reader_0.shapes, self.reader_0.tf_dtypes, data_param) if self.window.has_dynamic_shapes: tf.logging.fatal('Dynamic shapes not supported.\nPlease specify ' 'all spatial dims of the input data, for the ' 'spatial_window_size parameter.') raise NotImplementedError # TODO: check spatial dims the same across input modalities self.image_shape = \ self.reader_0.shapes['fixed_image'][:self.spatial_rank] self.moving_image_shape = \ self.reader_1.shapes['moving_image'][:self.spatial_rank] self.window_size = self.window.shapes['fixed_image'][1:] # initialise a dataset prefetching pairs of image and label volumes n_subjects = len(self.reader_0.output_list) rand_ints = np.random.randint(n_subjects, size=[n_subjects]) image_dataset = tf.data.Dataset.from_tensor_slices(rand_ints) # mapping random integer id to 4 volumes moving/fixed x image/label # tf.py_func wrapper of ``get_pairwise_inputs`` image_dataset = image_dataset.map( lambda image_id: tuple(tf.py_func( self.get_pairwise_inputs, [image_id], [tf.int64, tf.float32, tf.float32, tf.int32, tf.int32])), num_parallel_calls=4) # supported by tf 1.4? image_dataset = image_dataset.repeat() # num_epochs can be param image_dataset = image_dataset.shuffle( buffer_size=self.batch_size * 20) image_dataset = image_dataset.batch(self.batch_size) self.iterator = image_dataset.make_initializable_iterator() def get_pairwise_inputs(self, image_id): # fetch fixed image fixed_inputs = [] fixed_inputs.append(self._get_image('fixed_image', image_id)[0]) fixed_inputs.append(self._get_image('fixed_label', image_id)[0]) fixed_inputs = np.concatenate(fixed_inputs, axis=-1) fixed_shape = np.asarray(fixed_inputs.shape).T.astype(np.int32) # fetch moving image moving_inputs = [] moving_inputs.append(self._get_image('moving_image', image_id)[0]) moving_inputs.append(self._get_image('moving_label', image_id)[0]) moving_inputs = np.concatenate(moving_inputs, axis=-1) moving_shape = np.asarray(moving_inputs.shape).T.astype(np.int32) return image_id, fixed_inputs, moving_inputs, fixed_shape, moving_shape def _get_image(self, image_source_type, image_id): # returns a random image from either the list of fixed images # or the list of moving images try: image_source_type = image_source_type.decode() except AttributeError: pass if image_source_type.startswith('fixed'): _, data, _ = self.reader_0(idx=image_id) else: # image_source_type.startswith('moving'): _, data, _ = self.reader_1(idx=image_id) image = np.asarray(data[image_source_type]).astype(np.float32) image_shape = list(image.shape) image = np.reshape(image, image_shape[:self.spatial_rank] + [-1]) image_shape = np.asarray(image.shape).astype(np.int32) return image, image_shape def layer_op(self): """ This function concatenate image and label volumes at the last dim and randomly cropping the volumes (also the cropping margins) """ image_id, fixed_inputs, moving_inputs, fixed_shape, moving_shape = \ self.iterator.get_next() # TODO preprocessing layer modifying # image shapes will not be supported # assuming the same shape across modalities, using the first image_id.set_shape((self.batch_size,)) image_id = tf.to_float(image_id) fixed_inputs.set_shape( (self.batch_size,) + (None,) * self.spatial_rank + (2,)) # last dim is 1 image + 1 label moving_inputs.set_shape( (self.batch_size,) + self.moving_image_shape + (2,)) fixed_shape.set_shape((self.batch_size, self.spatial_rank + 1)) moving_shape.set_shape((self.batch_size, self.spatial_rank + 1)) # resizing the moving_inputs to match the target # assumes the same shape across the batch target_spatial_shape = \ tf.unstack(fixed_shape[0], axis=0)[:self.spatial_rank] moving_inputs = Resize(new_size=target_spatial_shape)(moving_inputs) combined_volume = tf.concat([fixed_inputs, moving_inputs], axis=-1) # smoothing_layer = Smoothing( # sigma=1, truncate=3.0, type_str='gaussian') # combined_volume = tf.unstack(combined_volume, axis=-1) # combined_volume[0] = tf.expand_dims(combined_volume[0], axis=-1) # combined_volume[1] = smoothing_layer( # tf.expand_dims(combined_volume[1]), axis=-1) # combined_volume[2] = tf.expand_dims(combined_volume[2], axis=-1) # combined_volume[3] = smoothing_layer( # tf.expand_dims(combined_volume[3]), axis=-1) # combined_volume = tf.stack(combined_volume, axis=-1) # TODO affine data augmentation here if self.spatial_rank == 3: window_channels = np.prod(self.window_size[self.spatial_rank:]) * 4 # TODO if no affine augmentation: img_spatial_shape = target_spatial_shape win_spatial_shape = [tf.constant(dim) for dim in self.window_size[:self.spatial_rank]] # when img==win make sure shift => 0.0 # otherwise interpolation is out of bound batch_shift = [ tf.random_uniform( shape=(self.batch_size, 1), minval=0, maxval=tf.maximum(tf.to_float(img - win - 1), 0.01)) for (win, img) in zip(win_spatial_shape, img_spatial_shape)] batch_shift = tf.concat(batch_shift, axis=1) affine_constraints = ((1.0, 0.0, 0.0, None), (0.0, 1.0, 0.0, None), (0.0, 0.0, 1.0, None)) computed_grid = AffineGridWarperLayer( source_shape=(None, None, None), output_shape=self.window_size[:self.spatial_rank], constraints=affine_constraints)(batch_shift) computed_grid.set_shape((self.batch_size,) + self.window_size[:self.spatial_rank] + (self.spatial_rank,)) resampler = ResamplerLayer( interpolation='linear', boundary='replicate') windows = resampler(combined_volume, computed_grid) out_shape = [self.batch_size] + \ list(self.window_size[:self.spatial_rank]) + \ [window_channels] windows.set_shape(out_shape) image_id = tf.reshape(image_id, (self.batch_size, 1)) start_location = tf.zeros((self.batch_size, self.spatial_rank)) locations = tf.concat([ image_id, start_location, batch_shift], axis=1) return windows, locations # return windows, [tf.reduce_max(computed_grid), batch_shift] # overriding input buffers def run_threads(self, session, *args, **argvs): """ To be called at the beginning of running graph variables """ session.run(self.iterator.initializer) return def close_all(self): # do nothing pass
{ "repo_name": "NifTK/NiftyNet", "path": "niftynet/contrib/sampler_pairwise/sampler_pairwise_uniform.py", "copies": "2", "size": "9106", "license": "apache-2.0", "hash": -1156011925598209800, "line_mean": 45.4591836735, "line_max": 79, "alpha_frac": 0.5974083022, "autogenerated": false, "ratio": 3.855207451312447, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5452615753512446, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf from tensorflow import convert_to_tensor as to_T from util.cnn import fc_layer as fc, conv_layer as conv from util.empty_safe_conv import empty_safe_1x1_conv as _1x1_conv from util.empty_safe_conv import empty_safe_conv as _conv class Modules: def __init__(self, image_feat_grid, word_vecs, num_choices): self.image_feat_grid = image_feat_grid self.word_vecs = word_vecs self.num_choices = num_choices # Capture the variable scope for creating all variables with tf.variable_scope('module_variables') as module_variable_scope: self.module_variable_scope = module_variable_scope # Flatten word vecs for efficient slicing # word_vecs has shape [T_decoder, N, D] word_vecs_shape = tf.shape(word_vecs) T_full = word_vecs_shape[0] self.N_full = word_vecs_shape[1] D_word = word_vecs.get_shape().as_list()[-1] self.word_vecs_flat = tf.reshape( word_vecs, to_T([T_full*self.N_full, D_word])) # create each dummy modules here so that weights won't get initialized again att_shape = image_feat_grid.get_shape().as_list()[:-1] + [1] self.att_shape = att_shape input_att = tf.placeholder(tf.float32, att_shape) time_idx = tf.placeholder(tf.int32, [None]) batch_idx = tf.placeholder(tf.int32, [None]) self.SceneModule(time_idx, batch_idx, reuse=False) self.FindModule(time_idx, batch_idx, reuse=False) self.FindSamePropertyModule(input_att, time_idx, batch_idx, reuse=False) self.TransformModule(input_att, time_idx, batch_idx, reuse=False) self.AndModule(input_att, input_att, time_idx, batch_idx, reuse=False) self.FilterModule(input_att, time_idx, batch_idx, reuse=False) self.OrModule(input_att, input_att, time_idx, batch_idx, reuse=False) self.ExistModule(input_att, time_idx, batch_idx, reuse=False) self.CountModule(input_att, time_idx, batch_idx, reuse=False) self.EqualNumModule(input_att, input_att, time_idx, batch_idx, reuse=False) self.MoreNumModule(input_att, input_att, time_idx, batch_idx, reuse=False) self.LessNumModule(input_att, input_att, time_idx, batch_idx, reuse=False) self.SamePropertyModule(input_att, input_att, time_idx, batch_idx, reuse=False) self.DescribeModule(input_att, time_idx, batch_idx, reuse=False) def _slice_image_feat_grid(self, batch_idx): # In TF Fold, batch_idx is a [N_batch, 1] tensor return tf.gather(self.image_feat_grid, batch_idx) def _slice_word_vecs(self, time_idx, batch_idx): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # time is highest dim in word_vecs joint_index = time_idx*self.N_full + batch_idx return tf.gather(self.word_vecs_flat, joint_index) # All the layers are wrapped with td.ScopedLayer def SceneModule(self, time_idx, batch_idx, pos_val=3, scope='SceneModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # Mapping: None -> att_grid # Output: # att_grid: [N, H, W, 1] # # Implementation: # 1. Just output a positive attention everywhere N = tf.shape(time_idx)[0] att_grid = pos_val*tf.ones(to_T([N]+self.att_shape[1:])) return att_grid def FindModule(self, time_idx, batch_idx, map_dim=250, scope='FindModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors image_feat_grid = self._slice_image_feat_grid(batch_idx) text_param = self._slice_word_vecs(time_idx, batch_idx) # Mapping: image_feat_grid x text_param -> att_grid # Input: # image_feat_grid: [N, H, W, D_im] # text_param: [N, D_txt] # Output: # att_grid: [N, H, W, 1] # # Implementation: # 1. Elementwise multiplication between image_feat_grid and text_param # 2. L2-normalization # 3. Linear classification with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): image_shape = tf.shape(image_feat_grid) N = tf.shape(time_idx)[0] H = image_shape[1] W = image_shape[2] D_im = image_feat_grid.get_shape().as_list()[-1] D_txt = text_param.get_shape().as_list()[-1] # image_feat_mapped has shape [N, H, W, map_dim] image_feat_mapped = _1x1_conv('conv_image', image_feat_grid, output_dim=map_dim) text_param_mapped = fc('fc_text', text_param, output_dim=map_dim) text_param_mapped = tf.reshape(text_param_mapped, to_T([N, 1, 1, map_dim])) eltwise_mult = tf.nn.l2_normalize(image_feat_mapped * text_param_mapped, 3) att_grid = _1x1_conv('conv_eltwise', eltwise_mult, output_dim=1) att_grid.set_shape(self.att_shape) return att_grid def FilterModule(self, input_0, time_idx, batch_idx, map_dim=250, scope='FilterModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors image_feat_grid = self._slice_image_feat_grid(batch_idx) text_param = self._slice_word_vecs(time_idx, batch_idx) # Mapping: att_grid x image_feat_grid x text_param -> att_grid # Input: # input_0: [N, H, W, 1] # image_feat_grid: [N, H, W, D_im] # text_param: [N, D_txt] # Output: # att_grid: [N, H, W, 1] # # Implementation: # This is just Find + And find_result = self.FindModule(time_idx, batch_idx, reuse=True) att_grid = self.AndModule(input_0, find_result, None, None, reuse=True) att_grid.set_shape(input_0.get_shape()) return att_grid def FindSamePropertyModule(self, input_0, time_idx, batch_idx, map_dim=250, scope='FindSamePropertyModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors image_feat_grid = self._slice_image_feat_grid(batch_idx) text_param = self._slice_word_vecs(time_idx, batch_idx) # Mapping: att_grid x image_feat_grid x text_param -> att_grid # Input: # input_0: [N, H, W, 1] # image_feat_grid: [N, H, W, D_im] # text_param: [N, D_txt] # Output: # att_grid: [N, H, W, 1] # # Implementation: # 1. Extract visual features using the input attention map, and # linear transform to map_dim # 2. linear transform language features to map_dim # 3. Convolve image features to map_dim # 4. Element-wise multiplication of the three, l2_normalize, linear transform. with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): image_shape = tf.shape(image_feat_grid) N = tf.shape(time_idx)[0] H = image_shape[1] W = image_shape[2] D_im = image_feat_grid.get_shape().as_list()[-1] D_txt = text_param.get_shape().as_list()[-1] # image_feat_mapped has shape [N, H, W, map_dim] image_feat_mapped = _1x1_conv('conv_image', image_feat_grid, output_dim=map_dim) text_param_mapped = fc('fc_text', text_param, output_dim=map_dim) text_param_mapped = tf.reshape(text_param_mapped, to_T([N, 1, 1, map_dim])) att_softmax = tf.reshape( tf.nn.softmax(tf.reshape(input_0, to_T([N, H*W]))), to_T([N, H, W, 1])) # att_feat has shape [N, D_vis] att_feat = tf.reduce_sum(image_feat_grid * att_softmax, axis=[1, 2]) att_feat_mapped = tf.reshape( fc('fc_att', att_feat, output_dim=map_dim), to_T([N, 1, 1, map_dim])) eltwise_mult = tf.nn.l2_normalize( image_feat_mapped * text_param_mapped * att_feat_mapped, 3) att_grid = _1x1_conv('conv_eltwise', eltwise_mult, output_dim=1) att_grid.set_shape(self.att_shape) return att_grid def TransformModule(self, input_0, time_idx, batch_idx, kernel_size=5, map_dim=250, scope='TransformModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors text_param = self._slice_word_vecs(time_idx, batch_idx) # Mapping: att_grid x text_param -> att_grid # Input: # input_0: [N, H, W, 1] # text_param: [N, D_txt] # Output: # att_grid: [N, H, W, 1] # # Implementation: # Convolutional layer that also involve text_param # A 'soft' convolutional kernel that is modulated by text_param with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): att_shape = tf.shape(input_0) N = att_shape[0] H = att_shape[1] W = att_shape[2] att_maps = _conv('conv_maps', input_0, kernel_size=kernel_size, stride=1, output_dim=map_dim) text_param_mapped = fc('text_fc', text_param, output_dim=map_dim) text_param_mapped = tf.reshape(text_param_mapped, to_T([N, 1, 1, map_dim])) eltwise_mult = tf.nn.l2_normalize(att_maps * text_param_mapped, 3) att_grid = _1x1_conv('conv_eltwise', eltwise_mult, output_dim=1) att_grid.set_shape(self.att_shape) return att_grid def AndModule(self, input_0, input_1, time_idx, batch_idx, scope='AndModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # Mapping: att_grid x att_grid -> att_grid # Input: # input_0: [N, H, W, 1] # input_1: [N, H, W, 1] # Output: # att_grid: [N, H, W, 1] # # Implementation: # Take the elementwise-min with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): att_grid = tf.minimum(input_0, input_1) att_grid.set_shape(self.att_shape) return att_grid def OrModule(self, input_0, input_1, time_idx, batch_idx, scope='OrModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # Mapping: att_grid x att_grid -> att_grid # Input: # input_0: [N, H, W, 1] # input_1: [N, H, W, 1] # Output: # att_grid: [N, H, W, 1] # # Implementation: # Take the elementwise-max with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): att_grid = tf.maximum(input_0, input_1) att_grid.set_shape(self.att_shape) return att_grid def ExistModule(self, input_0, time_idx, batch_idx, scope='ExistModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # Mapping: att_grid -> answer probs # Input: # att_grid: [N, H, W, 1] # Output: # answer_scores: [N, self.num_choices] # # Implementation: # 1. Max-pool over att_grid # 2. a linear mapping layer (without ReLU) with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): att_min = tf.reduce_min(input_0, axis=[1, 2]) att_avg = tf.reduce_mean(input_0, axis=[1, 2]) att_max = tf.reduce_max(input_0, axis=[1, 2]) # att_reduced has shape [N, 3] att_reduced = tf.concat([att_min, att_avg, att_max], axis=1) scores = fc('fc_scores', att_reduced, output_dim=self.num_choices) return scores def CountModule(self, input_0, time_idx, batch_idx, scope='CountModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # Mapping: att_grid -> answer probs # Input: # input_0: [N, H, W, 1] # Output: # answer_scores: [N, self.num_choices] # # Implementation: # 1. linear transform of the attention map (also including max and min) with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): H, W = self.att_shape[1:3] att_all = tf.reshape(input_0, to_T([-1, H*W])) att_min = tf.reduce_min(input_0, axis=[1, 2]) att_max = tf.reduce_max(input_0, axis=[1, 2]) # att_reduced has shape [N, 3] att_concat = tf.concat([att_all, att_min, att_max], axis=1) scores = fc('fc_scores', att_concat, output_dim=self.num_choices) return scores def EqualNumModule(self, input_0, input_1, time_idx, batch_idx, scope='EqualNumModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # Mapping: att_grid x att_grid -> answer probs # Input: # input_0: [N, H, W, 1] # input_1: [N, H, W, 1] # Output: # answer_scores: [N, self.num_choices] # # Implementation: # 1. linear transform of the attention map (also including max and min) with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): att_shape = tf.shape(input_0) H, W = self.att_shape[1:3] att_all_0 = tf.reshape(input_0, to_T([-1, H*W])) att_min_0 = tf.reduce_min(input_0, axis=[1, 2]) att_max_0 = tf.reduce_max(input_0, axis=[1, 2]) att_all_1 = tf.reshape(input_1, to_T([-1, H*W])) att_min_1 = tf.reduce_min(input_1, axis=[1, 2]) att_max_1 = tf.reduce_max(input_1, axis=[1, 2]) # att_reduced has shape [N, 3] att_concat = tf.concat([att_all_0, att_min_0, att_max_0, att_all_1, att_min_1, att_max_1], axis=1) scores = fc('fc_scores', att_concat, output_dim=self.num_choices) return scores def MoreNumModule(self, input_0, input_1, time_idx, batch_idx, scope='MoreNumModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # Mapping: att_grid x att_grid -> answer probs # Input: # input_0: [N, H, W, 1] # input_1: [N, H, W, 1] # Output: # answer_scores: [N, self.num_choices] # # Implementation: # 1. linear transform of the attention map (also including max and min) with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): att_shape = tf.shape(input_0) H, W = self.att_shape[1:3] att_all_0 = tf.reshape(input_0, to_T([-1, H*W])) att_min_0 = tf.reduce_min(input_0, axis=[1, 2]) att_max_0 = tf.reduce_max(input_0, axis=[1, 2]) att_all_1 = tf.reshape(input_1, to_T([-1, H*W])) att_min_1 = tf.reduce_min(input_1, axis=[1, 2]) att_max_1 = tf.reduce_max(input_1, axis=[1, 2]) # att_reduced has shape [N, 3] att_concat = tf.concat([att_all_0, att_min_0, att_max_0, att_all_1, att_min_1, att_max_1], axis=1) scores = fc('fc_scores', att_concat, output_dim=self.num_choices) return scores def LessNumModule(self, input_0, input_1, time_idx, batch_idx, scope='LessNumModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors # Mapping: att_grid x att_grid -> answer probs # Input: # input_0: [N, H, W, 1] # input_1: [N, H, W, 1] # Output: # answer_scores: [N, self.num_choices] # # Implementation: # 1. linear transform of the attention map (also including max and min) with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): att_shape = tf.shape(input_0) H, W = self.att_shape[1:3] att_all_0 = tf.reshape(input_0, to_T([-1, H*W])) att_min_0 = tf.reduce_min(input_0, axis=[1, 2]) att_max_0 = tf.reduce_max(input_0, axis=[1, 2]) att_all_1 = tf.reshape(input_1, to_T([-1, H*W])) att_min_1 = tf.reduce_min(input_1, axis=[1, 2]) att_max_1 = tf.reduce_max(input_1, axis=[1, 2]) # att_reduced has shape [N, 3] att_concat = tf.concat([att_all_0, att_min_0, att_max_0, att_all_1, att_min_1, att_max_1], axis=1) scores = fc('fc_scores', att_concat, output_dim=self.num_choices) return scores def SamePropertyModule(self, input_0, input_1, time_idx, batch_idx, map_dim=250, scope='SamePropertyModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors image_feat_grid = self._slice_image_feat_grid(batch_idx) text_param = self._slice_word_vecs(time_idx, batch_idx) # Mapping: att_grid x att_grid -> answer probs # Input: # input_0: [N, H, W, 1] # input_1: [N, H, W, 1] # Output: # answer_scores: [N, self.num_choices] # # Implementation: # 1. Extract visual features using the input attention map, and # linear transform to map_dim # 2. linear transform language features to map_dim # 3. Convolve image features to map_dim # 4. Element-wise multiplication of the three, l2_normalize, linear transform. with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): image_shape = tf.shape(image_feat_grid) N = tf.shape(time_idx)[0] H = image_shape[1] W = image_shape[2] D_im = image_feat_grid.get_shape().as_list()[-1] D_txt = text_param.get_shape().as_list()[-1] text_param_mapped = fc('fc_text', text_param, output_dim=map_dim) att_softmax_0 = tf.reshape( tf.nn.softmax(tf.reshape(input_0, to_T([N, H*W]))), to_T([N, H, W, 1])) att_softmax_1 = tf.reshape( tf.nn.softmax(tf.reshape(input_1, to_T([N, H*W]))), to_T([N, H, W, 1])) # att_feat_0, att_feat_1 has shape [N, D_vis] att_feat_0 = tf.reduce_sum(image_feat_grid * att_softmax_0, axis=[1, 2]) att_feat_1 = tf.reduce_sum(image_feat_grid * att_softmax_1, axis=[1, 2]) att_feat_mapped_0 = tf.reshape( fc('fc_att_0', att_feat_0, output_dim=map_dim), to_T([N, map_dim])) att_feat_mapped_1 = tf.reshape( fc('fc_att_1', att_feat_1, output_dim=map_dim), to_T([N, map_dim])) eltwise_mult = tf.nn.l2_normalize( att_feat_mapped_0 * text_param_mapped * att_feat_mapped_1, 1) scores = fc('fc_eltwise', eltwise_mult, output_dim=self.num_choices) return scores def DescribeModule(self, input_0, time_idx, batch_idx, map_dim=250, scope='DescribeModule', reuse=True): # In TF Fold, batch_idx and time_idx are both [N_batch, 1] tensors image_feat_grid = self._slice_image_feat_grid(batch_idx) text_param = self._slice_word_vecs(time_idx, batch_idx) # Mapping: att_grid -> answer probs # Input: # input_0: [N, H, W, 1] # Output: # answer_scores: [N, self.num_choices] # # Implementation: # 1. Extract visual features using the input attention map, and # linear transform to map_dim # 2. linear transform language features to map_dim # 3. Element-wise multiplication of the two, l2_normalize, linear transform. with tf.variable_scope(self.module_variable_scope): with tf.variable_scope(scope, reuse=reuse): image_shape = tf.shape(image_feat_grid) N = tf.shape(time_idx)[0] H = image_shape[1] W = image_shape[2] D_im = image_feat_grid.get_shape().as_list()[-1] D_txt = text_param.get_shape().as_list()[-1] text_param_mapped = fc('fc_text', text_param, output_dim=map_dim) att_softmax = tf.reshape( tf.nn.softmax(tf.reshape(input_0, to_T([N, H*W]))), to_T([N, H, W, 1])) # att_feat, att_feat_1 has shape [N, D_vis] att_feat = tf.reduce_sum(image_feat_grid * att_softmax, axis=[1, 2]) att_feat_mapped = tf.reshape( fc('fc_att', att_feat, output_dim=map_dim), to_T([N, map_dim])) eltwise_mult = tf.nn.l2_normalize(text_param_mapped * att_feat_mapped, 1) scores = fc('fc_eltwise', eltwise_mult, output_dim=self.num_choices) return scores
{ "repo_name": "ronghanghu/n2nmn", "path": "models_clevr/nmn3_modules.py", "copies": "1", "size": "22175", "license": "bsd-2-clause", "hash": -8720192153346534000, "line_mean": 43.797979798, "line_max": 91, "alpha_frac": 0.5446674183, "autogenerated": false, "ratio": 3.338100255908475, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4382767674208475, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf from tensorflow_probability.python.bijectors.exp import Exp from tensorflow_probability.python.distributions import ( LogNormal, TransformedDistribution, Uniform) from tensorflow_probability.python.internal import dtype_util __all__ = [ "LogUniform", ] class LogUniform(TransformedDistribution): """The log-uniform distribution (i.e. the logarithm of the samples from this distribution are Uniform) """ def __init__(self, low=0., high=1., validate_args=False, allow_nan_stats=True, name="LogUniform"): """Construct a log-normal distribution. The LogNormal distribution models positive-valued random variables whose logarithm is normally distributed with mean `loc` and standard deviation `scale`. It is constructed as the exponential transformation of a Normal distribution. Args: low: Floating point tensor, lower boundary of the output interval. Must have `low < high`. high: Floating point tensor, upper boundary of the output interval. Must have `low < high`. validate_args: Python `bool`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: Python `bool`, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: The name to give Ops created by the initializer. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([low, high], tf.float32) super(LogUniform, self).__init__(distribution=Uniform( low=tf.convert_to_tensor(value=low, name="low", dtype=dtype), high=tf.convert_to_tensor(value=high, name="high", dtype=dtype), allow_nan_stats=allow_nan_stats), bijector=Exp(), validate_args=validate_args, parameters=parameters, name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("low", "high"), ([tf.convert_to_tensor(value=sample_shape, dtype=tf.int32)] * 2))) @classmethod def _params_event_ndims(cls): return dict(low=0, high=0) @property def low(self): """Lower boundary of the output interval.""" return self.distribution.low @property def high(self): """Upper boundary of the output interval.""" return self.distribution.high def range(self, name="range"): """`high - low`.""" with self._name_scope(name): return self.high - self.low def _entropy(self): raise NotImplementedError def _mean(self): raise NotImplementedError def _variance(self): raise NotImplementedError def _stddev(self): raise NotImplementedError
{ "repo_name": "imito/odin", "path": "odin/bay/distributions/logarizmed.py", "copies": "1", "size": "3226", "license": "mit", "hash": 7329559124094396000, "line_mean": 33.688172043, "line_max": 78, "alpha_frac": 0.6429014259, "autogenerated": false, "ratio": 4.389115646258503, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5532017072158503, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf from tensorflow.python.ops import confusion_matrix as tf_cm from odin.backend.maths import to_llr from odin.backend.tensor import nonzeros, transpose from odin.utils import as_tuple, is_number # =========================================================================== # Losses # =========================================================================== def binary_accuracy(y_true, y_pred, threshold=0.5, reduction=tf.reduce_mean, name=None): """ Non-differentiable """ with tf.name_scope(name, "binary_accuracy", [y_pred, y_true, threshold]): if y_pred.shape.ndims > 1: y_pred = tf.reshape(y_pred, (-1,)) if y_true.shape.ndims > 1: y_true = tf.reshape(y_true, (-1,)) y_pred = tf.greater_equal(y_pred, threshold) match_values = tf.cast(tf.equal(tf.cast(y_pred, 'int32'), tf.cast(y_true, 'int32')), dtype='int32') return reduction(match_values) def categorical_accuracy(y_true, y_pred, top_k=1, reduction=tf.reduce_mean, name=None): """ Non-differentiable """ with tf.name_scope(name, "categorical_accuracy", [y_true, y_pred]): if y_true.shape.ndims == y_pred.shape.ndims: y_true = tf.argmax(y_true, axis=-1) elif y_true.shape.ndims != y_pred.shape.ndims - 1: raise TypeError('rank mismatch between y_true and y_pred') if top_k == 1: # standard categorical accuracy top = tf.argmax(y_pred, axis=-1) y_true = tf.cast(y_true, top.dtype.base_dtype) match_values = tf.equal(top, y_true) else: match_values = tf.nn.in_top_k(y_pred, tf.cast(y_true, 'int32'), k=top_k) match_values = tf.cast(match_values, dtype='float32') return reduction(match_values) def confusion_matrix(y_true, y_pred, labels=None, normalize=False, name=None): """ Computes the confusion matrix of given vectors containing actual observations and predicted observations. Parameters ---------- y_true : 1-d or 2-d tensor variable true values y_pred : 1-d or 2-d tensor variable prediction values normalize : bool if True, normalize each row to [0., 1.] labels : array, shape = [nb_classes], int (nb_classes) List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. Note ---- if you want to calculate: Precision, Recall, F1 scores from the confusion matrix, set `normalize=False` """ with tf.name_scope(name, 'confusion_matrix', [y_true, y_pred]): nb_classes = None if y_true.shape.ndims == 2: nb_classes = y_true.shape.as_list()[-1] y_true = tf.argmax(y_true, -1) elif y_true.shape.ndims != 1: raise ValueError('actual must be 1-d or 2-d tensor variable') if y_pred.shape.ndims == 2: nb_classes = y_pred.shape.as_list()[-1] y_pred = tf.argmax(y_pred, -1) elif y_pred.shape.ndims != 1: raise ValueError('pred must be 1-d or 2-d tensor variable') # check valid labels if labels is None: if nb_classes is None: raise RuntimeError( "Cannot infer the number of classes for confusion matrix") labels = int(nb_classes) elif is_number(labels): labels = int(labels) elif hasattr(labels, '__len__'): labels = len(labels) # transpose to match the format of sklearn cm = tf_cm(labels=y_true, predictions=y_pred, num_classes=labels) if normalize: cm = tf.cast(cm, dtype='float32') cm = cm / tf.reduce_sum(cm, axis=1, keep_dims=True) return cm def detection_matrix(y_true, y_pred): # TODO pass # =========================================================================== # Speech task metrics # =========================================================================== def compute_Cavg(y_llr, y_true, cluster_idx=None, Ptrue=0.5, Cfa=1., Cmiss=1., probability_input=False): ''' Fast calculation of Cavg (for only 1 clusters) Parameters ---------- y_llr: (nb_samples, nb_classes) log likelihood ratio: llr = log (P(data|target) / P(data|non-target)) y_true: numpy array of shape (nb_samples,) Class labels. cluster_idx: list, Each element is a list that represents a particular language cluster and contains all class labels that belong to the cluster. Ptar: float, optional Probability of a target trial. Cfa: float, optional Cost for False Acceptance error. Cmiss: float, optional Cost for False Rejection error. probability_input: boolean if True, `y_llr` is the output probability from softmax and perform llr transform for `y_llr` Returns ------- cluster_cost: numpy array of shape (n_clusters,) It contains average percentage costs for each cluster as defined by NIST LRE-15 language detection task. See http://www.nist.gov/itl/iad/mig/upload/LRE15_EvalPlan_v22-3.pdf total_cost: float An average percentage cost over all clusters. ''' if probability_input: y_llr = to_llr(y_llr) thresh = np.log(Cfa / Cmiss) - np.log(Ptrue / (1 - Ptrue)) nb_classes = y_llr.shape[1].value if isinstance(y_true, (list, tuple)): y_true = np.asarray(y_true) if y_true.shape.ndims == 1: y_true = tf.one_hot(y_true, depth=nb_classes, axis=-1) y_true = tf.cast(y_true, y_llr.dtype.base_dtype) # ====== statistics ====== # # invert of y_true, False Negative mask y_false = 1. - y_true y_positive = tf.cast(tf.greater_equal(y_llr, thresh), y_llr.dtype.base_dtype) # invert of y_positive y_negative = tf.cast(tf.less(y_llr, thresh), y_llr.dtype.base_dtype) distribution = tf.clip_by_value(tf.reduce_sum(y_true, axis=0), 10e-8, 10e8) # no zero values # ====== Pmiss ====== # miss = tf.reduce_sum(y_true * y_negative, axis=0) Pmiss = 100 * (Cmiss * Ptrue * miss) / distribution # ====== Pfa ====== # This calculation give different results fa = tf.reduce_sum(y_false * y_positive, axis=0) Pfa = 100 * (Cfa * (1 - Ptrue) * fa) / distribution Cavg = tf.reduce_mean(Pmiss) + tf.reduce_mean(Pfa) / (nb_classes - 1) return Cavg def compute_Cnorm(y_true, y_score, Ptrue=[0.1, 0.5], Cfa=1., Cmiss=1., probability_input=False): """ Computes normalized detection cost function (DCF) given the costs for false accepts and false rejects as well as a priori probability for target speakers. * This is the actual cost, different from the min cost (minDCF) (By convention, the more positive the score, the more likely is the target hypothesis.) Parameter --------- y_true: {array [n_samples], or list of array} each array is labels of binary or multi-classes detection tasks, each array can be an array of classes indices, or one-hot-encoded matrix. If multiple array are given, calculating `equalized cost` of all partitions, an example of 2 partitions are: VAST and MLSR14 files y_score: {array [n_samples, n_classes], or list of array} the outputs scores, can be probabilities values or log-likelihood values by default, the Ptrue: float [0.,1.], or list of float hypothesized prior probabilities of positive class, you can given multiple values by providing an array Cfa: float weight for False Alarm - False Positive error Cmiss: float weight for Miss - False Negative error Return ------ C_norm: array [len(Ptrue)] minimum detection cost accordingly for each given value of `Ptrue`. C_norm_array: array [len(Ptrue), n_classes] minimum detection cost for each class, accordingly to each given value of `Ptrue` """ y_true = as_tuple(y_true, t=np.ndarray) y_score = as_tuple(y_score, t=np.ndarray) if len(y_true) != len(y_score): raise ValueError("There are %d partitions for `y_true`, but %d " "partitions for `y_score`." % (len(y_true), len(y_score))) if len(set(i.shape[1] for i in y_score)) != 1: raise ValueError( "The number of classes among scores array is inconsistent.") nb_partitions = len(y_true) # ====== preprocessing ====== # y_true = [np.argmax(i, axis=-1) if i.ndim >= 2 else i for i in y_true] nb_classes = y_score[0].shape[1] # threshold Ptrue = np.asarray(as_tuple(Ptrue), dtype=float) nb_threshold = len(Ptrue) # log(beta) is threshold, i.e. # if Ptrue=0.5 => beta=1. => threshold=0. beta = (Cfa / Cmiss) * ((1 - Ptrue) / Ptrue) beta = np.clip(beta, a_min=np.finfo(float).eps, a_max=np.inf) # ====== Cavg ====== # global_cm_array = np.zeros(shape=(nb_threshold, nb_classes, nb_classes)) # Apply threshold on the scores and compute the confusion matrix for scores, labels in zip(y_score, y_true): actual_TP_per_class = np.lib.arraysetops.unique(ar=labels, return_counts=True)[1] if probability_input: # special case input is probability values scores = to_llr(scores) for theta_ix, theta in enumerate(np.log(beta)): thresholded_scores = (scores > theta).astype(int) # compute confusion matrix, this is different from # general implementation of confusion matrix above cm = np.zeros(shape=(nb_classes, nb_classes), dtype=np.int64) for i, (trial, target) in enumerate(zip(thresholded_scores, labels)): cm[target, :] += trial # miss and fa predic_TP_per_class = cm.diagonal() # Compute the number of miss per class nb_miss_per_class = actual_TP_per_class - predic_TP_per_class cm_miss_fa = cm cm_miss_fa[np.diag_indices_from(cm)] = nb_miss_per_class cm_probabilities = cm_miss_fa / actual_TP_per_class[:, None] # update global global_cm_array[theta_ix] += cm_probabilities # normalize by partitions global_cm_array /= nb_partitions # Extract probabilities of false negatives from confusion matrix p_miss_arr = global_cm_array.diagonal(0, 1, 2) p_miss = p_miss_arr.mean(1) # Extract probabilities of false positives from confusion matrix p_false_alarm_arr = (global_cm_array.sum(1) - p_miss_arr) / (nb_classes - 1) p_false_alarm = p_false_alarm_arr.mean(1) # Compute costs per languages C_Norm_arr = p_miss_arr + beta[:, None] * p_false_alarm_arr # Compute overall cost C_Norm = p_miss + beta * p_false_alarm return C_Norm, C_Norm_arr def compute_minDCF(Pfa, Pmiss, Cmiss=1, Cfa=1, Ptrue=0.5): """ Estimating the min value of the detection cost function (DCF) Parameters ---------- Pfa: array, [n_samples] false alarm rate or false positive rate Pmiss: array, [n_samples] miss rate or false negative rate Cmiss: scalar weight for false positive mistakes Cfa: scalar weight for false negative mistakes Ptrue: scalar [0., 1.] prior probability of positive cases. Return ------ min_DCF: scalar minimum value of the detection cost function for a given detection error trade-off curve Pfa_optimum: scalar and false alarm trade-off probabilities. Pmiss_optimum: scalar the correcponding miss """ assert Pmiss.shape == Pfa.shape Pfalse = 1 - Ptrue # detection cost function vector DCF_vector = (Cmiss * Pmiss * Ptrue) + \ (Cfa * Pfa * Pfalse) # get the optimal value and corresponding index min_idx = np.argmin(DCF_vector) min_val = DCF_vector[min_idx] return min_val, Pfa[min_idx], Pmiss[min_idx] def compute_EER(Pfa, Pmiss): """ computes the equal error rate (EER) given Pmiss or False Negative Rate and Pfa or False Positive Rate calculated for a range of operating points on the DET curve @Author: "Timothee Kheyrkhah, Omid Sadjadi" """ fpr, fnr = Pfa, Pmiss diff_pm_fa = fnr - fpr x1 = np.flatnonzero(diff_pm_fa >= 0)[0] x2 = np.flatnonzero(diff_pm_fa < 0)[-1] a = (fnr[x1] - fpr[x1]) / (fpr[x2] - fpr[x1] - (fnr[x2] - fnr[x1])) return fnr[x1] + a * (fnr[x2] - fnr[x1]) def compute_AUC(x, y, reorder=False): """Compute Area Under the Curve (AUC) using the trapezoidal rule This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. For an alternative way to summarize a precision-recall curve, see :func:`average_precision_score`. Parameters ---------- x : array, shape = [n] x coordinates. y : array, shape = [n] y coordinates. reorder : boolean, optional (default=False) If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong. Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 """ from sklearn.metrics import auc return auc(x, y, reorder) def roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True): """Compute Receiver operating characteristic (ROC) @copy from sklearn for convenience Note: this implementation is restricted to the binary classification task. Parameters ---------- y_true : array, shape = [n_samples] True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should be explicitly given. y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). pos_label : int or str, default=None Label considered as positive and others are considered negative. sample_weight : array-like of shape = [n_samples], optional Sample weights. drop_intermediate : boolean, optional (default=True) Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves. Returns ------- fpr : array, shape = [>2] Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i]. tpr : array, shape = [>2] Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i]. thresholds : array, shape = [n_thresholds] Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) >>> tpr array([ 0.5, 0.5, 1. , 1. ]) >>> thresholds array([ 0.8 , 0.4 , 0.35, 0.1 ]) """ from sklearn.metrics import roc_curve return roc_curve(y_true, y_score, pos_label, sample_weight, drop_intermediate) def prc_curve(y_true, y_probas, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. y_probas : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int or str, default=None The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : array, shape = [n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : array, shape = [n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : array, shape = [n_thresholds <= len(np.unique(probas_pred))] Increasing thresholds on the decision function used to compute precision and recall. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision # doctest: +ELLIPSIS array([ 0.66..., 0.5 , 1. , 1. ]) >>> recall array([ 1. , 0.5, 0.5, 0. ]) >>> thresholds array([ 0.35, 0.4 , 0.8 ]) """ from sklearn.metrics import precision_recall_curve return precision_recall_curve(y_true, y_probas, pos_label, sample_weight) def det_curve(y_true, y_score, pos_label=None, sample_weight=None): """Detection Error Tradeoff Compute error rates for different probability thresholds @Original implementaion from NIST The function is adapted to take input format same as NIST original code and `sklearn.metrics` Note: this implementation is restricted to the binary classification task. (By convention, the more positive the score, the more likely is the target hypothesis.) Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. y_score : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- with `n_samples = n_true_samples + n_false_samples` P_fa: array, shape = [n_samples] fpr - False Positive rate, or false alarm probabilities P_miss : array, shape = [n_samples] fnr - False Negative rate, or miss probabilities References ---------- .. [1] `Wikipedia entry for Detection error tradeoff <https://en.wikipedia.org/wiki/Detection_error_tradeoff>`_ .. [2] `The DET Curve in Assessment of Detection Task Performance <http://www.itl.nist.gov/iad/mig/publications/storage_paper/det.pdf>`_ .. [3] `2008 NIST Speaker Recognition Evaluation Results <http://www.itl.nist.gov/iad/mig/tests/sre/2008/official_results/>`_ .. [4] `DET-Curve Plotting software for use with MATLAB <http://www.itl.nist.gov/iad/mig/tools/DETware_v2.1.targz.htm>`_ Examples -------- >>> import numpy as np >>> from odin import backend as K >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fnr, fpr = K.metrics.det_curve(y_true, y_scores) >>> print(fpr) array([ 0.5, 0.5, 0. ]) >>> print(fnr) array([ 0. , 0.5, 0.5]) >>> print(thresholds) array([ 0.35, 0.4 , 0.8 ]) """ # ====== ravel everything in cased of multi-classes ====== # y_score = y_score.ravel() y_true = np.array(y_true) if y_true.ndim >= 2: y_true = np.argmax(y_true, axis=-1) nb_classes = len(np.lib.arraysetops.unique(y_true)) # multi-classes if nb_classes > 2: total_samples = nb_classes * len(y_true) indices = np.arange(0, total_samples, nb_classes) + y_true y_true = np.zeros(total_samples, dtype=np.int) y_true[indices] = 1 # ====== check weights ====== # if sample_weight is not None: if len(sample_weight) != len(y_score): raise ValueError("Provided `sample_weight` for %d samples, but got " "scores for %d samples." % (len(sample_weight), len(y_score))) else: sample_weight = np.ones(shape=(len(y_score),), dtype=y_score.dtype) # ====== processing ====== # if pos_label is not None: y_true = (y_true == pos_label).astype(np.int) # ====== start ====== # sorted_ndx = np.argsort(y_score, kind='mergesort') y_true = y_true[sorted_ndx] # sort the weights also, dont forget this sample_weight = sample_weight[sorted_ndx] tgt_weights = sample_weight * y_true imp_weights = sample_weight * (1 - y_true) # FNR Pmiss = np.cumsum(tgt_weights) / np.sum(tgt_weights) # FPR Pfa = 1 - np.cumsum(imp_weights) / np.sum(imp_weights) return Pfa, Pmiss
{ "repo_name": "imito/odin", "path": "odin/backend/metrics.py", "copies": "1", "size": "22119", "license": "mit", "hash": 2755289892301110000, "line_mean": 35.6208609272, "line_max": 80, "alpha_frac": 0.6299561463, "autogenerated": false, "ratio": 3.4615023474178406, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9553876409324839, "avg_score": 0.0075164168786003875, "num_lines": 604 }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import tensorflow_fold as td from tensorflow import convert_to_tensor as to_T from models_clevr.nmn3_netgen_att import AttentionSeq2Seq from models_clevr.nmn3_modules import Modules from models_clevr.nmn3_assembler import INVALID_EXPR from util.cnn import fc_layer as fc, conv_layer as conv class NMN3Model: def __init__(self, image_feat_grid, text_seq_batch, seq_length_batch, T_decoder, num_vocab_txt, embed_dim_txt, num_vocab_nmn, embed_dim_nmn, lstm_dim, num_layers, assembler, encoder_dropout, decoder_dropout, decoder_sampling, num_choices, use_gt_layout=None, gt_layout_batch=None, scope='neural_module_network', reuse=None): with tf.variable_scope(scope, reuse=reuse): # Part 0: Visual feature from CNN self.image_feat_grid = image_feat_grid # Part 1: Seq2seq RNN to generate module layout tokensa with tf.variable_scope('layout_generation'): att_seq2seq = AttentionSeq2Seq(text_seq_batch, seq_length_batch, T_decoder, num_vocab_txt, embed_dim_txt, num_vocab_nmn, embed_dim_nmn, lstm_dim, num_layers, assembler, encoder_dropout, decoder_dropout, decoder_sampling, use_gt_layout, gt_layout_batch) self.att_seq2seq = att_seq2seq predicted_tokens = att_seq2seq.predicted_tokens token_probs = att_seq2seq.token_probs word_vecs = att_seq2seq.word_vecs neg_entropy = att_seq2seq.neg_entropy self.atts = att_seq2seq.atts self.predicted_tokens = predicted_tokens self.token_probs = token_probs self.word_vecs = word_vecs self.neg_entropy = neg_entropy # log probability of each generated sequence self.log_seq_prob = tf.reduce_sum(tf.log(token_probs), axis=0) # Part 2: Neural Module Network with tf.variable_scope('layout_execution'): modules = Modules(image_feat_grid, word_vecs, num_choices) self.modules = modules # Recursion of modules att_shape = image_feat_grid.get_shape().as_list()[1:-1] + [1] # Forward declaration of module recursion att_expr_decl = td.ForwardDeclaration(td.PyObjectType(), td.TensorType(att_shape)) # _Scene case_scene = td.Record([('time_idx', td.Scalar(dtype='int32')), ('batch_idx', td.Scalar(dtype='int32'))]) case_scene = case_scene >> td.Function(modules.SceneModule) # _Find case_find = td.Record([('time_idx', td.Scalar(dtype='int32')), ('batch_idx', td.Scalar(dtype='int32'))]) case_find = case_find >> td.Function(modules.FindModule) # _Filter case_filter = td.Record([('input_0', att_expr_decl()), ('time_idx', td.Scalar(dtype='int32')), ('batch_idx', td.Scalar(dtype='int32'))]) case_filter = case_filter >> td.Function(modules.FilterModule) # _FindSameProperty case_find_same_property = td.Record([('input_0', att_expr_decl()), ('time_idx', td.Scalar(dtype='int32')), ('batch_idx', td.Scalar(dtype='int32'))]) case_find_same_property = case_find_same_property >> \ td.Function(modules.FindSamePropertyModule) # _Transform case_transform = td.Record([('input_0', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_transform = case_transform >> td.Function(modules.TransformModule) # _And case_and = td.Record([('input_0', att_expr_decl()), ('input_1', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_and = case_and >> td.Function(modules.AndModule) # _Or case_or = td.Record([('input_0', att_expr_decl()), ('input_1', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_or = case_or >> td.Function(modules.OrModule) # _Exist case_exist = td.Record([('input_0', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_exist = case_exist >> td.Function(modules.ExistModule) # _Count case_count = td.Record([('input_0', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_count = case_count >> td.Function(modules.CountModule) # _EqualNum case_equal_num = td.Record([('input_0', att_expr_decl()), ('input_1', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_equal_num = case_equal_num >> td.Function(modules.EqualNumModule) # _MoreNum case_more_num = td.Record([('input_0', att_expr_decl()), ('input_1', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_more_num = case_more_num >> td.Function(modules.MoreNumModule) # _LessNum case_less_num = td.Record([('input_0', att_expr_decl()), ('input_1', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_less_num = case_less_num >> td.Function(modules.LessNumModule) # _SameProperty case_same_property = td.Record([('input_0', att_expr_decl()), ('input_1', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_same_property = case_same_property >> \ td.Function(modules.SamePropertyModule) # _Describe case_describe = td.Record([('input_0', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_describe = case_describe >> \ td.Function(modules.DescribeModule) recursion_cases = td.OneOf(td.GetItem('module'), { '_Scene': case_scene, '_Find': case_find, '_Filter': case_filter, '_FindSameProperty': case_find_same_property, '_Transform': case_transform, '_And': case_and, '_Or': case_or}) att_expr_decl.resolve_to(recursion_cases) # For invalid expressions, define a dummy answer # so that all answers have the same form dummy_scores = td.Void() >> td.FromTensor(np.zeros(num_choices, np.float32)) output_scores = td.OneOf(td.GetItem('module'), { '_Exist': case_exist, '_Count': case_count, '_EqualNum': case_equal_num, '_MoreNum': case_more_num, '_LessNum': case_less_num, '_SameProperty': case_same_property, '_Describe': case_describe, INVALID_EXPR: dummy_scores}) # compile and get the output scores self.compiler = td.Compiler.create(output_scores) self.scores = self.compiler.output_tensors[0] # Regularization: Entropy + L2 self.entropy_reg = tf.reduce_mean(neg_entropy) module_weights = [v for v in tf.trainable_variables() if (scope in v.op.name and v.op.name.endswith('weights'))] self.l2_reg = tf.add_n([tf.nn.l2_loss(v) for v in module_weights])
{ "repo_name": "ronghanghu/n2nmn", "path": "models_clevr/nmn3_model.py", "copies": "1", "size": "9336", "license": "bsd-2-clause", "hash": -6509452412698723000, "line_mean": 55.2409638554, "line_max": 98, "alpha_frac": 0.469151671, "autogenerated": false, "ratio": 4.414184397163121, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.538333606816312, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import tensorflow_fold as td from tensorflow import convert_to_tensor as to_T # the number of attention input to each module _module_input_num = {'_Find': 0, '_Transform': 1, '_And': 2, '_Filter': 1, '_Answer': 1} _module_output_type = {'_Find': 'att', '_Transform': 'att', '_And': 'att', '_Filter': 'att', '_Answer': 'ans'} INVALID_EXPR = 'INVALID_EXPR' class Assembler: def __init__(self, module_vocab_file): # read the module list, and record the index of each module and <eos> with open(module_vocab_file) as f: self.module_names = [s.strip() for s in f.readlines()] # find the index of <eos> for n_s in range(len(self.module_names)): if self.module_names[n_s] == '<eos>': self.EOS_idx = n_s break # build a dictionary from module name to token index self.name2idx_dict = {name: n_s for n_s, name in enumerate(self.module_names)} def module_list2tokens(self, module_list, T=None): layout_tokens = [self.name2idx_dict[name] for name in module_list] if T is not None: if len(module_list) >= T: raise ValueError('Not enough time steps to add <eos>') layout_tokens += [self.EOS_idx]*(T-len(module_list)) return layout_tokens def _layout_tokens2str(self, layout_tokens): return ' '.join([self.module_names[idx] for idx in layout_tokens]) def _invalid_expr(self, layout_tokens, error_str): return {'module': INVALID_EXPR, 'expr_str': self._layout_tokens2str(layout_tokens), 'error': error_str} def _assemble_layout_tokens(self, layout_tokens, batch_idx): # All modules takes a time_idx as the index from LSTM hidden states # (even if it doesn't need it, like _And), and different arity of # attention inputs. The output type can be either attention or answer # # The final assembled expression for each instance is as follows: # expr_type := # {'module': '_Find', 'output_type': 'att', 'time_idx': idx} # | {'module': '_Transform', 'output_type': 'att', 'time_idx': idx, # 'inputs_0': <expr_type>} # | {'module': '_And', 'output_type': 'att', 'time_idx': idx, # 'inputs_0': <expr_type>, 'inputs_1': <expr_type>)} # | {'module': '_Answer', 'output_type': 'ans', 'time_idx': idx, # 'inputs_0': <expr_type>} # | {'module': INVALID_EXPR, 'expr_str': '...', 'error': '...', # 'assembly_loss': <float32>} (for invalid expressions) # # A valid layout must contain <eos>. Assembly fails if it doesn't. if not np.any(layout_tokens == self.EOS_idx): return self._invalid_expr(layout_tokens, 'cannot find <eos>') # Decoding Reverse Polish Notation with a stack decoding_stack = [] for t in range(len(layout_tokens)): # decode a module/operation module_idx = layout_tokens[t] if module_idx == self.EOS_idx: break module_name = self.module_names[module_idx] expr = {'module': module_name, 'output_type': _module_output_type[module_name], 'time_idx': t, 'batch_idx': batch_idx} input_num = _module_input_num[module_name] # Check if there are enough input in the stack if len(decoding_stack) < input_num: # Invalid expression. Not enough input. return self._invalid_expr(layout_tokens, 'not enough input for ' + module_name) # Get the input from stack for n_input in range(input_num-1, -1, -1): stack_top = decoding_stack.pop() if stack_top['output_type'] != 'att': # Invalid expression. Input must be attention return self._invalid_expr(layout_tokens, 'input incompatible for ' + module_name) expr['input_%d' % n_input] = stack_top decoding_stack.append(expr) # After decoding the reverse polish expression, there should be exactly # one expression in the stack if len(decoding_stack) != 1: return self._invalid_expr(layout_tokens, 'final stack size not equal to 1 (%d remains)' % len(decoding_stack)) result = decoding_stack[0] # The result type should be answer, not attention if result['output_type'] != 'ans': return self._invalid_expr(layout_tokens, 'result type must be ans, not att') return result def assemble(self, layout_tokens_batch): # layout_tokens_batch is a numpy array with shape [T, N], # containing module tokens and <eos>, in Reverse Polish Notation. _, N = layout_tokens_batch.shape expr_list = [self._assemble_layout_tokens(layout_tokens_batch[:, n], n) for n in range(N)] expr_validity = np.array([expr['module'] != INVALID_EXPR for expr in expr_list], np.bool) return expr_list, expr_validity
