text
stringlengths
0
1.05M
meta
dict
from __future__ import absolute_import, division, print_function import functools import sys import traceback from tornado.concurrent import Future from tornado import gen from tornado.httpclient import HTTPError, HTTPRequest from tornado.log import gen_log, app_log from tornado.simple_httpclient import SimpleAsyncHTTPClient from tornado.template import DictLoader from tornado.testing import AsyncHTTPTestCase, gen_test, bind_unused_port, ExpectLog from tornado.test.util import unittest, skipBefore35, exec_test from tornado.web import Application, RequestHandler try: import tornado.websocket # noqa from tornado.util import _websocket_mask_python except ImportError: # The unittest module presents misleading errors on ImportError # (it acts as if websocket_test could not be found, hiding the underlying # error). If we get an ImportError here (which could happen due to # TORNADO_EXTENSION=1), print some extra information before failing. traceback.print_exc() raise from tornado.websocket import WebSocketHandler, websocket_connect, WebSocketError, WebSocketClosedError try: from tornado import speedups except ImportError: speedups = None class TestWebSocketHandler(WebSocketHandler): """Base class for testing handlers that exposes the on_close event. This allows for deterministic cleanup of the associated socket. """ def initialize(self, close_future, compression_options=None): self.close_future = close_future self.compression_options = compression_options def get_compression_options(self): return self.compression_options def on_close(self): self.close_future.set_result((self.close_code, self.close_reason)) class EchoHandler(TestWebSocketHandler): @gen.coroutine def on_message(self, message): try: yield self.write_message(message, isinstance(message, bytes)) except WebSocketClosedError: pass class ErrorInOnMessageHandler(TestWebSocketHandler): def on_message(self, message): 1 / 0 class HeaderHandler(TestWebSocketHandler): def open(self): methods_to_test = [ functools.partial(self.write, 'This should not work'), functools.partial(self.redirect, 'http://localhost/elsewhere'), functools.partial(self.set_header, 'X-Test', ''), functools.partial(self.set_cookie, 'Chocolate', 'Chip'), functools.partial(self.set_status, 503), self.flush, self.finish, ] for method in methods_to_test: try: # In a websocket context, many RequestHandler methods # raise RuntimeErrors. method() raise Exception("did not get expected exception") except RuntimeError: pass self.write_message(self.request.headers.get('X-Test', '')) class HeaderEchoHandler(TestWebSocketHandler): def set_default_headers(self): self.set_header("X-Extra-Response-Header", "Extra-Response-Value") def prepare(self): for k, v in self.request.headers.get_all(): if k.lower().startswith('x-test'): self.set_header(k, v) class NonWebSocketHandler(RequestHandler): def get(self): self.write('ok') class CloseReasonHandler(TestWebSocketHandler): def open(self): self.on_close_called = False self.close(1001, "goodbye") class AsyncPrepareHandler(TestWebSocketHandler): @gen.coroutine def prepare(self): yield gen.moment def on_message(self, message): self.write_message(message) class PathArgsHandler(TestWebSocketHandler): def open(self, arg): self.write_message(arg) class CoroutineOnMessageHandler(TestWebSocketHandler): def initialize(self, close_future, compression_options=None): super(CoroutineOnMessageHandler, self).initialize(close_future, compression_options) self.sleeping = 0 @gen.coroutine def on_message(self, message): if self.sleeping > 0: self.write_message('another coroutine is already sleeping') self.sleeping += 1 yield gen.sleep(0.01) self.sleeping -= 1 self.write_message(message) class RenderMessageHandler(TestWebSocketHandler): def on_message(self, message): self.write_message(self.render_string('message.html', message=message)) class WebSocketBaseTestCase(AsyncHTTPTestCase): @gen.coroutine def ws_connect(self, path, **kwargs): ws = yield websocket_connect( 'ws://127.0.0.1:%d%s' % (self.get_http_port(), path), **kwargs) raise gen.Return(ws) @gen.coroutine def close(self, ws): """Close a websocket connection and wait for the server side. If we don't wait here, there are sometimes leak warnings in the tests. """ ws.close() yield self.close_future class WebSocketTest(WebSocketBaseTestCase): def get_app(self): self.close_future = Future() return Application([ ('/echo', EchoHandler, dict(close_future=self.close_future)), ('/non_ws', NonWebSocketHandler), ('/header', HeaderHandler, dict(close_future=self.close_future)), ('/header_echo', HeaderEchoHandler, dict(close_future=self.close_future)), ('/close_reason', CloseReasonHandler, dict(close_future=self.close_future)), ('/error_in_on_message', ErrorInOnMessageHandler, dict(close_future=self.close_future)), ('/async_prepare', AsyncPrepareHandler, dict(close_future=self.close_future)), ('/path_args/(.*)', PathArgsHandler, dict(close_future=self.close_future)), ('/coroutine', CoroutineOnMessageHandler, dict(close_future=self.close_future)), ('/render', RenderMessageHandler, dict(close_future=self.close_future)), ], template_loader=DictLoader({ 'message.html': '<b>{{ message }}</b>', })) def get_http_client(self): # These tests require HTTP/1; force the use of SimpleAsyncHTTPClient. return SimpleAsyncHTTPClient() def tearDown(self): super(WebSocketTest, self).tearDown() RequestHandler._template_loaders.clear() def test_http_request(self): # WS server, HTTP client. response = self.fetch('/echo') self.assertEqual(response.code, 400) def test_missing_websocket_key(self): response = self.fetch('/echo', headers={'Connection': 'Upgrade', 'Upgrade': 'WebSocket', 'Sec-WebSocket-Version': '13'}) self.assertEqual(response.code, 400) def test_bad_websocket_version(self): response = self.fetch('/echo', headers={'Connection': 'Upgrade', 'Upgrade': 'WebSocket', 'Sec-WebSocket-Version': '12'}) self.assertEqual(response.code, 426) @gen_test def test_websocket_gen(self): ws = yield self.ws_connect('/echo') yield ws.write_message('hello') response = yield ws.read_message() self.assertEqual(response, 'hello') yield self.close(ws) def test_websocket_callbacks(self): websocket_connect( 'ws://127.0.0.1:%d/echo' % self.get_http_port(), callback=self.stop) ws = self.wait().result() ws.write_message('hello') ws.read_message(self.stop) response = self.wait().result() self.assertEqual(response, 'hello') self.close_future.add_done_callback(lambda f: self.stop()) ws.close() self.wait() @gen_test def test_binary_message(self): ws = yield self.ws_connect('/echo') ws.write_message(b'hello \xe9', binary=True) response = yield ws.read_message() self.assertEqual(response, b'hello \xe9') yield self.close(ws) @gen_test def test_unicode_message(self): ws = yield self.ws_connect('/echo') ws.write_message(u'hello \u00e9') response = yield ws.read_message() self.assertEqual(response, u'hello \u00e9') yield self.close(ws) @gen_test def test_render_message(self): ws = yield self.ws_connect('/render') ws.write_message('hello') response = yield ws.read_message() self.assertEqual(response, '<b>hello</b>') yield self.close(ws) @gen_test def test_error_in_on_message(self): ws = yield self.ws_connect('/error_in_on_message') ws.write_message('hello') with ExpectLog(app_log, "Uncaught exception"): response = yield ws.read_message() self.assertIs(response, None) yield self.close(ws) @gen_test def test_websocket_http_fail(self): with self.assertRaises(HTTPError) as cm: yield self.ws_connect('/notfound') self.assertEqual(cm.exception.code, 404) @gen_test def test_websocket_http_success(self): with self.assertRaises(WebSocketError): yield self.ws_connect('/non_ws') @gen_test def test_websocket_network_fail(self): sock, port = bind_unused_port() sock.close() with self.assertRaises(IOError): with ExpectLog(gen_log, ".*"): yield websocket_connect( 'ws://127.0.0.1:%d/' % port, connect_timeout=3600) @gen_test def test_websocket_close_buffered_data(self): ws = yield websocket_connect( 'ws://127.0.0.1:%d/echo' % self.get_http_port()) ws.write_message('hello') ws.write_message('world') # Close the underlying stream. ws.stream.close() yield self.close_future @gen_test def test_websocket_headers(self): # Ensure that arbitrary headers can be passed through websocket_connect. ws = yield websocket_connect( HTTPRequest('ws://127.0.0.1:%d/header' % self.get_http_port(), headers={'X-Test': 'hello'})) response = yield ws.read_message() self.assertEqual(response, 'hello') yield self.close(ws) @gen_test def test_websocket_header_echo(self): # Ensure that headers can be returned in the response. # Specifically, that arbitrary headers passed through websocket_connect # can be returned. ws = yield websocket_connect( HTTPRequest('ws://127.0.0.1:%d/header_echo' % self.get_http_port(), headers={'X-Test-Hello': 'hello'})) self.assertEqual(ws.headers.get('X-Test-Hello'), 'hello') self.assertEqual(ws.headers.get('X-Extra-Response-Header'), 'Extra-Response-Value') yield self.close(ws) @gen_test def test_server_close_reason(self): ws = yield self.ws_connect('/close_reason') msg = yield ws.read_message() # A message of None means the other side closed the connection. self.assertIs(msg, None) self.assertEqual(ws.close_code, 1001) self.assertEqual(ws.close_reason, "goodbye") # The on_close callback is called no matter which side closed. code, reason = yield self.close_future # The client echoed the close code it received to the server, # so the server's close code (returned via close_future) is # the same. self.assertEqual(code, 1001) @gen_test def test_client_close_reason(self): ws = yield self.ws_connect('/echo') ws.close(1001, 'goodbye') code, reason = yield self.close_future self.assertEqual(code, 1001) self.assertEqual(reason, 'goodbye') @gen_test def test_write_after_close(self): ws = yield self.ws_connect('/close_reason') msg = yield ws.read_message() self.assertIs(msg, None) with self.assertRaises(WebSocketClosedError): ws.write_message('hello') @gen_test def test_async_prepare(self): # Previously, an async prepare method triggered a bug that would # result in a timeout on test shutdown (and a memory leak). ws = yield self.ws_connect('/async_prepare') ws.write_message('hello') res = yield ws.read_message() self.assertEqual(res, 'hello') @gen_test def test_path_args(self): ws = yield self.ws_connect('/path_args/hello') res = yield ws.read_message() self.assertEqual(res, 'hello') @gen_test def test_coroutine(self): ws = yield self.ws_connect('/coroutine') # Send both messages immediately, coroutine must process one at a time. yield ws.write_message('hello1') yield ws.write_message('hello2') res = yield ws.read_message() self.assertEqual(res, 'hello1') res = yield ws.read_message() self.assertEqual(res, 'hello2') @gen_test def test_check_origin_valid_no_path(self): port = self.get_http_port() url = 'ws://127.0.0.1:%d/echo' % port headers = {'Origin': 'http://127.0.0.1:%d' % port} ws = yield websocket_connect(HTTPRequest(url, headers=headers)) ws.write_message('hello') response = yield ws.read_message() self.assertEqual(response, 'hello') yield self.close(ws) @gen_test def test_check_origin_valid_with_path(self): port = self.get_http_port() url = 'ws://127.0.0.1:%d/echo' % port headers = {'Origin': 'http://127.0.0.1:%d/something' % port} ws = yield websocket_connect(HTTPRequest(url, headers=headers)) ws.write_message('hello') response = yield ws.read_message() self.assertEqual(response, 'hello') yield self.close(ws) @gen_test def test_check_origin_invalid_partial_url(self): port = self.get_http_port() url = 'ws://127.0.0.1:%d/echo' % port headers = {'Origin': '127.0.0.1:%d' % port} with self.assertRaises(HTTPError) as cm: yield websocket_connect(HTTPRequest(url, headers=headers)) self.assertEqual(cm.exception.code, 403) @gen_test def test_check_origin_invalid(self): port = self.get_http_port() url = 'ws://127.0.0.1:%d/echo' % port # Host is 127.0.0.1, which should not be accessible from some other # domain headers = {'Origin': 'http://somewhereelse.com'} with self.assertRaises(HTTPError) as cm: yield websocket_connect(HTTPRequest(url, headers=headers)) self.assertEqual(cm.exception.code, 403) @gen_test def test_check_origin_invalid_subdomains(self): port = self.get_http_port() url = 'ws://localhost:%d/echo' % port # Subdomains should be disallowed by default. If we could pass a # resolver to websocket_connect we could test sibling domains as well. headers = {'Origin': 'http://subtenant.localhost'} with self.assertRaises(HTTPError) as cm: yield websocket_connect(HTTPRequest(url, headers=headers)) self.assertEqual(cm.exception.code, 403) if sys.version_info >= (3, 5): NativeCoroutineOnMessageHandler = exec_test(globals(), locals(), """ class NativeCoroutineOnMessageHandler(TestWebSocketHandler): def initialize(self, close_future, compression_options=None): super().initialize(close_future, compression_options) self.sleeping = 0 async def on_message(self, message): if self.sleeping > 0: self.write_message('another coroutine is already sleeping') self.sleeping += 1 await gen.sleep(0.01) self.sleeping -= 1 self.write_message(message)""")['NativeCoroutineOnMessageHandler'] class WebSocketNativeCoroutineTest(WebSocketBaseTestCase): def get_app(self): self.close_future = Future() return Application([ ('/native', NativeCoroutineOnMessageHandler, dict(close_future=self.close_future))]) @skipBefore35 @gen_test def test_native_coroutine(self): ws = yield self.ws_connect('/native') # Send both messages immediately, coroutine must process one at a time. yield ws.write_message('hello1') yield ws.write_message('hello2') res = yield ws.read_message() self.assertEqual(res, 'hello1') res = yield ws.read_message() self.assertEqual(res, 'hello2') class CompressionTestMixin(object): MESSAGE = 'Hello world. Testing 123 123' def get_app(self): self.close_future = Future() return Application([ ('/echo', EchoHandler, dict( close_future=self.close_future, compression_options=self.get_server_compression_options())), ]) def get_server_compression_options(self): return None def get_client_compression_options(self): return None @gen_test def test_message_sizes(self): ws = yield self.ws_connect( '/echo', compression_options=self.get_client_compression_options()) # Send the same message three times so we can measure the # effect of the context_takeover options. for i in range(3): ws.write_message(self.MESSAGE) response = yield ws.read_message() self.assertEqual(response, self.MESSAGE) self.assertEqual(ws.protocol._message_bytes_out, len(self.MESSAGE) * 3) self.assertEqual(ws.protocol._message_bytes_in, len(self.MESSAGE) * 3) self.verify_wire_bytes(ws.protocol._wire_bytes_in, ws.protocol._wire_bytes_out) yield self.close(ws) class UncompressedTestMixin(CompressionTestMixin): """Specialization of CompressionTestMixin when we expect no compression.""" def verify_wire_bytes(self, bytes_in, bytes_out): # Bytes out includes the 4-byte mask key per message. self.assertEqual(bytes_out, 3 * (len(self.MESSAGE) + 6)) self.assertEqual(bytes_in, 3 * (len(self.MESSAGE) + 2)) class NoCompressionTest(UncompressedTestMixin, WebSocketBaseTestCase): pass # If only one side tries to compress, the extension is not negotiated. class ServerOnlyCompressionTest(UncompressedTestMixin, WebSocketBaseTestCase): def get_server_compression_options(self): return {} class ClientOnlyCompressionTest(UncompressedTestMixin, WebSocketBaseTestCase): def get_client_compression_options(self): return {} class DefaultCompressionTest(CompressionTestMixin, WebSocketBaseTestCase): def get_server_compression_options(self): return {} def get_client_compression_options(self): return {} def verify_wire_bytes(self, bytes_in, bytes_out): self.assertLess(bytes_out, 3 * (len(self.MESSAGE) + 6)) self.assertLess(bytes_in, 3 * (len(self.MESSAGE) + 2)) # Bytes out includes the 4 bytes mask key per message. self.assertEqual(bytes_out, bytes_in + 12) class MaskFunctionMixin(object): # Subclasses should define self.mask(mask, data) def test_mask(self): self.assertEqual(self.mask(b'abcd', b''), b'') self.assertEqual(self.mask(b'abcd', b'b'), b'\x03') self.assertEqual(self.mask(b'abcd', b'54321'), b'TVPVP') self.assertEqual(self.mask(b'ZXCV', b'98765432'), b'c`t`olpd') # Include test cases with \x00 bytes (to ensure that the C # extension isn't depending on null-terminated strings) and # bytes with the high bit set (to smoke out signedness issues). self.assertEqual(self.mask(b'\x00\x01\x02\x03', b'\xff\xfb\xfd\xfc\xfe\xfa'), b'\xff\xfa\xff\xff\xfe\xfb') self.assertEqual(self.mask(b'\xff\xfb\xfd\xfc', b'\x00\x01\x02\x03\x04\x05'), b'\xff\xfa\xff\xff\xfb\xfe') class PythonMaskFunctionTest(MaskFunctionMixin, unittest.TestCase): def mask(self, mask, data): return _websocket_mask_python(mask, data) @unittest.skipIf(speedups is None, "tornado.speedups module not present") class CythonMaskFunctionTest(MaskFunctionMixin, unittest.TestCase): def mask(self, mask, data): return speedups.websocket_mask(mask, data) class ServerPeriodicPingTest(WebSocketBaseTestCase): def get_app(self): class PingHandler(TestWebSocketHandler): def on_pong(self, data): self.write_message("got pong") self.close_future = Future() return Application([ ('/', PingHandler, dict(close_future=self.close_future)), ], websocket_ping_interval=0.01) @gen_test def test_server_ping(self): ws = yield self.ws_connect('/') for i in range(3): response = yield ws.read_message() self.assertEqual(response, "got pong") yield self.close(ws) # TODO: test that the connection gets closed if ping responses stop. class ClientPeriodicPingTest(WebSocketBaseTestCase): def get_app(self): class PingHandler(TestWebSocketHandler): def on_ping(self, data): self.write_message("got ping") self.close_future = Future() return Application([ ('/', PingHandler, dict(close_future=self.close_future)), ]) @gen_test def test_client_ping(self): ws = yield self.ws_connect('/', ping_interval=0.01) for i in range(3): response = yield ws.read_message() self.assertEqual(response, "got ping") yield self.close(ws) # TODO: test that the connection gets closed if ping responses stop. class MaxMessageSizeTest(WebSocketBaseTestCase): def get_app(self): self.close_future = Future() return Application([ ('/', EchoHandler, dict(close_future=self.close_future)), ], websocket_max_message_size=1024) @gen_test def test_large_message(self): ws = yield self.ws_connect('/') # Write a message that is allowed. msg = 'a' * 1024 ws.write_message(msg) resp = yield ws.read_message() self.assertEqual(resp, msg) # Write a message that is too large. ws.write_message(msg + 'b') resp = yield ws.read_message() # A message of None means the other side closed the connection. self.assertIs(resp, None) self.assertEqual(ws.close_code, 1009) self.assertEqual(ws.close_reason, "message too big") # TODO: Needs tests of messages split over multiple # continuation frames.
{ "repo_name": "Lancher/tornado", "path": "tornado/test/websocket_test.py", "copies": "2", "size": "23022", "license": "apache-2.0", "hash": -3040779872807273500, "line_mean": 34.4730354391, "line_max": 103, "alpha_frac": 0.6224046564, "autogenerated": false, "ratio": 3.996875, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.56192796564, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import sys import warnings from collections import Mapping, defaultdict from distutils.version import LooseVersion from numbers import Number import numpy as np import pandas as pd import xarray as xr from . import ( alignment, duck_array_ops, formatting, groupby, indexing, ops, resample, rolling, utils) from .. import conventions from .alignment import align from .common import (DataWithCoords, ImplementsDatasetReduce, _contains_datetime_like_objects) from .coordinates import ( DatasetCoordinates, Indexes, LevelCoordinatesSource, assert_coordinate_consistent, remap_label_indexers) from .dtypes import is_datetime_like from .merge import ( dataset_merge_method, dataset_update_method, merge_data_and_coords, merge_variables) from .options import OPTIONS from .pycompat import ( OrderedDict, basestring, dask_array_type, integer_types, iteritems, range) from .utils import ( Frozen, SortedKeysDict, decode_numpy_dict_values, ensure_us_time_resolution, hashable, maybe_wrap_array) from .variable import IndexVariable, Variable, as_variable, broadcast_variables # list of attributes of pd.DatetimeIndex that are ndarrays of time info _DATETIMEINDEX_COMPONENTS = ['year', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'date', 'time', 'dayofyear', 'weekofyear', 'dayofweek', 'quarter'] def _get_virtual_variable(variables, key, level_vars=None, dim_sizes=None): """Get a virtual variable (e.g., 'time.year' or a MultiIndex level) from a dict of xarray.Variable objects (if possible) """ if level_vars is None: level_vars = {} if dim_sizes is None: dim_sizes = {} if key in dim_sizes: data = pd.Index(range(dim_sizes[key]), name=key) variable = IndexVariable((key,), data) return key, key, variable if not isinstance(key, basestring): raise KeyError(key) split_key = key.split('.', 1) if len(split_key) == 2: ref_name, var_name = split_key elif len(split_key) == 1: ref_name, var_name = key, None else: raise KeyError(key) if ref_name in level_vars: dim_var = variables[level_vars[ref_name]] ref_var = dim_var.to_index_variable().get_level_variable(ref_name) else: ref_var = variables[ref_name] if var_name is None: virtual_var = ref_var var_name = key else: if _contains_datetime_like_objects(ref_var): ref_var = xr.DataArray(ref_var) data = getattr(ref_var.dt, var_name).data else: data = getattr(ref_var, var_name).data virtual_var = Variable(ref_var.dims, data) return ref_name, var_name, virtual_var def calculate_dimensions(variables): """Calculate the dimensions corresponding to a set of variables. Returns dictionary mapping from dimension names to sizes. Raises ValueError if any of the dimension sizes conflict. """ dims = OrderedDict() last_used = {} scalar_vars = set(k for k, v in iteritems(variables) if not v.dims) for k, var in iteritems(variables): for dim, size in zip(var.dims, var.shape): if dim in scalar_vars: raise ValueError('dimension %r already exists as a scalar ' 'variable' % dim) if dim not in dims: dims[dim] = size last_used[dim] = k elif dims[dim] != size: raise ValueError('conflicting sizes for dimension %r: ' 'length %s on %r and length %s on %r' % (dim, size, k, dims[dim], last_used[dim])) return dims def merge_indexes( indexes, # type: Dict[Any, Union[Any, List[Any]]] variables, # type: Dict[Any, Variable] coord_names, # type: Set append=False, # type: bool ): # type: (...) -> Tuple[OrderedDict[Any, Variable], Set] """Merge variables into multi-indexes. Not public API. Used in Dataset and DataArray set_index methods. """ vars_to_replace = {} vars_to_remove = [] for dim, var_names in indexes.items(): if isinstance(var_names, basestring): var_names = [var_names] names, labels, levels = [], [], [] current_index_variable = variables.get(dim) for n in var_names: var = variables[n] if (current_index_variable is not None and var.dims != current_index_variable.dims): raise ValueError( "dimension mismatch between %r %s and %r %s" % (dim, current_index_variable.dims, n, var.dims)) if current_index_variable is not None and append: current_index = current_index_variable.to_index() if isinstance(current_index, pd.MultiIndex): names.extend(current_index.names) labels.extend(current_index.labels) levels.extend(current_index.levels) else: names.append('%s_level_0' % dim) cat = pd.Categorical(current_index.values, ordered=True) labels.append(cat.codes) levels.append(cat.categories) if not len(names) and len(var_names) == 1: idx = pd.Index(variables[var_names[0]].values) else: for n in var_names: names.append(n) var = variables[n] cat = pd.Categorical(var.values, ordered=True) labels.append(cat.codes) levels.append(cat.categories) idx = pd.MultiIndex(labels=labels, levels=levels, names=names) vars_to_replace[dim] = IndexVariable(dim, idx) vars_to_remove.extend(var_names) new_variables = OrderedDict([(k, v) for k, v in iteritems(variables) if k not in vars_to_remove]) new_variables.update(vars_to_replace) new_coord_names = coord_names | set(vars_to_replace) new_coord_names -= set(vars_to_remove) return new_variables, new_coord_names def split_indexes( dims_or_levels, # type: Union[Any, List[Any]] variables, # type: Dict[Any, Variable] coord_names, # type: Set level_coords, # type: Dict[Any, Any] drop=False, # type: bool ): # type: (...) -> Tuple[OrderedDict[Any, Variable], Set] """Extract (multi-)indexes (levels) as variables. Not public API. Used in Dataset and DataArray reset_index methods. """ if isinstance(dims_or_levels, basestring): dims_or_levels = [dims_or_levels] dim_levels = defaultdict(list) dims = [] for k in dims_or_levels: if k in level_coords: dim_levels[level_coords[k]].append(k) else: dims.append(k) vars_to_replace = {} vars_to_create = OrderedDict() vars_to_remove = [] for d in dims: index = variables[d].to_index() if isinstance(index, pd.MultiIndex): dim_levels[d] = index.names else: vars_to_remove.append(d) if not drop: vars_to_create[d + '_'] = Variable(d, index) for d, levs in dim_levels.items(): index = variables[d].to_index() if len(levs) == index.nlevels: vars_to_remove.append(d) else: vars_to_replace[d] = IndexVariable(d, index.droplevel(levs)) if not drop: for lev in levs: idx = index.get_level_values(lev) vars_to_create[idx.name] = Variable(d, idx) new_variables = variables.copy() for v in set(vars_to_remove): del new_variables[v] new_variables.update(vars_to_replace) new_variables.update(vars_to_create) new_coord_names = (coord_names | set(vars_to_create)) - set(vars_to_remove) return new_variables, new_coord_names def _assert_empty(args, msg='%s'): if args: raise ValueError(msg % args) def as_dataset(obj): """Cast the given object to a Dataset. Handles Datasets, DataArrays and dictionaries of variables. A new Dataset object is only created if the provided object is not already one. """ if hasattr(obj, 'to_dataset'): obj = obj.to_dataset() if not isinstance(obj, Dataset): obj = Dataset(obj) return obj class DataVariables(Mapping, formatting.ReprMixin): def __init__(self, dataset): self._dataset = dataset def __iter__(self): return (key for key in self._dataset._variables if key not in self._dataset._coord_names) def __len__(self): return len(self._dataset._variables) - len(self._dataset._coord_names) def __contains__(self, key): return (key in self._dataset._variables and key not in self._dataset._coord_names) def __getitem__(self, key): if key not in self._dataset._coord_names: return self._dataset[key] else: raise KeyError(key) def __unicode__(self): return formatting.data_vars_repr(self) @property def variables(self): all_variables = self._dataset.variables return Frozen(OrderedDict((k, all_variables[k]) for k in self)) def _ipython_key_completions_(self): """Provide method for the key-autocompletions in IPython. """ return [key for key in self._dataset._ipython_key_completions_() if key not in self._dataset._coord_names] class _LocIndexer(object): def __init__(self, dataset): self.dataset = dataset def __getitem__(self, key): if not utils.is_dict_like(key): raise TypeError('can only lookup dictionaries from Dataset.loc') return self.dataset.sel(**key) class Dataset(Mapping, ImplementsDatasetReduce, DataWithCoords, formatting.ReprMixin): """A multi-dimensional, in memory, array database. A dataset resembles an in-memory representation of a NetCDF file, and consists of variables, coordinates and attributes which together form a self describing dataset. Dataset implements the mapping interface with keys given by variable names and values given by DataArray objects for each variable name. One dimensional variables with name equal to their dimension are index coordinates used for label based indexing. """ _groupby_cls = groupby.DatasetGroupBy _rolling_cls = rolling.DatasetRolling _resample_cls = resample.DatasetResample def __init__(self, data_vars=None, coords=None, attrs=None, compat='broadcast_equals'): """To load data from a file or file-like object, use the `open_dataset` function. Parameters ---------- data_vars : dict-like, optional A mapping from variable names to :py:class:`~xarray.DataArray` objects, :py:class:`~xarray.Variable` objects or tuples of the form ``(dims, data[, attrs])`` which can be used as arguments to create a new ``Variable``. Each dimension must have the same length in all variables in which it appears. coords : dict-like, optional Another mapping in the same form as the `variables` argument, except the each item is saved on the dataset as a "coordinate". These variables have an associated meaning: they describe constant/fixed/independent quantities, unlike the varying/measured/dependent quantities that belong in `variables`. Coordinates values may be given by 1-dimensional arrays or scalars, in which case `dims` do not need to be supplied: 1D arrays will be assumed to give index values along the dimension with the same name. attrs : dict-like, optional Global attributes to save on this dataset. compat : {'broadcast_equals', 'equals', 'identical'}, optional String indicating how to compare variables of the same name for potential conflicts when initializing this dataset: - 'broadcast_equals': all values must be equal when variables are broadcast against each other to ensure common dimensions. - 'equals': all values and dimensions must be the same. - 'identical': all values, dimensions and attributes must be the same. """ self._variables = OrderedDict() self._coord_names = set() self._dims = {} self._attrs = None self._file_obj = None if data_vars is None: data_vars = {} if coords is None: coords = {} if data_vars is not None or coords is not None: self._set_init_vars_and_dims(data_vars, coords, compat) if attrs is not None: self.attrs = attrs self._encoding = None self._initialized = True def _set_init_vars_and_dims(self, data_vars, coords, compat): """Set the initial value of Dataset variables and dimensions """ both_data_and_coords = [k for k in data_vars if k in coords] if both_data_and_coords: raise ValueError('variables %r are found in both data_vars and ' 'coords' % both_data_and_coords) if isinstance(coords, Dataset): coords = coords.variables variables, coord_names, dims = merge_data_and_coords( data_vars, coords, compat=compat) self._variables = variables self._coord_names = coord_names self._dims = dims @classmethod def load_store(cls, store, decoder=None): """Create a new dataset from the contents of a backends.*DataStore object """ variables, attributes = store.load() if decoder: variables, attributes = decoder(variables, attributes) obj = cls(variables, attrs=attributes) obj._file_obj = store return obj @property def variables(self): """Low level interface to Dataset contents as dict of Variable objects. This ordered dictionary is frozen to prevent mutation that could violate Dataset invariants. It contains all variable objects constituting the Dataset, including both data variables and coordinates. """ return Frozen(self._variables) def _attrs_copy(self): return None if self._attrs is None else OrderedDict(self._attrs) @property def attrs(self): """Dictionary of global attributes on this dataset """ if self._attrs is None: self._attrs = OrderedDict() return self._attrs @attrs.setter def attrs(self, value): self._attrs = OrderedDict(value) @property def encoding(self): """Dictionary of global encoding attributes on this dataset """ if self._encoding is None: self._encoding = {} return self._encoding @encoding.setter def encoding(self, value): self._encoding = dict(value) @property def dims(self): """Mapping from dimension names to lengths. Cannot be modified directly, but is updated when adding new variables. Note that type of this object differs from `DataArray.dims`. See `Dataset.sizes` and `DataArray.sizes` for consistently named properties. """ return Frozen(SortedKeysDict(self._dims)) @property def sizes(self): """Mapping from dimension names to lengths. Cannot be modified directly, but is updated when adding new variables. This is an alias for `Dataset.dims` provided for the benefit of consistency with `DataArray.sizes`. See also -------- DataArray.sizes """ return self.dims def load(self, **kwargs): """Manually trigger loading of this dataset's data from disk or a remote source into memory and return this dataset. Normally, it should not be necessary to call this method in user code, because all xarray functions should either work on deferred data or load data automatically. However, this method can be necessary when working with many file objects on disk. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.array.compute``. See Also -------- dask.array.compute """ # access .data to coerce everything to numpy or dask arrays lazy_data = {k: v._data for k, v in self.variables.items() if isinstance(v._data, dask_array_type)} if lazy_data: import dask.array as da # evaluate all the dask arrays simultaneously evaluated_data = da.compute(*lazy_data.values(), **kwargs) for k, data in zip(lazy_data, evaluated_data): self.variables[k].data = data # load everything else sequentially for k, v in self.variables.items(): if k not in lazy_data: v.load() return self def __dask_graph__(self): graphs = {k: v.__dask_graph__() for k, v in self.variables.items()} graphs = {k: v for k, v in graphs.items() if v is not None} if not graphs: return None else: from dask import sharedict return sharedict.merge(*graphs.values()) def __dask_keys__(self): import dask return [v.__dask_keys__() for v in self.variables.values() if dask.is_dask_collection(v)] @property def __dask_optimize__(self): import dask.array as da return da.Array.__dask_optimize__ @property def __dask_scheduler__(self): import dask.array as da return da.Array.__dask_scheduler__ def __dask_postcompute__(self): import dask info = [(True, k, v.__dask_postcompute__()) if dask.is_dask_collection(v) else (False, k, v) for k, v in self._variables.items()] return self._dask_postcompute, (info, self._coord_names, self._dims, self._attrs, self._file_obj, self._encoding) def __dask_postpersist__(self): import dask info = [(True, k, v.__dask_postpersist__()) if dask.is_dask_collection(v) else (False, k, v) for k, v in self._variables.items()] return self._dask_postpersist, (info, self._coord_names, self._dims, self._attrs, self._file_obj, self._encoding) @staticmethod def _dask_postcompute(results, info, *args): variables = OrderedDict() results2 = list(results[::-1]) for is_dask, k, v in info: if is_dask: func, args2 = v r = results2.pop() result = func(r, *args2) else: result = v variables[k] = result final = Dataset._construct_direct(variables, *args) return final @staticmethod def _dask_postpersist(dsk, info, *args): variables = OrderedDict() for is_dask, k, v in info: if is_dask: func, args2 = v result = func(dsk, *args2) else: result = v variables[k] = result return Dataset._construct_direct(variables, *args) def compute(self, **kwargs): """Manually trigger loading of this dataset's data from disk or a remote source into memory and return a new dataset. The original is left unaltered. Normally, it should not be necessary to call this method in user code, because all xarray functions should either work on deferred data or load data automatically. However, this method can be necessary when working with many file objects on disk. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.array.compute``. See Also -------- dask.array.compute """ new = self.copy(deep=False) return new.load(**kwargs) def _persist_inplace(self, **kwargs): """ Persist all Dask arrays in memory """ # access .data to coerce everything to numpy or dask arrays lazy_data = {k: v._data for k, v in self.variables.items() if isinstance(v._data, dask_array_type)} if lazy_data: import dask # evaluate all the dask arrays simultaneously evaluated_data = dask.persist(*lazy_data.values(), **kwargs) for k, data in zip(lazy_data, evaluated_data): self.variables[k].data = data return self def persist(self, **kwargs): """ Trigger computation, keeping data as dask arrays This operation can be used to trigger computation on underlying dask arrays, similar to ``.compute()``. However this operation keeps the data as dask arrays. This is particularly useful when using the dask.distributed scheduler and you want to load a large amount of data into distributed memory. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.persist``. See Also -------- dask.persist """ new = self.copy(deep=False) return new._persist_inplace(**kwargs) @classmethod def _construct_direct(cls, variables, coord_names, dims=None, attrs=None, file_obj=None, encoding=None): """Shortcut around __init__ for internal use when we want to skip costly validation """ obj = object.__new__(cls) obj._variables = variables obj._coord_names = coord_names obj._dims = dims obj._attrs = attrs obj._file_obj = file_obj obj._encoding = encoding obj._initialized = True return obj __default_attrs = object() @classmethod def _from_vars_and_coord_names(cls, variables, coord_names, attrs=None): dims = dict(calculate_dimensions(variables)) return cls._construct_direct(variables, coord_names, dims, attrs) def _replace_vars_and_dims(self, variables, coord_names=None, dims=None, attrs=__default_attrs, inplace=False): """Fastpath constructor for internal use. Preserves coord names and attributes. If not provided explicitly, dimensions are recalculated from the supplied variables. The arguments are *not* copied when placed on the new dataset. It is up to the caller to ensure that they have the right type and are not used elsewhere. Parameters ---------- variables : OrderedDict coord_names : set or None, optional attrs : OrderedDict or None, optional Returns ------- new : Dataset """ if dims is None: dims = calculate_dimensions(variables) if inplace: self._dims = dims self._variables = variables if coord_names is not None: self._coord_names = coord_names if attrs is not self.__default_attrs: self._attrs = attrs obj = self else: if coord_names is None: coord_names = self._coord_names.copy() if attrs is self.__default_attrs: attrs = self._attrs_copy() obj = self._construct_direct(variables, coord_names, dims, attrs) return obj def _replace_indexes(self, indexes): if not len(indexes): return self variables = self._variables.copy() for name, idx in indexes.items(): variables[name] = IndexVariable(name, idx) obj = self._replace_vars_and_dims(variables) # switch from dimension to level names, if necessary dim_names = {} for dim, idx in indexes.items(): if not isinstance(idx, pd.MultiIndex) and idx.name != dim: dim_names[dim] = idx.name if dim_names: obj = obj.rename(dim_names) return obj def copy(self, deep=False): """Returns a copy of this dataset. If `deep=True`, a deep copy is made of each of the component variables. Otherwise, a shallow copy of each of the component variable is made, so that the underlying memory region of the new dataset is the same as in the original dataset. """ variables = OrderedDict((k, v.copy(deep=deep)) for k, v in iteritems(self._variables)) # skip __init__ to avoid costly validation return self._construct_direct(variables, self._coord_names.copy(), self._dims.copy(), self._attrs_copy(), encoding=self.encoding) def _subset_with_all_valid_coords(self, variables, coord_names, attrs): needed_dims = set() for v in variables.values(): needed_dims.update(v.dims) for k in self._coord_names: if set(self.variables[k].dims) <= needed_dims: variables[k] = self._variables[k] coord_names.add(k) dims = dict((k, self._dims[k]) for k in needed_dims) return self._construct_direct(variables, coord_names, dims, attrs) @property def _level_coords(self): """Return a mapping of all MultiIndex levels and their corresponding coordinate name. """ level_coords = OrderedDict() for cname in self._coord_names: var = self.variables[cname] if var.ndim == 1 and isinstance(var, IndexVariable): level_names = var.level_names if level_names is not None: dim, = var.dims level_coords.update({lname: dim for lname in level_names}) return level_coords def _copy_listed(self, names): """Create a new Dataset with the listed variables from this dataset and the all relevant coordinates. Skips all validation. """ variables = OrderedDict() coord_names = set() for name in names: try: variables[name] = self._variables[name] except KeyError: ref_name, var_name, var = _get_virtual_variable( self._variables, name, self._level_coords, self.dims) variables[var_name] = var if ref_name in self._coord_names or ref_name in self.dims: coord_names.add(var_name) return self._subset_with_all_valid_coords(variables, coord_names, attrs=self.attrs.copy()) def _construct_dataarray(self, name): """Construct a DataArray by indexing this dataset """ from .dataarray import DataArray try: variable = self._variables[name] except KeyError: _, name, variable = _get_virtual_variable( self._variables, name, self._level_coords, self.dims) coords = OrderedDict() needed_dims = set(variable.dims) for k in self.coords: if set(self.variables[k].dims) <= needed_dims: coords[k] = self.variables[k] return DataArray(variable, coords, name=name, fastpath=True) def __copy__(self): return self.copy(deep=False) def __deepcopy__(self, memo=None): # memo does nothing but is required for compatibility with # copy.deepcopy return self.copy(deep=True) @property def _attr_sources(self): """List of places to look-up items for attribute-style access""" return self._item_sources + [self.attrs] @property def _item_sources(self): """List of places to look-up items for key-completion""" return [self.data_vars, self.coords, {d: self[d] for d in self.dims}, LevelCoordinatesSource(self)] def __dir__(self): # In order to suppress a deprecation warning in Ipython autocompletion # .T is explicitly removed from __dir__. GH: issue 1675 d = super(Dataset, self).__dir__() d.remove('T') return d def __contains__(self, key): """The 'in' operator will return true or false depending on whether 'key' is an array in the dataset or not. """ return key in self._variables def __len__(self): warnings.warn('calling len() on an xarray.Dataset will change in ' 'xarray v0.11 to only include data variables, not ' 'coordinates. Call len() on the Dataset.variables ' 'property instead, like ``len(ds.variables)``, to ' 'preserve existing behavior in a forwards compatible ' 'manner.', FutureWarning, stacklevel=2) return len(self._variables) def __bool__(self): warnings.warn('casting an xarray.Dataset to a boolean will change in ' 'xarray v0.11 to only include data variables, not ' 'coordinates. Cast the Dataset.variables property ' 'instead to preserve existing behavior in a forwards ' 'compatible manner.', FutureWarning, stacklevel=2) return bool(self._variables) def __iter__(self): warnings.warn('iteration over an xarray.Dataset will change in xarray ' 'v0.11 to only include data variables, not coordinates. ' 'Iterate over the Dataset.variables property instead to ' 'preserve existing behavior in a forwards compatible ' 'manner.', FutureWarning, stacklevel=2) return iter(self._variables) def __array__(self, dtype=None): raise TypeError('cannot directly convert an xarray.Dataset into a ' 'numpy array. Instead, create an xarray.DataArray ' 'first, either with indexing on the Dataset or by ' 'invoking the `to_array()` method.') @property def nbytes(self): return sum(v.nbytes for v in self.variables.values()) @property def loc(self): """Attribute for location based indexing. Only supports __getitem__, and only when the key is a dict of the form {dim: labels}. """ return _LocIndexer(self) def __getitem__(self, key): """Access variables or coordinates this dataset as a :py:class:`~xarray.DataArray`. Indexing with a list of names will return a new ``Dataset`` object. """ if utils.is_dict_like(key): return self.isel(**key) if hashable(key): return self._construct_dataarray(key) else: return self._copy_listed(np.asarray(key)) def __setitem__(self, key, value): """Add an array to this dataset. If value is a `DataArray`, call its `select_vars()` method, rename it to `key` and merge the contents of the resulting dataset into this dataset. If value is an `Variable` object (or tuple of form ``(dims, data[, attrs])``), add it to this dataset as a new variable. """ if utils.is_dict_like(key): raise NotImplementedError('cannot yet use a dictionary as a key ' 'to set Dataset values') self.update({key: value}) def __delitem__(self, key): """Remove a variable from this dataset. """ del self._variables[key] self._coord_names.discard(key) # mutable objects should not be hashable __hash__ = None def _all_compat(self, other, compat_str): """Helper function for equals and identical""" # some stores (e.g., scipy) do not seem to preserve order, so don't # require matching order for equality def compat(x, y): return getattr(x, compat_str)(y) return (self._coord_names == other._coord_names and utils.dict_equiv(self._variables, other._variables, compat=compat)) def broadcast_equals(self, other): """Two Datasets are broadcast equal if they are equal after broadcasting all variables against each other. For example, variables that are scalar in one dataset but non-scalar in the other dataset can still be broadcast equal if the the non-scalar variable is a constant. See Also -------- Dataset.equals Dataset.identical """ try: return self._all_compat(other, 'broadcast_equals') except (TypeError, AttributeError): return False def equals(self, other): """Two Datasets are equal if they have matching variables and coordinates, all of which are equal. Datasets can still be equal (like pandas objects) if they have NaN values in the same locations. This method is necessary because `v1 == v2` for ``Dataset`` does element-wise comparisons (like numpy.ndarrays). See Also -------- Dataset.broadcast_equals Dataset.identical """ try: return self._all_compat(other, 'equals') except (TypeError, AttributeError): return False def identical(self, other): """Like equals, but also checks all dataset attributes and the attributes on all variables and coordinates. See Also -------- Dataset.broadcast_equals Dataset.equals """ try: return (utils.dict_equiv(self.attrs, other.attrs) and self._all_compat(other, 'identical')) except (TypeError, AttributeError): return False @property def indexes(self): """OrderedDict of pandas.Index objects used for label based indexing """ return Indexes(self._variables, self._dims) @property def coords(self): """Dictionary of xarray.DataArray objects corresponding to coordinate variables """ return DatasetCoordinates(self) @property def data_vars(self): """Dictionary of xarray.DataArray objects corresponding to data variables """ return DataVariables(self) def set_coords(self, names, inplace=False): """Given names of one or more variables, set them as coordinates Parameters ---------- names : str or list of str Name(s) of variables in this dataset to convert into coordinates. inplace : bool, optional If True, modify this dataset inplace. Otherwise, create a new object. Returns ------- Dataset """ # TODO: allow inserting new coordinates with this method, like # DataFrame.set_index? # nb. check in self._variables, not self.data_vars to insure that the # operation is idempotent if isinstance(names, basestring): names = [names] self._assert_all_in_dataset(names) obj = self if inplace else self.copy() obj._coord_names.update(names) return obj def reset_coords(self, names=None, drop=False, inplace=False): """Given names of coordinates, reset them to become variables Parameters ---------- names : str or list of str, optional Name(s) of non-index coordinates in this dataset to reset into variables. By default, all non-index coordinates are reset. drop : bool, optional If True, remove coordinates instead of converting them into variables. inplace : bool, optional If True, modify this dataset inplace. Otherwise, create a new object. Returns ------- Dataset """ if names is None: names = self._coord_names - set(self.dims) else: if isinstance(names, basestring): names = [names] self._assert_all_in_dataset(names) bad_coords = set(names) & set(self.dims) if bad_coords: raise ValueError( 'cannot remove index coordinates with reset_coords: %s' % bad_coords) obj = self if inplace else self.copy() obj._coord_names.difference_update(names) if drop: for name in names: del obj._variables[name] return obj def dump_to_store(self, store, encoder=None, sync=True, encoding=None, unlimited_dims=None, compute=True): """Store dataset contents to a backends.*DataStore object.""" if encoding is None: encoding = {} variables, attrs = conventions.encode_dataset_coordinates(self) check_encoding = set() for k, enc in encoding.items(): # no need to shallow copy the variable again; that already happened # in encode_dataset_coordinates variables[k].encoding = enc check_encoding.add(k) if encoder: variables, attrs = encoder(variables, attrs) store.store(variables, attrs, check_encoding, unlimited_dims=unlimited_dims) if sync: store.sync(compute=compute) def to_netcdf(self, path=None, mode='w', format=None, group=None, engine=None, encoding=None, unlimited_dims=None, compute=True): """Write dataset contents to a netCDF file. Parameters ---------- path : str, Path or file-like object, optional Path to which to save this dataset. File-like objects are only supported by the scipy engine. If no path is provided, this function returns the resulting netCDF file as bytes; in this case, we need to use scipy, which does not support netCDF version 4 (the default format becomes NETCDF3_64BIT). mode : {'w', 'a'}, optional Write ('w') or append ('a') mode. If mode='w', any existing file at this location will be overwritten. If mode='a', existing variables will be overwritten. format : {'NETCDF4', 'NETCDF4_CLASSIC', 'NETCDF3_64BIT','NETCDF3_CLASSIC'}, optional File format for the resulting netCDF file: * NETCDF4: Data is stored in an HDF5 file, using netCDF4 API features. * NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only netCDF 3 compatible API features. * NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format, which fully supports 2+ GB files, but is only compatible with clients linked against netCDF version 3.6.0 or later. * NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not handle 2+ GB files very well. All formats are supported by the netCDF4-python library. scipy.io.netcdf only supports the last two formats. The default format is NETCDF4 if you are saving a file to disk and have the netCDF4-python library available. Otherwise, xarray falls back to using scipy to write netCDF files and defaults to the NETCDF3_64BIT format (scipy does not support netCDF4). group : str, optional Path to the netCDF4 group in the given file to open (only works for format='NETCDF4'). The group(s) will be created if necessary. engine : {'netcdf4', 'scipy', 'h5netcdf'}, optional Engine to use when writing netCDF files. If not provided, the default engine is chosen based on available dependencies, with a preference for 'netcdf4' if writing to a file on disk. encoding : dict, optional Nested dictionary with variable names as keys and dictionaries of variable specific encodings as values, e.g., ``{'my_variable': {'dtype': 'int16', 'scale_factor': 0.1, 'zlib': True}, ...}`` The `h5netcdf` engine supports both the NetCDF4-style compression encoding parameters ``{'zlib': True, 'complevel': 9}`` and the h5py ones ``{'compression': 'gzip', 'compression_opts': 9}``. This allows using any compression plugin installed in the HDF5 library, e.g. LZF. unlimited_dims : sequence of str, optional Dimension(s) that should be serialized as unlimited dimensions. By default, no dimensions are treated as unlimited dimensions. Note that unlimited_dims may also be set via ``dataset.encoding['unlimited_dims']``. compute: boolean If true compute immediately, otherwise return a ``dask.delayed.Delayed`` object that can be computed later. """ if encoding is None: encoding = {} from ..backends.api import to_netcdf return to_netcdf(self, path, mode, format=format, group=group, engine=engine, encoding=encoding, unlimited_dims=unlimited_dims, compute=compute) def to_zarr(self, store=None, mode='w-', synchronizer=None, group=None, encoding=None, compute=True): """Write dataset contents to a zarr group. .. note:: Experimental The Zarr backend is new and experimental. Please report any unexpected behavior via github issues. Parameters ---------- store : MutableMapping or str, optional Store or path to directory in file system. mode : {'w', 'w-'} Persistence mode: 'w' means create (overwrite if exists); 'w-' means create (fail if exists). synchronizer : object, optional Array synchronizer group : str, obtional Group path. (a.k.a. `path` in zarr terminology.) encoding : dict, optional Nested dictionary with variable names as keys and dictionaries of variable specific encodings as values, e.g., ``{'my_variable': {'dtype': 'int16', 'scale_factor': 0.1,}, ...}`` compute: boolean If true compute immediately, otherwise return a ``dask.delayed.Delayed`` object that can be computed later. """ if encoding is None: encoding = {} if mode not in ['w', 'w-']: # TODO: figure out how to handle 'r+' and 'a' raise ValueError("The only supported options for mode are 'w' " "and 'w-'.") from ..backends.api import to_zarr return to_zarr(self, store=store, mode=mode, synchronizer=synchronizer, group=group, encoding=encoding, compute=compute) def __unicode__(self): return formatting.dataset_repr(self) def info(self, buf=None): """ Concise summary of a Dataset variables and attributes. Parameters ---------- buf : writable buffer, defaults to sys.stdout See Also -------- pandas.DataFrame.assign netCDF's ncdump """ if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(u'xarray.Dataset {') lines.append(u'dimensions:') for name, size in self.dims.items(): lines.append(u'\t{name} = {size} ;'.format(name=name, size=size)) lines.append(u'\nvariables:') for name, da in self.variables.items(): dims = u', '.join(da.dims) lines.append(u'\t{type} {name}({dims}) ;'.format( type=da.dtype, name=name, dims=dims)) for k, v in da.attrs.items(): lines.append(u'\t\t{name}:{k} = {v} ;'.format(name=name, k=k, v=v)) lines.append(u'\n// global attributes:') for k, v in self.attrs.items(): lines.append(u'\t:{k} = {v} ;'.format(k=k, v=v)) lines.append(u'}') buf.write(u'\n'.join(lines)) @property def chunks(self): """Block dimensions for this dataset's data or None if it's not a dask array. """ chunks = {} for v in self.variables.values(): if v.chunks is not None: for dim, c in zip(v.dims, v.chunks): if dim in chunks and c != chunks[dim]: raise ValueError('inconsistent chunks') chunks[dim] = c return Frozen(SortedKeysDict(chunks)) def chunk(self, chunks=None, name_prefix='xarray-', token=None, lock=False): """Coerce all arrays in this dataset into dask arrays with the given chunks. Non-dask arrays in this dataset will be converted to dask arrays. Dask arrays will be rechunked to the given chunk sizes. If neither chunks is not provided for one or more dimensions, chunk sizes along that dimension will not be updated; non-dask arrays will be converted into dask arrays with a single block. Parameters ---------- chunks : int or dict, optional Chunk sizes along each dimension, e.g., ``5`` or ``{'x': 5, 'y': 5}``. name_prefix : str, optional Prefix for the name of any new dask arrays. token : str, optional Token uniquely identifying this dataset. lock : optional Passed on to :py:func:`dask.array.from_array`, if the array is not already as dask array. Returns ------- chunked : xarray.Dataset """ try: from dask.base import tokenize except ImportError: import dask # raise the usual error if dask is entirely missing # flake8: noqa raise ImportError('xarray requires dask version 0.9 or newer') if isinstance(chunks, Number): chunks = dict.fromkeys(self.dims, chunks) if chunks is not None: bad_dims = [d for d in chunks if d not in self.dims] if bad_dims: raise ValueError('some chunks keys are not dimensions on this ' 'object: %s' % bad_dims) def selkeys(dict_, keys): if dict_ is None: return None return dict((d, dict_[d]) for d in keys if d in dict_) def maybe_chunk(name, var, chunks): chunks = selkeys(chunks, var.dims) if not chunks: chunks = None if var.ndim > 0: token2 = tokenize(name, token if token else var._data) name2 = '%s%s-%s' % (name_prefix, name, token2) return var.chunk(chunks, name=name2, lock=lock) else: return var variables = OrderedDict([(k, maybe_chunk(k, v, chunks)) for k, v in self.variables.items()]) return self._replace_vars_and_dims(variables) def _validate_indexers(self, indexers): """ Here we make sure + indexer has a valid keys + indexer is in a valid data type """ from .dataarray import DataArray invalid = [k for k in indexers if k not in self.dims] if invalid: raise ValueError("dimensions %r do not exist" % invalid) # all indexers should be int, slice, np.ndarrays, or Variable indexers_list = [] for k, v in iteritems(indexers): if isinstance(v, integer_types + (slice, Variable)): pass elif isinstance(v, DataArray): v = v.variable elif isinstance(v, tuple): v = as_variable(v) elif isinstance(v, Dataset): raise TypeError('cannot use a Dataset as an indexer') else: v = np.asarray(v) indexers_list.append((k, v)) return indexers_list def _get_indexers_coordinates(self, indexers): """ Extract coordinates from indexers. Returns an OrderedDict mapping from coordinate name to the coordinate variable. Only coordinate with a name different from any of self.variables will be attached. """ from .dataarray import DataArray coord_list = [] for k, v in indexers.items(): if isinstance(v, DataArray): v_coords = v.coords if v.dtype.kind == 'b': if v.ndim != 1: # we only support 1-d boolean array raise ValueError( '{:d}d-boolean array is used for indexing along ' 'dimension {!r}, but only 1d boolean arrays are ' 'supported.'.format(v.ndim, k)) # Make sure in case of boolean DataArray, its # coordinate also should be indexed. v_coords = v[v.values.nonzero()[0]].coords coord_list.append({d: v_coords[d].variable for d in v.coords}) # we don't need to call align() explicitly, because merge_variables # already checks for exact alignment between dimension coordinates coords = merge_variables(coord_list) assert_coordinate_consistent(self, coords) attached_coords = OrderedDict() for k, v in coords.items(): # silently drop the conflicted variables. if k not in self._variables: attached_coords[k] = v return attached_coords def isel(self, drop=False, **indexers): """Returns a new dataset with each array indexed along the specified dimension(s). This method selects values from each array using its `__getitem__` method, except this method does not require knowing the order of each array's dimensions. Parameters ---------- drop : bool, optional If ``drop=True``, drop coordinates variables indexed by integers instead of making them scalar. **indexers : {dim: indexer, ...} Keyword arguments with names matching dimensions and values given by integers, slice objects or arrays. indexer can be a integer, slice, array-like or DataArray. If DataArrays are passed as indexers, xarray-style indexing will be carried out. See :ref:`indexing` for the details. Returns ------- obj : Dataset A new Dataset with the same contents as this dataset, except each array and dimension is indexed by the appropriate indexers. If indexer DataArrays have coordinates that do not conflict with this object, then these coordinates will be attached. In general, each array's data will be a view of the array's data in this dataset, unless vectorized indexing was triggered by using an array indexer, in which case the data will be a copy. See Also -------- Dataset.sel DataArray.isel """ indexers_list = self._validate_indexers(indexers) variables = OrderedDict() for name, var in iteritems(self._variables): var_indexers = {k: v for k, v in indexers_list if k in var.dims} new_var = var.isel(**var_indexers) if not (drop and name in var_indexers): variables[name] = new_var coord_names = set(variables).intersection(self._coord_names) selected = self._replace_vars_and_dims(variables, coord_names=coord_names) # Extract coordinates from indexers coord_vars = selected._get_indexers_coordinates(indexers) variables.update(coord_vars) coord_names = (set(variables) .intersection(self._coord_names) .union(coord_vars)) return self._replace_vars_and_dims(variables, coord_names=coord_names) def sel(self, method=None, tolerance=None, drop=False, **indexers): """Returns a new dataset with each array indexed by tick labels along the specified dimension(s). In contrast to `Dataset.isel`, indexers for this method should use labels instead of integers. Under the hood, this method is powered by using pandas's powerful Index objects. This makes label based indexing essentially just as fast as using integer indexing. It also means this method uses pandas's (well documented) logic for indexing. This means you can use string shortcuts for datetime indexes (e.g., '2000-01' to select all values in January 2000). It also means that slices are treated as inclusive of both the start and stop values, unlike normal Python indexing. Parameters ---------- method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional Method to use for inexact matches (requires pandas>=0.16): * None (default): only exact matches * pad / ffill: propagate last valid index value forward * backfill / bfill: propagate next valid index value backward * nearest: use nearest valid index value tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Requires pandas>=0.17. drop : bool, optional If ``drop=True``, drop coordinates variables in `indexers` instead of making them scalar. **indexers : {dim: indexer, ...} Keyword arguments with names matching dimensions and values given by scalars, slices or arrays of tick labels. For dimensions with multi-index, the indexer may also be a dict-like object with keys matching index level names. If DataArrays are passed as indexers, xarray-style indexing will be carried out. See :ref:`indexing` for the details. Returns ------- obj : Dataset A new Dataset with the same contents as this dataset, except each variable and dimension is indexed by the appropriate indexers. If indexer DataArrays have coordinates that do not conflict with this object, then these coordinates will be attached. In general, each array's data will be a view of the array's data in this dataset, unless vectorized indexing was triggered by using an array indexer, in which case the data will be a copy. See Also -------- Dataset.isel DataArray.sel """ pos_indexers, new_indexes = remap_label_indexers(self, method, tolerance, **indexers) result = self.isel(drop=drop, **pos_indexers) return result._replace_indexes(new_indexes) def isel_points(self, dim='points', **indexers): # type: (...) -> Dataset """Returns a new dataset with each array indexed pointwise along the specified dimension(s). This method selects pointwise values from each array and is akin to the NumPy indexing behavior of `arr[[0, 1], [0, 1]]`, except this method does not require knowing the order of each array's dimensions. Parameters ---------- dim : str or DataArray or pandas.Index or other list-like object, optional Name of the dimension to concatenate along. If dim is provided as a string, it must be a new dimension name, in which case it is added along axis=0. If dim is provided as a DataArray or Index or list-like object, its name, which must not be present in the dataset, is used as the dimension to concatenate along and the values are added as a coordinate. **indexers : {dim: indexer, ...} Keyword arguments with names matching dimensions and values given by array-like objects. All indexers must be the same length and 1 dimensional. Returns ------- obj : Dataset A new Dataset with the same contents as this dataset, except each array and dimension is indexed by the appropriate indexers. With pointwise indexing, the new Dataset will always be a copy of the original. See Also -------- Dataset.sel Dataset.isel Dataset.sel_points DataArray.isel_points """ warnings.warn('Dataset.isel_points is deprecated: use Dataset.isel()' 'instead.', DeprecationWarning, stacklevel=2) indexer_dims = set(indexers) def take(variable, slices): # Note: remove helper function when once when numpy # supports vindex https://github.com/numpy/numpy/pull/6075 if hasattr(variable.data, 'vindex'): # Special case for dask backed arrays to use vectorised list # indexing sel = variable.data.vindex[slices] else: # Otherwise assume backend is numpy array with 'fancy' indexing sel = variable.data[slices] return sel def relevant_keys(mapping): return [k for k, v in mapping.items() if any(d in indexer_dims for d in v.dims)] coords = relevant_keys(self.coords) indexers = [(k, np.asarray(v)) for k, v in iteritems(indexers)] indexers_dict = dict(indexers) non_indexed_dims = set(self.dims) - indexer_dims non_indexed_coords = set(self.coords) - set(coords) # All the indexers should be iterables # Check that indexers are valid dims, integers, and 1D for k, v in indexers: if k not in self.dims: raise ValueError("dimension %s does not exist" % k) if v.dtype.kind != 'i': raise TypeError('Indexers must be integers') if v.ndim != 1: raise ValueError('Indexers must be 1 dimensional') # all the indexers should have the same length lengths = set(len(v) for k, v in indexers) if len(lengths) > 1: raise ValueError('All indexers must be the same length') # Existing dimensions are not valid choices for the dim argument if isinstance(dim, basestring): if dim in self.dims: # dim is an invalid string raise ValueError('Existing dimension names are not valid ' 'choices for the dim argument in sel_points') elif hasattr(dim, 'dims'): # dim is a DataArray or Coordinate if dim.name in self.dims: # dim already exists raise ValueError('Existing dimensions are not valid choices ' 'for the dim argument in sel_points') # Set the new dim_name, and optionally the new dim coordinate # dim is either an array-like or a string if not utils.is_scalar(dim): # dim is array like get name or assign 'points', get as variable dim_name = 'points' if not hasattr(dim, 'name') else dim.name dim_coord = as_variable(dim, name=dim_name) else: # dim is a string dim_name = dim dim_coord = None reordered = self.transpose( *(list(indexer_dims) + list(non_indexed_dims))) variables = OrderedDict() for name, var in reordered.variables.items(): if name in indexers_dict or any( d in indexer_dims for d in var.dims): # slice if var is an indexer or depends on an indexed dim slc = [indexers_dict[k] if k in indexers_dict else slice(None) for k in var.dims] var_dims = [dim_name] + [d for d in var.dims if d in non_indexed_dims] selection = take(var, tuple(slc)) var_subset = type(var)(var_dims, selection, var.attrs) variables[name] = var_subset else: # If not indexed just add it back to variables or coordinates variables[name] = var coord_names = (set(coords) & set(variables)) | non_indexed_coords dset = self._replace_vars_and_dims(variables, coord_names=coord_names) # Add the dim coord to the new dset. Must be done after creation # because_replace_vars_and_dims can only access existing coords, # not add new ones if dim_coord is not None: dset.coords[dim_name] = dim_coord return dset def sel_points(self, dim='points', method=None, tolerance=None, **indexers): """Returns a new dataset with each array indexed pointwise by tick labels along the specified dimension(s). In contrast to `Dataset.isel_points`, indexers for this method should use labels instead of integers. In contrast to `Dataset.sel`, this method selects points along the diagonal of multi-dimensional arrays, not the intersection. Parameters ---------- dim : str or DataArray or pandas.Index or other list-like object, optional Name of the dimension to concatenate along. If dim is provided as a string, it must be a new dimension name, in which case it is added along axis=0. If dim is provided as a DataArray or Index or list-like object, its name, which must not be present in the dataset, is used as the dimension to concatenate along and the values are added as a coordinate. method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional Method to use for inexact matches (requires pandas>=0.16): * None (default): only exact matches * pad / ffill: propagate last valid index value forward * backfill / bfill: propagate next valid index value backward * nearest: use nearest valid index value tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Requires pandas>=0.17. **indexers : {dim: indexer, ...} Keyword arguments with names matching dimensions and values given by array-like objects. All indexers must be the same length and 1 dimensional. Returns ------- obj : Dataset A new Dataset with the same contents as this dataset, except each array and dimension is indexed by the appropriate indexers. With pointwise indexing, the new Dataset will always be a copy of the original. See Also -------- Dataset.sel Dataset.isel Dataset.isel_points DataArray.sel_points """ warnings.warn('Dataset.sel_points is deprecated: use Dataset.sel()' 'instead.', DeprecationWarning, stacklevel=2) pos_indexers, _ = indexing.remap_label_indexers( self, indexers, method=method, tolerance=tolerance ) return self.isel_points(dim=dim, **pos_indexers) def reindex_like(self, other, method=None, tolerance=None, copy=True): """Conform this object onto the indexes of another object, filling in missing values with NaN. Parameters ---------- other : Dataset or DataArray Object with an 'indexes' attribute giving a mapping from dimension names to pandas.Index objects, which provides coordinates upon which to index the variables in this dataset. The indexes on this other object need not be the same as the indexes on this dataset. Any mis-matched index values will be filled in with NaN, and any mis-matched dimension names will simply be ignored. method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional Method to use for filling index values from other not found in this dataset: * None (default): don't fill gaps * pad / ffill: propagate last valid index value forward * backfill / bfill: propagate next valid index value backward * nearest: use nearest valid index value (requires pandas>=0.16) tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Requires pandas>=0.17. copy : bool, optional If ``copy=True``, data in the return value is always copied. If ``copy=False`` and reindexing is unnecessary, or can be performed with only slice operations, then the output may share memory with the input. In either case, a new xarray object is always returned. Returns ------- reindexed : Dataset Another dataset, with this dataset's data but coordinates from the other object. See Also -------- Dataset.reindex align """ indexers = alignment.reindex_like_indexers(self, other) return self.reindex(method=method, copy=copy, tolerance=tolerance, **indexers) def reindex(self, indexers=None, method=None, tolerance=None, copy=True, **kw_indexers): """Conform this object onto a new set of indexes, filling in missing values with NaN. Parameters ---------- indexers : dict. optional Dictionary with keys given by dimension names and values given by arrays of coordinates tick labels. Any mis-matched coordinate values will be filled in with NaN, and any mis-matched dimension names will simply be ignored. method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional Method to use for filling index values in ``indexers`` not found in this dataset: * None (default): don't fill gaps * pad / ffill: propagate last valid index value forward * backfill / bfill: propagate next valid index value backward * nearest: use nearest valid index value (requires pandas>=0.16) tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Requires pandas>=0.17. copy : bool, optional If ``copy=True``, data in the return value is always copied. If ``copy=False`` and reindexing is unnecessary, or can be performed with only slice operations, then the output may share memory with the input. In either case, a new xarray object is always returned. **kw_indexers : optional Keyword arguments in the same form as ``indexers``. Returns ------- reindexed : Dataset Another dataset, with this dataset's data but replaced coordinates. See Also -------- Dataset.reindex_like align pandas.Index.get_indexer """ indexers = utils.combine_pos_and_kw_args(indexers, kw_indexers, 'reindex') bad_dims = [d for d in indexers if d not in self.dims] if bad_dims: raise ValueError('invalid reindex dimensions: %s' % bad_dims) variables = alignment.reindex_variables( self.variables, self.sizes, self.indexes, indexers, method, tolerance, copy=copy) coord_names = set(self._coord_names) coord_names.update(indexers) return self._replace_vars_and_dims(variables, coord_names) def rename(self, name_dict, inplace=False): """Returns a new object with renamed variables and dimensions. Parameters ---------- name_dict : dict-like Dictionary whose keys are current variable or dimension names and whose values are the desired names. inplace : bool, optional If True, rename variables and dimensions in-place. Otherwise, return a new dataset object. Returns ------- renamed : Dataset Dataset with renamed variables and dimensions. See Also -------- Dataset.swap_dims DataArray.rename """ for k, v in name_dict.items(): if k not in self and k not in self.dims: raise ValueError("cannot rename %r because it is not a " "variable or dimension in this dataset" % k) variables = OrderedDict() coord_names = set() for k, v in iteritems(self._variables): name = name_dict.get(k, k) dims = tuple(name_dict.get(dim, dim) for dim in v.dims) var = v.copy(deep=False) var.dims = dims if name in variables: raise ValueError('the new name %r conflicts' % (name,)) variables[name] = var if k in self._coord_names: coord_names.add(name) dims = OrderedDict((name_dict.get(k, k), v) for k, v in self.dims.items()) return self._replace_vars_and_dims(variables, coord_names, dims=dims, inplace=inplace) def swap_dims(self, dims_dict, inplace=False): """Returns a new object with swapped dimensions. Parameters ---------- dims_dict : dict-like Dictionary whose keys are current dimension names and whose values are new names. Each value must already be a variable in the dataset. inplace : bool, optional If True, swap dimensions in-place. Otherwise, return a new dataset object. Returns ------- renamed : Dataset Dataset with swapped dimensions. See Also -------- Dataset.rename DataArray.swap_dims """ for k, v in dims_dict.items(): if k not in self.dims: raise ValueError('cannot swap from dimension %r because it is ' 'not an existing dimension' % k) if self.variables[v].dims != (k,): raise ValueError('replacement dimension %r is not a 1D ' 'variable along the old dimension %r' % (v, k)) result_dims = set(dims_dict.get(dim, dim) for dim in self.dims) variables = OrderedDict() coord_names = self._coord_names.copy() coord_names.update(dims_dict.values()) for k, v in iteritems(self.variables): dims = tuple(dims_dict.get(dim, dim) for dim in v.dims) if k in result_dims: var = v.to_index_variable() else: var = v.to_base_variable() var.dims = dims variables[k] = var return self._replace_vars_and_dims(variables, coord_names, inplace=inplace) def expand_dims(self, dim, axis=None): """Return a new object with an additional axis (or axes) inserted at the corresponding position in the array shape. If dim is already a scalar coordinate, it will be promoted to a 1D coordinate consisting of a single value. Parameters ---------- dim : str or sequence of str. Dimensions to include on the new variable. dimensions are inserted with length 1. axis : integer, list (or tuple) of integers, or None Axis position(s) where new axis is to be inserted (position(s) on the result array). If a list (or tuple) of integers is passed, multiple axes are inserted. In this case, dim arguments should be the same length list. If axis=None is passed, all the axes will be inserted to the start of the result array. Returns ------- expanded : same type as caller This object, but with an additional dimension(s). """ if isinstance(dim, int): raise ValueError('dim should be str or sequence of strs or dict') if isinstance(dim, basestring): dim = [dim] if axis is not None and not isinstance(axis, (list, tuple)): axis = [axis] if axis is None: axis = list(range(len(dim))) if len(dim) != len(axis): raise ValueError('lengths of dim and axis should be identical.') for d in dim: if d in self.dims: raise ValueError( 'Dimension {dim} already exists.'.format(dim=d)) if (d in self._variables and not utils.is_scalar(self._variables[d])): raise ValueError( '{dim} already exists as coordinate or' ' variable name.'.format(dim=d)) if len(dim) != len(set(dim)): raise ValueError('dims should not contain duplicate values.') variables = OrderedDict() for k, v in iteritems(self._variables): if k not in dim: if k in self._coord_names: # Do not change coordinates variables[k] = v else: result_ndim = len(v.dims) + len(axis) for a in axis: if a < -result_ndim or result_ndim - 1 < a: raise IndexError( 'Axis {a} is out of bounds of the expanded' ' dimension size {dim}.'.format( a=a, v=k, dim=result_ndim)) axis_pos = [a if a >= 0 else result_ndim + a for a in axis] if len(axis_pos) != len(set(axis_pos)): raise ValueError('axis should not contain duplicate' ' values.') # We need to sort them to make sure `axis` equals to the # axis positions of the result array. zip_axis_dim = sorted(zip(axis_pos, dim)) all_dims = list(v.dims) for a, d in zip_axis_dim: all_dims.insert(a, d) variables[k] = v.set_dims(all_dims) else: # If dims includes a label of a non-dimension coordinate, # it will be promoted to a 1D coordinate with a single value. variables[k] = v.set_dims(k) return self._replace_vars_and_dims(variables, self._coord_names) def set_index(self, append=False, inplace=False, **indexes): """Set Dataset (multi-)indexes using one or more existing coordinates or variables. Parameters ---------- append : bool, optional If True, append the supplied index(es) to the existing index(es). Otherwise replace the existing index(es) (default). inplace : bool, optional If True, set new index(es) in-place. Otherwise, return a new Dataset object. **indexes : {dim: index, ...} Keyword arguments with names matching dimensions and values given by (lists of) the names of existing coordinates or variables to set as new (multi-)index. Returns ------- obj : Dataset Another dataset, with this dataset's data but replaced coordinates. See Also -------- Dataset.reset_index """ variables, coord_names = merge_indexes(indexes, self._variables, self._coord_names, append=append) return self._replace_vars_and_dims(variables, coord_names=coord_names, inplace=inplace) def reset_index(self, dims_or_levels, drop=False, inplace=False): """Reset the specified index(es) or multi-index level(s). Parameters ---------- dims_or_levels : str or list Name(s) of the dimension(s) and/or multi-index level(s) that will be reset. drop : bool, optional If True, remove the specified indexes and/or multi-index levels instead of extracting them as new coordinates (default: False). inplace : bool, optional If True, modify the dataset in-place. Otherwise, return a new Dataset object. Returns ------- obj : Dataset Another dataset, with this dataset's data but replaced coordinates. See Also -------- Dataset.set_index """ variables, coord_names = split_indexes(dims_or_levels, self._variables, self._coord_names, self._level_coords, drop=drop) return self._replace_vars_and_dims(variables, coord_names=coord_names, inplace=inplace) def reorder_levels(self, inplace=False, **dim_order): """Rearrange index levels using input order. Parameters ---------- inplace : bool, optional If True, modify the dataset in-place. Otherwise, return a new DataArray object. **dim_order : optional Keyword arguments with names matching dimensions and values given by lists representing new level orders. Every given dimension must have a multi-index. Returns ------- obj : Dataset Another dataset, with this dataset's data but replaced coordinates. """ replace_variables = {} for dim, order in dim_order.items(): coord = self._variables[dim] index = coord.to_index() if not isinstance(index, pd.MultiIndex): raise ValueError("coordinate %r has no MultiIndex" % dim) replace_variables[dim] = IndexVariable(coord.dims, index.reorder_levels(order)) variables = self._variables.copy() variables.update(replace_variables) return self._replace_vars_and_dims(variables, inplace=inplace) def _stack_once(self, dims, new_dim): variables = OrderedDict() for name, var in self.variables.items(): if name not in dims: if any(d in var.dims for d in dims): add_dims = [d for d in dims if d not in var.dims] vdims = list(var.dims) + add_dims shape = [self.dims[d] for d in vdims] exp_var = var.set_dims(vdims, shape) stacked_var = exp_var.stack(**{new_dim: dims}) variables[name] = stacked_var else: variables[name] = var.copy(deep=False) # consider dropping levels that are unused? levels = [self.get_index(dim) for dim in dims] if hasattr(pd, 'RangeIndex'): # RangeIndex levels in a MultiIndex are broken for appending in # pandas before v0.19.0 levels = [pd.Int64Index(level) if isinstance(level, pd.RangeIndex) else level for level in levels] idx = utils.multiindex_from_product_levels(levels, names=dims) variables[new_dim] = IndexVariable(new_dim, idx) coord_names = set(self._coord_names) - set(dims) | set([new_dim]) return self._replace_vars_and_dims(variables, coord_names) def stack(self, **dimensions): """ Stack any number of existing dimensions into a single new dimension. New dimensions will be added at the end, and the corresponding coordinate variables will be combined into a MultiIndex. Parameters ---------- **dimensions : keyword arguments of the form new_name=(dim1, dim2, ...) Names of new dimensions, and the existing dimensions that they replace. Returns ------- stacked : Dataset Dataset with stacked data. See also -------- Dataset.unstack """ result = self for new_dim, dims in dimensions.items(): result = result._stack_once(dims, new_dim) return result def unstack(self, dim): """ Unstack an existing dimension corresponding to a MultiIndex into multiple new dimensions. New dimensions will be added at the end. Parameters ---------- dim : str Name of the existing dimension to unstack. Returns ------- unstacked : Dataset Dataset with unstacked data. See also -------- Dataset.stack """ if dim not in self.dims: raise ValueError('invalid dimension: %s' % dim) index = self.get_index(dim) if not isinstance(index, pd.MultiIndex): raise ValueError('cannot unstack a dimension that does not have ' 'a MultiIndex') full_idx = pd.MultiIndex.from_product(index.levels, names=index.names) obj = self.reindex(copy=False, **{dim: full_idx}) new_dim_names = index.names new_dim_sizes = [lev.size for lev in index.levels] variables = OrderedDict() for name, var in obj.variables.items(): if name != dim: if dim in var.dims: new_dims = OrderedDict(zip(new_dim_names, new_dim_sizes)) variables[name] = var.unstack(**{dim: new_dims}) else: variables[name] = var for name, lev in zip(new_dim_names, index.levels): variables[name] = IndexVariable(name, lev) coord_names = set(self._coord_names) - set([dim]) | set(new_dim_names) return self._replace_vars_and_dims(variables, coord_names) def update(self, other, inplace=True): """Update this dataset's variables with those from another dataset. Parameters ---------- other : Dataset or castable to Dataset Dataset or variables with which to update this dataset. inplace : bool, optional If True, merge the other dataset into this dataset in-place. Otherwise, return a new dataset object. Returns ------- updated : Dataset Updated dataset. Raises ------ ValueError If any dimensions would have inconsistent sizes in the updated dataset. """ variables, coord_names, dims = dataset_update_method(self, other) return self._replace_vars_and_dims(variables, coord_names, dims, inplace=inplace) def merge(self, other, inplace=False, overwrite_vars=frozenset(), compat='no_conflicts', join='outer'): """Merge the arrays of two datasets into a single dataset. This method generally not allow for overriding data, with the exception of attributes, which are ignored on the second dataset. Variables with the same name are checked for conflicts via the equals or identical methods. Parameters ---------- other : Dataset or castable to Dataset Dataset or variables to merge with this dataset. inplace : bool, optional If True, merge the other dataset into this dataset in-place. Otherwise, return a new dataset object. overwrite_vars : str or sequence, optional If provided, update variables of these name(s) without checking for conflicts in this dataset. compat : {'broadcast_equals', 'equals', 'identical', 'no_conflicts'}, optional String indicating how to compare variables of the same name for potential conflicts: - 'broadcast_equals': all values must be equal when variables are broadcast against each other to ensure common dimensions. - 'equals': all values and dimensions must be the same. - 'identical': all values, dimensions and attributes must be the same. - 'no_conflicts': only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. join : {'outer', 'inner', 'left', 'right', 'exact'}, optional Method for joining ``self`` and ``other`` along shared dimensions: - 'outer': use the union of the indexes - 'inner': use the intersection of the indexes - 'left': use indexes from ``self`` - 'right': use indexes from ``other`` - 'exact': error instead of aligning non-equal indexes Returns ------- merged : Dataset Merged dataset. Raises ------ MergeError If any variables conflict (see ``compat``). """ variables, coord_names, dims = dataset_merge_method( self, other, overwrite_vars=overwrite_vars, compat=compat, join=join) return self._replace_vars_and_dims(variables, coord_names, dims, inplace=inplace) def _assert_all_in_dataset(self, names, virtual_okay=False): bad_names = set(names) - set(self._variables) if virtual_okay: bad_names -= self.virtual_variables if bad_names: raise ValueError('One or more of the specified variables ' 'cannot be found in this dataset') def drop(self, labels, dim=None): """Drop variables or index labels from this dataset. Parameters ---------- labels : scalar or list of scalars Name(s) of variables or index labels to drop. dim : None or str, optional Dimension along which to drop index labels. By default (if ``dim is None``), drops variables rather than index labels. Returns ------- dropped : Dataset """ if utils.is_scalar(labels): labels = [labels] if dim is None: return self._drop_vars(labels) else: try: index = self.indexes[dim] except KeyError: raise ValueError( 'dimension %r does not have coordinate labels' % dim) new_index = index.drop(labels) return self.loc[{dim: new_index}] def _drop_vars(self, names): self._assert_all_in_dataset(names) drop = set(names) variables = OrderedDict((k, v) for k, v in iteritems(self._variables) if k not in drop) coord_names = set(k for k in self._coord_names if k in variables) return self._replace_vars_and_dims(variables, coord_names) def transpose(self, *dims): """Return a new Dataset object with all array dimensions transposed. Although the order of dimensions on each array will change, the dataset dimensions themselves will remain in fixed (sorted) order. Parameters ---------- *dims : str, optional By default, reverse the dimensions on each array. Otherwise, reorder the dimensions to this order. Returns ------- transposed : Dataset Each array in the dataset (including) coordinates will be transposed to the given order. Notes ----- Although this operation returns a view of each array's data, it is not lazy -- the data will be fully loaded into memory. See Also -------- numpy.transpose DataArray.transpose """ if dims: if set(dims) ^ set(self.dims): raise ValueError('arguments to transpose (%s) must be ' 'permuted dataset dimensions (%s)' % (dims, tuple(self.dims))) ds = self.copy() for name, var in iteritems(self._variables): var_dims = tuple(dim for dim in dims if dim in var.dims) ds._variables[name] = var.transpose(*var_dims) return ds @property def T(self): warnings.warn('xarray.Dataset.T has been deprecated as an alias for ' '`.transpose()`. It will be removed in xarray v0.11.', FutureWarning, stacklevel=2) return self.transpose() def dropna(self, dim, how='any', thresh=None, subset=None): """Returns a new dataset with dropped labels for missing values along the provided dimension. Parameters ---------- dim : str Dimension along which to drop missing values. Dropping along multiple dimensions simultaneously is not yet supported. how : {'any', 'all'}, optional * any : if any NA values are present, drop that label * all : if all values are NA, drop that label thresh : int, default None If supplied, require this many non-NA values. subset : sequence, optional Subset of variables to check for missing values. By default, all variables in the dataset are checked. Returns ------- Dataset """ # TODO: consider supporting multiple dimensions? Or not, given that # there are some ugly edge cases, e.g., pandas's dropna differs # depending on the order of the supplied axes. if dim not in self.dims: raise ValueError('%s must be a single dataset dimension' % dim) if subset is None: subset = list(self.data_vars) count = np.zeros(self.dims[dim], dtype=np.int64) size = 0 for k in subset: array = self._variables[k] if dim in array.dims: dims = [d for d in array.dims if d != dim] count += np.asarray(array.count(dims)) size += np.prod([self.dims[d] for d in dims]) if thresh is not None: mask = count >= thresh elif how == 'any': mask = count == size elif how == 'all': mask = count > 0 elif how is not None: raise ValueError('invalid how option: %s' % how) else: raise TypeError('must specify how or thresh') return self.isel(**{dim: mask}) def fillna(self, value): """Fill missing values in this object. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic, except the result is aligned to this object (``join='left'``) instead of aligned to the intersection of index coordinates (``join='inner'``). Parameters ---------- value : scalar, ndarray, DataArray, dict or Dataset Used to fill all matching missing values in this dataset's data variables. Scalars, ndarrays or DataArrays arguments are used to fill all data with aligned coordinates (for DataArrays). Dictionaries or datasets match data variables and then align coordinates if necessary. Returns ------- Dataset """ if utils.is_dict_like(value): value_keys = getattr(value, 'data_vars', value).keys() if not set(value_keys) <= set(self.data_vars.keys()): raise ValueError('all variables in the argument to `fillna` ' 'must be contained in the original dataset') out = ops.fillna(self, value) return out def interpolate_na(self, dim=None, method='linear', limit=None, use_coordinate=True, **kwargs): """Interpolate values according to different methods. Parameters ---------- dim : str Specifies the dimension along which to interpolate. method : {'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial', 'barycentric', 'krog', 'pchip', 'spline'}, optional String indicating which method to use for interpolation: - 'linear': linear interpolation (Default). Additional keyword arguments are passed to ``numpy.interp`` - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial': are passed to ``scipy.interpolate.interp1d``. If method=='polynomial', the ``order`` keyword argument must also be provided. - 'barycentric', 'krog', 'pchip', 'spline': use their respective ``scipy.interpolate`` classes. use_coordinate : boolean or str, default True Specifies which index to use as the x values in the interpolation formulated as `y = f(x)`. If False, values are treated as if eqaully-spaced along `dim`. If True, the IndexVariable `dim` is used. If use_coordinate is a string, it specifies the name of a coordinate variariable to use as the index. limit : int, default None Maximum number of consecutive NaNs to fill. Must be greater than 0 or None for no limit. Returns ------- Dataset See also -------- numpy.interp scipy.interpolate """ from .missing import interp_na, _apply_over_vars_with_dim new = _apply_over_vars_with_dim(interp_na, self, dim=dim, method=method, limit=limit, use_coordinate=use_coordinate, **kwargs) return new def ffill(self, dim, limit=None): '''Fill NaN values by propogating values forward *Requires bottleneck.* Parameters ---------- dim : str Specifies the dimension along which to propagate values when filling. limit : int, default None The maximum number of consecutive NaN values to forward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. Must be greater than 0 or None for no limit. Returns ------- Dataset ''' from .missing import ffill, _apply_over_vars_with_dim new = _apply_over_vars_with_dim(ffill, self, dim=dim, limit=limit) return new def bfill(self, dim, limit=None): '''Fill NaN values by propogating values backward *Requires bottleneck.* Parameters ---------- dim : str Specifies the dimension along which to propagate values when filling. limit : int, default None The maximum number of consecutive NaN values to backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. Must be greater than 0 or None for no limit. Returns ------- Dataset ''' from .missing import bfill, _apply_over_vars_with_dim new = _apply_over_vars_with_dim(bfill, self, dim=dim, limit=limit) return new def combine_first(self, other): """Combine two Datasets, default to data_vars of self. The new coordinates follow the normal broadcasting and alignment rules of ``join='outer'``. Vacant cells in the expanded coordinates are filled with np.nan. Parameters ---------- other : DataArray Used to fill all matching missing values in this array. Returns ------- DataArray """ out = ops.fillna(self, other, join="outer", dataset_join="outer") return out def reduce(self, func, dim=None, keep_attrs=False, numeric_only=False, allow_lazy=False, **kwargs): """Reduce this dataset by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `f(x, axis=axis, **kwargs)` to return the result of reducing an np.ndarray over an integer valued axis. dim : str or sequence of str, optional Dimension(s) over which to apply `func`. By default `func` is applied over all dimensions. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. numeric_only : bool, optional If True, only apply ``func`` to variables with a numeric dtype. **kwargs : dict Additional keyword arguments passed on to ``func``. Returns ------- reduced : Dataset Dataset with this object's DataArrays replaced with new DataArrays of summarized data and the indicated dimension(s) removed. """ if isinstance(dim, basestring): dims = set([dim]) elif dim is None: dims = set(self.dims) else: dims = set(dim) missing_dimensions = [dim for dim in dims if dim not in self.dims] if missing_dimensions: raise ValueError('Dataset does not contain the dimensions: %s' % missing_dimensions) variables = OrderedDict() for name, var in iteritems(self._variables): reduce_dims = [dim for dim in var.dims if dim in dims] if name in self.coords: if not reduce_dims: variables[name] = var else: if (not numeric_only or np.issubdtype(var.dtype, np.number) or (var.dtype == np.bool_)): if len(reduce_dims) == 1: # unpack dimensions for the benefit of functions # like np.argmin which can't handle tuple arguments reduce_dims, = reduce_dims elif len(reduce_dims) == var.ndim: # prefer to aggregate over axis=None rather than # axis=(0, 1) if they will be equivalent, because # the former is often more efficient reduce_dims = None variables[name] = var.reduce(func, dim=reduce_dims, keep_attrs=keep_attrs, allow_lazy=allow_lazy, **kwargs) coord_names = set(k for k in self.coords if k in variables) attrs = self.attrs if keep_attrs else None return self._replace_vars_and_dims(variables, coord_names, attrs=attrs) def apply(self, func, keep_attrs=False, args=(), **kwargs): """Apply a function over the data variables in this dataset. Parameters ---------- func : function Function which can be called in the form `f(x, **kwargs)` to transform each DataArray `x` in this dataset into another DataArray. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. args : tuple, optional Positional arguments passed on to `func`. **kwargs : dict Keyword arguments passed on to `func`. Returns ------- applied : Dataset Resulting dataset from applying ``func`` over each data variable. Examples -------- >>> da = xr.DataArray(np.random.randn(2, 3)) >>> ds = xr.Dataset({'foo': da, 'bar': ('x', [-1, 2])}) >>> ds <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 -0.3751 -1.951 -1.945 0.2948 0.711 -0.3948 bar (x) int64 -1 2 >>> ds.apply(np.fabs) <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 0.3751 1.951 1.945 0.2948 0.711 0.3948 bar (x) float64 1.0 2.0 """ variables = OrderedDict( (k, maybe_wrap_array(v, func(v, *args, **kwargs))) for k, v in iteritems(self.data_vars)) attrs = self.attrs if keep_attrs else None return type(self)(variables, attrs=attrs) def assign(self, **kwargs): """Assign new data variables to a Dataset, returning a new object with all the original variables in addition to the new ones. Parameters ---------- kwargs : keyword, value pairs keywords are the variables names. If the values are callable, they are computed on the Dataset and assigned to new data variables. If the values are not callable, (e.g. a DataArray, scalar, or array), they are simply assigned. Returns ------- ds : Dataset A new Dataset with the new variables in addition to all the existing variables. Notes ----- Since ``kwargs`` is a dictionary, the order of your arguments may not be preserved, and so the order of the new variables is not well defined. Assigning multiple variables within the same ``assign`` is possible, but you cannot reference other variables created within the same ``assign`` call. See Also -------- pandas.DataFrame.assign """ data = self.copy() # do all calculations first... results = data._calc_assign_results(kwargs) # ... and then assign data.update(results) return data def to_array(self, dim='variable', name=None): """Convert this dataset into an xarray.DataArray The data variables of this dataset will be broadcast against each other and stacked along the first axis of the new array. All coordinates of this dataset will remain coordinates. Parameters ---------- dim : str, optional Name of the new dimension. name : str, optional Name of the new data array. Returns ------- array : xarray.DataArray """ from .dataarray import DataArray data_vars = [self.variables[k] for k in self.data_vars] broadcast_vars = broadcast_variables(*data_vars) data = duck_array_ops.stack([b.data for b in broadcast_vars], axis=0) coords = dict(self.coords) coords[dim] = list(self.data_vars) dims = (dim,) + broadcast_vars[0].dims return DataArray(data, coords, dims, attrs=self.attrs, name=name) def _to_dataframe(self, ordered_dims): columns = [k for k in self.variables if k not in self.dims] data = [self._variables[k].set_dims(ordered_dims).values.reshape(-1) for k in columns] index = self.coords.to_index(ordered_dims) return pd.DataFrame(OrderedDict(zip(columns, data)), index=index) def to_dataframe(self): """Convert this dataset into a pandas.DataFrame. Non-index variables in this dataset form the columns of the DataFrame. The DataFrame is be indexed by the Cartesian product of this dataset's indices. """ return self._to_dataframe(self.dims) @classmethod def from_dataframe(cls, dataframe): """Convert a pandas.DataFrame into an xarray.Dataset Each column will be converted into an independent variable in the Dataset. If the dataframe's index is a MultiIndex, it will be expanded into a tensor product of one-dimensional indices (filling in missing values with NaN). This method will produce a Dataset very similar to that on which the 'to_dataframe' method was called, except with possibly redundant dimensions (since all dataset variables will have the same dimensionality). """ # TODO: Add an option to remove dimensions along which the variables # are constant, to enable consistent serialization to/from a dataframe, # even if some variables have different dimensionality. if not dataframe.columns.is_unique: raise ValueError( 'cannot convert DataFrame with non-unique columns') idx = dataframe.index obj = cls() if isinstance(idx, pd.MultiIndex): # it's a multi-index # expand the DataFrame to include the product of all levels full_idx = pd.MultiIndex.from_product(idx.levels, names=idx.names) dataframe = dataframe.reindex(full_idx) dims = [name if name is not None else 'level_%i' % n for n, name in enumerate(idx.names)] for dim, lev in zip(dims, idx.levels): obj[dim] = (dim, lev) shape = [lev.size for lev in idx.levels] else: dims = (idx.name if idx.name is not None else 'index',) obj[dims[0]] = (dims, idx) shape = -1 for name, series in iteritems(dataframe): data = np.asarray(series).reshape(shape) obj[name] = (dims, data) return obj def to_dask_dataframe(self, dim_order=None, set_index=False): """ Convert this dataset into a dask.dataframe.DataFrame. The dimensions, coordinates and data variables in this dataset form the columns of the DataFrame. Parameters ---------- dim_order : list, optional Hierarchical dimension order for the resulting dataframe. All arrays are transposed to this order and then written out as flat vectors in contiguous order, so the last dimension in this list will be contiguous in the resulting DataFrame. This has a major influence on which operations are efficient on the resulting dask dataframe. If provided, must include all dimensions on this dataset. By default, dimensions are sorted alphabetically. set_index : bool, optional If set_index=True, the dask DataFrame is indexed by this dataset's coordinate. Since dask DataFrames to not support multi-indexes, set_index only works if the dataset only contains one dimension. Returns ------- dask.dataframe.DataFrame """ import dask.array as da import dask.dataframe as dd if dim_order is None: dim_order = list(self.dims) elif set(dim_order) != set(self.dims): raise ValueError( 'dim_order {} does not match the set of dimensions on this ' 'Dataset: {}'.format(dim_order, list(self.dims))) ordered_dims = OrderedDict((k, self.dims[k]) for k in dim_order) columns = list(ordered_dims) columns.extend(k for k in self.coords if k not in self.dims) columns.extend(self.data_vars) series_list = [] for name in columns: try: var = self.variables[name] except KeyError: # dimension without a matching coordinate size = self.dims[name] data = da.arange(size, chunks=size, dtype=np.int64) var = Variable((name,), data) # IndexVariable objects have a dummy .chunk() method if isinstance(var, IndexVariable): var = var.to_base_variable() dask_array = var.set_dims(ordered_dims).chunk(self.chunks).data series = dd.from_array(dask_array.reshape(-1), columns=[name]) series_list.append(series) df = dd.concat(series_list, axis=1) if set_index: if len(dim_order) == 1: (dim,) = dim_order df = df.set_index(dim) else: # triggers an error about multi-indexes, even if only one # dimension is passed df = df.set_index(dim_order) return df def to_dict(self): """ Convert this dataset to a dictionary following xarray naming conventions. Converts all variables and attributes to native Python objects Useful for coverting to json. To avoid datetime incompatibility use decode_times=False kwarg in xarrray.open_dataset. See also -------- Dataset.from_dict """ d = {'coords': {}, 'attrs': decode_numpy_dict_values(self.attrs), 'dims': dict(self.dims), 'data_vars': {}} for k in self.coords: data = ensure_us_time_resolution(self[k].values).tolist() d['coords'].update({ k: {'data': data, 'dims': self[k].dims, 'attrs': decode_numpy_dict_values(self[k].attrs)}}) for k in self.data_vars: data = ensure_us_time_resolution(self[k].values).tolist() d['data_vars'].update({ k: {'data': data, 'dims': self[k].dims, 'attrs': decode_numpy_dict_values(self[k].attrs)}}) return d @classmethod def from_dict(cls, d): """ Convert a dictionary into an xarray.Dataset. Input dict can take several forms:: d = {'t': {'dims': ('t'), 'data': t}, 'a': {'dims': ('t'), 'data': x}, 'b': {'dims': ('t'), 'data': y}} d = {'coords': {'t': {'dims': 't', 'data': t, 'attrs': {'units':'s'}}}, 'attrs': {'title': 'air temperature'}, 'dims': 't', 'data_vars': {'a': {'dims': 't', 'data': x, }, 'b': {'dims': 't', 'data': y}}} where 't' is the name of the dimesion, 'a' and 'b' are names of data variables and t, x, and y are lists, numpy.arrays or pandas objects. Parameters ---------- d : dict, with a minimum structure of {'var_0': {'dims': [..], \ 'data': [..]}, \ ...} Returns ------- obj : xarray.Dataset See also -------- Dataset.to_dict DataArray.from_dict """ if not set(['coords', 'data_vars']).issubset(set(d)): variables = d.items() else: import itertools variables = itertools.chain(d.get('coords', {}).items(), d.get('data_vars', {}).items()) try: variable_dict = OrderedDict([(k, (v['dims'], v['data'], v.get('attrs'))) for k, v in variables]) except KeyError as e: raise ValueError( "cannot convert dict without the key " "'{dims_data}'".format(dims_data=str(e.args[0]))) obj = cls(variable_dict) # what if coords aren't dims? coords = set(d.get('coords', {})) - set(d.get('dims', {})) obj = obj.set_coords(coords) obj.attrs.update(d.get('attrs', {})) return obj @staticmethod def _unary_op(f, keep_attrs=False): @functools.wraps(f) def func(self, *args, **kwargs): ds = self.coords.to_dataset() for k in self.data_vars: ds._variables[k] = f(self._variables[k], *args, **kwargs) if keep_attrs: ds._attrs = self._attrs return ds return func @staticmethod def _binary_op(f, reflexive=False, join=None): @functools.wraps(f) def func(self, other): if isinstance(other, groupby.GroupBy): return NotImplemented align_type = OPTIONS['arithmetic_join'] if join is None else join if hasattr(other, 'indexes'): self, other = align(self, other, join=align_type, copy=False) g = f if not reflexive else lambda x, y: f(y, x) ds = self._calculate_binary_op(g, other, join=align_type) return ds return func @staticmethod def _inplace_binary_op(f): @functools.wraps(f) def func(self, other): if isinstance(other, groupby.GroupBy): raise TypeError('in-place operations between a Dataset and ' 'a grouped object are not permitted') # we don't actually modify arrays in-place with in-place Dataset # arithmetic -- this lets us automatically align things if hasattr(other, 'indexes'): other = other.reindex_like(self, copy=False) g = ops.inplace_to_noninplace_op(f) ds = self._calculate_binary_op(g, other, inplace=True) self._replace_vars_and_dims(ds._variables, ds._coord_names, attrs=ds._attrs, inplace=True) return self return func def _calculate_binary_op(self, f, other, join='inner', inplace=False): def apply_over_both(lhs_data_vars, rhs_data_vars, lhs_vars, rhs_vars): if inplace and set(lhs_data_vars) != set(rhs_data_vars): raise ValueError('datasets must have the same data variables ' 'for in-place arithmetic operations: %s, %s' % (list(lhs_data_vars), list(rhs_data_vars))) dest_vars = OrderedDict() for k in lhs_data_vars: if k in rhs_data_vars: dest_vars[k] = f(lhs_vars[k], rhs_vars[k]) elif join in ["left", "outer"]: dest_vars[k] = f(lhs_vars[k], np.nan) for k in rhs_data_vars: if k not in dest_vars and join in ["right", "outer"]: dest_vars[k] = f(rhs_vars[k], np.nan) return dest_vars if utils.is_dict_like(other) and not isinstance(other, Dataset): # can't use our shortcut of doing the binary operation with # Variable objects, so apply over our data vars instead. new_data_vars = apply_over_both(self.data_vars, other, self.data_vars, other) return Dataset(new_data_vars) other_coords = getattr(other, 'coords', None) ds = self.coords.merge(other_coords) if isinstance(other, Dataset): new_vars = apply_over_both(self.data_vars, other.data_vars, self.variables, other.variables) else: other_variable = getattr(other, 'variable', other) new_vars = OrderedDict((k, f(self.variables[k], other_variable)) for k in self.data_vars) ds._variables.update(new_vars) ds._dims = calculate_dimensions(ds._variables) return ds def _copy_attrs_from(self, other): self.attrs = other.attrs for v in other.variables: if v in self.variables: self.variables[v].attrs = other.variables[v].attrs def diff(self, dim, n=1, label='upper'): """Calculate the n-th order discrete difference along given axis. Parameters ---------- dim : str, optional Dimension over which to calculate the finite difference. n : int, optional The number of times values are differenced. label : str, optional The new coordinate in dimension ``dim`` will have the values of either the minuend's or subtrahend's coordinate for values 'upper' and 'lower', respectively. Other values are not supported. Returns ------- difference : same type as caller The n-th order finite difference of this object. Examples -------- >>> ds = xr.Dataset({'foo': ('x', [5, 5, 6, 6])}) >>> ds.diff('x') <xarray.Dataset> Dimensions: (x: 3) Coordinates: * x (x) int64 1 2 3 Data variables: foo (x) int64 0 1 0 >>> ds.diff('x', 2) <xarray.Dataset> Dimensions: (x: 2) Coordinates: * x (x) int64 2 3 Data variables: foo (x) int64 1 -1 """ if n == 0: return self if n < 0: raise ValueError('order `n` must be non-negative but got {0}' ''.format(n)) # prepare slices kwargs_start = {dim: slice(None, -1)} kwargs_end = {dim: slice(1, None)} # prepare new coordinate if label == 'upper': kwargs_new = kwargs_end elif label == 'lower': kwargs_new = kwargs_start else: raise ValueError('The \'label\' argument has to be either ' '\'upper\' or \'lower\'') variables = OrderedDict() for name, var in iteritems(self.variables): if dim in var.dims: if name in self.data_vars: variables[name] = (var.isel(**kwargs_end) - var.isel(**kwargs_start)) else: variables[name] = var.isel(**kwargs_new) else: variables[name] = var difference = self._replace_vars_and_dims(variables) if n > 1: return difference.diff(dim, n - 1) else: return difference def shift(self, **shifts): """Shift this dataset by an offset along one or more dimensions. Only data variables are moved; coordinates stay in place. This is consistent with the behavior of ``shift`` in pandas. Parameters ---------- **shifts : keyword arguments of the form {dim: offset} Integer offset to shift along each of the given dimensions. Positive offsets shift to the right; negative offsets shift to the left. Returns ------- shifted : Dataset Dataset with the same coordinates and attributes but shifted data variables. See also -------- roll Examples -------- >>> ds = xr.Dataset({'foo': ('x', list('abcde'))}) >>> ds.shift(x=2) <xarray.Dataset> Dimensions: (x: 5) Coordinates: * x (x) int64 0 1 2 3 4 Data variables: foo (x) object nan nan 'a' 'b' 'c' """ invalid = [k for k in shifts if k not in self.dims] if invalid: raise ValueError("dimensions %r do not exist" % invalid) variables = OrderedDict() for name, var in iteritems(self.variables): if name in self.data_vars: var_shifts = dict((k, v) for k, v in shifts.items() if k in var.dims) variables[name] = var.shift(**var_shifts) else: variables[name] = var return self._replace_vars_and_dims(variables) def roll(self, **shifts): """Roll this dataset by an offset along one or more dimensions. Unlike shift, roll rotates all variables, including coordinates. The direction of rotation is consistent with :py:func:`numpy.roll`. Parameters ---------- **shifts : keyword arguments of the form {dim: offset} Integer offset to rotate each of the given dimensions. Positive offsets roll to the right; negative offsets roll to the left. Returns ------- rolled : Dataset Dataset with the same coordinates and attributes but rolled variables. See also -------- shift Examples -------- >>> ds = xr.Dataset({'foo': ('x', list('abcde'))}) >>> ds.roll(x=2) <xarray.Dataset> Dimensions: (x: 5) Coordinates: * x (x) int64 3 4 0 1 2 Data variables: foo (x) object 'd' 'e' 'a' 'b' 'c' """ invalid = [k for k in shifts if k not in self.dims] if invalid: raise ValueError("dimensions %r do not exist" % invalid) variables = OrderedDict() for name, var in iteritems(self.variables): var_shifts = dict((k, v) for k, v in shifts.items() if k in var.dims) variables[name] = var.roll(**var_shifts) return self._replace_vars_and_dims(variables) def sortby(self, variables, ascending=True): """ Sort object by labels or values (along an axis). Sorts the dataset, either along specified dimensions, or according to values of 1-D dataarrays that share dimension with calling object. If the input variables are dataarrays, then the dataarrays are aligned (via left-join) to the calling object prior to sorting by cell values. NaNs are sorted to the end, following Numpy convention. If multiple sorts along the same dimension is given, numpy's lexsort is performed along that dimension: https://docs.scipy.org/doc/numpy/reference/generated/numpy.lexsort.html and the FIRST key in the sequence is used as the primary sort key, followed by the 2nd key, etc. Parameters ---------- variables: str, DataArray, or list of either 1D DataArray objects or name(s) of 1D variable(s) in coords/data_vars whose values are used to sort the dataset. ascending: boolean, optional Whether to sort by ascending or descending order. Returns ------- sorted: Dataset A new dataset where all the specified dims are sorted by dim labels. """ from .dataarray import DataArray if not isinstance(variables, list): variables = [variables] else: variables = variables variables = [v if isinstance(v, DataArray) else self[v] for v in variables] aligned_vars = align(self, *variables, join='left') aligned_self = aligned_vars[0] aligned_other_vars = aligned_vars[1:] vars_by_dim = defaultdict(list) for data_array in aligned_other_vars: if data_array.ndim != 1: raise ValueError("Input DataArray is not 1-D.") if (data_array.dtype == object and LooseVersion(np.__version__) < LooseVersion('1.11.0')): raise NotImplementedError( 'sortby uses np.lexsort under the hood, which requires ' 'numpy 1.11.0 or later to support object data-type.') (key,) = data_array.dims vars_by_dim[key].append(data_array) indices = {} for key, arrays in vars_by_dim.items(): order = np.lexsort(tuple(reversed(arrays))) indices[key] = order if ascending else order[::-1] return aligned_self.isel(**indices) def quantile(self, q, dim=None, interpolation='linear', numeric_only=False, keep_attrs=False): """Compute the qth quantile of the data along the specified dimension. Returns the qth quantiles(s) of the array elements for each variable in the Dataset. Parameters ---------- q : float in range of [0,1] (or sequence of floats) Quantile to compute, which must be between 0 and 1 inclusive. dim : str or sequence of str, optional Dimension(s) over which to apply quantile. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: * linear: ``i + (j - i) * fraction``, where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. * lower: ``i``. * higher: ``j``. * nearest: ``i`` or ``j``, whichever is nearest. * midpoint: ``(i + j) / 2``. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. numeric_only : bool, optional If True, only apply ``func`` to variables with a numeric dtype. Returns ------- quantiles : Dataset If `q` is a single quantile, then the result is a scalar for each variable in data_vars. If multiple percentiles are given, first axis of the result corresponds to the quantile and a quantile dimension is added to the return Dataset. The other dimensions are the dimensions that remain after the reduction of the array. See Also -------- numpy.nanpercentile, pandas.Series.quantile, DataArray.quantile """ if isinstance(dim, basestring): dims = set([dim]) elif dim is None: dims = set(self.dims) else: dims = set(dim) _assert_empty([dim for dim in dims if dim not in self.dims], 'Dataset does not contain the dimensions: %s') q = np.asarray(q, dtype=np.float64) variables = OrderedDict() for name, var in iteritems(self.variables): reduce_dims = [dim for dim in var.dims if dim in dims] if reduce_dims or not var.dims: if name not in self.coords: if (not numeric_only or np.issubdtype(var.dtype, np.number) or var.dtype == np.bool_): if len(reduce_dims) == var.ndim: # prefer to aggregate over axis=None rather than # axis=(0, 1) if they will be equivalent, because # the former is often more efficient reduce_dims = None variables[name] = var.quantile( q, dim=reduce_dims, interpolation=interpolation) else: variables[name] = var # construct the new dataset coord_names = set(k for k in self.coords if k in variables) attrs = self.attrs if keep_attrs else None new = self._replace_vars_and_dims(variables, coord_names, attrs=attrs) if 'quantile' in new.dims: new.coords['quantile'] = Variable('quantile', q) else: new.coords['quantile'] = q return new def rank(self, dim, pct=False, keep_attrs=False): """Ranks the data. Equal values are assigned a rank that is the average of the ranks that would have been otherwise assigned to all of the values within that set. Ranks begin at 1, not 0. If pct is True, computes percentage ranks. NaNs in the input array are returned as NaNs. The `bottleneck` library is required. Parameters ---------- dim : str Dimension over which to compute rank. pct : bool, optional If True, compute percentage ranks, otherwise compute integer ranks. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. Returns ------- ranked : Dataset Variables that do not depend on `dim` are dropped. """ if dim not in self.dims: raise ValueError( 'Dataset does not contain the dimension: %s' % dim) variables = OrderedDict() for name, var in iteritems(self.variables): if name in self.data_vars: if dim in var.dims: variables[name] = var.rank(dim, pct=pct) else: variables[name] = var coord_names = set(self.coords) attrs = self.attrs if keep_attrs else None return self._replace_vars_and_dims(variables, coord_names, attrs=attrs) @property def real(self): return self._unary_op(lambda x: x.real, keep_attrs=True)(self) @property def imag(self): return self._unary_op(lambda x: x.imag, keep_attrs=True)(self) def filter_by_attrs(self, **kwargs): """Returns a ``Dataset`` with variables that match specific conditions. Can pass in ``key=value`` or ``key=callable``. Variables are returned that contain all of the matches or callable returns True. If using a callable note that it should accept a single parameter only, the attribute value. Parameters ---------- **kwargs : key=value key : str Attribute name. value : callable or obj If value is a callable, it should return a boolean in the form of bool = func(attr) where attr is da.attrs[key]. Otherwise, value will be compared to the each DataArray's attrs[key]. Returns ------- new : Dataset New dataset with variables filtered by attribute. Examples -------- >>> # Create an example dataset: >>> import numpy as np >>> import pandas as pd >>> import xarray as xr >>> temp = 15 + 8 * np.random.randn(2, 2, 3) >>> precip = 10 * np.random.rand(2, 2, 3) >>> lon = [[-99.83, -99.32], [-99.79, -99.23]] >>> lat = [[42.25, 42.21], [42.63, 42.59]] >>> dims = ['x', 'y', 'time'] >>> temp_attr = dict(standard_name='air_potential_temperature') >>> precip_attr = dict(standard_name='convective_precipitation_flux') >>> ds = xr.Dataset({ ... 'temperature': (dims, temp, temp_attr), ... 'precipitation': (dims, precip, precip_attr)}, ... coords={ ... 'lon': (['x', 'y'], lon), ... 'lat': (['x', 'y'], lat), ... 'time': pd.date_range('2014-09-06', periods=3), ... 'reference_time': pd.Timestamp('2014-09-05')}) >>> # Get variables matching a specific standard_name. >>> ds.filter_by_attrs(standard_name='convective_precipitation_flux') <xarray.Dataset> Dimensions: (time: 3, x: 2, y: 2) Coordinates: * x (x) int64 0 1 * time (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08 lat (x, y) float64 42.25 42.21 42.63 42.59 * y (y) int64 0 1 reference_time datetime64[ns] 2014-09-05 lon (x, y) float64 -99.83 -99.32 -99.79 -99.23 Data variables: precipitation (x, y, time) float64 4.178 2.307 6.041 6.046 0.06648 ... >>> # Get all variables that have a standard_name attribute. >>> standard_name = lambda v: v is not None >>> ds.filter_by_attrs(standard_name=standard_name) <xarray.Dataset> Dimensions: (time: 3, x: 2, y: 2) Coordinates: lon (x, y) float64 -99.83 -99.32 -99.79 -99.23 lat (x, y) float64 42.25 42.21 42.63 42.59 * x (x) int64 0 1 * y (y) int64 0 1 * time (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08 reference_time datetime64[ns] 2014-09-05 Data variables: temperature (x, y, time) float64 25.86 20.82 6.954 23.13 10.25 11.68 ... precipitation (x, y, time) float64 5.702 0.9422 2.075 1.178 3.284 ... """ selection = [] for var_name, variable in self.data_vars.items(): for attr_name, pattern in kwargs.items(): attr_value = variable.attrs.get(attr_name) if ((callable(pattern) and pattern(attr_value)) or attr_value == pattern): selection.append(var_name) return self[selection] ops.inject_all_ops_and_reduce_methods(Dataset, array_only=False)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/dataset.py", "copies": "1", "size": "136388", "license": "apache-2.0", "hash": -8335074243642783000, "line_mean": 37.7796417401, "line_max": 92, "alpha_frac": 0.563429334, "autogenerated": false, "ratio": 4.568806110143374, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5632235444143374, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import warnings from distutils.version import LooseVersion from io import BytesIO import numpy as np from .. import Variable from ..core.indexing import NumpyIndexingAdapter from ..core.pycompat import OrderedDict, basestring, iteritems from ..core.utils import Frozen, FrozenOrderedDict from .common import BackendArray, DataStorePickleMixin, WritableCFDataStore from .netcdf3 import ( encode_nc3_attr_value, encode_nc3_variable, is_valid_nc3_name) def _decode_string(s): if isinstance(s, bytes): return s.decode('utf-8', 'replace') return s def _decode_attrs(d): # don't decode _FillValue from bytes -> unicode, because we want to ensure # that its type matches the data exactly return OrderedDict((k, v if k == '_FillValue' else _decode_string(v)) for (k, v) in iteritems(d)) class ScipyArrayWrapper(BackendArray): def __init__(self, variable_name, datastore): self.datastore = datastore self.variable_name = variable_name array = self.get_array() self.shape = array.shape self.dtype = np.dtype(array.dtype.kind + str(array.dtype.itemsize)) def get_array(self): self.datastore.assert_open() return self.datastore.ds.variables[self.variable_name].data def __getitem__(self, key): with self.datastore.ensure_open(autoclose=True): data = NumpyIndexingAdapter(self.get_array())[key] # Copy data if the source file is mmapped. # This makes things consistent # with the netCDF4 library by ensuring # we can safely read arrays even # after closing associated files. copy = self.datastore.ds.use_mmap return np.array(data, dtype=self.dtype, copy=copy) def __setitem__(self, key, value): with self.datastore.ensure_open(autoclose=True): data = self.datastore.ds.variables[self.variable_name] try: data[key] = value except TypeError: if key is Ellipsis: # workaround for GH: scipy/scipy#6880 data[:] = value else: raise def _open_scipy_netcdf(filename, mode, mmap, version): import scipy.io import gzip # if the string ends with .gz, then gunzip and open as netcdf file if isinstance(filename, basestring) and filename.endswith('.gz'): try: return scipy.io.netcdf_file(gzip.open(filename), mode=mode, mmap=mmap, version=version) except TypeError as e: # TODO: gzipped loading only works with NetCDF3 files. if 'is not a valid NetCDF 3 file' in e.message: raise ValueError('gzipped file loading only supports ' 'NetCDF 3 files.') else: raise if isinstance(filename, bytes) and filename.startswith(b'CDF'): # it's a NetCDF3 bytestring filename = BytesIO(filename) try: return scipy.io.netcdf_file(filename, mode=mode, mmap=mmap, version=version) except TypeError as e: # netcdf3 message is obscure in this case errmsg = e.args[0] if 'is not a valid NetCDF 3 file' in errmsg: msg = """ If this is a NetCDF4 file, you may need to install the netcdf4 library, e.g., $ pip install netcdf4 """ errmsg += msg raise TypeError(errmsg) else: raise class ScipyDataStore(WritableCFDataStore, DataStorePickleMixin): """Store for reading and writing data via scipy.io.netcdf. This store has the advantage of being able to be initialized with a StringIO object, allow for serialization without writing to disk. It only supports the NetCDF3 file-format. """ def __init__(self, filename_or_obj, mode='r', format=None, group=None, writer=None, mmap=None, autoclose=False, lock=None): import scipy import scipy.io if (mode != 'r' and scipy.__version__ < LooseVersion('0.13')): # pragma: no cover warnings.warn('scipy %s detected; ' 'the minimal recommended version is 0.13. ' 'Older version of this library do not reliably ' 'read and write files.' % scipy.__version__, ImportWarning) if group is not None: raise ValueError('cannot save to a group with the ' 'scipy.io.netcdf backend') if format is None or format == 'NETCDF3_64BIT': version = 2 elif format == 'NETCDF3_CLASSIC': version = 1 else: raise ValueError('invalid format for scipy.io.netcdf backend: %r' % format) opener = functools.partial(_open_scipy_netcdf, filename=filename_or_obj, mode=mode, mmap=mmap, version=version) self._ds = opener() self._autoclose = autoclose self._isopen = True self._opener = opener self._mode = mode super(ScipyDataStore, self).__init__(writer, lock=lock) def open_store_variable(self, name, var): with self.ensure_open(autoclose=False): return Variable(var.dimensions, ScipyArrayWrapper(name, self), _decode_attrs(var._attributes)) def get_variables(self): with self.ensure_open(autoclose=False): return FrozenOrderedDict((k, self.open_store_variable(k, v)) for k, v in iteritems(self.ds.variables)) def get_attrs(self): with self.ensure_open(autoclose=True): return Frozen(_decode_attrs(self.ds._attributes)) def get_dimensions(self): with self.ensure_open(autoclose=True): return Frozen(self.ds.dimensions) def get_encoding(self): encoding = {} encoding['unlimited_dims'] = { k for k, v in self.ds.dimensions.items() if v is None} return encoding def set_dimension(self, name, length, is_unlimited=False): with self.ensure_open(autoclose=False): if name in self.ds.dimensions: raise ValueError('%s does not support modifying dimensions' % type(self).__name__) dim_length = length if not is_unlimited else None self.ds.createDimension(name, dim_length) def _validate_attr_key(self, key): if not is_valid_nc3_name(key): raise ValueError("Not a valid attribute name") def set_attribute(self, key, value): with self.ensure_open(autoclose=False): self._validate_attr_key(key) value = encode_nc3_attr_value(value) setattr(self.ds, key, value) def encode_variable(self, variable): variable = encode_nc3_variable(variable) return variable def prepare_variable(self, name, variable, check_encoding=False, unlimited_dims=None): if check_encoding and variable.encoding: if variable.encoding != {'_FillValue': None}: raise ValueError('unexpected encoding for scipy backend: %r' % list(variable.encoding)) data = variable.data # nb. this still creates a numpy array in all memory, even though we # don't write the data yet; scipy.io.netcdf does not not support # incremental writes. if name not in self.ds.variables: self.ds.createVariable(name, data.dtype, variable.dims) scipy_var = self.ds.variables[name] for k, v in iteritems(variable.attrs): self._validate_attr_key(k) setattr(scipy_var, k, v) target = ScipyArrayWrapper(name, self) return target, data def sync(self, compute=True): if not compute: raise NotImplementedError( 'compute=False is not supported for the scipy backend yet') with self.ensure_open(autoclose=True): super(ScipyDataStore, self).sync(compute=compute) self.ds.flush() def close(self): self.ds.close() self._isopen = False def __exit__(self, type, value, tb): self.close() def __setstate__(self, state): filename = state['_opener'].keywords['filename'] if hasattr(filename, 'seek'): # it's a file-like object # seek to the start of the file so scipy can read it filename.seek(0) super(ScipyDataStore, self).__setstate__(state) self._ds = None self._isopen = False