{ "repo_name": "ronghanghu/n2nmn", "path": "models_shapes/nmn3_assembler.py", "copies": "1", "size": "5457", "license": "bsd-2-clause", "hash": -3211805029516441600, "line_mean": 44.475, "line_max": 122, "alpha_frac": 0.557265897, "autogenerated": false, "ratio": 3.9146341463414633, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9967320693054896, "avg_score": 0.0009158700573134569, "num_lines": 120 }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import torch from scipy.special import logsumexp from odin.backend import tensor as ts from odin.backend.tensor import _normalize_axis # =========================================================================== # Linear Algebra # =========================================================================== def matmul(x, y): """ Matrix product of two tensors This function support broadcasting. Example: (2, 3).(4, 3, 5) => (4, 2, 5) (2, 3, 4).(4, 5) => (2, 3, 5) (5, 3, 4).(5, 4, 6) => (5, 3, 6) """ if tf.is_tensor(x) or tf.is_tensor(y): return tf.matmul(x, y) if torch.is_tensor(x) or torch.is_tensor(y): return torch.matmul(x, y) return np.matmul(x, y) # =========================================================================== # Normalization # =========================================================================== def length_norm(x, axis=-1, epsilon=1e-12, ord=2): """ L2-normalization (or vector unit length normalization) Parameters ---------- x : array axis : int ord : int order of norm (1 for L1-norm, 2 for Frobenius or Euclidean) """ ord = int(ord) if ord not in (1, 2): raise ValueError( "only support `ord`: 1 for L1-norm; 2 for Frobenius or Euclidean") if ord == 2: x_norm = tf.sqrt( tf.maximum(tf.reduce_sum(x**2, axis=axis, keepdims=True), epsilon)) else: x_norm = tf.maximum(tf.reduce_sum(tf.abs(x), axis=axis, keepdims=True), epsilon) return x / x_norm def calc_white_mat(X): """ calculates the whitening transformation for cov matrix X """ return tf.linalg.cholesky(tf.linalg.inv(X)) def log_norm(x, axis=1, scale_factor=10000, eps=1e-8): """ Seurat log-normalize y = log(X / (sum(X, axis) + epsilon) * scale_factor) where `log` is natural logarithm """ eps = tf.cast(eps, x.dtype) return tf.math.log1p(x / (tf.reduce_sum(x, axis=axis, keepdims=True) + eps) * scale_factor) def delog_norm(x, x_sum=1, scale_factor=10000): """ This perform de-log normalization of `log_norm` values if `x_sum` is not given (i.e. default value 1), then all the """ return (tf.exp(x) - 1) / scale_factor * (x_sum + EPS) # =========================================================================== # Activation function # =========================================================================== def softmax(x, axis=-1): """ `f(x) = exp(x_i) / sum_j(exp(x_j))` """ if tf.is_tensor(x): return tf.nn.softmax(x, axis=axis) if torch.is_tensor(x): return torch.nn.functional.softmax(x, dim=axis) return tf.nn.softmax(x, axis=axis).numpy() def softmin(x, axis=None): """ `f(x) = exp(-x_i) / sum_j(exp(-x_j))` """ if torch.is_tensor(x): return torch.softmin(x, dim=axis) return softmax(-x, axis=axis) def relu(x): """ `f(x) = max(x, 0)` """ if tf.is_tensor(x): return tf.nn.relu(x) if torch.is_tensor(x): return torch.relu(x) return np.max(x, 0) def selu(x): """ `f(x) = scale * [max(0, x) + min(0, alpha*(exp(x)-1))]` where: scale = ~1.0507 alpha = ~1.6733 chose by solving Eq.(4) and Eq.(5), with the fixed point `(mean, variance) = (0, 1)`, which is typical for activation normalization. Reference --------- [1] Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S., 2017. Self-Normalizing Neural Networks. arXiv:1706.02515 [cs, stat]. """ if tf.is_tensor(x): return tf.nn.selu(x) if torch.is_tensor(x): return torch.nn.functional.selu(x) scale = 1.0507009873554804934193349852946 alpha = 1.6732632423543772848170429916717 return scale * (np.maximum(x, 0) + np.minimum(alpha * (np.exp(x) - 1), 0)) def tanh(x): """ `f(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))` """ if tf.is_tensor(x): return tf.math.tanh(x) if torch.is_tensor(x): return torch.tanh(x) return np.tanh(x) def softsign(x): """ `f(x) = x / (1 + |x|)`""" if tf.is_tensor(x): return tf.math.softsign(x) if torch.is_tensor(x): return torch.nn.functional.softsign(x) return x / (1 + np.abs(x)) def softplus(x, beta=1, threshold=20): """ `f(x) = 1/beta * log(exp(beta * x) + 1)` threshold : values above this revert to a linear function """ if tf.is_tensor(x): mask = (x * beta) > threshold beta = tf.cast(beta, dtype=x.dtype) return tf.where(mask, x, 1 / beta * tf.nn.softplus(x * beta)) if torch.is_tensor(x): return torch.nn.functional.softplus(x, beta=beta, threshold=threshold) return torch.nn.functional.softplus(torch.from_numpy(x), beta=beta, threshold=threshold).numpy() def sigmoid(x): if tf.is_tensor(x): return tf.math.sigmoid(x) if torch.is_tensor(x): return torch.sigmoid(x) return 1 / (1 + np.exp(-x)) def mish(x, beta=1, threshold=20): """ Mish: A Self Regularized Non-Monotonic Neural Activation Function `f(x) = x * tanh(softplus(x))` Reference --------- [1] Misra, D., 2019. Mish: A Self Regularized Non-Monotonic Neural Activation Function. arXiv:1908.08681 [cs, stat]. """ return x * tanh(softplus(x, beta=beta, threshold=threshold)) def swish(x): """ Swish: smooth, non-monotonic function `f(x) = x * sigmoid(x)` """ return x * sigmoid(x) # =========================================================================== # Math # =========================================================================== def sqrt(x): if tf.is_tensor(x): return tf.math.sqrt(x) if torch.is_tensor(x): return torch.sqrt(x) return np.sqrt(x) def power(x, exponent): if tf.is_tensor(x): return tf.math.pow(x, exponent) if torch.is_tensor(x): return x.pow(exponent) return np.power(x, exponent) def square(x): if tf.is_tensor(x): return tf.math.square(x) if torch.is_tensor(x): return torch.mul(x, x) return np.square(x) def renorm_rms(X, axis=1, target_rms=1.0): """ Scales the data such that RMS of the features dimension is 1.0 scale = sqrt(x^t x / (D * target_rms^2)). NOTE ---- by defaults, assume the features dimension is `1` """ D = sqrt(X.shape[axis]) D = ts.cast(D, X.dtype) l2norm = sqrt(ts.reduce_sum(X**2, axis=axis, keepdims=True)) X_rms = l2norm / D X_rms = ts.where(ts.equal(X_rms, 0.), x=ts.ones_like(X_rms, dtype=X_rms.dtype), y=X_rms) return target_rms * X / X_rms # =========================================================================== # Statistics and reduction # =========================================================================== def _torch_axis(x, axis): if axis is None: axis = list(range(x.ndim)) return axis def moments(x, axis=None, keepdims=False): """ Calculates the mean and variance of `x`. The mean and variance are calculated by aggregating the contents of `x` across `axes`. If `x` is 1-D and `axes = [0]` this is just the mean and variance of a vector. """ if tf.is_tensor(x): mean, variance = tf.nn.moments(x, axes=axis, keepdims=keepdims) elif torch.is_tensor(x): mean = reduce_mean(x, axis=axis, keepdims=True) devs_squared = (x - mean)**2 variance = reduce_mean(devs_squared, axis=axis, keepdims=keepdims) if not keepdims: mean = mean.squeeze(axis) else: mean = np.mean(x, axis=axis, keepdims=keepdims) variance = np.var(x, axis=axis, keepdims=keepdims) return mean, variance def reduce_var(x, axis=None, keepdims=False, mean=None): """ Calculate the variance of `x` along given `axis` if `mean` is given, """ if isinstance(x, np.ndarray): return np.var(x, axis=axis, keepdims=keepdims) ndim = x.ndim axis = _normalize_axis(axis, ndim) m = reduce_mean(x, axis=axis, keepdims=True) if mean is None else mean devs_squared = (x - m)**2 return reduce_mean(devs_squared, axis=axis, keepdims=keepdims) def reduce_std(x, axis=None, keepdims=False): return sqrt(reduce_var(x, axis=axis, keepdims=keepdims)) def reduce_min(x, axis=None, keepdims=False): if tf.is_tensor(x): return tf.reduce_min(x, axis=axis, keepdims=keepdims) if torch.is_tensor(x): return x.min(dim=_torch_axis(x, axis), keepdim=keepdims)[0] return np.min(x, axis=axis, keepdims=keepdims) def reduce_max(x, axis=None, keepdims=False): if tf.is_tensor(x): return tf.reduce_max(x, axis=axis, keepdims=keepdims) if torch.is_tensor(x): return x.max(dim=_torch_axis(x, axis), keepdim=keepdims)[0] return np.max(x, axis=axis, keepdims=keepdims) def reduce_mean(x, axis=None, keepdims=False): if tf.is_tensor(x): return tf.reduce_mean(x, axis=axis, keepdims=keepdims) if torch.is_tensor(x): return x.mean(dim=_torch_axis(x, axis), keepdim=keepdims) return np.mean(x, axis=axis, keepdims=keepdims) def reduce_sum(x, axis=None, keepdims=False): if tf.is_tensor(x): return tf.reduce_sum(x, axis=axis, keepdims=keepdims) if torch.is_tensor(x): return x.sum(dim=_torch_axis(x, axis), keepdim=keepdims) return np.sum(x, axis=axis, keepdims=keepdims) def reduce_prod(x, axis=None, keepdims=False): if tf.is_tensor(x): return tf.reduce_prod(x, axis=axis, keepdims=keepdims) if torch.is_tensor(x): return x.prod(dim=_torch_axis(x, axis), keepdim=keepdims) return np.prod(x, axis=axis, keepdims=keepdims) def reduce_all(x, axis=None, keepdims=False): if tf.is_tensor(x): return tf.reduce_all(tf.cast(x, tf.bool), axis=axis, keepdims=keepdims) if torch.is_tensor(x): return x.bool().all(dim=_torch_axis(x, axis), keepdim=keepdims) return np.all(x, axis=axis, keepdims=keepdims) def reduce_any(x, axis=None, keepdims=False): if tf.is_tensor(x): return tf.reduce_any(tf.cast(x, tf.bool), axis=axis, keepdims=keepdims) if torch.is_tensor(x): return x.bool().any(dim=_torch_axis(x, axis), keepdim=keepdims) return np.any(x, axis=axis, keepdims=keepdims) def reduce_logsumexp(x, axis=None, keepdims=False): if tf.is_tensor(x): return tf.reduce_logsumexp(x, axis=axis, keepdims=keepdims) if torch.is_tensor(x): return x.logsumexp(dim=_torch_axis(x, axis), keepdim=keepdims) return logsumexp(x, axis=axis, keepdims=keepdims) def reduce_logexp(x, reduction_function=tf.reduce_mean, axis=None, name=None): """ log-reduction-exp over axis to avoid overflow and underflow Parameters ---------- `x` : [nb_sample, feat_dim] `axis` should be features dimension """ with tf.name_scope(name, "logreduceexp"): x_max = tf.reduce_max(x, axis=axis, keepdims=True) y = tf.log(reduction_function(tf.exp(x - x_max), axis=axis, keepdims=True)) + x_max return tf.squeeze(y) def cumsum(x, axis): if tf.is_tensor(x): return tf.math.cumsum(x, axis=axis) if torch.is_tensor(x): return torch.cumsum(x, dim=_torch_axis(x, axis)) return np.cumsum(x, axis=axis) # =========================================================================== # Conversion # =========================================================================== def to_llh(x, name=None): ''' Convert a matrix of probabilities into log-likelihood :math:`LLH = log(prob(data|target))` ''' with tf.name_scope(name, "log_likelihood", [x]): x /= tf.reduce_sum(x, axis=-1, keepdims=True) x = tf.clip_by_value(x, EPS, 1 - EPS) return tf.log(x) def to_llr(x, name=None): ''' Convert a matrix of probabilities into log-likelihood ratio :math:`LLR = log(\\frac{prob(data|target)}{prob(data|non-target)})` ''' with tf.name_scope(name, "log_likelihood_ratio", [x]): nb_classes = x.shape.as_list()[-1] new_arr = [] for j in range(nb_classes): scores_copy = tf.transpose( tf.gather(tf.transpose(x), [i for i in range(nb_classes) if i != j])) scores_copy -= tf.expand_dims(x[:, j], axis=-1) new_arr.append(-logsumexp(scores_copy, 1)) return tf.concat(new_arr, axis=-1) + np.log(13) def to_sample_weights(indices, weights, name=None): """ Convert indices or one-hot matrix and give weights to sample weights for training """ with tf.name_scope(name, "to_sample_weights", [indices]): # ====== preprocess indices ====== # ndim = len(indices.shape) if ndim <= 1: # indices vector indices = tf.cast(indices, dtype=tf.int64) else: indices = tf.argmax(indices, axis=-1) # ====== prior weights ====== # if isinstance(weights, (tuple, list, np.ndarray)): prior_weights = tf.constant(weights, dtype=floatX, name="prior_weights") # ====== sample weights ====== # weights = tf.gather(prior_weights, indices) return weights
{ "repo_name": "imito/odin", "path": "odin/backend/maths.py", "copies": "1", "size": "12730", "license": "mit", "hash": 1417662115188327700, "line_mean": 29.5275779376, "line_max": 79, "alpha_frac": 0.589316575, "autogenerated": false, "ratio": 3.0696889317578973, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.910690229690122, "avg_score": 0.010420641971335276, "num_lines": 417 }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf # components from tensorflow.python.ops.nn import dropout as drop from util.cnn import conv_layer as conv from util.cnn import conv_relu_layer as conv_relu from util.cnn import pooling_layer as pool from util.cnn import fc_layer as fc from util.cnn import fc_relu_layer as fc_relu channel_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32) def vgg_pool5(input_batch, name, reuse=None): with tf.variable_scope(name, reuse=reuse): # layer 1 conv1_1 = conv_relu('conv1_1', input_batch, kernel_size=3, stride=1, output_dim=64) conv1_2 = conv_relu('conv1_2', conv1_1, kernel_size=3, stride=1, output_dim=64) pool1 = pool('pool1', conv1_2, kernel_size=2, stride=2) # layer 2 conv2_1 = conv_relu('conv2_1', pool1, kernel_size=3, stride=1, output_dim=128) conv2_2 = conv_relu('conv2_2', conv2_1, kernel_size=3, stride=1, output_dim=128) pool2 = pool('pool2', conv2_2, kernel_size=2, stride=2) # layer 3 conv3_1 = conv_relu('conv3_1', pool2, kernel_size=3, stride=1, output_dim=256) conv3_2 = conv_relu('conv3_2', conv3_1, kernel_size=3, stride=1, output_dim=256) conv3_3 = conv_relu('conv3_3', conv3_2, kernel_size=3, stride=1, output_dim=256) pool3 = pool('pool3', conv3_3, kernel_size=2, stride=2) # layer 4 conv4_1 = conv_relu('conv4_1', pool3, kernel_size=3, stride=1, output_dim=512) conv4_2 = conv_relu('conv4_2', conv4_1, kernel_size=3, stride=1, output_dim=512) conv4_3 = conv_relu('conv4_3', conv4_2, kernel_size=3, stride=1, output_dim=512) pool4 = pool('pool4', conv4_3, kernel_size=2, stride=2) # layer 5 conv5_1 = conv_relu('conv5_1', pool4, kernel_size=3, stride=1, output_dim=512) conv5_2 = conv_relu('conv5_2', conv5_1, kernel_size=3, stride=1, output_dim=512) conv5_3 = conv_relu('conv5_3', conv5_2, kernel_size=3, stride=1, output_dim=512) pool5 = pool('pool5', conv5_3, kernel_size=2, stride=2) return pool5
{ "repo_name": "ronghanghu/n2nmn", "path": "models_clevr/vgg_net.py", "copies": "1", "size": "2502", "license": "bsd-2-clause", "hash": -3425599510829359000, "line_mean": 45.3333333333, "line_max": 69, "alpha_frac": 0.553157474, "autogenerated": false, "ratio": 3.171102661596958, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4224260135596958, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import exp as exp_bijector from tensorflow_probability.python.distributions import ( NegativeBinomial, Normal, QuantizedDistribution, TransformedDistribution, Uniform) from tensorflow_probability.python.internal import dtype_util __all__ = ["qUniform", "qNormal"] class qNormal(QuantizedDistribution): def __init__(self, loc=0., scale=1., min_value=None, max_value=None, validate_args=False, allow_nan_stats=True, name="qNormal"): super(qNormal, self).__init__(distribution=Normal(loc=loc, scale=scale, validate_args=validate_args, allow_nan_stats=allow_nan_stats), low=min_value, high=max_value, name=name) class qUniform(QuantizedDistribution): def __init__(self, low=0., high=1., min_value=None, max_value=None, validate_args=False, allow_nan_stats=True, name="qUniform"): super(qUniform, self).__init__(distribution=Uniform(low=low, high=high, validate_args=validate_args, allow_nan_stats=allow_nan_stats), low=min_value, high=max_value, name=name)
{ "repo_name": "imito/odin", "path": "odin/bay/distributions/quantized.py", "copies": "1", "size": "1797", "license": "mit", "hash": 6858980939219588000, "line_mean": 34.2352941176, "line_max": 79, "alpha_frac": 0.4830272677, "autogenerated": false, "ratio": 4.923287671232877, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5906314938932877, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import theano import theano.tensor as T class Optimizer(object): def __init__(self, lr_init=1e-3): self.lr = theano.shared( np.asarray(lr_init, dtype=theano.config.floatX), borrow=True) def set_learning_rate(self, lr): self.lr.set_value(np.asarray(lr, dtype=theano.config.floatX)) def mult_learning_rate(self, factor=0.5): new_lr = self.lr.get_value() * factor self.lr.set_value(np.asarray(new_lr, dtype=theano.config.floatX)) print(' * change learning rate to %.2e' % (new_lr)) def get_updates_cost(self, cost, params, scheme='nadam'): if scheme == 'adagrad': updates = self.get_updates_adagrad(cost, params) elif scheme == 'adadelta': updates = self.get_updates_adadelta(cost, params) elif scheme == 'rmsprop': updates = self.get_updates_rmsprop(cost, params) elif scheme == 'adam': updates = self.get_updates_adam(cost, params) elif scheme == 'nadam': updates = self.get_updates_nadam(cost, params) elif scheme == 'sgd': # updates = self.get_updates_sgd_momentum(cost, params) updates = self.get_updates_sgd_momentum( cost, params, grad_clip=0.01) else: raise ValueError( 'Select the proper scheme: ' 'adagrad / adadelta / rmsprop / adam / nadam / sgd') return updates def get_updates_adagrad(self, cost, params, eps=1e-8): lr = self.lr print(' - Adagrad: lr = %.2e' % (lr.get_value(borrow=True))) grads = T.grad(cost, params) updates = [] for p, g in zip(params, grads): value = p.get_value(borrow=True) accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=p.broadcastable) accu_new = accu + g ** 2 new_p = p - (lr * g / T.sqrt(accu_new + eps)) updates.append((accu, accu_new)) updates.append((p, new_p)) return updates def get_updates_adadelta(self, cost, params, rho=0.95, eps=1e-6): lr = self.lr print(' - Adadelta: lr = %.2e' % (lr.get_value(borrow=True))) one = T.constant(1.) grads = T.grad(cost, params) updates = [] for p, g in zip(params, grads): value = p.get_value(borrow=True) # accu: accumulate gradient magnitudes accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=p.broadcastable) # delta_accu: accumulate update magnitudes (recursively!) delta_accu = theano.shared( np.zeros(value.shape, dtype=value.dtype), broadcastable=p.broadcastable) # update accu (as in rmsprop) accu_new = rho * accu + (one - rho) * g ** 2 updates.append((accu, accu_new)) # compute parameter update, using the 'old' delta_accu update = (g * T.sqrt(delta_accu + eps) / T.sqrt(accu_new + eps)) new_param = p - lr * update updates.append((p, new_param)) # update delta_accu (as accu, but accumulating updates) delta_accu_new = rho * delta_accu + (one - rho) * update ** 2 updates.append((delta_accu, delta_accu_new)) return updates def get_updates_rmsprop(self, cost, params, rho=0.9, eps=1e-8): lr = self.lr print(' - RMSprop: lr = %.2e' % (lr.get_value(borrow=True))) one = T.constant(1.) grads = T.grad(cost=cost, wrt=params) updates = [] for p, g in zip(params, grads): value = p.get_value(borrow=True) accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=p.broadcastable) accu_new = rho * accu + (one - rho) * g ** 2 gradient_scaling = T.sqrt(accu_new + eps) g = g / gradient_scaling updates.append((accu, accu_new)) updates.append((p, p - lr * g)) return updates def get_updates_adam(self, cost, params, beta1=0.9, beta2=0.999, epsilon=1e-8): """ Adam optimizer. Parameters ---------- lr: float >= 0. Learning rate. beta1/beta2: floats, 0 < beta < 1. Generally close to 1. epsilon: float >= 0. References ---------- [1] Adam - A Method for Stochastic Optimization [2] Lasage: https://github.com/Lasagne/Lasagne/blob/master/lasagne/updates.py """ lr = self.lr print(' - Adam: lr = %.2e' % (lr.get_value(borrow=True))) one = T.constant(1.) self.iterations = theano.shared( np.asarray(0., dtype=theano.config.floatX), borrow=True) grads = T.grad(cost, params) updates = [(self.iterations, self.iterations + 1)] t = self.iterations + 1. lr_t = lr * (T.sqrt(one - beta2 ** t) / (one - beta1 ** t)) for p, g in zip(params, grads): p_val = p.get_value(borrow=True) m = theano.shared(np.zeros(p_val.shape, dtype=p_val.dtype), broadcastable=p.broadcastable) v = theano.shared(np.zeros(p_val.shape, dtype=p_val.dtype), broadcastable=p.broadcastable) m_t = (beta1 * m) + (one - beta1) * g v_t = (beta2 * v) + (one - beta2) * g ** 2 p_t = p - lr_t * m_t / (T.sqrt(v_t) + epsilon) updates.append((m, m_t)) updates.append((v, v_t)) updates.append((p, p_t)) return updates def get_updates_nadam(self, cost, params, beta1=0.9, beta2=0.999, epsilon=1e-8, schedule_decay=0.004): """ Nesterov Adam. Keras implementation. Much like Adam is essentially RMSprop with momentum, Nadam is Adam RMSprop with Nesterov momentum. Parameters ---------- lr: float >= 0. Learning rate. beta1/beta2: floats, 0 < beta < 1. Generally close to 1. epsilon: float >= 0. References ---------- [1] Nadam report - http://cs229.stanford.edu/proj2015/054_report.pdf [2] On the importance of initialization and momentum in deep learning - http://www.cs.toronto.edu/~fritz/absps/momentum.pdf """ lr = self.lr print(' - Nesterov Adam: lr = %.2e' % (lr.get_value(borrow=True))) one = T.constant(1.) self.iterations = theano.shared( np.asarray(0., dtype=theano.config.floatX), borrow=True) self.m_schedule = theano.shared( np.asarray(1., dtype=theano.config.floatX), borrow=True) self.beta1 = theano.shared( np.asarray(beta1, dtype=theano.config.floatX), borrow=True) self.beta2 = theano.shared( np.asarray(beta2, dtype=theano.config.floatX), borrow=True) self.schedule_decay = schedule_decay grads = T.grad(cost, params) updates = [(self.iterations, self.iterations + 1)] t = self.iterations + 1. # Due to the recommendations in [2], i.e. warming momentum schedule momentum_cache_t = self.beta1 * ( one - 0.5 * (T.pow(0.96, t * self.schedule_decay))) momentum_cache_t_1 = self.beta1 * ( one - 0.5 * (T.pow(0.96, (t + 1.) * self.schedule_decay))) m_schedule_new = self.m_schedule * momentum_cache_t m_schedule_next = (self.m_schedule * momentum_cache_t * momentum_cache_t_1) updates.append((self.m_schedule, m_schedule_new)) for p, g in zip(params, grads): p_val = p.get_value(borrow=True) m = theano.shared(np.zeros(p_val.shape, dtype=p_val.dtype), broadcastable=p.broadcastable) v = theano.shared(np.zeros(p_val.shape, dtype=p_val.dtype), broadcastable=p.broadcastable) # the following equations given in [1] g_prime = g / (one - m_schedule_new) m_t = self.beta1 * m + (one - self.beta1) * g m_t_prime = m_t / (one - m_schedule_next) v_t = self.beta2 * v + (one - self.beta2) * g ** 2 v_t_prime = v_t / (one - T.pow(self.beta2, t)) m_t_bar = ((one - momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime) updates.append((m, m_t)) updates.append((v, v_t)) p_t = p - self.lr * m_t_bar / (T.sqrt(v_t_prime) + epsilon) updates.append((p, p_t)) return updates def get_updates_sgd_momentum(self, cost, params, decay_mode=None, decay=0., momentum=0.9, nesterov=False, grad_clip=None, constant_clip=True): print(' - SGD: lr = %.2e' % (self.lr.get_value(borrow=True)), end='') print(', decay = %.2f' % (decay), end='') print(', momentum = %.2f' % (momentum), end='') print(', nesterov =', nesterov, end='') print(', grad_clip =', grad_clip) self.grad_clip = grad_clip self.constant_clip = constant_clip self.iterations = theano.shared( np.asarray(0., dtype=theano.config.floatX), borrow=True) # lr = self.lr_float lr = self.lr * (1.0 / (1.0 + decay * self.iterations)) # lr = self.lr * (decay ** T.floor(self.iterations / decay_step)) updates = [(self.iterations, self.iterations + 1.)] # Get gradients and apply clipping if self.grad_clip is None: grads = T.grad(cost, params) else: assert self.grad_clip > 0 if self.constant_clip: # Constant clipping using theano.gradient.grad_clip clip = self.grad_clip grads = T.grad( theano.gradient.grad_clip(cost, -clip, clip), params) else: # Adaptive clipping clip = self.grad_clip / lr grads_ = T.grad(cost, params) grads = [T.clip(g, -clip, clip) for g in grads_] for p, g in zip(params, grads): # v_prev = theano.shared(p.get_value(borrow=True) * 0.) p_val = p.get_value(borrow=True) v_prev = theano.shared(np.zeros(p_val.shape, dtype=p_val.dtype), broadcastable=p.broadcastable) v = momentum * v_prev - lr * g updates.append((v_prev, v)) if nesterov: new_p = p + momentum * v - lr * g else: new_p = p + v updates.append((p, new_p)) return updates
{ "repo_name": "jongyookim/IQA_BIECON_release", "path": "IQA_BIECON_release/optimizer.py", "copies": "1", "size": "11117", "license": "mit", "hash": 8556638613956893000, "line_mean": 37.4671280277, "line_max": 79, "alpha_frac": 0.5225330575, "autogenerated": false, "ratio": 3.5483562081072453, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45708892656072453, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import time from numpy.core.umath_tests import inner1d from distributed import Client from distributed.utils_test import cluster, loop from dask_patternsearch import search def sphere(x): """Minimum at 0""" return x.dot(x) def sphere_p1(x): """Minimum at 0.1""" x = x - 0.1 return x.dot(x) def sphere_vectorized(Xs): """Vecterized version of sphere""" return inner1d(Xs, Xs) def test_convergence_2d_simple(loop): with cluster() as (s, [a, b]): with Client(s['address'], loop=loop) as client: x0 = np.array([10., 15]) stepsize = np.array([1., 1]) stopratio = 1e-2 best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere_p1, x0, stepsize, client=client, stopratio=stopratio) assert (np.abs(best.point - 0.1) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio, max_queue_size=20) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio, max_queue_size=1) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio, min_new_submit=4) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio, max_tasks=10) assert len(results) == 10 assert best.result == min(x.result for x in results) best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio, max_stencil_size=4) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio, max_stencil_size=4, min_new_submit=4) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio, batchsize=5) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) assert len(results) % 5 == 0 best, results = search(sphere_vectorized, x0, stepsize, client=client, stopratio=stopratio, batchsize=5, vectorize=True) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) assert len(results) % 5 == 0 best, results = search(sphere_vectorized, x0, stepsize, client=client, stopratio=stopratio, batchsize=5, max_tasks=2) assert best.result == min(x.result for x in results) assert len(results) == 10 def test_convergence_2d_integers(loop): with cluster() as (s, [a, b]): with Client(s['address'], loop=loop) as client: x0 = np.array([10., 15]) stepsize = np.array([1., 1]) stopratio = 1e-2 best, results = search(sphere, x0, stepsize, client=client, stopratio=stopratio, integer_dimensions=[0]) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere_p1, x0, stepsize, client=client, stopratio=stopratio, integer_dimensions=[0]) assert (np.abs(best.point - np.array([0, 0.1])) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere_p1, x0, stepsize, client=client, stopratio=stopratio, integer_dimensions=[0, 1]) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) def test_convergence_2d_serial(): x0 = np.array([10., 15]) stepsize = np.array([1., 1]) stopratio = 1e-2 best, results = search(sphere, x0, stepsize, stopratio=stopratio) assert (np.abs(best.point) < 2*stopratio).all() assert best.result == min(x.result for x in results) best, results = search(sphere_p1, x0, stepsize, stopratio=stopratio) assert (np.abs(best.point - 0.1) < 2*stopratio).all() assert best.result == min(x.result for x in results)
{ "repo_name": "eriknw/dask-patternsearch", "path": "dask_patternsearch/tests/test_search.py", "copies": "1", "size": "5313", "license": "bsd-3-clause", "hash": -630019021505689900, "line_mean": 41.504, "line_max": 103, "alpha_frac": 0.5727460945, "autogenerated": false, "ratio": 3.6793628808864267, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9705724949714767, "avg_score": 0.009276805134332015, "num_lines": 125 }
from __future__ import absolute_import, division, print_function import numpy as np __all__ = ['points_inside_poly', 'polygon_line_intersections'] def points_inside_poly(x, y, vx, vy): from matplotlib.path import Path p = Path(np.column_stack((vx, vy))) keep = ((x >= np.min(vx)) & (x <= np.max(vx)) & (y >= np.min(vy)) & (y <= np.max(vy))) inside = np.zeros(len(x), bool) x = x[keep] y = y[keep] coords = np.column_stack((x, y)) inside[keep] = p.contains_points(coords).astype(bool) return inside def polygon_line_intersections(px, py, xval=None, yval=None): """ Find all the segments of intersection between a polygon and an infinite horizontal/vertical line. The polygon is assumed to be closed. Due to numerical precision, the behavior at the edges of polygons is not always predictable, i.e. a point on the edge of a polygon may be considered inside or outside the polygon. Parameters ---------- px, py : `~numpy.ndarray` The vertices of the polygon xval : float, optional The x coordinate of the line (for vertical lines). This should only be specified if yval is not specified. yval : float, optional The y coordinate of the line (for horizontal lines). This should only be specified if xval is not specified. Returns ------- segments : list A list of segments given as tuples of coordinates along the line. """ if xval is not None and yval is not None: raise ValueError("Only one of xval or yval should be specified") elif xval is None and yval is None: raise ValueError("xval or yval should be specified") if yval is not None: return polygon_line_intersections(py, px, xval=yval) px = np.asarray(px, dtype=float) py = np.asarray(py, dtype=float) # Make sure that the polygon is closed if px[0] != px[-1] or py[0] != py[-1]: px = np.hstack([px, px[0]]) py = np.hstack([py, py[0]]) # For convenience x1, x2 = px[:-1], px[1:] y1, y2 = py[:-1], py[1:] # Vertices that intersect keep1 = (px == xval) points1 = py[keep1] # Segments (excluding vertices) that intersect keep2 = ((x1 < xval) & (x2 > xval)) | ((x2 < xval) & (x1 > xval)) points2 = (y1 + (y2 - y1) * (xval - x1) / (x2 - x1))[keep2] # Make unique and sort points = np.array(np.sort(np.unique(np.hstack([points1, points2])))) # Because of various corner cases, we don't actually know which pairs of # points are inside the polygon, so we check this using the mid-points ymid = 0.5 * (points[:-1] + points[1:]) xmid = np.repeat(xval, len(ymid)) keep = points_inside_poly(xmid, ymid, px, py) segments = list(zip(points[:-1][keep], points[1:][keep])) return segments
{ "repo_name": "saimn/glue", "path": "glue/utils/geometry.py", "copies": "1", "size": "2873", "license": "bsd-3-clause", "hash": -2218235461582738000, "line_mean": 29.5638297872, "line_max": 80, "alpha_frac": 0.6132962061, "autogenerated": false, "ratio": 3.4448441247002397, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.455814033080024, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) import numpy as np # (comments based on t_tide) # Coefficients of the formulas in the Explan. Suppl. _sc = np.array([270.434164, 13.1763965268, -0.0000850, 0.000000039]) _hc = np.array([279.696678, 0.9856473354, 0.00002267, 0.000000000]) _pc = np.array([334.329556, 0.1114040803, -0.0007739, -0.00000026]) _npc = np.array([-259.183275, 0.0529539222, -0.0001557, -0.000000050]) # First coeff was 281.220833 in Foreman but Expl. Suppl. has 44. _ppc = np.array([281.220844, 0.0000470684, 0.0000339, 0.000000070]) _coefs = np.vstack((_sc, _hc, _pc, _npc, _ppc)) def ut_astron(jd): """ Compute the astronomical variables and their time derivatives. Parameters ---------- jd : float, scalar or sequence Time (UTC) in days starting with 1 on 1 Jan. of the year 1 in the proleptic Gregorian calendar as in `datetime.date.toordinal`. Returns ------- astro : array, (6, nt) rows are tau, s, h, p, np, pp (cycles) ader : array, (6, nt) time derivatives of the above (cycles/day) Notes ----- 2-D arrays are always returned. Variables are: === ==================================================== tau lunar time s mean longitude of the moon h mean longitude of the sun p mean longitude of the lunar perigee np negative of the longitude of the mean ascending node pp mean longitude of the perihelion (solar perigee) === ==================================================== Based on UTide v1p0 9/2011 d.codiga@gso.uri.edu, which in turn came from t_tide's t_astron.m, Pawlowicz et al 2002 For more background information from t_tide, see the t_tide_doc string variable in this module. """ jd = np.atleast_1d(jd).flatten() # Shift epoch to 1899-12-31 at noon: # daten = 693961.500000000 Matlab datenum version daten = 693595.5 # Python epoch is 366 days later than Matlab's d = jd - daten D = d / 10000 args = np.vstack((np.ones(jd.shape), d, D*D, D**3)) astro = np.fmod((np.dot(_coefs, args) / 360), 1) # lunar time: fractional part of solar day # plus hour angle to longitude of sun # minus longitude of moon tau = jd % 1 + astro[1, :] - astro[0, :] astro = np.vstack((tau, astro)) # derivatives (polynomial) dargs = np.vstack((np.zeros(jd.shape), np.ones(jd.shape), 2.0e-4*D, 3.0e-4*D*D)) ader = np.dot(_coefs, dargs)/360.0 dtau = 1.0 + ader[1, :] - ader[0, :] ader = np.vstack((dtau, ader)) return astro, ader t_tide_doc = """ The following is taken verbatim from the t_tide t_astron.m file, with permission. The formulae for calculating these ephemerides (other than tau) were taken from pages 98 and 107 of the Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac (1961). They require EPHEMERIS TIME (ET), now TERRESTRIAL TIME (TT) and are based on observations made in the 1700/1800s. In a bizarre twist, the current definition of time is derived by reducing observations of planetary motions using these formulas. The current world master clock is INTERNATIONAL ATOMIC TIME (TAI). The length of the second is based on inverting the actual locations of the planets over the period 1956-65 into "time" using these formulas, and an offset added to keep the scale continuous with previous defns. Thus TT = TAI + 32.184 seconds. Universal Time UT is a time scale that is 00:00 at midnight (i.e., based on the earth's rotation rather than on planetary motions). Coordinated Universal Time (UTC) is kept by atomic clocks, the length of the second is the same as for TAI but leap seconds are inserted at intervals so that it provides UT to within 1 second. This is necessary because the period of the earth's rotation is slowly increasing (the day was exactly 86400 seconds around 1820, it is now about 2 ms longer). 22 leap seconds have been added in the last 27 years. As of 1/1/99, TAI = UTC + 32 seconds. Thus, TT = UTC + 62.184 seconds GPS time was synchronized with UTC 6/1/1980 ( = TAI - 19 secs), but is NOT adjusted for leap seconds. Your receiver might do this automatically...or it might not. Does any of this matter? The moon longitude is the fastest changing parameter at 13 deg/day. A time error of one minute implies a position error of less than 0.01 deg. This would almost always be unimportant for tidal work. The lunar time (tau) calculation requires UT as a base. UTC is close enough - an error of 1 second, the biggest difference that can occur between UT and UTC, implies a Greenwich phase error of 0.01 deg. In Doodson's definition (Proc R. Soc. A, vol 100, reprinted in International Hydrographic Review, Appendix to Circular Letter 4-H, 1954) mean lunar time is taken to begin at "lunar midnight". B. Beardsley 12/29/98, 1/11/98 R. Pawlowicz 9/1/01 Version 1.0 """
{ "repo_name": "efiring/UTide", "path": "utide/astronomy.py", "copies": "1", "size": "5044", "license": "mit", "hash": 6271385915165698000, "line_mean": 34.2727272727, "line_max": 70, "alpha_frac": 0.672482157, "autogenerated": false, "ratio": 3.2250639386189257, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43975460956189255, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) import numpy as np from .astronomy import ut_astron from . import ut_constants from . import constit_index_dict from .utilities import Bunch def ut_cnstitsel(tref, minres, incnstit, infer): """ UT_CNSTITSEL() carry out constituent selection inputs tref = reference time (datenum UTC) minres = freq separation (cph) used in decision tree incnstit = 'cnstit' input to ut_solv infer = 'opt.infer' input to ut_solv outputs nNR,nR,nI = number non-reference, reference, inferred constituents cnstit.NR.name = cellstr of 4-char names of NR constits cnstit.NR.frq = frequencies (cph) of NR constits cnstit.NR.lind = list indices (in ut_constants.mat) of NR constits cnstit.R = empty if no inference; otherwise, for each (i'th) R constit: cnstit.R{i}.name, .frq, .lind = as above, but for R constits cnstit.R{i}.I{j}.name, .frq, .lind = as above for j'th I constit coef.name = cellstr of names of all constituents (NR, R, and I) coef.aux.frq = frequencies (cph) of all constituents coef.aux.lind = list indices of all constituents coef.aux.reftime = tref UTide v1p0 9/2011 d.codiga@gso.uri.edu """ shallow = ut_constants.shallow const = ut_constants.const cnstit = Bunch() coef = Bunch() astro, ader = ut_astron(tref) ii = np.isfinite(const.ishallow) const.freq[~ii] = np.dot(const.doodson[~ii, :], ader[:, 0]) / 24 for k in ii.nonzero()[0]: ik = const.ishallow[k]+np.arange(const.nshallow[k]) ik = ik.astype(int)-1 const.freq[k] = np.sum(const.freq[shallow.iname[ik] - 1] * shallow.coef[ik]) # cnstit.NR cnstit['NR'] = Bunch() # if incnstit.lower() == 'auto': if incnstit == 'auto': cnstit['NR']['lind'] = np.where(const.df >= minres)[0] else: ilist = [constit_index_dict[n] for n in incnstit] cnstit['NR']['lind'] = np.array(ilist, dtype=int) # if ordercnstit == 'frq': # seq = const.freq[cnstit['NR']['lind']].argsort() # tmp = cnstit['NR']['lind'][seq].astype(int). # cnstit['NR']['lind'] = tmp.flatten() # Skipped some stuff here cause they involve infer. cnstit['NR']['frq'] = const.freq[cnstit['NR']['lind']] cnstit['NR']['name'] = const.name[cnstit['NR']['lind']] nNR = len(cnstit['NR']['frq']) # cnstit.R nR = 0 nI = 0 cnstit['R'] = [] # Empty because inference is not supported yet. coef['name'] = cnstit['NR']['name'] coef['aux'] = Bunch(frq=cnstit.NR.frq, lind=cnstit.NR.lind, reftime=tref) return nNR, nR, nI, cnstit, coef
{ "repo_name": "efiring/UTide", "path": "utide/constituent_selection.py", "copies": "1", "size": "2801", "license": "mit", "hash": -6971785203903852000, "line_mean": 32.7469879518, "line_max": 77, "alpha_frac": 0.5958586219, "autogenerated": false, "ratio": 3.0612021857923497, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.915706080769235, "avg_score": 0, "num_lines": 83 }
from __future__ import (absolute_import, division, print_function) import numpy as np from ._ciso import _zslice def zslice(q, p, p0): """ Returns a 2D slice of the variable `q` from a 3D field defined by `p`, along an iso-surface at `p0` using a linear interpolation. The result `q_iso` is a projection of variable at property == iso-value in the first non-singleton dimension. Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from ciso import zslice >>> z = np.linspace(-100, 0, 30)[:, None, None] * np.ones((50, 70)) >>> x, y = np.mgrid[0:20:50j, 0:20:70j] >>> s = np.sin(x) + z >>> s50 = zslice(s, z, -50) >>> plt.pcolormesh(s50) """ if q.shape != p.shape: msg = "Arrays q {} and p {} must be of the same shape.".format raise ValueError(msg(q.shape, p.shape)) if np.array(p0).squeeze().ndim != 0: msg = "p0 must be a float number or 0-dim array. Got {!r}.".format raise ValueError(msg(p0)) if p0 < p.min() or p.max() < p0: msg = "p0 {} is outise p bounds ({}, {}).".format raise ValueError(msg(p0, p.min(), p.max())) q = np.asfarray(q) p = np.asfarray(p) if q.ndim == 3: K, J, I = q.shape iso = _zslice(q.reshape(K, -1), p.reshape(K, -1), p0) return iso.reshape(J, I) elif q.ndim == 2: return _zslice(q, p, p0) else: msg = "Expected 2D (UGRID) or 3D (S/RGRID) arrays. Got {}D.".format raise ValueError(msg(q.ndim))
{ "repo_name": "hetland/ciso", "path": "ciso/ciso.py", "copies": "1", "size": "1556", "license": "bsd-2-clause", "hash": 5685608459427760000, "line_mean": 29.5098039216, "line_max": 76, "alpha_frac": 0.5604113111, "autogenerated": false, "ratio": 3.0331384015594542, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9089778973594598, "avg_score": 0.0007541478129713424, "num_lines": 51 }
from __future__ import absolute_import, division, print_function import numpy as np from .common import Benchmark, get_squares_, get_indexes_rand, TYPES1 class Eindot(Benchmark): def setup(self): self.a = np.arange(60000.0).reshape(150, 400) self.ac = self.a.copy() self.at = self.a.T self.atc = self.a.T.copy() self.b = np.arange(240000.0).reshape(400, 600) self.c = np.arange(600) self.d = np.arange(400) self.a3 = np.arange(480000.).reshape(60, 80, 100) self.b3 = np.arange(192000.).reshape(80, 60, 40) def time_dot_a_b(self): np.dot(self.a, self.b) def time_dot_d_dot_b_c(self): np.dot(self.d, np.dot(self.b, self.c)) def time_dot_trans_a_at(self): np.dot(self.a, self.at) def time_dot_trans_a_atc(self): np.dot(self.a, self.atc) def time_dot_trans_at_a(self): np.dot(self.at, self.a) def time_dot_trans_atc_a(self): np.dot(self.atc, self.a) def time_einsum_i_ij_j(self): np.einsum('i,ij,j', self.d, self.b, self.c) def time_einsum_ij_jk_a_b(self): np.einsum('ij,jk', self.a, self.b) def time_einsum_ijk_jil_kl(self): np.einsum('ijk,jil->kl', self.a3, self.b3) def time_inner_trans_a_a(self): np.inner(self.a, self.a) def time_inner_trans_a_ac(self): np.inner(self.a, self.ac) def time_matmul_a_b(self): np.matmul(self.a, self.b) def time_matmul_d_matmul_b_c(self): np.matmul(self.d, np.matmul(self.b, self.c)) def time_matmul_trans_a_at(self): np.matmul(self.a, self.at) def time_matmul_trans_a_atc(self): np.matmul(self.a, self.atc) def time_matmul_trans_at_a(self): np.matmul(self.at, self.a) def time_matmul_trans_atc_a(self): np.matmul(self.atc, self.a) def time_tensordot_a_b_axes_1_0_0_1(self): np.tensordot(self.a3, self.b3, axes=([1, 0], [0, 1])) class Linalg(Benchmark): params = [['svd', 'pinv', 'det', 'norm'], TYPES1] param_names = ['op', 'type'] def setup(self, op, typename): np.seterr(all='ignore') self.func = getattr(np.linalg, op) if op == 'cholesky': # we need a positive definite self.a = np.dot(get_squares_()[typename], get_squares_()[typename].T) else: self.a = get_squares_()[typename] # check that dtype is supported at all try: self.func(self.a[:2, :2]) except TypeError: raise NotImplementedError() def time_op(self, op, typename): self.func(self.a) class Lstsq(Benchmark): def setup(self): self.a = get_squares_()['float64'] self.b = get_indexes_rand()[:100].astype(np.float64) def time_numpy_linalg_lstsq_a__b_float64(self): np.linalg.lstsq(self.a, self.b)
{ "repo_name": "DailyActie/Surrogate-Model", "path": "01-codes/numpy-master/benchmarks/benchmarks/bench_linalg.py", "copies": "1", "size": "2930", "license": "mit", "hash": -8949765669061906000, "line_mean": 25.880733945, "line_max": 69, "alpha_frac": 0.5675767918, "autogenerated": false, "ratio": 2.8641251221896384, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.39317019139896386, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from .common import Benchmark, get_squares class Copy(Benchmark): params = ["int8", "int16", "float32", "float64", "complex64", "complex128"] param_names = ['type'] def setup(self, typename): dtype = np.dtype(typename) self.d = np.arange((50 * 500), dtype=dtype).reshape((500, 50)) self.e = np.arange((50 * 500), dtype=dtype).reshape((50, 500)) self.e_d = self.e.reshape(self.d.shape) self.dflat = np.arange((50 * 500), dtype=dtype) def time_memcpy(self, typename): self.d[...] = self.e_d def time_cont_assign(self, typename): self.d[...] = 1 def time_strided_copy(self, typename): self.d[...] = self.e.T def time_strided_assign(self, typename): self.dflat[::2] = 2 class CopyTo(Benchmark): def setup(self): self.d = np.ones(50000) self.e = self.d.copy() self.m = (self.d == 1) self.im = (~ self.m) self.m8 = self.m.copy() self.m8[::8] = (~ self.m[::8]) self.im8 = (~ self.m8) def time_copyto(self): np.copyto(self.d, self.e) def time_copyto_sparse(self): np.copyto(self.d, self.e, where=self.m) def time_copyto_dense(self): np.copyto(self.d, self.e, where=self.im) def time_copyto_8_sparse(self): np.copyto(self.d, self.e, where=self.m8) def time_copyto_8_dense(self): np.copyto(self.d, self.e, where=self.im8) class Savez(Benchmark): def setup(self): self.squares = get_squares() def time_vb_savez_squares(self): np.savez('tmp.npz', self.squares)
{ "repo_name": "DailyActie/Surrogate-Model", "path": "01-codes/numpy-master/benchmarks/benchmarks/bench_io.py", "copies": "1", "size": "1710", "license": "mit", "hash": 5155000040640725000, "line_mean": 25.71875, "line_max": 70, "alpha_frac": 0.5760233918, "autogenerated": false, "ratio": 3.0052724077328645, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40812957995328647, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from .common import Benchmark, get_squares_ ufuncs = ['abs', 'absolute', 'add', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_not', 'bitwise_or', 'bitwise_xor', 'cbrt', 'ceil', 'conj', 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees', 'divide', 'equal', 'exp', 'exp2', 'expm1', 'fabs', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod', 'frexp', 'greater', 'greater_equal', 'hypot', 'invert', 'isfinite', 'isinf', 'isnan', 'ldexp', 'left_shift', 'less', 'less_equal', 'log', 'log10', 'log1p', 'log2', 'logaddexp', 'logaddexp2', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'maximum', 'minimum', 'mod', 'modf', 'multiply', 'negative', 'nextafter', 'not_equal', 'power', 'rad2deg', 'radians', 'reciprocal', 'remainder', 'right_shift', 'rint', 'sign', 'signbit', 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan', 'tanh', 'true_divide', 'trunc'] for name in dir(np): if isinstance(getattr(np, name, None), np.ufunc) and name not in ufuncs: print("Missing ufunc %r" % (name,)) class Broadcast(Benchmark): def setup(self): self.d = np.ones((50000, 100), dtype=np.float64) self.e = np.ones((100,), dtype=np.float64) def time_broadcast(self): self.d - self.e class UFunc(Benchmark): params = [ufuncs] param_names = ['ufunc'] timeout = 10 def setup(self, ufuncname): np.seterr(all='ignore') try: self.f = getattr(np, ufuncname) except AttributeError: raise NotImplementedError() self.args = [] for t, a in get_squares_().items(): arg = (a,) * self.f.nin try: self.f(*arg) except TypeError: continue self.args.append(arg) def time_ufunc_types(self, ufuncname): [self.f(*arg) for arg in self.args] class Custom(Benchmark): def setup(self): self.b = np.ones(20000, dtype=np.bool) def time_nonzero(self): np.nonzero(self.b) def time_not_bool(self): (~self.b) def time_and_bool(self): (self.b & self.b) def time_or_bool(self): (self.b | self.b) class CustomInplace(Benchmark): def setup(self): self.c = np.ones(500000, dtype=np.int8) self.i = np.ones(150000, dtype=np.int32) self.f = np.zeros(150000, dtype=np.float32) self.d = np.zeros(75000, dtype=np.float64) # fault memory self.f *= 1. self.d *= 1. def time_char_or(self): np.bitwise_or(self.c, 0, out=self.c) np.bitwise_or(0, self.c, out=self.c) def time_char_or_temp(self): 0 | self.c | 0 def time_int_or(self): np.bitwise_or(self.i, 0, out=self.i) np.bitwise_or(0, self.i, out=self.i) def time_int_or_temp(self): 0 | self.i | 0 def time_float_add(self): np.add(self.f, 1., out=self.f) np.add(1., self.f, out=self.f) def time_float_add_temp(self): 1. + self.f + 1. def time_double_add(self): np.add(self.d, 1., out=self.d) np.add(1., self.d, out=self.d) def time_double_add_temp(self): 1. + self.d + 1. class CustomScalar(Benchmark): params = [np.float32, np.float64] param_names = ['dtype'] def setup(self, dtype): self.d = np.ones(20000, dtype=dtype) def time_add_scalar2(self, dtype): np.add(self.d, 1) def time_divide_scalar2(self, dtype): np.divide(self.d, 1) def time_divide_scalar2_inplace(self, dtype): np.divide(self.d, 1, out=self.d) def time_less_than_scalar2(self, dtype): (self.d < 1) class Scalar(Benchmark): def setup(self): self.x = np.asarray(1.0) self.y = np.asarray((1.0 + 1j)) self.z = complex(1.0, 1.0) def time_add_scalar(self): (self.x + self.x) def time_add_scalar_conv(self): (self.x + 1.0) def time_add_scalar_conv_complex(self): (self.y + self.z)
{ "repo_name": "DailyActie/Surrogate-Model", "path": "01-codes/numpy-master/benchmarks/benchmarks/bench_ufunc.py", "copies": "1", "size": "4274", "license": "mit", "hash": -6777944010876848000, "line_mean": 27.3046357616, "line_max": 76, "alpha_frac": 0.5486663547, "autogenerated": false, "ratio": 3.0726096333572968, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9121275988057297, "avg_score": 0, "num_lines": 151 }
from __future__ import absolute_import, division, print_function import numpy as np from .common import Benchmark class Bincount(Benchmark): def setup(self): self.d = np.arange(80000, dtype=np.intp) self.e = self.d.astype(np.float64) def time_bincount(self): np.bincount(self.d) def time_weights(self): np.bincount(self.d, weights=self.e) class Median(Benchmark): def setup(self): self.e = np.arange(10000, dtype=np.float32) self.o = np.arange(10001, dtype=np.float32) def time_even(self): np.median(self.e) def time_odd(self): np.median(self.o) def time_even_inplace(self): np.median(self.e, overwrite_input=True) def time_odd_inplace(self): np.median(self.o, overwrite_input=True) def time_even_small(self): np.median(self.e[:500], overwrite_input=True) def time_odd_small(self): np.median(self.o[:500], overwrite_input=True) class Percentile(Benchmark): def setup(self): self.e = np.arange(10000, dtype=np.float32) self.o = np.arange(10001, dtype=np.float32) def time_quartile(self): np.percentile(self.e, [25, 75]) def time_percentile(self): np.percentile(self.e, [25, 35, 55, 65, 75]) class Select(Benchmark): def setup(self): self.d = np.arange(20000) self.e = self.d.copy() self.cond = [(self.d > 4), (self.d < 2)] self.cond_large = [(self.d > 4), (self.d < 2)] * 10 def time_select(self): np.select(self.cond, [self.d, self.e]) def time_select_larger(self): np.select(self.cond_large, ([self.d, self.e] * 10)) class Sort(Benchmark): def setup(self): self.e = np.arange(10000, dtype=np.float32) self.o = np.arange(10001, dtype=np.float32) np.random.seed(25) np.random.shuffle(self.o) # quicksort implementations can have issues with equal elements self.equal = np.ones(10000) self.many_equal = np.sort(np.arange(10000) % 10) # quicksort median of 3 worst case self.worst = np.arange(1000000) x = self.worst while x.size > 3: mid = x.size // 2 x[mid], x[-2] = x[-2], x[mid] x = x[:-2] def time_sort(self): np.sort(self.e) def time_sort_random(self): np.sort(self.o) def time_sort_inplace(self): self.e.sort() def time_sort_equal(self): self.equal.sort() def time_sort_many_equal(self): self.many_equal.sort() def time_sort_worst(self): np.sort(self.worst) def time_argsort(self): self.e.argsort() def time_argsort_random(self): self.o.argsort() class Where(Benchmark): def setup(self): self.d = np.arange(20000) self.e = self.d.copy() self.cond = (self.d > 5000) def time_1(self): np.where(self.cond) def time_2(self): np.where(self.cond, self.d, self.e) def time_2_broadcast(self): np.where(self.cond, self.d, 0)
{ "repo_name": "DailyActie/Surrogate-Model", "path": "01-codes/numpy-master/benchmarks/benchmarks/bench_function_base.py", "copies": "1", "size": "3086", "license": "mit", "hash": -6118017979300846000, "line_mean": 23.4920634921, "line_max": 71, "alpha_frac": 0.5836033701, "autogenerated": false, "ratio": 3.1266464032421477, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42102497733421473, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from .common import Benchmark class Core(Benchmark): def setup(self): self.l100 = range(100) self.l50 = range(50) self.l = [np.arange(1000), np.arange(1000)] self.l10x10 = np.ones((10, 10)) def time_array_1(self): np.array(1) def time_array_empty(self): np.array([]) def time_array_l1(self): np.array([1]) def time_array_l100(self): np.array(self.l100) def time_array_l(self): np.array(self.l) def time_vstack_l(self): np.vstack(self.l) def time_hstack_l(self): np.hstack(self.l) def time_dstack_l(self): np.dstack(self.l) def time_arange_100(self): np.arange(100) def time_zeros_100(self): np.zeros(100) def time_ones_100(self): np.ones(100) def time_empty_100(self): np.empty(100) def time_eye_100(self): np.eye(100) def time_identity_100(self): np.identity(100) def time_eye_3000(self): np.eye(3000) def time_identity_3000(self): np.identity(3000) def time_diag_l100(self): np.diag(self.l100) def time_diagflat_l100(self): np.diagflat(self.l100) def time_diagflat_l50_l50(self): np.diagflat([self.l50, self.l50]) def time_triu_l10x10(self): np.triu(self.l10x10) def time_tril_l10x10(self): np.tril(self.l10x10) class MA(Benchmark): def setup(self): self.l100 = range(100) self.t100 = ([True] * 100) def time_masked_array(self): np.ma.masked_array() def time_masked_array_l100(self): np.ma.masked_array(self.l100) def time_masked_array_l100_t100(self): np.ma.masked_array(self.l100, self.t100) class CorrConv(Benchmark): params = [[50, 1000, 1e5], [10, 100, 1000, 1e4], ['valid', 'same', 'full']] param_names = ['size1', 'size2', 'mode'] def setup(self, size1, size2, mode): self.x1 = np.linspace(0, 1, num=size1) self.x2 = np.cos(np.linspace(0, 2 * np.pi, num=size2)) def time_correlate(self, size1, size2, mode): np.correlate(self.x1, self.x2, mode=mode) def time_convolve(self, size1, size2, mode): np.convolve(self.x1, self.x2, mode=mode) class CountNonzero(Benchmark): param_names = ['numaxes', 'size', 'dtype'] params = [ [1, 2, 3], [100, 10000, 1000000], [bool, int, str, object] ] def setup(self, numaxes, size, dtype): self.x = np.empty(shape=( numaxes, size), dtype=dtype) def time_count_nonzero(self, numaxes, size, dtype): np.count_nonzero(self.x) def time_count_nonzero_axis(self, numaxes, size, dtype): np.count_nonzero(self.x, axis=self.x.ndim - 1) def time_count_nonzero_multi_axis(self, numaxes, size, dtype): if self.x.ndim >= 2: np.count_nonzero(self.x, axis=( self.x.ndim - 1, self.x.ndim - 2))
{ "repo_name": "DailyActie/Surrogate-Model", "path": "01-codes/numpy-master/benchmarks/benchmarks/bench_core.py", "copies": "1", "size": "3090", "license": "mit", "hash": 4030334099422983700, "line_mean": 22.4090909091, "line_max": 66, "alpha_frac": 0.574433657, "autogenerated": false, "ratio": 2.9740134744947064, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9047718693266269, "avg_score": 0.0001456876456876457, "num_lines": 132 }
from __future__ import absolute_import, division, print_function import numpy as np from .common import Benchmark, TYPES1, get_squares class AddReduce(Benchmark): def setup(self): self.squares = get_squares().values() def time_axis_0(self): [np.add.reduce(a, axis=0) for a in self.squares] def time_axis_1(self): [np.add.reduce(a, axis=1) for a in self.squares] class AddReduceSeparate(Benchmark): params = [[0, 1], TYPES1] param_names = ['axis', 'type'] def setup(self, axis, typename): self.a = get_squares()[typename] def time_reduce(self, axis, typename): np.add.reduce(self.a, axis=axis) class AnyAll(Benchmark): def setup(self): self.zeros = np.zeros(100000, np.bool) self.ones = np.ones(100000, np.bool) def time_all_fast(self): self.zeros.all() def time_all_slow(self): self.ones.all() def time_any_fast(self): self.ones.any() def time_any_slow(self): self.zeros.any() class MinMax(Benchmark): params = [np.float32, np.float64, np.intp] param_names = ['dtype'] def setup(self, dtype): self.d = np.ones(20000, dtype=dtype) def time_min(self, dtype): np.min(self.d) def time_max(self, dtype): np.max(self.d) class SmallReduction(Benchmark): def setup(self): self.d = np.ones(100, dtype=np.float32) def time_small(self): np.sum(self.d)
{ "repo_name": "DailyActie/Surrogate-Model", "path": "01-codes/numpy-master/benchmarks/benchmarks/bench_reduce.py", "copies": "1", "size": "1469", "license": "mit", "hash": 4681237434933942000, "line_mean": 20.9253731343, "line_max": 64, "alpha_frac": 0.6099387338, "autogenerated": false, "ratio": 3.2074235807860263, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9317362314586026, "avg_score": 0, "num_lines": 67 }
from __future__ import absolute_import, division, print_function import numpy as np from ..core.client import Client from ..core import message as msg from ..core.data import Data, CategoricalComponent from ..core.subset import RangeSubsetState, CategoricalRoiSubsetState from ..core.exceptions import IncompatibleDataException, IncompatibleAttribute from ..core.edit_subset_mode import EditSubsetMode from .layer_artist import HistogramLayerArtist, LayerArtistContainer from .util import update_ticks, visible_limits from ..core.callback_property import CallbackProperty, add_callback from ..utils import lookup_class class UpdateProperty(CallbackProperty): """Descriptor that calls client's sync_all() method when changed""" def __init__(self, default, relim=False): super(UpdateProperty, self).__init__(default) self.relim = relim def __set__(self, instance, value): changed = value != self.__get__(instance) super(UpdateProperty, self).__set__(instance, value) if not changed: return instance.sync_all() if self.relim: instance._relim() def update_on_true(func): def wrapper(*args, **kwargs): result = func(*args, **kwargs) if result: args[0].sync_all() return result return wrapper class HistogramClient(Client): """ A client class to display histograms """ normed = UpdateProperty(False) cumulative = UpdateProperty(False) autoscale = UpdateProperty(True) nbins = UpdateProperty(30) xlog = UpdateProperty(False, relim=True) ylog = UpdateProperty(False) def __init__(self, data, figure, artist_container=None): super(HistogramClient, self).__init__(data) self._artists = artist_container or LayerArtistContainer() self._axes = figure.add_subplot(111) self._component = None self._saved_nbins = None self._xlim = {} try: self._axes.figure.set_tight_layout(True) except AttributeError: # pragma: nocover (matplotlib < 1.1) pass @property def bins(self): """ An array of bin edges for the histogram. Returns None if no histogram has been computed yet. """ for art in self._artists: if not isinstance(art, HistogramLayerArtist): continue return art.x @property def axes(self): return self._axes @property def xlimits(self): try: return self._xlim[self.component] except KeyError: pass lo, hi = self._default_limits() self._xlim[self.component] = lo, hi return lo, hi def _default_limits(self): if self.component is None: return 0, 1 lo, hi = np.inf, -np.inf for a in self._artists: try: data = a.layer[self.component] except IncompatibleAttribute: continue if data.size == 0: continue lo = min(lo, np.nanmin(data)) hi = max(hi, np.nanmax(data)) return lo, hi @xlimits.setter @update_on_true def xlimits(self, value): lo, hi = value old = self.xlimits if lo is None: lo = old[0] if hi is None: hi = old[1] self._xlim[self.component] = min(lo, hi), max(lo, hi) self._relim() return True def layer_present(self, layer): return layer in self._artists def add_layer(self, layer): if layer.data not in self.data: raise IncompatibleDataException("Layer not in data collection") self._ensure_layer_data_present(layer) if self.layer_present(layer): return self._artists[layer][0] art = HistogramLayerArtist(layer, self._axes) self._artists.append(art) self._ensure_subsets_present(layer) self._sync_layer(layer) self._redraw() return art def _redraw(self): self._axes.figure.canvas.draw() def _ensure_layer_data_present(self, layer): if layer.data is layer: return if not self.layer_present(layer.data): self.add_layer(layer.data) def _ensure_subsets_present(self, layer): for subset in layer.data.subsets: self.add_layer(subset) @update_on_true def remove_layer(self, layer): if not self.layer_present(layer): return for a in self._artists.pop(layer): a.clear() if isinstance(layer, Data): for subset in layer.subsets: self.remove_layer(subset) return True @update_on_true def set_layer_visible(self, layer, state): if not self.layer_present(layer): return for a in self._artists[layer]: a.visible = state return True def is_layer_visible(self, layer): if not self.layer_present(layer): return False return any(a.visible for a in self._artists[layer]) def _update_axis_labels(self): xlabel = self.component.label if self.component is not None else '' if self.xlog: xlabel = "Log %s" % xlabel ylabel = 'N' self._axes.set_xlabel(xlabel) self._axes.set_ylabel(ylabel) components = list(self._get_data_components('x')) if components: bins = update_ticks(self.axes, 'x', components, False) return if bins is not None: prev_bins = self.nbins auto_bins = self._auto_nbin(calculate_only=True) if prev_bins == auto_bins: # try to assign a bin to each category, # but only if self.nbins hasn't been overridden # from auto_nbin self.nbins = min(bins, 100) self.xlimits = (-0.5, bins - 0.5) def _get_data_components(self, coord): """ Returns the components for each dataset for x and y axes. """ if coord == 'x': attribute = self.component else: raise TypeError('coord must be x') for data in self._data: try: yield data.get_component(attribute) except IncompatibleAttribute: pass def _auto_nbin(self, calculate_only=False): data = set(a.layer.data for a in self._artists) if len(data) == 0: return dx = np.mean([d.size for d in data]) val = min(max(5, (dx / 1000) ** (1. / 3.) * 30), 100) c = list(self._get_data_components('x')) if c: c = c[0] if isinstance(c, CategoricalComponent): val = min(c._categories.size, 100) if not calculate_only: self.xlimits = (-0.5, c._categories.size - 0.5) if not calculate_only: self.nbins = val return val def _sync_layer(self, layer, force=False): for a in self._artists[layer]: a.lo, a.hi = self.xlimits a.nbins = self.nbins a.xlog = self.xlog a.ylog = self.ylog a.cumulative = self.cumulative a.normed = self.normed a.att = self._component a.update() if not force else a.force_update() def sync_all(self, force=False): layers = set(a.layer for a in self._artists) for l in layers: self._sync_layer(l, force=force) self._update_axis_labels() if self.autoscale: lim = visible_limits(self._artists, 1) if lim is not None: lo = 1e-5 if self.ylog else 0 hi = lim[1] # pad the top if self.ylog: hi = lo * (hi / lo) ** 1.03 else: hi *= 1.03 self._axes.set_ylim(lo, hi) yscl = 'log' if self.ylog else 'linear' self._axes.set_yscale(yscl) self._redraw() @property def component(self): return self._component @component.setter def component(self, value): self.set_component(value) def set_component(self, component): """ Redefine which component gets plotted Parameters ---------- component: ComponentID The new component to plot """ if self._component is component: return iscat = lambda x: isinstance(x, CategoricalComponent) def comp_obj(): # the current Component (not ComponentID) object x = list(self._get_data_components('x')) if x: x = x[0] return x prev = comp_obj() old = self.nbins first_add = self._component is None self._component = component cur = comp_obj() if first_add or iscat(cur): self._auto_nbin() # save old bins if switch from non-category to category if prev and not iscat(prev) and iscat(cur): self._saved_nbins = old # restore old bins if switch from category to non-category if iscat(prev) and cur and not iscat(cur) and self._saved_nbins is not None: self.nbins = self._saved_nbins self._saved_nbins = None self.sync_all() self._relim() def _relim(self): lim = self.xlimits if self.xlog: lim = list(np.log10(lim)) if not np.isfinite(lim[0]): lim[0] = 1e-5 if not np.isfinite(lim[1]): lim[1] = 1 self._axes.set_xlim(lim) self._redraw() def _numerical_data_changed(self, message): data = message.sender self.sync_all(force=True) def _on_component_replaced(self, msg): if self.component is msg.old: self.set_component(msg.new) def _update_data(self, message): self.sync_all() def _update_subset(self, message): self._sync_layer(message.subset) self._redraw() def _add_subset(self, message): self.add_layer(message.sender) assert self.layer_present(message.sender) assert self.is_layer_visible(message.sender) def _remove_data(self, message): self.remove_layer(message.data) def _remove_subset(self, message): self.remove_layer(message.subset) def apply_roi(self, roi): x, _ = roi.to_polygon() lo = min(x) hi = max(x) # expand roi to match bin edges bins = self.bins if lo >= bins.min(): lo = bins[bins <= lo].max() if hi <= bins.max(): hi = bins[bins >= hi].min() if self.xlog: lo = 10 ** lo hi = 10 ** hi comp = list(self._get_data_components('x')) if comp: comp = comp[0] if comp.categorical: state = CategoricalRoiSubsetState.from_range(comp, self.component, lo, hi) else: state = RangeSubsetState(lo, hi) state.att = self.component mode = EditSubsetMode() visible = [d for d in self.data if self.is_layer_visible(d)] focus = visible[0] if len(visible) > 0 else None mode.update(self.data, state, focus_data=focus) def register_to_hub(self, hub): dfilter = lambda x: x.sender.data in self._artists dcfilter = lambda x: x.data in self._artists subfilter = lambda x: x.subset in self._artists hub.subscribe(self, msg.SubsetCreateMessage, handler=self._add_subset, filter=dfilter) hub.subscribe(self, msg.SubsetUpdateMessage, handler=self._update_subset, filter=subfilter) hub.subscribe(self, msg.SubsetDeleteMessage, handler=self._remove_subset) hub.subscribe(self, msg.DataUpdateMessage, handler=self._update_data, filter=dfilter) hub.subscribe(self, msg.DataCollectionDeleteMessage, handler=self._remove_data) hub.subscribe(self, msg.NumericalDataChangedMessage, handler=self._numerical_data_changed) hub.subscribe(self, msg.ComponentReplacedMessage, handler=self._on_component_replaced) def restore_layers(self, layers, context): for layer in layers: lcls = lookup_class(layer.pop('_type')) if lcls != HistogramLayerArtist: raise ValueError("Cannot restore layers of type %s" % lcls) data_or_subset = context.object(layer.pop('layer')) result = self.add_layer(data_or_subset) result.properties = layer
{ "repo_name": "JudoWill/glue", "path": "glue/clients/histogram_client.py", "copies": "1", "size": "13239", "license": "bsd-3-clause", "hash": -3576257610285740500, "line_mean": 29.5750577367, "line_max": 84, "alpha_frac": 0.5449807387, "autogenerated": false, "ratio": 4.09242658423493, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.513740732293493, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from .core import compute, optimize from ..expr import Expr, Arithmetic, Math, Map, UnaryOp from ..expr.broadcast import broadcast_collect, Broadcast from toolz import memoize import datashape import numba from .pyfunc import funcstr Broadcastable = Arithmetic, Math, Map, UnaryOp def optimize_ndarray(expr, *data, **kwargs): return broadcast_collect(expr, Broadcastable=Broadcastable, WantToBroadcast=Broadcastable) for i in range(1, 11): optimize.register(Expr, *([np.ndarray] * i))(optimize_ndarray) def get_numba_type(dshape): """Get the ``numba`` type corresponding to the ``datashape.Mono`` instance `dshape` Parameters ---------- dshape : datashape.Mono Returns ------- restype : numba.types.Type Examples -------- >>> import datashape >>> import numba >>> get_numba_type(datashape.bool_) bool >>> get_numba_type(datashape.date_) datetime64(D) >>> get_numba_type(datashape.datetime_) datetime64(us) >>> get_numba_type(datashape.timedelta_) # default unit is microseconds timedelta64(us) >>> get_numba_type(datashape.TimeDelta('D')) timedelta64(D) >>> get_numba_type(datashape.int64) int64 >>> get_numba_type(datashape.String(7, "A")) [char x 7] >>> get_numba_type(datashape.String(None, "A")) str >>> get_numba_type(datashape.String(7)) [unichr x 7] >>> get_numba_type(datashape.string) Traceback (most recent call last): ... TypeError: Numba cannot handle variable length strings >>> get_numba_type(datashape.object_) Traceback (most recent call last): ... TypeError: Numba cannot handle object datashape >>> get_numba_type(datashape.dshape('10 * {a: int64}')) Traceback (most recent call last): ... TypeError: Invalid datashape to numba type: dshape("{a: int64}") See Also -------- compute_signature """ measure = dshape.measure if measure == datashape.bool_: restype = numba.bool_ # str(bool_) == 'bool' so we can't use getattr elif measure == datashape.date_: restype = numba.types.NPDatetime('D') elif measure == datashape.datetime_: restype = numba.types.NPDatetime('us') elif isinstance(measure, datashape.TimeDelta): # isinstance for diff freqs restype = numba.types.NPTimedelta(measure.unit) elif isinstance(measure, datashape.String): encoding = measure.encoding fixlen = measure.fixlen if fixlen is None: if encoding == 'A': return numba.types.string raise TypeError("Numba cannot handle variable length strings") typ = (numba.types.CharSeq if encoding == 'A' else numba.types.UnicodeCharSeq) return typ(fixlen or 0) elif measure == datashape.object_: raise TypeError("Numba cannot handle object datashape") else: try: restype = getattr(numba, str(measure)) except AttributeError: raise TypeError('Invalid datashape to numba type: %r' % measure) return restype def compute_signature(expr): """Get the ``numba`` *function signature* corresponding to ``DataShape`` Examples -------- >>> from blaze import symbol >>> s = symbol('s', 'int64') >>> t = symbol('t', 'float32') >>> d = symbol('d', 'datetime') >>> expr = s + t >>> compute_signature(expr) float64(int64, float32) >>> expr = d.truncate(days=1) >>> compute_signature(expr) datetime64(D)(datetime64(us)) >>> expr = d.day + 1 >>> compute_signature(expr) # only looks at leaf nodes int64(datetime64(us)) Notes ----- * This could potentially be adapted/refactored to deal with ``datashape.Function`` types. * Cannot handle ``datashape.Record`` types. """ assert datashape.isscalar(expr.schema) restype = get_numba_type(expr.schema) argtypes = [get_numba_type(e.schema) for e in expr._leaves()] return restype(*argtypes) def _get_numba_ufunc(expr): """Construct a numba ufunc from a blaze expression Parameters ---------- expr : blaze.expr.Expr Returns ------- f : function A numba vectorized function Examples -------- >>> from blaze import symbol >>> import numpy as np >>> s = symbol('s', 'float64') >>> t = symbol('t', 'float64') >>> x = np.array([1.0, 2.0, 3.0]) >>> y = np.array([2.0, 3.0, 4.0]) >>> f = get_numba_ufunc(s + t) >>> f(x, y) array([ 3., 5., 7.]) See Also -------- get_numba_type compute_signature """ if isinstance(expr, Broadcast): leaves = expr._scalars expr = expr._scalar_expr else: leaves = expr._leaves() # we may not have a Broadcast instance because arithmetic expressions can # be vectorized so we use getattr s, scope = funcstr(leaves, expr) scope = dict((k, numba.jit(nopython=True)(v) if callable(v) else v) for k, v in scope.items()) func = eval(s, scope) sig = compute_signature(expr) return numba.vectorize([sig], nopython=True)(func) # do this here so we can run our doctest get_numba_ufunc = memoize(_get_numba_ufunc) def broadcast_numba(t, *data, **kwargs): try: ufunc = get_numba_ufunc(t) except TypeError: # strings and objects aren't supported very well yet return compute(t, dict(zip(t._leaves(), data))) else: return ufunc(*data)
{ "repo_name": "mrocklin/blaze", "path": "blaze/compute/numba.py", "copies": "1", "size": "5639", "license": "bsd-3-clause", "hash": -8224640763478712000, "line_mean": 25.5990566038, "line_max": 79, "alpha_frac": 0.6126972868, "autogenerated": false, "ratio": 3.571247625079164, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9683944911879164, "avg_score": 0, "num_lines": 212 }
from __future__ import absolute_import, division, print_function import numpy as np from dask.array.chunk import coarsen, keepdims_wrapper, trim def test_keepdims_wrapper_no_axis(): def summer(a, axis=None): return a.sum(axis=axis) summer_wrapped = keepdims_wrapper(summer) assert summer_wrapped != summer assert summer_wrapped == keepdims_wrapper(summer_wrapped) a = np.arange(24).reshape(1, 2, 3, 4) r = summer(a) rw = summer_wrapped(a, keepdims=True) rwf = summer_wrapped(a, keepdims=False) assert r.ndim == 0 assert r.shape == tuple() assert r == 276 assert rw.ndim == 4 assert rw.shape == (1, 1, 1, 1) assert (rw == 276).all() assert rwf.ndim == 0 assert rwf.shape == tuple() assert rwf == 276 def test_keepdims_wrapper_one_axis(): def summer(a, axis=None): return a.sum(axis=axis) summer_wrapped = keepdims_wrapper(summer) assert summer_wrapped != summer assert summer_wrapped == keepdims_wrapper(summer_wrapped) a = np.arange(24).reshape(1, 2, 3, 4) r = summer(a, axis=2) rw = summer_wrapped(a, axis=2, keepdims=True) rwf = summer_wrapped(a, axis=2, keepdims=False) assert r.ndim == 3 assert r.shape == (1, 2, 4) assert (r == np.array([[[12, 15, 18, 21], [48, 51, 54, 57]]])).all() assert rw.ndim == 4 assert rw.shape == (1, 2, 1, 4) assert (rw == np.array([[[[12, 15, 18, 21]], [[48, 51, 54, 57]]]])).all() assert rwf.ndim == 3 assert rwf.shape == (1, 2, 4) assert (rwf == np.array([[[12, 15, 18, 21], [48, 51, 54, 57]]])).all() def test_keepdims_wrapper_two_axes(): def summer(a, axis=None): return a.sum(axis=axis) summer_wrapped = keepdims_wrapper(summer) assert summer_wrapped != summer assert summer_wrapped == keepdims_wrapper(summer_wrapped) a = np.arange(24).reshape(1, 2, 3, 4) r = summer(a, axis=(1, 3)) rw = summer_wrapped(a, axis=(1, 3), keepdims=True) rwf = summer_wrapped(a, axis=(1, 3), keepdims=False) assert r.ndim == 2 assert r.shape == (1, 3) assert (r == np.array([[60, 92, 124]])).all() assert rw.ndim == 4 assert rw.shape == (1, 1, 3, 1) assert (rw == np.array([[[[60], [92], [124]]]])).all() assert rwf.ndim == 2 assert rwf.shape == (1, 3) assert (rwf == np.array([[60, 92, 124]])).all() def eq(a, b): c = a == b if isinstance(c, np.ndarray): c = c.all() return c def test_coarsen(): x = np.random.randint(10, size=(24, 24)) y = coarsen(np.sum, x, {0: 2, 1: 4}) assert y.shape == (12, 6) assert y[0, 0] == np.sum(x[:2, :4]) """ def test_coarsen_on_uneven_shape(): x = np.random.randint(10, size=(23, 24)) y = coarsen(np.sum, x, {0: 2, 1: 4}) assert y.shape == (12, 6) assert y[0, 0] == np.sum(x[:2, :4]) assert eq(y[11, :], x[23, :]) """
{ "repo_name": "minrk/dask", "path": "dask/array/tests/test_chunk.py", "copies": "1", "size": "2888", "license": "bsd-3-clause", "hash": -6686791176658658000, "line_mean": 24.5575221239, "line_max": 77, "alpha_frac": 0.5730609418, "autogenerated": false, "ratio": 2.809338521400778, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3882399463200778, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from ..data import Component, Data from ...external import six from .helpers import set_default_factory, __factories__, has_extension __all__ = ['tabular_data', 'sextractor_factory', 'astropy_tabular_data', 'formatted_table_factory'] def _ascii_identifier_v02(origin, args, kwargs): # this works for astropy v0.2 if isinstance(args[0], six.string_types): return args[0].endswith(('csv', 'tsv', 'txt', 'tbl', 'dat', 'csv.gz', 'tsv.gz', 'txt.gz', 'tbl.gz', 'dat.gz')) else: return False def _ascii_identifier_v03(origin, *args, **kwargs): # this works for astropy v0.3 return _ascii_identifier_v02(origin, args, kwargs) def astropy_tabular_data(*args, **kwargs): """ Build a data set from a table. We restrict ourselves to tables with 1D columns. All arguments are passed to astropy.table.Table.read(...). """ from distutils.version import LooseVersion from astropy import __version__ if LooseVersion(__version__) < LooseVersion("0.2"): raise RuntimeError("Glue requires astropy >= v0.2. Please update") result = Data() # Read the table from astropy.table import Table # Add identifiers for ASCII data from astropy.io import registry if LooseVersion(__version__) < LooseVersion("0.3"): registry.register_identifier('ascii', Table, _ascii_identifier_v02, force=True) else: # Basically, we always want the plain ascii reader for now. # But astropy will complain about ambiguous formats (or use another reader) # unless we remove other registry identifiers and set up our own reader nope = lambda *a, **k: False registry.register_identifier('ascii.glue', Table, _ascii_identifier_v03, force=True) registry.register_identifier('ascii.csv', Table, nope, force=True) registry.register_identifier('ascii.fast_csv', Table, nope, force=True) registry.register_identifier('ascii', Table, nope, force=True) registry.register_reader('ascii.glue', Table, lambda path: Table.read(path, format='ascii'), force=True) try: table = Table.read(*args, **kwargs) except: # In Python 3, as of Astropy 0.4, if the format is not specified, the # automatic format identification will fail (astropy/astropy#3013). # This is only a problem for ASCII formats however, because it is due # to the fact that the file object in io.ascii does not rewind to the # start between guesses (due to a bug), so here we can explicitly try # the ASCII format if the format keyword was not already present. if 'format' not in kwargs: table = Table.read(*args, format='ascii.glue', **kwargs) else: raise # Loop through columns and make component list for column_name in table.columns: c = table[column_name] u = c.unit if hasattr(c, 'unit') else c.units if table.masked: # fill array for now try: c = c.filled(fill_value=np.nan) except ValueError: # assigning nan to integer dtype c = c.filled(fill_value=-1) nc = Component.autotyped(c, units=u) result.add_component(nc, column_name) return result astropy_tabular_data.label = "Catalog (Astropy Parser)" astropy_tabular_data.identifier = has_extension('xml vot csv txt tsv tbl dat fits ' 'xml.gz vot.gz csv.gz txt.gz tbl.bz ' 'dat.gz fits.gz') def tabular_data(path, **kwargs): from .pandas import pandas_read_table for fac in [astropy_tabular_data, pandas_read_table]: try: return fac(path, **kwargs) except: pass else: raise IOError("Could not parse file: %s" % path) tabular_data.label = "Catalog" tabular_data.identifier = has_extension('xml vot csv txt tsv tbl dat fits ' 'xml.gz vot.gz csv.gz txt.gz tbl.bz ' 'dat.gz fits.gz') __factories__.append(tabular_data) set_default_factory('xml', tabular_data) set_default_factory('vot', tabular_data) set_default_factory('csv', tabular_data) set_default_factory('txt', tabular_data) set_default_factory('tsv', tabular_data) set_default_factory('tbl', tabular_data) set_default_factory('dat', tabular_data) __factories__.append(astropy_tabular_data) # Add explicit factories for the formats which astropy.table # can parse, but does not auto-identify def formatted_table_factory(format, label): def factory(file, **kwargs): kwargs['format'] = 'ascii.%s' % format return tabular_data(file, **kwargs) factory.label = label factory.identifier = lambda *a, **k: False # rename function to its variable reference below # allows pickling to work factory.__name__ = '%s_factory' % format return factory sextractor_factory = formatted_table_factory('sextractor', 'SExtractor Catalog') cds_factory = formatted_table_factory('cds', 'CDS Catalog') daophot_factory = formatted_table_factory('daophot', 'DAOphot Catalog') ipac_factory = formatted_table_factory('ipac', 'IPAC Catalog') aastex_factory = formatted_table_factory('aastex', 'AASTeX Table') latex_factory = formatted_table_factory('latex', 'LaTeX Table') __factories__.extend([sextractor_factory, cds_factory, daophot_factory, ipac_factory, aastex_factory, latex_factory])
{ "repo_name": "JudoWill/glue", "path": "glue/core/data_factories/tables.py", "copies": "1", "size": "5823", "license": "bsd-3-clause", "hash": 3340281704511874000, "line_mean": 37.0653594771, "line_max": 85, "alpha_frac": 0.6223596084, "autogenerated": false, "ratio": 3.897590361445783, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5019949969845783, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from ..data import Data, Component, CategoricalComponent from .helpers import has_extension, __factories__ __all__ = ['pandas_read_table'] def panda_process(indf): """ Build a data set from a table using pandas. This attempts to respect categorical data input by letting pandas.read_csv infer the type """ result = Data() for name, column in indf.iteritems(): if (column.dtype == np.object) | (column.dtype == np.bool): # try to salvage numerical data coerced = column.convert_objects(convert_numeric=True) if (coerced.dtype != column.dtype) and coerced.isnull().mean() < 0.4: c = Component(coerced.values) else: # pandas has a 'special' nan implementation and this doesn't # play well with np.unique c = CategoricalComponent(column.fillna('')) else: c = Component(column.values) # strip off leading # name = name.strip() if name.startswith('#'): name = name[1:].strip() result.add_component(c, name) return result def pandas_read_table(path, **kwargs): """ A factory for reading tabular data using pandas :param path: path/to/file :param kwargs: All kwargs are passed to pandas.read_csv :returns: :class:`glue.core.data.Data` object """ import pandas as pd try: from pandas.parser import CParserError except ImportError: from pandas._parser import CParserError # iterate over common delimiters to search for best option delimiters = kwargs.pop('delimiter', [None] + list(',|\t ')) fallback = None for d in delimiters: try: indf = pd.read_csv(path, delimiter=d, **kwargs) # ignore files parsed to empty dataframes if len(indf) == 0: continue # only use files parsed to single-column dataframes # if we don't find a better strategy if len(indf.columns) < 2: fallback = indf continue return panda_process(indf) except CParserError: continue if fallback is not None: return panda_process(fallback) raise IOError("Could not parse %s using pandas" % path) pandas_read_table.label = "Pandas Table" pandas_read_table.identifier = has_extension('csv csv txt tsv tbl dat') __factories__.append(pandas_read_table)
{ "repo_name": "JudoWill/glue", "path": "glue/core/data_factories/pandas.py", "copies": "1", "size": "2561", "license": "bsd-3-clause", "hash": -7117801495059398000, "line_mean": 29.4880952381, "line_max": 81, "alpha_frac": 0.6099180008, "autogenerated": false, "ratio": 4.198360655737705, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0004355400696864112, "num_lines": 84 }
from __future__ import absolute_import, division, print_function import numpy as np from ..data import Data from .helpers import has_extension, set_default_factory, __factories__ from ..coordinates import coordinates_from_wcs img_fmt = ['jpg', 'jpeg', 'bmp', 'png', 'tiff', 'tif'] __all__ = ['img_data'] def img_loader(file_name): """Load an image to a numpy array, using either PIL or skimage :param file_name: Path of file to load :rtype: Numpy array """ try: from skimage import img_as_ubyte from skimage.io import imread return np.asarray(img_as_ubyte(imread(file_name))) except ImportError: pass try: from PIL import Image return np.asarray(Image.open(file_name)) except ImportError: raise ImportError("Reading %s requires PIL or scikit-image" % file_name) def img_data(file_name): """Load common image files into a Glue data object""" result = Data() data = img_loader(file_name) data = np.flipud(data) shp = data.shape comps = [] labels = [] # split 3 color images into each color plane if len(shp) == 3 and shp[2] in [3, 4]: comps.extend([data[:, :, 0], data[:, :, 1], data[:, :, 2]]) labels.extend(['red', 'green', 'blue']) if shp[2] == 4: comps.append(data[:, :, 3]) labels.append('alpha') else: comps = [data] labels = ['PRIMARY'] # look for AVM coordinate metadata try: from pyavm import AVM avm = AVM(str(file_name)) # avoid unicode wcs = avm.to_wcs() except: pass else: result.coords = coordinates_from_wcs(wcs) for c, l in zip(comps, labels): result.add_component(c, l) return result img_data.label = "Image" img_data.identifier = has_extension(' '.join(img_fmt)) for i in img_fmt: set_default_factory(i, img_data) __factories__.append(img_data)
{ "repo_name": "JudoWill/glue", "path": "glue/core/data_factories/image.py", "copies": "1", "size": "1974", "license": "bsd-3-clause", "hash": -4695404824515251000, "line_mean": 24.3205128205, "line_max": 70, "alpha_frac": 0.5916919959, "autogenerated": false, "ratio": 3.550359712230216, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4642051708130216, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.core.callback_property import CallbackProperty from glue.core.edit_subset_mode import EditSubsetMode from glue.core.exceptions import IncompatibleDataException, IncompatibleAttribute from glue.core.data import Data from glue.core import message as msg from glue.core.client import Client from glue.core.roi import RangeROI from glue.core.state import lookup_class_with_patches from glue.core.layer_artist import LayerArtistContainer from glue.core.util import update_ticks, visible_limits from glue.viewers.common.viz_client import init_mpl, update_appearance_from_settings from .layer_artist import HistogramLayerArtist class UpdateProperty(CallbackProperty): """ Descriptor that calls client's sync_all() method when changed """ def __init__(self, default, relim=False): super(UpdateProperty, self).__init__(default) self.relim = relim def __set__(self, instance, value): changed = value != self.__get__(instance) super(UpdateProperty, self).__set__(instance, value) if not changed: return instance.sync_all() if self.relim: instance._relim() def update_on_true(func): def wrapper(*args, **kwargs): result = func(*args, **kwargs) if result: args[0].sync_all() return result return wrapper class HistogramClient(Client): """ A client class to display histograms """ normed = UpdateProperty(False) cumulative = UpdateProperty(False) autoscale = UpdateProperty(True) nbins = UpdateProperty(30) xlog = UpdateProperty(False, relim=True) ylog = UpdateProperty(False) xmin = UpdateProperty(None, relim=True) xmax = UpdateProperty(None, relim=True) def __init__(self, data, figure, layer_artist_container=None): super(HistogramClient, self).__init__(data) self._artists = layer_artist_container or LayerArtistContainer() self._figure, self._axes = init_mpl(figure=figure, axes=None) self._component = None self._saved_nbins = None self._xlim_cache = {} self._xlog_cache = {} self._sync_enabled = True self._xlog_curr = False @property def bins(self): """ An array of bin edges for the histogram. This returns `None` if no histogram has been computed yet. """ for art in self._artists: if not isinstance(art, HistogramLayerArtist): continue return art.x @property def axes(self): return self._axes @property def xlimits(self): return self.xmin, self.xmax @xlimits.setter def xlimits(self, value): lo, hi = value old = self.xlimits if lo is None: lo = old[0] if hi is None: hi = old[1] self.xmin = min(lo, hi) self.xmax = max(lo, hi) def layer_present(self, layer): return layer in self._artists def add_layer(self, layer): if layer.data not in self.data: raise IncompatibleDataException("Layer not in data collection") self._ensure_layer_data_present(layer) if self.layer_present(layer): return self._artists[layer][0] art = HistogramLayerArtist(layer, self._axes) self._artists.append(art) self._ensure_subsets_present(layer) self._sync_layer(layer) self._redraw() return art def _redraw(self): self._axes.figure.canvas.draw() def _ensure_layer_data_present(self, layer): if layer.data is layer: return if not self.layer_present(layer.data): self.add_layer(layer.data) def _ensure_subsets_present(self, layer): for subset in layer.data.subsets: self.add_layer(subset) @update_on_true def remove_layer(self, layer): if not self.layer_present(layer): return for a in self._artists.pop(layer): a.clear() if isinstance(layer, Data): for subset in layer.subsets: self.remove_layer(subset) return True @update_on_true def set_layer_visible(self, layer, state): if not self.layer_present(layer): return for a in self._artists[layer]: a.visible = state return True def is_layer_visible(self, layer): if not self.layer_present(layer): return False return any(a.visible for a in self._artists[layer]) def _update_axis_labels(self): xlabel = self.component.label if self.component is not None else '' if self.xlog: xlabel = "Log %s" % xlabel ylabel = 'N' self._axes.set_xlabel(xlabel) self._axes.set_ylabel(ylabel) components = list(self._get_data_components('x')) if components: bins = update_ticks(self.axes, 'x', components, False) return if bins is not None: prev_bins = self.nbins auto_bins = self._auto_nbin(calculate_only=True) if prev_bins == auto_bins: # try to assign a bin to each category, # but only if self.nbins hasn't been overridden # from auto_nbin self.nbins = min(bins, 100) self.xlimits = (-0.5, bins - 0.5) def _get_data_components(self, coord): """ Returns the components for each dataset for x and y axes. """ if coord == 'x': attribute = self.component else: raise TypeError('coord must be x') for data in self._data: try: yield data.get_component(attribute) except IncompatibleAttribute: pass def _auto_nbin(self, calculate_only=False): data = set(a.layer.data for a in self._artists) if len(data) == 0: return dx = np.mean([d.size for d in data]) val = min(max(5, (dx / 1000) ** (1. / 3.) * 30), 100) c = list(self._get_data_components('x')) if c: c = c[0] if c.categorical: val = min(c.categories.size, 100) if not calculate_only: self.xlimits = (-0.5, c.categories.size - 0.5) if not calculate_only: self.nbins = val return val def _auto_limits(self): lo, hi = np.inf, -np.inf for a in self._artists: try: data = a.layer[self.component] except IncompatibleAttribute: continue if data.size == 0: continue if self.xlog: positive = data > 0 if np.any(positive): positive_data = data[positive] lo = min(lo, np.nanmin(positive_data)) hi = max(hi, np.nanmax(positive_data)) else: lo = 1 hi = 10 else: lo = min(lo, np.nanmin(data)) hi = max(hi, np.nanmax(data)) self.xmin = lo self.xmax = hi def _sync_layer(self, layer, force=False): for a in self._artists[layer]: a.lo = self.xmin a.hi = self.xmax a.nbins = self.nbins a.xlog = self.xlog a.ylog = self.ylog a.cumulative = self.cumulative a.normed = self.normed a.att = self._component a.update() if not force else a.force_update() def sync_all(self, force=False): if not self._sync_enabled: return if self.component is not None: if not (self.xlog, self.component) in self._xlim_cache or not self.component in self._xlog_cache: self._auto_limits() self._xlim_cache[(self.xlog, self.component)] = self.xmin, self.xmax self._xlog_cache[self.component] = self.xlog elif self.xlog is self._xlog_curr: self._xlim_cache[(self.xlog, self.component)] = self.xmin, self.xmax else: self._xlog_cache[self.component] = self.xlog self.xmin, self.xmax = self._xlim_cache[(self.xlog, self.component)] self._xlog_curr = self.xlog layers = set(a.layer for a in self._artists) for l in layers: self._sync_layer(l, force=force) self._update_axis_labels() if self.autoscale: lim = visible_limits(self._artists, 1) if lim is not None: lo = 1e-5 if self.ylog else 0 hi = lim[1] # pad the top if self.ylog: hi = lo * (hi / lo) ** 1.03 else: hi *= 1.03 self._axes.set_ylim(lo, hi) yscl = 'log' if self.ylog else 'linear' self._axes.set_yscale(yscl) self._redraw() @property def component(self): return self._component @component.setter def component(self, value): self.set_component(value) def set_component(self, component): """ Redefine which component gets plotted Parameters ---------- component: `~glue.core.component_id.ComponentID` The new component to plot """ if self._component is component: return self._sync_enabled = False iscat = lambda x: x.categorical def comp_obj(): # the current Component (not ComponentID) object x = list(self._get_data_components('x')) if x: x = x[0] return x prev = comp_obj() old = self.nbins first_add = self._component is None self._component = component cur = comp_obj() if self.component in self._xlog_cache: self.xlog = self._xlog_cache[self.component] else: self.xlog = False self._xlog_cache[self.component] = self.xlog if (self.xlog, self.component) in self._xlim_cache: self.xmin, self.xmax = self._xlim_cache[(self.xlog, self.component)] else: self._auto_limits() self._xlim_cache[(self.xlog, self.component)] = self.xmin, self.xmax self._sync_enabled = True if first_add or iscat(cur): self._auto_nbin() # save old bins if switch from non-category to category if prev and not iscat(prev) and iscat(cur): self._saved_nbins = old # restore old bins if switch from category to non-category if prev and iscat(prev) and cur and not iscat(cur) and self._saved_nbins is not None: self.nbins = self._saved_nbins self._saved_nbins = None self.sync_all() self._relim() def _relim(self): xmin, xmax = self.xmin, self.xmax if self.xlog: if xmin is None or not np.isfinite(xmin): xmin = 0 else: xmin = np.log10(xmin) if xmax is None or not np.isfinite(xmax): xmax = 1 else: xmax = np.log10(xmax) self._axes.set_xlim((xmin, xmax)) self._redraw() def _numerical_data_changed(self, message): data = message.sender self.sync_all(force=True) def _on_component_replaced(self, msg): if self.component is msg.old: self.set_component(msg.new) def _update_data(self, message): self.sync_all() def _update_subset(self, message): self._sync_layer(message.subset) self._redraw() def _add_subset(self, message): self.add_layer(message.sender) assert self.layer_present(message.sender) assert self.is_layer_visible(message.sender) def _remove_data(self, message): self.remove_layer(message.data) def _remove_subset(self, message): self.remove_layer(message.subset) def apply_roi(self, roi): x, _ = roi.to_polygon() lo = min(x) hi = max(x) # expand roi to match bin edges bins = self.bins if lo >= bins.min(): lo = bins[bins <= lo].max() if hi <= bins.max(): hi = bins[bins >= hi].min() if self.xlog: lo = 10 ** lo hi = 10 ** hi nroi = RangeROI(min=lo, max=hi, orientation='x') for comp in self._get_data_components('x'): state = comp.subset_from_roi(self.component, nroi, coord='x') mode = EditSubsetMode() visible = [d for d in self.data if self.is_layer_visible(d)] focus = visible[0] if len(visible) > 0 else None mode.update(self.data, state, focus_data=focus) def register_to_hub(self, hub): dfilter = lambda x: x.sender.data in self._artists dcfilter = lambda x: x.data in self._artists subfilter = lambda x: x.subset in self._artists hub.subscribe(self, msg.SubsetCreateMessage, handler=self._add_subset, filter=dfilter) hub.subscribe(self, msg.SubsetUpdateMessage, handler=self._update_subset, filter=subfilter) hub.subscribe(self, msg.SubsetDeleteMessage, handler=self._remove_subset) hub.subscribe(self, msg.DataUpdateMessage, handler=self._update_data, filter=dfilter) hub.subscribe(self, msg.DataCollectionDeleteMessage, handler=self._remove_data) hub.subscribe(self, msg.NumericalDataChangedMessage, handler=self._numerical_data_changed) hub.subscribe(self, msg.ComponentReplacedMessage, handler=self._on_component_replaced) def is_appearance_settings(msg): return ('BACKGROUND_COLOR' in msg.settings or 'FOREGROUND_COLOR' in msg.settings) hub.subscribe(self, msg.SettingsChangeMessage, self._update_appearance_from_settings, filter=is_appearance_settings) def _update_appearance_from_settings(self, message): update_appearance_from_settings(self.axes) self._redraw() def restore_layers(self, layers, context): for layer in layers: lcls = lookup_class_with_patches(layer.pop('_type')) if lcls != HistogramLayerArtist: raise ValueError("Cannot restore layers of type %s" % lcls) data_or_subset = context.object(layer.pop('layer')) result = self.add_layer(data_or_subset) result.properties = layer
{ "repo_name": "saimn/glue", "path": "glue/viewers/histogram/client.py", "copies": "2", "size": "15209", "license": "bsd-3-clause", "hash": 3499433717232905700, "line_mean": 29.8498985801, "line_max": 109, "alpha_frac": 0.5490170294, "autogenerated": false, "ratio": 4.011870218939594, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5560887248339593, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.core.component import Component, CategoricalComponent from glue.core.data import Data def test_histogram_data(): data = Data(label="Test Data") comp_a = Component(np.random.uniform(size=500)) comp_b = Component(np.random.normal(size=500)) data.add_component(comp_a, 'uniform') data.add_component(comp_b, 'normal') return data def test_data(): data = Data(label="Test Data 1") data2 = Data(label="Teset Data 2") comp_a = Component(np.array([1, 2, 3])) comp_b = Component(np.array([1, 2, 3])) comp_c = Component(np.array([2, 4, 6])) comp_d = Component(np.array([1, 3, 5])) data.add_component(comp_a, 'a') data.add_component(comp_b, 'b') data2.add_component(comp_c, 'c') data2.add_component(comp_d, 'd') return data, data2 def test_categorical_data(): data = Data(label="Test Cat Data 1") data2 = Data(label="Teset Cat Data 2") comp_x1 = CategoricalComponent(np.array(['a', 'a', 'b'])) comp_y1 = Component(np.array([1, 2, 3])) comp_x2 = CategoricalComponent(np.array(['c', 'a', 'b'])) comp_y2 = Component(np.array([1, 3, 5])) data.add_component(comp_x1, 'x1') data.add_component(comp_y1, 'y1') data2.add_component(comp_x2, 'x2') data2.add_component(comp_y2, 'y2') return data, data2 def test_image(): data = Data(label="Test Image") comp_a = Component(np.ones((25, 25))) data.add_component(comp_a, 'test_1') comp_b = Component(np.zeros((25, 25))) data.add_component(comp_b, 'test_2') return data def test_cube(): data = Data(label="Test Cube") comp_a = Component(np.ones((16, 16, 16))) data.add_component(comp_a, 'test_3') return data
{ "repo_name": "stscieisenhamer/glue", "path": "glue/tests/example_data.py", "copies": "5", "size": "1793", "license": "bsd-3-clause", "hash": 4269739040068948500, "line_mean": 27.9193548387, "line_max": 64, "alpha_frac": 0.6307863915, "autogenerated": false, "ratio": 2.915447154471545, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6046233545971544, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.core.coordinates import coordinates_from_wcs from glue.core.data_factories.helpers import has_extension from glue.core.data import Data from glue.config import data_factory IMG_FMT = ['jpg', 'jpeg', 'bmp', 'png', 'tiff', 'tif'] __all__ = ['img_data'] def img_loader(file_name): """Load an image to a numpy array, using either PIL or skimage :param file_name: Path of file to load :rtype: Numpy array """ try: from skimage import img_as_ubyte from skimage.io import imread return np.asarray(img_as_ubyte(imread(file_name))) except ImportError: pass try: from PIL import Image return np.asarray(Image.open(file_name)) except ImportError: raise ImportError("Reading %s requires PIL or scikit-image" % file_name) @data_factory(label='Image', identifier=has_extension(' '.join(IMG_FMT))) def img_data(file_name): """Load common image files into a Glue data object""" result = Data() data = img_loader(file_name) data = np.flipud(data) shp = data.shape comps = [] labels = [] # split 3 color images into each color plane if len(shp) == 3 and shp[2] in [3, 4]: comps.extend([data[:, :, 0], data[:, :, 1], data[:, :, 2]]) labels.extend(['red', 'green', 'blue']) if shp[2] == 4: comps.append(data[:, :, 3]) labels.append('alpha') else: comps = [data] labels = ['PRIMARY'] # look for AVM coordinate metadata try: from pyavm import AVM avm = AVM(str(file_name)) # avoid unicode wcs = avm.to_wcs() except: pass else: result.coords = coordinates_from_wcs(wcs) for c, l in zip(comps, labels): result.add_component(c, l) return result
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/data_factories/image.py", "copies": "4", "size": "1922", "license": "bsd-3-clause", "hash": 4836984818129985000, "line_mean": 25.3287671233, "line_max": 73, "alpha_frac": 0.5972944849, "autogenerated": false, "ratio": 3.599250936329588, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.001141552511415525, "num_lines": 73 }
from __future__ import absolute_import, division, print_function import numpy as np from glue.core.coordinates import Coordinates from glue.viewers.common.qt.data_slice_widget import SliceWidget from glue.viewers.image.state import AggregateSlice from glue.utils.decorators import avoid_circular __all__ = ['MultiSliceWidgetHelper'] class MultiSliceWidgetHelper(object): def __init__(self, viewer_state=None, layout=None): self.viewer_state = viewer_state self.layout = layout self.layout.setSpacing(4) self.layout.setContentsMargins(0, 3, 0, 3) self.viewer_state.add_callback('x_att', self.sync_sliders_from_state) self.viewer_state.add_callback('y_att', self.sync_sliders_from_state) self.viewer_state.add_callback('slices', self.sync_sliders_from_state) self.viewer_state.add_callback('reference_data', self.sync_sliders_from_state) self._sliders = [] self.sync_sliders_from_state() @property def data(self): return self.viewer_state.reference_data def _clear(self): for _ in range(self.layout.count()): self.layout.takeAt(0) for s in self._sliders: if s is not None: s.close() self._sliders = [] @avoid_circular def sync_state_from_sliders(self, *args): slices = [] for i, slider in enumerate(self._sliders): if slider is not None: slices.append(slider.state.slice_center) else: slices.append(self.viewer_state.slices[i]) self.viewer_state.slices = tuple(slices) @avoid_circular def sync_sliders_from_state(self, *args): if self.data is None or self.viewer_state.x_att is None or self.viewer_state.y_att is None: return if self.viewer_state.x_att is self.viewer_state.y_att: return # TODO: figure out why there are no current circular calls (normally # we should need to add @avoid_circular) # Update number of sliders if needed if self.data.ndim != len(self._sliders): reinitialize = True else: for i in range(self.data.ndim): if i == self.viewer_state.x_att.axis or i == self.viewer_state.y_att.axis: if self._sliders[i] is not None: reinitialize = True break else: if self._sliders[i] is None: reinitialize = True break else: reinitialize = False if reinitialize: self._clear() for i in range(self.data.ndim): if i == self.viewer_state.x_att.axis or i == self.viewer_state.y_att.axis: self._sliders.append(None) continue # TODO: For now we simply pass a single set of world coordinates, # but we will need to generalize this in future. We deliberately # check the type of data.coords here since we want to treat # subclasses differently. if type(self.data.coords) != Coordinates: world = self.data.coords.world_axis(self.data, i) world_unit = self.data.coords.world_axis_unit(i) world_warning = len(self.data.coords.dependent_axes(i)) > 1 else: world = None world_unit = None world_warning = False slider = SliceWidget(self.data.get_world_component_id(i).label, hi=self.data.shape[i] - 1, world=world, world_unit=world_unit, world_warning=world_warning) self.slider_state = slider.state self.slider_state.add_callback('slice_center', self.sync_state_from_sliders) self._sliders.append(slider) self.layout.addWidget(slider) for i in range(self.data.ndim): if self._sliders[i] is not None: if isinstance(self.viewer_state.slices[i], AggregateSlice): self._sliders[i].state.slice_center = self.viewer_state.slices[i].center else: self._sliders[i].state.slice_center = self.viewer_state.slices[i] if __name__ == "__main__": from glue.core import Data from glue.utils.qt import get_qapp from glue.external.echo import CallbackProperty from glue.core.state_objects import State app = get_qapp() class FakeViewerState(State): x_att = CallbackProperty() y_att = CallbackProperty() reference_data = CallbackProperty() slices = CallbackProperty() viewer_state = FakeViewerState() data = Data(x=np.random.random((3, 50, 20, 5, 3))) viewer_state.reference_data = data viewer_state.x_att = data.get_pixel_component_id(0) viewer_state.y_att = data.get_pixel_component_id(3) viewer_state.slices = [0] * 5 widget = MultiSliceWidgetHelper(viewer_state) widget.show() app.exec_()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/image/qt/slice_widget.py", "copies": "2", "size": "5216", "license": "bsd-3-clause", "hash": -6426266291832692000, "line_mean": 33.091503268, "line_max": 99, "alpha_frac": 0.5778374233, "autogenerated": false, "ratio": 3.9725818735719725, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0007345249293605253, "num_lines": 153 }
from __future__ import absolute_import, division, print_function import numpy as np from glue.core.data_factories.helpers import has_extension from glue.core.data import Component, Data from glue.config import data_factory, qglue_parser __all__ = ['astropy_tabular_data', 'sextractor_factory', 'cds_factory', 'daophot_factory', 'ipac_factory', 'aastex_factory', 'latex_factory'] # In this file, we define data factories based on the Astropy table reader. def is_readable_by_astropy(filename, **kwargs): # This identifier is not efficient, because it involves actually trying # to read in the table. However, we only use this as the identifier for # the astropy_tabular_data factory which has a priority of 0 and is # therefore only used as a last attempt if all else fails. try: astropy_table_read(filename, **kwargs) except: return False else: return True def astropy_table_read(*args, **kwargs): from astropy.table import Table # In Python 3, as of Astropy 0.4, if the format is not specified, the # automatic format identification will fail (astropy/astropy#3013). # This is only a problem for ASCII formats however, because it is due # to the fact that the file object in io.ascii does not rewind to the # start between guesses (due to a bug), so here we can explicitly try # the ASCII format if the format keyword was not already present. But # also more generally, we should first try the ASCII readers. if 'format' not in kwargs: try: return Table.read(*args, format='ascii', **kwargs) except: pass # If the above didn't work, attempt to read with no specified format return Table.read(*args, **kwargs) @data_factory(label="Catalog (astropy.table parser)", identifier=is_readable_by_astropy, priority=0) def astropy_tabular_data(*args, **kwargs): """ Build a data set from a table. We restrict ourselves to tables with 1D columns. All arguments are passed to astropy.table.Table.read(...). """ result = Data() table = astropy_table_read(*args, **kwargs) result.meta = table.meta # Loop through columns and make component list for column_name in table.columns: c = table[column_name] u = c.unit if hasattr(c, 'unit') else c.units if table.masked: # fill array for now try: c = c.filled(fill_value=np.nan) except ValueError: # assigning nan to integer dtype c = c.filled(fill_value=-1) nc = Component.autotyped(c, units=u) result.add_component(nc, column_name) return result @data_factory(label="VO table", identifier=has_extension('xml vot xml.gz vot.gz'), priority=1) def astropy_tabular_data_votable(*args, **kwargs): kwargs['format'] = 'votable' return astropy_tabular_data(*args, **kwargs) @data_factory(label="FITS table", identifier=has_extension('fits fits.gz fit fit.gz'), priority=1) def astropy_tabular_data_fits(*args, **kwargs): kwargs['format'] = 'fits' return astropy_tabular_data(*args, **kwargs) # Add explicit factories for the formats which astropy.table # can parse, but does not auto-identify def formatted_table_factory(format, label): @data_factory(label=label, identifier=lambda *a, **k: False) def factory(file, **kwargs): kwargs['format'] = 'ascii.%s' % format return astropy_tabular_data(file, **kwargs) # rename function to its variable reference below # allows pickling to work factory.__name__ = '%s_factory' % format return factory sextractor_factory = formatted_table_factory('sextractor', 'SExtractor Catalog') cds_factory = formatted_table_factory('cds', 'CDS Catalog') daophot_factory = formatted_table_factory('daophot', 'DAOphot Catalog') ipac_factory = formatted_table_factory('ipac', 'IPAC Catalog') aastex_factory = formatted_table_factory('aastex', 'AASTeX Table') latex_factory = formatted_table_factory('latex', 'LaTeX Table') try: from astropy.table import Table except ImportError: pass else: @qglue_parser(Table) def _parse_data_astropy_table(data, label): kwargs = dict((c, data[c]) for c in data.columns) return [Data(label=label, **kwargs)]
{ "repo_name": "saimn/glue", "path": "glue/core/data_factories/astropy_table.py", "copies": "4", "size": "4422", "license": "bsd-3-clause", "hash": -4348215220937463300, "line_mean": 31.5147058824, "line_max": 80, "alpha_frac": 0.6625961104, "autogenerated": false, "ratio": 3.7570093457943927, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6419605456194393, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.core.exceptions import IncompatibleAttribute from glue.core.subset import Subset from glue.core.layer_artist import MatplotlibLayerArtist, ChangedTrigger class DendroLayerArtist(MatplotlibLayerArtist): # X vertices of structure i are in layout[0][3*i: 3*i+3] layout = ChangedTrigger() def __init__(self, layer, ax): super(DendroLayerArtist, self).__init__(layer, ax) def _recalc(self): self.clear() assert len(self.artists) == 0 if self.layout is None: return # layout[0] is [x0, x0, x[parent0], nan, ...] # layout[1] is [y0, y[parent0], y[parent0], nan, ...] ids = 3 * np.arange(self.layer.data.size) try: if isinstance(self.layer, Subset): ids = ids[self.layer.to_mask()] x, y = self.layout blank = np.zeros(ids.size) * np.nan x = np.column_stack([x[ids], x[ids + 1], x[ids + 2], blank]).ravel() y = np.column_stack([y[ids], y[ids + 1], y[ids + 2], blank]).ravel() except IncompatibleAttribute as exc: self.disable_invalid_attributes(*exc.args) return False self.artists = self._axes.plot(x, y, '--') return True def update(self, view=None): self._check_subset_state_changed() if self._changed: # erase and make a new artist if not self._recalc(): # no need to update style return self._changed = False self._sync_style() def _sync_style(self): super(DendroLayerArtist, self)._sync_style() style = self.layer.style lw = 4 if isinstance(self.layer, Subset) else 2 for artist in self.artists: artist.set_linestyle('-') artist.set_marker(None) artist.set_color(style.color) artist.set_linewidth(lw)
{ "repo_name": "saimn/glue", "path": "glue/plugins/dendro_viewer/layer_artist.py", "copies": "3", "size": "2042", "license": "bsd-3-clause", "hash": -7868561518471582000, "line_mean": 31.935483871, "line_max": 72, "alpha_frac": 0.5636630754, "autogenerated": false, "ratio": 3.746788990825688, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5810452066225689, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.core import Data from glue.external.echo import delay_callback from glue.viewers.matplotlib.state import (MatplotlibDataViewerState, MatplotlibLayerState, DeferredDrawCallbackProperty as DDCProperty, DeferredDrawSelectionCallbackProperty as DDSCProperty) from glue.core.state_objects import (StateAttributeLimitsHelper, StateAttributeHistogramHelper) from glue.core.exceptions import IncompatibleAttribute from glue.core.data_combo_helper import ComponentIDComboHelper from glue.utils import defer_draw from glue.utils.decorators import avoid_circular __all__ = ['HistogramViewerState', 'HistogramLayerState'] class HistogramViewerState(MatplotlibDataViewerState): """ A state class that includes all the attributes for a histogram viewer. """ x_att = DDSCProperty(docstring='The attribute to compute the histograms for') cumulative = DDCProperty(False, docstring='Whether to show the histogram as ' 'a cumulative histogram') normalize = DDCProperty(False, docstring='Whether to normalize the histogram ' '(based on the total sum)') hist_x_min = DDCProperty(docstring='The minimum value used to compute the ' 'histogram') hist_x_max = DDCProperty(docstring='The maxumum value used to compute the ' 'histogram') hist_n_bin = DDCProperty(docstring='The number of bins in the histogram') common_n_bin = DDCProperty(True, docstring='The number of bins to use for ' 'all numerical components') def __init__(self, **kwargs): super(HistogramViewerState, self).__init__() self.hist_helper = StateAttributeHistogramHelper(self, 'x_att', lower='hist_x_min', upper='hist_x_max', n_bin='hist_n_bin', common_n_bin='common_n_bin') self.x_lim_helper = StateAttributeLimitsHelper(self, 'x_att', lower='x_min', upper='x_max', log='x_log') self.add_callback('layers', self._layers_changed) self.x_att_helper = ComponentIDComboHelper(self, 'x_att', pixel_coord=True, world_coord=True) self.update_from_dict(kwargs) # This should be added after update_from_dict since we don't want to # influence the restoring of sessions. self.add_callback('hist_x_min', self.update_view_to_bins) self.add_callback('hist_x_max', self.update_view_to_bins) self.add_callback('x_log', self._reset_x_limits, priority=1000) def _reset_x_limits(self, *args): with delay_callback(self, 'hist_x_min', 'hist_x_max', 'x_min', 'x_max', 'x_log'): self.x_lim_helper.percentile = 100 self.x_lim_helper.update_values(force=True) self.update_bins_to_view() def reset_limits(self): self._reset_x_limits() self.y_min = min(getattr(layer, '_y_min', np.inf) for layer in self.layers) self.y_max = max(getattr(layer, '_y_max', 0) for layer in self.layers) def _update_priority(self, name): if name == 'layers': return 2 elif name.endswith('_log'): return 0.5 elif name.endswith(('_min', '_max', '_bin')): return 0 else: return 1 def flip_x(self): """ Flip the x_min/x_max limits. """ self.x_lim_helper.flip_limits() @avoid_circular def update_bins_to_view(self, *args): """ Update the bins to match the current view. """ with delay_callback(self, 'hist_x_min', 'hist_x_max'): if self.x_max > self.x_min: self.hist_x_min = self.x_min self.hist_x_max = self.x_max else: self.hist_x_min = self.x_max self.hist_x_max = self.x_min @avoid_circular def update_view_to_bins(self, *args): """ Update the view to match the histogram interval """ with delay_callback(self, 'x_min', 'x_max'): self.x_min = self.hist_x_min self.x_max = self.hist_x_max def _get_x_components(self): if self.x_att is None: return [] # Construct list of components over all layers components = [] for layer_state in self.layers: if isinstance(layer_state.layer, Data): layer = layer_state.layer else: layer = layer_state.layer.data try: components.append(layer.get_component(self.x_att)) except IncompatibleAttribute: pass return components @property def bins(self): """ The position of the bins for the histogram based on the current state. """ if self.hist_x_min is None or self.hist_x_max is None or self.hist_n_bin is None: return None if self.x_log: return np.logspace(np.log10(self.hist_x_min), np.log10(self.hist_x_max), self.hist_n_bin + 1) else: return np.linspace(self.hist_x_min, self.hist_x_max, self.hist_n_bin + 1) @defer_draw def _layers_changed(self, *args): self.x_att_helper.set_multiple_data(self.layers_data) class HistogramLayerState(MatplotlibLayerState): """ A state class that includes all the attributes for layers in a histogram plot. """
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/histogram/state.py", "copies": "1", "size": "6012", "license": "bsd-3-clause", "hash": 6003203792581838000, "line_mean": 35.4363636364, "line_max": 97, "alpha_frac": 0.5590485695, "autogenerated": false, "ratio": 4.109364319890636, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.001044213537209289, "num_lines": 165 }
from __future__ import absolute_import, division, print_function import numpy as np from glue.core import Subset from glue.config import data_exporter __all__ = [] @data_exporter(label='FITS (1 component/HDU)', extension=['fits', 'fit']) def fits_writer(data, filename): """ Write a dataset or a subset to a FITS file. Parameters ---------- data: `~glue.core.data.Data` or `~glue.core.subset.Subset` The data or subset to export """ if isinstance(data, Subset): mask = data.to_mask() data = data.data else: mask = None from astropy.io import fits hdus = fits.HDUList() for cid in data.visible_components: comp = data.get_component(cid) if comp.categorical: # TODO: emit warning continue else: values = comp.data.copy() if mask is not None: values[~mask] = np.nan # TODO: special behavior for PRIMARY? hdu = fits.ImageHDU(values, name=cid.label) hdus.append(hdu) hdus.writeto(filename, clobber=True)