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/scipy_.py", "copies": "1", "size": "9010", "license": "apache-2.0", "hash": -4058955448310679000, "line_mean": 35.7755102041, "line_max": 78, "alpha_frac": 0.584017758, "autogenerated": false, "ratio": 4.2884340790099955, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5372451837009995, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import warnings import numpy as np import pandas as pd from . import computation, groupby, indexing, ops, resample, rolling, utils from ..plot.plot import _PlotMethods from .accessors import DatetimeAccessor from .alignment import align, reindex_like_indexers from .common import AbstractArray, DataWithCoords from .coordinates import ( DataArrayCoordinates, Indexes, LevelCoordinatesSource, assert_coordinate_consistent, remap_label_indexers) from .dataset import Dataset, merge_indexes, split_indexes from .formatting import format_item from .options import OPTIONS from .pycompat import OrderedDict, basestring, iteritems, range, zip from .utils import decode_numpy_dict_values, ensure_us_time_resolution from .variable import ( IndexVariable, Variable, as_compatible_data, as_variable, assert_unique_multiindex_level_names) def _infer_coords_and_dims(shape, coords, dims): """All the logic for creating a new DataArray""" if (coords is not None and not utils.is_dict_like(coords) and len(coords) != len(shape)): raise ValueError('coords is not dict-like, but it has %s items, ' 'which does not match the %s dimensions of the ' 'data' % (len(coords), len(shape))) if isinstance(dims, basestring): dims = (dims,) if dims is None: dims = ['dim_%s' % n for n in range(len(shape))] if coords is not None and len(coords) == len(shape): # try to infer dimensions from coords if utils.is_dict_like(coords): # deprecated in GH993, removed in GH1539 raise ValueError('inferring DataArray dimensions from ' 'dictionary like ``coords`` is no longer ' 'supported. Use an explicit list of ' '``dims`` instead.') for n, (dim, coord) in enumerate(zip(dims, coords)): coord = as_variable(coord, name=dims[n]).to_index_variable() dims[n] = coord.name dims = tuple(dims) else: for d in dims: if not isinstance(d, basestring): raise TypeError('dimension %s is not a string' % d) new_coords = OrderedDict() if utils.is_dict_like(coords): for k, v in coords.items(): new_coords[k] = as_variable(v, name=k) elif coords is not None: for dim, coord in zip(dims, coords): var = as_variable(coord, name=dim) var.dims = (dim,) new_coords[dim] = var sizes = dict(zip(dims, shape)) for k, v in new_coords.items(): if any(d not in dims for d in v.dims): raise ValueError('coordinate %s has dimensions %s, but these ' 'are not a subset of the DataArray ' 'dimensions %s' % (k, v.dims, dims)) for d, s in zip(v.dims, v.shape): if s != sizes[d]: raise ValueError('conflicting sizes for dimension %r: ' 'length %s on the data but length %s on ' 'coordinate %r' % (d, sizes[d], s, k)) if k in sizes and v.shape != (sizes[k],): raise ValueError('coordinate %r is a DataArray dimension, but ' 'it has shape %r rather than expected shape %r ' 'matching the dimension size' % (k, v.shape, (sizes[k],))) assert_unique_multiindex_level_names(new_coords) return new_coords, dims class _LocIndexer(object): def __init__(self, data_array): self.data_array = data_array def __getitem__(self, key): if not utils.is_dict_like(key): # expand the indexer so we can handle Ellipsis labels = indexing.expanded_indexer(key, self.data_array.ndim) key = dict(zip(self.data_array.dims, labels)) return self.data_array.sel(**key) def __setitem__(self, key, value): if not utils.is_dict_like(key): # expand the indexer so we can handle Ellipsis labels = indexing.expanded_indexer(key, self.data_array.ndim) key = dict(zip(self.data_array.dims, labels)) pos_indexers, _ = remap_label_indexers(self.data_array, **key) self.data_array[pos_indexers] = value # Used as the key corresponding to a DataArray's variable when converting # arbitrary DataArray objects to datasets _THIS_ARRAY = utils.ReprObject('<this-array>') class DataArray(AbstractArray, DataWithCoords): """N-dimensional array with labeled coordinates and dimensions. DataArray provides a wrapper around numpy ndarrays that uses labeled dimensions and coordinates to support metadata aware operations. The API is similar to that for the pandas Series or DataFrame, but DataArray objects can have any number of dimensions, and their contents have fixed data types. Additional features over raw numpy arrays: - Apply operations over dimensions by name: ``x.sum('time')``. - Select or assign values by integer location (like numpy): ``x[:10]`` or by label (like pandas): ``x.loc['2014-01-01']`` or ``x.sel(time='2014-01-01')``. - Mathematical operations (e.g., ``x - y``) vectorize across multiple dimensions (known in numpy as "broadcasting") based on dimension names, regardless of their original order. - Keep track of arbitrary metadata in the form of a Python dictionary: ``x.attrs`` - Convert to a pandas Series: ``x.to_series()``. Getting items from or doing mathematical operations with a DataArray always returns another DataArray. Attributes ---------- dims : tuple Dimension names associated with this array. values : np.ndarray Access or modify DataArray values as a numpy array. coords : dict-like Dictionary of DataArray objects that label values along each dimension. name : str or None Name of this array. attrs : OrderedDict Dictionary for holding arbitrary metadata. """ _groupby_cls = groupby.DataArrayGroupBy _rolling_cls = rolling.DataArrayRolling _resample_cls = resample.DataArrayResample dt = property(DatetimeAccessor) def __init__(self, data, coords=None, dims=None, name=None, attrs=None, encoding=None, fastpath=False): """ Parameters ---------- data : array_like Values for this array. Must be an ``numpy.ndarray``, ndarray like, or castable to an ``ndarray``. If a self-described xarray or pandas object, attempts are made to use this array's metadata to fill in other unspecified arguments. A view of the array's data is used instead of a copy if possible. coords : sequence or dict of array_like objects, optional Coordinates (tick labels) to use for indexing along each dimension. If dict-like, should be a mapping from dimension names to the corresponding coordinates. If sequence-like, should be a sequence of tuples where the first element is the dimension name and the second element is the corresponding coordinate array_like object. dims : str or sequence of str, optional Name(s) of the data dimension(s). Must be either a string (only for 1D data) or a sequence of strings with length equal to the number of dimensions. If this argument is omitted, dimension names are taken from ``coords`` (if possible) and otherwise default to ``['dim_0', ... 'dim_n']``. name : str or None, optional Name of this array. attrs : dict_like or None, optional Attributes to assign to the new instance. By default, an empty attribute dictionary is initialized. encoding : dict_like or None, optional Dictionary specifying how to encode this array's data into a serialized format like netCDF4. Currently used keys (for netCDF) include '_FillValue', 'scale_factor', 'add_offset', 'dtype', 'units' and 'calendar' (the later two only for datetime arrays). Unrecognized keys are ignored. """ if fastpath: variable = data assert dims is None assert attrs is None assert encoding is None else: # try to fill in arguments from data if they weren't supplied if coords is None: coords = getattr(data, 'coords', None) if isinstance(data, pd.Series): coords = [data.index] elif isinstance(data, pd.DataFrame): coords = [data.index, data.columns] elif isinstance(data, (pd.Index, IndexVariable)): coords = [data] elif isinstance(data, pd.Panel): coords = [data.items, data.major_axis, data.minor_axis] if dims is None: dims = getattr(data, 'dims', getattr(coords, 'dims', None)) if name is None: name = getattr(data, 'name', None) if attrs is None: attrs = getattr(data, 'attrs', None) if encoding is None: encoding = getattr(data, 'encoding', None) data = as_compatible_data(data) coords, dims = _infer_coords_and_dims(data.shape, coords, dims) variable = Variable(dims, data, attrs, encoding, fastpath=True) # uncomment for a useful consistency check: # assert all(isinstance(v, Variable) for v in coords.values()) # These fully describe a DataArray self._variable = variable self._coords = coords self._name = name self._file_obj = None self._initialized = True __default = object() def _replace(self, variable=None, coords=None, name=__default): if variable is None: variable = self.variable if coords is None: coords = self._coords if name is self.__default: name = self.name return type(self)(variable, coords, name=name, fastpath=True) def _replace_maybe_drop_dims(self, variable, name=__default): if variable.dims == self.dims: coords = None else: allowed_dims = set(variable.dims) coords = OrderedDict((k, v) for k, v in self._coords.items() if set(v.dims) <= allowed_dims) return self._replace(variable, coords, name) def _replace_indexes(self, indexes): if not len(indexes): return self coords = self._coords.copy() for name, idx in indexes.items(): coords[name] = IndexVariable(name, idx) obj = self._replace(coords=coords) # switch from dimension to level names, if necessary dim_names = {} for dim, idx in indexes.items(): if not isinstance(idx, pd.MultiIndex) and idx.name != dim: dim_names[dim] = idx.name if dim_names: obj = obj.rename(dim_names) return obj def _to_temp_dataset(self): return self._to_dataset_whole(name=_THIS_ARRAY, shallow_copy=False) def _from_temp_dataset(self, dataset, name=__default): variable = dataset._variables.pop(_THIS_ARRAY) coords = dataset._variables return self._replace(variable, coords, name) def _to_dataset_split(self, dim): def subset(dim, label): array = self.loc[{dim: label}] if dim in array.coords: del array.coords[dim] array.attrs = {} return array variables = OrderedDict([(label, subset(dim, label)) for label in self.get_index(dim)]) coords = self.coords.to_dataset() if dim in coords: del coords[dim] return Dataset(variables, coords, self.attrs) def _to_dataset_whole(self, name=None, shallow_copy=True): if name is None: name = self.name if name is None: raise ValueError('unable to convert unnamed DataArray to a ' 'Dataset without providing an explicit name') if name in self.coords: raise ValueError('cannot create a Dataset from a DataArray with ' 'the same name as one of its coordinates') # use private APIs for speed: this is called by _to_temp_dataset(), # which is used in the guts of a lot of operations (e.g., reindex) variables = self._coords.copy() variables[name] = self.variable if shallow_copy: for k in variables: variables[k] = variables[k].copy(deep=False) coord_names = set(self._coords) dataset = Dataset._from_vars_and_coord_names(variables, coord_names) return dataset def to_dataset(self, dim=None, name=None): """Convert a DataArray to a Dataset. Parameters ---------- dim : str, optional Name of the dimension on this array along which to split this array into separate variables. If not provided, this array is converted into a Dataset of one variable. name : str, optional Name to substitute for this array's name. Only valid if ``dim`` is not provided. Returns ------- dataset : Dataset """ if dim is not None and dim not in self.dims: warnings.warn('the order of the arguments on DataArray.to_dataset ' 'has changed; you now need to supply ``name`` as ' 'a keyword argument', FutureWarning, stacklevel=2) name = dim dim = None if dim is not None: if name is not None: raise TypeError('cannot supply both dim and name arguments') return self._to_dataset_split(dim) else: return self._to_dataset_whole(name) @property def name(self): """The name of this array. """ return self._name @name.setter def name(self, value): self._name = value @property def variable(self): """Low level interface to the Variable object for this DataArray.""" return self._variable @property def dtype(self): return self.variable.dtype @property def shape(self): return self.variable.shape @property def size(self): return self.variable.size @property def nbytes(self): return self.variable.nbytes @property def ndim(self): return self.variable.ndim def __len__(self): return len(self.variable) @property def data(self): """The array's data as a dask or numpy array""" return self.variable.data @data.setter def data(self, value): self.variable.data = value @property def values(self): """The array's data as a numpy.ndarray""" return self.variable.values @values.setter def values(self, value): self.variable.values = value @property def _in_memory(self): return self.variable._in_memory def to_index(self): """Convert this variable to a pandas.Index. Only possible for 1D arrays. """ return self.variable.to_index() @property def dims(self): """Tuple of dimension names associated with this array. Note that the type of this property is inconsistent with `Dataset.dims`. See `Dataset.sizes` and `DataArray.sizes` for consistently named properties. """ return self.variable.dims @dims.setter def dims(self, value): raise AttributeError('you cannot assign dims on a DataArray. Use ' '.rename() or .swap_dims() instead.') def _item_key_to_dict(self, key): if utils.is_dict_like(key): return key else: key = indexing.expanded_indexer(key, self.ndim) return dict(zip(self.dims, key)) @property def _level_coords(self): """Return a mapping of all MultiIndex levels and their corresponding coordinate name. """ level_coords = OrderedDict() for cname, var in self._coords.items(): if var.ndim == 1 and isinstance(var, IndexVariable): level_names = var.level_names if level_names is not None: dim, = var.dims level_coords.update({lname: dim for lname in level_names}) return level_coords def _getitem_coord(self, key): from .dataset import _get_virtual_variable try: var = self._coords[key] except KeyError: dim_sizes = dict(zip(self.dims, self.shape)) _, key, var = _get_virtual_variable( self._coords, key, self._level_coords, dim_sizes) return self._replace_maybe_drop_dims(var, name=key) def __getitem__(self, key): if isinstance(key, basestring): return self._getitem_coord(key) else: # xarray-style array indexing return self.isel(**self._item_key_to_dict(key)) def __setitem__(self, key, value): if isinstance(key, basestring): self.coords[key] = value else: # Coordinates in key, value and self[key] should be consistent. # TODO Coordinate consistency in key is checked here, but it # causes unnecessary indexing. It should be optimized. obj = self[key] if isinstance(value, DataArray): assert_coordinate_consistent(value, obj.coords.variables) # DataArray key -> Variable key key = {k: v.variable if isinstance(v, DataArray) else v for k, v in self._item_key_to_dict(key).items()} self.variable[key] = value def __delitem__(self, key): del self.coords[key] @property def _attr_sources(self): """List of places to look-up items for attribute-style access""" return self._item_sources + [self.attrs] @property def _item_sources(self): """List of places to look-up items for key-completion""" return [self.coords, {d: self[d] for d in self.dims}, LevelCoordinatesSource(self)] def __contains__(self, key): warnings.warn( 'xarray.DataArray.__contains__ currently checks membership in ' 'DataArray.coords, but in xarray v0.11 will change to check ' 'membership in array values.', FutureWarning, stacklevel=2) return key in self._coords @property def loc(self): """Attribute for location based indexing like pandas. """ return _LocIndexer(self) @property def attrs(self): """Dictionary storing arbitrary metadata with this array.""" return self.variable.attrs @attrs.setter def attrs(self, value): self.variable.attrs = value @property def encoding(self): """Dictionary of format-specific settings for how this array should be serialized.""" return self.variable.encoding @encoding.setter def encoding(self, value): self.variable.encoding = value @property def indexes(self): """OrderedDict of pandas.Index objects used for label based indexing """ return Indexes(self._coords, self.sizes) @property def coords(self): """Dictionary-like container of coordinate arrays. """ return DataArrayCoordinates(self) def reset_coords(self, names=None, drop=False, inplace=False): """Given names of coordinates, reset them to become variables. Parameters ---------- names : str or list of str, optional Name(s) of non-index coordinates in this dataset to reset into variables. By default, all non-index coordinates are reset. drop : bool, optional If True, remove coordinates instead of converting them into variables. inplace : bool, optional If True, modify this dataset inplace. Otherwise, create a new object. Returns ------- Dataset, or DataArray if ``drop == True`` """ if inplace and not drop: raise ValueError('cannot reset coordinates in-place on a ' 'DataArray without ``drop == True``') if names is None: names = set(self.coords) - set(self.dims) dataset = self.coords.to_dataset().reset_coords(names, drop) if drop: if inplace: self._coords = dataset._variables else: return self._replace(coords=dataset._variables) else: if self.name is None: raise ValueError('cannot reset_coords with drop=False ' 'on an unnamed DataArrray') dataset[self.name] = self.variable return dataset def __dask_graph__(self): return self._to_temp_dataset().__dask_graph__() def __dask_keys__(self): return self._to_temp_dataset().__dask_keys__() @property def __dask_optimize__(self): return self._to_temp_dataset().__dask_optimize__ @property def __dask_scheduler__(self): return self._to_temp_dataset().__dask_scheduler__ def __dask_postcompute__(self): func, args = self._to_temp_dataset().__dask_postcompute__() return self._dask_finalize, (func, args, self.name) def __dask_postpersist__(self): func, args = self._to_temp_dataset().__dask_postpersist__() return self._dask_finalize, (func, args, self.name) @staticmethod def _dask_finalize(results, func, args, name): ds = func(results, *args) variable = ds._variables.pop(_THIS_ARRAY) coords = ds._variables return DataArray(variable, coords, name=name, fastpath=True) def load(self, **kwargs): """Manually trigger loading of this array's data from disk or a remote source into memory and return this array. Normally, it should not be necessary to call this method in user code, because all xarray functions should either work on deferred data or load data automatically. However, this method can be necessary when working with many file objects on disk. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.array.compute``. See Also -------- dask.array.compute """ ds = self._to_temp_dataset().load(**kwargs) new = self._from_temp_dataset(ds) self._variable = new._variable self._coords = new._coords return self def compute(self, **kwargs): """Manually trigger loading of this array's data from disk or a remote source into memory and return a new array. The original is left unaltered. Normally, it should not be necessary to call this method in user code, because all xarray functions should either work on deferred data or load data automatically. However, this method can be necessary when working with many file objects on disk. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.array.compute``. See Also -------- dask.array.compute """ new = self.copy(deep=False) return new.load(**kwargs) def persist(self, **kwargs): """ Trigger computation in constituent dask arrays This keeps them as dask arrays but encourages them to keep data in memory. This is particularly useful when on a distributed machine. When on a single machine consider using ``.compute()`` instead. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.persist``. See Also -------- dask.persist """ ds = self._to_temp_dataset().persist(**kwargs) return self._from_temp_dataset(ds) def copy(self, deep=True): """Returns a copy of this array. If `deep=True`, a deep copy is made of all variables in the underlying dataset. Otherwise, a shallow copy is made, so each variable in the new array's dataset is also a variable in this array's dataset. """ variable = self.variable.copy(deep=deep) coords = OrderedDict((k, v.copy(deep=deep)) for k, v in self._coords.items()) return self._replace(variable, coords) def __copy__(self): return self.copy(deep=False) def __deepcopy__(self, memo=None): # memo does nothing but is required for compatibility with # copy.deepcopy return self.copy(deep=True) # mutable objects should not be hashable __hash__ = None @property def chunks(self): """Block dimensions for this array's data or None if it's not a dask array. """ return self.variable.chunks def chunk(self, chunks=None, name_prefix='xarray-', token=None, lock=False): """Coerce this array's data into a dask arrays with the given chunks. If this variable is a non-dask array, it will be converted to dask array. If it's a dask array, it will be rechunked to the given chunk sizes. If neither chunks is not provided for one or more dimensions, chunk sizes along that dimension will not be updated; non-dask arrays will be converted into dask arrays with a single block. Parameters ---------- chunks : int, tuple or dict, optional Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or ``{'x': 5, 'y': 5}``. name_prefix : str, optional Prefix for the name of the new dask array. token : str, optional Token uniquely identifying this array. lock : optional Passed on to :py:func:`dask.array.from_array`, if the array is not already as dask array. Returns ------- chunked : xarray.DataArray """ if isinstance(chunks, (list, tuple)): chunks = dict(zip(self.dims, chunks)) ds = self._to_temp_dataset().chunk(chunks, name_prefix=name_prefix, token=token, lock=lock) return self._from_temp_dataset(ds) def isel(self, drop=False, **indexers): """Return a new DataArray whose dataset is given by integer indexing along the specified dimension(s). See Also -------- Dataset.isel DataArray.sel """ ds = self._to_temp_dataset().isel(drop=drop, **indexers) return self._from_temp_dataset(ds) def sel(self, method=None, tolerance=None, drop=False, **indexers): """Return a new DataArray whose dataset is given by selecting index labels along the specified dimension(s). .. warning:: Do not try to assign values when using any of the indexing methods ``isel`` or ``sel``:: da = xr.DataArray([0, 1, 2, 3], dims=['x']) # DO NOT do this da.isel(x=[0, 1, 2])[1] = -1 Assigning values with the chained indexing using ``.sel`` or ``.isel`` fails silently. See Also -------- Dataset.sel DataArray.isel """ ds = self._to_temp_dataset().sel(drop=drop, method=method, tolerance=tolerance, **indexers) return self._from_temp_dataset(ds) def isel_points(self, dim='points', **indexers): """Return a new DataArray whose dataset is given by pointwise integer indexing along the specified dimension(s). See Also -------- Dataset.isel_points """ ds = self._to_temp_dataset().isel_points(dim=dim, **indexers) return self._from_temp_dataset(ds) def sel_points(self, dim='points', method=None, tolerance=None, **indexers): """Return a new DataArray whose dataset is given by pointwise selection of index labels along the specified dimension(s). See Also -------- Dataset.sel_points """ ds = self._to_temp_dataset().sel_points( dim=dim, method=method, tolerance=tolerance, **indexers) return self._from_temp_dataset(ds) def reindex_like(self, other, method=None, tolerance=None, copy=True): """Conform this object onto the indexes of another object, filling in missing values with NaN. Parameters ---------- other : Dataset or DataArray Object with an 'indexes' attribute giving a mapping from dimension names to pandas.Index objects, which provides coordinates upon which to index the variables in this dataset. The indexes on this other object need not be the same as the indexes on this dataset. Any mis-matched index values will be filled in with NaN, and any mis-matched dimension names will simply be ignored. method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional Method to use for filling index values from other not found on this data array: * None (default): don't fill gaps * pad / ffill: propagate last valid index value forward * backfill / bfill: propagate next valid index value backward * nearest: use nearest valid index value (requires pandas>=0.16) tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Requires pandas>=0.17. copy : bool, optional If ``copy=True``, data in the return value is always copied. If ``copy=False`` and reindexing is unnecessary, or can be performed with only slice operations, then the output may share memory with the input. In either case, a new xarray object is always returned. Returns ------- reindexed : DataArray Another dataset array, with this array's data but coordinates from the other object. See Also -------- DataArray.reindex align """ indexers = reindex_like_indexers(self, other) return self.reindex(method=method, tolerance=tolerance, copy=copy, **indexers) def reindex(self, method=None, tolerance=None, copy=True, **indexers): """Conform this object onto a new set of indexes, filling in missing values with NaN. Parameters ---------- copy : bool, optional If ``copy=True``, data in the return value is always copied. If ``copy=False`` and reindexing is unnecessary, or can be performed with only slice operations, then the output may share memory with the input. In either case, a new xarray object is always returned. method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional Method to use for filling index values in ``indexers`` not found on this data array: * None (default): don't fill gaps * pad / ffill: propagate last valid index value forward * backfill / bfill: propagate next valid index value backward * nearest: use nearest valid index value (requires pandas>=0.16) tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. **indexers : dict Dictionary with keys given by dimension names and values given by arrays of coordinates tick labels. Any mis-matched coordinate values will be filled in with NaN, and any mis-matched dimension names will simply be ignored. Returns ------- reindexed : DataArray Another dataset array, with this array's data but replaced coordinates. See Also -------- DataArray.reindex_like align """ ds = self._to_temp_dataset().reindex( method=method, tolerance=tolerance, copy=copy, **indexers) return self._from_temp_dataset(ds) def rename(self, new_name_or_name_dict): """Returns a new DataArray with renamed coordinates or a new name. Parameters ---------- new_name_or_name_dict : str or dict-like If the argument is dict-like, it it used as a mapping from old names to new names for coordinates. Otherwise, use the argument as the new name for this array. Returns ------- renamed : DataArray Renamed array or array with renamed coordinates. See Also -------- Dataset.rename DataArray.swap_dims """ if utils.is_dict_like(new_name_or_name_dict): dataset = self._to_temp_dataset().rename(new_name_or_name_dict) return self._from_temp_dataset(dataset) else: return self._replace(name=new_name_or_name_dict) def swap_dims(self, dims_dict): """Returns a new DataArray with swapped dimensions. Parameters ---------- dims_dict : dict-like Dictionary whose keys are current dimension names and whose values are new names. Each value must already be a coordinate on this array. Returns ------- renamed : Dataset DataArray with swapped dimensions. See Also -------- DataArray.rename Dataset.swap_dims """ ds = self._to_temp_dataset().swap_dims(dims_dict) return self._from_temp_dataset(ds) def expand_dims(self, dim, axis=None): """Return a new object with an additional axis (or axes) inserted at the corresponding position in the array shape. If dim is already a scalar coordinate, it will be promoted to a 1D coordinate consisting of a single value. Parameters ---------- dim : str or sequence of str. Dimensions to include on the new variable. dimensions are inserted with length 1. axis : integer, list (or tuple) of integers, or None Axis position(s) where new axis is to be inserted (position(s) on the result array). If a list (or tuple) of integers is passed, multiple axes are inserted. In this case, dim arguments should be same length list. If axis=None is passed, all the axes will be inserted to the start of the result array. Returns ------- expanded : same type as caller This object, but with an additional dimension(s). """ ds = self._to_temp_dataset().expand_dims(dim, axis) return self._from_temp_dataset(ds) def set_index(self, append=False, inplace=False, **indexes): """Set DataArray (multi-)indexes using one or more existing coordinates. Parameters ---------- append : bool, optional If True, append the supplied index(es) to the existing index(es). Otherwise replace the existing index(es) (default). inplace : bool, optional If True, set new index(es) in-place. Otherwise, return a new DataArray object. **indexes : {dim: index, ...} Keyword arguments with names matching dimensions and values given by (lists of) the names of existing coordinates or variables to set as new (multi-)index. Returns ------- obj : DataArray Another dataarray, with this data but replaced coordinates. See Also -------- DataArray.reset_index """ coords, _ = merge_indexes(indexes, self._coords, set(), append=append) if inplace: self._coords = coords else: return self._replace(coords=coords) def reset_index(self, dims_or_levels, drop=False, inplace=False): """Reset the specified index(es) or multi-index level(s). Parameters ---------- dims_or_levels : str or list Name(s) of the dimension(s) and/or multi-index level(s) that will be reset. drop : bool, optional If True, remove the specified indexes and/or multi-index levels instead of extracting them as new coordinates (default: False). inplace : bool, optional If True, modify the dataarray in-place. Otherwise, return a new DataArray object. Returns ------- obj : DataArray Another dataarray, with this dataarray's data but replaced coordinates. See Also -------- DataArray.set_index """ coords, _ = split_indexes(dims_or_levels, self._coords, set(), self._level_coords, drop=drop) if inplace: self._coords = coords else: return self._replace(coords=coords) def reorder_levels(self, inplace=False, **dim_order): """Rearrange index levels using input order. Parameters ---------- inplace : bool, optional If True, modify the dataarray in-place. Otherwise, return a new DataArray object. **dim_order : optional Keyword arguments with names matching dimensions and values given by lists representing new level orders. Every given dimension must have a multi-index. Returns ------- obj : DataArray Another dataarray, with this dataarray's data but replaced coordinates. """ replace_coords = {} for dim, order in dim_order.items(): coord = self._coords[dim] index = coord.to_index() if not isinstance(index, pd.MultiIndex): raise ValueError("coordinate %r has no MultiIndex" % dim) replace_coords[dim] = IndexVariable(coord.dims, index.reorder_levels(order)) coords = self._coords.copy() coords.update(replace_coords) if inplace: self._coords = coords else: return self._replace(coords=coords) def stack(self, **dimensions): """ Stack any number of existing dimensions into a single new dimension. New dimensions will be added at the end, and the corresponding coordinate variables will be combined into a MultiIndex. Parameters ---------- **dimensions : keyword arguments of the form new_name=(dim1, dim2, ...) Names of new dimensions, and the existing dimensions that they replace. Returns ------- stacked : DataArray DataArray with stacked data. Examples -------- >>> arr = DataArray(np.arange(6).reshape(2, 3), ... coords=[('x', ['a', 'b']), ('y', [0, 1, 2])]) >>> arr <xarray.DataArray (x: 2, y: 3)> array([[0, 1, 2], [3, 4, 5]]) Coordinates: * x (x) |S1 'a' 'b' * y (y) int64 0 1 2 >>> stacked = arr.stack(z=('x', 'y')) >>> stacked.indexes['z'] MultiIndex(levels=[[u'a', u'b'], [0, 1, 2]], labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[u'x', u'y']) See also -------- DataArray.unstack """ ds = self._to_temp_dataset().stack(**dimensions) return self._from_temp_dataset(ds) def unstack(self, dim): """ Unstack an existing dimension corresponding to a MultiIndex into multiple new dimensions. New dimensions will be added at the end. Parameters ---------- dim : str Name of the existing dimension to unstack. Returns ------- unstacked : DataArray Array with unstacked data. See also -------- DataArray.stack """ ds = self._to_temp_dataset().unstack(dim) return self._from_temp_dataset(ds) def transpose(self, *dims): """Return a new DataArray object with transposed dimensions. Parameters ---------- *dims : str, optional By default, reverse the dimensions. Otherwise, reorder the dimensions to this order. Returns ------- transposed : DataArray The returned DataArray's array is transposed. Notes ----- Although this operation returns a view of this array's data, it is not lazy -- the data will be fully loaded. See Also -------- numpy.transpose Dataset.transpose """ variable = self.variable.transpose(*dims) return self._replace(variable) def drop(self, labels, dim=None): """Drop coordinates or index labels from this DataArray. Parameters ---------- labels : scalar or list of scalars Name(s) of coordinate variables or index labels to drop. dim : str, optional Dimension along which to drop index labels. By default (if ``dim is None``), drops coordinates rather than index labels. Returns ------- dropped : DataArray """ if utils.is_scalar(labels): labels = [labels] ds = self._to_temp_dataset().drop(labels, dim) return self._from_temp_dataset(ds) def dropna(self, dim, how='any', thresh=None): """Returns a new array with dropped labels for missing values along the provided dimension. Parameters ---------- dim : str Dimension along which to drop missing values. Dropping along multiple dimensions simultaneously is not yet supported. how : {'any', 'all'}, optional * any : if any NA values are present, drop that label * all : if all values are NA, drop that label thresh : int, default None If supplied, require this many non-NA values. Returns ------- DataArray """ ds = self._to_temp_dataset().dropna(dim, how=how, thresh=thresh) return self._from_temp_dataset(ds) def fillna(self, value): """Fill missing values in this object. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic, except the result is aligned to this object (``join='left'``) instead of aligned to the intersection of index coordinates (``join='inner'``). Parameters ---------- value : scalar, ndarray or DataArray Used to fill all matching missing values in this array. If the argument is a DataArray, it is first aligned with (reindexed to) this array. Returns ------- DataArray """ if utils.is_dict_like(value): raise TypeError('cannot provide fill value as a dictionary with ' 'fillna on a DataArray') out = ops.fillna(self, value) return out def interpolate_na(self, dim=None, method='linear', limit=None, use_coordinate=True, **kwargs): """Interpolate values according to different methods. Parameters ---------- dim : str Specifies the dimension along which to interpolate. method : {'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial', 'barycentric', 'krog', 'pchip', 'spline', 'akima'}, optional String indicating which method to use for interpolation: - 'linear': linear interpolation (Default). Additional keyword arguments are passed to ``numpy.interp`` - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial': are passed to ``scipy.interpolate.interp1d``. If method=='polynomial', the ``order`` keyword argument must also be provided. - 'barycentric', 'krog', 'pchip', 'spline', and `akima`: use their respective``scipy.interpolate`` classes. use_coordinate : boolean or str, default True Specifies which index to use as the x values in the interpolation formulated as `y = f(x)`. If False, values are treated as if eqaully-spaced along `dim`. If True, the IndexVariable `dim` is used. If use_coordinate is a string, it specifies the name of a coordinate variariable to use as the index. limit : int, default None Maximum number of consecutive NaNs to fill. Must be greater than 0 or None for no limit. Returns ------- DataArray See also -------- numpy.interp scipy.interpolate """ from .missing import interp_na return interp_na(self, dim=dim, method=method, limit=limit, use_coordinate=use_coordinate, **kwargs) def ffill(self, dim, limit=None): '''Fill NaN values by propogating values forward *Requires bottleneck.* Parameters ---------- dim : str Specifies the dimension along which to propagate values when filling. limit : int, default None The maximum number of consecutive NaN values to forward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. Must be greater than 0 or None for no limit. Returns ------- DataArray ''' from .missing import ffill return ffill(self, dim, limit=limit) def bfill(self, dim, limit=None): '''Fill NaN values by propogating values backward *Requires bottleneck.* Parameters ---------- dim : str Specifies the dimension along which to propagate values when filling. limit : int, default None The maximum number of consecutive NaN values to backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. Must be greater than 0 or None for no limit. Returns ------- DataArray ''' from .missing import bfill return bfill(self, dim, limit=limit) def combine_first(self, other): """Combine two DataArray objects, with union of coordinates. This operation follows the normal broadcasting and alignment rules of ``join='outer'``. Default to non-null values of array calling the method. Use np.nan to fill in vacant cells after alignment. Parameters ---------- other : DataArray Used to fill all matching missing values in this array. Returns ------- DataArray """ return ops.fillna(self, other, join="outer") def reduce(self, func, dim=None, axis=None, keep_attrs=False, **kwargs): """Reduce this array by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `f(x, axis=axis, **kwargs)` to return the result of reducing an np.ndarray over an integer valued axis. dim : str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to repeatedly apply `func`. Only one of the 'dim' and 'axis' arguments can be supplied. If neither are supplied, then the reduction is calculated over the flattened array (by calling `f(x)` without an axis argument). keep_attrs : bool, optional If True, the variable's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : DataArray DataArray with this object's array replaced with an array with summarized data and the indicated dimension(s) removed. """ var = self.variable.reduce(func, dim, axis, keep_attrs, **kwargs) return self._replace_maybe_drop_dims(var) def to_pandas(self): """Convert this array into a pandas object with the same shape. The type of the returned object depends on the number of DataArray dimensions: * 1D -> `pandas.Series` * 2D -> `pandas.DataFrame` * 3D -> `pandas.Panel` Only works for arrays with 3 or fewer dimensions. The DataArray constructor performs the inverse transformation. """ # TODO: consolidate the info about pandas constructors and the # attributes that correspond to their indexes into a separate module? constructors = {0: lambda x: x, 1: pd.Series, 2: pd.DataFrame, 3: pd.Panel} try: constructor = constructors[self.ndim] except KeyError: raise ValueError('cannot convert arrays with %s dimensions into ' 'pandas objects' % self.ndim) indexes = [self.get_index(dim) for dim in self.dims] return constructor(self.values, *indexes) def to_dataframe(self, name=None): """Convert this array and its coordinates into a tidy pandas.DataFrame. The DataFrame is indexed by the Cartesian product of index coordinates (in the form of a :py:class:`pandas.MultiIndex`). Other coordinates are included as columns in the DataFrame. """ if name is None: name = self.name if name is None: raise ValueError('cannot convert an unnamed DataArray to a ' 'DataFrame: use the ``name`` parameter') dims = OrderedDict(zip(self.dims, self.shape)) # By using a unique name, we can convert a DataArray into a DataFrame # even if it shares a name with one of its coordinates. # I would normally use unique_name = object() but that results in a # dataframe with columns in the wrong order, for reasons I have not # been able to debug (possibly a pandas bug?). unique_name = '__unique_name_identifier_z98xfz98xugfg73ho__' ds = self._to_dataset_whole(name=unique_name) df = ds._to_dataframe(dims) df.columns = [name if c == unique_name else c for c in df.columns] return df def to_series(self): """Convert this array into a pandas.Series. The Series is indexed by the Cartesian product of index coordinates (in the form of a :py:class:`pandas.MultiIndex`). """ index = self.coords.to_index() return pd.Series(self.values.reshape(-1), index=index, name=self.name) def to_masked_array(self, copy=True): """Convert this array into a numpy.ma.MaskedArray Parameters ---------- copy : bool If True (default) make a copy of the array in the result. If False, a MaskedArray view of DataArray.values is returned. Returns ------- result : MaskedArray Masked where invalid values (nan or inf) occur. """ isnull = pd.isnull(self.values) return np.ma.MaskedArray(data=self.values, mask=isnull, copy=copy) def to_netcdf(self, *args, **kwargs): """Write DataArray contents to a netCDF file. Parameters ---------- path : str or Path, optional Path to which to save this dataset. If no path is provided, this function returns the resulting netCDF file as a bytes object; in this case, we need to use scipy.io.netcdf, which does not support netCDF version 4 (the default format becomes NETCDF3_64BIT). mode : {'w', 'a'}, optional Write ('w') or append ('a') mode. If mode='w', any existing file at this location will be overwritten. format : {'NETCDF4', 'NETCDF4_CLASSIC', 'NETCDF3_64BIT', 'NETCDF3_CLASSIC'}, optional File format for the resulting netCDF file: * NETCDF4: Data is stored in an HDF5 file, using netCDF4 API features. * NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only netCDF 3 compatible API features. * NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format, which fully supports 2+ GB files, but is only compatible with clients linked against netCDF version 3.6.0 or later. * NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not handle 2+ GB files very well. All formats are supported by the netCDF4-python library. scipy.io.netcdf only supports the last two formats. The default format is NETCDF4 if you are saving a file to disk and have the netCDF4-python library available. Otherwise, xarray falls back to using scipy to write netCDF files and defaults to the NETCDF3_64BIT format (scipy does not support netCDF4). group : str, optional Path to the netCDF4 group in the given file to open (only works for format='NETCDF4'). The group(s) will be created if necessary. engine : {'netcdf4', 'scipy', 'h5netcdf'}, optional Engine to use when writing netCDF files. If not provided, the default engine is chosen based on available dependencies, with a preference for 'netcdf4' if writing to a file on disk. encoding : dict, optional Nested dictionary with variable names as keys and dictionaries of variable specific encodings as values, e.g., ``{'my_variable': {'dtype': 'int16', 'scale_factor': 0.1, 'zlib': True}, ...}`` Notes ----- Only xarray.Dataset objects can be written to netCDF files, so the xarray.DataArray is converted to a xarray.Dataset object containing a single variable. If the DataArray has no name, or if the name is the same as a co-ordinate name, then it is given the name '__xarray_dataarray_variable__'. All parameters are passed directly to `xarray.Dataset.to_netcdf`. """ from ..backends.api import DATAARRAY_NAME, DATAARRAY_VARIABLE if self.name is None: # If no name is set then use a generic xarray name dataset = self.to_dataset(name=DATAARRAY_VARIABLE) elif self.name in self.coords or self.name in self.dims: # The name is the same as one of the coords names, which netCDF # doesn't support, so rename it but keep track of the old name dataset = self.to_dataset(name=DATAARRAY_VARIABLE) dataset.attrs[DATAARRAY_NAME] = self.name else: # No problems with the name - so we're fine! dataset = self.to_dataset() return dataset.to_netcdf(*args, **kwargs) def to_dict(self): """ Convert this xarray.DataArray into a dictionary following xarray naming conventions. Converts all variables and attributes to native Python objects. Useful for coverting to json. To avoid datetime incompatibility use decode_times=False kwarg in xarrray.open_dataset. See also -------- DataArray.from_dict """ d = {'coords': {}, 'attrs': decode_numpy_dict_values(self.attrs), 'dims': self.dims} for k in self.coords: data = ensure_us_time_resolution(self[k].values).tolist() d['coords'].update({ k: {'data': data, 'dims': self[k].dims, 'attrs': decode_numpy_dict_values(self[k].attrs)}}) d.update({'data': ensure_us_time_resolution(self.values).tolist(), 'name': self.name}) return d @classmethod def from_dict(cls, d): """ Convert a dictionary into an xarray.DataArray Input dict can take several forms:: d = {'dims': ('t'), 'data': x} d = {'coords': {'t': {'dims': 't', 'data': t, 'attrs': {'units':'s'}}}, 'attrs': {'title': 'air temperature'}, 'dims': 't', 'data': x, 'name': 'a'} where 't' is the name of the dimesion, 'a' is the name of the array, and x and t are lists, numpy.arrays, or pandas objects. Parameters ---------- d : dict, with a minimum structure of {'dims': [..], 'data': [..]} Returns ------- obj : xarray.DataArray See also -------- DataArray.to_dict Dataset.from_dict """ coords = None if 'coords' in d: try: coords = OrderedDict([(k, (v['dims'], v['data'], v.get('attrs'))) for k, v in d['coords'].items()]) except KeyError as e: raise ValueError( "cannot convert dict when coords are missing the key " "'{dims_data}'".format(dims_data=str(e.args[0]))) try: data = d['data'] except KeyError: raise ValueError("cannot convert dict without the key 'data''") else: obj = cls(data, coords, d.get('dims'), d.get('name'), d.get('attrs')) return obj @classmethod def from_series(cls, series): """Convert a pandas.Series into an xarray.DataArray. If the series's index is a MultiIndex, it will be expanded into a tensor product of one-dimensional coordinates (filling in missing values with NaN). Thus this operation should be the inverse of the `to_series` method. """ # TODO: add a 'name' parameter name = series.name df = pd.DataFrame({name: series}) ds = Dataset.from_dataframe(df) return ds[name] def to_cdms2(self): """Convert this array into a cdms2.Variable """ from ..convert import to_cdms2 return to_cdms2(self) @classmethod def from_cdms2(cls, variable): """Convert a cdms2.Variable into an xarray.DataArray """ from ..convert import from_cdms2 return from_cdms2(variable) def to_iris(self): """Convert this array into a iris.cube.Cube """ from ..convert import to_iris return to_iris(self) @classmethod def from_iris(cls, cube): """Convert a iris.cube.Cube into an xarray.DataArray """ from ..convert import from_iris return from_iris(cube) def _all_compat(self, other, compat_str): """Helper function for equals and identical""" def compat(x, y): return getattr(x.variable, compat_str)(y.variable) return (utils.dict_equiv(self.coords, other.coords, compat=compat) and compat(self, other)) def broadcast_equals(self, other): """Two DataArrays are broadcast equal if they are equal after broadcasting them against each other such that they have the same dimensions. See Also -------- DataArray.equals DataArray.identical """ try: return self._all_compat(other, 'broadcast_equals') except (TypeError, AttributeError): return False def equals(self, other): """True if two DataArrays have the same dimensions, coordinates and values; otherwise False. DataArrays can still be equal (like pandas objects) if they have NaN values in the same locations. This method is necessary because `v1 == v2` for ``DataArray`` does element-wise comparisons (like numpy.ndarrays). See Also -------- DataArray.broadcast_equals DataArray.identical """ try: return self._all_compat(other, 'equals') except (TypeError, AttributeError): return False def identical(self, other): """Like equals, but also checks the array name and attributes, and attributes on all coordinates. See Also -------- DataArray.broadcast_equals DataArray.equal """ try: return (self.name == other.name and self._all_compat(other, 'identical')) except (TypeError, AttributeError): return False __default_name = object() def _result_name(self, other=None): # use the same naming heuristics as pandas: # https://github.com/ContinuumIO/blaze/issues/458#issuecomment-51936356 other_name = getattr(other, 'name', self.__default_name) if other_name is self.__default_name or other_name == self.name: return self.name else: return None def __array_wrap__(self, obj, context=None): new_var = self.variable.__array_wrap__(obj, context) return self._replace(new_var) @staticmethod def _unary_op(f): @functools.wraps(f) def func(self, *args, **kwargs): with np.errstate(all='ignore'): return self.__array_wrap__(f(self.variable.data, *args, **kwargs)) return func @staticmethod def _binary_op(f, reflexive=False, join=None, **ignored_kwargs): @functools.wraps(f) def func(self, other): if isinstance(other, (Dataset, groupby.GroupBy)): return NotImplemented if hasattr(other, 'indexes'): align_type = (OPTIONS['arithmetic_join'] if join is None else join) self, other = align(self, other, join=align_type, copy=False) other_variable = getattr(other, 'variable', other) other_coords = getattr(other, 'coords', None) variable = (f(self.variable, other_variable) if not reflexive else f(other_variable, self.variable)) coords = self.coords._merge_raw(other_coords) name = self._result_name(other) return self._replace(variable, coords, name) return func @staticmethod def _inplace_binary_op(f): @functools.wraps(f) def func(self, other): if isinstance(other, groupby.GroupBy): raise TypeError('in-place operations between a DataArray and ' 'a grouped object are not permitted') # n.b. we can't align other to self (with other.reindex_like(self)) # because `other` may be converted into floats, which would cause # in-place arithmetic to fail unpredictably. Instead, we simply # don't support automatic alignment with in-place arithmetic. other_coords = getattr(other, 'coords', None) other_variable = getattr(other, 'variable', other) with self.coords._merge_inplace(other_coords): f(self.variable, other_variable) return self return func def _copy_attrs_from(self, other): self.attrs = other.attrs @property def plot(self): """ Access plotting functions >>> d = DataArray([[1, 2], [3, 4]]) For convenience just call this directly >>> d.plot() Or use it as a namespace to use xarray.plot functions as DataArray methods >>> d.plot.imshow() # equivalent to xarray.plot.imshow(d) """ return _PlotMethods(self) def _title_for_slice(self, truncate=50): """ If the dataarray has 1 dimensional coordinates or comes from a slice we can show that info in the title Parameters ---------- truncate : integer maximum number of characters for title Returns ------- title : string Can be used for plot titles """ one_dims = [] for dim, coord in iteritems(self.coords): if coord.size == 1: one_dims.append('{dim} = {v}'.format( dim=dim, v=format_item(coord.values))) title = ', '.join(one_dims) if len(title) > truncate: title = title[:(truncate - 3)] + '...' return title def diff(self, dim, n=1, label='upper'): """Calculate the n-th order discrete difference along given axis. Parameters ---------- dim : str, optional Dimension over which to calculate the finite difference. n : int, optional The number of times values are differenced. label : str, optional The new coordinate in dimension ``dim`` will have the values of either the minuend's or subtrahend's coordinate for values 'upper' and 'lower', respectively. Other values are not supported. Returns ------- difference : same type as caller The n-th order finite difference of this object. Examples -------- >>> arr = xr.DataArray([5, 5, 6, 6], [[1, 2, 3, 4]], ['x']) >>> arr.diff('x') <xarray.DataArray (x: 3)> array([0, 1, 0]) Coordinates: * x (x) int64 2 3 4 >>> arr.diff('x', 2) <xarray.DataArray (x: 2)> array([ 1, -1]) Coordinates: * x (x) int64 3 4 """ ds = self._to_temp_dataset().diff(n=n, dim=dim, label=label) return self._from_temp_dataset(ds) def shift(self, **shifts): """Shift this array by an offset along one or more dimensions. Only the data is moved; coordinates stay in place. Values shifted from beyond array bounds are replaced by NaN. This is consistent with the behavior of ``shift`` in pandas. Parameters ---------- **shifts : keyword arguments of the form {dim: offset} Integer offset to shift along each of the given dimensions. Positive offsets shift to the right; negative offsets shift to the left. Returns ------- shifted : DataArray DataArray with the same coordinates and attributes but shifted data. See also -------- roll Examples -------- >>> arr = xr.DataArray([5, 6, 7], dims='x') >>> arr.shift(x=1) <xarray.DataArray (x: 3)> array([ nan, 5., 6.]) Coordinates: * x (x) int64 0 1 2 """ variable = self.variable.shift(**shifts) return self._replace(variable) def roll(self, **shifts): """Roll this array by an offset along one or more dimensions. Unlike shift, roll rotates all variables, including coordinates. The direction of rotation is consistent with :py:func:`numpy.roll`. Parameters ---------- **shifts : keyword arguments of the form {dim: offset} Integer offset to rotate each of the given dimensions. Positive offsets roll to the right; negative offsets roll to the left. Returns ------- rolled : DataArray DataArray with the same attributes but rolled data and coordinates. See also -------- shift Examples -------- >>> arr = xr.DataArray([5, 6, 7], dims='x') >>> arr.roll(x=1) <xarray.DataArray (x: 3)> array([7, 5, 6]) Coordinates: * x (x) int64 2 0 1 """ ds = self._to_temp_dataset().roll(**shifts) return self._from_temp_dataset(ds) @property def real(self): return self._replace(self.variable.real) @property def imag(self): return self._replace(self.variable.imag) def dot(self, other, dims=None): """Perform dot product of two DataArrays along their shared dims. Equivalent to taking taking tensordot over all shared dims. Parameters ---------- other : DataArray The other array with which the dot product is performed. dims: list of strings, optional Along which dimensions to be summed over. Default all the common dimensions are summed over. Returns ------- result : DataArray Array resulting from the dot product over all shared dimensions. See also -------- dot numpy.tensordot Examples -------- >>> da_vals = np.arange(6 * 5 * 4).reshape((6, 5, 4)) >>> da = DataArray(da_vals, dims=['x', 'y', 'z']) >>> dm_vals = np.arange(4) >>> dm = DataArray(dm_vals, dims=['z']) >>> dm.dims ('z') >>> da.dims ('x', 'y', 'z') >>> dot_result = da.dot(dm) >>> dot_result.dims ('x', 'y') """ if isinstance(other, Dataset): raise NotImplementedError('dot products are not yet supported ' 'with Dataset objects.') if not isinstance(other, DataArray): raise TypeError('dot only operates on DataArrays.') return computation.dot(self, other, dims=dims) def sortby(self, variables, ascending=True): """ Sort object by labels or values (along an axis). Sorts the dataarray, either along specified dimensions, or according to values of 1-D dataarrays that share dimension with calling object. If the input variables are dataarrays, then the dataarrays are aligned (via left-join) to the calling object prior to sorting by cell values. NaNs are sorted to the end, following Numpy convention. If multiple sorts along the same dimension is given, numpy's lexsort is performed along that dimension: https://docs.scipy.org/doc/numpy/reference/generated/numpy.lexsort.html and the FIRST key in the sequence is used as the primary sort key, followed by the 2nd key, etc. Parameters ---------- variables: str, DataArray, or list of either 1D DataArray objects or name(s) of 1D variable(s) in coords whose values are used to sort this array. ascending: boolean, optional Whether to sort by ascending or descending order. Returns ------- sorted: DataArray A new dataarray where all the specified dims are sorted by dim labels. Examples -------- >>> da = xr.DataArray(np.random.rand(5), ... coords=[pd.date_range('1/1/2000', periods=5)], ... dims='time') >>> da <xarray.DataArray (time: 5)> array([ 0.965471, 0.615637, 0.26532 , 0.270962, 0.552878]) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ... >>> da.sortby(da) <xarray.DataArray (time: 5)> array([ 0.26532 , 0.270962, 0.552878, 0.615637, 0.965471]) Coordinates: * time (time) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05 ... """ ds = self._to_temp_dataset().sortby(variables, ascending=ascending) return self._from_temp_dataset(ds) def quantile(self, q, dim=None, interpolation='linear', keep_attrs=False): """Compute the qth quantile of the data along the specified dimension. Returns the qth quantiles(s) of the array elements. Parameters ---------- q : float in range of [0,1] (or sequence of floats) Quantile to compute, which must be between 0 and 1 inclusive. dim : str or sequence of str, optional Dimension(s) over which to apply quantile. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: * linear: ``i + (j - i) * fraction``, where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. * lower: ``i``. * higher: ``j``. * nearest: ``i`` or ``j``, whichever is nearest. * midpoint: ``(i + j) / 2``. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. Returns ------- quantiles : DataArray If `q` is a single quantile, then the result is a scalar. If multiple percentiles are given, first axis of the result corresponds to the quantile and a quantile dimension is added to the return array. The other dimensions are the dimensions that remain after the reduction of the array. See Also -------- numpy.nanpercentile, pandas.Series.quantile, Dataset.quantile """ ds = self._to_temp_dataset().quantile( q, dim=dim, keep_attrs=keep_attrs, interpolation=interpolation) return self._from_temp_dataset(ds) def rank(self, dim, pct=False, keep_attrs=False): """Ranks the data. Equal values are assigned a rank that is the average of the ranks that would have been otherwise assigned to all of the values within that set. Ranks begin at 1, not 0. If pct, computes percentage ranks. NaNs in the input array are returned as NaNs. The `bottleneck` library is required. Parameters ---------- dim : str Dimension over which to compute rank. pct : bool, optional If True, compute percentage ranks, otherwise compute integer ranks. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. Returns ------- ranked : DataArray DataArray with the same coordinates and dtype 'float64'. Examples -------- >>> arr = xr.DataArray([5, 6, 7], dims='x') >>> arr.rank('x') <xarray.DataArray (x: 3)> array([ 1., 2., 3.]) Dimensions without coordinates: x """ ds = self._to_temp_dataset().rank(dim, pct=pct, keep_attrs=keep_attrs) return self._from_temp_dataset(ds) # priority most be higher than Variable to properly work with binary ufuncs ops.inject_all_ops_and_reduce_methods(DataArray, priority=60)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/dataarray.py", "copies": "1", "size": "77486", "license": "apache-2.0", "hash": -824658212618687600, "line_mean": 35.3784037559, "line_max": 79, "alpha_frac": 0.573639109, "autogenerated": false, "ratio": 4.540106638542216, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5613745747542217, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools from ._compat import new_class from ._make import _make_ne _operation_names = {"eq": "==", "lt": "<", "le": "<=", "gt": ">", "ge": ">="} def cmp_using( eq=None, lt=None, le=None, gt=None, ge=None, require_same_type=True, class_name="Comparable", ): """ Create a class that can be passed into `attr.ib`'s ``eq``, ``order``, and ``cmp`` arguments to customize field comparison. The resulting class will have a full set of ordering methods if at least one of ``{lt, le, gt, ge}`` and ``eq`` are provided. :param Optional[callable] eq: `callable` used to evaluate equality of two objects. :param Optional[callable] lt: `callable` used to evaluate whether one object is less than another object. :param Optional[callable] le: `callable` used to evaluate whether one object is less than or equal to another object. :param Optional[callable] gt: `callable` used to evaluate whether one object is greater than another object. :param Optional[callable] ge: `callable` used to evaluate whether one object is greater than or equal to another object. :param bool require_same_type: When `True`, equality and ordering methods will return `NotImplemented` if objects are not of the same type. :param Optional[str] class_name: Name of class. Defaults to 'Comparable'. See `comparison` for more details. .. versionadded:: 21.1.0 """ body = { "__slots__": ["value"], "__init__": _make_init(), "_requirements": [], "_is_comparable_to": _is_comparable_to, } # Add operations. num_order_functions = 0 has_eq_function = False if eq is not None: has_eq_function = True body["__eq__"] = _make_operator("eq", eq) body["__ne__"] = _make_ne() if lt is not None: num_order_functions += 1 body["__lt__"] = _make_operator("lt", lt) if le is not None: num_order_functions += 1 body["__le__"] = _make_operator("le", le) if gt is not None: num_order_functions += 1 body["__gt__"] = _make_operator("gt", gt) if ge is not None: num_order_functions += 1 body["__ge__"] = _make_operator("ge", ge) type_ = new_class(class_name, (object,), {}, lambda ns: ns.update(body)) # Add same type requirement. if require_same_type: type_._requirements.append(_check_same_type) # Add total ordering if at least one operation was defined. if 0 < num_order_functions < 4: if not has_eq_function: # functools.total_ordering requires __eq__ to be defined, # so raise early error here to keep a nice stack. raise ValueError( "eq must be define is order to complete ordering from " "lt, le, gt, ge." ) type_ = functools.total_ordering(type_) return type_ def _make_init(): """ Create __init__ method. """ def __init__(self, value): """ Initialize object with *value*. """ self.value = value return __init__ def _make_operator(name, func): """ Create operator method. """ def method(self, other): if not self._is_comparable_to(other): return NotImplemented result = func(self.value, other.value) if result is NotImplemented: return NotImplemented return result method.__name__ = "__%s__" % (name,) method.__doc__ = "Return a %s b. Computed by attrs." % ( _operation_names[name], ) return method def _is_comparable_to(self, other): """ Check whether `other` is comparable to `self`. """ for func in self._requirements: if not func(self, other): return False return True def _check_same_type(self, other): """ Return True if *self* and *other* are of the same type, False otherwise. """ return other.value.__class__ is self.value.__class__
{ "repo_name": "python-attrs/attrs", "path": "src/attr/_cmp.py", "copies": "2", "size": "4133", "license": "mit", "hash": -8286033524124914000, "line_mean": 26.1907894737, "line_max": 77, "alpha_frac": 0.5831115413, "autogenerated": false, "ratio": 3.8843984962406015, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5467510037540602, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools from toolz import merge from multipledispatch import Dispatcher from .convert import convert from .append import append from .resource import resource from .utils import ignoring import datashape from datashape import discover from datashape.dispatch import namespace from datashape.predicates import isdimension from .compatibility import unicode from pandas import DataFrame, Series from numpy import ndarray not_appendable_types = DataFrame, Series, ndarray, tuple __all__ = 'into', if 'into' not in namespace: namespace['into'] = Dispatcher('into') into = namespace['into'] def validate(f): @functools.wraps(f) def wrapped(*args, **kwargs): dshape = kwargs.pop('dshape', None) if isinstance(dshape, (str, unicode)): dshape = datashape.dshape(dshape) if dshape is not None and not isinstance(dshape, datashape.DataShape): raise TypeError('dshape argument is not an instance of DataShape') kwargs['dshape'] = dshape return f(*args, **kwargs) return wrapped @into.register(type, object) @validate def into_type(a, b, dshape=None, **kwargs): with ignoring(NotImplementedError): if dshape is None: dshape = discover(b) return convert(a, b, dshape=dshape, **kwargs) @into.register(object, object) @validate def into_object(target, source, dshape=None, **kwargs): """ Push one dataset into another Parameters ---------- source: object or string The source of your data. Either an object (e.g. DataFrame), target: object or string or type The target for where you want your data to go. Either an object, (e.g. []), a type, (e.g. list) or a string (e.g. 'postgresql://hostname::tablename' raise_on_errors: bool (optional, defaults to False) Raise exceptions rather than reroute around them **kwargs: keyword arguments to pass through to conversion functions. Examples -------- >>> L = into(list, (1, 2, 3)) # Convert things into new things >>> L [1, 2, 3] >>> _ = into(L, (4, 5, 6)) # Append things onto existing things >>> L [1, 2, 3, 4, 5, 6] >>> into('myfile.csv', [('Alice', 1), ('Bob', 2)]) # doctest: +SKIP Explanation ----------- We can specify data with a Python object like a ``list``, ``DataFrame``, ``sqlalchemy.Table``, ``h5py.Dataset``, etc.. We can specify data with a string URI like ``'myfile.csv'``, ``'myfiles.*.json'`` or ``'sqlite:///data.db::tablename'``. These are matched by regular expression. See the ``resource`` function for more details on string URIs. We can optionally specify datatypes with the ``dshape=`` keyword, providing a datashape. This allows us to be explicit about types when mismatches occur or when our data doesn't hold the whole picture. See the ``discover`` function for more information on ``dshape``. >>> ds = 'var * {name: string, balance: float64}' >>> into('accounts.json', [('Alice', 100), ('Bob', 200)], dshape=ds) # doctest: +SKIP We can optionally specify keyword arguments to pass down to relevant conversion functions. For example, when converting a CSV file we might want to specify delimiter >>> into(list, 'accounts.csv', has_header=True, delimiter=';') # doctest: +SKIP These keyword arguments trickle down to whatever function ``into`` uses convert this particular format, functions like ``pandas.read_csv``. See Also -------- into.resource.resource - Specify things with strings datashape.discover - Get datashape of data into.convert.convert - Convert things into new things into.append.append - Add things onto existing things """ if isinstance(source, (str, unicode)): source = resource(source, dshape=dshape, **kwargs) if type(target) in not_appendable_types: raise TypeError('target of %s type does not support in-place append' % type(target)) with ignoring(NotImplementedError): if dshape is None: dshape = discover(source) return append(target, source, dshape=dshape, **kwargs) @into.register((str, unicode), object) @validate def into_string(uri, b, dshape=None, **kwargs): if dshape is None: dshape = discover(b) resource_ds = 0 * dshape.subshape[0] if isdimension(dshape[0]) else dshape a = resource(uri, dshape=resource_ds, expected_dshape=dshape, **kwargs) return into(a, b, dshape=dshape, **kwargs) @into.register((type, (str, unicode)), (str, unicode)) @validate def into_string_string(a, b, **kwargs): return into(a, resource(b, **kwargs), **kwargs) @into.register(object) @validate def into_curried(o, **kwargs1): def curried_into(other, **kwargs2): return into(o, other, **merge(kwargs2, kwargs1)) return curried_into
{ "repo_name": "quantopian/odo", "path": "odo/into.py", "copies": "5", "size": "4965", "license": "bsd-3-clause", "hash": 1434546908081121000, "line_mean": 30.6242038217, "line_max": 92, "alpha_frac": 0.6616314199, "autogenerated": false, "ratio": 3.816295157571099, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00021341659263316522, "num_lines": 157 }
from __future__ import absolute_import, division, print_function import functools import numpy as np import pandas as pd from . import dtypes, duck_array_ops, nputils, ops from .arithmetic import SupportsArithmetic from .combine import concat from .common import ImplementsArrayReduce, ImplementsDatasetReduce from .pycompat import integer_types, range, zip from .utils import hashable, maybe_wrap_array, peek_at, safe_cast_to_index from .variable import IndexVariable, Variable, as_variable def unique_value_groups(ar, sort=True): """Group an array by its unique values. Parameters ---------- ar : array-like Input array. This will be flattened if it is not already 1-D. sort : boolean, optional Whether or not to sort unique values. Returns ------- values : np.ndarray Sorted, unique values as returned by `np.unique`. indices : list of lists of int Each element provides the integer indices in `ar` with values given by the corresponding value in `unique_values`. """ inverse, values = pd.factorize(ar, sort=sort) groups = [[] for _ in range(len(values))] for n, g in enumerate(inverse): if g >= 0: # pandas uses -1 to mark NaN, but doesn't include them in values groups[g].append(n) return values, groups def _dummy_copy(xarray_obj): from .dataset import Dataset from .dataarray import DataArray if isinstance(xarray_obj, Dataset): res = Dataset(dict((k, dtypes.get_fill_value(v.dtype)) for k, v in xarray_obj.data_vars.items()), dict((k, dtypes.get_fill_value(v.dtype)) for k, v in xarray_obj.coords.items() if k not in xarray_obj.dims), xarray_obj.attrs) elif isinstance(xarray_obj, DataArray): res = DataArray(dtypes.get_fill_value(xarray_obj.dtype), dict((k, dtypes.get_fill_value(v.dtype)) for k, v in xarray_obj.coords.items() if k not in xarray_obj.dims), dims=[], name=xarray_obj.name, attrs=xarray_obj.attrs) else: # pragma: no cover raise AssertionError return res def _is_one_or_none(obj): return obj == 1 or obj is None def _consolidate_slices(slices): """Consolidate adjacent slices in a list of slices. """ result = [] last_slice = slice(None) for slice_ in slices: if not isinstance(slice_, slice): raise ValueError('list element is not a slice: %r' % slice_) if (result and last_slice.stop == slice_.start and _is_one_or_none(last_slice.step) and _is_one_or_none(slice_.step)): last_slice = slice(last_slice.start, slice_.stop, slice_.step) result[-1] = last_slice else: result.append(slice_) last_slice = slice_ return result def _inverse_permutation_indices(positions): """Like inverse_permutation, but also handles slices. Parameters ---------- positions : list of np.ndarray or slice objects. If slice objects, all are assumed to be slices. Returns ------- np.ndarray of indices or None, if no permutation is necessary. """ if not positions: return None if isinstance(positions[0], slice): positions = _consolidate_slices(positions) if positions == slice(None): return None positions = [np.arange(sl.start, sl.stop, sl.step) for sl in positions] indices = nputils.inverse_permutation(np.concatenate(positions)) return indices class _DummyGroup(object): """Class for keeping track of grouped dimensions without coordinates. Should not be user visible. """ def __init__(self, obj, name, coords): self.name = name self.coords = coords self.dims = (name,) self.ndim = 1 self.size = obj.sizes[name] self.values = range(self.size) def _ensure_1d(group, obj): if group.ndim != 1: # try to stack the dims of the group into a single dim orig_dims = group.dims stacked_dim = 'stacked_' + '_'.join(orig_dims) # these dimensions get created by the stack operation inserted_dims = [dim for dim in group.dims if dim not in group.coords] # the copy is necessary here, otherwise read only array raises error # in pandas: https://github.com/pydata/pandas/issues/12813 group = group.stack(**{stacked_dim: orig_dims}).copy() obj = obj.stack(**{stacked_dim: orig_dims}) else: stacked_dim = None inserted_dims = [] return group, obj, stacked_dim, inserted_dims def _unique_and_monotonic(group): if isinstance(group, _DummyGroup): return True else: index = safe_cast_to_index(group) return index.is_unique and index.is_monotonic class GroupBy(SupportsArithmetic): """A object that implements the split-apply-combine pattern. Modeled after `pandas.GroupBy`. The `GroupBy` object can be iterated over (unique_value, grouped_array) pairs, but the main way to interact with a groupby object are with the `apply` or `reduce` methods. You can also directly call numpy methods like `mean` or `std`. You should create a GroupBy object by using the `DataArray.groupby` or `Dataset.groupby` methods. See Also -------- Dataset.groupby DataArray.groupby """ def __init__(self, obj, group, squeeze=False, grouper=None, bins=None, cut_kwargs={}): """Create a GroupBy object Parameters ---------- obj : Dataset or DataArray Object to group. group : DataArray Array with the group values. squeeze : boolean, optional If "group" is a coordinate of object, `squeeze` controls whether the subarrays have a dimension of length 1 along that coordinate or if the dimension is squeezed out. grouper : pd.Grouper, optional Used for grouping values along the `group` array. bins : array-like, optional If `bins` is specified, the groups will be discretized into the specified bins by `pandas.cut`. cut_kwargs : dict, optional Extra keyword arguments to pass to `pandas.cut` """ from .dataarray import DataArray if grouper is not None and bins is not None: raise TypeError("can't specify both `grouper` and `bins`") if not isinstance(group, (DataArray, IndexVariable)): if not hashable(group): raise TypeError('`group` must be an xarray.DataArray or the ' 'name of an xarray variable or dimension') group = obj[group] if group.name not in obj.coords and group.name in obj.dims: # DummyGroups should not appear on groupby results group = _DummyGroup(obj, group.name, group.coords) if getattr(group, 'name', None) is None: raise ValueError('`group` must have a name') group, obj, stacked_dim, inserted_dims = _ensure_1d(group, obj) group_dim, = group.dims expected_size = obj.sizes[group_dim] if group.size != expected_size: raise ValueError('the group variable\'s length does not ' 'match the length of this variable along its ' 'dimension') full_index = None if bins is not None: binned = pd.cut(group.values, bins, **cut_kwargs) new_dim_name = group.name + '_bins' group = DataArray(binned, group.coords, name=new_dim_name) full_index = binned.categories if grouper is not None: index = safe_cast_to_index(group) if not index.is_monotonic: # TODO: sort instead of raising an error raise ValueError('index must be monotonic for resampling') s = pd.Series(np.arange(index.size), index) first_items = s.groupby(grouper).first() full_index = first_items.index if first_items.isnull().any(): first_items = first_items.dropna() sbins = first_items.values.astype(np.int64) group_indices = ([slice(i, j) for i, j in zip(sbins[:-1], sbins[1:])] + [slice(sbins[-1], None)]) unique_coord = IndexVariable(group.name, first_items.index) elif group.dims == (group.name,) and _unique_and_monotonic(group): # no need to factorize group_indices = np.arange(group.size) if not squeeze: # use slices to do views instead of fancy indexing # equivalent to: group_indices = group_indices.reshape(-1, 1) group_indices = [slice(i, i + 1) for i in group_indices] unique_coord = group else: # look through group to find the unique values unique_values, group_indices = unique_value_groups( safe_cast_to_index(group), sort=(bins is None)) unique_coord = IndexVariable(group.name, unique_values) # specification for the groupby operation self._obj = obj self._group = group self._group_dim = group_dim self._group_indices = group_indices self._unique_coord = unique_coord self._stacked_dim = stacked_dim self._inserted_dims = inserted_dims self._full_index = full_index # cached attributes self._groups = None @property def groups(self): # provided to mimic pandas.groupby if self._groups is None: self._groups = dict(zip(self._unique_coord.values, self._group_indices)) return self._groups def __len__(self): return self._unique_coord.size def __iter__(self): return zip(self._unique_coord.values, self._iter_grouped()) def _iter_grouped(self): """Iterate over each element in this group""" for indices in self._group_indices: yield self._obj.isel(**{self._group_dim: indices}) def _infer_concat_args(self, applied_example): if self._group_dim in applied_example.dims: coord = self._group positions = self._group_indices else: coord = self._unique_coord positions = None dim, = coord.dims if isinstance(coord, _DummyGroup): coord = None return coord, dim, positions @staticmethod def _binary_op(f, reflexive=False, **ignored_kwargs): @functools.wraps(f) def func(self, other): g = f if not reflexive else lambda x, y: f(y, x) applied = self._yield_binary_applied(g, other) combined = self._combine(applied) return combined return func def _yield_binary_applied(self, func, other): dummy = None for group_value, obj in self: try: other_sel = other.sel(**{self._group.name: group_value}) except AttributeError: raise TypeError('GroupBy objects only support binary ops ' 'when the other argument is a Dataset or ' 'DataArray') except (KeyError, ValueError): if self._group.name not in other.dims: raise ValueError('incompatible dimensions for a grouped ' 'binary operation: the group variable %r ' 'is not a dimension on the other argument' % self._group.name) if dummy is None: dummy = _dummy_copy(other) other_sel = dummy result = func(obj, other_sel) yield result def _maybe_restore_empty_groups(self, combined): """Our index contained empty groups (e.g., from a resampling). If we reduced on that dimension, we want to restore the full index. """ if (self._full_index is not None and self._group.name in combined.dims): indexers = {self._group.name: self._full_index} combined = combined.reindex(**indexers) return combined def _maybe_unstack(self, obj): """This gets called if we are applying on an array with a multidimensional group.""" if self._stacked_dim is not None and self._stacked_dim in obj.dims: obj = obj.unstack(self._stacked_dim) for dim in self._inserted_dims: if dim in obj.coords: del obj.coords[dim] return obj def fillna(self, value): """Fill missing values in this object by group. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic, except the result is aligned to this object (``join='left'``) instead of aligned to the intersection of index coordinates (``join='inner'``). Parameters ---------- value : valid type for the grouped object's fillna method Used to fill all matching missing values by group. Returns ------- same type as the grouped object See also -------- Dataset.fillna DataArray.fillna """ out = ops.fillna(self, value) return out def where(self, cond, other=dtypes.NA): """Return elements from `self` or `other` depending on `cond`. Parameters ---------- cond : DataArray or Dataset with boolean dtype Locations at which to preserve this objects values. other : scalar, DataArray or Dataset, optional Value to use for locations in this object where ``cond`` is False. By default, inserts missing values. Returns ------- same type as the grouped object See also -------- Dataset.where """ return ops.where_method(self, cond, other) def _first_or_last(self, op, skipna, keep_attrs): if isinstance(self._group_indices[0], integer_types): # NB. this is currently only used for reductions along an existing # dimension return self._obj return self.reduce(op, self._group_dim, skipna=skipna, keep_attrs=keep_attrs, allow_lazy=True) def first(self, skipna=None, keep_attrs=True): """Return the first element of each group along the group dimension """ return self._first_or_last(duck_array_ops.first, skipna, keep_attrs) def last(self, skipna=None, keep_attrs=True): """Return the last element of each group along the group dimension """ return self._first_or_last(duck_array_ops.last, skipna, keep_attrs) def assign_coords(self, **kwargs): """Assign coordinates by group. See also -------- Dataset.assign_coords """ return self.apply(lambda ds: ds.assign_coords(**kwargs)) def _maybe_reorder(xarray_obj, dim, positions): order = _inverse_permutation_indices(positions) if order is None: return xarray_obj else: return xarray_obj[{dim: order}] class DataArrayGroupBy(GroupBy, ImplementsArrayReduce): """GroupBy object specialized to grouping DataArray objects """ def _iter_grouped_shortcut(self): """Fast version of `_iter_grouped` that yields Variables without metadata """ var = self._obj.variable for indices in self._group_indices: yield var[{self._group_dim: indices}] def _concat_shortcut(self, applied, dim, positions=None): # nb. don't worry too much about maintaining this method -- it does # speed things up, but it's not very interpretable and there are much # faster alternatives (e.g., doing the grouped aggregation in a # compiled language) stacked = Variable.concat(applied, dim, shortcut=True) reordered = _maybe_reorder(stacked, dim, positions) result = self._obj._replace_maybe_drop_dims(reordered) return result def _restore_dim_order(self, stacked): def lookup_order(dimension): if dimension == self._group.name: dimension, = self._group.dims if dimension in self._obj.dims: axis = self._obj.get_axis_num(dimension) else: axis = 1e6 # some arbitrarily high value return axis new_order = sorted(stacked.dims, key=lookup_order) return stacked.transpose(*new_order) def apply(self, func, shortcut=False, **kwargs): """Apply a function over each array in the group and concatenate them together into a new array. `func` is called like `func(ar, *args, **kwargs)` for each array `ar` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the array. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped array after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : function Callable to apply to each array. shortcut : bool, optional Whether or not to shortcut evaluation under the assumptions that: (1) The action of `func` does not depend on any of the array metadata (attributes or coordinates) but only on the data and dimensions. (2) The action of `func` creates arrays with homogeneous metadata, that is, with the same dimensions and attributes. If these conditions are satisfied `shortcut` provides significant speedup. This should be the case for many common groupby operations (e.g., applying numpy ufuncs). **kwargs Used to call `func(ar, **kwargs)` for each array `ar`. Returns ------- applied : DataArray or DataArray The result of splitting, applying and combining this array. """ if shortcut: grouped = self._iter_grouped_shortcut() else: grouped = self._iter_grouped() applied = (maybe_wrap_array(arr, func(arr, **kwargs)) for arr in grouped) return self._combine(applied, shortcut=shortcut) def _combine(self, applied, shortcut=False): """Recombine the applied objects like the original.""" applied_example, applied = peek_at(applied) coord, dim, positions = self._infer_concat_args(applied_example) if shortcut: combined = self._concat_shortcut(applied, dim, positions) else: combined = concat(applied, dim) combined = _maybe_reorder(combined, dim, positions) if isinstance(combined, type(self._obj)): # only restore dimension order for arrays combined = self._restore_dim_order(combined) if coord is not None: if shortcut: combined._coords[coord.name] = as_variable(coord) else: combined.coords[coord.name] = coord combined = self._maybe_restore_empty_groups(combined) combined = self._maybe_unstack(combined) return combined def reduce(self, func, dim=None, axis=None, keep_attrs=False, shortcut=True, **kwargs): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. dim : str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dimension' and 'axis' arguments can be supplied. If neither are supplied, then `func` is calculated over all dimension for each group item. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ def reduce_array(ar): return ar.reduce(func, dim, axis, keep_attrs=keep_attrs, **kwargs) return self.apply(reduce_array, shortcut=shortcut) ops.inject_reduce_methods(DataArrayGroupBy) ops.inject_binary_ops(DataArrayGroupBy) class DatasetGroupBy(GroupBy, ImplementsDatasetReduce): def apply(self, func, **kwargs): """Apply a function over each Dataset in the group and concatenate them together into a new Dataset. `func` is called like `func(ds, *args, **kwargs)` for each dataset `ds` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the datasets. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped item after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : function Callable to apply to each sub-dataset. **kwargs Used to call `func(ds, **kwargs)` for each sub-dataset `ar`. Returns ------- applied : Dataset or DataArray The result of splitting, applying and combining this dataset. """ kwargs.pop('shortcut', None) # ignore shortcut if set (for now) applied = (func(ds, **kwargs) for ds in self._iter_grouped()) return self._combine(applied) def _combine(self, applied): """Recombine the applied objects like the original.""" applied_example, applied = peek_at(applied) coord, dim, positions = self._infer_concat_args(applied_example) combined = concat(applied, dim) combined = _maybe_reorder(combined, dim, positions) if coord is not None: combined[coord.name] = coord combined = self._maybe_restore_empty_groups(combined) combined = self._maybe_unstack(combined) return combined def reduce(self, func, dim=None, keep_attrs=False, **kwargs): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. dim : str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dimension' and 'axis' arguments can be supplied. If neither are supplied, then `func` is calculated over all dimension for each group item. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ def reduce_dataset(ds): return ds.reduce(func, dim, keep_attrs, **kwargs) return self.apply(reduce_dataset) def assign(self, **kwargs): """Assign data variables by group. See also -------- Dataset.assign """ return self.apply(lambda ds: ds.assign(**kwargs)) ops.inject_reduce_methods(DatasetGroupBy) ops.inject_binary_ops(DatasetGroupBy)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/groupby.py", "copies": "1", "size": "25171", "license": "apache-2.0", "hash": 2869993255766389000, "line_mean": 36.7376311844, "line_max": 79, "alpha_frac": 0.5917921418, "autogenerated": false, "ratio": 4.434637068357999, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 667 }
from __future__ import absolute_import, division, print_function import functools import numpy as np from .. import Variable from ..core import indexing from ..core.pycompat import OrderedDict, bytes_type, iteritems, unicode_type from ..core.utils import FrozenOrderedDict, close_on_error from .common import ( HDF5_LOCK, DataStorePickleMixin, WritableCFDataStore, find_root) from .netCDF4_ import ( BaseNetCDF4Array, _encode_nc4_variable, _extract_nc4_variable_encoding, _get_datatype, _nc4_require_group) class H5NetCDFArrayWrapper(BaseNetCDF4Array): def __getitem__(self, key): key, np_inds = indexing.decompose_indexer( key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR) # h5py requires using lists for fancy indexing: # https://github.com/h5py/h5py/issues/992 key = tuple(list(k) if isinstance(k, np.ndarray) else k for k in key.tuple) with self.datastore.ensure_open(autoclose=True): array = self.get_array()[key] if len(np_inds.tuple) > 0: array = indexing.NumpyIndexingAdapter(array)[np_inds] return array def maybe_decode_bytes(txt): if isinstance(txt, bytes_type): return txt.decode('utf-8') else: return txt def _read_attributes(h5netcdf_var): # GH451 # to ensure conventions decoding works properly on Python 3, decode all # bytes attributes to strings attrs = OrderedDict() for k, v in h5netcdf_var.attrs.items(): if k not in ['_FillValue', 'missing_value']: v = maybe_decode_bytes(v) attrs[k] = v return attrs _extract_h5nc_encoding = functools.partial( _extract_nc4_variable_encoding, lsd_okay=False, h5py_okay=True, backend='h5netcdf') def _h5netcdf_create_group(dataset, name): return dataset.create_group(name) def _open_h5netcdf_group(filename, mode, group): import h5netcdf ds = h5netcdf.File(filename, mode=mode) with close_on_error(ds): return _nc4_require_group( ds, group, mode, create_group=_h5netcdf_create_group) class H5NetCDFStore(WritableCFDataStore, DataStorePickleMixin): """Store for reading and writing data via h5netcdf """ def __init__(self, filename, mode='r', format=None, group=None, writer=None, autoclose=False, lock=HDF5_LOCK): if format not in [None, 'NETCDF4']: raise ValueError('invalid format for h5netcdf backend') opener = functools.partial(_open_h5netcdf_group, filename, mode=mode, group=group) self._ds = opener() if autoclose: raise NotImplementedError('autoclose=True is not implemented ' 'for the h5netcdf backend pending ' 'further exploration, e.g., bug fixes ' '(in h5netcdf?)') self._autoclose = False self._isopen = True self.format = format self._opener = opener self._filename = filename self._mode = mode super(H5NetCDFStore, self).__init__(writer, lock=lock) def open_store_variable(self, name, var): with self.ensure_open(autoclose=False): dimensions = var.dimensions data = indexing.LazilyOuterIndexedArray( H5NetCDFArrayWrapper(name, self)) attrs = _read_attributes(var) # netCDF4 specific encoding encoding = { 'chunksizes': var.chunks, 'fletcher32': var.fletcher32, 'shuffle': var.shuffle, } # Convert h5py-style compression options to NetCDF4-Python # style, if possible if var.compression == 'gzip': encoding['zlib'] = True encoding['complevel'] = var.compression_opts elif var.compression is not None: encoding['compression'] = var.compression encoding['compression_opts'] = var.compression_opts # save source so __repr__ can detect if it's local or not encoding['source'] = self._filename encoding['original_shape'] = var.shape return Variable(dimensions, data, attrs, encoding) def get_variables(self): with self.ensure_open(autoclose=False): return FrozenOrderedDict((k, self.open_store_variable(k, v)) for k, v in iteritems(self.ds.variables)) def get_attrs(self): with self.ensure_open(autoclose=True): return FrozenOrderedDict(_read_attributes(self.ds)) def get_dimensions(self): with self.ensure_open(autoclose=True): return self.ds.dimensions def get_encoding(self): with self.ensure_open(autoclose=True): encoding = {} encoding['unlimited_dims'] = { k for k, v in self.ds.dimensions.items() if v is None} return encoding def set_dimension(self, name, length, is_unlimited=False): with self.ensure_open(autoclose=False): if is_unlimited: self.ds.dimensions[name] = None self.ds.resize_dimension(name, length) else: self.ds.dimensions[name] = length def set_attribute(self, key, value): with self.ensure_open(autoclose=False): self.ds.attrs[key] = value def encode_variable(self, variable): return _encode_nc4_variable(variable) def prepare_variable(self, name, variable, check_encoding=False, unlimited_dims=None): import h5py attrs = variable.attrs.copy() dtype = _get_datatype(variable) fillvalue = attrs.pop('_FillValue', None) if dtype is str and fillvalue is not None: raise NotImplementedError( 'h5netcdf does not yet support setting a fill value for ' 'variable-length strings ' '(https://github.com/shoyer/h5netcdf/issues/37). ' "Either remove '_FillValue' from encoding on variable %r " "or set {'dtype': 'S1'} in encoding to use the fixed width " 'NC_CHAR type.' % name) if dtype is str: dtype = h5py.special_dtype(vlen=unicode_type) encoding = _extract_h5nc_encoding(variable, raise_on_invalid=check_encoding) kwargs = {} # Convert from NetCDF4-Python style compression settings to h5py style # If both styles are used together, h5py takes precedence # If set_encoding=True, raise ValueError in case of mismatch if encoding.pop('zlib', False): if (check_encoding and encoding.get('compression') not in (None, 'gzip')): raise ValueError("'zlib' and 'compression' encodings mismatch") encoding.setdefault('compression', 'gzip') if (check_encoding and encoding.get('complevel') not in (None, encoding.get('compression_opts'))): raise ValueError("'complevel' and 'compression_opts' encodings " "mismatch") complevel = encoding.pop('complevel', 0) if complevel != 0: encoding.setdefault('compression_opts', complevel) encoding['chunks'] = encoding.pop('chunksizes', None) for key in ['compression', 'compression_opts', 'shuffle', 'chunks', 'fletcher32']: if key in encoding: kwargs[key] = encoding[key] if name not in self.ds: nc4_var = self.ds.create_variable( name, dtype=dtype, dimensions=variable.dims, fillvalue=fillvalue, **kwargs) else: nc4_var = self.ds[name] for k, v in iteritems(attrs): nc4_var.attrs[k] = v target = H5NetCDFArrayWrapper(name, self) return target, variable.data def sync(self, compute=True): if not compute: raise NotImplementedError( 'compute=False is not supported for the h5netcdf backend yet') with self.ensure_open(autoclose=True): super(H5NetCDFStore, self).sync(compute=compute) self.ds.sync() def close(self): if self._isopen: # netCDF4 only allows closing the root group ds = find_root(self.ds) if not ds._closed: ds.close() self._isopen = False
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/h5netcdf_.py", "copies": "1", "size": "8611", "license": "apache-2.0", "hash": -2122231074646926000, "line_mean": 35.7991452991, "line_max": 79, "alpha_frac": 0.589710835, "autogenerated": false, "ratio": 4.079109426811938, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 234 }
from __future__ import absolute_import, division, print_function import functools import numpy as np from .. import Variable from ..core import indexing from ..core.utils import Frozen, FrozenOrderedDict from .common import AbstractDataStore, BackendArray, DataStorePickleMixin class NioArrayWrapper(BackendArray): def __init__(self, variable_name, datastore): self.datastore = datastore self.variable_name = variable_name array = self.get_array() self.shape = array.shape self.dtype = np.dtype(array.typecode()) def get_array(self): self.datastore.assert_open() return self.datastore.ds.variables[self.variable_name] def __getitem__(self, key): key, np_inds = indexing.decompose_indexer( key, self.shape, indexing.IndexingSupport.BASIC) with self.datastore.ensure_open(autoclose=True): array = self.get_array() if key.tuple == () and self.ndim == 0: return array.get_value() array = array[key.tuple] if len(np_inds.tuple) > 0: array = indexing.NumpyIndexingAdapter(array)[np_inds] return array class NioDataStore(AbstractDataStore, DataStorePickleMixin): """Store for accessing datasets via PyNIO """ def __init__(self, filename, mode='r', autoclose=False): import Nio opener = functools.partial(Nio.open_file, filename, mode=mode) self._ds = opener() self._autoclose = autoclose self._isopen = True self._opener = opener self._mode = mode # xarray provides its own support for FillValue, # so turn off PyNIO's support for the same. self.ds.set_option('MaskedArrayMode', 'MaskedNever') def open_store_variable(self, name, var): data = indexing.LazilyOuterIndexedArray(NioArrayWrapper(name, self)) return Variable(var.dimensions, data, var.attributes) def get_variables(self): with self.ensure_open(autoclose=False): return FrozenOrderedDict((k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()) def get_attrs(self): with self.ensure_open(autoclose=True): return Frozen(self.ds.attributes) def get_dimensions(self): with self.ensure_open(autoclose=True): return Frozen(self.ds.dimensions) def get_encoding(self): encoding = {} encoding['unlimited_dims'] = set( [k for k in self.ds.dimensions if self.ds.unlimited(k)]) return encoding def close(self): if self._isopen: self.ds.close() self._isopen = False
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/pynio_.py", "copies": "1", "size": "2731", "license": "apache-2.0", "hash": -7227445321616380000, "line_mean": 31.5119047619, "line_max": 76, "alpha_frac": 0.6246796045, "autogenerated": false, "ratio": 3.935158501440922, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 84 }
from __future__ import absolute_import, division, print_function import functools import six from rest_framework.response import Response from sentry import analytics, eventstore, search from sentry.api.base import DocSection, EnvironmentMixin from sentry.api.bases.project import ProjectEndpoint, ProjectEventPermission from sentry.api.helpers.group_index import ( build_query_params_from_request, delete_groups, get_by_short_id, update_groups, ValidationError, ) from sentry.api.serializers import serialize from sentry.api.serializers.models.group import StreamGroupSerializer from sentry.models import Environment, Group, GroupStatus from sentry.models.event import Event from sentry.models.savedsearch import DEFAULT_SAVED_SEARCH_QUERIES from sentry.signals import advanced_search from sentry.utils.apidocs import attach_scenarios, scenario from sentry.utils.cursors import CursorResult from sentry.utils.validators import normalize_event_id ERR_INVALID_STATS_PERIOD = "Invalid stats_period. Valid choices are '', '24h', and '14d'" @scenario("BulkUpdateIssues") def bulk_update_issues_scenario(runner): project = runner.default_project group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method="PUT", path="/projects/%s/%s/issues/?id=%s&id=%s" % (runner.org.slug, project.slug, group1.id, group2.id), data={"status": "unresolved", "isPublic": False}, ) @scenario("BulkRemoveIssuess") def bulk_remove_issues_scenario(runner): with runner.isolated_project("Amazing Plumbing") as project: group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method="DELETE", path="/projects/%s/%s/issues/?id=%s&id=%s" % (runner.org.slug, project.slug, group1.id, group2.id), ) @scenario("ListProjectIssuess") def list_project_issues_scenario(runner): project = runner.default_project runner.request( method="GET", path="/projects/%s/%s/issues/?statsPeriod=24h" % (runner.org.slug, project.slug), ) class ProjectGroupIndexEndpoint(ProjectEndpoint, EnvironmentMixin): doc_section = DocSection.EVENTS permission_classes = (ProjectEventPermission,) def _search(self, request, project, extra_query_kwargs=None): try: environment = self._get_environment_from_request(request, project.organization_id) except Environment.DoesNotExist: # XXX: The 1000 magic number for `max_hits` is an abstraction leak # from `sentry.api.paginator.BasePaginator.get_result`. result = CursorResult([], None, None, hits=0, max_hits=1000) query_kwargs = {} else: environments = [environment] if environment is not None else environment query_kwargs = build_query_params_from_request( request, project.organization, [project], environments ) if extra_query_kwargs is not None: assert "environment" not in extra_query_kwargs query_kwargs.update(extra_query_kwargs) query_kwargs["environments"] = environments result = search.query(**query_kwargs) return result, query_kwargs # statsPeriod=24h @attach_scenarios([list_project_issues_scenario]) def get(self, request, project): """ List a Project's Issues ``````````````````````` Return a list of issues (groups) bound to a project. All parameters are supplied as query string parameters. A default query of ``is:unresolved`` is applied. To return results with other statuses send an new query value (i.e. ``?query=`` for all results). The ``statsPeriod`` parameter can be used to select the timeline stats which should be present. Possible values are: '' (disable), '24h', '14d' :qparam string statsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam bool shortIdLookup: if this is set to true then short IDs are looked up by this function as well. This can cause the return value of the function to return an event issue of a different project which is why this is an opt-in. Set to `1` to enable. :qparam querystring query: an optional Sentry structured search query. If not provided an implied ``"is:unresolved"`` is assumed.) :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :auth: required """ stats_period = request.GET.get("statsPeriod") if stats_period not in (None, "", "24h", "14d"): return Response({"detail": ERR_INVALID_STATS_PERIOD}, status=400) elif stats_period is None: # default stats_period = "24h" elif stats_period == "": # disable stats stats_period = None serializer = functools.partial( StreamGroupSerializer, environment_func=self._get_environment_func(request, project.organization_id), stats_period=stats_period, ) query = request.GET.get("query", "").strip() if query: matching_group = None matching_event = None event_id = normalize_event_id(query) if event_id: # check to see if we've got an event ID try: matching_group = Group.objects.from_event_id(project, event_id) except Group.DoesNotExist: pass else: matching_event = eventstore.get_event_by_id(project.id, event_id) if matching_event is not None: Event.objects.bind_nodes([matching_event], "data") elif matching_group is None: matching_group = get_by_short_id( project.organization_id, request.GET.get("shortIdLookup"), query ) if matching_group is not None and matching_group.project_id != project.id: matching_group = None if matching_group is not None: matching_event_environment = None try: matching_event_environment = ( matching_event.get_environment().name if matching_event else None ) except Environment.DoesNotExist: pass response = Response( serialize( [matching_group], request.user, serializer( matching_event_id=getattr(matching_event, "id", None), matching_event_environment=matching_event_environment, ), ) ) response["X-Sentry-Direct-Hit"] = "1" return response try: cursor_result, query_kwargs = self._search(request, project, {"count_hits": True}) except ValidationError as exc: return Response({"detail": six.text_type(exc)}, status=400) results = list(cursor_result) context = serialize(results, request.user, serializer()) # HACK: remove auto resolved entries # TODO: We should try to integrate this into the search backend, since # this can cause us to arbitrarily return fewer results than requested. status = [ search_filter for search_filter in query_kwargs.get("search_filters", []) if search_filter.key.name == "status" ] if status and status[0].value.raw_value == GroupStatus.UNRESOLVED: context = [r for r in context if r["status"] == "unresolved"] response = Response(context) self.add_cursor_headers(request, response, cursor_result) if results and query not in DEFAULT_SAVED_SEARCH_QUERIES: advanced_search.send(project=project, sender=request.user) analytics.record( "project_issue.searched", user_id=request.user.id, organization_id=project.organization_id, project_id=project.id, query=query, ) return response @attach_scenarios([bulk_update_issues_scenario]) def put(self, request, project): """ Bulk Mutate a List of Issues ```````````````````````````` Bulk mutate various attributes on issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be modified. - For non-status updates, the `id` query parameter is required. - For status updates, the `id` query parameter may be omitted for a batch "update all" query. - An optional `status` query parameter may be used to restrict mutations to only events with the given status. The following attributes can be modified and are supplied as JSON object in the body: If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be mutated. This parameter shall be repeated for each issue. It is optional only if a status is mutated in which case an implicit `update all` is assumed. :qparam string status: optionally limits the query to issues of the specified status. Valid values are ``"resolved"``, ``"unresolved"`` and ``"ignored"``. :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :param string status: the new status for the issues. Valid values are ``"resolved"``, ``"resolvedInNextRelease"``, ``"unresolved"``, and ``"ignored"``. :param map statusDetails: additional details about the resolution. Valid values are ``"inRelease"``, ``"inNextRelease"``, ``"inCommit"``, ``"ignoreDuration"``, ``"ignoreCount"``, ``"ignoreWindow"``, ``"ignoreUserCount"``, and ``"ignoreUserWindow"``. :param int ignoreDuration: the number of minutes to ignore this issue. :param boolean isPublic: sets the issue to public or private. :param boolean merge: allows to merge or unmerge different issues. :param string assignedTo: the actor id (or username) of the user or team that should be assigned to this issue. :param boolean hasSeen: in case this API call is invoked with a user context this allows changing of the flag that indicates if the user has seen the event. :param boolean isBookmarked: in case this API call is invoked with a user context this allows changing of the bookmark flag. :auth: required """ search_fn = functools.partial(self._search, request, project) return update_groups(request, [project], project.organization_id, search_fn) def delete(self, request, project): """ Bulk Remove a List of Issues ```````````````````````````` Permanently remove the given issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be removed. Only queries by 'id' are accepted. If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be removed. This parameter shall be repeated for each issue. :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :auth: required """ search_fn = functools.partial(self._search, request, project) return delete_groups(request, [project], project.organization_id, search_fn)
{ "repo_name": "mvaled/sentry", "path": "src/sentry/api/endpoints/project_group_index.py", "copies": "1", "size": "13242", "license": "bsd-3-clause", "hash": -455965934252018700, "line_mean": 42.5592105263, "line_max": 95, "alpha_frac": 0.5752152243, "autogenerated": false, "ratio": 4.8013052936910805, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5876520517991081, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import gc import io import locale # system locale module, not tornado.locale import logging import operator import textwrap import sys from tornado.httpclient import AsyncHTTPClient from tornado.httpserver import HTTPServer from tornado.ioloop import IOLoop from tornado.netutil import Resolver from tornado.options import define, options, add_parse_callback from tornado.test.util import unittest try: reduce # py2 except NameError: from functools import reduce # py3 TEST_MODULES = [ 'tornado.httputil.doctests', 'tornado.iostream.doctests', 'tornado.util.doctests', 'tornado.test.asyncio_test', 'tornado.test.auth_test', 'tornado.test.autoreload_test', 'tornado.test.concurrent_test', 'tornado.test.curl_httpclient_test', 'tornado.test.escape_test', 'tornado.test.gen_test', 'tornado.test.http1connection_test', 'tornado.test.httpclient_test', 'tornado.test.httpserver_test', 'tornado.test.httputil_test', 'tornado.test.import_test', 'tornado.test.ioloop_test', 'tornado.test.iostream_test', 'tornado.test.locale_test', 'tornado.test.locks_test', 'tornado.test.netutil_test', 'tornado.test.log_test', 'tornado.test.options_test', 'tornado.test.process_test', 'tornado.test.queues_test', 'tornado.test.routing_test', 'tornado.test.simple_httpclient_test', 'tornado.test.stack_context_test', 'tornado.test.tcpclient_test', 'tornado.test.tcpserver_test', 'tornado.test.template_test', 'tornado.test.testing_test', 'tornado.test.twisted_test', 'tornado.test.util_test', 'tornado.test.web_test', 'tornado.test.websocket_test', 'tornado.test.windows_test', 'tornado.test.wsgi_test', ] def all(): return unittest.defaultTestLoader.loadTestsFromNames(TEST_MODULES) def test_runner_factory(stderr): class TornadoTextTestRunner(unittest.TextTestRunner): def __init__(self, *args, **kwargs): super(TornadoTextTestRunner, self).__init__(*args, stream=stderr, **kwargs) def run(self, test): result = super(TornadoTextTestRunner, self).run(test) if result.skipped: skip_reasons = set(reason for (test, reason) in result.skipped) self.stream.write(textwrap.fill( "Some tests were skipped because: %s" % ", ".join(sorted(skip_reasons)))) self.stream.write("\n") return result return TornadoTextTestRunner class LogCounter(logging.Filter): """Counts the number of WARNING or higher log records.""" def __init__(self, *args, **kwargs): # Can't use super() because logging.Filter is an old-style class in py26 logging.Filter.__init__(self, *args, **kwargs) self.info_count = self.warning_count = self.error_count = 0 def filter(self, record): if record.levelno >= logging.ERROR: self.error_count += 1 elif record.levelno >= logging.WARNING: self.warning_count += 1 elif record.levelno >= logging.INFO: self.info_count += 1 return True class CountingStderr(io.IOBase): def __init__(self, real): self.real = real self.byte_count = 0 def write(self, data): self.byte_count += len(data) return self.real.write(data) def flush(self): return self.real.flush() def main(): # The -W command-line option does not work in a virtualenv with # python 3 (as of virtualenv 1.7), so configure warnings # programmatically instead. import warnings # Be strict about most warnings. This also turns on warnings that are # ignored by default, including DeprecationWarnings and # python 3.2's ResourceWarnings. warnings.filterwarnings("error") # setuptools sometimes gives ImportWarnings about things that are on # sys.path even if they're not being used. warnings.filterwarnings("ignore", category=ImportWarning) # Tornado generally shouldn't use anything deprecated, but some of # our dependencies do (last match wins). warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("error", category=DeprecationWarning, module=r"tornado\..*") warnings.filterwarnings("ignore", category=PendingDeprecationWarning) warnings.filterwarnings("error", category=PendingDeprecationWarning, module=r"tornado\..*") # The unittest module is aggressive about deprecating redundant methods, # leaving some without non-deprecated spellings that work on both # 2.7 and 3.2 warnings.filterwarnings("ignore", category=DeprecationWarning, message="Please use assert.* instead") warnings.filterwarnings("ignore", category=PendingDeprecationWarning, message="Please use assert.* instead") # Twisted 15.0.0 triggers some warnings on py3 with -bb. warnings.filterwarnings("ignore", category=BytesWarning, module=r"twisted\..*") if (3,) < sys.version_info < (3, 6): # Prior to 3.6, async ResourceWarnings were rather noisy # and even # `python3.4 -W error -c 'import asyncio; asyncio.get_event_loop()'` # would generate a warning. warnings.filterwarnings("ignore", category=ResourceWarning, # noqa: F821 module=r"asyncio\..*") logging.getLogger("tornado.access").setLevel(logging.CRITICAL) define('httpclient', type=str, default=None, callback=lambda s: AsyncHTTPClient.configure( s, defaults=dict(allow_ipv6=False))) define('httpserver', type=str, default=None, callback=HTTPServer.configure) define('ioloop', type=str, default=None) define('ioloop_time_monotonic', default=False) define('resolver', type=str, default=None, callback=Resolver.configure) define('debug_gc', type=str, multiple=True, help="A comma-separated list of gc module debug constants, " "e.g. DEBUG_STATS or DEBUG_COLLECTABLE,DEBUG_OBJECTS", callback=lambda values: gc.set_debug( reduce(operator.or_, (getattr(gc, v) for v in values)))) define('locale', type=str, default=None, callback=lambda x: locale.setlocale(locale.LC_ALL, x)) options.disable_hh_patches = True def configure_ioloop(): kwargs = {} if options.ioloop_time_monotonic: from tornado.platform.auto import monotonic_time if monotonic_time is None: raise RuntimeError("monotonic clock not found") kwargs['time_func'] = monotonic_time if options.ioloop or kwargs: IOLoop.configure(options.ioloop, **kwargs) add_parse_callback(configure_ioloop) log_counter = LogCounter() add_parse_callback( lambda: logging.getLogger().handlers[0].addFilter(log_counter)) # Certain errors (especially "unclosed resource" errors raised in # destructors) go directly to stderr instead of logging. Count # anything written by anything but the test runner as an error. orig_stderr = sys.stderr sys.stderr = CountingStderr(orig_stderr) import tornado.testing kwargs = {} if sys.version_info >= (3, 2): # HACK: unittest.main will make its own changes to the warning # configuration, which may conflict with the settings above # or command-line flags like -bb. Passing warnings=False # suppresses this behavior, although this looks like an implementation # detail. http://bugs.python.org/issue15626 kwargs['warnings'] = False kwargs['testRunner'] = test_runner_factory(orig_stderr) try: tornado.testing.main(**kwargs) finally: # The tests should run clean; consider it a failure if they # logged anything at info level or above. if (log_counter.info_count > 0 or log_counter.warning_count > 0 or log_counter.error_count > 0 or sys.stderr.byte_count > 0): logging.error("logged %d infos, %d warnings, %d errors, and %d bytes to stderr", log_counter.info_count, log_counter.warning_count, log_counter.error_count, sys.stderr.byte_count) sys.exit(1) if __name__ == '__main__': main()
{ "repo_name": "hhru/tornado", "path": "tornado/test/runtests.py", "copies": "1", "size": "8554", "license": "apache-2.0", "hash": -1016291712964334000, "line_mean": 37.7058823529, "line_max": 92, "alpha_frac": 0.6502221183, "autogenerated": false, "ratio": 4.090865614538498, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0001559366676381224, "num_lines": 221 }
from __future__ import absolute_import, division, print_function import getpass import logging import os import socket from threading import Thread from time import sleep from mentos.subscription import Event, Subscription from mentos.utils import encode_data, run_background from toolz import merge from tornado.ioloop import IOLoop log = logging.getLogger(__name__) class SchedulerDriver(object): def __init__(self, scheduler, name, user=getpass.getuser(), master=os.getenv('MESOS_MASTER', 'zk://localhost:2181'), failover_timeout=100, capabilities=None, principal=None, secret=None, implicit_acknowledgements=True, handlers={}, loop=None): self.loop = loop or IOLoop() self.master = master self.leading_master_seq = None self.leading_master_info = None self.scheduler = scheduler self.framework = { 'user': user, 'name': name, 'capabilities': capabilities or [], 'failover_timeout': failover_timeout, 'hostname': socket.gethostname() } self.implicit_acknowledgements = implicit_acknowledgements defaults = {Event.SUBSCRIBED: self.on_subscribed, Event.OFFERS: self.on_offers, Event.RESCIND: self.on_rescind, Event.UPDATE: self.on_update, Event.MESSAGE: self.on_message, Event.RESCIND_INVERSE_OFFER: self.on_rescind_inverse, Event.FAILURE: self.on_failure, Event.ERROR: self.on_error, Event.HEARTBEAT: self.on_heartbeat, Event.OUTBOUND_SUCCESS: self.on_outbound_success, Event.OUTBOUND_ERROR: self.on_outbound_error} self.handlers = merge(defaults, handlers) self.subscription = Subscription(self.framework, self.master, '/api/v1/scheduler', self.handlers, principal=principal, secret=secret, timeout=failover_timeout, loop=self.loop) def start(self, block=False, **kwargs): ''' Start scheduler running in separate thread ''' log.debug('Starting scheduler') # if hasattr(self, '_loop_thread'): # if not self._loop_thread._is_stopped: # return if not self.loop._running: self._loop_thread = Thread(target=self.loop.start) self._loop_thread.daemon = True self._loop_thread.start() while not self.loop._running: # pragma: no cover sleep(0.001) self.loop.add_callback(self.subscription.start) if block: # pragma: no cover self._loop_thread.join() def stop(self): log.debug('Terminating Scheduler Driver') if self.subscription: self.subscription.close() if self.loop: def on_complete(self): log.debug('Closed scheduler') run_background(self.loop.stop, on_complete) # self.loop.add_callback(sp) while self.loop._running: sleep(0.1) def request(self, requests): payload = { 'type': 'REQUEST', 'requests': requests } self.loop.add_callback(self.subscription.send, payload) log.debug('Request resources from Mesos') def kill(self, task_id, agent_id): payload = { 'type': 'KILL', 'kill': { 'task_id': { 'value': task_id }, 'agent_id': { 'value': agent_id } } } self.loop.add_callback(self.subscription.send, payload) log.debug('Kills task {}'.format(task_id)) def reconcile(self, task_id, agent_id): if task_id and agent_id: payload = { 'type': 'RECONCILE', 'reconcile': { 'tasks': [{ 'task_id': { 'value': task_id }, 'agent_id': { 'value': agent_id } }] }} log.warn('Reconciling task ID: ' + task_id) else: payload = { 'type': 'RECONCILE', 'reconcile': {'tasks': []} } log.debug('Reconciling all tasks') if payload: self.loop.add_callback(self.subscription.send, payload) else: # pragma: no cover log.debug('Agent and Task not set') def decline(self, offer_ids, filters=None): if isinstance(offer_ids, dict): offer_ids = [offer_ids] decline = { 'offer_ids': offer_ids } if filters is not None: decline['filters'] = filters payload = { 'type': 'DECLINE', 'decline': decline } self.loop.add_callback(self.subscription.send, payload) log.debug('Declines offer {}'.format(offer_ids)) def launch(self, offer_ids, tasks, filters=None): if not tasks: return self.decline(offer_ids, filters=filters) operations = [{ 'type': 'LAUNCH', 'launch': { 'task_infos': tasks } }] self.accept(offer_ids, operations, filters=filters) log.debug('Launching operations {} with filters {}'.format( operations, filters)) def accept(self, offer_ids, operations, filters=None): if not operations: self.decline(offer_ids, filters=filters) else: accept = { 'offer_ids': offer_ids, 'operations': operations } if filters is not None: accept['filters'] = filters payload = { 'type': 'ACCEPT', 'accept': accept } self.loop.add_callback(self.subscription.send, payload) log.debug('Accepts offers {}'.format(offer_ids)) def revive(self): payload = { 'type': 'REVIVE' } self.loop.add_callback(self.subscription.send, payload) log.debug('Revives; removes all filters previously set by framework') def acknowledge(self, status): if 'uuid' not in status: log.warn('Did not get a UUID for %s' % status) return payload = { 'type': 'ACKNOWLEDGE', 'acknowledge': { 'agent_id': status['agent_id'], 'task_id': status['task_id'], 'uuid': status['uuid'] } } self.loop.add_callback(self.subscription.send, payload) log.debug('Acknowledges status update {}'.format(status)) def message(self, executor_id, agent_id, message): payload = { 'type': 'MESSAGE', 'message': { 'agent_id': { 'value': agent_id }, 'executor_id': { 'value': executor_id }, 'data': encode_data(message) } } self.loop.add_callback(self.subscription.send, payload) log.debug('Sends message `{}` to executor `{}` on agent `{}`'.format( message, executor_id, agent_id)) def shutdown(self, agent_id, executor_Id): payload = { 'type': 'SHUTDOWN', 'kill': { 'executor_id': { 'value': executor_Id }, 'agent_id': { 'value': agent_id } } } self.loop.add_callback(self.subscription.send, payload) log.debug('Sent shutdown signal') def teardown(self, framework_id): payload = { 'type': 'TEARDOWN' } self.loop.add_callback(self.subscription.send, payload) log.debug('Sent teardown signal') def on_error(self, event): message = event['message'] self.scheduler.on_error(self, message) log.debug('Got error %s' % event) def on_heartbeat(self, event): self.scheduler.on_heartbeat(self, event) log.debug('Got Heartbeat') def on_subscribed(self, info): self.scheduler.on_reregistered( self, info['framework_id'], self.subscription.master_info.info) log.debug('Subscribed %s' % info) def on_offers(self, event): offers = event['offers'] self.scheduler.on_offers( self, offers ) log.debug('Got offers %s' % event) def on_rescind_inverse(self, event): offer_id = event['offer_id'] self.scheduler.on_rescind_inverse(self, offer_id) log.debug('Inverse rescind offer %s' % event) def on_rescind(self, event): offer_id = event['offer_id'] self.scheduler.on_rescinded(self, offer_id) log.debug('Rescind offer %s' % event) def on_update(self, event): status = event['status'] self.scheduler.on_update(self, status) if self.implicit_acknowledgements: self.acknowledge(status) log.debug('Got update %s' % event) def on_message(self, event): executor_id = event['executor_id'] agent_id = event['agent_id'] data = event['data'] self.scheduler.on_message( self, executor_id, agent_id, data ) log.debug('Got message %s' % event) def on_failure(self, event): agent_id = event['agent_id'] if 'executor_id' not in event: self.scheduler.on_agent_lost(self, agent_id) log.debug('Lost agent %s' % agent_id) else: executor_id = event['executor_id'] status = event['status'] self.scheduler.on_executor_lost( self, executor_id, agent_id, status ) log.debug('Lost executor %s on agent %s' % (executor_id, agent_id)) def on_outbound_success(self, event): self.scheduler.on_outbound_success(self, event['request']) log.debug('Got success on outbound %s' % event) def on_outbound_error(self, event): self.scheduler.on_outbound_error(self, event['request'], event[ 'endpoint'], event['error']) log.debug('Got error on outbound %s' % event) def __str__(self): return '<%s: scheduler=%s:%s:%s>' % ( self.__class__.__name__, self.master, self.subscription.master_info.info, self.framework) __repr__ = __str__ def __enter__(self): if not self.loop._running: log.debug('Entering context manager') self.start(block=False) return self def __exit__(self, type, value, traceback): log.debug('Exited context manager') self.stop() def __del__(self): # pragma: no cover log.debug('Deleting scheduler') self.stop()
{ "repo_name": "Arttii/malefico", "path": "mentos/scheduler.py", "copies": "2", "size": "11355", "license": "apache-2.0", "hash": -4477812888790744000, "line_mean": 31.8179190751, "line_max": 86, "alpha_frac": 0.515896081, "autogenerated": false, "ratio": 4.229050279329609, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5744946360329609, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import gym class EnvWrapper: """Wrapper around OpenAI Gym environments allowing for state and reward preprocessing.""" def __init__(self, name, state_filter=None, reward_filter=None): self.name = name self.env = gym.make(name) self.state_filter = state_filter self.reward_filter = reward_filter self.action_space = self.env.action_space self.observation_space = self.env.observation_space self.spec = self.env.spec def step(self, action): s, reward, done, info = self.env.step(action) s = self.state_filter(s) if self.state_filter else s reward = self.reward_filter(reward) if self.reward_filter else reward return s, reward, done, info def reset(self): s = self.env.reset() return self.state_filter(s) if self.state_filter else s def render(self, *args, **kwargs): self.env.render(*args, **kwargs) def seed(self, seed=None): return self.env.seed(seed) def close(self): self.env.close() @property def monitor(self): return self.env.monitor
{ "repo_name": "domluna/deep_rl", "path": "deep_rl/envs/env_wrapper.py", "copies": "1", "size": "1191", "license": "mit", "hash": 1467084896663312100, "line_mean": 28.775, "line_max": 77, "alpha_frac": 0.6364399664, "autogenerated": false, "ratio": 3.7452830188679247, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9881722985267924, "avg_score": 0, "num_lines": 40 }
from __future__ import absolute_import, division, print_function import gzip from datashape import discover, dshape from collections import Iterator from toolz import partial, concat import uuid import os from ..compatibility import unicode from ..chunks import chunks from ..drop import drop from ..temp import Temp from ..append import append from ..convert import convert from ..resource import resource class TextFile(object): canonical_extension = 'txt' def __init__(self, path, **kwargs): self.path = path @property def open(self): if self.path.split(os.path.extsep)[-1] == 'gz': return gzip.open else: return open @convert.register(Iterator, (TextFile, Temp(TextFile)), cost=0.1) def textfile_to_iterator(data, **kwargs): with data.open(data.path) as f: for line in f: yield line @convert.register(Iterator, chunks(TextFile), cost=0.1) def chunks_textfile_to_iterator(data, **kwargs): return concat(map(partial(convert, Iterator), data)) @discover.register((TextFile, Temp(TextFile))) def discover_textfile(data, **kwargs): return dshape('var * string') @append.register((Temp(TextFile), TextFile), Iterator) def append_iterator_to_textfile(target, source, **kwargs): with target.open(target.path, 'a') as f: for item in source: f.write(unicode(item)) f.write('\n') # TODO: detect OS-level newline character return target @append.register(TextFile, object) def append_anything_to_textfile(target, source, **kwargs): return append(target, convert(Iterator, source, **kwargs), **kwargs) @convert.register(Temp(TextFile), Iterator) def iterator_to_temp_textfile(seq, **kwargs): fn = str(uuid.uuid1()) txt = Temp(TextFile)(fn) return append(txt, seq, **kwargs) @resource.register('.+\.(txt|log)(.gz)?') def resource_sas(uri, **kwargs): return TextFile(uri) @drop.register(TextFile) def drop_textfile(data, **kwargs): os.remove(data.path)
{ "repo_name": "cpcloud/odo", "path": "odo/backends/text.py", "copies": "9", "size": "2024", "license": "bsd-3-clause", "hash": 4503148597744755000, "line_mean": 24.9487179487, "line_max": 72, "alpha_frac": 0.6818181818, "autogenerated": false, "ratio": 3.5261324041811846, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8707950585981186, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import h5py import os import datashape from datashape import DataShape, Record, to_numpy, discover from datashape.predicates import isrecord from datashape.dispatch import dispatch import numpy as np from toolz import keyfilter from ..numpy_dtype import dshape_to_numpy from ..append import append from ..convert import convert, ooc_types from ..create import create from ..resource import resource from ..chunks import chunks h5py_attributes = ['chunks', 'compression', 'compression_opts', 'dtype', 'fillvalue', 'fletcher32', 'maxshape', 'shape'] try: unicode_dtype = h5py.special_dtype(vlen=unicode) except NameError: unicode_dtype = h5py.special_dtype(vlen=str) @discover.register((h5py.Group, h5py.File)) def discover_h5py_group_file(g): return DataShape(Record([[k, discover(v)] for k, v in g.items()])) def record_dshape_replace(dshape, old, new): """Recursively replace all instances of `old` with `new` in the record dshape `dshape`. Examples -------- >>> from datashape import Record, string, object_, dshape >>> ds = DataShape(Record([('a', 'int64'), ... ('b', 10 * Record([('c', 'object')])), ... ('d', 'int64')])) ... >>> Record(list(record_dshape_replace(ds, object_, string))) dshape("{a: int64, b: 10 * {c: object}, d: int64}") """ assert isrecord(dshape), 'input dshape must be a record' for name, subshape in dshape.measure.fields: if subshape == old: yield name, new else: if isrecord(subshape): yield record_dshape_replace(subshape, old, new) else: yield name, subshape @discover.register(h5py.Dataset) def discover_h5py_dataset(d): dshape = datashape.from_numpy(d.shape, d.dtype) shape, measure = dshape.shape, dshape.measure if not isrecord(measure): if dshape == datashape.object_: args = shape + (datashape.string,) return DataShape(*args) return dshape else: records = list(record_dshape_replace(measure, datashape.object_, datashape.string)) args = shape + (datashape.Record(records),) return DataShape(*args) def dtype_replace(dtype, old, new): """Replace the subdtype `old` in `subdtype` with `new`. Parameters ---------- dtype, old, new : dtype Examples -------- >>> dt = np.dtype([('a', 'int64'), ('b', 'object'), ... ('c', [('d', 'object'), ('e', 'float64')])]) ... >>> r = np.dtype(list(dtype_replace(dt, 'int64', 'float64'))) >>> r dtype([('a', '<f8'), ('b', 'O'), ('c', [('d', 'O'), ('e', '<f8')])]) """ names = dtype.names assert names is not None, 'dtype must be record-like' for name, subdtype in zip(names, map(dtype.__getitem__, names)): if subdtype == old: yield name, new else: if subdtype.names is not None: yield name, list(dtype_replace(subdtype, old, new)) else: yield name, subdtype def varlen_dtype(dt): """Inject variable length string element for object dtype Examples -------- >>> dt = np.dtype('object') >>> dt dtype('O') >>> r = varlen_dtype(dt) >>> r dtype('O') >>> r.metadata['vlen'] # doctest: +SKIP <type 'unicode'> >>> dt = np.dtype([('a', 'int64'), ('b', 'object'), ... ('c', [('d', 'object'), ('e', 'float64')])]) ... >>> dt['b'].metadata >>> r = varlen_dtype(dt) >>> r dtype([('a', '<i8'), ('b', 'O'), ('c', [('d', 'O'), ('e', '<f8')])]) >>> r['b'].metadata['vlen'] # doctest: +SKIP <type 'unicode'> """ if dt == np.object_: return unicode_dtype elif dt.names is None: # some kind of non record like dtype return dt else: return np.dtype(list(dtype_replace(dt, np.dtype('object'), unicode_dtype))) def dataset_from_dshape(file, datapath, ds, **kwargs): dtype = varlen_dtype(dshape_to_numpy(ds)) if datashape.var not in list(ds): shape = tuple(map(int, ds.shape)) elif datashape.var not in list(ds)[1:]: shape = (0,) + tuple(map(int, ds.shape[1:])) else: raise ValueError("Don't know how to handle varlen nd shapes") if shape: kwargs['chunks'] = kwargs.get('chunks', True) kwargs['maxshape'] = kwargs.get('maxshape', (None,) + shape[1:]) kwargs2 = keyfilter(h5py_attributes.__contains__, kwargs) return file.require_dataset(datapath, shape=shape, dtype=dtype, **kwargs2) def create_from_datashape(group, ds, name=None, **kwargs): if not isrecord(ds): raise ValueError( "Trying to create an HDF5 file with non-record datashape failed\n" "Perhaps you forgot to specify a datapath?\n" "\tdshape: %s\n" "If you're using odo consider the following change\n" "\tBefore: odo(data, 'myfile.hdf5')\n" "\tAfter: odo(data, 'myfile.hdf5::/datapath')" % ds) if isinstance(ds, DataShape) and len(ds) == 1: ds = ds[0] for name, sub_ds in ds.dict.items(): if isrecord(sub_ds): g = group.require_group(name) create_from_datashape(g, sub_ds, **kwargs) else: dataset_from_dshape(file=group.file, datapath='/'.join([group.name, name]), ds=sub_ds, **kwargs) @create.register(h5py.File) def create_h5py_file(cls, path=None, dshape=None, **kwargs): f = h5py.File(path) create_from_datashape(f, dshape, **kwargs) return f @append.register(h5py.Dataset, np.ndarray) def append_h5py(dset, x, **kwargs): if not sum(x.shape): return dset shape = list(dset.shape) shape[0] += len(x) dset.resize(shape) dset[-len(x):] = x return dset @append.register(h5py.Dataset, chunks(np.ndarray)) def append_h5py(dset, c, **kwargs): for chunk in c: append(dset, chunk) return dset @append.register(h5py.Dataset, object) def append_h5py(dset, x, **kwargs): return append(dset, convert(chunks(np.ndarray), x, **kwargs), **kwargs) @convert.register(np.ndarray, h5py.Dataset, cost=3.0) def h5py_to_numpy(dset, force=False, **kwargs): if dset.size > 1e9: raise MemoryError(("File size is large: %0.2f GB.\n" "Convert with flag force=True to force loading") % (dset.size / 1e9)) else: return dset[:] @convert.register(chunks(np.ndarray), h5py.Dataset, cost=3.0) def h5py_to_numpy_chunks(dset, chunksize=2 ** 20, **kwargs): def load(): for i in range(0, dset.shape[0], chunksize): yield dset[i: i + chunksize] return chunks(np.ndarray)(load) @resource.register('h5py://.+', priority=11) def resource_h5py(uri, datapath=None, dshape=None, expected_dshape=None, **kwargs): if uri.startswith('h5py://'): uri = uri[len('h5py://'):] f = h5py.File(uri) olddatapath = datapath if datapath is not None and datapath in f: old_dset = f[datapath] if expected_dshape is not None: dshape = expected_dshape assert dshape == discover(old_dset) if dshape is not None: ds = datashape.dshape(dshape) if datapath: while ds and datapath: datapath, name = datapath.rsplit('/', 1) ds = Record([[name, ds]]) ds = datashape.dshape(ds) f.close() f = create(h5py.File, path=uri, dshape=ds, **kwargs) if olddatapath: return f[olddatapath] else: return f @resource.register(r'^(?!hdfstore).+\.(hdf5|h5)', priority=10) def resource_hdf5(uri, *args, **kwargs): return resource_h5py(uri, *args, **kwargs) @dispatch((h5py.Group, h5py.Dataset)) def drop(h): del h.file[h.name] @dispatch(h5py.File) def drop(h): fn = h.filename h.close() os.remove(fn) ooc_types.add(h5py.Dataset)
{ "repo_name": "cpcloud/odo", "path": "odo/backends/h5py.py", "copies": "9", "size": "8231", "license": "bsd-3-clause", "hash": -6886017480040308000, "line_mean": 29.3726937269, "line_max": 78, "alpha_frac": 0.5713765035, "autogenerated": false, "ratio": 3.374743747437474, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 271 }
from __future__ import absolute_import, division, print_function import hashlib import linecache import sys import threading import warnings from operator import itemgetter from . import _config from ._compat import ( PY2, isclass, iteritems, metadata_proxy, ordered_dict, set_closure_cell ) from .exceptions import ( DefaultAlreadySetError, FrozenInstanceError, NotAnAttrsClassError, UnannotatedAttributeError ) # This is used at least twice, so cache it here. _obj_setattr = object.__setattr__ _init_converter_pat = "__attr_converter_{}" _init_factory_pat = "__attr_factory_{}" _tuple_property_pat = " {attr_name} = property(itemgetter({index}))" _classvar_prefixes = ("typing.ClassVar", "t.ClassVar", "ClassVar") _empty_metadata_singleton = metadata_proxy({}) class _Nothing(object): """ Sentinel class to indicate the lack of a value when ``None`` is ambiguous. All instances of `_Nothing` are equal. """ def __copy__(self): return self def __deepcopy__(self, _): return self def __eq__(self, other): return other.__class__ == _Nothing def __ne__(self, other): return not self == other def __repr__(self): return "NOTHING" def __hash__(self): return 0xc0ffee NOTHING = _Nothing() """ Sentinel to indicate the lack of a value when ``None`` is ambiguous. """ def attrib(default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=None, type=None, converter=None, factory=None): """ Create a new attribute on a class. .. warning:: Does *not* do anything unless the class is also decorated with :func:`attr.s`! :param default: A value that is used if an ``attrs``-generated ``__init__`` is used and no value is passed while instantiating or the attribute is excluded using ``init=False``. If the value is an instance of :class:`Factory`, its callable will be used to construct a new value (useful for mutable data types like lists or dicts). If a default is not set (or set manually to ``attr.NOTHING``), a value *must* be supplied when instantiating; otherwise a :exc:`TypeError` will be raised. The default can also be set using decorator notation as shown below. :type default: Any value. :param callable factory: Syntactic sugar for ``default=attr.Factory(callable)``. :param validator: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods after the instance has been initialized. They receive the initialized instance, the :class:`Attribute`, and the passed value. The return value is *not* inspected so the validator has to throw an exception itself. If a ``list`` is passed, its items are treated as validators and must all pass. Validators can be globally disabled and re-enabled using :func:`get_run_validators`. The validator can also be set using decorator notation as shown below. :type validator: ``callable`` or a ``list`` of ``callable``\\ s. :param bool repr: Include this attribute in the generated ``__repr__`` method. :param bool cmp: Include this attribute in the generated comparison methods (``__eq__`` et al). :param hash: Include this attribute in the generated ``__hash__`` method. If ``None`` (default), mirror *cmp*'s value. This is the correct behavior according the Python spec. Setting this value to anything else than ``None`` is *discouraged*. :type hash: ``bool`` or ``None`` :param bool init: Include this attribute in the generated ``__init__`` method. It is possible to set this to ``False`` and set a default value. In that case this attributed is unconditionally initialized with the specified default value or factory. :param callable converter: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods to converter attribute's value to the desired format. It is given the passed-in value, and the returned value will be used as the new value of the attribute. The value is converted before being passed to the validator, if any. :param metadata: An arbitrary mapping, to be used by third-party components. See :ref:`extending_metadata`. :param type: The type of the attribute. In Python 3.6 or greater, the preferred method to specify the type is using a variable annotation (see `PEP 526 <https://www.python.org/dev/peps/pep-0526/>`_). This argument is provided for backward compatibility. Regardless of the approach used, the type will be stored on ``Attribute.type``. .. versionadded:: 15.2.0 *convert* .. versionadded:: 16.3.0 *metadata* .. versionchanged:: 17.1.0 *validator* can be a ``list`` now. .. versionchanged:: 17.1.0 *hash* is ``None`` and therefore mirrors *cmp* by default. .. versionadded:: 17.3.0 *type* .. deprecated:: 17.4.0 *convert* .. versionadded:: 17.4.0 *converter* as a replacement for the deprecated *convert* to achieve consistency with other noun-based arguments. .. versionadded:: 18.1.0 ``factory=f`` is syntactic sugar for ``default=attr.Factory(f)``. """ if hash is not None and hash is not True and hash is not False: raise TypeError( "Invalid value for hash. Must be True, False, or None." ) if convert is not None: if converter is not None: raise RuntimeError( "Can't pass both `convert` and `converter`. " "Please use `converter` only." ) warnings.warn( "The `convert` argument is deprecated in favor of `converter`. " "It will be removed after 2019/01.", DeprecationWarning, stacklevel=2 ) converter = convert if factory is not None: if default is not NOTHING: raise ValueError( "The `default` and `factory` arguments are mutually " "exclusive." ) if not callable(factory): raise ValueError( "The `factory` argument must be a callable." ) default = Factory(factory) if metadata is None: metadata = {} return _CountingAttr( default=default, validator=validator, repr=repr, cmp=cmp, hash=hash, init=init, converter=converter, metadata=metadata, type=type, ) def _make_attr_tuple_class(cls_name, attr_names): """ Create a tuple subclass to hold `Attribute`s for an `attrs` class. The subclass is a bare tuple with properties for names. class MyClassAttributes(tuple): __slots__ = () x = property(itemgetter(0)) """ attr_class_name = "{}Attributes".format(cls_name) attr_class_template = [ "class {}(tuple):".format(attr_class_name), " __slots__ = ()", ] if attr_names: for i, attr_name in enumerate(attr_names): attr_class_template.append(_tuple_property_pat.format( index=i, attr_name=attr_name, )) else: attr_class_template.append(" pass") globs = {"itemgetter": itemgetter} eval(compile("\n".join(attr_class_template), "", "exec"), globs) return globs[attr_class_name] # Tuple class for extracted attributes from a class definition. # `super_attrs` is a subset of `attrs`. _Attributes = _make_attr_tuple_class("_Attributes", [ "attrs", # all attributes to build dunder methods for "super_attrs", # attributes that have been inherited "super_attrs_map", # map inherited attributes to their originating classes ]) def _is_class_var(annot): """ Check whether *annot* is a typing.ClassVar. The string comparison hack is used to avoid evaluating all string annotations which would put attrs-based classes at a performance disadvantage compared to plain old classes. """ return str(annot).startswith(_classvar_prefixes) def _get_annotations(cls): """ Get annotations for *cls*. """ anns = getattr(cls, "__annotations__", None) if anns is None: return {} # Verify that the annotations aren't merely inherited. for super_cls in cls.__mro__[1:]: if anns is getattr(super_cls, "__annotations__", None): return {} return anns def _counter_getter(e): """ Key function for sorting to avoid re-creating a lambda for every class. """ return e[1].counter def _transform_attrs(cls, these, auto_attribs): """ Transform all `_CountingAttr`s on a class into `Attribute`s. If *these* is passed, use that and don't look for them on the class. Return an `_Attributes`. """ cd = cls.__dict__ anns = _get_annotations(cls) if these is not None: ca_list = [ (name, ca) for name, ca in iteritems(these) ] if not isinstance(these, ordered_dict): ca_list.sort(key=_counter_getter) elif auto_attribs is True: ca_names = { name for name, attr in cd.items() if isinstance(attr, _CountingAttr) } ca_list = [] annot_names = set() for attr_name, type in anns.items(): if _is_class_var(type): continue annot_names.add(attr_name) a = cd.get(attr_name, NOTHING) if not isinstance(a, _CountingAttr): if a is NOTHING: a = attrib() else: a = attrib(default=a) ca_list.append((attr_name, a)) unannotated = ca_names - annot_names if len(unannotated) > 0: raise UnannotatedAttributeError( "The following `attr.ib`s lack a type annotation: " + ", ".join(sorted( unannotated, key=lambda n: cd.get(n).counter )) + "." ) else: ca_list = sorted(( (name, attr) for name, attr in cd.items() if isinstance(attr, _CountingAttr) ), key=lambda e: e[1].counter) own_attrs = [ Attribute.from_counting_attr( name=attr_name, ca=ca, type=anns.get(attr_name), ) for attr_name, ca in ca_list ] super_attrs = [] super_attr_map = {} # A dictionary of superattrs to their classes. taken_attr_names = {a.name: a for a in own_attrs} # Traverse the MRO and collect attributes. for super_cls in cls.__mro__[1:-1]: sub_attrs = getattr(super_cls, "__attrs_attrs__", None) if sub_attrs is not None: for a in sub_attrs: prev_a = taken_attr_names.get(a.name) # Only add an attribute if it hasn't been defined before. This # allows for overwriting attribute definitions by subclassing. if prev_a is None: super_attrs.append(a) taken_attr_names[a.name] = a super_attr_map[a.name] = super_cls attr_names = [a.name for a in super_attrs + own_attrs] AttrsClass = _make_attr_tuple_class(cls.__name__, attr_names) attrs = AttrsClass( super_attrs + [ Attribute.from_counting_attr( name=attr_name, ca=ca, type=anns.get(attr_name) ) for attr_name, ca in ca_list ] ) had_default = False for a in attrs: if had_default is True and a.default is NOTHING and a.init is True: raise ValueError( "No mandatory attributes allowed after an attribute with a " "default value or factory. Attribute in question: {a!r}" .format(a=a) ) elif had_default is False and \ a.default is not NOTHING and \ a.init is not False: had_default = True return _Attributes((attrs, super_attrs, super_attr_map)) def _frozen_setattrs(self, name, value): """ Attached to frozen classes as __setattr__. """ raise FrozenInstanceError() def _frozen_delattrs(self, name): """ Attached to frozen classes as __delattr__. """ raise FrozenInstanceError() class _ClassBuilder(object): """ Iteratively build *one* class. """ __slots__ = ( "_cls", "_cls_dict", "_attrs", "_super_names", "_attr_names", "_slots", "_frozen", "_has_post_init", "_delete_attribs", "_super_attr_map", ) def __init__(self, cls, these, slots, frozen, auto_attribs): attrs, super_attrs, super_map = _transform_attrs( cls, these, auto_attribs ) self._cls = cls self._cls_dict = dict(cls.__dict__) if slots else {} self._attrs = attrs self._super_names = set(a.name for a in super_attrs) self._super_attr_map = super_map self._attr_names = tuple(a.name for a in attrs) self._slots = slots self._frozen = frozen or _has_frozen_superclass(cls) self._has_post_init = bool(getattr(cls, "__attrs_post_init__", False)) self._delete_attribs = not bool(these) self._cls_dict["__attrs_attrs__"] = self._attrs if frozen: self._cls_dict["__setattr__"] = _frozen_setattrs self._cls_dict["__delattr__"] = _frozen_delattrs def __repr__(self): return "<_ClassBuilder(cls={cls})>".format(cls=self._cls.__name__) def build_class(self): """ Finalize class based on the accumulated configuration. Builder cannot be used anymore after calling this method. """ if self._slots is True: return self._create_slots_class() else: return self._patch_original_class() def _patch_original_class(self): """ Apply accumulated methods and return the class. """ cls = self._cls super_names = self._super_names # Clean class of attribute definitions (`attr.ib()`s). if self._delete_attribs: for name in self._attr_names: if name not in super_names and \ getattr(cls, name, None) is not None: delattr(cls, name) # Attach our dunder methods. for name, value in self._cls_dict.items(): setattr(cls, name, value) return cls def _create_slots_class(self): """ Build and return a new class with a `__slots__` attribute. """ super_names = self._super_names cd = { k: v for k, v in iteritems(self._cls_dict) if k not in tuple(self._attr_names) + ("__dict__",) } # We only add the names of attributes that aren't inherited. # Settings __slots__ to inherited attributes wastes memory. cd["__slots__"] = tuple( name for name in self._attr_names if name not in super_names ) qualname = getattr(self._cls, "__qualname__", None) if qualname is not None: cd["__qualname__"] = qualname # __weakref__ is not writable. state_attr_names = tuple( an for an in self._attr_names if an != "__weakref__" ) def slots_getstate(self): """ Automatically created by attrs. """ return tuple( getattr(self, name) for name in state_attr_names ) def slots_setstate(self, state): """ Automatically created by attrs. """ __bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(state_attr_names, state): __bound_setattr(name, value) # slots and frozen require __getstate__/__setstate__ to work cd["__getstate__"] = slots_getstate cd["__setstate__"] = slots_setstate # Create new class based on old class and our methods. cls = type(self._cls)( self._cls.__name__, self._cls.__bases__, cd, ) # The following is a fix for # https://github.com/python-attrs/attrs/issues/102. On Python 3, # if a method mentions `__class__` or uses the no-arg super(), the # compiler will bake a reference to the class in the method itself # as `method.__closure__`. Since we replace the class with a # clone, we rewrite these references so it keeps working. for item in cls.__dict__.values(): if isinstance(item, (classmethod, staticmethod)): # Class- and staticmethods hide their functions inside. # These might need to be rewritten as well. closure_cells = getattr(item.__func__, "__closure__", None) else: closure_cells = getattr(item, "__closure__", None) if not closure_cells: # Catch None or the empty list. continue for cell in closure_cells: if cell.cell_contents is self._cls: set_closure_cell(cell, cls) return cls def add_repr(self, ns): self._cls_dict["__repr__"] = self._add_method_dunders( _make_repr(self._attrs, ns=ns) ) return self def add_str(self): repr = self._cls_dict.get("__repr__") if repr is None: raise ValueError( "__str__ can only be generated if a __repr__ exists." ) def __str__(self): return self.__repr__() self._cls_dict["__str__"] = self._add_method_dunders(__str__) return self def make_unhashable(self): self._cls_dict["__hash__"] = None return self def add_hash(self): self._cls_dict["__hash__"] = self._add_method_dunders( _make_hash(self._attrs) ) return self def add_init(self): self._cls_dict["__init__"] = self._add_method_dunders( _make_init( self._attrs, self._has_post_init, self._frozen, self._slots, self._super_attr_map, ) ) return self def add_cmp(self): cd = self._cls_dict cd["__eq__"], cd["__ne__"], cd["__lt__"], cd["__le__"], cd["__gt__"], \ cd["__ge__"] = ( self._add_method_dunders(meth) for meth in _make_cmp(self._attrs) ) return self def _add_method_dunders(self, method): """ Add __module__ and __qualname__ to a *method* if possible. """ try: method.__module__ = self._cls.__module__ except AttributeError: pass try: method.__qualname__ = ".".join( (self._cls.__qualname__, method.__name__,) ) except AttributeError: pass return method def attrs(maybe_cls=None, these=None, repr_ns=None, repr=True, cmp=True, hash=None, init=True, slots=False, frozen=False, str=False, auto_attribs=False): r""" A class decorator that adds `dunder <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the specified attributes using :func:`attr.ib` or the *these* argument. :param these: A dictionary of name to :func:`attr.ib` mappings. This is useful to avoid the definition of your attributes within the class body because you can't (e.g. if you want to add ``__repr__`` methods to Django models) or don't want to. If *these* is not ``None``, ``attrs`` will *not* search the class body for attributes and will *not* remove any attributes from it. If *these* is an ordered dict (:class:`dict` on Python 3.6+, :class:`collections.OrderedDict` otherwise), the order is deduced from the order of the attributes inside *these*. Otherwise the order of the definition of the attributes is used. :type these: :class:`dict` of :class:`str` to :func:`attr.ib` :param str repr_ns: When using nested classes, there's no way in Python 2 to automatically detect that. Therefore it's possible to set the namespace explicitly for a more meaningful ``repr`` output. :param bool repr: Create a ``__repr__`` method with a human readable representation of ``attrs`` attributes.. :param bool str: Create a ``__str__`` method that is identical to ``__repr__``. This is usually not necessary except for :class:`Exception`\ s. :param bool cmp: Create ``__eq__``, ``__ne__``, ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` methods that compare the class as if it were a tuple of its ``attrs`` attributes. But the attributes are *only* compared, if the type of both classes is *identical*! :param hash: If ``None`` (default), the ``__hash__`` method is generated according how *cmp* and *frozen* are set. 1. If *both* are True, ``attrs`` will generate a ``__hash__`` for you. 2. If *cmp* is True and *frozen* is False, ``__hash__`` will be set to None, marking it unhashable (which it is). 3. If *cmp* is False, ``__hash__`` will be left untouched meaning the ``__hash__`` method of the superclass will be used (if superclass is ``object``, this means it will fall back to id-based hashing.). Although not recommended, you can decide for yourself and force ``attrs`` to create one (e.g. if the class is immutable even though you didn't freeze it programmatically) by passing ``True`` or not. Both of these cases are rather special and should be used carefully. See the `Python documentation \ <https://docs.python.org/3/reference/datamodel.html#object.__hash__>`_ and the `GitHub issue that led to the default behavior \ <https://github.com/python-attrs/attrs/issues/136>`_ for more details. :type hash: ``bool`` or ``None`` :param bool init: Create a ``__init__`` method that initializes the ``attrs`` attributes. Leading underscores are stripped for the argument name. If a ``__attrs_post_init__`` method exists on the class, it will be called after the class is fully initialized. :param bool slots: Create a slots_-style class that's more memory-efficient. See :ref:`slots` for further ramifications. :param bool frozen: Make instances immutable after initialization. If someone attempts to modify a frozen instance, :exc:`attr.exceptions.FrozenInstanceError` is raised. Please note: 1. This is achieved by installing a custom ``__setattr__`` method on your class so you can't implement an own one. 2. True immutability is impossible in Python. 3. This *does* have a minor a runtime performance :ref:`impact <how-frozen>` when initializing new instances. In other words: ``__init__`` is slightly slower with ``frozen=True``. 4. If a class is frozen, you cannot modify ``self`` in ``__attrs_post_init__`` or a self-written ``__init__``. You can circumvent that limitation by using ``object.__setattr__(self, "attribute_name", value)``. .. _slots: https://docs.python.org/3/reference/datamodel.html#slots :param bool auto_attribs: If True, collect `PEP 526`_-annotated attributes (Python 3.6 and later only) from the class body. In this case, you **must** annotate every field. If ``attrs`` encounters a field that is set to an :func:`attr.ib` but lacks a type annotation, an :exc:`attr.exceptions.UnannotatedAttributeError` is raised. Use ``field_name: typing.Any = attr.ib(...)`` if you don't want to set a type. If you assign a value to those attributes (e.g. ``x: int = 42``), that value becomes the default value like if it were passed using ``attr.ib(default=42)``. Passing an instance of :class:`Factory` also works as expected. Attributes annotated as :data:`typing.ClassVar` are **ignored**. .. _`PEP 526`: https://www.python.org/dev/peps/pep-0526/ .. versionadded:: 16.0.0 *slots* .. versionadded:: 16.1.0 *frozen* .. versionadded:: 16.3.0 *str* .. versionadded:: 16.3.0 Support for ``__attrs_post_init__``. .. versionchanged:: 17.1.0 *hash* supports ``None`` as value which is also the default now. .. versionadded:: 17.3.0 *auto_attribs* .. versionchanged:: 18.1.0 If *these* is passed, no attributes are deleted from the class body. .. versionchanged:: 18.1.0 If *these* is ordered, the order is retained. """ def wrap(cls): if getattr(cls, "__class__", None) is None: raise TypeError("attrs only works with new-style classes.") builder = _ClassBuilder(cls, these, slots, frozen, auto_attribs) if repr is True: builder.add_repr(repr_ns) if str is True: builder.add_str() if cmp is True: builder.add_cmp() if hash is not True and hash is not False and hash is not None: # Can't use `hash in` because 1 == True for example. raise TypeError( "Invalid value for hash. Must be True, False, or None." ) elif hash is False or (hash is None and cmp is False): pass elif hash is True or (hash is None and cmp is True and frozen is True): builder.add_hash() else: builder.make_unhashable() if init is True: builder.add_init() return builder.build_class() # maybe_cls's type depends on the usage of the decorator. It's a class # if it's used as `@attrs` but ``None`` if used as `@attrs()`. if maybe_cls is None: return wrap else: return wrap(maybe_cls) _attrs = attrs """ Internal alias so we can use it in functions that take an argument called *attrs*. """ if PY2: def _has_frozen_superclass(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return ( getattr( cls.__setattr__, "__module__", None ) == _frozen_setattrs.__module__ and cls.__setattr__.__name__ == _frozen_setattrs.__name__ ) else: def _has_frozen_superclass(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return cls.__setattr__ == _frozen_setattrs def _attrs_to_tuple(obj, attrs): """ Create a tuple of all values of *obj*'s *attrs*. """ return tuple(getattr(obj, a.name) for a in attrs) def _make_hash(attrs): attrs = tuple( a for a in attrs if a.hash is True or (a.hash is None and a.cmp is True) ) # We cache the generated hash methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated hash %s>" % (sha1.hexdigest(),) type_hash = hash(unique_filename) lines = [ "def __hash__(self):", " return hash((", " %d," % (type_hash,), ] for a in attrs: lines.append(" self.%s," % (a.name)) lines.append(" ))") script = "\n".join(lines) globs = {} locs = {} bytecode = compile(script, unique_filename, "exec") eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) return locs["__hash__"] def _add_hash(cls, attrs): """ Add a hash method to *cls*. """ cls.__hash__ = _make_hash(attrs) return cls def __ne__(self, other): """ Check equality and either forward a NotImplemented or return the result negated. """ result = self.__eq__(other) if result is NotImplemented: return NotImplemented return not result def _make_cmp(attrs): attrs = [a for a in attrs if a.cmp] # We cache the generated eq methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated eq %s>" % (sha1.hexdigest(),) lines = [ "def __eq__(self, other):", " if other.__class__ is not self.__class__:", " return NotImplemented", ] # We can't just do a big self.x = other.x and... clause due to # irregularities like nan == nan is false but (nan,) == (nan,) is true. if attrs: lines.append(" return (") others = [ " ) == (", ] for a in attrs: lines.append(" self.%s," % (a.name,)) others.append(" other.%s," % (a.name,)) lines += others + [" )"] else: lines.append(" return True") script = "\n".join(lines) globs = {} locs = {} bytecode = compile(script, unique_filename, "exec") eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) eq = locs["__eq__"] ne = __ne__ def attrs_to_tuple(obj): """ Save us some typing. """ return _attrs_to_tuple(obj, attrs) def __lt__(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) < attrs_to_tuple(other) else: return NotImplemented def __le__(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) <= attrs_to_tuple(other) else: return NotImplemented def __gt__(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) > attrs_to_tuple(other) else: return NotImplemented def __ge__(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) >= attrs_to_tuple(other) else: return NotImplemented return eq, ne, __lt__, __le__, __gt__, __ge__ def _add_cmp(cls, attrs=None): """ Add comparison methods to *cls*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__eq__, cls.__ne__, cls.__lt__, cls.__le__, cls.__gt__, cls.__ge__ = \ _make_cmp(attrs) return cls _already_repring = threading.local() def _make_repr(attrs, ns): """ Make a repr method for *attr_names* adding *ns* to the full name. """ attr_names = tuple( a.name for a in attrs if a.repr ) def __repr__(self): """ Automatically created by attrs. """ try: working_set = _already_repring.working_set except AttributeError: working_set = set() _already_repring.working_set = working_set if id(self) in working_set: return "..." real_cls = self.__class__ if ns is None: qualname = getattr(real_cls, "__qualname__", None) if qualname is not None: class_name = qualname.rsplit(">.", 1)[-1] else: class_name = real_cls.__name__ else: class_name = ns + "." + real_cls.__name__ # Since 'self' remains on the stack (i.e.: strongly referenced) for the # duration of this call, it's safe to depend on id(...) stability, and # not need to track the instance and therefore worry about properties # like weakref- or hash-ability. working_set.add(id(self)) try: result = [class_name, "("] first = True for name in attr_names: if first: first = False else: result.append(", ") result.extend((name, "=", repr(getattr(self, name, NOTHING)))) return "".join(result) + ")" finally: working_set.remove(id(self)) return __repr__ def _add_repr(cls, ns=None, attrs=None): """ Add a repr method to *cls*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__repr__ = _make_repr(attrs, ns) return cls def _make_init(attrs, post_init, frozen, slots, super_attr_map): attrs = [ a for a in attrs if a.init or a.default is not NOTHING ] # We cache the generated init methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated init {0}>".format( sha1.hexdigest() ) script, globs, annotations = _attrs_to_init_script( attrs, frozen, slots, post_init, super_attr_map, ) locs = {} bytecode = compile(script, unique_filename, "exec") attr_dict = dict((a.name, a) for a in attrs) globs.update({ "NOTHING": NOTHING, "attr_dict": attr_dict, }) if frozen is True: # Save the lookup overhead in __init__ if we need to circumvent # immutability. globs["_cached_setattr"] = _obj_setattr eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) __init__ = locs["__init__"] __init__.__annotations__ = annotations return __init__ def _add_init(cls, frozen): """ Add a __init__ method to *cls*. If *frozen* is True, make it immutable. """ cls.__init__ = _make_init( cls.__attrs_attrs__, getattr(cls, "__attrs_post_init__", False), frozen, _is_slot_cls(cls), {}, ) return cls def fields(cls): """ Return the tuple of ``attrs`` attributes for a class. The tuple also allows accessing the fields by their names (see below for examples). :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: tuple (with name accessors) of :class:`attr.Attribute` .. versionchanged:: 16.2.0 Returned tuple allows accessing the fields by name. """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return attrs def fields_dict(cls): """ Return an ordered dictionary of ``attrs`` attributes for a class, whose keys are the attribute names. :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: an ordered dict where keys are attribute names and values are :class:`attr.Attribute`\\ s. This will be a :class:`dict` if it's naturally ordered like on Python 3.6+ or an :class:`~collections.OrderedDict` otherwise. .. versionadded:: 18.1.0 """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return ordered_dict(((a.name, a) for a in attrs)) def validate(inst): """ Validate all attributes on *inst* that have a validator. Leaves all exceptions through. :param inst: Instance of a class with ``attrs`` attributes. """ if _config._run_validators is False: return for a in fields(inst.__class__): v = a.validator if v is not None: v(inst, a, getattr(inst, a.name)) def _is_slot_cls(cls): return "__slots__" in cls.__dict__ def _is_slot_attr(a_name, super_attr_map): """ Check if the attribute name comes from a slot class. """ return a_name in super_attr_map and _is_slot_cls(super_attr_map[a_name]) def _attrs_to_init_script(attrs, frozen, slots, post_init, super_attr_map): """ Return a script of an initializer for *attrs* and a dict of globals. The globals are expected by the generated script. If *frozen* is True, we cannot set the attributes directly so we use a cached ``object.__setattr__``. """ lines = [] any_slot_ancestors = any( _is_slot_attr(a.name, super_attr_map) for a in attrs ) if frozen is True: if slots is True: lines.append( # Circumvent the __setattr__ descriptor to save one lookup per # assignment. "_setattr = _cached_setattr.__get__(self, self.__class__)" ) def fmt_setter(attr_name, value_var): return "_setattr('%(attr_name)s', %(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_converter_pat.format(attr_name) return "_setattr('%(attr_name)s', %(conv)s(%(value_var)s))" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } else: # Dict frozen classes assign directly to __dict__. # But only if the attribute doesn't come from an ancestor slot # class. lines.append( "_inst_dict = self.__dict__" ) if any_slot_ancestors: lines.append( # Circumvent the __setattr__ descriptor to save one lookup # per assignment. "_setattr = _cached_setattr.__get__(self, self.__class__)" ) def fmt_setter(attr_name, value_var): if _is_slot_attr(attr_name, super_attr_map): res = "_setattr('%(attr_name)s', %(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, } else: res = "_inst_dict['%(attr_name)s'] = %(value_var)s" % { "attr_name": attr_name, "value_var": value_var, } return res def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_converter_pat.format(attr_name) if _is_slot_attr(attr_name, super_attr_map): tmpl = "_setattr('%(attr_name)s', %(c)s(%(value_var)s))" else: tmpl = "_inst_dict['%(attr_name)s'] = %(c)s(%(value_var)s)" return tmpl % { "attr_name": attr_name, "value_var": value_var, "c": conv_name, } else: # Not frozen. def fmt_setter(attr_name, value): return "self.%(attr_name)s = %(value)s" % { "attr_name": attr_name, "value": value, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_converter_pat.format(attr_name) return "self.%(attr_name)s = %(conv)s(%(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } args = [] attrs_to_validate = [] # This is a dictionary of names to validator and converter callables. # Injecting this into __init__ globals lets us avoid lookups. names_for_globals = {} annotations = {'return': None} for a in attrs: if a.validator: attrs_to_validate.append(a) attr_name = a.name arg_name = a.name.lstrip("_") has_factory = isinstance(a.default, Factory) if has_factory and a.default.takes_self: maybe_self = "self" else: maybe_self = "" if a.init is False: if has_factory: init_factory_name = _init_factory_pat.format(a.name) if a.converter is not None: lines.append(fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self))) conv_name = _init_converter_pat.format(a.name) names_for_globals[conv_name] = a.converter else: lines.append(fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[init_factory_name] = a.default.factory else: if a.converter is not None: lines.append(fmt_setter_with_converter( attr_name, "attr_dict['{attr_name}'].default" .format(attr_name=attr_name) )) conv_name = _init_converter_pat.format(a.name) names_for_globals[conv_name] = a.converter else: lines.append(fmt_setter( attr_name, "attr_dict['{attr_name}'].default" .format(attr_name=attr_name) )) elif a.default is not NOTHING and not has_factory: args.append( "{arg_name}=attr_dict['{attr_name}'].default".format( arg_name=arg_name, attr_name=attr_name, ) ) if a.converter is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[_init_converter_pat.format(a.name)] = ( a.converter ) else: lines.append(fmt_setter(attr_name, arg_name)) elif has_factory: args.append("{arg_name}=NOTHING".format(arg_name=arg_name)) lines.append("if {arg_name} is not NOTHING:" .format(arg_name=arg_name)) init_factory_name = _init_factory_pat.format(a.name) if a.converter is not None: lines.append(" " + fmt_setter_with_converter( attr_name, arg_name )) lines.append("else:") lines.append(" " + fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[_init_converter_pat.format(a.name)] = ( a.converter ) else: lines.append(" " + fmt_setter(attr_name, arg_name)) lines.append("else:") lines.append(" " + fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[init_factory_name] = a.default.factory else: args.append(arg_name) if a.converter is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[_init_converter_pat.format(a.name)] = ( a.converter ) else: lines.append(fmt_setter(attr_name, arg_name)) if a.init is True and a.converter is None and a.type is not None: annotations[arg_name] = a.type if attrs_to_validate: # we can skip this if there are no validators. names_for_globals["_config"] = _config lines.append("if _config._run_validators is True:") for a in attrs_to_validate: val_name = "__attr_validator_{}".format(a.name) attr_name = "__attr_{}".format(a.name) lines.append(" {}(self, {}, self.{})".format( val_name, attr_name, a.name)) names_for_globals[val_name] = a.validator names_for_globals[attr_name] = a if post_init: lines.append("self.__attrs_post_init__()") return """\ def __init__(self, {args}): {lines} """.format( args=", ".join(args), lines="\n ".join(lines) if lines else "pass", ), names_for_globals, annotations class Attribute(object): """ *Read-only* representation of an attribute. :attribute name: The name of the attribute. Plus *all* arguments of :func:`attr.ib`. For the version history of the fields, see :func:`attr.ib`. """ __slots__ = ( "name", "default", "validator", "repr", "cmp", "hash", "init", "metadata", "type", "converter", ) def __init__(self, name, default, validator, repr, cmp, hash, init, convert=None, metadata=None, type=None, converter=None): # Cache this descriptor here to speed things up later. bound_setattr = _obj_setattr.__get__(self, Attribute) # Despite the big red warning, people *do* instantiate `Attribute` # themselves. if convert is not None: if converter is not None: raise RuntimeError( "Can't pass both `convert` and `converter`. " "Please use `converter` only." ) warnings.warn( "The `convert` argument is deprecated in favor of `converter`." " It will be removed after 2019/01.", DeprecationWarning, stacklevel=2 ) converter = convert bound_setattr("name", name) bound_setattr("default", default) bound_setattr("validator", validator) bound_setattr("repr", repr) bound_setattr("cmp", cmp) bound_setattr("hash", hash) bound_setattr("init", init) bound_setattr("converter", converter) bound_setattr("metadata", ( metadata_proxy(metadata) if metadata else _empty_metadata_singleton )) bound_setattr("type", type) def __setattr__(self, name, value): raise FrozenInstanceError() @property def convert(self): warnings.warn( "The `convert` attribute is deprecated in favor of `converter`. " "It will be removed after 2019/01.", DeprecationWarning, stacklevel=2, ) return self.converter @classmethod def from_counting_attr(cls, name, ca, type=None): # type holds the annotated value. deal with conflicts: if type is None: type = ca.type elif ca.type is not None: raise ValueError( "Type annotation and type argument cannot both be present" ) inst_dict = { k: getattr(ca, k) for k in Attribute.__slots__ if k not in ( "name", "validator", "default", "type", "convert", ) # exclude methods and deprecated alias } return cls( name=name, validator=ca._validator, default=ca._default, type=type, **inst_dict ) # Don't use _add_pickle since fields(Attribute) doesn't work def __getstate__(self): """ Play nice with pickle. """ return tuple(getattr(self, name) if name != "metadata" else dict(self.metadata) for name in self.__slots__) def __setstate__(self, state): """ Play nice with pickle. """ bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(self.__slots__, state): if name != "metadata": bound_setattr(name, value) else: bound_setattr(name, metadata_proxy(value) if value else _empty_metadata_singleton) _a = [ Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=(name != "metadata"), init=True) for name in Attribute.__slots__ if name != "convert" # XXX: remove once `convert` is gone ] Attribute = _add_hash( _add_cmp(_add_repr(Attribute, attrs=_a), attrs=_a), attrs=[a for a in _a if a.hash] ) class _CountingAttr(object): """ Intermediate representation of attributes that uses a counter to preserve the order in which the attributes have been defined. *Internal* data structure of the attrs library. Running into is most likely the result of a bug like a forgotten `@attr.s` decorator. """ __slots__ = ("counter", "_default", "repr", "cmp", "hash", "init", "metadata", "_validator", "converter", "type") __attrs_attrs__ = tuple( Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True) for name in ("counter", "_default", "repr", "cmp", "hash", "init",) ) + ( Attribute(name="metadata", default=None, validator=None, repr=True, cmp=True, hash=False, init=True), ) cls_counter = 0 def __init__(self, default, validator, repr, cmp, hash, init, converter, metadata, type): _CountingAttr.cls_counter += 1 self.counter = _CountingAttr.cls_counter self._default = default # If validator is a list/tuple, wrap it using helper validator. if validator and isinstance(validator, (list, tuple)): self._validator = and_(*validator) else: self._validator = validator self.repr = repr self.cmp = cmp self.hash = hash self.init = init self.converter = converter self.metadata = metadata self.type = type def validator(self, meth): """ Decorator that adds *meth* to the list of validators. Returns *meth* unchanged. .. versionadded:: 17.1.0 """ if self._validator is None: self._validator = meth else: self._validator = and_(self._validator, meth) return meth def default(self, meth): """ Decorator that allows to set the default for an attribute. Returns *meth* unchanged. :raises DefaultAlreadySetError: If default has been set before. .. versionadded:: 17.1.0 """ if self._default is not NOTHING: raise DefaultAlreadySetError() self._default = Factory(meth, takes_self=True) return meth _CountingAttr = _add_cmp(_add_repr(_CountingAttr)) @attrs(slots=True, init=False, hash=True) class Factory(object): """ Stores a factory callable. If passed as the default value to :func:`attr.ib`, the factory is used to generate a new value. :param callable factory: A callable that takes either none or exactly one mandatory positional argument depending on *takes_self*. :param bool takes_self: Pass the partially initialized instance that is being initialized as a positional argument. .. versionadded:: 17.1.0 *takes_self* """ factory = attrib() takes_self = attrib() def __init__(self, factory, takes_self=False): """ `Factory` is part of the default machinery so if we want a default value here, we have to implement it ourselves. """ self.factory = factory self.takes_self = takes_self def make_class(name, attrs, bases=(object,), **attributes_arguments): """ A quick way to create a new class called *name* with *attrs*. :param name: The name for the new class. :type name: str :param attrs: A list of names or a dictionary of mappings of names to attributes. If *attrs* is a list or an ordered dict (:class:`dict` on Python 3.6+, :class:`collections.OrderedDict` otherwise), the order is deduced from the order of the names or attributes inside *attrs*. Otherwise the order of the definition of the attributes is used. :type attrs: :class:`list` or :class:`dict` :param tuple bases: Classes that the new class will subclass. :param attributes_arguments: Passed unmodified to :func:`attr.s`. :return: A new class with *attrs*. :rtype: type .. versionadded:: 17.1.0 *bases* .. versionchanged:: 18.1.0 If *attrs* is ordered, the order is retained. """ if isinstance(attrs, dict): cls_dict = attrs elif isinstance(attrs, (list, tuple)): cls_dict = dict((a, attrib()) for a in attrs) else: raise TypeError("attrs argument must be a dict or a list.") post_init = cls_dict.pop("__attrs_post_init__", None) type_ = type( name, bases, {} if post_init is None else {"__attrs_post_init__": post_init} ) # For pickling to work, the __module__ variable needs to be set to the # frame where the class is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython). try: type_.__module__ = sys._getframe(1).f_globals.get( "__name__", "__main__", ) except (AttributeError, ValueError): pass return _attrs(these=cls_dict, **attributes_arguments)(type_) # These are required by within this module so we define them here and merely # import into .validators. @attrs(slots=True, hash=True) class _AndValidator(object): """ Compose many validators to a single one. """ _validators = attrib() def __call__(self, inst, attr, value): for v in self._validators: v(inst, attr, value) def and_(*validators): """ A validator that composes multiple validators into one. When called on a value, it runs all wrapped validators. :param validators: Arbitrary number of validators. :type validators: callables .. versionadded:: 17.1.0 """ vals = [] for validator in validators: vals.extend( validator._validators if isinstance(validator, _AndValidator) else [validator] ) return _AndValidator(tuple(vals))
{ "repo_name": "larsbergstrom/servo", "path": "tests/wpt/web-platform-tests/tools/third_party/attrs/src/attr/_make.py", "copies": "41", "size": "55996", "license": "mpl-2.0", "hash": 7017228721665356000, "line_mean": 32.1533451747, "line_max": 79, "alpha_frac": 0.556932638, "autogenerated": false, "ratio": 4.107085228106205, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import hashlib import linecache import sys import warnings from operator import itemgetter from . import _config from ._compat import PY2, isclass, iteritems, metadata_proxy, set_closure_cell from .exceptions import ( DefaultAlreadySetError, FrozenInstanceError, NotAnAttrsClassError, UnannotatedAttributeError ) # This is used at least twice, so cache it here. _obj_setattr = object.__setattr__ _init_converter_pat = "__attr_converter_{}" _init_factory_pat = "__attr_factory_{}" _tuple_property_pat = " {attr_name} = property(itemgetter({index}))" _empty_metadata_singleton = metadata_proxy({}) class _Nothing(object): """ Sentinel class to indicate the lack of a value when ``None`` is ambiguous. All instances of `_Nothing` are equal. """ def __copy__(self): return self def __deepcopy__(self, _): return self def __eq__(self, other): return other.__class__ == _Nothing def __ne__(self, other): return not self == other def __repr__(self): return "NOTHING" def __hash__(self): return 0xdeadbeef NOTHING = _Nothing() """ Sentinel to indicate the lack of a value when ``None`` is ambiguous. """ def attrib(default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=None, type=None, converter=None): """ Create a new attribute on a class. .. warning:: Does *not* do anything unless the class is also decorated with :func:`attr.s`! :param default: A value that is used if an ``attrs``-generated ``__init__`` is used and no value is passed while instantiating or the attribute is excluded using ``init=False``. If the value is an instance of :class:`Factory`, its callable will be used to construct a new value (useful for mutable data types like lists or dicts). If a default is not set (or set manually to ``attr.NOTHING``), a value *must* be supplied when instantiating; otherwise a :exc:`TypeError` will be raised. The default can also be set using decorator notation as shown below. :type default: Any value. :param validator: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods after the instance has been initialized. They receive the initialized instance, the :class:`Attribute`, and the passed value. The return value is *not* inspected so the validator has to throw an exception itself. If a ``list`` is passed, its items are treated as validators and must all pass. Validators can be globally disabled and re-enabled using :func:`get_run_validators`. The validator can also be set using decorator notation as shown below. :type validator: ``callable`` or a ``list`` of ``callable``\ s. :param bool repr: Include this attribute in the generated ``__repr__`` method. :param bool cmp: Include this attribute in the generated comparison methods (``__eq__`` et al). :param hash: Include this attribute in the generated ``__hash__`` method. If ``None`` (default), mirror *cmp*'s value. This is the correct behavior according the Python spec. Setting this value to anything else than ``None`` is *discouraged*. :type hash: ``bool`` or ``None`` :param bool init: Include this attribute in the generated ``__init__`` method. It is possible to set this to ``False`` and set a default value. In that case this attributed is unconditionally initialized with the specified default value or factory. :param callable converter: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods to converter attribute's value to the desired format. It is given the passed-in value, and the returned value will be used as the new value of the attribute. The value is converted before being passed to the validator, if any. :param metadata: An arbitrary mapping, to be used by third-party components. See :ref:`extending_metadata`. :param type: The type of the attribute. In Python 3.6 or greater, the preferred method to specify the type is using a variable annotation (see `PEP 526 <https://www.python.org/dev/peps/pep-0526/>`_). This argument is provided for backward compatibility. Regardless of the approach used, the type will be stored on ``Attribute.type``. .. versionadded:: 15.2.0 *convert* .. versionadded:: 16.3.0 *metadata* .. versionchanged:: 17.1.0 *validator* can be a ``list`` now. .. versionchanged:: 17.1.0 *hash* is ``None`` and therefore mirrors *cmp* by default. .. versionadded:: 17.3.0 *type* .. deprecated:: 17.4.0 *convert* .. versionadded:: 17.4.0 *converter* as a replacement for the deprecated *convert* to achieve consistency with other noun-based arguments. """ if hash is not None and hash is not True and hash is not False: raise TypeError( "Invalid value for hash. Must be True, False, or None." ) if convert is not None: if converter is not None: raise RuntimeError( "Can't pass both `convert` and `converter`. " "Please use `converter` only." ) warnings.warn( "The `convert` argument is deprecated in favor of `converter`. " "It will be removed after 2019/01.", DeprecationWarning, stacklevel=2 ) converter = convert if metadata is None: metadata = {} return _CountingAttr( default=default, validator=validator, repr=repr, cmp=cmp, hash=hash, init=init, converter=converter, metadata=metadata, type=type, ) def _make_attr_tuple_class(cls_name, attr_names): """ Create a tuple subclass to hold `Attribute`s for an `attrs` class. The subclass is a bare tuple with properties for names. class MyClassAttributes(tuple): __slots__ = () x = property(itemgetter(0)) """ attr_class_name = "{}Attributes".format(cls_name) attr_class_template = [ "class {}(tuple):".format(attr_class_name), " __slots__ = ()", ] if attr_names: for i, attr_name in enumerate(attr_names): attr_class_template.append(_tuple_property_pat.format( index=i, attr_name=attr_name, )) else: attr_class_template.append(" pass") globs = {"itemgetter": itemgetter} eval(compile("\n".join(attr_class_template), "", "exec"), globs) return globs[attr_class_name] # Tuple class for extracted attributes from a class definition. # `super_attrs` is a subset of `attrs`. _Attributes = _make_attr_tuple_class("_Attributes", [ "attrs", # all attributes to build dunder methods for "super_attrs", # attributes that have been inherited from super classes ]) def _is_class_var(annot): """ Check whether *annot* is a typing.ClassVar. The implementation is gross but importing `typing` is slow and there are discussions to remove it from the stdlib alltogether. """ return str(annot).startswith("typing.ClassVar") def _get_annotations(cls): """ Get annotations for *cls*. """ anns = getattr(cls, "__annotations__", None) if anns is None: return {} # Verify that the annotations aren't merely inherited. for super_cls in cls.__mro__[1:]: if anns is getattr(super_cls, "__annotations__", None): return {} return anns def _transform_attrs(cls, these, auto_attribs): """ Transform all `_CountingAttr`s on a class into `Attribute`s. If *these* is passed, use that and don't look for them on the class. Return an `_Attributes`. """ cd = cls.__dict__ anns = _get_annotations(cls) if these is not None: ca_list = sorted(( (name, ca) for name, ca in iteritems(these) ), key=lambda e: e[1].counter) elif auto_attribs is True: ca_names = { name for name, attr in cd.items() if isinstance(attr, _CountingAttr) } ca_list = [] annot_names = set() for attr_name, type in anns.items(): if _is_class_var(type): continue annot_names.add(attr_name) a = cd.get(attr_name, NOTHING) if not isinstance(a, _CountingAttr): if a is NOTHING: a = attrib() else: a = attrib(default=a) ca_list.append((attr_name, a)) unannotated = ca_names - annot_names if len(unannotated) > 0: raise UnannotatedAttributeError( "The following `attr.ib`s lack a type annotation: " + ", ".join(sorted( unannotated, key=lambda n: cd.get(n).counter )) + "." ) else: ca_list = sorted(( (name, attr) for name, attr in cd.items() if isinstance(attr, _CountingAttr) ), key=lambda e: e[1].counter) own_attrs = [ Attribute.from_counting_attr( name=attr_name, ca=ca, type=anns.get(attr_name), ) for attr_name, ca in ca_list ] super_attrs = [] taken_attr_names = {a.name: a for a in own_attrs} # Traverse the MRO and collect attributes. for super_cls in cls.__mro__[1:-1]: sub_attrs = getattr(super_cls, "__attrs_attrs__", None) if sub_attrs is not None: for a in sub_attrs: prev_a = taken_attr_names.get(a.name) # Only add an attribute if it hasn't been defined before. This # allows for overwriting attribute definitions by subclassing. if prev_a is None: super_attrs.append(a) taken_attr_names[a.name] = a attr_names = [a.name for a in super_attrs + own_attrs] AttrsClass = _make_attr_tuple_class(cls.__name__, attr_names) attrs = AttrsClass( super_attrs + [ Attribute.from_counting_attr( name=attr_name, ca=ca, type=anns.get(attr_name) ) for attr_name, ca in ca_list ] ) had_default = False for a in attrs: if had_default is True and a.default is NOTHING and a.init is True: raise ValueError( "No mandatory attributes allowed after an attribute with a " "default value or factory. Attribute in question: {a!r}" .format(a=a) ) elif had_default is False and \ a.default is not NOTHING and \ a.init is not False: had_default = True return _Attributes((attrs, super_attrs)) def _frozen_setattrs(self, name, value): """ Attached to frozen classes as __setattr__. """ raise FrozenInstanceError() def _frozen_delattrs(self, name): """ Attached to frozen classes as __delattr__. """ raise FrozenInstanceError() class _ClassBuilder(object): """ Iteratively build *one* class. """ __slots__ = ( "_cls", "_cls_dict", "_attrs", "_super_names", "_attr_names", "_slots", "_frozen", "_has_post_init", ) def __init__(self, cls, these, slots, frozen, auto_attribs): attrs, super_attrs = _transform_attrs(cls, these, auto_attribs) self._cls = cls self._cls_dict = dict(cls.__dict__) if slots else {} self._attrs = attrs self._super_names = set(a.name for a in super_attrs) self._attr_names = tuple(a.name for a in attrs) self._slots = slots self._frozen = frozen or _has_frozen_superclass(cls) self._has_post_init = bool(getattr(cls, "__attrs_post_init__", False)) self._cls_dict["__attrs_attrs__"] = self._attrs if frozen: self._cls_dict["__setattr__"] = _frozen_setattrs self._cls_dict["__delattr__"] = _frozen_delattrs def __repr__(self): return "<_ClassBuilder(cls={cls})>".format(cls=self._cls.__name__) def build_class(self): """ Finalize class based on the accumulated configuration. Builder cannot be used anymore after calling this method. """ if self._slots is True: return self._create_slots_class() else: return self._patch_original_class() def _patch_original_class(self): """ Apply accumulated methods and return the class. """ cls = self._cls super_names = self._super_names # Clean class of attribute definitions (`attr.ib()`s). for name in self._attr_names: if name not in super_names and \ getattr(cls, name, None) is not None: delattr(cls, name) # Attach our dunder methods. for name, value in self._cls_dict.items(): setattr(cls, name, value) return cls def _create_slots_class(self): """ Build and return a new class with a `__slots__` attribute. """ super_names = self._super_names cd = { k: v for k, v in iteritems(self._cls_dict) if k not in tuple(self._attr_names) + ("__dict__",) } # We only add the names of attributes that aren't inherited. # Settings __slots__ to inherited attributes wastes memory. cd["__slots__"] = tuple( name for name in self._attr_names if name not in super_names ) qualname = getattr(self._cls, "__qualname__", None) if qualname is not None: cd["__qualname__"] = qualname attr_names = tuple(self._attr_names) def slots_getstate(self): """ Automatically created by attrs. """ return tuple(getattr(self, name) for name in attr_names) def slots_setstate(self, state): """ Automatically created by attrs. """ __bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(attr_names, state): __bound_setattr(name, value) # slots and frozen require __getstate__/__setstate__ to work cd["__getstate__"] = slots_getstate cd["__setstate__"] = slots_setstate # Create new class based on old class and our methods. cls = type(self._cls)( self._cls.__name__, self._cls.__bases__, cd, ) # The following is a fix for # https://github.com/python-attrs/attrs/issues/102. On Python 3, # if a method mentions `__class__` or uses the no-arg super(), the # compiler will bake a reference to the class in the method itself # as `method.__closure__`. Since we replace the class with a # clone, we rewrite these references so it keeps working. for item in cls.__dict__.values(): if isinstance(item, (classmethod, staticmethod)): # Class- and staticmethods hide their functions inside. # These might need to be rewritten as well. closure_cells = getattr(item.__func__, "__closure__", None) else: closure_cells = getattr(item, "__closure__", None) if not closure_cells: # Catch None or the empty list. continue for cell in closure_cells: if cell.cell_contents is self._cls: set_closure_cell(cell, cls) return cls def add_repr(self, ns): self._cls_dict["__repr__"] = self._add_method_dunders( _make_repr(self._attrs, ns=ns) ) return self def add_str(self): repr = self._cls_dict.get("__repr__") if repr is None: raise ValueError( "__str__ can only be generated if a __repr__ exists." ) def __str__(self): return self.__repr__() self._cls_dict["__str__"] = self._add_method_dunders(__str__) return self def make_unhashable(self): self._cls_dict["__hash__"] = None return self def add_hash(self): self._cls_dict["__hash__"] = self._add_method_dunders( _make_hash(self._attrs) ) return self def add_init(self): self._cls_dict["__init__"] = self._add_method_dunders( _make_init( self._attrs, self._has_post_init, self._frozen, ) ) return self def add_cmp(self): cd = self._cls_dict cd["__eq__"], cd["__ne__"], cd["__lt__"], cd["__le__"], cd["__gt__"], \ cd["__ge__"] = ( self._add_method_dunders(meth) for meth in _make_cmp(self._attrs) ) return self def _add_method_dunders(self, method): """ Add __module__ and __qualname__ to a *method* if possible. """ try: method.__module__ = self._cls.__module__ except AttributeError: pass try: method.__qualname__ = ".".join( (self._cls.__qualname__, method.__name__,) ) except AttributeError: pass return method def attrs(maybe_cls=None, these=None, repr_ns=None, repr=True, cmp=True, hash=None, init=True, slots=False, frozen=False, str=False, auto_attribs=False): r""" A class decorator that adds `dunder <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the specified attributes using :func:`attr.ib` or the *these* argument. :param these: A dictionary of name to :func:`attr.ib` mappings. This is useful to avoid the definition of your attributes within the class body because you can't (e.g. if you want to add ``__repr__`` methods to Django models) or don't want to. If *these* is not ``None``, ``attrs`` will *not* search the class body for attributes. :type these: :class:`dict` of :class:`str` to :func:`attr.ib` :param str repr_ns: When using nested classes, there's no way in Python 2 to automatically detect that. Therefore it's possible to set the namespace explicitly for a more meaningful ``repr`` output. :param bool repr: Create a ``__repr__`` method with a human readable representation of ``attrs`` attributes.. :param bool str: Create a ``__str__`` method that is identical to ``__repr__``. This is usually not necessary except for :class:`Exception`\ s. :param bool cmp: Create ``__eq__``, ``__ne__``, ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` methods that compare the class as if it were a tuple of its ``attrs`` attributes. But the attributes are *only* compared, if the type of both classes is *identical*! :param hash: If ``None`` (default), the ``__hash__`` method is generated according how *cmp* and *frozen* are set. 1. If *both* are True, ``attrs`` will generate a ``__hash__`` for you. 2. If *cmp* is True and *frozen* is False, ``__hash__`` will be set to None, marking it unhashable (which it is). 3. If *cmp* is False, ``__hash__`` will be left untouched meaning the ``__hash__`` method of the superclass will be used (if superclass is ``object``, this means it will fall back to id-based hashing.). Although not recommended, you can decide for yourself and force ``attrs`` to create one (e.g. if the class is immutable even though you didn't freeze it programmatically) by passing ``True`` or not. Both of these cases are rather special and should be used carefully. See the `Python documentation \ <https://docs.python.org/3/reference/datamodel.html#object.__hash__>`_ and the `GitHub issue that led to the default behavior \ <https://github.com/python-attrs/attrs/issues/136>`_ for more details. :type hash: ``bool`` or ``None`` :param bool init: Create a ``__init__`` method that initializes the ``attrs`` attributes. Leading underscores are stripped for the argument name. If a ``__attrs_post_init__`` method exists on the class, it will be called after the class is fully initialized. :param bool slots: Create a slots_-style class that's more memory-efficient. See :ref:`slots` for further ramifications. :param bool frozen: Make instances immutable after initialization. If someone attempts to modify a frozen instance, :exc:`attr.exceptions.FrozenInstanceError` is raised. Please note: 1. This is achieved by installing a custom ``__setattr__`` method on your class so you can't implement an own one. 2. True immutability is impossible in Python. 3. This *does* have a minor a runtime performance :ref:`impact <how-frozen>` when initializing new instances. In other words: ``__init__`` is slightly slower with ``frozen=True``. 4. If a class is frozen, you cannot modify ``self`` in ``__attrs_post_init__`` or a self-written ``__init__``. You can circumvent that limitation by using ``object.__setattr__(self, "attribute_name", value)``. .. _slots: https://docs.python.org/3/reference/datamodel.html#slots :param bool auto_attribs: If True, collect `PEP 526`_-annotated attributes (Python 3.6 and later only) from the class body. In this case, you **must** annotate every field. If ``attrs`` encounters a field that is set to an :func:`attr.ib` but lacks a type annotation, an :exc:`attr.exceptions.UnannotatedAttributeError` is raised. Use ``field_name: typing.Any = attr.ib(...)`` if you don't want to set a type. If you assign a value to those attributes (e.g. ``x: int = 42``), that value becomes the default value like if it were passed using ``attr.ib(default=42)``. Passing an instance of :class:`Factory` also works as expected. Attributes annotated as :data:`typing.ClassVar` are **ignored**. .. _`PEP 526`: https://www.python.org/dev/peps/pep-0526/ .. versionadded:: 16.0.0 *slots* .. versionadded:: 16.1.0 *frozen* .. versionadded:: 16.3.0 *str*, and support for ``__attrs_post_init__``. .. versionchanged:: 17.1.0 *hash* supports ``None`` as value which is also the default now. .. versionadded:: 17.3.0 *auto_attribs* """ def wrap(cls): if getattr(cls, "__class__", None) is None: raise TypeError("attrs only works with new-style classes.") builder = _ClassBuilder(cls, these, slots, frozen, auto_attribs) if repr is True: builder.add_repr(repr_ns) if str is True: builder.add_str() if cmp is True: builder.add_cmp() if hash is not True and hash is not False and hash is not None: # Can't use `hash in` because 1 == True for example. raise TypeError( "Invalid value for hash. Must be True, False, or None." ) elif hash is False or (hash is None and cmp is False): pass elif hash is True or (hash is None and cmp is True and frozen is True): builder.add_hash() else: builder.make_unhashable() if init is True: builder.add_init() return builder.build_class() # maybe_cls's type depends on the usage of the decorator. It's a class # if it's used as `@attrs` but ``None`` if used as `@attrs()`. if maybe_cls is None: return wrap else: return wrap(maybe_cls) _attrs = attrs """ Internal alias so we can use it in functions that take an argument called *attrs*. """ if PY2: def _has_frozen_superclass(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return ( getattr( cls.__setattr__, "__module__", None ) == _frozen_setattrs.__module__ and cls.__setattr__.__name__ == _frozen_setattrs.__name__ ) else: def _has_frozen_superclass(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return cls.__setattr__ == _frozen_setattrs def _attrs_to_tuple(obj, attrs): """ Create a tuple of all values of *obj*'s *attrs*. """ return tuple(getattr(obj, a.name) for a in attrs) def _make_hash(attrs): attrs = tuple( a for a in attrs if a.hash is True or (a.hash is None and a.cmp is True) ) # We cache the generated hash methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated hash %s>" % (sha1.hexdigest(),) type_hash = hash(unique_filename) lines = [ "def __hash__(self):", " return hash((", " %d," % (type_hash,), ] for a in attrs: lines.append(" self.%s," % (a.name)) lines.append(" ))") script = "\n".join(lines) globs = {} locs = {} bytecode = compile(script, unique_filename, "exec") eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) return locs["__hash__"] def _add_hash(cls, attrs): """ Add a hash method to *cls*. """ cls.__hash__ = _make_hash(attrs) return cls def __ne__(self, other): """ Check equality and either forward a NotImplemented or return the result negated. """ result = self.__eq__(other) if result is NotImplemented: return NotImplemented return not result def _make_cmp(attrs): attrs = [a for a in attrs if a.cmp] # We cache the generated eq methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated eq %s>" % (sha1.hexdigest(),) lines = [ "def __eq__(self, other):", " if other.__class__ is not self.__class__:", " return NotImplemented", ] # We can't just do a big self.x = other.x and... clause due to # irregularities like nan == nan is false but (nan,) == (nan,) is true. if attrs: lines.append(" return (") others = [ " ) == (", ] for a in attrs: lines.append(" self.%s," % (a.name,)) others.append(" other.%s," % (a.name,)) lines += others + [" )"] else: lines.append(" return True") script = "\n".join(lines) globs = {} locs = {} bytecode = compile(script, unique_filename, "exec") eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) eq = locs["__eq__"] ne = __ne__ def attrs_to_tuple(obj): """ Save us some typing. """ return _attrs_to_tuple(obj, attrs) def __lt__(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) < attrs_to_tuple(other) else: return NotImplemented def __le__(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) <= attrs_to_tuple(other) else: return NotImplemented def __gt__(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) > attrs_to_tuple(other) else: return NotImplemented def __ge__(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) >= attrs_to_tuple(other) else: return NotImplemented return eq, ne, __lt__, __le__, __gt__, __ge__ def _add_cmp(cls, attrs=None): """ Add comparison methods to *cls*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__eq__, cls.__ne__, cls.__lt__, cls.__le__, cls.__gt__, cls.__ge__ = \ _make_cmp(attrs) return cls def _make_repr(attrs, ns): """ Make a repr method for *attr_names* adding *ns* to the full name. """ attr_names = tuple( a.name for a in attrs if a.repr ) def __repr__(self): """ Automatically created by attrs. """ real_cls = self.__class__ if ns is None: qualname = getattr(real_cls, "__qualname__", None) if qualname is not None: class_name = qualname.rsplit(">.", 1)[-1] else: class_name = real_cls.__name__ else: class_name = ns + "." + real_cls.__name__ return "{0}({1})".format( class_name, ", ".join( name + "=" + repr(getattr(self, name, NOTHING)) for name in attr_names ) ) return __repr__ def _add_repr(cls, ns=None, attrs=None): """ Add a repr method to *cls*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__repr__ = _make_repr(attrs, ns) return cls def _make_init(attrs, post_init, frozen): attrs = [ a for a in attrs if a.init or a.default is not NOTHING ] # We cache the generated init methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated init {0}>".format( sha1.hexdigest() ) script, globs = _attrs_to_init_script( attrs, frozen, post_init, ) locs = {} bytecode = compile(script, unique_filename, "exec") attr_dict = dict((a.name, a) for a in attrs) globs.update({ "NOTHING": NOTHING, "attr_dict": attr_dict, }) if frozen is True: # Save the lookup overhead in __init__ if we need to circumvent # immutability. globs["_cached_setattr"] = _obj_setattr eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) return locs["__init__"] def _add_init(cls, frozen): """ Add a __init__ method to *cls*. If *frozen* is True, make it immutable. """ cls.__init__ = _make_init( cls.__attrs_attrs__, getattr(cls, "__attrs_post_init__", False), frozen, ) return cls def fields(cls): """ Returns the tuple of ``attrs`` attributes for a class. The tuple also allows accessing the fields by their names (see below for examples). :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: tuple (with name accessors) of :class:`attr.Attribute` .. versionchanged:: 16.2.0 Returned tuple allows accessing the fields by name. """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return attrs def validate(inst): """ Validate all attributes on *inst* that have a validator. Leaves all exceptions through. :param inst: Instance of a class with ``attrs`` attributes. """ if _config._run_validators is False: return for a in fields(inst.__class__): v = a.validator if v is not None: v(inst, a, getattr(inst, a.name)) def _attrs_to_init_script(attrs, frozen, post_init): """ Return a script of an initializer for *attrs* and a dict of globals. The globals are expected by the generated script. If *frozen* is True, we cannot set the attributes directly so we use a cached ``object.__setattr__``. """ lines = [] if frozen is True: lines.append( # Circumvent the __setattr__ descriptor to save one lookup per # assignment. "_setattr = _cached_setattr.__get__(self, self.__class__)" ) def fmt_setter(attr_name, value_var): return "_setattr('%(attr_name)s', %(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_converter_pat.format(attr_name) return "_setattr('%(attr_name)s', %(conv)s(%(value_var)s))" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } else: def fmt_setter(attr_name, value): return "self.%(attr_name)s = %(value)s" % { "attr_name": attr_name, "value": value, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_converter_pat.format(attr_name) return "self.%(attr_name)s = %(conv)s(%(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } args = [] attrs_to_validate = [] # This is a dictionary of names to validator and converter callables. # Injecting this into __init__ globals lets us avoid lookups. names_for_globals = {} for a in attrs: if a.validator: attrs_to_validate.append(a) attr_name = a.name arg_name = a.name.lstrip("_") has_factory = isinstance(a.default, Factory) if has_factory and a.default.takes_self: maybe_self = "self" else: maybe_self = "" if a.init is False: if has_factory: init_factory_name = _init_factory_pat.format(a.name) if a.converter is not None: lines.append(fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self))) conv_name = _init_converter_pat.format(a.name) names_for_globals[conv_name] = a.converter else: lines.append(fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[init_factory_name] = a.default.factory else: if a.converter is not None: lines.append(fmt_setter_with_converter( attr_name, "attr_dict['{attr_name}'].default" .format(attr_name=attr_name) )) conv_name = _init_converter_pat.format(a.name) names_for_globals[conv_name] = a.converter else: lines.append(fmt_setter( attr_name, "attr_dict['{attr_name}'].default" .format(attr_name=attr_name) )) elif a.default is not NOTHING and not has_factory: args.append( "{arg_name}=attr_dict['{attr_name}'].default".format( arg_name=arg_name, attr_name=attr_name, ) ) if a.converter is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[_init_converter_pat.format(a.name)] = ( a.converter ) else: lines.append(fmt_setter(attr_name, arg_name)) elif has_factory: args.append("{arg_name}=NOTHING".format(arg_name=arg_name)) lines.append("if {arg_name} is not NOTHING:" .format(arg_name=arg_name)) init_factory_name = _init_factory_pat.format(a.name) if a.converter is not None: lines.append(" " + fmt_setter_with_converter( attr_name, arg_name )) lines.append("else:") lines.append(" " + fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[_init_converter_pat.format(a.name)] = ( a.converter ) else: lines.append(" " + fmt_setter(attr_name, arg_name)) lines.append("else:") lines.append(" " + fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[init_factory_name] = a.default.factory else: args.append(arg_name) if a.converter is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[_init_converter_pat.format(a.name)] = ( a.converter ) else: lines.append(fmt_setter(attr_name, arg_name)) if attrs_to_validate: # we can skip this if there are no validators. names_for_globals["_config"] = _config lines.append("if _config._run_validators is True:") for a in attrs_to_validate: val_name = "__attr_validator_{}".format(a.name) attr_name = "__attr_{}".format(a.name) lines.append(" {}(self, {}, self.{})".format( val_name, attr_name, a.name)) names_for_globals[val_name] = a.validator names_for_globals[attr_name] = a if post_init: lines.append("self.__attrs_post_init__()") return """\ def __init__(self, {args}): {lines} """.format( args=", ".join(args), lines="\n ".join(lines) if lines else "pass", ), names_for_globals class Attribute(object): """ *Read-only* representation of an attribute. :attribute name: The name of the attribute. Plus *all* arguments of :func:`attr.ib`. For the version history of the fields, see :func:`attr.ib`. """ __slots__ = ( "name", "default", "validator", "repr", "cmp", "hash", "init", "metadata", "type", "converter", ) def __init__(self, name, default, validator, repr, cmp, hash, init, convert=None, metadata=None, type=None, converter=None): # Cache this descriptor here to speed things up later. bound_setattr = _obj_setattr.__get__(self, Attribute) # Despite the big red warning, people *do* instantiate `Attribute` # themselves. if convert is not None: if converter is not None: raise RuntimeError( "Can't pass both `convert` and `converter`. " "Please use `converter` only." ) warnings.warn( "The `convert` argument is deprecated in favor of `converter`." " It will be removed after 2019/01.", DeprecationWarning, stacklevel=2 ) converter = convert bound_setattr("name", name) bound_setattr("default", default) bound_setattr("validator", validator) bound_setattr("repr", repr) bound_setattr("cmp", cmp) bound_setattr("hash", hash) bound_setattr("init", init) bound_setattr("converter", converter) bound_setattr("metadata", ( metadata_proxy(metadata) if metadata else _empty_metadata_singleton )) bound_setattr("type", type) def __setattr__(self, name, value): raise FrozenInstanceError() @property def convert(self): warnings.warn( "The `convert` attribute is deprecated in favor of `converter`. " "It will be removed after 2019/01.", DeprecationWarning, stacklevel=2, ) return self.converter @classmethod def from_counting_attr(cls, name, ca, type=None): # type holds the annotated value. deal with conflicts: if type is None: type = ca.type elif ca.type is not None: raise ValueError( "Type annotation and type argument cannot both be present" ) inst_dict = { k: getattr(ca, k) for k in Attribute.__slots__ if k not in ( "name", "validator", "default", "type", "convert", ) # exclude methods and deprecated alias } return cls( name=name, validator=ca._validator, default=ca._default, type=type, **inst_dict ) # Don't use _add_pickle since fields(Attribute) doesn't work def __getstate__(self): """ Play nice with pickle. """ return tuple(getattr(self, name) if name != "metadata" else dict(self.metadata) for name in self.__slots__) def __setstate__(self, state): """ Play nice with pickle. """ bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(self.__slots__, state): if name != "metadata": bound_setattr(name, value) else: bound_setattr(name, metadata_proxy(value) if value else _empty_metadata_singleton) _a = [ Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=(name != "metadata"), init=True) for name in Attribute.__slots__ if name != "convert" # XXX: remove once `convert` is gone ] Attribute = _add_hash( _add_cmp(_add_repr(Attribute, attrs=_a), attrs=_a), attrs=[a for a in _a if a.hash] ) class _CountingAttr(object): """ Intermediate representation of attributes that uses a counter to preserve the order in which the attributes have been defined. *Internal* data structure of the attrs library. Running into is most likely the result of a bug like a forgotten `@attr.s` decorator. """ __slots__ = ("counter", "_default", "repr", "cmp", "hash", "init", "metadata", "_validator", "converter", "type") __attrs_attrs__ = tuple( Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True) for name in ("counter", "_default", "repr", "cmp", "hash", "init",) ) + ( Attribute(name="metadata", default=None, validator=None, repr=True, cmp=True, hash=False, init=True), ) cls_counter = 0 def __init__(self, default, validator, repr, cmp, hash, init, converter, metadata, type): _CountingAttr.cls_counter += 1 self.counter = _CountingAttr.cls_counter self._default = default # If validator is a list/tuple, wrap it using helper validator. if validator and isinstance(validator, (list, tuple)): self._validator = and_(*validator) else: self._validator = validator self.repr = repr self.cmp = cmp self.hash = hash self.init = init self.converter = converter self.metadata = metadata self.type = type def validator(self, meth): """ Decorator that adds *meth* to the list of validators. Returns *meth* unchanged. .. versionadded:: 17.1.0 """ if self._validator is None: self._validator = meth else: self._validator = and_(self._validator, meth) return meth def default(self, meth): """ Decorator that allows to set the default for an attribute. Returns *meth* unchanged. :raises DefaultAlreadySetError: If default has been set before. .. versionadded:: 17.1.0 """ if self._default is not NOTHING: raise DefaultAlreadySetError() self._default = Factory(meth, takes_self=True) return meth _CountingAttr = _add_cmp(_add_repr(_CountingAttr)) @attrs(slots=True, init=False, hash=True) class Factory(object): """ Stores a factory callable. If passed as the default value to :func:`attr.ib`, the factory is used to generate a new value. :param callable factory: A callable that takes either none or exactly one mandatory positional argument depending on *takes_self*. :param bool takes_self: Pass the partially initialized instance that is being initialized as a positional argument. .. versionadded:: 17.1.0 *takes_self* """ factory = attrib() takes_self = attrib() def __init__(self, factory, takes_self=False): """ `Factory` is part of the default machinery so if we want a default value here, we have to implement it ourselves. """ self.factory = factory self.takes_self = takes_self def make_class(name, attrs, bases=(object,), **attributes_arguments): """ A quick way to create a new class called *name* with *attrs*. :param name: The name for the new class. :type name: str :param attrs: A list of names or a dictionary of mappings of names to attributes. :type attrs: :class:`list` or :class:`dict` :param tuple bases: Classes that the new class will subclass. :param attributes_arguments: Passed unmodified to :func:`attr.s`. :return: A new class with *attrs*. :rtype: type .. versionadded:: 17.1.0 *bases* """ if isinstance(attrs, dict): cls_dict = attrs elif isinstance(attrs, (list, tuple)): cls_dict = dict((a, attrib()) for a in attrs) else: raise TypeError("attrs argument must be a dict or a list.") post_init = cls_dict.pop("__attrs_post_init__", None) type_ = type( name, bases, {} if post_init is None else {"__attrs_post_init__": post_init} ) # For pickling to work, the __module__ variable needs to be set to the # frame where the class is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython). try: type_.__module__ = sys._getframe(1).f_globals.get( "__name__", "__main__", ) except (AttributeError, ValueError): pass return _attrs(these=cls_dict, **attributes_arguments)(type_) # These are required by within this module so we define them here and merely # import into .validators. @attrs(slots=True, hash=True) class _AndValidator(object): """ Compose many validators to a single one. """ _validators = attrib() def __call__(self, inst, attr, value): for v in self._validators: v(inst, attr, value) def and_(*validators): """ A validator that composes multiple validators into one. When called on a value, it runs all wrapped validators. :param validators: Arbitrary number of validators. :type validators: callables .. versionadded:: 17.1.0 """ vals = [] for validator in validators: vals.extend( validator._validators if isinstance(validator, _AndValidator) else [validator] ) return _AndValidator(tuple(vals))
{ "repo_name": "nparley/mylatitude", "path": "lib/attr/_make.py", "copies": "1", "size": "49291", "license": "mit", "hash": 7896157672638334000, "line_mean": 31.6214427531, "line_max": 79, "alpha_frac": 0.5585603863, "autogenerated": false, "ratio": 4.09495721525297, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.515351760155297, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import hashlib import linecache import sys from operator import itemgetter from . import _config from ._compat import PY2, isclass, iteritems, metadata_proxy, set_closure_cell from .exceptions import ( DefaultAlreadySetError, FrozenInstanceError, NotAnAttrsClassError, UnannotatedAttributeError ) # This is used at least twice, so cache it here. _obj_setattr = object.__setattr__ _init_convert_pat = "__attr_convert_{}" _init_factory_pat = "__attr_factory_{}" _tuple_property_pat = " {attr_name} = property(itemgetter({index}))" _empty_metadata_singleton = metadata_proxy({}) class _Nothing(object): """ Sentinel class to indicate the lack of a value when ``None`` is ambiguous. All instances of `_Nothing` are equal. """ def __copy__(self): return self def __deepcopy__(self, _): return self def __eq__(self, other): return other.__class__ == _Nothing def __ne__(self, other): return not self == other def __repr__(self): return "NOTHING" def __hash__(self): return 0xdeadbeef NOTHING = _Nothing() """ Sentinel to indicate the lack of a value when ``None`` is ambiguous. """ def attrib(default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata={}, type=None): """ Create a new attribute on a class. .. warning:: Does *not* do anything unless the class is also decorated with :func:`attr.s`! :param default: A value that is used if an ``attrs``-generated ``__init__`` is used and no value is passed while instantiating or the attribute is excluded using ``init=False``. If the value is an instance of :class:`Factory`, its callable will be used to construct a new value (useful for mutable data types like lists or dicts). If a default is not set (or set manually to ``attr.NOTHING``), a value *must* be supplied when instantiating; otherwise a :exc:`TypeError` will be raised. The default can also be set using decorator notation as shown below. :type default: Any value. :param validator: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods after the instance has been initialized. They receive the initialized instance, the :class:`Attribute`, and the passed value. The return value is *not* inspected so the validator has to throw an exception itself. If a ``list`` is passed, its items are treated as validators and must all pass. Validators can be globally disabled and re-enabled using :func:`get_run_validators`. The validator can also be set using decorator notation as shown below. :type validator: ``callable`` or a ``list`` of ``callable``\ s. :param bool repr: Include this attribute in the generated ``__repr__`` method. :param bool cmp: Include this attribute in the generated comparison methods (``__eq__`` et al). :param hash: Include this attribute in the generated ``__hash__`` method. If ``None`` (default), mirror *cmp*'s value. This is the correct behavior according the Python spec. Setting this value to anything else than ``None`` is *discouraged*. :type hash: ``bool`` or ``None`` :param bool init: Include this attribute in the generated ``__init__`` method. It is possible to set this to ``False`` and set a default value. In that case this attributed is unconditionally initialized with the specified default value or factory. :param callable convert: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods to convert attribute's value to the desired format. It is given the passed-in value, and the returned value will be used as the new value of the attribute. The value is converted before being passed to the validator, if any. :param metadata: An arbitrary mapping, to be used by third-party components. See :ref:`extending_metadata`. :param type: The type of the attribute. In Python 3.6 or greater, the preferred method to specify the type is using a variable annotation (see `PEP 526 <https://www.python.org/dev/peps/pep-0526/>`_). This argument is provided for backward compatibility. Regardless of the approach used, the type will be stored on ``Attribute.type``. .. versionchanged:: 17.1.0 *validator* can be a ``list`` now. .. versionchanged:: 17.1.0 *hash* is ``None`` and therefore mirrors *cmp* by default. .. versionadded:: 17.3.0 *type* """ if hash is not None and hash is not True and hash is not False: raise TypeError( "Invalid value for hash. Must be True, False, or None." ) return _CountingAttr( default=default, validator=validator, repr=repr, cmp=cmp, hash=hash, init=init, convert=convert, metadata=metadata, type=type, ) def _make_attr_tuple_class(cls_name, attr_names): """ Create a tuple subclass to hold `Attribute`s for an `attrs` class. The subclass is a bare tuple with properties for names. class MyClassAttributes(tuple): __slots__ = () x = property(itemgetter(0)) """ attr_class_name = "{}Attributes".format(cls_name) attr_class_template = [ "class {}(tuple):".format(attr_class_name), " __slots__ = ()", ] if attr_names: for i, attr_name in enumerate(attr_names): attr_class_template.append(_tuple_property_pat.format( index=i, attr_name=attr_name, )) else: attr_class_template.append(" pass") globs = {"itemgetter": itemgetter} eval(compile("\n".join(attr_class_template), "", "exec"), globs) return globs[attr_class_name] # Tuple class for extracted attributes from a class definition. # `super_attrs` is a subset of `attrs`. _Attributes = _make_attr_tuple_class("_Attributes", [ "attrs", # all attributes to build dunder methods for "super_attrs", # attributes that have been inherited from super classes ]) def _is_class_var(annot): """ Check whether *annot* is a typing.ClassVar. The implementation is gross but importing `typing` is slow and there are discussions to remove it from the stdlib alltogether. """ return str(annot).startswith("typing.ClassVar") def _get_annotations(cls): """ Get annotations for *cls*. """ anns = getattr(cls, "__annotations__", None) if anns is None: return {} # Verify that the annotations aren't merely inherited. for super_cls in cls.__mro__[1:]: if anns is getattr(super_cls, "__annotations__", None): return {} return anns def _transform_attrs(cls, these, auto_attribs): """ Transform all `_CountingAttr`s on a class into `Attribute`s. If *these* is passed, use that and don't look for them on the class. Return an `_Attributes`. """ cd = cls.__dict__ anns = _get_annotations(cls) if these is not None: ca_list = sorted(( (name, ca) for name, ca in iteritems(these) ), key=lambda e: e[1].counter) elif auto_attribs is True: ca_names = { name for name, attr in cd.items() if isinstance(attr, _CountingAttr) } ca_list = [] annot_names = set() for attr_name, type in anns.items(): if _is_class_var(type): continue annot_names.add(attr_name) a = cd.get(attr_name, NOTHING) if not isinstance(a, _CountingAttr): if a is NOTHING: a = attrib() else: a = attrib(default=a) ca_list.append((attr_name, a)) unannotated = ca_names - annot_names if len(unannotated) > 0: raise UnannotatedAttributeError( "The following `attr.ib`s lack a type annotation: " + ", ".join(sorted( unannotated, key=lambda n: cd.get(n).counter )) + "." ) else: ca_list = sorted(( (name, attr) for name, attr in cd.items() if isinstance(attr, _CountingAttr) ), key=lambda e: e[1].counter) non_super_attrs = [ Attribute.from_counting_attr( name=attr_name, ca=ca, type=anns.get(attr_name), ) for attr_name, ca in ca_list ] # Walk *down* the MRO for attributes. While doing so, we collect the names # of attributes we've seen in `take_attr_names` and ignore their # redefinitions deeper in the hierarchy. super_attrs = [] taken_attr_names = {a.name: a for a in non_super_attrs} for super_cls in cls.__mro__[1:-1]: sub_attrs = getattr(super_cls, "__attrs_attrs__", None) if sub_attrs is not None: # We iterate over sub_attrs backwards so we can reverse the whole # list in the end and get all attributes in the order they have # been defined. for a in reversed(sub_attrs): prev_a = taken_attr_names.get(a.name) if prev_a is None: super_attrs.append(a) taken_attr_names[a.name] = a elif prev_a == a: # This happens thru multiple inheritance. We don't want # to favor attributes that are further down in the tree # so we move them to the back. super_attrs.remove(a) super_attrs.append(a) # Now reverse the list, such that the attributes are sorted by *descending* # age. IOW: the oldest attribute definition is at the head of the list. super_attrs.reverse() attr_names = [a.name for a in super_attrs + non_super_attrs] AttrsClass = _make_attr_tuple_class(cls.__name__, attr_names) attrs = AttrsClass( super_attrs + [ Attribute.from_counting_attr( name=attr_name, ca=ca, type=anns.get(attr_name) ) for attr_name, ca in ca_list ] ) had_default = False for a in attrs: if had_default is True and a.default is NOTHING and a.init is True: raise ValueError( "No mandatory attributes allowed after an attribute with a " "default value or factory. Attribute in question: {a!r}" .format(a=a) ) elif had_default is False and \ a.default is not NOTHING and \ a.init is not False: had_default = True return _Attributes((attrs, super_attrs)) def _frozen_setattrs(self, name, value): """ Attached to frozen classes as __setattr__. """ raise FrozenInstanceError() def _frozen_delattrs(self, name): """ Attached to frozen classes as __delattr__. """ raise FrozenInstanceError() class _ClassBuilder(object): """ Iteratively build *one* class. """ __slots__ = ( "_cls", "_cls_dict", "_attrs", "_super_names", "_attr_names", "_slots", "_frozen", "_has_post_init", ) def __init__(self, cls, these, slots, frozen, auto_attribs): attrs, super_attrs = _transform_attrs(cls, these, auto_attribs) self._cls = cls self._cls_dict = dict(cls.__dict__) if slots else {} self._attrs = attrs self._super_names = set(a.name for a in super_attrs) self._attr_names = tuple(a.name for a in attrs) self._slots = slots self._frozen = frozen or _has_frozen_superclass(cls) self._has_post_init = bool(getattr(cls, "__attrs_post_init__", False)) self._cls_dict["__attrs_attrs__"] = self._attrs if frozen: self._cls_dict["__setattr__"] = _frozen_setattrs self._cls_dict["__delattr__"] = _frozen_delattrs def __repr__(self): return "<_ClassBuilder(cls={cls})>".format(cls=self._cls.__name__) def build_class(self): """ Finalize class based on the accumulated configuration. Builder cannot be used anymore after calling this method. """ if self._slots is True: return self._create_slots_class() else: return self._patch_original_class() def _patch_original_class(self): """ Apply accumulated methods and return the class. """ cls = self._cls super_names = self._super_names # Clean class of attribute definitions (`attr.ib()`s). for name in self._attr_names: if name not in super_names and \ getattr(cls, name, None) is not None: delattr(cls, name) # Attach our dunder methods. for name, value in self._cls_dict.items(): setattr(cls, name, value) return cls def _create_slots_class(self): """ Build and return a new class with a `__slots__` attribute. """ super_names = self._super_names cd = { k: v for k, v in iteritems(self._cls_dict) if k not in tuple(self._attr_names) + ("__dict__",) } # We only add the names of attributes that aren't inherited. # Settings __slots__ to inherited attributes wastes memory. cd["__slots__"] = tuple( name for name in self._attr_names if name not in super_names ) qualname = getattr(self._cls, "__qualname__", None) if qualname is not None: cd["__qualname__"] = qualname attr_names = tuple(self._attr_names) def slots_getstate(self): """ Automatically created by attrs. """ return tuple(getattr(self, name) for name in attr_names) def slots_setstate(self, state): """ Automatically created by attrs. """ __bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(attr_names, state): __bound_setattr(name, value) # slots and frozen require __getstate__/__setstate__ to work cd["__getstate__"] = slots_getstate cd["__setstate__"] = slots_setstate # Create new class based on old class and our methods. cls = type(self._cls)( self._cls.__name__, self._cls.__bases__, cd, ) # The following is a fix for # https://github.com/python-attrs/attrs/issues/102. On Python 3, # if a method mentions `__class__` or uses the no-arg super(), the # compiler will bake a reference to the class in the method itself # as `method.__closure__`. Since we replace the class with a # clone, we rewrite these references so it keeps working. for item in cls.__dict__.values(): if isinstance(item, (classmethod, staticmethod)): # Class- and staticmethods hide their functions inside. # These might need to be rewritten as well. closure_cells = getattr(item.__func__, "__closure__", None) else: closure_cells = getattr(item, "__closure__", None) if not closure_cells: # Catch None or the empty list. continue for cell in closure_cells: if cell.cell_contents is self._cls: set_closure_cell(cell, cls) return cls def add_repr(self, ns): self._cls_dict["__repr__"] = _make_repr(self._attrs, ns=ns) return self def add_str(self): repr_ = self._cls_dict.get("__repr__") if repr_ is None: raise ValueError( "__str__ can only be generated if a __repr__ exists." ) self._cls_dict["__str__"] = repr_ return self def make_unhashable(self): self._cls_dict["__hash__"] = None return self def add_hash(self): self._cls_dict["__hash__"] = _make_hash(self._attrs) return self def add_init(self): self._cls_dict["__init__"] = _make_init( self._attrs, self._has_post_init, self._frozen, ) return self def add_cmp(self): cd = self._cls_dict cd["__eq__"], cd["__ne__"], cd["__lt__"], cd["__le__"], cd["__gt__"], \ cd["__ge__"] = _make_cmp(self._attrs) return self def attrs(maybe_cls=None, these=None, repr_ns=None, repr=True, cmp=True, hash=None, init=True, slots=False, frozen=False, str=False, auto_attribs=False): r""" A class decorator that adds `dunder <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the specified attributes using :func:`attr.ib` or the *these* argument. :param these: A dictionary of name to :func:`attr.ib` mappings. This is useful to avoid the definition of your attributes within the class body because you can't (e.g. if you want to add ``__repr__`` methods to Django models) or don't want to. If *these* is not ``None``, ``attrs`` will *not* search the class body for attributes. :type these: :class:`dict` of :class:`str` to :func:`attr.ib` :param str repr_ns: When using nested classes, there's no way in Python 2 to automatically detect that. Therefore it's possible to set the namespace explicitly for a more meaningful ``repr`` output. :param bool repr: Create a ``__repr__`` method with a human readable representation of ``attrs`` attributes.. :param bool str: Create a ``__str__`` method that is identical to ``__repr__``. This is usually not necessary except for :class:`Exception`\ s. :param bool cmp: Create ``__eq__``, ``__ne__``, ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` methods that compare the class as if it were a tuple of its ``attrs`` attributes. But the attributes are *only* compared, if the type of both classes is *identical*! :param hash: If ``None`` (default), the ``__hash__`` method is generated according how *cmp* and *frozen* are set. 1. If *both* are True, ``attrs`` will generate a ``__hash__`` for you. 2. If *cmp* is True and *frozen* is False, ``__hash__`` will be set to None, marking it unhashable (which it is). 3. If *cmp* is False, ``__hash__`` will be left untouched meaning the ``__hash__`` method of the superclass will be used (if superclass is ``object``, this means it will fall back to id-based hashing.). Although not recommended, you can decide for yourself and force ``attrs`` to create one (e.g. if the class is immutable even though you didn't freeze it programmatically) by passing ``True`` or not. Both of these cases are rather special and should be used carefully. See the `Python documentation \ <https://docs.python.org/3/reference/datamodel.html#object.__hash__>`_ and the `GitHub issue that led to the default behavior \ <https://github.com/python-attrs/attrs/issues/136>`_ for more details. :type hash: ``bool`` or ``None`` :param bool init: Create a ``__init__`` method that initializes the ``attrs`` attributes. Leading underscores are stripped for the argument name. If a ``__attrs_post_init__`` method exists on the class, it will be called after the class is fully initialized. :param bool slots: Create a slots_-style class that's more memory-efficient. See :ref:`slots` for further ramifications. :param bool frozen: Make instances immutable after initialization. If someone attempts to modify a frozen instance, :exc:`attr.exceptions.FrozenInstanceError` is raised. Please note: 1. This is achieved by installing a custom ``__setattr__`` method on your class so you can't implement an own one. 2. True immutability is impossible in Python. 3. This *does* have a minor a runtime performance :ref:`impact <how-frozen>` when initializing new instances. In other words: ``__init__`` is slightly slower with ``frozen=True``. 4. If a class is frozen, you cannot modify ``self`` in ``__attrs_post_init__`` or a self-written ``__init__``. You can circumvent that limitation by using ``object.__setattr__(self, "attribute_name", value)``. .. _slots: https://docs.python.org/3/reference/datamodel.html#slots :param bool auto_attribs: If True, collect `PEP 526`_-annotated attributes (Python 3.6 and later only) from the class body. In this case, you **must** annotate every field. If ``attrs`` encounters a field that is set to an :func:`attr.ib` but lacks a type annotation, an :exc:`attr.exceptions.UnannotatedAttributeError` is raised. Use ``field_name: typing.Any = attr.ib(...)`` if you don't want to set a type. If you assign a value to those attributes (e.g. ``x: int = 42``), that value becomes the default value like if it were passed using ``attr.ib(default=42)``. Passing an instance of :class:`Factory` also works as expected. Attributes annotated as :data:`typing.ClassVar` are **ignored**. .. _`PEP 526`: https://www.python.org/dev/peps/pep-0526/ .. versionadded:: 16.0.0 *slots* .. versionadded:: 16.1.0 *frozen* .. versionadded:: 16.3.0 *str*, and support for ``__attrs_post_init__``. .. versionchanged:: 17.1.0 *hash* supports ``None`` as value which is also the default now. .. versionadded:: 17.3.0 *auto_attribs* """ def wrap(cls): if getattr(cls, "__class__", None) is None: raise TypeError("attrs only works with new-style classes.") builder = _ClassBuilder(cls, these, slots, frozen, auto_attribs) if repr is True: builder.add_repr(repr_ns) if str is True: builder.add_str() if cmp is True: builder.add_cmp() if hash is not True and hash is not False and hash is not None: # Can't use `hash in` because 1 == True for example. raise TypeError( "Invalid value for hash. Must be True, False, or None." ) elif hash is False or (hash is None and cmp is False): pass elif hash is True or (hash is None and cmp is True and frozen is True): builder.add_hash() else: builder.make_unhashable() if init is True: builder.add_init() return builder.build_class() # maybe_cls's type depends on the usage of the decorator. It's a class # if it's used as `@attrs` but ``None`` if used as `@attrs()`. if maybe_cls is None: return wrap else: return wrap(maybe_cls) _attrs = attrs """ Internal alias so we can use it in functions that take an argument called *attrs*. """ if PY2: def _has_frozen_superclass(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return ( getattr( cls.__setattr__, "__module__", None ) == _frozen_setattrs.__module__ and cls.__setattr__.__name__ == _frozen_setattrs.__name__ ) else: def _has_frozen_superclass(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return cls.__setattr__ == _frozen_setattrs def _attrs_to_tuple(obj, attrs): """ Create a tuple of all values of *obj*'s *attrs*. """ return tuple(getattr(obj, a.name) for a in attrs) def _make_hash(attrs): attrs = tuple( a for a in attrs if a.hash is True or (a.hash is None and a.cmp is True) ) # We cache the generated init methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated hash %s>" % (sha1.hexdigest(),) type_hash = hash(unique_filename) lines = [ "def __hash__(self):", " return hash((", " %d," % (type_hash,), ] for a in attrs: lines.append(" self.%s," % (a.name)) lines.append(" ))") script = "\n".join(lines) globs = {} locs = {} bytecode = compile(script, unique_filename, "exec") eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) return locs["__hash__"] def _add_hash(cls, attrs): """ Add a hash method to *cls*. """ cls.__hash__ = _make_hash(attrs) return cls def _make_cmp(attrs): attrs = [a for a in attrs if a.cmp] def attrs_to_tuple(obj): """ Save us some typing. """ return _attrs_to_tuple(obj, attrs) def eq(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) == attrs_to_tuple(other) else: return NotImplemented def ne(self, other): """ Automatically created by attrs. """ result = eq(self, other) if result is NotImplemented: return NotImplemented else: return not result def lt(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) < attrs_to_tuple(other) else: return NotImplemented def le(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) <= attrs_to_tuple(other) else: return NotImplemented def gt(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) > attrs_to_tuple(other) else: return NotImplemented def ge(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) >= attrs_to_tuple(other) else: return NotImplemented return eq, ne, lt, le, gt, ge def _add_cmp(cls, attrs=None): """ Add comparison methods to *cls*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__eq__, cls.__ne__, cls.__lt__, cls.__le__, cls.__gt__, cls.__ge__ = \ _make_cmp(attrs) return cls def _make_repr(attrs, ns): """ Make a repr method for *attr_names* adding *ns* to the full name. """ attr_names = tuple( a.name for a in attrs if a.repr ) def repr_(self): """ Automatically created by attrs. """ real_cls = self.__class__ if ns is None: qualname = getattr(real_cls, "__qualname__", None) if qualname is not None: class_name = qualname.rsplit(">.", 1)[-1] else: class_name = real_cls.__name__ else: class_name = ns + "." + real_cls.__name__ return "{0}({1})".format( class_name, ", ".join( name + "=" + repr(getattr(self, name)) for name in attr_names ) ) return repr_ def _add_repr(cls, ns=None, attrs=None): """ Add a repr method to *cls*. """ if attrs is None: attrs = cls.__attrs_attrs__ repr_ = _make_repr(attrs, ns) cls.__repr__ = repr_ return cls def _make_init(attrs, post_init, frozen): attrs = [ a for a in attrs if a.init or a.default is not NOTHING ] # We cache the generated init methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated init {0}>".format( sha1.hexdigest() ) script, globs = _attrs_to_init_script( attrs, frozen, post_init, ) locs = {} bytecode = compile(script, unique_filename, "exec") attr_dict = dict((a.name, a) for a in attrs) globs.update({ "NOTHING": NOTHING, "attr_dict": attr_dict, }) if frozen is True: # Save the lookup overhead in __init__ if we need to circumvent # immutability. globs["_cached_setattr"] = _obj_setattr eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) return locs["__init__"] def _add_init(cls, frozen): """ Add a __init__ method to *cls*. If *frozen* is True, make it immutable. """ cls.__init__ = _make_init( cls.__attrs_attrs__, getattr(cls, "__attrs_post_init__", False), frozen, ) return cls def fields(cls): """ Returns the tuple of ``attrs`` attributes for a class. The tuple also allows accessing the fields by their names (see below for examples). :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: tuple (with name accessors) of :class:`attr.Attribute` .. versionchanged:: 16.2.0 Returned tuple allows accessing the fields by name. """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return attrs def validate(inst): """ Validate all attributes on *inst* that have a validator. Leaves all exceptions through. :param inst: Instance of a class with ``attrs`` attributes. """ if _config._run_validators is False: return for a in fields(inst.__class__): v = a.validator if v is not None: v(inst, a, getattr(inst, a.name)) def _attrs_to_init_script(attrs, frozen, post_init): """ Return a script of an initializer for *attrs* and a dict of globals. The globals are expected by the generated script. If *frozen* is True, we cannot set the attributes directly so we use a cached ``object.__setattr__``. """ lines = [] if frozen is True: lines.append( # Circumvent the __setattr__ descriptor to save one lookup per # assignment. "_setattr = _cached_setattr.__get__(self, self.__class__)" ) def fmt_setter(attr_name, value_var): return "_setattr('%(attr_name)s', %(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_convert_pat.format(attr_name) return "_setattr('%(attr_name)s', %(conv)s(%(value_var)s))" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } else: def fmt_setter(attr_name, value): return "self.%(attr_name)s = %(value)s" % { "attr_name": attr_name, "value": value, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_convert_pat.format(attr_name) return "self.%(attr_name)s = %(conv)s(%(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } args = [] attrs_to_validate = [] # This is a dictionary of names to validator and converter callables. # Injecting this into __init__ globals lets us avoid lookups. names_for_globals = {} for a in attrs: if a.validator: attrs_to_validate.append(a) attr_name = a.name arg_name = a.name.lstrip("_") has_factory = isinstance(a.default, Factory) if has_factory and a.default.takes_self: maybe_self = "self" else: maybe_self = "" if a.init is False: if has_factory: init_factory_name = _init_factory_pat.format(a.name) if a.convert is not None: lines.append(fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self))) conv_name = _init_convert_pat.format(a.name) names_for_globals[conv_name] = a.convert else: lines.append(fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[init_factory_name] = a.default.factory else: if a.convert is not None: lines.append(fmt_setter_with_converter( attr_name, "attr_dict['{attr_name}'].default" .format(attr_name=attr_name) )) conv_name = _init_convert_pat.format(a.name) names_for_globals[conv_name] = a.convert else: lines.append(fmt_setter( attr_name, "attr_dict['{attr_name}'].default" .format(attr_name=attr_name) )) elif a.default is not NOTHING and not has_factory: args.append( "{arg_name}=attr_dict['{attr_name}'].default".format( arg_name=arg_name, attr_name=attr_name, ) ) if a.convert is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[_init_convert_pat.format(a.name)] = a.convert else: lines.append(fmt_setter(attr_name, arg_name)) elif has_factory: args.append("{arg_name}=NOTHING".format(arg_name=arg_name)) lines.append("if {arg_name} is not NOTHING:" .format(arg_name=arg_name)) init_factory_name = _init_factory_pat.format(a.name) if a.convert is not None: lines.append(" " + fmt_setter_with_converter(attr_name, arg_name)) lines.append("else:") lines.append(" " + fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[_init_convert_pat.format(a.name)] = a.convert else: lines.append(" " + fmt_setter(attr_name, arg_name)) lines.append("else:") lines.append(" " + fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[init_factory_name] = a.default.factory else: args.append(arg_name) if a.convert is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[_init_convert_pat.format(a.name)] = a.convert else: lines.append(fmt_setter(attr_name, arg_name)) if attrs_to_validate: # we can skip this if there are no validators. names_for_globals["_config"] = _config lines.append("if _config._run_validators is True:") for a in attrs_to_validate: val_name = "__attr_validator_{}".format(a.name) attr_name = "__attr_{}".format(a.name) lines.append(" {}(self, {}, self.{})".format( val_name, attr_name, a.name)) names_for_globals[val_name] = a.validator names_for_globals[attr_name] = a if post_init: lines.append("self.__attrs_post_init__()") return """\ def __init__(self, {args}): {lines} """.format( args=", ".join(args), lines="\n ".join(lines) if lines else "pass", ), names_for_globals class Attribute(object): """ *Read-only* representation of an attribute. :attribute name: The name of the attribute. Plus *all* arguments of :func:`attr.ib`. """ __slots__ = ( "name", "default", "validator", "repr", "cmp", "hash", "init", "convert", "metadata", "type" ) def __init__(self, name, default, validator, repr, cmp, hash, init, convert=None, metadata=None, type=None): # Cache this descriptor here to speed things up later. bound_setattr = _obj_setattr.__get__(self, Attribute) bound_setattr("name", name) bound_setattr("default", default) bound_setattr("validator", validator) bound_setattr("repr", repr) bound_setattr("cmp", cmp) bound_setattr("hash", hash) bound_setattr("init", init) bound_setattr("convert", convert) bound_setattr("metadata", (metadata_proxy(metadata) if metadata else _empty_metadata_singleton)) bound_setattr("type", type) def __setattr__(self, name, value): raise FrozenInstanceError() @classmethod def from_counting_attr(cls, name, ca, type=None): # type holds the annotated value. deal with conflicts: if type is None: type = ca.type elif ca.type is not None: raise ValueError( "Type annotation and type argument cannot both be present" ) inst_dict = { k: getattr(ca, k) for k in Attribute.__slots__ if k not in ( "name", "validator", "default", "type" ) # exclude methods } return cls(name=name, validator=ca._validator, default=ca._default, type=type, **inst_dict) # Don't use _add_pickle since fields(Attribute) doesn't work def __getstate__(self): """ Play nice with pickle. """ return tuple(getattr(self, name) if name != "metadata" else dict(self.metadata) for name in self.__slots__) def __setstate__(self, state): """ Play nice with pickle. """ bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(self.__slots__, state): if name != "metadata": bound_setattr(name, value) else: bound_setattr(name, metadata_proxy(value) if value else _empty_metadata_singleton) _a = [Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=(name != "metadata"), init=True) for name in Attribute.__slots__] Attribute = _add_hash( _add_cmp(_add_repr(Attribute, attrs=_a), attrs=_a), attrs=[a for a in _a if a.hash] ) class _CountingAttr(object): """ Intermediate representation of attributes that uses a counter to preserve the order in which the attributes have been defined. *Internal* data structure of the attrs library. Running into is most likely the result of a bug like a forgotten `@attr.s` decorator. """ __slots__ = ("counter", "_default", "repr", "cmp", "hash", "init", "metadata", "_validator", "convert", "type") __attrs_attrs__ = tuple( Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True) for name in ("counter", "_default", "repr", "cmp", "hash", "init",) ) + ( Attribute(name="metadata", default=None, validator=None, repr=True, cmp=True, hash=False, init=True), ) cls_counter = 0 def __init__(self, default, validator, repr, cmp, hash, init, convert, metadata, type): _CountingAttr.cls_counter += 1 self.counter = _CountingAttr.cls_counter self._default = default # If validator is a list/tuple, wrap it using helper validator. if validator and isinstance(validator, (list, tuple)): self._validator = and_(*validator) else: self._validator = validator self.repr = repr self.cmp = cmp self.hash = hash self.init = init self.convert = convert self.metadata = metadata self.type = type def validator(self, meth): """ Decorator that adds *meth* to the list of validators. Returns *meth* unchanged. .. versionadded:: 17.1.0 """ if self._validator is None: self._validator = meth else: self._validator = and_(self._validator, meth) return meth def default(self, meth): """ Decorator that allows to set the default for an attribute. Returns *meth* unchanged. :raises DefaultAlreadySetError: If default has been set before. .. versionadded:: 17.1.0 """ if self._default is not NOTHING: raise DefaultAlreadySetError() self._default = Factory(meth, takes_self=True) return meth _CountingAttr = _add_cmp(_add_repr(_CountingAttr)) @attrs(slots=True, init=False, hash=True) class Factory(object): """ Stores a factory callable. If passed as the default value to :func:`attr.ib`, the factory is used to generate a new value. :param callable factory: A callable that takes either none or exactly one mandatory positional argument depending on *takes_self*. :param bool takes_self: Pass the partially initialized instance that is being initialized as a positional argument. .. versionadded:: 17.1.0 *takes_self* """ factory = attrib() takes_self = attrib() def __init__(self, factory, takes_self=False): """ `Factory` is part of the default machinery so if we want a default value here, we have to implement it ourselves. """ self.factory = factory self.takes_self = takes_self def make_class(name, attrs, bases=(object,), **attributes_arguments): """ A quick way to create a new class called *name* with *attrs*. :param name: The name for the new class. :type name: str :param attrs: A list of names or a dictionary of mappings of names to attributes. :type attrs: :class:`list` or :class:`dict` :param tuple bases: Classes that the new class will subclass. :param attributes_arguments: Passed unmodified to :func:`attr.s`. :return: A new class with *attrs*. :rtype: type .. versionadded:: 17.1.0 *bases* """ if isinstance(attrs, dict): cls_dict = attrs elif isinstance(attrs, (list, tuple)): cls_dict = dict((a, attrib()) for a in attrs) else: raise TypeError("attrs argument must be a dict or a list.") post_init = cls_dict.pop("__attrs_post_init__", None) type_ = type( name, bases, {} if post_init is None else {"__attrs_post_init__": post_init} ) # For pickling to work, the __module__ variable needs to be set to the # frame where the class is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython). try: type_.__module__ = sys._getframe(1).f_globals.get( "__name__", "__main__", ) except (AttributeError, ValueError): pass return _attrs(these=cls_dict, **attributes_arguments)(type_) # These are required by within this module so we define them here and merely # import into .validators. @attrs(slots=True, hash=True) class _AndValidator(object): """ Compose many validators to a single one. """ _validators = attrib() def __call__(self, inst, attr, value): for v in self._validators: v(inst, attr, value) def and_(*validators): """ A validator that composes multiple validators into one. When called on a value, it runs all wrapped validators. :param validators: Arbitrary number of validators. :type validators: callables .. versionadded:: 17.1.0 """ vals = [] for validator in validators: vals.extend( validator._validators if isinstance(validator, _AndValidator) else [validator] ) return _AndValidator(tuple(vals))
{ "repo_name": "anthgur/servo", "path": "tests/wpt/web-platform-tests/tools/third_party/attrs/src/attr/_make.py", "copies": "12", "size": "46098", "license": "mpl-2.0", "hash": -2407760612302266400, "line_mean": 32.0451612903, "line_max": 79, "alpha_frac": 0.5625189813, "autogenerated": false, "ratio": 4.07622247767265, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000010541851149061775, "num_lines": 1395 }
from __future__ import absolute_import, division, print_function import hashlib import linecache from operator import itemgetter from . import _config from ._compat import PY2, iteritems, isclass, iterkeys, metadata_proxy from .exceptions import ( DefaultAlreadySetError, FrozenInstanceError, NotAnAttrsClassError, ) # This is used at least twice, so cache it here. _obj_setattr = object.__setattr__ _init_convert_pat = "__attr_convert_{}" _init_factory_pat = "__attr_factory_{}" _tuple_property_pat = " {attr_name} = property(itemgetter({index}))" _empty_metadata_singleton = metadata_proxy({}) class _Nothing(object): """ Sentinel class to indicate the lack of a value when ``None`` is ambiguous. All instances of `_Nothing` are equal. """ def __copy__(self): return self def __deepcopy__(self, _): return self def __eq__(self, other): return other.__class__ == _Nothing def __ne__(self, other): return not self == other def __repr__(self): return "NOTHING" def __hash__(self): return 0xdeadbeef NOTHING = _Nothing() """ Sentinel to indicate the lack of a value when ``None`` is ambiguous. """ def attr(default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata={}): """ Create a new attribute on a class. .. warning:: Does *not* do anything unless the class is also decorated with :func:`attr.s`! :param default: A value that is used if an ``attrs``-generated ``__init__`` is used and no value is passed while instantiating or the attribute is excluded using ``init=False``. If the value is an instance of :class:`Factory`, its callable will be used to construct a new value (useful for mutable datatypes like lists or dicts). If a default is not set (or set manually to ``attr.NOTHING``), a value *must* be supplied when instantiating; otherwise a :exc:`TypeError` will be raised. The default can also be set using decorator notation as shown below. :type default: Any value. :param validator: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods after the instance has been initialized. They receive the initialized instance, the :class:`Attribute`, and the passed value. The return value is *not* inspected so the validator has to throw an exception itself. If a ``list`` is passed, its items are treated as validators and must all pass. Validators can be globally disabled and re-enabled using :func:`get_run_validators`. The validator can also be set using decorator notation as shown below. :type validator: ``callable`` or a ``list`` of ``callable``\ s. :param bool repr: Include this attribute in the generated ``__repr__`` method. :param bool cmp: Include this attribute in the generated comparison methods (``__eq__`` et al). :param hash: Include this attribute in the generated ``__hash__`` method. If ``None`` (default), mirror *cmp*'s value. This is the correct behavior according the Python spec. Setting this value to anything else than ``None`` is *discouraged*. :type hash: ``bool`` or ``None`` :param bool init: Include this attribute in the generated ``__init__`` method. It is possible to set this to ``False`` and set a default value. In that case this attributed is unconditionally initialized with the specified default value or factory. :param callable convert: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods to convert attribute's value to the desired format. It is given the passed-in value, and the returned value will be used as the new value of the attribute. The value is converted before being passed to the validator, if any. :param metadata: An arbitrary mapping, to be used by third-party components. See :ref:`extending_metadata`. .. versionchanged:: 17.1.0 *validator* can be a ``list`` now. .. versionchanged:: 17.1.0 *hash* is ``None`` and therefore mirrors *cmp* by default . """ if hash is not None and hash is not True and hash is not False: raise TypeError( "Invalid value for hash. Must be True, False, or None." ) return _CountingAttr( default=default, validator=validator, repr=repr, cmp=cmp, hash=hash, init=init, convert=convert, metadata=metadata, ) def _make_attr_tuple_class(cls_name, attr_names): """ Create a tuple subclass to hold `Attribute`s for an `attrs` class. The subclass is a bare tuple with properties for names. class MyClassAttributes(tuple): __slots__ = () x = property(itemgetter(0)) """ attr_class_name = "{}Attributes".format(cls_name) attr_class_template = [ "class {}(tuple):".format(attr_class_name), " __slots__ = ()", ] if attr_names: for i, attr_name in enumerate(attr_names): attr_class_template.append(_tuple_property_pat.format( index=i, attr_name=attr_name, )) else: attr_class_template.append(" pass") globs = {"itemgetter": itemgetter} eval(compile("\n".join(attr_class_template), "", "exec"), globs) return globs[attr_class_name] def _transform_attrs(cls, these): """ Transforms all `_CountingAttr`s on a class into `Attribute`s and saves the list in `__attrs_attrs__`. If *these* is passed, use that and don't look for them on the class. """ super_cls = [] for c in reversed(cls.__mro__[1:-1]): sub_attrs = getattr(c, "__attrs_attrs__", None) if sub_attrs is not None: super_cls.extend(a for a in sub_attrs if a not in super_cls) if these is None: ca_list = [(name, attr) for name, attr in cls.__dict__.items() if isinstance(attr, _CountingAttr)] else: ca_list = [(name, ca) for name, ca in iteritems(these)] non_super_attrs = [ Attribute.from_counting_attr(name=attr_name, ca=ca) for attr_name, ca in sorted(ca_list, key=lambda e: e[1].counter) ] attr_names = [a.name for a in super_cls + non_super_attrs] AttrsClass = _make_attr_tuple_class(cls.__name__, attr_names) cls.__attrs_attrs__ = AttrsClass(super_cls + [ Attribute.from_counting_attr(name=attr_name, ca=ca) for attr_name, ca in sorted(ca_list, key=lambda e: e[1].counter) ]) had_default = False for a in cls.__attrs_attrs__: if these is None and a not in super_cls: setattr(cls, a.name, a) if had_default is True and a.default is NOTHING and a.init is True: raise ValueError( "No mandatory attributes allowed after an attribute with a " "default value or factory. Attribute in question: {a!r}" .format(a=a) ) elif had_default is False and \ a.default is not NOTHING and \ a.init is not False: had_default = True def _frozen_setattrs(self, name, value): """ Attached to frozen classes as __setattr__. """ raise FrozenInstanceError() def _frozen_delattrs(self, name): """ Attached to frozen classes as __delattr__. """ raise FrozenInstanceError() def attributes(maybe_cls=None, these=None, repr_ns=None, repr=True, cmp=True, hash=None, init=True, slots=False, frozen=False, str=False): r""" A class decorator that adds `dunder <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the specified attributes using :func:`attr.ib` or the *these* argument. :param these: A dictionary of name to :func:`attr.ib` mappings. This is useful to avoid the definition of your attributes within the class body because you can't (e.g. if you want to add ``__repr__`` methods to Django models) or don't want to. If *these* is not ``None``, ``attrs`` will *not* search the class body for attributes. :type these: :class:`dict` of :class:`str` to :func:`attr.ib` :param str repr_ns: When using nested classes, there's no way in Python 2 to automatically detect that. Therefore it's possible to set the namespace explicitly for a more meaningful ``repr`` output. :param bool repr: Create a ``__repr__`` method with a human readable represantation of ``attrs`` attributes.. :param bool str: Create a ``__str__`` method that is identical to ``__repr__``. This is usually not necessary except for :class:`Exception`\ s. :param bool cmp: Create ``__eq__``, ``__ne__``, ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` methods that compare the class as if it were a tuple of its ``attrs`` attributes. But the attributes are *only* compared, if the type of both classes is *identical*! :param hash: If ``None`` (default), the ``__hash__`` method is generated according how *cmp* and *frozen* are set. 1. If *both* are True, ``attrs`` will generate a ``__hash__`` for you. 2. If *cmp* is True and *frozen* is False, ``__hash__`` will be set to None, marking it unhashable (which it is). 3. If *cmp* is False, ``__hash__`` will be left untouched meaning the ``__hash__`` method of the superclass will be used (if superclass is ``object``, this means it will fall back to id-based hashing.). Although not recommended, you can decide for yourself and force ``attrs`` to create one (e.g. if the class is immutable even though you didn't freeze it programmatically) by passing ``True`` or not. Both of these cases are rather special and should be used carefully. See the `Python documentation \ <https://docs.python.org/3/reference/datamodel.html#object.__hash__>`_ and the `GitHub issue that led to the default behavior \ <https://github.com/python-attrs/attrs/issues/136>`_ for more details. :type hash: ``bool`` or ``None`` :param bool init: Create a ``__init__`` method that initialiazes the ``attrs`` attributes. Leading underscores are stripped for the argument name. If a ``__attrs_post_init__`` method exists on the class, it will be called after the class is fully initialized. :param bool slots: Create a slots_-style class that's more memory-efficient. See :ref:`slots` for further ramifications. :param bool frozen: Make instances immutable after initialization. If someone attempts to modify a frozen instance, :exc:`attr.exceptions.FrozenInstanceError` is raised. Please note: 1. This is achieved by installing a custom ``__setattr__`` method on your class so you can't implement an own one. 2. True immutability is impossible in Python. 3. This *does* have a minor a runtime performance :ref:`impact <how-frozen>` when initializing new instances. In other words: ``__init__`` is slightly slower with ``frozen=True``. 4. If a class is frozen, you cannot modify ``self`` in ``__attrs_post_init__`` or a self-written ``__init__``. You can circumvent that limitation by using ``object.__setattr__(self, "attribute_name", value)``. .. _slots: https://docs.python.org/3.5/reference/datamodel.html#slots .. versionadded:: 16.0.0 *slots* .. versionadded:: 16.1.0 *frozen* .. versionadded:: 16.3.0 *str*, and support for ``__attrs_post_init__``. .. versionchanged:: 17.1.0 *hash* supports ``None`` as value which is also the default now. """ def wrap(cls): if getattr(cls, "__class__", None) is None: raise TypeError("attrs only works with new-style classes.") if repr is False and str is True: raise ValueError( "__str__ can only be generated if a __repr__ exists." ) if slots: # Only need this later if we're using slots. if these is None: ca_list = [name for name, attr in cls.__dict__.items() if isinstance(attr, _CountingAttr)] else: ca_list = list(iterkeys(these)) _transform_attrs(cls, these) # Can't just re-use frozen name because Python's scoping. :( # Can't compare function objects because Python 2 is terrible. :( effectively_frozen = _has_frozen_superclass(cls) or frozen if repr is True: cls = _add_repr(cls, ns=repr_ns) if str is True: cls.__str__ = cls.__repr__ if cmp is True: cls = _add_cmp(cls) if hash is not True and hash is not False and hash is not None: raise TypeError( "Invalid value for hash. Must be True, False, or None." ) elif hash is False or (hash is None and cmp is False): pass elif hash is True or (hash is None and cmp is True and frozen is True): cls = _add_hash(cls) else: cls.__hash__ = None if init is True: cls = _add_init(cls, effectively_frozen) if effectively_frozen is True: cls.__setattr__ = _frozen_setattrs cls.__delattr__ = _frozen_delattrs if slots is True: # slots and frozen require __getstate__/__setstate__ to work cls = _add_pickle(cls) if slots is True: cls_dict = dict(cls.__dict__) cls_dict["__slots__"] = tuple(ca_list) for ca_name in ca_list: # It might not actually be in there, e.g. if using 'these'. cls_dict.pop(ca_name, None) cls_dict.pop("__dict__", None) qualname = getattr(cls, "__qualname__", None) cls = type(cls)(cls.__name__, cls.__bases__, cls_dict) if qualname is not None: cls.__qualname__ = qualname return cls # attrs_or class type depends on the usage of the decorator. It's a class # if it's used as `@attributes` but ``None`` if used # as `@attributes()`. if maybe_cls is None: return wrap else: return wrap(maybe_cls) if PY2: def _has_frozen_superclass(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return ( getattr( cls.__setattr__, "__module__", None ) == _frozen_setattrs.__module__ and cls.__setattr__.__name__ == _frozen_setattrs.__name__ ) else: def _has_frozen_superclass(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return cls.__setattr__ == _frozen_setattrs def _attrs_to_tuple(obj, attrs): """ Create a tuple of all values of *obj*'s *attrs*. """ return tuple(getattr(obj, a.name) for a in attrs) def _add_hash(cls, attrs=None): """ Add a hash method to *cls*. """ if attrs is None: attrs = [a for a in cls.__attrs_attrs__ if a.hash is True or (a.hash is None and a.cmp is True)] def hash_(self): """ Automatically created by attrs. """ return hash(_attrs_to_tuple(self, attrs)) cls.__hash__ = hash_ return cls def _add_cmp(cls, attrs=None): """ Add comparison methods to *cls*. """ if attrs is None: attrs = [a for a in cls.__attrs_attrs__ if a.cmp] def attrs_to_tuple(obj): """ Save us some typing. """ return _attrs_to_tuple(obj, attrs) def eq(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) == attrs_to_tuple(other) else: return NotImplemented def ne(self, other): """ Automatically created by attrs. """ result = eq(self, other) if result is NotImplemented: return NotImplemented else: return not result def lt(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) < attrs_to_tuple(other) else: return NotImplemented def le(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) <= attrs_to_tuple(other) else: return NotImplemented def gt(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) > attrs_to_tuple(other) else: return NotImplemented def ge(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) >= attrs_to_tuple(other) else: return NotImplemented cls.__eq__ = eq cls.__ne__ = ne cls.__lt__ = lt cls.__le__ = le cls.__gt__ = gt cls.__ge__ = ge return cls def _add_repr(cls, ns=None, attrs=None): """ Add a repr method to *cls*. """ if attrs is None: attrs = [a for a in cls.__attrs_attrs__ if a.repr] def repr_(self): """ Automatically created by attrs. """ real_cls = self.__class__ if ns is None: qualname = getattr(real_cls, "__qualname__", None) if qualname is not None: class_name = qualname.rsplit(">.", 1)[-1] else: class_name = real_cls.__name__ else: class_name = ns + "." + real_cls.__name__ return "{0}({1})".format( class_name, ", ".join(a.name + "=" + repr(getattr(self, a.name)) for a in attrs) ) cls.__repr__ = repr_ return cls def _add_init(cls, frozen): """ Add a __init__ method to *cls*. If *frozen* is True, make it immutable. """ attrs = [a for a in cls.__attrs_attrs__ if a.init or a.default is not NOTHING] # We cache the generated init methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated init {0}>".format( sha1.hexdigest() ) script, globs = _attrs_to_script( attrs, frozen, getattr(cls, "__attrs_post_init__", False), ) locs = {} bytecode = compile(script, unique_filename, "exec") attr_dict = dict((a.name, a) for a in attrs) globs.update({ "NOTHING": NOTHING, "attr_dict": attr_dict, }) if frozen is True: # Save the lookup overhead in __init__ if we need to circumvent # immutability. globs["_cached_setattr"] = _obj_setattr eval(bytecode, globs, locs) init = locs["__init__"] # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename ) cls.__init__ = init return cls def _add_pickle(cls): """ Add pickle helpers, needed for frozen and slotted classes """ def _slots_getstate__(obj): """ Play nice with pickle. """ return tuple(getattr(obj, a.name) for a in fields(obj.__class__)) def _slots_setstate__(obj, state): """ Play nice with pickle. """ __bound_setattr = _obj_setattr.__get__(obj, Attribute) for a, value in zip(fields(obj.__class__), state): __bound_setattr(a.name, value) cls.__getstate__ = _slots_getstate__ cls.__setstate__ = _slots_setstate__ return cls def fields(cls): """ Returns the tuple of ``attrs`` attributes for a class. The tuple also allows accessing the fields by their names (see below for examples). :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: tuple (with name accesors) of :class:`attr.Attribute` .. versionchanged:: 16.2.0 Returned tuple allows accessing the fields by name. """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return attrs def validate(inst): """ Validate all attributes on *inst* that have a validator. Leaves all exceptions through. :param inst: Instance of a class with ``attrs`` attributes. """ if _config._run_validators is False: return for a in fields(inst.__class__): v = a.validator if v is not None: v(inst, a, getattr(inst, a.name)) def _attrs_to_script(attrs, frozen, post_init): """ Return a script of an initializer for *attrs* and a dict of globals. The globals are expected by the generated script. If *frozen* is True, we cannot set the attributes directly so we use a cached ``object.__setattr__``. """ lines = [] if frozen is True: lines.append( # Circumvent the __setattr__ descriptor to save one lookup per # assignment. "_setattr = _cached_setattr.__get__(self, self.__class__)" ) def fmt_setter(attr_name, value_var): return "_setattr('%(attr_name)s', %(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_convert_pat.format(attr_name) return "_setattr('%(attr_name)s', %(conv)s(%(value_var)s))" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } else: def fmt_setter(attr_name, value): return "self.%(attr_name)s = %(value)s" % { "attr_name": attr_name, "value": value, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_convert_pat.format(attr_name) return "self.%(attr_name)s = %(conv)s(%(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } args = [] attrs_to_validate = [] # This is a dictionary of names to validator and converter callables. # Injecting this into __init__ globals lets us avoid lookups. names_for_globals = {} for a in attrs: if a.validator: attrs_to_validate.append(a) attr_name = a.name arg_name = a.name.lstrip("_") has_factory = isinstance(a.default, Factory) if has_factory and a.default.takes_self: maybe_self = "self" else: maybe_self = "" if a.init is False: if has_factory: init_factory_name = _init_factory_pat.format(a.name) if a.convert is not None: lines.append(fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self))) conv_name = _init_convert_pat.format(a.name) names_for_globals[conv_name] = a.convert else: lines.append(fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[init_factory_name] = a.default.factory else: if a.convert is not None: lines.append(fmt_setter_with_converter( attr_name, "attr_dict['{attr_name}'].default" .format(attr_name=attr_name) )) conv_name = _init_convert_pat.format(a.name) names_for_globals[conv_name] = a.convert else: lines.append(fmt_setter( attr_name, "attr_dict['{attr_name}'].default" .format(attr_name=attr_name) )) elif a.default is not NOTHING and not has_factory: args.append( "{arg_name}=attr_dict['{attr_name}'].default".format( arg_name=arg_name, attr_name=attr_name, ) ) if a.convert is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[_init_convert_pat.format(a.name)] = a.convert else: lines.append(fmt_setter(attr_name, arg_name)) elif has_factory: args.append("{arg_name}=NOTHING".format(arg_name=arg_name)) lines.append("if {arg_name} is not NOTHING:" .format(arg_name=arg_name)) init_factory_name = _init_factory_pat.format(a.name) if a.convert is not None: lines.append(" " + fmt_setter_with_converter(attr_name, arg_name)) lines.append("else:") lines.append(" " + fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[_init_convert_pat.format(a.name)] = a.convert else: lines.append(" " + fmt_setter(attr_name, arg_name)) lines.append("else:") lines.append(" " + fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self) )) names_for_globals[init_factory_name] = a.default.factory else: args.append(arg_name) if a.convert is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[_init_convert_pat.format(a.name)] = a.convert else: lines.append(fmt_setter(attr_name, arg_name)) if attrs_to_validate: # we can skip this if there are no validators. names_for_globals["_config"] = _config lines.append("if _config._run_validators is True:") for a in attrs_to_validate: val_name = "__attr_validator_{}".format(a.name) attr_name = "__attr_{}".format(a.name) lines.append(" {}(self, {}, self.{})".format( val_name, attr_name, a.name)) names_for_globals[val_name] = a.validator names_for_globals[attr_name] = a if post_init: lines.append("self.__attrs_post_init__()") return """\ def __init__(self, {args}): {lines} """.format( args=", ".join(args), lines="\n ".join(lines) if lines else "pass", ), names_for_globals class Attribute(object): """ *Read-only* representation of an attribute. :attribute name: The name of the attribute. Plus *all* arguments of :func:`attr.ib`. """ __slots__ = ( "name", "default", "validator", "repr", "cmp", "hash", "init", "convert", "metadata", ) def __init__(self, name, default, validator, repr, cmp, hash, init, convert=None, metadata=None): # Cache this descriptor here to speed things up later. bound_setattr = _obj_setattr.__get__(self, Attribute) bound_setattr("name", name) bound_setattr("default", default) bound_setattr("validator", validator) bound_setattr("repr", repr) bound_setattr("cmp", cmp) bound_setattr("hash", hash) bound_setattr("init", init) bound_setattr("convert", convert) bound_setattr("metadata", (metadata_proxy(metadata) if metadata else _empty_metadata_singleton)) def __setattr__(self, name, value): raise FrozenInstanceError() @classmethod def from_counting_attr(cls, name, ca): inst_dict = { k: getattr(ca, k) for k in Attribute.__slots__ if k not in ( "name", "validator", "default", ) # exclude methods } return cls(name=name, validator=ca._validator, default=ca._default, **inst_dict) # Don't use _add_pickle since fields(Attribute) doesn't work def __getstate__(self): """ Play nice with pickle. """ return tuple(getattr(self, name) if name != "metadata" else dict(self.metadata) for name in self.__slots__) def __setstate__(self, state): """ Play nice with pickle. """ bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(self.__slots__, state): if name != "metadata": bound_setattr(name, value) else: bound_setattr(name, metadata_proxy(value) if value else _empty_metadata_singleton) _a = [Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=(name != "metadata"), init=True) for name in Attribute.__slots__] Attribute = _add_hash( _add_cmp(_add_repr(Attribute, attrs=_a), attrs=_a), attrs=[a for a in _a if a.hash] ) class _CountingAttr(object): """ Intermediate representation of attributes that uses a counter to preserve the order in which the attributes have been defined. *Internal* data structure of the attrs library. Running into is most likely the result of a bug like a forgotten `@attr.s` decorator. """ __slots__ = ("counter", "_default", "repr", "cmp", "hash", "init", "metadata", "_validator", "convert") __attrs_attrs__ = tuple( Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True) for name in ("counter", "_default", "repr", "cmp", "hash", "init",) ) + ( Attribute(name="metadata", default=None, validator=None, repr=True, cmp=True, hash=False, init=True), ) cls_counter = 0 def __init__(self, default, validator, repr, cmp, hash, init, convert, metadata): _CountingAttr.cls_counter += 1 self.counter = _CountingAttr.cls_counter self._default = default # If validator is a list/tuple, wrap it using helper validator. if validator and isinstance(validator, (list, tuple)): self._validator = and_(*validator) else: self._validator = validator self.repr = repr self.cmp = cmp self.hash = hash self.init = init self.convert = convert self.metadata = metadata def validator(self, meth): """ Decorator that adds *meth* to the list of validators. Returns *meth* unchanged. .. versionadded:: 17.1.0 """ if self._validator is None: self._validator = meth else: self._validator = and_(self._validator, meth) return meth def default(self, meth): """ Decorator that allows to set the default for an attribute. Returns *meth* unchanged. :raises DefaultAlreadySetError: If default has been set before. .. versionadded:: 17.1.0 """ if self._default is not NOTHING: raise DefaultAlreadySetError() self._default = Factory(meth, takes_self=True) return meth _CountingAttr = _add_cmp(_add_repr(_CountingAttr)) @attributes(slots=True, init=False) class Factory(object): """ Stores a factory callable. If passed as the default value to :func:`attr.ib`, the factory is used to generate a new value. :param callable factory: A callable that takes either none or exactly one mandatory positional argument depending on *takes_self*. :param bool takes_self: Pass the partially initialized instance that is being initialized as a positional argument. .. versionadded:: 17.1.0 *takes_self* """ factory = attr() takes_self = attr() def __init__(self, factory, takes_self=False): """ `Factory` is part of the default machinery so if we want a default value here, we have to implement it ourselves. """ self.factory = factory self.takes_self = takes_self def make_class(name, attrs, bases=(object,), **attributes_arguments): """ A quick way to create a new class called *name* with *attrs*. :param name: The name for the new class. :type name: str :param attrs: A list of names or a dictionary of mappings of names to attributes. :type attrs: :class:`list` or :class:`dict` :param tuple bases: Classes that the new class will subclass. :param attributes_arguments: Passed unmodified to :func:`attr.s`. :return: A new class with *attrs*. :rtype: type .. versionadded:: 17.1.0 *bases* """ if isinstance(attrs, dict): cls_dict = attrs elif isinstance(attrs, (list, tuple)): cls_dict = dict((a, attr()) for a in attrs) else: raise TypeError("attrs argument must be a dict or a list.") return attributes(**attributes_arguments)(type(name, bases, cls_dict)) # These are required by whithin this module so we define them here and merely # import into .validators. @attributes(slots=True, hash=True) class _AndValidator(object): """ Compose many validators to a single one. """ _validators = attr() def __call__(self, inst, attr, value): for v in self._validators: v(inst, attr, value) def and_(*validators): """ A validator that composes multiple validators into one. When called on a value, it runs all wrapped validators. :param validators: Arbitrary number of validators. :type validators: callables .. versionadded:: 17.1.0 """ vals = [] for validator in validators: vals.extend( validator._validators if isinstance(validator, _AndValidator) else [validator] ) return _AndValidator(tuple(vals))