{ "repo_name": "saimn/glue", "path": "glue/core/data_exporters/gridded_fits.py", "copies": "2", "size": "1098", "license": "bsd-3-clause", "hash": 332672681950101760, "line_mean": 21.4081632653, "line_max": 73, "alpha_frac": 0.5965391621, "autogenerated": false, "ratio": 3.7220338983050847, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5318573060405085, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.external.echo import (CallbackProperty, ListCallbackProperty, SelectionCallbackProperty, keep_in_sync, delay_callback) from glue.core.state_objects import State from glue.core.message import LayerArtistUpdatedMessage from glue.core.exceptions import IncompatibleAttribute from glue.utils import defer_draw __all__ = ['DeferredDrawSelectionCallbackProperty', 'DeferredDrawCallbackProperty', 'MatplotlibDataViewerState', 'MatplotlibLayerState'] class DeferredDrawCallbackProperty(CallbackProperty): """ A callback property where drawing is deferred until after notify has called all callback functions. """ @defer_draw def notify(self, *args, **kwargs): super(DeferredDrawCallbackProperty, self).notify(*args, **kwargs) class DeferredDrawSelectionCallbackProperty(SelectionCallbackProperty): """ A callback property where drawing is deferred until after notify has called all callback functions. """ @defer_draw def notify(self, *args, **kwargs): super(DeferredDrawSelectionCallbackProperty, self).notify(*args, **kwargs) class MatplotlibDataViewerState(State): """ A base class that includes common attributes for viewers based on Matplotlib. """ x_min = DeferredDrawCallbackProperty(docstring='Lower limit of the visible x range') x_max = DeferredDrawCallbackProperty(docstring='Upper limit of the visible x range') y_min = DeferredDrawCallbackProperty(docstring='Lower limit of the visible y range') y_max = DeferredDrawCallbackProperty(docstring='Upper limit of the visible y range') x_log = DeferredDrawCallbackProperty(False, docstring='Whether the x axis is logarithmic') y_log = DeferredDrawCallbackProperty(False, docstring='Whether the y axis is logarithmic') aspect = DeferredDrawCallbackProperty('auto', docstring='Aspect ratio for the axes') layers = ListCallbackProperty(docstring='A collection of all layers in the viewer') @property def layers_data(self): return [layer_state.layer for layer_state in self.layers] class MatplotlibLayerState(State): """ A base class that includes common attributes for all layers in viewers based on Matplotlib. """ layer = DeferredDrawCallbackProperty(docstring='The :class:`~glue.core.data.Data` ' 'or :class:`~glue.core.subset.Subset` ' 'represented by the layer') color = DeferredDrawCallbackProperty(docstring='The color used to display ' 'the data') alpha = DeferredDrawCallbackProperty(docstring='The transparency used to ' 'display the data') zorder = DeferredDrawCallbackProperty(0, docstring='A value used to indicate ' 'which layers are shown in ' 'front of which (larger ' 'zorder values are on top ' 'of other layers)') visible = DeferredDrawCallbackProperty(True, docstring='Whether the layer ' 'is currently visible') def __init__(self, viewer_state=None, **kwargs): super(MatplotlibLayerState, self).__init__(**kwargs) self.viewer_state = viewer_state self.color = self.layer.style.color self.alpha = self.layer.style.alpha self._sync_color = keep_in_sync(self, 'color', self.layer.style, 'color') self._sync_alpha = keep_in_sync(self, 'alpha', self.layer.style, 'alpha') self.add_global_callback(self._notify_layer_update) def _notify_layer_update(self, **kwargs): message = LayerArtistUpdatedMessage(self) if self.layer is not None and self.layer.hub is not None: self.layer.hub.broadcast(message)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/matplotlib/state.py", "copies": "1", "size": "4200", "license": "bsd-3-clause", "hash": -3179074087328102000, "line_mean": 39.7766990291, "line_max": 94, "alpha_frac": 0.6342857143, "autogenerated": false, "ratio": 4.751131221719457, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.002252743566962345, "num_lines": 103 }
from __future__ import absolute_import, division, print_function import numpy as np from glue.external.echo import (CallbackProperty, SelectionCallbackProperty, delay_callback, ListCallbackProperty) from glue.core.state_objects import StateAttributeLimitsHelper from glue.viewers.common.state import ViewerState __all__ = ['Vispy3DViewerState'] class Vispy3DViewerState(ViewerState): """ A common state object for all vispy 3D viewers """ x_att = SelectionCallbackProperty() x_min = CallbackProperty(0) x_max = CallbackProperty(1) x_stretch = CallbackProperty(1.) y_att = SelectionCallbackProperty(default_index=1) y_min = CallbackProperty(0) y_max = CallbackProperty(1) y_stretch = CallbackProperty(1.) z_att = SelectionCallbackProperty(default_index=2) z_min = CallbackProperty(0) z_max = CallbackProperty(1) z_stretch = CallbackProperty(1.) visible_axes = CallbackProperty(True) perspective_view = CallbackProperty(False) clip_data = CallbackProperty(True) native_aspect = CallbackProperty(False) layers = ListCallbackProperty() limits_cache = CallbackProperty() def _update_priority(self, name): if name == 'layers': return 2 elif name.endswith(('_min', '_max')): return 0 else: return 1 def __init__(self, **kwargs): super(Vispy3DViewerState, self).__init__(**kwargs) if self.limits_cache is None: self.limits_cache = {} self.x_lim_helper = StateAttributeLimitsHelper(self, attribute='x_att', lower='x_min', upper='x_max', cache=self.limits_cache) self.y_lim_helper = StateAttributeLimitsHelper(self, attribute='y_att', lower='y_min', upper='y_max', cache=self.limits_cache) self.z_lim_helper = StateAttributeLimitsHelper(self, attribute='z_att', lower='z_min', upper='z_max', cache=self.limits_cache) # TODO: if limits_cache is re-assigned to a different object, we need to # update the attribute helpers. However if in future we make limits_cache # into a smart dictionary that can call callbacks when elements are # changed then we shouldn't always call this. It'd also be nice to # avoid this altogether and make it more clean. self.add_callback('limits_cache', self._update_limits_cache) def reset_limits(self): self.x_lim_helper.log = False self.x_lim_helper.percentile = 100. self.x_lim_helper.update_values(force=True) self.y_lim_helper.log = False self.y_lim_helper.percentile = 100. self.y_lim_helper.update_values(force=True) self.z_lim_helper.log = False self.z_lim_helper.percentile = 100. self.z_lim_helper.update_values(force=True) def _update_limits_cache(self, *args): self.x_lim_helper._cache = self.limits_cache self.x_lim_helper._update_attribute() self.y_lim_helper._cache = self.limits_cache self.y_lim_helper._update_attribute() self.z_lim_helper._cache = self.limits_cache self.z_lim_helper._update_attribute() @property def aspect(self): # TODO: this could be cached based on the limits, but is not urgent aspect = np.array([1, 1, 1], dtype=float) if self.native_aspect: aspect[0] = 1. aspect[1] = (self.y_max - self.y_min) / (self.x_max - self.x_min) aspect[2] = (self.z_max - self.z_min) / (self.x_max - self.x_min) aspect /= aspect.max() return aspect def reset(self): pass def flip_x(self): self.x_lim_helper.flip_limits() def flip_y(self): self.y_lim_helper.flip_limits() def flip_z(self): self.z_lim_helper.flip_limits() @property def clip_limits(self): return (self.x_min, self.x_max, self.y_min, self.y_max, self.z_min, self.z_max) def set_limits(self, x_min, x_max, y_min, y_max, z_min, z_max): with delay_callback(self, 'x_min', 'x_max', 'y_min', 'y_max', 'z_min', 'z_max'): self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max self.z_min = z_min self.z_max = z_max
{ "repo_name": "astrofrog/glue-vispy-viewers", "path": "glue_vispy_viewers/common/viewer_state.py", "copies": "2", "size": "4667", "license": "bsd-2-clause", "hash": 4051047346239132000, "line_mean": 34.6259541985, "line_max": 88, "alpha_frac": 0.5770302121, "autogenerated": false, "ratio": 3.724660814046289, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0005425257531817083, "num_lines": 131 }
from __future__ import absolute_import, division, print_function import numpy as np from glue.external import six from glue.core.data_factories.helpers import has_extension from glue.core.component import Component, CategoricalComponent from glue.core.data import Data from glue.config import data_factory, qglue_parser __all__ = ['pandas_read_table'] def panda_process(indf): """ Build a data set from a table using pandas. This attempts to respect categorical data input by letting pandas.read_csv infer the type """ result = Data() for name, column in indf.iteritems(): if (column.dtype == np.object) | (column.dtype == np.bool): # try to salvage numerical data coerced = column.convert_objects(convert_numeric=True) if (coerced.dtype != column.dtype) and coerced.isnull().mean() < 0.4: c = Component(coerced.values) else: # pandas has a 'special' nan implementation and this doesn't # play well with np.unique c = CategoricalComponent(column.fillna('')) else: c = Component(column.values) # convert header to string - in some cases if the first row contains # numbers, these are cast to numerical types, so we want to change that # here. if not isinstance(name, six.string_types): name = str(name) # strip off leading # name = name.strip() if name.startswith('#'): name = name[1:].strip() result.add_component(c, name) return result @data_factory(label="Pandas Table", identifier=has_extension('csv csv txt tsv tbl dat')) def pandas_read_table(path, **kwargs): """ A factory for reading tabular data using pandas :param path: path/to/file :param kwargs: All kwargs are passed to pandas.read_csv :returns: :class:`glue.core.data.Data` object """ import pandas as pd try: from pandas.parser import CParserError except ImportError: # pragma: no cover from pandas._parser import CParserError # iterate over common delimiters to search for best option delimiters = kwargs.pop('delimiter', [None] + list(',|\t ')) fallback = None for d in delimiters: try: indf = pd.read_csv(path, delimiter=d, **kwargs) # ignore files parsed to empty dataframes if len(indf) == 0: continue # only use files parsed to single-column dataframes # if we don't find a better strategy if len(indf.columns) < 2: fallback = indf continue return panda_process(indf) except CParserError: continue if fallback is not None: return panda_process(fallback) raise IOError("Could not parse %s using pandas" % path) try: import pandas as pd except ImportError: pass else: @qglue_parser(pd.DataFrame) def _parse_data_dataframe(data, label): label = label or 'Data' result = Data(label=label) for c in data.columns: result.add_component(data[c], str(c)) return [result]
{ "repo_name": "saimn/glue", "path": "glue/core/data_factories/pandas.py", "copies": "2", "size": "3213", "license": "bsd-3-clause", "hash": -3678337327898444300, "line_mean": 29.8942307692, "line_max": 88, "alpha_frac": 0.617491441, "autogenerated": false, "ratio": 4.135135135135135, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0002252988173788393, "num_lines": 104 }
from __future__ import absolute_import, division, print_function import numpy as np from glue.utils import defer_draw from glue.core.exceptions import IncompatibleAttribute from glue.core.subset import Subset # from glue.core.layer_artist import MatplotlibLayerArtist, ChangedTrigger from glue.viewers.matplotlib.layer_artist import MatplotlibLayerArtist from glue.plugins.dendro_viewer.state import DendrogramLayerState class DendrogramLayerArtist(MatplotlibLayerArtist): # X vertices of structure i are in layout[0][3*i: 3*i+3] # layout = ChangedTrigger() _layer_state_cls = DendrogramLayerState def __init__(self, axes, viewer_state, layer_state=None, layer=None): super(DendrogramLayerArtist, self).__init__(axes, viewer_state, layer_state=layer_state, layer=layer) # Watch for changes in the viewer state which would require the # layers to be redrawn self._viewer_state.add_global_callback(self._update) self.state.add_global_callback(self._update) # TODO: following is temporary self.state.data_collection = self._viewer_state.data_collection self.data_collection = self._viewer_state.data_collection self.reset_cache() def reset_cache(self): self._last_viewer_state = {} self._last_layer_state = {} @defer_draw def _update_dendrogram(self): self.remove() if self.state.viewer_state._layout is None: return # layout[0] is [x0, x0, x[parent0], nan, ...] # layout[1] is [y0, y[parent0], y[parent0], nan, ...] ids = 3 * np.arange(self.layer.data.size) try: if isinstance(self.layer, Subset): ids = ids[self.layer.to_mask()] except IncompatibleAttribute as exc: self.disable_invalid_attributes(*exc.args) return False x, y = self.state.viewer_state._layout.xy blank = np.zeros(ids.size) * np.nan x = np.column_stack([x[ids], x[ids + 1], x[ids + 2], blank]).ravel() y = np.column_stack([y[ids], y[ids + 1], y[ids + 2], blank]).ravel() self.mpl_artists = self.axes.plot(x, y, '-') @defer_draw def _update_visual_attributes(self): if not self.enabled: return for mpl_artist in self.mpl_artists: mpl_artist.set_visible(self.state.visible) mpl_artist.set_zorder(self.state.zorder) mpl_artist.set_color(self.state.color) mpl_artist.set_alpha(self.state.alpha) mpl_artist.set_linewidth(self.state.linewidth) self.redraw() @defer_draw def _update(self, force=False, **kwargs): if (self._viewer_state.height_att is None or self._viewer_state.parent_att is None or self._viewer_state.order_att is None or self.state.layer is None): return # Figure out which attributes are different from before. Ideally we shouldn't # need this but currently this method is called multiple times if an # attribute is changed due to x_att changing then hist_x_min, hist_x_max, etc. # If we can solve this so that _update_dendrogram is really only called once # then we could consider simplifying this. Until then, we manually keep track # of which properties have changed. changed = set() if not force: for key, value in self._viewer_state.as_dict().items(): if value != self._last_viewer_state.get(key, None): changed.add(key) for key, value in self.state.as_dict().items(): if value != self._last_layer_state.get(key, None): changed.add(key) self._last_viewer_state.update(self._viewer_state.as_dict()) self._last_layer_state.update(self.state.as_dict()) if force or any(prop in changed for prop in ('layer', 'height_att', 'parent_att', 'order_att')): self._update_dendrogram() force = True # make sure scaling and visual attributes are updated if force or any(prop in changed for prop in ('linewidth', 'alpha', 'color', 'zorder', 'visible')): self._update_visual_attributes() @defer_draw def update(self): # Recompute the histogram self._update(force=True) # Reset the axes stack so that pressing the home button doesn't go back # to a previous irrelevant view. self.axes.figure.canvas.toolbar.update() self.redraw()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/plugins/dendro_viewer/layer_artist.py", "copies": "1", "size": "4685", "license": "bsd-3-clause", "hash": -760405994624302100, "line_mean": 34.4924242424, "line_max": 106, "alpha_frac": 0.6098185699, "autogenerated": false, "ratio": 3.8783112582781456, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9985232271824477, "avg_score": 0.0005795112707337011, "num_lines": 132 }
from __future__ import absolute_import, division, print_function import numpy as np from glue.utils import defer_draw from glue.viewers.histogram.state import HistogramLayerState from glue.viewers.matplotlib.layer_artist import MatplotlibLayerArtist from glue.core.exceptions import IncompatibleAttribute class HistogramLayerArtist(MatplotlibLayerArtist): _layer_state_cls = HistogramLayerState def __init__(self, axes, viewer_state, layer_state=None, layer=None): super(HistogramLayerArtist, self).__init__(axes, viewer_state, layer_state=layer_state, layer=layer) # Watch for changes in the viewer state which would require the # layers to be redrawn self._viewer_state.add_global_callback(self._update_histogram) self.state.add_global_callback(self._update_histogram) self.reset_cache() def remove(self): super(HistogramLayerArtist, self).remove() self.mpl_hist_unscaled = np.array([]) self.mpl_hist = np.array([]) self.mpl_bins = np.array([]) def reset_cache(self): self._last_viewer_state = {} self._last_layer_state = {} @defer_draw def _calculate_histogram(self): self.remove() try: x = self.layer[self._viewer_state.x_att] except AttributeError: return except (IncompatibleAttribute, IndexError): self.disable_invalid_attributes(self._viewer_state.x_att) return else: self.enable() x = x[~np.isnan(x) & (x >= self._viewer_state.hist_x_min) & (x <= self._viewer_state.hist_x_max)] if len(x) == 0: self.redraw() return # For histogram xmin, xmax = sorted([self._viewer_state.hist_x_min, self._viewer_state.hist_x_max]) if self._viewer_state.x_log: range = None bins = np.logspace(np.log10(xmin), np.log10(xmax), self._viewer_state.hist_n_bin) else: range = [xmin, xmax] bins = self._viewer_state.hist_n_bin self.mpl_hist_unscaled, self.mpl_bins, self.mpl_artists = self.axes.hist(x, range=range, bins=bins) @defer_draw def _scale_histogram(self): if self.mpl_bins.size == 0 or self.mpl_hist_unscaled.sum() == 0: return self.mpl_hist = self.mpl_hist_unscaled.astype(np.float) dx = self.mpl_bins[1] - self.mpl_bins[0] if self._viewer_state.cumulative: self.mpl_hist = self.mpl_hist.cumsum() if self._viewer_state.normalize: self.mpl_hist /= self.mpl_hist.max() elif self._viewer_state.normalize: self.mpl_hist /= (self.mpl_hist.sum() * dx) bottom = 0 if not self._viewer_state.y_log else 1e-100 for mpl_artist, y in zip(self.mpl_artists, self.mpl_hist): mpl_artist.set_height(y) x, y = mpl_artist.get_xy() mpl_artist.set_xy((x, bottom)) # We have to do the following to make sure that we reset the y_max as # needed. We can't simply reset based on the maximum for this layer # because other layers might have other values, and we also can't do: # # self._viewer_state.y_max = max(self._viewer_state.y_max, result[0].max()) # # because this would never allow y_max to get smaller. self.state._y_max = self.mpl_hist.max() if self._viewer_state.y_log: self.state._y_max *= 2 else: self.state._y_max *= 1.2 if self._viewer_state.y_log: self.state._y_min = self.mpl_hist[self.mpl_hist > 0].min() / 10 else: self.state._y_min = 0 largest_y_max = max(getattr(layer, '_y_max', 0) for layer in self._viewer_state.layers) if largest_y_max != self._viewer_state.y_max: self._viewer_state.y_max = largest_y_max smallest_y_min = min(getattr(layer, '_y_min', np.inf) for layer in self._viewer_state.layers) if smallest_y_min != self._viewer_state.y_min: self._viewer_state.y_min = smallest_y_min self.redraw() @defer_draw def _update_visual_attributes(self): if not self.enabled: return for mpl_artist in self.mpl_artists: mpl_artist.set_visible(self.state.visible) mpl_artist.set_zorder(self.state.zorder) mpl_artist.set_edgecolor('none') mpl_artist.set_facecolor(self.state.color) mpl_artist.set_alpha(self.state.alpha) self.redraw() def _update_histogram(self, force=False, **kwargs): if (self._viewer_state.hist_x_min is None or self._viewer_state.hist_x_max is None or self._viewer_state.hist_n_bin is None or self._viewer_state.x_att is None or self.state.layer is None): return # Figure out which attributes are different from before. Ideally we shouldn't # need this but currently this method is called multiple times if an # attribute is changed due to x_att changing then hist_x_min, hist_x_max, etc. # If we can solve this so that _update_histogram is really only called once # then we could consider simplifying this. Until then, we manually keep track # of which properties have changed. changed = set() if not force: for key, value in self._viewer_state.as_dict().items(): if value != self._last_viewer_state.get(key, None): changed.add(key) for key, value in self.state.as_dict().items(): if value != self._last_layer_state.get(key, None): changed.add(key) self._last_viewer_state.update(self._viewer_state.as_dict()) self._last_layer_state.update(self.state.as_dict()) if force or any(prop in changed for prop in ('layer', 'x_att', 'hist_x_min', 'hist_x_max', 'hist_n_bin', 'x_log')): self._calculate_histogram() force = True # make sure scaling and visual attributes are updated if force or any(prop in changed for prop in ('y_log', 'normalize', 'cumulative')): self._scale_histogram() if force or any(prop in changed for prop in ('alpha', 'color', 'zorder', 'visible')): self._update_visual_attributes() @defer_draw def update(self): self._update_histogram(force=True) self.redraw()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/histogram/layer_artist.py", "copies": "1", "size": "6605", "license": "bsd-3-clause", "hash": 1384985816923060200, "line_mean": 35.2912087912, "line_max": 123, "alpha_frac": 0.5910673732, "autogenerated": false, "ratio": 3.700280112044818, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4791347485244818, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.utils import unbroadcast, broadcast_to __all__ = ['points_inside_poly', 'polygon_line_intersections'] def points_inside_poly(x, y, vx, vy): original_shape = x.shape x = unbroadcast(x) y = unbroadcast(y) x, y = np.broadcast_arrays(x, y) reduced_shape = x.shape x = x.flat y = y.flat from matplotlib.path import Path p = Path(np.column_stack((vx, vy))) keep = ((x >= np.min(vx)) & (x <= np.max(vx)) & (y >= np.min(vy)) & (y <= np.max(vy))) inside = np.zeros(len(x), bool) x = x[keep] y = y[keep] coords = np.column_stack((x, y)) inside[keep] = p.contains_points(coords).astype(bool) good = np.isfinite(x) & np.isfinite(y) inside[keep][~good] = False inside = inside.reshape(reduced_shape) inside = broadcast_to(inside, original_shape) return inside def polygon_line_intersections(px, py, xval=None, yval=None): """ Find all the segments of intersection between a polygon and an infinite horizontal/vertical line. The polygon is assumed to be closed. Due to numerical precision, the behavior at the edges of polygons is not always predictable, i.e. a point on the edge of a polygon may be considered inside or outside the polygon. Parameters ---------- px, py : `~numpy.ndarray` The vertices of the polygon xval : float, optional The x coordinate of the line (for vertical lines). This should only be specified if yval is not specified. yval : float, optional The y coordinate of the line (for horizontal lines). This should only be specified if xval is not specified. Returns ------- segments : list A list of segments given as tuples of coordinates along the line. """ if xval is not None and yval is not None: raise ValueError("Only one of xval or yval should be specified") elif xval is None and yval is None: raise ValueError("xval or yval should be specified") if yval is not None: return polygon_line_intersections(py, px, xval=yval) px = np.asarray(px, dtype=float) py = np.asarray(py, dtype=float) # Make sure that the polygon is closed if px[0] != px[-1] or py[0] != py[-1]: px = np.hstack([px, px[0]]) py = np.hstack([py, py[0]]) # For convenience x1, x2 = px[:-1], px[1:] y1, y2 = py[:-1], py[1:] # Vertices that intersect keep1 = (px == xval) points1 = py[keep1] # Segments (excluding vertices) that intersect keep2 = ((x1 < xval) & (x2 > xval)) | ((x2 < xval) & (x1 > xval)) points2 = (y1 + (y2 - y1) * (xval - x1) / (x2 - x1))[keep2] # Make unique and sort points = np.array(np.sort(np.unique(np.hstack([points1, points2])))) # Because of various corner cases, we don't actually know which pairs of # points are inside the polygon, so we check this using the mid-points ymid = 0.5 * (points[:-1] + points[1:]) xmid = np.repeat(xval, len(ymid)) keep = points_inside_poly(xmid, ymid, px, py) segments = list(zip(points[:-1][keep], points[1:][keep])) return segments
{ "repo_name": "stscieisenhamer/glue", "path": "glue/utils/geometry.py", "copies": "3", "size": "3267", "license": "bsd-3-clause", "hash": -2994857391096635400, "line_mean": 27.9115044248, "line_max": 80, "alpha_frac": 0.6155494337, "autogenerated": false, "ratio": 3.413793103448276, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00010925379656943078, "num_lines": 113 }
from __future__ import absolute_import, division, print_function import numpy as np from glue.viewers.common.qt.data_viewer_with_state import DataViewerWithState from glue.external.echo import delay_callback from qtpy import QtWidgets from qtpy.QtCore import Qt from ..extern.vispy.util import keys from .vispy_widget import VispyWidgetHelper from .viewer_options import VispyOptionsWidget from .toolbar import VispyViewerToolbar from .viewer_state import Vispy3DViewerState from .compat import update_viewer_state BROKEN_PYQT5_MESSAGE = ("The version of PyQt5 you are using does not appear to " "support OpenGL. See <a href='http://docs.glueviz.org/en" "/stable/known_issues.html#d-viewers-not-working-on-linux" "-with-pyqt5'>here</a> for more information about fixing " "this issue.") class BaseVispyViewer(DataViewerWithState): _state_cls = Vispy3DViewerState _toolbar_cls = VispyViewerToolbar _options_cls = VispyOptionsWidget tools = ['vispy:reset', 'vispy:rotate'] subtools = {'save': ['vispy:save']} # If imageio is available, we can add the record icon try: import imageio # noqa except ImportError: pass else: tools.insert(1, 'vispy:record') def __init__(self, session, state=None, parent=None): super(BaseVispyViewer, self).__init__(session, state=state, parent=parent) self._vispy_widget = VispyWidgetHelper(viewer_state=self.state) self.setCentralWidget(self._vispy_widget.canvas.native) self.state.add_callback('clip_data', self._update_clip) self.state.add_callback('x_min', self._update_clip) self.state.add_callback('x_max', self._update_clip) self.state.add_callback('y_min', self._update_clip) self.state.add_callback('y_max', self._update_clip) self.state.add_callback('z_min', self._update_clip) self.state.add_callback('z_max', self._update_clip) self.status_label = None self._opengl_ok = None self._ready_draw = False viewbox = self._vispy_widget.view.camera.viewbox viewbox.events.mouse_wheel.connect(self.camera_mouse_wheel) viewbox.events.mouse_move.connect(self.camera_mouse_move) viewbox.events.mouse_press.connect(self.camera_mouse_press) viewbox.events.mouse_release.connect(self.camera_mouse_release) def paintEvent(self, *args, **kwargs): super(BaseVispyViewer, self).paintEvent(*args, **kwargs) if self._opengl_ok is None: self._opengl_ok = self._vispy_widget.canvas.native.context() is not None if not self._opengl_ok: QtWidgets.QMessageBox.critical(self, "Error", BROKEN_PYQT5_MESSAGE) self.close(warn=False) self._vispy_widget.canvas.native.close() def _update_appearance_from_settings(self, message): self._vispy_widget._update_appearance_from_settings() def redraw(self): if self._ready_draw: self._vispy_widget.canvas.render() def get_layer_artist(self, cls, layer=None, layer_state=None): return cls(self, layer=layer, layer_state=layer_state) def show_status(self, text): statusbar = self.statusBar() statusbar.showMessage(text) def _update_clip(self, *args): for layer_artist in self._layer_artist_container: if self.state.clip_data: layer_artist.set_clip(self.state.clip_limits) else: layer_artist.set_clip(None) @staticmethod def update_viewer_state(rec, context): return update_viewer_state(rec, context) def camera_mouse_wheel(self, event=None): scale = (1.1 ** - event.delta[1]) with delay_callback(self.state, 'x_min', 'x_max', 'y_min', 'y_max', 'z_min', 'z_max'): xmid = 0.5 * (self.state.x_min + self.state.x_max) dx = (self.state.x_max - xmid) * scale self.state.x_min = xmid - dx self.state.x_max = xmid + dx ymid = 0.5 * (self.state.y_min + self.state.y_max) dy = (self.state.y_max - ymid) * scale self.state.y_min = ymid - dy self.state.y_max = ymid + dy zmid = 0.5 * (self.state.z_min + self.state.z_max) dz = (self.state.z_max - zmid) * scale self.state.z_min = zmid - dz self.state.z_max = zmid + dz self._update_clip() event.handled = True def camera_mouse_press(self, event=None): self._initial_position = (self.state.x_min, self.state.x_max, self.state.y_min, self.state.y_max, self.state.z_min, self.state.z_max) self._width = (self.state.x_max - self.state.x_min, self.state.y_max - self.state.y_min, self.state.z_max - self.state.z_min) def camera_mouse_release(self, event=None): self._initial_position = None self._width = None def camera_mouse_move(self, event=None): if 1 in event.buttons and keys.SHIFT in event.mouse_event.modifiers: camera = self._vispy_widget.view.camera norm = np.mean(camera._viewbox.size) p1 = event.mouse_event.press_event.pos p2 = event.mouse_event.pos dist = (p1 - p2) / norm * camera._scale_factor dist[1] *= -1 dx, dy, dz = camera._dist_to_trans(dist) with delay_callback(self.state, 'x_min', 'x_max', 'y_min', 'y_max', 'z_min', 'z_max'): self.state.x_min = self._initial_position[0] + self._width[0] * dx self.state.x_max = self._initial_position[1] + self._width[0] * dx self.state.y_min = self._initial_position[2] + self._width[1] * dy self.state.y_max = self._initial_position[3] + self._width[1] * dy self.state.z_min = self._initial_position[4] + self._width[2] * dz self.state.z_max = self._initial_position[5] + self._width[2] * dz event.handled = True def show(self): # WORKAROUND: # Due to a bug in Qt5, a hidden toolbar in glue causes a grey # rectangle to be overlaid on top of the glue window. Therefore # we check if the toolbar is hidden, and if so we make it into a # floating toolbar temporarily - still hidden, so this will not # be noticeable to the user. # tbar.setAllowedAreas(Qt.NoToolBarArea) if self._session.application is not None: tbar = self._session.application._mode_toolbar hidden = tbar.isHidden() if hidden: original_flags = tbar.windowFlags() tbar.setWindowFlags(Qt.Window | Qt.FramelessWindowHint) else: hidden = False super(BaseVispyViewer, self).show() if hidden: tbar.setWindowFlags(original_flags) tbar.hide()
{ "repo_name": "astrofrog/glue-3d-viewer", "path": "glue_vispy_viewers/common/vispy_data_viewer.py", "copies": "2", "size": "7093", "license": "bsd-2-clause", "hash": -8522056509379993000, "line_mean": 35.9427083333, "line_max": 98, "alpha_frac": 0.6017200056, "autogenerated": false, "ratio": 3.494088669950739, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5095808675550739, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.viewers.common.qt.mouse_mode import PathMode from glue.viewers.image.qt import StandaloneImageViewer from glue.config import viewer_tool from glue.utils import defer_draw @viewer_tool class PVSlicerMode(PathMode): icon = 'glue_slice' tool_id = 'slice' action_text = 'Slice Extraction' tool_tip = ('Extract a slice from an arbitrary path\n' ' ENTER accepts the path\n' ' ESCAPE clears the path') status_tip = 'Draw a path then press ENTER to extract slice, or press ESC to cancel' shortcut = 'P' def __init__(self, viewer, **kwargs): super(PVSlicerMode, self).__init__(viewer, **kwargs) self._roi_callback = self._extract_callback self._slice_widget = None self.viewer.state.add_callback('reference_data', self._on_reference_data_change) def _on_reference_data_change(self, reference_data): if reference_data is not None: self.enabled = reference_data.ndim == 3 def _clear_path(self): self.viewer.hide_crosshairs() self.clear() def _extract_callback(self, mode): """ Extract a PV-like slice, given a path traced on the widget """ vx, vy = mode.roi().to_polygon() self._build_from_vertices(vx, vy) def _build_from_vertices(self, vx, vy): pv_slice, x, y, wcs = _slice_from_path(vx, vy, self.viewer.state.reference_data, self.viewer.state.layers[0].attribute, self.viewer.state.wcsaxes_slice[::-1]) if self._slice_widget is None: self._slice_widget = PVSliceWidget(image=pv_slice, wcs=wcs, image_viewer=self.viewer, x=x, y=y, interpolation='nearest') self.viewer._session.application.add_widget(self._slice_widget, label='Custom Slice') self._slice_widget.window_closed.connect(self._clear_path) else: self._slice_widget.set_image(image=pv_slice, wcs=wcs, x=x, y=y, interpolation='nearest') result = self._slice_widget result.axes.set_xlabel("Position Along Slice") result.axes.set_ylabel(_slice_label(self.viewer.state.reference_data, self.viewer.state.wcsaxes_slice[::-1])) result.show() def close(self): if self._slice_widget: self._slice_widget.close() return super(PVSlicerMode, self).close() class PVSliceWidget(StandaloneImageViewer): """ A standalone image widget with extra interactivity for PV slices """ def __init__(self, image=None, wcs=None, image_viewer=None, x=None, y=None, **kwargs): """ :param image: 2D Numpy array representing the PV Slice :param wcs: WCS for the PV slice :param image_viewer: Parent ImageViewer this was extracted from :param kwargs: Extra keywords are passed to imshow """ self._crosshairs = None self._parent = image_viewer super(PVSliceWidget, self).__init__(image=image, wcs=wcs, **kwargs) conn = self.axes.figure.canvas.mpl_connect self._down_id = conn('button_press_event', self._on_click) self._move_id = conn('motion_notify_event', self._on_move) self.axes.format_coord = self._format_coord self._x = x self._y = y self._parent.state.add_callback('x_att', self.reset) self._parent.state.add_callback('y_att', self.reset) def _format_coord(self, x, y): """ Return a formatted location label for the taskbar :param x: x pixel location in slice array :param y: y pixel location in slice array """ # xy -> xyz in image view pix = self._pos_in_parent(xdata=x, ydata=y) # xyz -> data pixel coords # accounts for fact that image might be shown transposed/rotated s = list(self._slc) idx = _slice_index(self._parent.state.reference_data, self._slc) s[s.index('x')] = pix[0] s[s.index('y')] = pix[1] s[idx] = pix[2] # labels = self._parent.coordinate_labels(s) # return ' '.join(labels) return '' def set_image(self, image=None, wcs=None, x=None, y=None, **kwargs): super(PVSliceWidget, self).set_image(image=image, wcs=wcs, **kwargs) self._axes.set_aspect('auto') self._axes.set_xlim(-0.5, image.shape[1] - 0.5) self._axes.set_ylim(-0.5, image.shape[0] - 0.5) self._slc = self._parent.state.wcsaxes_slice[::-1] self._x = x self._y = y @defer_draw def _sync_slice(self, event): s = list(self._slc) # XXX breaks if display_data changes _, _, z = self._pos_in_parent(event) s[_slice_index(self._parent.state.reference_data, s)] = int(z) self._parent.state.slices = tuple(s) @defer_draw def _draw_crosshairs(self, event): x, y, _ = self._pos_in_parent(event) self._parent.show_crosshairs(x, y) @defer_draw def _on_move(self, event): if not event.button: return if not event.inaxes or event.canvas.toolbar.mode != '': return self._sync_slice(event) self._draw_crosshairs(event) def _pos_in_parent(self, event=None, xdata=None, ydata=None): if event is not None: xdata = event.xdata ydata = event.ydata # Find position slice where cursor is ind = int(round(np.clip(xdata, 0, self._im_array.shape[1] - 1))) # Find pixel coordinate in input image for this slice x = self._x[ind] y = self._y[ind] # The 3-rd coordinate in the input WCS is simply the second # coordinate in the PV slice. z = ydata return x, y, z def _on_click(self, event): if not event.inaxes or event.canvas.toolbar.mode != '': return self._sync_slice(event) self._draw_crosshairs(event) def reset(self, *args): self.close() def _slice_from_path(x, y, data, attribute, slc): """ Extract a PV-like slice from a cube :param x: An array of x values to extract (pixel units) :param y: An array of y values to extract (pixel units) :param data: :class:`~glue.core.data.Data` :param attribute: :claass:`~glue.core.data.Component` :param slc: orientation of the image widget that `pts` are defined on :returns: (slice, x, y) slice is a 2D Numpy array, corresponding to a "PV ribbon" cutout from the cube x and y are the resampled points along which the ribbon is extracted :note: For >3D cubes, the "V-axis" of the PV slice is the longest cube axis ignoring the x/y axes of `slc` """ from glue.external.pvextractor import Path, extract_pv_slice p = Path(list(zip(x, y))) cube = data[attribute] dims = list(range(data.ndim)) s = list(slc) ind = _slice_index(data, slc) cube_wcs = getattr(data.coords, 'wcs', None) # transpose cube to (z, y, x, <whatever>) def _swap(x, s, i, j): x[i], x[j] = x[j], x[i] s[i], s[j] = s[j], s[i] _swap(dims, s, ind, 0) _swap(dims, s, s.index('y'), 1) _swap(dims, s, s.index('x'), 2) cube = cube.transpose(dims) # slice down from >3D to 3D if needed s = [slice(None)] * 3 + [slc[d] for d in dims[3:]] cube = cube[s] # sample cube spacing = 1 # pixel x, y = [np.round(_x).astype(int) for _x in p.sample_points(spacing)] try: result = extract_pv_slice(cube, path=p, wcs=cube_wcs, order=0) except: # sometimes pvextractor complains due to wcs. Try to recover result = extract_pv_slice(cube, path=p, wcs=None, order=0) from astropy.wcs import WCS data = result.data wcs = WCS(result.header) return data, x, y, wcs def _slice_index(data, slc): """ The axis over which to extract PV slices """ return max([i for i in range(len(slc)) if isinstance(slc[i], int)], key=lambda x: data.shape[x]) def _slice_label(data, slc): """ Returns a formatted axis label corresponding to the slice dimension in a PV slice :param data: Data that slice is extracted from :param slc: orientation in the image widget from which the PV slice was defined """ idx = _slice_index(data, slc) return data.get_world_component_id(idx).label
{ "repo_name": "stscieisenhamer/glue", "path": "glue/plugins/tools/pv_slicer/qt/pv_slicer.py", "copies": "1", "size": "8780", "license": "bsd-3-clause", "hash": -501654696707567900, "line_mean": 33.0310077519, "line_max": 117, "alpha_frac": 0.5824601367, "autogenerated": false, "ratio": 3.5176282051282053, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4600088341828205, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.viewers.common.qt.mouse_mode import PathMode from glue.viewers.image.qt import StandaloneImageWidget from glue.viewers.common.qt.mpl_widget import defer_draw from glue.external.echo import add_callback from glue.config import viewer_tool @viewer_tool class PVSlicerMode(PathMode): icon = 'glue_slice' tool_id = 'slice' action_text = 'Slice Extraction' tool_tip = ('Extract a slice from an arbitrary path\n' ' ENTER accepts the path\n' ' ESCAPE clears the path') shortcut = 'P' def __init__(self, viewer, **kwargs): super(PVSlicerMode, self).__init__(viewer, **kwargs) add_callback(viewer.client, 'display_data', self._display_data_hook) self._roi_callback = self._extract_callback self._slice_widget = None def _display_data_hook(self, data): if data is not None: self.enabled = data.ndim > 2 def _clear_path(self): self.clear() def _extract_callback(self, mode): """ Extract a PV-like slice, given a path traced on the widget """ vx, vy = mode.roi().to_polygon() self._build_from_vertices(vx, vy) def _build_from_vertices(self, vx, vy): pv_slice, x, y, wcs = _slice_from_path(vx, vy, self.viewer.data, self.viewer.attribute, self.viewer.slice) if self._slice_widget is None: self._slice_widget = PVSliceWidget(image=pv_slice, wcs=wcs, image_client=self.viewer.client, x=x, y=y, interpolation='nearest') self.viewer._session.application.add_widget(self._slice_widget, label='Custom Slice') self._slice_widget.window_closed.connect(self._clear_path) else: self._slice_widget.set_image(image=pv_slice, wcs=wcs, x=x, y=y, interpolation='nearest') result = self._slice_widget result.axes.set_xlabel("Position Along Slice") result.axes.set_ylabel(_slice_label(self.viewer.data, self.viewer.slice)) result.show() def close(self): if self._slice_widget: self._slice_widget.close() return super(PVSlicerMode, self).close() class PVSliceWidget(StandaloneImageWidget): """ A standalone image widget with extra interactivity for PV slices """ def __init__(self, image=None, wcs=None, image_client=None, x=None, y=None, **kwargs): """ :param image: 2D Numpy array representing the PV Slice :param wcs: WCS for the PV slice :param image_client: Parent ImageClient this was extracted from :param kwargs: Extra keywords are passed to imshow """ self._crosshairs = None self._parent = image_client super(PVSliceWidget, self).__init__(image=image, wcs=wcs, **kwargs) conn = self.axes.figure.canvas.mpl_connect self._down_id = conn('button_press_event', self._on_click) self._move_id = conn('motion_notify_event', self._on_move) self.axes.format_coord = self._format_coord self._x = x self._y = y def _format_coord(self, x, y): """ Return a formatted location label for the taskbar :param x: x pixel location in slice array :param y: y pixel location in slice array """ # xy -> xyz in image view pix = self._pos_in_parent(xdata=x, ydata=y) # xyz -> data pixel coords # accounts for fact that image might be shown transposed/rotated s = list(self._slc) idx = _slice_index(self._parent.display_data, self._slc) s[s.index('x')] = pix[0] s[s.index('y')] = pix[1] s[idx] = pix[2] labels = self._parent.coordinate_labels(s) return ' '.join(labels) def set_image(self, image=None, wcs=None, x=None, y=None, **kwargs): super(PVSliceWidget, self).set_image(image=image, wcs=wcs, **kwargs) self._axes.set_aspect('auto') self._axes.set_xlim(-0.5, image.shape[1] - 0.5) self._axes.set_ylim(-0.5, image.shape[0] - 0.5) self._slc = self._parent.slice self._x = x self._y = y @defer_draw def _sync_slice(self, event): s = list(self._slc) # XXX breaks if display_data changes _, _, z = self._pos_in_parent(event) s[_slice_index(self._parent.display_data, s)] = z self._parent.slice = tuple(s) @defer_draw def _draw_crosshairs(self, event): x, y, _ = self._pos_in_parent(event) self._parent.show_crosshairs(x, y) @defer_draw def _on_move(self, event): if not event.button: return if not event.inaxes or event.canvas.toolbar.mode != '': return self._sync_slice(event) self._draw_crosshairs(event) def _pos_in_parent(self, event=None, xdata=None, ydata=None): if event is not None: xdata = event.xdata ydata = event.ydata # Find position slice where cursor is ind = np.clip(xdata, 0, self._im_array.shape[1] - 1) # Find pixel coordinate in input image for this slice x = self._x[ind] y = self._y[ind] # The 3-rd coordinate in the input WCS is simply the second # coordinate in the PV slice. z = ydata return x, y, z def _on_click(self, event): if not event.inaxes or event.canvas.toolbar.mode != '': return self._sync_slice(event) self._draw_crosshairs(event) def _slice_from_path(x, y, data, attribute, slc): """ Extract a PV-like slice from a cube :param x: An array of x values to extract (pixel units) :param y: An array of y values to extract (pixel units) :param data: :class:`~glue.core.data.Data` :param attribute: :claass:`~glue.core.data.Component` :param slc: orientation of the image widget that `pts` are defined on :returns: (slice, x, y) slice is a 2D Numpy array, corresponding to a "PV ribbon" cutout from the cube x and y are the resampled points along which the ribbon is extracted :note: For >3D cubes, the "V-axis" of the PV slice is the longest cube axis ignoring the x/y axes of `slc` """ from glue.external.pvextractor import Path, extract_pv_slice p = Path(list(zip(x, y))) cube = data[attribute] dims = list(range(data.ndim)) s = list(slc) ind = _slice_index(data, slc) cube_wcs = getattr(data.coords, 'wcs', None) # transpose cube to (z, y, x, <whatever>) def _swap(x, s, i, j): x[i], x[j] = x[j], x[i] s[i], s[j] = s[j], s[i] _swap(dims, s, ind, 0) _swap(dims, s, s.index('y'), 1) _swap(dims, s, s.index('x'), 2) cube = cube.transpose(dims) # slice down from >3D to 3D if needed s = [slice(None)] * 3 + [slc[d] for d in dims[3:]] cube = cube[s] # sample cube spacing = 1 # pixel x, y = [np.round(_x).astype(int) for _x in p.sample_points(spacing)] try: result = extract_pv_slice(cube, path=p, wcs=cube_wcs, order=0) except: # sometimes pvextractor complains due to wcs. Try to recover result = extract_pv_slice(cube, path=p, wcs=None, order=0) from astropy.wcs import WCS data = result.data wcs = WCS(result.header) return data, x, y, wcs def _slice_index(data, slc): """ The axis over which to extract PV slices """ return max([i for i in range(len(slc)) if isinstance(slc[i], int)], key=lambda x: data.shape[x]) def _slice_label(data, slc): """ Returns a formatted axis label corresponding to the slice dimension in a PV slice :param data: Data that slice is extracted from :param slc: orientation in the image widget from which the PV slice was defined """ idx = _slice_index(data, slc) return data.get_world_component_id(idx).label
{ "repo_name": "saimn/glue", "path": "glue/plugins/tools/pv_slicer/qt/pv_slicer.py", "copies": "1", "size": "8336", "license": "bsd-3-clause", "hash": -5965692932789620000, "line_mean": 32.0793650794, "line_max": 81, "alpha_frac": 0.5788147793, "autogenerated": false, "ratio": 3.5217574989438107, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4600572278243811, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue.viewers.matplotlib.qt.toolbar import MatplotlibViewerToolbar from glue.core.edit_subset_mode import EditSubsetMode from glue.core.roi import PointROI from glue.core import command from glue.core.subset import CategorySubsetState from glue.core.exceptions import IncompatibleDataException from glue.utils.qt import messagebox_on_error from glue.plugins.dendro_viewer.dendro_helpers import _substructures from glue.viewers.matplotlib.qt.data_viewer import MatplotlibDataViewer from glue.plugins.dendro_viewer.layer_artist import DendrogramLayerArtist from glue.plugins.dendro_viewer.qt.options_widget import DendrogramOptionsWidget from glue.plugins.dendro_viewer.state import DendrogramViewerState from glue.plugins.dendro_viewer.qt.layer_style_editor import DendrogramLayerStyleEditor from glue.plugins.dendro_viewer.compat import update_dendrogram_viewer_state __all__ = ['DendrogramViewer'] class DendrogramViewer(MatplotlibDataViewer): LABEL = 'Dendrogram' _toolbar_cls = MatplotlibViewerToolbar _layer_style_widget_cls = DendrogramLayerStyleEditor _state_cls = DendrogramViewerState _options_cls = DendrogramOptionsWidget _data_artist_cls = DendrogramLayerArtist _subset_artist_cls = DendrogramLayerArtist tools = ['select:pick'] def __init__(self, *args, **kwargs): super(DendrogramViewer, self).__init__(*args, **kwargs) self.axes.set_xticks([]) self.axes.spines['top'].set_visible(False) self.axes.spines['bottom'].set_visible(False) self.state.add_callback('_layout', self._update_limits) self._update_limits() def _update_limits(self, layout=None): if self.state._layout is None: return x, y = self.state._layout.xy x, y = x[::3], y[::3] xlim = np.array([x.min(), x.max()]) xpad = .05 * xlim.ptp() xlim[0] -= xpad xlim[1] += xpad ylim = np.array([y.min(), y.max()]) if self.state.y_log: ylim = np.maximum(ylim, 1e-5) pad = 1.05 * ylim[1] / ylim[0] ylim[0] /= pad ylim[1] *= pad else: pad = .05 * ylim.ptp() ylim[0] -= pad ylim[1] += pad self.axes.set_xlim(*xlim) self.axes.set_ylim(*ylim) def initialize_toolbar(self): super(DendrogramViewer, self).initialize_toolbar() def on_move(mode): if mode._drag: self.apply_roi(mode.roi()) self.toolbar.tools['select:pick']._move_callback = on_move def close(self, *args, **kwargs): self.toolbar.tools['select:pick']._move_callback = None super(DendrogramViewer, self).close(*args, **kwargs) @messagebox_on_error('Failed to add data') def add_data(self, data): if data.ndim != 1: raise IncompatibleDataException("Only 1-D data can be added to " "the dendrogram viewer (tried to add a {}-D " "dataset)".format(data.ndim)) return super(DendrogramViewer, self).add_data(data) # TODO: move some of the ROI stuff to state class? def _roi_to_subset_state(self, roi): # TODO Does subset get applied to all data or just visible data? if self.state._layout is None: return if not roi.defined(): return if isinstance(roi, PointROI): x, y = roi.x, roi.y xs, ys = self.state._layout.xy parent_ys = ys[1::3] xs, ys = xs[::3], ys[::3] delt = np.abs(x - xs) delt[y > ys] = np.nan delt[y < parent_ys] = np.nan if np.isfinite(delt).any(): select = np.nanargmin(delt) if self.state.select_substruct: parent = self.state.reference_data[self.state.parent_att] select = _substructures(parent, select) select = np.asarray(select, dtype=np.int) else: select = np.array([], dtype=np.int) return CategorySubsetState(self.state.reference_data.pixel_component_ids[0], select) else: raise TypeError("Only PointROI selections are supported") @staticmethod def update_viewer_state(rec, context): return update_dendrogram_viewer_state(rec, context)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/plugins/dendro_viewer/qt/data_viewer.py", "copies": "1", "size": "4501", "license": "bsd-3-clause", "hash": -2279146837337121000, "line_mean": 32.5895522388, "line_max": 96, "alpha_frac": 0.6147522773, "autogenerated": false, "ratio": 3.5921787709497206, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47069310482497206, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from glue_vispy_viewers.extern.vispy.visuals.transforms import (ChainTransform, NullTransform, MatrixTransform, STTransform) from glue_vispy_viewers.extern.vispy.visuals.transforms.base_transform import InverseTransform from glue_vispy_viewers.extern.vispy.visuals.transforms._util import arg_to_vec4 def as_matrix_transform(transform): """ Simplify a transform to a single matrix transform, which makes it a lot faster to compute transformations. Raises a TypeError if the transform cannot be simplified. """ if isinstance(transform, ChainTransform): matrix = np.identity(4) for tr in transform.transforms: # We need to do the matrix multiplication manually because VisPy # somehow doesn't mutliply matrices if there is a perspective # component. The equation below looks like it's the wrong way # around, but the VisPy matrices are transposed. matrix = np.matmul(as_matrix_transform(tr).matrix, matrix) return MatrixTransform(matrix) elif isinstance(transform, InverseTransform): matrix = as_matrix_transform(transform._inverse) return MatrixTransform(matrix.inv_matrix) elif isinstance(transform, NullTransform): return MatrixTransform() elif isinstance(transform, STTransform): return transform.as_matrix() elif isinstance(transform, MatrixTransform): return transform else: raise TypeError("Could not simplify transform of type {0}".format(type(transform))) try: from glue.utils.qt import fix_tab_widget_fontsize # noqa except ImportError: import platform from glue.utils.qt import get_qapp def fix_tab_widget_fontsize(tab_widget): """ Because of a bug in Qt, tab titles on MacOS X don't have the right font size """ if platform.system() == 'Darwin': app = get_qapp() app_font = app.font() tab_widget.setStyleSheet('font-size: {0}px'.format(app_font.pointSize())) class NestedSTTransform(STTransform): glsl_map = """ vec4 st_transform_map(vec4 pos) { return vec4((pos.xyz * $innerscale.xyz + $innertranslate.xyz * pos.w).xyz * $scale.xyz + $translate.xyz * pos.w, pos.w); } """ glsl_imap = """ vec4 st_transform_imap(vec4 pos) { return vec4((((pos.xyz - $innertranslate.xyz * pos.w) / $innerscale.xyz) - $translate.xyz * pos.w) / $scale.xyz, pos.w); } """ def __init__(self): self.inner = STTransform() super(NestedSTTransform, self).__init__() @arg_to_vec4 def map(self, coords): coords = self.inner.map(coords) coords = super(NestedSTTransform, self).map(coords) return coords @arg_to_vec4 def imap(self, coords): coords = super(NestedSTTransform, self).imap(coords) coords = self.inner.imap(coords) return coords def _update_shaders(self): self._shader_map['scale'] = self.scale self._shader_map['translate'] = self.translate self._shader_imap['scale'] = self.scale self._shader_imap['translate'] = self.translate self._shader_map['innerscale'] = self.inner.scale self._shader_map['innertranslate'] = self.inner.translate self._shader_imap['innerscale'] = self.inner.scale self._shader_imap['innertranslate'] = self.inner.translate
{ "repo_name": "astrofrog/glue-vispy-viewers", "path": "glue_vispy_viewers/utils.py", "copies": "2", "size": "3642", "license": "bsd-2-clause", "hash": 4985561222788619000, "line_mean": 35.7878787879, "line_max": 94, "alpha_frac": 0.6350906096, "autogenerated": false, "ratio": 4.006600660066007, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.001027185852517364, "num_lines": 99 }
from __future__ import absolute_import, division, print_function import numpy as np from .hashfunctions import generate_hashfunctions from .maintenance import maintenance class CountdownBloomFilter(object): """ Implementation of a Modified Countdown Bloom Filter. Uses a batched maintenance process instead of a continuous one. Sanjuas-Cuxart, Josep, et al. "A lightweight algorithm for traffic filtering over sliding windows." Communications (ICC), 2012 IEEE International Conference on. IEEE, 2012. http://www-mobile.ecs.soton.ac.uk/home/conference/ICC2012/symposia/papers/a_lightweight_algorithm_for_traffic_filtering_over_sliding__.pdf """ def __init__(self, capacity, error_rate=0.001, expiration=60, disable_hard_capacity=False): self.error_rate = error_rate self.capacity = capacity self.expiration = expiration self.nbr_slices = int(np.ceil(np.log2(1.0 / error_rate))) self.bits_per_slice = int(np.ceil((capacity * abs(np.log(error_rate))) / (self.nbr_slices * (np.log(2) ** 2)))) self.nbr_bits = self.nbr_slices * self.bits_per_slice self.count = 0 self.cellarray = np.zeros(self.nbr_bits, dtype=np.uint8) self.counter_init = 255 self.refresh_head = 0 self.make_hashes = generate_hashfunctions(self.bits_per_slice, self.nbr_slices) # This is the unset ratio ... and we keep it constant at 0.5 # since the BF will operate most of the time at his optimal # set ratio (50 %) and the overall effect of this parameter # on the refresh rate is very minimal anyway. self.z = 0.5 self.estimate_z = 0 self.disable_hard_capacity = disable_hard_capacity def _compute_z(self): """ Compute the unset ratio (exact) """ return self.cellarray.nonzero()[0].shape[0] / self.nbr_bits def _estimate_count(self): """ Update the count number using the estimation of the unset ratio """ if self.estimate_z == 0: self.estimate_z = (1.0 / self.nbr_bits) self.estimate_z = min(self.estimate_z, 0.999999) self.count = int(-(self.nbr_bits / self.nbr_slices) * np.log(1 - self.estimate_z)) def expiration_maintenance(self): """ Decrement cell value if not zero This maintenance process need to executed each self.compute_refresh_time() """ if self.cellarray[self.refresh_head] != 0: self.cellarray[self.refresh_head] -= 1 self.refresh_head = (self.refresh_head + 1) % self.nbr_bits def batched_expiration_maintenance_dev(self, elapsed_time): """ Batched version of expiration_maintenance() """ num_iterations = self.num_batched_maintenance(elapsed_time) for i in range(num_iterations): self.expiration_maintenance() def batched_expiration_maintenance(self, elapsed_time): """ Batched version of expiration_maintenance() Cython version """ num_iterations = self.num_batched_maintenance(elapsed_time) self.refresh_head, nonzero = maintenance(self.cellarray, self.nbr_bits, num_iterations, self.refresh_head) if num_iterations != 0: self.estimate_z = float(nonzero) / float(num_iterations) self._estimate_count() processed_interval = num_iterations * self.compute_refresh_time() return processed_interval def compute_refresh_time(self): """ Compute the refresh period for the given expiration delay """ if self.z == 0: self.z = 1E-10 s = float(self.expiration) * (1.0/(self.nbr_bits)) * (1.0/(self.counter_init - 1 + (1.0/(self.z * (self.nbr_slices + 1))))) return s def num_batched_maintenance(self, elapsed_time): return int(np.floor(elapsed_time / self.compute_refresh_time())) def __nonzero__(self): return True def __bool__(self): return True def __contains__(self, key): if not isinstance(key, list): hashes = self.make_hashes(key) else: hashes = key offset = 0 for k in hashes: if self.cellarray[offset + k] == 0: return False offset += self.bits_per_slice return True def __len__(self): """ Return the number of keys stored by this bloom filter. """ return self.count def add(self, key, skip_check=False): hashes = self.make_hashes(key) if not skip_check and hashes in self: offset = 0 for k in hashes: self.cellarray[offset + k] = self.counter_init offset += self.bits_per_slice return True if (self.count > self.capacity or self.estimate_z > 0.5) and not self.disable_hard_capacity: raise IndexError("BloomFilter is at capacity") offset = 0 for k in hashes: self.cellarray[offset + k] = self.counter_init offset += self.bits_per_slice self.count += 1 return False
{ "repo_name": "Parsely/probably", "path": "probably/cdbf.py", "copies": "1", "size": "5090", "license": "mit", "hash": 6198907979325010000, "line_mean": 40.7213114754, "line_max": 146, "alpha_frac": 0.6214145383, "autogenerated": false, "ratio": 3.8473167044595615, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49687312427595615, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from . import nputils from . import dtypes try: import dask.array as da except ImportError: pass def dask_rolling_wrapper(moving_func, a, window, min_count=None, axis=-1): '''wrapper to apply bottleneck moving window funcs on dask arrays''' dtype, fill_value = dtypes.maybe_promote(a.dtype) a = a.astype(dtype) # inputs for ghost if axis < 0: axis = a.ndim + axis depth = {d: 0 for d in range(a.ndim)} depth[axis] = (window + 1) // 2 boundary = {d: fill_value for d in range(a.ndim)} # create ghosted arrays ag = da.ghost.ghost(a, depth=depth, boundary=boundary) # apply rolling func out = ag.map_blocks(moving_func, window, min_count=min_count, axis=axis, dtype=a.dtype) # trim array result = da.ghost.trim_internal(out, depth) return result def rolling_window(a, axis, window, center, fill_value): """ Dask's equivalence to np.utils.rolling_window """ orig_shape = a.shape # inputs for ghost if axis < 0: axis = a.ndim + axis depth = {d: 0 for d in range(a.ndim)} depth[axis] = int(window / 2) # For evenly sized window, we need to crop the first point of each block. offset = 1 if window % 2 == 0 else 0 if depth[axis] > min(a.chunks[axis]): raise ValueError( "For window size %d, every chunk should be larger than %d, " "but the smallest chunk size is %d. Rechunk your array\n" "with a larger chunk size or a chunk size that\n" "more evenly divides the shape of your array." % (window, depth[axis], min(a.chunks[axis]))) # Although dask.ghost pads values to boundaries of the array, # the size of the generated array is smaller than what we want # if center == False. if center: start = int(window / 2) # 10 -> 5, 9 -> 4 end = window - 1 - start else: start, end = window - 1, 0 pad_size = max(start, end) + offset - depth[axis] drop_size = 0 # pad_size becomes more than 0 when the ghosted array is smaller than # needed. In this case, we need to enlarge the original array by padding # before ghosting. if pad_size > 0: if pad_size < depth[axis]: # Ghosting requires each chunk larger than depth. If pad_size is # smaller than the depth, we enlarge this and truncate it later. drop_size = depth[axis] - pad_size pad_size = depth[axis] shape = list(a.shape) shape[axis] = pad_size chunks = list(a.chunks) chunks[axis] = (pad_size, ) fill_array = da.full(shape, fill_value, dtype=a.dtype, chunks=chunks) a = da.concatenate([fill_array, a], axis=axis) boundary = {d: fill_value for d in range(a.ndim)} # create ghosted arrays ag = da.ghost.ghost(a, depth=depth, boundary=boundary) # apply rolling func def func(x, window, axis=-1): x = np.asarray(x) rolling = nputils._rolling_window(x, window, axis) return rolling[(slice(None), ) * axis + (slice(offset, None), )] chunks = list(a.chunks) chunks.append(window) out = ag.map_blocks(func, dtype=a.dtype, new_axis=a.ndim, chunks=chunks, window=window, axis=axis) # crop boundary. index = (slice(None),) * axis + (slice(drop_size, drop_size + orig_shape[axis]), ) return out[index]