{ "repo_name": "whitehorse-io/encarnia", "path": "pyenv/lib/python2.7/site-packages/attr/_make.py", "copies": "2", "size": "35624", "license": "mit", "hash": -3406400153928851000, "line_mean": 32.6392823418, "line_max": 79, "alpha_frac": 0.5631596676, "autogenerated": false, "ratio": 4.084852654512098, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5648012322112097, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import hashlib import os.path import pytest from appr import SYSTEM from appr.pack import unpack_kub, ignore TAR_MD5SUM = { 'darwin': "8ccd8af6ef21af7309839f1c521b6354", 'linux': "8ccd8af6ef21af7309839f1c521b6354", 'windows': '20bf57e5d5dec33e51bf1f04bfde4367' } KUBEUI_FILES = [ "manifest.yaml", "README.md", "templates/kube-ui-rc.yaml", "templates/kube-ui-svc.yaml" ] def _check_app(path): for f in KUBEUI_FILES: assert os.path.exists(os.path.join(str(path), f)) def test_unpack_kub(pack_tar, tmpdir): unpack_kub(pack_tar, str(tmpdir)) _check_app(str(tmpdir)) def test_extract(kubeui_package, tmpdir): d = tmpdir.mkdir("extract") kubeui_package.extract(str(d)) _check_app(str(d)) def test_pack(kubeui_package, tmpdir): d = str(tmpdir.mkdir("pack")) + "/kube-ui.tar" kubeui_package.pack(d) assert hashlib.md5(open(d, "r").read()).hexdigest() == TAR_MD5SUM[SYSTEM] def test_tree(kubeui_package): files = kubeui_package.tree() assert sorted(files) == sorted(KUBEUI_FILES) def test_tree_filter(kubeui_package): files = kubeui_package.tree("templates") assert sorted(files) == sorted(["templates/kube-ui-rc.yaml", "templates/kube-ui-svc.yaml"]) def test_file(kubeui_package, data_dir): manifest = kubeui_package.file("manifest.yaml") assert manifest == open(data_dir + "/kube-ui/manifest.yaml", "r").read() @pytest.mark.parametrize( "pattern,file_path,expected", [ ('helm.txt', "helm.txt", True), ('helm.*', "helm.txt", True), ('helm.*', "rudder.txt", False), ('*.txt', "tiller.txt", True), ('*.txt', "cargo/a.txt", True), ('cargo/*.txt', "cargo/a.txt", True), ('cargo/*.*', "cargo/a.txt", True), ('cargo/*.txt', "mast/a.txt", False), ('ru[c-e]?er.txt', "rudder.txt", True), ('templates/.?*', "templates/.dotfile", True), # Directory tests (".git", ".git/toto", True), (".git", ".git/toto/titi", True), ('cargo/', "cargo/", True), ('cargo/', "cargo/a.txt", True), ('cargo/', "mast/", False), ('helm.txt/', "helm.txt", False), # // Negation tests ('!helm.txt', "helm.txt", False), ('helm.txt\n!helm.txt', "helm.txt", False), ('*\n!helm.txt', "tiller.txt", True), ('*\n!*.txt', "cargo", True), ('*\n!cargo/', "mast/a", True), # Absolute path tests ('/a.txt', "a.txt", True), ('/a.txt', "cargo/a.txt", False), ('/cargo/a.txt', "cargo/a.txt", True), ]) def test_ignore(pattern, file_path, expected): assert ignore(pattern, file_path) is expected
{ "repo_name": "app-registry/appr", "path": "tests/test_packager.py", "copies": "2", "size": "2742", "license": "apache-2.0", "hash": -4443208371163198500, "line_mean": 28.8043478261, "line_max": 95, "alpha_frac": 0.5882567469, "autogenerated": false, "ratio": 2.8682008368200838, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44564575837200837, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import heapq import sys import random import numpy as np from .hashfunctions import generate_hashfunctions class CountMinSketch(object): """ Basic Count-Min Sketch """ def __init__(self, delta, epsilon, k): self.nbr_bits = int(np.ceil(np.exp(1) / epsilon)) self.nbr_slices = int(np.ceil(np.log(1 / delta))) self.k = k self.count = np.zeros((self.nbr_slices, self.nbr_bits), dtype=np.int32) self.heap = [] self.top_k = {} self.make_hashes = generate_hashfunctions(self.nbr_bits, self.nbr_slices) def update(self, key, increment): for row, column in enumerate(self.make_hashes(key)): self.count[int(row), int(column)] += increment return self.update_heap(key) def update_heap(self, key): estimate = self.get(key) poped = key if key in self.top_k: old_pair = self.top_k.get(key) old_pair[0] = estimate heapq.heapify(self.heap) poped = None else: if len(self.top_k) < self.k: heapq.heappush(self.heap, [estimate, key]) self.top_k[key] = [estimate, key] poped = None else: new_pair = [estimate, key] old_pair = heapq.heappushpop(self.heap, new_pair) poped = old_pair[1] if old_pair[1] in self.top_k: del self.top_k[old_pair[1]] self.top_k[key] = new_pair return poped def get(self, key): value = float('inf') for row, column in enumerate(self.make_hashes(key)): value = min(self.count[row, column], value) return value if __name__ == "__main__": import random import time stream = [] for i in range(100): stream = stream + [str(i)] * i cms = CountMinSketch(10**-3, 0.01, 10) random.shuffle(stream) t1 = time.time() for s in stream: p = cms.update(s, 1) print(time.time() - t1)
{ "repo_name": "Parsely/probably", "path": "probably/countmin.py", "copies": "1", "size": "2109", "license": "mit", "hash": 4714278930368098000, "line_mean": 27.5, "line_max": 81, "alpha_frac": 0.5467045993, "autogenerated": false, "ratio": 3.457377049180328, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9433187583683824, "avg_score": 0.014178812959300763, "num_lines": 74 }
from __future__ import absolute_import, division, print_function import hmac import json import time from collections import OrderedDict from hashlib import sha256 import stripe from stripe import error, util class Webhook(object): DEFAULT_TOLERANCE = 300 @staticmethod def construct_event( payload, sig_header, secret, tolerance=DEFAULT_TOLERANCE, api_key=None ): if hasattr(payload, "decode"): payload = payload.decode("utf-8") WebhookSignature.verify_header(payload, sig_header, secret, tolerance) data = json.loads(payload, object_pairs_hook=OrderedDict) event = stripe.Event.construct_from(data, api_key or stripe.api_key) return event class WebhookSignature(object): EXPECTED_SCHEME = "v1" @staticmethod def _compute_signature(payload, secret): mac = hmac.new( secret.encode("utf-8"), msg=payload.encode("utf-8"), digestmod=sha256, ) return mac.hexdigest() @staticmethod def _get_timestamp_and_signatures(header, scheme): list_items = [i.split("=", 2) for i in header.split(",")] timestamp = int([i[1] for i in list_items if i[0] == "t"][0]) signatures = [i[1] for i in list_items if i[0] == scheme] return timestamp, signatures @classmethod def verify_header(cls, payload, header, secret, tolerance=None): try: timestamp, signatures = cls._get_timestamp_and_signatures( header, cls.EXPECTED_SCHEME ) except Exception: raise error.SignatureVerificationError( "Unable to extract timestamp and signatures from header", header, payload, ) if not signatures: raise error.SignatureVerificationError( "No signatures found with expected scheme " "%s" % cls.EXPECTED_SCHEME, header, payload, ) signed_payload = "%d.%s" % (timestamp, payload) expected_sig = cls._compute_signature(signed_payload, secret) if not any(util.secure_compare(expected_sig, s) for s in signatures): raise error.SignatureVerificationError( "No signatures found matching the expected signature for " "payload", header, payload, ) if tolerance and timestamp < time.time() - tolerance: raise error.SignatureVerificationError( "Timestamp outside the tolerance zone (%d)" % timestamp, header, payload, ) return True
{ "repo_name": "stripe/stripe-python", "path": "stripe/webhook.py", "copies": "1", "size": "2720", "license": "mit", "hash": 8739211386317530000, "line_mean": 29.9090909091, "line_max": 78, "alpha_frac": 0.5878676471, "autogenerated": false, "ratio": 4.51077943615257, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.559864708325257, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import inspect from typing import List, Optional, Text import numpy as np import tensorflow as tf from six import string_types from tensorflow_probability.python import distributions as tfd from tensorflow_probability.python.distributions import kullback_leibler from tensorflow_probability.python.internal import (assert_util, prefer_static, tensorshape_util) from tensorflow_probability.python.layers.internal import \ distribution_tensor_coercible from odin.bay import distributions as obd from odin.bay.distributions.negative_binomial_disp import NegativeBinomialDisp from odin.bay.distributions.zero_inflated import ZeroInflated __all__ = ['concat_distribution'] # =========================================================================== # Helpers # =========================================================================== # must hand define all the parameters here # NOTE: this list is to be updated, or a smarter solution for automatically # mining all the parameters dist_params = { # complex obd.Independent: ['distribution', 'reinterpreted_batch_ndims'], ZeroInflated: ['count_distribution', 'inflated_distribution'], obd.MixtureSameFamily: ['mixture_distribution', 'components_distribution'], # Exponential obd.Gamma: ['concentration', 'rate'], # Gaussians obd.Normal: ['loc', 'scale'], obd.LogNormal: ['loc', 'scale'], obd.MultivariateNormalDiag: ['loc', 'scale'], obd.MultivariateNormalTriL: ['loc', 'scale'], obd.MultivariateNormalFullCovariance: ['loc', 'scale'], # Count NegativeBinomialDisp: ['loc', 'disp'], obd.NegativeBinomial: ['total_count', 'logits_parameter'], obd.Poisson: ['log_rate_parameter'], # Binary and probability obd.Gumbel: ['loc', 'scale'], obd.Bernoulli: ['logits_parameter'], obd.Dirichlet: ['concentration'], obd.Beta: ['concentration1', 'concentration0'], obd.OneHotCategorical: ['logits_parameter'], obd.Categorical: ['logits_parameter'], # others obd.Laplace: ['loc', 'scale'], obd.Wishart: ['df', 'scale'], obd.Uniform: ['low', 'high'], obd.Multinomial: ['total_count', 'logits_parameter'], obd.Deterministic: ['loc', 'atol', 'rtol'], obd.VectorDeterministic: ['loc', 'atol', 'rtol'], } for dist_type, attr_names in dist_params.items(): assert isinstance(attr_names, (tuple, list)) and all( isinstance(name, string_types) for name in attr_names), \ "Error defining parameters of distributions" assert isinstance(dist_type, type) and issubclass(dist_type, obd.Distribution),\ "Error defining parameters of distributions" assert all(hasattr(dist_type, name) for name in attr_names), \ "Error defining parameters of distributions" # =========================================================================== # Main code # =========================================================================== def _find_axis_for_stack(dists, given_axis): # check event shape is consistent if given_axis is not None: return int(given_axis) event_shape = dists[0].event_shape batch_shape = dists[0].batch_shape assertions = [] for d in dists[1:]: assertions.append(tf.assert_equal(event_shape, d.event_shape)) assertions.append(tf.assert_equal(batch_shape.ndims, d.batch_shape.ndims)) with tf.control_dependencies(assertions): axis = [] for d in dists: shape = d.batch_shape for ax, (i, j) in enumerate(zip(batch_shape, shape)): if i != j: axis.append(ax) if len(axis) == 0: return 0 assert len(set(axis)) == 1, \ "Multiple dimensions are found to be different among the distributions, "\ "expect only 1 different dimension." return axis[0] def concat_distribution(dists: List[tfd.Distribution], axis: Optional[int] = None, validate_args: bool = False, allow_nan_stats: bool = True, name: Optional[Text] = None) -> tfd.Distribution: """ This layer create a new `Distribution` by concatenate parameters of multiple distributions of the same type along given `axis` Note ---- If your distribution is the output from `tensorflow_probability.DistributionLambda`, this function will remove all the keras tracking ultilities, for better solution checkout `odin.networks.distribution_util_layer.ConcatDistribution` """ if not isinstance(dists, (tuple, list)): dists = [dists] if len(dists) == 1: return dists[0] if len(dists) == 0: raise ValueError("No distributions were given") axis = _find_axis_for_stack(dists, given_axis=axis) t = type(dists[0]) is_keras_output = False # _TensorCoercible will messing up with the parameters of the # distribution if issubclass(t, distribution_tensor_coercible._TensorCoercible): is_keras_output = True t = type.mro(t)[2] assert issubclass(t, tfd.Distribution) and not issubclass( t, distribution_tensor_coercible._TensorCoercible) # no more distribution, tensor of parameters is return during the # recursive operator if issubclass(t, tf.Tensor): if dists[0].shape.ndims == 0: return dists[0] # TODO: better solution here return tf.concat(dists, axis=axis) elif issubclass(t, obd.Distribution): pass # continue with all distribution parameters else: return dists[0] # get all params for concatenate if t not in dist_params: raise RuntimeError("Unknown distribution of type '%s' for concatenation" % str(t)) params_name = dist_params[t] # start concat the params params = {} for p in params_name: attrs = [getattr(d, p) for d in dists] is_method = False if inspect.ismethod(attrs[0]): attrs = [a() for a in attrs] is_method = True if is_method and '_parameter' == p[-10:]: p = p[:-10] params[p] = concat_distribution(attrs, axis=axis) # extra arguments if name is not None: params['name'] = name args = inspect.getfullargspec(t.__init__).args if 'allow_nan_stats' in args: params['allow_nan_stats'] = allow_nan_stats if 'validate_args' in args: params['validate_args'] = validate_args dist = t(**params) return dist
{ "repo_name": "imito/odin", "path": "odin/bay/distributions/utils.py", "copies": "1", "size": "6375", "license": "mit", "hash": -799079870453626600, "line_mean": 35.4285714286, "line_max": 82, "alpha_frac": 0.6407843137, "autogenerated": false, "ratio": 3.90625, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.50470343137, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import inspect import datetime import tempfile import os import shutil import numpy as np from contextlib import contextmanager from multiprocessing.pool import ThreadPool from multipledispatch import Dispatcher from datashape import dshape, Record from datashape.discovery import is_zero_time from toolz import pluck, get, curry, keyfilter from .compatibility import unicode sample = Dispatcher('sample') def iter_except(func, exception, first=None): """Call a `func` repeatedly until `exception` is raised. Optionally call `first` first. Parameters ---------- func : callable Repeatedly call this until `exception` is raised. exception : Exception Stop calling `func` when this is raised. first : callable, optional, default ``None`` Call this first if it isn't ``None``. Examples -------- >>> x = {'a': 1, 'b': 2} >>> def iterate(): ... yield 'a' ... yield 'b' ... yield 'c' ... >>> keys = iterate() >>> diter = iter_except(lambda: x[next(keys)], KeyError) >>> list(diter) [1, 2] Notes ----- * Taken from https://docs.python.org/2/library/itertools.html#recipes """ try: if first is not None: yield first() while 1: # True isn't a reserved word in Python 2.x yield func() except exception: pass def ext(filename): _, e = os.path.splitext(filename) return e.lstrip(os.extsep) def raises(err, lamda): try: lamda() return False except err: return True def expand_tuples(L): """ >>> expand_tuples([1, (2, 3)]) [(1, 2), (1, 3)] >>> expand_tuples([1, 2]) [(1, 2)] """ if not L: return [()] elif not isinstance(L[0], tuple): rest = expand_tuples(L[1:]) return [(L[0],) + t for t in rest] else: rest = expand_tuples(L[1:]) return [(item,) + t for t in rest for item in L[0]] @contextmanager def tmpfile(extension=''): extension = '.' + extension.lstrip('.') handle, filename = tempfile.mkstemp(extension) os.close(handle) os.remove(filename) yield filename if os.path.exists(filename): if os.path.isdir(filename): shutil.rmtree(filename) else: try: os.remove(filename) except OSError: # sometimes we can't remove a generated temp file pass def keywords(func): """ Get the argument names of a function >>> def f(x, y=2): ... pass >>> keywords(f) ['x', 'y'] """ if isinstance(func, type): return keywords(func.__init__) return inspect.getargspec(func).args def cls_name(cls): if 'builtin' in cls.__module__: return cls.__name__ else: return cls.__module__.split('.')[0] + '.' + cls.__name__ @contextmanager def filetext(text, extension='', open=open, mode='w'): with tmpfile(extension=extension) as filename: f = open(filename, mode=mode) try: f.write(text) finally: try: f.close() except AttributeError: pass try: yield filename finally: if os.path.exists(filename): try: os.remove(filename) except OSError: pass @contextmanager def filetexts(d, open=open): """ Dumps a number of textfiles to disk d - dict a mapping from filename to text like {'a.csv': '1,1\n2,2'} """ for filename, text in d.items(): f = open(filename, 'wt') try: f.write(text) finally: try: f.close() except AttributeError: pass try: yield list(d) finally: for filename in d: if os.path.exists(filename): try: os.remove(filename) except OSError: pass def normalize_to_date(dt): if isinstance(dt, datetime.datetime) and is_zero_time(dt.time()): return dt.date() else: return dt def assert_allclose(lhs, rhs): for tb in map(zip, lhs, rhs): for left, right in tb: if isinstance(left, (np.floating, float)): # account for nans assert np.all(np.isclose(left, right, equal_nan=True)) continue if isinstance(left, datetime.datetime): left = normalize_to_date(left) if isinstance(right, datetime.datetime): right = normalize_to_date(right) assert left == right def records_to_tuples(ds, data): """ Transform records into tuples Examples -------- >>> seq = [{'a': 1, 'b': 10}, {'a': 2, 'b': 20}] >>> list(records_to_tuples('var * {a: int, b: int}', seq)) [(1, 10), (2, 20)] >>> records_to_tuples('{a: int, b: int}', seq[0]) # single elements (1, 10) >>> records_to_tuples('var * int', [1, 2, 3]) # pass through on non-records [1, 2, 3] See Also -------- tuples_to_records """ if isinstance(ds, (str, unicode)): ds = dshape(ds) if isinstance(ds.measure, Record) and len(ds.shape) == 1: return pluck(ds.measure.names, data, default=None) if isinstance(ds.measure, Record) and len(ds.shape) == 0: return get(ds.measure.names, data) if not isinstance(ds.measure, Record): return data raise NotImplementedError() def tuples_to_records(ds, data): """ Transform tuples into records Examples -------- >>> seq = [(1, 10), (2, 20)] >>> list(tuples_to_records('var * {a: int, b: int}', seq)) # doctest: +SKIP [{'a': 1, 'b': 10}, {'a': 2, 'b': 20}] >>> tuples_to_records('{a: int, b: int}', seq[0]) # doctest: +SKIP {'a': 1, 'b': 10} >>> tuples_to_records('var * int', [1, 2, 3]) # pass through on non-records [1, 2, 3] See Also -------- records_to_tuples """ if isinstance(ds, (str, unicode)): ds = dshape(ds) if isinstance(ds.measure, Record) and len(ds.shape) == 1: names = ds.measure.names return (dict(zip(names, tup)) for tup in data) if isinstance(ds.measure, Record) and len(ds.shape) == 0: names = ds.measure.names return dict(zip(names, data)) if not isinstance(ds.measure, Record): return data raise NotImplementedError() @contextmanager def ignoring(*exceptions): try: yield except exceptions: pass def into_path(*path): """ Path to file in into directory >>> into_path('backends', 'tests', 'myfile.csv') # doctest: +SKIP '/home/user/odo/odo/backends/tests/myfile.csv' """ import odo return os.path.join(os.path.dirname(odo.__file__), *path) @curry def pmap(f, iterable): """Map `f` over `iterable` in parallel using a ``ThreadPool``. """ p = ThreadPool() try: result = p.map(f, iterable) finally: p.terminate() return result @curry def write(triple, writer): """Write a file using the input from `gentemp` using `writer` and return its index and filename. Parameters ---------- triple : tuple of int, str, str The first element is the index in the set of chunks of a file, the second element is the path to write to, the third element is the data to write. Returns ------- i, filename : int, str File's index and filename. This is used to return the index and filename after splitting files. Notes ----- This could be adapted to write to an already open handle, which would allow, e.g., multipart gzip uploads. Currently we open write a new file every time. """ i, filename, data = triple with writer(filename, mode='wb') as f: f.write(data) return i, filename def gentemp(it, suffix=None, start=0): """Yield an index, a temp file, and data for each element in `it`. Parameters ---------- it : Iterable suffix : str or ``None``, optional Suffix to add to each temporary file's name start : int, optional A integer indicating where to start the numbering of chunks in `it`. """ for i, data in enumerate(it, start=start): # aws needs parts to start at 1 with tmpfile('.into') as fn: yield i, fn, data @curry def split(filename, nbytes, suffix=None, writer=open, start=0): """Split a file into chunks of size `nbytes` with each filename containing a suffix specified by `suffix`. The file will be written with the ``write`` method of an instance of `writer`. Parameters ---------- filename : str The file to split nbytes : int Split `filename` into chunks of this size suffix : str, optional writer : callable, optional Callable object to use to write the chunks of `filename` """ with open(filename, mode='rb') as f: byte_chunks = iter(curry(f.read, nbytes), '') return pmap(write(writer=writer), gentemp(byte_chunks, suffix=suffix, start=start)) def filter_kwargs(f, kwargs): """Return a dict of valid kwargs for `f` from a subset of `kwargs` Examples -------- >>> def f(a, b=1, c=2): ... return a + b + c ... >>> raw_kwargs = dict(a=1, b=3, d=4) >>> f(**raw_kwargs) Traceback (most recent call last): ... TypeError: f() got an unexpected keyword argument 'd' >>> kwargs = filter_kwargs(f, raw_kwargs) >>> f(**kwargs) 6 """ return keyfilter(keywords(f).__contains__, kwargs) @curry def copydoc(from_, to): """Copies the docstring from one function to another. Paramaters ---------- from_ : any The object to copy the docstring from. to : any The object to copy the docstring to. Returns ------- to : any ``to`` with the docstring from ``from_`` """ to.__doc__ = from_.__doc__ return to
{ "repo_name": "cpcloud/odo", "path": "odo/utils.py", "copies": "1", "size": "10214", "license": "bsd-3-clause", "hash": -1521450950646808300, "line_mean": 24.2197530864, "line_max": 80, "alpha_frac": 0.5618758567, "autogenerated": false, "ratio": 3.8427389014296462, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9904157510758819, "avg_score": 0.00009144947416552355, "num_lines": 405 }
from __future__ import absolute_import, division, print_function import inspect import io import numbers import os import re import string import tarfile import types import warnings from collections import (Iterable, Iterator, Mapping, OrderedDict, defaultdict, deque) from contextlib import contextmanager from datetime import datetime import numpy as np from six import add_metaclass, string_types from six.moves import cPickle # =========================================================================== # File type check # =========================================================================== GZIP_MAGIC_NUMBER = "1f8b" def is_gzip_file(path): """ Credit: https://kite.com/python/examples/4945/gzip-check-if-a-file-is-gzip-compressed """ if isinstance(path, string_types) and os.path.isfile(path): with open(path, 'rb') as f: return f.read(2).encode("hex") == GZIP_MAGIC_NUMBER elif hasattr(path, 'read') and hasattr(path, 'tell'): last_pos = path.tell() path.seek(0) indicator = path.read(2) indicator = (indicator.encode("hex") if isinstance(indicator, string_types) else indicator.hex()) path.seek(last_pos) return indicator == GZIP_MAGIC_NUMBER return False def is_tar_file(path): if not os.path.isfile(path): return False return tarfile.is_tarfile(path) # =========================================================================== # Regular expression # =========================================================================== RE_NUMBER = re.compile(r'^[+-]*((\d*\.\d+)|(\d+))$') # =========================================================================== # Data structure # =========================================================================== class struct(dict): '''Flexible object can be assigned any attribtues''' def __init__(self, *args, **kwargs): super(struct, self).__init__(*args, **kwargs) # copy all dict to attr for i, j in self.items(): if is_string(i) and not hasattr(self, i): super(struct, self).__setattr__(i, j) def __setattr__(self, name, val): super(struct, self).__setattr__(name, val) super(struct, self).__setitem__(name, val) def __setitem__(self, x, y): super(struct, self).__setitem__(x, y) if is_string(x): super(struct, self).__setattr__(x, y) class bidict(dict): """ Bi-directional dictionary (i.e. a <-> b) Note ---- When you iterate over this dictionary, it will be a doubled size dictionary """ def __init__(self, *args, **kwargs): super(bidict, self).__init__(*args, **kwargs) # this is duplication self._inv = dict() for i, j in self.items(): self._inv[j] = i @property def inv(self): return self._inv def __setitem__(self, key, value): super(bidict, self).__setitem__(key, value) self._inv[value] = key return None def __getitem__(self, key): if key not in self: return self._inv[key] return super(bidict, self).__getitem__(key) def update(self, *args, **kwargs): for k, v in dict(*args, **kwargs).items(): self[k] = v self._inv[v] = k def __delitem__(self, key): del self._inv[super(bidict, self).__getitem__(key)] return dict.__delitem__(self, key) class defaultdictkey(defaultdict): """ Enhanced version of `defaultdict`, instead of return a default value, return an "improvised" default value based on the given key. Example ------- >>> from odin.utils.python_utils import defaultdictkey >>> d = defaultdictkey(lambda x: str(x)) >>> print(d['123']) # '123' """ def __missing__(self, key): if self.default_factory is None: raise KeyError(key) else: ret = self[key] = self.default_factory(key) return ret def multikeysdict(d): assert isinstance(d, dict) new_d = d.__class__() for i, j in d.items(): if isinstance(i, tuple): for k in i: new_d[k] = j else: new_d[i] = j return new_d # =========================================================================== # Getter # =========================================================================== def get_formatted_datetime(only_number=True): if only_number: return "{:%H%M%S%d%m%y}".format(datetime.now()) return "{:%H:%M:%S-%d%b%y}".format(datetime.now()) def get_all_properties(obj): """ Return all attributes which are properties of given Object """ properties = [] clazz = obj if isinstance(obj, type) else obj.__class__ for key in dir(clazz): if '__' in key: continue val = getattr(clazz, key) if isinstance(val, property): properties.append(key) return properties if isinstance(obj, type) else \ {p: getattr(obj, p) for p in properties} def get_string_placeholders(s): assert isinstance(s, string_types) fmt = [] for (_, key, spec, _) in string.Formatter().parse(save_path): if spec is not None: fmt.append(key) return tuple(fmt) # =========================================================================== # Data converter # =========================================================================== def as_tuple(x, N=None, t=None): """ Coerce a value to a tuple of given length (and possibly given type). Parameters ---------- x : {value, iterable} N : {integer} length of the desired tuple t : {type, call-able, optional} required type for all elements Returns ------- tuple ``tuple(x)`` if `x` is iterable, ``(x,) * N`` otherwise. Raises ------ TypeError if `type` is given and `x` or any of its elements do not match it ValueError if `x` is iterable, but does not have exactly `N` elements Note ---- This function is adpated from Lasagne Original work Copyright (c) 2014-2015 lasagne contributors All rights reserved. LICENSE: https://github.com/Lasagne/Lasagne/blob/master/LICENSE """ # special case numpy array if not isinstance(x, tuple): if isinstance(x, (types.GeneratorType, list)): x = tuple(x) else: x = (x,) # ====== check length ====== # if is_number(N): N = int(N) if len(x) == 1: x = x * N elif len(x) != N: raise ValueError('x has length=%d, but required length N=%d' % (len(x), N)) # ====== check type ====== # if t is None: filter_func = lambda o: True elif isinstance(t, type) or isinstance(t, (tuple, list)): filter_func = lambda o: isinstance(o, t) elif hasattr(t, '__call__'): filter_func = t else: raise ValueError("Invalid value for `t`: %s" % str(t)) if not all(filter_func(v) for v in x): raise TypeError("expected a single value or an iterable " "of {0}, got {1} instead".format(t.__name__, x)) return x def as_list(x, N=None, t=None): return list(as_tuple(x, N, t)) def as_bytes(x, nbytes=None, order='little'): """ Convert some python object to bytes array, support type: * string, unicode * integer * numpy.ndarray Note ---- This method is SLOW """ if is_string(x): return x.encode() elif isinstance(x, int): return x.to_bytes(nbytes, order, signed=False) elif isinstance(x, np.ndarray): return x.tobytes() else: raise ValueError("Not support bytes conversion for type: %s" % type(x).__name__) # =========================================================================== # Types check # =========================================================================== def is_lambda(v): LAMBDA = lambda: 0 return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__ def is_pickleable(x): try: cPickle.dumps(x, protocol=cPickle.HIGHEST_PROTOCOL) return True except cPickle.PickleError: return False def is_fileobj(f): """ Check if an object `f` is intance of FileIO object created by `open()`""" return isinstance(f, io.TextIOBase) or \ isinstance(f, io.BufferedIOBase) or \ isinstance(f, io.RawIOBase) or \ isinstance(f, io.IOBase) def is_callable(x): return hasattr(x, '__call__') def is_string(s): return isinstance(s, string_types) def is_path(path): if is_string(path): try: os.path.exists(path) return True except Exception as e: return False return False def is_number(i, string_number=False): if isinstance(i, string_types) and string_number: return RE_NUMBER.match(i) is not None return isinstance(i, numbers.Number) def is_bool(b): return isinstance(b, type(True)) def is_primitives(x, inc_ndarray=True, exception_types=[]): """Primitive types include: number, string, boolean, None and numpy.ndarray (optional) and numpy.generic (optional) Parameters ---------- inc_ndarray: bool if True, include `numpy.ndarray` and `numpy.generic` as a primitive types """ # complex list or Mapping if isinstance(x, (tuple, list)): return all( is_primitives( i, inc_ndarray=inc_ndarray, exception_types=exception_types) for i in x) elif isinstance(x, Mapping): return all( is_primitives( i, inc_ndarray=inc_ndarray, exception_types=exception_types) and is_primitives( j, inc_ndarray=inc_ndarray, exception_types=exception_types) for i, j in x.items()) # check for number, string, bool, and numpy array if is_number(x) or is_string(x) or is_bool(x) or x is None or \ (any(isinstance(x, t) for t in exception_types)) or \ (inc_ndarray and isinstance(x, (np.ndarray, np.generic))): return True return False # =========================================================================== # IO utilities # =========================================================================== def get_all_files(path, filter_func=None): ''' Recurrsively get all files in the given path ''' file_list = [] if os.access(path, os.R_OK): for p in os.listdir(path): p = os.path.join(path, p) if os.path.isdir(p): file_list += get_all_files(p, filter_func) else: if filter_func is not None and not filter_func(p): continue # remove dump files of Mac if '.DS_Store' in p or '.DS_STORE' in p or \ '._' == os.path.basename(p)[:2]: continue file_list.append(p) return file_list def get_all_ext(path): """ Recurrsively get all extension of files in the given path Parameters ---------- path : str input folder """ file_list = [] if os.access(path, os.R_OK): for p in os.listdir(path): p = os.path.join(path, p) if os.path.isdir(p): file_list += get_all_ext(p) else: # remove dump files of Mac if '.DS_Store' in p or '.DS_STORE' in p or \ '._' == os.path.basename(p)[:2]: continue ext = p.split('.') if len(ext) > 1: file_list.append(ext[-1]) file_list = list(set(file_list)) return file_list def folder2bin(path): """ This function read all files within a Folder in binary mode, then, store all the data in a dictionary mapping: `relative_path -> binary_data` """ if not os.path.isdir(path): raise ValueError('`path`=%s must be a directory.' % path) path = os.path.abspath(path) files = get_all_files(path) data = {} for f in files: name = f.replace(path + '/', '') with open(f, 'rb') as f: data[name] = f.read() return data def bin2folder(data, path, override=False): """ Convert serialized data from `folder2bin` back to a folder at `path` Parameters ---------- data: {string, dict} if string, `data` can be pickled string, or path to a file. if dict, `data` is the output from `folder2bin` path: string path to a folder override: bool if True, override exist folder at `path` """ # ====== check input ====== # if is_string(data): if os.path.isfile(data): with open(data, 'rb') as f: data = pickle.load(f) else: data = pickle.loads(data) if not isinstance(data, dict): raise ValueError( "`data` must be dictionary type, or string, or path to file.") # ====== check outpath ====== # path = os.path.abspath(str(path)) if not os.path.exists(path): os.mkdir(path) elif os.path.isfile(path): raise ValueError("`path` must be path to a directory.") elif os.path.isdir(path): if not override: raise RuntimeError("Folder at path:%s exist, cannot override." % path) shutil.rmtree(path) os.mkdir(path) # ====== deserialize ====== # for name, dat in data.items(): with open(os.path.join(path, name), 'wb') as f: f.write(dat) return path # =========================================================================== # String processing # =========================================================================== _space_char = re.compile(r"\s") _multiple_spaces = re.compile(r"\s\s+") _non_alphanumeric_char = re.compile(r"\W") def string_normalize(text, lower=True, remove_non_alphanumeric=True, remove_duplicated_spaces=True, remove_whitespace=False, escape_pattern=False): text = str(text).strip() if bool(lower): text = text.lower() if bool(escape_pattern): text = re.escape(text) if bool(remove_non_alphanumeric): text = _non_alphanumeric_char.sub(' ', text) text = text.strip() if bool(remove_duplicated_spaces): text = _multiple_spaces.sub(' ', text) if bool(remove_whitespace): if isinstance(remove_whitespace, string_types): text = _space_char.sub(remove_whitespace, text) else: text = _space_char.sub('', text) return text text_normalize = string_normalize # =========================================================================== # List utils # =========================================================================== def unique(seq, keep_order=False): if keep_order: seen = set() seen_add = seen.add return [x for x in seq if x not in seen and not seen_add(x)] else: return list(set(seq)) # =========================================================================== # Async file IO # =========================================================================== # TODO # =========================================================================== # Object and class attributes # =========================================================================== class abstractclassmethod(classmethod): __isabstractmethod__ = True def __init__(self, method): method.__isabstractmethod__ = True super(abstractclassmethod, self).__init__(method) class classproperty(object): def __init__(self, fn): super(classproperty, self).__init__() self.fn = fn def __get__(self, obj, owner): return self.fn(owner) # =========================================================================== # Path utils # =========================================================================== def select_path(*paths, default=None, create_new=False): """ Parameters ---------- paths : str multiple path are given default : str default path for return create_new : bool (default: False) if no path is found, create new folder based on the first path found to be `creat-able` """ all_paths = [] for p in paths: if isinstance(p, (tuple, list)): all_paths += p elif isinstance(p, string_types): all_paths.append(p) else: raise ValueError("Given `path` has type: '%s', which must be string or " "list of string") # ====== return the first found exists path ====== # for p in all_paths: if os.path.exists(p): return p # ====== check if create_new ====== # if default is not None: return str(default) if create_new: for p in paths: base_dir = os.path.dirname(p) if os.path.exists(base_dir): os.mkdir(p) return p raise ValueError("Cannot create new folder from list: %s" % str(paths)) # ====== raise exception ====== # raise RuntimeError("Cannot find any exists path from list: %s" % '; '.join(all_paths)) # =========================================================================== # Warnings and Exception # =========================================================================== @contextmanager def catch_warnings_error(w): """ This method turn any given warnings into exception use: `warnings.Warning` for all warnings Example ------- >>> with catch_warnings([RuntimeWarning, UserWarning]): >>> try: >>> warnings.warn('test', category=RuntimeWarning) >>> except RuntimeWarning as w: >>> pass """ with warnings.catch_warnings(): warnings.filterwarnings(action='error', category=w) yield @contextmanager def catch_warnings_ignore(w): """ This method ignore any given warnings use: `warnings.Warning` for all warnings """ with warnings.catch_warnings(): warnings.filterwarnings(action='ignore', category=w) yield
{ "repo_name": "imito/odin", "path": "odin/utils/python_utils.py", "copies": "1", "size": "17126", "license": "mit", "hash": 8634052138890086000, "line_mean": 26.8471544715, "line_max": 79, "alpha_frac": 0.5446105337, "autogenerated": false, "ratio": 3.86329799233025, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.490790852603025, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import inspect import json import sys import weakref from collections import namedtuple from copy import copy from functools import partial, wraps from decorator import decorator as decorator from .compat.contextlib import suppress from .exceptions import KeyInvalidError from .log import logger __all__ = () FullArgSpec = namedtuple( 'FullArgSpec', ['args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults', 'annotations']) NormalizedArgs = namedtuple( 'NormalizedArgs', ['varargs', 'normargs', 'callargs']) CachedCallInfo = namedtuple( 'CachedCallInfo', ['varargs', 'callargs', 'return_value', 'expiration_date']) PrunedFilesInfo = namedtuple('PrunedFilesInfo', ['size', 'num']) def fullargspec_from_argspec(argspec): return FullArgSpec( *argspec, kwonlyargs=[], kwonlydefaults=None, annotations={}) class DecoratorFactory(object): """Produce decorator to wrap a function with a bucket. The decorator function is returned because using a class breaks help(instance). See http://stackoverflow.com/a/25973438/2093785 """ def __init__(self, bucket, method=False, nocache=None, callback=None, ignore=None): self.bucket = bucket self.method = method self.nocache = nocache self.callback = callback self.fref = None self.property = False if ignore is None: ignore = () self.ignore = ignore def decorate(self, f): if isinstance(f, property): f = f.fget self.property = True # method=True can be excluded when decorating a property because # it's detectable. Set it now. self.method = True self.fref = weakref.ref(f) # Try and use getargspec() first so that cache will work on source # compatible with Python 2 and 3. try: argspec = inspect.getargspec(f) argspec = fullargspec_from_argspec(argspec) all_args = set(argspec.args) except ValueError: argspec = inspect.getfullargspec(f) all_args = set(argspec.args) all_args.update(argspec.kwonlyargs) if self.nocache: if self.nocache not in all_args: raise TypeError("nocache decorator argument '{}'" "missing from argspec.".format(self.nocache)) test_set = set(self.ignore) # *args and **kwargs can be ignored too if argspec.varargs in self.ignore: test_set -= set([argspec.varargs]) if argspec.varkw in self.ignore: test_set -= set([argspec.varkw]) raise_invalid_keys(all_args, test_set, message='parameter{s} cannot be ignored if not ' 'present in argspec: {keys}') fsig = (f.__name__, argspec._asdict()) def load_or_call(f, key_hash, args, kwargs, varargs, callargs): """Load function result from cache, or call function and cache result. args and kwargs are used to call original function. varargs and callargs are used to call callback. """ skip_cache = False if self.nocache: skip_cache = callargs[self.nocache] def call_and_cache(): logger.info('Calling function {}', f) res = f(*args, **kwargs) obj = self.bucket._update_or_make_obj_with_hash(key_hash, res) self.bucket._set_obj_with_hash(key_hash, obj) return res called = False if skip_cache: result = call_and_cache() called = True else: try: obj = self.bucket._get_obj_from_hash(key_hash) result = obj.value except KeyInvalidError: result = call_and_cache() called = True else: logger.info('Function call loaded from cache: {}', f) if self.callback: callinfo = CachedCallInfo(varargs, callargs, result, obj.expiration_date) if self.method: instance = callargs[argspec.args[0]] self.callback(instance, callinfo) else: self.callback(callinfo) return result, called def wrapper(f, *args, **kwargs): normalized_args = normalize_args(f, *args, **kwargs) varargs, normargs, callargs = normalized_args sig_normargs = normargs.copy() sig_varargs = copy(varargs) # Delete nocache parameter from call arg used for signature. if self.nocache: del sig_normargs[self.nocache] for arg in self.ignore: if arg == argspec.varargs: sig_varargs = () elif arg == argspec.varkw: for kwarg in callargs[argspec.varkw]: del sig_normargs[kwarg] else: del sig_normargs[arg] if self.method: instance = args[0] # Delete instance parameter from call arg used for signature. del sig_normargs[argspec.args[0]] sig_instance = get_instance_signature(instance) signature = (sig_instance, fsig, sig_varargs, sig_normargs) else: signature = (fsig, sig_varargs, sig_normargs) # Make key_hash before function call, and raise error # if state changes (hash is different) afterwards. key_hash = self.bucket._hash_for_key(signature) ret, called = load_or_call(f, key_hash, args, kwargs, varargs, callargs) if called: post_key_hash = self.bucket._hash_for_key(signature) if key_hash != post_key_hash: optional = '' if self.method: optional = ' or instance state' raise ValueError( "modification of input parameters{} by function" " '{}' cannot be cached.".format(optional, f.__name__)) return ret new_function = decorator(wrapper, f) new_function.callback = self.add_callback if self.property: new_function = property(new_function) return new_function def add_callback(self, f): """Magic method assigned to f.callback that allows a callback to be defined as follows: @bucket def fun(...): ... @fun.callback def fun(): ... In the event that a cached result is used, the callback is fired. """ self.callback = f return self.decorate(self.fref()) def get_instance_signature(instance): """Get state of instance for cache signature (as part of key). Attempts to get state will be done in this order: - instance._getsate_bucketcache_() - instance.__getstate__() - instance.__dict__ """ with suppress(AttributeError): return instance._getsate_bucketcache_() with suppress(AttributeError): return instance.__getstate__() return instance.__dict__ def normalize_args(f, *args, **kwargs): """Normalize call arguments into keyword form and varargs. args can only be non-empty if there is *args in the argument specification. """ callargs = inspect.getcallargs(f, *args, **kwargs) original_callargs = callargs.copy() try: argspec = inspect.getargspec(f) except ValueError: argspec = inspect.getfullargspec(f) else: argspec = fullargspec_from_argspec(argspec) if hasattr(argspec, 'varkw'): if argspec.varkw: kwargs = callargs.pop(argspec.varkw, {}) callargs.update(kwargs) if argspec.varargs: varargs = callargs.pop(argspec.varargs, ()) else: varargs = () # now callargs is all keywords return NormalizedArgs(varargs=varargs, normargs=callargs, callargs=original_callargs) def raise_invalid_keys(valid_keys, passed_keys, message=None): if message is None: message = 'Invalid keyword argument{s}: {keys}' if not passed_keys <= valid_keys: invalid_keys = passed_keys - valid_keys raise_keys(invalid_keys, message=message) def raise_keys(keys, message): invalid_str = ', '.join(keys) s = 's' if len(keys) > 1 else '' raise TypeError(message.format(s=s, keys=invalid_str))
{ "repo_name": "RazerM/bucketcache", "path": "bucketcache/utilities.py", "copies": "1", "size": "8971", "license": "mit", "hash": 6003223853698706000, "line_mean": 31.6218181818, "line_max": 84, "alpha_frac": 0.5601382232, "autogenerated": false, "ratio": 4.46318407960199, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000042780748663101606, "num_lines": 275 }
from __future__ import absolute_import, division, print_function import inspect import os from collections import Mapping from contextlib import contextmanager from six import add_metaclass from six.moves import builtins, cPickle from odin.backend import (keras_callbacks, keras_helpers, losses, metrics, tf_utils) from odin.backend.alias import * from odin.backend.maths import * from odin.backend.tensor import * from odin.utils import as_tuple, is_path, is_string # =========================================================================== # Make the layers accessible through backend # =========================================================================== class _nn_meta(type): def __getattr__(cls, key): fw = get_framework() import torch import tensorflow as tf all_objects = {} if fw == torch: from odin import networks_torch all_objects.update(torch.nn.__dict__) all_objects.update(networks_torch.__dict__) elif fw == tf: from odin import networks all_objects.update(tf.keras.layers.__dict__) all_objects.update(networks.__dict__) else: raise NotImplementedError(str(fw)) return all_objects[key] @add_metaclass(_nn_meta) class nn: pass
{ "repo_name": "imito/odin", "path": "odin/backend/__init__.py", "copies": "1", "size": "1264", "license": "mit", "hash": -6411751419726807000, "line_mean": 27.0888888889, "line_max": 77, "alpha_frac": 0.6083860759, "autogenerated": false, "ratio": 4.299319727891157, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5407705803791156, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import inspect import os from typing import Text, Type, Union import numpy as np import tensorflow as tf import tensorflow_addons as tfa import torch from six import string_types from tensorflow.python import keras from odin.backend.maths import (moments, reduce_max, reduce_mean, reduce_min, reduce_sum, sqrt) from odin.backend.tensor import concatenate __all__ = [ 'parse_activation', 'parse_attention', 'parse_constraint', 'parse_initializer', 'parse_normalizer', 'parse_regularizer', 'parse_optimizer', 'parse_reduction' ] # =========================================================================== # Helper # =========================================================================== def _linear_function(x): return x def _invalid(msg, obj): if isinstance(obj, string_types): pass elif obj is None: obj = 'None' else: obj = str(type(obj)) raise ValueError("%s, given type: %s" % (msg, obj)) def _is_tensorflow(framework): if isinstance(framework, string_types): framework = framework.lower() if any(i in framework for i in ('tf', 'tensorflow', 'tensor')): return True if not inspect.isclass(framework): framework = type(framework) cls_desc = str(framework) + ''.join(str(i) for i in type.mro(framework)) if 'tensorflow' in cls_desc: return True return False # =========================================================================== # Network basics # =========================================================================== def parse_activation(activation, framework): """ Parameters ---------- activation : `str` alias for activation function framework : `str` 'tensorflow' or 'pytorch' """ if activation is None: activation = 'linear' if callable(activation): return activation if isinstance(activation, string_types): if activation.lower() == 'linear': return _linear_function if _is_tensorflow(framework): return keras.activations.get(activation) else: for i in dir(torch.nn.functional): if i.lower() == activation.lower(): fn = getattr(torch.nn.functional, i) if inspect.isfunction(fn): return fn _invalid("No support for activation", activation) def parse_initializer(initializer, framework): if _is_tensorflow(framework): return keras.initializers.get(initializer) else: if callable(initializer): return initializer if isinstance(initializer, string_types): initializer = initializer.lower().replace('glorot_', 'xavier_').replace( 'he_', 'kaiming_') for i in dir(torch.nn.init): if i.lower() == initializer.lower() + '_': fn = getattr(torch.nn.init, i) if inspect.isfunction(fn): return fn _invalid("No support for initializer", initializer) def parse_optimizer(optimizer, framework) -> Type: """ Return the class for given optimizer alias """ if _is_tensorflow(framework): all_classes = { 'adadelta': keras.optimizers.adadelta_v2.Adadelta, 'adagrad': keras.optimizers.adagrad_v2.Adagrad, 'adam': keras.optimizers.adam_v2.Adam, 'adamax': keras.optimizers.adamax_v2.Adamax, 'nadam': keras.optimizers.nadam_v2.Nadam, 'rmsprop': keras.optimizers.rmsprop_v2.RMSprop, 'sgd': keras.optimizers.gradient_descent_v2.SGD, } else: all_classes = { 'adadelta': torch.optim.Adadelta, 'adagrad': torch.optim.Adagrad, 'adam': torch.optim.Adam, 'adamax': torch.optim.Adamax, 'nadam': None, 'rmsprop': torch.optim.RMSprop, 'sgd': torch.optim.SGD, } opt = all_classes.get(str(optimizer).lower(), None) if opt is not None: return opt _invalid("No support for optimizer", optimizer) def parse_regularizer(regularizer, framework): if regularizer is None: return None if _is_tensorflow(framework): return keras.regularizers.get(regularizer) else: pass _invalid("No support for regularizer", regularizer) def parse_constraint(constraint, framework): if constraint is None: return None if _is_tensorflow(framework): return keras.constraints.get(constraint) else: pass _invalid("No support for constraint", constraint) # =========================================================================== # Layers # =========================================================================== def parse_reduction(reduce: Text, framework=None): """ Return a reduce function """ if reduce is None: reduce = 'none' if isinstance(reduce, string_types): if "min" in reduce: return reduce_min if "max" in reduce: return reduce_max if "avg" in reduce or "mean" in reduce: return reduce_mean if "sum" in reduce: return reduce_sum if "none" in reduce or reduce == "": return lambda x, *args, **kwargs: x if "stat" in reduce: def stat_reduce(x, axis=None, keepdims=None): m, v = moments(x, axis=axis, keepdims=keepdims) return concatenate([m, sqrt(v)], axis=-1) return stat_reduce _invalid("No support for reduce", reduce) def parse_attention(attention, framework): pass def parse_normalizer(normalizer, framework): if _is_tensorflow(framework): if isinstance(normalizer, string_types): normalizer = normalizer.strip().lower() if normalizer == 'batchnorm': return keras.layers.BatchNormalization elif normalizer == 'batchrenorm': from odin.networks.util_layers import BatchRenormalization return keras.layers.BatchRenormalization elif normalizer == 'layernorm': return keras.layers.LayerNormalization elif normalizer == 'instancenorm': return tfa.layers.InstanceNormalization elif normalizer == 'groupnorm': return tfa.layers.GroupNormalization else: pass _invalid("No support for normalizer", normalizer) def parse_layer(layer, framework): pass # =========================================================================== # Loss and metric # =========================================================================== def parse_loss(loss, framework): pass def parse_metric(loss, framework): pass
{ "repo_name": "imito/odin", "path": "odin/backend/alias.py", "copies": "1", "size": "6350", "license": "mit", "hash": -8952101936298481000, "line_mean": 28.3981481481, "line_max": 78, "alpha_frac": 0.5982677165, "autogenerated": false, "ratio": 4.126055880441846, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5224323596941846, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import inspect import os import re from abc import ABCMeta, abstractmethod from collections import Mapping from enum import Enum import numpy as np from six import add_metaclass, string_types from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline from sklearn.pipeline import make_pipeline as _make_pipeline from odin.fuel import Dataset from odin.preprocessing.signal import delta, mvn, stack_frames from odin.utils import (as_tuple, ctext, dummy_formatter, flatten_list, get_all_files, get_formatted_datetime, is_pickleable, is_string) class ExtractorSignal(object): """ ExtractorSignal """ def __init__(self): super(ExtractorSignal, self).__init__() self._timestamp = get_formatted_datetime(only_number=False) self._extractor = None self._msg = '' self._action = 'ignore' self._last_input = {} @property def message(self): return self._msg @property def action(self): return self._action def set_message(self, extractor, msg, last_input): if self._extractor is not None: raise RuntimeError( "This signal has stored message, cannot set message twice.") assert isinstance(extractor, Extractor), \ '`extractor` must be instance of odin.preprocessing.base.Extractor, ' +\ 'but given type: %s' % str(type(extractor)) self._extractor = extractor self._msg = str(msg) self._last_input = last_input return self def set_action(self, action): action = str(action).lower() assert action in ('warn', 'error', 'ignore'), \ "`action` can be one of the following values: 'warn', 'error', 'ignore'; " + \ "but given: %s" % action self._action = action return self def __str__(self): if self._extractor is None: raise RuntimeError("The Signal has not been configured by the Extractor") s = '[%s]' % self._timestamp s += '%s' % ctext(self._extractor.__class__.__name__, 'cyan') + '\n' s += 'Error message: "%s"' % ctext(self._msg, 'yellow') + '\n' s += 'Action: "%s"' % ctext(self._action, 'yellow') + '\n' # last input s += 'Last input: \n' if isinstance(self._last_input, Mapping): for k, v in sorted(self._last_input.items(), key=lambda x: x[0]): s += ' %s: %s\n' % (ctext(str(k), 'yellow'), dummy_formatter(v)) else: s += ' Type: %s\n' % ctext(type(self._last_input), 'yellow') s += ' Object: %s\n' % ctext(str(self._last_input), 'yellow') # parameters s += 'Attributes: \n' s += ' ' + ctext('InputLayer', 'yellow') + ': ' + str( self._extractor.is_input_layer) + '\n' s += ' ' + ctext('RobustLevel', 'yellow') + ': ' + self._extractor.robust_level + '\n' s += ' ' + ctext('InputName', 'yellow') + ': ' + str( self._extractor.input_name) + '\n' s += ' ' + ctext('OutputName', 'yellow') + ': ' + str( self._extractor.output_name) + '\n' for name, param in self._extractor.get_params().items(): if name not in ('_input_name', '_output_name'): s += ' ' + ctext(name, 'yellow') + ': ' + dummy_formatter(param) + '\n' return s # =========================================================================== # Helper # =========================================================================== def make_pipeline(steps, debug=False): """ NOTE: this method automatically revmove None entries - Flatten list or dictionary found in steps. - Remove any object that not is instance of `Extractor` during creation of `Pipeline`. """ ID = [0] def item2step(x): if isinstance(x, (tuple, list)): if len(x) == 1 and isinstance(x[0], Extractor): x = x[0] ID[0] += 1 return (x.__class__.__name__ + str(ID[0]), x) elif len(x) == 2: if is_string(x[0]) and isinstance(x[1], Extractor): return x elif is_string(x[1]) and isinstance(x[0], Extractor): return (x[1], x[0]) elif isinstance(x, Extractor): ID[0] += 1 return (x.__class__.__name__ + str(ID[0]), x) return None if isinstance(steps, Mapping): steps = steps.items() elif not isinstance(steps, (tuple, list)): steps = [steps] steps = [item2step(i) for i in steps] # remove None steps = [s for s in steps if s is not None] if len(steps) == 0: raise ValueError( "No instance of odin.preprocessing.base.Extractor found in `steps`.") # ====== set debug mode ====== # set_extractor_debug([i[1] for i in steps], debug=bool(debug)) # ====== return pipeline ====== # ret = Pipeline(steps=steps) return ret def set_extractor_debug(extractors, debug): # ====== prepare ====== # if isinstance(extractors, (tuple, list)): extractors = [ i for i in flatten_list(extractors) if isinstance(i, Extractor) ] elif isinstance(extractors, Pipeline): extractors = [i[-1] for i in extractors.steps] elif isinstance(extractors, Mapping): extractors = [i[-1] for i in extractors.items()] else: raise ValueError("No support for `extractors` type: %s" % type(extractors)) # ====== set the value ====== # for i in extractors: i._debug = bool(debug) return extractors def _equal_inputs_outputs(x, y): try: if x != y: return False except Exception: pass return True def _preprocess(x): if isinstance(x, np.str_): x = str(x) return x # =========================================================================== # Basic extractors # =========================================================================== class Extractor(BaseEstimator, TransformerMixin): """ Extractor The developer must override the `_transform` method: - If the return is instance of `collections.Mapping`, the new features will be merged into existed features dictionary (i.e. the input dictionary) - If the return is not instance of `Mapping`, the name of given classes will be used to name the returned features. - If `None` is returned, no `_transform` is called, just return None for the whole pipeline (i.e. None act as terminal signal) Parameters ---------- input_name : {None, string, list of string} list of string represent the name of feature output_name : {None, string, list of string} default name for the output feature (in case the return is not instance of dictionary); If `input_name` is None and `output_name` is None, use lower case of class name as default is_input_layer : bool (default: False) An input layer accept any type of input to `transform`, otherwise, only accept a dictionary type as input. robust_level : {'ignore', 'warn', 'error'} 'ignore' - ignore error files 'warn' - warn about error file during processing 'error' - raise Exception and stop processing """ def __init__(self, input_name=None, output_name=None, is_input_layer=False, robust_level='ignore', name=None): super(Extractor, self).__init__() if name is None: self._name = "%s%d" % (self.__class__.__name__, np.random.rand(0, 888888)) else: self._name = str(name) self._debug = False self._is_input_layer = bool(is_input_layer) self._last_debugging_text = '' # ====== robust level ====== # robust_level = str(robust_level).lower() assert robust_level in ('ignore', 'warn', 'error'),\ "`robust_level` can be one of the following values: " + \ "'warn', 'error', 'ignore'; but given: %s" % robust_level self._robust_level = robust_level # ====== check input_name ====== # if input_name is None: pass elif isinstance(input_name, string_types): pass elif hasattr(input_name, '__iter__'): input_name = tuple([str(i).lower() for i in input_name]) else: raise ValueError("No support for `input_name` type: %s" % str(type(input_name))) self._input_name = input_name # ====== check output_name ====== # if output_name is None: if input_name is None: output_name = self.__class__.__name__.lower() else: output_name = input_name elif isinstance(output_name, string_types): pass elif hasattr(output_name, '__iter__'): output_name = tuple([str(i).lower() for i in output_name]) else: raise ValueError("No support for `output_name` type: %s" % str(type(output_name))) self._output_name = output_name @property def name(self): return self._name @property def last_debugging_text(self): """ Return the last debugging information recorded during calling the `transform` method with `debug=True` """ if not hasattr(self, '_last_debugging_text'): self._last_debugging_text = '' return self._last_debugging_text @property def input_name(self): return self._input_name @property def output_name(self): return self._output_name @property def is_input_layer(self): return self._is_input_layer @property def robust_level(self): return self._robust_level def set_debug(self, debug): self._debug = bool(debug) return self def fit(self, X, y=None): # Do nothing here return self def __call__(self, X): return self.transform(X) def _transform(self, X): raise NotImplementedError def transform(self, X): # NOTE: do not override this method if isinstance(X, ExtractorSignal): return X # ====== interpret different signal ====== # if X is None: return ExtractorSignal().set_message( extractor=self, msg="`None` value is returned by extractor", last_input=X).set_action(self.robust_level) # ====== input layer ====== # if not self.is_input_layer and not isinstance(X, Mapping): err_msg = "the input to `Extractor.transform` must be instance of dictionary, " + \ "but given type: %s" % str(type(X)) return ExtractorSignal().set_message(extractor=self, msg=err_msg, last_input=X).set_action( self.robust_level) # ====== the transformation ====== # if self.input_name is not None and isinstance(X, Mapping): for name in as_tuple(self.input_name, t=string_types): if name not in X: return ExtractorSignal().set_message( extractor=self, msg="Cannot find features with name: %s" % name, last_input=X).set_action('error') y = self._transform(X) # if return Signal or None, no post-processing if isinstance(y, ExtractorSignal): return y if y is None: return ExtractorSignal().set_message( extractor=self, msg="`None` value is returned by the extractor: %s" % self.__class__.__name__, last_input=X).set_action(self.robust_level) # ====== return type must always be a dictionary ====== # if not isinstance(y, Mapping): if isinstance(y, (tuple, list)): y = { i: j for i, j in zip(as_tuple(self.output_name, t=string_types), y) } else: y = {self.output_name: y} # ====== Merge previous results ====== # # remove None values tmp = {} for name, feat in y.items(): if any(c.isupper() for c in name): return ExtractorSignal().set_message( extractor=self, msg="Name for features cannot contain upper case", last_input=X).set_action('error') if feat is None: continue tmp[name] = feat y = tmp # add old features extracted in X, but do NOT override new features in y if isinstance(X, Mapping): for name, feat in X.items(): if any(c.isupper() for c in name): return ExtractorSignal().set_message( extractor=self, msg="Name for features cannot contain upper case", last_input=X).set_action('error') if name not in y: y[name] = _preprocess(feat) # ====== print debug text ====== # # maybe someone implement __getstate__ and forget _debug if not hasattr(self, '_debug'): self._debug = False if self._debug: debug_text = '' debug_text += '%s %s\n' % (ctext( "[Extractor]", 'cyan'), ctext(self.__class__.__name__, 'magenta')) # inputs if not _equal_inputs_outputs(X, y): debug_text += ' %s\n' % ctext("Inputs:", 'yellow') debug_text += ' %s\n' % ctext("-------", 'yellow') if isinstance(X, Mapping): for k, v in X.items(): debug_text += ' %s : %s\n' % (ctext(k, 'blue'), dummy_formatter(v)) else: debug_text += ' %s\n' % dummy_formatter(X) # outputs debug_text += ' %s\n' % ctext("Outputs:", 'yellow') debug_text += ' %s\n' % ctext("-------", 'yellow') if isinstance(y, Mapping): for k, v in y.items(): debug_text += ' %s : %s\n' % (ctext(k, 'blue'), dummy_formatter(v)) else: debug_text += ' %s\n' % dummy_formatter(y) # parameters for name, param in self.get_params().items(): if name not in ('_input_name', '_output_name'): debug_text += ' %s : %s\n' % (ctext( name, 'yellow'), dummy_formatter(param)) self._last_debugging_text = debug_text print(debug_text) return y # =========================================================================== # General extractor # =========================================================================== class Converter(Extractor): """ Convert the value under `input_name` to a new value using `converter` function, and save the new value to the `output_name`. This could be mapping 1 -> 1 or many -> 1; in case of many to 1 mapping, the `converter` function will be call as `converter(*args)` Parameters ---------- converter: {Mapping, call-able} convert `inputs['name'] = converter(inputs[keys])` """ def __init__(self, converter, input_name='name', output_name='name'): super(Converter, self).__init__(input_name=as_tuple(input_name, t=string_types), output_name=str(output_name)) # ====== check converter ====== # if not hasattr(converter, '__call__') and \ not isinstance(converter, Mapping): raise ValueError("`converter` must be call-able.") # converter can be function or dictionary self.converter = converter def _transform(self, feat): X = [feat[name] for name in self.input_name] if hasattr(self.converter, '__call__'): name = self.converter(*X) else: name = self.converter[X[0] if len(X) == 1 else X] return {self.output_name: name} class DeltaExtractor(Extractor): """ Extracting the delta coefficients given the axis Parameters ---------- input_name : list of str list of all features name for calculating the delta width : int amount of frames taken into account for 1 delta order : list of int list of all delta order will be concatenate (NOTE: keep `0` in the list if you want to keep original features) axis : int which dimension calculating the delta (suggest time-dimension for acoustic features, i.e. axis=0) """ def __init__(self, input_name, output_name=None, width=9, order=(0, 1), axis=0): super(DeltaExtractor, self).__init__(input_name=as_tuple(input_name, t=string_types), output_name=output_name) # ====== check width ====== # width = int(width) if width % 2 == 0 or width < 3: raise ValueError("`width` must be odd integer >= 3, give value: %d" % width) self.width = width # ====== check order ====== # self.order = as_tuple(order, t=int) # ====== axis ====== # self.axis = axis def _calc_deltas(self, X): all_deltas = delta(data=X, width=self.width, order=max(self.order), axis=self.axis) if not isinstance(all_deltas, (tuple, list)): all_deltas = (all_deltas,) else: all_deltas = tuple(all_deltas) all_deltas = (X,) + all_deltas all_deltas = tuple([d for i, d in enumerate(all_deltas) if i in self.order]) return np.concatenate(all_deltas, axis=-1) def _transform(self, feat): return [self._calc_deltas(feat[name]) for name in self.input_name] class EqualizeShape0(Extractor): """ EqualizeShape0 The final length of all features is the `minimum length`. This Extractor shrink the shape of all given features in `feat_name` to the same length. Raise Error if given files is shorted than desire length Parameters ---------- input_name: {None, list of string} list of features name will be used for calculating the running statistics. If None, calculate the statistics for all `numpy.ndarray` shrink_mode: 'center', 'left', 'right' center: remove data points from both left and right left: remove data points at the beginning (left) right: remove data points at the end (right) """ def __init__(self, input_name=None, shrink_mode='right'): super( EqualizeShape0, self).__init__(input_name=as_tuple(input_name, t=string_types ) if input_name is not None else None) shrink_mode = str(shrink_mode).lower() if shrink_mode not in ('center', 'left', 'right'): raise ValueError("shrink mode support include: center, left, right") self.shrink_mode = shrink_mode def _transform(self, feat): if self.input_name is None: X = [] output_name = [] for key, val in feat.items(): if isinstance(val, np.ndarray) and val.ndim > 0: X.append(val) output_name.append(key) else: X = [feat[name] for name in self.input_name] output_name = self.input_name # ====== searching for desire length ====== # n = min(i.shape[0] for i in X) # ====== equalize ====== # equalized = {} for name, y in zip(output_name, X): # cut the features in left and right # if the shape[0] is longer if y.shape[0] != n: diff = y.shape[0] - n if diff < 0: print("Feature length: %d which is smaller " "than desire length: %d, feature name is '%s'" % (y.shape[0], n, X['name'])) return None elif diff > 0: if self.shrink_mode == 'center': diff_left = diff // 2 diff_right = diff - diff_left y = y[diff_left:-diff_right] elif self.shrink_mode == 'right': y = y[:-diff] elif self.shrink_mode == 'left': y = y[diff:] equalized[name] = y return equalized class RunningStatistics(Extractor): """ Running statistics Parameters ---------- input_name: {string, list of string} list of features name will be used for calculating the running statistics. If None, calculate the statistics for all `numpy.ndarray` with `ndim` > 0 axis : int (default: 0) the axis for calculating the statistics prefix : '' the prefix append to 'sum1' and 'sum2' """ def __init__(self, input_name=None, axis=0, prefix=''): super( RunningStatistics, self).__init__(input_name=as_tuple(input_name, t=string_types ) if input_name is not None else None) self.axis = axis self.prefix = str(prefix) def get_sum1_name(self, feat_name): return '%s_%ssum1' % (feat_name, self.prefix) def get_sum2_name(self, feat_name): return '%s_%ssum2' % (feat_name, self.prefix) def _transform(self, feat): if self.input_name is None: X = [] output_name = [] for key, val in feat.items(): if isinstance(val, np.ndarray) and val.ndim > 0: X.append(val) output_name.append(key) else: X = [feat[name] for name in self.input_name] output_name = self.input_name # ====== calculate the statistics ====== # for name, y in zip(output_name, X): # ====== SUM of x^1 ====== # sum1 = np.sum(y, axis=self.axis, dtype='float64') s1_name = self.get_sum1_name(name) if s1_name not in feat: feat[s1_name] = sum1 else: feat[s1_name] += sum1 # ====== SUM of x^2 ====== # sum2 = np.sum(np.power(y, 2), axis=self.axis, dtype='float64') s2_name = self.get_sum2_name(name) if s2_name not in feat: feat[s2_name] = sum2 else: feat[s2_name] += sum2 return feat class AsType(Extractor): """ An extractor convert given features to given types Parameters ---------- dtype : {string, numpy.dtype} desire type input_name: {string, list of string} list of features name will be used for calculating the running statistics. If None, calculate the statistics for all object `hasattr` 'astype' exclude_pattern : {string, None} regular expression pattern to exclude all features with given name pattern, only used when `input_name=None`. By default, exclude all running statistics '*_sum1' and '*_sum2' """ def __init__(self, dtype, input_name=None, exclude_pattern=".+\_sum[1|2]"): super( AsType, self).__init__(input_name=as_tuple(input_name, t=string_types ) if input_name is not None else None) self.dtype = np.dtype(dtype) if isinstance(exclude_pattern, string_types): exclude_pattern = re.compile(exclude_pattern) else: exclude_pattern = None self.exclude_pattern = exclude_pattern def _transform(self, feat): # ====== preprocessing ====== # if self.input_name is None: X = [] output_name = [] for key, val in feat.items(): if hasattr(val, 'astype'): if self.exclude_pattern is not None and \ self.exclude_pattern.search(key): continue X.append(val) output_name.append(key) else: X = [feat[name] for name in self.input_name] output_name = self.input_name # ====== astype ====== # updates = {} for name, y in zip(output_name, X): updates[name] = y.astype(self.dtype) return updates class DuplicateFeatures(Extractor): def __init__(self, input_name, output_name): super(DuplicateFeatures, self).__init__(input_name=as_tuple(input_name, t=string_types), output_name=as_tuple(output_name, t=string_types)) def _transform(self, feat): return { out_name: feat[in_name] for in_name, out_name in zip(self.input_name, self.output_name) } class RenameFeatures(Extractor): def __init__(self, input_name, output_name): super(RenameFeatures, self).__init__(input_name=as_tuple(input_name, t=string_types), output_name=as_tuple(output_name, t=string_types)) def _transform(self, X): return X def transform(self, feat): if isinstance(feat, Mapping): for old_name, new_name in zip(self.input_name, self.output_name): if old_name in feat: # only remove if it exist X = feat[old_name] del feat[old_name] feat[new_name] = X return feat class DeleteFeatures(Extractor): """ Remove features by name from extracted features dictionary """ def __init__(self, input_name): super(DeleteFeatures, self).__init__() self._name = as_tuple(input_name, t=string_types) def _transform(self, X): return X def transform(self, feat): if isinstance(feat, Mapping): for name in self._name: if name in feat: # only remove if it exist del feat[name] return feat # =========================================================================== # Shape # =========================================================================== class StackFeatures(Extractor): """ Stack context (or splice multiple frames) into single vector. Parameters ---------- n_context : int number of context frame on the left and right, the final number of stacked frame is `context * 2 + 1` NOTE: the stacking process, ignore `context` frames at the beginning on the left, and at the end on the right. input_name : {None, list of string} list of features name will be used for calculating the running statistics. If None, calculate the statistics for all `numpy.ndarray` mvn: bool if True, preform mean-variance normalization on input features. """ def __init__(self, n_context, input_name=None): super( StackFeatures, self).__init__(input_name=as_tuple(input_name, t=string_types ) if input_name is not None else None) self.n_context = int(n_context) assert self.n_context > 0 def _transform(self, feat): if self.input_name is None: X = [] output_name = [] for key, val in feat.items(): if isinstance(val, np.ndarray) and val.ndim > 0: X.append(val) output_name.append(key) else: X = [feat[name] for name in self.input_name] output_name = self.input_name # ====== this ====== # for name, y in zip(output_name, X): # stacking the context frames y = stack_frames(y, frame_length=self.n_context * 2 + 1, step_length=1, keep_length=True, make_contigous=True) feat[name] = y return feat
{ "repo_name": "imito/odin", "path": "odin/preprocessing/base.py", "copies": "1", "size": "26283", "license": "mit", "hash": -7711228074606720000, "line_mean": 33.0453367876, "line_max": 89, "alpha_frac": 0.5666019861, "autogenerated": false, "ratio": 3.835254633007442, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4901856619107442, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import inspect import os import numpy as np import torch from six import add_metaclass from tensorflow.python.keras.utils import conv_utils from torch import nn from torch.nn import functional from odin.backend import (parse_activation, parse_constraint, parse_initializer, parse_regularizer) class Layer(nn.Module): def __init__(self, **kwargs): super(Layer, self).__init__() self.built = False def build(self, input_shape): """Creates the variables of the layer (optional, for subclass implementers). This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. This is typically used to create the weights of `Layer` subclasses. Arguments: input_shape: Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input). """ self.built = True def forward(self, *inputs, **kwargs): n_inputs = len(inputs) input_shape = [i.shape for i in inputs] if n_inputs == 1: input_shape = input_shape[0] if not self.built: self.build(input_shape) # call inputs = inputs[0] if n_inputs == 1 else inputs # this make life easier but not the solution for everything if isinstance(inputs, np.ndarray): inputs = torch.Tensor(inputs) # intelligent call specs = inspect.getfullargspec(self.call) if specs.varkw is not None: return self.call(inputs, **kwargs) kw = {i: kwargs[i] for i in specs.args[2:] if i in kwargs} return self.call(inputs, **kw) def call(self, inputs, **kwargs): raise NotImplementedError class Dense(Layer): def __init__(self, units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(Dense, self).__init__() self.units = int(units) self.activation = parse_activation(activation, self) self.use_bias = use_bias self.kernel_initializer = parse_initializer(kernel_initializer, self) self.bias_initializer = parse_initializer(bias_initializer, self) def build(self, input_shape): D_in = input_shape[-1] D_out = self.units self._linear = nn.Linear(in_features=D_in, out_features=D_out, bias=self.use_bias) self.kernel_initializer(self._linear.weight) if self.use_bias: self.bias_initializer(self._linear.bias) return super(Dense, self).build(input_shape) def call(self, inputs, training=None): y = self._linear(inputs) return self.activation(y) # =========================================================================== # Convolution # =========================================================================== class Conv(Layer): def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format=None, dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', name=None, **kwargs): super(Conv, self).__init__() self.rank = rank self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) if (self.padding == 'causal' and not isinstance(self, (Conv1D,))): raise ValueError('Causal padding is only supported for `Conv1D`' 'and ``SeparableConv1D`.') self.data_format = conv_utils.normalize_data_format(data_format) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = parse_activation(activation, self) self.use_bias = use_bias self.kernel_initializer = parse_initializer(kernel_initializer, self) self.bias_initializer = parse_initializer(bias_initializer, self) def build(self, input_shape): in_channels = (input_shape[-1] if self.data_format == 'channels_last' else input_shape[1]) spatial_shape = (input_shape[2:] if self.data_format == 'channels_first' else input_shape[1:-1]) # 1D `(padW,)` # 2D `(padH, padW)` # 3D `(padT, padH, padW)` if self.padding == 'valid': padding = 0 padding_mode = 'zeros' elif self.padding == 'same': padding = [i // 2 for i in self.kernel_size] padding_mode = 'zeros' elif self.padding == 'causal' and self.rank == 1: padding = 0 padding_mode = 'zeros' else: raise NotImplementedError("No support for padding='%s' and rank=%d" % (self.padding, self.rank)) if self.rank == 1: self._conv = torch.nn.Conv1d(in_channels=in_channels, out_channels=self.filters, kernel_size=self.kernel_size, stride=self.strides, padding=padding, dilation=self.dilation_rate, groups=1, bias=self.use_bias, padding_mode=padding_mode) elif self.rank == 2: self._conv = torch.nn.Conv2d(in_channels=in_channels, out_channels=self.filters, kernel_size=self.kernel_size, stride=self.strides, padding=padding, dilation=self.dilation_rate, groups=1, bias=self.use_bias, padding_mode=padding_mode) elif self.rank == 3: self._conv = torch.nn.Conv3d(in_channels=in_channels, out_channels=self.filters, kernel_size=self.kernel_size, stride=self.strides, padding=padding, dilation=self.dilation_rate, groups=1, bias=True, padding_mode=padding_mode) else: raise NotImplementedError("No support for rank=%d" % self.rank) self.kernel_initializer(self._conv.weight) if self.use_bias: self.bias_initializer(self._conv.bias) return super(Conv, self).build(input_shape) def call(self, inputs, training=None): # causal padding for temporal signal if self.padding == 'causal' and self.rank == 1: inputs = functional.pad(inputs, self._compute_causal_padding(), mode='constant', value=0) # pytorch only support channels_first if self.data_format == 'channels_last': inputs = inputs.transpose(1, -1) # applying the convolution y = self._conv(inputs) if self.data_format == 'channels_last': y = y.transpose(1, -1) return y def _compute_causal_padding(self): """Calculates padding for 'causal' option for 1-d conv layers. @Original code: tensorflow.keras """ left_pad = self.dilation_rate[0] * (self.kernel_size[0] - 1) if self.data_format == 'channels_last': causal_padding = [0, 0, left_pad, 0, 0, 0] else: causal_padding = [0, 0, 0, 0, left_pad, 0] return causal_padding class Conv1D(Conv): def __init__(self, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(Conv1D, self).__init__(rank=1, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, **kwargs) class ConvCausal(Conv1D): def __init__(self, filters, kernel_size, strides=1, data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(ConvCausal, self).__init__(filters=filters, kernel_size=kernel_size, strides=strides, padding='causal', data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, **kwargs) class Conv2D(Conv): def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(Conv2D, self).__init__(rank=2, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, **kwargs) class Conv3D(Conv): def __init__(self, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(Conv3D, self).__init__(rank=3, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, **kwargs) # =========================================================================== # Recurrent neural network # =========================================================================== class _RNNLayer(Layer): def __init__(self, kernel_initializer, recurrent_initializer, bias_initializer, return_sequences, return_state, go_backwards, stateful, **kwargs): super(_RNNLayer, self).__init__(**kwargs) self.return_sequences = return_sequences self.return_state = return_state self.go_backwards = go_backwards self.stateful = stateful if stateful: raise NotImplementedError( "pytorch currently does not support stateful RNN") self.kernel_initializer = parse_initializer(kernel_initializer, self) self.recurrent_initializer = parse_initializer(recurrent_initializer, self) self.bias_initializer = parse_initializer(bias_initializer, self) def build(self, input_shape): if not hasattr(self, '_rnn'): raise RuntimeError( "instance of pytorch RNN must be create and assigned to attribute " "name '_rnn' during `build`.") for layer_idx in range(self._rnn.num_layers): self.kernel_initializer(getattr(self._rnn, 'weight_ih_l%d' % layer_idx)) self.recurrent_initializer(getattr(self._rnn, 'weight_hh_l%d' % layer_idx)) b_ih = getattr(self._rnn, 'bias_ih_l%d' % layer_idx) b_hh = getattr(self._rnn, 'bias_hh_l%d' % layer_idx) self.bias_initializer(b_ih) self.bias_initializer(b_hh) if getattr(self, 'unit_forget_bias', False): # b_ii|b_if|b_ig|b_io b_ih[self.units:self.units * 2] = 1 # b_hi|b_hf|b_hg|b_ho b_hh[self.units:self.units * 2] = 1 return super(_RNNLayer, self).build(input_shape) def call(self, inputs): if self.go_backwards: inputs = inputs.flip(1) outputs, states = self._rnn(inputs) if not isinstance(states, (tuple, list)): states = (states,) if not self.return_sequences: outputs = outputs[:, -1] if not self.return_state: return outputs return [outputs] + list(states) class SimpleRNN(_RNNLayer): def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', dropout=0., return_sequences=False, return_state=False, go_backwards=False, stateful=False, num_layers=1, bidirectional=False, **kwargs): super(SimpleRNN, self).__init__(kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, **kwargs) self.units = int(units) self.activation = str(activation) self.use_bias = use_bias self.dropout = dropout self.num_layers = num_layers self.bidirectional = bidirectional def build(self, input_shape): input_size = input_shape[-1] self._rnn = nn.RNN(input_size=input_size, hidden_size=self.units, num_layers=self.num_layers, nonlinearity=self.activation, bias=self.use_bias, batch_first=True, dropout=self.dropout, bidirectional=self.bidirectional) return super(SimpleRNN, self).build(input_shape) class LSTM(_RNNLayer): def __init__(self, units, use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, dropout=0., return_sequences=False, return_state=False, go_backwards=False, stateful=False, num_layers=1, bidirectional=False, **kwargs): super(LSTM, self).__init__(kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, **kwargs) self.units = int(units) self.use_bias = use_bias self.dropout = dropout self.unit_forget_bias = unit_forget_bias self.num_layers = num_layers self.bidirectional = bidirectional def build(self, input_shape): input_size = input_shape[-1] self._rnn = nn.LSTM(input_size=input_size, hidden_size=self.units, num_layers=self.num_layers, bias=self.use_bias, batch_first=True, dropout=self.dropout, bidirectional=self.bidirectional) return super(LSTM, self).build(input_shape) class GRU(_RNNLayer): def __init__(self, units, use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', dropout=0., return_sequences=False, return_state=False, go_backwards=False, stateful=False, num_layers=1, bidirectional=False, **kwargs): super(GRU, self).__init__(kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, **kwargs) self.units = int(units) self.use_bias = use_bias self.dropout = dropout self.num_layers = num_layers self.bidirectional = bidirectional def build(self, input_shape): input_size = input_shape[-1] self._rnn = nn.GRU(input_size=input_size, hidden_size=self.units, num_layers=self.num_layers, bias=self.use_bias, batch_first=True, dropout=self.dropout, bidirectional=self.bidirectional) return super(GRU, self).build(input_shape)
{ "repo_name": "imito/odin", "path": "odin/networks_torch/keras_torch.py", "copies": "1", "size": "19521", "license": "mit", "hash": -62344879765102130, "line_mean": 37.0526315789, "line_max": 80, "alpha_frac": 0.5001792941, "autogenerated": false, "ratio": 4.622543215723419, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00365496458795037, "num_lines": 513 }
from __future__ import absolute_import, division, print_function import inspect class BasicRegistrationFactory(object): """ Generalized registerable factory type. Widgets (classes) can be registered with an instance of this class. Arguments to the factory's `__call__` method are then passed to a function specified by the registered factory, which validates the input and returns a instance of the class that best matches the inputs. Attributes ---------- registry : dict Dictionary mapping classes (key) to function (value) which validates input. default_widget_type : type Class of the default widget. Defaults to None. validation_functions : list of strings List of function names that are valid validation functions. Parameters ---------- default_widget_type : type, optional additional_validation_functions : list of strings, optional List of strings corresponding to additional validation function names. Notes ----- * A valid validation function must be a classmethod of the registered widget and it must return True or False. """ def __init__(self, default_widget_type=None, additional_validation_functions=[]): self.registry = dict() self.default_widget_type = default_widget_type self.validation_functions = ['_factory_validation_function'] + additional_validation_functions def __call__(self, *args, **kwargs): """ Method for running the factory. Arguments args and kwargs are passed through to the validation function and to the constructor for the final type. """ # Any preprocessing and massaging of inputs can happen here return self._check_registered_widget(*args, **kwargs) def _check_registered_widget(self, *args, **kwargs): """ Implementation of a basic check to see if arguments match a widget.""" candidate_widget_types = list() for key in self.registry: # Call the registered validation function for each registered class if self.registry[key](*args, **kwargs): candidate_widget_types.append(key) n_matches = len(candidate_widget_types) if n_matches == 0: if self.default_widget_type is None: raise NoMatchError("No types match specified arguments and no default is set.") else: candidate_widget_types = [self.default_widget_type] elif n_matches > 1: raise MultipleMatchError("Too many candidate types identified ({0}). Specify enough keywords to guarantee unique type identification.".format(n_matches)) # Only one is found WidgetType = candidate_widget_types[0] return WidgetType(*args, **kwargs) def register(self, WidgetType, validation_function=None, is_default=False): """ Register a widget with the factory. If `validation_function` is not specified, tests `WidgetType` for existence of any function in in the list `self.validation_functions`, which is a list of strings which must be callable class attribute Parameters ---------- WidgetType : type Widget to register. validation_function : function, optional Function to validate against. Defaults to None, which indicates that a classmethod in validation_functions is used. is_default : bool, optional Sets WidgetType to be the default widget. """ if is_default: self.default_widget_type = WidgetType elif validation_function is not None: if not callable(validation_function): raise AttributeError("Keyword argument 'validation_function' must be callable.") self.registry[WidgetType] = validation_function else: found = False for vfunc_str in self.validation_functions: if hasattr(WidgetType, vfunc_str): vfunc = getattr(WidgetType, vfunc_str) # check if classmethod: stackoverflow #19227724 _classmethod = inspect.ismethod(vfunc) and vfunc.__self__ is WidgetType if _classmethod: self.registry[WidgetType] = vfunc found = True break else: raise ValidationFunctionError("{0}.{1} must be a classmethod.".format(WidgetType.__name__, vfunc_str)) if not found: raise ValidationFunctionError("No proper validation function for class {0} found.".format(WidgetType.__name__)) def unregister(self, WidgetType): """ Remove a widget from the factory's registry.""" self.registry.pop(WidgetType) class NoMatchError(Exception): """Exception for when no candidate class is found.""" class MultipleMatchError(Exception): """Exception for when too many candidate classes are found.""" class ValidationFunctionError(AttributeError): """Exception for when no candidate class is found."""
{ "repo_name": "Alex-Ian-Hamilton/sunpy", "path": "sunpy/util/datatype_factory_base.py", "copies": "1", "size": "5197", "license": "bsd-2-clause", "hash": -3293656992309893000, "line_mean": 33.417218543, "line_max": 166, "alpha_frac": 0.6372907447, "autogenerated": false, "ratio": 5.0164092664092665, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6153700011109267, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import inspect import numpy as np try: import scipy import scipy.fftpack except ImportError: scipy = None chunk_error = ("Dask array only supports taking an FFT along an axis that \n" "has a single chunk. An FFT operation was tried on axis %s \n" "which has chunks %s. To change the array's chunks use " "dask.Array.rechunk.") fft_preamble = """ Wrapping of %s The axis along which the FFT is applied must have a one chunk. To change the array's chunking use dask.Array.rechunk. The %s docstring follows below: """ def _fft_out_chunks(a, s, axes): """ For computing the output chunks of [i]fft*""" if s is None: return a.chunks chunks = list(a.chunks) for i, axis in enumerate(axes): chunks[axis] = (s[i],) return chunks def _rfft_out_chunks(a, s, axes): """ For computing the output chunks of rfft*""" if s is None: s = [a.chunks[axis][0] for axis in axes] s = list(s) s[-1] = s[-1] // 2 + 1 chunks = list(a.chunks) for i, axis in enumerate(axes): chunks[axis] = (s[i],) return chunks def _irfft_out_chunks(a, s, axes): """ For computing the output chunks of irfft*""" if s is None: s = [a.chunks[axis][0] for axis in axes] s[-1] = 2 * (s[-1] - 1) chunks = list(a.chunks) for i, axis in enumerate(axes): chunks[axis] = (s[i],) return chunks def _hfft_out_chunks(a, s, axes): assert len(axes) == 1 axis = axes[0] if s is None: s = [2 * (a.chunks[axis][0] - 1)] n = s[0] chunks = list(a.chunks) chunks[axis] = (n,) return chunks def _ihfft_out_chunks(a, s, axes): assert len(axes) == 1 axis = axes[0] if s is None: s = [a.chunks[axis][0]] else: assert len(s) == 1 n = s[0] chunks = list(a.chunks) if n % 2 == 0: m = (n // 2) + 1 else: m = (n + 1) // 2 chunks[axis] = (m,) return chunks _out_chunk_fns = {'fft': _fft_out_chunks, 'ifft': _fft_out_chunks, 'rfft': _rfft_out_chunks, 'irfft': _irfft_out_chunks, 'hfft': _hfft_out_chunks, 'ihfft': _ihfft_out_chunks} def fft_wrap(fft_func, kind=None, dtype=None): """ Wrap 1D complex FFT functions Takes a function that behaves like ``numpy.fft`` functions and a specified kind to match it to that are named after the functions in the ``numpy.fft`` API. Supported kinds include: * fft * ifft * rfft * irfft * hfft * ihfft Examples -------- >>> parallel_fft = fft_wrap(np.fft.fft) >>> parallel_ifft = fft_wrap(np.fft.ifft) """ if scipy is not None: if fft_func is scipy.fftpack.rfft: raise ValueError("SciPy's `rfft` doesn't match the NumPy API.") elif fft_func is scipy.fftpack.irfft: raise ValueError("SciPy's `irfft` doesn't match the NumPy API.") if kind is None: kind = fft_func.__name__ try: out_chunk_fn = _out_chunk_fns[kind.rstrip("2n")] except KeyError: raise ValueError("Given unknown `kind` %s." % kind) def func(a, s=None, axes=None): if axes is None: if kind.endswith('2'): axes = (-2, -1) elif kind.endswith('n'): if s is None: axes = tuple(range(a.ndim)) else: axes = tuple(range(len(s))) else: axes = (-1,) else: if len(set(axes)) < len(axes): raise ValueError("Duplicate axes not allowed.") _dtype = dtype if _dtype is None: _dtype = fft_func(np.ones(len(axes) * (8,), dtype=a.dtype)).dtype for each_axis in axes: if len(a.chunks[each_axis]) != 1: raise ValueError(chunk_error % (each_axis, a.chunks[each_axis])) chunks = out_chunk_fn(a, s, axes) args = (s, axes) if kind.endswith('fft'): axis = None if axes is None else axes[0] n = None if s is None else s[0] args = (n, axis) return a.map_blocks(fft_func, *args, dtype=_dtype, chunks=chunks) if kind.endswith('fft'): _func = func def func(a, n=None, axis=None): s = None if n is not None: s = (n,) axes = None if axis is not None: axes = (axis,) return _func(a, s, axes) func_mod = inspect.getmodule(fft_func) func_name = fft_func.__name__ func_fullname = func_mod.__name__ + "." + func_name if fft_func.__doc__ is not None: func.__doc__ = (fft_preamble % (2 * (func_fullname,))) func.__doc__ += fft_func.__doc__ func.__name__ = func_name return func fft = fft_wrap(np.fft.fft, dtype=np.complex_) fft2 = fft_wrap(np.fft.fft2, dtype=np.complex_) fftn = fft_wrap(np.fft.fftn, dtype=np.complex_) ifft = fft_wrap(np.fft.ifft, dtype=np.complex_) ifft2 = fft_wrap(np.fft.ifft2, dtype=np.complex_) ifftn = fft_wrap(np.fft.ifftn, dtype=np.complex_) rfft = fft_wrap(np.fft.rfft, dtype=np.complex_) rfft2 = fft_wrap(np.fft.rfft2, dtype=np.complex_) rfftn = fft_wrap(np.fft.rfftn, dtype=np.complex_) irfft = fft_wrap(np.fft.irfft, dtype=np.float_) irfft2 = fft_wrap(np.fft.irfft2, dtype=np.float_) irfftn = fft_wrap(np.fft.irfftn, dtype=np.float_) hfft = fft_wrap(np.fft.hfft, dtype=np.float_) ihfft = fft_wrap(np.fft.ihfft, dtype=np.complex_)
{ "repo_name": "cpcloud/dask", "path": "dask/array/fft.py", "copies": "1", "size": "5765", "license": "bsd-3-clause", "hash": 8788931798378065000, "line_mean": 26.0657276995, "line_max": 80, "alpha_frac": 0.5396357329, "autogenerated": false, "ratio": 3.2811610700056915, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9320506998234039, "avg_score": 0.0000579609343302614, "num_lines": 213 }
from __future__ import absolute_import, division, print_function import io import json import os.path from collections import defaultdict from functools import wraps from glob import glob from itertools import chain def gen_dict(func): @wraps(func) def decorated(*args, **kwargs): return dict(func(*args, **kwargs)) return decorated def ls_bench_storage(bench_storage, modes): # NNNN just reflects the pytest-benchmark result files naming scheme: # NNNN_commit*.json, that is, 0001_commit*.json, 0002_commit*.json, ... nnnn_files_map = defaultdict(dict) # {'NNNN': {'mode': 'filename'}} garbage_files = set() for mode in modes: for filename in glob(os.path.join(bench_storage, mode, '[0-9][0-9][0-9][0-9]_*.json')): mode_dirname, basename = os.path.split(filename) nnnn = os.path.splitext(basename)[0][:12] # NNNN_commit mode_nnnn_files = glob(os.path.join(mode_dirname, nnnn + '*.json')) if len(mode_nnnn_files) != 1: garbage_files.update(mode_nnnn_files) else: nnnn_files_map[nnnn][mode] = filename benchmark_files = defaultdict(dict) # {'mode': {'NNNN': 'filename'}} for nnnn, nnnn_files in nnnn_files_map.items(): if len(nnnn_files) != len(modes): # for gf in nnnn_files.values(): # print('>>>', gf) garbage_files.update(nnnn_files.values()) else: for mode, filename in nnnn_files.items(): benchmark_files[mode][nnnn] = filename return sorted(nnnn_files_map), dict(benchmark_files), sorted(garbage_files) @gen_dict # {'mode': {'NNNN': benchmark, ...}} def load_raw_benchmarks(benchmark_files): for mode, filemap in benchmark_files.items(): trialmap = {} for trial_name, filename in filemap.items(): with io.open(filename, 'rU') as fh: trialmap[trial_name] = json.load(fh) yield mode, trialmap @gen_dict # {'mode': [{'test': min}...]} def prepare_benchmarks(raw_benchmarks, trial_names): for mode, trialmap in raw_benchmarks.items(): envlist = [] for trial_name in trial_names: trial = trialmap.get(trial_name, {}).get('benchmarks', []) benchenv = dict((bench['fullname'], bench['stats'].get('min')) for bench in trial) envlist.append(benchenv) yield mode, envlist def load_benchmarks(bench_storage, modes): trial_names, benchmark_files, _ = ls_bench_storage(bench_storage, modes) return load_benchmarks_from_files(benchmark_files, trial_names) def load_benchmarks_from_files(benchmark_files, trial_names): raw_benchmarks = load_raw_benchmarks(benchmark_files) benchmarks = prepare_benchmarks(raw_benchmarks, trial_names) return benchmarks
{ "repo_name": "eisensheng/pytest-catchlog", "path": "tests/perf/data.py", "copies": "1", "size": "2916", "license": "mit", "hash": 221081519422123520, "line_mean": 33.3058823529, "line_max": 79, "alpha_frac": 0.6124828532, "autogenerated": false, "ratio": 3.5823095823095823, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9694792435509583, "avg_score": 0, "num_lines": 85 }
from __future__ import absolute_import, division, print_function import io import logging import os import re from glob import has_magic # for backwards compat, we export cache things from here too from .caching import ( # noqa: F401 BaseCache, BlockCache, BytesCache, MMapCache, ReadAheadCache, caches, ) from .compression import compr from .registry import filesystem, get_filesystem_class from .utils import ( build_name_function, infer_compression, stringify_path, update_storage_options, ) logger = logging.getLogger("fsspec") class OpenFile(object): """ File-like object to be used in a context Can layer (buffered) text-mode and compression over any file-system, which are typically binary-only. These instances are safe to serialize, as the low-level file object is not created until invoked using `with`. Parameters ---------- fs: FileSystem The file system to use for opening the file. Should match the interface of ``dask.bytes.local.LocalFileSystem``. path: str Location to open mode: str like 'rb', optional Mode of the opened file compression: str or None, optional Compression to apply encoding: str or None, optional The encoding to use if opened in text mode. errors: str or None, optional How to handle encoding errors if opened in text mode. newline: None or str Passed to TextIOWrapper in text mode, how to handle line endings. """ def __init__( self, fs, path, mode="rb", compression=None, encoding=None, errors=None, newline=None, ): self.fs = fs self.path = path self.mode = mode self.compression = get_compression(path, compression) self.encoding = encoding self.errors = errors self.newline = newline self.fobjects = [] def __reduce__(self): return ( OpenFile, ( self.fs, self.path, self.mode, self.compression, self.encoding, self.errors, self.newline, ), ) def __repr__(self): return "<OpenFile '{}'>".format(self.path) def __fspath__(self): # may raise if cannot be resolved to local file return self.open().__fspath__() def __enter__(self): mode = self.mode.replace("t", "").replace("b", "") + "b" f = self.fs.open(self.path, mode=mode) self.fobjects = [f] if self.compression is not None: compress = compr[self.compression] f = compress(f, mode=mode[0]) self.fobjects.append(f) if "b" not in self.mode: # assume, for example, that 'r' is equivalent to 'rt' as in builtin f = io.TextIOWrapper( f, encoding=self.encoding, errors=self.errors, newline=self.newline ) self.fobjects.append(f) return self.fobjects[-1] def __exit__(self, *args): self.close() def __del__(self): if hasattr(self, "fobjects"): self.fobjects.clear() # may cause cleanup of objects and close files def open(self): """Materialise this as a real open file without context The file should be explicitly closed to avoid enclosed file instances persisting. This code-path monkey-patches the file-like objects, so they can close even if the parent OpenFile object has already been deleted; but a with-context is better style. """ out = self.__enter__() closer = out.close fobjects = self.fobjects.copy()[:-1] mode = self.mode def close(): # this func has no reference to closer() # original close bound method of the final file-like _close(fobjects, mode) # call close on other dependent file-likes out.close = close return out def close(self): """Close all encapsulated file objects""" _close(self.fobjects, self.mode) class OpenFiles(list): """List of OpenFile instances Can be used in a single context, which opens and closes all of the contained files. Normal list access to get the elements works as normal. A special case is made for caching filesystems - the files will be down/uploaded together at the start or end of the context, and this may happen concurrently, if the target filesystem supports it. """ def __init__(self, *args, mode="rb", fs=None): self.mode = mode self.fs = fs self.files = [] super().__init__(*args) def __enter__(self): if self.fs is None: raise ValueError("Context has already been used") fs = self.fs while True: if hasattr(fs, "open_many"): # check for concurrent cache download; or set up for upload self.files = fs.open_many(self) return self.files if hasattr(fs, "fs") and fs.fs is not None: fs = fs.fs else: break return [s.__enter__() for s in self] def __exit__(self, *args): fs = self.fs if "r" not in self.mode: while True: if hasattr(fs, "open_many"): # check for concurrent cache upload fs.commit_many(self.files) self.files.clear() return if hasattr(fs, "fs") and fs.fs is not None: fs = fs.fs else: break [s.__exit__(*args) for s in self] def __repr__(self): return "<List of %s OpenFile instances>" % len(self) def _close(fobjects, mode): for f in reversed(fobjects): if "r" not in mode and not f.closed: f.flush() f.close() fobjects.clear() def open_files( urlpath, mode="rb", compression=None, encoding="utf8", errors=None, name_function=None, num=1, protocol=None, newline=None, auto_mkdir=True, expand=True, **kwargs, ): """Given a path or paths, return a list of ``OpenFile`` objects. For writing, a str path must contain the "*" character, which will be filled in by increasing numbers, e.g., "part*" -> "part1", "part2" if num=2. For either reading or writing, can instead provide explicit list of paths. Parameters ---------- urlpath: string or list Absolute or relative filepath(s). Prefix with a protocol like ``s3://`` to read from alternative filesystems. To read from multiple files you can pass a globstring or a list of paths, with the caveat that they must all have the same protocol. mode: 'rb', 'wt', etc. compression: string Compression to use. See ``dask.bytes.compression.files`` for options. encoding: str For text mode only errors: None or str Passed to TextIOWrapper in text mode name_function: function or None if opening a set of files for writing, those files do not yet exist, so we need to generate their names by formatting the urlpath for each sequence number num: int [1] if writing mode, number of files we expect to create (passed to name+function) protocol: str or None If given, overrides the protocol found in the URL. newline: bytes or None Used for line terminator in text mode. If None, uses system default; if blank, uses no translation. auto_mkdir: bool (True) If in write mode, this will ensure the target directory exists before writing, by calling ``fs.mkdirs(exist_ok=True)``. expand: bool **kwargs: dict Extra options that make sense to a particular storage connection, e.g. host, port, username, password, etc. Examples -------- >>> files = open_files('2015-*-*.csv') # doctest: +SKIP >>> files = open_files( ... 's3://bucket/2015-*-*.csv.gz', compression='gzip' ... ) # doctest: +SKIP Returns ------- An ``OpenFiles`` instance, which is a list of ``OpenFile`` objects that can be used as a single context """ fs, fs_token, paths = get_fs_token_paths( urlpath, mode, num=num, name_function=name_function, storage_options=kwargs, protocol=protocol, expand=expand, ) if "r" not in mode and auto_mkdir: parents = {fs._parent(path) for path in paths} [fs.makedirs(parent, exist_ok=True) for parent in parents] return OpenFiles( [ OpenFile( fs, path, mode=mode, compression=compression, encoding=encoding, errors=errors, newline=newline, ) for path in paths ], mode=mode, fs=fs, ) def _un_chain(path, kwargs): if isinstance(path, (tuple, list)): bits = [_un_chain(p, kwargs) for p in path] out = [] for pbit in zip(*bits): paths, protocols, kwargs = zip(*pbit) if len(set(protocols)) > 1: raise ValueError("Protocol mismatch in URL chain") if len(set(paths)) == 1: paths = paths[0] else: paths = list(paths) out.append([paths, protocols[0], kwargs[0]]) return out x = re.compile(".*[^a-z]+.*") # test for non protocol-like single word bits = ( [p if "://" in p or x.match(p) else p + "://" for p in path.split("::")] if "::" in path else [path] ) if len(bits) < 2: return [] # [[url, protocol, kwargs], ...] out = [] previous_bit = None for bit in reversed(bits): protocol = split_protocol(bit)[0] or "file" cls = get_filesystem_class(protocol) extra_kwargs = cls._get_kwargs_from_urls(bit) kws = kwargs.get(protocol, {}) kw = dict(**extra_kwargs, **kws) bit = cls._strip_protocol(bit) if ( protocol in {"blockcache", "filecache", "simplecache"} and "target_protocol" not in kw ): bit = previous_bit out.append((bit, protocol, kw)) previous_bit = bit out = list(reversed(out)) return out def url_to_fs(url, **kwargs): """Turn fully-qualified and potentially chained URL into filesystem instance""" chain = _un_chain(url, kwargs) if len(chain) > 1: inkwargs = {} # Reverse iterate the chain, creating a nested target_* structure for i, ch in enumerate(reversed(chain)): urls, protocol, kw = ch if i == len(chain) - 1: inkwargs = dict(**kw, **inkwargs) continue inkwargs["target_options"] = dict(**kw, **inkwargs) inkwargs["target_protocol"] = protocol inkwargs["fo"] = urls urlpath, protocol, _ = chain[0] fs = filesystem(protocol, **inkwargs) else: protocol = split_protocol(url)[0] cls = get_filesystem_class(protocol) options = cls._get_kwargs_from_urls(url) update_storage_options(options, kwargs) fs = cls(**options) urlpath = fs._strip_protocol(url) return fs, urlpath def open( urlpath, mode="rb", compression=None, encoding="utf8", errors=None, protocol=None, newline=None, **kwargs, ): """Given a path or paths, return one ``OpenFile`` object. Parameters ---------- urlpath: string or list Absolute or relative filepath. Prefix with a protocol like ``s3://`` to read from alternative filesystems. Should not include glob character(s). mode: 'rb', 'wt', etc. compression: string Compression to use. See ``dask.bytes.compression.files`` for options. encoding: str For text mode only errors: None or str Passed to TextIOWrapper in text mode protocol: str or None If given, overrides the protocol found in the URL. newline: bytes or None Used for line terminator in text mode. If None, uses system default; if blank, uses no translation. **kwargs: dict Extra options that make sense to a particular storage connection, e.g. host, port, username, password, etc. Examples -------- >>> openfile = open('2015-01-01.csv') # doctest: +SKIP >>> openfile = open( ... 's3://bucket/2015-01-01.csv.gz', compression='gzip' ... ) # doctest: +SKIP >>> with openfile as f: ... df = pd.read_csv(f) # doctest: +SKIP ... Returns ------- ``OpenFile`` object. """ return open_files( urlpath=[urlpath], mode=mode, compression=compression, encoding=encoding, errors=errors, protocol=protocol, newline=newline, expand=False, **kwargs, )[0] def open_local(url, mode="rb", **storage_options): """Open file(s) which can be resolved to local For files which either are local, or get downloaded upon open (e.g., by file caching) Parameters ---------- url: str or list(str) mode: str Must be read mode storage_options: passed on to FS for or used by open_files (e.g., compression) """ if "r" not in mode: raise ValueError("Can only ensure local files when reading") of = open_files(url, mode=mode, **storage_options) if not getattr(of[0].fs, "local_file", False): raise ValueError( "open_local can only be used on a filesystem which" " has attribute local_file=True" ) with of as files: paths = [f.name for f in files] if isinstance(url, str) and not has_magic(url): return paths[0] return paths def get_compression(urlpath, compression): if compression == "infer": compression = infer_compression(urlpath) if compression is not None and compression not in compr: raise ValueError("Compression type %s not supported" % compression) return compression def split_protocol(urlpath): """Return protocol, path pair""" urlpath = stringify_path(urlpath) if "://" in urlpath: protocol, path = urlpath.split("://", 1) if len(protocol) > 1: # excludes Windows paths return protocol, path return None, urlpath def strip_protocol(urlpath): """Return only path part of full URL, according to appropriate backend""" protocol, _ = split_protocol(urlpath) cls = get_filesystem_class(protocol) return cls._strip_protocol(urlpath) def expand_paths_if_needed(paths, mode, num, fs, name_function): """Expand paths if they have a ``*`` in them. :param paths: list of paths mode: str Mode in which to open files. num: int If opening in writing mode, number of files we expect to create. fs: filesystem object name_function: callable If opening in writing mode, this callable is used to generate path names. Names are generated for each partition by ``urlpath.replace('*', name_function(partition_index))``. :return: list of paths """ expanded_paths = [] paths = list(paths) if "w" in mode and sum([1 for p in paths if "*" in p]) > 1: raise ValueError("When writing data, only one filename mask can be specified.") elif "w" in mode: num = max(num, len(paths)) for curr_path in paths: if "*" in curr_path: if "w" in mode: # expand using name_function expanded_paths.extend(_expand_paths(curr_path, name_function, num)) else: # expand using glob expanded_paths.extend(fs.glob(curr_path)) else: expanded_paths.append(curr_path) # if we generated more paths that asked for, trim the list if "w" in mode and len(expanded_paths) > num: expanded_paths = expanded_paths[:num] return expanded_paths def get_fs_token_paths( urlpath, mode="rb", num=1, name_function=None, storage_options=None, protocol=None, expand=True, ): """Filesystem, deterministic token, and paths from a urlpath and options. Parameters ---------- urlpath: string or iterable Absolute or relative filepath, URL (may include protocols like ``s3://``), or globstring pointing to data. mode: str, optional Mode in which to open files. num: int, optional If opening in writing mode, number of files we expect to create. name_function: callable, optional If opening in writing mode, this callable is used to generate path names. Names are generated for each partition by ``urlpath.replace('*', name_function(partition_index))``. storage_options: dict, optional Additional keywords to pass to the filesystem class. protocol: str or None To override the protocol specifier in the URL expand: bool Expand string paths for writing, assuming the path is a directory """ if isinstance(urlpath, (list, tuple, set)): if not urlpath: raise ValueError("empty urlpath sequence") urlpath = [stringify_path(u) for u in urlpath] else: urlpath = stringify_path(urlpath) chain = _un_chain(urlpath, storage_options or {}) if len(chain) > 1: inkwargs = {} # Reverse iterate the chain, creating a nested target_* structure for i, ch in enumerate(reversed(chain)): urls, nested_protocol, kw = ch if i == len(chain) - 1: inkwargs = dict(**kw, **inkwargs) continue inkwargs["target_options"] = dict(**kw, **inkwargs) inkwargs["target_protocol"] = nested_protocol inkwargs["fo"] = urls paths, protocol, _ = chain[0] fs = filesystem(protocol, **inkwargs) if isinstance(paths, (list, tuple, set)): paths = [fs._strip_protocol(u) for u in paths] else: paths = fs._strip_protocol(paths) else: if isinstance(urlpath, (list, tuple, set)): protocols, paths = zip(*map(split_protocol, urlpath)) if protocol is None: protocol = protocols[0] if not all(p == protocol for p in protocols): raise ValueError( "When specifying a list of paths, all paths must " "share the same protocol" ) cls = get_filesystem_class(protocol) optionss = list(map(cls._get_kwargs_from_urls, urlpath)) paths = [cls._strip_protocol(u) for u in urlpath] options = optionss[0] if not all(o == options for o in optionss): raise ValueError( "When specifying a list of paths, all paths must " "share the same file-system options" ) update_storage_options(options, storage_options) fs = cls(**options) else: protocols = split_protocol(urlpath)[0] protocol = protocol or protocols cls = get_filesystem_class(protocol) options = cls._get_kwargs_from_urls(urlpath) paths = cls._strip_protocol(urlpath) update_storage_options(options, storage_options) fs = cls(**options) if isinstance(paths, (list, tuple, set)): paths = expand_paths_if_needed(paths, mode, num, fs, name_function) else: if "w" in mode and expand: paths = _expand_paths(paths, name_function, num) elif "*" in paths: paths = [f for f in sorted(fs.glob(paths)) if not fs.isdir(f)] else: paths = [paths] return fs, fs._fs_token, paths def _expand_paths(path, name_function, num): if isinstance(path, str): if path.count("*") > 1: raise ValueError("Output path spec must contain exactly one '*'.") elif "*" not in path: path = os.path.join(path, "*.part") if name_function is None: name_function = build_name_function(num - 1) paths = [path.replace("*", name_function(i)) for i in range(num)] if paths != sorted(paths): logger.warning( "In order to preserve order between partitions" " paths created with ``name_function`` should " "sort to partition order" ) elif isinstance(path, (tuple, list)): assert len(path) == num paths = list(path) else: raise ValueError( "Path should be either\n" "1. A list of paths: ['foo.json', 'bar.json', ...]\n" "2. A directory: 'foo/\n" "3. A path with a '*' in it: 'foo.*.json'" ) return paths
{ "repo_name": "intake/filesystem_spec", "path": "fsspec/core.py", "copies": "1", "size": "21270", "license": "bsd-3-clause", "hash": 7342794919521575000, "line_mean": 31.2761760243, "line_max": 87, "alpha_frac": 0.5740479549, "autogenerated": false, "ratio": 4.148624926857812, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00014591733536426776, "num_lines": 659 }
from __future__ import absolute_import, division, print_function import io import logging import os.path import sys import pprint from virtualenv.builders.base import BaseBuilder from virtualenv._utils import copyfile from virtualenv._utils import ensure_directory SITE = b"""# -*- encoding: utf-8 -*- import os import os.path import sys try: # Workaround for pypy losing it's builtin _struct module. The bundled # _struct.py is horribly broken, see: # https://bitbucket.org/pypy/pypy/issue/1959/zipimport-issue-unorderable-types-str-int import _struct except ImportError: pass try: # Workaround for pypy having a `builtin` symbol module. Don't laugh, it's not funny! import symbol except ImportError: pass # We want to stash the global site-packages here, this will be None if we're # not adding them. global_site_packages = __GLOBAL_SITE_PACKAGES__ # We want to make sure that our sys.prefix and sys.exec_prefix match the # locations in our virtual enviornment. # Note that case normalization is done here instead of the host interpreter # to avoid differences - if any. sys.prefix = os.path.normcase(__PREFIX__) sys.exec_prefix = os.path.normcase(__EXEC_PREFIX__) # We want to record what the "real/base" prefix is of the virtual environment. # We store the variants `real_` prefix for compatibility with code that detects # virtualenvs that way. Eg: Debian patches, pip, wheel etc ... sys.real_prefix = sys.base_prefix = os.path.normcase(__BASE_PREFIX__) sys.real_exec_prefix = sys.base_exec_prefix = os.path.normcase(__BASE_EXEC_PREFIX__) # This is used in the creation phase when pip is installed in the virtualenv. # We don't want those damn egg tripping up our PYTHONPATH whl loading, so we # instruct setuptools to add the eggs at the end of sys.path (or whatever position # VIRTUALENV_BOOTSTRAP_ADJUST_EGGINSERT specifies) if "VIRTUALENV_BOOTSTRAP_ADJUST_EGGINSERT" in os.environ: sys.__egginsert = int(os.environ["VIRTUALENV_BOOTSTRAP_ADJUST_EGGINSERT"]) # At the point this code is running, the only paths on the sys.path are the # paths that the interpreter adds itself. These are essentially the locations # it looks for the various stdlib modules. Since we are inside of a virtual # environment these will all be relative to the sys.prefix and sys.exec_prefix, # however we want to change these to be relative to sys.base_prefix and # sys.base_exec_prefix instead. new_sys_path = [] for path in sys.path: # TODO: Is there a better way to determine this? path = os.path.normcase(os.path.realpath(os.path.abspath(path))) if path.startswith(sys.prefix): path = os.path.join( sys.base_prefix, path[len(sys.prefix):].lstrip(os.path.sep), ) elif path.startswith(sys.exec_prefix): path = os.path.join( sys.base_exec_prefix, path[len(sys.exec_prefix):].lstrip(os.path.sep), ) new_sys_path.append(path) sys.path = new_sys_path # We want to empty everything that has already been imported from the # sys.modules so that any additional imports of these modules will import them # from the base Python and not from the copies inside of the virtual # environment. This will ensure that our copies will only be used for # bootstrapping the virtual environment. # TODO: is this really necessary? They would be the same modules as the global ones after all /// dirty_modules = [ # TODO: there might be less packages required but we # need to extend the integration tests to see exactly what "__builtin__", "__main__", "_frozen_importlib", "_frozen_importlib_external", "builtins", "codecs", "encodings", "site", "sitecustomize", "symbol", ] dirty_modules.extend(sys.builtin_module_names) for key in list(sys.modules): # We don't want to purge these modules because if we do, then things break # very badly. parts = key.split('.') if parts[0] in dirty_modules: continue else: del sys.modules[key] # We want to trick the interpreter into thinking that the user specific # site-packages has been requested to be disabled. We'll do this by mimicing # that sys.flags.no_user_site has been set to False, however sys.flags is a # read-only structure so we'll temporarily replace it with one that has the # same values except for sys.flags.no_user_site which will be set to True. _real_sys_flags = sys.flags class AttrDict(dict): def __init__(self, *args, **kwargs): dict.__init__(self, *args, **kwargs) def __getattr__(self, name): return self[name] sys.flags = AttrDict((k, getattr(sys.flags, k)) for k in dir(sys.flags)) sys.flags["no_user_site"] = True # We want to import the *real* site module from the base Python. Actually # attempting to do an import here will just import this module again, so we'll # just read the real site module and exec it. with open(__SITE__) as fp: exec(fp.read()) # Restore the real sys.flags sys.flags = _real_sys_flags # On Debian-enized platforms the site.py won't add site-packages on sys.path # (it will add dist-packages and other crazy stuff). # Therefore we need to match pip's install location (site-packages) from distutils import sysconfig python_lib = sysconfig.get_python_lib() if python_lib not in sys.path: addsitedir(python_lib) # If we're running with the global site-packages enabled, then we'll want to # go ahead and enable it here so that it comes after the virtual environment's # site-package. if global_site_packages is not None: # Force a re-check of ENABLE_USER_SITE so that we get the "real" value # instead of our forced off value. ENABLE_USER_SITE = check_enableusersite() # Add the actual user site-packages if we're supposed to. addusersitepackages(None) # Add the actual global site-packages. for path in global_site_packages: addsitedir(path) # Apply distutils patches. Originally from virtualenv_embedded/distutils-init.py # Support for per virtualenv distutils.cfg is missing. def patch(module, name): original = getattr(module, name) def decorator(replacement): def wrapper(*args, **kwargs): return replacement(original, *args, **kwargs) wrapper.__doc__ = original.__doc__ setattr(module, name, wrapper) return decorator try: basestring except NameError: basestring = str # Patch build_ext (distutils doesn't know how to get the libs directory # path on windows - it hardcodes the paths around the patched sys.prefix) if sys.platform == 'win32': from distutils.command.build_ext import build_ext @patch(build_ext, 'finalize_options') def finalize_options(original, self): if self.library_dirs is None: self.library_dirs = [] elif isinstance(self.library_dirs, basestring): self.library_dirs = self.library_dirs.split(os.pathsep) self.library_dirs.insert(0, os.path.join(sys.real_prefix, "Libs")) original(self) ## distutils.sysconfig patches: from distutils import sysconfig @patch(sysconfig, 'get_python_inc') def sysconfig_get_python_inc(original, plat_specific=0, prefix=None): if prefix is None: prefix = sys.real_prefix return original(plat_specific, prefix) @patch(sysconfig, 'get_python_lib') def sysconfig_get_python_lib(original, plat_specific=0, standard_lib=0, prefix=None): if standard_lib and prefix is None: prefix = sys.real_prefix return original(plat_specific, standard_lib, prefix) @patch(sysconfig, 'get_config_vars') def sysconfig_get_config_vars(original, *args): real_vars = original(*args) if sys.platform == 'win32': lib_dir = os.path.join(sys.real_prefix, "libs") if isinstance(real_vars, dict) and 'LIBDIR' not in real_vars: real_vars['LIBDIR'] = lib_dir # asked for all elif isinstance(real_vars, list) and 'LIBDIR' in args: real_vars = real_vars + [lib_dir] # asked for list return real_vars """ logger = logging.getLogger(__name__) class LegacyBuilder(BaseBuilder): @classmethod def check_available(cls, python): # TODO: Do we ever want to make this builder *not* available? return True def _locate_module(self, mod, search_paths): for search_path in search_paths: pymod = os.path.join(search_path, mod + ".py") if os.path.exists(pymod): return pymod path = os.path.join(search_path, mod) if os.path.exists(path): return path def _path_repr(self, string): return ( b"'" + string.encode(sys.getfilesystemencoding()) .replace(b"'", b"\\'") .replace(b"\\", b"\\\\") + b"'" ) def create_virtual_environment(self, destination): logger.debug("Getting python info: \n%s", pprint.pformat(self._python_info)) # Create our binaries that we'll use to create the virtual environment bin_dir = os.path.join(destination, self.flavor.bin_dir(self._python_info)) ensure_directory(bin_dir) for python_bin in self.flavor.python_bins(self._python_info): copyfile( self._python_info["sys.executable"], os.path.join(bin_dir, python_bin), ) # Copy extra bins, like some DLLs PyPy likes to have in it's bin dir ... for extra_bin in self.flavor.extra_bins(self._python_info): for bin_src in set([ os.path.join(self._python_info["sys.prefix"], extra_bin), os.path.join(os.path.dirname(self._python_info["sys.executable"]), extra_bin), ]): if os.path.exists(bin_src): copyfile( bin_src, os.path.join(bin_dir, extra_bin), ) # Create our lib directory, this is going to hold all of the parts of # the standard library that we need in order to ensure that we can # successfully bootstrap a Python interpreter. lib_dir = os.path.join( destination, self.flavor.lib_dir(self._python_info) ) ensure_directory(lib_dir) # Create our site-packages directory, this is the thing that end users # really want control over. site_packages_dir = os.path.join(lib_dir, "site-packages") ensure_directory(site_packages_dir) # The site module has a number of required modules that it needs in # order to be successfully imported, so we'll copy each of those module # into our virtual environment's lib directory as well. Note that this # list also includes the os module, but since we've already copied # that we'll go ahead and omit it. sys_prefix = self._python_info["sys.prefix"] lib_dirs = [ path for path in self._python_info["sys.path"] if path.startswith(sys_prefix) # TODO: this has an unhandled edgecase, it handle case with # partial match (should only match full components) ] for module in self.flavor.bootstrap_modules(self._python_info): modulepath = self._locate_module(module, lib_dirs) if modulepath: copyfile( modulepath, os.path.join( destination, os.path.relpath(modulepath, sys_prefix) ), ) osmodulepath = self._locate_module("os", lib_dirs) if not osmodulepath: raise RuntimeError("Can't locate os module in any of %s." % lib_dirs) osmoduledestination = os.path.join( destination, os.path.relpath(osmodulepath, sys_prefix) ) copyfile(osmodulepath, osmoduledestination) include_dir = self.flavor.include_dir(self._python_info) src_include_dir = os.path.join(self._python_info["sys.prefix"], include_dir) if os.path.exists(src_include_dir): copyfile(src_include_dir, os.path.join(destination, include_dir)) copyfile(src_include_dir, os.path.join(destination, "local", include_dir)) else: logger.critical("You're missing %r. You many need to install the development packages for this intepreter.", src_include_dir) dst = os.path.join(os.path.dirname(osmoduledestination), "site.py") logger.debug("Writing %s", dst) with io.open(dst, "wb") as dst_fp: # Get the data from our source file, and replace our special # variables with the computed data. data = SITE data = data.replace(b"__PREFIX__", self._path_repr(destination)) data = data.replace(b"__EXEC_PREFIX__", self._path_repr(destination)) data = data.replace( b"__BASE_PREFIX__", self._path_repr(self._python_info["sys.prefix"]), ) data = data.replace( b"__BASE_EXEC_PREFIX__", self._path_repr(self._python_info["sys.exec_prefix"]), ) data = data.replace(b"__SITE__", self._path_repr(self._python_info["site.py"])) data = data.replace( b"__GLOBAL_SITE_PACKAGES__", ( b"[" + b", ".join( self._path_repr(path) for path in self._python_info["site.getsitepackages"] ) + b"]" ) if self.system_site_packages else b"None", ) if self.verbose: dst_fp.write(b"""# -*- encoding: utf-8 -*- import sys print("DEBUG: sys.modules:") for m in sorted(sys.modules): print("DEBUG: %s - %s" % (m, sys.modules[m])) print("DEBUG: sys.path:") for p in sys.path: print("DEBUG: %s" % p) """) # Write the final site.py file to our lib directory dst_fp.write(data) if self.verbose: dst_fp.write(b""" print("DEBUG: sys.path after site.py run:") for p in sys.path: print("DEBUG: %s" % p) """)
{ "repo_name": "ionelmc/virtualenv", "path": "virtualenv/builders/legacy.py", "copies": "1", "size": "14244", "license": "mit", "hash": 9073391720060456000, "line_mean": 37.7065217391, "line_max": 120, "alpha_frac": 0.6378124122, "autogenerated": false, "ratio": 3.8372844827586206, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.997233917918046, "avg_score": 0.0005515431556321323, "num_lines": 368 }
from __future__ import absolute_import, division, print_function import io import os import sys from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand # Version is defined in biostructmap/__init__.py __version__ = "Undefined" for line in open('biostructmap/__init__.py'): if (line.startswith('__version__')): exec(line.strip()) here = os.path.abspath(os.path.dirname(__file__)) def read(*filenames, **kwargs): encoding = kwargs.get('encoding', 'utf-8') sep = kwargs.get('sep', '\n') buf = [] for filename in filenames: with io.open(filename, encoding=encoding) as f: buf.append(f.read()) return sep.join(buf) LONG_DESCRIPTION = read('README.rst', 'CHANGES.txt') class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest errcode = pytest.main(self.test_args) sys.exit(errcode) setup( name='biostructmap', version=__version__, url='https://github.com/andrewguy/biostructmap', download_url='https://github.com/andrewguy/biostructmap/archive/{0}.tar.gz'.format(__version__), author='Andrew Guy', tests_require=['pytest'], setup_requires=['numpy'], install_requires=['Biopython>=1.66', 'DendroPy>=4.0.3', 'numpy' ], cmdclass={'test': PyTest}, author_email='andrewjguy42@gmail.com', description='A package for mapping biological data onto protein PDB structures', long_description=LONG_DESCRIPTION, packages=['biostructmap'], include_package_data=True, platforms='any', test_suite='tests.test_biostructmap', classifiers=[ 'Programming Language :: Python', 'Development Status :: 4 - Beta', 'Natural Language :: English', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Topic :: Scientific/Engineering :: Bio-Informatics', ], extras_require={ 'testing': ['pytest'], } )
{ "repo_name": "andrewguy/biostructmap", "path": "setup.py", "copies": "1", "size": "2221", "license": "mit", "hash": -8333615552728129000, "line_mean": 30.2816901408, "line_max": 100, "alpha_frac": 0.6240432238, "autogenerated": false, "ratio": 3.8030821917808217, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49271254155808214, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import io import os.path import tarfile import tempfile from requests.utils import urlparse import appr.pack as packager from appr.client import ApprClient class FormatBase(object): media_type = NotImplementedError target = NotImplementedError kub_class = NotImplementedError manifest_file = [] appr_client = ApprClient def __init__(self, name, version=None, endpoint=None, ssl_verify=True, **kwargs): self._deploy_name = name self._deploy_version = version or {"key": "version", "value": 'default'} self.endpoint = endpoint self._registry = self.appr_client(endpoint=self.endpoint, requests_verify=ssl_verify) self._package = None self._manifest = None @property def package(self): if self._package is None: result = self._fetch_package() self._package = packager.ApprPackage(result, b64_encoded=True) return self._package def _create_manifest(self): raise NotImplementedError @property def manifest(self): if self._manifest is None: self._manifest = self._create_manifest() return self._manifest def __unicode__(self): return ("(<{class_name}({name}=={version})>".format(class_name=self.__class__.__name__, name=self.name, version=self.version)) def __str__(self): return self.__unicode__().encode('utf-8') def __repr__(self): return self.__str__() @property def author(self): pass @property def version(self): return self.manifest.version @property def description(self): pass @property def name(self): return self.manifest.name @property def variables(self): pass def _fetch_package(self): parse = urlparse(self._deploy_name) if parse.scheme in ["http", "https"]: # @TODO pass elif parse.scheme == "file": parts = parse.path.split("/") _, ext = os.path.splitext(parts[-1]) if ext == ".gz": filepath = parse.path else: filepath = tempfile.NamedTemporaryFile().name packager.pack_kub(filepath) with open(filepath, "rb") as tarf: return tarf.read() else: return self._registry.pull_json(self._deploy_name, self._deploy_version, self.media_type)['blob'] def make_tarfile(self, source_dir): output = io.BytesIO() with tarfile.open(fileobj=output, mode="w:gz") as tar: tar.add(source_dir, arcname=os.path.basename(source_dir)) return output
{ "repo_name": "app-registry/appr", "path": "appr/formats/base.py", "copies": "2", "size": "2847", "license": "apache-2.0", "hash": 8255804244835634000, "line_mean": 28.0510204082, "line_max": 98, "alpha_frac": 0.5753424658, "autogenerated": false, "ratio": 4.3071104387291985, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5882452904529198, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import ipaddress import pytest from cryptography.hazmat.backends import default_backend from cryptography.x509 import load_pem_x509_certificate from service_identity import SubjectAltNameWarning from service_identity._common import ( DNS_ID, DNSPattern, IPAddress_ID, IPAddressPattern, URIPattern, ) from service_identity.cryptography import ( extract_ids, verify_certificate_hostname, verify_certificate_ip_address, ) from service_identity.exceptions import ( DNSMismatch, IPAddressMismatch, VerificationError, ) from .util import PEM_CN_ONLY, PEM_DNS_ONLY, PEM_EVERYTHING, PEM_OTHER_NAME backend = default_backend() X509_DNS_ONLY = load_pem_x509_certificate(PEM_DNS_ONLY, backend) X509_CN_ONLY = load_pem_x509_certificate(PEM_CN_ONLY, backend) X509_OTHER_NAME = load_pem_x509_certificate(PEM_OTHER_NAME, backend) CERT_EVERYTHING = load_pem_x509_certificate(PEM_EVERYTHING, backend) class TestPublicAPI(object): def test_certificate_verify_hostname_ok(self): """ verify_certificate_hostname succeeds if the hostnames match. """ verify_certificate_hostname(X509_DNS_ONLY, u"twistedmatrix.com") def test_certificate_verify_hostname_fail(self): """ verify_certificate_hostname fails if the hostnames don't match and provides the user with helpful information. """ with pytest.raises(VerificationError) as ei: verify_certificate_hostname(X509_DNS_ONLY, u"google.com") assert [ DNSMismatch(mismatched_id=DNS_ID(u"google.com")) ] == ei.value.errors @pytest.mark.parametrize("ip", [u"1.1.1.1", u"::1"]) def test_verify_certificate_ip_address_ok(self, ip): """ verify_certificate_ip_address succeeds if the addresses match. Works both with IPv4 and IPv6. """ verify_certificate_ip_address(CERT_EVERYTHING, ip) @pytest.mark.parametrize("ip", [u"1.1.1.2", u"::2"]) def test_verify_ip_address_fail(self, ip): """ verify_ip_address fails if the addresses don't match and provides the user with helpful information. Works both with IPv4 and IPv6. """ with pytest.raises(VerificationError) as ei: verify_certificate_ip_address(CERT_EVERYTHING, ip) assert [ IPAddressMismatch(mismatched_id=IPAddress_ID(ip)) ] == ei.value.errors class TestExtractIDs(object): def test_dns(self): """ Returns the correct DNSPattern from a certificate. """ rv = extract_ids(X509_DNS_ONLY) assert [ DNSPattern(b"www.twistedmatrix.com"), DNSPattern(b"twistedmatrix.com"), ] == rv def test_cn_ids_are_used_as_fallback(self): """ CNs are returned as DNSPattern if no other IDs are present and a warning is raised. """ with pytest.warns(SubjectAltNameWarning): rv = extract_ids(X509_CN_ONLY) assert [DNSPattern(b"www.microsoft.com")] == rv def test_uri(self): """ Returns the correct URIPattern from a certificate. """ rv = extract_ids(X509_OTHER_NAME) assert [URIPattern(b"http://example.com/")] == [ id for id in rv if isinstance(id, URIPattern) ] def test_ip(self): """ Returns IP patterns. """ rv = extract_ids(CERT_EVERYTHING) assert [ DNSPattern(pattern=b"service.identity.invalid"), DNSPattern(pattern=b"*.wildcard.service.identity.invalid"), DNSPattern(pattern=b"service.identity.invalid"), DNSPattern(pattern=b"single.service.identity.invalid"), IPAddressPattern(pattern=ipaddress.IPv4Address(u"1.1.1.1")), IPAddressPattern(pattern=ipaddress.IPv6Address(u"::1")), IPAddressPattern(pattern=ipaddress.IPv4Address(u"2.2.2.2")), IPAddressPattern(pattern=ipaddress.IPv6Address(u"2a00:1c38::53")), ] == rv
{ "repo_name": "pyca/service_identity", "path": "tests/test_cryptography.py", "copies": "1", "size": "4109", "license": "mit", "hash": 5848667481885968000, "line_mean": 32.1370967742, "line_max": 78, "alpha_frac": 0.6454125091, "autogenerated": false, "ratio": 3.7286751361161525, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48740876452161525, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools import copy import numpy as np from horton import * from .fields_generate import Fields from .function_fit import poly_fit,rat_fit, solve def finitefield_ham(ham, lf, obasis, f_order, field, xyz=None): """ This function return back hamiltonian with multipole moment term in external field **Arguments** lf LinalgFactory object from horton obasis Gaussian basis set object from horton f_order order of field field field xyz center of multipole moment, it's [0. 0. 0.] by default """ if not xyz: xyz = np.zeros(3) mm = DenseTwoIndex(obasis.nbasis) for j, perm in enumerate(itertools.combinations_with_replacement((0, 1, 2), f_order)): mask = np.zeros(3, dtype=np.int64) for i in perm: mask[i] += 1 mm_tmp = obasis.compute_multipolemoment(mask, xyz, lf) mm_tmp._array = mm_tmp._array*field[j] mm._array += mm_tmp._array ham.terms.append(RTwoIndexTerm(mm,'mm')) return ham def finitefield_energy(ham, lf, olp, orb, occ_model, method='hf'): """ This function return back energy with multipole moment term in external field **Arguments** olp overlap matrix from horton orb alpha orbitals from horton, be carefully it also named exp_alpha. Make sure the varible name keep consistant when you use it. occ_model horton object to decide how to occupy the orbitals """ if method is 'hf': scf_solver = PlainSCFSolver(1e-6) scf_solver(ham, lf, olp, occ_model, orb) else: raise Exception return ham.compute_energy() def model_finitefield_ham(ham, lf, obasis, olp, orb, occ_model, mol, f_order, p_order, method='hf'): """ This function return back a set of fields and the energys for function fitting **Arguments** f_order a list include field order p_order polarizability order """ ham_backup = ham energys = [] obj = Fields(mol) fields = obj.fields(f_order, mol) for i, field in enumerate(fields): n0 = 0 n1 = 0 for i in f_order: n1 +=(i+1)*(i+2)/2 ham = copy.deepcopy(ham_backup) field_i=field[n0:n1] ffham = finitefield_ham(ham, lf, obasis, i, field_i) n0 = n1 energys.append(finitefield_energy(ffham, lf, olp, orb, occ_model, method=method)) return solve(fields, energys, f_order, [3,4], p_order)
{ "repo_name": "fhqgfss/polar", "path": "polar/data_generate.py", "copies": "1", "size": "2615", "license": "mit", "hash": 6013025386175439000, "line_mean": 24.1442307692, "line_max": 100, "alpha_frac": 0.6145315488, "autogenerated": false, "ratio": 3.48202396804261, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45965555168426103, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools import math from glob import glob import heapq from collections import Iterable, Iterator from toolz import (merge, concat, frequencies, merge_with, take, curry, reduce, join, reduceby, compose, second, valmap, count, map, partition_all, filter, pluck) try: from cytoolz import (curry, frequencies, merge_with, join, reduceby, compose, second, count, pluck) except ImportError: pass from ..multiprocessing import get as mpget from ..core import istask, get_dependencies, reverse_dict from ..optimize import fuse names = ('bag-%d' % i for i in itertools.count(1)) load_names = ('load-%d' % i for i in itertools.count(1)) def lazify_task(task, start=True): """ Given a task, remove unnecessary calls to ``list`` Example ------- >>> task = (sum, (list, (map, inc, [1, 2, 3]))) # doctest: +SKIP >>> lazify_task(task) # doctest: +SKIP (sum, (map, inc, [1, 2, 3])) """ if not istask(task): return task head, tail = task[0], task[1:] if not start and head is list: task = task[1] return lazify_task(*tail, start=False) else: return (head,) + tuple([lazify_task(arg, False) for arg in tail]) def lazify(dsk): """ Remove unnecessary calls to ``list`` in tasks See Also: ``dask.bag.core.lazify_task`` """ return valmap(lazify_task, dsk) get = curry(mpget, optimizations=[fuse, lazify]) def list2(seq): """ Another list function that won't be removed by lazify """ return list(seq) class Item(object): def __init__(self, dsk, key, get=get): self.dask = dsk self.key = key self.get = get def compute(self): return self.get(self.dask, self.key) __int__ = __float__ = __complex__ = __bool__ = compute class Bag(object): """ Unordered collection with repeats Computed in paritions with dask >>> dsk = {('x', 0): (range, 5), ... ('x', 1): (range, 5), ... ('x', 2): (range, 5)} >>> b = Bag(dsk, 'x', npartitions=3) >>> sorted(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 0, 0, 10, 10, 10, 20, 20, 20, 30, 30, 30, 40, 40, 40] >>> int(b.fold(lambda x, y: x + y)) # doctest: +SKIP 30 """ def __init__(self, dsk, name, npartitions, get=get): self.dask = dsk self.name = name self.npartitions = npartitions self.get = get @classmethod def from_filenames(cls, filenames): """ Create dask by loading in lines from many files Provide list of filenames >>> b = Bag.from_filenames(['myfile.1.txt', 'myfile.2.txt']) # doctest: +SKIP Or a globstring >>> b = Bag.from_filenames('myfiles.*.txt') # doctest: +SKIP """ if isinstance(filenames, str): filenames = sorted(glob(filenames)) d = dict((('load', i), (list, (open, fn))) for i, fn in enumerate(filenames)) return Bag(d, 'load', len(d)) @classmethod def from_sequence(cls, seq, partition_size=None, npartitions=None): """ Create dask from Python sequence This sequence should be relatively small in memory. Dask Bag works best when it handles loading your data itself. Commonly we load a sequence of filenames into a Bag and then use ``.map`` to open them. Parameters ---------- seq: Iterable A sequence of elements to put into the dask partition_size: int (optional) The length of each partition npartitions: int (optional) The number of desired partitions It is best to provide either ``partition_size`` or ``npartitions`` (though not both.) Example ------- >>> b = Bag.from_sequence(['Alice', 'Bob', 'Chuck'], partition_size=2) """ seq = list(seq) if npartitions and not partition_size: partition_size = int(math.ceil(len(seq) / npartitions)) if npartitions is None and partition_size is None: if len(seq) < 100: partition_size = 1 else: partition_size = int(len(seq) / 100) parts = list(partition_all(partition_size, seq)) name = next(load_names) d = dict(((name, i), part) for i, part in enumerate(parts)) return Bag(d, name, len(d)) def map(self, func): name = next(names) dsk = dict(((name, i), (list, (map, func, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def filter(self, predicate): name = next(names) dsk = dict(((name, i), (list, (filter, predicate, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def map_partitions(self, func): name = next(names) dsk = dict(((name, i), (func, (self.name, i))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def pluck(self, key): name = next(names) if isinstance(key, list): key = (list2, key) dsk = dict(((name, i), (list, (pluck, key, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def fold(self, binop, combine=None, initial=None): a = next(names) b = next(names) if initial: dsk = dict(((a, i), (reduce, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduce, binop, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (reduce, combine or binop, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) def frequencies(self): a = next(names) b = next(names) dsk = dict(((a, i), (frequencies, (self.name, i))) for i in range(self.npartitions)) dsk2 = {(b, 0): (dictitems, (merge_with, sum, list(sorted(dsk.keys()))))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def topk(self, k, key=None): a = next(names) b = next(names) if key: topk = curry(heapq.nlargest, key=key) else: topk = heapq.nlargest dsk = dict(((a, i), (list, (topk, k, (self.name, i)))) for i in range(self.npartitions)) dsk2 = {(b, 0): (list, (topk, k, (concat, list(dsk.keys()))))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def _reduction(self, perpartition, aggregate): a = next(names) b = next(names) dsk = dict(((a, i), (perpartition, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (aggregate, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) def sum(self): return self._reduction(sum, sum) def max(self): return self._reduction(max, max) def min(self): return self._reduction(min, min) def any(self): return self._reduction(any, any) def all(self): return self._reduction(all, all) def count(self): return self._reduction(count, sum) def mean(self): def chunk(seq): total, n = 0.0, 0 for x in seq: total += x n += 1 return total, n def agg(x): totals, counts = list(zip(*x)) return 1.0 * sum(totals) / sum(counts) return self._reduction(chunk, agg) def var(self, ddof=0): def chunk(seq): squares, total, n = 0.0, 0.0, 0 for x in seq: squares += x**2 total += x n += 1 return squares, total, n def agg(x): squares, totals, counts = list(zip(*x)) x2, x, n = float(sum(squares)), float(sum(totals)), sum(counts) result = (x2 / n) - (x / n)**2 return result * n / (n - ddof) return self._reduction(chunk, agg) def std(self, ddof=0): return math.sqrt(self.var(ddof=ddof)) def join(self, other, on_self, on_other=None): assert isinstance(other, Iterable) assert not isinstance(other, Bag) if on_other is None: on_other = on_self name = next(names) dsk = dict(((name, i), (list, (join, on_other, other, on_self, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def product(self, other): """ Cartesian product between two bags """ assert isinstance(other, Bag) name = next(names) n, m = self.npartitions, other.npartitions dsk = dict(((name, i*m + j), (list, (itertools.product, (self.name, i), (other.name, j)))) for i in range(n) for j in range(m)) return Bag(merge(self.dask, other.dask, dsk), name, n*m) def foldby(self, key, binop, initial=None, combine=None, combine_initial=None): a = next(names) b = next(names) if combine is None: combine = binop if initial: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i))) for i in range(self.npartitions)) combine2 = lambda acc, x: combine(acc, x[1]) if combine_initial: dsk2 = {(b, 0): (dictitems, (reduceby, 0, combine2, (concat, (map, dictitems, list(dsk.keys()))), combine_initial))} else: dsk2 = {(b, 0): (dictitems, (merge_with, (curry, reduce, combine), list(dsk.keys())))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def take(self, k): name = next(names) return Bag(merge(self.dask, {(name, 0): (list, (take, k, (self.name, 0)))}), name, 1) def _keys(self): return [(self.name, i) for i in range(self.npartitions)] def __iter__(self): results = self.get(self.dask, self._keys()) if isinstance(results[0], Iterable): results = concat(results) if not isinstance(results, Iterator): results = iter(results) return results def dictitems(d): """ A pickleable version of dict.items """ return list(d.items())
{ "repo_name": "PeterDSteinberg/dask", "path": "dask/bag/core.py", "copies": "1", "size": "11192", "license": "bsd-3-clause", "hash": -499842993702536770, "line_mean": 31.6297376093, "line_max": 86, "alpha_frac": 0.5229628306, "autogenerated": false, "ratio": 3.607994842037395, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4630957672637395, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools import math import distributed import numpy as np from time import time from toolz import concat, take from .clients import DaskClient, SerialClient from .stencil import RightHandedSimplexStencil class Point(object): __slots__ = 'point', 'halvings', 'parent', 'is_accepted', 'start_time', 'stop_time', 'result' def __init__(self, point, halvings): self.point = point self.halvings = halvings self.is_accepted = False self.stop_time = None def __hash__(self): return hash(self.point.tostring()) def __eq__(self, other): return np.array_equal(self.point, other.point) def __repr__(self): return type(self).__name__ + repr(self.point)[len('array'):] def randomize_chunk(i, it): L = list(take(i, it)) np.random.shuffle(L) return L def randomize_stencil(dims, it): return concat(randomize_chunk(i, it) for i in itertools.count(2*dims, dims)) def run_batch(func, points, args): return tuple(func(point, *args) for point in points) def search(func, x0, stepsize, client=None, args=(), max_queue_size=None, min_queue_size=None, min_new_submit=0, randomize=True, max_stencil_size=None, stopratio=0.01, max_tasks=None, max_time=None, integer_dimensions=None, batchsize=None, vectorize=False): """ Perform an asynchronous pattern search to minimize a function. A pattern of trial points is created around the current best point. No derivatives are calculated. Instead, this pattern shrinks as the algorithm converges. Tasks and results are submitted and collected fully asynchronously, and the current best point is updated as soon as possible. This algorithm should be able to scale to use any number of cores, although there are practical limitations such as scheduler overhead and memory usage. For example, using 100,000 cores to minimize a 100-D objective function should work just fine. Parameters ---------- func : callable The objective function to be minimized. Must be in the form ``func(x, *args)`` where ``x`` is a 1-D array and ``args`` is a tuple of extra arguments passed to the objective function. x0 : ndarray 1-D array; the initial guess. stepsize : ndarray 1-D array; the initial step sizes for each dimension. This may be repeatedly halved or doubled as the algorithm proceeds. It is best to choose step sizes larger than the features you want the algorithm to step over. client : dask.distributed.Client, optional Typically, a client to a ``dask.distributed`` scheduler should be passed. If a client is not given, then the algorithm will run serially in the current thread, and the default queue size will be ``3 * len(x0)``. args : tuple, optional Extra arguments passed to the objective function. max_queue_size : int or None, optional Maximum number of active tasks to have submitted to the client. Default is the greater of ``3 * len(x0)`` or the total number of threads plus the total number of worker processes of the the client's cluster. This default is chosen to maximize occupancy of available cores, but, in general, ``max_queue_size`` does not need to be related to compute resources at all. Choosing a larger ``max_queue_size`` is the best way to improve robustness of the algorithm. min_queue_size : int or None, optional Minimum number of active tasks to have submitted to the client. Default is ``max_queue_size // 2``. min_new_submit : int, optional The minimum number of trial points to submit after a new best point has been found before accepting an even better point. This may help when there are multiple minima being explored. randomize : bool, optional Whether to randomize the order of trial points (default True). max_stencil_size: int or None, optional The maximum size of the stencil used to create the pattern of trial points around the current best point. Default unlimited. stopratio : float, optional Termination condition: stop after the step size has been reduced by this amount. Must be between 0 and 1. Default is 0.01. max_tasks : int or None, optional Termination condition: stop after this many tasks have been completed. Default unlimited. max_time : float or None, optional Termination condition: stop submitting new tasks after this many seconds have passed. Default unlimited. integer_dimensions : array-like or None, optional 1-D array; specify the indices of integer dimensions. batchsize : int or None, optional Evaluate this many trial points in a single task. This is useful when the objective function is fast or vectorized. vectorize : bool Set to True if the objective function is vectorized. This means it accepts a 2-D array of points and returns a 1-D array of results. This can dramatically improve performance. ``batchsize`` must be given if ``vectorize`` is True. Returns ------- best_point: Point The optimization result. ``best_point.point`` is the ndarray. results: dict All evalulated points and their scores. """ # bound=None, low_memory_stencil=False if max_queue_size is None: max_queue_size = 3 * len(x0) if batchsize is not None: max_queue_size = max_queue_size // batchsize + 1 if client is not None and hasattr(client, 'ncores'): ncores = client.ncores() max_queue_size = max(max_queue_size, sum(ncores.values()) + len(ncores)) if min_queue_size is None: min_queue_size = max(1, max_queue_size // 2) if max_stencil_size is None: max_stencil_size = 1e9 if vectorize and batchsize is None: raise ValueError('batchsize argument must be given if vectorize is True') x0 = np.array(x0) stepsize = np.array(stepsize) dims = len(stepsize) max_halvings = math.frexp(1 / stopratio)[1] stencil = RightHandedSimplexStencil(dims, max_halvings) gridsize = stepsize / 2.**max_halvings if integer_dimensions is not None: integer_dimensions = np.array(integer_dimensions) int_dims = np.zeros(len(x0), dtype=np.bool) int_dims[integer_dimensions] = 1 x0[int_dims] = np.round(x0[int_dims]) def to_grid(x): return np.round(x / gridsize) * gridsize orientation = np.ones(dims) cur_point = Point(to_grid(x0), -1) cur_point.start_time = time() cur_point.parent = cur_point cur_cost = result = np.inf is_contraction = True new_point = None if max_time is not None: end_time = time() + max_time current_batch = [] running = {} processing = [] results = {} contract_conditions = set() next_point = None next_cost = None if client is None: client = SerialClient() elif isinstance(client, distributed.Client): client = DaskClient(client) if batchsize is None: def submit_point(point): results[point] = None future = client.submit(func, point.point, *args) running[future] = point else: def submit_point(point): results[point] = None current_batch.append(point) if len(current_batch) >= batchsize: points = (p.point for p in current_batch) if vectorize: future = client.submit(func, np.stack(points), *args) else: future = client.submit(run_batch, func, tuple(points), args) running[future] = tuple(current_batch) current_batch[:] = [] submit_point(cur_point) is_finished = False while not is_finished or running or next_point is not None or new_point is not None: if max_time is not None and time() > end_time: is_finished = True # Initialize new point if new_point is not None or is_contraction: if is_contraction: is_contraction = False if cur_point.stop_time is None: cur_point.stop_time = time() new_point = Point(cur_point.point, cur_point.halvings + 1) new_point.parent = cur_point new_point.is_accepted = True new_point.result = cur_cost new_cost = cur_cost new_point.start_time = time() cur_point = new_point cur_cost = new_cost new_point = None new_cost = None cur_stepsize = to_grid(orientation * stepsize / 2.**cur_point.halvings) if integer_dimensions is not None: # Change the minimum step size for integers to 1 cur_stepsize[int_dims & (cur_stepsize < 0) & (cur_stepsize > -1)] = -1 cur_stepsize[int_dims & (cur_stepsize > 0) & (cur_stepsize < 1)] = 1 cur_added = 0 contract_conditions.clear() it = stencil.generate_stencil_points() if randomize: it = randomize_stencil(dims, it) stencil_points = enumerate(it, 1) stencil_index = 0 if cur_point.halvings >= max_halvings: is_finished = True # Fill task queue with trial points while waiting for results if not is_finished: while ( len(running) < max_queue_size and stencil_index < max_stencil_size and ( len(running) < min_queue_size or cur_added < min_new_submit or next_point is None and not client.has_results() ) ): try: stencil_index, step = next(stencil_points) except StopIteration: if stencil_index < 2 * dims: raise # else warn stencil_index = max_stencil_size = stencil_index break if ( cur_added >= min_new_submit and stencil_index > 2 * dims and not contract_conditions ): is_contraction = True break halvings = step.halvings + cur_point.halvings dx = step.point * cur_stepsize if integer_dimensions is not None: # Round integer steps to the nearest integer away from zero dx_ints = dx[int_dims] dx[int_dims] = np.copysign(np.ceil(np.abs(dx_ints)), dx_ints) trial_point = to_grid(cur_point.point + dx) trial_point[int_dims] = np.round(trial_point[int_dims]) # Don't reduce the stepsize via the stencil if step is only ints if step.halvings > 0 and (dx[~int_dims] != 0).sum() == 0: halvings = cur_point.halvings else: trial_point = to_grid(cur_point.point + dx) if halvings > max_halvings: continue # TODO: check boundary constraints here # if check_feasible is not None and not check_feasible(trial_point): # continue trial_point = Point(trial_point, halvings) has_result = results.get(trial_point, False) if stencil_index <= 2 * dims and (has_result is False or has_result is None): contract_conditions.add(trial_point) if has_result is False: trial_point.parent = cur_point trial_point.start_time = time() submit_point(trial_point) cur_added += 1 if max_tasks is not None and len(results) // (batchsize or 1) >= max_tasks: is_finished = True break if is_contraction: continue # Collect all completed tasks, or wait for one if nothing else to do if running: block = ( len(running) >= max_queue_size or ( next_point is None and (is_finished or stencil_index >= max_stencil_size) ) ) for future, result in client.next_batch(block=block): stop_time = time() points = running.pop(future) if batchsize is None: points = [points] result = [result] for point, cost in zip(points, result): point.stop_time = stop_time if next_point is None: next_point = point next_cost = cost elif cost < next_cost: processing.append((next_point, next_cost)) next_point = point next_cost = cost else: processing.append((point, cost)) # Process all results # Be greedy: the new point will be the result with the lowest cost. # It's possible one could want a different policy to better explore # around multiple minima. if next_point is not None and (cur_added >= min_new_submit or stencil_index >= max_stencil_size or is_finished): results[next_point] = next_cost next_point.result = next_cost contract_conditions.discard(next_point) if next_cost < cur_cost: next_point.is_accepted = True # Orient the asymmetric stencil towards the expected direction # of descent based on the old and new points and their parents. # The stencil prefers negative directions, so this is the correct sign. diff = ( (next_point.point - next_point.parent.point) + (cur_point.point - cur_point.parent.point) ) orientation = np.where(diff, np.copysign(orientation, diff), orientation) new_point = next_point new_cost = next_cost for point, result in processing: results[point] = result point.result = result contract_conditions.discard(point) if new_point is None and not contract_conditions and stencil_index > 2 * dims: is_contraction = True next_point = None next_cost = None processing[:] = [] elif next_point is None and stencil_index >= max_stencil_size and not running and not is_finished: # Nothing running, nothing to process, and nothing to submit, so contract is_contraction = True for point in current_batch: results.pop(point) return cur_point, results
{ "repo_name": "eriknw/dask-patternsearch", "path": "dask_patternsearch/search.py", "copies": "1", "size": "15377", "license": "bsd-3-clause", "hash": 1635532030601539600, "line_mean": 41.3608815427, "line_max": 120, "alpha_frac": 0.5785914027, "autogenerated": false, "ratio": 4.238423373759647, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5317014776459648, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools import math import tempfile import heapq import inspect import gzip import bz2 import os from glob import glob from collections import Iterable, Iterator, defaultdict from functools import wraps, partial from toolz import (merge, frequencies, merge_with, take, curry, reduce, join, reduceby, valmap, count, map, partition_all, filter, pluck, groupby) import toolz from ..utils import tmpfile, ignoring with ignoring(ImportError): from cytoolz import (curry, frequencies, merge_with, join, reduceby, count, pluck, groupby) from pbag import PBag from ..multiprocessing import get as mpget from ..core import istask from ..optimize import fuse, cull from ..compatibility import apply, BytesIO, unicode from ..context import _globals names = ('bag-%d' % i for i in itertools.count(1)) load_names = ('load-%d' % i for i in itertools.count(1)) no_default = '__no__default__' def lazify_task(task, start=True): """ Given a task, remove unnecessary calls to ``list`` Example ------- >>> task = (sum, (list, (map, inc, [1, 2, 3]))) # doctest: +SKIP >>> lazify_task(task) # doctest: +SKIP (sum, (map, inc, [1, 2, 3])) """ if not istask(task): return task head, tail = task[0], task[1:] if not start and head is list: task = task[1] return lazify_task(*tail, start=False) else: return (head,) + tuple([lazify_task(arg, False) for arg in tail]) def lazify(dsk): """ Remove unnecessary calls to ``list`` in tasks See Also: ``dask.bag.core.lazify_task`` """ return valmap(lazify_task, dsk) def optimize(dsk, keys): """ Optimize a dask from a dask.bag """ dsk2 = cull(dsk, keys) dsk3 = fuse(dsk2) dsk4 = lazify(dsk3) return dsk4 def get(dsk, keys, get=None, **kwargs): """ Get function for dask.bag """ get = get or _globals['get'] or mpget dsk2 = optimize(dsk, keys) return get(dsk2, keys, **kwargs) _get = get def list2(seq): """ Another list function that won't be removed by lazify """ return list(seq) def to_textfiles(b, path, name_function=str): """ Write bag to disk, one filename per partition, one line per element **Paths**: This will create one file for each partition in your bag. You can specify the filenames in a variety of ways. Use a globstring >>> b.to_textfiles('/path/to/data/*.json.gz') # doctest: +SKIP The * will be replaced by the increasing sequence 1, 2, ... :: /path/to/data/0.json.gz /path/to/data/1.json.gz Use a globstring and a ``name_function=`` keyword argument. The name_function function should expect an integer and produce a string. >>> from datetime import date, timedelta >>> def name(i): ... return str(date(2015, 1, 1) + i * timedelta(days=1)) >>> name(0) '2015-01-01' >>> name(15) '2015-01-16' >>> b.to_textfiles('/path/to/data/*.json.gz', name_function=name) # doctest: +SKIP :: /path/to/data/2015-01-01.json.gz /path/to/data/2015-01-02.json.gz ... You can also provide an explicit list of paths. >>> paths = ['/path/to/data/alice.json.gz', '/path/to/data/bob.json.gz', ...] # doctest: +SKIP >>> b.to_textfiles(paths) # doctest: +SKIP **Compression**: Filenames with extensions corresponding to known compression algorithms (gz, bz2) will be compressed accordingly. """ if isinstance(path, (str, unicode)): if '*' in path: paths = [path.replace('*', name_function(i)) for i in range(b.npartitions)] else: paths = [os.path.join(path, '%s.part' % name_function(i)) for i in range(b.npartitions)] elif isinstance(path, (tuple, list, set)): assert len(path) == b.npartitions paths = path else: raise ValueError("Path should be either\n" "1. A list of paths -- ['foo.json', 'bar.json', ...]\n" "2. A directory -- 'foo/\n" "3. A path with a * in it -- 'foo.*.json'") name = next(names) dsk = dict(((name, i), (write, (b.name, i), path)) for i, path in enumerate(paths)) return Bag(merge(b.dask, dsk), name, b.npartitions) class Item(object): def __init__(self, dsk, key): self.dask = dsk self.key = key def compute(self, **kwargs): return get(self.dask, self.key, **kwargs) def apply(self, func): name = next(names) dsk = {name: (func, self.key)} return Item(merge(self.dask, dsk), name) __int__ = __float__ = __complex__ = __bool__ = compute class Bag(object): """ Parallel collection of Python objects Example ------- Create Bag from sequence >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.filter(lambda x: x % 2 == 0).map(lambda x: x * 10)) # doctest: +SKIP [0, 20, 40] Create Bag from filename or globstring of filenames >>> b = db.from_filenames('/path/to/mydata.*.json.gz').map(json.loads) # doctest: +SKIP Create manually (expert use) >>> dsk = {('x', 0): (range, 5), ... ('x', 1): (range, 5), ... ('x', 2): (range, 5)} >>> b = Bag(dsk, 'x', npartitions=3) >>> sorted(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 0, 0, 10, 10, 10, 20, 20, 20, 30, 30, 30, 40, 40, 40] >>> int(b.fold(lambda x, y: x + y)) # doctest: +SKIP 30 """ def __init__(self, dsk, name, npartitions): self.dask = dsk self.name = name self.npartitions = npartitions self.str = StringAccessor(self) def map(self, func): """ Map a function across all elements in collection >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 10, 20, 30, 40] """ name = next(names) if takes_multiple_arguments(func): func = curry(apply, func) dsk = dict(((name, i), (list, (map, func, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) @property def _args(self): return (self.dask, self.name, self.npartitions) def filter(self, predicate): """ Filter elements in collection by a predicate function >>> def iseven(x): ... return x % 2 == 0 >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.filter(iseven)) # doctest: +SKIP [0, 2, 4] """ name = next(names) dsk = dict(((name, i), (list, (filter, predicate, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def map_partitions(self, func): """ Apply function to every partition within collection Note that this requires you to understand how dask.bag partitions your data and so is somewhat internal. >>> b.map_partitions(myfunc) # doctest: +SKIP """ name = next(names) dsk = dict(((name, i), (func, (self.name, i))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def pluck(self, key, default=no_default): """ Select item from all tuples/dicts in collection >>> b = from_sequence([{'name': 'Alice', 'credits': [1, 2, 3]}, ... {'name': 'Bob', 'credits': [10, 20]}]) >>> list(b.pluck('name')) # doctest: +SKIP ['Alice', 'Bob'] >>> list(b.pluck('credits').pluck(0)) # doctest: +SKIP [1, 10] """ name = next(names) if isinstance(key, list): key = (list2, key) if default == no_default: dsk = dict(((name, i), (list, (pluck, key, (self.name, i)))) for i in range(self.npartitions)) else: dsk = dict(((name, i), (list, (pluck, key, (self.name, i), default))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) @classmethod def from_sequence(cls, *args, **kwargs): raise AttributeError("db.Bag.from_sequence is deprecated.\n" "Use db.from_sequence instead.") @classmethod def from_filenames(cls, *args, **kwargs): raise AttributeError("db.Bag.from_filenames is deprecated.\n" "Use db.from_filenames instead.") @wraps(to_textfiles) def to_textfiles(self, path, name_function=str): return to_textfiles(self, path, name_function) def fold(self, binop, combine=None, initial=None): """ Splittable reduction Apply binary operator on each partition to perform reduce. Follow by a second binary operator to combine results >>> b = from_sequence(range(5)) >>> b.fold(lambda x, y: x + y).compute() # doctest: +SKIP 10 Optionally provide default arguments and special combine binary operator >>> b.fold(lambda x, y: x + y, lambda x, y: x + y, 0).compute() # doctest: +SKIP 10 """ a = next(names) b = next(names) if initial: dsk = dict(((a, i), (reduce, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduce, binop, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (reduce, combine or binop, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) def frequencies(self): """ Count number of occurrences of each distinct element >>> b = from_sequence(['Alice', 'Bob', 'Alice']) >>> dict(b.frequencies()) # doctest: +SKIP {'Alice': 2, 'Bob', 1} """ a = next(names) b = next(names) dsk = dict(((a, i), (frequencies, (self.name, i))) for i in range(self.npartitions)) dsk2 = {(b, 0): (dictitems, (merge_with, sum, list(sorted(dsk.keys()))))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def topk(self, k, key=None): """ K largest elements in collection Optionally ordered by some key function >>> b = from_sequence([10, 3, 5, 7, 11, 4]) >>> list(b.topk(2)) # doctest: +SKIP [11, 10] >>> list(b.topk(2, lambda x: -x)) # doctest: +SKIP [3, 4] """ a = next(names) b = next(names) if key: topk = curry(heapq.nlargest, key=key) else: topk = heapq.nlargest dsk = dict(((a, i), (list, (topk, k, (self.name, i)))) for i in range(self.npartitions)) dsk2 = {(b, 0): (list, (topk, k, (toolz.concat, list(dsk.keys()))))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def distinct(self): """ Distinct elements of collection Unordered without repeats. >>> b = from_sequence(['Alice', 'Bob', 'Alice']) >>> sorted(b.distinct()) ['Alice', 'Bob'] """ a = next(names) dsk = dict(((a, i), (set, key)) for i, key in enumerate(self._keys())) b = next(names) dsk2 = {(b, 0): (apply, set.union, (list2, list(dsk.keys())))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def reduction(self, perpartition, aggregate): """ Reduce collection with reduction operators Parameters ---------- perpartition: function reduction to apply to each partition aggregate: function reduction to apply to the results of all partitions Example ------- >>> b = from_sequence(range(10)) >>> b.reduction(sum, sum).compute() 45 """ a = next(names) b = next(names) dsk = dict(((a, i), (perpartition, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (aggregate, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) @wraps(sum) def sum(self): return self.reduction(sum, sum) @wraps(max) def max(self): return self.reduction(max, max) @wraps(min) def min(self): return self.reduction(min, min) @wraps(any) def any(self): return self.reduction(any, any) @wraps(all) def all(self): return self.reduction(all, all) def count(self): """ Count the number of elements """ return self.reduction(count, sum) def mean(self): """ Arithmetic mean """ def chunk(seq): total, n = 0.0, 0 for x in seq: total += x n += 1 return total, n def agg(x): totals, counts = list(zip(*x)) return 1.0 * sum(totals) / sum(counts) return self.reduction(chunk, agg) def var(self, ddof=0): """ Variance """ def chunk(seq): squares, total, n = 0.0, 0.0, 0 for x in seq: squares += x**2 total += x n += 1 return squares, total, n def agg(x): squares, totals, counts = list(zip(*x)) x2, x, n = float(sum(squares)), float(sum(totals)), sum(counts) result = (x2 / n) - (x / n)**2 return result * n / (n - ddof) return self.reduction(chunk, agg) def std(self, ddof=0): """ Standard deviation """ return self.var(ddof=ddof).apply(math.sqrt) def join(self, other, on_self, on_other=None): """ Join collection with another collection Other collection must be an Iterable, and not a Bag. >>> people = from_sequence(['Alice', 'Bob', 'Charlie']) >>> fruit = ['Apple', 'Apricot', 'Banana'] >>> list(people.join(fruit, lambda x: x[0])) # doctest: +SKIP [('Apple', 'Alice'), ('Apricot', 'Alice'), ('Banana', 'Bob')] """ assert isinstance(other, Iterable) assert not isinstance(other, Bag) if on_other is None: on_other = on_self name = next(names) dsk = dict(((name, i), (list, (join, on_other, other, on_self, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def product(self, other): """ Cartesian product between two bags """ assert isinstance(other, Bag) name = next(names) n, m = self.npartitions, other.npartitions dsk = dict(((name, i*m + j), (list, (itertools.product, (self.name, i), (other.name, j)))) for i in range(n) for j in range(m)) return Bag(merge(self.dask, other.dask, dsk), name, n*m) def foldby(self, key, binop, initial=no_default, combine=None, combine_initial=no_default): """ Combined reduction and groupby Foldby provides a combined groupby and reduce for efficient parallel split-apply-combine tasks. The computation >>> b.reduceby(key, binop, init) # doctest: +SKIP is equivalent to the following: >>> def reduction(group): # doctest: +SKIP ... return reduce(binop, group, init) # doctest: +SKIP >>> b.groupby(key).map(lambda (k, v): (k, reduction(v)))# doctest: +SKIP But uses minimal communication and so is *much* faster. >>> b = from_sequence(range(10)) >>> iseven = lambda x: x % 2 == 0 >>> add = lambda x, y: x + y >>> dict(b.foldby(iseven, add)) # doctest: +SKIP {True: 20, False: 25} See also -------- toolz.reduceby pyspark.combineByKey """ a = next(names) b = next(names) if combine is None: combine = binop if initial is not no_default: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i))) for i in range(self.npartitions)) combine2 = lambda acc, x: combine(acc, x[1]) if combine_initial is not no_default: dsk2 = {(b, 0): (dictitems, (reduceby, 0, combine2, (toolz.concat, (map, dictitems, list(dsk.keys()))), combine_initial))} else: dsk2 = {(b, 0): (dictitems, (merge_with, (curry, reduce, combine), list(dsk.keys())))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def take(self, k, compute=True): """ Take the first k elements Evaluates by default, use ``compute=False`` to avoid computation. Only takes from the first partition >>> b = from_sequence(range(10)) >>> b.take(3) # doctest: +SKIP (0, 1, 2) """ name = next(names) dsk = {(name, 0): (list, (take, k, (self.name, 0)))} b = Bag(merge(self.dask, dsk), name, 1) if compute: return tuple(b.compute()) else: return b def _keys(self): return [(self.name, i) for i in range(self.npartitions)] def compute(self, **kwargs): """ Force evaluation of bag """ results = get(self.dask, self._keys(), **kwargs) if isinstance(results[0], Iterable): results = toolz.concat(results) if not isinstance(results, Iterator): results = iter(results) return results def concat(self): """ Concatenate nested lists into one long list >>> b = from_sequence([[1], [2, 3]]) >>> list(b) [[1], [2, 3]] >>> list(b.concat()) [1, 2, 3] """ name = next(names) dsk = dict(((name, i), (list, (toolz.concat, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) __iter__ = compute def groupby(self, grouper, npartitions=None): """ Group collection by key function Note that this requires full dataset read, serialization and shuffle. This is expensive. If possible you should use ``foldby``. >>> b = from_sequence(range(10)) >>> dict(b.groupby(lambda x: x % 2 == 0)) # doctest: +SKIP {True: [0, 2, 4, 6, 8], False: [1, 3, 5, 7, 9]} See Also -------- Bag.foldby pbag """ if npartitions is None: npartitions = self.npartitions paths = [tempfile.mkdtemp('%d.pbag' % i) for i in range(npartitions)] # Partition data on disk name = next(names) dsk1 = dict(((name, i), (partition, grouper, (self.name, i), npartitions, paths[i % len(paths)])) for i in range(self.npartitions)) # Collect groups name = next(names) dsk2 = dict(((name, i), (collect, grouper, npartitions, i, sorted(dsk1.keys()))) for i in range(npartitions)) return Bag(merge(self.dask, dsk1, dsk2), name, npartitions) def to_dataframe(self, columns=None): """ Convert Bag to dask.dataframe Bag should contain tuple or dict records. Provide ``columns=`` keyword arg to specify column names. Index will not be particularly meaningful. Use ``reindex`` afterwards if necessary. Example ------- >>> import dask.bag as db >>> b = db.from_sequence([{'name': 'Alice', 'balance': 100}, ... {'name': 'Bob', 'balance': 200}, ... {'name': 'Charlie', 'balance': 300}], ... npartitions=2) >>> df = b.to_dataframe() >>> df.compute() balance name 0 100 Alice 1 200 Bob 0 300 Charlie """ import pandas as pd import dask.dataframe as dd if columns is None: head = self.take(1)[0] if isinstance(head, dict): columns = sorted(head) elif isinstance(head, (tuple, list)): columns = list(range(len(head))) name = next(names) DataFrame = curry(pd.DataFrame, columns=columns) dsk = dict(((name, i), (DataFrame, (list2, (self.name, i)))) for i in range(self.npartitions)) divisions = [None] * (self.npartitions - 1) return dd.DataFrame(merge(optimize(self.dask, self._keys()), dsk), name, columns, divisions) def partition(grouper, sequence, npartitions, path): """ Partition a bag along a grouper, store partitions on disk """ with PBag(grouper, npartitions, path) as pb: pb.extend(sequence) return pb def collect(grouper, npartitions, group, pbags): """ Collect partitions from disk and yield k,v group pairs """ from pbag import PBag pbags = list(take(npartitions, pbags)) result = defaultdict(list) for pb in pbags: part = pb.get_partition(group) groups = groupby(grouper, part) for k, v in groups.items(): result[k].extend(v) return list(result.items()) opens = {'gz': gzip.open, 'bz2': bz2.BZ2File} def from_filenames(filenames): """ Create dask by loading in lines from many files Provide list of filenames >>> b = from_filenames(['myfile.1.txt', 'myfile.2.txt']) # doctest: +SKIP Or a globstring >>> b = from_filenames('myfiles.*.txt') # doctest: +SKIP See also: from_sequence: A more generic bag creation function """ if isinstance(filenames, str): filenames = sorted(glob(filenames)) if not filenames: raise ValueError("No filenames found") full_filenames = [os.path.abspath(f) for f in filenames] extension = os.path.splitext(filenames[0])[1].strip('.') myopen = opens.get(extension, open) d = dict((('load', i), (list, (myopen, fn))) for i, fn in enumerate(full_filenames)) return Bag(d, 'load', len(d)) def write(data, filename): dirname = os.path.dirname(filename) if not os.path.exists(dirname): with ignoring(OSError): os.makedirs(dirname) ext = os.path.splitext(filename)[1][1:] if ext == 'gz': f = gzip.open(filename, 'wb') data = (line.encode() for line in data) elif ext == 'bz2': f = bz2.BZ2File(filename, 'wb') data = (line.encode() for line in data) else: f = open(filename, 'w') try: for item in data: f.write(item) finally: f.close() def from_hdfs(path, hdfs=None, host='localhost', port='50070', user_name=None): """ Create dask by loading in files from HDFS Provide an hdfs directory and credentials >>> b = from_hdfs('home/username/data/', host='localhost', user_name='ubuntu') # doctest: +SKIP Alternatively provide an instance of ``pywebhdfs.webhdfs.PyWebHdfsClient`` >>> from pywebhdfs.webhdfs import PyWebHdfsClient # doctest: +SKIP >>> hdfs = PyWebHdfsClient(host='hostname', user_name='username') # doctest: +SKIP >>> b = from_hdfs('home/username/data/', hdfs=hdfs) # doctest: +SKIP """ from .. import hdfs_utils filenames = hdfs_utils.filenames(hdfs, path) if not filenames: raise ValueError("No files found for path %s" % path) name = next(names) dsk = dict() for i, fn in enumerate(filenames): ext = fn.split('.')[-1] if ext in ('gz', 'bz2'): dsk[(name, i)] = (stream_decompress, ext, (hdfs.read_file, fn)) else: dsk[(name, i)] = (hdfs.read_file, fn) return Bag(dsk, name, len(dsk)) def stream_decompress(fmt, data): """ Decompress a block of compressed bytes into a stream of strings """ if fmt == 'gz': return gzip.GzipFile(fileobj=BytesIO(data)) if fmt == 'bz2': return bz2_stream(data) else: return map(bytes.decode, BytesIO(data)) def bz2_stream(compressed, chunksize=100000): """ Stream lines from a chunk of compressed bz2 data """ decompressor = bz2.BZ2Decompressor() for i in range(0, len(compressed), chunksize): chunk = compressed[i: i+chunksize] decompressed = decompressor.decompress(chunk).decode() for line in decompressed.split('\n'): yield line def from_sequence(seq, partition_size=None, npartitions=None): """ Create dask from Python sequence This sequence should be relatively small in memory. Dask Bag works best when it handles loading your data itself. Commonly we load a sequence of filenames into a Bag and then use ``.map`` to open them. Parameters ---------- seq: Iterable A sequence of elements to put into the dask partition_size: int (optional) The length of each partition npartitions: int (optional) The number of desired partitions It is best to provide either ``partition_size`` or ``npartitions`` (though not both.) Example ------- >>> b = from_sequence(['Alice', 'Bob', 'Chuck'], partition_size=2) See also: from_filenames: Specialized bag creation function for textfiles """ seq = list(seq) if npartitions and not partition_size: partition_size = int(math.ceil(len(seq) / npartitions)) if npartitions is None and partition_size is None: if len(seq) < 100: partition_size = 1 else: partition_size = int(len(seq) / 100) parts = list(partition_all(partition_size, seq)) name = next(load_names) d = dict(((name, i), part) for i, part in enumerate(parts)) return Bag(d, name, len(d)) def dictitems(d): """ A pickleable version of dict.items >>> dictitems({'x': 1}) [('x', 1)] """ return list(d.items()) def takes_multiple_arguments(func): """ >>> def f(x, y): pass >>> takes_multiple_arguments(f) True >>> def f(x): pass >>> takes_multiple_arguments(f) False >>> def f(x, y=None): pass >>> takes_multiple_arguments(f) False >>> def f(*args): pass >>> takes_multiple_arguments(f) True >>> takes_multiple_arguments(map) # default to False False """ try: spec = inspect.getargspec(func) except: return False if spec.varargs: return True if spec.defaults is None: return len(spec.args) != 1 return len(spec.args) - len(spec.defaults) > 1 def concat(bags): """ Concatenate many bags together, unioning all elements >>> import dask.bag as db >>> a = db.from_sequence([1, 2, 3]) >>> b = db.from_sequence([4, 5, 6]) >>> c = db.concat([a, b]) >>> list(c) [1, 2, 3, 4, 5, 6] """ name = next(names) counter = itertools.count(0) dsk = dict(((name, next(counter)), key) for bag in bags for key in sorted(bag.dask)) return Bag(merge(dsk, *[b.dask for b in bags]), name, len(dsk)) class StringAccessor(object): """ String processing functions Examples -------- >>> import dask.bag as db >>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith']) >>> list(b.str.lower()) ['alice smith', 'bob jones', 'charlie smith'] >>> list(b.str.match('*Smith')) ['Alice Smith', 'Charlie Smith'] >>> list(b.str.split(' ')) [['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']] """ def __init__(self, bag): self._bag = bag def __dir__(self): return sorted(set(dir(type(self)) + dir(str))) def _strmap(self, func, *args, **kwargs): return self._bag.map(lambda s: func(s, *args, **kwargs)) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: if key in dir(str): func = getattr(str, key) return robust_wraps(func)(partial(self._strmap, func)) else: raise def match(self, pattern): """ Filter strings by those that match a pattern Example ------- >>> import dask.bag as db >>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith']) >>> list(b.str.match('*Smith')) ['Alice Smith', 'Charlie Smith'] See Also -------- fnmatch.fnmatch """ from fnmatch import fnmatch return self._bag.filter(partial(fnmatch, pat=pattern)) def robust_wraps(wrapper): """ A weak version of wraps that only copies doc """ def _(wrapped): wrapped.__doc__ = wrapper.__doc__ return wrapped return _
{ "repo_name": "esc/dask", "path": "dask/bag/core.py", "copies": "1", "size": "29804", "license": "bsd-3-clause", "hash": -2592661406064875000, "line_mean": 29.7574819401, "line_max": 100, "alpha_frac": 0.5401623943, "autogenerated": false, "ratio": 3.6817788758492895, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9716830343132004, "avg_score": 0.0010221854034571064, "num_lines": 969 }
from __future__ import absolute_import, division, print_function import itertools import math import tempfile import inspect import gzip import bz2 import os try: from urllib2 import urlopen except ImportError: from urllib.request import urlopen from glob import glob from collections import Iterable, Iterator, defaultdict from functools import wraps, partial from toolz import (merge, frequencies, merge_with, take, curry, reduce, join, reduceby, valmap, count, map, partition_all, filter, pluck, groupby, topk) import toolz from ..utils import tmpfile, ignoring with ignoring(ImportError): from cytoolz import (curry, frequencies, merge_with, join, reduceby, count, pluck, groupby, topk) from pbag import PBag from ..multiprocessing import get as mpget from ..core import istask from ..optimize import fuse, cull from ..compatibility import apply, BytesIO, unicode from ..context import _globals names = ('bag-%d' % i for i in itertools.count(1)) load_names = ('load-%d' % i for i in itertools.count(1)) no_default = '__no__default__' def lazify_task(task, start=True): """ Given a task, remove unnecessary calls to ``list`` Example ------- >>> task = (sum, (list, (map, inc, [1, 2, 3]))) # doctest: +SKIP >>> lazify_task(task) # doctest: +SKIP (sum, (map, inc, [1, 2, 3])) """ if not istask(task): return task head, tail = task[0], task[1:] if not start and head in (list, reify): task = task[1] return lazify_task(*tail, start=False) else: return (head,) + tuple([lazify_task(arg, False) for arg in tail]) def lazify(dsk): """ Remove unnecessary calls to ``list`` in tasks See Also: ``dask.bag.core.lazify_task`` """ return valmap(lazify_task, dsk) def optimize(dsk, keys): """ Optimize a dask from a dask.bag """ dsk2 = cull(dsk, keys) dsk3 = fuse(dsk2) dsk4 = lazify(dsk3) return dsk4 def get(dsk, keys, get=None, **kwargs): """ Get function for dask.bag """ get = get or _globals['get'] or mpget dsk2 = optimize(dsk, keys) return get(dsk2, keys, **kwargs) _get = get def list2(seq): """ Another list function that won't be removed by lazify """ return list(seq) def to_textfiles(b, path, name_function=str): """ Write bag to disk, one filename per partition, one line per element **Paths**: This will create one file for each partition in your bag. You can specify the filenames in a variety of ways. Use a globstring >>> b.to_textfiles('/path/to/data/*.json.gz') # doctest: +SKIP The * will be replaced by the increasing sequence 1, 2, ... :: /path/to/data/0.json.gz /path/to/data/1.json.gz Use a globstring and a ``name_function=`` keyword argument. The name_function function should expect an integer and produce a string. >>> from datetime import date, timedelta >>> def name(i): ... return str(date(2015, 1, 1) + i * timedelta(days=1)) >>> name(0) '2015-01-01' >>> name(15) '2015-01-16' >>> b.to_textfiles('/path/to/data/*.json.gz', name_function=name) # doctest: +SKIP :: /path/to/data/2015-01-01.json.gz /path/to/data/2015-01-02.json.gz ... You can also provide an explicit list of paths. >>> paths = ['/path/to/data/alice.json.gz', '/path/to/data/bob.json.gz', ...] # doctest: +SKIP >>> b.to_textfiles(paths) # doctest: +SKIP **Compression**: Filenames with extensions corresponding to known compression algorithms (gz, bz2) will be compressed accordingly. """ if isinstance(path, (str, unicode)): if '*' in path: paths = [path.replace('*', name_function(i)) for i in range(b.npartitions)] else: paths = [os.path.join(path, '%s.part' % name_function(i)) for i in range(b.npartitions)] elif isinstance(path, (tuple, list, set)): assert len(path) == b.npartitions paths = path else: raise ValueError("Path should be either\n" "1. A list of paths -- ['foo.json', 'bar.json', ...]\n" "2. A directory -- 'foo/\n" "3. A path with a * in it -- 'foo.*.json'") name = next(names) dsk = dict(((name, i), (write, (b.name, i), path)) for i, path in enumerate(paths)) return Bag(merge(b.dask, dsk), name, b.npartitions) class Item(object): def __init__(self, dsk, key): self.dask = dsk self.key = key def compute(self, **kwargs): return get(self.dask, self.key, **kwargs) def apply(self, func): name = next(names) dsk = {name: (func, self.key)} return Item(merge(self.dask, dsk), name) __int__ = __float__ = __complex__ = __bool__ = compute class Bag(object): """ Parallel collection of Python objects Example ------- Create Bag from sequence >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.filter(lambda x: x % 2 == 0).map(lambda x: x * 10)) # doctest: +SKIP [0, 20, 40] Create Bag from filename or globstring of filenames >>> b = db.from_filenames('/path/to/mydata.*.json.gz').map(json.loads) # doctest: +SKIP Create manually (expert use) >>> dsk = {('x', 0): (range, 5), ... ('x', 1): (range, 5), ... ('x', 2): (range, 5)} >>> b = Bag(dsk, 'x', npartitions=3) >>> sorted(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 0, 0, 10, 10, 10, 20, 20, 20, 30, 30, 30, 40, 40, 40] >>> int(b.fold(lambda x, y: x + y)) # doctest: +SKIP 30 """ def __init__(self, dsk, name, npartitions): self.dask = dsk self.name = name self.npartitions = npartitions self.str = StringAccessor(self) def map(self, func): """ Map a function across all elements in collection >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 10, 20, 30, 40] """ name = next(names) if takes_multiple_arguments(func): func = curry(apply, func) dsk = dict(((name, i), (reify, (map, func, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) @property def _args(self): return (self.dask, self.name, self.npartitions) def filter(self, predicate): """ Filter elements in collection by a predicate function >>> def iseven(x): ... return x % 2 == 0 >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.filter(iseven)) # doctest: +SKIP [0, 2, 4] """ name = next(names) dsk = dict(((name, i), (reify, (filter, predicate, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def map_partitions(self, func): """ Apply function to every partition within collection Note that this requires you to understand how dask.bag partitions your data and so is somewhat internal. >>> b.map_partitions(myfunc) # doctest: +SKIP """ name = next(names) dsk = dict(((name, i), (func, (self.name, i))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def pluck(self, key, default=no_default): """ Select item from all tuples/dicts in collection >>> b = from_sequence([{'name': 'Alice', 'credits': [1, 2, 3]}, ... {'name': 'Bob', 'credits': [10, 20]}]) >>> list(b.pluck('name')) # doctest: +SKIP ['Alice', 'Bob'] >>> list(b.pluck('credits').pluck(0)) # doctest: +SKIP [1, 10] """ name = next(names) if isinstance(key, list): key = (list2, key) if default == no_default: dsk = dict(((name, i), (list, (pluck, key, (self.name, i)))) for i in range(self.npartitions)) else: dsk = dict(((name, i), (list, (pluck, key, (self.name, i), default))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) @classmethod def from_sequence(cls, *args, **kwargs): raise AttributeError("db.Bag.from_sequence is deprecated.\n" "Use db.from_sequence instead.") @classmethod def from_filenames(cls, *args, **kwargs): raise AttributeError("db.Bag.from_filenames is deprecated.\n" "Use db.from_filenames instead.") @wraps(to_textfiles) def to_textfiles(self, path, name_function=str): return to_textfiles(self, path, name_function) def fold(self, binop, combine=None, initial=None): """ Splittable reduction Apply binary operator on each partition to perform reduce. Follow by a second binary operator to combine results >>> b = from_sequence(range(5)) >>> b.fold(lambda x, y: x + y).compute() # doctest: +SKIP 10 Optionally provide default arguments and special combine binary operator >>> b.fold(lambda x, y: x + y, lambda x, y: x + y, 0).compute() # doctest: +SKIP 10 """ a = next(names) b = next(names) if initial: dsk = dict(((a, i), (reduce, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduce, binop, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (reduce, combine or binop, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) def frequencies(self): """ Count number of occurrences of each distinct element >>> b = from_sequence(['Alice', 'Bob', 'Alice']) >>> dict(b.frequencies()) # doctest: +SKIP {'Alice': 2, 'Bob', 1} """ a = next(names) b = next(names) dsk = dict(((a, i), (frequencies, (self.name, i))) for i in range(self.npartitions)) dsk2 = {(b, 0): (dictitems, (merge_with, sum, list(sorted(dsk.keys()))))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def topk(self, k, key=None): """ K largest elements in collection Optionally ordered by some key function >>> b = from_sequence([10, 3, 5, 7, 11, 4]) >>> list(b.topk(2)) # doctest: +SKIP [11, 10] >>> list(b.topk(2, lambda x: -x)) # doctest: +SKIP [3, 4] """ a = next(names) b = next(names) if key: func = curry(topk, key=key) else: func = topk dsk = dict(((a, i), (list, (func, k, (self.name, i)))) for i in range(self.npartitions)) dsk2 = {(b, 0): (list, (func, k, (toolz.concat, list(dsk.keys()))))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def distinct(self): """ Distinct elements of collection Unordered without repeats. >>> b = from_sequence(['Alice', 'Bob', 'Alice']) >>> sorted(b.distinct()) ['Alice', 'Bob'] """ a = next(names) dsk = dict(((a, i), (set, key)) for i, key in enumerate(self._keys())) b = next(names) dsk2 = {(b, 0): (apply, set.union, (list2, list(dsk.keys())))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def reduction(self, perpartition, aggregate): """ Reduce collection with reduction operators Parameters ---------- perpartition: function reduction to apply to each partition aggregate: function reduction to apply to the results of all partitions Example ------- >>> b = from_sequence(range(10)) >>> b.reduction(sum, sum).compute() 45 """ a = next(names) b = next(names) dsk = dict(((a, i), (perpartition, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (aggregate, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) @wraps(sum) def sum(self): return self.reduction(sum, sum) @wraps(max) def max(self): return self.reduction(max, max) @wraps(min) def min(self): return self.reduction(min, min) @wraps(any) def any(self): return self.reduction(any, any) @wraps(all) def all(self): return self.reduction(all, all) def count(self): """ Count the number of elements """ return self.reduction(count, sum) def mean(self): """ Arithmetic mean """ def chunk(seq): total, n = 0.0, 0 for x in seq: total += x n += 1 return total, n def agg(x): totals, counts = list(zip(*x)) return 1.0 * sum(totals) / sum(counts) return self.reduction(chunk, agg) def var(self, ddof=0): """ Variance """ def chunk(seq): squares, total, n = 0.0, 0.0, 0 for x in seq: squares += x**2 total += x n += 1 return squares, total, n def agg(x): squares, totals, counts = list(zip(*x)) x2, x, n = float(sum(squares)), float(sum(totals)), sum(counts) result = (x2 / n) - (x / n)**2 return result * n / (n - ddof) return self.reduction(chunk, agg) def std(self, ddof=0): """ Standard deviation """ return self.var(ddof=ddof).apply(math.sqrt) def join(self, other, on_self, on_other=None): """ Join collection with another collection Other collection must be an Iterable, and not a Bag. >>> people = from_sequence(['Alice', 'Bob', 'Charlie']) >>> fruit = ['Apple', 'Apricot', 'Banana'] >>> list(people.join(fruit, lambda x: x[0])) # doctest: +SKIP [('Apple', 'Alice'), ('Apricot', 'Alice'), ('Banana', 'Bob')] """ assert isinstance(other, Iterable) assert not isinstance(other, Bag) if on_other is None: on_other = on_self name = next(names) dsk = dict(((name, i), (list, (join, on_other, other, on_self, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def product(self, other): """ Cartesian product between two bags """ assert isinstance(other, Bag) name = next(names) n, m = self.npartitions, other.npartitions dsk = dict(((name, i*m + j), (list, (itertools.product, (self.name, i), (other.name, j)))) for i in range(n) for j in range(m)) return Bag(merge(self.dask, other.dask, dsk), name, n*m) def foldby(self, key, binop, initial=no_default, combine=None, combine_initial=no_default): """ Combined reduction and groupby Foldby provides a combined groupby and reduce for efficient parallel split-apply-combine tasks. The computation >>> b.reduceby(key, binop, init) # doctest: +SKIP is equivalent to the following: >>> def reduction(group): # doctest: +SKIP ... return reduce(binop, group, init) # doctest: +SKIP >>> b.groupby(key).map(lambda (k, v): (k, reduction(v)))# doctest: +SKIP But uses minimal communication and so is *much* faster. >>> b = from_sequence(range(10)) >>> iseven = lambda x: x % 2 == 0 >>> add = lambda x, y: x + y >>> dict(b.foldby(iseven, add)) # doctest: +SKIP {True: 20, False: 25} See also -------- toolz.reduceby pyspark.combineByKey """ a = next(names) b = next(names) if combine is None: combine = binop if initial is not no_default: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i))) for i in range(self.npartitions)) combine2 = lambda acc, x: combine(acc, x[1]) if combine_initial is not no_default: dsk2 = {(b, 0): (dictitems, (reduceby, 0, combine2, (toolz.concat, (map, dictitems, list(dsk.keys()))), combine_initial))} else: dsk2 = {(b, 0): (dictitems, (merge_with, (curry, reduce, combine), list(dsk.keys())))} return Bag(merge(self.dask, dsk, dsk2), b, 1) def take(self, k, compute=True): """ Take the first k elements Evaluates by default, use ``compute=False`` to avoid computation. Only takes from the first partition >>> b = from_sequence(range(10)) >>> b.take(3) # doctest: +SKIP (0, 1, 2) """ name = next(names) dsk = {(name, 0): (list, (take, k, (self.name, 0)))} b = Bag(merge(self.dask, dsk), name, 1) if compute: return tuple(b.compute()) else: return b def _keys(self): return [(self.name, i) for i in range(self.npartitions)] def compute(self, **kwargs): """ Force evaluation of bag """ results = get(self.dask, self._keys(), **kwargs) if isinstance(results[0], Iterable): results = toolz.concat(results) if isinstance(results, Iterator): results = list(results) return results def concat(self): """ Concatenate nested lists into one long list >>> b = from_sequence([[1], [2, 3]]) >>> list(b) [[1], [2, 3]] >>> list(b.concat()) [1, 2, 3] """ name = next(names) dsk = dict(((name, i), (list, (toolz.concat, (self.name, i)))) for i in range(self.npartitions)) return Bag(merge(self.dask, dsk), name, self.npartitions) def __iter__(self): return iter(self.compute()) def groupby(self, grouper, npartitions=None): """ Group collection by key function Note that this requires full dataset read, serialization and shuffle. This is expensive. If possible you should use ``foldby``. >>> b = from_sequence(range(10)) >>> dict(b.groupby(lambda x: x % 2 == 0)) # doctest: +SKIP {True: [0, 2, 4, 6, 8], False: [1, 3, 5, 7, 9]} See Also -------- Bag.foldby pbag """ if npartitions is None: npartitions = self.npartitions paths = [tempfile.mkdtemp('%d.pbag' % i) for i in range(npartitions)] # Partition data on disk name = next(names) dsk1 = dict(((name, i), (partition, grouper, (self.name, i), npartitions, paths[i % len(paths)])) for i in range(self.npartitions)) # Collect groups name = next(names) dsk2 = dict(((name, i), (collect, grouper, npartitions, i, sorted(dsk1.keys()))) for i in range(npartitions)) return Bag(merge(self.dask, dsk1, dsk2), name, npartitions) def to_dataframe(self, columns=None): """ Convert Bag to dask.dataframe Bag should contain tuple or dict records. Provide ``columns=`` keyword arg to specify column names. Index will not be particularly meaningful. Use ``reindex`` afterwards if necessary. Example ------- >>> import dask.bag as db >>> b = db.from_sequence([{'name': 'Alice', 'balance': 100}, ... {'name': 'Bob', 'balance': 200}, ... {'name': 'Charlie', 'balance': 300}], ... npartitions=2) >>> df = b.to_dataframe() >>> df.compute() balance name 0 100 Alice 1 200 Bob 0 300 Charlie """ import pandas as pd import dask.dataframe as dd if columns is None: head = self.take(1)[0] if isinstance(head, dict): columns = sorted(head) elif isinstance(head, (tuple, list)): columns = list(range(len(head))) name = next(names) DataFrame = curry(pd.DataFrame, columns=columns) dsk = dict(((name, i), (DataFrame, (list2, (self.name, i)))) for i in range(self.npartitions)) divisions = [None] * (self.npartitions - 1) return dd.DataFrame(merge(optimize(self.dask, self._keys()), dsk), name, columns, divisions) def partition(grouper, sequence, npartitions, path): """ Partition a bag along a grouper, store partitions on disk """ with PBag(grouper, npartitions, path) as pb: pb.extend(sequence) return pb def collect(grouper, npartitions, group, pbags): """ Collect partitions from disk and yield k,v group pairs """ from pbag import PBag pbags = list(take(npartitions, pbags)) result = defaultdict(list) for pb in pbags: part = pb.get_partition(group) groups = groupby(grouper, part) for k, v in groups.items(): result[k].extend(v) return list(result.items()) opens = {'gz': gzip.open, 'bz2': bz2.BZ2File} def from_filenames(filenames): """ Create dask by loading in lines from many files Provide list of filenames >>> b = from_filenames(['myfile.1.txt', 'myfile.2.txt']) # doctest: +SKIP Or a globstring >>> b = from_filenames('myfiles.*.txt') # doctest: +SKIP See also: from_sequence: A more generic bag creation function """ if isinstance(filenames, str): filenames = sorted(glob(filenames)) if not filenames: raise ValueError("No filenames found") full_filenames = [os.path.abspath(f) for f in filenames] extension = os.path.splitext(filenames[0])[1].strip('.') myopen = opens.get(extension, open) d = dict((('load', i), (list, (myopen, fn))) for i, fn in enumerate(full_filenames)) return Bag(d, 'load', len(d)) def write(data, filename): dirname = os.path.dirname(filename) if not os.path.exists(dirname): with ignoring(OSError): os.makedirs(dirname) ext = os.path.splitext(filename)[1][1:] if ext == 'gz': f = gzip.open(filename, 'wb') data = (line.encode() for line in data) elif ext == 'bz2': f = bz2.BZ2File(filename, 'wb') data = (line.encode() for line in data) else: f = open(filename, 'w') try: for item in data: f.write(item) finally: f.close() def from_hdfs(path, hdfs=None, host='localhost', port='50070', user_name=None): """ Create dask by loading in files from HDFS Provide an hdfs directory and credentials >>> b = from_hdfs('home/username/data/', host='localhost', user_name='ubuntu') # doctest: +SKIP Alternatively provide an instance of ``pywebhdfs.webhdfs.PyWebHdfsClient`` >>> from pywebhdfs.webhdfs import PyWebHdfsClient # doctest: +SKIP >>> hdfs = PyWebHdfsClient(host='hostname', user_name='username') # doctest: +SKIP >>> b = from_hdfs('home/username/data/', hdfs=hdfs) # doctest: +SKIP """ from .. import hdfs_utils filenames = hdfs_utils.filenames(hdfs, path) if not filenames: raise ValueError("No files found for path %s" % path) name = next(names) dsk = dict() for i, fn in enumerate(filenames): ext = fn.split('.')[-1] if ext in ('gz', 'bz2'): dsk[(name, i)] = (stream_decompress, ext, (hdfs.read_file, fn)) else: dsk[(name, i)] = (hdfs.read_file, fn) return Bag(dsk, name, len(dsk)) def stream_decompress(fmt, data): """ Decompress a block of compressed bytes into a stream of strings """ if fmt == 'gz': return gzip.GzipFile(fileobj=BytesIO(data)) if fmt == 'bz2': return bz2_stream(data) else: return map(bytes.decode, BytesIO(data)) def bz2_stream(compressed, chunksize=100000): """ Stream lines from a chunk of compressed bz2 data """ decompressor = bz2.BZ2Decompressor() for i in range(0, len(compressed), chunksize): chunk = compressed[i: i+chunksize] decompressed = decompressor.decompress(chunk).decode() for line in decompressed.split('\n'): yield line def from_sequence(seq, partition_size=None, npartitions=None): """ Create dask from Python sequence This sequence should be relatively small in memory. Dask Bag works best when it handles loading your data itself. Commonly we load a sequence of filenames into a Bag and then use ``.map`` to open them. Parameters ---------- seq: Iterable A sequence of elements to put into the dask partition_size: int (optional) The length of each partition npartitions: int (optional) The number of desired partitions It is best to provide either ``partition_size`` or ``npartitions`` (though not both.) Example ------- >>> b = from_sequence(['Alice', 'Bob', 'Chuck'], partition_size=2) See also: from_filenames: Specialized bag creation function for textfiles """ seq = list(seq) if npartitions and not partition_size: partition_size = int(math.ceil(len(seq) / npartitions)) if npartitions is None and partition_size is None: if len(seq) < 100: partition_size = 1 else: partition_size = int(len(seq) / 100) parts = list(partition_all(partition_size, seq)) name = next(load_names) d = dict(((name, i), part) for i, part in enumerate(parts)) return Bag(d, name, len(d)) def from_url(urls): """Create a dask.bag from a url >>> a = from_url('http://raw.githubusercontent.com/ContinuumIO/dask/master/README.rst') >>> a.npartitions 1 >>> a.take(8) ('Dask\n', '====\n', '\n', '|Build Status| |Coverage| |Doc Status| |Gitter|\n', '\n', 'Dask provides multi-core execution on larger-than-memory datasets using blocked\n', 'algorithms and task scheduling. It maps high-level NumPy and list operations\n', 'on large datasets on to graphs of many operations on small in-memory datasets.\n') >>> b = from_url(['http://github.com', 'http://google.com']) >>> b.npartions 2 """ if isinstance(urls, str): urls = [urls] name = next(load_names) dsk = {} for i, u in enumerate(urls): dsk[(name, i)] = (list, (urlopen, u)) return Bag(dsk, name, len(urls)) def dictitems(d): """ A pickleable version of dict.items >>> dictitems({'x': 1}) [('x', 1)] """ return list(d.items()) def takes_multiple_arguments(func): """ >>> def f(x, y): pass >>> takes_multiple_arguments(f) True >>> def f(x): pass >>> takes_multiple_arguments(f) False >>> def f(x, y=None): pass >>> takes_multiple_arguments(f) False >>> def f(*args): pass >>> takes_multiple_arguments(f) True >>> takes_multiple_arguments(map) # default to False False """ try: spec = inspect.getargspec(func) except: return False if spec.varargs: return True if spec.defaults is None: return len(spec.args) != 1 return len(spec.args) - len(spec.defaults) > 1 def concat(bags): """ Concatenate many bags together, unioning all elements >>> import dask.bag as db >>> a = db.from_sequence([1, 2, 3]) >>> b = db.from_sequence([4, 5, 6]) >>> c = db.concat([a, b]) >>> list(c) [1, 2, 3, 4, 5, 6] """ name = next(names) counter = itertools.count(0) dsk = dict(((name, next(counter)), key) for bag in bags for key in sorted(bag.dask)) return Bag(merge(dsk, *[b.dask for b in bags]), name, len(dsk)) class StringAccessor(object): """ String processing functions Examples -------- >>> import dask.bag as db >>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith']) >>> list(b.str.lower()) ['alice smith', 'bob jones', 'charlie smith'] >>> list(b.str.match('*Smith')) ['Alice Smith', 'Charlie Smith'] >>> list(b.str.split(' ')) [['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']] """ def __init__(self, bag): self._bag = bag def __dir__(self): return sorted(set(dir(type(self)) + dir(str))) def _strmap(self, key, *args, **kwargs): return self._bag.map(lambda s: getattr(s, key)(*args, **kwargs)) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: if key in dir(str): func = getattr(str, key) return robust_wraps(func)(partial(self._strmap, key)) else: raise def match(self, pattern): """ Filter strings by those that match a pattern Example ------- >>> import dask.bag as db >>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith']) >>> list(b.str.match('*Smith')) ['Alice Smith', 'Charlie Smith'] See Also -------- fnmatch.fnmatch """ from fnmatch import fnmatch return self._bag.filter(partial(fnmatch, pat=pattern)) def robust_wraps(wrapper): """ A weak version of wraps that only copies doc """ def _(wrapped): wrapped.__doc__ = wrapper.__doc__ return wrapped return _ def reify(seq): if isinstance(seq, Iterator): seq = list(seq) if seq and isinstance(seq[0], Iterator): seq = list(map(list, seq)) return seq
{ "repo_name": "marianotepper/dask", "path": "dask/bag/core.py", "copies": "1", "size": "30985", "license": "bsd-3-clause", "hash": 6790862722747664000, "line_mean": 29.6175889328, "line_max": 100, "alpha_frac": 0.5421332903, "autogenerated": false, "ratio": 3.6720786916330885, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9709097960570943, "avg_score": 0.0010228042724291055, "num_lines": 1012 }
from __future__ import absolute_import, division, print_function import itertools import math import tempfile import inspect import gzip import zlib import bz2 import os import codecs from sys import getdefaultencoding from fnmatch import fnmatchcase from glob import glob from collections import Iterable, Iterator, defaultdict from functools import wraps, partial from ..utils import ignoring from toolz import (merge, frequencies, merge_with, take, reduce, join, reduceby, valmap, count, map, partition_all, filter, remove, pluck, groupby, topk) import toolz with ignoring(ImportError): from cytoolz import (frequencies, merge_with, join, reduceby, count, pluck, groupby, topk) from ..base import Base, normalize_token from ..compatibility import (apply, BytesIO, unicode, urlopen, urlparse, StringIO) from ..core import list2, quote, istask, get_dependencies, reverse_dict from ..multiprocessing import get as mpget from ..optimize import fuse, cull, inline from ..utils import (tmpfile, file_size, textblock, takes_multiple_arguments) names = ('bag-%d' % i for i in itertools.count(1)) tokens = ('-%d' % i for i in itertools.count(1)) load_names = ('load-%d' % i for i in itertools.count(1)) system_encoding = getdefaultencoding() if system_encoding == 'ascii': system_encoding = 'utf-8' no_default = '__no__default__' def lazify_task(task, start=True): """ Given a task, remove unnecessary calls to ``list`` Examples -------- >>> task = (sum, (list, (map, inc, [1, 2, 3]))) # doctest: +SKIP >>> lazify_task(task) # doctest: +SKIP (sum, (map, inc, [1, 2, 3])) """ if not istask(task): return task head, tail = task[0], task[1:] if not start and head in (list, reify): task = task[1] return lazify_task(*tail, start=False) else: return (head,) + tuple([lazify_task(arg, False) for arg in tail]) def lazify(dsk): """ Remove unnecessary calls to ``list`` in tasks See Also -------- ``dask.bag.core.lazify_task`` """ return valmap(lazify_task, dsk) def inline_singleton_lists(dsk): """ Inline lists that are only used once >>> d = {'b': (list, 'a'), ... 'c': (f, 'b', 1)} # doctest: +SKIP >>> inline_singleton_lists(d) # doctest: +SKIP {'c': (f, (list, 'a'), 1)} Pairs nicely with lazify afterwards """ dependencies = dict((k, get_dependencies(dsk, k)) for k in dsk) dependents = reverse_dict(dependencies) keys = [k for k, v in dsk.items() if istask(v) and v and v[0] is list and len(dependents[k]) == 1] return inline(dsk, keys, inline_constants=False) def optimize(dsk, keys, **kwargs): """ Optimize a dask from a dask.bag """ dsk2 = cull(dsk, keys) dsk3 = fuse(dsk2) dsk4 = inline_singleton_lists(dsk3) dsk5 = lazify(dsk4) return dsk5 def to_textfiles(b, path, name_function=str, encoding=system_encoding): """ Write bag to disk, one filename per partition, one line per element **Paths**: This will create one file for each partition in your bag. You can specify the filenames in a variety of ways. Use a globstring >>> b.to_textfiles('/path/to/data/*.json.gz') # doctest: +SKIP The * will be replaced by the increasing sequence 1, 2, ... :: /path/to/data/0.json.gz /path/to/data/1.json.gz Use a globstring and a ``name_function=`` keyword argument. The name_function function should expect an integer and produce a string. >>> from datetime import date, timedelta >>> def name(i): ... return str(date(2015, 1, 1) + i * timedelta(days=1)) >>> name(0) '2015-01-01' >>> name(15) '2015-01-16' >>> b.to_textfiles('/path/to/data/*.json.gz', name_function=name) # doctest: +SKIP :: /path/to/data/2015-01-01.json.gz /path/to/data/2015-01-02.json.gz ... You can also provide an explicit list of paths. >>> paths = ['/path/to/data/alice.json.gz', '/path/to/data/bob.json.gz', ...] # doctest: +SKIP >>> b.to_textfiles(paths) # doctest: +SKIP **Compression**: Filenames with extensions corresponding to known compression algorithms (gz, bz2) will be compressed accordingly. """ if isinstance(path, (str, unicode)): if '*' in path: paths = [path.replace('*', name_function(i)) for i in range(b.npartitions)] else: paths = [os.path.join(path, '%s.part' % name_function(i)) for i in range(b.npartitions)] elif isinstance(path, (tuple, list, set)): assert len(path) == b.npartitions paths = path else: raise ValueError("Path should be either\n" "1. A list of paths -- ['foo.json', 'bar.json', ...]\n" "2. A directory -- 'foo/\n" "3. A path with a * in it -- 'foo.*.json'") name = next(names) dsk = dict(((name, i), (write, (b.name, i), path, encoding)) for i, path in enumerate(paths)) return Bag(merge(b.dask, dsk), name, b.npartitions) def finalize(bag, results): if isinstance(bag, Item): return results[0] if isinstance(results, Iterator): results = list(results) if isinstance(results[0], Iterable) and not isinstance(results[0], str): results = toolz.concat(results) if isinstance(results, Iterator): results = list(results) return results class Item(Base): _optimize = staticmethod(optimize) _default_get = staticmethod(mpget) _finalize = staticmethod(finalize) def __init__(self, dsk, key): self.dask = dsk self.key = key def _keys(self): return [self.key] def apply(self, func): name = next(names) dsk = {name: (func, self.key)} return Item(merge(self.dask, dsk), name) __int__ = __float__ = __complex__ = __bool__ = Base.compute class Bag(Base): """ Parallel collection of Python objects Examples -------- Create Bag from sequence >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.filter(lambda x: x % 2 == 0).map(lambda x: x * 10)) # doctest: +SKIP [0, 20, 40] Create Bag from filename or globstring of filenames >>> b = db.from_filenames('/path/to/mydata.*.json.gz').map(json.loads) # doctest: +SKIP Create manually (expert use) >>> dsk = {('x', 0): (range, 5), ... ('x', 1): (range, 5), ... ('x', 2): (range, 5)} >>> b = Bag(dsk, 'x', npartitions=3) >>> sorted(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 0, 0, 10, 10, 10, 20, 20, 20, 30, 30, 30, 40, 40, 40] >>> int(b.fold(lambda x, y: x + y)) # doctest: +SKIP 30 """ _optimize = staticmethod(optimize) _default_get = staticmethod(mpget) _finalize = staticmethod(finalize) def __init__(self, dsk, name, npartitions): self.dask = dsk self.name = name self.npartitions = npartitions self.str = StringAccessor(self) def map(self, func): """ Map a function across all elements in collection >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 10, 20, 30, 40] """ name = next(names) if takes_multiple_arguments(func): func = partial(apply, func) dsk = dict(((name, i), (reify, (map, func, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) @property def _args(self): return (self.dask, self.name, self.npartitions) def filter(self, predicate): """ Filter elements in collection by a predicate function >>> def iseven(x): ... return x % 2 == 0 >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.filter(iseven)) # doctest: +SKIP [0, 2, 4] """ name = next(names) dsk = dict(((name, i), (reify, (filter, predicate, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def remove(self, predicate): """ Remove elements in collection that match predicate >>> def iseven(x): ... return x % 2 == 0 >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.remove(iseven)) # doctest: +SKIP [1, 3] """ name = next(names) dsk = dict(((name, i), (reify, (remove, predicate, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def map_partitions(self, func): """ Apply function to every partition within collection Note that this requires you to understand how dask.bag partitions your data and so is somewhat internal. >>> b.map_partitions(myfunc) # doctest: +SKIP """ name = next(names) dsk = dict(((name, i), (func, (self.name, i))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def pluck(self, key, default=no_default): """ Select item from all tuples/dicts in collection >>> b = from_sequence([{'name': 'Alice', 'credits': [1, 2, 3]}, ... {'name': 'Bob', 'credits': [10, 20]}]) >>> list(b.pluck('name')) # doctest: +SKIP ['Alice', 'Bob'] >>> list(b.pluck('credits').pluck(0)) # doctest: +SKIP [1, 10] """ name = next(names) key = quote(key) if default == no_default: dsk = dict(((name, i), (list, (pluck, key, (self.name, i)))) for i in range(self.npartitions)) else: dsk = dict(((name, i), (list, (pluck, key, (self.name, i), default))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) @classmethod def from_sequence(cls, *args, **kwargs): raise AttributeError("db.Bag.from_sequence is deprecated.\n" "Use db.from_sequence instead.") @classmethod def from_filenames(cls, *args, **kwargs): raise AttributeError("db.Bag.from_filenames is deprecated.\n" "Use db.from_filenames instead.") @wraps(to_textfiles) def to_textfiles(self, path, name_function=str, encoding=system_encoding): return to_textfiles(self, path, name_function, encoding) def fold(self, binop, combine=None, initial=no_default): """ Parallelizable reduction Fold is like the builtin function ``reduce`` except that it works in parallel. Fold takes two binary operator functions, one to reduce each partition of our dataset and another to combine results between partitions 1. ``binop``: Binary operator to reduce within each partition 2. ``combine``: Binary operator to combine results from binop Sequentially this would look like the following: >>> intermediates = [reduce(binop, part) for part in partitions] # doctest: +SKIP >>> final = reduce(combine, intermediates) # doctest: +SKIP If only one function is given then it is used for both functions ``binop`` and ``combine`` as in the following example to compute the sum: >>> def add(x, y): ... return x + y >>> b = from_sequence(range(5)) >>> b.fold(add).compute() # doctest: +SKIP 10 In full form we provide both binary operators as well as their default arguments >>> b.fold(binop=add, combine=add, initial=0).compute() # doctest: +SKIP 10 More complex binary operators are also doable >>> def add_to_set(acc, x): ... ''' Add new element x to set acc ''' ... return acc | set([x]) >>> b.fold(add_to_set, set.union, initial=set()).compute() # doctest: +SKIP {1, 2, 3, 4, 5} See Also -------- Bag.foldby """ a = next(names) b = next(names) initial = quote(initial) if initial is not no_default: dsk = dict(((a, i), (reduce, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduce, binop, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (reduce, combine or binop, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) def frequencies(self): """ Count number of occurrences of each distinct element >>> b = from_sequence(['Alice', 'Bob', 'Alice']) >>> dict(b.frequencies()) # doctest: +SKIP {'Alice': 2, 'Bob', 1} """ a = next(names) b = next(names) dsk = dict(((a, i), (frequencies, (self.name, i))) for i in range(self.npartitions)) dsk2 = {(b, 0): (dictitems, (merge_with, sum, list(sorted(dsk.keys()))))} return type(self)(merge(self.dask, dsk, dsk2), b, 1) def topk(self, k, key=None): """ K largest elements in collection Optionally ordered by some key function >>> b = from_sequence([10, 3, 5, 7, 11, 4]) >>> list(b.topk(2)) # doctest: +SKIP [11, 10] >>> list(b.topk(2, lambda x: -x)) # doctest: +SKIP [3, 4] """ a = next(names) b = next(names) if key: if callable(key) and takes_multiple_arguments(key): key = partial(apply, key) func = partial(topk, key=key) else: func = topk dsk = dict(((a, i), (list, (func, k, (self.name, i)))) for i in range(self.npartitions)) dsk2 = {(b, 0): (list, (func, k, (toolz.concat, list(dsk.keys()))))} return type(self)(merge(self.dask, dsk, dsk2), b, 1) def distinct(self): """ Distinct elements of collection Unordered without repeats. >>> b = from_sequence(['Alice', 'Bob', 'Alice']) >>> sorted(b.distinct()) ['Alice', 'Bob'] """ a = next(names) dsk = dict(((a, i), (set, key)) for i, key in enumerate(self._keys())) b = next(names) dsk2 = {(b, 0): (apply, set.union, quote(list(dsk.keys())))} return type(self)(merge(self.dask, dsk, dsk2), b, 1) def reduction(self, perpartition, aggregate): """ Reduce collection with reduction operators Parameters ---------- perpartition: function reduction to apply to each partition aggregate: function reduction to apply to the results of all partitions Examples -------- >>> b = from_sequence(range(10)) >>> b.reduction(sum, sum).compute() 45 """ a = next(names) b = next(names) dsk = dict(((a, i), (perpartition, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (aggregate, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) @wraps(sum) def sum(self): return self.reduction(sum, sum) @wraps(max) def max(self): return self.reduction(max, max) @wraps(min) def min(self): return self.reduction(min, min) @wraps(any) def any(self): return self.reduction(any, any) @wraps(all) def all(self): return self.reduction(all, all) def count(self): """ Count the number of elements """ return self.reduction(count, sum) def mean(self): """ Arithmetic mean """ def chunk(seq): total, n = 0.0, 0 for x in seq: total += x n += 1 return total, n def agg(x): totals, counts = list(zip(*x)) return 1.0 * sum(totals) / sum(counts) return self.reduction(chunk, agg) def var(self, ddof=0): """ Variance """ def chunk(seq): squares, total, n = 0.0, 0.0, 0 for x in seq: squares += x**2 total += x n += 1 return squares, total, n def agg(x): squares, totals, counts = list(zip(*x)) x2, x, n = float(sum(squares)), float(sum(totals)), sum(counts) result = (x2 / n) - (x / n)**2 return result * n / (n - ddof) return self.reduction(chunk, agg) def std(self, ddof=0): """ Standard deviation """ return self.var(ddof=ddof).apply(math.sqrt) def join(self, other, on_self, on_other=None): """ Join collection with another collection Other collection must be an Iterable, and not a Bag. >>> people = from_sequence(['Alice', 'Bob', 'Charlie']) >>> fruit = ['Apple', 'Apricot', 'Banana'] >>> list(people.join(fruit, lambda x: x[0])) # doctest: +SKIP [('Apple', 'Alice'), ('Apricot', 'Alice'), ('Banana', 'Bob')] """ assert isinstance(other, Iterable) assert not isinstance(other, Bag) if on_other is None: on_other = on_self name = next(names) dsk = dict(((name, i), (list, (join, on_other, other, on_self, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def product(self, other): """ Cartesian product between two bags """ assert isinstance(other, Bag) name = next(names) n, m = self.npartitions, other.npartitions dsk = dict(((name, i*m + j), (list, (itertools.product, (self.name, i), (other.name, j)))) for i in range(n) for j in range(m)) return type(self)(merge(self.dask, other.dask, dsk), name, n*m) def foldby(self, key, binop, initial=no_default, combine=None, combine_initial=no_default): """ Combined reduction and groupby Foldby provides a combined groupby and reduce for efficient parallel split-apply-combine tasks. The computation >>> b.foldby(key, binop, init) # doctest: +SKIP is equivalent to the following: >>> def reduction(group): # doctest: +SKIP ... return reduce(binop, group, init) # doctest: +SKIP >>> b.groupby(key).map(lambda (k, v): (k, reduction(v)))# doctest: +SKIP But uses minimal communication and so is *much* faster. >>> b = from_sequence(range(10)) >>> iseven = lambda x: x % 2 == 0 >>> add = lambda x, y: x + y >>> dict(b.foldby(iseven, add)) # doctest: +SKIP {True: 20, False: 25} **Key Function** The key function determines how to group the elements in your bag. In the common case where your bag holds dictionaries then the key function often gets out one of those elements. >>> def key(x): ... return x['name'] This case is so common that it is special cased, and if you provide a key that is not a callable function then dask.bag will turn it into one automatically. The following are equivalent: >>> b.foldby(lambda x: x['name'], ...) # doctest: +SKIP >>> b.foldby('name', ...) # doctest: +SKIP **Binops** It can be tricky to construct the right binary operators to perform analytic queries. The ``foldby`` method accepts two binary operators, ``binop`` and ``combine``. Binary operators two inputs and output must have the same type. Binop takes a running total and a new element and produces a new total: >>> def binop(total, x): ... return total + x['amount'] Combine takes two totals and combines them: >>> def combine(total1, total2): ... return total1 + total2 Each of these binary operators may have a default first value for total, before any other value is seen. For addition binary operators like above this is often ``0`` or the identity element for your operation. >>> b.foldby('name', binop, 0, combine, 0) # doctest: +SKIP See Also -------- toolz.reduceby pyspark.combineByKey """ a = next(names) b = next(names) if combine is None: combine = binop if initial is not no_default: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i))) for i in range(self.npartitions)) combine2 = lambda acc, x: combine(acc, x[1]) if combine_initial is not no_default: dsk2 = {(b, 0): (dictitems, (reduceby, 0, combine2, (toolz.concat, (map, dictitems, list(dsk.keys()))), combine_initial))} else: dsk2 = {(b, 0): (dictitems, (merge_with, (partial, reduce, combine), list(dsk.keys())))} return type(self)(merge(self.dask, dsk, dsk2), b, 1) def take(self, k, compute=True): """ Take the first k elements Evaluates by default, use ``compute=False`` to avoid computation. Only takes from the first partition >>> b = from_sequence(range(10)) >>> b.take(3) # doctest: +SKIP (0, 1, 2) """ name = next(names) dsk = {(name, 0): (list, (take, k, (self.name, 0)))} b = Bag(merge(self.dask, dsk), name, 1) if compute: return tuple(b.compute()) else: return b def _keys(self): return [(self.name, i) for i in range(self.npartitions)] def concat(self): """ Concatenate nested lists into one long list >>> b = from_sequence([[1], [2, 3]]) >>> list(b) [[1], [2, 3]] >>> list(b.concat()) [1, 2, 3] """ name = next(names) dsk = dict(((name, i), (list, (toolz.concat, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def __iter__(self): return iter(self.compute()) def groupby(self, grouper, npartitions=None, blocksize=2**20): """ Group collection by key function Note that this requires full dataset read, serialization and shuffle. This is expensive. If possible you should use ``foldby``. >>> b = from_sequence(range(10)) >>> dict(b.groupby(lambda x: x % 2 == 0)) # doctest: +SKIP {True: [0, 2, 4, 6, 8], False: [1, 3, 5, 7, 9]} See Also -------- Bag.foldby """ if npartitions is None: npartitions = self.npartitions import partd p = ('partd' + next(tokens),) try: dsk1 = {p: (partd.Python, (partd.Snappy, partd.File()))} except AttributeError: dsk1 = {p: (partd.Python, partd.File())} # Partition data on disk name = next(names) dsk2 = dict(((name, i), (partition, grouper, (self.name, i), npartitions, p, blocksize)) for i in range(self.npartitions)) # Barrier barrier_token = 'barrier' + next(tokens) def barrier(args): return 0 dsk3 = {barrier_token: (barrier, list(dsk2))} # Collect groups name = next(names) dsk4 = dict(((name, i), (collect, grouper, i, p, barrier_token)) for i in range(npartitions)) return type(self)(merge(self.dask, dsk1, dsk2, dsk3, dsk4), name, npartitions) def to_dataframe(self, columns=None): """ Convert Bag to dask.dataframe Bag should contain tuple or dict records. Provide ``columns=`` keyword arg to specify column names. Index will not be particularly meaningful. Use ``reindex`` afterwards if necessary. Examples -------- >>> import dask.bag as db >>> b = db.from_sequence([{'name': 'Alice', 'balance': 100}, ... {'name': 'Bob', 'balance': 200}, ... {'name': 'Charlie', 'balance': 300}], ... npartitions=2) >>> df = b.to_dataframe() >>> df.compute() balance name 0 100 Alice 1 200 Bob 0 300 Charlie """ import pandas as pd import dask.dataframe as dd if columns is None: head = self.take(1)[0] if isinstance(head, dict): columns = sorted(head) elif isinstance(head, (tuple, list)): columns = list(range(len(head))) name = next(names) DataFrame = partial(pd.DataFrame, columns=columns) dsk = dict(((name, i), (DataFrame, (list2, (self.name, i)))) for i in range(self.npartitions)) divisions = [None] * (self.npartitions + 1) return dd.DataFrame(merge(optimize(self.dask, self._keys()), dsk), name, columns, divisions) normalize_token.register(Item, lambda a: a.key) normalize_token.register(Bag, lambda a: a.name) def partition(grouper, sequence, npartitions, p, nelements=2**20): """ Partition a bag along a grouper, store partitions on disk """ for block in partition_all(nelements, sequence): d = groupby(grouper, block) d2 = defaultdict(list) for k, v in d.items(): d2[abs(hash(k)) % npartitions].extend(v) p.append(d2) return p def collect(grouper, group, p, barrier_token): """ Collect partitions from disk and yield k,v group pairs """ d = groupby(grouper, p.get(group, lock=False)) return list(d.items()) def decode_sequence(encoding, seq): for item in seq: yield item.decode(encoding) opens = {'gz': gzip.open, 'bz2': bz2.BZ2File} def from_filenames(filenames, chunkbytes=None, encoding=system_encoding): """ Create dask by loading in lines from many files Provide list of filenames >>> b = from_filenames(['myfile.1.txt', 'myfile.2.txt']) # doctest: +SKIP Or a globstring >>> b = from_filenames('myfiles.*.txt') # doctest: +SKIP Parallelize a large files by providing the number of uncompressed bytes to load into each partition. >>> b = from_filenames('largefile.txt', chunkbytes=1e7) # doctest: +SKIP See Also -------- from_sequence: A more generic bag creation function """ if isinstance(filenames, str): filenames = sorted(glob(filenames)) if not filenames: raise ValueError("No filenames found") full_filenames = [os.path.abspath(f) for f in filenames] name = 'from-filename' + next(tokens) if chunkbytes: chunkbytes = int(chunkbytes) taskss = [_chunk_read_file(fn, chunkbytes, encoding) for fn in full_filenames] d = dict(((name, i), task) for i, task in enumerate(toolz.concat(taskss))) else: extension = os.path.splitext(filenames[0])[1].strip('.') myopen = opens.get(extension, open) d = dict(((name, i), (list, (decode_sequence, encoding, (myopen, fn, 'rb')))) for i, fn in enumerate(full_filenames)) return Bag(d, name, len(d)) def _chunk_read_file(filename, chunkbytes, encoding): extension = os.path.splitext(filename)[1].strip('.') compression = {'gz': 'gzip', 'bz2': 'bz2'}.get(extension, None) return [(list, (StringIO, (bytes.decode, (textblock, filename, i, i + chunkbytes, compression), encoding))) for i in range(0, file_size(filename, compression), chunkbytes)] def write(data, filename, encoding): dirname = os.path.dirname(filename) if not os.path.exists(dirname): with ignoring(OSError): os.makedirs(dirname) ext = os.path.splitext(filename)[1][1:] if ext == 'gz': f = gzip.open(filename, 'wb') data = (line.encode(encoding) for line in data) elif ext == 'bz2': f = bz2.BZ2File(filename, 'wb') data = (line.encode(encoding) for line in data) else: f = codecs.open(filename, 'wb', encoding=encoding) try: for item in data: f.write(item) finally: f.close() def _get_s3_bucket(bucket_name, aws_access_key, aws_secret_key, connection, anon): """Connect to s3 and return a bucket""" import boto if anon is True: connection = boto.connect_s3(anon=anon) elif connection is None: connection = boto.connect_s3(aws_access_key, aws_secret_key) return connection.get_bucket(bucket_name) # we need an unmemoized function to call in the main thread. And memoized # functions for the dask. _memoized_get_bucket = toolz.memoize(_get_s3_bucket) def _get_key(bucket_name, conn_args, key_name): bucket = _memoized_get_bucket(bucket_name, *conn_args) key = bucket.get_key(key_name) ext = key_name.split('.')[-1] return stream_decompress(ext, key.read()) def _parse_s3_URI(bucket_name, paths): from ..compatibility import quote, unquote assert bucket_name.startswith('s3://') o = urlparse('s3://' + quote(bucket_name[len('s3://'):])) # if path is specified if (paths == '*') and (o.path != '' and o.path != '/'): paths = unquote(o.path[1:]) bucket_name = unquote(o.hostname) return bucket_name, paths def from_s3(bucket_name, paths='*', aws_access_key=None, aws_secret_key=None, connection=None, anon=False): """ Create a Bag by loading textfiles from s3 Each line will be treated as one element and each file in S3 as one partition. You may specify a full s3 bucket >>> b = from_s3('s3://bucket-name') # doctest: +SKIP Or select files, lists of files, or globstrings of files within that bucket >>> b = from_s3('s3://bucket-name', 'myfile.json') # doctest: +SKIP >>> b = from_s3('s3://bucket-name', ['alice.json', 'bob.json']) # doctest: +SKIP >>> b = from_s3('s3://bucket-name', '*.json') # doctest: +SKIP """ conn_args = (aws_access_key, aws_secret_key, connection, anon) bucket_name, paths = normalize_s3_names(bucket_name, paths, conn_args) get_key = partial(_get_key, bucket_name, conn_args) name = next(load_names) dsk = dict(((name, i), (list, (get_key, k))) for i, k in enumerate(paths)) return Bag(dsk, name, len(paths)) def normalize_s3_names(bucket_name, paths, conn_args): """ Normalize bucket name and paths """ if bucket_name.startswith('s3://'): bucket_name, paths = _parse_s3_URI(bucket_name, paths) if isinstance(paths, str): if ('*' not in paths) and ('?' not in paths): return bucket_name, [paths] else: bucket = _get_s3_bucket(bucket_name, *conn_args) keys = bucket.list() # handle globs matches = [k.name for k in keys if fnmatchcase(k.name, paths)] return bucket_name, matches else: return bucket_name, paths def from_hdfs(path, hdfs=None, host='localhost', port='50070', user_name=None): """ Create dask by loading in files from HDFS Provide an hdfs directory and credentials >>> b = from_hdfs('home/username/data/', host='localhost', user_name='ubuntu') # doctest: +SKIP Alternatively provide an instance of ``pywebhdfs.webhdfs.PyWebHdfsClient`` >>> from pywebhdfs.webhdfs import PyWebHdfsClient # doctest: +SKIP >>> hdfs = PyWebHdfsClient(host='hostname', user_name='username') # doctest: +SKIP >>> b = from_hdfs('home/username/data/', hdfs=hdfs) # doctest: +SKIP """ from .. import hdfs_utils filenames = hdfs_utils.filenames(hdfs, path) if not filenames: raise ValueError("No files found for path %s" % path) name = next(names) dsk = dict() for i, fn in enumerate(filenames): ext = fn.split('.')[-1] if ext in ('gz', 'bz2'): dsk[(name, i)] = (stream_decompress, ext, (hdfs.read_file, fn)) else: dsk[(name, i)] = (hdfs.read_file, fn) return Bag(dsk, name, len(dsk)) def stream_decompress(fmt, data): """ Decompress a block of compressed bytes into a stream of strings """ if fmt == 'gz': return gzip.GzipFile(fileobj=BytesIO(data)) if fmt == 'bz2': return bz2_stream(data) else: return map(bytes.decode, BytesIO(data)) def bz2_stream(compressed, chunksize=100000): """ Stream lines from a chunk of compressed bz2 data """ decompressor = bz2.BZ2Decompressor() for i in range(0, len(compressed), chunksize): chunk = compressed[i: i+chunksize] decompressed = decompressor.decompress(chunk).decode() for line in decompressed.split('\n'): yield line + '\n' def from_sequence(seq, partition_size=None, npartitions=None): """ Create dask from Python sequence This sequence should be relatively small in memory. Dask Bag works best when it handles loading your data itself. Commonly we load a sequence of filenames into a Bag and then use ``.map`` to open them. Parameters ---------- seq: Iterable A sequence of elements to put into the dask partition_size: int (optional) The length of each partition npartitions: int (optional) The number of desired partitions It is best to provide either ``partition_size`` or ``npartitions`` (though not both.) Examples -------- >>> b = from_sequence(['Alice', 'Bob', 'Chuck'], partition_size=2) See Also -------- from_filenames: Specialized bag creation function for textfiles """ seq = list(seq) if npartitions and not partition_size: partition_size = int(math.ceil(len(seq) / npartitions)) if npartitions is None and partition_size is None: if len(seq) < 100: partition_size = 1 else: partition_size = int(len(seq) / 100) parts = list(partition_all(partition_size, seq)) name = next(load_names) d = dict(((name, i), part) for i, part in enumerate(parts)) return Bag(d, name, len(d)) def from_castra(x, columns=None, index=False): """Load a dask Bag from a Castra. Parameters ---------- x : filename or Castra columns: list or string, optional The columns to load. Default is all columns. index: bool, optional If True, the index is included as the first element in each tuple. Default is False. """ from castra import Castra if not isinstance(x, Castra): x = Castra(x, readonly=True) elif not x._readonly: x = Castra(x.path, readonly=True) if columns is None: columns = x.columns name = 'from-castra-' + next(tokens) dsk = dict(((name, i), (load_castra_partition, x, part, columns, index)) for i, part in enumerate(x.partitions)) return Bag(dsk, name, len(x.partitions)) def load_castra_partition(castra, part, columns, index): import blosc # Due to serialization issues, blosc needs to be manually initialized in # each process. blosc.init() df = castra.load_partition(part, columns) if isinstance(columns, list): items = df.itertuples(index) else: items = df.iteritems() if index else iter(df) items = list(items) if (items and isinstance(items[0], tuple) and type(items[0]) is not tuple): names = items[0]._fields items = [dict(zip(names, item)) for item in items] return items def from_url(urls): """Create a dask.bag from a url >>> a = from_url('http://raw.githubusercontent.com/blaze/dask/master/README.rst') # doctest: +SKIP >>> a.npartitions # doctest: +SKIP 1 >> a.take(8) # doctest: +SKIP ('Dask\n', '====\n', '\n', '|Build Status| |Coverage| |Doc Status| |Gitter|\n', '\n', 'Dask provides multi-core execution on larger-than-memory datasets using blocked\n', 'algorithms and task scheduling. It maps high-level NumPy and list operations\n', 'on large datasets on to graphs of many operations on small in-memory datasets.\n') >>> b = from_url(['http://github.com', 'http://google.com']) # doctest: +SKIP >>> b.npartitions # doctest: +SKIP 2 """ if isinstance(urls, str): urls = [urls] name = next(load_names) dsk = {} for i, u in enumerate(urls): dsk[(name, i)] = (list, (urlopen, u)) return Bag(dsk, name, len(urls)) def dictitems(d): """ A pickleable version of dict.items >>> dictitems({'x': 1}) [('x', 1)] """ return list(d.items()) def concat(bags): """ Concatenate many bags together, unioning all elements >>> import dask.bag as db >>> a = db.from_sequence([1, 2, 3]) >>> b = db.from_sequence([4, 5, 6]) >>> c = db.concat([a, b]) >>> list(c) [1, 2, 3, 4, 5, 6] """ name = next(names) counter = itertools.count(0) dsk = dict(((name, next(counter)), key) for bag in bags for key in sorted(bag._keys())) return Bag(merge(dsk, *[b.dask for b in bags]), name, len(dsk)) class StringAccessor(object): """ String processing functions Examples -------- >>> import dask.bag as db >>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith']) >>> list(b.str.lower()) ['alice smith', 'bob jones', 'charlie smith'] >>> list(b.str.match('*Smith')) ['Alice Smith', 'Charlie Smith'] >>> list(b.str.split(' ')) [['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']] """ def __init__(self, bag): self._bag = bag def __dir__(self): return sorted(set(dir(type(self)) + dir(str))) def _strmap(self, key, *args, **kwargs): return self._bag.map(lambda s: getattr(s, key)(*args, **kwargs)) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: if key in dir(str): func = getattr(str, key) return robust_wraps(func)(partial(self._strmap, key)) else: raise def match(self, pattern): """ Filter strings by those that match a pattern Examples -------- >>> import dask.bag as db >>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith']) >>> list(b.str.match('*Smith')) ['Alice Smith', 'Charlie Smith'] See Also -------- fnmatch.fnmatch """ from fnmatch import fnmatch return self._bag.filter(partial(fnmatch, pat=pattern)) def robust_wraps(wrapper): """ A weak version of wraps that only copies doc """ def _(wrapped): wrapped.__doc__ = wrapper.__doc__ return wrapped return _ def reify(seq): if isinstance(seq, Iterator): seq = list(seq) if seq and isinstance(seq[0], Iterator): seq = list(map(list, seq)) return seq
{ "repo_name": "vikhyat/dask", "path": "dask/bag/core.py", "copies": "1", "size": "40406", "license": "bsd-3-clause", "hash": -7639128239195336000, "line_mean": 31.2216905901, "line_max": 103, "alpha_frac": 0.558803148, "autogenerated": false, "ratio": 3.692406104358951, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9746644309971035, "avg_score": 0.0009129884775830875, "num_lines": 1254 }