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/dask_array_ops.py", "copies": "1", "size": "3551", "license": "apache-2.0", "hash": -2424478796639432000, "line_mean": 35.2346938776, "line_max": 77, "alpha_frac": 0.6040551957, "autogenerated": false, "ratio": 3.5228174603174605, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46268726560174606, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from .. import Variable from ..core import indexing from ..core.pycompat import integer_types from ..core.utils import Frozen, FrozenOrderedDict, is_dict_like from .common import AbstractDataStore, BackendArray, robust_getitem class PydapArrayWrapper(BackendArray): def __init__(self, array): self.array = array @property def shape(self): return self.array.shape @property def dtype(self): return self.array.dtype def __getitem__(self, key): key, np_inds = indexing.decompose_indexer( key, self.shape, indexing.IndexingSupport.BASIC) # pull the data from the array attribute if possible, to avoid # downloading coordinate data twice array = getattr(self.array, 'array', self.array) result = robust_getitem(array, key.tuple, catch=ValueError) # pydap doesn't squeeze axes automatically like numpy axis = tuple(n for n, k in enumerate(key.tuple) if isinstance(k, integer_types)) if len(axis) > 0: result = np.squeeze(result, axis) if len(np_inds.tuple) > 0: result = indexing.NumpyIndexingAdapter(np.asarray(result))[np_inds] return result def _fix_attributes(attributes): attributes = dict(attributes) for k in list(attributes): if k.lower() == 'global' or k.lower().endswith('_global'): # move global attributes to the top level, like the netcdf-C # DAP client attributes.update(attributes.pop(k)) elif is_dict_like(attributes[k]): # Make Hierarchical attributes to a single level with a # dot-separated key attributes.update({'{}.{}'.format(k, k_child): v_child for k_child, v_child in attributes.pop(k).items()}) return attributes class PydapDataStore(AbstractDataStore): """Store for accessing OpenDAP datasets with pydap. This store provides an alternative way to access OpenDAP datasets that may be useful if the netCDF4 library is not available. """ def __init__(self, ds): """ Parameters ---------- ds : pydap DatasetType """ self.ds = ds @classmethod def open(cls, url, session=None): import pydap.client ds = pydap.client.open_url(url, session=session) return cls(ds) def open_store_variable(self, var): data = indexing.LazilyOuterIndexedArray(PydapArrayWrapper(var)) return Variable(var.dimensions, data, _fix_attributes(var.attributes)) def get_variables(self): return FrozenOrderedDict((k, self.open_store_variable(self.ds[k])) for k in self.ds.keys()) def get_attrs(self): return Frozen(_fix_attributes(self.ds.attributes)) def get_dimensions(self): return Frozen(self.ds.dimensions)
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/pydap_.py", "copies": "1", "size": "3031", "license": "apache-2.0", "hash": 5643943285876555000, "line_mean": 31.5913978495, "line_max": 79, "alpha_frac": 0.6238865061, "autogenerated": false, "ratio": 4.10148849797023, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 93 }
from __future__ import absolute_import, division, print_function import numpy as np from matplotlib.colors import Normalize from matplotlib.collections import LineCollection from mpl_scatter_density import ScatterDensityArtist from astropy.visualization import (ImageNormalize, LinearStretch, SqrtStretch, AsinhStretch, LogStretch) from glue.utils import defer_draw, broadcast_to from glue.viewers.scatter.state import ScatterLayerState from glue.viewers.matplotlib.layer_artist import MatplotlibLayerArtist from glue.core.exceptions import IncompatibleAttribute STRETCHES = {'linear': LinearStretch, 'sqrt': SqrtStretch, 'arcsinh': AsinhStretch, 'log': LogStretch} CMAP_PROPERTIES = set(['cmap_mode', 'cmap_att', 'cmap_vmin', 'cmap_vmax', 'cmap']) MARKER_PROPERTIES = set(['size_mode', 'size_att', 'size_vmin', 'size_vmax', 'size_scaling', 'size']) LINE_PROPERTIES = set(['linewidth', 'linestyle']) DENSITY_PROPERTIES = set(['dpi', 'stretch', 'density_contrast']) VISUAL_PROPERTIES = (CMAP_PROPERTIES | MARKER_PROPERTIES | DENSITY_PROPERTIES | LINE_PROPERTIES | set(['color', 'alpha', 'zorder', 'visible'])) DATA_PROPERTIES = set(['layer', 'x_att', 'y_att', 'cmap_mode', 'size_mode', 'density_map', 'xerr_att', 'yerr_att', 'xerr_visible', 'yerr_visible', 'vector_visible', 'vx_att', 'vy_att', 'vector_arrowhead', 'vector_mode', 'vector_origin', 'line_visible', 'markers_visible', 'vector_scaling']) class InvertedNormalize(Normalize): def __call__(self, *args, **kwargs): return 1 - super(InvertedNormalize, self).__call__(*args, **kwargs) class DensityMapLimits(object): contrast = 1 def min(self, array): return 0 def max(self, array): return 10. ** (np.log10(np.nanmax(array)) * self.contrast) def set_mpl_artist_cmap(artist, values, state): vmin = state.cmap_vmin vmax = state.cmap_vmax cmap = state.cmap if isinstance(artist, ScatterDensityArtist): artist.set_c(values) else: artist.set_array(values) artist.set_cmap(cmap) if vmin > vmax: artist.set_clim(vmax, vmin) artist.set_norm(InvertedNormalize(vmax, vmin)) else: artist.set_clim(vmin, vmax) artist.set_norm(Normalize(vmin, vmax)) class ScatterLayerArtist(MatplotlibLayerArtist): _layer_state_cls = ScatterLayerState def __init__(self, axes, viewer_state, layer_state=None, layer=None): super(ScatterLayerArtist, self).__init__(axes, viewer_state, layer_state=layer_state, layer=layer) # Watch for changes in the viewer state which would require the # layers to be redrawn self._viewer_state.add_global_callback(self._update_scatter) self.state.add_global_callback(self._update_scatter) # Scatter self.scatter_artist = self.axes.scatter([], []) self.plot_artist = self.axes.plot([], [], 'o', mec='none')[0] self.errorbar_artist = self.axes.errorbar([], [], fmt='none') self.vector_artist = None self.line_collection = LineCollection(np.zeros((0, 2, 2))) self.axes.add_collection(self.line_collection) # Scatter density self.density_auto_limits = DensityMapLimits() self.density_artist = ScatterDensityArtist(self.axes, [], [], color='white', vmin=self.density_auto_limits.min, vmax=self.density_auto_limits.max) self.axes.add_artist(self.density_artist) self.mpl_artists = [self.scatter_artist, self.plot_artist, self.errorbar_artist, self.vector_artist, self.line_collection, self.density_artist] self.errorbar_index = 2 self.vector_index = 3 self.reset_cache() def reset_cache(self): self._last_viewer_state = {} self._last_layer_state = {} @defer_draw def _update_data(self, changed): # Layer artist has been cleared already if len(self.mpl_artists) == 0: return try: x = self.layer[self._viewer_state.x_att].ravel() except (IncompatibleAttribute, IndexError): # The following includes a call to self.clear() self.disable_invalid_attributes(self._viewer_state.x_att) return else: self.enable() try: y = self.layer[self._viewer_state.y_att].ravel() except (IncompatibleAttribute, IndexError): # The following includes a call to self.clear() self.disable_invalid_attributes(self._viewer_state.y_att) return else: self.enable() if self.state.markers_visible: if self.state.density_map: self.density_artist.set_xy(x, y) self.plot_artist.set_data([], []) self.scatter_artist.set_offsets(np.zeros((0, 2))) else: if self.state.cmap_mode == 'Fixed' and self.state.size_mode == 'Fixed': # In this case we use Matplotlib's plot function because it has much # better performance than scatter. self.plot_artist.set_data(x, y) self.scatter_artist.set_offsets(np.zeros((0, 2))) self.density_artist.set_xy([], []) else: self.plot_artist.set_data([], []) offsets = np.vstack((x, y)).transpose() self.scatter_artist.set_offsets(offsets) self.density_artist.set_xy([], []) else: self.plot_artist.set_data([], []) self.scatter_artist.set_offsets(np.zeros((0, 2))) self.density_artist.set_xy([], []) if self.state.line_visible: if self.state.cmap_mode == 'Fixed': points = np.array([x, y]).transpose() self.line_collection.set_segments([points]) else: # In the case where we want to color the line, we need to over # sample the line by a factor of two so that we can assign the # correct colors to segments - if we didn't do this, then # segments on one side of a point would be a different color # from the other side. With oversampling, we can have half a # segment on either side of a point be the same color as a # point x_fine = np.zeros(len(x) * 2 - 1, dtype=float) y_fine = np.zeros(len(y) * 2 - 1, dtype=float) x_fine[::2] = x x_fine[1::2] = 0.5 * (x[1:] + x[:-1]) y_fine[::2] = y y_fine[1::2] = 0.5 * (y[1:] + y[:-1]) points = np.array([x_fine, y_fine]).transpose().reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) self.line_collection.set_segments(segments) else: self.line_collection.set_segments(np.zeros((0, 2, 2))) for eartist in list(self.errorbar_artist[2]): if eartist is not None: try: eartist.remove() except ValueError: pass except AttributeError: # Matplotlib < 1.5 pass if self.vector_artist is not None: self.vector_artist.remove() self.vector_artist = None if self.state.vector_visible: if self.state.vx_att is not None and self.state.vy_att is not None: vx = self.layer[self.state.vx_att].ravel() vy = self.layer[self.state.vy_att].ravel() if self.state.vector_mode == 'Polar': ang = vx length = vy # assume ang is anti clockwise from the x axis vx = length * np.cos(np.radians(ang)) vy = length * np.sin(np.radians(ang)) else: vx = None vy = None if self.state.vector_arrowhead: hw = 3 hl = 5 else: hw = 1 hl = 0 v = np.hypot(vx, vy) vmax = np.nanmax(v) vx = vx / vmax vy = vy / vmax self.vector_artist = self.axes.quiver(x, y, vx, vy, units='width', pivot=self.state.vector_origin, headwidth=hw, headlength=hl, scale_units='width', scale=10 / self.state.vector_scaling) self.mpl_artists[self.vector_index] = self.vector_artist if self.state.xerr_visible or self.state.yerr_visible: if self.state.xerr_visible and self.state.xerr_att is not None: xerr = self.layer[self.state.xerr_att].ravel() else: xerr = None if self.state.yerr_visible and self.state.yerr_att is not None: yerr = self.layer[self.state.yerr_att].ravel() else: yerr = None self.errorbar_artist = self.axes.errorbar(x, y, fmt='none', xerr=xerr, yerr=yerr) self.mpl_artists[self.errorbar_index] = self.errorbar_artist @defer_draw def _update_visual_attributes(self, changed, force=False): if not self.enabled: return if self.state.markers_visible: if self.state.density_map: if self.state.cmap_mode == 'Fixed': if force or 'color' in changed or 'cmap_mode' in changed: self.density_artist.set_color(self.state.color) self.density_artist.set_c(None) self.density_artist.set_clim(self.density_auto_limits.min, self.density_auto_limits.max) elif force or any(prop in changed for prop in CMAP_PROPERTIES): c = self.layer[self.state.cmap_att].ravel() set_mpl_artist_cmap(self.density_artist, c, self.state) if force or 'stretch' in changed: self.density_artist.set_norm(ImageNormalize(stretch=STRETCHES[self.state.stretch]())) if force or 'dpi' in changed: self.density_artist.set_dpi(self._viewer_state.dpi) if force or 'density_contrast' in changed: self.density_auto_limits.contrast = self.state.density_contrast self.density_artist.stale = True else: if self.state.cmap_mode == 'Fixed' and self.state.size_mode == 'Fixed': if force or 'color' in changed: self.plot_artist.set_color(self.state.color) if force or 'size' in changed or 'size_scaling' in changed: self.plot_artist.set_markersize(self.state.size * self.state.size_scaling) else: # TEMPORARY: Matplotlib has a bug that causes set_alpha to # change the colors back: https://github.com/matplotlib/matplotlib/issues/8953 if 'alpha' in changed: force = True if self.state.cmap_mode == 'Fixed': if force or 'color' in changed or 'cmap_mode' in changed: self.scatter_artist.set_facecolors(self.state.color) self.scatter_artist.set_edgecolor('none') elif force or any(prop in changed for prop in CMAP_PROPERTIES): c = self.layer[self.state.cmap_att].ravel() set_mpl_artist_cmap(self.scatter_artist, c, self.state) self.scatter_artist.set_edgecolor('none') if force or any(prop in changed for prop in MARKER_PROPERTIES): if self.state.size_mode == 'Fixed': s = self.state.size * self.state.size_scaling s = broadcast_to(s, self.scatter_artist.get_sizes().shape) else: s = self.layer[self.state.size_att].ravel() s = ((s - self.state.size_vmin) / (self.state.size_vmax - self.state.size_vmin)) * 30 s *= self.state.size_scaling # Note, we need to square here because for scatter, s is actually # proportional to the marker area, not radius. self.scatter_artist.set_sizes(s ** 2) if self.state.line_visible: if self.state.cmap_mode == 'Fixed': if force or 'color' in changed or 'cmap_mode' in changed: self.line_collection.set_array(None) self.line_collection.set_color(self.state.color) elif force or any(prop in changed for prop in CMAP_PROPERTIES): # Higher up we oversampled the points in the line so that # half a segment on either side of each point has the right # color, so we need to also oversample the color here. c = self.layer[self.state.cmap_att].ravel() cnew = np.zeros((len(c) - 1) * 2) cnew[::2] = c[:-1] cnew[1::2] = c[1:] set_mpl_artist_cmap(self.line_collection, cnew, self.state) if force or 'linewidth' in changed: self.line_collection.set_linewidth(self.state.linewidth) if force or 'linestyle' in changed: self.line_collection.set_linestyle(self.state.linestyle) if self.state.vector_visible and self.vector_artist is not None: if self.state.cmap_mode == 'Fixed': if force or 'color' in changed or 'cmap_mode' in changed: self.vector_artist.set_array(None) self.vector_artist.set_color(self.state.color) elif force or any(prop in changed for prop in CMAP_PROPERTIES): c = self.layer[self.state.cmap_att].ravel() set_mpl_artist_cmap(self.vector_artist, c, self.state) if self.state.xerr_visible or self.state.yerr_visible: for eartist in list(self.errorbar_artist[2]): if eartist is None: continue if self.state.cmap_mode == 'Fixed': if force or 'color' in changed or 'cmap_mode' in changed: eartist.set_color(self.state.color) elif force or any(prop in changed for prop in CMAP_PROPERTIES): c = self.layer[self.state.cmap_att].ravel() set_mpl_artist_cmap(eartist, c, self.state) if force or 'alpha' in changed: eartist.set_alpha(self.state.alpha) if force or 'visible' in changed: eartist.set_visible(self.state.visible) if force or 'zorder' in changed: eartist.set_zorder(self.state.zorder) for artist in [self.scatter_artist, self.plot_artist, self.vector_artist, self.line_collection, self.density_artist]: if artist is None: continue if force or 'alpha' in changed: artist.set_alpha(self.state.alpha) if force or 'zorder' in changed: artist.set_zorder(self.state.zorder) if force or 'visible' in changed: artist.set_visible(self.state.visible) self.redraw() @defer_draw def _update_scatter(self, force=False, **kwargs): if (self._viewer_state.x_att is None or self._viewer_state.y_att is None or self.state.layer is None): return # Figure out which attributes are different from before. Ideally we shouldn't # need this but currently this method is called multiple times if an # attribute is changed due to x_att changing then hist_x_min, hist_x_max, etc. # If we can solve this so that _update_histogram is really only called once # then we could consider simplifying this. Until then, we manually keep track # of which properties have changed. changed = set() if not force: for key, value in self._viewer_state.as_dict().items(): if value != self._last_viewer_state.get(key, None): changed.add(key) for key, value in self.state.as_dict().items(): if value != self._last_layer_state.get(key, None): changed.add(key) self._last_viewer_state.update(self._viewer_state.as_dict()) self._last_layer_state.update(self.state.as_dict()) if force or len(changed & DATA_PROPERTIES) > 0: self._update_data(changed) force = True if force or len(changed & VISUAL_PROPERTIES) > 0: self._update_visual_attributes(changed, force=force) def get_layer_color(self): if self.state.cmap_mode == 'Fixed': return self.state.color else: return self.state.cmap @defer_draw def update(self): self._update_scatter(force=True) self.redraw()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/scatter/layer_artist.py", "copies": "1", "size": "18014", "license": "bsd-3-clause", "hash": 5212772700236165000, "line_mean": 40.1278538813, "line_max": 105, "alpha_frac": 0.5375818808, "autogenerated": false, "ratio": 4.104351788562315, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5141933669362315, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from numba.npyufunc.deviceufunc import (UFuncMechanism, GenerializedUFunc, GUFuncCallSteps) from numba.roc.hsadrv.driver import dgpu_present import numba.roc.hsadrv.devicearray as devicearray import numba.roc.api as api class HsaUFuncDispatcher(object): """ Invoke the HSA ufunc specialization for the given inputs. """ def __init__(self, types_to_retty_kernels): self.functions = types_to_retty_kernels def __call__(self, *args, **kws): """ *args: numpy arrays **kws: stream -- hsa stream; when defined, asynchronous mode is used. out -- output array. Can be a numpy array or DeviceArrayBase depending on the input arguments. Type must match the input arguments. """ return HsaUFuncMechanism.call(self.functions, args, kws) def reduce(self, arg, stream=0): raise NotImplementedError class HsaUFuncMechanism(UFuncMechanism): """ Provide OpenCL specialization """ DEFAULT_STREAM = 0 ARRAY_ORDER = 'A' def is_device_array(self, obj): if dgpu_present: return devicearray.is_hsa_ndarray(obj) else: return isinstance(obj, np.ndarray) def is_host_array(self, obj): if dgpu_present: return False else: return isinstance(obj, np.ndarray) def to_device(self, hostary, stream): if dgpu_present: return api.to_device(hostary) else: return hostary def launch(self, func, count, stream, args): # ILP must match vectorize kernel source ilp = 4 # Use more wavefront to allow hiding latency tpb = 64 * 2 count = (count + (ilp - 1)) // ilp blockcount = (count + (tpb - 1)) // tpb func[blockcount, tpb](*args) def device_array(self, shape, dtype, stream): if dgpu_present: return api.device_array(shape=shape, dtype=dtype) else: return np.empty(shape=shape, dtype=dtype) def broadcast_device(self, ary, shape): if dgpu_present: raise NotImplementedError('device broadcast_device NIY') else: ax_differs = [ax for ax in range(len(shape)) if ax >= ary.ndim or ary.shape[ax] != shape[ax]] missingdim = len(shape) - len(ary.shape) strides = [0] * missingdim + list(ary.strides) for ax in ax_differs: strides[ax] = 0 return np.ndarray(shape=shape, strides=strides, dtype=ary.dtype, buffer=ary) class _HsaGUFuncCallSteps(GUFuncCallSteps): __slots__ = () def is_device_array(self, obj): if dgpu_present: return devicearray.is_hsa_ndarray(obj) else: return True def to_device(self, hostary): if dgpu_present: return api.to_device(hostary) else: return hostary def to_host(self, devary, hostary): if dgpu_present: out = devary.copy_to_host(hostary) return out else: pass def device_array(self, shape, dtype): if dgpu_present: return api.device_array(shape=shape, dtype=dtype) else: return np.empty(shape=shape, dtype=dtype) def launch_kernel(self, kernel, nelem, args): kernel.configure(nelem, min(nelem, 64))(*args) class HSAGenerializedUFunc(GenerializedUFunc): @property def _call_steps(self): return _HsaGUFuncCallSteps def _broadcast_scalar_input(self, ary, shape): if dgpu_present: return devicearray.DeviceNDArray(shape=shape, strides=(0,), dtype=ary.dtype, dgpu_data=ary.dgpu_data) else: return np.lib.stride_tricks.as_strided(ary, shape=(shape,), strides=(0,)) def _broadcast_add_axis(self, ary, newshape): newax = len(newshape) - len(ary.shape) # Add 0 strides for missing dimension newstrides = (0,) * newax + ary.strides if dgpu_present: return devicearray.DeviceNDArray(shape=newshape, strides=newstrides, dtype=ary.dtype, dgpu_data=ary.dgpu_data) else: raise NotImplementedError
{ "repo_name": "jriehl/numba", "path": "numba/roc/dispatch.py", "copies": "2", "size": "4749", "license": "bsd-2-clause", "hash": 2662200452558643700, "line_mean": 30.66, "line_max": 75, "alpha_frac": 0.5506422405, "autogenerated": false, "ratio": 4.0451448040885865, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5595787044588586, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from qtpy import QtCore, QtWidgets from glue.config import colormaps from glue.viewers.matplotlib.qt.toolbar import MatplotlibViewerToolbar from glue.viewers.matplotlib.qt.widget import MplWidget from glue.viewers.image.composite_array import CompositeArray from glue.external.modest_image import imshow from glue.utils import defer_draw # Import the mouse mode to make sure it gets registered from glue.viewers.image.contrast_mouse_mode import ContrastBiasMode # noqa __all__ = ['StandaloneImageViewer'] class StandaloneImageViewer(QtWidgets.QMainWindow): """ A simplified image viewer, without any brushing or linking, but with the ability to adjust contrast and resample. """ window_closed = QtCore.Signal() _toolbar_cls = MatplotlibViewerToolbar tools = ['image:contrast', 'image:colormap'] def __init__(self, image=None, wcs=None, parent=None, **kwargs): """ :param image: Image to display (2D numpy array) :param parent: Parent widget (optional) :param kwargs: Extra keywords to pass to imshow """ super(StandaloneImageViewer, self).__init__(parent) self.central_widget = MplWidget() self.setCentralWidget(self.central_widget) self._setup_axes() self._composite = CompositeArray() self._composite.allocate('image') self._im = None self.initialize_toolbar() if image is not None: self.set_image(image=image, wcs=wcs, **kwargs) def _setup_axes(self): from glue.viewers.common.viz_client import init_mpl _, self._axes = init_mpl(self.central_widget.canvas.fig, axes=None, wcs=True) self._axes.set_aspect('equal', adjustable='datalim') @defer_draw def set_image(self, image=None, wcs=None, **kwargs): """ Update the image shown in the widget """ if self._im is not None: self._im.remove() self._im = None kwargs.setdefault('origin', 'upper') if wcs is not None: # In the following we force the color and linewith of the WCSAxes # frame to be restored after calling reset_wcs. This can be removed # once we support Astropy 1.3.1 or later. color = self._axes.coords.frame.get_color() linewidth = self._axes.coords.frame.get_linewidth() self._axes.reset_wcs(wcs) self._axes.coords.frame.set_color(color) self._axes.coords.frame.set_linewidth(linewidth) del color, linewidth self._composite.set('image', array=image, color=colormaps.members[0][1]) self._im = imshow(self._axes, self._composite, **kwargs) self._im_array = image self._set_norm(self._contrast_mode) if 'extent' in kwargs: self.axes.set_xlim(kwargs['extent'][:2]) self.axes.set_ylim(kwargs['extent'][2:]) else: ny, nx = image.shape self.axes.set_xlim(-0.5, nx - 0.5) self.axes.set_ylim(-0.5, ny - 0.5) # FIXME: for a reason I don't quite understand, dataLim doesn't # get updated immediately here, which means that there are then # issues in the first draw of the image (the limits are such that # only part of the image is shown). We just set dataLim manually # to avoid this issue. This is also done in ImageViewer. self.axes.dataLim.intervalx = self.axes.get_xlim() self.axes.dataLim.intervaly = self.axes.get_ylim() self._redraw() @property def axes(self): """ The Matplolib axes object for this figure """ return self._axes def show(self): super(StandaloneImageViewer, self).show() self._redraw() def _redraw(self): self.central_widget.canvas.draw() def set_cmap(self, cmap): self._composite.set('image', color=cmap) self._im.invalidate_cache() self._redraw() def mdi_wrap(self): """ Embed this widget in a GlueMdiSubWindow """ from glue.app.qt.mdi_area import GlueMdiSubWindow sub = GlueMdiSubWindow() sub.setWidget(self) self.destroyed.connect(sub.close) self.window_closed.connect(sub.close) sub.resize(self.size()) self._mdi_wrapper = sub return sub def closeEvent(self, event): if self._im is not None: self._im.remove() self._im = None self.window_closed.emit() return super(StandaloneImageViewer, self).closeEvent(event) def _set_norm(self, mode): """ Use the `ContrastMouseMode` to adjust the transfer function """ pmin, pmax = mode.get_clip_percentile() if pmin is None: clim = mode.get_vmin_vmax() else: clim = (np.nanpercentile(self._im_array, pmin), np.nanpercentile(self._im_array, pmax)) stretch = mode.stretch self._composite.set('image', clim=clim, stretch=stretch, bias=mode.bias, contrast=mode.contrast) self._im.invalidate_cache() self._redraw() def initialize_toolbar(self): from glue.config import viewer_tool self.toolbar = self._toolbar_cls(self) for tool_id in self.tools: mode_cls = viewer_tool.members[tool_id] if tool_id == 'image:contrast': mode = mode_cls(self, move_callback=self._set_norm) self._contrast_mode = mode else: mode = mode_cls(self) self.toolbar.add_tool(mode) self.addToolBar(self.toolbar) def set_status(self, message): sb = self.statusBar() sb.showMessage(message)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/image/qt/standalone_image_viewer.py", "copies": "2", "size": "5898", "license": "bsd-3-clause", "hash": 8187811203633673000, "line_mean": 31.7666666667, "line_max": 85, "alpha_frac": 0.6088504578, "autogenerated": false, "ratio": 3.819948186528497, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5428798644328497, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from qtpy.QtCore import Qt from qtpy import QtCore, QtGui, PYQT5 from glue.core import roi from glue.utils.qt import mpl_to_qt4_color class QtROI(object): """ A mixin class used to override the drawing methods used by the MPL ROIs in core.roi. Paints to the Widget directly, avoiding calls that redraw the entire matplotlib plot. This permits smoother ROI selection for dense plots that take long to render """ def setup_patch(self): pass def _draw(self): pass def _sync_patch(self): self.canvas.roi_callback = self._paint_check self.canvas.update() # QT repaint without MPL redraw @property def canvas(self): return self._axes.figure.canvas def _paint_check(self, canvas): # check if the ROI should be rendered # called within the Qt paint loop if not (self._roi.defined() and self._mid_selection): return self.paint(canvas) def paint(self, canvas): x, y = self._roi.to_polygon() self.draw_polygon(canvas, x, y) def draw_polygon(self, canvas, x, y): x, y = self._transform(x, y) poly = QtGui.QPolygon() points = [QtCore.QPoint(xx, yy) for xx, yy in zip(x, y)] for p in points: poly.append(p) p = self.get_painter(canvas) p.drawPolygon(poly) p.end() def _transform(self, x, y): """ Convert points from MPL data coords to Qt Widget coords""" t = self._axes.transData xy = np.column_stack((x, y)) pts = t.transform(xy) # Matplotlib 2.x with PyQt5 on a retina display has a bug which means # that the coordinates returned by transData are twice as large as they # should be. Since we don't know when/if this bug will be fixed, we # check whether the coordinates of the top right corner are outside # the canvas. if PYQT5: xmax = self._axes.get_xlim()[1] ymax = self._axes.get_ylim()[1] xd, yd = t.transform((xmax, ymax)) if xd > self.canvas.width() or yd > self.canvas.height(): ratio = self.canvas.devicePixelRatio() pts /= ratio pts[:, 1] = self.canvas.height() - pts[:, 1] return pts[:, 0], pts[:, 1] def get_painter(self, canvas): p = QtGui.QPainter(canvas) facecolor = mpl_to_qt4_color(self.plot_opts['facecolor'], self.plot_opts['alpha']) edgecolor = mpl_to_qt4_color(self.plot_opts['edgecolor'], self.plot_opts['alpha']) pen = QtGui.QPen(edgecolor) pen.setWidth(self.plot_opts.get('edgewidth', 0)) p.setPen(pen) p.setBrush(QtGui.QBrush(facecolor)) return p class QtPathROI(QtROI, roi.MplPathROI): def get_painter(self, canvas): p = super(QtPathROI, self).get_painter(canvas) p.setBrush(Qt.NoBrush) p.setRenderHint(p.HighQualityAntialiasing) return p def draw_polygon(self, canvas, x, y): x, y = self._transform(x, y) poly = QtGui.QPolygon() points = [QtCore.QPoint(xx, yy) for xx, yy in zip(x, y)] for p in points: poly.append(p) p = self.get_painter(canvas) p.drawPolyline(poly) p.end() class QtRectangularROI(QtROI, roi.MplRectangularROI): def __init__(self, axes): roi.MplRectangularROI.__init__(self, axes) class QtPolygonalROI(QtROI, roi.MplPolygonalROI): def __init__(self, axes): roi.MplPolygonalROI.__init__(self, axes) class QtXRangeROI(QtROI, roi.MplXRangeROI): def __init__(self, axes): roi.MplXRangeROI.__init__(self, axes) def paint(self, canvas): x = self._roi.range() xy = self._axes.transAxes.transform([(0, 0), (1.0, 1.0)]) xy = self._axes.transData.inverted().transform(xy) y = xy[:, 1] self.draw_polygon(canvas, [x[0], x[1], x[1], x[0]], [y[0], y[0], y[1], y[1]]) class QtYRangeROI(QtROI, roi.MplYRangeROI): def __init__(self, axes): roi.MplYRangeROI.__init__(self, axes) def paint(self, canvas): y = self._roi.range() xy = self._axes.transAxes.transform([(0, 0.0), (1.0, 1.0)]) xy = self._axes.transData.inverted().transform(xy) x = xy[:, 0] self.draw_polygon(canvas, [x[0], x[1], x[1], x[0]], [y[0], y[0], y[1], y[1]]) class QtCircularROI(QtROI, roi.MplCircularROI): def __init__(self, axes): roi.MplCircularROI.__init__(self, axes) def paint(self, canvas): xy = list(map(int, self._roi.get_center())) radius = int(self._roi.get_radius()) # Matplotlib 2.x with PyQt5 on a retina display has a bug which means # that the coordinates returned by transData are twice as large as they # should be. Since we don't know when/if this bug will be fixed, we # check whether the coordinates of the top right corner are outside # the canvas. if PYQT5: xmax = self._axes.get_xlim()[1] ymax = self._axes.get_ylim()[1] xd, yd = self._axes.transData.transform((xmax, ymax)) if xd > self.canvas.width() or yd > self.canvas.height(): ratio = self.canvas.devicePixelRatio() xy[0] /= ratio xy[1] /= ratio radius /= ratio center = QtCore.QPoint(xy[0], canvas.height() - xy[1]) p = self.get_painter(canvas) p.drawEllipse(center, radius, radius) p.end()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/qt/roi.py", "copies": "3", "size": "5762", "license": "bsd-3-clause", "hash": 5541679687971372000, "line_mean": 29.8128342246, "line_max": 79, "alpha_frac": 0.5734120097, "autogenerated": false, "ratio": 3.4318046456223943, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5505216655322394, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from qtpy.QtCore import Qt from qtpy import QtCore, QtGui, QtWidgets from glue.core import roi from glue.utils.qt import mpl_to_qt4_color class QtROI(object): """ A mixin class used to override the drawing methods used by the MPL ROIs in core.roi. Paints to the Widget directly, avoiding calls that redraw the entire matplotlib plot. This permits smoother ROI selection for dense plots that take long to render """ def setup_patch(self): pass def _draw(self): pass def _sync_patch(self): self.canvas.roi_callback = self._paint_check self.canvas.update() # QT repaint without MPL redraw @property def canvas(self): return self._axes.figure.canvas def _paint_check(self, canvas): # check if the ROI should be rendered # called within the Qt paint loop if not (self._roi.defined() and self._mid_selection): return self.paint(canvas) def paint(self, canvas): x, y = self._roi.to_polygon() self.draw_polygon(canvas, x, y) def draw_polygon(self, canvas, x, y): x, y = self._transform(x, y) poly = QtGui.QPolygon() points = [QtCore.QPoint(xx, yy) for xx, yy in zip(x, y)] for p in points: poly.append(p) p = self.get_painter(canvas) p.drawPolygon(poly) p.end() def _transform(self, x, y): """ Convert points from MPL data coords to Qt Widget coords""" t = self._axes.transData xy = np.column_stack((x, y)) pts = t.transform(xy) pts[:, 1] = self.canvas.height() - pts[:, 1] return pts[:, 0], pts[:, 1] def get_painter(self, canvas): p = QtGui.QPainter(canvas) facecolor = mpl_to_qt4_color(self.plot_opts['facecolor'], self.plot_opts['alpha']) edgecolor = mpl_to_qt4_color(self.plot_opts['edgecolor'], self.plot_opts['alpha']) pen = QtGui.QPen(edgecolor) pen.setWidth(self.plot_opts.get('edgewidth', 0)) p.setPen(pen) p.setBrush(QtGui.QBrush(facecolor)) return p class QtPathROI(QtROI, roi.MplPathROI): def get_painter(self, canvas): p = super(QtPathROI, self).get_painter(canvas) p.setBrush(Qt.NoBrush) p.setRenderHint(p.HighQualityAntialiasing) return p def draw_polygon(self, canvas, x, y): x, y = self._transform(x, y) poly = QtGui.QPolygon() points = [QtCore.QPoint(xx, yy) for xx, yy in zip(x, y)] for p in points: poly.append(p) p = self.get_painter(canvas) p.drawPolyline(poly) p.end() class QtRectangularROI(QtROI, roi.MplRectangularROI): def __init__(self, axes): roi.MplRectangularROI.__init__(self, axes) class QtPolygonalROI(QtROI, roi.MplPolygonalROI): def __init__(self, axes): roi.MplPolygonalROI.__init__(self, axes) class QtXRangeROI(QtROI, roi.MplXRangeROI): def __init__(self, axes): roi.MplXRangeROI.__init__(self, axes) def paint(self, canvas): x = self._roi.range() xy = self._axes.transAxes.transform([(0, 0), (1.0, 1.0)]) xy = self._axes.transData.inverted().transform(xy) y = xy[:, 1] self.draw_polygon(canvas, [x[0], x[1], x[1], x[0]], [y[0], y[0], y[1], y[1]]) class QtYRangeROI(QtROI, roi.MplYRangeROI): def __init__(self, axes): roi.MplYRangeROI.__init__(self, axes) def paint(self, canvas): y = self._roi.range() xy = self._axes.transAxes.transform([(0, 0.0), (1.0, 1.0)]) xy = self._axes.transData.inverted().transform(xy) x = xy[:, 0] self.draw_polygon(canvas, [x[0], x[1], x[1], x[0]], [y[0], y[0], y[1], y[1]]) class QtCircularROI(QtROI, roi.MplCircularROI): def __init__(self, axes): roi.MplCircularROI.__init__(self, axes) def paint(self, canvas): xy = list(map(int, self._roi.get_center())) radius = int(self._roi.get_radius()) center = QtCore.QPoint(xy[0], canvas.height() - xy[1]) p = self.get_painter(canvas) p.drawEllipse(center, radius, radius) p.end()
{ "repo_name": "saimn/glue", "path": "glue/core/qt/roi.py", "copies": "1", "size": "4397", "license": "bsd-3-clause", "hash": -7443946654485707000, "line_mean": 27.5519480519, "line_max": 70, "alpha_frac": 0.5751648851, "autogenerated": false, "ratio": 3.2740134028294863, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9349178287929487, "avg_score": 0, "num_lines": 154 }
from __future__ import (absolute_import, division, print_function) import numpy as np from qtpy.QtWidgets import QComboBox, QTableWidgetItem from qtpy import QtCore from addie.utilities.general import generate_random_key from addie.processing.mantid.master_table.tree_definition import LIST_SEARCH_CRITERIA from addie.utilities.gui_handler import unlock_signals_ui class TableWidgetRuleHandler: def __init__(self, parent=None): self.parent = parent self.table_ui = parent.ui.tableWidget self.row_height = parent.row_height def define_unique_rule_name(self, row): """this method makes sure that the name of the rule defined is unique and does not exist already""" nbr_row = self.table_ui.rowCount() list_rule_name = [] for _row in np.arange(nbr_row): if self.table_ui.item(_row, 1): _rule_name = str(self.table_ui.item(_row, 1).text()) list_rule_name.append(_rule_name) offset = 0 while True: if ("{}".format(offset + row)) in list_rule_name: offset += 1 else: return offset + row def add_row(self, row=-1): """this add a default row to the table that takes care of the rules""" _random_key = generate_random_key() _list_ui_for_this_row = {} _list_ui_to_unlock = [] self.table_ui.insertRow(row) self.table_ui.setRowHeight(row, self.row_height) # key _item = QTableWidgetItem("{}".format(_random_key)) self.table_ui.setItem(row, 0, _item) # rule # _rule_name = self.define_unique_rule_name(row) _item = QTableWidgetItem("{}".format(_rule_name)) _item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) self.table_ui.setItem(row, 1, _item) # search argument _widget = QComboBox() _list_ui_for_this_row['list_items'] = _widget list_items = LIST_SEARCH_CRITERIA[self.parent.parent.instrument['short_name'].lower()] _widget.addItems(list_items) self.table_ui.setCellWidget(row, 2, _widget) _widget.blockSignals(True) _list_ui_to_unlock.append(_widget) _widget.currentIndexChanged.connect(lambda value=list_items[0], key = _random_key: self.parent.list_item_changed(value, key)) # criteria list_criteria = ['is', 'contains'] _widget = QComboBox() _list_ui_for_this_row['list_criteria'] = _widget _widget.addItems(list_criteria) self.table_ui.setCellWidget(row, 3, _widget) _widget.blockSignals(True) _list_ui_to_unlock.append(_widget) _widget.currentIndexChanged.connect(lambda value=list_criteria[0], key = _random_key: self.parent.list_criteria_changed(value, key)) # argument _widget = QComboBox() _widget.setEditable(True) _list_ui_for_this_row['list_items_value'] = _widget list_values = list(self.parent.metadata['Chemical Formula']) _widget.addItems(list_values) self.table_ui.setCellWidget(row, 4, _widget) _widget.blockSignals(True) _list_ui_to_unlock.append(_widget) _widget.editTextChanged.connect(lambda value=list_values[0], key = _random_key: self.parent.list_argument_changed(value, key)) _widget.currentIndexChanged.connect(lambda value=list_values[0], key = _random_key: self.parent.list_argument_index_changed(value, key)) if row == 0: self.table_ui.horizontalHeader().setVisible(True) unlock_signals_ui(list_ui=_list_ui_to_unlock) self.parent.list_ui[_random_key] = _list_ui_for_this_row self.parent.check_all_filter_widgets() def update_list_value_of_given_item(self, index=-1, key=None): """When user clicks, in the Tablewidget rule, the first row showing the name of the list element, for example 'Chemical formula', the list of available values will update automatically""" list_ui = self.parent.list_ui list_metadata = self.parent.metadata item_name = list_ui[key]['list_items'].itemText(index) combobox_values = list_ui[key]['list_items_value'] combobox_values.blockSignals(True) combobox_values.clear() combobox_values.addItems(list(list_metadata[item_name])) combobox_values.blockSignals(False)
{ "repo_name": "neutrons/FastGR", "path": "addie/processing/mantid/master_table/import_from_database/table_widget_rule_handler.py", "copies": "1", "size": "4759", "license": "mit", "hash": -502036111835493950, "line_mean": 39.3305084746, "line_max": 107, "alpha_frac": 0.5915108216, "autogenerated": false, "ratio": 3.82556270096463, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.491707352256463, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np from .tree import Tree class TreeLayout(object): """ The TreeLayout class maps trees onto an xy coordinate space for plotting. TreeLayout provides a dictionary-like interface for access to the location of each node in a tree. The typical use looks something like: tl = TreeLayout(tree_object) x_location = tl[key].x y_location = t1[key].y width = t1[key].width height = t1[key].height where key is either a reference to one of the nodes in the tree, or the id of that node. In this base class, the layout assigns each node a width of 1. It places the root at (0,0). The y position of every other node is one higher than its parent, and the x location is such that subtrees are centered over the parent tree. Subclasses of TreeLayout can override the layout() method to provide alternative layout styles. """ class Layout(object): """ A small class to hold the layout information for each tree node. Attributes: ----------- node: Tree instance The node that this layout object describes x: X location of this node y: Y location of this node width: Width of this node height: Height of this node """ def __init__(self, node, x=0., y=0., width=0., height=0.): self.x = x self.y = y self.width = width self.height = height self.node = node def __str__(self): return ("Node %s: (x, y) = (%f, %f). (w x h) = (%f, %f)" % (self.node.id, self.x, self.y, self.width, self.height)) def __init__(self, tree): """ Create a new TreeLayout object Parameters: ----------- Tree: Tree instance The root node of the tree to layout. The tree must be indexable (i.e. it must have the .index property) """ if not isinstance(tree, Tree): raise TypeError("Input not a tree object: %s" % type(tree)) self.tree = tree self._dict = {} try: tree.index except KeyError: raise TypeError("Cannot create tree layout -- " "input tree can't be indexed") self.layout() def __getitem__(self, key): return self._dict[key] def layout(self): """ Calculate the layout of this tree. """ self._tree_width(self.tree) self._tree_pos(self.tree) for t in self.tree.index: self[t].width = 1 def _tree_width(self, tree): """ Recursively calculates the width of each subtree. Also populates the layout dictionary. """ node = TreeLayout.Layout(tree, x=0., y=0., width=1., height=0.) self._dict[tree] = node self._dict[tree.id] = node width = 0. for c in tree.children: self._tree_width(c) width += self[c].width node.width = width def _tree_pos(self, tree): """ Based on the width of each subtree, recursively moves the subtrees so they don't overlap. """ w = 0. node = self[tree] for c in tree.children: self[c].x = node.x - node.width / 2. + w + self[c].width / 2. w += self[c].width self[c].y = node.y + 1 self._tree_pos(c) def pick(self, x, y): """ Based on the layout of the tree, choose a nearby branch to an x,y location Parameters: ----------- x: The x coordinate to search from y: The y coordinate to search from Outputs: -------- A reference to the closest tree node, if one is found. Otherwise, returns None """ sz = len(self.tree.index) off = np.zeros(sz) candidate = np.zeros(sz, dtype=bool) for i, t in enumerate(self.tree.index): off[i] = abs(x - self[t].x) parent = self[t].node.parent if parent: candidate[i] = self[parent].y <= y < self[t].y else: candidate[i] = y <= self[t].y if not candidate.any(): return None off[~candidate] = off.max() best = np.argmin(off) return self.tree.index[best] def tree_to_xy(self, tree): """ Convert the locations of one or more (sub)trees into a list of x,y coordinates suitable for plotting. Parameters: ----------- tree: Tree instance, or list of trees The (sub) tree(s) to generate xy coordinates for Outputs: -------- A list of x and y values tracing the tree. If the input is a list of trees, then the xy list for each tree will be separated by None. This is convenient for plotting to matplotlib, since it will not draw lines between the different trees. """ #code for when t is a list of trees if isinstance(tree, list): x = [] y = [] for t in tree: xx, yy = self.tree_to_xy(t) x.extend(xx) y.extend(yy) x.append(None) y.append(None) return (x, y) # code for when tree is a scalar x = [self[tree].x] y = [self[tree].y] for c in tree.children: xx, yy = self.tree_to_xy(c) x.extend([self[tree].x, xx[0]]) y.extend([self[tree].y, self[tree].y]) x += xx y += yy x.append(None) y.append(None) return (x, y) def branch_to_xy(self, branch): """ Convert one or more single branches to a list of line segments for plotting. Parameters: ----------- branch: Tree instance, or id of a tree, or a list of these The branch(es) to consider Outputs: -------- A set of xy coordinates describing the branches """ # code for when branch is a list of branches if isinstance(branch, list): x = [] y = [] for b in branch: xx, yy = self.branch_to_xy(b) x.extend(xx) y.extend(yy) x.append(None) y.append(None) return (x, y) #code for when branch is a scalar node = self[branch].node parent = node.parent if parent: x = [self[branch].x, self[branch].x, self[parent].x] y = [self[branch].y, self[parent].y, self[parent].y] return (x, y) else: return ([self[branch].x], [self[branch].y]) class DendrogramLayout(TreeLayout): def __init__(self, tree, data): self.data = data super(DendrogramLayout, self).__init__(tree) def layout(self): super(DendrogramLayout, self).layout() self.set_height() def set_height(self): nbranch = len(self.tree.index) nleaf = (nbranch + 1) / 2 hival = self.data.max() for id in self.tree.index: self[id].y = hival for id in self.tree.index: hit = np.where(self.tree.index_map == id) assert(len(hit) > 0) if id < nleaf: self[id].y = self.data[hit].max() if len(hit) == 0: loval = 0 else: loval = self.data[hit].min() parent = self[id].node.parent if not parent: continue self[parent].y = min(self[parent].y, loval)
{ "repo_name": "JudoWill/glue", "path": "glue/core/tree_layout.py", "copies": "1", "size": "7890", "license": "bsd-3-clause", "hash": -3383728852712354300, "line_mean": 27.9010989011, "line_max": 76, "alpha_frac": 0.5121673004, "autogenerated": false, "ratio": 4.060730828615543, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5072898129015543, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from glue.external import six from glue.core.data_factories.helpers import has_extension from glue.core.component import Component, CategoricalComponent from glue.core.data import Data from glue.config import data_factory, qglue_parser __all__ = ['pandas_read_table'] def panda_process(indf): """ Build a data set from a table using pandas. This attempts to respect categorical data input by letting pandas.read_csv infer the type """ result = Data() for name, column in indf.iteritems(): if (column.dtype == np.object) | (column.dtype == np.bool): # try to salvage numerical data try: coerced = pd.to_numeric(column, errors='coerce') except AttributeError: # pandas < 0.19 coerced = column.convert_objects(convert_numeric=True) if (coerced.dtype != column.dtype) and coerced.isnull().mean() < 0.4: c = Component(coerced.values) else: # pandas has a 'special' nan implementation and this doesn't # play well with np.unique c = CategoricalComponent(column.fillna('')) else: c = Component(column.values) # convert header to string - in some cases if the first row contains # numbers, these are cast to numerical types, so we want to change that # here. if not isinstance(name, six.string_types): name = str(name) # strip off leading # name = name.strip() if name.startswith('#'): name = name[1:].strip() result.add_component(c, name) return result @data_factory(label="Pandas Table", identifier=has_extension('csv csv txt tsv tbl dat')) def pandas_read_table(path, **kwargs): """ A factory for reading tabular data using pandas :param path: path/to/file :param kwargs: All kwargs are passed to pandas.read_csv :returns: :class:`glue.core.data.Data` object """ import pandas as pd try: from pandas.io.common import CParserError except ImportError: # pragma: no cover try: from pandas.parser import CParserError except ImportError: # pragma: no cover from pandas._parser import CParserError # iterate over common delimiters to search for best option delimiters = kwargs.pop('delimiter', [None] + list(',|\t ')) fallback = None for d in delimiters: try: indf = pd.read_csv(path, delimiter=d, **kwargs) # ignore files parsed to empty dataframes if len(indf) == 0: continue # only use files parsed to single-column dataframes # if we don't find a better strategy if len(indf.columns) < 2: fallback = indf continue return panda_process(indf) except CParserError: continue if fallback is not None: return panda_process(fallback) raise IOError("Could not parse %s using pandas" % path) try: import pandas as pd except ImportError: pass else: @qglue_parser(pd.DataFrame) def _parse_data_dataframe(data, label): label = label or 'Data' result = Data(label=label) for c in data.columns: result.add_component(data[c], str(c)) return [result]
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/data_factories/pandas.py", "copies": "2", "size": "3493", "license": "bsd-3-clause", "hash": -8185681234212810000, "line_mean": 29.6403508772, "line_max": 88, "alpha_frac": 0.6117950186, "autogenerated": false, "ratio": 4.17822966507177, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.579002468367177, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pytest h5py = pytest.importorskip('h5py') from datashape import discover from blaze import compute from blaze.expr import symbol from blaze.utils import tmpfile from blaze.compute.h5py import pre_compute, optimize def eq(a, b): return (a == b).all() x = np.arange(20*24, dtype='f4').reshape((20, 24)) @pytest.yield_fixture def file(): with tmpfile('.h5') as filename: f = h5py.File(filename) d = f.create_dataset('/x', shape=x.shape, dtype=x.dtype, fillvalue=0.0, chunks=(4, 6)) d[:] = x yield f f.close() @pytest.yield_fixture def data(file): yield file['/x'] @pytest.yield_fixture def data_1d_chunks(): with tmpfile('.h5') as filename: f = h5py.File(filename) d = f.create_dataset('/x', shape=x.shape, dtype=x.dtype, fillvalue=0.0, chunks=(1, 24)) d[:] = x yield d f.close() rec = np.empty(shape=(20, 24), dtype=[('x', 'i4'), ('y', 'i4')]) rec['x'] = 1 rec['y'] = 2 @pytest.yield_fixture def recdata(): with tmpfile('.h5') as filename: f = h5py.File(filename) d = f.create_dataset('/x', shape=rec.shape, dtype=rec.dtype, chunks=(4, 6)) d['x'] = rec['x'] d['y'] = rec['y'] yield d f.close() s = symbol('s', discover(x)) def test_slicing(data): for idx in [0, 1, (0, 1), slice(1, 3), (0, slice(1, 5, 2))]: assert eq(compute(s[idx], data), x[idx]) def test_reductions(data): assert eq(compute(s.sum(), data), x.sum()) assert eq(compute(s.sum(axis=1), data), x.sum(axis=1)) assert eq(compute(s.sum(axis=0), data), x.sum(axis=0)) assert eq(compute(s[0], data), x[0]) assert eq(compute(s[-1], data), x[-1]) def test_mixed(recdata): s = symbol('s', discover(recdata)) expr = (s.x + 1).sum(axis=1) assert eq(compute(expr, recdata), compute(expr, rec)) def test_uneven_chunk_size(data): assert eq(compute(s.sum(axis=1), data, chunksize=(7, 7)), x.sum(axis=1)) def test_nrows_3D_records(recdata): s = symbol('s', discover(recdata)) assert not hasattr(s, 'nrows') @pytest.mark.xfail(raises=AttributeError, reason="We don't support nrows on arrays") def test_nrows_array(data): assert compute(s.nrows, data) == len(data) def test_nelements_records(recdata): s = symbol('s', discover(recdata)) assert compute(s.nelements(), recdata) == np.prod(recdata.shape) np.testing.assert_array_equal(compute(s.nelements(axis=0), recdata), np.zeros(recdata.shape[1]) + recdata.shape[0]) def test_nelements_array(data): lhs = compute(s.nelements(axis=1), data) rhs = data.shape[1] np.testing.assert_array_equal(lhs, rhs) lhs = compute(s.nelements(axis=0), data) rhs = data.shape[0] np.testing.assert_array_equal(lhs, rhs) lhs = compute(s.nelements(axis=(0, 1)), data) rhs = np.prod(data.shape) np.testing.assert_array_equal(lhs, rhs) def test_field_access_on_file(file): s = symbol('s', '{x: 20 * 24 * float32}') d = compute(s.x, file) # assert isinstance(d, h5py.Dataset) assert eq(d[:], x) def test_field_access_on_group(file): s = symbol('s', '{x: 20 * 24 * float32}') d = compute(s.x, file['/']) # assert isinstance(d, h5py.Dataset) assert eq(d[:], x) def test_compute_on_file(file): s = symbol('s', discover(file)) assert eq(compute(s.x.sum(axis=1), file), x.sum(axis=1)) assert eq(compute(s.x.sum(), file, chunksize=(4, 6)), x.sum()) def test_compute_on_1d_chunks(data_1d_chunks): assert eq(compute(s.sum(), data_1d_chunks), x.sum()) def test_arithmetic_on_small_array(data): s = symbol('s', discover(data)) assert eq(compute(s + 1, data), compute(s + 1, x)) def test_arithmetic_on_small_array_from_file(file): """ Want to make sure that we call pre_compute on Dataset Even when it's not the leaf data input. """ s = symbol('s', discover(file)) assert eq(compute(s.x + 1, file), x + 1) def test_pre_compute_doesnt_collapse_slices(data): s = symbol('s', discover(data)) assert pre_compute(s[:5], data) is data def test_optimize_slicing(data): a = symbol('a', discover(data)) b = symbol('b', discover(data)) assert optimize((a + 1)[:3], data).isidentical(a[:3] + 1) assert optimize((a + b)[:3], data).isidentical(a[:3] + b[:3]) def test_optimize_slicing_on_file(file): f = symbol('f', discover(file)) assert optimize((f.x + 1)[:5], file).isidentical(f.x[:5] + 1) def test_arithmetic_and_then_slicing(data): s = symbol('s', discover(data)) assert eq(compute((2*s + 1)[0], data, pre_compute=False), 2*x[0] + 1)
{ "repo_name": "dwillmer/blaze", "path": "blaze/compute/tests/test_h5py.py", "copies": "1", "size": "5006", "license": "bsd-3-clause", "hash": -1991720706024508700, "line_mean": 24.9378238342, "line_max": 80, "alpha_frac": 0.5803036356, "autogenerated": false, "ratio": 3.0120336943441637, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4092337329944164, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import pytest from .. import tree_layout as tl from ..tree import NewickTree def test_invalid_input(): with pytest.raises(TypeError) as exc: layout = tl.TreeLayout(None) assert exc.value.args[0] == 'Input not a tree object: %s' % type(None) def test_layout_indexable_by_tree_or_id(): tree = NewickTree('((0,1)4,(2,3)5)6;') layout = tl.TreeLayout(tree) assert layout[tree] is layout[tree.id] def test_default_layout(): tree = NewickTree('((0,1)4,(2,3)5)6;') layout = tl.TreeLayout(tree) t6 = tree t4, t5 = t6.children t0, t1 = t4.children t2, t3 = t5.children ts = [t0, t1, t2, t3, t4, t5, t6] xs = [-1.5, -.5, .5, 1.5, -1, 1, 0] ys = [2, 2, 2, 2, 1, 1, 0] for t, x, y in zip(ts, xs, ys): assert layout[t].x == x assert layout[t].y == y assert layout[t].width == 1 assert layout[t].height == 0 def test_layout_single_leaf(): tree = NewickTree('0;') layout = tl.TreeLayout(tree) assert layout[tree].x == 0 assert layout[tree].y == 0 def test_pick(): tree = NewickTree('((0,1)4,(2,3)5)6;') layout = tl.TreeLayout(tree) #exact match assert layout.pick(0, 0) is tree #closest match, below assert layout.pick(0, -1) is tree #only pick if y position is <= node assert layout.pick(-.01, .01) is tree.children[0] assert layout.pick(0, 2.1) is None def test_tree_to_xy(): tree = NewickTree('(0,1)2;') layout = tl.TreeLayout(tree) x = np.array([0, 0, -.5, -.5, None, 0, .5, .5, None], dtype=float) y = np.array([0, 0, 0, 1, None, 0, 0, 1, None], dtype=float) xx, yy = layout.tree_to_xy(tree) np.testing.assert_array_almost_equal(x, np.array(xx, dtype=float)) np.testing.assert_array_almost_equal(y, np.array(yy, dtype=float)) def test_tree_to_xy_list(): tree = NewickTree('(0,1)2;') layout = tl.TreeLayout(tree) x = np.array([-0.5, None, .5, None], dtype=float) y = np.array([1, None, 1, None], dtype=float) xx, yy = layout.tree_to_xy(tree.children) np.testing.assert_array_almost_equal(x, np.array(xx, dtype=float)) np.testing.assert_array_almost_equal(y, np.array(yy, dtype=float)) def test_branch_to_xy_branch(): tree = NewickTree('((0,1)4,(2,3)5)6;') layout = tl.TreeLayout(tree) x = [-1, -1, 0] y = [1, 0, 0] xx, yy = layout.branch_to_xy(tree.children[0]) np.testing.assert_array_almost_equal(x, xx) np.testing.assert_array_almost_equal(y, yy) def test_branch_to_xy_root(): tree = NewickTree('((0,1)4,(2,3)5)6;') layout = tl.TreeLayout(tree) x = [0] y = [0] xx, yy = layout.branch_to_xy(tree) np.testing.assert_array_almost_equal(x, xx) np.testing.assert_array_almost_equal(y, yy) def test_branch_to_xy_leaf(): tree = NewickTree('((0,1)4,(2,3)5)6;') layout = tl.TreeLayout(tree) x = [-1.5, -1.5, -1] y = [2, 1, 1] xx, yy = layout.branch_to_xy(tree.children[0].children[0]) np.testing.assert_array_almost_equal(x, xx) np.testing.assert_array_almost_equal(y, yy) def test_branch_to_xy_list(): tree = NewickTree('((0,1)4,(2,3)5)6;') layout = tl.TreeLayout(tree) x = np.array([0, None, 0, None], dtype=float) y = np.array([0, None, 0, None], dtype=float) xx, yy = layout.branch_to_xy([tree, tree]) np.testing.assert_array_almost_equal(x, np.array(xx, dtype=float)) np.testing.assert_array_almost_equal(y, np.array(yy, dtype=float))