from __future__ import absolute_import, division, print_function import itertools import math import tempfile import inspect import gzip import zlib import bz2 import os from fnmatch import fnmatchcase from glob import glob from collections import Iterable, Iterator, defaultdict from functools import wraps, partial from dask.utils import takes_multiple_arguments from toolz import (merge, frequencies, merge_with, take, reduce, join, reduceby, valmap, count, map, partition_all, filter, remove, pluck, groupby, topk) import toolz from ..utils import tmpfile, ignoring, file_size, textblock with ignoring(ImportError): from cytoolz import (frequencies, merge_with, join, reduceby, count, pluck, groupby, topk) from ..multiprocessing import get as mpget from ..core import istask, get_dependencies, reverse_dict from ..optimize import fuse, cull, inline from ..compatibility import (apply, BytesIO, unicode, urlopen, urlparse, quote, unquote, StringIO) from ..base import Base names = ('bag-%d' % i for i in itertools.count(1)) tokens = ('-%d' % i for i in itertools.count(1)) load_names = ('load-%d' % i for i in itertools.count(1)) no_default = '__no__default__' def lazify_task(task, start=True): """ Given a task, remove unnecessary calls to ``list`` Example ------- >>> task = (sum, (list, (map, inc, [1, 2, 3]))) # doctest: +SKIP >>> lazify_task(task) # doctest: +SKIP (sum, (map, inc, [1, 2, 3])) """ if not istask(task): return task head, tail = task[0], task[1:] if not start and head in (list, reify): task = task[1] return lazify_task(*tail, start=False) else: return (head,) + tuple([lazify_task(arg, False) for arg in tail]) def lazify(dsk): """ Remove unnecessary calls to ``list`` in tasks See Also: ``dask.bag.core.lazify_task`` """ return valmap(lazify_task, dsk) def inline_singleton_lists(dsk): """ Inline lists that are only used once >>> d = {'b': (list, 'a'), ... 'c': (f, 'b', 1)} # doctest: +SKIP >>> inline_singleton_lists(d) # doctest: +SKIP {'c': (f, (list, 'a'), 1)} Pairs nicely with lazify afterwards """ dependencies = dict((k, get_dependencies(dsk, k)) for k in dsk) dependents = reverse_dict(dependencies) keys = [k for k, v in dsk.items() if istask(v) and v and v[0] is list and len(dependents[k]) == 1] return inline(dsk, keys, inline_constants=False) def optimize(dsk, keys): """ Optimize a dask from a dask.bag """ dsk2 = cull(dsk, keys) dsk3 = fuse(dsk2) dsk4 = inline_singleton_lists(dsk3) dsk5 = lazify(dsk4) return dsk5 def list2(seq): """ Another list function that won't be removed by lazify """ return list(seq) def to_textfiles(b, path, name_function=str): """ Write bag to disk, one filename per partition, one line per element **Paths**: This will create one file for each partition in your bag. You can specify the filenames in a variety of ways. Use a globstring >>> b.to_textfiles('/path/to/data/*.json.gz') # doctest: +SKIP The * will be replaced by the increasing sequence 1, 2, ... :: /path/to/data/0.json.gz /path/to/data/1.json.gz Use a globstring and a ``name_function=`` keyword argument. The name_function function should expect an integer and produce a string. >>> from datetime import date, timedelta >>> def name(i): ... return str(date(2015, 1, 1) + i * timedelta(days=1)) >>> name(0) '2015-01-01' >>> name(15) '2015-01-16' >>> b.to_textfiles('/path/to/data/*.json.gz', name_function=name) # doctest: +SKIP :: /path/to/data/2015-01-01.json.gz /path/to/data/2015-01-02.json.gz ... You can also provide an explicit list of paths. >>> paths = ['/path/to/data/alice.json.gz', '/path/to/data/bob.json.gz', ...] # doctest: +SKIP >>> b.to_textfiles(paths) # doctest: +SKIP **Compression**: Filenames with extensions corresponding to known compression algorithms (gz, bz2) will be compressed accordingly. """ if isinstance(path, (str, unicode)): if '*' in path: paths = [path.replace('*', name_function(i)) for i in range(b.npartitions)] else: paths = [os.path.join(path, '%s.part' % name_function(i)) for i in range(b.npartitions)] elif isinstance(path, (tuple, list, set)): assert len(path) == b.npartitions paths = path else: raise ValueError("Path should be either\n" "1. A list of paths -- ['foo.json', 'bar.json', ...]\n" "2. A directory -- 'foo/\n" "3. A path with a * in it -- 'foo.*.json'") name = next(names) dsk = dict(((name, i), (write, (b.name, i), path)) for i, path in enumerate(paths)) return Bag(merge(b.dask, dsk), name, b.npartitions) def finalize(bag, results): if isinstance(bag, Item): return results[0] if isinstance(results, Iterator): results = list(results) if isinstance(results[0], Iterable) and not isinstance(results[0], str): results = toolz.concat(results) if isinstance(results, Iterator): results = list(results) return results class Item(Base): _optimize = staticmethod(optimize) _default_get = staticmethod(mpget) _finalize = staticmethod(finalize) def __init__(self, dsk, key): self.dask = dsk self.key = key def _keys(self): return [self.key] def apply(self, func): name = next(names) dsk = {name: (func, self.key)} return Item(merge(self.dask, dsk), name) __int__ = __float__ = __complex__ = __bool__ = Base.compute class Bag(Base): """ Parallel collection of Python objects Example ------- Create Bag from sequence >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.filter(lambda x: x % 2 == 0).map(lambda x: x * 10)) # doctest: +SKIP [0, 20, 40] Create Bag from filename or globstring of filenames >>> b = db.from_filenames('/path/to/mydata.*.json.gz').map(json.loads) # doctest: +SKIP Create manually (expert use) >>> dsk = {('x', 0): (range, 5), ... ('x', 1): (range, 5), ... ('x', 2): (range, 5)} >>> b = Bag(dsk, 'x', npartitions=3) >>> sorted(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 0, 0, 10, 10, 10, 20, 20, 20, 30, 30, 30, 40, 40, 40] >>> int(b.fold(lambda x, y: x + y)) # doctest: +SKIP 30 """ _optimize = staticmethod(optimize) _default_get = staticmethod(mpget) _finalize = staticmethod(finalize) def __init__(self, dsk, name, npartitions): self.dask = dsk self.name = name self.npartitions = npartitions self.str = StringAccessor(self) def map(self, func): """ Map a function across all elements in collection >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.map(lambda x: x * 10)) # doctest: +SKIP [0, 10, 20, 30, 40] """ name = next(names) if takes_multiple_arguments(func): func = partial(apply, func) dsk = dict(((name, i), (reify, (map, func, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) @property def _args(self): return (self.dask, self.name, self.npartitions) def filter(self, predicate): """ Filter elements in collection by a predicate function >>> def iseven(x): ... return x % 2 == 0 >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.filter(iseven)) # doctest: +SKIP [0, 2, 4] """ name = next(names) dsk = dict(((name, i), (reify, (filter, predicate, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def remove(self, predicate): """ Remove elements in collection that match predicate >>> def iseven(x): ... return x % 2 == 0 >>> import dask.bag as db >>> b = db.from_sequence(range(5)) >>> list(b.remove(iseven)) # doctest: +SKIP [1, 3] """ name = next(names) dsk = dict(((name, i), (reify, (remove, predicate, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def map_partitions(self, func): """ Apply function to every partition within collection Note that this requires you to understand how dask.bag partitions your data and so is somewhat internal. >>> b.map_partitions(myfunc) # doctest: +SKIP """ name = next(names) dsk = dict(((name, i), (func, (self.name, i))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def pluck(self, key, default=no_default): """ Select item from all tuples/dicts in collection >>> b = from_sequence([{'name': 'Alice', 'credits': [1, 2, 3]}, ... {'name': 'Bob', 'credits': [10, 20]}]) >>> list(b.pluck('name')) # doctest: +SKIP ['Alice', 'Bob'] >>> list(b.pluck('credits').pluck(0)) # doctest: +SKIP [1, 10] """ name = next(names) if isinstance(key, list): key = (list2, key) if default == no_default: dsk = dict(((name, i), (list, (pluck, key, (self.name, i)))) for i in range(self.npartitions)) else: dsk = dict(((name, i), (list, (pluck, key, (self.name, i), default))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) @classmethod def from_sequence(cls, *args, **kwargs): raise AttributeError("db.Bag.from_sequence is deprecated.\n" "Use db.from_sequence instead.") @classmethod def from_filenames(cls, *args, **kwargs): raise AttributeError("db.Bag.from_filenames is deprecated.\n" "Use db.from_filenames instead.") @wraps(to_textfiles) def to_textfiles(self, path, name_function=str): return to_textfiles(self, path, name_function) def fold(self, binop, combine=None, initial=None): """ Splittable reduction Apply binary operator on each partition to perform reduce. Follow by a second binary operator to combine results >>> b = from_sequence(range(5)) >>> b.fold(lambda x, y: x + y).compute() # doctest: +SKIP 10 Optionally provide default arguments and special combine binary operator >>> b.fold(lambda x, y: x + y, lambda x, y: x + y, 0).compute() # doctest: +SKIP 10 """ a = next(names) b = next(names) if initial: dsk = dict(((a, i), (reduce, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduce, binop, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (reduce, combine or binop, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) def frequencies(self): """ Count number of occurrences of each distinct element >>> b = from_sequence(['Alice', 'Bob', 'Alice']) >>> dict(b.frequencies()) # doctest: +SKIP {'Alice': 2, 'Bob', 1} """ a = next(names) b = next(names) dsk = dict(((a, i), (frequencies, (self.name, i))) for i in range(self.npartitions)) dsk2 = {(b, 0): (dictitems, (merge_with, sum, list(sorted(dsk.keys()))))} return type(self)(merge(self.dask, dsk, dsk2), b, 1) def topk(self, k, key=None): """ K largest elements in collection Optionally ordered by some key function >>> b = from_sequence([10, 3, 5, 7, 11, 4]) >>> list(b.topk(2)) # doctest: +SKIP [11, 10] >>> list(b.topk(2, lambda x: -x)) # doctest: +SKIP [3, 4] """ a = next(names) b = next(names) if key: if callable(key) and takes_multiple_arguments(key): key = partial(apply, key) func = partial(topk, key=key) else: func = topk dsk = dict(((a, i), (list, (func, k, (self.name, i)))) for i in range(self.npartitions)) dsk2 = {(b, 0): (list, (func, k, (toolz.concat, list(dsk.keys()))))} return type(self)(merge(self.dask, dsk, dsk2), b, 1) def distinct(self): """ Distinct elements of collection Unordered without repeats. >>> b = from_sequence(['Alice', 'Bob', 'Alice']) >>> sorted(b.distinct()) ['Alice', 'Bob'] """ a = next(names) dsk = dict(((a, i), (set, key)) for i, key in enumerate(self._keys())) b = next(names) dsk2 = {(b, 0): (apply, set.union, (list2, list(dsk.keys())))} return type(self)(merge(self.dask, dsk, dsk2), b, 1) def reduction(self, perpartition, aggregate): """ Reduce collection with reduction operators Parameters ---------- perpartition: function reduction to apply to each partition aggregate: function reduction to apply to the results of all partitions Example ------- >>> b = from_sequence(range(10)) >>> b.reduction(sum, sum).compute() 45 """ a = next(names) b = next(names) dsk = dict(((a, i), (perpartition, (self.name, i))) for i in range(self.npartitions)) dsk2 = {b: (aggregate, list(dsk.keys()))} return Item(merge(self.dask, dsk, dsk2), b) @wraps(sum) def sum(self): return self.reduction(sum, sum) @wraps(max) def max(self): return self.reduction(max, max) @wraps(min) def min(self): return self.reduction(min, min) @wraps(any) def any(self): return self.reduction(any, any) @wraps(all) def all(self): return self.reduction(all, all) def count(self): """ Count the number of elements """ return self.reduction(count, sum) def mean(self): """ Arithmetic mean """ def chunk(seq): total, n = 0.0, 0 for x in seq: total += x n += 1 return total, n def agg(x): totals, counts = list(zip(*x)) return 1.0 * sum(totals) / sum(counts) return self.reduction(chunk, agg) def var(self, ddof=0): """ Variance """ def chunk(seq): squares, total, n = 0.0, 0.0, 0 for x in seq: squares += x**2 total += x n += 1 return squares, total, n def agg(x): squares, totals, counts = list(zip(*x)) x2, x, n = float(sum(squares)), float(sum(totals)), sum(counts) result = (x2 / n) - (x / n)**2 return result * n / (n - ddof) return self.reduction(chunk, agg) def std(self, ddof=0): """ Standard deviation """ return self.var(ddof=ddof).apply(math.sqrt) def join(self, other, on_self, on_other=None): """ Join collection with another collection Other collection must be an Iterable, and not a Bag. >>> people = from_sequence(['Alice', 'Bob', 'Charlie']) >>> fruit = ['Apple', 'Apricot', 'Banana'] >>> list(people.join(fruit, lambda x: x[0])) # doctest: +SKIP [('Apple', 'Alice'), ('Apricot', 'Alice'), ('Banana', 'Bob')] """ assert isinstance(other, Iterable) assert not isinstance(other, Bag) if on_other is None: on_other = on_self name = next(names) dsk = dict(((name, i), (list, (join, on_other, other, on_self, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def product(self, other): """ Cartesian product between two bags """ assert isinstance(other, Bag) name = next(names) n, m = self.npartitions, other.npartitions dsk = dict(((name, i*m + j), (list, (itertools.product, (self.name, i), (other.name, j)))) for i in range(n) for j in range(m)) return type(self)(merge(self.dask, other.dask, dsk), name, n*m) def foldby(self, key, binop, initial=no_default, combine=None, combine_initial=no_default): """ Combined reduction and groupby Foldby provides a combined groupby and reduce for efficient parallel split-apply-combine tasks. The computation >>> b.foldby(key, binop, init) # doctest: +SKIP is equivalent to the following: >>> def reduction(group): # doctest: +SKIP ... return reduce(binop, group, init) # doctest: +SKIP >>> b.groupby(key).map(lambda (k, v): (k, reduction(v)))# doctest: +SKIP But uses minimal communication and so is *much* faster. >>> b = from_sequence(range(10)) >>> iseven = lambda x: x % 2 == 0 >>> add = lambda x, y: x + y >>> dict(b.foldby(iseven, add)) # doctest: +SKIP {True: 20, False: 25} Key Function ------------ The key function determines how to group the elements in your bag. In the common case where your bag holds dictionaries then the key function often gets out one of those elements. >>> def key(x): ... return x['name'] This case is so common that it is special cased, and if you provide a key that is not a callable function then dask.bag will turn it into one automatically. The following are equivalent: >>> b.foldby(lambda x: x['name'], ...) # doctest: +SKIP >>> b.foldby('name', ...) # doctest: +SKIP Binops ------ It can be tricky to construct the right binary operators to perform analytic queries. The ``foldby`` method accepts two binary operators, ``binop`` and ``combine``. Binop takes a running total and a new element and produces a new total >>> def binop(total, x): ... return total + x['amount'] Combine takes two totals and combines them >>> def combine(total1, total2): ... return total1 + total2 Each of these binary operators may have a default first value for total, before any other value is seen. For addition binary operators like above this is often ``0`` or the identity element for your operation. >>> b.foldby('name', binop, 0, combine, 0) # doctest: +SKIP See also -------- toolz.reduceby pyspark.combineByKey """ a = next(names) b = next(names) if combine is None: combine = binop if initial is not no_default: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i), initial)) for i in range(self.npartitions)) else: dsk = dict(((a, i), (reduceby, key, binop, (self.name, i))) for i in range(self.npartitions)) combine2 = lambda acc, x: combine(acc, x[1]) if combine_initial is not no_default: dsk2 = {(b, 0): (dictitems, (reduceby, 0, combine2, (toolz.concat, (map, dictitems, list(dsk.keys()))), combine_initial))} else: dsk2 = {(b, 0): (dictitems, (merge_with, (partial, reduce, combine), list(dsk.keys())))} return type(self)(merge(self.dask, dsk, dsk2), b, 1) def take(self, k, compute=True): """ Take the first k elements Evaluates by default, use ``compute=False`` to avoid computation. Only takes from the first partition >>> b = from_sequence(range(10)) >>> b.take(3) # doctest: +SKIP (0, 1, 2) """ name = next(names) dsk = {(name, 0): (list, (take, k, (self.name, 0)))} b = Bag(merge(self.dask, dsk), name, 1) if compute: return tuple(b.compute()) else: return b def _keys(self): return [(self.name, i) for i in range(self.npartitions)] def concat(self): """ Concatenate nested lists into one long list >>> b = from_sequence([[1], [2, 3]]) >>> list(b) [[1], [2, 3]] >>> list(b.concat()) [1, 2, 3] """ name = next(names) dsk = dict(((name, i), (list, (toolz.concat, (self.name, i)))) for i in range(self.npartitions)) return type(self)(merge(self.dask, dsk), name, self.npartitions) def __iter__(self): return iter(self.compute()) def groupby(self, grouper, npartitions=None, blocksize=2**20): """ Group collection by key function Note that this requires full dataset read, serialization and shuffle. This is expensive. If possible you should use ``foldby``. >>> b = from_sequence(range(10)) >>> dict(b.groupby(lambda x: x % 2 == 0)) # doctest: +SKIP {True: [0, 2, 4, 6, 8], False: [1, 3, 5, 7, 9]} See Also -------- Bag.foldby """ if npartitions is None: npartitions = self.npartitions import partd p = ('partd' + next(tokens),) try: dsk1 = {p: (partd.Python, (partd.Snappy, partd.File()))} except AttributeError: dsk1 = {p: (partd.Python, partd.File())} # Partition data on disk name = next(names) dsk2 = dict(((name, i), (partition, grouper, (self.name, i), npartitions, p, blocksize)) for i in range(self.npartitions)) # Barrier barrier_token = 'barrier' + next(tokens) def barrier(args): return 0 dsk3 = {barrier_token: (barrier, list(dsk2))} # Collect groups name = next(names) dsk4 = dict(((name, i), (collect, grouper, i, p, barrier_token)) for i in range(npartitions)) return type(self)(merge(self.dask, dsk1, dsk2, dsk3, dsk4), name, npartitions) def to_dataframe(self, columns=None): """ Convert Bag to dask.dataframe Bag should contain tuple or dict records. Provide ``columns=`` keyword arg to specify column names. Index will not be particularly meaningful. Use ``reindex`` afterwards if necessary. Example ------- >>> import dask.bag as db >>> b = db.from_sequence([{'name': 'Alice', 'balance': 100}, ... {'name': 'Bob', 'balance': 200}, ... {'name': 'Charlie', 'balance': 300}], ... npartitions=2) >>> df = b.to_dataframe() >>> df.compute() balance name 0 100 Alice 1 200 Bob 0 300 Charlie """ import pandas as pd import dask.dataframe as dd if columns is None: head = self.take(1)[0] if isinstance(head, dict): columns = sorted(head) elif isinstance(head, (tuple, list)): columns = list(range(len(head))) name = next(names) DataFrame = partial(pd.DataFrame, columns=columns) dsk = dict(((name, i), (DataFrame, (list2, (self.name, i)))) for i in range(self.npartitions)) divisions = [None] * (self.npartitions + 1) return dd.DataFrame(merge(optimize(self.dask, self._keys()), dsk), name, columns, divisions) def partition(grouper, sequence, npartitions, p, nelements=2**20): """ Partition a bag along a grouper, store partitions on disk """ for block in partition_all(nelements, sequence): d = groupby(grouper, block) d2 = defaultdict(list) for k, v in d.items(): d2[abs(hash(k)) % npartitions].extend(v) p.append(d2) return p def collect(grouper, group, p, barrier_token): """ Collect partitions from disk and yield k,v group pairs """ d = groupby(grouper, p.get(group, lock=False)) return list(d.items()) opens = {'gz': gzip.open, 'bz2': bz2.BZ2File} def from_filenames(filenames, chunkbytes=None): """ Create dask by loading in lines from many files Provide list of filenames >>> b = from_filenames(['myfile.1.txt', 'myfile.2.txt']) # doctest: +SKIP Or a globstring >>> b = from_filenames('myfiles.*.txt') # doctest: +SKIP Parallelize a large files by providing the number of uncompressed bytes to load into each partition. >>> b = from_filenames('largefile.txt', chunkbytes=1e7) # doctest: +SKIP See also: from_sequence: A more generic bag creation function """ if isinstance(filenames, str): filenames = sorted(glob(filenames)) if not filenames: raise ValueError("No filenames found") full_filenames = [os.path.abspath(f) for f in filenames] name = 'from-filename' + next(tokens) if chunkbytes: chunkbytes = int(chunkbytes) taskss = [_chunk_read_file(fn, chunkbytes) for fn in full_filenames] d = dict(((name, i), task) for i, task in enumerate(toolz.concat(taskss))) else: extension = os.path.splitext(filenames[0])[1].strip('.') myopen = opens.get(extension, open) d = dict(((name, i), (list, (myopen, fn))) for i, fn in enumerate(full_filenames)) return Bag(d, name, len(d)) def _chunk_read_file(filename, chunkbytes): extension = os.path.splitext(filename)[1].strip('.') compression = {'gz': 'gzip', 'bz2': 'bz2'}.get(extension, None) return [(list, (StringIO, (bytes.decode, (textblock, filename, i, i + chunkbytes, compression)))) for i in range(0, file_size(filename, compression), chunkbytes)] def write(data, filename): dirname = os.path.dirname(filename) if not os.path.exists(dirname): with ignoring(OSError): os.makedirs(dirname) ext = os.path.splitext(filename)[1][1:] if ext == 'gz': f = gzip.open(filename, 'wb') data = (line.encode() for line in data) elif ext == 'bz2': f = bz2.BZ2File(filename, 'wb') data = (line.encode() for line in data) else: f = open(filename, 'w') try: for item in data: f.write(item) finally: f.close() def _get_s3_bucket(bucket_name, aws_access_key, aws_secret_key, connection, anon): """Connect to s3 and return a bucket""" import boto if anon is True: connection = boto.connect_s3(anon=anon) elif connection is None: connection = boto.connect_s3(aws_access_key, aws_secret_key) return connection.get_bucket(bucket_name) # we need an unmemoized function to call in the main thread. And memoized # functions for the dask. _memoized_get_bucket = toolz.memoize(_get_s3_bucket) def _get_key(bucket_name, conn_args, key_name): bucket = _memoized_get_bucket(bucket_name, *conn_args) key = bucket.get_key(key_name) ext = key_name.split('.')[-1] return stream_decompress(ext, key.read()) def _parse_s3_URI(bucket_name, paths): assert bucket_name.startswith('s3://') o = urlparse('s3://' + quote(bucket_name[len('s3://'):])) # if path is specified if (paths == '*') and (o.path != '' and o.path != '/'): paths = unquote(o.path[1:]) bucket_name = unquote(o.hostname) return bucket_name, paths def from_s3(bucket_name, paths='*', aws_access_key=None, aws_secret_key=None, connection=None, anon=False): """ Create a Bag by loading textfiles from s3 Each line will be treated as one element and each file in S3 as one partition. You may specify a full s3 bucket >>> b = from_s3('s3://bucket-name') # doctest: +SKIP Or select files, lists of files, or globstrings of files within that bucket >>> b = from_s3('s3://bucket-name', 'myfile.json') # doctest: +SKIP >>> b = from_s3('s3://bucket-name', ['alice.json', 'bob.json']) # doctest: +SKIP >>> b = from_s3('s3://bucket-name', '*.json') # doctest: +SKIP """ conn_args = (aws_access_key, aws_secret_key, connection, anon) bucket_name, paths = normalize_s3_names(bucket_name, paths, conn_args) get_key = partial(_get_key, bucket_name, conn_args) name = next(load_names) dsk = dict(((name, i), (list, (get_key, k))) for i, k in enumerate(paths)) return Bag(dsk, name, len(paths)) def normalize_s3_names(bucket_name, paths, conn_args): """ Normalize bucket name and paths """ if bucket_name.startswith('s3://'): bucket_name, paths = _parse_s3_URI(bucket_name, paths) if isinstance(paths, str): if ('*' not in paths) and ('?' not in paths): return bucket_name, [paths] else: bucket = _get_s3_bucket(bucket_name, *conn_args) keys = bucket.list() # handle globs matches = [k.name for k in keys if fnmatchcase(k.name, paths)] return bucket_name, matches else: return bucket_name, paths def from_hdfs(path, hdfs=None, host='localhost', port='50070', user_name=None): """ Create dask by loading in files from HDFS Provide an hdfs directory and credentials >>> b = from_hdfs('home/username/data/', host='localhost', user_name='ubuntu') # doctest: +SKIP Alternatively provide an instance of ``pywebhdfs.webhdfs.PyWebHdfsClient`` >>> from pywebhdfs.webhdfs import PyWebHdfsClient # doctest: +SKIP >>> hdfs = PyWebHdfsClient(host='hostname', user_name='username') # doctest: +SKIP >>> b = from_hdfs('home/username/data/', hdfs=hdfs) # doctest: +SKIP """ from .. import hdfs_utils filenames = hdfs_utils.filenames(hdfs, path) if not filenames: raise ValueError("No files found for path %s" % path) name = next(names) dsk = dict() for i, fn in enumerate(filenames): ext = fn.split('.')[-1] if ext in ('gz', 'bz2'): dsk[(name, i)] = (stream_decompress, ext, (hdfs.read_file, fn)) else: dsk[(name, i)] = (hdfs.read_file, fn) return Bag(dsk, name, len(dsk)) def stream_decompress(fmt, data): """ Decompress a block of compressed bytes into a stream of strings """ if fmt == 'gz': return gzip.GzipFile(fileobj=BytesIO(data)) if fmt == 'bz2': return bz2_stream(data) else: return map(bytes.decode, BytesIO(data)) def bz2_stream(compressed, chunksize=100000): """ Stream lines from a chunk of compressed bz2 data """ decompressor = bz2.BZ2Decompressor() for i in range(0, len(compressed), chunksize): chunk = compressed[i: i+chunksize] decompressed = decompressor.decompress(chunk).decode() for line in decompressed.split('\n'): yield line + '\n' def from_sequence(seq, partition_size=None, npartitions=None): """ Create dask from Python sequence This sequence should be relatively small in memory. Dask Bag works best when it handles loading your data itself. Commonly we load a sequence of filenames into a Bag and then use ``.map`` to open them. Parameters ---------- seq: Iterable A sequence of elements to put into the dask partition_size: int (optional) The length of each partition npartitions: int (optional) The number of desired partitions It is best to provide either ``partition_size`` or ``npartitions`` (though not both.) Example ------- >>> b = from_sequence(['Alice', 'Bob', 'Chuck'], partition_size=2) See also: from_filenames: Specialized bag creation function for textfiles """ seq = list(seq) if npartitions and not partition_size: partition_size = int(math.ceil(len(seq) / npartitions)) if npartitions is None and partition_size is None: if len(seq) < 100: partition_size = 1 else: partition_size = int(len(seq) / 100) parts = list(partition_all(partition_size, seq)) name = next(load_names) d = dict(((name, i), part) for i, part in enumerate(parts)) return Bag(d, name, len(d)) def from_url(urls): """Create a dask.bag from a url >>> a = from_url('http://raw.githubusercontent.com/ContinuumIO/dask/master/README.rst') # doctest: +SKIP >>> a.npartitions # doctest: +SKIP 1 >> a.take(8) # doctest: +SKIP ('Dask\n', '====\n', '\n', '|Build Status| |Coverage| |Doc Status| |Gitter|\n', '\n', 'Dask provides multi-core execution on larger-than-memory datasets using blocked\n', 'algorithms and task scheduling. It maps high-level NumPy and list operations\n', 'on large datasets on to graphs of many operations on small in-memory datasets.\n') >>> b = from_url(['http://github.com', 'http://google.com']) # doctest: +SKIP >>> b.npartitions # doctest: +SKIP 2 """ if isinstance(urls, str): urls = [urls] name = next(load_names) dsk = {} for i, u in enumerate(urls): dsk[(name, i)] = (list, (urlopen, u)) return Bag(dsk, name, len(urls)) def dictitems(d): """ A pickleable version of dict.items >>> dictitems({'x': 1}) [('x', 1)] """ return list(d.items()) def concat(bags): """ Concatenate many bags together, unioning all elements >>> import dask.bag as db >>> a = db.from_sequence([1, 2, 3]) >>> b = db.from_sequence([4, 5, 6]) >>> c = db.concat([a, b]) >>> list(c) [1, 2, 3, 4, 5, 6] """ name = next(names) counter = itertools.count(0) dsk = dict(((name, next(counter)), key) for bag in bags for key in sorted(bag._keys())) return Bag(merge(dsk, *[b.dask for b in bags]), name, len(dsk)) class StringAccessor(object): """ String processing functions Examples -------- >>> import dask.bag as db >>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith']) >>> list(b.str.lower()) ['alice smith', 'bob jones', 'charlie smith'] >>> list(b.str.match('*Smith')) ['Alice Smith', 'Charlie Smith'] >>> list(b.str.split(' ')) [['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']] """ def __init__(self, bag): self._bag = bag def __dir__(self): return sorted(set(dir(type(self)) + dir(str))) def _strmap(self, key, *args, **kwargs): return self._bag.map(lambda s: getattr(s, key)(*args, **kwargs)) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: if key in dir(str): func = getattr(str, key) return robust_wraps(func)(partial(self._strmap, key)) else: raise def match(self, pattern): """ Filter strings by those that match a pattern Example ------- >>> import dask.bag as db >>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith']) >>> list(b.str.match('*Smith')) ['Alice Smith', 'Charlie Smith'] See Also -------- fnmatch.fnmatch """ from fnmatch import fnmatch return self._bag.filter(partial(fnmatch, pat=pattern)) def robust_wraps(wrapper): """ A weak version of wraps that only copies doc """ def _(wrapped): wrapped.__doc__ = wrapper.__doc__ return wrapped return _ def reify(seq): if isinstance(seq, Iterator): seq = list(seq) if seq and isinstance(seq[0], Iterator): seq = list(map(list, seq)) return seq
{ "repo_name": "jayhetee/dask", "path": "dask/bag/core.py", "copies": "1", "size": "37332", "license": "bsd-3-clause", "hash": -7217649217156482000, "line_mean": 31.0446351931, "line_max": 109, "alpha_frac": 0.5524215151, "autogenerated": false, "ratio": 3.6736862822279077, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47261077973279075, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools import numpy as np from dask_patternsearch.search import RightHandedSimplexStencil from toolz import take import gizeh import moviepy.editor as mpy # DB16 - DawnBringer's 16 Col Palette v1.0 # http://pixeljoint.com/forum/forum_posts.asp?TID=12795 colors = [ [20, 12, 28], [68, 36, 52], [48, 52, 109], [78, 74, 78], [133, 76, 48], [52, 101, 36], [208, 70, 72], [117, 113, 97], [89, 125, 206], [210, 125, 44], [133, 149, 161], [109, 170, 44], [210, 170, 153], [109, 194, 202], [218, 212, 94], [222, 238, 214], ] colors = [[x / 255 for x in color] for color in colors] halving_colors = { -5: colors[1], -4: colors[1], -3: colors[1], -2: colors[1], -1: colors[6], 0: colors[8], 1: colors[11], 2: colors[5], 3: colors[0], 4: colors[0], 5: colors[0], 6: colors[0], 7: colors[0], } grid_color = colors[15] def make_frames(frames, width, scale): incrementer = itertools.count() stencil = RightHandedSimplexStencil(2, 30) rotate = np.array([1, -1]) offset = width / 2 + rotate * width / 10 points = list(take(frames, stencil.generate_stencil_points())) for point in points: point.point = rotate * point.point * width / 12 + offset def make_frame(t): i = next(incrementer) surface = gizeh.Surface(width=width, height=width, bg_color=(1, 1, 1)) line = gizeh.polyline([[offset[0], 0], [offset[0], width]], stroke=grid_color, stroke_width=2) line.draw(surface) line = gizeh.polyline([[0, offset[1]], [width, offset[1]]], stroke=grid_color, stroke_width=2) line.draw(surface) x = offset[0] + width/scale y = offset[1] - width/scale while x <= width + 1: line = gizeh.polyline([[x, 0], [x, width]], stroke=grid_color, stroke_width=0.5) line.draw(surface) line = gizeh.polyline([[0, y], [width, y]], stroke=grid_color, stroke_width=0.5) line.draw(surface) x += width/scale y -= width/scale x = offset[0] - width/scale y = offset[1] + width/scale while x >= -1: line = gizeh.polyline([[x, 0], [x, width]], stroke=grid_color, stroke_width=0.5) line.draw(surface) line = gizeh.polyline([[0, y], [width, y]], stroke=grid_color, stroke_width=0.5) line.draw(surface) x -= width/scale y += width/scale circle = gizeh.circle(r=3.25, xy=offset, fill=halving_colors[0]) circle.draw(surface) if i > 0: for i in range(i-1): point = points[i] color = halving_colors[point.halvings] circle = gizeh.circle(r=max(0.5, 3.25 - 0.75*point.halvings), xy=point.point, fill=color) circle.draw(surface) return surface.get_npimage() return make_frame def make_gif(frames, fps=8, width=320, scale=11, filename='stencil.gif'): clip = mpy.VideoClip(make_frame=make_frames(frames, width, scale), duration=frames / fps) clip.write_gif(filename, fps=fps) if __name__ == '__main__': make_gif(120, filename='stencil120-orig.gif') print('\n"stencil120-orig.gif" written. I highly recommend optimizing it with gifsicle:\n') print('gifsicle --colors=256 -O2 stencil120-orig.gif -o stencil120.gif\n')
{ "repo_name": "eriknw/dask-patternsearch", "path": "tools/stencilgif.py", "copies": "1", "size": "3471", "license": "bsd-3-clause", "hash": 3038349069889144000, "line_mean": 30.8440366972, "line_max": 105, "alpha_frac": 0.577355229, "autogenerated": false, "ratio": 3.0287958115183247, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.41061510405183244, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools from datashape import DataShape, iscollection from toolz import curry, concat from .collections import Shift from .core import Node from .expressions import Field, Map, ElemWise, symbol, shape, Coerce from .arithmetic import maxshape, UnaryOp, BinOp from .strings import Like, StrCat from .datetime import DateTime __all__ = ['broadcast', 'Broadcast', 'scalar_symbols', 'broadcast_collect'] def broadcast(expr, leaves, scalars=None): scalars = scalars or scalar_symbols(leaves) assert len(scalars) == len(leaves) return Broadcast(tuple(leaves), tuple(scalars), expr._subs(dict(zip(leaves, scalars)))) class Broadcast(ElemWise): """ Fuse scalar expressions over collections Given elementwise operations on collections, e.g. >>> from blaze import sin >>> a = symbol('a', '100 * int') >>> t = symbol('t', '100 * {x: int, y: int}') >>> expr = sin(a) + t.y**2 It may be best to represent this as a scalar expression mapped over a collection >>> sa = symbol('a', 'int') >>> st = symbol('t', '{x: int, y: int}') >>> sexpr = sin(sa) + st.y**2 >>> expr = Broadcast((a, t), (sa, st), sexpr) This provides opportunities for optimized computation. In practice, expressions are often collected into Broadcast expressions automatically. This class is mainly intented for internal use. """ _arguments = '_children', '_scalars', '_scalar_expr' def _dshape(self): myshape = maxshape(map(shape, self._children)) return DataShape(*(myshape + (self._scalar_expr.schema,))) @property def _inputs(self): return self._children @property def _name(self): return self._scalar_expr._name @property def _full_expr(self): return self._scalar_expr._subs( dict(zip(self._scalars, self._children)) ) def _traverse(self): for item in super(Broadcast, self)._traverse(): yield item # also yield all the items in the traversal of our full expression # without yielding the full expression itself. for item in itertools.islice(self._full_expr._traverse(), 1, None): yield item def scalar_symbols(exprs): """ Gives a sequence of scalar symbols to mirror these expressions Examples -------- >>> x = symbol('x', '5 * 3 * int32') >>> y = symbol('y', '5 * 3 * int32') >>> xx, yy = scalar_symbols([x, y]) >>> xx._name, xx.dshape ('x', dshape("int32")) >>> yy._name, yy.dshape ('y', dshape("int32")) """ new_names = ('_%d' % i for i in itertools.count(1)) scalars = [] names = set() for expr in exprs: if expr._name and expr._name not in names: name = expr._name names.add(name) else: name = next(new_names) s = symbol(name, expr.schema) scalars.append(s) return scalars Broadcastable = (Map, Field, DateTime, UnaryOp, BinOp, Coerce, Shift, Like, StrCat) WantToBroadcast = (Map, DateTime, UnaryOp, BinOp, Coerce, Shift, Like, StrCat) def broadcast_collect(expr, broadcastable=Broadcastable, want_to_broadcast=WantToBroadcast, no_recurse=None): """ Collapse expression down using Broadcast - Tabular cases only Expressions of type Broadcastables are swallowed into Broadcast operations >>> t = symbol('t', 'var * {x: int, y: int, z: int, when: datetime}') >>> expr = (t.x + 2*t.y).distinct() >>> broadcast_collect(expr) distinct(Broadcast(_children=(t,), _scalars=(t,), _scalar_expr=t.x + (2 * t.y))) >>> from blaze import exp >>> expr = t.x + 2 * exp(-(t.x - 1.3) ** 2) >>> broadcast_collect(expr) Broadcast(_children=(t,), _scalars=(t,), _scalar_expr=t.x + (2 * (exp(-((t.x - 1.3) ** 2))))) """ if (isinstance(expr, want_to_broadcast) and iscollection(expr.dshape)): leaves = leaves_of_type(broadcastable, expr) expr = broadcast(expr, sorted(leaves, key=str)) if no_recurse is not None and isinstance(expr, no_recurse): return expr # Recurse down children = ( broadcast_collect(i, broadcastable, want_to_broadcast, no_recurse) for i in expr._inputs ) return expr._subs({e: c for e, c in zip(expr._inputs, children)}) @curry def leaves_of_type(types, expr): """ Leaves of an expression skipping all operations of type ``types`` """ if not isinstance(expr, types): return set([expr]) else: return set.union(*map(leaves_of_type(types), expr._inputs))
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/expr/broadcast.py", "copies": "3", "size": "4761", "license": "bsd-3-clause", "hash": -5249906757919316000, "line_mean": 28.3888888889, "line_max": 97, "alpha_frac": 0.604494854, "autogenerated": false, "ratio": 3.6821345707656614, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5786629424765661, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools from llvm.core import Constant from .llvm_array import (auto_const_intp, intp_type, store_at, load_at, get_shape_ptr, get_data_ptr, get_strides_ptr, isinteger, isiterable, STRIDED) def _check_N(N): if N is None: raise ValueError("negative integers not supported") def adjust_slice(key, N=None): start = key.start if start is None: start = 0 if start < 0: _check_N(N) while start < 0: start += N stop = key.stop if stop is None: _check_N(N) stop = N if stop < 0: _check_N(N) while stop < 0: stop += N step = key.step if step is None: step = 1 return start, stop, step # STRIDED def Sarr_from_S(arr, key): raise NotImplementedError def Sarr_from_S_slice(arr, start, stop, step): raise NotImplementedError def from_S_int(arr, index): return from_S_ints(arr, (index,)) def from_S_ints(arr, key): raise NotImplementedError builder = arr.builder num = len(key) newnd = arr.nd - num if newnd < 0: raise ValueError("Too many keys") new = arr.getview(nd=newnd) oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) # Load the shape array for i in range(newnd): val = load_at(builder, oldshape, i+num) store_at(builder, newshape, i, val) # Load the data-pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) new_data_ptr = get_data_ptr(builder, new.array_ptr) loc = Constant.int(intp_type, 0) factor = Constant.int(intp_type, 1) for index in range(arr.nd-1,-1,-1): val = load_at(builder, oldshape, index) factor = builder.mul(factor, val) if index < num: # keyval = auto_const_intp(key[index]) # Multiply by strides tmp = builder.mul(keyval, factor) # Add to location loc = builder.add(loc, tmp) ptr = builder.gep(old_data_ptr, [loc]) builder.store(ptr, new_data_ptr) return new def from_S_slice(arr, start, end): raise NotImplementedError builder = arr.builder new = arr.getview() # Load the shape array oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) diff = Constant.int(intp_int, end-start) store_at(builder, newshape, 0, diff) for i in range(1, new.nd): val = load_at(builder, oldshape, i) store_at(builder, newshape, i, val) # Data Pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) loc = Constant.int(intp_type, start) while dim in arr.shape[1:]: loc = builder.mul(loc, dim) ptr = builder.gep(old_data_ptr, [loc]) new_data_ptr = get_data_ptr(builder, new.array_ptr) builder.store(ptr, new_data_ptr) return new # FORTRAN CONTIGUOUS def Sarr_from_F(arr, key): raise NotImplementedError def Sarr_from_F_slice(arr, start, stop, step): raise NotImplementedError def from_F_int(arr, index): return from_F_ints(arr, (index,)) # key will be *just* the final integers to extract # so that resulting array stays F_CONTIGUOUS def from_F_ints(arr, key): raise NotImplementedError builder = arr.builder num = len(key) newnd = arr.nd - num if newnd < 0: raise ValueError("Too many keys") new = arr.getview(nd=newnd) oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) # Load the shape array for i in range(newnd): val = load_at(builder, oldshape, i+num) store_at(builder, newshape, i, val) # Load the data-pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) new_data_ptr = get_data_ptr(builder, new.array_ptr) loc = Constant.int(intp_type, 0) factor = Constant.int(intp_type, 1) for index in range(arr.nd-1,-1,-1): val = load_at(builder, oldshape, index) factor = builder.mul(factor, val) if index < num: # keyval = auto_const_intp(key[index]) # Multiply by strides tmp = builder.mul(keyval, factor) # Add to location loc = builder.add(loc, tmp) ptr = builder.gep(old_data_ptr, [loc]) builder.store(ptr, new_data_ptr) return new def from_F_slice(arr, start, end): raise NotImplementedError builder = arr.builder new = arr.getview() # Load the shape array oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) diff = Constant.int(intp_int, end-start) store_at(builder, newshape, 0, diff) for i in range(1, new.nd): val = load_at(builder, oldshape, i) store_at(builder, newshape, i, val) # Data Pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) loc = Constant.int(intp_type, start) while dim in arr.shape[1:]: loc = builder.mul(loc, dim) ptr = builder.gep(old_data_ptr, [loc]) new_data_ptr = get_data_ptr(builder, new.array_ptr) builder.store(ptr, new_data_ptr) return new # C-CONTIGUOUS def Sarr_from_C(arr, key): raise NotImplementedError def Sarr_from_C_slice(arr, start, stop, step): builder = arr.builder new = arr.getview(kind=STRIDED) oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) newstrides = get_strides_ptr(bulder, new.array_ptr) if all(hasattr(x, '__index__') for x in [start, stop, step]): step = auto_const_intp(step) newdim = auto_const_intp((stop - start) // step) else: start, stop, step = [auto_const_intp(x) for x in [start, stop, step]] tmp = builder.sub(stop, start) newdim = builder.udiv(tmp, step) store_at(builder, newshape, 0, newdim) # Copy other dimensions over for i in range(1, arr.nd): val = load_at(builder, oldshape, i) store_at(builder, newshape, i, val) raise NotImplementedError # Fill-in strides # Update data-ptr def from_C_int(arr, index): return from_C_ints(arr, (index,)) def from_C_ints(arr, key): builder = arr.builder num = len(key) newnd = arr.nd - num if newnd < 0: raise ValueError("Too many keys") new = arr.getview(nd=newnd) oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) # Load the shape array for i in range(newnd): val = load_at(builder, oldshape, i+num) store_at(builder, newshape, i, val) # Load the data-pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) new_data_ptr = get_data_ptr(builder, new.array_ptr) loc = Constant.int(intp_type, 0) factor = Constant.int(intp_type, 1) for index in range(arr.nd-1,-1,-1): val = load_at(builder, oldshape, index) factor = builder.mul(factor, val) if index < num: # keyval = auto_const_intp(key[index]) # Multiply by strides tmp = builder.mul(keyval, factor) # Add to location loc = builder.add(loc, tmp) ptr = builder.gep(old_data_ptr, [loc]) builder.store(ptr, new_data_ptr) return new def from_C_slice(arr, start, end): builder = arr.builder new = arr.getview() # Load the shape array oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) diff = Constant.int(intp_int, end-start) store_at(builder, newshape, 0, diff) for i in range(1, new.nd): val = load_at(builder, oldshape, i) store_at(builder, newshape, i, val) # Data Pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) loc = Constant.int(intp_type, start) while dim in arr.shape[1:]: loc = builder.mul(loc, dim) ptr = builder.gep(old_data_ptr, [loc]) new_data_ptr = get_data_ptr(builder, new.array_ptr) builder.store(ptr, new_data_ptr) return new # get just the integers def _convert(x): if hasattr(x, '__index__'): return x.__index__() else: return x _keymsg = "Unsupported getitem value %s" # val is either Ellipsis or slice object. # check to see if start, stop, and/or step is given for slice def _needstride(val): if not isinstance(val, slice): return False if val.start is not None and val.start != 0: return True if val.stop is not None: return True if (val.step is not None) and (val.step != 1): return True return False def _getitem_C(arr, key): lastint = None needstrided = False # determine if 1) the elements of the geitem iterable are # integers (LLVM or Python indexable), Ellipsis, # or slice objects # 2) the integer elements are all at the front # so that the resulting slice is continuous for i, val in enumerate(key): if isinteger(val): if lastint is not None: needstrided = True elif isinstance(val, (Ellipsis, slice)): if lastint is None: lastint = i needstrided = _needstride(val) else: raise ValueError(_keymsg % val) if not needstrided: key = [_convert(x) for x in itertools.islice(key, lastint)] return needstrided, key def _getitem_F(arr, key): # This looks for integers at the end of the key iterable # arr[:,...,i,j] would not need strided # arr[:,i,:,j] would need strided as would a[:,i,5:20,j] # and a[:,...,5:10,j] # elements can be integers or LLVM ints # with indexing being done either at compile time (Python int) # or run time (LLVM int) last_elsl = None needstrided = False for i, val in enumerate(key): if isinteger(val): if last_elsl is None: last_elsl = i elif isinstance(val, (Ellipsis, slice)): if last_elsl is not None: needstrided = True needstrided = needstrided or _needstride(val) else: raise ValueError(_keymsg % val) # Return just the integers fields if needstrided not set if not needstrided: key = [_convert(x) for x in itertools.islice(key, lastint, None)] return needstrided, key def _getitem_S(arr, key): return True, key def from_Array(arr, key, char): if isinteger(key): return eval('from_%s_int' % char)(arr, key) elif isinstance(key, slice): if key == slice(None): return arr else: start, stop, step = adjust_slice(arr, key) if step == 1: return eval('from_%s_slice' % char)(arr, start, stop) else: return eval('Sarr_from_%s_slice' % char)(arr, start, stop, step) elif isiterable(key): # will be less than arr._nd or have '...' or ':' # at the end needstrided, key = eval("_getitem_%s" % char)(arr, key) if needstrided: return eval('Sarr_from_%s' % char)(arr, key) if len(key) > arr.nd: raise ValueError('Too many indicies') return eval('from_%s_ints' % char)(arr, key) else: raise ValueError(_keymsg % key)
{ "repo_name": "aaronmartin0303/blaze", "path": "blaze/compute/llgetitem.py", "copies": "2", "size": "11489", "license": "bsd-3-clause", "hash": -9084881157025577000, "line_mean": 29.2342105263, "line_max": 80, "alpha_frac": 0.598833667, "autogenerated": false, "ratio": 3.35739333722969, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.495622700422969, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools from toolz import curry from datashape import DataShape, iscollection from .collections import Shift from .expressions import Field, Map, ElemWise, symbol, shape, Coerce from .arithmetic import maxshape, UnaryOp, BinOp from .datetime import DateTime __all__ = ['broadcast', 'Broadcast', 'scalar_symbols'] def broadcast(expr, leaves, scalars=None): scalars = scalars or scalar_symbols(leaves) assert len(scalars) == len(leaves) return Broadcast(tuple(leaves), tuple(scalars), expr._subs(dict(zip(leaves, scalars)))) class Broadcast(ElemWise): """ Fuse scalar expressions over collections Given elementwise operations on collections, e.g. >>> from blaze import sin >>> a = symbol('a', '100 * int') >>> t = symbol('t', '100 * {x: int, y: int}') >>> expr = sin(a) + t.y**2 It may be best to represent this as a scalar expression mapped over a collection >>> sa = symbol('a', 'int') >>> st = symbol('t', '{x: int, y: int}') >>> sexpr = sin(sa) + st.y**2 >>> expr = Broadcast((a, t), (sa, st), sexpr) This provides opportunities for optimized computation. In practice, expressions are often collected into Broadcast expressions automatically. This class is mainly intented for internal use. """ __slots__ = '_hash', '_children', '_scalars', '_scalar_expr' @property def dshape(self): myshape = maxshape(map(shape, self._children)) return DataShape(*(myshape + (self._scalar_expr.schema,))) @property def _inputs(self): return self._children @property def _name(self): return self._scalar_expr._name @property def _full_expr(self): return self._scalar_expr._subs(dict(zip(self._scalars, self._children))) def scalar_symbols(exprs): """ Gives a sequence of scalar symbols to mirror these expressions Examples -------- >>> x = symbol('x', '5 * 3 * int32') >>> y = symbol('y', '5 * 3 * int32') >>> xx, yy = scalar_symbols([x, y]) >>> xx._name, xx.dshape ('x', dshape("int32")) >>> yy._name, yy.dshape ('y', dshape("int32")) """ new_names = ('_%d' % i for i in itertools.count(1)) scalars = [] names = set() for expr in exprs: if expr._name and expr._name not in names: name = expr._name names.add(name) else: name = next(new_names) s = symbol(name, expr.schema) scalars.append(s) return scalars Broadcastable = (Map, Field, DateTime, UnaryOp, BinOp, Coerce, Shift) WantToBroadcast = (Map, DateTime, UnaryOp, BinOp, Coerce, Shift) def broadcast_collect(expr, broadcastable=Broadcastable, want_to_broadcast=WantToBroadcast, no_recurse=None): """ Collapse expression down using Broadcast - Tabular cases only Expressions of type Broadcastables are swallowed into Broadcast operations >>> t = symbol('t', 'var * {x: int, y: int, z: int, when: datetime}') >>> expr = (t.x + 2*t.y).distinct() >>> broadcast_collect(expr) distinct(Broadcast(_children=(t,), _scalars=(t,), _scalar_expr=t.x + (2 * t.y))) >>> from blaze import exp >>> expr = t.x + 2 * exp(-(t.x - 1.3) ** 2) >>> broadcast_collect(expr) Broadcast(_children=(t,), _scalars=(t,), _scalar_expr=t.x + (2 * (exp(-((t.x - 1.3) ** 2))))) """ if (isinstance(expr, want_to_broadcast) and iscollection(expr.dshape)): leaves = leaves_of_type(broadcastable, expr) expr = broadcast(expr, sorted(leaves, key=str)) if no_recurse is not None and isinstance(expr, no_recurse): return expr # Recurse down children = ( broadcast_collect(i, broadcastable, want_to_broadcast, no_recurse) for i in expr._inputs ) return expr._subs({e: c for e, c in zip(expr._inputs, children)}) @curry def leaves_of_type(types, expr): """ Leaves of an expression skipping all operations of type ``types`` """ if not isinstance(expr, types): return set([expr]) else: return set.union(*map(leaves_of_type(types), expr._inputs))
{ "repo_name": "ChinaQuants/blaze", "path": "blaze/expr/broadcast.py", "copies": "1", "size": "4361", "license": "bsd-3-clause", "hash": -1183051264635120400, "line_mean": 27.5032679739, "line_max": 97, "alpha_frac": 0.5941297867, "autogenerated": false, "ratio": 3.6432748538011697, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9736686706268654, "avg_score": 0.0001435868465033072, "num_lines": 153 }
from __future__ import absolute_import, division, print_function import itertools from toolz import curry from datashape import DataShape, iscollection from .expressions import Field, Map, ElemWise, symbol, shape from .arithmetic import maxshape, Arithmetic, UnaryOp from .math import Math from .datetime import DateTime __all__ = ['broadcast', 'Broadcast', 'scalar_symbols'] def broadcast(expr, leaves, scalars=None): scalars = scalars or scalar_symbols(leaves) assert len(scalars) == len(leaves) return Broadcast(tuple(leaves), tuple(scalars), expr._subs(dict(zip(leaves, scalars)))) class Broadcast(ElemWise): """ Fuse scalar expressions over collections Given elementwise operations on collections, e.g. >>> from blaze import sin >>> a = symbol('a', '100 * int') >>> t = symbol('t', '100 * {x: int, y: int}') >>> expr = sin(a) + t.y**2 It may be best to represent this as a scalar expression mapped over a collection >>> sa = symbol('a', 'int') >>> st = symbol('t', '{x: int, y: int}') >>> sexpr = sin(sa) + st.y**2 >>> expr = Broadcast((a, t), (sa, st), sexpr) This provides opportunities for optimized computation. In practice, expressions are often collected into Broadcast expressions automatically. This class is mainly intented for internal use. """ __slots__ = '_hash', '_children', '_scalars', '_scalar_expr' @property def dshape(self): myshape = maxshape(map(shape, self._children)) return DataShape(*(myshape + (self._scalar_expr.schema,))) @property def _inputs(self): return self._children @property def _name(self): return self._scalar_expr._name @property def _full_expr(self): return self._scalar_expr._subs(dict(zip(self._scalars, self._children))) def scalar_symbols(exprs): """ Gives a sequence of scalar symbols to mirror these expressions Examples -------- >>> x = symbol('x', '5 * 3 * int32') >>> y = symbol('y', '5 * 3 * int32') >>> xx, yy = scalar_symbols([x, y]) >>> xx._name, xx.dshape ('x', dshape("int32")) >>> yy._name, yy.dshape ('y', dshape("int32")) """ new_names = ('_%d' % i for i in itertools.count(1)) scalars = [] names = set() for expr in exprs: if expr._name and expr._name not in names: name = expr._name names.add(name) else: name = next(new_names) s = symbol(name, expr.schema) scalars.append(s) return scalars Broadcastable = (Arithmetic, Math, Map, Field, DateTime, UnaryOp) WantToBroadcast = (Arithmetic, Math, Map, DateTime, UnaryOp) def broadcast_collect(expr, Broadcastable=Broadcastable, WantToBroadcast=WantToBroadcast): """ Collapse expression down using Broadcast - Tabular cases only Expressions of type Broadcastables are swallowed into Broadcast operations >>> t = symbol('t', 'var * {x: int, y: int, z: int, when: datetime}') >>> expr = (t.x + 2*t.y).distinct() >>> broadcast_collect(expr) distinct(Broadcast(_children=(t,), _scalars=(t,), _scalar_expr=t.x + (2 * t.y))) >>> from blaze import exp >>> expr = t.x + 2 * exp(-(t.x - 1.3) ** 2) >>> broadcast_collect(expr) Broadcast(_children=(t,), _scalars=(t,), _scalar_expr=t.x + (2 * (exp(-((t.x - 1.3) ** 2))))) """ if (isinstance(expr, WantToBroadcast) and iscollection(expr.dshape)): leaves = leaves_of_type(Broadcastable, expr) expr = broadcast(expr, sorted(leaves, key=str)) # Recurse down children = [broadcast_collect(i, Broadcastable, WantToBroadcast) for i in expr._inputs] return expr._subs(dict(zip(expr._inputs, children))) @curry def leaves_of_type(types, expr): """ Leaves of an expression skipping all operations of type ``types`` """ if not isinstance(expr, types): return set([expr]) else: return set.union(*map(leaves_of_type(types), expr._inputs))
{ "repo_name": "alexmojaki/blaze", "path": "blaze/expr/broadcast.py", "copies": "5", "size": "4159", "license": "bsd-3-clause", "hash": -9201309584324724000, "line_mean": 27.4863013699, "line_max": 97, "alpha_frac": 0.599903823, "autogenerated": false, "ratio": 3.6259808195292065, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6725884642529206, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import itertools import numpy as np _counter = itertools.count() def parameterized(names, params): def decorator(func): func.param_names = names func.params = params return func return decorator def requires_dask(): try: import dask # noqa except ImportError: raise NotImplementedError def randn(shape, frac_nan=None, chunks=None, seed=0): rng = np.random.RandomState(seed) if chunks is None: x = rng.standard_normal(shape) else: import dask.array as da rng = da.random.RandomState(seed) x = rng.standard_normal(shape, chunks=chunks) if frac_nan is not None: inds = rng.choice(range(x.size), int(x.size * frac_nan)) x.flat[inds] = np.nan return x def randint(low, high=None, size=None, frac_minus=None, seed=0): rng = np.random.RandomState(seed) x = rng.randint(low, high, size) if frac_minus is not None: inds = rng.choice(range(x.size), int(x.size * frac_minus)) x.flat[inds] = -1 return x
{ "repo_name": "shoyer/xray", "path": "asv_bench/benchmarks/__init__.py", "copies": "1", "size": "1128", "license": "apache-2.0", "hash": 5933893693757480000, "line_mean": 22.5, "line_max": 66, "alpha_frac": 0.6320921986, "autogenerated": false, "ratio": 3.4922600619195046, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9624352260519504, "avg_score": 0, "num_lines": 48 }
from __future__ import absolute_import, division, print_function import json, ijson from itertools import chain def _build_value(data): ''' Build a value (number, array, whatever) from an ijson stream. ''' for (prefix, event, value) in data: if event in ('string', 'null', 'boolean'): return value elif event == 'number': return int(value) if (int(value) == float(value)) else float(value) elif event == 'start_array': return _build_list(data) elif event == 'start_map': return _build_map(data) else: # MOOP. raise ValueError((prefix, event, value)) def _build_list(data): ''' Build a list from an ijson stream. Stop when 'end_array' is reached. ''' output = list() for (prefix, event, value) in data: if event == 'end_array': break else: # let _build_value() handle the array item. _data = chain([(prefix, event, value)], data) output.append(_build_value(_data)) return output def _build_map(data): ''' Build a dictionary from an ijson stream. Stop when 'end_map' is reached. ''' output = dict() for (prefix, event, value) in data: if event == 'end_map': break elif event == 'map_key': output[value] = _build_value(data) else: # MOOP. raise ValueError((prefix, event, value)) return output def sample_geojson(stream, max_features): ''' Read a stream of input GeoJSON and return a string with a limited feature count. ''' features = list() for feature in stream_geojson(stream): if len(features) == max_features: break features.append(feature) geojson = dict(type='FeatureCollection', features=features) return json.dumps(geojson) def stream_geojson(stream): ''' ''' data = ijson.parse(stream) for (prefix1, event1, value1) in data: if event1 != 'start_map': # A root GeoJSON object is a map. raise ValueError((prefix1, event1, value1)) for (prefix2, event2, value2) in data: if event2 == 'map_key' and value2 == 'type': prefix3, event3, value3 = next(data) if event3 != 'string' and value3 != 'FeatureCollection': # We only want GeoJSON feature collections raise ValueError((prefix3, event3, value3)) elif event2 == 'map_key' and value2 == 'features': prefix4, event4, value4 = next(data) if event4 != 'start_array': # We only want lists of features here. raise ValueError((prefix4, event4, value4)) for (prefix5, event5, value5) in data: if event5 == 'end_array': break # let _build_value() handle the feature. _data = chain([(prefix5, event5, value5)], data) feature = _build_value(_data) yield feature
{ "repo_name": "openaddresses/machine", "path": "openaddr/sample.py", "copies": "1", "size": "3167", "license": "isc", "hash": -5912728485392540000, "line_mean": 27.7909090909, "line_max": 88, "alpha_frac": 0.5402589201, "autogenerated": false, "ratio": 4.167105263157895, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0023090074228921367, "num_lines": 110 }
from __future__ import absolute_import, division, print_function import json from abc import ABCMeta, abstractmethod from functools import partial from tempfile import TemporaryFile import six from represent import autorepr from .compat.contextlib import suppress __all__ = ( 'DefaultKeyMaker', 'StreamingDefaultKeyMaker', ) @six.add_metaclass(ABCMeta) class KeyMaker(object): """KeyMaker abstract base class.""" @abstractmethod def make_key(self, obj): """Make key from passed object. Parameters: obj: Any Python object. Yields: bytes of key to represent object. """ raise NotImplementedError @autorepr class DefaultKeyMaker(KeyMaker): """Default KeyMaker that is consistent across Python versions. Uses :py:class:`_AnyObjectJSONEncoder` to convert any object into a string representation. Parameters: sort_keys (bool): Sort dictionary keys for consistency across Python versions with different hash algorithms. """ def __init__(self, sort_keys=True): self.sort_keys = sort_keys def make_key(self, obj): keystr = json.dumps( obj, sort_keys=self.sort_keys, cls=_AnyObjectJSONEncoder) yield keystr.encode('utf-8') class StreamingDefaultKeyMaker(DefaultKeyMaker): """Subclass of DefaultKeyMaker that uses a temporary file to save memory.""" def make_key(self, obj): with TemporaryFile(mode='w+') as f: json.dump( obj, f, sort_keys=self.sort_keys, cls=_AnyObjectJSONEncoder) f.seek(0) for data in iter(partial(f.read, 65536), ''): yield data.encode('utf-8') class _AnyObjectJSONEncoder(json.JSONEncoder): """Serialize objects that can't normally be serialized by json. Attempts to get state will be done in this order: - ``o.__getstate__()`` - Parameters from ``o.__slots__`` - ``o.__dict__`` - ``repr(o)`` """ def default(self, o): with suppress(TypeError): return json.JSONEncoder.default(self, o) with suppress(AttributeError): return o.__getstate__() if hasattr(o, '__slots__'): all_slots = set() for cls in o.__class__.__mro__: slots = getattr(cls, '__slots__', tuple()) slots = normalise_slots(slots) all_slots.update(slots) return {k: getattr(o, k) for k in all_slots if hasattr(o, k)} with suppress(AttributeError): return o.__dict__ return repr(o) def normalise_slots(obj): """__slots__ can be a string for single attribute. Return inside tuple.""" if isinstance(obj, six.string_types): return (obj,) else: return obj
{ "repo_name": "RazerM/bucketcache", "path": "bucketcache/keymakers.py", "copies": "1", "size": "2836", "license": "mit", "hash": -2068663004951174100, "line_mean": 26.5339805825, "line_max": 80, "alpha_frac": 0.6096614951, "autogenerated": false, "ratio": 4.283987915407855, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5393649410507855, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json from base64 import b64decode from flask import Blueprint, current_app, jsonify, request import appr.api.impl.registry from appr.api.app import getvalues, repo_name from appr.exception import ( ApprException, ChannelNotFound, InvalidParams, InvalidRelease, InvalidUsage, PackageAlreadyExists, PackageNotFound, PackageReleaseNotFound, UnableToLockResource, UnauthorizedAccess, Unsupported) from appr.models import DEFAULT_MEDIA_TYPE, Blob, Channel, Package registry_app = Blueprint( 'registry', __name__, ) @registry_app.errorhandler(Unsupported) @registry_app.errorhandler(PackageAlreadyExists) @registry_app.errorhandler(InvalidRelease) @registry_app.errorhandler(UnableToLockResource) @registry_app.errorhandler(UnauthorizedAccess) @registry_app.errorhandler(PackageNotFound) @registry_app.errorhandler(PackageReleaseNotFound) @registry_app.errorhandler(ApprException) @registry_app.errorhandler(InvalidUsage) @registry_app.errorhandler(InvalidParams) @registry_app.errorhandler(ChannelNotFound) def render_error(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response @registry_app.before_request def pre_request_logging(): jsonbody = request.get_json(force=True, silent=True) values = request.values.to_dict() if jsonbody: values.update(jsonbody) current_app.logger.info("request", extra={ "remote_addr": request.remote_addr, "http_method": request.method, "original_url": request.url, "path": request.path, "data": values, "headers": dict(request.headers.to_list())}) @registry_app.route("/test_error") def test_error(): raise InvalidUsage("error message", {"path": request.path}) def _pull(data, json_format=True): if json_format: resp = jsonify(data) else: resp = current_app.make_response(b64decode(data['blob'])) resp.headers['Content-Disposition'] = data['filename'] resp.mimetype = 'application/x-gzip' return resp @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/blobs/sha256/<string:digest>", methods=['GET'], strict_slashes=False) def blobs(namespace, package_name, digest): reponame = repo_name(namespace, package_name) data = appr.api.impl.registry.pull_blob(reponame, digest, blob_class=Blob) json_format = request.args.get('format', None) == 'json' return _pull(data, json_format=json_format) @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/blobs/sha256/<string:digest>/json", methods=['GET'], strict_slashes=False) def blobs_json(namespace, package_name, digest): reponame = repo_name(namespace, package_name) data = appr.api.impl.registry.pull_blob(reponame, digest, blob_class=Blob) return _pull(data, json_format=True) @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/<string:release>/<string:media_type>/pull", methods=['GET'], strict_slashes=False) def pull(namespace, package_name, release, media_type): reponame = repo_name(namespace, package_name) data = appr.api.impl.registry.pull(reponame, release, media_type, Package, blob_class=Blob) json_format = request.args.get('format', None) == 'json' return _pull(data, json_format=json_format) @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/<string:release>/<string:media_type>/pull/json", methods=['GET'], strict_slashes=False) def pull_json(namespace, package_name, release, media_type): reponame = repo_name(namespace, package_name) data = appr.api.impl.registry.pull(reponame, release, media_type, Package, blob_class=Blob) return _pull(data, json_format=True) @registry_app.route("/api/v1/packages/<string:namespace>/<string:package_name>", methods=['POST'], strict_slashes=False) def push(namespace, package_name): reponame = repo_name(namespace, package_name) values = getvalues() release = values['release'] media_type = values.get('media_type', DEFAULT_MEDIA_TYPE) force = (values.get('force', 'false') == 'true') metadata = values.get('metadata', None) blob = Blob(reponame, values['blob']) result = appr.api.impl.registry.push(reponame, release, media_type, blob, force, Package, metadata=metadata) return jsonify(result) @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/<string:release>/<string:media_type>", methods=['DELETE'], strict_slashes=False) def delete_package(namespace, package_name, release, media_type): reponame = repo_name(namespace, package_name) result = appr.api.impl.registry.delete_package(reponame, release, media_type, package_class=Package) return jsonify(result) @registry_app.route("/api/v1/packages", methods=['GET'], strict_slashes=False) def list_packages(): values = getvalues() namespace = values.get('namespace', None) result = appr.api.impl.registry.list_packages(namespace, Package, search=values.get( 'query', None), media_type=values.get('media_type', None)) resp = current_app.make_response(json.dumps(result)) resp.mimetype = 'application/json' return resp @registry_app.route("/api/v1/packages/search", methods=['GET'], strict_slashes=False) def search_packages(): values = getvalues() query = values.get("q") result = appr.api.impl.registry.search(query, Package) return jsonify(result) @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/<string:release>/<string:media_type>", methods=['GET'], strict_slashes=False) def show_package(namespace, package_name, release, media_type): reponame = repo_name(namespace, package_name) result = appr.api.impl.registry.show_package(reponame, release, media_type, channel_class=Channel, package_class=Package) return jsonify(result) @registry_app.route("/api/v1/packages/<string:namespace>/<string:package_name>", methods=['GET'], strict_slashes=False) def show_package_releases(namespace, package_name): reponame = repo_name(namespace, package_name) media_type = getvalues().get('media_type', None) result = appr.api.impl.registry.show_package_releases(reponame, media_type=media_type, package_class=Package) return jsonify(result) @registry_app.route("/api/v1/packages/<string:namespace>/<string:package_name>/<string:release>", methods=['GET'], strict_slashes=False) def show_package_release_manifests(namespace, package_name, release): reponame = repo_name(namespace, package_name) result = appr.api.impl.registry.show_package_manifests(reponame, release, package_class=Package) return jsonify(result) # CHANNELS @registry_app.route("/api/v1/packages/<string:namespace>/<string:package_name>/channels", methods=[ 'GET'], strict_slashes=False) def list_channels(namespace, package_name): reponame = repo_name(namespace, package_name) result = appr.api.impl.registry.list_channels(reponame, Channel) resp = current_app.make_response(json.dumps(result)) resp.mimetype = 'application/json' return resp @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/channels/<string:channel_name>", methods=['GET'], strict_slashes=False) def show_channel(namespace, package_name, channel_name): reponame = repo_name(namespace, package_name) result = appr.api.impl.registry.show_channel(reponame, channel_name, Channel) return jsonify(result) @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/channels/<string:channel_name>/<string:release>", methods=['POST'], strict_slashes=False) def add_channel_release(namespace, package_name, channel_name, release): reponame = repo_name(namespace, package_name) result = appr.api.impl.registry.add_channel_release( reponame, channel_name, release, channel_class=Channel, package_class=Package) return jsonify(result) @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/channels/<string:channel_name>/<string:release>", methods=['DELETE'], strict_slashes=False) def delete_channel_release(namespace, package_name, channel_name, release): reponame = repo_name(namespace, package_name) result = appr.api.impl.registry.delete_channel_release( reponame, channel_name, release, channel_class=Channel, package_class=Package) return jsonify(result) @registry_app.route( "/api/v1/packages/<string:namespace>/<string:package_name>/channels/<string:channel_name>", methods=['DELETE'], strict_slashes=False) def delete_channel(namespace, package_name, channel_name): reponame = repo_name(namespace, package_name) result = appr.api.impl.registry.delete_channel(reponame, channel_name, channel_class=Channel) return jsonify(result)
{ "repo_name": "app-registry/appr", "path": "appr/api/registry.py", "copies": "2", "size": "9277", "license": "apache-2.0", "hash": 3209186167064203000, "line_mean": 40.0486725664, "line_max": 112, "alpha_frac": 0.7001185728, "autogenerated": false, "ratio": 3.592951200619675, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5293069773419675, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json from base64 import b64encode import pytest import requests import requests_mock import appr from appr.client import DEFAULT_PREFIX, DEFAULT_REGISTRY, ApprClient @pytest.fixture() def channels_data(): return {'dev': {'current': '1.0.0-rc', 'name': 'dev'}} @pytest.fixture(autouse=True) def fakehome(fake_home): pass def test_headers_without_auth(): r = ApprClient() assert sorted(r.headers.keys()) == ['Content-Type', 'User-Agent'] assert r.headers["Content-Type"] == "application/json" assert r.headers["User-Agent"] == "apprpy-cli/%s" % appr.__version__ def test_headers_with_auth(): r = ApprClient() r.auth.add_token('http://localhost:5000/cnr', 'titi') assert sorted(r.headers.keys()) == ["Authorization", 'Content-Type', 'User-Agent'] assert r.headers["Authorization"] == "titi" assert r.headers["Content-Type"] == "application/json" assert r.headers["User-Agent"] == "apprpy-cli/%s" % appr.__version__ def test_headers_with_auth_star(): r = ApprClient() r.auth.add_token('*', 'titi') assert sorted(r.headers.keys()) == ["Authorization", 'Content-Type', 'User-Agent'] assert r.headers["Authorization"] == "titi" assert r.headers["Content-Type"] == "application/json" assert r.headers["User-Agent"] == "apprpy-cli/%s" % appr.__version__ def test_default_endpoint(): r = ApprClient(endpoint=None) assert r.endpoint.geturl() == DEFAULT_REGISTRY + DEFAULT_PREFIX def test_url(): r = ApprClient(endpoint="http://test.com") assert r._url("/test") == "http://test.com" + DEFAULT_PREFIX + "/test" def test_url_prefix(): r = ApprClient(endpoint="http://test.com/test") assert r._url("/2") == "http://test.com/test" + DEFAULT_PREFIX + "/2" def test_pull(): r = ApprClient() with requests_mock.mock() as m: response = b'package_data' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/orga/p1/1.0.0/helm/pull", content=response) assert r.pull("orga/p1", {"value": "1.0.0", "key": "version"}, "helm") == response def test_pull_channel(channels_data): r = ApprClient() with requests_mock.mock() as m: response = b'package_data' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/orga/p1/1.0.0-rc/helm/pull", content=response) m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/orga/p1/channels/dev", text=json.dumps(channels_data['dev'])) assert r.pull("orga/p1", {"value": "dev", "key": "channel"}, "helm") == response def test_pull_digest(): r = ApprClient() with requests_mock.mock() as m: response = b'package_data' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/orga/p1/blobs/sha256/2432", content=response) assert r.pull("orga/p1", {"key": "digest", "value": "2432"}, "helm") == response def test_pull_version(): r = ApprClient() with requests_mock.mock() as m: response = b'package_data' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/orga/p1/0.8.1/helm/pull", content=response) assert r.pull("orga/p1", {"key": "version", "value": "0.8.1"}, "helm") == response def test_pull_discovery_https(discovery_html): r = ApprClient() with requests_mock.mock() as m: response = b'package_data' m.get("https://appr.sh/?appr-discovery=1", text=discovery_html, complete_qs=True) m.get("https://api.kubespray.io/api/v1/packages/orga/p1/pull", content=response) assert r.pull("appr.sh/orga/p1", {"key": "version", "value": "1.0.0"}, "helm") == response def test_pull_discovery_http(discovery_html): r = ApprClient() with requests_mock.mock() as m: response = b'package_data' m.get("https://appr.sh/?appr-discovery=1", text="<html/>", complete_qs=True) m.get("http://appr.sh/?appr-discovery=1", text=discovery_html, complete_qs=True) m.get("https://api.kubespray.io/api/v1/packages/orga/p1/pull", content=response) assert r.pull("appr.sh/orga/p1", {"key": "version", "value": "1.0.0"}, "helm") == response def test_pull_with_version(): r = ApprClient() with requests_mock.mock() as m: response = b'package_data' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/orga/p1/1.0.1/helm/pull", complete_qs=True, content=response) assert r.pull("orga/p1", {"key": "version", "value": "1.0.1"}, "helm") == response def test_list_packages(): r = ApprClient() with requests_mock.mock() as m: response = '{"packages": "true"}' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages", text=response) assert json.dumps(r.list_packages({})) == response def test_list_packages_username(): r = ApprClient() with requests_mock.mock() as m: response = '{"packages": "true"}' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages?username=ant31", complete_qs=True, text=response) assert json.dumps(r.list_packages({'username': "ant31"})) == response def test_list_packages_orga(): r = ApprClient() with requests_mock.mock() as m: response = '{"packages": "true"}' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages?namespace=ant31", complete_qs=True, text=response) assert json.dumps(r.list_packages({'namespace': "ant31"})) == response def test_list_packages_orga_and_user(): r = ApprClient() with requests_mock.mock() as m: response = '{"packages": "true"}' m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages?username=titi&namespace=ant31", complete_qs=True, text=response) assert json.dumps(r.list_packages({"username": "titi", "namespace": "ant31"})) == response def test_delete_package(): r = ApprClient() with requests_mock.mock() as m: response = '{"packages": "true"}' m.delete(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/ant31/kube-ui/1.4.3/helm", complete_qs=True, text=response) assert r.delete_package("ant31/kube-ui", "1.4.3", "helm") == {"packages": "true"} def test_delete_package_version(): r = ApprClient() with requests_mock.mock() as m: response = '{"packages": "true"}' m.delete(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/ant31/kube-ui/1.4.3/helm", complete_qs=True, text=response) assert r.delete_package(name="ant31/kube-ui", version="1.4.3", media_type="helm") == {"packages": "true"} def test_delete_package_unauthorized(): r = ApprClient() with requests_mock.mock() as m: response = '{"packages": "true"}' m.delete(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/ant31/kube-ui/1.4.3/helm", complete_qs=True, text=response, status_code=401) with pytest.raises(requests.HTTPError): r.delete_package("ant31/kube-ui", "1.4.3", "helm") def test_push_unauthorized(): r = ApprClient() with requests_mock.mock() as m: body = {"blob": "fdsfds"} response = b'{"packages": "true"}' m.post(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/ant31/kube-ui?force=false", complete_qs=True, content=response, status_code=401) with pytest.raises(requests.HTTPError): r.push(name="ant31/kube-ui", body=body) def test_push(): body = {"blob": b64encode(b"testdata").decode('utf-8')} r = ApprClient() response = '{"packages": "true"}' with requests_mock.mock() as m: m.post(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/ant31/kube-ui?force=false", complete_qs=True, text=response) assert json.dumps(r.push(name="ant31/kube-ui", body=body)) == json.dumps(json.loads(response)) def test_push_force(): body = {"blob": b64encode(b"foobar").decode('utf-8')} r = ApprClient() response = '{"packages": "true"}' with requests_mock.mock() as m: m.post(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/api/v1/packages/ant31/kube-ui?force=true", complete_qs=True, text=response) assert json.dumps(r.push(name="ant31/kube-ui", body=body, force=True)) == json.dumps(json.loads(response)) def test_get_version(): r = ApprClient() response = '{"appr-server": "0.23.0"}' with requests_mock.mock() as m: m.get(DEFAULT_REGISTRY + DEFAULT_PREFIX + "/version", complete_qs=True, text=response) assert json.dumps(r.version()) == json.dumps(json.loads(response))
{ "repo_name": "cn-app-registry/cnr-server", "path": "tests/test_registry.py", "copies": "2", "size": "8690", "license": "apache-2.0", "hash": -3619377675580104000, "line_mean": 37.281938326, "line_max": 132, "alpha_frac": 0.6230149597, "autogenerated": false, "ratio": 3.139450867052023, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9754750506116219, "avg_score": 0.0015430641271611454, "num_lines": 227 }
from __future__ import absolute_import, division, print_function import json from blaze.catalog.blaze_url import split_array_base import dynd from dynd import nd, ndt from dynd.nd import as_numpy from blaze import array class compute_session: def __init__(self, base_url, array_name): session_name, root_dir = array_provider.create_session_dir() self.session_name = session_name self.root_dir = root_dir self.array_name = array_name self.base_url = base_url def get_session_array(self, array_name = None): if array_name is None: array_name = self.array_name array_root, indexers = split_array_base(array_name) arr = self.array_provider(array_root) if arr is None: raise Exception('No Blaze Array named ' + array_root) for i in indexers: if type(i) in [slice, int, tuple]: arr = arr[i] else: arr = getattr(arr, i) return arr def creation_response(self): content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session' : self.base_url + self.session_name, 'version' : 'prototype', 'dynd_python_version': dynd.__version__, 'dynd_version' : dynd.__libdynd_version__, 'access' : 'no permission model yet' }) return (content_type, body) def close(self): print('Deleting files for session %s' % self.session_name) self.array_provider.delete_session_dir(self.session_name) content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'action': 'closed' }) return (content_type, body) def sort(self, json_cmd): import numpy as np print ('sorting') cmd = json.loads(json_cmd) array_url = cmd.get('input', self.base_url + self.array_name) if not array_url.startswith(self.base_url): raise RuntimeError('Input array must start with the base url') array_name = array_url[len(self.base_url):] field = cmd['field'] arr = self.get_session_array(array_name) nparr = as_numpy(arr) idxs = np.argsort(nparr[field]) res = nd.ndobject(nparr[idxs]) defarr = self.array_provider.create_deferred_array_filename( self.session_name, 'sort_', res) dshape = nd.dshape_of(res) defarr[0].write(json.dumps({ 'dshape': dshape, 'command': 'sort', 'params': { 'field': field, } })) defarr[0].close() content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'output': self.base_url + defarr[1], 'dshape': dshape }) return (content_type, body) def groupby(self, json_cmd): print('GroupBy operation') cmd = json.loads(json_cmd) array_url = cmd.get('input', self.base_url + self.array_name) if not array_url.startswith(self.base_url): raise RuntimeError('Input array must start with the base url') array_name = array_url[len(self.base_url):] fields = cmd['fields'] arr = self.get_session_array(array_name)[...]._data.dynd_arr() # Do the groupby, get its groups, then # evaluate it because deferred operations # through the groupby won't work well yet. res = nd.groupby(arr, nd.fields(arr, *fields)) groups = res.groups res = res.eval() # Write out the groupby result defarr_gb = self.array_provider.create_deferred_array_filename( self.session_name, 'groupby_', array(res)) dshape_gb = nd.dshape_of(res) defarr_gb[0].write(json.dumps({ 'dshape': dshape_gb, 'command': 'groupby', 'params': { 'fields': fields } })) defarr_gb[0].close() # Write out the groups defarr_groups = self.array_provider.create_deferred_array_filename( self.session_name, 'groups_', groups) dshape_groups = nd.dshape_of(groups) defarr_groups[0].write(json.dumps({ 'dshape': dshape_groups, 'command': 'groupby.groups', 'params': { 'fields': fields } })) defarr_groups[0].close() content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'output_gb': self.base_url + defarr_gb[1], 'dshape_gb': dshape_gb, 'output_groups': self.base_url + defarr_groups[1], 'dshape_groups': dshape_groups }) return (content_type, body) def add_computed_fields(self, json_cmd): print('Adding computed fields') cmd = json.loads(json_cmd) array_url = cmd.get('input', self.base_url + self.array_name) if not array_url.startswith(self.base_url): raise RuntimeError('Input array must start with the base url') array_name = array_url[len(self.base_url):] fields = cmd['fields'] rm_fields = cmd.get('rm_fields', []) fnname = cmd.get('fnname', None) arr = self.get_session_array(array_name)._data.dynd_arr() res = nd.add_computed_fields(arr, fields, rm_fields, fnname) defarr = self.array_provider.create_deferred_array_filename( self.session_name, 'computed_fields_', array(res)) dshape = nd.dshape_of(res) defarr[0].write(json.dumps({ 'dshape': dshape, 'command': 'add_computed_fields', 'params': { 'fields': fields, 'rm_fields': rm_fields, 'fnname': fnname } })) defarr[0].close() content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'output': self.base_url + defarr[1], 'dshape': dshape }) return (content_type, body) def make_computed_fields(self, json_cmd): print('Adding computed fields') cmd = json.loads(json_cmd) array_url = cmd.get('input', self.base_url + self.array_name) if not array_url.startswith(self.base_url): raise RuntimeError('Input array must start with the base url') array_name = array_url[len(self.base_url):] fields = cmd['fields'] replace_undim = cmd.get('replace_undim', 0) fnname = cmd.get('fnname', None) arr = self.get_session_array(array_name)._data.dynd_arr() res = nd.make_computed_fields(arr, replace_undim, fields, fnname) defarr = self.array_provider.create_deferred_array_filename( self.session_name, 'computed_fields_', array(res)) dshape = nd.dshape_of(res) defarr[0].write(json.dumps({ 'dshape': dshape, 'command': 'make_computed_fields', 'params': { 'fields': fields, 'replace_undim': replace_undim, 'fnname': fnname } })) defarr[0].close() content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'output': self.base_url + defarr[1], 'dshape': dshape }) return (content_type, body)
{ "repo_name": "markflorisson/blaze-core", "path": "blaze/io/server/compute_session.py", "copies": "7", "size": "7979", "license": "bsd-3-clause", "hash": 3726957083972581000, "line_mean": 37.3605769231, "line_max": 75, "alpha_frac": 0.5354054393, "autogenerated": false, "ratio": 3.8508687258687258, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7886274165168725, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json from cStringIO import StringIO import urllib import bottle from dossier.fc import FeatureCollection import dossier.web.routes as routes from dossier.web.tests import config_local, kvl, store, label_store # noqa def rot14(s): # Use `rot14` so that `rot14(rot14(s)) != s`. return ''.join(chr(ord('a') + ((ord(c) - ord('a')) + 14) % 26) for c in s) def dbid_to_visid(s): return rot14(s) def visid_to_dbid(s): return rot14(s) def new_request(params=None, body=None): environ = {'wsgi.input': StringIO('')} if params is not None: environ['QUERY_STRING'] = urllib.urlencode(params) if body is not None: environ['wsgi.input'] = StringIO(body) environ['CONTENT_LENGTH'] = len(body) return bottle.Request(environ=environ) def new_response(): return bottle.Response() def test_fc_put(store): # noqa req = new_request(body=json.dumps({'foo': {'a': 1}})) resp = new_response() routes.v1_fc_put(req, resp, visid_to_dbid, store, 'abc') assert store.get(visid_to_dbid('abc'))['foo']['a'] == 1 def test_fc_get(store): # noqa store.put([(visid_to_dbid('abc'), FeatureCollection({'foo': {'a': 1}}))]) fc = routes.v1_fc_get(dbid_to_visid, store, 'abc') assert fc['foo']['a'] == 1
{ "repo_name": "dossier/dossier.web", "path": "dossier/web/tests/test_routes.py", "copies": "1", "size": "1347", "license": "mit", "hash": -4067338607863798300, "line_mean": 24.9038461538, "line_max": 78, "alpha_frac": 0.6384558278, "autogenerated": false, "ratio": 2.9866962305986697, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.912515205839867, "avg_score": 0, "num_lines": 52 }
from __future__ import absolute_import, division, print_function import json from csv import DictReader from io import StringIO from base64 import b64decode from operator import itemgetter from os.path import join, dirname, splitext, relpath from dateutil.parser import parse as parse_datetime from urllib.parse import urljoin from os import environ from re import compile import json, pickle import requests from uritemplate import expand as expand_uri from . import S3, __version__ # Sort constants for summarize_runs() GLASS_HALF_FULL = 1 GLASS_HALF_EMPTY = 2 def _get_cached(memcache, key): ''' Get a thing from the cache, or None. ''' if not memcache: return None pickled = memcache.get(key) if pickled is None: return None try: value = pickle.loads(pickled) except Exception as e: return None else: return value def _set_cached(memcache, key, value): ''' Put a thing in the cache, if it exists. ''' if not memcache: return pickled = pickle.dumps(value, protocol=2) memcache.set(key, pickled) def is_coverage_complete(source): ''' ''' if 'coverage' in source: cov = source['coverage'] if ('ISO 3166' in cov or 'US Census' in cov or 'geometry' in cov): return True return False def state_conform_type(state): ''' ''' if 'cache' not in state.keys: return None if state.cache is None: return None if state.cache.endswith('.zip'): if state.geometry_type in ('Polygon', 'MultiPolygon'): return 'shapefile-polygon' else: return 'shapefile' elif state.cache.endswith('.json'): return 'geojson' elif state.cache.endswith('.csv'): return 'csv' else: return None def convert_run(memcache, run, url_template): ''' ''' cache_key = 'converted-run-{}-{}'.format(run.id, __version__) cached_run = _get_cached(memcache, cache_key) if cached_run is not None: return cached_run try: source = json.loads(b64decode(run.source_data).decode('utf8')) except: source = {} run_state = run.state or {} converted_run = { 'address count': run_state.address_count, 'cache': run_state.cache, 'cache time': run_state.cache_time, 'cache_date': run.datetime_tz.strftime('%Y-%m-%d'), 'conform': bool(source.get('conform', False)), 'conform type': state_conform_type(run_state), 'coverage complete': is_coverage_complete(source), 'fingerprint': run_state.fingerprint, 'geometry type': run_state.geometry_type, 'href': expand_uri(url_template, run.__dict__), 'output': run_state.output, 'process time': run_state.process_time, 'processed': run_state.processed, 'sample': run_state.sample, 'run_id': run.id, 'shortname': splitext(relpath(run.source_path, 'sources'))[0], 'skip': bool(source.get('skip', False)), 'source': relpath(run.source_path, 'sources'), 'type': source.get('type', '').lower(), 'version': run_state.version, 'source problem': run_state.source_problem } _set_cached(memcache, cache_key, converted_run) return converted_run def run_counts(runs): ''' ''' states = [(run.state or {}) for run in runs] return { 'sources': len(runs), 'cached': sum([int(bool(state.cache)) for state in states]), 'processed': sum([int(bool(state.processed)) for state in states]), 'addresses': sum([int(state.address_count or 0) for state in states]) } def sort_run_dicts(dicts, sort_order): ''' ''' if sort_order is GLASS_HALF_FULL: # Put the happy, successful stuff up front. key = lambda d: (not bool(d['processed']), not bool(d['cache']), d['source']) elif sort_order is GLASS_HALF_EMPTY: # Put the stuff that needs help up front. key = lambda d: (bool(d['cache']), bool(d['processed']), d['source']) else: raise ValueError('Unknown sort order "{}"'.format(sort_order)) dicts.sort(key=key) def nice_integer(number): ''' Format a number like '999,999,999' ''' string = str(number) pattern = compile(r'^(\d+)(\d\d\d)\b') while pattern.match(string): string = pattern.sub(r'\1,\2', string) return string def break_state(string): ''' Adds <wbr> tag and returns an HTML-safe string. ''' pattern = compile(r'^(.+)/([^/]+)$') string = string.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;') if pattern.match(string): string = pattern.sub(r'\1/<wbr>\2', string) return string def summarize_runs(memcache, runs, datetime, owner, repository, sort_order): ''' Return summary data for set.html template. ''' base_url = expand_uri(u'https://github.com/{owner}/{repository}/', dict(owner=owner, repository=repository)) url_template = urljoin(base_url, u'blob/{commit_sha}/{+source_path}') states = [convert_run(memcache, run, url_template) for run in runs] counts = run_counts(runs) sort_run_dicts(states, sort_order) return dict(states=states, last_modified=datetime, counts=counts)
{ "repo_name": "openaddresses/machine", "path": "openaddr/summarize.py", "copies": "1", "size": "5331", "license": "isc", "hash": 5817250398828652000, "line_mean": 27.8162162162, "line_max": 85, "alpha_frac": 0.6096417183, "autogenerated": false, "ratio": 3.689273356401384, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4798915074701384, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json from toolz.curried import map, take, pipe, pluck, get, concat, filter from collections import Iterator, Iterable import os from contextlib import contextmanager from datashape import discover, var, dshape, Record, DataShape from datashape import coretypes as ct from datashape.dispatch import dispatch import gzip import datetime from ..append import append from ..convert import convert, ooc_types from ..resource import resource from ..chunks import chunks from ..utils import tuples_to_records class JSON(object): """ Proxy for a JSON file Parameters ---------- path : str Path to file on disk See Also -------- JSONLines - Line-delimited JSON """ def __init__(self, path): self.path = path class JSONLines(object): """ Proxy for a line-delimited JSON file Each line in the file is a valid JSON entry Parameters ---------- path : str Path to file on disk See Also -------- JSON - Not-line-delimited JSON """ def __init__(self, path): self.path = path def date_to_datetime_dshape(ds): shape = ds.shape if isinstance(ds.measure, Record): measure = Record([[name, ct.datetime_ if typ == ct.date_ else typ] for name, typ in ds.measure.parameters[0]]) else: measure = ds.measure return DataShape(*(shape + (measure,))) @discover.register(JSON) def discover_json(j, **kwargs): data = json_load(j.path) ds = discover(data) return date_to_datetime_dshape(ds) def nonempty(line): return len(line.strip()) > 0 @discover.register(JSONLines) def discover_jsonlines(j, n=10, encoding='utf-8', **kwargs): with json_lines(j.path, encoding=encoding) as lines: data = pipe(lines, filter(nonempty), map(json.loads), take(n), list) if len(data) < n: ds = discover(data) else: ds = var * discover(data).subshape[0] return date_to_datetime_dshape(ds) @convert.register(list, JSON) def json_to_list(j, dshape=None, **kwargs): return json_load(j.path, **kwargs) @convert.register(Iterator, JSONLines) def json_lines_to_iterator(j, encoding='utf-8', **kwargs): with json_lines(j.path, encoding=encoding) as lines: for item in pipe(lines, filter(nonempty), map(json.loads)): yield item @contextmanager def json_lines(path, encoding='utf-8'): """ Return lines of a json-lines file Handles compression like gzip """ if path.split(os.path.extsep)[-1] == 'gz': f = gzip.open(path) lines = (line.decode(encoding) for line in f) else: f = open(path) lines = f try: yield lines finally: f.close() def json_load(path, encoding='utf-8', **kwargs): """ Return data of a json file Handles compression like gzip """ if path.split(os.path.extsep)[-1] == 'gz': f = gzip.open(path) s = f.read().decode(encoding) else: f = open(path) s = f.read() data = json.loads(s) f.close() return data @append.register(JSONLines, object) def object_to_jsonlines(j, o, **kwargs): return append(j, convert(Iterator, o, **kwargs), **kwargs) @append.register(JSONLines, Iterator) def iterator_to_json_lines(j, seq, dshape=None, encoding='utf-8', **kwargs): row = next(seq) seq = concat([[row], seq]) if not isinstance(row, (dict, str)) and isinstance(row, Iterable): seq = tuples_to_records(dshape, seq) lines = (json.dumps(item, default=json_dumps) for item in seq) # Open file if j.path.split(os.path.extsep)[-1] == 'gz': f = gzip.open(j.path, 'ab') lines2 = (line.encode(encoding) for line in lines) endl = b'\n' else: f = open(j.path, 'a') lines2 = lines endl = '\n' for line in lines2: f.write(line) f.write(endl) f.close() return j @append.register(JSON, list) def list_to_json(j, seq, dshape=None, encoding='utf-8', **kwargs): if not isinstance(seq[0], (dict, str)) and isinstance(seq[0], Iterable): seq = list(tuples_to_records(dshape, seq)) if os.path.exists(j.path): with open(j.path) as f: if json.load(f): raise ValueError("Can only append to empty JSON File.\n" "Either remove contents from this file, save to a new file \n" "or use line-delimited JSON format.\n" "Consider using the jsonlines:// protocol, e.g.\n" "\tinto('jsonlines://%s', your-data)" % j.path) text = json.dumps(seq, default=json_dumps) if j.path.split(os.path.extsep)[-1] == 'gz': f = gzip.open(j.path, 'wb') text = text.encode(encoding) else: f = open(j.path, 'w') f.write(text) f.close() return j @append.register(JSON, object) def object_to_json(j, o, **kwargs): return append(j, convert(list, o, **kwargs), **kwargs) @resource.register('json://.*\.json(\.gz)?', priority=11) def resource_json(path, **kwargs): if 'json://' in path: path = path[len('json://'):] return JSON(path) @resource.register('.*\.jsonlines(\.gz)?', priority=11) @resource.register('jsonlines://.*\.json(\.gz)?', priority=11) def resource_jsonlines(path, **kwargs): if 'jsonlines://' in path: path = path[len('jsonlines://'):] return JSONLines(path) @resource.register('.*\.json(\.gz)?') def resource_json_ambiguous(path, **kwargs): """ Try to guess if this file is line-delimited or not """ if os.path.exists(path): f = open(path) one = next(f) try: two = next(f) except StopIteration: # only one line f.close() return resource_json(path, **kwargs) try: json.loads(one) f.close() return resource_jsonlines(path, **kwargs) except: f.close() return resource_json(path, **kwargs) # File doesn't exist, is the dshape variable length? dshape = kwargs.get('expected_dshape', None) if dshape and dshape[0] == var: return resource_jsonlines(path, **kwargs) else: return resource_json(path, **kwargs) @dispatch(datetime.datetime) def json_dumps(dt): s = dt.isoformat() if not dt.tzname(): s = s + 'Z' return s @dispatch(datetime.date) def json_dumps(dt): return dt.isoformat() @convert.register(chunks(list), chunks(JSON)) def convert_glob_of_jsons_into_chunks_of_lists(jsons, **kwargs): def _(): return concat(convert(chunks(list), js, **kwargs) for js in jsons) return chunks(list)(_) @convert.register(chunks(Iterator), chunks(JSONLines)) def convert_glob_of_jsons_into_chunks_of_lists(jsons, **kwargs): def _(): return concat(convert(chunks(Iterator), js, **kwargs) for js in jsons) return chunks(Iterator)(_) ooc_types.add(JSONLines)
{ "repo_name": "mrocklin/into", "path": "into/backends/json.py", "copies": "1", "size": "7011", "license": "bsd-3-clause", "hash": 6566293374856239000, "line_mean": 24.4945454545, "line_max": 78, "alpha_frac": 0.6083297675, "autogenerated": false, "ratio": 3.4435166994106092, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4551846466910609, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json import logging import os import os.path from collections import OrderedDict import jsonpatch import yaml from appr.display import print_deploy_result from appr.formats.appr.kub_base import KubBase from appr.platforms.kubernetes import ANNOTATIONS, Kubernetes, get_endpoint from appr.utils import colorize, mkdir_p logger = logging.getLogger(__name__) _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG class Kub(KubBase): media_type = 'appr' platform = "kubernetes" def _resource_name(self, resource): return resource.get('name', resource['value']['metadata']['name']) def _resource_build(self, kub, resource): self._annotate_resource(kub, resource) kind = resource['value']['kind'].lower() return { "file": resource.get('file', "%s-%s.yaml" % (self._resource_name(resource), kind)), "update_mode": resource.get('update_mode', 'update'), "hash": resource['value']['metadata']['annotations'].get(ANNOTATIONS['hash'], None), "protected": resource['protected'], "name": self._resource_name(resource), "kind": kind, "endpoint": get_endpoint(resource['value']['kind'].lower()).format(namespace=self.namespace), "body": json.dumps(resource['value'])} # @TODO do it in jsonnet def _annotate_resource(self, kub, resource): if 'annotations' not in resource['value']['metadata']: resource['value']['metadata']['annotations'] = {} if resource.get('hash', True): # Hash is calculated later resource['value']['metadata']['annotations'][ANNOTATIONS['hash']] = None annotation = resource['value']['metadata']['annotations'] annotation[ANNOTATIONS['version']] = kub.version annotation[ANNOTATIONS['package']] = kub.name annotation[ANNOTATIONS['parent']] = self.name annotation[ANNOTATIONS['update-mode']] = str( resource.get('update_mode', annotation.get(ANNOTATIONS['update-mode'], 'update'))).lower() annotation[ANNOTATIONS['protected']] = str( resource.get('protected', annotation.get(ANNOTATIONS['protected'], 'false'))).lower() return resource def _create_namespaces(self): if self.namespace: ns = self.create_namespace(self.namespace) self._resources.insert(0, ns) def resources(self): """ Override resources to auto-create namespace""" if self._resources is None: self._resources = self.manifest.resources self._create_namespaces() return self._resources def _apply_patches(self, resources): for _, resource in resources.iteritems(): if self.namespace: if 'namespace' in resource['value']['metadata']: op = 'replace' else: op = 'add' resource['patch'].append({ "op": op, "path": "/metadata/namespace", "value": self.namespace}) if len(resource['patch']): patch = jsonpatch.JsonPatch(resource['patch']) result = patch.apply(resource['value']) resource['value'] = result return resources @property def kubClass(self): return Kub def create_namespace(self, namespace): value = {"apiVersion": "v1", "kind": "Namespace", "metadata": {"name": namespace}} resource = { "file": "%s-ns.yaml" % namespace, "name": namespace, "generated": True, "order": -1, "hash": False, "protected": True, "update_mode": 'update', "value": value, "patch": [], "variables": {}, "type": "namespace"} return resource def build(self): result = [] for kub in self.dependencies: result.append(self._dep_build(kub)) return {"deploy": result, "package": {"name": self.name, "version": self.version}} def _dep_build(self, kub): package = { "package": kub.name, "version": kub.version, "namespace": kub.namespace, "resources": []} for resource in kub.resources(): package['resources'].\ append(self._resource_build(kub, resource)) return package def _process_deploy(self, dry=False, force=False, fmt="txt", proxy=None, action="create", dest="/tmp/appr"): def output_progress(kubsource, status, fmt="text"): if fmt == 'text': print(" --> %s (%s): %s" % (kubsource.name, kubsource.kind, colorize(status))) dest = os.path.join(dest, self.name, self.version) mkdir_p(dest) table = [] results = [] if fmt == "text": print("%s %s " % (action, self.name)) i = 0 for kub in self.dependencies: package = self._dep_build(kub) i += 1 pname = package["package"] version = package["version"] namespace = package["namespace"] if fmt == "text": print("\n %02d - %s:" % (i, package["package"])) for resource in package["resources"]: body = resource["body"] endpoint = resource["endpoint"] # Use API instead of kubectl with open( os.path.join(dest, "%s-%s" % (resource['name'], resource['file'].replace("/", "_"))), 'wb') as f: f.write(body) kubresource = Kubernetes(namespace=namespace, body=body, endpoint=endpoint, proxy=proxy) status = getattr(kubresource, action)(force=force, dry=dry, strategy=resource.get( 'update_mode', 'update')) if fmt == "text": output_progress(kubresource, status) result_line = OrderedDict( [("package", pname), ("version", version), ("kind", kubresource.kind), ("dry", dry), ("name", kubresource.name), ("namespace", kubresource.namespace), ("status", status)]) if status != 'ok' and action == 'create': kubresource.wait(os.getenv("APPR_KUB_SECONDS", 0.1)) results.append(result_line) if fmt == "text": header = ["package", "version", "kind", "name", "namespace", "status"] display_line = [] for k in header: display_line.append(result_line[k]) table.append(display_line) if fmt == "text": print(print_deploy_result(table)) return results def deploy(self, *args, **kwargs): kwargs['action'] = 'create' return self._process_deploy(*args, **kwargs) def delete(self, *args, **kwargs): kwargs['action'] = 'delete' return self._process_deploy(*args, **kwargs)
{ "repo_name": "app-registry/appr", "path": "appr/formats/appr/kub.py", "copies": "2", "size": "7520", "license": "apache-2.0", "hash": 53601803445983910, "line_mean": 36.9797979798, "line_max": 98, "alpha_frac": 0.5199468085, "autogenerated": false, "ratio": 4.460260972716489, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5980207781216489, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json import logging import os import os.path import re import jinja2 import yaml import appr.template_filters as filters from appr.utils import convert_utf8 logger = logging.getLogger(__name__) with open(os.path.join(os.path.dirname(__file__), "jsonnet/manifest.jsonnet.j2")) as f: JSONNET_TEMPLATE = f.read() def yaml_to_jsonnet(manifestyaml, tla_codes=None): jinja_env = jinja2.Environment() jinja_env.filters.update(filters.jinja_filters()) # 1. Resolve old manifest variables # Load 'old' manifest.yaml tempvars = {"manifest": convert_utf8(json.loads(json.dumps(yaml.load(manifestyaml))))} # Get variable from the 'old' manfiest and update them variables = tempvars['manifest'].get("variables", {}) if tla_codes is not None and 'params' in tla_codes: tla = json.loads(tla_codes['params']).get("variables", {}) variables.update(tla) # Resolve the templated variables inside the 'old' manifest manifest_tpl = jinja_env.from_string(manifestyaml) # 2. Convert 'old' manifest.yaml to manifest.jsonnet rendered_manifestyaml = manifest_tpl.render(variables) v = {"manifest": convert_utf8(json.loads(json.dumps(yaml.load(rendered_manifestyaml))))} # Load the yaml -> jsonnet template template = jinja_env.from_string(JSONNET_TEMPLATE) templatedjsonnet = template.render(v) # @TODO keep yaml format and escape 'jsonnet' commands: key: "<% $.variables.key %>" # jsonnet_str = re.sub(r'[\'"]<%(.*)%>["\']', r"\1", templatedjsonnet) return templatedjsonnet class RenderJsonnet(object): def __init__(self, files=None, manifestpath=None, lib_dirs=[]): self.manifestdir = None if manifestpath: self.manifestdir = os.path.dirname(manifestpath) self.files = files lib_dirs.append(os.path.join(os.path.dirname(__file__), "jsonnet/lib")) self.lib_dirs = lib_dirs # Returns content if worked, None if file not found, or throws an exception def try_path(self, path, rel): if rel[0] == '/': full_path = rel else: full_path = path + rel if full_path[-1] == '/': raise RuntimeError('Attempted to import a directory') if not rel: raise RuntimeError('Got invalid filename (empty string).') if self.files is not None and full_path in self.files: if self.files[full_path] is None: with open(full_path) as f: self.files[full_path] = f.read() return rel, self.files[full_path] # @TODO(ant31) fail if full_path is absolute elif self.manifestdir and os.path.isfile(os.path.join(self.manifestdir, full_path)): filepath = os.path.join(self.manifestdir, full_path) with open(filepath) as f: return rel, f.read() else: for libdir in self.lib_dirs: libpath = os.path.join(libdir, rel) if os.path.isfile(libpath): with open(libpath) as f: return rel, f.read() if not os.path.isfile(full_path): return full_path, None with open(full_path) as f: return full_path, f.read() def import_callback(self, path, rel): full_path, content = self.try_path(path, rel) if content: return full_path, content raise RuntimeError('File not found') def render_jsonnet(self, manifeststr, tla_codes=None): # @TODO(ant31): workaround until jsonnet compile on windows import _jsonnet try: json_str = _jsonnet.evaluate_snippet( # pylint: disable=no-member "snippet", manifeststr, import_callback=self.import_callback, native_callbacks=filters.jsonnet_callbacks(), tla_codes=tla_codes) except RuntimeError as e: print("tla_codes: %s" % (str(tla_codes))) print("\n".join([ "%s %s" % (i, line) for i, line in enumerate([ l for l in manifeststr.split("\n") if re.match(r"^ *#", l) is None])])) raise e return json.loads(json_str)
{ "repo_name": "app-registry/appr", "path": "appr/render_jsonnet.py", "copies": "2", "size": "4262", "license": "apache-2.0", "hash": -7556183672561099000, "line_mean": 37.7454545455, "line_max": 92, "alpha_frac": 0.61238855, "autogenerated": false, "ratio": 3.7222707423580785, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5334659292358079, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json import os import sys import shutil import requests import logging import tempfile import zipfile from subprocess import Popen, PIPE import warnings from .exceptions import CondaException from .utils import shell_out mini_file = "Miniconda-latest.sh" miniconda_urls = {"linux": "https://repo.continuum.io/miniconda/" "Miniconda3-latest-Linux-x86_64.sh", "darwin": "https://repo.continuum.io/miniconda/" "Miniconda3-latest-MacOSX-x86_64.sh", "win": "https://repo.continuum.io/miniconda/" "Miniconda3-latest-Windows-x86_64.exe"} logger = logging.getLogger(__name__) here = os.path.dirname(__file__) def miniconda_url(): """What to download for this platform""" if sys.platform.startswith('linux'): url = miniconda_urls['linux'] elif sys.platform.startswith('darwin'): # pragma: no cover url = miniconda_urls['darwin'] else: # pragma: no cover url = miniconda_urls['win'] if not sys.maxsize > 2 ** 32: # pragma: no cover # 64bit check url = url.replace("_64", "") return url class CondaCreator(object): """ Create Conda Env The parameters below can generally be guessed from the system. If `conda info` is required, it will only be run on the first invocation, and the result cached. Parameters ---------- conda_root: str Location of a conda installation. The conda executable is expected at /bin/conda within. If None, runs `conda info` to find out relevant information. If no conda is found for `conda info`, or no conda executable exists within the given location, will download and install miniconda at that location. If the value is None, that location is within the source tree. conda_envs: str directory in which to create environments; usually within the source directory (so as not to pollute normal usage of conda) miniconda_url: str location to download miniconda from, if needed. Uses `miniconda_urls` for the appropriate platform if not given. channels: list of str Channels to specify to conda. Note that defaults in .condarc will also be included conda_pkgs: str Directory containing cached conda packages, normally within conda_root. """ conda_info = {} def __init__(self, conda_root=None, conda_envs=None, miniconda_url=None, channels=None, conda_pkgs=None): if conda_root is None: self._get_conda_info() if self.conda_info: self.conda_root = self.conda_info['conda_prefix'] else: self.conda_root = os.path.join(here, 'tmp_conda') else: self.conda_root = conda_root self.conda_bin = os.path.join(self.conda_root, 'bin', 'conda') if not os.path.exists(self.conda_bin): self._install_miniconda(self.conda_root, miniconda_url) self.conda_envs = conda_envs or os.sep.join([here, 'tmp_conda', 'envs']) self.conda_pkgs = conda_pkgs self.channels = channels or [] def _install_miniconda(self, root, url): if os.path.exists(root): # conda wants to create the dir - plus this errors if location # is not empty os.rmdir(root) url = url or miniconda_url() tmp = tempfile.mkdtemp() minifile = os.path.join(tmp, 'Miniconda3') logger.debug("Downloading latest Miniconda.sh") r = requests.get(url, stream=True) with open(minifile, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) f.flush() install_cmd = "bash {0} -b -p {1}".format(minifile, root).split() logger.debug("Installing Miniconda in {0}".format(root)) proc = Popen(install_cmd, stdout=PIPE, stderr=PIPE) out, err = proc.communicate() logger.debug(out) logger.debug(err) self.conda_info['conda_prefix'] = root def _get_conda_info(self): """Ask a conda on PATH where it is installed""" if self.conda_info: # already did this before return try: self.conda_info.update(json.loads(shell_out( ['conda', 'info', '--json']))) except (OSError, IOError): warnings.warn('No conda found on PATH') def _create_env(self, env_name, packages=None, remove=False): """ Create Conda env environment. If env_name is found in self.conda_envs, if will be used without checking the existence of any given packages Parameters ---------- env_name : str packages : list remove : bool remove environment should it exist - start from Returns ------- path : str path to newly created conda environment """ env_path = os.path.join(self.conda_envs, env_name) if os.path.exists(env_path): if not remove: # assume env is OK, ignore packages. return env_path shutil.rmtree(env_path) if not isinstance(packages, list): raise TypeError("Packages must be a list of strings") ch = [] [ch.extend(['-c', c]) for c in self.channels] cmd = [self.conda_bin, 'create', '-p', env_path, '-y', '-q'] + packages + ch logger.info("Creating new env {0}".format(env_name)) logger.info(' '.join(cmd)) env = dict(os.environ) if self.conda_pkgs: env['CONDA_PKGS_DIRS'] = self.conda_pkgs proc = Popen(cmd, stdout=PIPE, stderr=PIPE, env=env) out, err = proc.communicate() logger.debug(out) logger.debug(err) env_python = os.path.join(env_path, 'bin', 'python') if not os.path.exists(env_python): raise CondaException("Failed to create Python binary at %s." "" % env_python) return env_path def find_env(self, env_name): """ Find full path to env_name Parameters ---------- env_name : str Returns ------- path : str path to conda environment """ env_path = os.path.join(self.conda_envs, env_name) if os.path.exists(env_path): return env_path def create_env(self, env_name, packages=None, remove=False): """ Create zipped directory of a conda environment Parameters ---------- env_name : str packages : list remove : bool remove environment should it exist Returns ------- path : str path to zipped conda environment """ if not packages: env_path = self.find_env(env_name) else: env_path = self._create_env(env_name, packages, remove) return zip_path(env_path) def zip_path(path, out_file=None): """ Zip up directory Parameters ---------- path : string out_path : str Output zip-file; if note given, same as input path with .zip appended Returns ------- path : string path to zipped file """ fname = os.path.basename(path) + '.zip' env_dir = os.path.dirname(path) zFile = out_file or os.path.join(env_dir, fname) # ZipFile does not have a contextmanager in Python 2.6 f = zipfile.ZipFile(zFile, 'w', allowZip64=True) try: logger.info('Creating: %s' % zFile) for root, dirs, files in os.walk(path): for file in files: relfile = os.path.join( os.path.relpath(root, env_dir), file) absfile = os.path.join(root, file) try: os.stat(absfile) except OSError: logger.info('Skipping zip for %s' % absfile) continue f.write(absfile, relfile) return zFile finally: f.close()
{ "repo_name": "blaze/knit", "path": "knit/env.py", "copies": "2", "size": "8326", "license": "bsd-3-clause", "hash": -689858093141764200, "line_mean": 31.0230769231, "line_max": 80, "alpha_frac": 0.5679798222, "autogenerated": false, "ratio": 4.004810004810005, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5572789827010005, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json import os from appr.exception import Forbidden, PackageAlreadyExists from appr.models.blob_base import BlobBase from appr.models.channel_base import ChannelBase from appr.models.package_base import PackageBase class ApprDB(object): Channel = ChannelBase Package = PackageBase Blob = BlobBase @classmethod def restore_backup(cls, data): """ bulk add data in db """ i = 0 size = len(data['packages']) for package_data in data['packages']: i += 1 package = cls.Package(package_data['package'], package_data['release']) package.data = package_data package.blob = cls.Blob(package.package, package_data['blob']) try: package.save(False) # print '%s/%s restored: %s(%s) - %s' % (str(i), str(size), # package.package, package.release, package.media_type) except PackageAlreadyExists: pass # print '%s/%s existed: %s(%s) - %s' % (str(i), str(size), # package.package, package.release, package.media_type) for channel_name in package_data['channels']: channel = cls.Channel(channel_name, package.package) channel.add_release(package.release, cls.Package) # print "%s/%s restored-channel-release: %s, %s, %s" % (str(i), str(size), # channel.package, channel.name, package.release) i = 0 size = len(data['channels']) for channel_data in data['channels']: i += 1 channel = cls.Channel(channel_data['name'], channel_data['package']) channel.add_release(channel_data['current'], cls.Package) print("%s/%s restored-channel: %s" % (str(i), str(size), channel.name)) @classmethod def restore_backup_from_file(cls, filepath): """ bulk add data in db """ with open(filepath, 'rb') as f: data = json.load(f) return cls.restore_backup(data) @classmethod def reset_db(cls, force=False): """ clean the database """ if os.getenv("APPR_DB_ALLOW_RESET", "false") == "true" or force: raise NotImplementedError else: raise Forbidden("Reset DB is deactivated") @classmethod def backup(cls): data = {'packages': cls.Package.dump_all(cls.Blob), 'channels': cls.Channel.dump_all()} return data @classmethod def backup_to_file(cls, filepath): with open(filepath, 'wb') as f: json.dump(cls.backup(), f)
{ "repo_name": "cn-app-registry/cnr-server", "path": "appr/models/db_base.py", "copies": "2", "size": "2810", "license": "apache-2.0", "hash": -5053799959045351000, "line_mean": 36.4666666667, "line_max": 119, "alpha_frac": 0.5544483986, "autogenerated": false, "ratio": 4.108187134502924, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0011210357772001571, "num_lines": 75 }
from __future__ import absolute_import, division, print_function import json import os from ..qt.widgets import ScatterWidget, HistogramWidget from ..core import Subset def save_page(page, page_number, label, subset): """ Convert a tab of a glue session into a D3PO page :param page: Tuple of data viewers to save :param label: Tab label """ result = {} # layout settings result['grid'] = {'nRows': 1, 'nColumns': len(page)} result['name'] = str(label) result['caption'] = 'Generated by Glue' # style settings d = page[0]._data[0] unselected = dict(opacity=d.style.alpha, size=d.style.markersize / 2, color=d.style.color) result['markerStyle'] = dict(unselected=unselected) if subset is not None: s = subset.style selected = dict(opacity=s.alpha, size=s.markersize / 2, color=s.color) result['markerStyle']['selected'] = selected result['selection'] = {'type': 'booleanColumn', 'columnName': 'selection_%i' % page_number} result['histogramStyle'] = result['markerStyle'] # save each plot result['plots'] = list(map(save_plot, page, range(len(page)))) return result def save_plot_base(plot, index): result = {} result['gridPosition'] = [0, index] return result def save_plot(plot, index): dispatch = {ScatterWidget: save_scatter, HistogramWidget: save_histogram} typ = type(plot) return dispatch[typ](plot, index) def save_scatter(plot, index): """ Convert a single glue scatter plot to a D3PO plot :param plot: Glue scatter plot :class:`~glue.qt.widgets.scatter_widget.ScatterWidget` :param index: 1D index of plot on the page :type index: int :rtype: json-serializable dict """ result = save_plot_base(plot, index) props = plot.properties result['type'] = 'scatter' result['xAxis'] = dict(columnName=props['xatt'].label, range=[props['xmin'], props['xmax']]) result['yAxis'] = dict(columnName=props['yatt'].label, range=[props['ymin'], props['ymax']]) # XXX log scales return result def save_histogram(plot, index): """ Convert a single histogram to a D3PO plot :param plot: Glue histogram :type plot: :class:`~glue.qt.widgets.histogram_widget.HistogramWidget` :param index: 1D index of plot on the page :type index: int :rtype: json-serializable dict """ result = save_plot_base(plot, index) props = plot.properties result['type'] = 'histogram' result['xAxis'] = dict(columnName=props['component'].label, bins=props['nbins'], range=[props['xmin'], props['xmax']]) # XXX normed, cumultive, log return result def stage_subsets(application): """ Return a tuple of the subset to use for each stage/tab, or None if the tab has no subset If more than one subset is used per stage/tab, returns None """ result = [] for page in application.viewers: subset = None for viewer in page: for layer_artist in viewer.layers: if not layer_artist.visible: continue s = layer_artist.layer if not isinstance(s, Subset): continue if subset is not None and s is not subset: return None if subset is None: subset = s result.append(subset) return tuple(result) def can_save_d3po(application): """ Check whether an application can be exported to D3PO. Raises an exception if not """ dc = application.session.data_collection if len(dc) != 1: raise ValueError("D3PO Export only supports a single dataset") data = dc[0] for tab in application.viewers: for viewer in tab: if not isinstance(viewer, (ScatterWidget, HistogramWidget)): raise ValueError("D3PO Export only supports scatter " "and histogram plots") if sum(len(tab) for tab in application.viewers) == 0: raise ValueError("D3PO Export requires at least one scatterplot " "or histogram") if stage_subsets(application) is None: raise ValueError("D3PO Export restricted to 0 or 1 subsets visible " "in each tab") def make_data_file(data, subsets, path): """ Create the data.csv file, given Data and tuple of subsets """ from astropy.table import Table, Column data_path = os.path.join(path, 'data.csv') t = Table([data[c] for c in data.components], names=[c.label for c in data.components]) for i, subset in enumerate(subsets): if subset is None: continue c = Column(data=subset.to_mask().astype('i'), name='selection_%i' % i) t.add_column(c) t.write(data_path, format='ascii', delimiter=',') def save_d3po(application, path): """Save a Glue session to a D3PO bundle. Currently, this has the following restrictions: - The Glue session must have only one dataset open, and 0 or 1 subsets - Only scatter plots or histograms are present - At least one plot is present :param application: Glue appication to save :param path: Path to directory to save in. Will be created if needed """ if os.path.exists(path) and not os.path.isdir(path): os.unlink(path) if not os.path.exists(path): os.mkdir(path) data = application.session.data_collection[0] subsets = stage_subsets(application) viewers = application.viewers # data.csv make_data_file(data, subsets, path) # states.json result = {} result['filename'] = 'data.csv' # XXX don't think this is needed? result['title'] = "Glue export of %s" % data.label result['states'] = list(map(save_page, application.viewers, range(len(viewers)), application.tab_names, subsets)) state_path = os.path.join(path, 'states.json') with open(state_path, 'w') as outfile: json.dump(result, outfile, indent=2) # index.html html_path = os.path.join(path, 'index.html') with open(html_path, 'w') as outfile: outfile.write(HTML) # show the result launch(path) def launch(path): """Start a server to view an exported D3PO bundle, and open a browser. :param path: The TLD of the bundle """ from SocketServer import TCPServer from SimpleHTTPServer import SimpleHTTPRequestHandler from random import randrange from socket import error import webbrowser from threading import Thread os.chdir(path) while True: try: PORT = randrange(8000, 9000) server = TCPServer(("", PORT), SimpleHTTPRequestHandler, False) server.allow_reuse_address = True server.server_bind() break except error: # port already taken pass print('Serving D3PO on port 0.0.0.0:%i' % PORT) server.server_activate() thread = Thread(target=server.serve_forever) thread.setDaemon(True) # do not prevent shutdown thread.start() webbrowser.open('http://0.0.0.0:%i' % PORT) def setup(): from ..config import exporters exporters.add('D3PO', save_d3po, can_save_d3po, outmode='directory') HTML = """ <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <link rel="stylesheet" type="text/css" href="http://d3po.org/static/css/style.css"> <link rel="stylesheet" type="text/css" href="http://d3po.org/static/css/d3po.css"> <link href='http://fonts.googleapis.com/css?family=Source+Sans+Pro:100,200,300,400,700' rel='stylesheet' type='text/css'> <style> #footer { position: fixed; bottom: 0; right: 0; } </style> <!-- not to be confused with Planet Telex --> <!-- Javscript dependencies --> <script src="http://d3js.org/d3.v3.min.js" charset="utf-8"></script> <script src="http://d3po.org/static/js/util.js"></script> <script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script> <script src="http://d3po.org/static/js/d3po.js"></script> <script src="http://d3po.org/static/js/d3po.init.js"></script> </head> <body> <div id="svg"><svg></svg></div> <div id="controls"> <ul class="navigation"> </ul> </div> <div id="caption"></div> <div id="footer"> More information: <a href="http://d3po.org">d3po.org</a> </div> <script type="text/javascript"> $(document).ready(function() { initialize('states.json', 'data.csv'); } ); </script> </body> </html> """
{ "repo_name": "JudoWill/glue", "path": "glue/plugins/export_d3po.py", "copies": "1", "size": "8773", "license": "bsd-3-clause", "hash": 1987512367408500500, "line_mean": 28.0496688742, "line_max": 121, "alpha_frac": 0.6130172119, "autogenerated": false, "ratio": 3.6938947368421053, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4806911948742105, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json import os.path as op import six import numpy as np import scipy.signal as sig import scipy.io.wavfile as sciwav MAXINT16 = 2**15 - 1 FS = 44100 COEFF_DIR = op.join(op.dirname(op.abspath(__file__)), 'coeffs') def normalize(data, maxamp=1): data *= maxamp / max(abs(data)) def load_coeffs(fname): with open(op.join(COEFF_DIR, fname)) as f: return json.load(f) POTS_COEFFS = load_coeffs('pots.json') def pots(data, snr=30, seed=None): if seed is not None: np.random.seed(seed) # ensure mono if data.ndim != 1: data = data[:,0] # convert to float, but simulate 16-bit quantization if needed orig_dtype = data.dtype data = data.astype('float') if orig_dtype != 'int16': normalize(data, maxamp=MAXINT16) np.around(data, out=data) normalize(data) # pad start and end #leader_len = np.random.randint(0.1 * FS, 0.4 * FS) #trailer_len = 0.5 * FS - leader_len #data = np.concatenate([np.zeros(leader_len), data, np.zeros(trailer_len)]) # do filtering for b, a in POTS_COEFFS['signal']: data = sig.lfilter(b, a, data) # add band-limited noise (filtered white noise) #np.random.seed(0) noise = 10**(-snr/20) * ((np.random.random(size=data.shape) * 2) - 1) for b, a in POTS_COEFFS['noiseband']: noise = sig.lfilter(b, a, noise) data += noise # renormalize and convert to 16-bit integers normalize(data, maxamp=MAXINT16) data = data.astype('int16') return data class DigitalStreamFilter(object): mimes = { 'wav': 'audio/vnd.wave', 'txt': 'text/plain', 'json': 'application/json', } output_suffix = 'filtered' def __init__(self, data=None, stream=None, filename=None, dtype=None): if dtype is None and filename is None: try: # werkzeug.FileStorage has 'filename', python files have 'name' filename = getattr(stream, 'filename', getattr(stream, 'name')) except AttributeError: raise ValueError("Can't determine type from stream. " "Provide dtype or filename to infer type.") if dtype is None: dtype = filename.split('.')[-1] self.dtype = dtype self.filename = filename self.json_extra = {} if data is not None: self.data = np.array(data) elif stream is not None: self.load(stream) else: with open(filename, 'rb') as stream: self.load(stream) def load(self, stream): dispatcher = { 'wav': self._load_wave, 'txt': self._load_text, 'json': self._load_json, } try: data = dispatcher[self.dtype](stream) except KeyError: raise TypeError('Unsupported input type: {} (accepts {})'.format( self.dtype, ', '.join(dispatcher.keys()))) self.data = np.array(data) def process(self, *args, **kwargs): raise NotImplementedError('abstract method') def dump(self, stream, dtype=None): if dtype is None: dtype = self.dtype {'wav': self._dump_wave, 'txt': self._dump_text, 'json': self._dump_json, }[dtype](stream) def suggested_name(self): parts = self.filename.split('.')[:-1] parts.extend([self.output_suffix, self.dtype]) return '.'.join(parts) def mimetype(self): return self.mimes[self.dtype] def _load_wave(self, stream): rate, data = sciwav.read(stream) return data def _load_text(self, stream): return np.loadtxt(stream, dtype='int16') def _load_json(self, stream): return np.array(json.load(stream)) def _dump_wave(self, stream): sciwav.write(stream, FS, self.data) def _dump_text(self, stream): np.savetxt(stream, self.data, fmt='%d') def _dump_json(self, stream): json.dump({'data': self.data.tolist(), 'rate': FS}, stream) class POTSFilter(DigitalStreamFilter): output_suffix = 'pots-filtered' def process(self, *args, **kwargs): self.data = pots(self.data, *args, **kwargs)
{ "repo_name": "nicktimko/pots-sim", "path": "potsim/filters.py", "copies": "1", "size": "4324", "license": "mit", "hash": -9061933648046750000, "line_mean": 27.2614379085, "line_max": 79, "alpha_frac": 0.5811748381, "autogenerated": false, "ratio": 3.5794701986754967, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4660645036775497, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json import random import numpy as np from stt_utils import calc_feat_dim, spectrogram_from_file from config_util import generate_file_path from log_util import LogUtil from label_util import LabelUtil from stt_bi_graphemes_util import generate_bi_graphemes_label class DataGenerator(object): def __init__(self, save_dir, model_name, step=10, window=20, max_freq=8000, desc_file=None): """ Params: step (int): Step size in milliseconds between windows window (int): FFT window size in milliseconds max_freq (int): Only FFT bins corresponding to frequencies between [0, max_freq] are returned desc_file (str, optional): Path to a JSON-line file that contains labels and paths to the audio files. If this is None, then load metadata right away """ #calc_feat_dim returns int(0.001*window*max_freq)+1 super(DataGenerator, self).__init__() # feat_dim=0.001*20*8000+1=161 self.feat_dim = calc_feat_dim(window, max_freq) # 1d 161 length of array filled with zeros self.feats_mean = np.zeros((self.feat_dim,)) # 1d 161 length of array filled with 1s self.feats_std = np.ones((self.feat_dim,)) self.max_input_length = 0 self.max_length_list_in_batch =[] # 1d 161 length of array filled with random value #[0.0, 1.0) self.rng = random.Random() if desc_file is not None: self.load_metadata_from_desc_file(desc_file) self.step = step self.window = window self.max_freq = max_freq self.save_dir = save_dir self.model_name = model_name def get_meta_from_file(self, feats_mean, feats_std): self.feats_mean = feats_mean self.feats_std = feats_std def featurize(self, audio_clip, overwrite=False): """ For a given audio clip, calculate the log of its Fourier Transform Params: audio_clip(str): Path to the audio clip """ return spectrogram_from_file( audio_clip, step=self.step, window=self.window, max_freq=self.max_freq, overwrite=overwrite) def load_metadata_from_desc_file(self, desc_file, partition='train', max_duration=16.0,): """ Read metadata from the description file (possibly takes long, depending on the filesize) Params: desc_file (str): Path to a JSON-line file that contains labels and paths to the audio files partition (str): One of 'train', 'validation' or 'test' max_duration (float): In seconds, the maximum duration of utterances to train or test on """ logger = LogUtil().getlogger() logger.info('Reading description file: {} for partition: {}' .format(desc_file, partition)) audio_paths, durations, texts = [], [], [] with open(desc_file) as json_line_file: for line_num, json_line in enumerate(json_line_file): try: spec = json.loads(json_line) if float(spec['duration']) > max_duration: continue audio_paths.append(spec['key']) durations.append(float(spec['duration'])) texts.append(spec['text']) except Exception as e: # Change to (KeyError, ValueError) or # (KeyError,json.decoder.JSONDecodeError), depending on # json module version logger.warn('Error reading line #{}: {}' .format(line_num, json_line)) logger.warn(str(e)) if partition == 'train': self.count = len(audio_paths) self.train_audio_paths = audio_paths self.train_durations = durations self.train_texts = texts elif partition == 'validation': self.val_audio_paths = audio_paths self.val_durations = durations self.val_texts = texts self.val_count = len(audio_paths) elif partition == 'test': self.test_audio_paths = audio_paths self.test_durations = durations self.test_texts = texts else: raise Exception("Invalid partition to load metadata. " "Must be train/validation/test") def load_train_data(self, desc_file): self.load_metadata_from_desc_file(desc_file, 'train') def load_validation_data(self, desc_file): self.load_metadata_from_desc_file(desc_file, 'validation') @staticmethod def sort_by_duration(durations, audio_paths, texts): return zip(*sorted(zip(durations, audio_paths, texts))) def normalize(self, feature, eps=1e-14): return (feature - self.feats_mean) / (self.feats_std + eps) def get_max_label_length(self, partition, is_bi_graphemes=False): if partition == 'train': texts = self.train_texts + self.val_texts elif partition == 'test': texts = self.train_texts else: raise Exception("Invalid partition to load metadata. " "Must be train/validation/test") if is_bi_graphemes: self.max_label_length = max([len(generate_bi_graphemes_label(text)) for text in texts]) else: self.max_label_length = max([len(text) for text in texts]) return self.max_label_length def get_max_seq_length(self, partition): if partition == 'train': audio_paths = self.train_audio_paths + self.val_audio_paths durations = self.train_durations + self.val_durations elif partition == 'test': audio_paths = self.train_audio_paths durations = self.train_durations else: raise Exception("Invalid partition to load metadata. " "Must be train/validation/test") max_duration_indexes = durations.index(max(durations)) max_seq_length = self.featurize(audio_paths[max_duration_indexes]).shape[0] self.max_seq_length=max_seq_length return max_seq_length def prepare_minibatch(self, audio_paths, texts, overwrite=False, is_bi_graphemes=False): """ Featurize a minibatch of audio, zero pad them and return a dictionary Params: audio_paths (list(str)): List of paths to audio files texts (list(str)): List of texts corresponding to the audio files Returns: dict: See below for contents """ assert len(audio_paths) == len(texts),\ "Inputs and outputs to the network must be of the same number" # Features is a list of (timesteps, feature_dim) arrays # Calculate the features for each audio clip, as the log of the # Fourier Transform of the audio features = [self.featurize(a, overwrite=overwrite) for a in audio_paths] input_lengths = [f.shape[0] for f in features] feature_dim = features[0].shape[1] mb_size = len(features) # Pad all the inputs so that they are all the same length x = np.zeros((mb_size, self.max_seq_length, feature_dim)) y = np.zeros((mb_size, self.max_label_length)) labelUtil = LabelUtil.getInstance() label_lengths = [] for i in range(mb_size): feat = features[i] feat = self.normalize(feat) # Center using means and std x[i, :feat.shape[0], :] = feat if is_bi_graphemes: label = generate_bi_graphemes_label(texts[i]) label = labelUtil.convert_bi_graphemes_to_num(label) y[i, :len(label)] = label else: label = labelUtil.convert_word_to_num(texts[i]) y[i, :len(texts[i])] = label label_lengths.append(len(label)) return { 'x': x, # (0-padded features of shape(mb_size,timesteps,feat_dim) 'y': y, # list(int) Flattened labels (integer sequences) 'texts': texts, # list(str) Original texts 'input_lengths': input_lengths, # list(int) Length of each input 'label_lengths': label_lengths, # list(int) Length of each label } def iterate_test(self, minibatch_size=16): return self.iterate(self.test_audio_paths, self.test_texts, minibatch_size) def iterate_validation(self, minibatch_size=16): return self.iterate(self.val_audio_paths, self.val_texts, minibatch_size) def sample_normalize(self, k_samples=1000, overwrite=False): """ Estimate the mean and std of the features from the training set Params: k_samples (int): Use this number of samples for estimation """ # if k_samples is negative then it goes through total dataset if k_samples < 0: audio_paths_iter = iter(self.audio_paths) # using sample else: k_samples = min(k_samples, len(self.train_audio_paths)) samples = self.rng.sample(self.train_audio_paths, k_samples) audio_paths_iter = iter(samples) audio_clip = audio_paths_iter.next() feat = self.featurize(audio_clip=audio_clip, overwrite=overwrite) feat_squared = np.square(feat) count = float(feat.shape[0]) dim = feat.shape[1] for iter_index in range(len(samples) - 1): next_feat = self.featurize(audio_clip=audio_paths_iter.next(), overwrite=overwrite) next_feat_squared = np.square(next_feat) feat_vertically_stacked = np.concatenate((feat, next_feat)).reshape(-1, dim) feat = np.sum(feat_vertically_stacked, axis=0, keepdims=True) feat_squared_vertically_stacked = np.concatenate((feat_squared, next_feat_squared)).reshape(-1, dim) feat_squared = np.sum(feat_squared_vertically_stacked, axis=0, keepdims=True) count = count + float(next_feat.shape[0]) self.feats_mean = feat / float(count) self.feats_std = np.sqrt(feat_squared / float(count) - np.square(self.feats_mean)) np.savetxt(generate_file_path(self.save_dir, self.model_name, 'feats_mean'), self.feats_mean) np.savetxt(generate_file_path(self.save_dir, self.model_name, 'feats_std'), self.feats_std)
{ "repo_name": "arikpoz/mxnet", "path": "example/speech_recognition/stt_datagenerator.py", "copies": "11", "size": "10656", "license": "apache-2.0", "hash": -3992392670688260000, "line_mean": 44.9310344828, "line_max": 112, "alpha_frac": 0.5914039039, "autogenerated": false, "ratio": 3.919087899963222, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.001241933255840405, "num_lines": 232 }
from __future__ import absolute_import, division, print_function import json import tarfile from os.path import basename def dist_fn(fn): if fn.endswith('.tar'): return fn[:-4] elif fn.endswith('.tar.bz2'): return fn[:-8] else: raise Exception('did not expect filename: %r' % fn) class TarCheck(object): def __init__(self, path): self.t = tarfile.open(path) self.paths = set(m.path for m in self.t.getmembers()) self.dist = dist_fn(basename(path)) self.name, self.version, self.build = self.dist.rsplit('-', 2) def info_files(self): if 'py_' in self.build: return lista = [p.strip().decode('utf-8') for p in self.t.extractfile('info/files').readlines()] seta = set(lista) if len(lista) != len(seta): raise Exception('info/files: duplicates') listb = [m.path for m in self.t.getmembers() if not (m.path.startswith('info/') or m.isdir())] setb = set(listb) if len(listb) != len(setb): raise Exception('info_files: duplicate members') if seta == setb: return for p in sorted(seta | setb): if p not in seta: print('%r not in info/files' % p) if p not in setb: print('%r not in tarball' % p) raise Exception('info/files') def index_json(self): info = json.loads(self.t.extractfile('info/index.json').read().decode('utf-8')) for varname in 'name', 'version', 'build': if info[varname] != getattr(self, varname): raise Exception('%s: %r != %r' % (varname, info[varname], getattr(self, varname))) assert isinstance(info['build_number'], int) def check_all(path): x = TarCheck(path) x.info_files() x.index_json() x.t.close()
{ "repo_name": "rmcgibbo/conda-build", "path": "conda_build/tarcheck.py", "copies": "8", "size": "1943", "license": "bsd-3-clause", "hash": 429311510727633800, "line_mean": 30.8524590164, "line_max": 87, "alpha_frac": 0.5409161091, "autogenerated": false, "ratio": 3.679924242424242, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00018628912071535022, "num_lines": 61 }
from __future__ import absolute_import, division, print_function import json import time from workflows.services.common_service import CommonService class SampleConsumer(CommonService): '''An example service building on top of the workflow.services architecture, demonstrating how this architecture can be used. This service consumes messages off a queue.''' # Human readable service name _service_name = "Message Consumer" # Logger name _logger_name = "workflows.service.sample_consumer" def initializing(self): '''Subscribe to a channel.''' self._transport.subscribe('transient.destination', self.consume_message) def consume_message(self, header, message): '''Consume a message''' logmessage = { 'time': (time.time() % 1000) * 1000, 'header': '', 'message': message } if header: logmessage['header'] = json.dumps(header, indent=2) + '\n' + \ '----------------' + '\n' if isinstance(message, dict): logmessage['message'] = json.dumps(message, indent=2) + '\n' + \ '----------------' + '\n' print("=== Consume ====\n{header}{message}".format(**logmessage)) self.log.info("Received message @{time}".format(**logmessage)) self.log.debug("Received message @{time}\n{header}{message}".format(**logmessage)) time.sleep(0.1)
{ "repo_name": "xia2/workflows", "path": "workflows/services/sample_consumer.py", "copies": "1", "size": "1401", "license": "bsd-3-clause", "hash": 9056505030460099000, "line_mean": 35.8684210526, "line_max": 86, "alpha_frac": 0.6174161313, "autogenerated": false, "ratio": 4.0964912280701755, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.008485777150603323, "num_lines": 38 }
from __future__ import absolute_import, division, print_function import json import unittest from io import BytesIO from ..sample import sample_geojson class TestSample (unittest.TestCase): def test_sample(self): geojson_input = b'''{ "type": "FeatureCollection", "features": [ { "type": "Feature", "geometry": {"type": "Point", "coordinates": [102.0, 0.5]}, "properties": {"prop0": "value0"} }, { "type": "Feature", "geometry": { "type": "LineString", "coordinates": [ [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0] ] }, "properties": { "prop0": "value0", "prop1": 0.0 } }, { "type": "Feature", "geometry": { "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ] ] }, "properties": { "prop0": "value0", "prop1": {"this": "that"}, "prop2": true, "prop3": null } } ] }''' geojson0 = json.loads(sample_geojson(BytesIO(geojson_input), max_features=0)) self.assertEqual(len(geojson0['features']), 0) geojson1 = json.loads(sample_geojson(BytesIO(geojson_input), max_features=1)) self.assertEqual(len(geojson1['features']), 1) geojson2 = json.loads(sample_geojson(BytesIO(geojson_input), max_features=2)) self.assertEqual(len(geojson2['features']), 2) geojson3 = json.loads(sample_geojson(BytesIO(geojson_input), max_features=3)) self.assertEqual(len(geojson3['features']), 3) geojson4 = json.loads(sample_geojson(BytesIO(geojson_input), max_features=4)) self.assertEqual(len(geojson4['features']), 3) self.assertEqual(geojson0['type'], 'FeatureCollection') self.assertEqual(geojson1['features'][0]['type'], 'Feature') self.assertEqual(geojson1['features'][0]['properties']['prop0'], 'value0') self.assertEqual(geojson1['features'][0]['geometry']['type'], 'Point') self.assertEqual(len(geojson1['features'][0]['geometry']['coordinates']), 2) self.assertEqual(geojson1['features'][0]['geometry']['coordinates'][0], 102.) self.assertEqual(geojson1['features'][0]['geometry']['coordinates'][1], .5) self.assertEqual(geojson2['features'][1]['geometry']['type'], 'LineString') self.assertEqual(len(geojson2['features'][1]['geometry']['coordinates']), 4) self.assertEqual(geojson2['features'][1]['geometry']['coordinates'][0][0], 102.) self.assertEqual(geojson2['features'][1]['geometry']['coordinates'][0][1], 0.) self.assertEqual(geojson3['features'][2]['geometry']['type'], 'Polygon') self.assertEqual(len(geojson3['features'][2]['geometry']['coordinates']), 1) self.assertEqual(geojson3['features'][2]['geometry']['coordinates'][0][0][0], 100.) self.assertEqual(geojson3['features'][2]['geometry']['coordinates'][0][0][1], 0.)
{ "repo_name": "slibby/machine", "path": "openaddr/tests/sample.py", "copies": "1", "size": "2980", "license": "isc", "hash": -8177020759239320000, "line_mean": 57.431372549, "line_max": 271, "alpha_frac": 0.5929530201, "autogenerated": false, "ratio": 3.7064676616915424, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9680082803844718, "avg_score": 0.02386757558936493, "num_lines": 51 }
from __future__ import absolute_import, division, print_function import json from blaze.catalog.blaze_url import split_array_base import dynd from dynd import nd from dynd.nd import as_numpy from blaze import array class compute_session: def __init__(self, base_url, array_name): session_name, root_dir = array_provider.create_session_dir() self.session_name = session_name self.root_dir = root_dir self.array_name = array_name self.base_url = base_url def get_session_array(self, array_name = None): if array_name is None: array_name = self.array_name array_root, indexers = split_array_base(array_name) arr = self.array_provider(array_root) if arr is None: raise Exception('No Blaze Array named ' + array_root) for i in indexers: if type(i) in [slice, int, tuple]: arr = arr[i] else: arr = getattr(arr, i) return arr def creation_response(self): content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session' : self.base_url + self.session_name, 'version' : 'prototype', 'dynd_python_version': dynd.__version__, 'dynd_version' : dynd.__libdynd_version__, 'access' : 'no permission model yet' }) return (content_type, body) def close(self): print('Deleting files for session %s' % self.session_name) self.array_provider.delete_session_dir(self.session_name) content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'action': 'closed' }) return (content_type, body) def sort(self, json_cmd): import numpy as np print ('sorting') cmd = json.loads(json_cmd) array_url = cmd.get('input', self.base_url + self.array_name) if not array_url.startswith(self.base_url): raise RuntimeError('Input array must start with the base url') array_name = array_url[len(self.base_url):] field = cmd['field'] arr = self.get_session_array(array_name) nparr = as_numpy(arr) idxs = np.argsort(nparr[field]) res = nd.ndobject(nparr[idxs]) defarr = self.array_provider.create_deferred_array_filename( self.session_name, 'sort_', res) dshape = nd.dshape_of(res) defarr[0].write(json.dumps({ 'dshape': dshape, 'command': 'sort', 'params': { 'field': field, } })) defarr[0].close() content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'output': self.base_url + defarr[1], 'dshape': dshape }) return (content_type, body) def groupby(self, json_cmd): print('GroupBy operation') cmd = json.loads(json_cmd) array_url = cmd.get('input', self.base_url + self.array_name) if not array_url.startswith(self.base_url): raise RuntimeError('Input array must start with the base url') array_name = array_url[len(self.base_url):] fields = cmd['fields'] arr = self.get_session_array(array_name)[...]._data.dynd_arr() # Do the groupby, get its groups, then # evaluate it because deferred operations # through the groupby won't work well yet. res = nd.groupby(arr, nd.fields(arr, *fields)) groups = res.groups res = res.eval() # Write out the groupby result defarr_gb = self.array_provider.create_deferred_array_filename( self.session_name, 'groupby_', array(res)) dshape_gb = nd.dshape_of(res) defarr_gb[0].write(json.dumps({ 'dshape': dshape_gb, 'command': 'groupby', 'params': { 'fields': fields } })) defarr_gb[0].close() # Write out the groups defarr_groups = self.array_provider.create_deferred_array_filename( self.session_name, 'groups_', groups) dshape_groups = nd.dshape_of(groups) defarr_groups[0].write(json.dumps({ 'dshape': dshape_groups, 'command': 'groupby.groups', 'params': { 'fields': fields } })) defarr_groups[0].close() content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'output_gb': self.base_url + defarr_gb[1], 'dshape_gb': dshape_gb, 'output_groups': self.base_url + defarr_groups[1], 'dshape_groups': dshape_groups }) return (content_type, body) def add_computed_fields(self, json_cmd): print('Adding computed fields') cmd = json.loads(json_cmd) array_url = cmd.get('input', self.base_url + self.array_name) if not array_url.startswith(self.base_url): raise RuntimeError('Input array must start with the base url') array_name = array_url[len(self.base_url):] fields = cmd['fields'] rm_fields = cmd.get('rm_fields', []) fnname = cmd.get('fnname', None) arr = self.get_session_array(array_name)._data.dynd_arr() res = nd.add_computed_fields(arr, fields, rm_fields, fnname) defarr = self.array_provider.create_deferred_array_filename( self.session_name, 'computed_fields_', array(res)) dshape = nd.dshape_of(res) defarr[0].write(json.dumps({ 'dshape': dshape, 'command': 'add_computed_fields', 'params': { 'fields': fields, 'rm_fields': rm_fields, 'fnname': fnname } })) defarr[0].close() content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'output': self.base_url + defarr[1], 'dshape': dshape }) return (content_type, body) def make_computed_fields(self, json_cmd): print('Adding computed fields') cmd = json.loads(json_cmd) array_url = cmd.get('input', self.base_url + self.array_name) if not array_url.startswith(self.base_url): raise RuntimeError('Input array must start with the base url') array_name = array_url[len(self.base_url):] fields = cmd['fields'] replace_undim = cmd.get('replace_undim', 0) fnname = cmd.get('fnname', None) arr = self.get_session_array(array_name)._data.dynd_arr() res = nd.make_computed_fields(arr, replace_undim, fields, fnname) defarr = self.array_provider.create_deferred_array_filename( self.session_name, 'computed_fields_', array(res)) dshape = nd.dshape_of(res) defarr[0].write(json.dumps({ 'dshape': dshape, 'command': 'make_computed_fields', 'params': { 'fields': fields, 'replace_undim': replace_undim, 'fnname': fnname } })) defarr[0].close() content_type = 'application/json; charset=utf-8' body = json.dumps({ 'session': self.base_url + self.session_name, 'output': self.base_url + defarr[1], 'dshape': dshape }) return (content_type, body)
{ "repo_name": "xsixing/blaze", "path": "blaze/io/server/compute_session.py", "copies": "3", "size": "7976", "license": "bsd-3-clause", "hash": 8057779961791861000, "line_mean": 36.980952381, "line_max": 75, "alpha_frac": 0.5352306921, "autogenerated": false, "ratio": 3.8531400966183575, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0007285876846152695, "num_lines": 210 }
from __future__ import (absolute_import, division, print_function) import json from twisted.internet.protocol import Factory, Protocol, connectionDone from twisted.internet import task, threads, defer from danex import _dane, _tls class DaneDoctorProtocol(Protocol): def dataReceived(self, data): domain = data.strip(" \n") port = 443 proto = "tcp" d = defer.gatherResults([ threads.deferToThread( _dane.lookup_tlsa_records, domain, port, proto ), _tls.retrieveCertificate(domain, port) ]) def onResults(res): (trusted, tlsaRecords), serverCertificate = res numRecs = len(tlsaRecords) doesMatch = False recs = [] for tlsa in tlsaRecords: newRec = { "usage": tlsa.usage.name, "selector": tlsa.selector.name, "matchingType": tlsa.matchingType.name, "errors": tlsa.errors, "valid": tlsa.valid, } if tlsa.valid and tlsa.matchesCertificate(serverCertificate): newRec["matches"] = doesMatch = True recs.append(newRec) rv = { "trusted": trusted, "doesMatch": doesMatch, "numRecs": numRecs, "tlsaRecords": recs, } self.transport.write(json.dumps(rv)) self.transport.loseConnection() d.addCallback(onResults) return d
{ "repo_name": "hynek/tnw", "path": "dane_doctor/protocol.py", "copies": "1", "size": "1597", "license": "mit", "hash": -3885106744660154400, "line_mean": 28.5740740741, "line_max": 77, "alpha_frac": 0.5272385723, "autogenerated": false, "ratio": 4.4484679665738165, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5475706538873817, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json import pytest import stripe class TestListObject(object): @pytest.fixture def list_object(self): return stripe.ListObject.construct_from( {"object": "list", "url": "/my/path", "data": ["foo"]}, "mykey" ) def test_list(self, request_mock, list_object): request_mock.stub_request( "get", "/my/path", {"object": "list", "data": [{"object": "charge", "foo": "bar"}]}, ) res = list_object.list(myparam="you", stripe_account="acct_123") request_mock.assert_requested( "get", "/my/path", {"myparam": "you"}, None ) assert isinstance(res, stripe.ListObject) assert res.stripe_account == "acct_123" assert isinstance(res.data, list) assert isinstance(res.data[0], stripe.Charge) assert res.data[0].foo == "bar" def test_create(self, request_mock, list_object): request_mock.stub_request( "post", "/my/path", {"object": "charge", "foo": "bar"} ) res = list_object.create(myparam="eter", stripe_account="acct_123") request_mock.assert_requested( "post", "/my/path", {"myparam": "eter"}, None ) assert isinstance(res, stripe.Charge) assert res.foo == "bar" assert res.stripe_account == "acct_123" def test_create_maintains_list_properties(self, request_mock, list_object): # Testing with real requests because our mock makes it impossible to # test otherwise charge = stripe.Charge.retrieve("ch_123", api_key="sk_test_custom") res = charge.refunds.create(amount=123) request_mock.assert_requested( "post", "/v1/charges/ch_123/refunds", {"amount": 123}, None ) assert res.api_key == "sk_test_custom" def test_retrieve(self, request_mock, list_object): request_mock.stub_request( "get", "/my/path/myid", {"object": "charge", "foo": "bar"} ) res = list_object.retrieve( "myid", myparam="cow", stripe_account="acct_123" ) request_mock.assert_requested( "get", "/my/path/myid", {"myparam": "cow"}, None ) assert isinstance(res, stripe.Charge) assert res.foo == "bar" assert res.stripe_account == "acct_123" def test_is_empty(self): lo = stripe.ListObject.construct_from({"data": []}, None) assert lo.is_empty is True def test_empty_list(self): lo = stripe.ListObject.empty_list() assert lo.is_empty def test_iter(self): arr = [{"id": 1}, {"id": 2}, {"id": 3}] expected = stripe.util.convert_to_stripe_object(arr) lo = stripe.ListObject.construct_from({"data": arr}, None) assert list(lo) == expected def test_iter_reversed(self): arr = [{"id": 1}, {"id": 2}, {"id": 3}] expected = stripe.util.convert_to_stripe_object(list(reversed(arr))) lo = stripe.ListObject.construct_from({"data": arr}, None) assert list(reversed(lo)) == expected def test_len(self, list_object): assert len(list_object) == 1 def test_bool(self, list_object): assert list_object empty = stripe.ListObject.construct_from( {"object": "list", "url": "/my/path", "data": []}, "mykey" ) assert bool(empty) is False def test_next_page(self, request_mock): lo = stripe.ListObject.construct_from( { "object": "list", "data": [{"id": 1}], "has_more": True, "url": "/things", }, None, ) request_mock.stub_request( "get", "/things", { "object": "list", "data": [{"id": 2}], "has_more": False, "url": "/things", }, ) next_lo = lo.next_page() assert not next_lo.is_empty assert next_lo.data[0].id == 2 def test_next_page_with_filters(self, request_mock): lo = stripe.ListObject.construct_from( { "object": "list", "data": [{"id": 1}], "has_more": True, "url": "/things", }, None, ) lo._retrieve_params = {"expand": ["data.source"], "limit": 3} request_mock.stub_request( "get", "/things", { "object": "list", "data": [{"id": 2}], "has_more": False, "url": "/things", }, ) next_lo = lo.next_page() assert next_lo._retrieve_params == { "expand": ["data.source"], "limit": 3, "starting_after": 1, } def test_next_page_empty_list(self): lo = stripe.ListObject.construct_from( { "object": "list", "data": [{"id": 1}], "has_more": False, "url": "/things", }, None, ) next_lo = lo.next_page() assert next_lo == stripe.ListObject.empty_list() def test_prev_page(self, request_mock): lo = stripe.ListObject.construct_from( { "object": "list", "data": [{"id": 2}], "has_more": True, "url": "/things", }, None, ) request_mock.stub_request( "get", "/things", { "object": "list", "data": [{"id": 1}], "has_more": False, "url": "/things", }, ) previous_lo = lo.previous_page() assert not previous_lo.is_empty assert previous_lo.data[0].id == 1 def test_prev_page_with_filters(self, request_mock): lo = stripe.ListObject.construct_from( { "object": "list", "data": [{"id": 2}], "has_more": True, "url": "/things", }, None, ) lo._retrieve_params = {"expand": ["data.source"], "limit": 3} request_mock.stub_request( "get", "/things", { "object": "list", "data": [{"id": 1}], "has_more": False, "url": "/things", }, ) previous_lo = lo.previous_page() assert previous_lo._retrieve_params == { "expand": ["data.source"], "limit": 3, "ending_before": 2, } def test_serialize_empty_list(self): empty = stripe.ListObject.construct_from( {"object": "list", "data": []}, "mykey" ) serialized = str(empty) deserialized = stripe.ListObject.construct_from( json.loads(serialized), "mykey" ) assert deserialized == empty def test_serialize_nested_empty_list(self): empty = stripe.ListObject.construct_from( {"object": "list", "data": []}, "mykey" ) obj = stripe.stripe_object.StripeObject.construct_from( {"nested": empty}, "mykey" ) serialized = str(obj) deserialized = stripe.stripe_object.StripeObject.construct_from( json.loads(serialized), "mykey" ) assert deserialized.nested == empty class TestAutoPaging: @staticmethod def pageable_model_response(ids, has_more): return { "object": "list", "url": "/v1/pageablemodels", "data": [{"id": id, "object": "pageablemodel"} for id in ids], "has_more": has_more, } def test_iter_one_page(self, request_mock): lo = stripe.ListObject.construct_from( self.pageable_model_response(["pm_123", "pm_124"], False), "mykey" ) request_mock.assert_no_request() seen = [item["id"] for item in lo.auto_paging_iter()] assert seen == ["pm_123", "pm_124"] def test_iter_two_pages(self, request_mock): lo = stripe.ListObject.construct_from( self.pageable_model_response(["pm_123", "pm_124"], True), "mykey" ) lo._retrieve_params = {"foo": "bar"} request_mock.stub_request( "get", "/v1/pageablemodels", self.pageable_model_response(["pm_125", "pm_126"], False), ) seen = [item["id"] for item in lo.auto_paging_iter()] request_mock.assert_requested( "get", "/v1/pageablemodels", {"starting_after": "pm_124", "foo": "bar"}, None, ) assert seen == ["pm_123", "pm_124", "pm_125", "pm_126"] def test_iter_reverse(self, request_mock): lo = stripe.ListObject.construct_from( self.pageable_model_response(["pm_125", "pm_126"], True), "mykey" ) lo._retrieve_params = {"foo": "bar", "ending_before": "pm_127"} request_mock.stub_request( "get", "/v1/pageablemodels", self.pageable_model_response(["pm_123", "pm_124"], False), ) seen = [item["id"] for item in lo.auto_paging_iter()] request_mock.assert_requested( "get", "/v1/pageablemodels", {"ending_before": "pm_125", "foo": "bar"}, None, ) assert seen == ["pm_126", "pm_125", "pm_124", "pm_123"] def test_class_method_two_pages(self, request_mock): request_mock.stub_request( "get", "/v1/charges", { "object": "list", "data": [{"id": "ch_001"}], "url": "/v1/charges", "has_more": False, }, ) seen = [ item["id"] for item in stripe.Charge.auto_paging_iter(limit=25, foo="bar") ] request_mock.assert_requested( "get", "/v1/charges", {"limit": 25, "foo": "bar"} ) assert seen == ["ch_001"]
{ "repo_name": "stripe/stripe-python", "path": "tests/api_resources/test_list_object.py", "copies": "1", "size": "10295", "license": "mit", "hash": 4120485119183714000, "line_mean": 29.0145772595, "line_max": 79, "alpha_frac": 0.4842156387, "autogenerated": false, "ratio": 3.7974917004795277, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9781707339179528, "avg_score": 0, "num_lines": 343 }
from __future__ import absolute_import, division, print_function import json import stripe from stripe import six, util from stripe.stripe_response import StripeResponse, StripeStreamResponse class RequestMock(object): def __init__(self, mocker): self._mocker = mocker self._real_request = stripe.api_requestor.APIRequestor.request self._real_request_stream = ( stripe.api_requestor.APIRequestor.request_stream ) self._stub_request_handler = StubRequestHandler() self.constructor_patcher = self._mocker.patch( "stripe.api_requestor.APIRequestor.__init__", side_effect=stripe.api_requestor.APIRequestor.__init__, autospec=True, ) self.request_patcher = self._mocker.patch( "stripe.api_requestor.APIRequestor.request", side_effect=self._patched_request, autospec=True, ) self.request_stream_patcher = self._mocker.patch( "stripe.api_requestor.APIRequestor.request_stream", side_effect=self._patched_request_stream, autospec=True, ) def _patched_request(self, requestor, method, url, *args, **kwargs): response = self._stub_request_handler.get_response( method, url, expect_stream=False ) if response is not None: return response, stripe.api_key return self._real_request(requestor, method, url, *args, **kwargs) def _patched_request_stream(self, requestor, method, url, *args, **kwargs): response = self._stub_request_handler.get_response( method, url, expect_stream=True ) if response is not None: return response, stripe.api_key return self._real_request_stream( requestor, method, url, *args, **kwargs ) def stub_request(self, method, url, rbody={}, rcode=200, rheaders={}): self._stub_request_handler.register( method, url, rbody, rcode, rheaders, is_streaming=False ) def stub_request_stream( self, method, url, rbody={}, rcode=200, rheaders={} ): self._stub_request_handler.register( method, url, rbody, rcode, rheaders, is_streaming=True ) def assert_api_base(self, expected_api_base): # Note that this method only checks that an API base was provided # as a keyword argument in APIRequestor's constructor, not as a # positional argument. if "api_base" not in self.constructor_patcher.call_args[1]: msg = ( "Expected APIRequestor to have been constructed with " "api_base='%s'. No API base was provided." % expected_api_base ) raise AssertionError(msg) actual_api_base = self.constructor_patcher.call_args[1]["api_base"] if actual_api_base != expected_api_base: msg = ( "Expected APIRequestor to have been constructed with " "api_base='%s'. Constructed with api_base='%s' " "instead." % (expected_api_base, actual_api_base) ) raise AssertionError(msg) def assert_api_version(self, expected_api_version): # Note that this method only checks that an API version was provided # as a keyword argument in APIRequestor's constructor, not as a # positional argument. if "api_version" not in self.constructor_patcher.call_args[1]: msg = ( "Expected APIRequestor to have been constructed with " "api_version='%s'. No API version was provided." % expected_api_version ) raise AssertionError(msg) actual_api_version = self.constructor_patcher.call_args[1][ "api_version" ] if actual_api_version != expected_api_version: msg = ( "Expected APIRequestor to have been constructed with " "api_version='%s'. Constructed with api_version='%s' " "instead." % (expected_api_version, actual_api_version) ) raise AssertionError(msg) def assert_requested(self, method, url, params=None, headers=None): self.assert_requested_internal( self.request_patcher, method, url, params, headers ) def assert_requested_stream(self, method, url, params=None, headers=None): self.assert_requested_internal( self.request_stream_patcher, method, url, params, headers ) def assert_requested_internal(self, patcher, method, url, params, headers): params = params or self._mocker.ANY headers = headers or self._mocker.ANY called = False exception = None # Sadly, ANY does not match a missing optional argument, so we # check all the possible signatures of the request method possible_called_args = [ (self._mocker.ANY, method, url), (self._mocker.ANY, method, url, params), (self._mocker.ANY, method, url, params, headers), ] for args in possible_called_args: try: patcher.assert_called_with(*args) except AssertionError as e: exception = e else: called = True break if not called: raise exception def assert_no_request(self): if self.request_patcher.call_count != 0: msg = ( "Expected 'request' to not have been called. " "Called %s times." % (self.request_patcher.call_count) ) raise AssertionError(msg) def assert_no_request_stream(self): if self.request_stream_patcher.call_count != 0: msg = ( "Expected 'request_stream' to not have been called. " "Called %s times." % (self.request_stream_patcher.call_count) ) raise AssertionError(msg) def reset_mock(self): self.request_patcher.reset_mock() self.request_stream_patcher.reset_mock() class StubRequestHandler(object): def __init__(self): self._entries = {} def register( self, method, url, rbody={}, rcode=200, rheaders={}, is_streaming=False ): self._entries[(method, url)] = (rbody, rcode, rheaders, is_streaming) def get_response(self, method, url, expect_stream=False): if (method, url) in self._entries: rbody, rcode, rheaders, is_streaming = self._entries.pop( (method, url) ) if expect_stream != is_streaming: return None if not isinstance(rbody, six.string_types): rbody = json.dumps(rbody) if is_streaming: stripe_response = StripeStreamResponse( util.io.BytesIO(str.encode(rbody)), rcode, rheaders ) else: stripe_response = StripeResponse(rbody, rcode, rheaders) return stripe_response return None
{ "repo_name": "stripe/stripe-python", "path": "tests/request_mock.py", "copies": "1", "size": "7167", "license": "mit", "hash": 9179226620747470000, "line_mean": 34.835, "line_max": 79, "alpha_frac": 0.5826705735, "autogenerated": false, "ratio": 4.223335297583971, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5306005871083971, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import json class ManifestError(Exception): """Something is wrong with the manifest format.""" pass def _make_property(name): @property def getter(self): return self._data.get(name) return getter _required_keys = {'qss_file', 'theme_name', 'version', 'author'} class ThemeManifest(object): """Theme manifest. Read access to basic info about themes.""" def __init__(self, file): try: self._data = json.load(file) except (TypeError, ValueError) as exc: raise ManifestError('Bad manifest: ' + str(exc)) missing_keys = _required_keys - set(self._data.keys()) if missing_keys: raise ManifestError( 'Bad manifest: missing required key(s): {}'.format( ', '.join(missing_keys) ) ) # Required. theme_name = _make_property('theme_name') author = _make_property('author') version = _make_property('version') qss_file = _make_property('qss_file') # Optional. preview_image = _make_property('preview_image') notes = _make_property('notes') clr_file = _make_property('clr_file')
{ "repo_name": "zyantific/IDASkins", "path": "plugins/idaskins/thememanifest.py", "copies": "1", "size": "1247", "license": "mit", "hash": -1688466534349475800, "line_mean": 25.5319148936, "line_max": 67, "alpha_frac": 0.5942261427, "autogenerated": false, "ratio": 3.909090909090909, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9996668115620696, "avg_score": 0.0013297872340425532, "num_lines": 47 }
from __future__ import absolute_import, division, print_function import linecache import logging import os.path import sys def get_exception_source(): '''Returns full file path, file name, line number, function name, and line contents causing the last exception.''' _, _, tb = sys.exc_info() while tb.tb_next: tb = tb.tb_next f = tb.tb_frame lineno = tb.tb_lineno co = f.f_code filefullpath = co.co_filename filename = os.path.basename(filefullpath) name = co.co_name linecache.checkcache(filefullpath) line = linecache.getline(filefullpath, lineno, f.f_globals) if line: line = line.strip() else: line = None return filefullpath, filename, lineno, name, line class CallbackHandler(logging.Handler): '''This handler sends logrecords to a callback function.''' def __init__(self, callback): '''Set up a handler instance, record the callback function.''' super(CallbackHandler, self).__init__() self._callback = callback def prepare(self, record): # Function taken from Python 3.6 QueueHandler """ Prepares a record for queuing. The object returned by this method is enqueued. The base implementation formats the record to merge the message and arguments, and removes unpickleable items from the record in-place. You might want to override this method if you want to convert the record to a dict or JSON string, or send a modified copy of the record while leaving the original intact. """ # The format operation gets traceback text into record.exc_text # (if there's exception data), and also puts the message into # record.message. We can then use this to replace the original # msg + args, as these might be unpickleable. We also zap the # exc_info attribute, as it's no longer needed and, if not None, # will typically not be pickleable. self.format(record) record.msg = record.message record.args = None record.exc_info = None return record def emit(self, record): '''Send a LogRecord to the callback function, after preparing it for serialization.''' try: self._callback(self.prepare(record)) except Exception: self.handleError(record)
{ "repo_name": "xia2/workflows", "path": "workflows/logging/__init__.py", "copies": "1", "size": "2221", "license": "bsd-3-clause", "hash": 7995685854873166000, "line_mean": 33.703125, "line_max": 85, "alpha_frac": 0.7019360648, "autogenerated": false, "ratio": 4.052919708029197, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5254855772829197, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import linecache import sys import warnings import pytest from characteristic import ( Attribute, NOTHING, PY26, _attrs_to_script, _ensure_attributes, attributes, immutable, with_cmp, with_init, with_repr, ) PY2 = sys.version_info[0] == 2 warnings.simplefilter("always") class TestAttribute(object): def test_init_simple(self): """ Instantiating with just the name initializes properly. """ a = Attribute("foo") assert "foo" == a.name assert NOTHING is a.default_value def test_init_default_factory(self): """ Instantiating with default_factory creates a proper descriptor for _default. """ a = Attribute("foo", default_factory=list) assert NOTHING is a.default_value assert list() == a.default_factory() def test_init_default_value(self): """ Instantiating with default_value initializes default properly. """ a = Attribute("foo", default_value="bar") assert "bar" == a.default_value def test_ambiguous_defaults(self): """ Instantiating with both default_value and default_factory raises ValueError. """ with pytest.raises(ValueError): Attribute( "foo", default_value="bar", default_factory=lambda: 42 ) def test_missing_attr(self): """ Accessing inexistent attributes still raises an AttributeError. """ a = Attribute("foo") with pytest.raises(AttributeError): a.bar def test_alias(self): """ If an attribute with a leading _ is defined, the initializer keyword is stripped of it. """ a = Attribute("_private") assert "private" == a._kw_name def test_non_alias(self): """ The keyword name of a non-private """ a = Attribute("public") assert "public" == a._kw_name def test_dunder(self): """ Dunder gets all _ stripped. """ a = Attribute("__very_private") assert "very_private" == a._kw_name def test_init_aliaser_none(self): """ No aliasing if init_aliaser is None. """ a = Attribute("_private", init_aliaser=None) assert a.name == a._kw_name def test_init_aliaser(self): """ Any callable works for aliasing. """ a = Attribute("a", init_aliaser=lambda _: "foo") assert "foo" == a._kw_name def test_repr(self): """ repr returns the correct string. """ a = Attribute( name="name", exclude_from_cmp=True, exclude_from_init=True, exclude_from_repr=True, exclude_from_immutable=True, default_value=42, instance_of=str, init_aliaser=None ) assert ( "<Attribute(name='name', exclude_from_cmp=True, " "exclude_from_init=True, exclude_from_repr=True, " "exclude_from_immutable=True, " "default_value=42, default_factory=None, instance_of=<{0} 'str'>," " init_aliaser=None)>" ).format("type" if PY2 else "class") == repr(a) def test_eq_different_types(self): """ Comparing Attribute with something else returns NotImplemented. """ assert NotImplemented == Attribute(name="name").__eq__(None) def test_eq_equal(self): """ Equal Attributes are detected equal. """ kw = { "name": "name", "exclude_from_cmp": True, "exclude_from_init": False, "exclude_from_repr": True, "exclude_from_immutable": False, "default_value": 42, "instance_of": int, } assert Attribute(**kw) == Attribute(**kw) def test_eq_unequal(self): """ Equal Attributes are detected equal. """ kw = { "name": "name", "exclude_from_cmp": True, "exclude_from_init": False, "exclude_from_repr": True, "exclude_from_immutable": False, "default_value": 42, "instance_of": int, } for arg in kw.keys(): kw_mutated = dict(**kw) kw_mutated[arg] = "mutated" assert Attribute(**kw) != Attribute(**kw_mutated) @with_cmp(["a", "b"]) class CmpC(object): def __init__(self, a, b): self.a = a self.b = b class TestWithCmp(object): def test_equal(self): """ Equal objects are detected as equal. """ assert CmpC(1, 2) == CmpC(1, 2) assert not (CmpC(1, 2) != CmpC(1, 2)) def test_unequal_same_class(self): """ Unequal objects of correct type are detected as unequal. """ assert CmpC(1, 2) != CmpC(2, 1) assert not (CmpC(1, 2) == CmpC(2, 1)) def test_unequal_different_class(self): """ Unequal objects of different type are detected even if their attributes match. """ class NotCmpC(object): a = 1 b = 2 assert CmpC(1, 2) != NotCmpC() assert not (CmpC(1, 2) == NotCmpC()) @pytest.mark.parametrize( "a,b", [ ((1, 2), (2, 1)), ((1, 2), (1, 3)), (("a", "b"), ("b", "a")), ] ) def test_lt(self, a, b): """ __lt__ compares objects as tuples of attribute values. """ assert CmpC(*a) < CmpC(*b) def test_lt_unordable(self): """ __lt__ returns NotImplemented if classes differ. """ assert NotImplemented == (CmpC(1, 2).__lt__(42)) @pytest.mark.parametrize( "a,b", [ ((1, 2), (2, 1)), ((1, 2), (1, 3)), ((1, 1), (1, 1)), (("a", "b"), ("b", "a")), (("a", "b"), ("a", "b")), ] ) def test_le(self, a, b): """ __le__ compares objects as tuples of attribute values. """ assert CmpC(*a) <= CmpC(*b) def test_le_unordable(self): """ __le__ returns NotImplemented if classes differ. """ assert NotImplemented == (CmpC(1, 2).__le__(42)) @pytest.mark.parametrize( "a,b", [ ((2, 1), (1, 2)), ((1, 3), (1, 2)), (("b", "a"), ("a", "b")), ] ) def test_gt(self, a, b): """ __gt__ compares objects as tuples of attribute values. """ assert CmpC(*a) > CmpC(*b) def test_gt_unordable(self): """ __gt__ returns NotImplemented if classes differ. """ assert NotImplemented == (CmpC(1, 2).__gt__(42)) @pytest.mark.parametrize( "a,b", [ ((2, 1), (1, 2)), ((1, 3), (1, 2)), ((1, 1), (1, 1)), (("b", "a"), ("a", "b")), (("a", "b"), ("a", "b")), ] ) def test_ge(self, a, b): """ __ge__ compares objects as tuples of attribute values. """ assert CmpC(*a) >= CmpC(*b) def test_ge_unordable(self): """ __ge__ returns NotImplemented if classes differ. """ assert NotImplemented == (CmpC(1, 2).__ge__(42)) def test_hash(self): """ __hash__ returns different hashes for different values. """ assert hash(CmpC(1, 2)) != hash(CmpC(1, 1)) def test_Attribute_exclude_from_cmp(self): """ Ignores attribute if exclude_from_cmp=True. """ @with_cmp([Attribute("a", exclude_from_cmp=True), "b"]) class C(object): def __init__(self, a, b): self.a = a self.b = b assert C(42, 1) == C(23, 1) @with_repr(["a", "b"]) class ReprC(object): def __init__(self, a, b): self.a = a self.b = b class TestReprAttrs(object): def test_repr(self): """ Test repr returns a sensible value. """ assert "<ReprC(a=1, b=2)>" == repr(ReprC(1, 2)) def test_Attribute_exclude_from_repr(self): """ Ignores attribute if exclude_from_repr=True. """ @with_repr([Attribute("a", exclude_from_repr=True), "b"]) class C(object): def __init__(self, a, b): self.a = a self.b = b assert "<C(b=2)>" == repr(C(1, 2)) @with_init([Attribute("a"), Attribute("b")]) class InitC(object): def __init__(self): if self.a == self.b: raise ValueError class TestWithInit(object): def test_sets_attributes(self): """ The attributes are initialized using the passed keywords. """ obj = InitC(a=1, b=2) assert 1 == obj.a assert 2 == obj.b def test_custom_init(self): """ The class initializer is called too. """ with pytest.raises(ValueError): InitC(a=1, b=1) def test_passes_args(self): """ All positional parameters are passed to the original initializer. """ @with_init(["a"]) class InitWithArg(object): def __init__(self, arg): self.arg = arg obj = InitWithArg(42, a=1) assert 42 == obj.arg assert 1 == obj.a def test_passes_remaining_kw(self): """ Keyword arguments that aren't used for attributes are passed to the original initializer. """ @with_init(["a"]) class InitWithKWArg(object): def __init__(self, kw_arg=None): self.kw_arg = kw_arg obj = InitWithKWArg(a=1, kw_arg=42) assert 42 == obj.kw_arg assert 1 == obj.a def test_does_not_pass_attrs(self): """ The attributes are removed from the keyword arguments before they are passed to the original initializer. """ @with_init(["a"]) class InitWithKWArgs(object): def __init__(self, **kw): assert "a" not in kw assert "b" in kw InitWithKWArgs(a=1, b=42) def test_defaults(self): """ If defaults are passed, they are used as fallback. """ @with_init(["a", "b"], defaults={"b": 2}) class InitWithDefaults(object): pass obj = InitWithDefaults(a=1) assert 2 == obj.b def test_missing_arg(self): """ Raises `ValueError` if a value isn't passed. """ with pytest.raises(ValueError) as e: InitC(a=1) assert "Missing keyword value for 'b'." == e.value.args[0] def test_defaults_conflict(self): """ Raises `ValueError` if both defaults and an Attribute are passed. """ with pytest.raises(ValueError) as e: @with_init([Attribute("a")], defaults={"a": 42}) class C(object): pass assert ( "Mixing of the 'defaults' keyword argument and passing instances " "of Attribute for 'attrs' is prohibited. Please don't use " "'defaults' anymore, it has been deprecated in 14.0." == e.value.args[0] ) def test_attribute(self): """ String attributes are converted to Attributes and thus work. """ @with_init(["a"]) class C(object): pass o = C(a=1) assert 1 == o.a def test_default_factory(self): """ The default factory is used for each instance of missing keyword argument. """ @with_init([Attribute("a", default_factory=list)]) class C(object): pass o1 = C() o2 = C() assert o1.a is not o2.a def test_underscores(self): """ with_init takes keyword aliasing into account. """ @with_init([Attribute("_a")]) class C(object): pass c = C(a=1) assert 1 == c._a def test_plain_no_alias(self): """ str-based attributes don't get aliased for backward-compatibility. """ @with_init(["_a"]) class C(object): pass c = C(_a=1) assert 1 == c._a def test_instance_of_fail(self): """ Raise `TypeError` if an Attribute with an `instance_of` is is attempted to be set to a mismatched type. """ @with_init([Attribute("a", instance_of=int)]) class C(object): pass with pytest.raises(TypeError) as e: C(a="not an int!") assert ( "Attribute 'a' must be an instance of 'int'." == e.value.args[0] ) def test_instance_of_success(self): """ Setting an attribute to a value that doesn't conflict with an `instance_of` declaration works. """ @with_init([Attribute("a", instance_of=int)]) class C(object): pass c = C(a=42) assert 42 == c.a def test_Attribute_exclude_from_init(self): """ Ignores attribute if exclude_from_init=True. """ @with_init([Attribute("a", exclude_from_init=True), "b"]) class C(object): pass C(b=1) def test_deprecation_defaults(self): """ Emits a DeprecationWarning if `defaults` is used. """ with warnings.catch_warnings(record=True) as w: @with_init(["a"], defaults={"a": 42}) class C(object): pass assert ( '`defaults` has been deprecated in 14.0, please use the ' '`Attribute` class instead.' ) == w[0].message.args[0] assert issubclass(w[0].category, DeprecationWarning) def test_linecache(self): """ The created init method is added to the linecache so PDB shows it properly. """ attrs = [Attribute("a")] @with_init(attrs) class C(object): pass assert isinstance(linecache.cache[C.__init__.__code__.co_filename], tuple) def test_linecache_attrs_unique(self): """ If the attributes are the same, only one linecache entry is created. Since the key within the cache is the filename, this effectively means that the filenames must be equal if the attributes are equal. """ attrs = [Attribute("a")] @with_init(attrs[:]) class C1(object): pass @with_init(attrs[:]) class C2(object): pass assert ( C1.__init__.__code__.co_filename == C2.__init__.__code__.co_filename ) def test_linecache_different_attrs(self): """ Different Attributes have different generated filenames. """ @with_init([Attribute("a")]) class C1(object): pass @with_init([Attribute("b")]) class C2(object): pass assert ( C1.__init__.__code__.co_filename != C2.__init__.__code__.co_filename ) def test_no_attributes(self): """ Specifying no attributes doesn't raise an exception. """ @with_init([]) class C(object): pass C() class TestAttributes(object): def test_leaves_init_alone(self): """ If *apply_with_init* or *create_init* is `False`, leave __init__ alone. """ @attributes(["a"], apply_with_init=False) class C(object): pass @attributes(["a"], create_init=False) class CDeprecated(object): pass obj1 = C() obj2 = CDeprecated() with pytest.raises(AttributeError): obj1.a with pytest.raises(AttributeError): obj2.a def test_wraps_init(self): """ If *create_init* is `True`, build initializer. """ @attributes(["a", "b"], apply_with_init=True) class C(object): pass obj = C(a=1, b=2) assert 1 == obj.a assert 2 == obj.b def test_immutable(self): """ If *apply_immutable* is `True`, make class immutable. """ @attributes(["a"], apply_immutable=True) class ImmuClass(object): pass obj = ImmuClass(a=42) with pytest.raises(AttributeError): obj.a = "23" def test_apply_with_cmp(self): """ Don't add cmp methods if *apply_with_cmp* is `False`. """ @attributes(["a"], apply_with_cmp=False) class C(object): pass obj = C(a=1) if PY2: assert None is getattr(obj, "__eq__", None) else: assert object.__eq__ == C.__eq__ def test_apply_with_repr(self): """ Don't add __repr__ if *apply_with_repr* is `False`. """ @attributes(["a"], apply_with_repr=False) class C(object): pass assert repr(C(a=1)).startswith("<test_characteristic.") def test_store_attributes(self): """ store_attributes is called on the class to store the attributes that were passed in. """ attrs = [Attribute("a"), Attribute("b")] @attributes( attrs, store_attributes=lambda cls, a: setattr(cls, "foo", a) ) class C(object): pass assert C.foo == attrs def test_store_attributes_stores_Attributes(self): """ The attributes passed to store_attributes are always instances of Attribute, even if they were simple strings when provided. """ @attributes(["a", "b"]) class C(object): pass assert C.characteristic_attributes == [Attribute("a"), Attribute("b")] def test_store_attributes_defaults_to_characteristic_attributes(self): """ By default, store_attributes stores the attributes in `characteristic_attributes` on the class. """ attrs = [Attribute("a")] @attributes(attrs) class C(object): pass assert C.characteristic_attributes == attrs def test_private(self): """ Integration test for name mangling/aliasing. """ @attributes([Attribute("_a")]) class C(object): pass c = C(a=42) assert 42 == c._a def test_private_no_alias(self): """ Integration test for name mangling/aliasing. """ @attributes([Attribute("_a", init_aliaser=None)]) class C(object): pass c = C(_a=42) assert 42 == c._a def test_deprecation_create_init(self): """ Emits a DeprecationWarning if `create_init` is used. """ with warnings.catch_warnings(record=True) as w: @attributes(["a"], create_init=False) class C(object): pass assert ( '`create_init` has been deprecated in 14.0, please use ' '`apply_with_init`.' ) == w[0].message.args[0] assert issubclass(w[0].category, DeprecationWarning) def test_deprecation_defaults(self): """ Emits a DeprecationWarning if `defaults` is used. """ with warnings.catch_warnings(record=True) as w: @attributes(["a"], defaults={"a": 42}) class C(object): pass assert ( '`defaults` has been deprecated in 14.0, please use the ' '`Attribute` class instead.' ) == w[0].message.args[0] assert issubclass(w[0].category, DeprecationWarning) def test_does_not_allow_extra_keyword_arguments(self): """ Keyword arguments other than the ones consumed are still TypeErrors. """ with pytest.raises(TypeError) as e: @attributes(["a"], not_an_arg=12) class C(object): pass assert e.value.args == ( "attributes() got an unexpected keyword argument 'not_an_arg'", ) def test_no_attributes(self): """ Specifying no attributes doesn't raise an exception. """ @attributes([]) class C(object): pass C() class TestEnsureAttributes(object): def test_leaves_attribute_alone(self): """ List items that are an Attribute stay an Attribute. """ a = Attribute("a") assert a is _ensure_attributes([a], {})[0] def test_converts_rest(self): """ Any other item will be transformed into an Attribute. """ l = _ensure_attributes(["a"], {}) assert isinstance(l[0], Attribute) assert "a" == l[0].name def test_defaults(self): """ Legacy defaults are translated into default_value attributes. """ l = _ensure_attributes(["a"], {"a": 42}) assert 42 == l[0].default_value def test_defaults_Attribute(self): """ Raises ValueError on defaults != {} and an Attribute within attrs. """ with pytest.raises(ValueError): _ensure_attributes([Attribute("a")], defaults={"a": 42}) class TestImmutable(object): def test_bare(self): """ In an immutable class, setting an definition-time attribute raises an AttributeError. """ @immutable(["foo"]) class ImmuClass(object): foo = "bar" i = ImmuClass() with pytest.raises(AttributeError): i.foo = "not bar" def test_Attribute(self): """ Mutation is caught if user passes an Attribute instance. """ @immutable([Attribute("foo")]) class ImmuClass(object): def __init__(self): self.foo = "bar" i = ImmuClass() with pytest.raises(AttributeError): i.foo = "not bar" def test_init(self): """ Changes within __init__ are allowed. """ @immutable(["foo"]) class ImmuClass(object): def __init__(self): self.foo = "bar" i = ImmuClass() assert "bar" == i.foo def test_with_init(self): """ Changes in with_init's initializer are allowed. """ @immutable(["foo"]) @with_init(["foo"]) class ImmuClass(object): pass i = ImmuClass(foo="qux") assert "qux" == i.foo def test_Attribute_exclude_from_immutable(self): """ Ignores attribute if exclude_from_immutable=True. """ @immutable([Attribute("a", exclude_from_immutable=True), "b"]) class C(object): def __init__(self, a, b): self.a = a self.b = b c = C(1, 2) c.a = 3 with pytest.raises(AttributeError): c.b = 4 class TestAttrsToScript(object): @pytest.mark.skipif(PY26, reason="Optimization works only on Python 2.7.") def test_optimizes_simple(self): """ If no defaults and extra checks are passed, an optimized version is used on Python 2.7+. """ attrs = [Attribute("a")] script = _attrs_to_script(attrs) assert "except KeyError as e:" in script def test_nothing(): """ ``NOTHING`` has a sensible repr. """ assert "NOTHING" == repr(NOTHING) def test_doc(): """ The characteristic module has a docstring. """ import characteristic assert characteristic.__doc__
{ "repo_name": "hynek/characteristic", "path": "test_characteristic.py", "copies": "1", "size": "23985", "license": "mit", "hash": 5225856543588228000, "line_mean": 26.3177676538, "line_max": 79, "alpha_frac": 0.5089430894, "autogenerated": false, "ratio": 4.0216297786720325, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5030572868072032, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import locale import re import os import sys import stat from glob import glob from os.path import (basename, dirname, join, splitext, isdir, isfile, exists, islink, realpath, relpath) try: from os import readlink except ImportError: readlink = False import io from subprocess import call, Popen, PIPE from collections import defaultdict from conda_build.config import config from conda_build import external from conda_build import environ from conda_build import utils from conda_build import source from conda.compat import lchmod from conda.misc import walk_prefix from conda.utils import md5_file if sys.platform.startswith('linux'): from conda_build import elf elif sys.platform == 'darwin': from conda_build import macho SHEBANG_PAT = re.compile(r'^#!.+$', re.M) def is_obj(path): assert sys.platform != 'win32' return bool((sys.platform.startswith('linux') and elf.is_elf(path)) or (sys.platform == 'darwin' and macho.is_macho(path))) def fix_shebang(f, osx_is_app=False): path = join(config.build_prefix, f) if is_obj(path): return elif os.path.islink(path): return with io.open(path, encoding=locale.getpreferredencoding()) as fi: try: data = fi.read() except UnicodeDecodeError: # file is binary return m = SHEBANG_PAT.match(data) if not (m and 'python' in m.group()): return py_exec = ('/bin/bash ' + config.build_prefix + '/bin/python.app' if sys.platform == 'darwin' and osx_is_app else config.build_prefix + '/bin/' + basename(config.build_python)) new_data = SHEBANG_PAT.sub('#!' + py_exec, data, count=1) if new_data == data: return print("updating shebang:", f) with io.open(path, 'w', encoding=locale.getpreferredencoding()) as fo: fo.write(new_data) os.chmod(path, int('755', 8)) def write_pth(egg_path): fn = basename(egg_path) with open(join(environ.get_sp_dir(), '%s.pth' % (fn.split('-')[0])), 'w') as fo: fo.write('./%s\n' % fn) def remove_easy_install_pth(files, preserve_egg_dir=False): """ remove the need for easy-install.pth and finally remove easy-install.pth itself """ absfiles = [join(config.build_prefix, f) for f in files] sp_dir = environ.get_sp_dir() for egg_path in glob(join(sp_dir, '*-py*.egg')): if isdir(egg_path): if preserve_egg_dir or not any(join(egg_path, i) in absfiles for i in walk_prefix(egg_path, False, windows_forward_slashes=False)): write_pth(egg_path) continue print('found egg dir:', egg_path) try: os.rename(join(egg_path, 'EGG-INFO'), egg_path + '-info') except OSError: pass utils.rm_rf(join(egg_path, 'EGG-INFO')) for fn in os.listdir(egg_path): if fn == '__pycache__': utils.rm_rf(join(egg_path, fn)) else: # this might be a name-space package # so the package directory already exists # from another installed dependency if os.path.exists(join(sp_dir, fn)): utils.copy_into(join(egg_path, fn), join(sp_dir, fn)) utils.rm_rf(join(egg_path, fn)) else: os.rename(join(egg_path, fn), join(sp_dir, fn)) elif isfile(egg_path): if not egg_path in absfiles: continue print('found egg:', egg_path) write_pth(egg_path) utils.rm_rf(join(sp_dir, 'easy-install.pth')) def rm_py_along_so(): "remove .py (.pyc) files alongside .so or .pyd files" for root, dirs, files in os.walk(config.build_prefix): for fn in files: if fn.endswith(('.so', '.pyd')): name, unused_ext = splitext(fn) for ext in '.py', '.pyc': if name + ext in files: os.unlink(join(root, name + ext)) def compile_missing_pyc(): sp_dir = environ.get_sp_dir() stdlib_dir = environ.get_stdlib_dir() need_compile = False for root, dirs, files in os.walk(sp_dir): for fn in files: if fn.endswith('.py') and fn + 'c' not in files: need_compile = True break if need_compile: print('compiling .pyc files...') utils._check_call([config.build_python, '-Wi', join(stdlib_dir, 'compileall.py'), '-q', '-x', 'port_v3', sp_dir]) def post_process(files, preserve_egg_dir=False): remove_easy_install_pth(files, preserve_egg_dir=preserve_egg_dir) rm_py_along_so() if config.CONDA_PY < 30: compile_missing_pyc() def find_lib(link, path=None): from conda_build.build import prefix_files files = prefix_files() if link.startswith(config.build_prefix): link = link[len(config.build_prefix) + 1:] if link not in files: sys.exit("Error: Could not find %s" % link) return link if link.startswith('/'): # but doesn't start with the build prefix return if link.startswith('@rpath/'): # Assume the rpath already points to lib, so there is no need to # change it. return if '/' not in link or link.startswith('@executable_path/'): link = basename(link) file_names = defaultdict(list) for f in files: file_names[basename(f)].append(f) if link not in file_names: sys.exit("Error: Could not find %s" % link) if len(file_names[link]) > 1: if path and basename(path) == link: # The link is for the file itself, just use it return path # Allow for the possibility of the same library appearing in # multiple places. md5s = set() for f in file_names[link]: md5s.add(md5_file(join(config.build_prefix, f))) if len(md5s) > 1: sys.exit("Error: Found multiple instances of %s: %s" % (link, file_names[link])) else: file_names[link].sort() print("Found multiple instances of %s (%s). " "Choosing the first one." % (link, file_names[link])) return file_names[link][0] print("Don't know how to find %s, skipping" % link) def osx_ch_link(path, link): print("Fixing linking of %s in %s" % (link, path)) link_loc = find_lib(link, path) if not link_loc: return lib_to_link = relpath(dirname(link_loc), 'lib') # path_to_lib = utils.relative(path[len(config.build_prefix) + 1:]) # e.g., if # path = '/build_prefix/lib/some/stuff/libstuff.dylib' # link_loc = 'lib/things/libthings.dylib' # then # lib_to_link = 'things' # path_to_lib = '../..' # @rpath always means 'lib', link will be at # @rpath/lib_to_link/basename(link), like @rpath/things/libthings.dylib. # For when we can't use @rpath, @loader_path means the path to the library # ('path'), so from path to link is # @loader_path/path_to_lib/lib_to_link/basename(link), like # @loader_path/../../things/libthings.dylib. ret = '@rpath/%s/%s' % (lib_to_link, basename(link)) # XXX: IF the above fails for whatever reason, the below can be used # TODO: This might contain redundant ..'s if link and path are both in # some subdirectory of lib. # ret = '@loader_path/%s/%s/%s' % (path_to_lib, lib_to_link, basename(link)) ret = ret.replace('/./', '/') return ret def mk_relative_osx(path, build_prefix=None): ''' if build_prefix is None, then this is a standard conda build. The path and all dependencies are in the build_prefix. if package is built in develop mode, build_prefix is specified. Object specified by 'path' needs to relink runtime dependences to libs found in build_prefix/lib/. Also, in develop mode, 'path' is not in 'build_prefix' ''' if build_prefix is None: assert path.startswith(config.build_prefix + '/') else: config.short_build_prefix = build_prefix assert sys.platform == 'darwin' and is_obj(path) s = macho.install_name_change(path, osx_ch_link) names = macho.otool(path) if names: # Strictly speaking, not all object files have install names (e.g., # bundles and executables do not). In that case, the first name here # will not be the install name (i.e., the id), but it isn't a problem, # because in that case it will be a no-op (with the exception of stub # files, which give an error, which is handled below). args = [ 'install_name_tool', '-id', join('@rpath', relpath(dirname(path), join(config.build_prefix, 'lib')), basename(names[0])), path, ] print(' '.join(args)) p = Popen(args, stderr=PIPE) stdout, stderr = p.communicate() stderr = stderr.decode('utf-8') if "Mach-O dynamic shared library stub file" in stderr: print("Skipping Mach-O dynamic shared library stub file %s" % path) return else: print(stderr, file=sys.stderr) if p.returncode: raise RuntimeError("install_name_tool failed with exit status %d" % p.returncode) # Add an rpath to every executable to increase the chances of it # being found. args = [ 'install_name_tool', '-add_rpath', join('@loader_path', relpath(join(config.build_prefix, 'lib'), dirname(path)), '').replace('/./', '/'), path, ] print(' '.join(args)) p = Popen(args, stderr=PIPE) stdout, stderr = p.communicate() stderr = stderr.decode('utf-8') if "Mach-O dynamic shared library stub file" in stderr: print("Skipping Mach-O dynamic shared library stub file %s\n" % path) return elif "would duplicate path, file already has LC_RPATH for:" in stderr: print("Skipping -add_rpath, file already has LC_RPATH set") return else: print(stderr, file=sys.stderr) if p.returncode: raise RuntimeError("install_name_tool failed with exit status %d" % p.returncode) if s: # Skip for stub files, which have to use binary_has_prefix_files to be # made relocatable. assert_relative_osx(path) def mk_relative_linux(f, rpaths=('lib',)): path = join(config.build_prefix, f) rpath = ':'.join('$ORIGIN/' + utils.relative(f, d) if not d.startswith('/') else d for d in rpaths) patchelf = external.find_executable('patchelf') print('patchelf: file: %s\n setting rpath to: %s' % (path, rpath)) call([patchelf, '--force-rpath', '--set-rpath', rpath, path]) def assert_relative_osx(path): for name in macho.otool(path): assert not name.startswith(config.build_prefix), path def mk_relative(m, f): assert sys.platform != 'win32' path = join(config.build_prefix, f) if not is_obj(path): return if sys.platform.startswith('linux'): mk_relative_linux(f, rpaths=m.get_value('build/rpaths', ['lib'])) elif sys.platform == 'darwin': mk_relative_osx(path) def fix_permissions(files): print("Fixing permissions") for root, dirs, unused_files in os.walk(config.build_prefix): for dn in dirs: lchmod(join(root, dn), int('755', 8)) for f in files: path = join(config.build_prefix, f) st = os.lstat(path) lchmod(path, stat.S_IMODE(st.st_mode) | stat.S_IWUSR) # chmod u+w def post_build(m, files): print('number of files:', len(files)) fix_permissions(files) if sys.platform == 'win32': return binary_relocation = bool(m.get_value('build/binary_relocation', True)) if not binary_relocation: print("Skipping binary relocation logic") osx_is_app = bool(m.get_value('build/osx_is_app', False)) for f in files: if f.startswith('bin/'): fix_shebang(f, osx_is_app=osx_is_app) if binary_relocation: mk_relative(m, f) check_symlinks(files) def check_symlinks(files): if readlink is False: return # Not on Unix system msgs = [] real_build_prefix = realpath(config.build_prefix) for f in files: path = join(real_build_prefix, f) if islink(path): link_path = readlink(path) real_link_path = realpath(path) if real_link_path.startswith(real_build_prefix): # If the path is in the build prefix, this is fine, but # the link needs to be relative if not link_path.startswith('.'): # Don't change the link structure if it is already a # relative link. It's possible that ..'s later in the path # can result in a broken link still, but we'll assume that # such crazy things don't happen. print("Making absolute symlink %s -> %s relative" % (f, link_path)) os.unlink(path) os.symlink(relpath(real_link_path, dirname(path)), path) else: # Symlinks to absolute paths on the system (like /usr) are fine. if real_link_path.startswith(config.croot): msgs.append("%s is a symlink to a path that may not " "exist after the build is completed (%s)" % (f, link_path)) if msgs: for msg in msgs: print("Error: %s" % msg, file=sys.stderr) sys.exit(1) def get_build_metadata(m): src_dir = source.get_dir() if exists(join(src_dir, '__conda_version__.txt')): with open(join(src_dir, '__conda_version__.txt')) as f: version = f.read().strip() print("Setting version from __conda_version__.txt: %s" % version) m.meta['package']['version'] = version if exists(join(src_dir, '__conda_buildnum__.txt')): with open(join(src_dir, '__conda_buildnum__.txt')) as f: build_number = f.read().strip() print("Setting build number from __conda_buildnum__.txt: %s" % build_number) m.meta['build']['number'] = build_number if exists(join(src_dir, '__conda_buildstr__.txt')): with open(join(src_dir, '__conda_buildstr__.txt')) as f: buildstr = f.read().strip() print("Setting version from __conda_buildstr__.txt: %s" % buildstr) m.meta['build']['string'] = buildstr
{ "repo_name": "sandhujasmine/conda-build", "path": "conda_build/post.py", "copies": "1", "size": "15124", "license": "bsd-3-clause", "hash": 84291779202404860, "line_mean": 35.798053528, "line_max": 96, "alpha_frac": 0.5717402803, "autogenerated": false, "ratio": 3.6968956245416766, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47686359048416765, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging from abc import ABCMeta, abstractmethod from glue.utils import CallbackMixin from glue.core.data_factories import load_data MAX_UNDO = 50 """ The classes in this module allow user actions to be stored as commands, which can be undone/redone All UI frontends should map interactions to command objects, instead of directly performing an action. Commands have access to two sources of data: the first are the keyword arguments passed to the constructor. These are stored as attributes of self. The second is a session object passed to all Command.do and Command.undo calls. """ class Command(object): """ A class to encapsulate (and possibly undo) state changes Subclasses of this abstract base class must implement the `do` and `undo` methods. Both `do` and `undo` receive a single input argument named `session` -- this is whatever object is passed to the constructor of :class:`glue.core.command.CommandStack`. This object is used to store and retrieve resources needed by each command. The Glue application itself uses a :class:`~glue.core.session.Session` instance for this. Each class should also override the class-level kwargs list, to list the required keyword arguments that should be passed to the command constructor. The base class will check that these keywords are indeed provided. Commands should not take non-keyword arguments in the constructor method """ __metaclass__ = ABCMeta kwargs = [] def __init__(self, **kwargs): kwargs = kwargs.copy() for k in self.kwargs: if k not in kwargs: raise RuntimeError("Required keyword %s not passed to %s" % (k, type(self))) setattr(self, k, kwargs.pop(k)) self.extra = kwargs @abstractmethod def do(self, session): """ Execute the command :param session: An object used to store and fetch resources needed by a Command. """ pass @abstractmethod def undo(self, session): pass @property def label(self): return type(self).__name__ class CommandStack(CallbackMixin): """ The command stack collects commands, and saves them to enable undoing/redoing After instantiation, something can be assigned to the session property. This is passed as the sole argument of all Command (un)do methods. """ def __init__(self): super(CommandStack, self).__init__() self._session = None self._command_stack = [] self._undo_stack = [] @property def session(self): return self._session @session.setter def session(self, value): self._session = value @property def undo_label(self): """ Brief label for the command reversed by an undo """ if len(self._command_stack) == 0: return '' cmd = self._command_stack[-1] return cmd.label @property def redo_label(self): """ Brief label for the command executed on a redo""" if len(self._undo_stack) == 0: return '' cmd = self._undo_stack[-1] return cmd.label def do(self, cmd): """ Execute and log a new command :rtype: The return value of cmd.do() """ logging.getLogger(__name__).debug("Do %s", cmd) self._command_stack.append(cmd) result = cmd.do(self._session) self._command_stack = self._command_stack[-MAX_UNDO:] self._undo_stack = [] self.notify('do') return result def undo(self): """ Undo the previous command :raises: IndexError, if there are no objects to undo """ try: c = self._command_stack.pop() logging.getLogger(__name__).debug("Undo %s", c) except IndexError: raise IndexError("No commands to undo") self._undo_stack.append(c) c.undo(self._session) self.notify('undo') def redo(self): """ Redo the previously-undone command :raises: IndexError, if there are no undone actions """ try: c = self._undo_stack.pop() logging.getLogger(__name__).debug("Undo %s", c) except IndexError: raise IndexError("No commands to redo") result = c.do(self._session) self._command_stack.append(c) self.notify('redo') return result def can_undo_redo(self): """ Return whether undo and redo options are possible :rtype: (bool, bool) - Whether undo and redo are possible, respectively """ return len(self._command_stack) > 0, len(self._undo_stack) > 0 class LoadData(Command): kwargs = ['path', 'factory'] label = 'load data' def do(self, session): return load_data(self.path, self.factory) def undo(self, session): pass class AddData(Command): kwargs = ['data'] label = 'add data' def do(self, session): session.data_collection.append(self.data) def undo(self, session): session.data_collection.remove(self.data) class RemoveData(Command): kwargs = ['data'] label = 'remove data' def do(self, session): session.data_collection.remove(self.data) def undo(self, session): session.data_collection.append(self.data) class NewDataViewer(Command): """Add a new data viewer to the application :param viewer: The class of viewer to create :param data: The data object to initialize the viewer with, or None :type date: :class:`~glue.core.data.Data` or None """ kwargs = ['viewer', 'data'] label = 'new data viewer' def do(self, session): v = session.application.new_data_viewer(self.viewer, self.data) self.created = v return v def undo(self, session): self.created.close(warn=False) class AddLayer(Command): """Add a new layer to a viewer :param layer: The layer to add :type layer: :class:`~glue.core.data.Data` or :class:`~glue.core.subset.Subset` :param viewer: The viewer to add the layer to """ kwargs = ['layer', 'viewer'] label = 'add layer' def do(self, session): self.viewer.add_layer(self.layer) def undo(self, session): self.viewer.remove_layer(self.layer) class ApplyROI(Command): """ Apply an ROI to a client, updating subset states :param client: Client to work on :type client: :class:`~glue.core.client.Client` :param roi: Roi to apply :type roi: :class:`~glue.core.roi.Roi` """ kwargs = ['client', 'roi'] label = 'apply ROI' def do(self, session): self.old_states = {} for data in self.client.data: for subset in data.subsets: self.old_states[subset] = subset.subset_state self.client.apply_roi(self.roi) def undo(self, session): for data in self.client.data: for subset in data.subsets: if subset not in self.old_states: subset.delete() for k, v in self.old_states.items(): k.subset_state = v class LinkData(Command): pass class SetViewState(Command): pass class NewTab(Command): pass class CloseTab(Command): pass class NewSubset(Command): pass class CopySubset(Command): pass class PasteSubset(Command): pass class SpecialPasteSubset(Command): pass class DeleteSubset(Command): pass class SetStyle(Command): pass class SetLabel(Command): pass
{ "repo_name": "saimn/glue", "path": "glue/core/command.py", "copies": "2", "size": "7773", "license": "bsd-3-clause", "hash": -8640250691673295000, "line_mean": 23.7547770701, "line_max": 83, "alpha_frac": 0.6146918822, "autogenerated": false, "ratio": 4.059007832898172, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5673699715098173, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging from abc import ABCMeta, abstractproperty, abstractmethod import numpy as np from matplotlib.cm import gray from glue.external import six from glue.core.exceptions import IncompatibleAttribute from glue.core.layer_artist import MatplotlibLayerArtist, ChangedTrigger from glue.core.util import small_view, small_view_array from glue.utils import view_cascade, get_extent, color2rgb, Pointer from .ds9norm import DS9Normalize __all__ = ['RGBImageLayerArtist', 'ImageLayerArtist'] @six.add_metaclass(ABCMeta) class RGBImageLayerBase(object): r = abstractproperty() # ComponentID for red channel g = abstractproperty() # ComponentID for green channel b = abstractproperty() # ComponentID for blue channel rnorm = abstractproperty() # Normalize instance for red channel gnorm = abstractproperty() # Normalize instance for green channel bnorm = abstractproperty() # Normalize instance for blue channel contrast_layer = abstractproperty() # 'red' | 'green' | 'blue'. Which norm to adjust during set_norm layer_visible = abstractproperty() # dict (str->bool). Whether to show 'red', 'green', 'blue' layers @property def color_visible(self): """ Return layer visibility as a list of [red_visible, green_visible, blue_visible] """ return [self.layer_visible['red'], self.layer_visible['green'], self.layer_visible['blue']] @color_visible.setter def color_visible(self, value): self.layer_visible['red'] = value[0] self.layer_visible['green'] = value[1] self.layer_visible['blue'] = value[2] @six.add_metaclass(ABCMeta) class ImageLayerBase(object): norm = abstractproperty() # Normalization instance to scale intensities cmap = abstractproperty() # colormap @abstractmethod def set_norm(self, **kwargs): """ Adjust the normalization instance parameters. See :class:`glue.viewers.image.ds9norm.DS9Normalize attributes for valid kwargs for this function """ pass @abstractmethod def clear_norm(): """ Reset the norm to the default """ pass @abstractmethod def override_image(self, image): """ Temporarily display another image instead of a view into the data The new image has the same shape as the view into the data """ pass @abstractmethod def clear_override(self): """ Remove the override image, and display the data again """ pass @six.add_metaclass(ABCMeta) class SubsetImageLayerBase(object): pass class ImageLayerArtist(MatplotlibLayerArtist, ImageLayerBase): _property_set = MatplotlibLayerArtist._property_set + ['norm'] def __init__(self, layer, ax): super(ImageLayerArtist, self).__init__(layer, ax) self._norm = None self._cmap = gray self._override_image = None self._clip_cache = None self.aspect = 'equal' @property def norm(self): return self._norm @norm.setter def norm(self, value): self._norm = value @property def cmap(self): return self._cmap @cmap.setter def cmap(self, value): self._cmap = value for a in self.artists: a.set_cmap(value) def _default_norm(self, layer): vals = np.sort(layer.ravel()) vals = vals[np.isfinite(vals)] result = DS9Normalize() result.stretch = 'arcsinh' result.clip = True if vals.size > 0: result.vmin = vals[np.intp(.01 * vals.size)] result.vmax = vals[np.intp(.99 * vals.size)] return result def override_image(self, image): """Temporarily show a different image""" self._override_image = image def clear_override(self): self._override_image = None def _extract_view(self, view, transpose): if self._override_image is None: result = self.layer[view] if transpose: result = result.T return result else: v = [v for v in view if isinstance(v, slice)] if transpose: v = v[::-1] result = self._override_image[v] return result def _update_clip(self, att): key = (att, id(self._override_image), self.norm.clip_lo, self.norm.clip_hi) if self._clip_cache == key: return self._clip_cache = key if self._override_image is None: data = small_view(self.layer, att) else: data = small_view_array(self._override_image) self.norm.update_clip(data) def update(self, view, transpose=False, aspect=None): if aspect is not None: self.aspect = aspect self.clear() views = view_cascade(self.layer, view) artists = [] lr0 = self._extract_view(views[0], transpose) self.norm = self.norm or self._default_norm(lr0) self.norm = self.norm or self._default_norm(lr0) self._update_clip(views[0][0]) for v in views: image = self._extract_view(v, transpose) extent = get_extent(v, transpose) artists.append(self._axes.imshow(image, cmap=self.cmap, norm=self.norm, interpolation='nearest', origin='lower', extent=extent, zorder=0)) self._axes.set_aspect(self.aspect, adjustable='datalim') self.artists = artists self._sync_style() def set_norm(self, vmin=None, vmax=None, bias=None, contrast=None, stretch=None, norm=None, clip_lo=None, clip_hi=None): if norm is not None: self.norm = norm # XXX Should wrap ala DS9Normalize(norm) return norm if self.norm is None: self.norm = DS9Normalize() if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax if bias is not None: self.norm.bias = bias if contrast is not None: self.norm.contrast = contrast if clip_lo is not None: self.norm.clip_lo = clip_lo if clip_hi is not None: self.norm.clip_hi = clip_hi if stretch is not None: self.norm.stretch = stretch return self.norm def clear_norm(self): self.norm = None def _sync_style(self): for artist in self.artists: artist.set_zorder(self.zorder) artist.set_visible(self.visible and self.enabled) class RGBImageLayerArtist(ImageLayerArtist, RGBImageLayerBase): _property_set = ImageLayerArtist._property_set + \ ['r', 'g', 'b', 'rnorm', 'gnorm', 'bnorm', 'color_visible'] r = ChangedTrigger() g = ChangedTrigger() b = ChangedTrigger() rnorm = Pointer('_rnorm') gnorm = Pointer('_gnorm') bnorm = Pointer('_bnorm') # dummy class-level variables will be masked # at instance level, needed for ABC to be happy layer_visible = None contrast_layer = None def __init__(self, layer, ax, last_view=None): super(RGBImageLayerArtist, self).__init__(layer, ax) self.contrast_layer = 'green' self.aspect = 'equal' self.layer_visible = dict(red=True, green=True, blue=True) self.last_view = last_view def set_norm(self, *args, **kwargs): spr = super(RGBImageLayerArtist, self).set_norm if self.contrast_layer == 'red': self.norm = self.rnorm self.rnorm = spr(*args, **kwargs) if self.contrast_layer == 'green': self.norm = self.gnorm self.gnorm = spr(*args, **kwargs) if self.contrast_layer == 'blue': self.norm = self.bnorm self.bnorm = spr(*args, **kwargs) def update(self, view=None, transpose=False, aspect=None): self.clear() if aspect is not None: self.aspect = aspect if self.r is None or self.g is None or self.b is None: return if view is None: view = self.last_view if view is None: return self.last_view = view views = view_cascade(self.layer, view) artists = [] for v in views: extent = get_extent(v, transpose) # first argument = component. swap r = tuple([self.r] + list(v[1:])) g = tuple([self.g] + list(v[1:])) b = tuple([self.b] + list(v[1:])) r = self.layer[r] g = self.layer[g] b = self.layer[b] if transpose: r = r.T g = g.T b = b.T self.rnorm = self.rnorm or self._default_norm(r) self.gnorm = self.gnorm or self._default_norm(g) self.bnorm = self.bnorm or self._default_norm(b) if v is views[0]: self.rnorm.update_clip(small_view(self.layer, self.r)) self.gnorm.update_clip(small_view(self.layer, self.g)) self.bnorm.update_clip(small_view(self.layer, self.b)) image = np.dstack((self.rnorm(r), self.gnorm(g), self.bnorm(b))) if not self.layer_visible['red']: image[:, :, 0] *= 0 if not self.layer_visible['green']: image[:, :, 1] *= 0 if not self.layer_visible['blue']: image[:, :, 2] *= 0 artists.append(self._axes.imshow(image, interpolation='nearest', origin='lower', extent=extent, zorder=0)) self._axes.set_aspect(self.aspect, adjustable='datalim') self.artists = artists self._sync_style() class SubsetImageLayerArtist(MatplotlibLayerArtist, SubsetImageLayerBase): def __init__(self, *args, **kwargs): super(SubsetImageLayerArtist, self).__init__(*args, **kwargs) self.aspect = 'equal' def update(self, view, transpose=False, aspect=None): self.clear() if aspect is not None: self.aspect = aspect subset = self.layer logging.debug("View into subset %s is %s", self.layer, view) try: mask = subset.to_mask(view[1:]) except IncompatibleAttribute as exc: self.disable_invalid_attributes(*exc.args) return False logging.debug("View mask has shape %s", mask.shape) # shortcut for empty subsets if not mask.any(): return if transpose: mask = mask.T extent = get_extent(view, transpose) r, g, b = color2rgb(self.layer.style.color) mask = np.dstack((r * mask, g * mask, b * mask, mask * .5)) mask = (255 * mask).astype(np.uint8) self.artists = [self._axes.imshow(mask, extent=extent, interpolation='nearest', origin='lower', zorder=5, visible=self.visible)] self._axes.set_aspect(self.aspect, adjustable='datalim')
{ "repo_name": "saimn/glue", "path": "glue/viewers/image/layer_artist.py", "copies": "2", "size": "11664", "license": "bsd-3-clause", "hash": 1057277214242277200, "line_mean": 31.7640449438, "line_max": 106, "alpha_frac": 0.5568415638, "autogenerated": false, "ratio": 4.038781163434903, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5595622727234904, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging from contextlib import contextmanager from weakref import WeakKeyDictionary from inspect import getmro from collections import defaultdict from glue.core.exceptions import InvalidSubscriber, InvalidMessage from glue.core.message import Message from glue.core.hub_callback_container import HubCallbackContainer __all__ = ['Hub', 'HubListener'] class Hub(object): """The hub manages communication between subscribers. Objects :func:`subscribe` to receive specific message types. When a message is passed to :func:`broadcast`, the hub observes the following protocol: * For each subscriber, it looks for a message class subscription that is a superclass of the input message type (if several are found, the most-subclassed one is chosen) * If one is found, it calls the subscriptions filter(message) class (if provided) * If filter(message) == True, it calls handler(message) (or notify(message) if handler wasn't provided). """ def __init__(self, *args): """ Any arguments that are passed to Hub will be registered to the new hub object. """ # Dictionary of subscriptions self._subscriptions = WeakKeyDictionary() self._paused = False self._queue = [] from glue.core.data import Data from glue.core.subset import Subset from glue.core.data_collection import DataCollection listeners = set(filter(lambda x: isinstance(x, HubListener), args)) data = set(filter(lambda x: isinstance(x, Data), args)) subsets = set(filter(lambda x: isinstance(x, Subset), args)) dcs = set(filter(lambda x: isinstance(x, DataCollection), args)) listeners -= (data | subsets | dcs) if set(listeners | data | subsets | dcs) != set(args): raise TypeError("Inputs must be HubListener, data, subset, or " "data collection objects") for l in listeners: l.register_to_hub(self) for d in data: d.register_to_hub(self) for dc in dcs: dc.register_to_hub(self) for s in subsets: s.register() def subscribe(self, subscriber, message_class, handler=None, filter=lambda x: True): """Subscribe an object to a type of message class. :param subscriber: The subscribing object :type subscriber: :class:`~glue.core.hub.HubListener` :param message_class: A :class:`~glue.core.message.Message` class to subscribe to :param handler: An optional function of the form handler(message) that will receive the message on behalf of the subscriber. If not provided, this defaults to the HubListener's notify method :type handler: Callable :param filter: An optional function of the form filter(message). Messages are only passed to the subscriber if filter(message) == True. The default is to always pass messages. :type filter: Callable Raises: InvalidMessage: If the input class isn't a :class:`~glue.core.message.Message` class InvalidSubscriber: If the input subscriber isn't a HubListener object. """ if not isinstance(subscriber, HubListener): raise InvalidSubscriber("Subscriber must be a HubListener: %s" % type(subscriber)) if not isinstance(message_class, type) or \ not issubclass(message_class, Message): raise InvalidMessage("message class must be a subclass of " "glue.Message: %s" % type(message_class)) logging.getLogger(__name__).info("Subscribing %s to %s", subscriber, message_class.__name__) if not handler: handler = subscriber.notify if subscriber not in self._subscriptions: self._subscriptions[subscriber] = HubCallbackContainer() self._subscriptions[subscriber][message_class] = handler, filter def is_subscribed(self, subscriber, message): """ Test whether the subscriber has suscribed to a given message class :param subscriber: The subscriber to test :param message: The message class to test Returns: True if the subscriber/message pair have been subscribed to the hub """ return (subscriber in self._subscriptions and message in self._subscriptions[subscriber]) def get_handler(self, subscriber, message): if subscriber is None: return None try: return self._subscriptions[subscriber][message][0] except KeyError: return None def unsubscribe(self, subscriber, message): """ Remove a (subscriber,message) pair from subscription list. The handler originally attached to the subscription will no longer be called when broadcasting messages of type message """ if subscriber not in self._subscriptions: return if message in self._subscriptions[subscriber]: self._subscriptions[subscriber].pop(message) def unsubscribe_all(self, subscriber): """ Unsubscribe the object from any subscriptions. """ if subscriber in self._subscriptions: self._subscriptions.pop(subscriber) def _find_handlers(self, message): """Yields all (subscriber, handler) pairs that should receive a message """ # self._subscriptions: # subscriber => { message type => (filter, handler)} # loop over subscribed objects for subscriber, subscriptions in list(self._subscriptions.items()): # subscriptions to message or its superclasses messages = [msg for msg in subscriptions.keys() if issubclass(type(message), msg)] if len(messages) == 0: continue # narrow to the most-specific message candidate = max(messages, key=_mro_count) handler, test = subscriptions[candidate] if test(message): yield subscriber, handler @contextmanager def delay_callbacks(self): self._paused = True try: yield finally: self._paused = False # TODO: could de-duplicate messages here for message in self._queue: self.broadcast(message) self._queue = [] def broadcast(self, message): """Broadcasts a message to all subscribed objects. :param message: The message to broadcast :type message: :class:`~glue.core.message.Message` """ if self._paused: self._queue.append(message) else: logging.getLogger(__name__).info("Broadcasting %s", message) for subscriber, handler in self._find_handlers(message): handler(message) def __getstate__(self): """ Return a picklable representation of the hub Note: Only objects in glue.core are currently supported as pickleable. Thus, any subscriptions from objects outside glue.core will note be saved or restored """ result = self.__dict__.copy() result['_subscriptions'] = self._subscriptions.copy() for s in self._subscriptions: try: module = s.__module__ except AttributeError: module = '' if not module.startswith('glue.core'): print('Pickle warning: Hub removing subscription to %s' % s) result['_subscriptions'].pop(s) return result class HubListener(object): """ The base class for any object that subscribes to hub messages. This interface defines a single method, notify, that receives messages """ def register_to_hub(self, hub): raise NotImplementedError def unregister(self, hub): """ Default unregistration action. Calls hub.unsubscribe_all on self""" hub.unsubscribe_all(self) def notify(self, message): raise NotImplementedError("Message has no handler: %s" % message) def _mro_count(obj): return len(getmro(obj))
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/hub.py", "copies": "2", "size": "8577", "license": "bsd-3-clause", "hash": 1125380766443342500, "line_mean": 33.4457831325, "line_max": 79, "alpha_frac": 0.6083712254, "autogenerated": false, "ratio": 4.870528109028961, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00014343086632243257, "num_lines": 249 }
from __future__ import absolute_import, division, print_function import logging from contextlib import contextmanager import string from itertools import count import numpy as np import pandas as pd from ..external.six.moves import reduce from ..external.six import string_types __all__ = ["identity", "relim", "split_component_view", "join_component_view", "facet_subsets", "colorize_subsets", "defer", "disambiguate", "row_lookup", "PropertySetMixin", "CallbackMixin", "Pointer"] def identity(x): return x def relim(lo, hi, log=False): logging.getLogger(__name__).debug("Inputs to relim: %r %r", lo, hi) x, y = lo, hi if log: if lo < 0: x = 1e-5 if hi < 0: y = 1e5 return x * .95, y * 1.05 delta = y - x return (x - .02 * delta, y + .02 * delta) def split_component_view(arg): """Split the input to data or subset.__getitem__ into its pieces. :param arg: The input passed to data or subset.__getitem__. Assumed to be either a scalar or tuple :rtype: tuple The first item is the Component selection (a ComponentID or string) The second item is a view (tuple of slices, slice scalar, or view object) """ if isinstance(arg, tuple): if len(arg) == 1: raise TypeError("Expected a scalar or >length-1 tuple, " "got length-1 tuple") if len(arg) == 2: return arg[0], arg[1] return arg[0], arg[1:] else: return arg, None def join_component_view(component, view): """Pack a componentID and optional view into single tuple Returns an object compatible with data.__getitem__ and related methods. Handles edge cases of when view is None, a scalar, a tuple, etc. :param component: ComponentID :param view: view into data, or None """ if view is None: return component result = [component] try: result.extend(view) except TypeError: # view is a scalar result = [component, view] return tuple(result) def facet_subsets(data_collection, cid, lo=None, hi=None, steps=5, prefix='', log=False): """Create a series of subsets that partition the values of a particular attribute into several bins This creates `steps` new subet groups, adds them to the data collection, and returns the list of newly created subset groups. :param data: DataCollection object to use :type data: :class:`~glue.core.data_collection.DataCollection` :param cid: ComponentID to facet on :type data: :class:`~glue.core.data.ComponentID` :param lo: The lower bound for the faceting. Defaults to minimum value in data :type lo: float :param hi: The upper bound for the faceting. Defaults to maximum value in data :type hi: float :param steps: The number of subsets to create. Defaults to 5 :type steps: int :param prefix: If present, the new subset labels will begin with `prefix` :type prefix: str :param log: If True, space divisions logarithmically. Default=False :type log: bool :returns: List of :class:`~glue.core.subset_group.SubsetGroup` instances added to `data` Example:: facet_subset(data, data.id['mass'], lo=0, hi=10, steps=2) creates 2 new subsets. The first represents the constraint 0 <= mass < 5. The second represents 5 <= mass < 10:: facet_subset(data, data.id['mass'], lo=10, hi=0, steps=2) Creates 2 new subsets. The first represents the constraint 10 >= x > 5 The second represents 5 >= mass > 0:: facet_subset(data, data.id['mass'], lo=0, hi=10, steps=2, prefix='m') Labels the subsets ``m_1`` and ``m_2`` """ from .exceptions import IncompatibleAttribute if lo is None or hi is None: for data in data_collection: try: vals = data[cid] break except IncompatibleAttribute: continue else: raise ValueError("Cannot infer data limits for ComponentID %s" % cid) if lo is None: lo = np.nanmin(vals) if hi is None: hi = np.nanmax(vals) reverse = lo > hi if log: rng = np.logspace(np.log10(lo), np.log10(hi), steps + 1) else: rng = np.linspace(lo, hi, steps + 1) states = [] labels = [] for i in range(steps): if reverse: states.append((cid <= rng[i]) & (cid > rng[i + 1])) labels.append(prefix + '{0}<{1}<={2}'.format(rng[i + 1], cid, rng[i])) else: states.append((cid >= rng[i]) & (cid < rng[i + 1])) labels.append(prefix + '{0}<={1}<{2}'.format(rng[i], cid, rng[i + 1])) result = [] for lbl, s in zip(labels, states): sg = data_collection.new_subset_group(label=lbl, subset_state=s) result.append(sg) return result def colorize_subsets(subsets, cmap, lo=0, hi=1): """Re-color a list of subsets according to a colormap :param subsets: List of subsets :param cmap: Matplotlib colormap instance :param lo: Start location in colormap. 0-1. Defaults to 0 :param hi: End location in colormap. 0-1. Defaults to 1 The colormap will be sampled at `len(subsets)` even intervals between `lo` and `hi`. The color at the `ith` interval will be applied to `subsets[i]` """ from matplotlib import cm sm = cm.ScalarMappable(cmap=cmap) sm.norm.vmin = 0 sm.norm.vmax = 1 vals = np.linspace(lo, hi, len(subsets)) rgbas = sm.to_rgba(vals) for color, subset in zip(rgbas, subsets): r, g, b, a = color r = int(255 * r) g = int(255 * g) b = int(255 * b) subset.style.color = '#%2.2x%2.2x%2.2x' % (r, g, b) class PropertySetMixin(object): """An object that provides a set of properties that are meant to encapsulate state information This class exposes a properties attribute, which is a dict of all properties. Similarly, assigning to the properties dict will update the individual properties """ _property_set = [] @property def properties(self): """ A dict mapping property names to values """ return dict((p, getattr(self, p)) for p in self._property_set) @properties.setter def properties(self, value): """ Update the properties with a new dict. Keys in the new dict must be valid property names defined in the _property_set class level attribute""" invalid = set(value.keys()) - set(self._property_set) if invalid: raise ValueError("Invalid property values: %s" % invalid) for k in self._property_set: if k not in value: continue setattr(self, k, value[k]) class CallbackMixin(object): """ A mixin that provides a utility for attaching callback functions to methods """ def __init__(self): self._callbacks = [] def add_callback(self, function): self._callbacks.append(function) def remove_callback(self, function): self._callbacks.remove(function) def notify(self, *args, **kwargs): for func in self._callbacks: func(*args, **kwargs) class Pointer(object): def __init__(self, key): self.key = key def __get__(self, instance, type=None): val = instance for k in self.key.split('.'): val = getattr(val, k, None) return val def __set__(self, instance, value): v = self.key.split('.') attr = reduce(getattr, [instance] + v[:-1]) setattr(attr, v[-1], value) @contextmanager def defer(instance, method): """ Defer the calling of a method inside a context manager, and then call it 0 or 1 times afterwards. :param instance: The instance of the method to defer :param method: The name of the method to defer :type method: str Within the context block, calls to the method will be intercepted, logged, and skipped. Upon exiting the context block, the method will be invoked a single time, with the arguments of the most recent invokation inside the context block. If the method is never invoked in the context block, it is not called when leaving that block. """ history = [] def log(*a, **k): history.append((a, k)) orig = getattr(instance, method) setattr(instance, method, log) try: yield finally: setattr(instance, method, orig) for a, k in history[-1:]: orig(*a, **k) def disambiguate(label, taken): """If necessary, add a suffix to label to avoid name conflicts :param label: desired label :param taken: set of taken names Returns label if it is not in the taken set. Otherwise, returns label_NN where NN is the lowest integer such that label_NN not in taken. """ if label not in taken: return label suffix = "_%2.2i" label = str(label) for i in count(1): candidate = label + (suffix % i) if candidate not in taken: return candidate def row_lookup(data, categories): """ Lookup which row in categories each data item is equal to :param data: array-like :param categories: array-like of unique values :returns: Float array. If result[i] is finite, then data[i] = categoreis[result[i]] Otherwise, data[i] is not in the categories list """ # np.searchsorted doesn't work on mixed types in Python3 ndata, ncat = len(data), len(categories) data = pd.DataFrame({'data': data, 'row': np.arange(ndata)}) cats = pd.DataFrame({'categories': categories, 'cat_row': np.arange(ncat)}) m = pd.merge(data, cats, left_on='data', right_on='categories') result = np.zeros(ndata, dtype=float) * np.nan result[np.array(m.row)] = m.cat_row return result
{ "repo_name": "JudoWill/glue", "path": "glue/core/util.py", "copies": "1", "size": "10109", "license": "bsd-3-clause", "hash": 7090319416678223000, "line_mean": 27.9656160458, "line_max": 82, "alpha_frac": 0.607280641, "autogenerated": false, "ratio": 3.8716966679433167, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49789773089433165, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging from datetime import datetime from errno import ENOTEMPTY from io import BytesIO from fsspec import AbstractFileSystem logger = logging.Logger("fsspec.memoryfs") class MemoryFileSystem(AbstractFileSystem): """A filesystem based on a dict of BytesIO objects This is a global filesystem so instances of this class all point to the same in memory filesystem. """ store = {} # global pseudo_dirs = [""] protocol = "memory" root_marker = "/" @classmethod def _strip_protocol(cls, path): if path.startswith("memory://"): path = path[len("memory://") :] if "::" in path or "://" in path: return path.rstrip("/") path = path.lstrip("/").rstrip("/") return "/" + path if path else "" def ls(self, path, detail=False, **kwargs): path = self._strip_protocol(path) if path in self.store: # there is a key with this exact name return [ { "name": path, "size": self.store[path].getbuffer().nbytes, "type": "file", "created": self.store[path].created, } ] paths = set() starter = path + "/" out = [] for p2 in self.store: if p2.startswith(starter): if "/" not in p2[len(starter) :]: # exact child out.append( { "name": p2, "size": self.store[p2].getbuffer().nbytes, "type": "file", "created": self.store[p2].created, } ) elif len(p2) > len(starter): # implied child directory ppath = starter + p2[len(starter) :].split("/", 1)[0] if ppath not in paths: out = out or [] out.append( { "name": ppath, "size": 0, "type": "directory", } ) paths.add(ppath) for p2 in self.pseudo_dirs: if p2.startswith(starter): if "/" not in p2[len(starter) :]: # exact child pdir if p2 not in paths: out.append({"name": p2, "size": 0, "type": "directory"}) paths.add(p2) else: # directory implied by deeper pdir ppath = starter + p2[len(starter) :].split("/", 1)[0] if ppath not in paths: out.append({"name": ppath, "size": 0, "type": "directory"}) paths.add(ppath) if not out: if path in self.pseudo_dirs: # empty dir return [] raise FileNotFoundError(path) if detail: return out return sorted([f["name"] for f in out]) def mkdir(self, path, create_parents=True, **kwargs): path = self._strip_protocol(path) if path in self.store or path in self.pseudo_dirs: raise FileExistsError if self._parent(path).strip("/") and self.isfile(self._parent(path)): raise NotADirectoryError(self._parent(path)) if create_parents and self._parent(path).strip("/"): try: self.mkdir(self._parent(path), create_parents, **kwargs) except FileExistsError: pass if path and path not in self.pseudo_dirs: self.pseudo_dirs.append(path) def makedirs(self, path, exist_ok=False): try: self.mkdir(path, create_parents=True) except FileExistsError: if not exist_ok: raise def rmdir(self, path): path = self._strip_protocol(path) if path in self.pseudo_dirs: if not self.ls(path): self.pseudo_dirs.remove(path) else: raise OSError(ENOTEMPTY, "Directory not empty", path) else: raise FileNotFoundError(path) def exists(self, path): path = self._strip_protocol(path) return path in self.store or path in self.pseudo_dirs def info(self, path, **kwargs): path = self._strip_protocol(path) if path in self.pseudo_dirs or any( p.startswith(path + "/") for p in list(self.store) + self.pseudo_dirs ): return { "name": path, "size": 0, "type": "directory", } elif path in self.store: return { "name": path, "size": self.store[path].getbuffer().nbytes, "type": "file", "created": self.store[path].created, } else: raise FileNotFoundError(path) def _open( self, path, mode="rb", block_size=None, autocommit=True, cache_options=None, **kwargs, ): path = self._strip_protocol(path) if path in self.pseudo_dirs: raise IsADirectoryError parent = path while len(parent) > 1: parent = self._parent(parent) if self.isfile(parent): raise FileExistsError(parent) if mode in ["rb", "ab", "rb+"]: if path in self.store: f = self.store[path] if mode == "ab": # position at the end of file f.seek(0, 2) else: # position at the beginning of file f.seek(0) return f else: raise FileNotFoundError(path) if mode == "wb": m = MemoryFile(self, path) if not self._intrans: m.commit() return m def cp_file(self, path1, path2, **kwargs): path1 = self._strip_protocol(path1) path2 = self._strip_protocol(path2) if self.isfile(path1): self.store[path2] = MemoryFile(self, path2, self.store[path1].getbuffer()) elif self.isdir(path1): if path2 not in self.pseudo_dirs: self.pseudo_dirs.append(path2) else: raise FileNotFoundError def cat_file(self, path, start=None, end=None, **kwargs): path = self._strip_protocol(path) try: return self.store[path].getvalue()[start:end] except KeyError: raise FileNotFoundError(path) def _rm(self, path): path = self._strip_protocol(path) try: del self.store[path] except KeyError as e: raise FileNotFoundError from e def rm(self, path, recursive=False, maxdepth=None): paths = self.expand_path(path, recursive=recursive, maxdepth=maxdepth) for p in reversed(paths): # If the expanded path doesn't exist, it is only because the expanded # path was a directory that does not exist in self.pseudo_dirs. This # is possible if you directly create files without making the # directories first. if not self.exists(p): continue if self.isfile(p): self.rm_file(p) else: self.rmdir(p) class MemoryFile(BytesIO): """A BytesIO which can't close and works as a context manager Can initialise with data. Each path should only be active once at any moment. No need to provide fs, path if auto-committing (default) """ def __init__(self, fs=None, path=None, data=None): self.fs = fs self.path = path self.created = datetime.utcnow().timestamp() if data: self.write(data) self.size = len(data) self.seek(0) def __enter__(self): return self def close(self): position = self.tell() self.size = self.seek(0, 2) self.seek(position) def discard(self): pass def commit(self): self.fs.store[self.path] = self
{ "repo_name": "intake/filesystem_spec", "path": "fsspec/implementations/memory.py", "copies": "1", "size": "8484", "license": "bsd-3-clause", "hash": 8873974750892605000, "line_mean": 32.2705882353, "line_max": 86, "alpha_frac": 0.4909240924, "autogenerated": false, "ratio": 4.404984423676012, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5395908516076012, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging from functools import wraps import numpy as np from ..external.modest_image import extract_matched_slices from ..core.exceptions import IncompatibleAttribute from ..core.data import Data from ..core.subset import Subset, RoiSubsetState from ..core.roi import PolygonalROI from ..core.message import ComponentReplacedMessage from ..core.callback_property import ( callback_property, CallbackProperty) from ..core.edit_subset_mode import EditSubsetMode from ..utils import lookup_class, defer_draw from .viz_client import VizClient, init_mpl from .layer_artist import (ScatterLayerArtist, LayerArtistContainer, ImageLayerArtist, SubsetImageLayerArtist, RGBImageLayerArtist, ImageLayerBase, RGBImageLayerBase, SubsetImageLayerBase, ScatterLayerBase) def requires_data(func): """Decorator that checks an ImageClient for a non-null display_data attribute. Only executes decorated function if present""" @wraps(func) def result(*args, **kwargs): if args[0].display_data is None: return return func(*args, **kwargs) return result class ImageClient(VizClient): display_data = CallbackProperty(None) display_attribute = CallbackProperty(None) def __init__(self, data, artist_container=None): VizClient.__init__(self, data) self.artists = artist_container if self.artists is None: self.artists = LayerArtistContainer() # slice through ND cube # ('y', 'x', 2) # means current data slice is [:, :, 2], and axis=0 is vertical on plot self._slice = None # how to extract a downsampled/cropped 2D image to plot # (ComponentID, slice, slice, ...) self._view = None # cropped/downsampled image # self._image == self.display_data[self._view] self._image = None # if this is set, render this instead of self._image self._override_image = None # maps attributes -> normalization settings self._norm_cache = {} def point_details(self, x, y): if self.display_data is None: return dict(labels=['x=%s' % x, 'y=%s' % y], pix=(x, y), world=(x, y), value=np.nan) data = self.display_data pix = self._pixel_coords(x, y) labels = self.coordinate_labels(pix) world = data.coords.pixel2world(*pix[::-1]) world = world[::-1] # reverse for numpy convention view = [] for p, s in zip(pix, data.shape): p = int(p) if not (0 <= p < s): value = None break view.append(slice(p, p + 1)) else: if self._override_image is None: value = self.display_data[self.display_attribute, view] else: value = self._override_image[int(y), int(x)] value = value.ravel()[0] return dict(pix=pix, world=world, labels=labels, value=value) def coordinate_labels(self, pix): """ Return human-readable labels for a position in pixel coords :param pix: tuple of ints Pixel coordiante of point in the data :returns: List of strings, one for each coordinate axis, of the form "axis_lable_name=world_coordinate_value :note: pix describes a position in the *data*, not necessarily the image display """ data = self.display_data if data is None: return [] world = data.coords.pixel2world(*pix[::-1]) world = world[::-1] # reverse for numpy convention labels = ['%s=%s' % (data.get_world_component_id(i).label, w) for i, w in enumerate(world)] return labels @callback_property def slice(self): """ Returns a tuple describing the current slice through the data The tuple has length equal to the dimensionality of the display data. Each entry is either: 'x' if the dimension is mapped to the X image axis 'y' if the dimension is mapped to the Y image axis a number, indicating which fixed slice the dimension is restricted to """ if self._slice is not None: return self._slice if self.display_data is None: return tuple() ndim = self.display_data.ndim if ndim == 1: self._slice = ('x',) elif ndim == 2: self._slice = ('y', 'x') else: self._slice = (0,) * (ndim - 2) + ('y', 'x') return self._slice @slice.setter @defer_draw def slice(self, value): if self.slice == tuple(value): return if value == tuple(): return relim = value.index('x') != self._slice.index('x') or \ value.index('y') != self._slice.index('y') self._slice = tuple(value) self._clear_override() self._update_axis_labels() self._update_data_plot(relim=relim) self._update_subset_plots() self._update_scatter_plots() self._redraw() @property def is_3D(self): """ Returns True if the display data has 3 dimensions """ if not self.display_data: return False return len(self.display_data.shape) == 3 @property def slice_ind(self): """ For 3D data, returns the pixel index of the current slice. Otherwise, returns None """ if self.is_3D: for s in self.slice: if s not in ['x', 'y']: return s return None @property def image(self): return self._image @requires_data def override_image(self, image): """Temporarily override the current slice view with another image (i.e., an aggregate) """ self._override_image = image for a in self.artists[self.display_data]: if isinstance(a, ImageLayerBase): a.override_image(image) self._update_data_plot() self._redraw() def _clear_override(self): self._override_image = None for a in self.artists[self.display_data]: if isinstance(a, ImageLayerBase): a.clear_override() @slice_ind.setter @defer_draw def slice_ind(self, value): if self.is_3D: slc = [s if s in ['x', 'y'] else value for s in self.slice] self.slice = slc self._update_data_plot() self._update_subset_plots() self._update_scatter_plots() self._redraw() else: raise IndexError("Can only set slice_ind for 3D images") def can_image_data(self, data): return data.ndim > 1 def _ensure_data_present(self, data): if data not in self.artists: self.add_layer(data) @defer_draw def set_data(self, data, attribute=None): if not self.can_image_data(data): return self._ensure_data_present(data) self._slice = None attribute = attribute or _default_component(data) self.display_data = data self.display_attribute = attribute self._update_axis_labels() self._update_data_plot(relim=True) self._update_subset_plots() self._update_scatter_plots() self._redraw() def set_attribute(self, attribute): if not self.display_data or \ attribute not in self.display_data.component_ids(): raise IncompatibleAttribute( "Attribute not in data's attributes: %s" % attribute) if self.display_attribute is not None: self._norm_cache[self.display_attribute] = self.get_norm() self.display_attribute = attribute if attribute in self._norm_cache: self.set_norm(norm=self._norm_cache[attribute]) else: self.clear_norm() self._update_data_plot() self._redraw() def _redraw(self): """ Re-render the screen """ pass @requires_data @defer_draw def set_norm(self, **kwargs): for a in self.artists[self.display_data]: a.set_norm(**kwargs) self._update_data_plot() self._redraw() @requires_data def clear_norm(self): for a in self.artists[self.display_data]: a.clear_norm() @requires_data def get_norm(self): a = self.artists[self.display_data][0] return a.norm @requires_data @defer_draw def set_cmap(self, cmap): for a in self.artists[self.display_data]: a.cmap = cmap a.redraw() def _build_view(self): att = self.display_attribute shp = self.display_data.shape x, y = np.s_[:], np.s_[:] slc = list(self.slice) slc[slc.index('x')] = x slc[slc.index('y')] = y return (att,) + tuple(slc) @requires_data def _numerical_data_changed(self, message): data = message.sender self._update_data_plot(force=True) self._update_scatter_layer(data) for s in data.subsets: self._update_subset_single(s, force=True) self._redraw() @requires_data def _update_data_plot(self, relim=False, force=False): """ Re-sync the main image and its subsets """ if relim: self.relim() view = self._build_view() self._image = self.display_data[view] transpose = self.slice.index('x') < self.slice.index('y') self._view = view for a in list(self.artists): if (not isinstance(a, ScatterLayerBase)) and \ a.layer.data is not self.display_data: self.artists.remove(a) else: a.update(view, transpose) for a in self.artists[self.display_data]: meth = a.update if not force else a.force_update meth(view, transpose=transpose) def _update_subset_single(self, s, redraw=False, force=False): """ Update the location and visual properties of each point in a single subset Parameters: ---------- s: A subset instance The subset to refresh. """ logging.getLogger(__name__).debug("update subset single: %s", s) if s not in self.artists: return self._update_scatter_layer(s) if s.data is not self.display_data: return view = self._build_view() transpose = self.slice.index('x') < self.slice.index('y') for a in self.artists[s]: meth = a.update if not force else a.force_update meth(view, transpose) if redraw: self._redraw() @property def _slice_ori(self): if not self.is_3D: return None for i, s in enumerate(self.slice): if s not in ['x', 'y']: return i @requires_data @defer_draw def apply_roi(self, roi): subset_state = RoiSubsetState() xroi, yroi = roi.to_polygon() x, y = self._get_plot_attributes() subset_state.xatt = x subset_state.yatt = y subset_state.roi = PolygonalROI(xroi, yroi) mode = EditSubsetMode() mode.update(self.data, subset_state, focus_data=self.display_data) def _remove_subset(self, message): self.delete_layer(message.sender) def delete_layer(self, layer): if layer not in self.artists: return for a in self.artists.pop(layer): a.clear() if isinstance(layer, Data): for subset in layer.subsets: self.delete_layer(subset) if layer is self.display_data: if len(self.artists) > 0: self.display_data = self.artists.layers[0].data else: self.display_data = None self._redraw() def _remove_data(self, message): self.delete_layer(message.data) for s in message.data.subsets: self.delete_layer(s) def init_layer(self, layer): # only auto-add subsets if they are of the main image if isinstance(layer, Subset) and layer.data is not self.display_data: return self.add_layer(layer) def rgb_mode(self, enable=None): """ Query whether RGB mode is enabled, or toggle RGB mode :param enable: bool, or None If True or False, explicitly enable/disable RGB mode. If None, check if RGB mode is enabled :rtype: LayerArtist or None If RGB mode is enabled, returns an RGBImageLayerBase If enable=False, return the new ImageLayerArtist """ # XXX need to better handle case where two RGBImageLayerArtists # are created if enable is None: for a in self.artists: if isinstance(a, RGBImageLayerBase): return a return None result = None layer = self.display_data if enable: layer = self.display_data a = self._new_rgb_layer(layer) if a is None: return a.r = a.g = a.b = self.display_attribute with self.artists.ignore_empty(): self.artists.pop(layer) self.artists.append(a) result = a else: with self.artists.ignore_empty(): for artist in list(self.artists): if isinstance(artist, RGBImageLayerBase): self.artists.remove(artist) result = self.add_layer(layer) self._update_data_plot() self._redraw() return result def add_layer(self, layer): if layer in self.artists: return self.artists[layer][0] if layer.data not in self.data: raise TypeError("Data not managed by client's data collection") if not self.can_image_data(layer.data): # if data is 1D, try to scatter plot if len(layer.data.shape) == 1: return self.add_scatter_layer(layer) logging.getLogger(__name__).warning( "Cannot visualize %s. Aborting", layer.label) return if isinstance(layer, Data): result = self._new_image_layer(layer) self.artists.append(result) for s in layer.subsets: self.add_layer(s) self.set_data(layer) elif isinstance(layer, Subset): result = self._new_subset_image_layer(layer) self.artists.append(result) self._update_subset_single(layer) else: raise TypeError("Unrecognized layer type: %s" % type(layer)) return result def add_scatter_layer(self, layer): logging.getLogger( __name__).debug('Adding scatter layer for %s' % layer) if layer in self.artists: logging.getLogger(__name__).debug('Layer already present') return result = self._new_scatter_layer(layer) self.artists.append(result) self._update_scatter_layer(layer) return result def _update_scatter_plots(self): for layer in self.artists.layers: self._update_scatter_layer(layer) @requires_data def _update_scatter_layer(self, layer, force=False): if layer not in self.artists: return xatt, yatt = self._get_plot_attributes() need_redraw = False for a in self.artists[layer]: if not isinstance(a, ScatterLayerBase): continue need_redraw = True a.xatt = xatt a.yatt = yatt if self.is_3D: zatt = self.display_data.get_pixel_component_id( self._slice_ori) subset = ( zatt > self.slice_ind) & (zatt <= self.slice_ind + 1) a.emphasis = subset else: a.emphasis = None a.update() if not force else a.force_update() a.redraw() if need_redraw: self._redraw() @requires_data def _get_plot_attributes(self): x, y = _slice_axis(self.display_data.shape, self.slice) ids = self.display_data.pixel_component_ids return ids[x], ids[y] def _pixel_coords(self, x, y): """From a slice coordinate (x,y), return the full (possibly >2D) numpy index into the full data *Note* The inputs to this function are the reverse of numpy convention (horizontal axis first, then vertical) *Returns* Either (x,y) or (x,y,z) """ result = list(self.slice) result[result.index('x')] = x result[result.index('y')] = y return result def is_visible(self, layer): return all(a.visible for a in self.artists[layer]) def set_visible(self, layer, state): for a in self.artists[layer]: a.visible = state def set_slice_ori(self, ori): if not self.is_3D: raise IndexError("Can only set slice_ori for 3D images") if ori == 0: self.slice = (0, 'y', 'x') elif ori == 1: self.slice = ('y', 0, 'x') elif ori == 2: self.slice = ('y', 'x', 0) else: raise ValueError("Orientation must be 0, 1, or 2") def restore_layers(self, layers, context): """ Restore a list of glue-serialized layer dicts """ for layer in layers: c = lookup_class(layer.pop('_type')) props = dict((k, v if k == 'stretch' else context.object(v)) for k, v in layer.items()) l = props['layer'] if issubclass(c, ScatterLayerBase): l = self.add_scatter_layer(l) elif issubclass(c, RGBImageLayerBase): r = props.pop('r') g = props.pop('g') b = props.pop('b') self.display_data = l self.display_attribute = r l = self.rgb_mode(True) l.r = r l.g = g l.b = b elif issubclass(c, (ImageLayerBase, SubsetImageLayerBase)): if isinstance(l, Data): self.set_data(l) l = self.add_layer(l) else: raise ValueError("Cannot restore layer of type %s" % l) l.properties = props def _on_component_replace(self, msg): if self.display_attribute is msg.old: self.display_attribute = msg.new def register_to_hub(self, hub): super(ImageClient, self).register_to_hub(hub) hub.subscribe(self, ComponentReplacedMessage, self._on_component_replace) # subclasses should override the following methods as appropriate def _new_rgb_layer(self, layer): """ Construct and return an RGBImageLayerBase for the given layer Parameters ---------- layer : Data or Subset instance Which object to visualize """ raise NotImplementedError() def _new_subset_image_layer(self, layer): """ Construct and return a SubsetImageLayerArtist for the given layer Parameters ---------- layer : Data or Subset instance Which object to visualize """ raise NotImplementedError() def _new_image_layer(self, layer): """ Construct and return an ImageLayerArtist for the given layer Parameters ---------- layer : Data or Subset instance Which object to visualize """ raise NotImplementedError() def _new_scatter_layer(self, layer): """ Construct and return a ScatterLayerArtist for the given layer Parameters ---------- layer : Data or Subset instance Which object to visualize """ raise NotImplementedError() def _update_axis_labels(self): """ Sync the displays for labels on X/Y axes, because the data or slice has changed """ raise NotImplementedError() def relim(self): """ Reset view window to the default pan/zoom setting. """ pass def show_crosshairs(self, x, y): pass def clear_crosshairs(self): pass class MplImageClient(ImageClient): def __init__(self, data, figure=None, axes=None, artist_container=None): super(MplImageClient, self).__init__(data, artist_container) if axes is not None: raise ValueError("ImageClient does not accept an axes") self._setup_mpl(figure, axes) # description of field of view and center of image self._view_window = None # artist for a crosshair self._crosshairs = None def _setup_mpl(self, figure, axes): figure, axes = init_mpl(figure, axes, wcs=True) self._axes = axes self._axes.get_xaxis().set_ticks([]) self._axes.get_yaxis().set_ticks([]) self._figure = figure # custom axes formatter def format_coord(x, y): data = self.display_data if data is None: # MPL default method return type(self._axes).format_coord(self._axes, x, y) info = self.point_details(x, y) return ' '.join(info['labels']) self._axes.format_coord = format_coord self._cid = self._axes.figure.canvas.mpl_connect('button_release_event', self.check_update) if hasattr(self._axes.figure.canvas, 'homeButton'): # test code doesn't always use Glue's custom FigureCanvas self._axes.figure.canvas.homeButton.connect(self.check_update) @property def axes(self): return self._axes def check_update(self, *args): """ For the MPL client, see if the view window has changed enough such that the images should be resampled """ logging.getLogger(__name__).debug("check update") vw = _view_window(self._axes) if vw != self._view_window: logging.getLogger(__name__).debug("updating") self._update_data_plot() self._update_subset_plots() self._redraw() self._view_window = vw @requires_data def _update_axis_labels(self): labels = _axis_labels(self.display_data, self.slice) self._update_wcs_axes(self.display_data, self.slice) self._axes.set_xlabel(labels[1]) self._axes.set_ylabel(labels[0]) @defer_draw def _update_wcs_axes(self, data, slc): wcs = getattr(data.coords, 'wcs', None) if wcs is not None and hasattr(self.axes, 'reset_wcs'): self.axes.reset_wcs(wcs, slices=slc[::-1]) def _redraw(self): self._axes.figure.canvas.draw() def relim(self): shp = _2d_shape(self.display_data.shape, self.slice) self._axes.set_xlim(0, shp[1]) self._axes.set_ylim(0, shp[0]) def _new_rgb_layer(self, layer): v = self._view or self._build_view() a = RGBImageLayerArtist(layer, self._axes, last_view=v) return a def _new_image_layer(self, layer): return ImageLayerArtist(layer, self._axes) def _new_subset_image_layer(self, layer): return SubsetImageLayerArtist(layer, self._axes) def _new_scatter_layer(self, layer): return ScatterLayerArtist(layer, self._axes) def _build_view(self): att = self.display_attribute shp = self.display_data.shape shp_2d = _2d_shape(shp, self.slice) v = extract_matched_slices(self._axes, shp_2d) x = slice(v[0], v[1], v[2]) y = slice(v[3], v[4], v[5]) slc = list(self.slice) slc[slc.index('x')] = x slc[slc.index('y')] = y return (att,) + tuple(slc) def show_crosshairs(self, x, y): if self._crosshairs is not None: self._crosshairs.remove() self._crosshairs, = self._axes.plot([x], [y], '+', ms=12, mfc='none', mec='#d32d26', mew=2, zorder=100) self._redraw() def clear_crosshairs(self): if self._crosshairs is not None: self._crosshairs.remove() self._crosshairs = None def _2d_shape(shape, slc): """Return the shape of the 2D slice through a 2 or 3D image """ # - numpy ordering here return shape[slc.index('y')], shape[slc.index('x')] def _slice_axis(shape, slc): """ Return a 2-tuple of which axes in a dataset lie along the x and y axes of the image :param shape: Shape of original data. tuple of ints :param slc: Slice through the data, tuple of ints, 'x', and 'y' """ return slc.index('x'), slc.index('y') def _axis_labels(data, slc): shape = data.shape names = [data.get_world_component_id(i).label for i in range(len(shape))] return names[slc.index('y')], names[slc.index('x')] def _view_window(ax): """ Return a tuple describing the view window of an axes object. The contents should not be used directly, Rather, several return values should be compared with == to determine if the window has been panned/zoomed """ ext = (ax.transAxes.transform([(1, 1)]) - ax.transAxes.transform([(0, 0)]))[0] xlim, ylim = ax.get_xlim(), ax.get_ylim() result = xlim[0], ylim[0], xlim[1], ylim[1], ext[0], ext[1] logging.getLogger(__name__).debug("view window: %s", result) return result def _default_component(data): """Choose a default ComponentID to display for data Returns PRIMARY if present """ cid = data.find_component_id('PRIMARY') if cid is not None: return cid return data.component_ids()[0]
{ "repo_name": "JudoWill/glue", "path": "glue/clients/image_client.py", "copies": "1", "size": "26469", "license": "bsd-3-clause", "hash": -8795166618981454000, "line_mean": 29.8856476079, "line_max": 82, "alpha_frac": 0.558464619, "autogenerated": false, "ratio": 3.9850948509485096, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.504355946994851, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging from functools import wraps import numpy as np from glue.external.modest_image import extract_matched_slices from glue.core.edit_subset_mode import EditSubsetMode from glue.core.callback_property import ( callback_property, CallbackProperty) from glue.core.message import ComponentReplacedMessage, SettingsChangeMessage from glue.core.roi import PolygonalROI from glue.core.subset import Subset, RoiSubsetState from glue.core.data import Data from glue.core.exceptions import IncompatibleAttribute from glue.core.layer_artist import LayerArtistContainer from glue.core.state import lookup_class_with_patches from glue.utils import defer_draw from glue.viewers.common.viz_client import VizClient, init_mpl, update_appearance_from_settings from glue.viewers.scatter.layer_artist import ScatterLayerBase, ScatterLayerArtist from .layer_artist import (ImageLayerArtist, SubsetImageLayerArtist, RGBImageLayerArtist, ImageLayerBase, RGBImageLayerBase, SubsetImageLayerBase) def requires_data(func): """ Decorator that checks an ImageClient for a non-null display_data attribute. Only executes decorated function if present. """ @wraps(func) def result(*args, **kwargs): if args[0].display_data is None: return return func(*args, **kwargs) return result class ImageClient(VizClient): display_data = CallbackProperty(None) display_attribute = CallbackProperty(None) display_aspect = CallbackProperty('equal') def __init__(self, data, layer_artist_container=None): VizClient.__init__(self, data) self.artists = layer_artist_container if self.artists is None: self.artists = LayerArtistContainer() # slice through ND cube # ('y', 'x', 2) # means current data slice is [:, :, 2], and axis=0 is vertical on plot self._slice = None # how to extract a downsampled/cropped 2D image to plot # (ComponentID, slice, slice, ...) self._view = None # cropped/downsampled image # self._image == self.display_data[self._view] self._image = None # if this is set, render this instead of self._image self._override_image = None # maps attributes -> normalization settings self._norm_cache = {} def point_details(self, x, y): if self.display_data is None: return dict(labels=['x=%s' % x, 'y=%s' % y], pix=(x, y), world=(x, y), value=np.nan) data = self.display_data pix = self._pixel_coords(x, y) labels = self.coordinate_labels(pix) world = data.coords.pixel2world(*pix[::-1]) world = world[::-1] # reverse for numpy convention view = [] for p, s in zip(pix, data.shape): p = int(p) if not (0 <= p < s): value = None break view.append(slice(p, p + 1)) else: if self._override_image is None: value = self.display_data[self.display_attribute, view] else: value = self._override_image[int(y), int(x)] value = value.ravel()[0] return dict(pix=pix, world=world, labels=labels, value=value) def coordinate_labels(self, pix): """ Return human-readable labels for a position in pixel coords Parameters ---------- pix : tuple of int Pixel coordinates of point in the data. Note that pix describes a position in the *data*, not necessarily the image display. Returns ------- list A list of strings for each coordinate axis, of the form ``axis_label_name=world_coordinate_value`` """ data = self.display_data if data is None: return [] world = data.coords.pixel2world(*pix[::-1]) world = world[::-1] # reverse for numpy convention labels = ['%s=%s' % (data.get_world_component_id(i).label, w) for i, w in enumerate(world)] return labels @callback_property def slice(self): """ Returns a tuple describing the current slice through the data The tuple has length equal to the dimensionality of the display data. Each entry is either: * 'x' if the dimension is mapped to the X image axis * 'y' if the dimension is mapped to the Y image axis * a number, indicating which fixed slice the dimension is restricted to """ if self._slice is not None: return self._slice if self.display_data is None: return tuple() ndim = self.display_data.ndim if ndim == 1: self._slice = ('x',) elif ndim == 2: self._slice = ('y', 'x') else: self._slice = (0,) * (ndim - 2) + ('y', 'x') return self._slice @slice.setter @defer_draw def slice(self, value): if self.slice == tuple(value): return if value == tuple(): return relim = value.index('x') != self._slice.index('x') or \ value.index('y') != self._slice.index('y') self._slice = tuple(value) self._clear_override() self._update_axis_labels() self._update_data_plot(relim=relim) self._update_subset_plots() self._update_scatter_plots() self._redraw() @property def is_3D(self): """ Returns True if the display data has 3 dimensions """ if not self.display_data: return False return len(self.display_data.shape) == 3 @property def slice_ind(self): """ For 3D data, returns the pixel index of the current slice. Otherwise, returns `None`. """ if self.is_3D: for s in self.slice: if s not in ['x', 'y']: return s return None @property def image(self): return self._image @requires_data def override_image(self, image): """ Temporarily override the current slice view with another image (i.e., an aggregate). """ self._override_image = image for a in self.artists[self.display_data]: if isinstance(a, ImageLayerBase): a.override_image(image) self._update_data_plot() self._redraw() def _clear_override(self): self._override_image = None for a in self.artists[self.display_data]: if isinstance(a, ImageLayerBase): a.clear_override() @slice_ind.setter @defer_draw def slice_ind(self, value): if self.is_3D: slc = [s if s in ['x', 'y'] else value for s in self.slice] self.slice = slc self._update_data_plot() self._update_subset_plots() self._update_scatter_plots() self._redraw() else: raise IndexError("Can only set slice_ind for 3D images") def can_image_data(self, data): return data.ndim > 1 def _ensure_data_present(self, data): if data not in self.artists: self.add_layer(data) @defer_draw def set_data(self, data, attribute=None): if not self.can_image_data(data): return self._ensure_data_present(data) self._slice = None attribute = attribute or _default_component(data) self.display_data = data self.display_attribute = attribute self._update_axis_labels() self._update_data_plot(relim=True) self._update_subset_plots() self._update_scatter_plots() self._redraw() def set_attribute(self, attribute): if not self.display_data or \ attribute not in self.display_data.component_ids(): raise IncompatibleAttribute( "Attribute not in data's attributes: %s" % attribute) if self.display_attribute is not None: self._norm_cache[self.display_attribute] = self.get_norm() self.display_attribute = attribute if attribute in self._norm_cache: self.set_norm(norm=self._norm_cache[attribute]) else: self.clear_norm() self._update_data_plot() self._redraw() def _redraw(self): """ Re-render the screen. """ pass @requires_data @defer_draw def set_norm(self, **kwargs): for a in self.artists[self.display_data]: a.set_norm(**kwargs) self._update_data_plot() self._redraw() @requires_data def clear_norm(self): for a in self.artists[self.display_data]: a.clear_norm() @requires_data def get_norm(self): a = self.artists[self.display_data][0] return a.norm @requires_data @defer_draw def set_cmap(self, cmap): for a in self.artists[self.display_data]: a.cmap = cmap a.redraw() def _build_view(self): att = self.display_attribute shp = self.display_data.shape x, y = np.s_[:], np.s_[:] slc = list(self.slice) slc[slc.index('x')] = x slc[slc.index('y')] = y return (att,) + tuple(slc) @requires_data def _numerical_data_changed(self, message): data = message.sender self._update_data_plot(force=True) self._update_scatter_layer(data) for s in data.subsets: self._update_subset_single(s, force=True) self._redraw() @requires_data def _update_data_plot(self, relim=False, force=False): """ Re-sync the main image and its subsets. """ if relim: self.relim() view = self._build_view() self._image = self.display_data[view] transpose = self.slice.index('x') < self.slice.index('y') self._view = view for a in list(self.artists): if (not isinstance(a, ScatterLayerBase) and a.layer.data is not self.display_data): self.artists.remove(a) else: if isinstance(a, ImageLayerArtist): a.update(view, transpose, aspect=self.display_aspect) else: a.update(view, transpose) for a in self.artists[self.display_data]: meth = a.update if not force else a.force_update if isinstance(a, ImageLayerArtist): meth(view, transpose=transpose, aspect=self.display_aspect) else: meth(view, transpose=transpose) def _update_subset_single(self, s, redraw=False, force=False): """ Update the location and visual properties of each point in a single subset. Parameters ---------- s: `~glue.core.subset.Subset` The subset to refresh. """ logging.getLogger(__name__).debug("update subset single: %s", s) if s not in self.artists: return self._update_scatter_layer(s) if s.data is not self.display_data: return view = self._build_view() transpose = self.slice.index('x') < self.slice.index('y') for a in self.artists[s]: meth = a.update if not force else a.force_update if isinstance(a, SubsetImageLayerArtist): meth(view, transpose=transpose, aspect=self.display_aspect) else: meth(view, transpose=transpose) if redraw: self._redraw() @property def _slice_ori(self): if not self.is_3D: return None for i, s in enumerate(self.slice): if s not in ['x', 'y']: return i @requires_data @defer_draw def apply_roi(self, roi): subset_state = RoiSubsetState() xroi, yroi = roi.to_polygon() x, y = self._get_plot_attributes() subset_state.xatt = x subset_state.yatt = y subset_state.roi = PolygonalROI(xroi, yroi) mode = EditSubsetMode() mode.update(self.data, subset_state, focus_data=self.display_data) def _remove_subset(self, message): self.delete_layer(message.sender) def delete_layer(self, layer): if layer not in self.artists: return for a in self.artists.pop(layer): a.clear() if isinstance(layer, Data): for subset in layer.subsets: self.delete_layer(subset) if layer is self.display_data: for layer in self.artists: if isinstance(layer, ImageLayerArtist): self.display_data = layer.data break else: for artist in self.artists: self.delete_layer(artist.layer) self.display_data = None self.display_attribute = None self._redraw() def _remove_data(self, message): self.delete_layer(message.data) for s in message.data.subsets: self.delete_layer(s) def init_layer(self, layer): # only auto-add subsets if they are of the main image if isinstance(layer, Subset) and layer.data is not self.display_data: return self.add_layer(layer) def rgb_mode(self, enable=None): """ Query whether RGB mode is enabled, or toggle RGB mode. Parameters ---------- enable : bool or None If `True` or `False`, explicitly enable/disable RGB mode. If `None`, check if RGB mode is enabled Returns ------- LayerArtist or None If RGB mode is enabled, returns an ``RGBImageLayerBase``. If ``enable`` is `False`, return the new ``ImageLayerArtist`` """ # XXX need to better handle case where two RGBImageLayerArtists # are created if enable is None: for a in self.artists: if isinstance(a, RGBImageLayerBase): return a return None result = None layer = self.display_data if enable: layer = self.display_data a = self._new_rgb_layer(layer) if a is None: return a.r = a.g = a.b = self.display_attribute with self.artists.ignore_empty(): self.artists.pop(layer) self.artists.append(a) result = a else: with self.artists.ignore_empty(): for artist in list(self.artists): if isinstance(artist, RGBImageLayerBase): self.artists.remove(artist) result = self.add_layer(layer) self._update_data_plot() self._redraw() return result def _update_aspect(self): self._update_data_plot(relim=True) self._redraw() def add_layer(self, layer): if layer in self.artists: return self.artists[layer][0] if layer.data not in self.data: raise TypeError("Data not managed by client's data collection") if not self.can_image_data(layer.data): # if data is 1D, try to scatter plot if len(layer.data.shape) == 1: return self.add_scatter_layer(layer) logging.getLogger(__name__).warning( "Cannot visualize %s. Aborting", layer.label) return if isinstance(layer, Data): result = self._new_image_layer(layer) self.artists.append(result) for s in layer.subsets: self.add_layer(s) self.set_data(layer) elif isinstance(layer, Subset): result = self._new_subset_image_layer(layer) self.artists.append(result) self._update_subset_single(layer) else: raise TypeError("Unrecognized layer type: %s" % type(layer)) return result def add_scatter_layer(self, layer): logging.getLogger( __name__).debug('Adding scatter layer for %s' % layer) if layer in self.artists: logging.getLogger(__name__).debug('Layer already present') return result = self._new_scatter_layer(layer) self.artists.append(result) self._update_scatter_layer(layer) return result def _update_scatter_plots(self): for layer in self.artists.layers: self._update_scatter_layer(layer) @requires_data def _update_scatter_layer(self, layer, force=False): if layer not in self.artists: return xatt, yatt = self._get_plot_attributes() need_redraw = False for a in self.artists[layer]: if not isinstance(a, ScatterLayerBase): continue need_redraw = True a.xatt = xatt a.yatt = yatt if self.is_3D: zatt = self.display_data.get_pixel_component_id( self._slice_ori) subset = ( zatt > self.slice_ind) & (zatt <= self.slice_ind + 1) a.emphasis = subset else: a.emphasis = None a.update() if not force else a.force_update() a.redraw() if need_redraw: self._redraw() @requires_data def _get_plot_attributes(self): x, y = _slice_axis(self.display_data.shape, self.slice) ids = self.display_data.pixel_component_ids return ids[x], ids[y] def _pixel_coords(self, x, y): """ From a slice coordinate (x,y), return the full (possibly >2D) numpy index into the full data. .. note:: The inputs to this function are the reverse of numpy convention (horizontal axis first, then vertical) Returns ------- coords : tuple Either a tuple of (x,y) or (x,y,z) """ result = list(self.slice) result[result.index('x')] = x result[result.index('y')] = y return result def is_visible(self, layer): return all(a.visible for a in self.artists[layer]) def set_visible(self, layer, state): for a in self.artists[layer]: a.visible = state def set_slice_ori(self, ori): if not self.is_3D: raise IndexError("Can only set slice_ori for 3D images") if ori == 0: self.slice = (0, 'y', 'x') elif ori == 1: self.slice = ('y', 0, 'x') elif ori == 2: self.slice = ('y', 'x', 0) else: raise ValueError("Orientation must be 0, 1, or 2") def restore_layers(self, layers, context): """ Restore a list of glue-serialized layer dicts. """ for layer in layers: c = lookup_class_with_patches(layer.pop('_type')) props = dict((k, v if k == 'stretch' else context.object(v)) for k, v in layer.items()) l = props['layer'] if issubclass(c, ScatterLayerBase): l = self.add_scatter_layer(l) elif issubclass(c, RGBImageLayerBase): r = props.pop('r') g = props.pop('g') b = props.pop('b') self.display_data = l self.display_attribute = r l = self.rgb_mode(True) l.r = r l.g = g l.b = b elif issubclass(c, (ImageLayerBase, SubsetImageLayerBase)): if isinstance(l, Data): self.set_data(l) l = self.add_layer(l) else: raise ValueError("Cannot restore layer of type %s" % l) l.properties = props def _on_component_replace(self, msg): if self.display_attribute is msg.old: self.display_attribute = msg.new def register_to_hub(self, hub): super(ImageClient, self).register_to_hub(hub) hub.subscribe(self, ComponentReplacedMessage, self._on_component_replace) # subclasses should override the following methods as appropriate def _new_rgb_layer(self, layer): """ Construct and return an RGBImageLayerBase for the given layer Parameters ---------- layer : :class:`~glue.core.data.Data` or :class:`~glue.core.subset.Subset` Which object to visualize """ raise NotImplementedError() def _new_subset_image_layer(self, layer): """ Construct and return a SubsetImageLayerArtist for the given layer Parameters ---------- layer : :class:`~glue.core.data.Data` or :class:`~glue.core.subset.Subset` Which object to visualize """ raise NotImplementedError() def _new_image_layer(self, layer): """ Construct and return an ImageLayerArtist for the given layer Parameters ---------- layer : :class:`~glue.core.data.Data` or :class:`~glue.core.subset.Subset` Which object to visualize """ raise NotImplementedError() def _new_scatter_layer(self, layer): """ Construct and return a ScatterLayerArtist for the given layer Parameters ---------- layer : :class:`~glue.core.data.Data` or :class:`~glue.core.subset.Subset` Which object to visualize """ raise NotImplementedError() def _update_axis_labels(self): """ Sync the displays for labels on X/Y axes, because the data or slice has changed """ raise NotImplementedError() def relim(self): """ Reset view window to the default pan/zoom setting. """ pass def show_crosshairs(self, x, y): pass def clear_crosshairs(self): pass class MplImageClient(ImageClient): def __init__(self, data, figure=None, axes=None, layer_artist_container=None): super(MplImageClient, self).__init__(data, layer_artist_container) if axes is not None: raise ValueError("ImageClient does not accept an axes") self._setup_mpl(figure, axes) # description of field of view and center of image self._view_window = None # artist for a crosshair self._crosshairs = None def _setup_mpl(self, figure, axes): figure, axes = init_mpl(figure, axes, wcs=True) self._axes = axes self._axes.get_xaxis().set_ticks([]) self._axes.get_yaxis().set_ticks([]) self._figure = figure # custom axes formatter def format_coord(x, y): data = self.display_data if data is None: # MPL default method return type(self._axes).format_coord(self._axes, x, y) info = self.point_details(x, y) return ' '.join(info['labels']) self._axes.format_coord = format_coord self._cid = self._axes.figure.canvas.mpl_connect('button_release_event', self.check_update) if hasattr(self._axes.figure.canvas, 'homeButton'): # test code doesn't always use Glue's custom FigureCanvas self._axes.figure.canvas.homeButton.connect(self.check_update) @property def axes(self): return self._axes def check_update(self, *args): """ For the Matplotlib client, see if the view window has changed enough such that the images should be resampled """ logging.getLogger(__name__).debug("check update") # We need to make sure we reapply the aspect ratio manually here, # because at this point, if the user has zoomed in to a region with a # different aspect ratio than the original view, Matplotlib has not yet # enforced computed the final limits. This is an issue if we have # requested square pixels. self.axes.apply_aspect() vw = _view_window(self._axes) if vw != self._view_window: logging.getLogger(__name__).debug("updating") self._update_and_redraw() self._view_window = vw def _update_and_redraw(self): self._update_data_plot() self._update_subset_plots() self._redraw() @requires_data def _update_axis_labels(self): labels = _axis_labels(self.display_data, self.slice) self._update_wcs_axes(self.display_data, self.slice) self._axes.set_xlabel(labels[1]) self._axes.set_ylabel(labels[0]) @defer_draw def _update_wcs_axes(self, data, slc): wcs = getattr(data.coords, 'wcs', None) if wcs is not None and hasattr(self.axes, 'reset_wcs'): self.axes.reset_wcs(wcs, slices=slc[::-1]) def _redraw(self): self._axes.figure.canvas.draw() def relim(self): shp = _2d_shape(self.display_data.shape, self.slice) self._axes.set_xlim(0, shp[1]) self._axes.set_ylim(0, shp[0]) def _new_rgb_layer(self, layer): v = self._view or self._build_view() a = RGBImageLayerArtist(layer, self._axes, last_view=v) return a def _new_image_layer(self, layer): return ImageLayerArtist(layer, self._axes) def _new_subset_image_layer(self, layer): return SubsetImageLayerArtist(layer, self._axes) def _new_scatter_layer(self, layer): return ScatterLayerArtist(layer, self._axes) def _build_view(self): att = self.display_attribute shp = self.display_data.shape shp_2d = _2d_shape(shp, self.slice) v = extract_matched_slices(self._axes, shp_2d) x = slice(v[0], v[1], v[2]) y = slice(v[3], v[4], v[5]) slc = list(self.slice) slc[slc.index('x')] = x slc[slc.index('y')] = y return (att,) + tuple(slc) def show_crosshairs(self, x, y): if self._crosshairs is not None: self._crosshairs.remove() self._crosshairs, = self._axes.plot([x], [y], '+', ms=12, mfc='none', mec='#d32d26', mew=2, zorder=100) self._redraw() def clear_crosshairs(self): if self._crosshairs is not None: self._crosshairs.remove() self._crosshairs = None def register_to_hub(self, hub): super(MplImageClient, self).register_to_hub(hub) def is_appearance_settings(msg): return ('BACKGROUND_COLOR' in msg.settings or 'FOREGROUND_COLOR' in msg.settings) hub.subscribe(self, SettingsChangeMessage, self._update_appearance_from_settings, filter=is_appearance_settings) def _update_appearance_from_settings(self, message): update_appearance_from_settings(self.axes) self._redraw() def _2d_shape(shape, slc): """ Return the shape of the 2D slice through a 2 or 3D image. """ # - numpy ordering here return shape[slc.index('y')], shape[slc.index('x')] def _slice_axis(shape, slc): """ Return a 2-tuple of which axes in a dataset lie along the x and y axes of the image. Parameters ---------- shape : tuple Shape of original data. slc : tuple Slice through the data, 'x', and 'y' """ return slc.index('x'), slc.index('y') def _axis_labels(data, slc): shape = data.shape names = [data.get_world_component_id(i).label for i in range(len(shape))] return names[slc.index('y')], names[slc.index('x')] def _view_window(ax): """ Return a tuple describing the view window of an axes object. The contents should not be used directly, Rather, several return values should be compared with == to determine if the window has been panned/zoomed """ ext = (ax.transAxes.transform([(1, 1)]) - ax.transAxes.transform([(0, 0)]))[0] xlim, ylim = ax.get_xlim(), ax.get_ylim() result = xlim[0], ylim[0], xlim[1], ylim[1], ext[0], ext[1] logging.getLogger(__name__).debug("view window: %s", result) return result def _default_component(data): """ Choose a default ComponentID to display for data """ cid = data.find_component_id('PRIMARY') if cid is not None: return cid return data.component_ids()[0]