{ "repo_name": "JudoWill/glue", "path": "glue/core/tests/test_tree_layout.py", "copies": "1", "size": "3570", "license": "bsd-3-clause", "hash": -7599557393304830000, "line_mean": 25.4444444444, "line_max": 74, "alpha_frac": 0.6028011204, "autogenerated": false, "ratio": 2.6761619190404797, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.37789630394404794, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import theano import theano.tensor as T from theano.tensor.nnet.bn import batch_normalization def linear(x): return x class BatchNormLayer(object): """Batch normalization layer. Core algorithm is brought from Lasagne. (https://github.com/Lasagne/Lasagne) """ layers = [] def __init__(self, input_shape, layer_name=None, epsilon=1e-4, alpha=0.05): if len(input_shape) == 2: self.axes = (0,) shape = [input_shape[1]] elif len(input_shape) == 4: self.axes = (0, 2, 3) shape = [input_shape[0]] else: raise NotImplementedError self.layer_name = 'BN' if layer_name is None else layer_name self.epsilon = epsilon self.alpha = alpha self.deterministic = False self.update_averages = True self.gamma = theano.shared(np.ones(shape, dtype=theano.config.floatX), name=layer_name + '_G', borrow=True) self.beta = theano.shared(np.zeros(shape, dtype=theano.config.floatX), name=layer_name + '_B', borrow=True) self.mean = theano.shared(np.zeros(shape, dtype=theano.config.floatX), name=layer_name + '_mean', borrow=True) self.inv_std = theano.shared( np.ones(shape, dtype=theano.config.floatX), name=layer_name + '_inv_std', borrow=True) self.params = [self.gamma, self.beta] self.statistics = [self.mean, self.inv_std] BatchNormLayer.layers.append(self) def get_output(self, input, **kwargs): input_mean = input.mean(self.axes) input_inv_std = T.inv(T.sqrt(input.var(self.axes) + self.epsilon)) # input_inv_std = T.inv(T.sqrt(input.var(self.axes)) + 1E-6) # Decide whether to use the stored averages or mini-batch statistics use_averages = self.deterministic if use_averages: mean = self.mean inv_std = self.inv_std else: mean = input_mean inv_std = input_inv_std # Decide whether to update the stored averages update_averages = self.update_averages and not use_averages if update_averages: # Trick: To update the stored statistics, we create memory-aliased # clones of the stored statistics: running_mean = theano.clone(self.mean, share_inputs=False) running_inv_std = theano.clone(self.inv_std, share_inputs=False) # set a default update for them: running_mean.default_update = ((1 - self.alpha) * running_mean + self.alpha * input_mean) running_inv_std.default_update = ((1 - self.alpha) * running_inv_std + self.alpha * input_inv_std) # and make sure they end up in the graph without participating in # the computation (this way their default_update will be collected # and applied, but the computation will be optimized away): mean += 0 * running_mean inv_std += 0 * running_inv_std # prepare dimshuffle pattern inserting broadcastable axes as needed param_axes = iter(list(range(input.ndim - len(self.axes)))) pattern = ['x' if input_axis in self.axes else next(param_axes) for input_axis in range(input.ndim)] # apply dimshuffle pattern to all parameters beta = 0 if self.beta is None else self.beta.dimshuffle(pattern) gamma = 1 if self.gamma is None else self.gamma.dimshuffle(pattern) mean = mean.dimshuffle(pattern) inv_std = inv_std.dimshuffle(pattern) # normalize normalized = (input - mean) * (gamma * inv_std) + beta return normalized def reset_mean_std(self): # reset mean and std self.mean.set_value(np.zeros(self.mean.get_value().shape, dtype=theano.config.floatX)) self.inv_std.set_value(np.ones(self.std.get_value().shape, dtype=theano.config.floatX)) @staticmethod def set_batch_norms_training(training): deterministic = False if training else True print(' - Batch norm layres: deterministic =', deterministic) for layer in BatchNormLayer.layers: layer.deterministic = deterministic layer.update_averages = not deterministic @staticmethod def reset_batch_norms_mean_std(): print(' - Batch norm layres: reset mean and std') for layer in BatchNormLayer.layers: layer.reset_mean_std() class BatchNormLayerTheano(object): """Batch normalization layer (Using theano.tensor.nnet.bn.batch_normalization) Core algorithm is brought from Lasagne. (https://github.com/Lasagne/Lasagne) """ layers = [] def __init__(self, input_shape, layer_name=None, activation=linear, epsilon=1e-4, alpha=0.05): if len(input_shape) == 2: self.axes = (0,) shape = [input_shape[1]] elif len(input_shape) == 4: self.axes = (0, 2, 3) shape = [input_shape[0]] else: raise NotImplementedError self.layer_name = 'BN' if layer_name is None else layer_name self.epsilon = epsilon self.alpha = alpha self.deterministic = False self.update_averages = True self.activation = activation self.act_name = activation.__name__ self.gamma = theano.shared(np.ones(shape, dtype=theano.config.floatX), name=layer_name + '_G', borrow=True) self.beta = theano.shared(np.zeros(shape, dtype=theano.config.floatX), name=layer_name + '_B', borrow=True) self.mean = theano.shared(np.zeros(shape, dtype=theano.config.floatX), name=layer_name + '_mean', borrow=True) self.std = theano.shared(np.ones(shape, dtype=theano.config.floatX), name=layer_name + '_std', borrow=True) self.params = [self.gamma, self.beta] self.statistics = [self.mean, self.std] BatchNormLayer.layers.append(self) def get_output(self, input, **kwargs): input_mean = input.mean(self.axes) # input_std = T.inv(T.sqrt(input.var(self.axes) + self.epsilon)) input_std = T.sqrt(input.var(self.axes) + self.epsilon) # Decide whether to use the stored averages or mini-batch statistics use_averages = self.deterministic if use_averages: mean = self.mean std = self.std else: mean = input_mean std = input_std # Decide whether to update the stored averages update_averages = self.update_averages and not use_averages if update_averages: # Trick: To update the stored statistics, we create memory-aliased # clones of the stored statistics: running_mean = theano.clone(self.mean, share_inputs=False) running_std = theano.clone(self.std, share_inputs=False) # set a default update for them: running_mean.default_update = ((1 - self.alpha) * running_mean + self.alpha * input_mean) running_std.default_update = ((1 - self.alpha) * running_std + self.alpha * input_std) # and make sure they end up in the graph without participating in # the computation (this way their default_update will be collected # and applied, but the computation will be optimized away): mean += 0 * running_mean std += 0 * running_std # prepare dimshuffle pattern inserting broadcastable axes as needed param_axes = iter(list(range(input.ndim - len(self.axes)))) pattern = ['x' if input_axis in self.axes else next(param_axes) for input_axis in range(input.ndim)] # apply dimshuffle pattern to all parameters beta = 0 if self.beta is None else self.beta.dimshuffle(pattern) gamma = 1 if self.gamma is None else self.gamma.dimshuffle(pattern) mean = mean.dimshuffle(pattern) std = std.dimshuffle(pattern) # normalize # normalized = (input - mean) * (gamma * std) + beta normalized = batch_normalization( input, gamma, beta, mean, std, mode='low_mem') return self.activation(normalized) def reset_mean_std(self): # reset mean and std self.mean.set_value(np.zeros(self.mean.get_value().shape, dtype=theano.config.floatX)) self.std.set_value(np.ones(self.std.get_value().shape, dtype=theano.config.floatX)) @staticmethod def set_batch_norms_training(training): deterministic = False if training else True print(' - Batch norm layres: deterministic =', deterministic) for layer in BatchNormLayer.layers: layer.deterministic = deterministic layer.update_averages = not deterministic @staticmethod def reset_batch_norms_mean_std(): print(' - Batch norm layres: reset mean and std') for layer in BatchNormLayer.layers: layer.reset_mean_std()
{ "repo_name": "jongyookim/IQA_BIECON_release", "path": "IQA_BIECON_release/layers/normalization.py", "copies": "1", "size": "9687", "license": "mit", "hash": 3904224244393057000, "line_mean": 40.2212765957, "line_max": 79, "alpha_frac": 0.5819139052, "autogenerated": false, "ratio": 4.097715736040609, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5179629641240608, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import xarray as xr from . import requires_dask class Reindex: def setup(self): data = np.random.RandomState(0).randn(1000, 100, 100) self.ds = xr.Dataset({'temperature': (('time', 'x', 'y'), data)}, coords={'time': np.arange(1000), 'x': np.arange(100), 'y': np.arange(100)}) def time_1d_coarse(self): self.ds.reindex(time=np.arange(0, 1000, 5)).load() def time_1d_fine_all_found(self): self.ds.reindex(time=np.arange(0, 1000, 0.5), method='nearest').load() def time_1d_fine_some_missing(self): self.ds.reindex(time=np.arange(0, 1000, 0.5), method='nearest', tolerance=0.1).load() def time_2d_coarse(self): self.ds.reindex(x=np.arange(0, 100, 2), y=np.arange(0, 100, 2)).load() def time_2d_fine_all_found(self): self.ds.reindex(x=np.arange(0, 100, 0.5), y=np.arange(0, 100, 0.5), method='nearest').load() def time_2d_fine_some_missing(self): self.ds.reindex(x=np.arange(0, 100, 0.5), y=np.arange(0, 100, 0.5), method='nearest', tolerance=0.1).load() class ReindexDask(Reindex): def setup(self): requires_dask() super(ReindexDask, self).setup() self.ds = self.ds.chunk({'time': 100})
{ "repo_name": "shoyer/xray", "path": "asv_bench/benchmarks/reindexing.py", "copies": "1", "size": "1475", "license": "apache-2.0", "hash": -7596367717624044000, "line_mean": 32.5227272727, "line_max": 78, "alpha_frac": 0.5484745763, "autogenerated": false, "ratio": 3.165236051502146, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4213710627802146, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np import xarray as xr from . import requires_dask class Reindex(object): def setup(self): data = np.random.RandomState(0).randn(1000, 100, 100) self.ds = xr.Dataset({'temperature': (('time', 'x', 'y'), data)}, coords={'time': np.arange(1000), 'x': np.arange(100), 'y': np.arange(100)}) def time_1d_coarse(self): self.ds.reindex(time=np.arange(0, 1000, 5)).load() def time_1d_fine_all_found(self): self.ds.reindex(time=np.arange(0, 1000, 0.5), method='nearest').load() def time_1d_fine_some_missing(self): self.ds.reindex(time=np.arange(0, 1000, 0.5), method='nearest', tolerance=0.1).load() def time_2d_coarse(self): self.ds.reindex(x=np.arange(0, 100, 2), y=np.arange(0, 100, 2)).load() def time_2d_fine_all_found(self): self.ds.reindex(x=np.arange(0, 100, 0.5), y=np.arange(0, 100, 0.5), method='nearest').load() def time_2d_fine_some_missing(self): self.ds.reindex(x=np.arange(0, 100, 0.5), y=np.arange(0, 100, 0.5), method='nearest', tolerance=0.1).load() class ReindexDask(Reindex): def setup(self): requires_dask() super(ReindexDask, self).setup() self.ds = self.ds.chunk({'time': 100})
{ "repo_name": "chunweiyuan/xarray", "path": "asv_bench/benchmarks/reindexing.py", "copies": "2", "size": "1483", "license": "apache-2.0", "hash": -7699801554381506000, "line_mean": 32.7045454545, "line_max": 78, "alpha_frac": 0.5495616993, "autogenerated": false, "ratio": 3.1688034188034186, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47183651181034186, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) import numpy as np def ut_diagn(coef, opt): if opt['RunTimeDisp']: print('diagnostics ... ', end='') coef['diagn'] = {} if opt['twodim']: PE = np.sum(coef['Lsmaj']**2 + coef['Lsmin']**2) PE = 100 * (coef['Lsmaj']**2 + coef['Lsmin']**2) / PE SNR = (coef['Lsmaj']**2 + coef['Lsmin']**2) / ( (coef['Lsmaj_ci']/1.96)**2 + (coef['Lsmin_ci']/1.96)**2) else: PE = 100 * coef['A']**2 / np.sum(coef['A']**2) SNR = (coef['A']**2) / (coef['A_ci']/1.96)**2 indPE = PE.argsort()[::-1] coef['diagn']['name'] = coef['name'][indPE] coef['diagn']['PE'] = PE[indPE] coef['diagn']['SNR'] = SNR[indPE] return coef, indPE # [~,indPE] = sort(PE,'descend'); # coef.diagn.name = coef.name(indPE); # coef.diagn.PE = PE(indPE); # coef.diagn.SNR = SNR; % used in ut_diagntable; ordered by PE there # if opt.twodim # [coef.diagn,usnrc,vsnrc] = ut_diagntable(coef,cnstit,... # t,u,v,xmod,m,B,W,varMSM,Gall,Hall,elor,varcov_mCw,indPE); # else # [coef.diagn,usnrc,~] = ut_diagntable(coef,cnstit,... # t,u,[],xmod,m,B,W,varMSM,Gall,Hall,elor,varcov_mCw,indPE); # end # if opt.diagnplots # tmp = nan*ones(size(uin)); # tmp(uvgd) = usnrc; # usnrc = tmp; # tmp = nan*ones(size(uin)); # tmp(uvgd) = e; # e = tmp; # if opt.twodim # tmp = nan*ones(size(uin)); # tmp(uvgd) = vsnrc; # vsnrc = tmp; # ut_diagnfigs(coef,indPE,tin,uin,vin,usnrc,vsnrc,e); # else # ut_diagnfigs(coef,indPE,tin,uin,[],usnrc,[],e); # end # end # end
{ "repo_name": "efiring/UTide", "path": "utide/diagnostics.py", "copies": "1", "size": "1755", "license": "mit", "hash": 2991154380576400400, "line_mean": 28.25, "line_max": 71, "alpha_frac": 0.505982906, "autogenerated": false, "ratio": 2.461430575035063, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3467413481035063, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np # returns a list of augmented audio data, stereo or mono def augment_audio(y, sr, n_augment=0, allow_speedandpitch=True, allow_pitch=True, allow_speed=True, allow_dyn=True, allow_noise=True, allow_timeshift=True, tab="", quiet=False): mods = [y] # always returns the original as element zero length = y.shape[0] for i in range(n_augment): if not quiet: print(tab + "augment_audio: ", i + 1, "of", n_augment) y_mod = y count_changes = 0 # change speed and pitch together if (allow_speedandpitch) and random_onoff(): length_change = np.random.uniform(low=0.9, high=1.1) speed_fac = 1.0 / length_change if not quiet: print(tab + " resample length_change = ", length_change) tmp = np.interp(np.arange(0, len(y), speed_fac), np.arange(0, len(y)), y) #tmp = resample(y,int(length*lengt_fac)) # signal.resample is too slow minlen = min(y.shape[0], tmp.shape[0]) # keep same length as original; y_mod *= 0 # pad with zeros y_mod[0:minlen] = tmp[0:minlen] count_changes += 1 # change pitch (w/o speed) if (allow_pitch) and random_onoff(): bins_per_octave = 24 # pitch increments are quarter-steps pitch_pm = 4 # +/- this many quarter steps pitch_change = pitch_pm * 2 * (np.random.uniform() - 0.5) if not quiet: print(tab + " pitch_change = ", pitch_change) y_mod = librosa.effects.pitch_shift(y, sr, n_steps=pitch_change, bins_per_octave=bins_per_octave) count_changes += 1 # change speed (w/o pitch), if (allow_speed) and random_onoff(): speed_change = np.random.uniform(low=0.9, high=1.1) if not quiet: print(tab + " speed_change = ", speed_change) tmp = librosa.effects.time_stretch(y_mod, speed_change) minlen = min(y.shape[0], tmp.shape[0]) # keep same length as original; y_mod *= 0 # pad with zeros y_mod[0:minlen] = tmp[0:minlen] count_changes += 1 # change dynamic range if (allow_dyn) and random_onoff(): dyn_change = np.random.uniform(low=0.5, high=1.1) # change amplitude if not quiet: print(tab + " dyn_change = ", dyn_change) y_mod = y_mod * dyn_change count_changes += 1 # add noise if (allow_noise) and random_onoff(): noise_amp = 0.005 * np.random.uniform() * np.amax(y) if random_onoff(): if not quiet: print(tab + " gaussian noise_amp = ", noise_amp) y_mod += noise_amp * np.random.normal(size=length) else: if not quiet: print(tab + " uniform noise_amp = ", noise_amp) y_mod += noise_amp * np.random.normal(size=length) count_changes += 1 # shift in time forwards or backwards if (allow_timeshift) and random_onoff(): timeshift_fac = 0.2 * 2 * (np.random.uniform() - 0.5 ) # up to 20% of length if not quiet: print(tab + " timeshift_fac = ", timeshift_fac) start = int(length * timeshift_fac) if (start > 0): y_mod = np.pad(y_mod, (start, 0), mode='constant')[0:y_mod.shape[0]] else: y_mod = np.pad(y_mod, (0, -start), mode='constant')[0:y_mod.shape[0]] count_changes += 1 # last-ditch effort to make sure we made a change (recursive/sloppy, but...works) if (0 == count_changes): if not quiet: print("No changes made to signal, trying again") mods.append( augment_audio(y, sr, n_augment=1, tab=" ", quiet=quiet)[1]) else: mods.append(y_mod) return mods """ scale frequency axis logarithmically """ def logscale_spec(spec, sr=44100, factor=20., alpha=1.0, f0=0.9, fmax=1): spec = spec[:, 0:256] timebins, freqbins = np.shape(spec) scale = np.linspace(0, 1, freqbins) #** factor # http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=650310&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel4%2F89%2F14168%2F00650310 scale = np.array( map( lambda x: x * alpha if x <= f0 else (fmax - alpha * f0) / (fmax - f0) * (x - f0) + alpha * f0, scale)) scale *= (freqbins - 1) / max(scale) newspec = np.complex128(np.zeros([timebins, freqbins])) allfreqs = np.abs(np.fft.fftfreq(freqbins * 2, 1. / sr)[:freqbins + 1]) freqs = [0.0 for i in range(freqbins)] totw = [0.0 for i in range(freqbins)] for i in range(0, freqbins): if (i < 1 or i + 1 >= freqbins): newspec[:, i] += spec[:, i] freqs[i] += allfreqs[i] totw[i] += 1.0 continue else: # scale[15] = 17.2 w_up = scale[i] - np.floor(scale[i]) w_down = 1 - w_up j = int(np.floor(scale[i])) newspec[:, j] += w_down * spec[:, i] freqs[j] += w_down * allfreqs[i] totw[j] += w_down newspec[:, j + 1] += w_up * spec[:, i] freqs[j + 1] += w_up * allfreqs[i] totw[j + 1] += w_up for i in range(len(freqs)): if (totw[i] > 1e-6): freqs[i] /= totw[i] return newspec, freqs
{ "repo_name": "imito/odin", "path": "odin/preprocessing/audio/audio.py", "copies": "1", "size": "5392", "license": "mit", "hash": 3362171369931488000, "line_mean": 33.7870967742, "line_max": 132, "alpha_frac": 0.5497032641, "autogenerated": false, "ratio": 3.1095732410611303, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.415927650516113, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np N_STAGES = 12 N_STAGES_EXTENDED = 16 INTERPOLATOR_POWER = 7 C = np.array([0.0, 0.526001519587677318785587544488e-01, 0.789002279381515978178381316732e-01, 0.118350341907227396726757197510, 0.281649658092772603273242802490, 0.333333333333333333333333333333, 0.25, 0.307692307692307692307692307692, 0.651282051282051282051282051282, 0.6, 0.857142857142857142857142857142, 1.0, 1.0, 0.1, 0.2, 0.777777777777777777777777777778]) A = np.zeros((N_STAGES_EXTENDED, N_STAGES_EXTENDED)) A[1, 0] = 5.26001519587677318785587544488e-2 A[2, 0] = 1.97250569845378994544595329183e-2 A[2, 1] = 5.91751709536136983633785987549e-2 A[3, 0] = 2.95875854768068491816892993775e-2 A[3, 2] = 8.87627564304205475450678981324e-2 A[4, 0] = 2.41365134159266685502369798665e-1 A[4, 2] = -8.84549479328286085344864962717e-1 A[4, 3] = 9.24834003261792003115737966543e-1 A[5, 0] = 3.7037037037037037037037037037e-2 A[5, 3] = 1.70828608729473871279604482173e-1 A[5, 4] = 1.25467687566822425016691814123e-1 A[6, 0] = 3.7109375e-2 A[6, 3] = 1.70252211019544039314978060272e-1 A[6, 4] = 6.02165389804559606850219397283e-2 A[6, 5] = -1.7578125e-2 A[7, 0] = 3.70920001185047927108779319836e-2 A[7, 3] = 1.70383925712239993810214054705e-1 A[7, 4] = 1.07262030446373284651809199168e-1 A[7, 5] = -1.53194377486244017527936158236e-2 A[7, 6] = 8.27378916381402288758473766002e-3 A[8, 0] = 6.24110958716075717114429577812e-1 A[8, 3] = -3.36089262944694129406857109825 A[8, 4] = -8.68219346841726006818189891453e-1 A[8, 5] = 2.75920996994467083049415600797e1 A[8, 6] = 2.01540675504778934086186788979e1 A[8, 7] = -4.34898841810699588477366255144e1 A[9, 0] = 4.77662536438264365890433908527e-1 A[9, 3] = -2.48811461997166764192642586468 A[9, 4] = -5.90290826836842996371446475743e-1 A[9, 5] = 2.12300514481811942347288949897e1 A[9, 6] = 1.52792336328824235832596922938e1 A[9, 7] = -3.32882109689848629194453265587e1 A[9, 8] = -2.03312017085086261358222928593e-2 A[10, 0] = -9.3714243008598732571704021658e-1 A[10, 3] = 5.18637242884406370830023853209 A[10, 4] = 1.09143734899672957818500254654 A[10, 5] = -8.14978701074692612513997267357 A[10, 6] = -1.85200656599969598641566180701e1 A[10, 7] = 2.27394870993505042818970056734e1 A[10, 8] = 2.49360555267965238987089396762 A[10, 9] = -3.0467644718982195003823669022 A[11, 0] = 2.27331014751653820792359768449 A[11, 3] = -1.05344954667372501984066689879e1 A[11, 4] = -2.00087205822486249909675718444 A[11, 5] = -1.79589318631187989172765950534e1 A[11, 6] = 2.79488845294199600508499808837e1 A[11, 7] = -2.85899827713502369474065508674 A[11, 8] = -8.87285693353062954433549289258 A[11, 9] = 1.23605671757943030647266201528e1 A[11, 10] = 6.43392746015763530355970484046e-1 A[12, 0] = 5.42937341165687622380535766363e-2 A[12, 5] = 4.45031289275240888144113950566 A[12, 6] = 1.89151789931450038304281599044 A[12, 7] = -5.8012039600105847814672114227 A[12, 8] = 3.1116436695781989440891606237e-1 A[12, 9] = -1.52160949662516078556178806805e-1 A[12, 10] = 2.01365400804030348374776537501e-1 A[12, 11] = 4.47106157277725905176885569043e-2 A[13, 0] = 5.61675022830479523392909219681e-2 A[13, 6] = 2.53500210216624811088794765333e-1 A[13, 7] = -2.46239037470802489917441475441e-1 A[13, 8] = -1.24191423263816360469010140626e-1 A[13, 9] = 1.5329179827876569731206322685e-1 A[13, 10] = 8.20105229563468988491666602057e-3 A[13, 11] = 7.56789766054569976138603589584e-3 A[13, 12] = -8.298e-3 A[14, 0] = 3.18346481635021405060768473261e-2 A[14, 5] = 2.83009096723667755288322961402e-2 A[14, 6] = 5.35419883074385676223797384372e-2 A[14, 7] = -5.49237485713909884646569340306e-2 A[14, 10] = -1.08347328697249322858509316994e-4 A[14, 11] = 3.82571090835658412954920192323e-4 A[14, 12] = -3.40465008687404560802977114492e-4 A[14, 13] = 1.41312443674632500278074618366e-1 A[15, 0] = -4.28896301583791923408573538692e-1 A[15, 5] = -4.69762141536116384314449447206 A[15, 6] = 7.68342119606259904184240953878 A[15, 7] = 4.06898981839711007970213554331 A[15, 8] = 3.56727187455281109270669543021e-1 A[15, 12] = -1.39902416515901462129418009734e-3 A[15, 13] = 2.9475147891527723389556272149 A[15, 14] = -9.15095847217987001081870187138 B = A[N_STAGES, :N_STAGES] E3 = np.zeros(N_STAGES + 1) E3[:-1] = B.copy() E3[0] -= 0.244094488188976377952755905512 E3[8] -= 0.733846688281611857341361741547 E3[11] -= 0.220588235294117647058823529412e-1 E5 = np.zeros(N_STAGES + 1) E5[0] = 0.1312004499419488073250102996e-1 E5[5] = -0.1225156446376204440720569753e+1 E5[6] = -0.4957589496572501915214079952 E5[7] = 0.1664377182454986536961530415e+1 E5[8] = -0.3503288487499736816886487290 E5[9] = 0.3341791187130174790297318841 E5[10] = 0.8192320648511571246570742613e-1 E5[11] = -0.2235530786388629525884427845e-1 # First 3 coefficients are computed separately. D = np.zeros((INTERPOLATOR_POWER - 3, N_STAGES_EXTENDED)) D[0, 0] = -0.84289382761090128651353491142e+1 D[0, 5] = 0.56671495351937776962531783590 D[0, 6] = -0.30689499459498916912797304727e+1 D[0, 7] = 0.23846676565120698287728149680e+1 D[0, 8] = 0.21170345824450282767155149946e+1 D[0, 9] = -0.87139158377797299206789907490 D[0, 10] = 0.22404374302607882758541771650e+1 D[0, 11] = 0.63157877876946881815570249290 D[0, 12] = -0.88990336451333310820698117400e-1 D[0, 13] = 0.18148505520854727256656404962e+2 D[0, 14] = -0.91946323924783554000451984436e+1 D[0, 15] = -0.44360363875948939664310572000e+1 D[1, 0] = 0.10427508642579134603413151009e+2 D[1, 5] = 0.24228349177525818288430175319e+3 D[1, 6] = 0.16520045171727028198505394887e+3 D[1, 7] = -0.37454675472269020279518312152e+3 D[1, 8] = -0.22113666853125306036270938578e+2 D[1, 9] = 0.77334326684722638389603898808e+1 D[1, 10] = -0.30674084731089398182061213626e+2 D[1, 11] = -0.93321305264302278729567221706e+1 D[1, 12] = 0.15697238121770843886131091075e+2 D[1, 13] = -0.31139403219565177677282850411e+2 D[1, 14] = -0.93529243588444783865713862664e+1 D[1, 15] = 0.35816841486394083752465898540e+2 D[2, 0] = 0.19985053242002433820987653617e+2 D[2, 5] = -0.38703730874935176555105901742e+3 D[2, 6] = -0.18917813819516756882830838328e+3 D[2, 7] = 0.52780815920542364900561016686e+3 D[2, 8] = -0.11573902539959630126141871134e+2 D[2, 9] = 0.68812326946963000169666922661e+1 D[2, 10] = -0.10006050966910838403183860980e+1 D[2, 11] = 0.77771377980534432092869265740 D[2, 12] = -0.27782057523535084065932004339e+1 D[2, 13] = -0.60196695231264120758267380846e+2 D[2, 14] = 0.84320405506677161018159903784e+2 D[2, 15] = 0.11992291136182789328035130030e+2 D[3, 0] = -0.25693933462703749003312586129e+2 D[3, 5] = -0.15418974869023643374053993627e+3 D[3, 6] = -0.23152937917604549567536039109e+3 D[3, 7] = 0.35763911791061412378285349910e+3 D[3, 8] = 0.93405324183624310003907691704e+2 D[3, 9] = -0.37458323136451633156875139351e+2 D[3, 10] = 0.10409964950896230045147246184e+3 D[3, 11] = 0.29840293426660503123344363579e+2 D[3, 12] = -0.43533456590011143754432175058e+2 D[3, 13] = 0.96324553959188282948394950600e+2 D[3, 14] = -0.39177261675615439165231486172e+2 D[3, 15] = -0.14972683625798562581422125276e+3
{ "repo_name": "arokem/scipy", "path": "scipy/integrate/_ivp/dop853_coefficients.py", "copies": "6", "size": "7303", "license": "bsd-3-clause", "hash": -8992214274971938000, "line_mean": 36.4512820513, "line_max": 64, "alpha_frac": 0.7503765576, "autogenerated": false, "ratio": 1.9038060479666319, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.5654182605566632, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy as np try: isclose = np.isclose except AttributeError: def isclose(*args, **kwargs): raise RuntimeError("You need numpy version 1.7 or greater to use " "isclose.") try: full = np.full except AttributeError: def full(shape, fill_value, dtype=None, order=None): """Our implementation of numpy.full because your numpy is old.""" if order is not None: raise NotImplementedError("`order` kwarg is not supported upgrade " "to Numpy 1.8 or greater for support.") return np.multiply(fill_value, np.ones(shape, dtype=dtype), dtype=dtype) # Taken from scikit-learn: # https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/fixes.py#L84 try: if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(1, .5, dtype='i8'), 2) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Divide with dtype doesn't work on Python 3 def divide(x1, x2, out=None, dtype=None): """Implementation of numpy.divide that works with dtype kwarg. Temporary compatibility fix for a bug in numpy's version. See https://github.com/numpy/numpy/issues/3484 for the relevant issue.""" x = np.divide(x1, x2, out) if dtype is not None: x = x.astype(dtype) return x
{ "repo_name": "vikhyat/dask", "path": "dask/array/numpy_compat.py", "copies": "2", "size": "1736", "license": "bsd-3-clause", "hash": -5901071135662620000, "line_mean": 37.5777777778, "line_max": 85, "alpha_frac": 0.6065668203, "autogenerated": false, "ratio": 3.883668903803132, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5490235724103132, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import numpy import random # Various pre-crafted datasets/variables for testing # !!! Must not be changed -- only appended !!! # while testing numpy we better not rely on numpy to produce random # sequences random.seed(1) # but will seed it nevertheless numpy.random.seed(1) nx, ny = 1000, 1000 # reduced squares based on indexes_rand, primarily for testing more # time-consuming functions (ufunc, linalg, etc) nxs, nys = 100, 100 # a set of interesting types to test TYPES1 = [ 'int16', 'float16', 'int32', 'float32', 'int64', 'float64', 'complex64', 'longfloat', 'complex128', 'complex256', ] def memoize(func): result = [] def wrapper(): if not result: result.append(func()) return result[0] return wrapper # values which will be used to construct our sample data matrices # replicate 10 times to speed up initial imports of this helper # and generate some redundancy @memoize def get_values(): rnd = numpy.random.RandomState(1) values = numpy.tile(rnd.uniform(0, 100, size=nx*ny//10), 10) return values @memoize def get_squares(): values = get_values() squares = {t: numpy.array(values, dtype=getattr(numpy, t)).reshape((nx, ny)) for t in TYPES1} # adjust complex ones to have non-degenerated imagery part -- use # original data transposed for that for t, v in squares.items(): if t.startswith('complex'): v += v.T*1j return squares @memoize def get_squares_(): # smaller squares squares_ = {t: s[:nxs, :nys] for t, s in get_squares().items()} return squares_ @memoize def get_vectors(): # vectors vectors = {t: s[0] for t, s in get_squares().items()} return vectors @memoize def get_indexes(): indexes = list(range(nx)) # so we do not have all items indexes.pop(5) indexes.pop(95) indexes = numpy.array(indexes) return indexes @memoize def get_indexes_rand(): rnd = random.Random(1) indexes_rand = get_indexes().tolist() # copy rnd.shuffle(indexes_rand) # in-place shuffle indexes_rand = numpy.array(indexes_rand) return indexes_rand @memoize def get_indexes_(): # smaller versions indexes = get_indexes() indexes_ = indexes[indexes < nxs] return indexes_ @memoize def get_indexes_rand_(): indexes_rand = get_indexes_rand() indexes_rand_ = indexes_rand[indexes_rand < nxs] return indexes_rand_ class Benchmark(object): goal_time = 0.25
{ "repo_name": "I--P/numpy", "path": "benchmarks/benchmarks/common.py", "copies": "6", "size": "2610", "license": "bsd-3-clause", "hash": 5925764381041466000, "line_mean": 21.6956521739, "line_max": 72, "alpha_frac": 0.6448275862, "autogenerated": false, "ratio": 3.5317997293640055, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00045766590389016015, "num_lines": 115 }
from __future__ import absolute_import, division, print_function import operator from functools import partial from uuid import uuid4 from google.protobuf.message import Message from mesos.interface import mesos_pb2 from .. import protobuf class Map(dict): def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) # self[k] = v @classmethod def cast(cls, v): if isinstance(v, Map): return v elif isinstance(v, dict): return Map(**v) elif hasattr(v, '__iter__'): return map(cls.cast, v) else: return v def __setitem__(self, k, v): # accidental __missing__ call will create a new node super(Map, self).__setitem__(k, self.cast(v)) def __setattr__(self, k, v): prop = getattr(self.__class__, k, None) if isinstance(prop, property): # property binding prop.fset(self, v) elif hasattr(v, '__call__'): # method binding self.__dict__[k] = v else: self[k] = v def __getattr__(self, k): return self[k] # def __delattr__(self, k): # del self[k] # def __missing__(self, k): # # TODO: consider not using this, silents errors # self[k] = Map() # return self[k] def __hash__(self): return hash(tuple(self.items())) class RegisterProxies(type): def __init__(cls, name, bases, nmspc): super(RegisterProxies, cls).__init__(name, bases, nmspc) if not hasattr(cls, 'registry'): cls.registry = [] cls.registry.insert(0, (cls.proto, cls)) # cls.registry -= set(bases) # Remove base classes # Metamethods, called on class objects: def __iter__(cls): return iter(cls.registry) class MessageProxy(Map): __metaclass__ = RegisterProxies proto = Message class Environment(MessageProxy): proto = mesos_pb2.Environment class Scalar(MessageProxy): proto = mesos_pb2.Value.Scalar class Resource(MessageProxy): proto = mesos_pb2.Resource # TODO: RangeResource e.g. ports class ScalarResource(Resource): # supports comparison and basic arithmetics with scalars proto = mesos_pb2.Resource(type=mesos_pb2.Value.SCALAR) def __init__(self, value=None, **kwargs): super(Resource, self).__init__(**kwargs) if value is not None: self.scalar = Scalar(value=value) def __cmp__(self, other): first, second = float(self), float(other) if first < second: return -1 elif first > second: return 1 else: return 0 def __repr__(self): return "<{}: {}>".format(self.__class__.__name__, self.scalar.value) def __float__(self): return float(self.scalar.value) @classmethod def _op(cls, op, first, second): value = op(float(first), float(second)) return cls(value=value) def __add__(self, other): return self._op(operator.add, self, other) def __radd__(self, other): return self._op(operator.add, other, self) def __sub__(self, other): return self._op(operator.sub, self, other) def __rsub__(self, other): return self._op(operator.sub, other, self) def __mul__(self, other): return self._op(operator.mul, self, other) def __rmul__(self, other): return self._op(operator.mul, other, self) def __truediv__(self, other): return self._op(operator.truediv, self, other) def __rtruediv__(self, other): return self._op(operator.truediv, other, self) def __iadd__(self, other): self.scalar.value = float(self._op(operator.add, self, other)) return self def __isub__(self, other): self.scalar.value = float(self._op(operator.sub, self, other)) return self class Cpus(ScalarResource): proto = mesos_pb2.Resource(name='cpus', type=mesos_pb2.Value.SCALAR) class Mem(ScalarResource): proto = mesos_pb2.Resource(name='mem', type=mesos_pb2.Value.SCALAR) class Disk(ScalarResource): proto = mesos_pb2.Resource(name='disk', type=mesos_pb2.Value.SCALAR) class ResourcesMixin(object): @classmethod def _cast_zero(cls, other=0): if other == 0: return cls(resources=[Cpus(0), Mem(0), Disk(0)]) else: return other @property def cpus(self): for res in self.resources: if isinstance(res, Cpus): return res return Cpus(0.0) @property def mem(self): for res in self.resources: if isinstance(res, Mem): return res return Mem(0.0) @property def disk(self): for res in self.resources: if isinstance(res, Disk): return res return Disk(0.0) # @property # def ports(self): # for res in self.resources: # if isinstance(res, Ports): # return [(rng.begin, rng.end) for rng in res.ranges.range] def __repr__(self): return '<{}: {}>'.format(self.__class__.__name__, ', '.join(map(str, self.resources))) def __cmp__(self, other): other = self._cast_zero(other) if all([self.cpus < other.cpus, self.mem < other.mem, self.disk < other.disk]): # all resources are smaller the task will fit into offer return -1 elif any([self.cpus > other.cpus, self.mem > other.mem, self.disk > other.disk]): # any resources is bigger task won't fit into offer return 1 else: return 0 def __radd__(self, other): # to support sum() other = self._cast_zero(other) return self + other def __add__(self, other): other = self._cast_zero(other) # ports = list(set(self.ports) | set(other.ports)) cpus = self.cpus + other.cpus mem = self.mem + other.mem disk = self.disk + other.disk mixin = self.__class__() mixin.resources = [cpus, disk, mem] return mixin def __sub__(self, other): other = self._cast_zero(other) # ports = list(set(self.ports) | set(other.ports)) cpus = self.cpus - other.cpus mem = self.mem - other.mem disk = self.disk - other.disk mixin = self.__class__() mixin.resources = [cpus, disk, mem] return mixin def __iadd__(self, other): other = self._cast_zero(other) added = self + other self.resources = added.resources return self def __isub__(self, other): other = self._cast_zero(other) subbed = self - other self.resources = subbed.resources return self class FrameworkID(MessageProxy): proto = mesos_pb2.FrameworkID class SlaveID(MessageProxy): proto = mesos_pb2.SlaveID class ExecutorID(MessageProxy): proto = mesos_pb2.ExecutorID class OfferID(MessageProxy): proto = mesos_pb2.OfferID class TaskID(MessageProxy): proto = mesos_pb2.TaskID class FrameworkInfo(MessageProxy): proto = mesos_pb2.FrameworkInfo class ExecutorInfo(MessageProxy): proto = mesos_pb2.ExecutorInfo def __init__(self, id=None, **kwargs): super(ExecutorInfo, self).__init__(**kwargs) self.id = id or str(uuid4()) @property def id(self): # more consistent naming return self['executor_id'] @id.setter def id(self, value): if not isinstance(value, ExecutorID): value = ExecutorID(value=value) self['executor_id'] = value class MasterInfo(MessageProxy): proto = mesos_pb2.MasterInfo class SlaveInfo(MessageProxy): proto = mesos_pb2.SlaveInfo class Filters(MessageProxy): proto = mesos_pb2.Filters class TaskStatus(MessageProxy): proto = mesos_pb2.TaskStatus @property def task_id(self): # more consistent naming return self['task_id'] @task_id.setter def task_id(self, value): if not isinstance(value, TaskID): value = TaskID(value=value) self['task_id'] = value def is_staging(self): return self.state == 'TASK_STAGING' def is_starting(self): return self.state == 'TASK_STARTING' def is_running(self): return self.state == 'TASK_RUNNING' def has_finished(self): return self.state == 'TASK_FINISHED' def has_succeeded(self): return self.state == 'TASK_FINISHED' def has_killed(self): return self.state == 'TASK_KILLED' def has_failed(self): return self.state in ['TASK_FAILED', 'TASK_LOST', 'TASK_KILLED', 'TASK_ERROR'] def has_terminated(self): return self.has_succeeded() or self.has_failed() class Offer(ResourcesMixin, MessageProxy): # important order! proto = mesos_pb2.Offer class TaskInfo(ResourcesMixin, MessageProxy): proto = mesos_pb2.TaskInfo def __init__(self, id=None, **kwargs): super(TaskInfo, self).__init__(**kwargs) self.id = id or str(uuid4()) self.status = TaskStatus(task_id=self.id, state='TASK_STAGING') @property def id(self): # more consistent naming return self['task_id'] @id.setter def id(self, value): if not isinstance(value, TaskID): value = TaskID(value=value) self['task_id'] = value class CommandInfo(MessageProxy): proto = mesos_pb2.CommandInfo class ContainerInfo(MessageProxy): proto = mesos_pb2.ContainerInfo class DockerInfo(MessageProxy): proto = mesos_pb2.ContainerInfo.DockerInfo class Request(MessageProxy): proto = mesos_pb2.Request class Operation(MessageProxy): proto = mesos_pb2.Offer.Operation decode = partial(protobuf.decode, containers=MessageProxy.registry) encode = partial(protobuf.encode, containers=MessageProxy.registry, strict=False)
{ "repo_name": "lensacom/satyr", "path": "mentor/proxies/messages.py", "copies": "1", "size": "10084", "license": "apache-2.0", "hash": -8778908055611380000, "line_mean": 24.4646464646, "line_max": 76, "alpha_frac": 0.5874652916, "autogenerated": false, "ratio": 3.719660641829583, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4807125933429583, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import operator from functools import wraps from itertools import chain, count from collections import Iterator from toolz import merge, unique, curry from .optimize import cull, fuse from .utils import concrete, funcname from . import base from .compatibility import apply from . import threaded __all__ = ['compute', 'do', 'value', 'Value'] def flat_unique(ls): """Flatten ``ls``, filter by unique id, and return a list""" return list(unique(chain.from_iterable(ls), key=id)) def unzip(ls, nout): """Unzip a list of lists into ``nout`` outputs.""" out = list(zip(*ls)) if not out: out = [()] * nout return out def to_task_dasks(expr): """Normalize a python object and extract all sub-dasks. - Replace ``Values`` with their keys - Convert literals to things the schedulers can handle - Extract dasks from all enclosed values Parameters ---------- expr : object The object to be normalized. This function knows how to handle ``Value``s, as well as most builtin python types. Returns ------- task : normalized task to be run dasks : list of dasks that form the dag for this task Examples -------- >>> a = value(1, 'a') >>> b = value(2, 'b') >>> task, dasks = to_task_dasks([a, b, 3]) >>> task # doctest: +SKIP (list, ['a', 'b', 3]) >>> dasks # doctest: +SKIP [{'a': 1}, {'b': 2}] >>> task, dasks = to_task_dasks({a: 1, b: 2}) >>> task # doctest: +SKIP (dict, (list, [(list, ['a', 1]), (list, ['b', 2])])) >>> dasks # doctest: +SKIP [{'a': 1}, {'b': 2}] """ if isinstance(expr, Value): return expr.key, expr._dasks if isinstance(expr, base.Base): name = tokenize(expr, pure=True) keys = expr._keys() dsk = expr._optimize(expr.dask, keys) dsk[name] = (expr._finalize, expr, (concrete, keys)) return name, [dsk] if isinstance(expr, tuple) and type(expr) != tuple: return expr, [] if isinstance(expr, (Iterator, list, tuple, set)): args, dasks = unzip(map(to_task_dasks, expr), 2) args = list(args) dasks = flat_unique(dasks) # Ensure output type matches input type if isinstance(expr, (list, tuple, set)): return (type(expr), args), dasks else: return args, dasks if isinstance(expr, dict): args, dasks = to_task_dasks(list([k, v] for k, v in expr.items())) return (dict, args), dasks return expr, [] tokens = ('_{0}'.format(i) for i in count(1)) def tokenize(*args, **kwargs): """Mapping function from task -> consistent name. Parameters ---------- args : object Python objects that summarize the task. pure : boolean, optional If True, a consistent hash function is tried on the input. If this fails, then a unique identifier is used. If False (default), then a unique identifier is always used. """ if kwargs.pop('pure', False): return base.tokenize(*args) return next(tokens) def applyfunc(func, args, kwargs, pure=False): """Create a Value by applying a function to args. Given a function and arguments, return a Value that represents the result of that computation.""" args, dasks = unzip(map(to_task_dasks, args), 2) if kwargs: dask_kwargs, dasks2 = to_task_dasks(kwargs) dasks = dasks + (dasks2,) task = (apply, func, (list, list(args)), dask_kwargs) else: task = (func,) + args name = funcname(func) + '-' + tokenize(*task, pure=pure) dasks = flat_unique(dasks) dasks.append({name: task}) return Value(name, dasks) @curry def do(func, pure=False): """Wraps a function so that it outputs a ``Value``. Examples -------- Can be used as a decorator: >>> @do ... def add(a, b): ... return a + b >>> res = add(1, 2) >>> type(res) == Value True >>> res.compute() 3 For other cases, it may be cleaner to call ``do`` on a function at call time: >>> res2 = do(sum)([res, 2, 3]) >>> res2.compute() 8 ``do`` also accepts an optional keyword ``pure``. If False (default), then subsequent calls will always produce a different ``Value``. This is useful for non-pure functions (such as ``time`` or ``random``). >>> from random import random >>> out1 = do(random)() >>> out2 = do(random)() >>> out1.key == out2.key False If you know a function is pure (output only depends on the input, with no global state), then you can set ``pure=True``. This will attempt to apply a consistent name to the output, but will fallback on the same behavior of ``pure=False`` if this fails. >>> @do(pure=True) ... def add(a, b): ... return a + b >>> out1 = add(1, 2) >>> out2 = add(1, 2) >>> out1.key == out2.key True """ @wraps(func) def _dfunc(*args, **kwargs): return applyfunc(func, args, kwargs, pure=pure) return _dfunc def compute(*args, **kwargs): """Evaluate more than one ``Value`` at once. Note that the only difference between this function and ``dask.base.compute`` is that this implicitly wraps python objects in ``Value``, allowing for collections of dask objects to be computed. Examples -------- >>> a = value(1) >>> b = a + 2 >>> c = a + 3 >>> compute(b, c) # Compute both simultaneously (3, 4) >>> compute(a, [b, c]) # Works for lists of Values (1, [3, 4]) """ args = [value(a) for a in args] return base.compute(*args, **kwargs) def right(method): """Wrapper to create 'right' version of operator given left version""" def _inner(self, other): return method(other, self) return _inner class Value(base.Base): """Represents a value to be computed by dask. Equivalent to the output from a single key in a dask graph. """ __slots__ = ('_key', '_dasks') _optimize = staticmethod(lambda dsk, keys: dsk) _finalize = staticmethod(lambda a, r: r[0]) _default_get = staticmethod(threaded.get) def __init__(self, name, dasks): object.__setattr__(self, '_key', name) object.__setattr__(self, '_dasks', dasks) @property def dask(self): return merge(*self._dasks) @property def key(self): return self._key def _keys(self): return [self.key] def __repr__(self): return "Value({0})".format(repr(self.key)) def __hash__(self): return hash(self.key) def __dir__(self): return dir(type(self)) def __getattr__(self, attr): if not attr.startswith('_'): return do(getattr, pure=True)(self, attr) else: raise AttributeError("Attribute {0} not found".format(attr)) def __setattr__(self, attr, val): raise TypeError("Value objects are immutable") def __setitem__(self, index, val): raise TypeError("Value objects are immutable") def __iter__(self): raise TypeError("Value objects are not iterable") def __call__(self, *args, **kwargs): return do(apply, kwargs.pop('pure', False))(self, args, kwargs) def __bool__(self): raise TypeError("Truth of Value objects is not supported") __nonzero__ = __bool__ __abs__ = do(operator.abs, True) __add__ = do(operator.add, True) __and__ = do(operator.and_, True) __div__ = do(operator.floordiv, True) __eq__ = do(operator.eq, True) __floordiv__ = do(operator.floordiv, True) __ge__ = do(operator.ge, True) __getitem__ = do(operator.getitem, True) __gt__ = do(operator.gt, True) __index__ = do(operator.index, True) __invert__ = do(operator.invert, True) __le__ = do(operator.le, True) __lshift__ = do(operator.lshift, True) __lt__ = do(operator.lt, True) __mod__ = do(operator.mod, True) __mul__ = do(operator.mul, True) __ne__ = do(operator.ne, True) __neg__ = do(operator.neg, True) __or__ = do(operator.or_, True) __pos__ = do(operator.pos, True) __pow__ = do(operator.pow, True) __radd__ = do(right(operator.add), True) __rand__ = do(right(operator.and_), True) __rdiv__ = do(right(operator.floordiv), True) __rfloordiv__ = do(right(operator.floordiv), True) __rlshift__ = do(right(operator.lshift), True) __rmod__ = do(right(operator.mod), True) __rmul__ = do(right(operator.mul), True) __ror__ = do(right(operator.or_), True) __rpow__ = do(right(operator.pow), True) __rrshift__ = do(right(operator.rshift), True) __rshift__ = do(operator.rshift, True) __rsub__ = do(right(operator.sub), True) __rtruediv__ = do(right(operator.truediv), True) __rxor__ = do(right(operator.xor), True) __sub__ = do(operator.sub, True) __truediv__ = do(operator.truediv, True) __xor__ = do(operator.xor, True) base.normalize_token.register(Value, lambda a: a.key) def value(val, name=None): """Create a ``Value`` from a python object. Parameters ---------- val : object Object to be wrapped. name : string, optional Name to be used in the resulting dask. Examples -------- >>> a = value([1, 2, 3]) >>> a.compute() [1, 2, 3] Values can act as a proxy to the underlying object. Many operators are supported: >>> (a + [1, 2]).compute() [1, 2, 3, 1, 2] >>> a[1].compute() 2 Method and attribute access also works: >>> a.count(2).compute() 1 Note that if a method doesn't exist, no error will be thrown until runtime: >>> res = a.not_a_real_method() >>> res.compute() # doctest: +SKIP AttributeError("'list' object has no attribute 'not_a_real_method'") Methods are assumed to be impure by default, meaning that subsequent calls may return different results. To assume purity, set `pure=True`. This allows sharing of any intermediate values. >>> a.count(2, pure=True).key == a.count(2, pure=True).key True """ if isinstance(val, Value): return val task, dasks = to_task_dasks(val) name = name or (type(val).__name__ + '-' + tokenize(task, pure=True)) dasks.append({name: task}) return Value(name, dasks)
{ "repo_name": "pombredanne/dask", "path": "dask/imperative.py", "copies": "1", "size": "10406", "license": "bsd-3-clause", "hash": -4469779611477858000, "line_mean": 27.9860724234, "line_max": 79, "alpha_frac": 0.5859119739, "autogenerated": false, "ratio": 3.50016818028927, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45860801541892704, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import operator from operator import add, getitem import inspect from numbers import Number from collections import Iterable, MutableMapping from bisect import bisect from itertools import product, count from collections import Iterator from functools import partial, wraps from toolz.curried import (pipe, partition, concat, unique, pluck, join, first, memoize, map, groupby, valmap, accumulate, merge, curry, reduce, interleave, sliding_window, partial) import numpy as np from threading import Lock from . import chunk from .slicing import slice_array from . import numpy_compat from ..utils import deepmap, ignoring, repr_long_list, concrete, is_integer from ..compatibility import unicode from .. import threaded, core from ..context import _globals names = ('x_%d' % i for i in count(1)) tokens = ('-%d' % i for i in count(1)) def getarray(a, b, lock=None): """ Mimics getitem but includes call to np.asarray >>> getarray([1, 2, 3, 4, 5], slice(1, 4)) array([2, 3, 4]) """ if lock: lock.acquire() try: c = a[b] if type(c) != np.ndarray: c = np.asarray(c) finally: if lock: lock.release() return c from .optimization import optimize def slices_from_chunks(chunks): """ Translate chunks tuple to a set of slices in product order >>> slices_from_chunks(((2, 2), (3, 3, 3))) # doctest: +NORMALIZE_WHITESPACE [(slice(0, 2, None), slice(0, 3, None)), (slice(0, 2, None), slice(3, 6, None)), (slice(0, 2, None), slice(6, 9, None)), (slice(2, 4, None), slice(0, 3, None)), (slice(2, 4, None), slice(3, 6, None)), (slice(2, 4, None), slice(6, 9, None))] """ cumdims = [list(accumulate(add, (0,) + bds[:-1])) for bds in chunks] shapes = product(*chunks) starts = product(*cumdims) return [tuple(slice(s, s+dim) for s, dim in zip(start, shape)) for start, shape in zip(starts, shapes)] def getem(arr, chunks, shape=None): """ Dask getting various chunks from an array-like >>> getem('X', chunks=(2, 3), shape=(4, 6)) # doctest: +SKIP {('X', 0, 0): (getarray, 'X', (slice(0, 2), slice(0, 3))), ('X', 1, 0): (getarray, 'X', (slice(2, 4), slice(0, 3))), ('X', 1, 1): (getarray, 'X', (slice(2, 4), slice(3, 6))), ('X', 0, 1): (getarray, 'X', (slice(0, 2), slice(3, 6)))} >>> getem('X', chunks=((2, 2), (3, 3))) # doctest: +SKIP {('X', 0, 0): (getarray, 'X', (slice(0, 2), slice(0, 3))), ('X', 1, 0): (getarray, 'X', (slice(2, 4), slice(0, 3))), ('X', 1, 1): (getarray, 'X', (slice(2, 4), slice(3, 6))), ('X', 0, 1): (getarray, 'X', (slice(0, 2), slice(3, 6)))} """ chunks = normalize_chunks(chunks, shape) keys = list(product([arr], *[range(len(bds)) for bds in chunks])) values = [(getarray, arr, x) for x in slices_from_chunks(chunks)] return dict(zip(keys, values)) def dotmany(A, B, leftfunc=None, rightfunc=None, **kwargs): """ Dot product of many aligned chunks >>> x = np.array([[1, 2], [1, 2]]) >>> y = np.array([[10, 20], [10, 20]]) >>> dotmany([x, x, x], [y, y, y]) array([[ 90, 180], [ 90, 180]]) Optionally pass in functions to apply to the left and right chunks >>> dotmany([x, x, x], [y, y, y], rightfunc=np.transpose) array([[150, 150], [150, 150]]) """ if leftfunc: A = map(leftfunc, A) if rightfunc: B = map(rightfunc, B) return sum(map(partial(np.dot, **kwargs), A, B)) def lol_tuples(head, ind, values, dummies): """ List of list of tuple keys Parameters ---------- head : tuple The known tuple so far ind : Iterable An iterable of indices not yet covered values : dict Known values for non-dummy indices dummies : dict Ranges of values for dummy indices Examples -------- >>> lol_tuples(('x',), 'ij', {'i': 1, 'j': 0}, {}) ('x', 1, 0) >>> lol_tuples(('x',), 'ij', {'i': 1}, {'j': range(3)}) [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> lol_tuples(('x',), 'ij', {'i': 1}, {'j': range(3)}) [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> lol_tuples(('x',), 'ijk', {'i': 1}, {'j': [0, 1, 2], 'k': [0, 1]}) # doctest: +NORMALIZE_WHITESPACE [[('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 1, 0), ('x', 1, 1, 1)], [('x', 1, 2, 0), ('x', 1, 2, 1)]] """ if not ind: return head if ind[0] not in dummies: return lol_tuples(head + (values[ind[0]],), ind[1:], values, dummies) else: return [lol_tuples(head + (v,), ind[1:], values, dummies) for v in dummies[ind[0]]] def zero_broadcast_dimensions(lol, nblocks): """ >>> lol = [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> nblocks = (4, 1, 2) # note singleton dimension in second place >>> lol = [[('x', 1, 0, 0), ('x', 1, 0, 1)], ... [('x', 1, 1, 0), ('x', 1, 1, 1)], ... [('x', 1, 2, 0), ('x', 1, 2, 1)]] >>> zero_broadcast_dimensions(lol, nblocks) # doctest: +NORMALIZE_WHITESPACE [[('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 0, 0), ('x', 1, 0, 1)]] See Also -------- lol_tuples """ f = lambda t: (t[0],) + tuple(0 if d == 1 else i for i, d in zip(t[1:], nblocks)) return deepmap(f, lol) def broadcast_dimensions(argpairs, numblocks, sentinels=(1, (1,))): """ Find block dimensions from arguments Parameters ---------- argpairs: iterable name, ijk index pairs numblocks: dict maps {name: number of blocks} sentinels: iterable (optional) values for singleton dimensions Examples -------- >>> argpairs = [('x', 'ij'), ('y', 'ji')] >>> numblocks = {'x': (2, 3), 'y': (3, 2)} >>> broadcast_dimensions(argpairs, numblocks) {'i': 2, 'j': 3} Supports numpy broadcasting rules >>> argpairs = [('x', 'ij'), ('y', 'ij')] >>> numblocks = {'x': (2, 1), 'y': (1, 3)} >>> broadcast_dimensions(argpairs, numblocks) {'i': 2, 'j': 3} Works in other contexts too >>> argpairs = [('x', 'ij'), ('y', 'ij')] >>> d = {'x': ('Hello', 1), 'y': (1, (2, 3))} >>> broadcast_dimensions(argpairs, d) {'i': 'Hello', 'j': (2, 3)} """ # List like [('i', 2), ('j', 1), ('i', 1), ('j', 2)] L = concat([zip(inds, dims) for (x, inds), (x, dims) in join(first, argpairs, first, numblocks.items())]) g = groupby(0, L) g = dict((k, set([d for i, d in v])) for k, v in g.items()) g2 = dict((k, v - set(sentinels) if len(v) > 1 else v) for k, v in g.items()) if g2 and not set(map(len, g2.values())) == set([1]): raise ValueError("Shapes do not align %s" % g) return valmap(first, g2) def top(func, output, out_indices, *arrind_pairs, **kwargs): """ Tensor operation Applies a function, ``func``, across blocks from many different input dasks. We arrange the pattern with which those blocks interact with sets of matching indices. E.g. top(func, 'z', 'i', 'x', 'i', 'y', 'i') yield an embarassingly parallel communication pattern and is read as z_i = func(x_i, y_i) More complex patterns may emerge, including multiple indices top(func, 'z', 'ij', 'x', 'ij', 'y', 'ji') $$ z_{ij} = func(x_{ij}, y_{ji}) $$ Indices missing in the output but present in the inputs results in many inputs being sent to one function (see examples). Examples -------- Simple embarassing map operation >>> inc = lambda x: x + 1 >>> top(inc, 'z', 'ij', 'x', 'ij', numblocks={'x': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (inc, ('x', 0, 0)), ('z', 0, 1): (inc, ('x', 0, 1)), ('z', 1, 0): (inc, ('x', 1, 0)), ('z', 1, 1): (inc, ('x', 1, 1))} Simple operation on two datasets >>> add = lambda x, y: x + y >>> top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)), ('z', 1, 0): (add, ('x', 1, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))} Operation that flips one of the datasets >>> addT = lambda x, y: x + y.T # Transpose each chunk >>> # z_ij ~ x_ij y_ji >>> # .. .. .. notice swap >>> top(addT, 'z', 'ij', 'x', 'ij', 'y', 'ji', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 1, 0)), ('z', 1, 0): (add, ('x', 1, 0), ('y', 0, 1)), ('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))} Dot product with contraction over ``j`` index. Yields list arguments >>> top(dotmany, 'z', 'ik', 'x', 'ij', 'y', 'jk', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 0, 1): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 1), ('y', 1, 1)]), ('z', 1, 0): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 1, 1): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 1), ('y', 1, 1)])} Supports Broadcasting rules >>> top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (1, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)), ('z', 1, 0): (add, ('x', 0, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 0, 1), ('y', 1, 1))} """ numblocks = kwargs['numblocks'] argpairs = list(partition(2, arrind_pairs)) assert set(numblocks) == set(pluck(0, argpairs)) all_indices = pipe(argpairs, pluck(1), concat, set) dummy_indices = all_indices - set(out_indices) # Dictionary mapping {i: 3, j: 4, ...} for i, j, ... the dimensions dims = broadcast_dimensions(argpairs, numblocks) # (0, 0), (0, 1), (0, 2), (1, 0), ... keytups = list(product(*[range(dims[i]) for i in out_indices])) # {i: 0, j: 0}, {i: 0, j: 1}, ... keydicts = [dict(zip(out_indices, tup)) for tup in keytups] # {j: [1, 2, 3], ...} For j a dummy index of dimension 3 dummies = dict((i, list(range(dims[i]))) for i in dummy_indices) # Create argument lists valtups = [] for kd in keydicts: args = [] for arg, ind in argpairs: tups = lol_tuples((arg,), ind, kd, dummies) tups2 = zero_broadcast_dimensions(tups, numblocks[arg]) args.append(tups2) valtups.append(tuple(args)) # Add heads to tuples keys = [(output,) + kt for kt in keytups] vals = [(func,) + vt for vt in valtups] return dict(zip(keys, vals)) def _concatenate2(arrays, axes=[]): """ Recursively Concatenate nested lists of arrays along axes Each entry in axes corresponds to each level of the nested list. The length of axes should correspond to the level of nesting of arrays. >>> x = np.array([[1, 2], [3, 4]]) >>> _concatenate2([x, x], axes=[0]) array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> _concatenate2([x, x], axes=[1]) array([[1, 2, 1, 2], [3, 4, 3, 4]]) >>> _concatenate2([[x, x], [x, x]], axes=[0, 1]) array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) Supports Iterators >>> _concatenate2(iter([x, x]), axes=[1]) array([[1, 2, 1, 2], [3, 4, 3, 4]]) """ if isinstance(arrays, Iterator): arrays = list(arrays) if len(axes) > 1: arrays = [_concatenate2(a, axes=axes[1:]) for a in arrays] return np.concatenate(arrays, axis=axes[0]) def map_blocks(func, *arrs, **kwargs): """ Map a function across all blocks of a dask array You must also specify the chunks of the resulting array. If you don't then we assume that the resulting array has the same block structure as the input. >>> import dask.array as da >>> x = da.arange(6, chunks=3) >>> x.map_blocks(lambda x: x * 2).compute() array([ 0, 2, 4, 6, 8, 10]) The ``da.map_blocks`` function can also accept multiple arrays >>> d = da.arange(5, chunks=2) >>> e = da.arange(5, chunks=2) >>> f = map_blocks(lambda a, b: a + b**2, d, e) >>> f.compute() array([ 0, 2, 6, 12, 20]) If function changes shape of the blocks then please provide chunks explicitly. >>> y = x.map_blocks(lambda x: x[::2], chunks=((2, 2),)) Your block function can learn where in the array it is if it supports a ``block_id`` keyword argument. This will receive entries like (2, 0, 1), the position of the block in the dask array. >>> def func(block, block_id=None): ... pass """ if not callable(func): raise TypeError("First argument must be callable function, not %s\n" "Usage: da.map_blocks(function, x)\n" " or: da.map_blocks(function, x, y, z)" % type(func).__name__) dtype = kwargs.get('dtype') assert all(isinstance(arr, Array) for arr in arrs) inds = [tuple(range(x.ndim))[::-1] for x in arrs] args = list(concat(zip(arrs, inds))) out_ind = tuple(range(max(x.ndim for x in arrs)))[::-1] result = atop(func, out_ind, *args, dtype=dtype) # If func has block_id as an argument then swap out func # for func with block_id partialed in try: spec = inspect.getargspec(func) except: spec = None if spec and 'block_id' in spec.args: for k in core.flatten(result._keys()): result.dask[k] = (partial(func, block_id=k[1:]),) + result.dask[k][1:] # Assert user specified chunks chunks = kwargs.get('chunks') if chunks is not None and chunks and not isinstance(chunks[0], tuple): chunks = tuple([nb * (bs,) for nb, bs in zip(result.numblocks, chunks)]) if chunks is not None: result.chunks = chunks return result @wraps(np.squeeze) def squeeze(a, axis=None): if axis is None: axis = tuple(i for i, d in enumerate(a.shape) if d == 1) b = a.map_blocks(partial(np.squeeze, axis=axis), dtype=a.dtype) chunks = tuple(bd for bd in b.chunks if bd != (1,)) old_keys = list(product([b.name], *[range(len(bd)) for bd in b.chunks])) new_keys = list(product([b.name], *[range(len(bd)) for bd in chunks])) dsk = b.dask.copy() for o, n in zip(old_keys, new_keys): dsk[n] = dsk[o] del dsk[o] return Array(dsk, b.name, chunks, dtype=a.dtype) def topk(k, x): """ The top k elements of an array Returns the k greatest elements of the array in sorted order. Only works on arrays of a single dimension. >>> x = np.array([5, 1, 3, 6]) >>> d = from_array(x, chunks=2) >>> d.topk(2).compute() array([6, 5]) Runs in near linear time, returns all results in a single chunk so all k elements must fit in memory. """ if x.ndim != 1: raise ValueError("Topk only works on arrays of one dimension") name = next(names) dsk = dict(((name, i), (chunk.topk, k, key)) for i, key in enumerate(x._keys())) name2 = next(names) dsk[(name2, 0)] = (getitem, (np.sort, (np.concatenate, (list, list(dsk)))), slice(-1, -k - 1, -1)) chunks = ((k,),) return Array(merge(dsk, x.dask), name2, chunks, dtype=x.dtype) def compute(*args, **kwargs): """ Evaluate several dask arrays at once The result of this function is always a tuple of numpy arrays. To evaluate a single dask array into a numpy array, use ``myarray.compute()`` or simply ``np.array(myarray)``. Examples -------- >>> import dask.array as da >>> d = da.ones((4, 4), chunks=(2, 2)) >>> a = d + 1 # two different dask arrays >>> b = d + 2 >>> A, B = da.compute(a, b) # Compute both simultaneously """ dsk = merge(*[arg.dask for arg in args]) keys = [arg._keys() for arg in args] results = get(dsk, keys, **kwargs) results2 = tuple(concatenate3(x) if arg.shape else unpack_singleton(x) for x, arg in zip(results, args)) return results2 def store(sources, targets, **kwargs): """ Store dask arrays in array-like objects, overwrite data in target This stores dask arrays into object that supports numpy-style setitem indexing. It stores values chunk by chunk so that it does not have to fill up memory. For best performance you can align the block size of the storage target with the block size of your array. If your data fits in memory then you may prefer calling ``np.array(myarray)`` instead. Parameters ---------- sources: Array or iterable of Arrays targets: array-like or iterable of array-likes These should support setitem syntax ``target[10:20] = ...`` Examples -------- >>> x = ... # doctest: +SKIP >>> import h5py # doctest: +SKIP >>> f = h5py.File('myfile.hdf5') # doctest: +SKIP >>> dset = f.create_dataset('/data', shape=x.shape, ... chunks=x.chunks, ... dtype='f8') # doctest: +SKIP >>> store(x, dset) # doctest: +SKIP Alternatively store many arrays at the same time >>> store([x, y, z], [dset1, dset2, dset3]) # doctest: +SKIP """ if isinstance(sources, Array): sources = [sources] targets = [targets] if any(not isinstance(s, Array) for s in sources): raise ValueError("All sources must be dask array objects") if len(sources) != len(targets): raise ValueError("Different number of sources [%d] and targets [%d]" % (len(sources), len(targets))) updates = [insert_to_ooc(tgt, src) for tgt, src in zip(targets, sources)] dsk = merge([src.dask for src in sources] + updates) keys = [key for u in updates for key in u] get(dsk, keys, **kwargs) def blockdims_from_blockshape(shape, chunks): """ >>> blockdims_from_blockshape((10, 10), (4, 3)) ((4, 4, 2), (3, 3, 3, 1)) """ if chunks is None: raise TypeError("Must supply chunks= keyword argument") if shape is None: raise TypeError("Must supply shape= keyword argument") if not all(map(is_integer, chunks)): raise ValueError("chunks can only contain integers.") if not all(map(is_integer, shape)): raise ValueError("shape can only contain integers.") shape = map(int, shape) chunks = map(int, chunks) return tuple((bd,) * (d // bd) + ((d % bd,) if d % bd else ()) for d, bd in zip(shape, chunks)) class Array(object): """ Parallel Array Parameters ---------- dask : dict Task dependency graph name : string Name of array in dask shape : tuple of ints Shape of the entire array chunks: iterable of tuples block sizes along each dimension """ __slots__ = 'dask', 'name', 'chunks', '_dtype' def __init__(self, dask, name, chunks, dtype=None, shape=None): self.dask = dask self.name = name self.chunks = normalize_chunks(chunks, shape) if dtype is not None: dtype = np.dtype(dtype) self._dtype = dtype @property def _args(self): return (self.dask, self.name, self.chunks, self.dtype) @property def numblocks(self): return tuple(map(len, self.chunks)) @property def shape(self): return tuple(map(sum, self.chunks)) def __len__(self): return sum(self.chunks[0]) def _visualize(self, optimize_graph=False): from dask.dot import dot_graph if optimize_graph: dot_graph(optimize(self.dask, self._keys())) else: dot_graph(self.dask) @property @memoize(key=lambda args, kwargs: (id(args[0]), args[0].name, args[0].chunks)) def dtype(self): if self._dtype is not None: return self._dtype if self.shape: return self[(0,) * self.ndim].compute().dtype else: return self.compute().dtype def __repr__(self): chunks = '(' + ', '.join(map(repr_long_list, self.chunks)) + ')' return ("dask.array<%s, shape=%s, chunks=%s, dtype=%s>" % (self.name, self.shape, chunks, self._dtype)) @property def ndim(self): return len(self.shape) @property def size(self): """ Number of elements in array """ return np.prod(self.shape) @property def nbytes(self): """ Number of bytes in array """ return self.size * self.dtype.itemsize def _keys(self, *args): if self.ndim == 0: return [(self.name,)] ind = len(args) if ind + 1 == self.ndim: return [(self.name,) + args + (i,) for i in range(self.numblocks[ind])] else: return [self._keys(*(args + (i,))) for i in range(self.numblocks[ind])] def __array__(self, dtype=None, **kwargs): x = self.compute() if dtype and x.dtype != dtype: x = x.astype(dtype) if not isinstance(x, np.ndarray): x = np.array(x) return x @wraps(store) def store(self, target, **kwargs): return store([self], [target], **kwargs) def to_hdf5(self, filename, datapath, **kwargs): """ Store array in HDF5 file >>> x.to_hdf5('myfile.hdf5', '/x') # doctest: +SKIP Optionally provide arguments as though to ``h5py.File.create_dataset`` >>> x.to_hdf5('myfile.hdf5', '/x', compression='lzf', shuffle=True) # doctest: +SKIP See also -------- da.store h5py.File.create_dataset """ import h5py with h5py.File(filename) as f: if 'chunks' not in kwargs: kwargs['chunks'] = tuple([c[0] for c in self.chunks]) d = f.require_dataset(datapath, shape=self.shape, dtype=self.dtype, **kwargs) slices = slices_from_chunks(self.chunks) name = next(names) dsk = dict(((name,) + t[1:], (write_hdf5_chunk, filename, datapath, slc, t)) for t, slc in zip(core.flatten(self._keys()), slices)) myget = kwargs.get('get', get) myget(merge(dsk, self.dask), list(dsk.keys())) @wraps(compute) def compute(self, **kwargs): result, = compute(self, **kwargs) return result def cache(self, store=None, **kwargs): """ Evaluate and cache array Parameters ---------- store: MutableMapping or ndarray-like Place to put computed and cached chunks kwargs: Keyword arguments to pass on to ``get`` function for scheduling This triggers evaluation and store the result in either 1. An ndarray object supporting setitem (see da.store) 2. A MutableMapping like a dict or chest It then returns a new dask array that points to this store. This returns a semantically equivalent dask array. >>> import dask.array as da >>> x = da.arange(5, chunks=2) >>> y = 2*x + 1 >>> z = y.cache() # triggers computation >>> y.compute() # Does entire computation array([1, 3, 5, 7, 9]) >>> z.compute() # Just pulls from store array([1, 3, 5, 7, 9]) You might base a cache off of an array like a numpy array or h5py.Dataset. >>> cache = np.empty(5, dtype=x.dtype) >>> z = y.cache(store=cache) >>> cache array([1, 3, 5, 7, 9]) Or one might use a MutableMapping like a dict or chest >>> cache = dict() >>> z = y.cache(store=cache) >>> cache # doctest: +SKIP {('x', 0): array([1, 3]), ('x', 1): array([5, 7]), ('x', 2): array([9])} """ if store is not None and hasattr(store, 'shape'): self.store(store) return from_array(store, chunks=self.chunks) if store is None: try: from chest import Chest store = Chest() except ImportError: if self.nbytes <= 1e9: store = dict() else: raise ValueError("No out-of-core storage found." "Either:\n" "1. Install ``chest``, an out-of-core dictionary\n" "2. Provide an on-disk array like an h5py.Dataset") # pragma: no cover if isinstance(store, MutableMapping): name = next(names) dsk = dict(((name, k[1:]), (operator.setitem, store, (tuple, list(k)), k)) for k in core.flatten(self._keys())) get(merge(dsk, self.dask), list(dsk.keys()), **kwargs) dsk2 = dict((k, (operator.getitem, store, (tuple, list(k)))) for k in store) return Array(dsk2, self.name, chunks=self.chunks, dtype=self._dtype) def __int__(self): return int(self.compute()) def __bool__(self): return bool(self.compute()) __nonzero__ = __bool__ # python 2 def __float__(self): return float(self.compute()) def __complex__(self): return complex(self.compute()) def __getitem__(self, index): # Field access, e.g. x['a'] or x[['a', 'b']] if (isinstance(index, (str, unicode)) or ( isinstance(index, list) and all(isinstance(i, (str, unicode)) for i in index))): if self._dtype is not None and isinstance(index, (str, unicode)): dt = self._dtype[index] elif self._dtype is not None and isinstance(index, list): dt = np.dtype([(name, self._dtype[name]) for name in index]) else: dt = None return elemwise(getarray, self, index, dtype=dt) # Slicing out = next(names) if not isinstance(index, tuple): index = (index,) if all(isinstance(i, slice) and i == slice(None) for i in index): return self dsk, chunks = slice_array(out, self.name, self.chunks, index) return Array(merge(self.dask, dsk), out, chunks, dtype=self._dtype) @wraps(np.dot) def dot(self, other): return tensordot(self, other, axes=((self.ndim-1,), (other.ndim-2,))) @property def T(self): return transpose(self) @wraps(np.transpose) def transpose(self, axes=None): return transpose(self, axes) @wraps(topk) def topk(self, k): return topk(k, self) def astype(self, dtype, **kwargs): """ Copy of the array, cast to a specified type """ return elemwise(lambda x: x.astype(dtype, **kwargs), self, dtype=dtype) def __abs__(self): return elemwise(operator.abs, self) def __add__(self, other): return elemwise(operator.add, self, other) def __radd__(self, other): return elemwise(operator.add, other, self) def __and__(self, other): return elemwise(operator.and_, self, other) def __rand__(self, other): return elemwise(operator.and_, other, self) def __div__(self, other): return elemwise(operator.div, self, other) def __rdiv__(self, other): return elemwise(operator.div, other, self) def __eq__(self, other): return elemwise(operator.eq, self, other) def __gt__(self, other): return elemwise(operator.gt, self, other) def __ge__(self, other): return elemwise(operator.ge, self, other) def __invert__(self): return elemwise(operator.invert, self) def __lshift__(self, other): return elemwise(operator.lshift, self, other) def __rlshift__(self, other): return elemwise(operator.lshift, other, self) def __lt__(self, other): return elemwise(operator.lt, self, other) def __le__(self, other): return elemwise(operator.le, self, other) def __mod__(self, other): return elemwise(operator.mod, self, other) def __rmod__(self, other): return elemwise(operator.mod, other, self) def __mul__(self, other): return elemwise(operator.mul, self, other) def __rmul__(self, other): return elemwise(operator.mul, other, self) def __ne__(self, other): return elemwise(operator.ne, self, other) def __neg__(self): return elemwise(operator.neg, self) def __or__(self, other): return elemwise(operator.or_, self, other) def __pos__(self): return self def __ror__(self, other): return elemwise(operator.or_, other, self) def __pow__(self, other): return elemwise(operator.pow, self, other) def __rpow__(self, other): return elemwise(operator.pow, other, self) def __rshift__(self, other): return elemwise(operator.rshift, self, other) def __rrshift__(self, other): return elemwise(operator.rshift, other, self) def __sub__(self, other): return elemwise(operator.sub, self, other) def __rsub__(self, other): return elemwise(operator.sub, other, self) def __truediv__(self, other): return elemwise(operator.truediv, self, other) def __rtruediv__(self, other): return elemwise(operator.truediv, other, self) def __floordiv__(self, other): return elemwise(operator.floordiv, self, other) def __rfloordiv__(self, other): return elemwise(operator.floordiv, other, self) def __xor__(self, other): return elemwise(operator.xor, self, other) def __rxor__(self, other): return elemwise(operator.xor, other, self) @wraps(np.any) def any(self, axis=None, keepdims=False): from .reductions import any return any(self, axis=axis, keepdims=keepdims) @wraps(np.all) def all(self, axis=None, keepdims=False): from .reductions import all return all(self, axis=axis, keepdims=keepdims) @wraps(np.min) def min(self, axis=None, keepdims=False): from .reductions import min return min(self, axis=axis, keepdims=keepdims) @wraps(np.max) def max(self, axis=None, keepdims=False): from .reductions import max return max(self, axis=axis, keepdims=keepdims) @wraps(np.argmin) def argmin(self, axis=None): from .reductions import argmin return argmin(self, axis=axis) @wraps(np.argmax) def argmax(self, axis=None): from .reductions import argmax return argmax(self, axis=axis) @wraps(np.sum) def sum(self, axis=None, dtype=None, keepdims=False): from .reductions import sum return sum(self, axis=axis, dtype=dtype, keepdims=keepdims) @wraps(np.prod) def prod(self, axis=None, dtype=None, keepdims=False): from .reductions import prod return prod(self, axis=axis, dtype=dtype, keepdims=keepdims) @wraps(np.mean) def mean(self, axis=None, dtype=None, keepdims=False): from .reductions import mean return mean(self, axis=axis, dtype=dtype, keepdims=keepdims) @wraps(np.std) def std(self, axis=None, dtype=None, keepdims=False, ddof=0): from .reductions import std return std(self, axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof) @wraps(np.var) def var(self, axis=None, dtype=None, keepdims=False, ddof=0): from .reductions import var return var(self, axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof) def moment(self, order, axis=None, dtype=None, keepdims=False, ddof=0): """Calculate the nth centralized moment. Parameters ---------- order : int Order of the moment that is returned, must be >= 2. axis : int, optional Axis along which the central moment is computed. The default is to compute the moment of the flattened array. dtype : data-type, optional Type to use in computing the moment. For arrays of integer type the default is float64; for arrays of float types it is the same as the array type. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array. ddof : int, optional "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is zero. Returns ------- moment : ndarray References ---------- .. [1] Pebay, Philippe (2008), "Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments" (PDF), Technical Report SAND2008-6212, Sandia National Laboratories """ from .reductions import moment return moment(self, order, axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof) def vnorm(self, ord=None, axis=None, keepdims=False): """ Vector norm """ from .reductions import vnorm return vnorm(self, ord=ord, axis=axis, keepdims=keepdims) @wraps(map_blocks) def map_blocks(self, func, chunks=None, dtype=None): return map_blocks(func, self, chunks=chunks, dtype=dtype) def map_overlap(self, func, depth, boundary=None, trim=True, **kwargs): """ Map a function over blocks of the array with some overlap We share neighboring zones between blocks of the array, then map a function, then trim away the neighboring strips. Parameters ---------- func: function The function to apply to each extended block depth: int, tuple, or dict The number of cells that each block should share with its neighbors If a tuple or dict this can be different per axis boundary: str how to handle the boundaries. Values include 'reflect', 'periodic' or any constant value like 0 or np.nan trim: bool Whether or not to trim the excess after the map function. Set this to false if your mapping function does this for you. **kwargs: Other keyword arguments valid in ``map_blocks`` Examples -------- >>> x = np.array([1, 1, 2, 3, 3, 3, 2, 1, 1]) >>> x = from_array(x, chunks=5) >>> def derivative(x): ... return x - np.roll(x, 1) >>> y = x.map_overlap(derivative, depth=1, boundary=0) >>> y.compute() array([ 1, 0, 1, 1, 0, 0, -1, -1, 0]) """ from .ghost import map_overlap return map_overlap(self, func, depth, boundary, trim, **kwargs) @wraps(squeeze) def squeeze(self): return squeeze(self) def rechunk(self, chunks): from .rechunk import rechunk return rechunk(self, chunks) def normalize_chunks(chunks, shape=None): """ Normalize chunks to tuple of tuples >>> normalize_chunks((2, 2), shape=(5, 6)) ((2, 2, 1), (2, 2, 2)) >>> normalize_chunks(((2, 2, 1), (2, 2, 2)), shape=(4, 6)) # Idempotent ((2, 2, 1), (2, 2, 2)) >>> normalize_chunks([[2, 2], [3, 3]]) # Cleans up lists to tuples ((2, 2), (3, 3)) >>> normalize_chunks(10, shape=(30, 5)) # Supports integer inputs ((10, 10, 10), (5,)) >>> normalize_chunks((), shape=(0, 0)) # respects null dimensions ((), ()) """ if isinstance(chunks, list): chunks = tuple(chunks) if isinstance(chunks, Number): chunks = (chunks,) * len(shape) if not chunks: if shape is None: chunks = () else: chunks = ((),) * len(shape) if shape is not None: chunks = tuple(c if c is not None else s for c, s in zip(chunks, shape)) if chunks and shape is not None: chunks = sum((blockdims_from_blockshape((s,), (c,)) if not isinstance(c, (tuple, list)) else (c,) for s, c in zip(shape, chunks)), ()) return tuple(map(tuple, chunks)) def from_array(x, chunks, name=None, lock=False, **kwargs): """ Create dask array from something that looks like an array Input must have a ``.shape`` and support numpy-style slicing. The ``chunks`` argument must be one of the following forms: - a blocksize like 1000 - a blockshape like (1000, 1000) - explicit sizes of all blocks along all dimensions like ((1000, 1000, 500), (400, 400)). Examples -------- >>> x = h5py.File('...')['/data/path'] # doctest: +SKIP >>> a = da.from_array(x, chunks=(1000, 1000)) # doctest: +SKIP If your underlying datastore does not support concurrent reads then include the ``lock=True`` keyword argument or ``lock=mylock`` if you want multiple arrays to coordinate around the same lock. >>> a = da.from_array(x, chunks=(1000, 1000), lock=True) # doctest: +SKIP """ chunks = normalize_chunks(chunks, x.shape) name = name or next(names) dsk = getem(name, chunks) if lock is True: lock = Lock() if lock: dsk = dict((k, v + (lock,)) for k, v in dsk.items()) return Array(merge({name: x}, dsk), name, chunks, dtype=x.dtype) def atop(func, out_ind, *args, **kwargs): """ Tensor operation: Generalized inner and outer products A broad class of blocked algorithms and patterns can be specified with a concise multi-index notation. The ``atop`` function applies an in-memory function across multiple blocks of multiple inputs in a variety of ways. Parameters ---------- func: callable Function to apply to individual tuples of blocks out_ind: iterable Block pattern of the output, something like 'ijk' or (1, 2, 3) *args: sequence of Array, index pairs Sequence like (x, 'ij', y, 'jk', z, 'i') This is best explained through example. Consider the following examples: Examples -------- 2D embarassingly parallel operation from two arrays, x, and y. >>> z = atop(operator.add, 'ij', x, 'ij', y, 'ij') # z = x + y # doctest: +SKIP Outer product multiplying x by y, two 1-d vectors >>> z = atop(operator.mul, 'ij', x, 'i', y, 'j') # doctest: +SKIP z = x.T >>> z = atop(np.transpose, 'ji', x, 'ij') # doctest: +SKIP The transpose case above is illustrative because it does same transposition both on each in-memory block by calling ``np.transpose`` and on the order of the blocks themselves, by switching the order of the index ``ij -> ji``. We can compose these same patterns with more variables and more complex in-memory functions z = X + Y.T >>> z = atop(lambda x, y: x + y.T, 'ij', x, 'ij', y, 'ji') # doctest: +SKIP Any index, like ``i`` missing from the output index is interpreted as a contraction (note that this differs from Einstein convention; repeated indices do not imply contraction.) In the case of a contraction the passed function should expect an iterator of blocks on any array that holds that index. Inner product multiplying x by y, two 1-d vectors >>> def sequence_dot(x_blocks, y_blocks): ... result = 0 ... for x, y in zip(x_blocks, y_blocks): ... result += x.dot(y) ... return result >>> z = atop(sequence_dot, '', x, 'i', y, 'i') # doctest: +SKIP Many dask.array operations are special cases of atop. These tensor operations cover a broad subset of NumPy and this function has been battle tested, supporting tricky concepts like broadcasting. See also: top - dict formulation of this function, contains most logic """ out = kwargs.pop('name', None) or next(names) dtype = kwargs.get('dtype', None) arginds = list(partition(2, args)) # [x, ij, y, jk] -> [(x, ij), (y, jk)] numblocks = dict([(a.name, a.numblocks) for a, ind in arginds]) argindsstr = list(concat([(a.name, ind) for a, ind in arginds])) dsk = top(func, out, out_ind, *argindsstr, numblocks=numblocks) # Dictionary mapping {i: 3, j: 4, ...} for i, j, ... the dimensions shapes = dict((a.name, a.shape) for a, _ in arginds) nameinds = [(a.name, i) for a, i in arginds] dims = broadcast_dimensions(nameinds, shapes) shape = tuple(dims[i] for i in out_ind) blockdim_dict = dict((a.name, a.chunks) for a, _ in arginds) chunkss = broadcast_dimensions(nameinds, blockdim_dict) chunks = tuple(chunkss[i] for i in out_ind) dsks = [a.dask for a, _ in arginds] return Array(merge(dsk, *dsks), out, chunks, dtype=dtype) def get(dsk, keys, get=None, **kwargs): """ Specialized get function 1. Handle inlining 2. Use custom score function """ get = get or _globals['get'] or threaded.get dsk2 = optimize(dsk, keys, **kwargs) return get(dsk2, keys, **kwargs) def unpack_singleton(x): """ >>> unpack_singleton([[[[1]]]]) 1 >>> unpack_singleton(np.array(np.datetime64('2000-01-01'))) array(datetime.date(2000, 1, 1), dtype='datetime64[D]') """ while True: try: x = x[0] except (IndexError, TypeError, KeyError): break return x stacked_names = ('stack-%d' % i for i in count(1)) def stack(seq, axis=0): """ Stack arrays along a new axis Given a sequence of dask Arrays form a new dask Array by stacking them along a new dimension (axis=0 by default) Examples -------- Create slices >>> import dask.array as da >>> import numpy as np >>> data = [from_array(np.ones((4, 4)), chunks=(2, 2)) ... for i in range(3)] >>> x = da.stack(data, axis=0) >>> x.shape (3, 4, 4) >>> da.stack(data, axis=1).shape (4, 3, 4) >>> da.stack(data, axis=-1).shape (4, 4, 3) Result is a new dask Array See Also -------- concatenate """ n = len(seq) ndim = len(seq[0].shape) if axis < 0: axis = ndim + axis + 1 if axis > ndim: raise ValueError("Axis must not be greater than number of dimensions" "\nData has %d dimensions, but got axis=%d" % (ndim, axis)) assert len(set(a.chunks for a in seq)) == 1 # same chunks shape = seq[0].shape[:axis] + (len(seq),) + seq[0].shape[axis:] chunks = ( seq[0].chunks[:axis] + ((1,) * n,) + seq[0].chunks[axis:]) name = next(stacked_names) keys = list(product([name], *[range(len(bd)) for bd in chunks])) names = [a.name for a in seq] inputs = [(names[key[axis+1]],) + key[1:axis + 1] + key[axis + 2:] for key in keys] values = [(getarray, inp, (slice(None, None, None),) * axis + (None,) + (slice(None, None, None),) * (ndim - axis)) for inp in inputs] dsk = dict(zip(keys, values)) dsk2 = merge(dsk, *[a.dask for a in seq]) if all(a._dtype is not None for a in seq): dt = reduce(np.promote_types, [a._dtype for a in seq]) else: dt = None return Array(dsk2, name, chunks, dtype=dt) concatenate_names = ('concatenate-%d' % i for i in count(1)) def concatenate(seq, axis=0): """ Concatenate arrays along an existing axis Given a sequence of dask Arrays form a new dask Array by stacking them along an existing dimension (axis=0 by default) Examples -------- Create slices >>> import dask.array as da >>> import numpy as np >>> data = [from_array(np.ones((4, 4)), chunks=(2, 2)) ... for i in range(3)] >>> x = da.concatenate(data, axis=0) >>> x.shape (12, 4) >>> da.concatenate(data, axis=1).shape (4, 12) Result is a new dask Array See Also -------- stack """ n = len(seq) ndim = len(seq[0].shape) if axis < 0: axis = ndim + axis if axis >= ndim: raise ValueError("Axis must be less than than number of dimensions" "\nData has %d dimensions, but got axis=%d" % (ndim, axis)) bds = [a.chunks for a in seq] if not all(len(set(bds[i][j] for i in range(n))) == 1 for j in range(len(bds[0])) if j != axis): raise ValueError("Block shapes do not align") shape = (seq[0].shape[:axis] + (sum(a.shape[axis] for a in seq),) + seq[0].shape[axis + 1:]) chunks = ( seq[0].chunks[:axis] + (sum([bd[axis] for bd in bds], ()),) + seq[0].chunks[axis + 1:]) name = next(concatenate_names) keys = list(product([name], *[range(len(bd)) for bd in chunks])) cum_dims = [0] + list(accumulate(add, [len(a.chunks[axis]) for a in seq])) names = [a.name for a in seq] values = [(names[bisect(cum_dims, key[axis + 1]) - 1],) + key[1:axis + 1] + (key[axis + 1] - cum_dims[bisect(cum_dims, key[axis+1]) - 1],) + key[axis + 2:] for key in keys] dsk = dict(zip(keys, values)) dsk2 = merge(dsk, *[a.dask for a in seq]) if all(a._dtype is not None for a in seq): dt = reduce(np.promote_types, [a._dtype for a in seq]) else: dt = None return Array(dsk2, name, chunks, dtype=dt) @wraps(np.take) def take(a, indices, axis=0): if not -a.ndim <= axis < a.ndim: raise ValueError('axis=(%s) out of bounds' % axis) if axis < 0: axis += a.ndim if isinstance(a, np.ndarray) and isinstance(indices, Array): return _take_dask_array_from_numpy(a, indices, axis) else: return a[(slice(None),) * axis + (indices,)] def _take_dask_array_from_numpy(a, indices, axis): assert isinstance(a, np.ndarray) assert isinstance(indices, Array) return indices.map_blocks(lambda block: np.take(a, block, axis), chunks=indices.chunks, dtype=a.dtype) @wraps(np.transpose) def transpose(a, axes=None): axes = axes or tuple(range(a.ndim))[::-1] return atop(partial(np.transpose, axes=axes), axes, a, tuple(range(a.ndim)), dtype=a._dtype) @curry def many(a, b, binop=None, reduction=None, **kwargs): """ Apply binary operator to pairwise to sequences, then reduce. >>> many([1, 2, 3], [10, 20, 30], mul, sum) # dot product 140 """ return reduction(map(partial(binop, **kwargs), a, b)) alphabet = 'abcdefghijklmnopqrstuvwxyz' ALPHABET = alphabet.upper() @wraps(np.tensordot) def tensordot(lhs, rhs, axes=2): if isinstance(axes, Iterable): left_axes, right_axes = axes else: left_axes = tuple(range(lhs.ndim - 1, lhs.ndim - axes - 1, -1)) right_axes = tuple(range(0, axes)) if isinstance(left_axes, int): left_axes = (left_axes,) if isinstance(right_axes, int): right_axes = (right_axes,) if isinstance(left_axes, list): left_axes = tuple(left_axes) if isinstance(right_axes, list): right_axes = tuple(right_axes) if len(left_axes) > 1: raise NotImplementedError("Simultaneous Contractions of multiple " "indices not yet supported") left_index = list(alphabet[:lhs.ndim]) right_index = list(ALPHABET[:rhs.ndim]) out_index = left_index + right_index for l, r in zip(left_axes, right_axes): out_index.remove(right_index[r]) out_index.remove(left_index[l]) right_index[r] = left_index[l] if lhs._dtype is not None and rhs._dtype is not None : dt = np.promote_types(lhs._dtype, rhs._dtype) else: dt = None func = many(binop=np.tensordot, reduction=sum, axes=(left_axes, right_axes)) return atop(func, out_index, lhs, tuple(left_index), rhs, tuple(right_index), dtype=dt) def insert_to_ooc(out, arr): lock = Lock() def store(x, index): with lock: out[index] = np.asanyarray(x) return None slices = slices_from_chunks(arr.chunks) name = 'store-%s' % arr.name dsk = dict(((name,) + t[1:], (store, t, slc)) for t, slc in zip(core.flatten(arr._keys()), slices)) return dsk def partial_by_order(op, other): """ >>> f = partial_by_order(add, [(1, 10)]) >>> f(5) 15 """ def f(*args): args2 = list(args) for i, arg in other: args2.insert(i, arg) return op(*args2) return f def elemwise(op, *args, **kwargs): """ Apply elementwise function across arguments Respects broadcasting rules Examples -------- >>> elemwise(add, x, y) # doctest: +SKIP >>> elemwise(sin, x) # doctest: +SKIP See also -------- atop """ name = kwargs.get('name') or next(names) out_ndim = max(len(arg.shape) if isinstance(arg, Array) else 0 for arg in args) expr_inds = tuple(range(out_ndim))[::-1] arrays = [arg for arg in args if isinstance(arg, Array)] other = [(i, a) for i, a in enumerate(args) if not isinstance(a, Array)] if any(isinstance(arg, np.ndarray) for arg in args): raise NotImplementedError("Dask.array operations only work on dask " "arrays, not numpy arrays.") if 'dtype' in kwargs: dt = kwargs['dtype'] elif not all(a._dtype is not None for a in arrays): dt = None else: vals = [np.empty((1,) * a.ndim, dtype=a.dtype) if hasattr(a, 'dtype') else a for a in args] try: dt = op(*vals).dtype except AttributeError: dt = None if other: op2 = partial_by_order(op, other) else: op2 = op return atop(op2, expr_inds, *concat((a, tuple(range(a.ndim)[::-1])) for a in arrays), dtype=dt, name=name) def wrap_elemwise(func, **kwargs): """ Wrap up numpy function into dask.array """ f = partial(elemwise, func, **kwargs) f.__doc__ = func.__doc__ f.__name__ = func.__name__ return f # ufuncs, copied from this page: # http://docs.scipy.org/doc/numpy/reference/ufuncs.html # math operations logaddexp = wrap_elemwise(np.logaddexp) logaddexp2 = wrap_elemwise(np.logaddexp2) conj = wrap_elemwise(np.conj) exp = wrap_elemwise(np.exp) log = wrap_elemwise(np.log) log2 = wrap_elemwise(np.log2) log10 = wrap_elemwise(np.log10) log1p = wrap_elemwise(np.log1p) expm1 = wrap_elemwise(np.expm1) sqrt = wrap_elemwise(np.sqrt) square = wrap_elemwise(np.square) # trigonometric functions sin = wrap_elemwise(np.sin) cos = wrap_elemwise(np.cos) tan = wrap_elemwise(np.tan) arcsin = wrap_elemwise(np.arcsin) arccos = wrap_elemwise(np.arccos) arctan = wrap_elemwise(np.arctan) arctan2 = wrap_elemwise(np.arctan2) hypot = wrap_elemwise(np.hypot) sinh = wrap_elemwise(np.sinh) cosh = wrap_elemwise(np.cosh) tanh = wrap_elemwise(np.tanh) arcsinh = wrap_elemwise(np.arcsinh) arccosh = wrap_elemwise(np.arccosh) arctanh = wrap_elemwise(np.arctanh) deg2rad = wrap_elemwise(np.deg2rad) rad2deg = wrap_elemwise(np.rad2deg) # comparison functions logical_and = wrap_elemwise(np.logical_and, dtype='bool') logical_or = wrap_elemwise(np.logical_or, dtype='bool') logical_xor = wrap_elemwise(np.logical_xor, dtype='bool') logical_not = wrap_elemwise(np.logical_not, dtype='bool') maximum = wrap_elemwise(np.maximum) minimum = wrap_elemwise(np.minimum) fmax = wrap_elemwise(np.fmax) fmin = wrap_elemwise(np.fmin) # floating functions isreal = wrap_elemwise(np.isreal, dtype='bool') iscomplex = wrap_elemwise(np.iscomplex, dtype='bool') isfinite = wrap_elemwise(np.isfinite, dtype='bool') isinf = wrap_elemwise(np.isinf, dtype='bool') isnan = wrap_elemwise(np.isnan, dtype='bool') signbit = wrap_elemwise(np.signbit, dtype='bool') copysign = wrap_elemwise(np.copysign) nextafter = wrap_elemwise(np.nextafter) # modf: see below ldexp = wrap_elemwise(np.ldexp) # frexp: see below fmod = wrap_elemwise(np.fmod) floor = wrap_elemwise(np.floor) ceil = wrap_elemwise(np.ceil) trunc = wrap_elemwise(np.trunc) # more math routines, from this page: # http://docs.scipy.org/doc/numpy/reference/routines.math.html degrees = wrap_elemwise(np.degrees) radians = wrap_elemwise(np.radians) rint = wrap_elemwise(np.rint) fix = wrap_elemwise(np.fix) angle = wrap_elemwise(np.angle) real = wrap_elemwise(np.real) imag = wrap_elemwise(np.imag) clip = wrap_elemwise(np.clip) fabs = wrap_elemwise(np.fabs) sign = wrap_elemwise(np.fabs) def frexp(x): tmp = elemwise(np.frexp, x) left = next(names) right = next(names) ldsk = dict(((left,) + key[1:], (getitem, key, 0)) for key in core.flatten(tmp._keys())) rdsk = dict(((right,) + key[1:], (getitem, key, 1)) for key in core.flatten(tmp._keys())) if x._dtype is not None: a = np.empty((1,), dtype=x._dtype) l, r = np.frexp(a) ldt = l.dtype rdt = r.dtype else: ldt = None rdt = None L = Array(merge(tmp.dask, ldsk), left, chunks=tmp.chunks, dtype=ldt) R = Array(merge(tmp.dask, rdsk), right, chunks=tmp.chunks, dtype=rdt) return L, R frexp.__doc__ = np.frexp def modf(x): tmp = elemwise(np.modf, x) left = next(names) right = next(names) ldsk = dict(((left,) + key[1:], (getitem, key, 0)) for key in core.flatten(tmp._keys())) rdsk = dict(((right,) + key[1:], (getitem, key, 1)) for key in core.flatten(tmp._keys())) if x._dtype is not None: a = np.empty((1,), dtype=x._dtype) l, r = np.modf(a) ldt = l.dtype rdt = r.dtype else: ldt = None rdt = None L = Array(merge(tmp.dask, ldsk), left, chunks=tmp.chunks, dtype=ldt) R = Array(merge(tmp.dask, rdsk), right, chunks=tmp.chunks, dtype=rdt) return L, R modf.__doc__ = np.modf @wraps(np.around) def around(x, decimals=0): return map_blocks(partial(np.around, decimals=decimals), x, dtype=x.dtype) def isnull(values): """ pandas.isnull for dask arrays """ import pandas as pd return elemwise(pd.isnull, values, dtype='bool') def notnull(values): """ pandas.notnull for dask arrays """ return ~isnull(values) @wraps(numpy_compat.isclose) def isclose(arr1, arr2, rtol=1e-5, atol=1e-8, equal_nan=False): func = partial(numpy_compat.isclose, rtol=rtol, atol=atol, equal_nan=equal_nan) return elemwise(func, arr1, arr2, dtype='bool') def variadic_choose(a, *choices): return np.choose(a, choices) @wraps(np.choose) def choose(a, choices): return elemwise(variadic_choose, a, *choices) where_error_message = """ The dask.array version of where only handles the three argument case. da.where(x > 0, x, 0) and not the single argument case da.where(x > 0) This is because dask.array operations must be able to infer the shape of their outputs prior to execution. The number of positive elements of x requires execution. See the ``np.where`` docstring for examples and the following link for a more thorough explanation: http://dask.pydata.org/en/latest/array-overview.html#construct """.strip() @wraps(np.where) def where(condition, x=None, y=None): if x is None or y is None: raise TypeError(where_error_message) return choose(condition, [y, x]) @wraps(chunk.coarsen) def coarsen(reduction, x, axes): if not all(bd % div == 0 for i, div in axes.items() for bd in x.chunks[i]): raise ValueError( "Coarsening factor does not align with block dimensions") if 'dask' in inspect.getfile(reduction): reduction = getattr(np, reduction.__name__) name = next(names) dsk = dict(((name,) + key[1:], (chunk.coarsen, reduction, key, axes)) for key in core.flatten(x._keys())) chunks = tuple(tuple(int(bd / axes.get(i, 1)) for bd in bds) for i, bds in enumerate(x.chunks)) if x._dtype is not None: dt = reduction(np.empty((1,) * x.ndim, dtype=x.dtype)).dtype else: dt = None return Array(merge(x.dask, dsk), name, chunks, dtype=dt) def split_at_breaks(array, breaks, axis=0): """ Split an array into a list of arrays (using slices) at the given breaks >>> split_at_breaks(np.arange(6), [3, 5]) [array([0, 1, 2]), array([3, 4]), array([5])] """ padded_breaks = concat([[None], breaks, [None]]) slices = [slice(i, j) for i, j in sliding_window(2, padded_breaks)] preslice = (slice(None),) * axis split_array = [array[preslice + (s,)] for s in slices] return split_array @wraps(np.insert) def insert(arr, obj, values, axis): # axis is a required argument here to avoid needing to deal with the numpy # default case (which reshapes the array to make it flat) if not -arr.ndim <= axis < arr.ndim: raise IndexError('axis %r is out of bounds for an array of dimension ' '%s' % (axis, arr.ndim)) if axis < 0: axis += arr.ndim if isinstance(obj, slice): obj = np.arange(*obj.indices(arr.shape[axis])) obj = np.asarray(obj) scalar_obj = obj.ndim == 0 if scalar_obj: obj = np.atleast_1d(obj) obj = np.where(obj < 0, obj + arr.shape[axis], obj) if (np.diff(obj) < 0).any(): raise NotImplementedError( 'da.insert only implemented for monotonic ``obj`` argument') split_arr = split_at_breaks(arr, np.unique(obj), axis) if getattr(values, 'ndim', 0) == 0: # we need to turn values into a dask array name = next(names) dtype = getattr(values, 'dtype', type(values)) values = Array({(name,): values}, name, chunks=(), dtype=dtype) values_shape = tuple(len(obj) if axis == n else s for n, s in enumerate(arr.shape)) values = broadcast_to(values, values_shape) elif scalar_obj: values = values[(slice(None),) * axis + (None,)] values_chunks = tuple(values_bd if axis == n else arr_bd for n, (arr_bd, values_bd) in enumerate(zip(arr.chunks, values.chunks))) values = values.rechunk(values_chunks) counts = np.bincount(obj)[:-1] values_breaks = np.cumsum(counts[counts > 0]) split_values = split_at_breaks(values, values_breaks, axis) interleaved = list(interleave([split_arr, split_values])) interleaved = [i for i in interleaved if i.nbytes] return concatenate(interleaved, axis=axis) @wraps(chunk.broadcast_to) def broadcast_to(x, shape): shape = tuple(shape) ndim_new = len(shape) - x.ndim if ndim_new < 0 or any(new != old for new, old in zip(shape[ndim_new:], x.shape) if old != 1): raise ValueError('cannot broadcast shape %s to shape %s' % (x.shape, shape)) name = next(names) chunks = (tuple((s,) for s in shape[:ndim_new]) + tuple(bd if old > 1 else (new,) for bd, old, new in zip(x.chunks, x.shape, shape[ndim_new:]))) dsk = dict(((name,) + (0,) * ndim_new + key[1:], (chunk.broadcast_to, key, shape[:ndim_new] + tuple(bd[i] for i, bd in zip(key[1:], chunks[ndim_new:])))) for key in core.flatten(x._keys())) return Array(merge(dsk, x.dask), name, chunks, dtype=x.dtype) def offset_func(func, offset, *args): """ Offsets inputs by offset >>> double = lambda x: x * 2 >>> f = offset_func(double, (10,)) >>> f(1) 22 >>> f(300) 620 """ def _offset(*args): args2 = list(map(add, args, offset)) return func(*args2) with ignoring(Exception): _offset.__name__ = 'offset_' + func.__name__ return _offset fromfunction_names = ('fromfunction-%d' % i for i in count(1)) @wraps(np.fromfunction) def fromfunction(func, chunks=None, shape=None, dtype=None): name = next(fromfunction_names) if chunks: chunks = normalize_chunks(chunks, shape) keys = list(product([name], *[range(len(bd)) for bd in chunks])) aggdims = [list(accumulate(add, (0,) + bd[:-1])) for bd in chunks] offsets = list(product(*aggdims)) shapes = list(product(*chunks)) values = [(np.fromfunction, offset_func(func, offset), shape) for offset, shape in zip(offsets, shapes)] dsk = dict(zip(keys, values)) return Array(dsk, name, chunks, dtype=dtype) @wraps(np.unique) def unique(x): name = next(names) dsk = dict(((name, i), (np.unique, key)) for i, key in enumerate(x._keys())) parts = get(merge(dsk, x.dask), list(dsk.keys())) return np.unique(np.concatenate(parts)) def write_hdf5_chunk(fn, datapath, index, data): import h5py with h5py.File(fn) as f: d = f[datapath] d[index] = data @wraps(np.bincount) def bincount(x, weights=None, minlength=None): if minlength is None: raise TypeError("Must specify minlength argument in da.bincount") assert x.ndim == 1 if weights is not None: assert weights.chunks == x.chunks # Call np.bincount on each block, possibly with weights name = 'bincount' + next(tokens) if weights is not None: dsk = dict(((name, i), (np.bincount, (x.name, i), (weights.name, i), minlength)) for i, _ in enumerate(x._keys())) dtype = 'f8' else: dsk = dict(((name, i), (np.bincount, (x.name, i), None, minlength)) for i, _ in enumerate(x._keys())) dtype = 'i8' # Sum up all of the intermediate bincounts per block name = 'bincount-sum' + next(tokens) dsk[(name, 0)] = (np.sum, (list, list(dsk)), 0) chunks = ((minlength,),) dsk.update(x.dask) if weights is not None: dsk.update(weights.dask) return Array(dsk, name, chunks, dtype) def chunks_from_arrays(arrays): """ Chunks tuple from nested list of arrays >>> x = np.array([1, 2]) >>> chunks_from_arrays([x, x]) ((2, 2),) >>> x = np.array([[1, 2]]) >>> chunks_from_arrays([[x], [x]]) ((1, 1), (2,)) >>> x = np.array([[1, 2]]) >>> chunks_from_arrays([[x, x]]) ((1,), (2, 2)) """ result = [] dim = 0 while isinstance(arrays, (list, tuple)): result.append(tuple(deepfirst(a).shape[dim] for a in arrays)) arrays = arrays[0] dim += 1 return tuple(result) def deepfirst(seq): """ First element in a nested list >>> deepfirst([[[1, 2], [3, 4]], [5, 6], [7, 8]]) 1 """ if not isinstance(seq, (list, tuple)): return seq else: return deepfirst(seq[0]) def ndimlist(seq): if not isinstance(seq, (list, tuple)): return 0 else: return 1 + ndimlist(seq[0]) def concatenate3(arrays): """ Recursive np.concatenate Input should be a nested list of numpy arrays arranged in the order they should appear in the array itself. Each array should have the same number of dimensions as the desired output and the nesting of the lists. >>> x = np.array([[1, 2]]) >>> concatenate3([[x, x, x], [x, x, x]]) array([[1, 2, 1, 2, 1, 2], [1, 2, 1, 2, 1, 2]]) >>> concatenate3([[x, x], [x, x], [x, x]]) array([[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2]]) """ arrays = concrete(arrays) ndim = ndimlist(arrays) if not ndim: return arrays chunks = chunks_from_arrays(arrays) shape = tuple(map(sum, chunks)) result = np.empty(shape=shape, dtype=deepfirst(arrays).dtype) for (idx, arr) in zip(slices_from_chunks(chunks), core.flatten(arrays)): while arr.ndim < ndim: arr = arr[None, ...] result[idx] = arr return result
{ "repo_name": "freeman-lab/dask", "path": "dask/array/core.py", "copies": "1", "size": "65152", "license": "bsd-3-clause", "hash": 920068847602019100, "line_mean": 30.7969741337, "line_max": 107, "alpha_frac": 0.5621623281, "autogenerated": false, "ratio": 3.399885195428691, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44620475235286905, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import operator from operator import add, getitem import inspect from numbers import Number from collections import Iterable from bisect import bisect from itertools import product, count from collections import Iterator from functools import partial, wraps from toolz.curried import (pipe, partition, concat, unique, pluck, join, first, memoize, map, groupby, valmap, accumulate, merge, curry, reduce, interleave, sliding_window) import numpy as np from threading import Lock from . import chunk from .slicing import slice_array from . import numpy_compat from ..utils import deepmap, ignoring, repr_long_list from ..compatibility import unicode from .. import threaded, core from ..context import _globals names = ('x_%d' % i for i in count(1)) def getarray(a, b, lock=None): """ Mimics getitem but includes call to np.asarray >>> getarray([1, 2, 3, 4, 5], slice(1, 4)) array([2, 3, 4]) """ if lock: lock.acquire() try: c = a[b] if type(c) != np.ndarray: c = np.asarray(c) finally: if lock: lock.release() return c from .optimization import optimize def slices_from_chunks(chunks): """ Translate chunks tuple to a set of slices in product order >>> slices_from_chunks(((2, 2), (3, 3, 3))) # doctest: +NORMALIZE_WHITESPACE [(slice(0, 2, None), slice(0, 3, None)), (slice(0, 2, None), slice(3, 6, None)), (slice(0, 2, None), slice(6, 9, None)), (slice(2, 4, None), slice(0, 3, None)), (slice(2, 4, None), slice(3, 6, None)), (slice(2, 4, None), slice(6, 9, None))] """ cumdims = [list(accumulate(add, (0,) + bds[:-1])) for bds in chunks] shapes = product(*chunks) starts = product(*cumdims) return [tuple(slice(s, s+dim) for s, dim in zip(start, shape)) for start, shape in zip(starts, shapes)] def getem(arr, chunks, shape=None): """ Dask getting various chunks from an array-like >>> getem('X', chunks=(2, 3), shape=(4, 6)) # doctest: +SKIP {('X', 0, 0): (getarray, 'X', (slice(0, 2), slice(0, 3))), ('X', 1, 0): (getarray, 'X', (slice(2, 4), slice(0, 3))), ('X', 1, 1): (getarray, 'X', (slice(2, 4), slice(3, 6))), ('X', 0, 1): (getarray, 'X', (slice(0, 2), slice(3, 6)))} >>> getem('X', chunks=((2, 2), (3, 3))) # doctest: +SKIP {('X', 0, 0): (getarray, 'X', (slice(0, 2), slice(0, 3))), ('X', 1, 0): (getarray, 'X', (slice(2, 4), slice(0, 3))), ('X', 1, 1): (getarray, 'X', (slice(2, 4), slice(3, 6))), ('X', 0, 1): (getarray, 'X', (slice(0, 2), slice(3, 6)))} """ chunks = normalize_chunks(chunks, shape) keys = list(product([arr], *[range(len(bds)) for bds in chunks])) values = [(getarray, arr, x) for x in slices_from_chunks(chunks)] return dict(zip(keys, values)) def dotmany(A, B, leftfunc=None, rightfunc=None, **kwargs): """ Dot product of many aligned chunks >>> x = np.array([[1, 2], [1, 2]]) >>> y = np.array([[10, 20], [10, 20]]) >>> dotmany([x, x, x], [y, y, y]) array([[ 90, 180], [ 90, 180]]) Optionally pass in functions to apply to the left and right chunks >>> dotmany([x, x, x], [y, y, y], rightfunc=np.transpose) array([[150, 150], [150, 150]]) """ if leftfunc: A = map(leftfunc, A) if rightfunc: B = map(rightfunc, B) return sum(map(partial(np.dot, **kwargs), A, B)) def lol_tuples(head, ind, values, dummies): """ List of list of tuple keys Parameters ---------- head : tuple The known tuple so far ind : Iterable An iterable of indices not yet covered values : dict Known values for non-dummy indices dummies : dict Ranges of values for dummy indices Examples -------- >>> lol_tuples(('x',), 'ij', {'i': 1, 'j': 0}, {}) ('x', 1, 0) >>> lol_tuples(('x',), 'ij', {'i': 1}, {'j': range(3)}) [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> lol_tuples(('x',), 'ij', {'i': 1}, {'j': range(3)}) [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> lol_tuples(('x',), 'ijk', {'i': 1}, {'j': [0, 1, 2], 'k': [0, 1]}) # doctest: +NORMALIZE_WHITESPACE [[('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 1, 0), ('x', 1, 1, 1)], [('x', 1, 2, 0), ('x', 1, 2, 1)]] """ if not ind: return head if ind[0] not in dummies: return lol_tuples(head + (values[ind[0]],), ind[1:], values, dummies) else: return [lol_tuples(head + (v,), ind[1:], values, dummies) for v in dummies[ind[0]]] def zero_broadcast_dimensions(lol, nblocks): """ >>> lol = [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> nblocks = (4, 1, 2) # note singleton dimension in second place >>> lol = [[('x', 1, 0, 0), ('x', 1, 0, 1)], ... [('x', 1, 1, 0), ('x', 1, 1, 1)], ... [('x', 1, 2, 0), ('x', 1, 2, 1)]] >>> zero_broadcast_dimensions(lol, nblocks) # doctest: +NORMALIZE_WHITESPACE [[('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 0, 0), ('x', 1, 0, 1)]] See Also -------- lol_tuples """ f = lambda t: (t[0],) + tuple(0 if d == 1 else i for i, d in zip(t[1:], nblocks)) return deepmap(f, lol) def broadcast_dimensions(argpairs, numblocks, sentinels=(1, (1,))): """ Find block dimensions from arguments Parameters ---------- argpairs: iterable name, ijk index pairs numblocks: dict maps {name: number of blocks} sentinels: iterable (optional) values for singleton dimensions Examples -------- >>> argpairs = [('x', 'ij'), ('y', 'ji')] >>> numblocks = {'x': (2, 3), 'y': (3, 2)} >>> broadcast_dimensions(argpairs, numblocks) {'i': 2, 'j': 3} Supports numpy broadcasting rules >>> argpairs = [('x', 'ij'), ('y', 'ij')] >>> numblocks = {'x': (2, 1), 'y': (1, 3)} >>> broadcast_dimensions(argpairs, numblocks) {'i': 2, 'j': 3} Works in other contexts too >>> argpairs = [('x', 'ij'), ('y', 'ij')] >>> d = {'x': ('Hello', 1), 'y': (1, (2, 3))} >>> broadcast_dimensions(argpairs, d) {'i': 'Hello', 'j': (2, 3)} """ # List like [('i', 2), ('j', 1), ('i', 1), ('j', 2)] L = concat([zip(inds, dims) for (x, inds), (x, dims) in join(first, argpairs, first, numblocks.items())]) g = groupby(0, L) g = dict((k, set([d for i, d in v])) for k, v in g.items()) g2 = dict((k, v - set(sentinels) if len(v) > 1 else v) for k, v in g.items()) if g2 and not set(map(len, g2.values())) == set([1]): raise ValueError("Shapes do not align %s" % g) return valmap(first, g2) def top(func, output, out_indices, *arrind_pairs, **kwargs): """ Tensor operation Applies a function, ``func``, across blocks from many different input dasks. We arrange the pattern with which those blocks interact with sets of matching indices. E.g. top(func, 'z', 'i', 'x', 'i', 'y', 'i') yield an embarassingly parallel communication pattern and is read as z_i = func(x_i, y_i) More complex patterns may emerge, including multiple indices top(func, 'z', 'ij', 'x', 'ij', 'y', 'ji') $$ z_{ij} = func(x_{ij}, y_{ji}) $$ Indices missing in the output but present in the inputs results in many inputs being sent to one function (see examples). Examples -------- Simple embarassing map operation >>> inc = lambda x: x + 1 >>> top(inc, 'z', 'ij', 'x', 'ij', numblocks={'x': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (inc, ('x', 0, 0)), ('z', 0, 1): (inc, ('x', 0, 1)), ('z', 1, 0): (inc, ('x', 1, 0)), ('z', 1, 1): (inc, ('x', 1, 1))} Simple operation on two datasets >>> add = lambda x, y: x + y >>> top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)), ('z', 1, 0): (add, ('x', 1, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))} Operation that flips one of the datasets >>> addT = lambda x, y: x + y.T # Transpose each chunk >>> # z_ij ~ x_ij y_ji >>> # .. .. .. notice swap >>> top(addT, 'z', 'ij', 'x', 'ij', 'y', 'ji', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 1, 0)), ('z', 1, 0): (add, ('x', 1, 0), ('y', 0, 1)), ('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))} Dot product with contraction over ``j`` index. Yields list arguments >>> top(dotmany, 'z', 'ik', 'x', 'ij', 'y', 'jk', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 0, 1): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 1), ('y', 1, 1)]), ('z', 1, 0): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 1, 1): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 1), ('y', 1, 1)])} Supports Broadcasting rules >>> top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (1, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)), ('z', 1, 0): (add, ('x', 0, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 0, 1), ('y', 1, 1))} """ numblocks = kwargs['numblocks'] argpairs = list(partition(2, arrind_pairs)) assert set(numblocks) == set(pluck(0, argpairs)) all_indices = pipe(argpairs, pluck(1), concat, set) dummy_indices = all_indices - set(out_indices) # Dictionary mapping {i: 3, j: 4, ...} for i, j, ... the dimensions dims = broadcast_dimensions(argpairs, numblocks) # (0, 0), (0, 1), (0, 2), (1, 0), ... keytups = list(product(*[range(dims[i]) for i in out_indices])) # {i: 0, j: 0}, {i: 0, j: 1}, ... keydicts = [dict(zip(out_indices, tup)) for tup in keytups] # {j: [1, 2, 3], ...} For j a dummy index of dimension 3 dummies = dict((i, list(range(dims[i]))) for i in dummy_indices) # Create argument lists valtups = [] for kd in keydicts: args = [] for arg, ind in argpairs: tups = lol_tuples((arg,), ind, kd, dummies) tups2 = zero_broadcast_dimensions(tups, numblocks[arg]) args.append(tups2) valtups.append(tuple(args)) # Add heads to tuples keys = [(output,) + kt for kt in keytups] vals = [(func,) + vt for vt in valtups] return dict(zip(keys, vals)) def _concatenate2(arrays, axes=[]): """ Recursively Concatenate nested lists of arrays along axes Each entry in axes corresponds to each level of the nested list. The length of axes should correspond to the level of nesting of arrays. >>> x = np.array([[1, 2], [3, 4]]) >>> _concatenate2([x, x], axes=[0]) array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> _concatenate2([x, x], axes=[1]) array([[1, 2, 1, 2], [3, 4, 3, 4]]) >>> _concatenate2([[x, x], [x, x]], axes=[0, 1]) array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) Supports Iterators >>> _concatenate2(iter([x, x]), axes=[1]) array([[1, 2, 1, 2], [3, 4, 3, 4]]) """ if isinstance(arrays, Iterator): arrays = list(arrays) if len(axes) > 1: arrays = [_concatenate2(a, axes=axes[1:]) for a in arrays] return np.concatenate(arrays, axis=axes[0]) def rec_concatenate(arrays, axis=0): """ Recursive np.concatenate >>> x = np.array([1, 2]) >>> rec_concatenate([[x, x], [x, x], [x, x]]) array([[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2]]) """ if not arrays: return np.array([]) if isinstance(arrays, Iterator): arrays = list(arrays) if isinstance(arrays[0], Iterator): arrays = list(map(list, arrays)) if not isinstance(arrays[0], np.ndarray) and not hasattr(arrays[0], '__array__'): arrays = [rec_concatenate(a, axis=axis + 1) for a in arrays] if arrays[0].ndim <= axis: arrays = [a[None, ...] for a in arrays] if len(arrays) == 1: return arrays[0] return np.concatenate(arrays, axis=axis) def map_blocks(x, func, chunks=None, dtype=None): """ Map a function across all blocks of a dask array You must also specify the chunks of the resulting array. If you don't then we assume that the resulting array has the same block structure as the input. >>> import dask.array as da >>> x = da.ones((8,), chunks=(4,)) >>> np.array(x.map_blocks(lambda x: x + 1)) array([ 2., 2., 2., 2., 2., 2., 2., 2.]) If function changes shape of the blocks provide a chunks >>> y = x.map_blocks(lambda x: x[::2], chunks=(2,)) Or, if the result is ragged, provide a chunks >>> y = x.map_blocks(lambda x: x[::2], chunks=((2, 2),)) Your block function can learn where in the array it is if it supports a block_id keyword argument. This will receive entries like (2, 0, 1), the position of the block in the dask array. >>> def func(block, block_id=None): ... pass """ if not chunks: chunks = x.chunks elif not isinstance(chunks[0], tuple): chunks = tuple([nb * (bs,) for nb, bs in zip(x.numblocks, chunks)]) name = next(names) try: spec = inspect.getargspec(func) except: spec = None if spec and 'block_id' in spec.args: dsk = dict(((name,) + k[1:], (partial(func, block_id=k[1:]), k)) for k in core.flatten(x._keys())) else: dsk = dict(((name,) + k[1:], (func, k)) for k in core.flatten(x._keys())) return Array(merge(dsk, x.dask), name, chunks, dtype=dtype) @wraps(np.squeeze) def squeeze(a, axis=None): if axis is None: axis = tuple(i for i, d in enumerate(a.shape) if d == 1) b = a.map_blocks(partial(np.squeeze, axis=axis), dtype=a.dtype) chunks = tuple(bd for bd in b.chunks if bd != (1,)) old_keys = list(product([b.name], *[range(len(bd)) for bd in b.chunks])) new_keys = list(product([b.name], *[range(len(bd)) for bd in chunks])) dsk = b.dask.copy() for o, n in zip(old_keys, new_keys): dsk[n] = dsk[o] del dsk[o] return Array(dsk, b.name, chunks, dtype=a.dtype) def compute(*args, **kwargs): """ Evaluate several dask arrays at once The result of this function is always a tuple of numpy arrays. To evaluate a single dask array into a numpy array, use ``myarray.compute()`` or simply ``np.array(myarray)``. Example ------- >>> import dask.array as da >>> d = da.ones((4, 4), chunks=(2, 2)) >>> a = d + 1 # two different dask arrays >>> b = d + 2 >>> A, B = da.compute(a, b) # Compute both simultaneously """ dsk = merge(*[arg.dask for arg in args]) keys = [arg._keys() for arg in args] results = get(dsk, keys, **kwargs) results2 = tuple(rec_concatenate(x) if arg.shape else unpack_singleton(x) for x, arg in zip(results, args)) return results2 def store(sources, targets, **kwargs): """ Store dask arrays in array-like objects, overwrite data in target This stores dask arrays into object that supports numpy-style setitem indexing. It stores values chunk by chunk so that it does not have to fill up memory. For best performance you can align the block size of the storage target with the block size of your array. If your data fits in memory then you may prefer calling ``np.array(myarray)`` instead. Parameters ---------- sources: Array or iterable of Arrays targets: array-like or iterable of array-likes These should support setitem syntax ``target[10:20] = ...