{ "repo_name": "saimn/glue", "path": "glue/viewers/image/client.py", "copies": "1", "size": "28957", "license": "bsd-3-clause", "hash": 6251882682900647000, "line_mean": 30.1031149302, "line_max": 95, "alpha_frac": 0.5601063646, "autogenerated": false, "ratio": 3.9924169309251343, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0002679373969261392, "num_lines": 931 }
from __future__ import absolute_import, division, print_function import logging from functools import wraps import numpy as np # We avoid importing matplotlib up here otherwise Matplotlib and therefore Qt # get imported as soon as glue.utils is imported. from glue.external.axescache import AxesCache from glue.utils.misc import DeferredMethod __all__ = ['renderless_figure', 'all_artists', 'new_artists', 'remove_artists', 'get_extent', 'view_cascade', 'fast_limits', 'defer_draw', 'color2rgb', 'point_contour', 'cache_axes'] def renderless_figure(): # Matplotlib figure that skips the render step, for test speed from mock import MagicMock import matplotlib.pyplot as plt fig = plt.figure() fig.canvas.draw = MagicMock() plt.close('all') return fig def all_artists(fig): """ Build a set of all Matplotlib artists in a Figure """ return set(item for axes in fig.axes for container in [axes.collections, axes.patches, axes.lines, axes.texts, axes.artists, axes.images] for item in container) def new_artists(fig, old_artists): """ Find the newly-added artists in a figure :param fig: Matplotlib figure :param old_artists: Return value from :func:all_artists :returns: All artists added since all_artists was called """ return all_artists(fig) - old_artists def remove_artists(artists): """ Remove a collection of matplotlib artists from a scene :param artists: Container of artists """ for a in artists: try: a.remove() except ValueError: # already removed pass def get_extent(view, transpose=False): sy, sx = [s for s in view if isinstance(s, slice)] if transpose: return (sy.start, sy.stop, sx.start, sx.stop) return (sx.start, sx.stop, sy.start, sy.stop) def view_cascade(data, view): """ Return a set of views progressively zoomed out of input at roughly constant pixel count Parameters ---------- data : array-like The array to view view : The original view into the data """ shp = data.shape v2 = list(view) logging.debug("image shape: %s, view: %s", shp, view) # choose stride length that roughly samples entire image # at roughly the same pixel count step = max(shp[i - 1] * v.step // max(v.stop - v.start, 1) for i, v in enumerate(view) if isinstance(v, slice)) step = max(step, 1) for i, v in enumerate(v2): if not(isinstance(v, slice)): continue v2[i] = slice(0, shp[i - 1], step) return tuple(v2), view def _scoreatpercentile(values, percentile, limit=None): # Avoid using the scipy version since it is available in Numpy if limit is not None: values = values[(values >= limit[0]) & (values <= limit[1])] return np.percentile(values, percentile) def fast_limits(data, plo, phi): """ Quickly estimate percentiles in an array, using a downsampled version Parameters ---------- data : `numpy.ndarray` The array to estimate the percentiles for plo, phi : float The percentile values Returns ------- lo, hi : float The percentile values """ shp = data.shape view = tuple([slice(None, None, np.intp(max(s / 50, 1))) for s in shp]) values = np.asarray(data)[view] if ~np.isfinite(values).any(): return (0.0, 1.0) limits = (-np.inf, np.inf) lo = _scoreatpercentile(values.flat, plo, limit=limits) hi = _scoreatpercentile(values.flat, phi, limit=limits) return lo, hi def defer_draw(func): """ Decorator that globally defers all Agg canvas draws until function exit. If a Canvas instance's draw method is invoked multiple times, it will only be called once after the wrapped function returns. """ @wraps(func) def wrapper(*args, **kwargs): from matplotlib.backends.backend_agg import FigureCanvasAgg # don't recursively defer draws if isinstance(FigureCanvasAgg.draw, DeferredMethod): return func(*args, **kwargs) try: FigureCanvasAgg.draw = DeferredMethod(FigureCanvasAgg.draw) result = func(*args, **kwargs) finally: FigureCanvasAgg.draw.execute_deferred_calls() FigureCanvasAgg.draw = FigureCanvasAgg.draw.original_method return result wrapper._is_deferred = True return wrapper def color2rgb(color): from matplotlib.colors import ColorConverter result = ColorConverter().to_rgb(color) return result def point_contour(x, y, data): """Calculate the contour that passes through (x,y) in data :param x: x location :param y: y location :param data: 2D image :type data: :class:`numpy.ndarray` Returns: * A (nrow, 2column) numpy array. The two columns give the x and y locations of the contour vertices """ try: from scipy import ndimage except ImportError: raise ImportError("Image processing in Glue requires SciPy") inten = data[y, x] labeled, nr_objects = ndimage.label(data >= inten) z = data * (labeled == labeled[y, x]) y, x = np.mgrid[0:data.shape[0], 0:data.shape[1]] from matplotlib import _cntr cnt = _cntr.Cntr(x, y, z) xy = cnt.trace(inten) if not xy: return None xy = xy[0] return xy class AxesResizer(object): def __init__(self, ax, margins): self.ax = ax self.margins = margins @property def margins(self): return self._margins @margins.setter def margins(self, margins): self._margins = margins def on_resize(self, event): fig_width = self.ax.figure.get_figwidth() fig_height = self.ax.figure.get_figheight() x0 = self.margins[0] / fig_width x1 = 1 - self.margins[1] / fig_width y0 = self.margins[2] / fig_height y1 = 1 - self.margins[3] / fig_height dx = max(0.01, x1 - x0) dy = max(0.01, y1 - y0) self.ax.set_position([x0, y0, dx, dy]) self.ax.figure.canvas.draw() def freeze_margins(axes, margins=[1, 1, 1, 1]): """ Make sure margins of axes stay fixed. Parameters ---------- ax_class : matplotlib.axes.Axes The axes class for which to fix the margins margins : iterable The margins, in inches. The order of the margins is ``[left, right, bottom, top]`` Notes ----- The object that controls the resizing is stored as the resizer attribute of the Axes. This can be used to then change the margins: >> ax.resizer.margins = [0.5, 0.5, 0.5, 0.5] """ axes.resizer = AxesResizer(axes, margins) axes.figure.canvas.mpl_connect('resize_event', axes.resizer.on_resize) def cache_axes(axes, toolbar): """ Set up caching for an axes object. After this, cached renders will be used to quickly re-render an axes during window resizing or interactive pan/zooming. This function returns an AxesCache instance. Parameters ---------- axes : `~matplotlib.axes.Axes` The axes to cache toolbar : `~glue.viewers.common.qt.toolbar.GlueToolbar` The toolbar managing the axes' canvas """ canvas = axes.figure.canvas cache = AxesCache(axes) canvas.resize_begin.connect(cache.enable) canvas.resize_end.connect(cache.disable) toolbar.pan_begin.connect(cache.enable) toolbar.pan_end.connect(cache.disable) return cache
{ "repo_name": "saimn/glue", "path": "glue/utils/matplotlib.py", "copies": "2", "size": "7665", "license": "bsd-3-clause", "hash": -1435514187026761500, "line_mean": 26.0848056537, "line_max": 79, "alpha_frac": 0.6275277234, "autogenerated": false, "ratio": 3.69041887337506, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5317946596775059, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging from inspect import getmro from collections import defaultdict from glue.core.exceptions import InvalidSubscriber, InvalidMessage from glue.core.message import Message __all__ = ['Hub', 'HubListener'] class Hub(object): """The hub manages communication between subscribers. Objects :func:`subscribe` to receive specific message types. When a message is passed to :func:`broadcast`, the hub observes the following protocol: * For each subscriber, it looks for a message class subscription that is a superclass of the input message type (if several are found, the most-subclassed one is chosen) * If one is found, it calls the subscriptions filter(message) class (if provided) * If filter(message) == True, it calls handler(message) (or notify(message) if handler wasn't provided). """ def __init__(self, *args): """ Any arguments that are passed to Hub will be registered to the new hub object. """ # Dictionary of subscriptions self._subscriptions = defaultdict(dict) from glue.core.data import Data from glue.core.subset import Subset from glue.core.data_collection import DataCollection listeners = set(filter(lambda x: isinstance(x, HubListener), args)) data = set(filter(lambda x: isinstance(x, Data), args)) subsets = set(filter(lambda x: isinstance(x, Subset), args)) dcs = set(filter(lambda x: isinstance(x, DataCollection), args)) listeners -= (data | subsets | dcs) if set(listeners | data | subsets | dcs) != set(args): raise TypeError("Inputs must be HubListener, data, subset, or " "data collection objects") for l in listeners: l.register_to_hub(self) for d in data: d.register_to_hub(self) for dc in dcs: dc.register_to_hub(self) for s in subsets: s.register() def subscribe(self, subscriber, message_class, handler=None, filter=lambda x: True): """Subscribe an object to a type of message class. :param subscriber: The subscribing object :type subscriber: :class:`~glue.core.hub.HubListener` :param message_class: A :class:`~glue.core.message.Message` class to subscribe to :param handler: An optional function of the form handler(message) that will receive the message on behalf of the subscriber. If not provided, this defaults to the HubListener's notify method :type handler: Callable :param filter: An optional function of the form filter(message). Messages are only passed to the subscriber if filter(message) == True. The default is to always pass messages. :type filter: Callable Raises: InvalidMessage: If the input class isn't a :class:`~glue.core.message.Message` class InvalidSubscriber: If the input subscriber isn't a HubListener object. """ if not isinstance(subscriber, HubListener): raise InvalidSubscriber("Subscriber must be a HubListener: %s" % type(subscriber)) if not isinstance(message_class, type) or \ not issubclass(message_class, Message): raise InvalidMessage("message class must be a subclass of " "glue.Message: %s" % type(message_class)) logging.getLogger(__name__).info("Subscribing %s to %s", subscriber, message_class.__name__) if not handler: handler = subscriber.notify self._subscriptions[subscriber][message_class] = (filter, handler) def is_subscribed(self, subscriber, message): """ Test whether the subscriber has suscribed to a given message class :param subscriber: The subscriber to test :param message: The message class to test Returns: True if the subscriber/message pair have been subscribed to the hub """ return subscriber in self._subscriptions and \ message in self._subscriptions[subscriber] def get_handler(self, subscriber, message): try: return self._subscriptions[subscriber][message][1] except KeyError: return None def unsubscribe(self, subscriber, message): """ Remove a (subscriber,message) pair from subscription list. The handler originally attached to the subscription will no longer be called when broadcasting messages of type message """ if subscriber not in self._subscriptions: return if message in self._subscriptions[subscriber]: self._subscriptions[subscriber].pop(message) def unsubscribe_all(self, subscriber): """ Unsubscribe the object from any subscriptions. """ if subscriber in self._subscriptions: self._subscriptions.pop(subscriber) def _find_handlers(self, message): """Yields all (subscriber, handler) pairs that should receive a message """ # self._subscriptions: # subscriber => { message type => (filter, handler)} # loop over subscribed objects for subscriber, subscriptions in list(self._subscriptions.items()): # subscriptions to message or its superclasses messages = [msg for msg in subscriptions.keys() if issubclass(type(message), msg)] if len(messages) == 0: continue # narrow to the most-specific message candidate = max(messages, key=_mro_count) test, handler = subscriptions[candidate] if test(message): yield subscriber, handler def broadcast(self, message): """Broadcasts a message to all subscribed objects. :param message: The message to broadcast :type message: :class:`~glue.core.message.Message` """ logging.getLogger(__name__).info("Broadcasting %s", message) for subscriber, handler in self._find_handlers(message): handler(message) def __getstate__(self): """ Return a picklable representation of the hub Note: Only objects in glue.core are currently supported as pickleable. Thus, any subscriptions from objects outside glue.core will note be saved or restored """ result = self.__dict__.copy() result['_subscriptions'] = self._subscriptions.copy() for s in self._subscriptions: try: module = s.__module__ except AttributeError: module = '' if not module.startswith('glue.core'): print('Pickle warning: Hub removing subscription to %s' % s) result['_subscriptions'].pop(s) return result class HubListener(object): """ The base class for any object that subscribes to hub messages. This interface defines a single method, notify, that receives messages """ def register_to_hub(self, hub): raise NotImplementedError def unregister(self, hub): """ Default unregistration action. Calls hub.unsubscribe_all on self""" hub.unsubscribe_all(self) def notify(self, message): raise NotImplementedError("Message has no handler: %s" % message) def _mro_count(obj): return len(getmro(obj))
{ "repo_name": "saimn/glue", "path": "glue/core/hub.py", "copies": "2", "size": "7787", "license": "bsd-3-clause", "hash": -449945022321079550, "line_mean": 33.9192825112, "line_max": 79, "alpha_frac": 0.6110183639, "autogenerated": false, "ratio": 4.833643699565488, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00016015374759769378, "num_lines": 223 }
from __future__ import absolute_import, division, print_function import logging from inspect import getmro from collections import defaultdict from .message import Message from .exceptions import InvalidSubscriber, InvalidMessage __all__ = ['Hub', 'HubListener'] class Hub(object): """The hub manages communication between subscribers. Objects :func:`subscribe` to receive specific message types. When a message is passed to :func:`broadcast`, the hub observes the following protocol: * For each subscriber, it looks for a message class subscription that is a superclass of the input message type (if several are found, the most-subclassed one is chosen) * If one is found, it calls the subscriptions filter(message) class (if provided) * If filter(message) == True, it calls handler(message) (or notify(message) if handler wasn't provided). """ def __init__(self, *args): """ Any arguments that are passed to Hub will be registered to the new hub object. """ # Dictionary of subscriptions self._subscriptions = defaultdict(dict) from .data import Data from .subset import Subset from .data_collection import DataCollection listeners = set(filter(lambda x: isinstance(x, HubListener), args)) data = set(filter(lambda x: isinstance(x, Data), args)) subsets = set(filter(lambda x: isinstance(x, Subset), args)) dcs = set(filter(lambda x: isinstance(x, DataCollection), args)) listeners -= (data | subsets | dcs) if set(listeners | data | subsets | dcs) != set(args): raise TypeError("Inputs must be HubListener, data, subset, or " "data collection objects") for l in listeners: l.register_to_hub(self) for d in data: d.register_to_hub(self) for dc in dcs: dc.register_to_hub(self) for s in subsets: s.register() def subscribe(self, subscriber, message_class, handler=None, filter=lambda x: True): """Subscribe an object to a type of message class. :param subscriber: The subscribing object :type subscriber: :class:`~glue.core.hub.HubListener` :param message_class: A :class:`~glue.core.message.Message` class to subscribe to :param handler: An optional function of the form handler(message) that will receive the message on behalf of the subscriber. If not provided, this defaults to the HubListener's notify method :type handler: Callable :param filter: An optional function of the form filter(message). Messages are only passed to the subscriber if filter(message) == True. The default is to always pass messages. :type filter: Callable Raises: InvalidMessage: If the input class isn't a :class:`~glue.core.message.Message` class InvalidSubscriber: If the input subscriber isn't a HubListener object. """ if not isinstance(subscriber, HubListener): raise InvalidSubscriber("Subscriber must be a HubListener: %s" % type(subscriber)) if not isinstance(message_class, type) or \ not issubclass(message_class, Message): raise InvalidMessage("message class must be a subclass of " "glue.Message: %s" % type(message_class)) logging.getLogger(__name__).info("Subscribing %s to %s", subscriber, message_class.__name__) if not handler: handler = subscriber.notify self._subscriptions[subscriber][message_class] = (filter, handler) def is_subscribed(self, subscriber, message): """ Test whether the subscriber has suscribed to a given message class :param subscriber: The subscriber to test :param message: The message class to test Returns: True if the subscriber/message pair have been subscribed to the hub """ return subscriber in self._subscriptions and \ message in self._subscriptions[subscriber] def get_handler(self, subscriber, message): try: return self._subscriptions[subscriber][message][1] except KeyError: return None def unsubscribe(self, subscriber, message): """ Remove a (subscriber,message) pair from subscription list. The handler originally attached to the subscription will no longer be called when broadcasting messages of type message """ if subscriber not in self._subscriptions: return if message in self._subscriptions[subscriber]: self._subscriptions[subscriber].pop(message) def unsubscribe_all(self, subscriber): """ Unsubscribe the object from any subscriptions. """ if subscriber in self._subscriptions: self._subscriptions.pop(subscriber) def _find_handlers(self, message): """Yields all (subscriber, handler) pairs that should receive a message """ # self._subscriptions: # subscriber => { message type => (filter, handler)} # loop over subscribed objects for subscriber, subscriptions in list(self._subscriptions.items()): # subscriptions to message or its superclasses messages = [msg for msg in subscriptions.keys() if issubclass(type(message), msg)] if len(messages) == 0: continue # narrow to the most-specific message candidate = max(messages, key=_mro_count) test, handler = subscriptions[candidate] if test(message): yield subscriber, handler def broadcast(self, message): """Broadcasts a message to all subscribed objects. :param message: The message to broadcast :type message: :class:`~glue.core.message.Message` """ logging.getLogger(__name__).info("Broadcasting %s", message) for subscriber, handler in self._find_handlers(message): handler(message) def __getstate__(self): """ Return a picklable representation of the hub Note: Only objects in glue.core are currently supported as pickleable. Thus, any subscriptions from objects outside glue.core will note be saved or restored """ result = self.__dict__.copy() result['_subscriptions'] = self._subscriptions.copy() for s in self._subscriptions: try: module = s.__module__ except AttributeError: module = '' if not module.startswith('glue.core'): print('Pickle warning: Hub removing subscription to %s' % s) result['_subscriptions'].pop(s) return result class HubListener(object): """ The base class for any object that subscribes to hub messages. This interface defines a single method, notify, that receives messages """ def register_to_hub(self, hub): raise NotImplementedError def unregister(self, hub): """ Default unregistration action. Calls hub.unsubscribe_all on self""" hub.unsubscribe_all(self) def notify(self, message): raise NotImplementedError("Message has no handler: %s" % message) def _mro_count(obj): return len(getmro(obj))
{ "repo_name": "JudoWill/glue", "path": "glue/core/hub.py", "copies": "1", "size": "7741", "license": "bsd-3-clause", "hash": 4333110494248442000, "line_mean": 33.8693693694, "line_max": 79, "alpha_frac": 0.6094819791, "autogenerated": false, "ratio": 4.8654934003771215, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00016087516087516087, "num_lines": 222 }
from __future__ import absolute_import, division, print_function import logging from itertools import count from functools import partial import numpy as np import pandas as pd from matplotlib.ticker import AutoLocator, MaxNLocator, LogLocator from matplotlib.ticker import (LogFormatterMathtext, ScalarFormatter, FuncFormatter) __all__ = ["relim", "split_component_view", "join_component_view", "facet_subsets", "colorize_subsets", "disambiguate", "row_lookup", 'small_view', 'small_view_array', 'visible_limits', 'tick_linker', 'update_ticks'] def relim(lo, hi, log=False): logging.getLogger(__name__).debug("Inputs to relim: %r %r", lo, hi) x, y = lo, hi if log: if lo < 0: x = 1e-5 if hi < 0: y = 1e5 return x * .95, y * 1.05 delta = y - x return (x - .02 * delta, y + .02 * delta) def split_component_view(arg): """Split the input to data or subset.__getitem__ into its pieces. :param arg: The input passed to data or subset.__getitem__. Assumed to be either a scalar or tuple :rtype: tuple The first item is the Component selection (a ComponentID or string) The second item is a view (tuple of slices, slice scalar, or view object) """ if isinstance(arg, tuple): if len(arg) == 1: raise TypeError("Expected a scalar or >length-1 tuple, " "got length-1 tuple") if len(arg) == 2: return arg[0], arg[1] return arg[0], arg[1:] else: return arg, None def join_component_view(component, view): """Pack a componentID and optional view into single tuple Returns an object compatible with data.__getitem__ and related methods. Handles edge cases of when view is None, a scalar, a tuple, etc. :param component: ComponentID :param view: view into data, or None """ if view is None: return component result = [component] try: result.extend(view) except TypeError: # view is a scalar result = [component, view] return tuple(result) def facet_subsets(data_collection, cid, lo=None, hi=None, steps=5, prefix='', log=False): """Create a series of subsets that partition the values of a particular attribute into several bins This creates `steps` new subet groups, adds them to the data collection, and returns the list of newly created subset groups. :param data: DataCollection object to use :type data: :class:`~glue.core.data_collection.DataCollection` :param cid: ComponentID to facet on :type data: :class:`~glue.core.component_id.ComponentID` :param lo: The lower bound for the faceting. Defaults to minimum value in data :type lo: float :param hi: The upper bound for the faceting. Defaults to maximum value in data :type hi: float :param steps: The number of subsets to create. Defaults to 5 :type steps: int :param prefix: If present, the new subset labels will begin with `prefix` :type prefix: str :param log: If True, space divisions logarithmically. Default=False :type log: bool :returns: List of :class:`~glue.core.subset_group.SubsetGroup` instances added to `data` Example:: facet_subset(data, data.id['mass'], lo=0, hi=10, steps=2) creates 2 new subsets. The first represents the constraint 0 <= mass < 5. The second represents 5 <= mass <= 10:: facet_subset(data, data.id['mass'], lo=10, hi=0, steps=2) Creates 2 new subsets. The first represents the constraint 10 >= x > 5 The second represents 5 >= mass >= 0:: facet_subset(data, data.id['mass'], lo=0, hi=10, steps=2, prefix='m') Labels the subsets ``m_1`` and ``m_2``. Note that the last range is inclusive on both sides. For example, if ``lo`` is 0 and ``hi`` is 5, and ``steps`` is 5, then the intervals for the subsets are [0,1), [1,2), [2,3), [3,4), and [4,5]. """ from glue.core.exceptions import IncompatibleAttribute if lo is None or hi is None: for data in data_collection: try: vals = data[cid] break except IncompatibleAttribute: continue else: raise ValueError("Cannot infer data limits for ComponentID %s" % cid) if lo is None: lo = np.nanmin(vals) if hi is None: hi = np.nanmax(vals) reverse = lo > hi if log: rng = np.logspace(np.log10(lo), np.log10(hi), steps + 1) else: rng = np.linspace(lo, hi, steps + 1) states = [] labels = [] for i in range(steps): # The if i < steps - 1 clauses are needed because the last interval # has to be inclusive on both sides. if reverse: if i < steps - 1: states.append((cid <= rng[i]) & (cid > rng[i + 1])) labels.append(prefix + '{0}<{1}<={2}'.format(rng[i + 1], cid, rng[i])) else: states.append((cid <= rng[i]) & (cid >= rng[i + 1])) labels.append(prefix + '{0}<={1}<={2}'.format(rng[i + 1], cid, rng[i])) else: if i < steps - 1: states.append((cid >= rng[i]) & (cid < rng[i + 1])) labels.append(prefix + '{0}<={1}<{2}'.format(rng[i], cid, rng[i + 1])) else: states.append((cid >= rng[i]) & (cid <= rng[i + 1])) labels.append(prefix + '{0}<={1}<={2}'.format(rng[i], cid, rng[i + 1])) result = [] for lbl, s in zip(labels, states): sg = data_collection.new_subset_group(label=lbl, subset_state=s) result.append(sg) return result def colorize_subsets(subsets, cmap, lo=0, hi=1): """Re-color a list of subsets according to a colormap :param subsets: List of subsets :param cmap: Matplotlib colormap instance :param lo: Start location in colormap. 0-1. Defaults to 0 :param hi: End location in colormap. 0-1. Defaults to 1 The colormap will be sampled at `len(subsets)` even intervals between `lo` and `hi`. The color at the `ith` interval will be applied to `subsets[i]` """ from matplotlib import cm sm = cm.ScalarMappable(cmap=cmap) sm.norm.vmin = 0 sm.norm.vmax = 1 vals = np.linspace(lo, hi, len(subsets)) rgbas = sm.to_rgba(vals) for color, subset in zip(rgbas, subsets): r, g, b, a = color r = int(255 * r) g = int(255 * g) b = int(255 * b) subset.style.color = '#%2.2x%2.2x%2.2x' % (r, g, b) def disambiguate(label, taken): """If necessary, add a suffix to label to avoid name conflicts :param label: desired label :param taken: set of taken names Returns label if it is not in the taken set. Otherwise, returns label_NN where NN is the lowest integer such that label_NN not in taken. """ if label not in taken: return label suffix = "_%2.2i" label = str(label) for i in count(1): candidate = label + (suffix % i) if candidate not in taken: return candidate def row_lookup(data, categories): """ Lookup which row in categories each data item is equal to :param data: array-like :param categories: array-like of unique values :returns: Float array. If result[i] is finite, then data[i] = categoreis[result[i]] Otherwise, data[i] is not in the categories list """ # np.searchsorted doesn't work on mixed types in Python3 ndata, ncat = len(data), len(categories) data = pd.DataFrame({'data': data, 'row': np.arange(ndata)}) cats = pd.DataFrame({'categories': categories, 'cat_row': np.arange(ncat)}) m = pd.merge(data, cats, left_on='data', right_on='categories') result = np.zeros(ndata, dtype=float) * np.nan result[np.array(m.row)] = m.cat_row return result def small_view(data, attribute): """ Extract a downsampled view from a dataset, for quick statistical summaries """ shp = data.shape view = tuple([slice(None, None, np.intp(max(s / 50, 1))) for s in shp]) return data[attribute, view] def small_view_array(data): """ Same as small_view, except using a numpy array as input """ shp = data.shape view = tuple([slice(None, None, np.intp(max(s / 50, 1))) for s in shp]) return np.asarray(data)[view] def visible_limits(artists, axis): """ Determines the data limits for the data in a set of artists. Ignores non-visible artists Assumes each artist as a get_data method wich returns a tuple of x,y Returns a tuple of min, max for the requested axis, or None if no data present :param artists: An iterable collection of artists :param axis: Which axis to compute. 0=xaxis, 1=yaxis """ data = [] for art in artists: if not art.visible: continue xy = art.get_data() assert isinstance(xy, tuple) val = xy[axis] if val.size > 0: data.append(xy[axis]) if len(data) == 0: return data = np.hstack(data) if data.size == 0: return data = data[np.isfinite(data)] if data.size == 0: return lo, hi = np.nanmin(data), np.nanmax(data) if not np.isfinite(lo): return return lo, hi def tick_linker(all_categories, pos, *args): # We need to take care to ignore negative indices since these would actually # 'work' 'when accessing all_categories, but we need to avoid that. if pos < 0 or pos >= len(all_categories): return '' else: try: pos = np.round(pos) return all_categories[int(pos)] except IndexError: return '' def update_ticks(axes, coord, components, is_log): """ Changes the axes to have the proper tick formatting based on the type of component. :param axes: A matplotlib axis object to alter :param coord: 'x' or 'y' :param components: A list() of components that are plotted along this axis :param is_log: Boolean for log-scale. :kwarg max_categories: The maximum number of categories to display. :return: None or #categories if components is Categorical """ if coord == 'x': axis = axes.xaxis elif coord == 'y': axis = axes.yaxis else: raise TypeError("coord must be one of x,y") is_cat = all(comp.categorical for comp in components) if is_log: axis.set_major_locator(LogLocator()) axis.set_major_formatter(LogFormatterMathtext()) elif is_cat: all_categories = np.empty((0,), dtype=np.object) for comp in components: all_categories = np.union1d(comp.categories, all_categories) locator = MaxNLocator(10, integer=True) locator.view_limits(0, all_categories.shape[0]) format_func = partial(tick_linker, all_categories) formatter = FuncFormatter(format_func) axis.set_major_locator(locator) axis.set_major_formatter(formatter) return all_categories.shape[0] else: axis.set_major_locator(AutoLocator()) axis.set_major_formatter(ScalarFormatter())
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/util.py", "copies": "1", "size": "11445", "license": "bsd-3-clause", "hash": -3899604487544298000, "line_mean": 29.6016042781, "line_max": 87, "alpha_frac": 0.5994757536, "autogenerated": false, "ratio": 3.729227761485826, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9827762243207496, "avg_score": 0.00018825437566601745, "num_lines": 374 }
from __future__ import absolute_import, division, print_function import logging from time import time import numpy as np from ginga.misc import Bunch from ginga.util import wcsmod from ginga import AstroImage, BaseImage from glue.core.util import split_component_view from glue.core.exceptions import IncompatibleAttribute from glue.core.layer_artist import LayerArtistBase from glue.utils import view_shape, stack_view, color2rgb, Pointer from glue.viewers.image.client import ImageClient from glue.viewers.image.layer_artist import ImageLayerBase, SubsetImageLayerBase wcsmod.use('astropy') class GingaClient(ImageClient): def __init__(self, data, canvas=None, layer_artist_container=None): super(GingaClient, self).__init__(data, layer_artist_container) self._setup_ginga(canvas) def _setup_ginga(self, canvas): if canvas is None: raise ValueError("GingaClient needs a canvas") self._canvas = canvas self._wcs = None self._crosshair_id = '_crosshair' def _new_rgb_layer(self, layer): raise NotImplementedError() def _new_subset_image_layer(self, layer): return GingaSubsetImageLayer(layer, self._canvas) def _new_image_layer(self, layer): return GingaImageLayer(layer, self._canvas) def _new_scatter_layer(self, layer): raise NotImplementedError() def _update_axis_labels(self): pass def _update_and_redraw(self): pass def set_cmap(self, cmap): self._canvas.set_cmap(cmap) def show_crosshairs(self, x, y): self.clear_crosshairs() c = self._canvas.viewer.getDrawClass('point')(x, y, 6, color='red', style='plus') self._canvas.add(c, tag=self._crosshair_id, redraw=True) def clear_crosshairs(self): try: self._canvas.deleteObjectsByTag([self._crosshair_id], redraw=False) except: pass class GingaLayerArtist(LayerArtistBase): zorder = Pointer('_zorder') visible = Pointer('_visible') def __init__(self, layer, canvas): super(GingaLayerArtist, self).__init__(layer) self._canvas = canvas self._visible = True def redraw(self, whence=0): self._canvas.redraw(whence=whence) class GingaImageLayer(GingaLayerArtist, ImageLayerBase): # unused by Ginga cmap = None norm = None def __init__(self, layer, canvas): super(GingaImageLayer, self).__init__(layer, canvas) self._override_image = None self._tag = "layer%s_%s" % (layer.label, time()) self._img = None # DataImage instance self._enabled = True @property def visible(self): return self._visible @visible.setter def visible(self, value): if self._visible == value: return self._visible = value if not value: self.clear() elif self._img: self._canvas.set_image(self._img) @property def zorder(self): return self._zorder @zorder.setter def zorder(self, value): self._zorder = value try: canvas_img = self._canvas.getObjectByTag('_image') canvas_img.set_zorder(value) except KeyError: # object does not yet exist on canvas pass def set_norm(self, **kwargs): # NOP for ginga pass def clear_norm(self): # NOP for ginga pass def override_image(self, image): """Temporarily show a different image""" self._override_image = image def clear_override(self): self._override_image = None def clear(self): # remove previously added image try: self._canvas.deleteObjectsByTag(['_image'], redraw=False) except: pass @property def enabled(self): return self._enabled def update(self, view, transpose=False): if not self.visible: return # update ginga model comp, view = split_component_view(view) if self._img is None: self._img = DataImage(self.layer, comp, view, transpose) self._canvas.set_image(self._img) self._img.data = self.layer self._img.component = comp self._img.view = view self._img.transpose = transpose self._img.override_image = self._override_image self.redraw() class GingaSubsetImageLayer(GingaLayerArtist, SubsetImageLayerBase): def __init__(self, layer, canvas): super(GingaSubsetImageLayer, self).__init__(layer, canvas) self._img = None self._cimg = None self._tag = "layer%s_%s" % (layer.label, time()) self._enabled = True @property def visible(self): return self._visible @property def enabled(self): return self._enabled @visible.setter def visible(self, value): if value is self._visible: return self._visible = value if not value: self.clear() elif self._cimg: self._canvas.add(self._cimg, tag=self._tag, redraw=True) @property def zorder(self): return self._zorder @zorder.setter def zorder(self, value): self._zorder = value try: canvas_img = self._canvas.getObjectByTag(self._tag) canvas_img.set_zorder(value) except KeyError: # object does not yet exist on canvas pass def clear(self): try: self._canvas.deleteObjectsByTag([self._tag], redraw=True) except: pass def _update_ginga_models(self, view, transpose=False): subset = self.layer logging.getLogger(__name__).debug("View into subset %s is %s", self.layer, view) _, view = split_component_view(view) # discard ComponentID r, g, b = color2rgb(self.layer.style.color) if self._img is None: self._img = SubsetImage(subset, view) if self._cimg is None: # SubsetImages can't be added to canvases directly. Need # to wrap into a ginga canvas type. Image = self._canvas.getDrawClass('image') self._cimg = Image(0, 0, self._img, alpha=0.5, flipy=False) self._img.view = view self._img.color = (r, g, b) self._img.transpose = transpose def _check_enabled(self): """ Sync the enabled/disabled status, based on whether mask is computable """ self._enabled = True try: # the first pixel view = tuple(0 for _ in self.layer.data.shape) self.layer.to_mask(view) except IncompatibleAttribute as exc: self._enabled = False self.disable_invalid_attributes(*exc.args) return self._enabled def _ensure_added(self): """ Add artist to canvas if needed """ try: self._canvas.getObjectByTag(self._tag) except KeyError: self._canvas.add(self._cimg, tag=self._tag, redraw=False) def update(self, view, transpose=False): self._check_enabled() self._update_ginga_models(view, transpose) if self._enabled and self._visible: self._ensure_added() else: self.clear() self.redraw(whence=0) def forbidden(*args): raise ValueError("Forbidden") class DataImage(AstroImage.AstroImage): """ A Ginga image subclass to interface with Glue Data objects """ get_data = _get_data = copy_data = set_data = get_array = transfer = forbidden def __init__(self, data, component, view, transpose=False, override_image=None, **kwargs): """ Parameters ---------- data : glue.core.data.Data The data to image component : glue.core.data.ComponentID The ComponentID in the data to image view : numpy-style view The view into the data to image. Must produce a 2D array transpose : bool Whether to transpose the view override_image : numpy array, optional Whether to show override_image instead of the view into the data. The override image must have the same shape as the 2D view into the data. kwargs : dict Extra kwargs are passed to the superclass """ self.transpose = transpose self.view = view self.data = data self.component = component self.override_image = None super(DataImage, self).__init__(**kwargs) @property def shape(self): """ The shape of the 2D view into the data """ result = view_shape(self.data.shape, self.view) if self.transpose: result = result[::-1] return result def _get_fast_data(self): return self._slice((slice(None, None, 10), slice(None, None, 10))) def _slice(self, view): """ Extract a view from the 2D image. """ if self.override_image is not None: return self.override_image[view] # Combining multiple views: First a 2D slice into an ND array, then # the requested view from this slice if self.transpose: views = [self.view, 'transpose', view] else: views = [self.view, view] view = stack_view(self.data.shape, *views) return self.data[self.component, view] class SubsetImage(BaseImage.BaseImage): """ A Ginga image subclass to interface with Glue subset objects """ get_data = _get_data = copy_data = set_data = get_array = transfer = forbidden def __init__(self, subset, view, color=(0, 1, 0), transpose=False, **kwargs): """ Parameters ---------- subset : glue.core.subset.Subset The subset to image view : numpy-style view The view into the subset to image. Must produce a 2D array color : tuple of 3 floats in range [0, 1] The color to image the subset as transpose : bool Whether to transpose the view kwargs : dict Extra kwargs are passed to the ginga superclass """ super(SubsetImage, self).__init__(**kwargs) self.subset = subset self.view = view self.transpose = transpose self.color = color self.order = 'RGBA' @property def shape(self): """ Shape of the 2D view into the subset mask """ result = view_shape(self.subset.data.shape, self.view) if self.transpose: result = result[::-1] return tuple(list(result) + [4]) # 4th dim is RGBA channels def _rgb_from_mask(self, mask): """ Turn a boolean mask into a 4-channel RGBA image """ r, g, b = self.color ones = mask * 0 + 255 alpha = mask * 127 result = np.dstack((ones * r, ones * g, ones * b, alpha)).astype(np.uint8) return result def _get_fast_data(self): return self._slice((slice(None, None, 10), slice(None, None, 10))) def _slice(self, view): """ Extract a view from the 2D subset mask. """ # Combining multiple views: First a 2D slice into an ND array, then # the requested view from this slice if self.transpose: views = [self.view, 'transpose', view] else: views = [self.view, view] view = stack_view(self.subset.data.shape, *views) mask = self.subset.to_mask(view) return self._rgb_from_mask(mask) def _set_minmax(self): # we already know the data bounds self.minval = 0 self.maxval = 256 self.minval_noinf = self.minval self.maxval_noinf = self.maxval def get_scaled_cutout_wdht(self, x1, y1, x2, y2, new_wd, new_ht): doit = getattr(self, '_doit', False) self._doit = not doit # default implementation if downsampling if doit or new_wd <= (x2 - x1 + 1) or new_ht <= (y2 - y1 + 1): return super(SubsetImage, self).get_scaled_cutout_wdht(x1, y1, x2, y2, new_wd, new_ht) # if upsampling, prevent extra to_mask() computation x1, x2 = np.clip([x1, x2], 0, self.width - 2).astype(np.int) y1, y2 = np.clip([y1, y2], 0, self.height - 2).astype(np.int) result = self._slice(np.s_[y1:y2 + 1, x1:x2 + 1]) yi = np.linspace(0, result.shape[0], new_ht).astype(np.int).reshape(-1, 1).clip(0, result.shape[0] - 1) xi = np.linspace(0, result.shape[1], new_wd).astype(np.int).reshape(1, -1).clip(0, result.shape[1] - 1) yi, xi = [np.array(a) for a in np.broadcast_arrays(yi, xi)] result = result[yi, xi] scale_x = 1.0 * result.shape[1] / (x2 - x1 + 1) scale_y = 1.0 * result.shape[0] / (y2 - y1 + 1) return Bunch.Bunch(data=result, scale_x=scale_x, scale_y=scale_y)
{ "repo_name": "saimn/glue", "path": "glue/plugins/ginga_viewer/qt/client.py", "copies": "1", "size": "13126", "license": "bsd-3-clause", "hash": 1973570190032169700, "line_mean": 28.8997722096, "line_max": 111, "alpha_frac": 0.5815937833, "autogenerated": false, "ratio": 3.803535207186323, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48851289904863227, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging import docker.errors from urllib3.exceptions import TimeoutError from requests.exceptions import Timeout from ..decorators import retry from ..exceptions import ClipperException logger = logging.getLogger(__name__) def create_network(docker_client, name): try: docker_client.networks.create( name=name, check_duplicate=True) except docker.errors.APIError: logger.debug( "{nw} network already exists".format(nw=name)) except ConnectionError: msg = "Unable to Connect to Docker. Please Check if Docker is running." raise ClipperException(msg) # Wait for maximum 5 min. @retry((docker.errors.NotFound, docker.errors.APIError, ClipperException), tries=300, delay=1, backoff=1, logger=logger) def check_container_status(docker_client, name): state = docker_client.containers.get(name).attrs.get("State") inspected = docker_client.api.inspect_container(name) if (state is not None and state.get("Status") == "running") or \ (inspected is not None and inspected.get("State").get("Health").get( "Status") == "healthy"): return else: msg = "{} container is not running yet or broken. ".format(name) + \ "We will try to run again. Please analyze logs if " + \ "it keeps failing" raise ClipperException(msg) @retry((docker.errors.APIError, TimeoutError, Timeout), tries=5, logger=logger) def list_containers(docker_client, filters): return docker_client.containers.list(filters=filters) @retry((docker.errors.APIError, TimeoutError, Timeout), tries=5, logger=logger) def run_container(docker_client, image, cmd=None, name=None, ports=None, labels=None, environment=None, log_config=None, volumes=None, user=None, extra_container_kwargs=None): return docker_client.containers.run( image, command=cmd, name=name, ports=ports, labels=labels, environment=environment, volumes=volumes, user=user, log_config=log_config, **extra_container_kwargs)
{ "repo_name": "ucbrise/clipper", "path": "clipper_admin/clipper_admin/docker/docker_api_utils.py", "copies": "1", "size": "2242", "license": "apache-2.0", "hash": -823434625730076000, "line_mean": 33.4923076923, "line_max": 80, "alpha_frac": 0.6601248885, "autogenerated": false, "ratio": 4.025134649910234, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5185259538410234, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging import multiprocessing import threading import time import workflows import workflows.frontend.utilization import workflows.services import workflows.transport import workflows.util from workflows.services.common_service import CommonService try: # Python3 compatibility basestring = basestring except NameError: basestring = (str, bytes) class Frontend(): '''The frontend class encapsulates the actual service. It controls the service process and keeps the connection to the transport layer. It can process control messages directly, or pass messages on to the service. ''' def __init__(self, transport=None, service=None, transport_command_channel=None, restart_service=False, verbose_service=False, environment=None): '''Create a frontend instance. Connect to the transport layer, start any requested service, begin broadcasting status information and listen for control commands. :param restart_service: If the service process dies unexpectedly the frontend should start a new instance. :param service: A class or name of the class to be instantiated in a subprocess as service. :param transport: Either the name of a transport class, a transport class, or a transport class object. :param transport_command_channel: An optional channel of a transport subscription to be listened to for commands. :param verbose_service: If set, run services with increased logging level (DEBUG). :param environment: An optional dictionary that is passed to started services. ''' self.__lock = threading.RLock() self.__hostid = workflows.util.generate_unique_host_id() self._service = None # pointer to the service instance self._service_class_name = None self._service_factory = None # pointer to the service class self._service_name = None self._service_starttime = None self._service_rapidstarts = None self._pipe_commands = None # frontend -> service self._pipe_service = None # frontend <- service self._service_status = CommonService.SERVICE_STATUS_NONE self._service_status_announced = CommonService.SERVICE_STATUS_NONE self.restart_service = restart_service self.shutdown = False # Status broadcast related variables self._status_interval = 6 self._status_last_broadcast = 0 self._status_idle_since = None self._utilization = workflows.frontend.utilization.UtilizationStatistics( summation_period=self._status_interval) # Set up logging self._verbose_service = verbose_service class LogAdapter(): '''A helper class that acts like a dictionary, but actually reads its values from the get_status() function.''' status_fn = self.get_status status = status_fn() def __iter__(self): '''Update cached status values, renaming the keys for logging. Return a dictionary key iterator.''' self.status = { 'workflows_' + k: v \ for k, v in self.status_fn().items() } return self.status.__iter__() def __getitem__(self, key): '''Return a value from the status dictionary.''' return self.status.__getitem__(key) self.log = logging.LoggerAdapter( logging.getLogger('workflows.frontend'), LogAdapter()) self.log.warn = self.log.warning # Add support for deprecated .warn # Connect to the network transport layer if transport is None or isinstance(transport, basestring): self._transport_factory = workflows.transport.lookup(transport) else: self._transport_factory = transport assert hasattr(self._transport_factory, '__call__'), "No valid transport factory given" self._transport = self._transport_factory() assert self._transport.connect(), "Could not connect to transport layer" if transport_command_channel: self._transport.subscribe_broadcast(transport_command_channel, self.process_transport_command) self.log.debug('Listening for commands on transport layer') # Save environment for service starts self._service_environment = environment # Start initial service if one has been requested self._service_factory = service if service is not None: self.update_status(CommonService.SERVICE_STATUS_NEW) self.switch_service() else: self.update_status() def update_status(self, status_code=None): '''Update the service status kept inside the frontend (_service_status). The status is broadcast over the network immediately. If the status changes to IDLE then this message is delayed. The IDLE status is only broadcast if it is held for over 0.5 seconds. When the status does not change it is still broadcast every _status_interval seconds. :param status_code: Either an integer describing the service status (see workflows.services.common_service), or None if the status is unchanged. ''' if status_code is not None: self._service_status = status_code self._utilization.update_status(status_code) # Check whether IDLE status should be delayed if self._service_status == CommonService.SERVICE_STATUS_IDLE: if self._status_idle_since is None: self._status_idle_since = time.time() return elif self._status_idle_since + 0.5 > time.time(): return else: self._status_idle_since = None new_status = self._service_status != self._service_status_announced if (new_status or self._status_last_broadcast + self._status_interval <= time.time()) \ and self._transport and self._transport.is_connected(): self._service_status_announced = self._service_status self._transport.broadcast_status(self.get_status()) self._status_last_broadcast = time.time() def run(self): '''The main loop of the frontend. Here incoming messages from the service are processed and forwarded to the corresponding callback methods.''' self.log.debug("Entered main loop") while not self.shutdown: # If no service is running slow down the main loop if not self._pipe_service: time.sleep(0.3) self.update_status() # While a service is running, check for incoming messages from that service if self._pipe_service and self._pipe_service.poll(1): try: message = self._pipe_service.recv() if isinstance(message, dict) and 'band' in message: # only dictionaries with 'band' entry are valid messages try: handler = getattr(self, 'parse_band_' + message['band']) except AttributeError: handler = None self.log.warning("Unknown band %s", str(message['band'])) if handler: # try: handler(message) # except Exception: # print('Uh oh. What to do.') else: self.log.warning("Invalid message received %s", str(message)) except EOFError: # Service has gone away error_message = False if self._service_status == CommonService.SERVICE_STATUS_END: self.log.info("Service terminated") elif self._service_status == CommonService.SERVICE_STATUS_ERROR: error_message = "Service terminated with error code" elif self._service_status in (CommonService.SERVICE_STATUS_NONE, CommonService.SERVICE_STATUS_NEW, CommonService.SERVICE_STATUS_STARTING): error_message = 'Service may have died unexpectedly in ' \ + 'initialization (last known status: %s)' \ % CommonService.human_readable_state.get( \ self._service_status, self._service_status) else: error_message = "Service may have died unexpectedly" \ " (last known status: %s)" \ % CommonService.human_readable_state.get( \ self._service_status, self._service_status) if error_message: self.log.error(error_message) self._terminate_service() if self.restart_service: self.exponential_backoff() else: self.shutdown = True if error_message: raise workflows.Error(error_message) with self.__lock: if self._service is None and self.restart_service and self._service_factory: self.update_status(status_code=CommonService.SERVICE_STATUS_NEW) self.switch_service() # Check that the transport is alive if not self._transport.is_connected(): self._terminate_service() raise workflows.Error('Lost transport layer connection') self.log.debug("Left main loop") self.update_status(status_code=CommonService.SERVICE_STATUS_TEARDOWN) self._terminate_service() self.log.debug("Terminating.") def send_command(self, command): '''Send command to service via the command queue.''' if self._pipe_commands: self._pipe_commands.send(command) else: if self.shutdown: # Stop delivering messages in shutdown. self.log.info('During shutdown no command queue pipe found for command\n%s', str(command)) else: self.log.error('No command queue pipe found for command\n%s', str(command)) def process_transport_command(self, header, message): '''Parse a command coming in through the transport command subscription''' if not isinstance(message, dict): return relevant = False if 'host' in message: # Filter by host if message['host'] != self.__hostid: return relevant = True if 'service' in message: # Filter by service if message['service'] != self._service_class_name: return relevant = True if not relevant: # Ignore message unless at least one filter matches return if message.get('command'): self.log.info('Received command \'%s\' via transport layer', message['command']) if message['command'] == 'shutdown': self.shutdown = True else: self.log.warning('Received invalid transport command message') def parse_band_log(self, message): '''Process incoming logging messages from the service.''' if 'payload' in message and hasattr(message['payload'], 'name'): record = message['payload'] for k in dir(record): if k.startswith('workflows_exc_'): setattr(record, k[14:], getattr(record, k)) delattr(record, k) for k, v in self.get_status().items(): setattr(record, 'workflows_' + k, v) logging.getLogger(record.name).handle(record) else: self.log.warning("Received broken record on log band\n" + \ "Message: %s\nRecord: %s", str(message), str(hasattr(message.get('payload'), '__dict__') and message['payload'].__dict__)) def parse_band_set_name(self, message): '''Process incoming message indicating service name change.''' if message.get('name'): self._service_name = message['name'] else: self.log.warning("Received broken record on set_name band\nMessage: %s", str(message)) def parse_band_status_update(self, message): '''Process incoming status updates from the service.''' self.log.debug("Status update: " + str(message)) self.update_status(status_code=message['statuscode']) def get_host_id(self): '''Get a cached copy of the host id.''' return self.__hostid def get_status(self): '''Returns a dictionary containing all relevant status information to be broadcast across the network.''' return { 'host': self.__hostid, 'status': self._service_status_announced, 'statustext': CommonService.human_readable_state.get(self._service_status_announced), 'service': self._service_name, 'serviceclass': self._service_class_name, 'utilization': self._utilization.report(), 'workflows': workflows.version(), } def exponential_backoff(self): '''A function that keeps waiting longer and longer the more rapidly it is called. It can be used to increasingly slow down service starts when they keep failing.''' last_service_switch = self._service_starttime if not last_service_switch: return time_since_last_switch = time.time() - last_service_switch if not self._service_rapidstarts: self._service_rapidstarts = 0 minimum_wait = 0.1 * (2 ** self._service_rapidstarts) minimum_wait = min(5, minimum_wait) if time_since_last_switch > 10: self._service_rapidstarts = 0 return self._service_rapidstarts += 1 self.log.debug("Slowing down service starts (%.1f seconds)", minimum_wait) time.sleep(minimum_wait) def switch_service(self, new_service=None): '''Start a new service in a subprocess. :param new_service: Either a service name or a service class. If not set, start up a new instance of the previous class :return: True on success, False on failure. ''' if new_service: self._service_factory = new_service with self.__lock: # Terminate existing service if necessary if self._service is not None: self._terminate_service() # Find service class if necessary if isinstance(self._service_factory, basestring): self._service_factory = workflows.services.lookup(self._service_factory) if not self._service_factory: return False # Set up new service object service_instance = self._service_factory( environment=self._service_environment, ) # Set up pipes and connect service object svc_commands, self._pipe_commands = multiprocessing.Pipe(False) self._pipe_service, svc_tofrontend = multiprocessing.Pipe(False) service_instance.connect( commands=svc_commands, frontend=svc_tofrontend, ) # Set up transport layer for new service service_instance.transport = self._transport_factory() # Start new service in a separate process self._service = multiprocessing.Process( target=service_instance.start, args=(), kwargs={'verbose_log': self._verbose_service}) self._service_name = service_instance.get_name() self._service_class_name = service_instance.__class__.__name__ self._service.daemon = True self._service.name = 'workflows-service' self._service.start() self._service_starttime = time.time() # Starting the process copies all file descriptors. # At this point (and no sooner!) the passed pipe objects must be closed # in this process here. svc_commands.close() svc_tofrontend.close() self.log.info("Started service: %s", self._service_name) return True def _terminate_service(self): '''Force termination of running service. Disconnect queues, end queue feeder threads. Wait for service process to clear, drop all references.''' with self.__lock: if self._service: self._service.terminate() if self._pipe_commands: self._pipe_commands.close() if self._pipe_service: self._pipe_service.close() self._pipe_commands = None self._pipe_service = None self._service_class_name = None self._service_name = None if self._service_status != CommonService.SERVICE_STATUS_TEARDOWN: self.update_status(status_code=CommonService.SERVICE_STATUS_END) if self._service: self._service.join() # must wait for process to be actually destroyed self._service = None
{ "repo_name": "xia2/workflows", "path": "workflows/frontend/__init__.py", "copies": "1", "size": "16220", "license": "bsd-3-clause", "hash": 1695671499647257000, "line_mean": 40.0632911392, "line_max": 101, "alpha_frac": 0.6411837238, "autogenerated": false, "ratio": 4.43048347446053, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.557166719826053, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging import numpy import xarray from itertools import groupby from collections import defaultdict, OrderedDict from ..model import GeoBox from ..utils import check_intersect from .query import Query, query_group_by from .core import Datacube, get_measurements _LOG = logging.getLogger(__name__) class GridWorkflow(object): """ GridWorkflow deals with cell- and tile-based processing using a grid defining a projection and resolution. """ def __init__(self, index, grid_spec=None, product=None): """ Create a grid workflow tool. Either grid_spec or product must be supplied. :param Index index: The database index to use. :param GridSpec grid_spec: The grid projection and resolution :param str product: The name of an existing product, if no grid_spec is supplied. """ self.index = index if grid_spec is None: product = self.index.products.get_by_name(product) grid_spec = product and product.grid_spec self.grid_spec = grid_spec def cell_observations(self, cell_index=None, geopolygon=None, **indexers): """ List datasets, grouped by cell. :param (int,int) cell_index: The cell index. E.g. (14, -40) :param indexers: Query to match the datasets, see :py:class:`datacube.api.query.Query` :return: Datsets grouped by cell index :rtype: dict[(int,int), list[:py:class:`datacube.model.Dataset`]] .. seealso:: :meth:`datacube.Datacube.product_observations` :class:`datacube.api.query.Query` """ if cell_index: assert isinstance(cell_index, tuple) assert len(cell_index) == 2 geobox = GeoBox.from_grid_spec(self.grid_spec, cell_index) geopolygon = geobox.extent query = Query(index=self.index, geopolygon=geopolygon, **indexers) if not query.product: raise RuntimeError('must specify a product') observations = self.index.datasets.search_eager(**query.search_terms) if not observations: return {} tiles = {} if cell_index: tile_geopolygon = geobox.extent datasets = [dataset for dataset in observations if check_intersect(tile_geopolygon, dataset.extent.to_crs(self.grid_spec.crs))] tiles[cell_index] = { 'datasets': datasets, 'geobox': geobox } else: for dataset in observations: dataset_extent = dataset.extent.to_crs(self.grid_spec.crs) for tile_index, tile_geobox in self.grid_spec.tiles(dataset_extent.boundingbox): if check_intersect(tile_geobox.extent, dataset_extent): tiles.setdefault(tile_index, {'datasets': [], 'geobox': tile_geobox})['datasets'].append(dataset) return tiles @staticmethod def cell_sources(observations, group_by): """ Group observations into sources :param observations: datasets grouped by cell index, like from :meth:`datacube.GridWorkflow.cell_observations` :param str group_by: grouping method, one of "time", "solar_day" :return: sources grouped by cell index :rtype: dict[(int,int), :py:class:`xarray.DataArray`] .. seealso:: :meth:`load` :meth:`datacube.Datacube.product_sources` """ stack = defaultdict(dict) for cell_index, observation in observations.items(): sources = Datacube.product_sources(observation['datasets'], group_func=group_by.group_by_func, dimension=group_by.dimension, units=group_by.units) stack[cell_index] = { 'sources': sources, 'geobox': observation['geobox'] } return stack @staticmethod def tile_sources(observations, group_by): """ Split observations into tiles and group into sources :param observations: datasets grouped by cell index, like from :meth:`datacube.GridWorkflow.cell_observations` :param str group_by: grouping method, one of "time", "solar_day" :return: sources grouped by cell index and time :rtype: dict[tuple(int, int, numpy.datetime64), :py:class:`xarray.DataArray`] .. seealso:: :meth:`load` :meth:`datacube.Datacube.product_sources` """ stack = defaultdict(dict) for cell_index, observation in observations.items(): observation['datasets'].sort(key=group_by.group_by_func) groups = [(key, tuple(group)) for key, group in groupby(observation['datasets'], group_by.group_by_func)] for key, datasets in groups: data = numpy.empty(1, dtype=object) data[0] = datasets variable = xarray.Variable((group_by.dimension,), data, fastpath=True) coord = xarray.Variable((group_by.dimension,), numpy.array([key], dtype='datetime64[ns]'), attrs={'units': group_by.units}, fastpath=True) coords = OrderedDict([(group_by.dimension, coord)]) sources = xarray.DataArray(variable, coords=coords, fastpath=True) stack[cell_index + (coord.values[0],)] = { 'sources': sources, 'geobox': observation['geobox'] } # TODO: Should be a Tile Obj return stack def list_cells(self, cell_index=None, **query): """ List cells that match the query. Cells are included if they contain any datasets that match the query using the same format as :meth:`datacube.Datacube.load`. E.g.:: gw.list_cells(product_type='nbar', platform=['LANDSAT_5', 'LANDSAT_7', 'LANDSAT_8'], time=('2001-1-1 00:00:00', '2001-3-31 23:59:59')) :param (int,int) cell_index: The cell index. E.g. (14, -40) :param query: see :py:class:`datacube.api.query.Query` :rtype: dict[(int, int), Cell] """ observations = self.cell_observations(cell_index, **query) return self.cell_sources(observations, query_group_by(**query)) def list_tiles(self, cell_index=None, **query): """ List tiles of data, sorted by cell. :: tiles = gw.list_tiles(product_type=['nbar', 'pq'], platform='LANDSAT_5') The values can be passed to :meth:`load` :param (int,int) cell_index: The cell index. E.g. (14, -40) :param query: see :py:class:`datacube.api.query.Query` :rtype: dict[(int, int, numpy.datetime64), Tile] .. seealso:: :meth:`load` """ observations = self.cell_observations(cell_index, **query) return self.tile_sources(observations, query_group_by(**query)) @staticmethod def load(tile, measurements=None, chunk=None, dask_chunks=None, fuse_func=None): """ Load data for a cell/tile. The data to be loaded is defined by the output of :meth:`list_tiles`. See the documentation on using `xarray with dask <http://xarray.pydata.org/en/stable/dask.html>`_ for more information. :param tile: The tile to load. :param measurements: The name or list of names of measurements to load :param dict chunk: Load a chunk of a cell/tile. Specify the slice in each output dimension. :param dict dask_chunks: If the data should be loaded as needed using :py:class:`dask.array.Array`, specify the chunk size in each output direction. See the documentation on using `xarray with dask <http://xarray.pydata.org/en/stable/dask.html>`_ for more information. :param fuse_func: Function to fuse together a tile that has been pre-grouped by calling :meth:`list_cells` with a ``group_by`` parameter. :return: The requested data. :rtype: :py:class:`xarray.Dataset` .. seealso:: :meth:`list_tiles` :meth:`list_cells` """ sources = tile['sources'] geobox = tile['geobox'] if chunk: assert not set(chunk.keys()) - set(sources.dims+geobox.dimensions), 'bad dimensions' sources = sources[tuple(chunk.get(dim, slice(None)) for dim in sources.dims)] geobox = geobox[tuple(chunk.get(dim, slice(None)) for dim in geobox.dimensions)] observations = [] for dataset in sources.values: observations += dataset all_measurements = get_measurements(observations) if measurements: measurements = [all_measurements[measurement] for measurement in measurements if measurement in all_measurements] else: measurements = [measurement for measurement in all_measurements.values()] dataset = Datacube.product_data(sources, geobox, measurements, dask_chunks=dask_chunks, fuse_func=fuse_func) return dataset def __str__(self): return "GridWorkflow<index={!r},\n\tgridspec={!r}>".format(self.index, self.grid_spec) def __repr__(self): return self.__str__()
{ "repo_name": "ceos-seo/Data_Cube_v2", "path": "agdc-v2/datacube/api/grid_workflow.py", "copies": "1", "size": "9765", "license": "apache-2.0", "hash": -4582628576569607000, "line_mean": 38.6951219512, "line_max": 118, "alpha_frac": 0.5819764465, "autogenerated": false, "ratio": 4.2036160137752905, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.528559246027529, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging import operator import numbers import numpy as np from .util import join_component_view from .subset import InequalitySubsetState from .contracts import contract, ContractsMeta from ..external.six import add_metaclass __all__ = ['ComponentLink', 'BinaryComponentLink'] def identity(x): return x OPSYM = {operator.add: '+', operator.sub: '-', operator.truediv: '/', operator.mul: '*', operator.pow: '**'} @add_metaclass(ContractsMeta) class ComponentLink(object): """ ComponentLinks represent transformation logic between ComponentIDs ComponentLinks are be used to derive one :class:`~glue.core.data.ComponentID` from another: Example:: def hours_to_minutes(hours): return hours * 60 d = Data(hour=[1, 2, 3]) hour = d.id['hour'] minute = ComponentID('minute') link = ComponentLink( [hour], minute, using=hours_to_minutes) link.compute(d) # array([ 60, 120, 180]) d.add_component_link(link) d['minute'] # array([ 60, 120, 180]) """ @contract(using='callable|None', inverse='callable|None') def __init__(self, comp_from, comp_to, using=None, inverse=None): """ :param comp_from: The input ComponentIDs :type comp_from: list of :class:`~glue.core.data.ComponentID` :param comp_to: The target component ID :type comp_from: :class:`~glue.core.data.ComponentID` :pram using: The translation function which maps data from comp_from to comp_to (optional) The using function should satisfy:: using(data[comp_from[0]],...,data[comp_from[-1]]) = desired data :param inverse: The inverse translation function, if exists (optional) :raises: TypeError if input is invalid .. note :: Both ``inverse`` and ``using`` should accept and return numpy arrays """ from .data import ComponentID self._from = comp_from self._to = comp_to if using is None: using = identity self._using = using self._inverse = inverse self.hidden = False # show in widgets? self.identity = self._using is identity if type(comp_from) is not list: raise TypeError("comp_from must be a list: %s" % type(comp_from)) if not all(isinstance(f, ComponentID) for f in self._from): raise TypeError("from argument is not a list of ComponentIDs: %s" % self._from) if not isinstance(self._to, ComponentID): raise TypeError("to argument is not a ComponentID: %s" % type(self._to)) if using is identity: if len(comp_from) != 1: raise TypeError("comp_from must have only 1 element, " "or a 'using' function must be provided") @contract(data='isinstance(Data)', view='array_view') def compute(self, data, view=None): """For a given data set, compute the component comp_to given the data associated with each comp_from and the ``using`` function :param data: The data set to use :param view: Optional view (e.g. slice) through the data to use *Returns*: The data associated with comp_to component *Raises*: InvalidAttribute, if the data set doesn't have all the ComponentIDs needed for the transformation """ logger = logging.getLogger(__name__) args = [data[join_component_view(f, view)] for f in self._from] logger.debug("shape of first argument: %s", args[0].shape) result = self._using(*args) logger.debug("shape of result: %s", result.shape) if result.shape != args[0].shape: logger.warn("ComponentLink function %s changed shape. Fixing", self._using.__name__) result.shape = args[0].shape return result def get_from_ids(self): """ The list of input ComponentIDs """ return self._from @contract(old='isinstance(ComponentID)', new='isinstance(ComponentID)') def replace_ids(self, old, new): """Replace all references to an old ComponentID with references to new :parma old: ComponentID to replace :param new: ComponentID to replace with """ for i, f in enumerate(self._from): if f is old: self._from[i] = new if self._to is old: self._to = new @contract(_from='list(isinstance(ComponentID))') def set_from_ids(self, _from): if len(_from) != len(self._from): raise ValueError("New ID list has the wrong length.") self._from = _from def get_to_id(self): """ The target ComponentID """ return self._to def set_to_id(self, to): self._to = to def get_using(self): """ The transformation function """ return self._using def get_inverse(self): """ The inverse transformation, or None """ return self._inverse def __str__(self): args = ", ".join([t.label for t in self._from]) if self._using is not identity: result = "%s <- %s(%s)" % (self._to, self._using.__name__, args) else: result = "%s <-> %s" % (self._to, self._from) return result def __repr__(self): return str(self) @contract(other='isinstance(ComponentID)|component_like|float|int') def __add__(self, other): return BinaryComponentLink(self, other, operator.add) @contract(other='isinstance(ComponentID)|component_like|float|int') def __radd__(self, other): return BinaryComponentLink(other, self, operator.add) @contract(other='isinstance(ComponentID)|component_like|float|int') def __sub__(self, other): return BinaryComponentLink(self, other, operator.sub) @contract(other='isinstance(ComponentID)|component_like|float|int') def __rsub__(self, other): return BinaryComponentLink(other, self, operator.sub) @contract(other='isinstance(ComponentID)|component_like|float|int') def __mul__(self, other): return BinaryComponentLink(self, other, operator.mul) @contract(other='isinstance(ComponentID)|component_like|float|int') def __rmul__(self, other): return BinaryComponentLink(other, self, operator.mul) @contract(other='isinstance(ComponentID)|component_like|float|int') def __div__(self, other): return BinaryComponentLink(self, other, operator.div) @contract(other='isinstance(ComponentID)|component_like|float|int') def __rdiv__(self, other): return BinaryComponentLink(other, self, operator.div) @contract(other='isinstance(ComponentID)|component_like|float|int') def __truediv__(self, other): return BinaryComponentLink(self, other, operator.truediv) @contract(other='isinstance(ComponentID)|component_like|float|int') def __rtruediv__(self, other): return BinaryComponentLink(other, self, operator.truediv) @contract(other='isinstance(ComponentID)|component_like|float|int') def __pow__(self, other): return BinaryComponentLink(self, other, operator.pow) @contract(other='isinstance(ComponentID)|component_like|float|int') def __rpow__(self, other): return BinaryComponentLink(other, self, operator.pow) @contract(other='isinstance(ComponentID)|component_like|float|int') def __lt__(self, other): return InequalitySubsetState(self, other, operator.lt) @contract(other='isinstance(ComponentID)|component_like|float|int') def __le__(self, other): return InequalitySubsetState(self, other, operator.le) @contract(other='isinstance(ComponentID)|component_like|float|int') def __gt__(self, other): return InequalitySubsetState(self, other, operator.gt) @contract(other='isinstance(ComponentID)|component_like|float|int') def __ge__(self, other): return InequalitySubsetState(self, other, operator.ge) class CoordinateComponentLink(ComponentLink): @contract(comp_from='list(isinstance(ComponentID))', comp_to='isinstance(ComponentID)', coords='isinstance(Coordinates)', index=int, pixel2world=bool) def __init__(self, comp_from, comp_to, coords, index, pixel2world=True): self.coords = coords self.index = index self.pixel2world = pixel2world # Some coords don't need all pixel coords # to compute a given world coord, and vice versa # (e.g., spectral data cubes) self.ndim = len(comp_from) self.from_needed = coords.dependent_axes(index) self._from_all = comp_from comp_from = [comp_from[i] for i in self.from_needed] super(CoordinateComponentLink, self).__init__( comp_from, comp_to, self.using) self.hidden = True def using(self, *args): attr = 'pixel2world' if self.pixel2world else 'world2pixel' func = getattr(self.coords, attr) args2 = [None] * self.ndim for f, a in zip(self.from_needed, args): args2[f] = a for i in range(self.ndim): if args2[i] is None: args2[i] = np.zeros_like(args[0]) args2 = tuple(args2) return func(*args2[::-1])[::-1][self.index] def __str__(self): rep = 'pix2world' if self.pixel2world else 'world2pix' sup = super(CoordinateComponentLink, self).__str__() return sup.replace('using', rep) class BinaryComponentLink(ComponentLink): """ A ComponentLink that combines two inputs with a binary function :param left: The first input argument. ComponentID, ComponentLink, or number :param right: The second input argument. ComponentID, ComponentLink, or number :param op: A function with two inputs that works on numpy arrays The CompoentLink represents the logic of applying `op` to the data associated with the inputs `left` and `right`. """ def __init__(self, left, right, op): from .data import ComponentID self._left = left self._right = right self._op = op from_ = [] if isinstance(left, ComponentID): from_.append(left) elif isinstance(left, ComponentLink): from_.extend(left.get_from_ids()) elif not isinstance(left, numbers.Number): raise TypeError("Cannot create BinaryComponentLink using %s" % left) if isinstance(right, ComponentID): from_.append(right) elif isinstance(right, ComponentLink): from_.extend(right.get_from_ids()) elif not isinstance(right, numbers.Number): raise TypeError("Cannot create BinaryComponentLink using %s" % right) to = ComponentID("") null = lambda *args: None super(BinaryComponentLink, self).__init__(from_, to, null) def replace_ids(self, old, new): super(BinaryComponentLink, self).replace_ids(old, new) if self._left is old: self._left = new elif isinstance(self._left, ComponentLink): self._left.replace_ids(old, new) if self._right is old: self._right = new elif isinstance(self._right, ComponentLink): self._right.replace_ids(old, new) def compute(self, data, view=None): l = self._left r = self._right if not isinstance(self._left, numbers.Number): l = data[self._left, view] if not isinstance(self._right, numbers.Number): r = data[self._right, view] return self._op(l, r) def __str__(self): sym = OPSYM.get(self._op, self._op.__name__) return '(%s %s %s)' % (self._left, sym, self._right) def __repr__(self): return "<BinaryComponentLink: %s>" % self
{ "repo_name": "JudoWill/glue", "path": "glue/core/component_link.py", "copies": "1", "size": "12236", "license": "bsd-3-clause", "hash": -8295404549606741000, "line_mean": 32.8011049724, "line_max": 79, "alpha_frac": 0.6052631579, "autogenerated": false, "ratio": 4.0637661906343405, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.516902934853434, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging import operator import warnings import numpy as np import pandas as pd from glue.core.subset import (RoiSubsetState, RangeSubsetState, CategoricalROISubsetState, AndState, CategoricalMultiRangeSubsetState, CategoricalROISubsetState2D) from glue.core.roi import (PolygonalROI, CategoricalROI, RangeROI, XRangeROI, YRangeROI, RectangularROI) from glue.core.util import row_lookup from glue.utils import (unique, shape_to_string, coerce_numeric, check_sorted, polygon_line_intersections, broadcast_to) __all__ = ['Component', 'DerivedComponent', 'CategoricalComponent', 'CoordinateComponent'] class Component(object): """ Stores the actual, numerical information for a particular quantity Data objects hold one or more components, accessed via ComponentIDs. All Components in a data set must have the same shape and number of dimensions Notes ----- Instead of instantiating Components directly, consider using :meth:`Component.autotyped`, which chooses a subclass most appropriate for the data type. """ def __init__(self, data, units=None): """ :param data: The data to store :type data: :class:`numpy.ndarray` :param units: Optional unit label :type units: str """ # The physical units of the data self.units = units # The actual data # subclasses may pass non-arrays here as placeholders. if isinstance(data, np.ndarray): data = coerce_numeric(data) data.setflags(write=False) # data is read-only self._data = data @property def units(self): return self._units @units.setter def units(self, value): if value is None: self._units = '' else: self._units = str(value) @property def hidden(self): """Whether the Component is hidden by default""" return False @property def data(self): """ The underlying :class:`numpy.ndarray` """ return self._data @property def shape(self): """ Tuple of array dimensions """ return self._data.shape @property def ndim(self): """ The number of dimensions """ return len(self._data.shape) def __getitem__(self, key): logging.debug("Using %s to index data of shape %s", key, self.shape) return self._data[key] @property def numeric(self): """ Whether or not the datatype is numeric """ # We need to be careful here to not just access self.data since that # would force the computation of the whole component in the case of # derived components, so instead we specifically only get the first # element. return np.can_cast(self[(0,) * self.ndim].dtype, np.complex) @property def categorical(self): """ Whether or not the datatype is categorical """ return False def __str__(self): return "%s with shape %s" % (self.__class__.__name__, shape_to_string(self.shape)) def jitter(self, method=None): raise NotImplementedError def subset_from_roi(self, att, roi, other_comp=None, other_att=None, coord='x'): """ Create a SubsetState object from an ROI. This encapsulates the logic for creating subset states with Components. See the documentation for CategoricalComponents for caveats involved with mixed-type plots. :param att: attribute name of this Component :param roi: an ROI object :param other_comp: The other Component for 2D ROIs :param other_att: The attribute name of the other Component :param coord: The orientation of this Component :param is_nested: True if this was passed from another Component. :return: A SubsetState (or subclass) object """ if coord not in ('x', 'y'): raise ValueError('coord should be one of x/y') other_coord = 'y' if coord == 'x' else 'x' if isinstance(roi, RangeROI): # The selection is either an x range or a y range if roi.ori == coord: # The selection applies to the current component lo, hi = roi.range() subset_state = RangeSubsetState(lo, hi, att) else: # The selection applies to the other component, so we delegate return other_comp.subset_from_roi(other_att, roi, other_comp=self, other_att=att, coord=other_coord) else: # The selection is polygon-like. Categorical components require # special care, so if the other component is categorical, we need to # delegate to CategoricalComponent.subset_from_roi. if isinstance(other_comp, CategoricalComponent): return other_comp.subset_from_roi(other_att, roi, other_comp=self, other_att=att, is_nested=True, coord=other_coord) else: subset_state = RoiSubsetState() subset_state.xatt = att subset_state.yatt = other_att x, y = roi.to_polygon() subset_state.roi = PolygonalROI(x, y) return subset_state def to_series(self, **kwargs): """ Convert into a pandas.Series object. :param kwargs: All kwargs are passed to the Series constructor. :return: pandas.Series """ return pd.Series(self.data.ravel(), **kwargs) @classmethod def autotyped(cls, data, units=None): """ Automatically choose between Component and CategoricalComponent, based on the input data type. :param data: The data to pack into a Component (array-like) :param units: Optional units :type units: str :returns: A Component (or subclass) """ data = np.asarray(data) if np.issubdtype(data.dtype, np.object_): return CategoricalComponent(data, units=units) n = coerce_numeric(data) thresh = 0.5 try: use_categorical = np.issubdtype(data.dtype, np.character) and \ np.isfinite(n).mean() <= thresh except TypeError: # isfinite not supported. non-numeric dtype use_categorical = True if use_categorical: return CategoricalComponent(data, units=units) else: return Component(n, units=units) class DerivedComponent(Component): """ A component which derives its data from a function """ def __init__(self, data, link, units=None): """ :param data: The data object to use for calculation :type data: :class:`~glue.core.data.Data` :param link: The link that carries out the function :type link: :class:`~glue.core.component_link.ComponentLink` :param units: Optional unit description """ super(DerivedComponent, self).__init__(data, units=units) self._link = link def set_parent(self, data): """ Reassign the Data object that this DerivedComponent operates on """ self._data = data @property def hidden(self): return self._link.hidden @property def data(self): """ Return the numerical data as a numpy array """ return self._link.compute(self._data) @property def link(self): """ Return the component link """ return self._link def __getitem__(self, key): return self._link.compute(self._data, key) class CoordinateComponent(Component): """ Components associated with pixel or world coordinates The numerical values are computed on the fly. """ def __init__(self, data, axis, world=False): super(CoordinateComponent, self).__init__(None, None) self.world = world self._data = data self.axis = axis @property def data(self): return self._calculate() def _calculate(self, view=None): if self.world: # Calculating the world coordinates can be a bottleneck if we aren't # careful, so we need to make sure that if not all dimensions depend # on each other, we use smart broadcasting. # The unoptimized way to do this for an N-dimensional dataset would # be to construct N-dimensional arrays of pixel values for each # coordinate. However, if we are computing the coordinates for axis # i, and axis i is not dependent on any other axis, then the result # will be an N-dimensional array where the same 1D array of # coordinates will be repeated over and over. # To optimize this, we therefore essentially consider only the # dependent dimensions and then broacast the result to the full # array size at the very end. # view=None actually adds a dimension which is never what we really # mean, at least in glue. if view is None: view = Ellipsis # For 1D arrays, slice can be given as a single slice but we need # to wrap it in a list to make the following code work correctly, # as it is then consistent with higher-dimensional cases. if isinstance(view, slice) or np.isscalar(view): view = [view] # Some views, e.g. with lists of integer arrays, can give arbitrarily # complex (copied) subsets of arrays, so in this case we don't do any # optimization if view is Ellipsis: optimize_view = False else: for v in view: if not np.isscalar(v) and not isinstance(v, slice): optimize_view = False break else: optimize_view = True pix_coords = [] dep_coords = self._data.coords.dependent_axes(self.axis) final_slice = [] final_shape = [] for i in range(self._data.ndim): if optimize_view and i < len(view) and np.isscalar(view[i]): final_slice.append(0) else: final_slice.append(slice(None)) # We set up a 1D pixel axis along that dimension. pix_coord = np.arange(self._data.shape[i]) # If a view was specified, we need to take it into account for # that axis. if optimize_view and i < len(view): pix_coord = pix_coord[view[i]] if not np.isscalar(view[i]): final_shape.append(len(pix_coord)) else: final_shape.append(self._data.shape[i]) if i not in dep_coords: # The axis is not dependent on this instance's axis, so we # just compute the values once and broadcast along this # dimension later. pix_coord = 0 pix_coords.append(pix_coord) # We build the list of N arrays, one for each pixel coordinate pix_coords = np.meshgrid(*pix_coords, indexing='ij', copy=False) # Finally we convert these to world coordinates axis = self._data.ndim - 1 - self.axis world_coords = self._data.coords.pixel2world_single_axis(*pix_coords[::-1], axis=axis) # We get rid of any dimension for which using the view should get # rid of that dimension. if optimize_view: world_coords = world_coords[tuple(final_slice)] # We then broadcast the final array back to what it should be world_coords = broadcast_to(world_coords, tuple(final_shape)) # We apply the view if we weren't able to optimize before if optimize_view: return world_coords else: return world_coords[view] else: slices = [slice(0, s, 1) for s in self.shape] grids = np.broadcast_arrays(*np.ogrid[slices]) if view is not None: grids = [g[view] for g in grids] return grids[self.axis] @property def shape(self): """ Tuple of array dimensions. """ return self._data.shape @property def ndim(self): """ Number of dimensions """ return len(self._data.shape) def __getitem__(self, key): return self._calculate(key) def __lt__(self, other): if self.world == other.world: return self.axis < other.axis return self.world def __gluestate__(self, context): return dict(axis=self.axis, world=self.world) @classmethod def __setgluestate__(cls, rec, context): return cls(None, rec['axis'], rec['world']) @property def numeric(self): return True @property def categorical(self): return False class CategoricalComponent(Component): """ Container for categorical data. """ def __init__(self, categorical_data, categories=None, jitter=None, units=None): """ :param categorical_data: The underlying :class:`numpy.ndarray` :param categories: List of unique values in the data :jitter: Strategy for jittering the data """ super(CategoricalComponent, self).__init__(None, units) self._categorical_data = np.asarray(categorical_data) if self._categorical_data.ndim > 1: raise ValueError("Categorical Data must be 1-dimensional") # Disable changing of categories self._categorical_data.setflags(write=False) self._categories = categories self._jitter_method = jitter self._is_jittered = False self._data = None if self._categories is None: self._update_categories() else: self._update_data() @property def codes(self): """ The index of the category for each value in the array. """ return self._data @property def labels(self): """ The original categorical data. """ return self._categorical_data @property def categories(self): """ The categories. """ return self._categories @property def data(self): warnings.warn("The 'data' attribute is deprecated. Use 'codes' " "instead to access the underlying index of the " "categories") return self.codes @property def numeric(self): return False @property def categorical(self): return True def _update_categories(self, categories=None): """ :param categories: A sorted array of categories to find in the dataset. If None the categories are the unique items in the data. :return: None """ if categories is None: categories, inv = unique(self._categorical_data) self._categories = categories self._data = inv.astype(np.float) self._data.setflags(write=False) self.jitter(method=self._jitter_method) else: if check_sorted(categories): self._categories = categories self._update_data() else: raise ValueError("Provided categories must be Sorted") def _update_data(self): """ Converts the categorical data into the numeric representations given self._categories """ self._is_jittered = False self._data = row_lookup(self._categorical_data, self._categories) self.jitter(method=self._jitter_method) self._data.setflags(write=False) def jitter(self, method=None): """ Jitter the data so the density of points can be easily seen in a scatter plot. :param method: None | 'uniform': * None: No jittering is done (or any jittering is undone). * uniform: A unformly distributed random variable (-0.5, 0.5) is applied to each point. :return: None """ if method not in set(['uniform', None]): raise ValueError('%s jitter not supported' % method) self._jitter_method = method seed = 1234567890 rand_state = np.random.RandomState(seed) if (self._jitter_method is None) and self._is_jittered: self._update_data() elif (self._jitter_method is 'uniform') and not self._is_jittered: iswrite = self._data.flags['WRITEABLE'] self._data.setflags(write=True) self._data += rand_state.uniform(-0.5, 0.5, size=self._data.shape) self._is_jittered = True self._data.setflags(write=iswrite) def subset_from_roi(self, att, roi, other_comp=None, other_att=None, coord='x', is_nested=False): """ Create a SubsetState object from an ROI. This encapsulates the logic for creating subset states with CategoricalComponents. There is an important caveat, only RangeROIs and RectangularROIs make sense in mixed type plots. As such, polygons are converted to their outer-most edges in this case. :param att: attribute name of this Component :param roi: an ROI object :param other_comp: The other Component for 2D ROIs :param other_att: The attribute name of the other Component :param coord: The orientation of this Component :param is_nested: True if this was passed from another Component. :return: A SubsetState (or subclass) object """ if coord not in ('x', 'y'): raise ValueError('coord should be one of x/y') if isinstance(roi, RangeROI): # The selection is either an x range or a y range if roi.ori == coord: # The selection applies to the current component return CategoricalROISubsetState.from_range(self, att, roi.min, roi.max) else: # The selection applies to the other component, so we delegate other_coord = 'y' if coord == 'x' else 'x' return other_comp.subset_from_roi(other_att, roi, other_comp=self, other_att=att, coord=other_coord) elif isinstance(roi, RectangularROI): # In this specific case, we can decompose the rectangular # ROI into two RangeROIs that are combined with an 'and' # logical operation. other_coord = 'y' if coord == 'x' else 'x' if coord == 'x': range1 = XRangeROI(roi.xmin, roi.xmax) range2 = YRangeROI(roi.ymin, roi.ymax) else: range2 = XRangeROI(roi.xmin, roi.xmax) range1 = YRangeROI(roi.ymin, roi.ymax) # We get the subset state for the current component subset1 = self.subset_from_roi(att, range1, other_comp=other_comp, other_att=other_att, coord=coord) # We now get the subset state for the other component subset2 = other_comp.subset_from_roi(other_att, range2, other_comp=self, other_att=att, coord=other_coord) return AndState(subset1, subset2) elif isinstance(roi, CategoricalROI): # The selection is categorical itself return CategoricalROISubsetState(roi=roi, att=att) else: # The selection is polygon-like, which requires special care. if isinstance(other_comp, CategoricalComponent): # For each category, we check which categories along the other # axis fall inside the polygon: selection = {} for code, label in enumerate(self.categories): # Determine the coordinates of the points to check n_other = len(other_comp.categories) y = np.arange(n_other) x = np.repeat(code, n_other) if coord == 'y': x, y = y, x # Determine which points are in the polygon, and which # categories these correspond to in_poly = roi.contains(x, y) categories = other_comp.categories[in_poly] if len(categories) > 0: selection[label] = set(categories) return CategoricalROISubsetState2D(selection, att, other_att) else: # If the other component is not categorical, we treat this as if # each categorical component was mapped to a numerical value, # and at each value, we keep track of the polygon intersection # with the component. This will result in zero, one, or # multiple separate numerical ranges for each categorical value. # TODO: if we ever allow the category order to be changed, we # need to figure out how to update this! x, y = roi.to_polygon() if is_nested: x, y = y, x # We loop over each category and for each one we find the # numerical ranges selection = {} for code, label in enumerate(self.categories): # We determine all the numerical segments that represent the # ensemble of points in y that fall in the polygon # TODO: profile the following function segments = polygon_line_intersections(x, y, xval=code) if len(segments) > 0: selection[label] = segments return CategoricalMultiRangeSubsetState(selection, att, other_att) def to_series(self, **kwargs): """ Convert into a pandas.Series object. This will be converted as a dtype=np.object! :param kwargs: All kwargs are passed to the Series constructor. :return: pandas.Series """ return pd.Series(self._categorical_data.ravel(), dtype=np.object, **kwargs)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/component.py", "copies": "2", "size": "23534", "license": "bsd-3-clause", "hash": -7402596534527506000, "line_mean": 32.8618705036, "line_max": 90, "alpha_frac": 0.5583411235, "autogenerated": false, "ratio": 4.666666666666667, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0002825064885107453, "num_lines": 695 }
from __future__ import absolute_import, division, print_function import logging import os import re import requests import socket from subprocess import STDOUT try: from subprocess import SubprocessError except ImportError: # pragma: no cover # py2 from subprocess import CalledProcessError as SubprocessError import time import warnings from .utils import shell_out, get_log_content from .exceptions import YARNException logger = logging.getLogger(__name__) class YARNAPI(object): """REST interface to YARN self.auth holds the authentication being used - it can be updated as needed, and will then be applied to subsequent actions. Parameters ---------- rm: str Resource Manager host rm_port: int HTTP REST port scheme: 'http' or 'https' gateway_path: str If routing through a proxy, this is prepended to the URL path kerberos: bool Whether to use kerberos authentication when speaking to the REST service. Requires requests_kerberos, see https://github.com/requests/requests-kerberos username, password: str For simple authentication of the REST endpoint. """ timeout = 2 # for REST HTTP calls def __init__(self, rm, rm_port, scheme='http', gateway_path='', kerberos=False, username=None, password=None): self.rm = rm self.rm_port = rm_port self.scheme = scheme self.gateway_path = gateway_path self.host_port = "{0}:{1}".format(self.rm, self.rm_port) self.url = scheme + '://' + self.host_port + gateway_path + '/ws/v1/' if kerberos: from requests_kerberos import HTTPKerberosAuth self.auth = HTTPKerberosAuth() elif username and password: self.auth = (username, password) else: self.auth = None self.username = username self.password = password @property def apps(self): """App IDs known to YARN""" data = self.apps_info() apps = [d['id'] for d in data] return apps def apps_info(self, app_id=None): """List app apps, or info for given app""" if app_id is None: # this query allows for filtering on a number of parameters url = self.url + 'cluster/apps/' logger.debug("Getting Resource Manager Info: {0}".format(url)) r = requests.get(url, timeout=self.timeout, auth=self.auth) self._verify_response(r) data = r.json() return (data.get('apps', None) or {'app': []})['app'] else: r = requests.get(self.url + 'cluster/apps/{}'.format(app_id), timeout=self.timeout, auth=self.auth) self._verify_response(r) return r.json()['app'] def app_attempts(self, app_id): """List of attempt details for given app""" r = requests.get(self.url + 'cluster/apps/{}/appattempts'.format( app_id), timeout=self.timeout, auth=self.auth) self._verify_response(r) return r.json().get('appAttempts', {'app_attempt': []})['appAttempt'] def app_containers(self, app_id=None, info=None): """ Get list of container information for given app. If given app_id, will automatically get its info, or can skip by providing the info directly. Parameters ---------- app_id: str YARN ID for the app info: dict Produced by app_info() Returns ------- List of container info dictionaries """ if (app_id is None) == (info is None): raise TypeError('Must provide app_id or info') if app_id: info = self.status(app_id) amHostHttpAddress = info['amHostHttpAddress'] url = "http://{0}/ws/v1/node/containers".format( amHostHttpAddress) r = requests.get(url, timeout=self.timeout, auth=self.auth) self._verify_response(r) data = r.json()['containers'] if not data: raise YARNException("No containers available") container = data['container'] logger.debug(container) # container_1452274436693_0001_01_000001 def get_app_id_num(x): return "_".join(x.split("_")[1:3]) app_id_num = get_app_id_num(app_id) containers = [d for d in container if get_app_id_num(d['id']) == app_id_num] return containers def logs(self, app_id, shell=False, retries=4, delay=3): """ Collect logs from RM (if running) With shell=True, collect logs from HDFS after job completion Parameters ---------- app_id: str A yarn application ID string shell: bool Shell out to yarn CLI (default False) retries: int If CLI is not returning info, retry this many times delay: number Seconds to wait between retries Returns ------- log: dictionary logs from each container (when possible) """ running = self.state(app_id) == 'RUNNING' if not shell and running: # logs are held in memory only while app is running try: containers = self.app_containers(app_id) logs = {} for c in containers: log = dict(nodeId=c['nodeId']) # grab stdout url = "{0}/stdout/?start=0".format(c['containerLogsLink']) logger.debug("Gather stdout/stderr data from {0}:" " {1}".format(c['nodeId'], url)) r = requests.get(url, timeout=self.timeout, auth=self.auth) log['stdout'] = get_log_content(r.text) # grab stderr url = "{0}/stderr/?start=0".format(c['containerLogsLink']) r = requests.get(url, timeout=self.timeout, auth=self.auth) log['stderr'] = get_log_content(r.text) logs[c['id']] = log return logs except Exception: logger.warning("Error while attempting to fetch logs," " using fallback", exc_info=1) # fallback # TODO: this is just a location in HDFS given by app info cmd = ["yarn", "logs", "-applicationId", app_id] while True: try: out = shell_out(cmd) break except SubprocessError: # pragma: no cover retries -= 1 if retries < 0: raise RuntimeError('Retries exceeded when fetching logs for' ' ' + app_id) time.sleep(delay) logs = {} container = None ltype = 'stdout' started = False for line in out.split('\n'): p = re.compile('Container: ([a-zA-Z0-9_]+) on ([a-zA-Z0-9_]+)') r = p.match(line) if r: container, nodeID = r.groups() logs[container] = dict(nodeId=nodeID, stdout='', stderr='') started = False elif line == 'LogType:stderr': ltype = 'stderr' elif line == 'LogType:stdout': ltype = 'stdout' elif line == "Log Contents:": started = True elif started: logs[container][ltype] = logs[container][ltype] + '\n' + line return logs def container_status(self, container_id): """Ask the YARN shell about the given container Better to use app_containers, assuming you know the app_id, which is normally "_".join(container_id.split("_")[:3]) """ cmd = ["yarn", "container", "-status", container_id] return str(shell_out(cmd)) def state(self, app_id): """Current state of given application""" r = requests.get(self.url + 'cluster/apps/{}/state'.format(app_id), timeout=self.timeout, auth=self.auth) self._verify_response(r) return r.json()['state'] def status(self, app_id): """ Get status of an application Parameters ---------- app_id: str A yarn application ID string Returns ------- dictionary: status of application """ return self.apps_info(app_id) def kill_all(self, knit_only=True): """Kill a set of applications Parameters ---------- knit_only: bool (True) Only kill apps with the name 'knit' (i.e., ones we started) """ for app in self.apps: stat = self.apps_info(app) if knit_only and stat['name'] != 'knit': continue if stat['state'] in ['KILLED', 'FINISHED', 'FAILED']: continue self.kill(app) def kill(self, app_id): """ Method to kill a yarn application Parameters ---------- app_id: str YARN application id Returns ------- bool: True if successful, False otherwise. """ cmd = ["yarn", "application", "-kill", app_id] try: out = shell_out(cmd, stderr=STDOUT) return "Killed application" in out except SubprocessError: return False def _verify_response(self, r): if not r.ok: try: ex = r.json()['RemoteException'] raise YARNException(ex.get('message', str(ex))) except (ValueError, IndexError): raise YARNException(r.text) def cluster_info(self): """YARN cluster information: driver, version...""" r = requests.get(self.url + 'cluster', timeout=self.timeout, auth=self.auth) self._verify_response(r) return r.json()['clusterInfo'] def cluster_metrics(self): """YARN cluster global capacity/allocations""" r = requests.get(self.url + 'cluster/metrics', timeout=self.timeout, auth=self.auth) self._verify_response(r) return r.json()['clusterMetrics'] def scheduler(self): """State of the scheduler/queue""" r = requests.get(self.url + 'cluster/scheduler', timeout=self.timeout, auth=self.auth) self._verify_response(r) return r.json()['scheduler'] def app_stats(self): """Number of apps of various states""" r = requests.get(self.url + 'cluster/appstatistics', timeout=self.timeout, auth=self.auth) self._verify_response(r) return r.json()['appStatInfo'] def nodes(self): """Info on YARN's worker nodes""" r = requests.get(self.url + 'cluster/nodes', timeout=self.timeout, auth=self.auth) self._verify_response(r) return r.json()['nodes']['node'] def system_logs(self): """Trouble-shooting method This will check for RM and NM processes on this machine, and return their logs, if possible. """ nodes = self.nodes() ips = set((socket.gethostbyname_ex(socket.gethostname())[2] + socket.gethostbyname_ex('localhost')[2])) on_rm = socket.gethostbyname(self.rm) in ips single_node = on_rm and len(nodes) == 1 and ( socket.gethostbyname(nodes[0]['nodeHostName']) in ips) out = {'single_node': single_node, 'on_rm': on_rm} try: import psutil for p in psutil.process_iter(): if any('NodeManager' in s for s in p.cmdline()): out['nm_proc'] = p log = os.path.join([s.split('=')[1] for s in p.cmdline() if s.startswith('-Dyarn.log.dir')][0], [s.split('=')[1] for s in p.cmdline() if s.startswith('-Dyarn.log.file')][0]) out['nm_logfile'] = log if any('ResourceManager' in s for s in p.cmdline()): out['rm_proc'] = p log = os.path.join([s.split('=')[1] for s in p.cmdline() if s.startswith('-Dyarn.log.dir')][0], [s.split('=')[1] for s in p.cmdline() if s.startswith('-Dyarn.log.file')][0]) out['rm_logfile'] = log except ImportError: warnings.warn('psutil is not installed') return out
{ "repo_name": "blaze/knit", "path": "knit/yarn_api.py", "copies": "2", "size": "12916", "license": "bsd-3-clause", "hash": -7954509776072803000, "line_mean": 34.2896174863, "line_max": 80, "alpha_frac": 0.5252400124, "autogenerated": false, "ratio": 4.278237827095064, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5803477839495065, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging import os import sys from conda_build.conda_interface import ArgumentParser from conda_build import api from conda_build.index import MAX_THREADS_DEFAULT from conda_build.utils import DEFAULT_SUBDIRS logging.basicConfig(level=logging.INFO) def parse_args(args): p = ArgumentParser( description="Update package index metadata files in given directories.") p.add_argument( 'dir', help='Directory that contains an index to be updated.', nargs='*', default=[os.getcwd()], ) p.add_argument( '-c', "--check-md5", action="store_true", help="""Use hash values instead of file modification times for determining if a package's metadata needs to be updated.""", ) p.add_argument( "-n", "--channel-name", help="Customize the channel name listed in each channel's index.html.", ) p.add_argument( '-s', '--subdir', action='append', help='Optional. The subdir to index. Can be given multiple times. If not provided, will ' 'default to all of %s. If provided, will not create channeldata.json for the channel.' '' % ', '.join(DEFAULT_SUBDIRS), ) p.add_argument( '-t', '--threads', default=MAX_THREADS_DEFAULT, type=int, ) p.add_argument( "-p", "--patch-generator", help="Path to Python file that outputs metadata patch instructions" ) p.add_argument( "--hotfix-source-repo", help="URL of git repo that hosts your metadata patch instructions" ) p.add_argument( "--verbose", help="show extra debugging info", action="store_true" ) p.add_argument( "--no-progress", help="Hide progress bars", action="store_false", dest="progress" ) p.add_argument( "--current-index-versions-file", "-m", help=""" YAML file containing name of package as key, and list of versions as values. The current_index.json will contain the newest from this series of versions. For example: python: - 2.7 - 3.6 will keep python 2.7.X and 3.6.Y in the current_index.json, instead of only the very latest python version. """ ) args = p.parse_args(args) return p, args def execute(args): _, args = parse_args(args) api.update_index(args.dir, check_md5=args.check_md5, channel_name=args.channel_name, threads=args.threads, subdir=args.subdir, patch_generator=args.patch_generator, verbose=args.verbose, progress=args.progress, hotfix_source_repo=args.hotfix_source_repo, current_index_versions=args.current_index_versions_file) def main(): return execute(sys.argv[1:])
{ "repo_name": "pelson/conda-build", "path": "conda_build/cli/main_index.py", "copies": "2", "size": "2870", "license": "bsd-3-clause", "hash": 8094977412411163000, "line_mean": 30.5384615385, "line_max": 115, "alpha_frac": 0.6229965157, "autogenerated": false, "ratio": 3.953168044077135, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.001131488613909042, "num_lines": 91 }
from __future__ import absolute_import, division, print_function import logging import os import tensorflow as tf from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import (signature_constants, tag_constants) def get_optimizer_by_name(optimizer_name, learning_rate): """ Get optimizer object by the optimizer name. Args: optimizer_name: Name of the optimizer. learning_rate: The learning rate. Return: The optimizer object. """ logging.info("Use the optimizer: {}".format(optimizer_name)) if optimizer_name == "sgd": optimizer = tf.train.GradientDescentOptimizer(learning_rate) elif optimizer_name == "adadelta": optimizer = tf.train.AdadeltaOptimizer(learning_rate) elif optimizer_name == "adagrad": optimizer = tf.train.AdagradOptimizer(learning_rate) elif optimizer_name == "adam": optimizer = tf.train.AdamOptimizer(learning_rate) elif optimizer_name == "ftrl": optimizer = tf.train.FtrlOptimizer(learning_rate) elif optimizer_name == "rmsprop": optimizer = tf.train.RMSPropOptimizer(learning_rate) else: optimizer = tf.train.GradientDescentOptimizer(learning_rate) return optimizer def save_model(model_path, model_version, sess, signature_def_map, is_save_graph=False): """ Save the model in standard SavedModel format. Args: model_path: The path to model. model_version: The version of model. sess: The TensorFlow Session object. signature_def_map: The map of TensorFlow SignatureDef object. is_save_graph: Should save graph file of not. Return: None """ export_path = os.path.join(model_path, str(model_version)) if os.path.isdir(export_path) == True: logging.error("The model exists in path: {}".format(export_path)) return try: # Save the SavedModel legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') builder = saved_model_builder.SavedModelBuilder(export_path) builder.add_meta_graph_and_variables( sess, [tag_constants.SERVING], clear_devices=True, signature_def_map=signature_def_map, legacy_init_op=legacy_init_op) logging.info("Save the model in: {}".format(export_path)) builder.save() # Save the GraphDef if is_save_graph == True: graph_file_name = "graph.pb" logging.info("Save the graph file in: {}".format(model_path)) tf.train.write_graph( sess.graph_def, model_path, graph_file_name, as_text=False) except Exception as e: logging.error("Fail to export saved model, exception: {}".format(e)) def restore_from_checkpoint(sess, saver, checkpoint_file_path): """ Restore session from checkpoint files. Args: sess: TensorFlow Session object. saver: TensorFlow Saver object. checkpoint_file_path: The checkpoint file path. Return: True if restore successfully and False if fail """ if checkpoint_file_path: logging.info( "Restore session from checkpoint: {}".format(checkpoint_file_path)) saver.restore(sess, checkpoint_file_path) return True else: logging.error("Checkpoint not found: {}".format(checkpoint_file_path)) return False
{ "repo_name": "tobegit3hub/deep_recommend_system", "path": "util.py", "copies": "1", "size": "3354", "license": "apache-2.0", "hash": 8266081195671842000, "line_mean": 30.641509434, "line_max": 78, "alpha_frac": 0.675313059, "autogenerated": false, "ratio": 3.9182242990654204, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5093537358065421, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging import os import time import uuid from os import environ as env from threading import Thread from time import sleep from mentos.exceptions import ExecutorException from mentos.subscription import Event, Subscription from mentos.utils import decode_data, encode_data, parse_duration from toolz import merge from tornado.ioloop import IOLoop log = logging.getLogger(__name__) class ExecutorDriver(): def __init__(self, executor, handlers={}, loop=None): self.loop = loop or IOLoop() self.master = env.get('MESOS_AGENT_ENDPOINT') self.framework_id = dict(value=env.get('MESOS_FRAMEWORK_ID')) self.executor_id = dict(value=env.get('MESOS_EXECUTOR_ID')) self.framework = {'id': self.framework_id, 'framework_id': self.framework_id, 'executor_id': self.executor_id} grace_shutdown_period = env.get('MESOS_EXECUTOR_SHUTDOWN_GRACE_PERIOD') if grace_shutdown_period: # pragma: no cover self.grace_shutdown_period = parse_duration(grace_shutdown_period) else: self.grace_shutdown_period = 0.0 self.checkpoint = bool(env.get('MESOS_CHECKPOINT')) self.local = bool(env.get('MESOS_LOCAL', True)) self.executor = executor self.framework_info = None self.executor_info = None self.executor = executor defaults = {Event.SUBSCRIBED: self.on_subscribed, Event.CLOSE: self.on_close, Event.MESSAGE: self.on_message, Event.ERROR: self.on_error, Event.ACKNOWLEDGED: self.on_acknowledged, Event.KILL: self.on_kill, Event.LAUNCH_GROUP: self.on_launch_group, Event.LAUNCH: self.on_launch, Event.SHUTDOWN: self.on_shutdown, Event.OUTBOUND_SUCCESS: self.on_outbound_success, Event.OUTBOUND_ERROR: self.on_outbound_error} self.handlers = merge(defaults, handlers) self.subscription = Subscription(self.framework, self.master, '/api/v1/executor', self.handlers, loop=self.loop) self.subscription.tasks = {} self.subscription.updates = {} def start(self, block=False, **kwargs): '''Start executor running in separate thread''' if not self.loop._running: self._loop_thread = Thread(target=self.loop.start) self._loop_thread.daemon = True self._loop_thread.start() while not self.loop._running: # pragma: no cover sleep(0.001) self.loop.add_callback(self.subscription.start) if block: # pragma: no cover self._loop_thread.join() def stop(self): log.debug('Terminating Scheduler Driver') self.subscription.close() self.loop.add_callback(self.loop.stop) while self.loop._running: # pragma: no cover sleep(0.1) def update(self, status): if 'timestamp' not in status: status['timestamp'] = int(time.time()) if 'uuid' not in status: status['uuid'] = encode_data(uuid.uuid4().bytes) if 'source' not in status: status['source'] = 'SOURCE_EXECUTOR' payload = { 'type': 'UPDATE', 'framework_id': self.framework_id, 'executor_id': self.executor_id, 'update': { 'status': status } } self.loop.add_callback(self.subscription.send, payload) logging.debug('Executor sends status update {} for task {}'.format( status['state'], status['task_id'])) def message(self, message): payload = { 'type': 'MESSAGE', 'framework_id': self.framework_id, 'executor_id': self.executor_id, 'message': { 'data': encode_data(message) } } self.loop.add_callback(self.subscription.send, payload) logging.debug('Driver sends framework message {}'.format(message)) def on_subscribed(self, info): executor_info = info['executor_info'] framework_info = info['framework_info'] agent_info = info['agent_info'] if executor_info['executor_id'] != self.executor_id: # pragma: no cover raise ExecutorException('Mismatched executor_id\'s') if framework_info['id'] != self.framework_id: # pragma: no cover raise ExecutorException('Mismatched framework_ids') if self.executor_info is None or self.framework_info is None: self.executor_info = executor_info self.framework_info = framework_info self.executor.on_registered( self, executor_info, self.framework_info, agent_info ) else: # pragma: no cover self.executor.on_reregistered(self, agent_info) log.debug('Subscribed with info {}'.format(info)) def on_close(self): if not self.checkpoint: if not self.local: # pragma: no cover self._delay_kill() self.executor.on_shutdown(self) log.debug('Got close command') def on_launch_group(self, event): task_info = event['task'] task_id = task_info['task_id']['value'] if task_id in self.subscription.tasks: # pragma: no cover raise ExecutorException('Task Exists') self.subscription.tasks[task_id] = task_info self.executor.on_launch(self, task_info) log.debug('Got launch group command {}'.format(event)) def on_launch(self, event): task_info = event['task'] task_id = task_info['task_id']['value'] if task_id in self.subscription.tasks: raise ExecutorException('Task Exists') self.subscription.tasks[task_id] = task_info log.debug('Launching {}'.format(event)) self.executor.on_launch(self, task_info) log.debug('Got launch command {}'.format(event)) def on_kill(self, event): task_id = event['task_id'] self.executor.on_kill(self, task_id) log.debug('Got kill command {}'.format(event)) def on_acknowledged(self, event): task_id = event['task_id']['value'] uuid_ = uuid.UUID(bytes=decode_data(event['uuid'])) self.subscription.updates.pop(uuid_, None) self.subscription.tasks.pop(task_id, None) self.executor.on_acknowledged(self, task_id, uuid_) log.debug('Got acknowledge {}'.format(event)) def on_message(self, event): data = event['data'] self.executor.on_message(self, data) def on_error(self, event): message = event['message'] self.executor.on_error(self, message) log.debug('Got error {}'.format(event)) def on_shutdown(self): if not self.local: # pragma: no cover self._delay_kill() self.executor.on_shutdown(self) log.debug('Got Shutdown command') self.stop() def on_outbound_success(self, event): self.executor.on_outbound_success(self, event['request']) log.debug('Got success on outbound {}'.format(event)) def on_outbound_error(self, event): self.executor.on_outbound_error( self, event['request'], event['endpoint'], event['error']) log.debug('Got error on outbound {}'.format(event)) def _delay_kill(self): # pragma: no cover def _(): try: time.sleep(self.grace_shutdown_period) os._exit(os.EX_OK) except Exception: log.exception('Failed to force kill executor') t = Thread(target=_) t.daemon = True t.start() def __str__(self): return '<{}: executor={}:{}:{}>'.format( self.__class__.__name__, self.master, self.subscription.master_info.info, self.framework) __repr__ = __str__
{ "repo_name": "Arttii/malefico", "path": "mentos/executor.py", "copies": "2", "size": "8173", "license": "apache-2.0", "hash": 8053147359128773000, "line_mean": 35.3244444444, "line_max": 80, "alpha_frac": 0.581793711, "autogenerated": false, "ratio": 4.008337420304071, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5590131131304071, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import logging import os import pytest import py.path logger = logging.getLogger(__name__) @pytest.fixture(scope='session', autouse=True) def aws_credentials(): # Handle change in https://github.com/spulec/moto/issues/1924 # Ensure AWS SDK finds some (bogus) credentials in the environment and # doesn't try to use other providers. overrides = { 'AWS_ACCESS_KEY_ID': 'testing', 'AWS_SECRET_ACCESS_KEY': 'testing', 'AWS_DEFAULT_REGION': 'us-east-1' } saved_env = {} for key, value in overrides.items(): logger.info('Overriding env var: {}={}'.format(key, value)) saved_env[key] = os.environ.get(key, None) os.environ[key] = value yield for key, value in saved_env.items(): logger.info('Restoring saved env var: {}={}'.format(key, value)) if value is None: del os.environ[key] else: os.environ[key] = value saved_env.clear() @pytest.fixture(scope="package") def stacker_fixture_dir(): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'fixtures') return py.path.local(path)
{ "repo_name": "remind101/stacker", "path": "stacker/tests/conftest.py", "copies": "1", "size": "1230", "license": "bsd-2-clause", "hash": -6445209468204074000, "line_mean": 26.9545454545, "line_max": 74, "alpha_frac": 0.6203252033, "autogenerated": false, "ratio": 3.6070381231671553, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9727363326467156, "avg_score": 0, "num_lines": 44 }
from __future__ import absolute_import, division, print_function import logging import pywt import numpy as np from TotalActivation.filters.filter_boundary import filter_boundary_normal, filter_boundary_transpose # from TotalActivation.process.utils import mad logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) def mad(X, axis=0): """ Median absolute deviation :param X: Input matrix ;param axis: Axis to calculate quantity (default = 0) :return: MAD for X along axis """ return np.median(np.abs(X - np.median(X, axis=axis)), axis=axis) def wiener(X, hrfparam, Lambda, n_vox, n_tp): """ Perform Wiener-based temporal deconvolution. :param X: time x voxels matrix :param hrfparam: HRF parameters :param l: Lambda ;param n_vox: number of voxels ;param n_tp: number of time points :return: Deconvolved time series """ f_num = np.abs(np.fft.fft(hrfparam['num'], n_tp) ** 2) f_den = np.abs(np.fft.fft(hrfparam['den'][0], n_tp) * \ np.fft.fft(hrfparam['den'][1], n_tp) * \ hrfparam['den'][-1] * \ np.exp(np.arange(1, n_tp + 1) * (hrfparam['den'][1].shape[0] - 1) / n_tp)) ** 2 _, coef = pywt.wavedec(X, 'db3', level=1, axis=0) lambda_temp = mad(coef) * Lambda ** 2 * n_tp res = np.real(np.fft.ifft(np.fft.fft(X) * (np.repeat(f_den, n_vox).reshape(n_tp, n_vox) / ( np.repeat(f_den, n_vox).reshape(n_tp, n_vox) + np.kron(f_num, lambda_temp).reshape(n_tp, n_vox))), axis=1)) return res # TODO this function needs love def temporal_TA(X, f_analyze, max_eig, n_tp, Nit, noise_estimate_fin, l, cost_save, voxels=None): if voxels is None: _, coef = pywt.wavedec(X, 'db3', level=1, axis=0) lambda_temp = mad(coef) * l if noise_estimate_fin is not None: lambdas_temp_fin = np.atleast_1d(noise_estimate_fin).copy() else: lambdas_temp_fin = np.atleast_1d(lambda_temp).copy() if cost_save is not False: cost_temp = np.zeros((Nit, 1)) else: cost_temp = None else: X = X[:, voxels] _, coef = pywt.wavedec(X, 'db3', level=1, axis=0) lambda_temp = mad(coef) * l if noise_estimate_fin is not None: lambdas_temp_fin = np.atleast_1d(noise_estimate_fin[voxels]).copy() else: lambdas_temp_fin = np.atleast_1d(lambda_temp).copy() if cost_save is not False: cost_temp = np.zeros((Nit, 1)) else: cost_temp = None noise_estimate = np.atleast_1d(lambda_temp).copy() noise_estimate = np.minimum(noise_estimate, 0.95) precision = noise_estimate / 100000.0 z = np.zeros_like(X) k = 0 t = 1 s = np.zeros_like(X) while k < Nit: z_l = z.copy() z0 = filter_boundary_normal(f_analyze, X) z1 = 1.0 / (lambdas_temp_fin * max_eig) * z0 z2 = filter_boundary_transpose(f_analyze, s) z3 = filter_boundary_normal(f_analyze, z2) z4 = z1 + s z = z4 - z3 / max_eig z = np.maximum(np.minimum(z, 1), -1) t_l = t t = (1 + np.sqrt(1.0 + 4.0 * (np.power(t, 2)))) / 2.0 s = z + (t_l - 1.0) / t * (z - z_l) if cost_save is not None: temp = X - lambdas_temp_fin * filter_boundary_transpose(f_analyze, z) cost_temp = np.sum(np.power(temp - X, 2), axis=0) / 2.0 + lambdas_temp_fin * np.sum( np.abs(filter_boundary_normal(f_analyze, temp)), axis=0) noise_estimate_fin = np.sqrt(np.sum(np.power(temp - X, 2.0), axis=0) / n_tp) else: nv_tmp1 = filter_boundary_transpose(f_analyze, z) nv_tmp2 = lambdas_temp_fin * nv_tmp1 noise_estimate_fin = np.sqrt(np.sum(np.power(nv_tmp2, 2.0), axis=0) / n_tp) if np.any(np.abs(noise_estimate_fin - noise_estimate) > precision): gp = np.where(np.abs(noise_estimate_fin - noise_estimate) > precision)[0] lambdas_temp_fin[gp] = lambdas_temp_fin[gp] * noise_estimate[gp] / noise_estimate_fin[gp] k += 1 Y = X - lambdas_temp_fin * filter_boundary_transpose(f_analyze, z) return Y # , noise_estimate_fin, lambdas_temp_fin, cost_temp
{ "repo_name": "mfalkiewicz/pyTotalActivation", "path": "TotalActivation/process/temporal.py", "copies": "2", "size": "4292", "license": "mit", "hash": -7822646072191780000, "line_mean": 33.6129032258, "line_max": 115, "alpha_frac": 0.5775862069, "autogenerated": false, "ratio": 2.9157608695652173, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44933470764652167, "avg_score": null, "num_lines": null }