`` Examples -------- >>> x = ... # doctest: +SKIP >>> import h5py # doctest: +SKIP >>> f = h5py.File('myfile.hdf5') # doctest: +SKIP >>> dset = f.create_dataset('/data', shape=x.shape, ... chunks=x.chunks, ... dtype='f8') # doctest: +SKIP >>> store(x, dset) # doctest: +SKIP Alternatively store many arrays at the same time >>> store([x, y, z], [dset1, dset2, dset3]) # doctest: +SKIP """ if isinstance(sources, Array): sources = [sources] targets = [targets] if any(not isinstance(s, Array) for s in sources): raise ValueError("All sources must be dask array objects") if len(sources) != len(targets): raise ValueError("Different number of sources [%d] and targets [%d]" % (len(sources), len(targets))) updates = [insert_to_ooc(tgt, src) for tgt, src in zip(targets, sources)] dsk = merge([src.dask for src in sources] + updates) keys = [key for u in updates for key in u] get(dsk, keys, **kwargs) def blockdims_from_blockshape(shape, blockshape): """ >>> blockdims_from_blockshape((10, 10), (4, 3)) ((4, 4, 2), (3, 3, 3, 1)) """ if blockshape is None: raise TypeError("Must supply chunks= keyword argument") if shape is None: raise TypeError("Must supply shape= keyword argument") return tuple((bd,) * (d // bd) + ((d % bd,) if d % bd else ()) for d, bd in zip(shape, blockshape)) class Array(object): """ Array object holding a dask Parameters ---------- dask : dict Task dependency graph name : string Name of array in dask shape : tuple of ints Shape of the entire array chunks: iterable of tuples block sizes along each dimension """ __slots__ = 'dask', 'name', 'chunks', '_dtype' def __init__(self, dask, name, chunks, dtype=None, shape=None): self.dask = dask self.name = name self.chunks = normalize_chunks(chunks, shape) if dtype is not None: dtype = np.dtype(dtype) self._dtype = dtype @property def _args(self): return (self.dask, self.name, self.chunks, self.dtype) @property def numblocks(self): return tuple(map(len, self.chunks)) @property def shape(self): return tuple(map(sum, self.chunks)) def __len__(self): return sum(self.chunks[0]) def _visualize(self, optimize_graph=False): from dask.dot import dot_graph if optimize_graph: dot_graph(optimize(self.dask, self._keys())) else: dot_graph(self.dask) @property @memoize(key=lambda args, kwargs: (id(args[0]), args[0].name, args[0].chunks)) def dtype(self): if self._dtype is not None: return self._dtype if self.shape: return self[(0,) * self.ndim].compute().dtype else: return self.compute().dtype def __repr__(self): chunks = '(' + ', '.join(map(repr_long_list, self.chunks)) + ')' return ("dask.array<%s, shape=%s, chunks=%s, dtype=%s>" % (self.name, self.shape, chunks, self._dtype)) def _get_block(self, *args): return core.get(self.dask, (self.name,) + args) @property def ndim(self): return len(self.shape) @property def size(self): """ Number of elements in array """ return np.prod(self.shape) @property def nbytes(self): """ Number of bytes in array """ return self.size * self.dtype.itemsize def _keys(self, *args): if self.ndim == 0: return [(self.name,)] ind = len(args) if ind + 1 == self.ndim: return [(self.name,) + args + (i,) for i in range(self.numblocks[ind])] else: return [self._keys(*(args + (i,))) for i in range(self.numblocks[ind])] def __array__(self, dtype=None, **kwargs): x = self.compute() if dtype and x.dtype != dtype: x = x.astype(dtype) if not isinstance(x, np.ndarray): x = np.array(x) return x @wraps(store) def store(self, target, **kwargs): return store([self], [target], **kwargs) def to_hdf5(self, filename, datapath, **kwargs): """ Store array in HDF5 file >>> x.to_hdf5('myfile.hdf5', '/x') # doctest: +SKIP Optionally provide arguments as though to ``h5py.File.create_dataset`` >>> x.to_hdf5('myfile.hdf5', '/x', compression='lzf', shuffle=True) # doctest: +SKIP See also: da.store h5py.File.create_dataset """ import h5py with h5py.File(filename) as f: if 'chunks' not in kwargs: kwargs['chunks'] = tuple([c[0] for c in self.chunks]) d = f.require_dataset(datapath, shape=self.shape, dtype=self.dtype, **kwargs) slices = slices_from_chunks(self.chunks) name = next(names) dsk = dict(((name,) + t[1:], (write_hdf5_chunk, filename, datapath, slc, t)) for t, slc in zip(core.flatten(self._keys()), slices)) myget = kwargs.get('get', get) myget(merge(dsk, self.dask), list(dsk.keys())) @wraps(compute) def compute(self, **kwargs): result, = compute(self, **kwargs) return result def __int__(self): return int(self.compute()) def __bool__(self): return bool(self.compute()) __nonzero__ = __bool__ # python 2 def __float__(self): return float(self.compute()) def __complex__(self): return complex(self.compute()) def __getitem__(self, index): # Field access, e.g. x['a'] or x[['a', 'b']] if (isinstance(index, (str, unicode)) or ( isinstance(index, list) and all(isinstance(i, (str, unicode)) for i in index))): if self._dtype is not None and isinstance(index, (str, unicode)): dt = self._dtype[index] elif self._dtype is not None and isinstance(index, list): dt = np.dtype([(name, self._dtype[name]) for name in index]) else: dt = None return elemwise(getarray, self, index, dtype=dt) # Slicing out = next(names) if not isinstance(index, tuple): index = (index,) if all(isinstance(i, slice) and i == slice(None) for i in index): return self dsk, chunks = slice_array(out, self.name, self.chunks, index) return Array(merge(self.dask, dsk), out, chunks, dtype=self._dtype) @wraps(np.dot) def dot(self, other): return tensordot(self, other, axes=((self.ndim-1,), (other.ndim-2,))) @property def T(self): return transpose(self) @wraps(np.transpose) def transpose(self, axes=None): return transpose(self, axes) def astype(self, dtype, **kwargs): """ Copy of the array, cast to a specified type """ return elemwise(partial(np.ndarray.astype, dtype=dtype, **kwargs), self, dtype=dtype) def __abs__(self): return elemwise(operator.abs, self) def __add__(self, other): return elemwise(operator.add, self, other) def __radd__(self, other): return elemwise(operator.add, other, self) def __and__(self, other): return elemwise(operator.and_, self, other) def __rand__(self, other): return elemwise(operator.and_, other, self) def __div__(self, other): return elemwise(operator.div, self, other) def __rdiv__(self, other): return elemwise(operator.div, other, self) def __eq__(self, other): return elemwise(operator.eq, self, other) def __gt__(self, other): return elemwise(operator.gt, self, other) def __ge__(self, other): return elemwise(operator.ge, self, other) def __invert__(self): return elemwise(operator.invert, self) def __lshift__(self, other): return elemwise(operator.lshift, self, other) def __rlshift__(self, other): return elemwise(operator.lshift, other, self) def __lt__(self, other): return elemwise(operator.lt, self, other) def __le__(self, other): return elemwise(operator.le, self, other) def __mod__(self, other): return elemwise(operator.mod, self, other) def __rmod__(self, other): return elemwise(operator.mod, other, self) def __mul__(self, other): return elemwise(operator.mul, self, other) def __rmul__(self, other): return elemwise(operator.mul, other, self) def __ne__(self, other): return elemwise(operator.ne, self, other) def __neg__(self): return elemwise(operator.neg, self) def __or__(self, other): return elemwise(operator.or_, self, other) def __pos__(self): return self def __ror__(self, other): return elemwise(operator.or_, other, self) def __pow__(self, other): return elemwise(operator.pow, self, other) def __rpow__(self, other): return elemwise(operator.pow, other, self) def __rshift__(self, other): return elemwise(operator.rshift, self, other) def __rrshift__(self, other): return elemwise(operator.rshift, other, self) def __sub__(self, other): return elemwise(operator.sub, self, other) def __rsub__(self, other): return elemwise(operator.sub, other, self) def __truediv__(self, other): return elemwise(operator.truediv, self, other) def __rtruediv__(self, other): return elemwise(operator.truediv, other, self) def __floordiv__(self, other): return elemwise(operator.floordiv, self, other) def __rfloordiv__(self, other): return elemwise(operator.floordiv, other, self) def __xor__(self, other): return elemwise(operator.xor, self, other) def __rxor__(self, other): return elemwise(operator.xor, other, self) def any(self, axis=None, keepdims=False): from .reductions import any return any(self, axis=axis, keepdims=keepdims) def all(self, axis=None, keepdims=False): from .reductions import all return all(self, axis=axis, keepdims=keepdims) def min(self, axis=None, keepdims=False): from .reductions import min return min(self, axis=axis, keepdims=keepdims) def max(self, axis=None, keepdims=False): from .reductions import max return max(self, axis=axis, keepdims=keepdims) def argmin(self, axis=None): from .reductions import argmin return argmin(self, axis=axis) def argmax(self, axis=None): from .reductions import argmax return argmax(self, axis=axis) def sum(self, axis=None, keepdims=False): from .reductions import sum return sum(self, axis=axis, keepdims=keepdims) def prod(self, axis=None, keepdims=False): from .reductions import prod return prod(self, axis=axis, keepdims=keepdims) def mean(self, axis=None, keepdims=False): from .reductions import mean return mean(self, axis=axis, keepdims=keepdims) def std(self, axis=None, keepdims=False, ddof=0): from .reductions import std return std(self, axis=axis, keepdims=keepdims, ddof=ddof) def var(self, axis=None, keepdims=False, ddof=0): from .reductions import var return var(self, axis=axis, keepdims=keepdims, ddof=ddof) def vnorm(self, ord=None, axis=None, keepdims=False): from .reductions import vnorm return vnorm(self, ord=ord, axis=axis, keepdims=keepdims) @wraps(map_blocks) def map_blocks(self, func, chunks=None, dtype=None): return map_blocks(self, func, chunks, dtype=dtype) def map_overlap(self, func, depth, boundary=None, trim=True, **kwargs): """ Map a function over blocks of the array with some overlap We share neighboring zones between blocks of the array, then map a function, then trim away the neighboring strips. Parameters ---------- func: function The function to apply to each extended block depth: int, tuple, or dict The number of cells that each block should share with its neighbors If a tuple or dict this can be different per axis boundary: str how to handle the boundaries. Values include 'reflect', 'periodic' or any constant value like 0 or np.nan trim: bool Whether or not to trim the excess after the map function. Set this to false if your mapping function does this for you. **kwargs: Other keyword arguments valid in ``map_blocks`` Example ------- >>> x = np.array([1, 1, 2, 3, 3, 3, 2, 1, 1]) >>> x = from_array(x, chunks=5) >>> def derivative(x): ... return x - np.roll(x, 1) >>> y = x.map_overlap(derivative, depth=1, boundary=0) >>> y.compute() array([ 1, 0, 1, 1, 0, 0, -1, -1, 0]) """ from .ghost import map_overlap return map_overlap(self, func, depth, boundary, trim, **kwargs) @wraps(squeeze) def squeeze(self): return squeeze(self) def rechunk(self, chunks): from .rechunk import rechunk return rechunk(self, chunks) def normalize_chunks(chunks, shape=None): """ Normalize chunks to tuple of tuples >>> normalize_chunks((2, 2), shape=(5, 6)) ((2, 2, 1), (2, 2, 2)) >>> normalize_chunks(((2, 2, 1), (2, 2, 2)), shape=(4, 6)) # Idempotent ((2, 2, 1), (2, 2, 2)) >>> normalize_chunks([[2, 2], [3, 3]]) # Cleans up lists to tuples ((2, 2), (3, 3)) >>> normalize_chunks(10, shape=(30, 5)) # Supports integer inputs ((10, 10, 10), (5,)) >>> normalize_chunks((), shape=(0, 0)) # respects null dimensions ((), ()) """ if isinstance(chunks, list): chunks = tuple(chunks) if isinstance(chunks, Number): chunks = (chunks,) * len(shape) if not chunks: if shape is None: chunks = () else: chunks = ((),) * len(shape) if chunks and not isinstance(chunks[0], (tuple, list)): chunks = blockdims_from_blockshape(shape, chunks) chunks = tuple(map(tuple, chunks)) return chunks def from_array(x, chunks, name=None, lock=False, **kwargs): """ Create dask array from something that looks like an array Input must have a ``.shape`` and support numpy-style slicing. The ``chunks`` argument must be one of the following forms: - a blocksize like 1000 - a blockshape like (1000, 1000) - explicit sizes of all blocks along all dimensions like ((1000, 1000, 500), (400, 400)). Example ------- >>> x = h5py.File('...')['/data/path'] # doctest: +SKIP >>> a = da.from_array(x, chunks=(1000, 1000)) # doctest: +SKIP If your underlying datastore does not support concurrent reads then include the ``lock=True`` keyword argument or ``lock=mylock`` if you want multiple arrays to coordinate around the same lock. >>> a = da.from_array(x, chunks=(1000, 1000), lock=True) # doctest: +SKIP """ chunks = normalize_chunks(chunks, x.shape) name = name or next(names) dsk = getem(name, chunks) if lock is True: lock = Lock() if lock: dsk = dict((k, v + (lock,)) for k, v in dsk.items()) return Array(merge({name: x}, dsk), name, chunks, dtype=x.dtype) def atop(func, out, out_ind, *args, **kwargs): """ Array object version of dask.array.top """ dtype = kwargs.get('dtype', None) arginds = list(partition(2, args)) # [x, ij, y, jk] -> [(x, ij), (y, jk)] numblocks = dict([(a.name, a.numblocks) for a, ind in arginds]) argindsstr = list(concat([(a.name, ind) for a, ind in arginds])) dsk = top(func, out, out_ind, *argindsstr, numblocks=numblocks) # Dictionary mapping {i: 3, j: 4, ...} for i, j, ... the dimensions shapes = dict((a.name, a.shape) for a, _ in arginds) nameinds = [(a.name, i) for a, i in arginds] dims = broadcast_dimensions(nameinds, shapes) shape = tuple(dims[i] for i in out_ind) blockdim_dict = dict((a.name, a.chunks) for a, _ in arginds) chunkss = broadcast_dimensions(nameinds, blockdim_dict) chunks = tuple(chunkss[i] for i in out_ind) dsks = [a.dask for a, _ in arginds] return Array(merge(dsk, *dsks), out, chunks, dtype=dtype) def get(dsk, keys, get=None, **kwargs): """ Specialized get function 1. Handle inlining 2. Use custom score function """ get = get or _globals['get'] or threaded.get dsk2 = optimize(dsk, keys, **kwargs) return get(dsk2, keys, **kwargs) def unpack_singleton(x): """ >>> unpack_singleton([[[[1]]]]) 1 >>> unpack_singleton(np.array(np.datetime64('2000-01-01'))) array(datetime.date(2000, 1, 1), dtype='datetime64[D]') """ while True: try: x = x[0] except (IndexError, TypeError, KeyError): break return x stacked_names = ('stack-%d' % i for i in count(1)) def stack(seq, axis=0): """ Stack arrays along a new axis Given a sequence of dask Arrays form a new dask Array by stacking them along a new dimension (axis=0 by default) Example ------- Create slices >>> import dask.array as da >>> import numpy as np >>> data = [from_array(np.ones((4, 4)), chunks=(2, 2)) ... for i in range(3)] >>> x = da.stack(data, axis=0) >>> x.shape (3, 4, 4) >>> da.stack(data, axis=1).shape (4, 3, 4) >>> da.stack(data, axis=-1).shape (4, 4, 3) Result is a new dask Array See Also: concatenate """ n = len(seq) ndim = len(seq[0].shape) if axis < 0: axis = ndim + axis + 1 if axis > ndim: raise ValueError("Axis must not be greater than number of dimensions" "\nData has %d dimensions, but got axis=%d" % (ndim, axis)) assert len(set(a.chunks for a in seq)) == 1 # same chunks shape = seq[0].shape[:axis] + (len(seq),) + seq[0].shape[axis:] chunks = ( seq[0].chunks[:axis] + ((1,) * n,) + seq[0].chunks[axis:]) name = next(stacked_names) keys = list(product([name], *[range(len(bd)) for bd in chunks])) names = [a.name for a in seq] inputs = [(names[key[axis+1]],) + key[1:axis + 1] + key[axis + 2:] for key in keys] values = [(getarray, inp, (slice(None, None, None),) * axis + (None,) + (slice(None, None, None),) * (ndim - axis)) for inp in inputs] dsk = dict(zip(keys, values)) dsk2 = merge(dsk, *[a.dask for a in seq]) if all(a._dtype is not None for a in seq): dt = reduce(np.promote_types, [a._dtype for a in seq]) else: dt = None return Array(dsk2, name, chunks, dtype=dt) concatenate_names = ('concatenate-%d' % i for i in count(1)) def concatenate(seq, axis=0): """ Concatenate arrays along an existing axis Given a sequence of dask Arrays form a new dask Array by stacking them along an existing dimension (axis=0 by default) Example ------- Create slices >>> import dask.array as da >>> import numpy as np >>> data = [from_array(np.ones((4, 4)), chunks=(2, 2)) ... for i in range(3)] >>> x = da.concatenate(data, axis=0) >>> x.shape (12, 4) >>> da.concatenate(data, axis=1).shape (4, 12) Result is a new dask Array See Also: stack """ n = len(seq) ndim = len(seq[0].shape) if axis < 0: axis = ndim + axis if axis >= ndim: raise ValueError("Axis must be less than than number of dimensions" "\nData has %d dimensions, but got axis=%d" % (ndim, axis)) bds = [a.chunks for a in seq] if not all(len(set(bds[i][j] for i in range(n))) == 1 for j in range(len(bds[0])) if j != axis): raise ValueError("Block shapes do not align") shape = (seq[0].shape[:axis] + (sum(a.shape[axis] for a in seq),) + seq[0].shape[axis + 1:]) chunks = ( seq[0].chunks[:axis] + (sum([bd[axis] for bd in bds], ()),) + seq[0].chunks[axis + 1:]) name = next(concatenate_names) keys = list(product([name], *[range(len(bd)) for bd in chunks])) cum_dims = [0] + list(accumulate(add, [len(a.chunks[axis]) for a in seq])) names = [a.name for a in seq] values = [(names[bisect(cum_dims, key[axis + 1]) - 1],) + key[1:axis + 1] + (key[axis + 1] - cum_dims[bisect(cum_dims, key[axis+1]) - 1],) + key[axis + 2:] for key in keys] dsk = dict(zip(keys, values)) dsk2 = merge(dsk, *[a.dask for a in seq]) if all(a._dtype is not None for a in seq): dt = reduce(np.promote_types, [a._dtype for a in seq]) else: dt = None return Array(dsk2, name, chunks, dtype=dt) @wraps(np.take) def take(a, indices, axis): if not -a.ndim <= axis < a.ndim: raise ValueError('axis=(%s) out of bounds' % axis) if axis < 0: axis += a.ndim return a[(slice(None),) * axis + (indices,)] @wraps(np.transpose) def transpose(a, axes=None): axes = axes or tuple(range(a.ndim))[::-1] return atop(curry(np.transpose, axes=axes), next(names), axes, a, tuple(range(a.ndim)), dtype=a._dtype) @curry def many(a, b, binop=None, reduction=None, **kwargs): """ Apply binary operator to pairwise to sequences, then reduce. >>> many([1, 2, 3], [10, 20, 30], mul, sum) # dot product 140 """ return reduction(map(curry(binop, **kwargs), a, b)) alphabet = 'abcdefghijklmnopqrstuvwxyz' ALPHABET = alphabet.upper() @wraps(np.tensordot) def tensordot(lhs, rhs, axes=2): if isinstance(axes, Iterable): left_axes, right_axes = axes else: left_axes = tuple(range(lhs.ndim - 1, lhs.ndim - axes - 1, -1)) right_axes = tuple(range(0, axes)) if isinstance(left_axes, int): left_axes = (left_axes,) if isinstance(right_axes, int): right_axes = (right_axes,) if isinstance(left_axes, list): left_axes = tuple(left_axes) if isinstance(right_axes, list): right_axes = tuple(right_axes) if len(left_axes) > 1: raise NotImplementedError("Simultaneous Contractions of multiple " "indices not yet supported") left_index = list(alphabet[:lhs.ndim]) right_index = list(ALPHABET[:rhs.ndim]) out_index = left_index + right_index for l, r in zip(left_axes, right_axes): out_index.remove(right_index[r]) out_index.remove(left_index[l]) right_index[r] = left_index[l] if lhs._dtype is not None and rhs._dtype is not None : dt = np.promote_types(lhs._dtype, rhs._dtype) else: dt = None func = many(binop=np.tensordot, reduction=sum, axes=(left_axes, right_axes)) return atop(func, next(names), out_index, lhs, tuple(left_index), rhs, tuple(right_index), dtype=dt) def insert_to_ooc(out, arr): lock = Lock() def store(x, index): with lock: out[index] = np.asanyarray(x) return None slices = slices_from_chunks(arr.chunks) name = 'store-%s' % arr.name dsk = dict(((name,) + t[1:], (store, t, slc)) for t, slc in zip(core.flatten(arr._keys()), slices)) return dsk def partial_by_order(op, other): """ >>> f = partial_by_order(add, [(1, 10)]) >>> f(5) 15 """ def f(*args): args2 = list(args) for i, arg in other: args2.insert(i, arg) return op(*args2) return f def elemwise(op, *args, **kwargs): """ Apply elementwise function across arguments Respects broadcasting rules >>> elemwise(add, x, y) # doctest: +SKIP >>> elemwise(sin, x) # doctest: +SKIP See also: atop """ name = kwargs.get('name') or next(names) out_ndim = max(len(arg.shape) if isinstance(arg, Array) else 0 for arg in args) expr_inds = tuple(range(out_ndim))[::-1] arrays = [arg for arg in args if isinstance(arg, Array)] other = [(i, arg) for i, arg in enumerate(args) if not isinstance(arg, Array)] if 'dtype' in kwargs: dt = kwargs['dtype'] elif not all(a._dtype is not None for a in arrays): dt = None else: vals = [np.empty((1,) * a.ndim, dtype=a.dtype) if hasattr(a, 'dtype') else a for a in args] try: dt = op(*vals).dtype except AttributeError: dt = None if other: op2 = partial_by_order(op, other) else: op2 = op return atop(op2, name, expr_inds, *concat((a, tuple(range(a.ndim)[::-1])) for a in arrays), dtype=dt) def wrap_elemwise(func, **kwargs): """ Wrap up numpy function into dask.array """ f = partial(elemwise, func, **kwargs) f.__doc__ = func.__doc__ f.__name__ = func.__name__ return f # ufuncs, copied from this page: # http://docs.scipy.org/doc/numpy/reference/ufuncs.html # math operations logaddexp = wrap_elemwise(np.logaddexp) logaddexp2 = wrap_elemwise(np.logaddexp2) conj = wrap_elemwise(np.conj) exp = wrap_elemwise(np.exp) log = wrap_elemwise(np.log) log2 = wrap_elemwise(np.log2) log10 = wrap_elemwise(np.log10) log1p = wrap_elemwise(np.log1p) expm1 = wrap_elemwise(np.expm1) sqrt = wrap_elemwise(np.sqrt) square = wrap_elemwise(np.square) # trigonometric functions sin = wrap_elemwise(np.sin) cos = wrap_elemwise(np.cos) tan = wrap_elemwise(np.tan) arcsin = wrap_elemwise(np.arcsin) arccos = wrap_elemwise(np.arccos) arctan = wrap_elemwise(np.arctan) arctan2 = wrap_elemwise(np.arctan2) hypot = wrap_elemwise(np.hypot) sinh = wrap_elemwise(np.sinh) cosh = wrap_elemwise(np.cosh) tanh = wrap_elemwise(np.tanh) arcsinh = wrap_elemwise(np.arcsinh) arccosh = wrap_elemwise(np.arccosh) arctanh = wrap_elemwise(np.arctanh) deg2rad = wrap_elemwise(np.deg2rad) rad2deg = wrap_elemwise(np.rad2deg) # comparison functions logical_and = wrap_elemwise(np.logical_and, dtype='bool') logical_or = wrap_elemwise(np.logical_or, dtype='bool') logical_xor = wrap_elemwise(np.logical_xor, dtype='bool') logical_not = wrap_elemwise(np.logical_not, dtype='bool') maximum = wrap_elemwise(np.maximum) minimum = wrap_elemwise(np.minimum) fmax = wrap_elemwise(np.fmax) fmin = wrap_elemwise(np.fmin) # floating functions isreal = wrap_elemwise(np.isreal, dtype='bool') iscomplex = wrap_elemwise(np.iscomplex, dtype='bool') isfinite = wrap_elemwise(np.isfinite, dtype='bool') isinf = wrap_elemwise(np.isinf, dtype='bool') isnan = wrap_elemwise(np.isnan, dtype='bool') signbit = wrap_elemwise(np.signbit, dtype='bool') copysign = wrap_elemwise(np.copysign) nextafter = wrap_elemwise(np.nextafter) # modf: see below ldexp = wrap_elemwise(np.ldexp) # frexp: see below fmod = wrap_elemwise(np.fmod) floor = wrap_elemwise(np.floor) ceil = wrap_elemwise(np.ceil) trunc = wrap_elemwise(np.trunc) # more math routines, from this page: # http://docs.scipy.org/doc/numpy/reference/routines.math.html degrees = wrap_elemwise(np.degrees) radians = wrap_elemwise(np.radians) rint = wrap_elemwise(np.rint) fix = wrap_elemwise(np.fix) angle = wrap_elemwise(np.angle) real = wrap_elemwise(np.real) imag = wrap_elemwise(np.imag) clip = wrap_elemwise(np.clip) fabs = wrap_elemwise(np.fabs) sign = wrap_elemwise(np.fabs) def frexp(x): tmp = elemwise(np.frexp, x) left = next(names) right = next(names) ldsk = dict(((left,) + key[1:], (getitem, key, 0)) for key in core.flatten(tmp._keys())) rdsk = dict(((right,) + key[1:], (getitem, key, 1)) for key in core.flatten(tmp._keys())) if x._dtype is not None: a = np.empty((1,), dtype=x._dtype) l, r = np.frexp(a) ldt = l.dtype rdt = r.dtype else: ldt = None rdt = None L = Array(merge(tmp.dask, ldsk), left, chunks=tmp.chunks, dtype=ldt) R = Array(merge(tmp.dask, rdsk), right, chunks=tmp.chunks, dtype=rdt) return L, R frexp.__doc__ = np.frexp def modf(x): tmp = elemwise(np.modf, x) left = next(names) right = next(names) ldsk = dict(((left,) + key[1:], (getitem, key, 0)) for key in core.flatten(tmp._keys())) rdsk = dict(((right,) + key[1:], (getitem, key, 1)) for key in core.flatten(tmp._keys())) if x._dtype is not None: a = np.empty((1,), dtype=x._dtype) l, r = np.modf(a) ldt = l.dtype rdt = r.dtype else: ldt = None rdt = None L = Array(merge(tmp.dask, ldsk), left, chunks=tmp.chunks, dtype=ldt) R = Array(merge(tmp.dask, rdsk), right, chunks=tmp.chunks, dtype=rdt) return L, R modf.__doc__ = np.modf @wraps(np.around) def around(x, decimals=0): return map_blocks(x, partial(np.around, decimals=decimals), dtype=x.dtype) def isnull(values): """ pandas.isnull for dask arrays """ import pandas as pd return elemwise(pd.isnull, values, dtype='bool') def notnull(values): """ pandas.notnull for dask arrays """ return ~isnull(values) @wraps(numpy_compat.isclose) def isclose(arr1, arr2, rtol=1e-5, atol=1e-8, equal_nan=False): func = partial(numpy_compat.isclose, rtol=rtol, atol=atol, equal_nan=equal_nan) return elemwise(func, arr1, arr2, dtype='bool') def variadic_choose(a, *choices): return np.choose(a, choices) @wraps(np.choose) def choose(a, choices): return elemwise(variadic_choose, a, *choices) @wraps(np.where) def where(condition, x, y): return choose(condition, [y, x]) @wraps(chunk.coarsen) def coarsen(reduction, x, axes): if not all(bd % div == 0 for i, div in axes.items() for bd in x.chunks[i]): raise ValueError( "Coarsening factor does not align with block dimensions") if 'dask' in inspect.getfile(reduction): reduction = getattr(np, reduction.__name__) name = next(names) dsk = dict(((name,) + key[1:], (chunk.coarsen, reduction, key, axes)) for key in core.flatten(x._keys())) chunks = tuple(tuple(int(bd / axes.get(i, 1)) for bd in bds) for i, bds in enumerate(x.chunks)) if x._dtype is not None: dt = reduction(np.empty((1,) * x.ndim, dtype=x.dtype)).dtype else: dt = None return Array(merge(x.dask, dsk), name, chunks, dtype=dt) def split_at_breaks(array, breaks, axis=0): """ Split an array into a list of arrays (using slices) at the given breaks >>> split_at_breaks(np.arange(6), [3, 5]) [array([0, 1, 2]), array([3, 4]), array([5])] """ padded_breaks = concat([[None], breaks, [None]]) slices = [slice(i, j) for i, j in sliding_window(2, padded_breaks)] preslice = (slice(None),) * axis split_array = [array[preslice + (s,)] for s in slices] return split_array @wraps(np.insert) def insert(arr, obj, values, axis): # axis is a required argument here to avoid needing to deal with the numpy # default case (which reshapes the array to make it flat) if not -arr.ndim <= axis < arr.ndim: raise IndexError('axis %r is out of bounds for an array of dimension ' '%s' % (axis, arr.ndim)) if axis < 0: axis += arr.ndim if isinstance(obj, slice): obj = np.arange(*obj.indices(arr.shape[axis])) obj = np.asarray(obj) scalar_obj = obj.ndim == 0 if scalar_obj: obj = np.atleast_1d(obj) obj = np.where(obj < 0, obj + arr.shape[axis], obj) if (np.diff(obj) < 0).any(): raise NotImplementedError( 'da.insert only implemented for monotonic ``obj`` argument') split_arr = split_at_breaks(arr, np.unique(obj), axis) if getattr(values, 'ndim', 0) == 0: # we need to turn values into a dask array name = next(names) dtype = getattr(values, 'dtype', type(values)) values = Array({(name,): values}, name, chunks=(), dtype=dtype) values_shape = tuple(len(obj) if axis == n else s for n, s in enumerate(arr.shape)) values = broadcast_to(values, values_shape) elif scalar_obj: values = values[(slice(None),) * axis + (None,)] values_chunks = tuple(values_bd if axis == n else arr_bd for n, (arr_bd, values_bd) in enumerate(zip(arr.chunks, values.chunks))) values = values.rechunk(values_chunks) counts = np.bincount(obj)[:-1] values_breaks = np.cumsum(counts[counts > 0]) split_values = split_at_breaks(values, values_breaks, axis) interleaved = list(interleave([split_arr, split_values])) interleaved = [i for i in interleaved if i.nbytes] return concatenate(interleaved, axis=axis) @wraps(chunk.broadcast_to) def broadcast_to(x, shape): shape = tuple(shape) ndim_new = len(shape) - x.ndim if ndim_new < 0 or any(new != old for new, old in zip(shape[ndim_new:], x.shape) if old != 1): raise ValueError('cannot broadcast shape %s to shape %s' % (x.shape, shape)) name = next(names) chunks = (tuple((s,) for s in shape[:ndim_new]) + tuple(bd if old > 1 else (new,) for bd, old, new in zip(x.chunks, x.shape, shape[ndim_new:]))) dsk = dict(((name,) + (0,) * ndim_new + key[1:], (chunk.broadcast_to, key, shape[:ndim_new] + tuple(bd[i] for i, bd in zip(key[1:], chunks[ndim_new:])))) for key in core.flatten(x._keys())) return Array(merge(dsk, x.dask), name, chunks, dtype=x.dtype) def offset_func(func, offset, *args): """ Offsets inputs by offset >>> double = lambda x: x * 2 >>> f = offset_func(double, (10,)) >>> f(1) 22 >>> f(300) 620 """ def _offset(*args): args2 = list(map(add, args, offset)) return func(*args2) with ignoring(Exception): _offset.__name__ = 'offset_' + func.__name__ return _offset fromfunction_names = ('fromfunction-%d' % i for i in count(1)) @wraps(np.fromfunction) def fromfunction(func, chunks=None, shape=None, dtype=None): name = next(fromfunction_names) if chunks: chunks = normalize_chunks(chunks, shape) keys = list(product([name], *[range(len(bd)) for bd in chunks])) aggdims = [list(accumulate(add, (0,) + bd[:-1])) for bd in chunks] offsets = list(product(*aggdims)) shapes = list(product(*chunks)) values = [(np.fromfunction, offset_func(func, offset), shape) for offset, shape in zip(offsets, shapes)] dsk = dict(zip(keys, values)) return Array(dsk, name, chunks, dtype=dtype) @wraps(np.unique) def unique(x): name = next(names) dsk = dict(((name, i), (np.unique, key)) for i, key in enumerate(x._keys())) parts = get(merge(dsk, x.dask), list(dsk.keys())) return np.unique(np.concatenate(parts)) def write_hdf5_chunk(fn, datapath, index, data): import h5py with h5py.File(fn) as f: d = f[datapath] d[index] = data
{ "repo_name": "minrk/dask", "path": "dask/array/core.py", "copies": "1", "size": "52615", "license": "bsd-3-clause", "hash": -2187182692964355600, "line_mean": 30.3744782349, "line_max": 107, "alpha_frac": 0.5571985175, "autogenerated": false, "ratio": 3.3180929557923946, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9367030256369641, "avg_score": 0.0016522433845507197, "num_lines": 1677 }
from __future__ import absolute_import, division, print_function import operator from toolz import first import numpy as np from datashape import dshape, var, DataShape from dateutil.parser import parse as dt_parse from datashape.predicates import isscalar, isboolean, isnumeric from datashape import coretypes as ct, discover, unsigned, promote, optionify from .core import parenthesize, eval_str from .expressions import Expr, shape, ElemWise from ..dispatch import dispatch from ..compatibility import _strtypes __all__ = '''BinOp UnaryOp Arithmetic Add Mult Sub Div FloorDiv Pow Mod USub Relational Eq Ne Ge Lt Le Gt Gt And Or Not'''.split() def name(o): if hasattr(o, '_name'): return o._name else: return None class BinOp(ElemWise): __slots__ = '_hash', 'lhs', 'rhs' __inputs__ = 'lhs', 'rhs' def __init__(self, lhs, rhs): self.lhs = lhs self.rhs = rhs def __str__(self): lhs = parenthesize(eval_str(self.lhs)) rhs = parenthesize(eval_str(self.rhs)) return '%s %s %s' % (lhs, self.symbol, rhs) @property def _name(self): if not isscalar(self.dshape.measure): return None l, r = name(self.lhs), name(self.rhs) if l and not r: return l if r and not l: return r if l == r: return l @property def _inputs(self): result = [] if isinstance(self.lhs, Expr): result.append(self.lhs) if isinstance(self.rhs, Expr): result.append(self.rhs) return tuple(result) def maxvar(L): """ >>> maxvar([1, 2, var]) Var() >>> maxvar([1, 2, 3]) 3 """ if var in L: return var else: return max(L) def maxshape(shapes): """ >>> maxshape([(10, 1), (1, 10), ()]) (10, 10) >>> maxshape([(4, 5), (5,)]) (4, 5) """ shapes = [shape for shape in shapes if shape] if not shapes: return () ndim = max(map(len, shapes)) shapes = [(1,) * (ndim - len(shape)) + shape for shape in shapes] for dims in zip(*shapes): if len(set(dims) - set([1])) >= 2: raise ValueError("Shapes don't align, %s" % str(dims)) return tuple(map(maxvar, zip(*shapes))) class UnaryOp(ElemWise): __slots__ = '_hash', '_child', def __init__(self, child): self._child = child def __str__(self): return '%s(%s)' % (self.symbol, eval_str(self._child)) @property def symbol(self): return type(self).__name__ @property def dshape(self): return DataShape(*(shape(self._child) + (self._dtype,))) @property def _name(self): return self._child._name class Arithmetic(BinOp): """ Super class for arithmetic operators like add or mul """ @property def _dtype(self): # we can't simply use .schema or .datashape because we may have a bare # integer, for example lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure return promote(lhs, rhs) @property def dshape(self): # TODO: better inference. e.g. int + int -> int return DataShape(*(maxshape([shape(self.lhs), shape(self.rhs)]) + (self._dtype,))) class Add(Arithmetic): symbol = '+' op = operator.add class Mult(Arithmetic): symbol = '*' op = operator.mul class Sub(Arithmetic): symbol = '-' op = operator.sub class Div(Arithmetic): symbol = '/' op = operator.truediv @property def _dtype(self): lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure return optionify(lhs, rhs, ct.float64) class FloorDiv(Arithmetic): symbol = '//' op = operator.floordiv @property def _dtype(self): lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure is_unsigned = lhs in unsigned and rhs in unsigned max_width = max(lhs.itemsize, rhs.itemsize) prefix = 'u' if is_unsigned else '' measure = getattr(ct, '%sint%d' % (prefix, max_width * 8)) return optionify(lhs, rhs, measure) class Pow(Arithmetic): symbol = '**' op = operator.pow class Mod(Arithmetic): symbol = '%' op = operator.mod class USub(UnaryOp): op = operator.neg symbol = '-' def __str__(self): return '-%s' % parenthesize(eval_str(self._child)) @property def _dtype(self): # TODO: better inference. -uint -> int return self._child.schema @dispatch(ct.Option, object) def scalar_coerce(ds, val): if val or val == 0: return scalar_coerce(ds.ty, val) else: return None @dispatch((ct.Record, ct.Mono, ct.Option, DataShape), Expr) def scalar_coerce(ds, val): return val @dispatch(ct.Date, _strtypes) def scalar_coerce(_, val): dt = dt_parse(val) if dt.time(): raise ValueError("Can not coerce %s to type Date, " "contains time information") return dt.date() @dispatch(ct.DateTime, _strtypes) def scalar_coerce(_, val): return dt_parse(val) @dispatch(ct.CType, _strtypes) def scalar_coerce(dt, val): return np.asscalar(np.asarray(val, dtype=dt.to_numpy_dtype())) @dispatch(ct.Record, object) def scalar_coerce(rec, val): if len(rec.fields) == 1: return scalar_coerce(first(rec.types), val) else: raise TypeError("Trying to coerce complex datashape\n" "got dshape: %s\n" "scalar_coerce only intended for scalar values" % rec) @dispatch(ct.DataShape, object) def scalar_coerce(ds, val): return scalar_coerce(ds.measure, val) @dispatch(object, object) def scalar_coerce(dtype, val): return val @dispatch(_strtypes, object) def scalar_coerce(ds, val): return scalar_coerce(dshape(ds), val) def _neg(self): return USub(self) def _add(self, other): result = Add(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _radd(self, other): result = Add(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result def _mul(self, other): result = Mult(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _rmul(self, other): result = Mult(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result def _div(self, other): result = Div(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _rdiv(self, other): result = Div(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result def _floordiv(self, other): result = FloorDiv(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _rfloordiv(self, other): result = FloorDiv(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result def _sub(self, other): result = Sub(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _rsub(self, other): result = Sub(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result def _pow(self, other): result = Pow(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _rpow(self, other): result = Pow(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result def _mod(self, other): result = Mod(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _rmod(self, other): result = Mod(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result class Relational(Arithmetic): _dtype = ct.bool_ class Eq(Relational): symbol = '==' op = operator.eq class Ne(Relational): symbol = '!=' op = operator.ne class Ge(Relational): symbol = '>=' op = operator.ge class Le(Relational): symbol = '<=' op = operator.le class Gt(Relational): symbol = '>' op = operator.gt class Lt(Relational): symbol = '<' op = operator.lt class And(Arithmetic): symbol = '&' op = operator.and_ _dtype = ct.bool_ class Or(Arithmetic): symbol = '|' op = operator.or_ _dtype = ct.bool_ class Not(UnaryOp): symbol = '~' op = operator.invert _dtype = ct.bool_ def __str__(self): return '~%s' % parenthesize(eval_str(self._child)) def _eq(self, other): result = Eq(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _ne(self, other): result = Ne(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _lt(self, other): result = Lt(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _le(self, other): result = Le(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _gt(self, other): result = Gt(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _ge(self, other): result = Ge(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result def _invert(self): result = Invert(self) result.dshape # Check that shapes and dtypes match up return result def _and(self, other): result = And(self, other) result.dshape # Check that shapes and dtypes match up return result def _rand(self, other): result = And(other, self) result.dshape # Check that shapes and dtypes match up return result def _or(self, other): result = Or(self, other) result.dshape # Check that shapes and dtypes match up return result def _ror(self, other): result = Or(other, self) result.dshape # Check that shapes and dtypes match up return result def _invert(self): result = Not(self) result.dshape # Check that shapes and dtypes match up return result Invert = Not BitAnd = And BitOr = Or from .expressions import schema_method_list schema_method_list.extend([ (isnumeric, set([_add, _radd, _mul, _rmul, _div, _rdiv, _floordiv, _rfloordiv, _sub, _rsub, _pow, _rpow, _mod, _rmod, _neg])), (isscalar, set([_eq, _ne, _lt, _le, _gt, _ge])), (isboolean, set([_or, _ror, _and, _rand, _invert])), ])
{ "repo_name": "mrocklin/blaze", "path": "blaze/expr/arithmetic.py", "copies": "1", "size": "11014", "license": "bsd-3-clause", "hash": 2276067550438492200, "line_mean": 23.0480349345, "line_max": 78, "alpha_frac": 0.6247503178, "autogenerated": false, "ratio": 3.465701699181875, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4590452016981875, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import operator from toolz import first import numpy as np import pandas as pd from datashape import dshape, var, DataShape from dateutil.parser import parse as dt_parse from datashape.predicates import isscalar, isboolean, isnumeric, isdatelike from datashape import coretypes as ct, discover, unsigned, promote, optionify from .core import parenthesize, eval_str from .expressions import Expr, shape, ElemWise from ..dispatch import dispatch from ..compatibility import _strtypes __all__ = ''' BinOp UnaryOp Arithmetic Add Mult Repeat Sub Div FloorDiv Pow Mod Interp USub Relational Eq Ne Ge Lt Le Gt Gt And Or Not '''.split() class BinOp(ElemWise): __slots__ = '_hash', 'lhs', 'rhs' __inputs__ = 'lhs', 'rhs' def __init__(self, lhs, rhs): self.lhs = lhs self.rhs = rhs def __str__(self): lhs = parenthesize(eval_str(self.lhs)) rhs = parenthesize(eval_str(self.rhs)) return '%s %s %s' % (lhs, self.symbol, rhs) @property def _name(self): if not isscalar(self.dshape.measure): return None l = getattr(self.lhs, '_name', None) r = getattr(self.rhs, '_name', None) if l is not None and r is None: return l elif r is not None and l is None: return r elif l == r: return l else: return None @property def _inputs(self): result = [] if isinstance(self.lhs, Expr): result.append(self.lhs) if isinstance(self.rhs, Expr): result.append(self.rhs) return tuple(result) def maxvar(L): """ >>> maxvar([1, 2, var]) Var() >>> maxvar([1, 2, 3]) 3 """ if var in L: return var else: return max(L) def maxshape(shapes): """ >>> maxshape([(10, 1), (1, 10), ()]) (10, 10) >>> maxshape([(4, 5), (5,)]) (4, 5) """ shapes = [shape for shape in shapes if shape] if not shapes: return () ndim = max(map(len, shapes)) shapes = [(1,) * (ndim - len(shape)) + shape for shape in shapes] for dims in zip(*shapes): if len(set(dims) - set([1])) >= 2: raise ValueError("Shapes don't align, %s" % str(dims)) return tuple(map(maxvar, zip(*shapes))) class UnaryOp(ElemWise): __slots__ = '_hash', '_child', def __init__(self, child): self._child = child def __str__(self): return '%s(%s)' % (self.symbol, eval_str(self._child)) @property def symbol(self): return type(self).__name__ @property def dshape(self): return DataShape(*(shape(self._child) + (self._dtype,))) @property def _name(self): return self._child._name class Arithmetic(BinOp): """ Super class for arithmetic operators like add or mul """ @property def _dtype(self): # we can't simply use .schema or .datashape because we may have a bare # integer, for example lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure return promote(lhs, rhs) @property def dshape(self): # TODO: better inference. e.g. int + int -> int return DataShape(*(maxshape([shape(self.lhs), shape(self.rhs)]) + (self._dtype,))) class Add(Arithmetic): symbol = '+' op = operator.add class Mult(Arithmetic): symbol = '*' op = operator.mul class Repeat(Arithmetic): # Sequence repeat symbol = '*' op = operator.mul class Sub(Arithmetic): symbol = '-' op = operator.sub class Div(Arithmetic): symbol = '/' op = operator.truediv @property def _dtype(self): lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure return optionify(lhs, rhs, ct.float64) class FloorDiv(Arithmetic): symbol = '//' op = operator.floordiv @property def _dtype(self): lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure is_unsigned = lhs in unsigned and rhs in unsigned max_width = max(lhs.itemsize, rhs.itemsize) prefix = 'u' if is_unsigned else '' measure = getattr(ct, '%sint%d' % (prefix, max_width * 8)) return optionify(lhs, rhs, measure) class Pow(Arithmetic): symbol = '**' op = operator.pow class Mod(Arithmetic): symbol = '%' op = operator.mod class Interp(Arithmetic): # String interpolation symbol = '%' op = operator.mod class USub(UnaryOp): op = operator.neg symbol = '-' def __str__(self): return '-%s' % parenthesize(eval_str(self._child)) @property def _dtype(self): # TODO: better inference. -uint -> int return self._child.schema @dispatch(ct.Option, object) def scalar_coerce(ds, val): if val or val == 0: return scalar_coerce(ds.ty, val) else: return None @dispatch((ct.Record, ct.Mono, ct.Option, DataShape), Expr) def scalar_coerce(ds, val): return val @dispatch(ct.Date, _strtypes) def scalar_coerce(_, val): dt = dt_parse(val) if dt.time(): raise ValueError("Can not coerce %s to type Date, " "contains time information") return dt.date() @dispatch(ct.DateTime, _strtypes) def scalar_coerce(_, val): return pd.Timestamp(val) @dispatch(ct.CType, _strtypes) def scalar_coerce(dt, val): return np.asscalar(np.asarray(val, dtype=dt.to_numpy_dtype())) @dispatch(ct.Record, object) def scalar_coerce(rec, val): if len(rec.fields) == 1: return scalar_coerce(first(rec.types), val) else: raise TypeError("Trying to coerce complex datashape\n" "got dshape: %s\n" "scalar_coerce only intended for scalar values" % rec) @dispatch(ct.DataShape, object) def scalar_coerce(ds, val): return scalar_coerce(ds.measure, val) @dispatch(object, object) def scalar_coerce(dtype, val): return val @dispatch(_strtypes, object) def scalar_coerce(ds, val): return scalar_coerce(dshape(ds), val) def _neg(self): return USub(self) def _mkbin(name, cons, private=True, reflected=True): prefix = '_' if private else '' def _bin(self, other): result = cons(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result _bin.__name__ = prefix + name if reflected: def _rbin(self, other): result = cons(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result _rbin.__name__ = prefix + 'r' + name return _bin, _rbin return _bin _add, _radd = _mkbin('add', Add) _div, _rdiv = _mkbin('div', Div) _floordiv, _rfloordiv = _mkbin('floordiv', FloorDiv) _mod, _rmod = _mkbin('mod', Mod) _mul, _rmul = _mkbin('mul', Mult) _pow, _rpow = _mkbin('pow', Pow) repeat = _mkbin('repeat', Repeat, reflected=False, private=False) _sub, _rsub = _mkbin('sub', Sub) interp = _mkbin('interp', Interp, reflected=False, private=False) class Relational(Arithmetic): _dtype = ct.bool_ class Eq(Relational): symbol = '==' op = operator.eq class Ne(Relational): symbol = '!=' op = operator.ne class Ge(Relational): symbol = '>=' op = operator.ge class Le(Relational): symbol = '<=' op = operator.le class Gt(Relational): symbol = '>' op = operator.gt class Lt(Relational): symbol = '<' op = operator.lt class And(Arithmetic): symbol = '&' op = operator.and_ _dtype = ct.bool_ class Or(Arithmetic): symbol = '|' op = operator.or_ _dtype = ct.bool_ class Not(UnaryOp): symbol = '~' op = operator.invert _dtype = ct.bool_ def __str__(self): return '~%s' % parenthesize(eval_str(self._child)) _and, _rand = _mkbin('and', And) _eq = _mkbin('eq', Eq, reflected=False) _ge = _mkbin('ge', Ge, reflected=False) _gt = _mkbin('gt', Gt, reflected=False) _le = _mkbin('le', Le, reflected=False) _lt = _mkbin('lt', Lt, reflected=False) _ne = _mkbin('ne', Ne, reflected=False) _or, _ror = _mkbin('or', Or) def _invert(self): result = Invert(self) result.dshape # Check that shapes and dtypes match up return result Invert = Not BitAnd = And BitOr = Or from .expressions import schema_method_list schema_method_list.extend([ (isnumeric, set([_add, _radd, _mul, _rmul, _div, _rdiv, _floordiv, _rfloordiv, _sub, _rsub, _pow, _rpow, _mod, _rmod, _neg])), (isscalar, set([_eq, _ne, _lt, _le, _gt, _ge])), (isboolean, set([_or, _ror, _and, _rand, _invert])), (isdatelike, set([_add, _radd, _sub, _rsub])), ])
{ "repo_name": "caseyclements/blaze", "path": "blaze/expr/arithmetic.py", "copies": "5", "size": "8784", "license": "bsd-3-clause", "hash": -535188195921522050, "line_mean": 20.3722627737, "line_max": 78, "alpha_frac": 0.5931238616, "autogenerated": false, "ratio": 3.3122171945701355, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00038308199611787564, "num_lines": 411 }
from __future__ import absolute_import, division, print_function import operator from toolz import first import numpy as np import pandas as pd from datashape import dshape, var, DataShape, Option from dateutil.parser import parse as dt_parse from datashape.predicates import isscalar, isboolean, isnumeric, isdatelike from datashape import coretypes as ct, discover, unsigned, promote, optionify from .core import parenthesize, eval_str from .expressions import Expr, shape, ElemWise from ..dispatch import dispatch from ..compatibility import _strtypes __all__ = ''' BinOp UnaryOp Arithmetic Add Mult Repeat Sub Div FloorDiv Pow Mod Interp USub Relational Eq Ne Ge Lt Le Gt Gt And Or Not '''.split() class BinOp(ElemWise): __slots__ = '_hash', 'lhs', 'rhs' __inputs__ = 'lhs', 'rhs' def __init__(self, lhs, rhs): self.lhs = lhs self.rhs = rhs def __str__(self): lhs = parenthesize(eval_str(self.lhs)) rhs = parenthesize(eval_str(self.rhs)) return '%s %s %s' % (lhs, self.symbol, rhs) @property def dshape(self): # TODO: better inference. e.g. int + int -> int return DataShape(*(maxshape([shape(self.lhs), shape(self.rhs)]) + (self._dtype,))) @property def _name(self): if not isscalar(self.dshape.measure): return None l = getattr(self.lhs, '_name', None) r = getattr(self.rhs, '_name', None) if l is not None and r is None: return l elif r is not None and l is None: return r elif l == r: return l else: return None @property def _inputs(self): result = [] if isinstance(self.lhs, Expr): result.append(self.lhs) if isinstance(self.rhs, Expr): result.append(self.rhs) return tuple(result) def maxvar(L): """ >>> maxvar([1, 2, var]) Var() >>> maxvar([1, 2, 3]) 3 """ if var in L: return var else: return max(L) def maxshape(shapes): """ >>> maxshape([(10, 1), (1, 10), ()]) (10, 10) >>> maxshape([(4, 5), (5,)]) (4, 5) """ shapes = [shape for shape in shapes if shape] if not shapes: return () ndim = max(map(len, shapes)) shapes = [(1,) * (ndim - len(shape)) + shape for shape in shapes] for dims in zip(*shapes): if len(set(dims) - set([1])) >= 2: raise ValueError("Shapes don't align, %s" % str(dims)) return tuple(map(maxvar, zip(*shapes))) class UnaryOp(ElemWise): __slots__ = '_hash', '_child', def __init__(self, child): self._child = child def __str__(self): return '%s(%s)' % (self.symbol, eval_str(self._child)) @property def symbol(self): return type(self).__name__ @property def dshape(self): return DataShape(*(shape(self._child) + (self._dtype,))) @property def _name(self): return self._child._name class Arithmetic(BinOp): """ Super class for arithmetic operators like add or mul """ @property def _dtype(self): # we can't simply use .schema or .datashape because we may have a bare # integer, for example lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure return promote(lhs, rhs) class Add(Arithmetic): symbol = '+' op = operator.add class Mult(Arithmetic): symbol = '*' op = operator.mul class Repeat(Arithmetic): # Sequence repeat symbol = '*' op = operator.mul class Sub(Arithmetic): symbol = '-' op = operator.sub class Div(Arithmetic): symbol = '/' op = operator.truediv @property def _dtype(self): lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure return optionify(lhs, rhs, ct.float64) class FloorDiv(Arithmetic): symbol = '//' op = operator.floordiv @property def _dtype(self): lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure is_unsigned = lhs in unsigned and rhs in unsigned max_width = max(lhs.itemsize, rhs.itemsize) prefix = 'u' if is_unsigned else '' measure = getattr(ct, '%sint%d' % (prefix, max_width * 8)) return optionify(lhs, rhs, measure) class Pow(Arithmetic): symbol = '**' op = operator.pow class Mod(Arithmetic): symbol = '%' op = operator.mod class Interp(Arithmetic): # String interpolation symbol = '%' op = operator.mod class USub(UnaryOp): op = operator.neg symbol = '-' def __str__(self): return '-%s' % parenthesize(eval_str(self._child)) @property def _dtype(self): # TODO: better inference. -uint -> int return self._child.schema @dispatch(ct.Option, object) def scalar_coerce(ds, val): return scalar_coerce(ds.ty, val) if val is not None else None @dispatch((ct.Record, ct.Mono, ct.Option, DataShape), Expr) def scalar_coerce(ds, val): return val @dispatch(ct.Date, _strtypes) def scalar_coerce(_, val): if val == '': raise TypeError('%r is not a valid date' % val) dt = dt_parse(val) if dt.time(): # TODO: doesn't work with python 3.5 raise TypeError( "Can not coerce %r to type Date, contains time information" % val ) return dt.date() @dispatch(ct.DateTime, _strtypes) def scalar_coerce(_, val): if val == '': raise TypeError('%r is not a valid datetime' % val) return pd.Timestamp(val) @dispatch(ct.CType, _strtypes) def scalar_coerce(dt, val): return np.asscalar(np.asarray(val, dtype=dt.to_numpy_dtype())) @dispatch(ct.Record, object) def scalar_coerce(rec, val): if len(rec.fields) == 1: return scalar_coerce(first(rec.types), val) else: raise TypeError("Trying to coerce complex datashape\n" "got dshape: %s\n" "scalar_coerce only intended for scalar values" % rec) @dispatch(ct.DataShape, object) def scalar_coerce(ds, val): return scalar_coerce(ds.measure, val) @dispatch(object, object) def scalar_coerce(dtype, val): return val @dispatch(_strtypes, object) def scalar_coerce(ds, val): return scalar_coerce(dshape(ds), val) def _neg(self): return USub(self) def _mkbin(name, cons, private=True, reflected=True): prefix = '_' if private else '' def _bin(self, other): result = cons(self, scalar_coerce(self.dshape, other)) result.dshape # Check that shapes and dtypes match up return result _bin.__name__ = prefix + name if reflected: def _rbin(self, other): result = cons(scalar_coerce(self.dshape, other), self) result.dshape # Check that shapes and dtypes match up return result _rbin.__name__ = prefix + 'r' + name return _bin, _rbin return _bin _add, _radd = _mkbin('add', Add) _div, _rdiv = _mkbin('div', Div) _floordiv, _rfloordiv = _mkbin('floordiv', FloorDiv) _mod, _rmod = _mkbin('mod', Mod) _mul, _rmul = _mkbin('mul', Mult) _pow, _rpow = _mkbin('pow', Pow) repeat = _mkbin('repeat', Repeat, reflected=False, private=False) _sub, _rsub = _mkbin('sub', Sub) interp = _mkbin('interp', Interp, reflected=False, private=False) class _Optional(Arithmetic): @property def _dtype(self): # we can't simply use .schema or .datashape because we may have a bare # integer, for example lhs, rhs = discover(self.lhs).measure, discover(self.rhs).measure if isinstance(lhs, Option) or isinstance(rhs, Option): return Option(ct.bool_) return ct.bool_ class Relational(_Optional): # Leave this to separate relationals from other types of optionals. pass class Eq(Relational): symbol = '==' op = operator.eq class Ne(Relational): symbol = '!=' op = operator.ne class Ge(Relational): symbol = '>=' op = operator.ge class Le(Relational): symbol = '<=' op = operator.le class Gt(Relational): symbol = '>' op = operator.gt class Lt(Relational): symbol = '<' op = operator.lt class And(_Optional): symbol = '&' op = operator.and_ class Or(_Optional): symbol = '|' op = operator.or_ class Not(UnaryOp): symbol = '~' op = operator.invert @property def _dtype(self): return self._child.schema def __str__(self): return '~%s' % parenthesize(eval_str(self._child)) _and, _rand = _mkbin('and', And) _eq = _mkbin('eq', Eq, reflected=False) _ge = _mkbin('ge', Ge, reflected=False) _gt = _mkbin('gt', Gt, reflected=False) _le = _mkbin('le', Le, reflected=False) _lt = _mkbin('lt', Lt, reflected=False) _ne = _mkbin('ne', Ne, reflected=False) _or, _ror = _mkbin('or', Or) def _invert(self): result = Invert(self) result.dshape # Check that shapes and dtypes match up return result Invert = Not BitAnd = And BitOr = Or from .expressions import schema_method_list schema_method_list.extend([ (isnumeric, set([_add, _radd, _mul, _rmul, _div, _rdiv, _floordiv, _rfloordiv, _sub, _rsub, _pow, _rpow, _mod, _rmod, _neg])), (isscalar, set([_eq, _ne, _lt, _le, _gt, _ge])), (isboolean, set([_or, _ror, _and, _rand, _invert])), (isdatelike, set([_add, _radd, _sub, _rsub])), ])
{ "repo_name": "ChinaQuants/blaze", "path": "blaze/expr/arithmetic.py", "copies": "1", "size": "9396", "license": "bsd-3-clause", "hash": 6308118187008525000, "line_mean": 21.0563380282, "line_max": 78, "alpha_frac": 0.5966368668, "autogenerated": false, "ratio": 3.364124597207304, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4460761464007304, "avg_score": null, "num_lines": null }